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Abstract

Research in Multi-Party Computation is constantly evolving over the years. Starting
from the very first result by Yao in 1982, to serve new and more practical scenarios,
a lot of different protocols with stronger security properties have been introduced
and proven for several assumptions.

For some functionalities, properties like public verifiability, fairness and round-
optimality can be considered nowadays a minimal set of assumption to consider
an MPC protocol practical. Asynchrony, in the sense that different parties should
be able to join a protocol at different times, is fundamental for applications like
decentralized lotteries, where the protocol execution can last even days. In such
case, due to the involvement of monetary payments, parties must also be aware of
what happens to their pockets when such protocols are run. In particular, they must
be sure that the execution of a certain class of protocols is financially sustainable.
We list below our three contributions to the thesis.

We firstly introduce a new theoretical result, showing how to achieve low round
MPC from new assumptions. In particular, we show how to construct maliciously
secure oblivious transfer (M-OT) from a mild strengthening of key agreement (KA)
which we call strongly uniform KA (SU-KA), where the latter roughly means that
the messages sent by one party are computationally close to uniform, even if the
other party is malicious. Our transformation is black-box, almost round preserving
(adding only a constant overhead of two rounds), and achieves standard simulation-
based security in the plain model.

As we show, 2-round SU-KA can be realized from cryptographic assumptions
such as low-noise LPN, high-noise LWE, Subset Sum, DDH, CDH and RSA—all
with polynomial hardness—thus yielding a black-box construction of fully-simulatable,
round-optimal, M-OT from the same set of assumptions (some of which were not
known before).

By invoking a recent result of Benhamouda and Lin (EUROCRYPT 2017), we
also obtain (non-black-box) 5-round maliciously secure MPC in the plain model,
from the same assumptions.

Our second and third contributions are focused on the concrete application
of MPC protocols achieving the aforementioned properties in real-world scenarios.
In applications like decentralized lotteries, decentralized payment mechanisms like
blockchains relying on smart contracts can be considered a powerful tool to enforce
the correct behavior of cheating players with the aid of monetary incentives or
punishments. In fact, a weaker version of fairness called fairness with penalties,
firstly introduced in the lottery protocol of Andrychowicz et al. (S&P ’14) and
then formally defined by Bentov et al. (CRYPTO’14), can be used to ensure that
corrupted players are incentivized to reveal the output to honest players. This can
be done successfully through Bitcoin scripts or Ethereum smart contracts.

In our second contribution, we consider executions of smart contracts on forking
blockchains (e.g., Ethereum) and study security and delay issues due to forks. As
security notion for modeling executions of smart contracts, we focus on MPC. In
particular, we consider on-chain MPC executions with the aid of smart contracts.
The classical double-spending problem tells us that messages of the MPC protocol
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should be confirmed on-chain before playing the next ones, thus slowing down the
entire execution.

This contribution consists of two results:

• For the concrete case of fairly tossing multiple coins with penalties, we notice
that the lottery protocol of Andrychowicz et al. becomes insecure if players
do not wait for the confirmations of several transactions. In addition, we
present a smart contract that instead retains security even when all honest
players immediately answer to transactions appearing on-chain. We analyze
the performance using Ethereum as testbed.

• We design a compiler that takes any “digital and universally composable”
MPC protocol (with or without honest majority), and transforms it into an-
other one (for the same task and same setup) which maintains security even if
all messages are played on-chain without delays. The special requirements on
the starting protocol mean that messages consists only of bits (e.g., no hard-
ware token is sent) and security holds also in the presence of other protocols.
We further show that our compiler satisfies fairness with penalties as long as
honest players only wait for confirmations once.

By reducing the number of confirmations, our protocols can be significantly
faster than natural constructions, maintaining at the same time public verifiability,
asynchrony (obtained by making the parties posting messages to the blockchain via
smart contracts), and fairness with penalties.

As a third contribution, we survey the state-of-the-art blockchain based penalty
protocols (i.e achieving fairness with penalties) and pioneer another type of fairness,
financial fairness, that is closer to the real-world valuation of financial transactions.
Intuitively, a penalty protocol is financially fair if the net present cost of participation
of honest parties—i.e., the difference between the total value of cash inflows and
the total value of cash outflows at the end of the protocol, weighted by the relative
discount rate—is the same, even when some parties cheat.

