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Introduction

Many people, institutions, economic agents and companies are involved in pro-

ducing and using a whole range of different economic forecasts. These may be

forecasts of developments in the aggregate economy such as that one of growth

in total demand in different markets, of growth in total trade in terms of import-

export, of inflation and interest rates or of unemployment. These may be also dis-

aggregated forecasts relating to a specific sector (for example, wearing or leather)

or to a specific region. Forecasts may be even more specific, relating to demand

for a single product line, or to the reaction of a key competitor. The need for

such forecasts arises because people are taking positions and entering into com-

mitments about the future, and therefore need to form expectations, conditional

to the current information set, about the possible future consequences of these

positions or commitments.

For instance, the government needs to know the likely take-up of a state benefit

(for example, the unemployment benefit) in order to plan the relative cost. The

company investing in new skills and training processes wants to know that those

skills will be relevant in the future. An industry, in order to decide if changing

or not the price of a particular product, needs to have an overall view about its

competitors and their possible reactions to that change. In all these situations

people become the principal users of the forecast procedure, where a view must

be taken in order to reach a sensible judgement as to how to act, as to whether
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the forward commitment is likely to be advantageous.

Hence, based on these findings, it becomes essential to define the object of the

analysis and its real applicability. From a technical point of view, this means

creating an ad ”hoc” structure, usually identified by the choice of the model, of

a suitable transformation and of the relevant predictors. For instance, if we want

to study the effect of the growth rates of the UK GDP, perhaps it will be more

convenient to use a logarithmic transformation instead of analyzing the series in

its original scale. This study goes straight on this direction.

The first chapter analyzes the effects of forecasting at regional and national

levels. At the beginning we focus the attention on the policy implications in

terms of the identification of the key competencies adopting by policy makers

to face aggregate and local economic challenges such as national or local shocks.

Then we describe the relevant features of a general forecast such as seasonality

and business economic fluctuations. Finally, starting from the idea that there

exist no unique forecast ”winner”, we investigate deeper on the limitations sup-

ported by forecasting procedure. For instance, at a regional level, the quality of

the data used is often less than desirable and there is a clear imbalance between

the increased number of regional economies to be forecasted and the time span

of the available observations. All these difficulties create the right motivation to

discover a new methodology that try not only to avoid these problems but also

that is able to capture all the features.

In the second chapter we use transformed time series to produce forecasts.

The transformation implemented is that one proposed by Box-Cox (1964) which

has the great advantage to include the logarithmic transform as a special case.

The model used is the AR(1). A rolling forecast exercise has been done for 125

monthly series of the industrial production index and of tourism demand, related

to Italy, France, Germany, UK and Sicily. All the series are not seasonal adjusted,



such that we account for seasonality by introducing in the model the calendar

effects as exogenous variables. The h-step ahead forecast has been calculated

according to different type of transformations whose comparisons have been done

by using the standard measure of accuracy and the Diebold Mariano test. All the

results seem to suggest that the optimal value of the transformation parameter

does not necessary correspond to a gain in forecast accuracy. In addition different

transformations are also used to make comparisons for different time horizons.

Clearly the results are strictly related to the specific sector analyzed and to the

localized economic factors considered.

The last chapter ,instead, presents a non parametric analysis which has been

developed in order to see what happens if the optimal value of transformation

remains fixed. This involves the computation of the analysis in frequency domain

for the prediction error variance. Some Monte Carlo experiments show how the

prediction error variance changes according to the sample size chosen and the

different bandwidth considered. At the end an application to real data is im-

plemented. This study seems to suggest how the choice of the transformation

parameter is essential for better understand the purpose of the analysis both at

economic and at methodological level.



Chapter 1

The effects of forecasting at national

and regional levels

,

1.1 Introduction

This chapter describes the role of forecasting both at national and regional

levels. Forecasting the direction in which the economy is going is essential for

monetary and fiscal policy, but not sufficient since knowledge about the starting

position and, possibly, even the past trajectory is required. This is less simple

than one would think, because of the key variables are not observable. Indeed,

the conduct of economic policy faces challenges which are quite similar to those

of economic forecasting, with some additional complications. Thinking about

the monetary policy, it affects inflation and output with long and variable lags.

These are average lags, measured over a sample period. The actual lags may be

longer or shorter, depending on the particular combination of shocks affecting the

economy at any point in time. In any case, what the forecasting analysis suggests

is that a change in the monetary stance today has an impact on output roughly
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one year from now and on inflation one to two years from now.

The implication for monetary policy is quite straightforward: policy should be

based not only on current output and inflation developments, but (mainly) on

expected future developments, one to two years ahead. If one shares this gen-

erally recognised principle, one should also agree that a fair assessment about a

given monetary policy stance cannot be made referring to the current state of

the economy but rather on the basis of the expected state of the economy one or

two years ahead. The rationale of a given stance or of a given monetary policy

decision can be understood or criticized only on the basis of an economic forecast.

Moreover, any forecast of output and inflation is closely related to the assess-

ment of the current economic conditions, in particular to the cyclical position of

the economy, which is called in the literature the ”output gap”. An incorrect

assessment of the underlying position of the economy in the cycle is likely to lead

to a forecast error over the relevant forecasting horizon. The converse is also true:

forecasts shape our view of current economic conditions.

Also, fiscal and monetary policies have different impacts on different regions

1. This is because of heterogeneity across regions that creates strong and persis-

tent regional disparities in economic performance. Hence, in order to correctly

target their actions and policies, both national and local policy makers need to

understand some aspects of such disparities: the determinants of persistence and

variation, the region-specificity, the cross-regional dynamics and the aggregate

level of the variable considered. Therefore, a forecast of the entire economy may

be very important to the planning process of companies, institutions and policy

makers operating both at a national and at a regional or local scale.

This demand for both national and regional forecasts challenges the economic

researcher to develop models that produce accurate predictions of the major eco-

1see Ledyaeva et al. (2008), Longhi et al. (2007), Mayor et al. (2007) and Tena et al. (2010)
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nomic variables for regions and countries. In this context it is clear how a compre-

hensive knowledge of the specific features of the macro-area under observation is

essential for choosing the right instruments which allow to react more effectively

and to prevent more accurate reactions to aggregate and local shocks.

1.2 Why forecasting is so controversial?

Nowadays there is an increasing tendency to describe events that are properly

relate to the future. In this sense a forecast should be considered as any statement

about the future. Such statements may be well founded or may lack any sound

basis; they may be accurate or inaccurate on any given occasion or on average,

precise or imprecise, model-based or informal. There are many ways of making

forecasts2, each of them should represent the best choice according to the purpose

of the analysis. This means that it is not the method we choose that makes a

general forecast successful or not, instead the judgment depends on how much

the forecast is ”close” to the outcome.

Thus, one must decide on which aspect it is important to be ”close” before any

choice between methods3 is possible. Usually accuracy, measured by the notion

of unbiasedness, and precision are the two dimensions along which forecasts may

be judged. A good compromise between them makes a forecast a possible ”win-

ner”. Unfortunately, no unique measure of a ”winner” is possible in a forecasting

competition involving either multi-period or multi-variable forecasts.

In addition to bias and variance considerations, point forecasts are often judged

on criteria such as the efficient use of information. Also, forecasts often include

forecast intervals and, sometimes the complete density of outcomes, so these are

required to be ”well calibrated”.

2see Hendry et al. (2001)
3see Granger et al. (2005)
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Since it is seldom the case that a single forecast exists for the economic phe-

nomenon of interest, rival forecasts are often available to allow ex-post compar-

isons of one against the other. Sometimes a combination of one or more forecasts

is better than a single forecast, or we may choose a forecast that contains all the

useful information which exist in another one.

The properties of forecasting methods can be investigated in both empiri-

cal and artificial settings, using mathematical analysis and computer-intensive

numerical methods. Forecasting methods should be compared by testing combi-

nations 4 of forecasting models for encompassing or by Monte Carlo simulation.

In the last case an investigator generates artificial ”data” against which the mod-

els are compared in repeated trials, in order to calculate how well such methods

perform in a chosen controlled environment. This procedure is most useful when

we know the large-sample behaviour of the statistics of interest for the forecast-

ing methods and when we wish to investigate the usefulness of these asymptotic

results for samples of the size typically available to the applied researcher.

Empirical comparisons, in the form of forecasting competitions5, typically look

at the performance of different methods for many time series. Because the data

generating process is not under the investigator’s control and will only be imper-

fectly known, the results of forecast comparisons for any one series could depend

on the idiosyncratic features of the series, thus limiting their general applicability.

For this reason, many series are compared, and often series are selected which

share certain characteristics, with the caveat that the results might only be ex-

pected to hold for other series with the same characteristics. This highlights a

”circularity problem”: until we know how empirical economic data are generated,

we cannot define the appropriate framework for developing or analyzing methods,

so we cannot actually determine how well they should perform.

4see Stock et al. (2003)
5see Rickman et al. (2009), West et al. (1996) and West (2003)
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1.3 The evaluation of regional policy through

forecasting

Policy makers need to evaluate the total effect of local and regional programs

in order to make informed decisions. Development proposals have economic, so-

cial, and demographic implications that go well beyond their direct effects. To

understand these effects, analysts need to use a comprehensive economic fore-

casting and simulation approach.

Local and regional policy models show the full effects of policy changes on the

local economy, including socioeconomic consequences that may otherwise be un-

foreseen or unrecognized. Normally, regional and local economic models are used

for a variety of policy analysis purposes, including the evaluation of economic

development proposals, transportation projects, environmental regulations, and

energy programs.

Regional models are also used for planning and programming purposes, par-

ticularly when they relate to infrastructure needs including new roads, airports,

power plants, water facilities and a broad range of other public and private ser-

vices. Each of the model used has its strengths and weaknesses. Usually, models

are dynamic, with forecasts and simulations generated on an annual basis in re-

lation to behavioural responses to wage, price or other economic variables.

In this sense, in order to evaluate program implications over time, a medium

and long term economic forecast is essential to better understand the timing

effects strictly related to the model performance over time and to the overall fea-

sibility of a new project. Indeed, once a forecast has been done, it is necessary to

control it over time to determine if adjustments should be made in the forecasting

model by making the appropriate adjustments to secure the most accurate series

of forecasts.
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If the model does not simulate future values relatively accurately as time un-

folds, the next step is to determine the causes for any deviations. If the review

of the causes indicates that forecast values are likely to over- or under-estimating

future values of the variable under analysis, then the forecast may be revised.

Alternatively, we can find evidence that the trend or causal relationships have

changed and that we must determine if model parameters have changed too.

That is, whether the coefficients or equations no longer reflect what is actually

happening as the future unfolds. Finally, after considering all the evidence, you

may decide to generate a new forecast from the existing model or, alternatively,

develop a new model.

1.4 Which special data features to make

predictions?

Starting from the consideration that anything can be forecasted, ranging from

next month’s rate of consumer price inflation or tomorrow’s weather patterns or

the value of the Dow Jones index at the start of 2011, there are some data that

fit better the forecasting exercise. Indeed, many economic and financial time

series possess a number of special features including, in various combinations:

seasonality, business-cycle fluctuations, trend growth, successive dependence and

changing variability.