Then, we show that the ladder protocol (CRYPTO’14), and its variants (CCS’15
and CCS’16), fail to achieve financial fairness both in theory and in practice, while
the penalty protocols of Kumaresan and Bentov (CCS’14) and Baum, David and
Dowsley (FC’20) are financially fair. Moreover, it can be inferred that the fair
with penalties extension of the generic compiler presented in our second contribu-
tion, based on CCS’14, is financially fair. Hence, our compiler is also financially
sustainable.
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Chapter 1

Introduction

In Multi-Party Computation a set of mutually distrusted parties want to jointly
compute a function without revealing their inputs to each other.

In MPC, a party cannot learn any other information from the other partic-
ipants besides her input and the final output. MPC can be modeled using the
Real/Ideal world paradigm. In this paradigm, we assume the existence of an un-
corruptible trusted third party communicating with perfectly secure channels with
all the protocol participants. When interacting with such trusted party (also called
functionality), protocol players handle their inputs to him. Then, the functionality
calculates the expected output for each participant and sends it back to them. In-
stead, in the real world such a trusted party does not exist, and parties can only
communicate with each other via unreliable channels. The security definition states
that an MPC protocol is secure if and only if an external judge can distinguish
between an ideal world and a real execution with a negligible probability.

MPC was firstly proposed by Yao’s garbled circuit [Yao82, Yao86], and sub-
sequently [GMW87] and [BGW88], relying on relying on publicly verifiable secret
sharing schemes. As then showed by Kilian [Kil88], MPC can be obtained in a
blackbox way from a powerful primitive called Oblivious Transfer [EGL82].

Recently, MPC is becoming more and more important due to the digitalization
of legal procedures like voting and auctions, in which MPC can be applied in a
direct manner [AOZZ15, BCD+09]. Moreover, 2-PC/MPC is also a powerful tool
that can be used for the most diverse cryptographic applications, like decentralized
secure storage, threshold signatures (used nowadays in blockchains to sign transac-
tions securely or to generate anonymous credentials), decentralized computation of
MACs, and many others. In any case, the simple fact that MPC can be computable
for any polynomially bounded circuit, together with the fact that any functionality
can be used as a blackbox sub-functionality in any protocol description, gives to
this primitive an immense versatility.

Many MPC properties have been defined in literature: semi-honest vs. dis-
honest execution, honest majority vs. dishonest majority, security with abort vs.
fairness/guaranteed output delivery, synchrony vs. asynchrony. Any of the listed
properties can be useful depending on the application scenario.

For our purposes, let us consider decentralized lotteries as an example. Due
to the low trust in the authorities, the increasing request for decentralization of
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procedures encouraged the creation of large-scale MPC protocols that can be run
even by a standard home PC. In the case of lotteries, an MPC protocol must fulfill
at least the following properties:

• Asynchrony, in the sense that parties should be able to join the protocol at
different times.

• Public verifiability.

• Fairness.

• Round-optimality.

• Financial Sustainability.

A lottery could last even days. A fully synchronized protocol where players must
be online all the time is definitely impractical in such a scenario. The protocol
transcript should always be publicly accessible and verifiable in the case that some
controversy pops up. Round-optimality is also really important: the communica-
tion channel can heavily impact the overall protocol execution latency. Moreover,
connections of standard end-users can be unreliable. A player could be online to
participate for a couple of rounds and then disappear for a while due to connec-
tion issues, thus badly impacting the execution time. Fairness guarantees are also
crucial: in security with abort an adversary, after learning not being the lottery
winner, can abort the execution by denying the honest players to learn the out-
come, thus trying to win the lottery in some future execution. In order to give a
successful payback to honest parties, or to punish cheating adversaries, decentral-
ized payments systems based on smart contracts can be helpful (as we will see, they
can be used even to guarantee a weaker form of fairness based on game-theoretic
assumptions, called fairness with penalties). Due to the involvement of monetary
payments, investigating whether a protocol execution can be financially sustainable
for a participating party is important for such protocols’ real-life applicability.

We will start by introducing, in Section 1.1 a theoretical result showing round-
optimal OT protocols (that can be compiled to low round MPC) from new as-
sumptions, like Low Noise LPN, High Noise LWE, DQR, DCR (all with polynomial
hardness).

As a second result (introduced in Section 1.3), we show how asynchrony, public
verifiability, and a weaker version of fairness based on monetary incentives can
be achieved by relying on a forking blockchain as a communication channel (a
brief introduction with a little discussion on how public verifiability, asynchrony,
and fairness can be achieved with the aid of a blockchain is given in Section 1.2).
Moreover, we propose a parallel coin tossing protocol and a generic MPC compiler
that drastically reduces the number of blockchain rounds needed to complete the
execution of such protocols w.r.t a naive execution relying on message confirmation.
This result holds when an optimistic setting is assumed (i.e. that the network is in
a good state and no player behaves dishonestly). We show that our construction
does not compromise any security guarantee.