More generally, data in economics are often ”nonstationary”, namely, they

change mean and variance over time. These special data features are potentially

important for a number of reasons. A failure to allow for such specific character-

istics (say, seasonality) may result in inferior forecasts of the aspects of interest

(say, turning points, or the underlying trend) especially if, as some recent research

suggests, these characteristics are inherently interlinked.
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Moreover, some of these characteristics may themselves be the focus of at-

tention in the forecasting exercise. For example, one may wish to forecast a

business-cycle characteristic, such as the next recession, and be otherwise unin-

terested in the level, or rate of growth, of the series.

For both these reasons, models have been developed which attempt to capture

special features, and as it will become apparent, many different approaches have

been proposed such as the so-called ”unit-root” non stationary process which

leads the variable to have a stochastic trend.

1.4.1 Seasonality

Many economic time series displays seasonality6. If seasonality is present, it

must be incorporated into the time series model. By seasonality we usually mean

periodic and largely repetitive fluctuations that are observed in time series data

over the course of a year. As such, it is largely predictable.

A generally agreed definition of seasonality in the context of economics is pro-

vided by Hylleberg (1992) as follows: ”Seasonality is the systematic, although not

necessarily regular, intra-year movement caused by the changes of weather, the

calendar, and timing of decisions, directly or indirectly through the production

and consumption decisions made by the agents of the economy. These decisions

are influenced by endowments, the expectations and preferences of the agents,

and the production techniques available in the economy”.

This definition implies that seasonality is not necessarily fixed over time, de-

spite the fact that the calendar does not change. Thus, for example, the impact

of Christmas on consumption or of the summer holiday period on production

may evolve over time, despite Christmas time and summer time remain fixed.

Intra-year observations on most economic time series are typically available at

6see Chatfield et al. (1973) and Kulendran et al. (2005)
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quarterly or monthly frequencies. As a consequence each intra-year observation

is related to a ”season”, by which we mean an individual month or quarter.

Looking at the time series available for the tourism7 sector, it has been pointed

out the tendency of touristic flows to become concentrated into relatively short

periods of the year (Allcock, 1989), or that there is a systematic, although not

necessarily regular, intra-year movement (Hylleberg, 1992), or a ”a temporal im-

balance” (Butler, 2001).

Usually, the impact of seasonality on tourist demand has been described as

negative, by lookin at effects such as overcrowding, inefficient use of resources,

price increases, high social costs for hosting communities, capacity and supply

chain issues, underutilization of capital assets, employment concerns, inefficient

management of public services at destinations and decrease in quality for tourists.

However, other authors have pointed out the positive effects of seasonality, which

include opportunities for restoration and recuperation, re-establishing of tradi-

tional and socio-cultural patterns in the hosting communities, ecological environ-

ment recovery, possibility to complement revenue from tourist activity with other

sources and employees involvement in other seasonal activities (for example, agri-

culture).

The methods for measuring and modelling seasonality are highly developed

and well established both in the univariate and the multivariate frameworks.

Variables analysed with time-series methods include arrivals and overnight stays,

occupancy rates, total tourism receipts and, more recently, per person tourist

spending. At regional level, seasonal variation may be combined with structural

trends. Tourism demand in Sicily, for instance, has grown up by a 25% in terms

of total arrivals between 1998 and 2007, thus becoming a significant factor in

the economic development of the region. The seasonal pattern shows differences

7see Frechtling (2001) and Zhang (2007)
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according to the market of origin (residents versus non residents tourists) and

displays a great concentration in the months of July and August.

Thus, seasonal variation is important because it has a great economic impact

at destination; it also influences the prices of tourism-related goods and services

at destination. When forecasting tourism demand, therefore, seasonal variation

cannot be ignored; since it creates volatility in tourism demand. Also if we look

at industrial production or at retail sales seasonal variation must be considered.

For instance, it is well known the tendency of sales to peak in the Christams or

the Easter season and to decline after holidays. Modelling seasonality for fore-

casting these kind of series allows to adopt a different methodology such as the

introduction of seasonal dummies able to capture constant seasonal variations for

ARIMA models in which first differences of the series can remove unit roots at

zero frequency.

1.4.2 Business-cycle

The term business cycle8 is related to economic fluctuations in production or

economic activity over several months or years. These fluctuations occur around

a long term growth trend and typically involve shifts over time between periods of

relatively rapid economic growth (expansion) and periods of relative stagnation

or decline (contraction or recession).

At regional level, one of the stylized facts about regional business cycles is

that the fluctuations in different regions of an economy tend to synchronize with

each other (Clark, 1992). This synchronization may arise for different reasons.

It may come about due to common shocks including national fiscal or monetary

policies, common consumer behaviour, world commodity price shocks, or common

technology shocks.

8see Carlino et al. (2003), Hall et al. (2007) and Hayashida et al. (2009)
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Alternatively, the synchronization could come about due to trade and factor

flow linkages between different regions of the economy in such a way that regional

economies ”drive” one another. The synchronization9 between regions is not

predominantly due to a large common exogenous force: evidence has shown that

fiscal and monetary policies are not strong enough to enforce synchronization

and that they operate on different regions with different strengths and different

timing (see Garrison and Chang, (1979) and Kozlowski (1995)).

In addition, we cannot explain the synchronization by referring to a common

national business cycle. The national business cycle is the sum of its parts; the

national business cycle cannot act like an exogenous force upon the parts. Rather,

the regional cycles synchronize with each other through linkages.

1.5 Methods of forecasting

The most common methods of forecasting in economics are related to extrap-

olation, leading indicators, surveys, time-series models and econometric systems.

Extrapolation is fine so long as the tendencies persist, but that is itself doubtful:

the telling feature is that different extrapolators are used at different points in

time. Moreover, forecasts are most useful when they predict changes in tenden-

cies which extrapolative methods are likely to miss.

Forecasting based on leading indicators10 requires a stable relationship between

the variables that ”lead” and the variables that are ”led”. When the reasons for

the lead are clear, as with orders preceeding production, then the indicators may

be useful, but otherwise are liable to give misleading information. Surveys of

consumers and businesses can be informative about future events, but they rely

on plans being realized.

9see Selaver et al. (2005)
10see Shoesmith (2000)
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Time-series models which describe the historical patterns of data are popu-

lar forecasting methods and have often been found to be competitive relative to

econometric systems of equations (particularly in their multivariate forms). They

analyze a variable which changes with time and which can be said to depend only

upon the current time and the previous values that it took (i.e. not dependent

on any other variables or external factors). Econometric systems of equations

are the main tool in economic forecasting. They include equations which seek

to ”model” the behavior of discernible groups of economic agents (consumers,

producers, workers, investors, etc.) assuming a considerable degree of rationality,

moderated by historical pattern.

The advantages for economists of using formal econometric systems of national

economies are to consolidate existing empirical and theoretical knowledge of how

economies function, provide a framework for a progressive research strategy lead-

ing to increased understanding over time, help to explain their own failures, as

well as provide forecasts and policy advice.

1.6 Problems in forecasting

One of the main problems with forecasting in economics is that economies

evolve over time and are subject to intermittent and sometimes large, unantici-

pated shocks. Going back to the presence of volatility in tourism demand, visitor

volumes fluctuate with the seasons and over annual periods and often produce

wide variations. A similar pattern may be considered if we look at the indus-

trial production at any sector. In this situation the more volatile is an activity,

the more difficult it is to discern patterns that can help the researcher to make

forecast. As a consequence, any kind of mistake could induce poor forecast perfor-

mance, either from inaccurate (that is biased) or imprecise (that is high variance)

14



forecasts.

However, it transpires that systematic forecast failure is most likely to depend

on the behaviour of the deterministic terms, and in particular on unanticipated

changes in their values. Such deterministic shifts may reflect changes elsewhere

in the economy, interacting with an incomplete or incorrect model specification.

At a national level, there exist ad ”hoc” solutions principally related to the

introduction of methods that anticipate change by observing it ex-ante, namely

before such shocks have occurred. New problems tend to arise if regional fore-

casts are introduced. First of all the imbalance between the increased number of

regional economies to be forecasted for and the time span of the available obser-

vations; indeed, given the likely small number of observations, it is impossible to

establish which predictors are considered to be relevant for forecasting purpose.

If a researcher uses only one of these predictors the forecasts tend to be generally

unreliable and unstable.

At the opposite side, if all predictors are included, we may incur in overfitting

and poor out-of-sample forecasting accuracy. The forecast may indeed be un-

feasible. In this situation a possible strategy is to combine forecasts from many

models with alternative subsets of predictors.

From a theoretical perspective, unless one can ex ante identify a particular

forecasting model that generates smaller forecast errors than its competitors,

forecast combinations offer diversification gains that make attractive to combine

individual forecasts rather than relying on forecasts from a single model. Even

if a best model could be identified at each point in time, combination may still

be an attractive strategy due to diversification gains, although its success will

depend on how well the combination weights can be determined.

A second reason for using forecast combinations is that individual forecasts

may be very differently affected by structural breaks caused, for example, by
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institutional change or technological developments. Some models may adapt

quickly and will only temporarily be affected by structural breaks, while others

have parameters that adjust only very slowly to new post-break data. The more

data are available since the most recent break, the better one might expect stable,

slowly adapting models to perform relatively to fast adapting ones as the param-

eters of the former are more precisely estimated. Conversely, if the data window

since the most recent break is short, the faster adapting models can be expected

to produce the best forecasting performance. Since it is typically difficult to de-

tect structural breaks in ”real time”, it is plausible that on average, i.e., across

periods with varying degrees of stability, combinations of forecasts from models

with different degrees of adaptability will outperform forecasts from individual

models.

A third and related reason for forecast combination is that individual fore-

casting models may be subject to misspecification bias of unknown form. Hence,

combining forecasts across different models can be viewed as a way to robustify

the forecast against such misspecification biases and measurement errors in the

data sets underlying the individual forecasts. For all these situations described

before, one can use the mean, the median or the trimmed mean of these forecasts

as final forecasts (Stock and Watson, 2003).

An alternative strategy uses factor augmented forecasts. The methodology

allows for factors from all predictors to be estimated by the principal components

method, and includes them in a linear forecasting equation for the h-step ahead

forecast.

Another strategy concerns the application of a testing procedure to decide

which predictors to include in the forecasting regression. In this case, a pre-test

analysis is conducted for fitting a regression, where it is common to include only

those predictors that are significant in predicting the series.
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Finally, a bootstrap11 aggregation should be considered: this involves analyz-

ing a model that includes all potential predictors, generating a large number of

bootstrap resamples, applying the pre-test rules to each of resample, and aver-

aging the forecasts from the models selected by the pre-test on each bootstrap

sample. By averaging across sample, after variable selection, the prediction mean

squared error of the regression model is considerably reduced.

Another problem regards the complex dynamics and economic interdependen-

cies influencing economic performance, which are often difficult to measure and

which create difficult specification issues in inferential statistics. Indeed, regions

are open, small and highly interconnected economies that show a high degree of

interaction with the neighbouring local economies. The economic development of

each region is likely to be affected by, and to have a high impact on the economic

development of the other regions. In this sense neglecting such spatial correlation

and dependence might result in biased coefficients and suboptimal forecasts and

create problems of misspecification.

Clearly policy makers who understand the specific characteristics of a region

and of interregional dependencies are able to tackle problems more effectively, and

to anticipate more accurately necessary reactions to aggregate and local shocks.

Moreover a group of (contiguous) regions that share common characteristics has

the opportunity to develop common strategies and to react better.

Furthermore the quality of the regional data used in regional forecasts is often

less than desirable. Frequent revisions and substantial publication lags mean that

the true values of key economic variables at the starting point of the forecast are

often uncertain. This can have a significant impact on the quality of the eco-

nomic forecasts as the true state of the regional economy at the starting point

of the forecast is known only very imperfectly. As a consequence, limited data

11see Pascual et al. (2005)
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availability prevents the completion of a thorough statistical assessment of the

errors of the forecasts.

Also, the different frequencies at which the data are available don’t help the

researcher. In addition the uncertainty increases as one moves down from highly

aggregated national data to disaggregated regional and sub-regional data. More-

over, the degree of uncertainty is not eliminated entirely with successive releases

of a given year’s data.

1.7 Conclusions

Based on these initial observations, it is clear how forecasting economic vari-

ables is essential for the identification of national and regional key competen-

cies. Governments are important users, and often producers, of macro-economic

forecasts. This is because, in setting monetary, fiscal and exchange rate policy,

governments must take account of the likely future course of the economy. Macro-

economic models play an important role in the formulation and the analysis of

macro-economic policy decisions. For example, in stabilizing whether to raise or

lower interest rates, and to raises or lower taxes, governments need to take a view

on likely growth and inflation prospects in the economy for the future. Forecasts

are essential in this situation.

Instead, at a regional level, forecasting can be used to give an impression of

likely effects of policy initiatives on industrial production, income and labour

market or to isolate key aspects of the development of competencies in learning

clusters. Regarding regional industry policy, in order to see if an industry is over

represented in a certain location compared to its representation at the national

level, it is important to define the localization coefficients. Hence, an industry

which is over represented is likely to contain a cluster of specific competences. At
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the same time an industry which is over represented will have more capacity to

supply the other local industries with inputs.

Therefore when studying inter-industry supply it is natural to use the informa-

tion from localization coefficients to correct the coefficients in the inter-industry

description. Usually, the sectors with an over representation are typically primary

and secondary sectors. Further the tertiary sectors which have higher growth are

under represented and growth in these sectors is not likely in peripheral regions

since they depend on learning capacity and clusters which tend to prefer to locate

in the central parts of the economy.

All the analyzed difficulties, push the researcher to discover alternative fore-

casting techniques that fit better the model under observation and create the

right motivation to go deeper inside the problem analyzed. In the next chapter

of this dissertation we try to develop a new methodology easily applicable at any

level of aggregation by including more than one relevant predictors in transformed

time series.
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Chapter 2

Forecasting transformed time series

2.1 Introduction

In empirical time series analysis, it is common to transform1 the data using

power transformation prior to the estimation of the model used for forecasting.

There are several reasons for transforming the data before fitting a suitable model.

For example, the necessity of stabilizing the increasing variance of trending time

series, to reduce the impact of outliers, to make the normal distribution a better

approximation to the data distribution. Also the transformed variable may have a

convenient economic interpretation; for example, first differenced log-transformed

data correspond to growth rates2. For any such analysis the usual purpose of the

transformation is to change the scale3 of the measurement in order to make the

analysis more valid.

The Box-Cox transformation belongs to the power normal family distributions

whose members include normal and lognormal distributions. It has two useful

features: first, it includes linear and logarithmic transformations as special cases,

1see Hosoya et al. (2009)
2see Arino et al. (2000), Bartlett (1947) and Hivkley (1984)
3see Kemp (1996)
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and, second, it possesses strong scale equivariance properties, including the prop-

erty that the transformation parameter is unaffected by the rescaling in models

with intercepts. Its main disadvantage is that both the domain and the range of

the transformation are, in general, bounded.

Unfortunately, the Box-Cox transformation can only be applied to positive y,

the variable being transformed, and has a range that depends on λ, the transfor-

mation parameter. This is why since the work of Box and Cox(1964), there have

been many modifications proposed4.

Manly (1976), for example, proposed the exponential transformation which

allows also for negative values of y. The transformation was reported to be suc-

cessful in transform unimodal skewed distribution into normal distribution, but

is not quite useful for bimodal or U-shaped distribution. John and Draper (1980)

proposed the following modification which they called ”‘Modulus Transforma-

tion”. Bickel and Doksum (1981) modify the Box-Cox transformation to allow

for any y and to have a range that is always (−∞,+∞); however, their trans-

formation family obviously does not include the logarithmic transformation as a

special case.

The objective of this chapter is to determine the value of the Box-Cox trans-

formation parameter which is optimal for the predictability of a time series. More

generally, we want to show how transforming a series should lead an improvement

in forecasting accuracy. For this purpose a large recursive forecast exercise was

conducted.

This work extends the analysis by Lutkepohl and Xu (2009) and by Bardsen

and Lutkepohl (2009), which dealt with logarithmic transformation and evaluate,

in a Monte Carlo simulation, the forecasts performance at different time horizons,

of the naive and the optimal h-step ahead forecasts in a K -dimensional VAR(p)

4see Burbidge (1988), Yang (2002) and Yeo (2000)
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model.

In particular they show how there is no improvement in terms of RMSE reduc-

tions from using the optimal relative to the naive forecasts unless the forecasts

horizons are very short. In this case, in fact, the RMSE, are very similar. This

result is also confirmed by an empirical example based on U.S. quarterly series

of real investments and real GNP.

Two considerations arise: how much the transformation considered by the au-

thors is suitable for this analysis and how can we proceed in making forecasts?

This work goes straight in this direction. Indeed the idea is to use the Box Cox

transformation, which includes the logarithmic transformation as a special case.

2.2 The Box-Cox transformation

Let yt be a time series, I consider the Box-Cox transformation defined as Box

and Cox (1964)

y(λ) =


yλt −1

λ
if λ 6= 0

ln(yt) if λ = 0

(2.1)

defined for yt > 0 where λ is a real constant. The transformation for λ = 0

follows from the fact that

limλ→0
yλt − 1

λ
= ln(Yt) (2.2)

Subtracting 1 and dividing it by λ does not influence the stochastic structure

of Y λ, and hence, without loss of generality, one often considers the following
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transformation suggested by Tukey (1957)

y(λ) =


yλt if λ 6= 0

ln(yt) if λ = 0

(2.3)

instead of the Box-Cox transformation5.

Hence,different values of λ implies different transformations. The value λ = 1

implies that the series is analyzed in its original scale, λ = 0 originates the

logarithmic transformation. Other important special cases arise for fractional

values of λ, e.g. the square root transform (λ = 1/2) or the third root transform

(λ = 1/3)

2.3 The model

I assume that the series yt is stationary and follows an AR(p) process

yt = µ+

p∑
j=1

φjyt−j + εt (2.4)

where εt ∼ N(0, σ2) is a white noise.

In order to obtain the h-step ahead forecast yt+h|t we can express the model in

the following state space form

zt = Fzt−1 + vt (2.5)

5see Box et al. (1982), Box et al. (1994), Box et al. (1973), Sakia (1992) and Wooldridge
(1992)
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where

zt =


yt − µ

yt−1 − µ
...

yt−p+1 − µ

 F =


φ1 · · · φp

1 · · · 0
...

. . .
...

0 · · · 1

 and vt =


εt

0
...

0

 (2.6)

The h-step ahead forecast is recursively obtained as

yt+h|t = fh11(yt − µ) + fh12(yt−1 − µ) + . . .+ fh1p(yt−p+1 − µ) (2.7)

where fhij denote the ij element of the matrix F h.

Let the forecast error εt+h|t = yt+h − yt+h|t its variance is given by the last

element on the main diagonal of the matrix

σ2

h−1∑
j=0

F jF jT (2.8)

2.4 The simulation procedure: a rolling forecast

scheme

An out-of-sample forecasting exercise is conducted in order to compare and

evaluate the out-of-sample forecast performance of the different transformations.

Following Tashman (2000) the series is split in a pre-forecast period (namely

fit period) and in a test period. In practice given a sample of T observations

we divide it into R observations to be used for estimation (in-sample) and P

observations to be used for out-of-sample evaluation. It follows that timing is

T = R + P

Starting from a given forecast origin we create a sequence of update origin and
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produce forecast from each new origin according to the maximum forecast lead

chosen. We start considering for a seasonal time series

∆12(ut − β
′
xt) ∼ AR(p) (2.9)

where xt represented the calendar effects (trading days + holiday effects) whose

coefficients are modelled by a simply OLS regression.

Then we proceed by the following steps: first of all it is useful to select the

optimal order of temporal lags (p) by using AIC (or BIC) methods, then we esti-

mate the parameters of the model, we produce forecast up to a given maximum

forecast lead h (in my case h = 24) making also forecasts comparisons in order

to establish which is the forecast that fits better the model chosen.

In particular regarding the latter point we choose the optimal forecast for

growth rates where the optimal corresponds to the conditional expectation repre-

senting the optimal minimum mean squared error predictor and the naive forecast

for levels where the naive represents the minimum mean absolute error which is

simply the median of the conditional probability density for the h-step ahead

forecast.

Finally we run this exercise for 125 monthly time series. Moreover, in order to

make comparisons, we define different specification for forecasts according to the

transformation chosen. In particular for the logarithmic transformation we can

choose between the h-step ahead naive forecast (Granger and Newbold, 1976)

which is defined as

ynait+h|t = exp(xt+h|t) (2.10)
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and the h-step ahead optimal forecast which is given by

yoptt+h|t = exp(xt+h|t +
1

2
σ2(h)) (2.11)

Instead, for the square root (or third root) transformation the choice is between

the h-step Box-Cox naive forecast, for λ 6= 0, expressed as

ybcnait+h|t = (λxbct+h|t + 1)
1
λ (2.12)

and the h-step Box-Cox optimal forecast which is obtained as

ybcoptt+h|t = ybcnait+h|t +G (2.13)

where G = 1 + σ2(h)

xbc
t+h|t

.

Notice that the optimal forecast differs from the naive one by a multiplicative

adjustment factor whose expression for the Box Cox optimal forecast is obtained

according to the value of the transformation parameter λ which is assumed to be

fixed and equal to 0.5 (Pankratz and Dudley, 1987).

2.5 Standard measures of accuracy

The diagnostic check typically look at the residuals. Once we have computed

the forecast errors, obtaining by subtracting each of the forecast from the know

data values of the test period, we proceed by calculating the standard measures

of accuracy6 : ME(Mean Error), MSE(Mean square error), MAE(Mean abso-

lute error), MPE(Mean percentage error), MSPE(Mean square percentage error),

6see Clements (2005)
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MAPE(Mean absolute percentage error) where

ME =
1

P

T∑
t=R+h

εt+h|t (2.14)

MSE =
1

P

T∑
t=R+h

ε2t+h|t (2.15)

MAE =
1

P

T∑
t=R+h

|yt+h − yt+h|t|
yt+h

(2.16)

MPE = 100× 1

P

T∑
t=R+h

yt+h − yt+h|t
yt+h

(2.17)

MSPE = 100× 1

P

T∑
t=R+h

ε2t+h|t (2.18)

MAPE = 100× 1

P

T∑
t=R+h

|yt+h − yt+h|t|
yt+h

(2.19)

Notice that the last three statistic involve percentage errors rather than the rows

errors. Such measures are computed for each of the following cases: no trans-

formation, logarithm transformation, square root transformation and third root

transformation.

We find also both the exact logarithm and the exact square root (third) trans-

formations simply by taking the relative forecast errors. In this context a Diebold
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Mariano test has been implemented in order to permit comparisons in terms of

equal predictive accuracy of two competing forecasts.

Let yt denote the series to be forecast and let y1
t+h|t and y2

t+h|t denote two com-

peting forecasts of yt+h based on the information set It, given the two associated

forecast errors, the idea is to assess the expected loss associated with each of the

forecast. In this sense the accuracy of the forecast is measured by a loss func-

tion which is usually a direct function of the forecast error. Hence the DM test

statistic ,under the null, is given by

DM =
d̄[
V̂
P

] 1
2

(2.20)

where d̄ is the sample mean loss differential given by

d̄ =
1

P

T∑
t=T−P+1

[g(εit)− g(εjt)] (2.21)

V̂ is a consistent estimator of the long run variance computed from the sample

autocovariance of the loss differential

V̂ = γ0 + 2
∞∑
j=1

γj (2.22)

with γj = cov(dt, dt−j). Notice that the long run variance is used to avoid the

problem of serial correlation in the sample of loss differentials for h > 1.

Diebold and Mariano (1995) show that under the null of equal predictive accu-

racy the statistic S ∼ N(0, 1), so we reject the null of equal predictive accuracy

at the 5% level if |S| > 1.96.

28



2.6 Empirical application: a database descrip-

tion

The data are monthly series of the Industrial production index (IPI), ordered

according to the NACE rev.2 classification and of Tourism demand for the coun-

tries: Italy, France, Germany, UK and at regional level for Sicily. All the time

series considered are not seasonally adjusted and have been extracted, respec-

tively, from ConIstat (for Italy), from Eurostat (for the other countries) and

from the Tourism department of Sicilian Regional Government. In particular the

time series for touristic demand involve the number of arrivals and the number

of nights spent from resident and non resident tourists respectively in hotels and

other complementary structures.

The data employed are available for the following periods: 1990 (1) - 2010 (1)

for Italy IPI series, 1991 (1) - 2010 (2) for France, Germany and UK IPI series,

1990 (1) - 2009 (10) for Italy Tourism series, 1994 (1) - 2009 (11) for France,

Germany and UK Tourism series and 1998(1) - 2009(12) for Sicily.

Since all the series are not seasonally adjusted we account for seasonality taking

the seasonal differencing operator ∆syt = yt − yt−s where s = 12 is the seasonal

period accordingly to the monthly periodicity of the series.

Hence, if we want to focus the attention on the yearly changes of the normalized

series, we just calculate ut = zt− zt−12 Sometimes we should be interested in the

yearly growth rates in the original scale, that is

∆12yt/yt−12. (2.23)

Notice that the prediction of this quantity is not an easy task.

In practice the rolling forecast exercise for monthly time series does the fol-
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lowing: fit an AR(p) model to ∆12yt, with regression effects,

φp(L)∆12yt(λ) = β0 + β
′
∆12xt + εt, εt ∼ WN(0, σ2) (2.24)

where xt are 6 trading days regressors and an Easter variable, that account for

calendar effects and yt(λ) is simply the Box Cox transform of the series.

It is not unusual for the level of a monthly economic time series to be influenced

by calendar effects (Bell and Hillmer (1983), Cleveland and Devlin (1980)). For

this reason including calendar effects it’s important if we aim at modelling the

unadjusted series. Such effects arise when changes occur in the level of activity

resulting from variations in the composition of the calendar7 between years.

Two main sources of calendar effects are: trading day corresponding to changes

of a particular activity related with the day of the week composition of a certain

month and holiday effects representing variations depending on whether a par-

ticular month contains a holiday or not (i.e. Easter for Europe). These effects

are introduced in our model as exogenous variables.

7see Cleveland et al. (1982) and Thury et al. (2005)
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2.7 Simulation results

2.7.1 France industrial production index

Looking at the France industrial production index some relevant results are

obtained respectively for the wearing, textile and leather sectors. Figure 2.1 plots

the monthly index of industrial production for the manufacture of wearing apparel

sector (January 1990 - April 2010). The series presents two main related features:

a downward trend and a marked seasonal pattern with reduced amplitude. The

series is thus a good candidate for analysis the role of the BC transformation.

Figure 2.1: France, industrial production index: manufacture of wearing apparel.
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The table below shows the forecast comparisons in terms of MSE for level and

growth rates at different time horizon.

Table 2.1: France Wearing: rolling forecast experiment. Mean square forecast
error.

Levels yt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 173.13 239.07 271.38 343.48 369.44 418.65 446.17 968.75
0 Optimal 175.23 243.63 278.44 351.98 379.67 430.52 458.04 1033.69
1/3 Näıve 194.44 266.82 280.27 349.87 372.59 412.56 419.96 863.63
1/3 Optimal 195.84 269.68 284.46 354.77 378.41 419.23 425.95 903.36
1 Optimal 331.97 410.10 417.68 479.52 531.04 549.83 618.00 1944.25

Growth rates gt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 36.19 49.07 58.02 67.43 72.63 76.93 94.82 104.66
0 Optimal 36.37 49.43 58.73 68.41 73.73 78.18 96.29 106.85
1/3 Näıve 42.74 58.79 67.61 76.87 81.46 84.85 103.78 124.78
1/3 Optimal 42.67 58.60 67.61 76.89 81.48 84.95 103.84 124.70
1 Optimal 91.15 128.12 148.33 166.68 185.06 185.42 263.01 982.71

The principal results of the rolling forecast experiment are the following: the

worst out of sample performance with an AR model for ∆12yt(λ) arises in the case

the series is analysed in its original scale. For the levels, the logarithmic forecasts

fare better at shorter horizons, but are outperformed by the 3rd root forecasts

al longer horizons. The differences in performance are statistically significant if

one conducts a Diebold Mariano test. Indeed taking for example as time horizon

h = 1 we have that DM of log versus level is equal to |5, 58| > 1, 96 and that DM

third root vs logs is equal to |5, 53| > 1, 96, so in both cases we reject the null at

5%.
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Table 2.2: France Wearing: Diebold-Mariano test of equal forecast accuracy
Forecast horizon

Type 1 2 3 4 5 6 12 24
log vs lev 5.58** 4.81** 3.69** 3.21** 3.06** 2.79** 2.24** 2.19**
3rd root vs log 5.53** 4.84** 3.75** 3.34** 3.26** 3.04** 2.47** 2.24**

Figure 2.2 plots the monthly index of industrial production for the manufac-

ture of textile sector (January 1990 - April 2010). The series presents a marked

seasonal pattern with high amplitude and it is full of ups and downs movements.

Figure 2.2: France, industrial production index: manufacture of textile.
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Moreover the table below shows a similar pattern to the previous one. Indeed

the logarithmic transformation prevails for shorter horizons for both levels and

growth rates, instead the third root transform seems to fit better for longer hori-

zons.

Table 2.3: France Textile: rolling forecast experiment. Mean square forecast
error.

Levels yt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 27.61 30.57 36.02 48.59 48.36 53.30 72.79 154.38
0 Optimal 27.75 30.68 36.19 41.58 48.59 53.57 73.37 157.53
1/3 Näıve 28.57 32.19 37.47 42.65 49.81 54.62 72.22 152.98
1/3 Optimal 28.66 32.25 37.57 42.76 49.93 54.77 72.59 154.99
1 Optimal 35.38 40.01 44.02 48.92 56.90 60.38 75.68 167.42

Growth rates gt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 17.31 21.30 26.78 32.38 39.28 44.94 55.35 55.89
0 Optimal 17.36 21.31 26.81 32.40 39.31 44.98 55.73 56.64
1/3 Näıve 19.42 24.24 29.72 35.48 42.51 48.21 54.23 54.60
1/3 Optimal 19.41 24.19 29.65 35.40 42.40 48.09 54.47 55.12
1 Optimal 37.91 46.25 47.99 55.24 59.72 63.32 61.06 62.52

Looking at the DM test results we can see how for the time horizon h = 1(logs

vs levels) it is equal to |2, 36| > 1.96 and it is equal to |2, 38| > 1, 96 for third

root vs logs, so in both cases we reject the null at 5% level.

Table 2.4: France Textile: Diebold-Mariano test of equal forecast accuracy
Forecast horizon

Type 1 2 3 4 5 6 12 24
log vs lev 2.36** 2.22** 2.59** 1.94 2.80** 2.67** 0.90 0.70
3rd root vs log 2.37** 4.84** 3.75** 3.34** 3.26** 3.04** 1.32 0.88
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Figure 2.3 plots the monthly index of industrial production for the leather

sector (January 1990 - April 2010). The series presents a downward trend and a

marked seasonal pattern with high amplitude.

Figure 2.3: France, industrial production index: manufacture of leather.
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Table 2.5: France leather: rolling forecast experiment. Mean square forecast
error.

Levels yt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 58.21 63.40 74.86 78.68 86.62 87.52 80.59 156.29
0 Optimal 58.58 63.79 75.39 79.22 87.18 88.10 81.20 160.79
1/3 Näıve 59.42 65.17 75.83 79.90 88.10 89.03 81.41 160.44
1/3 Optimal 59.62 62.35 76.07 80.13 88.34 89.27 81.63 162.74
1 Optimal 71.14 76.15 83.80 84.76 94.76 97.54 92.44 210.06

Growth rates gt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 25.24 28.37 32.08 33.28 36.48 37.25 38.02 37.91
0 Optimal 25.21 28.28 32.00 33.19 36.38 37.16 37.99 38.16
1/3 Näıve 26.07 30.10 33.78 35.82 38.85 39.91 40.64 42.46
1/3 Optimal 25.97 29.93 33.60 35.61 38.64 39.69 40.43 42.37
1 Optimal 36.61 41.76 44.55 46.07 51.18 53.20 56.01 73.57

The table above presents some interesting results. Looking at the levels it’s

possible to see how the logarithmic transformation by using the naive forecast

appears to be suitable for all the time horizons except for h = 2 where the mini-

mum MSE corresponds to the third root transform by using the optimal forecast.

Instead for the growth rates the logarithmic transformation with the optimal fore-

cast is the best option except for h = 24 where the same transformation prevails

but with a different forecast specification : the naive one. The DM test statistics

log versus levels and third root versus logs are respectively equal to |3.94| > 1.96

and |3.81| > 1.96. Again we reject the null at the 5% level.

Table 2.6: France leather: Diebold-Mariano test of equal forecast accuracy
Forecast horizon

Type 1 2 3 4 5 6 12 24
log vs lev 3.49** 3.79** 3.54** 3.18** 3.12** 3.05** 2.57** 2.03**
3rd root vs log 3.81** 3.96** 3.78** 3.40** 3.23** 3.20** 2.78** 2.12**
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2.7.2 Germany industrial production index

Figure 2.4 shows the monthly index of industrial production for the leather

sector (January 1990 - April 2010). The series presents a downward trend with

some business fluctuations as a sign of a marked seasonal pattern.

Figure 2.4: Germany, industrial production index: manufacture of leather.
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Table 2.7: Germany leather: rolling forecast experiment. Mean square forecast
error.

Levels yt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 94.91 92.83 109.60 118.77 127.97 134.64 159.35 269.64
0 Optimal 94.51 91.88 108.53 117.63 126.69 133.32 158.21 265.39
1/2 Näıve 94.96 95.83 114.79 124.23 135.96 145.40 174.73 335.35
1/2 Optimal 94.60 95.02 113.80 123.11 134.69 144.05 173.29 329.57
1 Optimal 100.72 100.88 122.58 134.37 148.40 159.13 200.28 451.09

Growth rates gt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 65.20 68.99 85.83 93.55 99.07 106.63 129.85 112.33
0 Optimal 64.66 68.07 84.68 92.35 97.78 105.29 128.74 110.35
1/2 Näıve 63.86 69.62 88.55 96.11 103.65 113.20 140.35 126.06
1/2 Optimal 63.51 68.98 87.65 95.11 102.56 112.03 139.14 124.23
1 Optimal 66.83 72.10 92.97 101.90 110.83 121.65 156.97 154.93

Notice that for this series the square root transformation is the right choice

depending from the optimal value of the transformation parameter which is λ = 1
2
.

From the table is clear how the logarithmic transform prevails at all time horizons

for the levels taking as reference the optimal forecast. For the growth rates instead

the pattern changes a little bit. Indeed the logarithm one by using the optimal

forecast is preferred for the overall time horizons except for h = 1 where the

square root transform with the optimal forecast appears more suitable and for

h = 5 where the logarithm ,by adopting the naive forecast, is chosen as the best

option. The DM test for log vs level is equal to |0.59| < 1, 96 meaning that we

accept the null at 5% level. Instead the same test for sqrt transform vs logs is

equal to |1, 98| > 1.96, such that we reject the null at 5% level.
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Table 2.8: Germany leather: Diebold-Mariano test of equal forecast accuracy
Forecast horizon

Type 1 2 3 4 5 6 12 24
log vs lev 0.59 1.06 2.94** 2.87** 3.14** 3.50** 2.69** 2.02**
sqrt root vs log 1.98** 2.21** 3.63** 3.52** 3.31** 3.20** 2.53** 2.07**

2.7.3 UK industrial production index

Figure 2.5 shows the monthly index of industrial production for the manufac-

ture of wearing appeal sector (January 1990 - April 2010). The series presents a

not well defined downward trend and many fluctuations with peaks underlining

the dominance of the seasonality component in some relevant periods.

Figure 2.5: UK, industrial production index: manufacture of wearing apparel.
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Table 2.9: UK wearing: rolling forecast experiment. Mean square forecast error.

Levels yt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 55.43 69.30 78.14 89.62 96.88 102.56 115.88 226.19
0 Optimal 55.80 69.73 78.64 90.21 97.51 103.26 116.77 228.41
1/2 Näıve 56.93 72.63 82.47 93.60 100.85 105.99 120.64 240.61
1/2 Optimal 57.05 72.72 82.57 93.73 100.97 106.13 120.82 240.55
1 Optimal 59.74 76.66 87.57 98.55 106.30 111.82 128.24 271.88

Growth rates gt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 40.75 49.39 54.75 62.86 66.78 71.10 79.01 81.11
0 Optimal 40.90 49.39 54.68 62.78 60.64 70.97 78.87 80.71
1/2 Näıve 41.81 51.87 58.01 66.09 70.59 74.50 84.12 86.35
1/2 Optimal 41.82 51.76 57.83 65.87 70.32 74.22 83.76 85.69
1 Optimal 43,92 55.09 62.00 70.64 75.73 80.00 92.00 98.49

For the levels the logarithmic transformation prevails in all time horizon by

taking the naive forecast as better specification. For the growth rates instead the

transformation chosen is the same but with the choice of the optimal forecast for

all time horizons except for the first one. The DM test for logs versus levels is

equal to |3.16| > 1.96 and for sqrt vs logs is equal to |3.28| > 1.96, such that in

both cases we reject the null at 5% level.

Table 2.10: UK wearing: Diebold-Mariano test of equal forecast accuracy
Forecast horizon

Type 1 2 3 4 5 6 12 24
log vs lev 3.16** 3.24* 3.51** 2.69** 2.39** 2.23** 2.03** 1.73
sqrt root vs log 3.28** 3.34** 3.17** 2.56** 2.34** 2.22** 1.98** 1.78

40



2.7.4 Italy industrial production index

Figure 2.6 represents the monthly index of industrial production for the man-

ufacture of wearing, textile and leather sectors (January 1990 - December 2009).

The series presents a remarkable pattern of seasonality and sizeable fluctuations

with high amplitude.

The square root transform acts better than the others. In particular for the

Figure 2.6: Italy, industrial production index: manufacture of textile, wearing
and leather.

levels we choose the square root transformation principally at the short horizons

and for h = 24 by selecting the naive forecast. For the remaining part, the log-
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Table 2.11: Italy wearing, textile and leather: rolling forecast experiment. Mean
square forecast error.

Levels yt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 44.16 52.15 59.25 61.97 63.75 63.95 84.69 176.41
0 Optimal 44.58 52.66 59.89 62.72 64.66 67.92 86.32 183.36
1/2 Näıve 39.35 48.56 55.30 61.34 63.14 68.52 84.87 175.14
1/2 Optimal 39.41 48.61 55.39 61.46 63.27 68.68 85.35 177.17
1 Optimal 40.80 50.04 56.32 65.38 68.18 72.41 87.06 180.27

Growth rates gt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 38.63 44.29 49.06 56.76 55.05 55.06 64.61 64.08
0 Optimal 38.74 44.38 49.18 56.88 55.27 55.34 65.48 65.44
1/2 Näıve 35.52 41.71 46.88 62.54 59.04 57.78 65.67 64.12
1/2 Optimal 35.41 41.54 46.71 62.23 58.73 57.60 65.86 64.47
1 Optimal 42.04 46.59 51.43 81.05 74.40 66.12 69.59 68.03

arithmic transformation seems to be the right choice. For the growth rates the

situation is a little bit different. The square root transform with the optimal

forecast prevails for the first three time horizons instead for the others the loga-

rithmic one wins by choosing the naive predictor. The DM test results seem to be

significant at 5% for the short time horizons regarding the comparison between

the square root transform and the logarithmic one.

Table 2.12: Italy wearing: Diebold-Mariano test of equal forecast accuracy
Forecast horizon

Type 1 2 3 4 5 6 12 24
log vs lev 0.61 0.53 0.66 1.11 1.22 1.50 1.00 0.74
sqrt root vs log 2.57** 2.62** 2.04** 1.19 1.36 1.88 1.10 0.95
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Figure 2.7 exhibits the monthly index of industrial production for the electronic

sector (January 1990 - December 2009). The series presents a similar pattern of

seasonality to the previous one and suggests the presence of a downward trend.

Figure 2.7: Italy, industrial production index: electronics industry.
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Table 2.13: Italy electronics industry: rolling forecast experiment. Mean square
forecast error.

Levels yt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 64.12 77.69 77.36 75.90 76.01 77.87 88.04 209.00
0 Optimal 64.41 78.35 78.28 77.10 77.35 79.36 89.89 216.87
1/2 Näıve 59.96 74.33 73.89 73.99 74.68 76.83 86.09 204.42
1/2 Optimal 60.00 74.49 74.14 74.33 75.06 77.26 86.62 206.52
1 Optimal 60.20 75.49 75.06 75.26 76.99 78.52 87.15 211.47

Growth rates gt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 45.45 55.05 56.49 56.33 56.35 57.88 64.69 71.28
0 Optimal 45.42 55.15 56.73 56.72 56.84 58.44 65.52 72.11
1/2 Näıve 42.92 53.23 54.70 56.12 56.34 58.55 65.52 73.03
1/2 Optimal 42.77 53.08 54.61 56.08 56.32 58.56 65.62 73.00
1 Optimal 46.90 58.20 59.51 61.06 62.02 64.43 71.64 83.59

The square root transformation prevails for all the time horizon for the levels

by using the optimal predictor. For the growth rates instead notice that for short

time the square root transform with the optimal forecast dominates ,for longer

time the logarithm one appears to be more suitable with the naive forecast. The

DM test confirms the importance of the square root transformation for the series

analyzed especially for h = 4, h = 5 and h = 6.

Table 2.14: Italy electronics: Diebold-Mariano test of equal forecast accuracy
Forecast horizon

Type 1 2 3 4 5 6 12 24
log vs lev 0.25 0.68 0.70 1.19 1.42 1.54 1.11 1.21
sqrt root vs log 1.11 1.79 1.74 1.98** 2.06** 2.04** 1.36 1.40
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2.7.5 Italy tourism demand

Figure 2.8 represents the monthly tourism demand for Italy relates to the

number of total arrivals in hotels and complementary structures (January 1990 -

October 2009). The series presents an upward trend with high seasonal frequen-

cies.

Figure 2.8: Italy, tourism demand: number of total arrivals in hotels plus com-
plementary structures.
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Table 2.15: Italy tourism demand: rolling forecast experiment. Mean square
forecast error.

Levels yt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 98.82 91.04 114.00 128.70 108.17 110.80 117.45 222.01
0 Optimal 99.07 92.31 114.82 128.53 108.15 110.89 118.76 225.72
1/2 Näıve 90.85 86.80 96.13 104.32 97.89 102.02 115.37 212.19
1/2 Optimal 90.61 86.92 96.35 104.74 97.85 102.47 116.21 212.40
1 Optimal 91.86 88.41 95.01 95.44 97.64 104.72 118.76 226.81

Growth rates gt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 22.62 21.06 23.35 24.50 23.69 25.52 27.30 25.03
0 Optimal 22.63 21.06 23.36 24.53 23.72 25.55 27.41 25.18
1/2 Näıve 21.53 20.63 21.76 22.92 23.04 24.95 27.97 24.94
1/2 Optimal 21.54 20.64 21.77 22.93 23.06 24.97 28.03 25.02
1 Optimal 23.38 22.20 23.56 24.04 25.81 27.38 30.22 27.02

The table above gives a clear evidence of the transformation adopted. In fact,

for the levels the square root is the best option especially for longer horizons and

for h = 1 and h = 2. In the other cases no transformation is required. For the

growth rates the square root again prevails. The predictor more used is the naive.

The DM test confirms the dominance of the square root transformation for longer

horizons.

Table 2.16: Italy tourism demand: Diebold-Mariano test of equal forecast accu-
racy

Forecast horizon
Type 1 2 3 4 5 6 12 24
log vs lev 0.33 0.52 0.09 0.17 0.78 0.83 1.63 1.25
sqrt root vs log 1.46 1.19 1.32 0.72 1.83 2.04** 2.28** 2.22**
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2.7.6 France Tourism demand

Figure 2.9 represents the monthly tourism demand for France (January 1994-

November 2009) in terms of total nights spent in hotels and complementary struc-

tures by residents and non residents. The series shows an upward trend until 2000

and then it tends to stabilize. The seasonal periodicity is dominant with high

fluctuations.

Figure 2.9: France, tourism demand: number of total nights spent in hotels plus
complementary structures.
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Table 2.17: France tourism demand: rolling forecast experiment. Mean square
forecast error.

Levels yt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 38.88 49.47 62.14 75.77 84.38 93.92 98.47 277.35
0 Optimal 39.10 49.37 62.97 75.58 85.11 94.42 99.80 285.35
1/2 Näıve 38.57 48.93 59.88 69.53 78.28 86.96 92.52 242.38
1/2 Optimal 39.75 48.47 59.59 70.95 78.90 86.95 92.51 245.67
1 Optimal 39.33 50.39 62.90 73.52 78.45 83.94 88.99 209.02

Growth rates gt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 16.19 20.14 24.59 28.45 31.63 34.58 37.40 36.40
0 Optimal 16.27 20.23 24.73 28.60 31.81 34.80 37.80 37.06
1/2 Näıve 16.09 19.45 23.27 26.71 29.66 32.88 36.10 33.86
1/2 Optimal 16.14 19.51 23.34 26.78 29.75 32.98 36.30 34.19
1 Optimal 16.26 20.13 25.18 29.96 32.17 33.76 35.73 31.46

Notice that for levels there is no unique transformation that dominates. For

h = 1 and h = 2, 3 the logarithmic transformation is preferred respectively by

employing the naive and the optimal predictor. For h = 4 and h = 5 the square

root is used with respectively the optimal and the naive forecast. For longer

horizon no transformation seem to be required. For the growth rates it’s easy to

see how the square root transformation by including the naive forecast is chosen.

The DM test confirms the dominance of the square root transform for h = 3,

h = 4 and h = 5.

Table 2.18: France tourism demand: Diebold-Mariano test of equal forecast ac-
curacy

Forecast horizon
Type 1 2 3 4 5 6 12 24
log vs lev 0.08 0.01 0.38 0.71 0.23 0.34 1.31 1.54
sqrt root vs log 1.56 1.36 2.14** 1.97** 2.92** 1.19 0.39 1.47
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2.7.7 Germany Tourism demand

Figure 2.10 represents the monthly tourism demand for Germany (January

1994- November 2009) in terms of total nights spent in hotels and complemen-

tary structures by residents and non residents. The series shows an upward trend

with clear seasonal components.

Figure 2.10: Germany, tourism demand: number of total nights spent in hotels
plus complementary structures.
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Table 2.19: Germany tourism demand: rolling forecast experiment. Mean square
forecast error.

Levels yt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 24.90 27.98 30.85 34.63 37.09 40.17 61.41 169.96
0 Optimal 24.46 27.22 30.28 34.44 37.58 40.42 61.80 168.20
1/3 Näıve 23.98 26.71 29.52 32.40 35.50 38.46 64.31 198.62
1/3 Optimal 23.92 26.29 29.44 32.89 35.76 38.76 64.75 196.12
1 Optimal 24.16 27.88 30.80 34.65 37.80 40.11 65.58 210.70

Growth rates gt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 8.99 10.13 11.28 12.41 13.47 14.59 22.22 23.11
0 Optimal 9.00 10.12 11.26 12.37 13.43 14.54 22.14 22.85
1/3 Näıve 8.70 9.78 10.93 12.06 13.08 14.29 22.99 25.95
1/3 Optimal 8.70 9.77 10.90 12.03 13.04 14.24 22.92 25.72
1 Optimal 9.37 10.40 11.79 13.59 15.27 16.26 22.89 26.32

Looking at the table above we can say that for levels the third root trans-

formation, choosing as best predictor the naive, is predominant at short time

horizon (h = 4, 5, 6) and for h = 12. For h = 1 no transformation is necessary.

For h = 24 the best choice corresponds to the logarithmic transform by selecting

the optimal forecast. Regarding the growth rates the third root transform is pre-

ferred for short horizon by using the optimal predictor. For longer periods the

logarithmic wins. The DM test partially confirms the results obtained with the

rolling forecast procedure.

Table 2.20: Germany tourism demand: Diebold-Mariano test of equal forecast
accuracy

Forecast horizon
Type 1 2 3 4 5 6 12 24
log vs lev 0.60 0.38 0.49 0.67 0.80 0.77 0.34 2.97**
3rd root vs log 1.28 1.08 1.03 1.07 2.02** 2.16** 0.02 2.31**
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2.7.8 UK Tourism demand

The figure below describes the monthly tourism demand in terms of number

of arrivals for residents in hotels and complementary structures (January 1994 -

November 2009). The series seems to be characterized by some relevant fluctua-

tions probably due to the different flow of tourists according to the month chosen.

Notice that at the beginning we have a downward trend with sizeable peak and

immediately after a recovery. The seasonality component is still dominant.

Figure 2.11: UK, tourism demand: number of resident arrivals in hotels and
complementary structures.
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Table 2.21: UK tourism demand: rolling forecast experiment. Mean square fore-
cast error.

Levels yt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 410.64 474.04 641.26 704.07 818.64 934.53 1058.32 1893.92
0 Optimal 419.05 486.59 666.47 738.45 871.10 999.61 1181.00 2937.18
1/2 Näıve 397.02 468.64 615.51 699.48 796.42 898.08 1025.22 1632.30
1/2 Optimal 398.95 469.74 618.20 704.42 804.51 906.66 1041.61 1817.68
1 Optimal 421.56 495.07 636.45 749.97 853.35 989.34 1036.52 1630.47

Growth rates gt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 318.31 340.82 435.76 467.31 526.67 591.71 675.77 326.71
0 Optimal 317.22 334.93 427.61 456.47 519.57 582.34 682.44 443.49
1/2 Näıve 296.89 328.22 416.44 463.43 523.11 584.47 662.77 300.96
1/2 Optimal 294.13 323.24 408.45 453.93 512.71 571.10 647.74 326.36
1 Optimal 307.59 342.34 427.89 503.43 562.25 644.02 666.14 310.49

The square root transform seems to be more suitable. For the levels the min-

imum MSE for each horizon, except for the longer one where no transformation

is required, corresponds to the square root transformation by using the naive as

predictor. For the growth rates the situation is similar. The square root prevails

for all the time horizon. The performance obtained by implementing DM test

show how the square root transform is required only for h = 5 and h = 6.

Table 2.22: UK tourism demand: Diebold-Mariano test of equal forecast accuracy
Forecast horizon

Type 1 2 3 4 5 6 12 24
log vs lev 0.30 0.06 0.21 0.87 0.84 1.07 0.69 0.61
sqrt root vs log 0.81 1.27 1.03 1.85 2.92** 2.25** 0.75 0.71
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2.7.9 Sicily Tourism demand

A regional dimension has also been analyzed. This allows a better comparison

with national data from the European framework. The most interesting results

concerns the number of night spent in hotels by residents and the number of total

arrivals in hotels. Figure 2.12 describes the monthly tourism demand in terms of

number of night spent in hotels by residents (January 1998 - December 2009). It

underlines the presence of seasonality for each year analyzed. The series tends to

fluctuate up and down according to the given periodicity.

Figure 2.12: Sicily, tourism demand: number of night spent in hotels by residents.
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Table 2.23: Sicily tourism demand: rolling forecast experiment. Mean square
forecast error.

Levels yt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 219.67 261.86 307.79 321.60 317.93 299.68 304.95 700.65
0 Optimal 220.31 261.48 305.50 319.50 315.94 297.99 304.89 696.88
1/3 Näıve 202.23 246.52 287.85 297.79 297.71 287.79 296.14 656.89
1/3 Optimal 398.95 469.74 618.20 704.42 804.51 906.66 1041.61 1817.68
1 Optimal 203.64 247.24 287.95 297.83 297.47 287.52 297.28 657.70

Growth rates gt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 57.06 61.09 61.15 62.12 61.23 60.03 63.30 61.32
0 Optimal 57.44 61.32 61.09 61.97 61.05 59.74 63.42 61.76
1/3 Näıve 55.54 59.69 59.41 59.46 60.32 60.19 63.87 62.46
1/3 Optimal 55.92 60.05 59.63 59.63 60.44 60.26 64.17 63.01
1 Optimal 61.52 70.42 69.67 63.06 61.01 62.46 70.26 70.44

The table above gives the following results: for the levels the third root trans-

form, given tha naive as predictor, dominates for all time horizon. Instead for the

growth rates the logarithmic transformation, given the naive as forecast, prevails

for h = 1, 12, 24. The remaining part is characterized by the third root transform

by using as best predictor the naive. The optimal for the logarithmic one is only

considered for h = 6. The Dm test behaves in a similar way. Indeed, for longer

horizons the third root transform seems to prevail, on the contrary for short hori-

zons the logarithmic one dominates.

Table 2.24: Sicily tourism demand: Diebold-Mariano test of equal forecast accu-
racy

Forecast horizon
Type 1 2 3 4 5 6 12 24
log vs lev 0.96 2.13** 2.17** 0.20 0.05 0.49 1.51 1.41
3rd root vs log 1.34 1.24 1.39 1.01 0.22 0.70 2.23** 2.70**
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Figure 2.13 shows the monthly tourism demand in term of number of total ar-

rivals by residents (January 1998-December 2009). It seems to be characterized

by an high degree of seasonality and a double peak in the interval between one

year and the other.

Figure 2.13: Sicily, tourism demand: number of total arrivals in hotels.
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Table 2.25: Sicily tourism demand: rolling forecast experiment. Mean square
forecast error.

Levels yt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 268.43 330.91 395.92 536.78 555.35 550.71 711.78 244.75
0 Optimal 268.60 330.80 395.86 536.16 554.23 550.15 719.43 248.38
1/3 Näıve 284.83 312.18 378.39 466.60 481.13 493.28 712.93 237.72
1/3 Optimal 284.17 312.39 378.17 467.82 482.36 494.67 716.36 239.35
1 Optimal 354.51 412.74 493.34 548.45 585.88 592.61 719.89 226.26

Growth rates gt
λ Type Forecast horizon

1 2 3 4 5 6 12 24
0 Näıve 30.63 39.31 41.70 54.10 55.94 59.95 89.96 92.20
0 Optimal 30.65 39.38 41.65 54.07 55.90 59.91 90.47 93.96
1/3 Näıve 34.00 35.71 39.31 47.37 52.41 59.81 86.64 93.03
1/3 Optimal 34.05 35.81 39.37 47.44 52.48 59.82 87.02 94.16
1 Optimal 52.88 59.61 62.22 66.60 76.98 80.88 88.30 104.40

From the table we can see that for levels the third root transform is preferred

except for h = 1 where the logarithmic transformation wins by using the naive as

predictor and h = 24 where no transformation is required. For growth rates again

the third root one appears more suitable choosing the naive as principal forecast

except for h = 1 and h = 24 where prevails the logarithmic transform given

the naive as predictor. The DM test supports these results. Indeed the statistic

for h = 1 of logs versus levels and of 3rd root versus logs is respectively equal to

|2.01| > 1.96 and |1.98| > 1.96. Hence, we reject the null in both cases at 5% level.

Table 2.26: Sicily tourism demand: Diebold-Mariano test of equal forecast accu-
racy

Forecast horizon
Type 1 2 3 4 5 6 12 24
log vs lev 2.01** 1.28 1.48 1.01 1.49 1.56 0.15 1.45
3rd root vs log 1.98** 1.75 1.86 1.85 1.93 1.74 0.17 1.48
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2.8 Conclusions

From an economic point of view, the analysis shows how the sectors analyzed

are particularly useful in making accurate forecasts. In fact, the industrial pro-

duction measures changes in output for the industrial sector of the economy which

includes manufacturing, mining, and utilities. Although these sectors contribute

only a small portion of GDP (Gross Domestic Product), they are highly sensitive

to interest rates and consumer demand. This makes the industrial production

index an important tool for forecasting the short or medium run evolution of the

GDP and the economic performance. Moreover it could be considered as the most

important and widely analyzed high-frequency indicator, given the relevance of

the manufacturing activity as a driver of the whole business cycle.

With regard to the tourist sector, all the transformations adopted could be

particularly useful for measuring the growth of the tourism demand for different

countries. In addition, it is well known how these forecasts help marketers and

other managers in reducing the risk of decisions regarding the future.

For example, tourism marketers use demand forecasts to set marketing goals,

either strategic or for the annual marketing plan, to explore potential markets as

to the feasibility of persuading them to buy their product and the anticipated vol-

ume of these purchases and to simulate the impact of future events on demand,

including alternative marketing programmes as well as uncontrollable develop-

ments such as the course of the economy and the actions of competitors.

On the other side policy makers use tourism demand forecasts to predict the

economic, social-cultural, environmental consequences of visitors, to assess the

potential impact of regulatory policies, such as price regulation and environmen-

tal quality controls, to project public revenues from tourism for the budgeting

process and to ensure adequate capacity and infrastructure, including airports

and airways, bridges and highways, and energy and water treatment utilities.
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From all these illustrations, we learn that choosing the optimal value of the

transformation parameter, on the basis of the fit within the sample, does not

necessarily correspond to a gain in forecasting accuracy.

Another important piece of evidence is that the optimal predictor does not

lead to an improvement with respect to the näıve predictor using the same λ.

Moreover the logarithmic forecasts are better suited to shorter time interval; on

the contrary more time means a sizeable gain in terms of predictive accuracy by

choosing other transformations such as square root or third root.

These considerations underline the importance of working not only with series

at its original scale. Also, they stress the relevance of the choice of the transfor-

mation parameter λ. The last point introduces the analysis of the next chapter

where a non parametric methodology has been developed in order to produce the

best choice for λ, whose value so far has been fixed exogenously.
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Chapter 3

Understanding forecasting through a

non parametric analysis

3.1 Introduction

The objective of this chapter is to provide a non parametric1 complementary

analysis to the one displayed in the previous chapter. Indeed, we may notice that

the optimal value of the transformation parameter λ, previously described, corre-

sponds exactly, in a non parametric framework, to the minimizer of the prediction

error variance. For this purpose, starting from the consideration that the Box-

Cox transformation belongs to the class of power normal family distributions and

calling zt the power transformed variable, a fast non parametric method, based

on the estimation of the prediction error variance for a normal stationary process,

is proposed.

The knowledge of the spectrum seems to yield greater immediate insight into

the structure of the process under observation. Hence, an analysis in the fre-

quency domain is carried out. This involves the computation of the sample

spectrum, sample frequencies , autocovariance generating functions and the log

1see Buckinsky (1995)
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periodogram at sample frequencies. The latter is particularly useful for the es-

timation of the prediction error variance. In fact, it is well known from the

literature that the prediction error variance can be estimated non parametrically

by a bias-corrected geometric average of the periodogram.

Many authors have proposed different versions for the estimation of the pre-

diction error variance. For example Hannan and Nicholls (1977) proposed an

estimator which is strongly consistent and asymptotically normal, replacing the

raw periodogramm ordinates (Davide and Jones, 1968) by their non overlapping

averages of m consecutive ordinates. The multi-step case is also considered com-

pared to the one step forecasting procedure. Also a number of Monte Carlo

simulation experiments are obtained in order to illustrate better the properties

of the HN estimator of the prediction error variance and its reliability.

For the first experiment the model chosen is a simple AR(1) model. Each

observations is generated from the model and the procedure is replicated 10,000

times. Moreover, in order to control the smoothness of the HN prediction error

variance, we use different bandwidth. The results show the differences between

the asymptotic variance and the MC estimate of the variance related to che choice

of the bandwidth and the sample size.

A second MC experiment was carried out to assess the sampling distribution

of the grid search estimator of λ which is the minimiser of the prediction error

variance of the normalised Box Cox transform. In this case we generate 1000

replicates of a seasonal random walk process making comparisons between the

case of transformation and no transformation. The results show that the choice

of the bandwidth is relevant in order to find a good compromise between the

variance and the bias.

At the end it is interesting to see how this method behaves once applied to real

data. Relevant time series are considered: monthly industrial production index
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for France relating to the manufacture of wearing apparel and monthly tourism

demand both for Germany and Sicily ,respectively, in terms of total nights spent

in hotels and complementary structures and number of total arrivals in hotels.

3.2 The normalized power transformation

Let yt be a time series, we consider the Box-Cox transformation defined as Box

and Cox (1964)

y(λ) =


yλt −1

λ
if λ 6= 0

ln(yt) if λ = 0

(3.1)

defined for yt > 0. Hence, different values of λ implies different transformations.

The value λ = 1 implies that the series is analyzed in its original scale, λ = 0

originates the logarithmic transformation. Other important special cases arise

for fractional values of λ, e.g. the square root transform (λ = 1/2).

There are many advantages in using this kind of power transformation includ-

ing the scale equivariance property in models with intercepts meaning that the

transformation parameter is unaffected by rescaling and the fact that linear and

logarithm transformations are included. The main drawback is that both the

domain and the range of the transformation are bounded depending on the pa-

rameter λ. Usually, to compare different value of λ it is necessary to evaluate the

log- likelihood2 in relation to that of the original observations y which is given

by:

L(β, σ2, λ, y) = (2πσ2)−
n
2 exp

{
−(Y (λ)−Xβ)

′
(y(λ)−Xβ)

2σ2

}
J (3.2)

2see Amemiya et al. (1981)
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where J is the Jacobian defined as

J = Π

∣∣∣∣∂yi(λ)

∂yi

∣∣∣∣ (3.3)

The Jacobian allows for the change of scale of the response due to the operation

of the power transformation y(λ).

The maximum likelihood estimates of the parameters β and σ2 are easily found

as the solution for a least square problem with response y(λ). By replacing the

estimate obtained in the expression for the log likelihood, it’s common to derive

the expression for the profile log-likelihood defined as:

Lmax(λ) = −n
2
log2π − n

2
log + ˆσ2(λ) + logJ (3.4)

An equivalent form for the partially maximized likelihood is found by working

with the normalized transformation. The normalized power transformation3 is

obtained by dividing the power transformation y(λ), by n
√
J such that

z(λ) =
y(λ)
n
√
J

(3.5)

where J =
∏n

t=1

∣∣∣∂yt(λ)
∂yt

∣∣∣ is the Jacobian of the transformation, which is equal to

gλ−1
y , where gy = [

∏n
t=1 yt]

1/n
is the geometric average of the original observations

(Atkinson, 1985).

Hence,

zt(λ) = g1−λ
y yt(λ) (3.6)

The greater advantage is that working with z(λ) rather than y(λ) neutralizes the

effect of the change of scale.

3see Atkinson, (1973), Caroll, (1980), Caroll et al. (1981), De Bruin et al. (1999), Freeman
et al. (2006), Guerrero (1993) and Schlesselman (1971)
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3.3 Estimating the prediction error variance : a

non parametric approach

Given zt, the normalized power transformed variable, the purpose is to deter-

mine the optimal value of λ, i.e. the value of the transformation variable for which

the process zt is more predictable. Assuming that there exists a stationary4 repre-

sentation for zt, ut = ∆(L)zt, t = 1, . . . , n; the one step ahead prediction error

variance for zt is the same as that of ut, since ut − E(ut|Ft−1) = zt − E(zt|Ft−1).

Notice that the above measure can be interpreted as a coefficient of determi-

nation, i.e. as the proportion of the variance of ut that can be predicted from

knowledge of its past realization. Moreover letting f(ω) denote the spectral den-

sity of ut, the one-step-ahead prediction error variance is defined as the geometric

average of the spectral density, (Szegö-Kolmogorov formula),

σ2 = 2π exp

[
1

2π

∫ π

−π
log f(ω)dω

]
(3.7)

This formula gives an explicit relationship between the spectral density f(ω) and

the variance of the noise sequence ut.

Notice that if log f(ω) is not integrable this can be only because the integral

diverges to −∞, since logf(ω) ≤ f(ω). When this is so, it’s possible to interpret

the right side of the formula above as zero and the theorem continues to hold.

Given that the spectrum is always positive and that the geometric average is no

larger than the the arithmetic average, predictability is always in the range (0,1).

The prediction error variance5 can be estimated non parametrically by a bias-

corrected geometric average of the periodogram. Letting ωj = 2πj
n
, j = 1, . . . , [n/2],

denote the Fourier frequencies, where [·] is the integral part of the argument, the

4see Grenander et al. (1952)
5see Grenander (1958) and Jones (1976)
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periodogram is defined as

I(ωj) =
1

2πn

∣∣∣∣∣
n∑
t=1

(ut − ū)e−ıωjt

∣∣∣∣∣
2

(3.8)

with ū = 1
n

∑
t ut denotes the sample spectrum.

Non parametric estimation of the prediction error variance is based on a fun-

damental large sample result given by Brockwell and Davies (1991), establishing

that the periodogram is asymptotically distributed as a scaled chisquare random

variable:

I(ωj) ∼

 1
2
f(ωj)χ

2
2, 0 < ωj < π

f(ωj)χ
2
1, ωj = ±π

(3.9)

where χ2
m denotes a chisquare random variable with m degrees of freedom and

f(ω) is the spectral density of ut at a given frequency ω.

Davis and Jones (1968) instead proposed an estimator for σ2

σ̂2 = exp

[
1

n∗

n∗∑
j=1

ln I(ωj) + γ

]
. (3.10)

where n∗ denote n/2−1, if n is even, and (n−1)/2, if n is odd and γ ∼= 0.577221 is

Euler’s constant (minus the expectation of a log chi-squared variable). The need

for the factor expγ originates from the fact that, in large samples, E[ln I(ωj)] =

ln f(ωj)−γ, so that the log-periodogram is a biased estimator of the log-spectrum.

Also the variance of lnI(ωj) = π2

6
.

They show also that lnσ̂2 is asymptotically normal

lnσ̂2 ∼ N

(
lnσ2,

π2

6[n/2]

)
(3.11)
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Hannan and Nicholls (1977) proposed a more generalized version of the formula

(10) by replacing the raw periodogram ordinates by their non overlapping averages

of m consecutive ordinates.

σ̂2(m) = m exp

[
1

M

M−1∑
j=0

m∑
k=1

ln I(ωjm+k)− ψ(m)

]
. (3.12)

where M = [(n − 1)/(2m)] and ψ(m) is the digamma function. Notice that the

estimator (10) is obtained in the case m = 1 and the bias correction increases as

m increases. The large sample distributions of (12) and ln σ̂2(m) are, respectively

σ̂2(m) ∼ N

(
σ2,

2σ4mψ′(m)

n

)
, ln σ̂2(m) ∼ N

(
σ2,

2mψ′(m)

n

)
(3.13)

For a better explanation the figure below underlines the importance of the pre-

diction error variance and its relative estimates. In particular Figure 3.1 displays

the estimates of the logarithmic p.e.v. of ut = ∆zt, where zt is the normalized

power transformation of Industrial Production series for the US (considered here

for the sample period 1950.1-2007.12 so as to exclude the latest recession from

the analysis). The estimator used is the one in(3.10).

The plot seems to suggest that the optimal value of λ is around 0.7 which cor-

responds in practice to the minimizer of the prediction error variance. Moreover

if an approximate confidence interval for λ is obtained by inverting the confi-

dence bands for ln σ2, it can be seen that the logarithmic transformation is not

included. The left bottom panel confirms that the series ut corresponding to log

transform is heteroscedastic (the volatility declines with time). On the contrary,

the predictability on the original scale is not significantly different.

As it can be seen from the bottom right panel, there is no manifest het-

eroscedasticity, and ut closely resembles the one corresponding to the optimal

transformation.
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Figure 3.1: U.S. monthly industrial production, 1950:1-2007.12. Nonparametric
estimates of lnσ2 (with asymptotic 95% confidence limits), and plot of ut = ∆zt
for different values of λ.

3.4 A multi-step forecasting procedure

When dealing with the multi-step case, a non parametric approach for the

mean square prediction error variance can be based on Bloomfield’s (1973) expo-

nential model for the spectral density of a stationary process. Since the logarithm

of the spectral density function is a smooth function, it can be approximated in

some ways.

Bloomfield’s exponential model is based on the truncated Fourier series ap-

proximation of the logarithm of the spectral density function of ut, assuming

that ut = zt − zt−12 represents the yearly change in zt.

Wahba (1980) instead use as an approximation for the log spectral density

66



function a smoothing spline. In particular we can write the spectral density as

f(ω) =
1

2π
exp

[
α0 + 2

K∑
k=1

αk cos kω

]
(3.14)

where the coefficients αk, k = 0, 1, . . . , K, can be estimated by a least squares re-

gression of the log-periodogram on a constant and K trigonometric terms. Hence,

taking logarithms of the periodogram we have

ln I(ωj) ≈ ln f(ωj)− γ + εj, 0 < ωj < π (3.15)

where γ = 0.57722 is Euler’s constant and εj ∼ log(1
2
χ2

2) + γ, i.e. has a centred

log-chisquare distribution with two degrees of freedom, so that E(εj) = 0 and

Var(εj) = π2/6 (Davis and Jones, (1968)). Notice that we exclude the frequencies

ω = 0, π from the above representation.

The Exponential model is thus formulated as follows as the linear regression

model

log (2πI(ωj)) + γ = α0 + 2
K∑
k=1

αk cos kωj + εj, ωj =
2πj

n
, j = 1, . . . , J (3.16)

where J is such that J > K, and ωJ < π. The one-step ahead prediction error

variance is obtained as

σ2 = expα0. (3.17)

This follows from Kolmogorov’s formula, since

σ2 = 2π exp

[
1

π

∫ π

0

log f(ω)dω

]
(3.18)
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The function lnfω has the absolutely and uniformly convergent Fourier series

expansion

lnf(ω) = α0 +
∑

αje
ijω +

∑
α−je

−ijω (3.19)

Moreover the long run variance, saying the spectral density at the origin, is ob-

tained by setting ω = 0 in the expression (14). Thus, it is equal to

g(0) = exp

(
α0 + 2

∑
k

αk

)
(3.20)

For forecasting purpose it’s essential to derive a one-sided moving average

rapresentation of the process. For this reason notice that the coefficients αk’s are

related to those of the Wold decomposition. ut = ψ(L)ξt, are obtained recursively,

see (Hurvich (2002)), from the following formula

ψj = j−1

j∑
r=1

rαrψj−r, j = 1, 2, . . . , (3.21)

with ψ0 = 1 and αr = 0, ifr > K. Once the αj are estimated by the log-

periodogram regression, the h-step ahead prediction error variance can be com-

puted as

σ2
h = σ̂2(1 + ĉ21+, . . . , ĉ

2
h−1) (3.22)

This represents an alternative way of estimating the multi step prediction error

variance.
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3.5 A Monte Carlo simulation experiment

A number of simulations were carried out to illustrate better the properties of

the HN estimator of the prediction error variance and its reliability. The model

chosen is an AR(1) of the form:

(1− β(L))x(t) = εt (3.23)

where L is the usual lag operator and εt ∼ NID(0, 1). Each observation is

generated from the model and the procedure is replicated 10,000 times. Figure

3.2 shows a grid of non parametric density estimates for HN prediction error

variance using bandwidth m , for m = 1, . . . , 11.

Notice that m has the usual function to control the smoothness of the estimates

proposed. Figure 3.3 instead displays the histogram and a non parametric density

estimate for a positive AR coefficient equal to 0.8. It’s important to underline

that the AR parameter affects only the bias, not the variance of the distribution.

The true value of the prediction error variance is σ2 = 1.

Notice that there are some differences according to the sampling size. Indeed,

in large sample, i.e. n = 1000, the asymptotic variance is a good approximation of

the true variance. For values of m = 1 and m = 3, the Monte Carlo6 estimates of

the variance are 0.0034 and 0.0025, respectively, whereas the asymptotic variances

2mψ
′
(m)/n are 0.0033 and 0.0024. In small sample the asymptotic variance

understates the true variance. For n = 200 and m = 1, 2ψ
′
(1)/200 = 0.0118, but

the MC estimate of the variance is 0.0168.

A second MC experiment was carried out to assess the sampling distribution

of the grid search estimator of λ which is the minimiser of the prediction error

variance of the normalised BC transform, computed according to 12. For λ =

6see Showalter (1994), Spitzer (1978) and Spitzer (1984)
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0, 5, square root transformation, we simulated a seasonal random walk of length

n = 240 (20 years of monthly data) on the transformed scale

yt(λ) = yt−12(λ) + µ+ σεt (3.24)

with ε ∼ NID(0, 1) and generated yt as the inverse transformation

yt = (1 + 0.5yt(λ))2 (3.25)

Then we estimate the optimal transformation parameter for yt by a grid search.

Figure 3.4 displays the estimated densities for m = 1 (upper panel) and m = 3

(left panel). The main outcome of the experiment is that m = 3 provides the

most reasonable compromise between bias and variance. Higher values of m yield

a small reduction in the variance and may yield large biases in small samples.
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Figure 3.2: Non parametric density estimates corresponding to different band-
width.
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Figure 3.3: Non parametric density estimates corresponding to different band-
width.
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Figure 3.4: Non parametric density estimator of the transformation parameter λ,
generated from 1, 000 replicates of a seasonal random walk process
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3.6 Exploring the optimal choice of λ by using

real data

The first relevant result concerns the monthly industrial production index for

France in terms of wearing industry. The value of λ which minimises the predic-

tion error variance of ∆12zt(λ) is equal to 0.32, when the standard HN estimator

of the prediction error variance with m = 3 is used. If we delete the seasonal and

trading day frequencies, then the estimate is 0.38 (the 95% c.i. is (0.29, 0.44)).

This is coincident with the estimated λ arising from the cepstrum approach, using

K = 8 and pulse dummies for the trading day frequencies. The value of λ min-

imising the multi-step prediction error variance is either 0.32 or 0.38 depending

on the horizon.

In sum, the third root transformation appears to be suitable for this series.

Figure 3.5 displays the patterns of ut = ∆12zt(λ) and (ut− ū)2, for three values of

λ, corresponding to the logarithmic transformation (top panels), the third root,

and the original scale.

The local estimates of the underlying levels and the volatilities are obtained

by a two-sided exponential smoothing filter with smoothing parameter providing

a cut-off at 12 years. The plot illustrates quite clearly why the optimal transfor-

mation parameter is 0.33: both the level and the variance are most likely to be

time invariant, whereas for the other λ values they are trending either upwards

or downwards.
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Figure 3.5: France, industrial production index: manufacture of wearing apparel.
Plot of ∆12zt(λ) and its volatility for λ = 0, 1/3, 1.

Another relevant result concerns the tourism demand for Germany in terms

of total nights spent in hotels and complementary structures by residents and

no residents. The value of λ which minimises the p.e.v. of ∆12zt(λ) is equal to

0.44, when the standard HN estimator of the p.e.v. with m = 3 is used. If we

delete the seasonal and trading day frequencies, then the estimate is 0.41 (the

95% confidence interval is (0.23, 0.56)). This is coincident with the estimated

λ arising from the cepstrum approach, using K = 8 and pulse dummies for the

trading day frequencies.

The value of λ minimising the multi-step prediction error variance is either

0.44 or 0.41 depending on the horizon. The figure below displays the patterns of

ut = ∆12zt(λ) and (ut − ū)2, for three values of λ, corresponding to the logarith-
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mic transformation (top panels), λ = 0.4, and the original scale.

The local estimates of the underlying levels and the volatilities are obtained

by a two-sided exponential smoothing filter with smoothing parameter providing

a cut-off at 12 years. The plot illustrates quite clearly why the optimal transfor-

mation parameter is 0.4: both the level and the variance are most likely to be

time invariant, whereas for the other λ values they are trending either upwards

or downwards.

Figure 3.6: Germany, Tourism Demand: Total nights spent in hotels and com-
plementary structures. Plot of ∆12zt(λ) and its volatility for λ = 0, 0.4, 1.

At a regional level, we consider the Sicilian Tourism demand in terms of total

arrivals in hotels we see how the third root transformation appears to be more

suitable for this series. The value of λ which minimises the p.e.v. of ∆12zt(λ) is

equal to 0.35, when the standard HN estimator of the p.e.v. with m = 3 is used.
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If we delete the seasonal and trading day frequencies, then the estimate is 0.29

(the 95% confidence interval is (0.11, 0.47)).

This is coincident with the estimated λ arising from the cepstrum approach,

using K = 8 and pulse dummies for the trading day frequencies. The value of λ

minimising the multi-step p.e.v. is either 0.35 or 0.29 depending on the horizon.

The figure below displays the patterns of ut = ∆12zt(λ) and (ut − ū)2, for three

values of λ, corresponding to the logarithmic transformation (top panels), the

third root transform, and the original scale.

The local estimates of the underlying levels and the volatilities are obtained

by a two-sided exponential smoothing filter with smoothing parameter providing

a cut-off at 12 years. The plot illustrates quite clearly why the optimal trans-

formation parameter is 1
3
: both the level and the variance are most likely to be

time invariant, whereas for the other λ values they are trending either upwards

or downwards.
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Figure 3.7: Sicily, Tourism Demand: Total arrivals in hotels. Plot of ∆12zt(λ)
and its volatility for λ = 0, 1/3, 1.

3.7 Conclusions

The results just obtained confirm how important is the choice of a ad ”hoc”

transformation. The spectral analysis suggests an alternative method to go deeper

into the structure of the process analyzed by the researcher. The method should

be applied to any relevant time series by selecting a referee model whether in an

univariate or in a multivariate framework.

Indeed, the spectral decomposition of any time series represents a very useful

tool which can be used for solving some problems such as finding trends of differ-

ent resolution, smoothing, extracting of seasonality components or of cycles with

small and large periods or with varying amplitudes. In addition, since many time
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series exhibit nonlinear behaviour, a method that works well for both linear and

nonlinear, stationary and non stationary time series is the best choice for mod-

elling and forecasting the real time series data. Moreover the use of smoother

filters (i.e, the Kalman filter) allows the detection and subsequent treatment of

influential observations which are considered as noises. This procedure cleans the

series and gives more accurate estimates. Hence, the study of the optimal value

for λ becomes easier especially if it is possible to evaluate the extent to which the

parameter can vary.
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Chapter 4

Conclusions

From this study we learn how there is no ”unique” method in forecasting eco-

nomic time series. As a consequence, the methodology adopted is strictly related

to the specific object of the analysis, to the availability of the data and to the

choice either of the sector or of the level of aggregation.

In this sense a possible future research deals with the topic of temporal ag-

gregation of a time series under transformation. In particular the idea is that

sometimes the choice of the frequency clearly influences the estimation results

although estimated models for different frequencies should be related.

For instance, a model for quarterly data should be related to a model for an-

nual data, as the latter is a temporal aggregation of the former along the year.

Therefore, not only are the annual data a function of the quarterly data, but

the annual model is also a function of the quarterly model.

Moreover, the quarterly estimated model is richer, information wise, as the

number of observations used for estimation is four times larger than for the an-

nual model.

Based on these considerations and evaluating other economic variables, the

idea is to aggregate monthly series to create annual observations in order to see
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the consequences in terms of model structure and the effectiveness of the trans-

formation adopted.

Also, it could be interested to see how different combination of forecasts be-

have when we include in our model the interaction of some variables representing

different economic specifications of the analysis.
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