In Section 1.4 we show how to analyze penalty protocols achieving fairness with
penalties known in literature under a financial lens. In particular, we show that
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fairness is not only cryptographic, but also financial. Depending on the structure of
the protocol or the deposit quantity that must be deposited to participate, a party
would be more or less incentivized to join. By relying on our analysis, it can be
inferred that our protocols introduced in 1.3 are also financially fair.

1.1 Low Round Complexity from New Assumption: MPC
from Round-Optimal OT

Roughly, (1-out − of -2) Oblivious Transfer is a functionality taking as inputs two
messages m0,m1 from a sender and a choice bit b from a receiver. When receiving
the sender’s two messages, stores them in the local storage. When the choice bit b is
sent by the receiver, the functionality answers back to the receiver with the message
mb. An OT protocol, in order to realize such functionality, must guarantee both
seller and receiver privacy, meaning that the receiver cannot learn any information
about the message m1−b and the sender can not learn which is the message the
receiver asked for (i.e. the choice bit) [Rab81, EGL82].

Following previous work, we concentrate on OT protocols that are ”fully sim-
ulatable”, informally meaning that both sender and receiver can be successfully
replaced by a simulator knowing no information on the sender’s or receiver’s in-
puts. Different flavours of simulation are known, depending on which adversarial
model is considered: in our work, we are in the sequential composability framework
(cfr Section 2.7.1).

Suprisingly, OT turned out to be sufficient for constructing secure multi-party
computation (MPC) for arbitrary functionalities [Yao82, Yao86, Kil88, IPS08, IKO+11,
BL18, GS18]. Therefore, constructing OT has been an important objective and re-
ceived much attention.

Nevertheless, previous constructions of fully-simulatable OT suffer from diverse
shortcomings (cf. also Section 1.1.2):

1. They require trusted setup, or are based on random oracles (as, e.g., in [JS07,
PVW08]);

2. They have high round complexity (as, e.g., in [Hai08]), while the optimal num-
ber of rounds would be 4 in the plain model without trusted setup [IKO+11,
GMPP16];

3. They are non-black-box, in that they are obtained by generically transforming
semi-honestly secure OT (SH-OT)—which in turn can be constructed from
special types of PKE [GKM+00]—to fully-simulatable OT via (possibly inter-
active) zero-knowledge proofs (á la GMW [GMW91]);

4. They are tailored to specific hardness assumptions (as, e.g., in [Lin08, BD18]).
One exception is the work of Ostrovsky, Richelson and Scafuro [ORS15], that pro-
vide a black-box construction of 4-round, fully-simulatable OT in the plain model
from certified trapdoor permutations (TDPs) [BY92, LMRS04, CL18], which in
turn can be instantiated from the RSA assumption under some parameter regimes
[KKM12, CL18].

This draws our focus to the question:
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Can we obtain 4-round, fully-simulatable OT in a black-box way from
minimal assumptions, without assuming trusted setup or relying on

random oracles?

1.1.1 Our contribution
We give a positive answer to the above question by leveraging a certain type of key
agreement (KA) protocols, which intuitively allow two parties to establish a secure
channel in the presence of an eavesdropper. The influential work by Impagliazzo
and Rudich [IR88] showed a (black-box) separation between secret-key cryptography
and public-key cryptography and KA. Ever since, it is common sense that public-
key encryption (PKE) requires stronger assumptions than the existence of one-way
functions, and thus secure KA is the weakest assumption from which public-key
cryptography can be obtained. More recent research efforts have only provided
further confidence in this conviction [GMMM18].

More in details, our main contribution is a construction of fully-simulatable OT
(a.k.a. maliciously secure OT, or M-OT) from a seemingly mild strengthening of
KA protocols, which we term strongly uniform (SU); our protocol is fully black-box
and essentially round-preserving, adding only a constant overhead of at most two
rounds. In particular, we show that:

Theorem 1 (Informal). For any odd r ∈ N, with r > 1, there is a black-box
construction of a r + 1-round, fully-simulatable oblivious transfer protocol in the
plain model, from any r-round strongly uniform key agreement protocol.

Since, as we show, 2-round and 3-round SU-KA can be instantiated from several
assumptions, including low-noise (ring) LPN, high-noise (ring) LWE, Subset Sum,
CDH, DDH, and RSA—all with polynomial hardness—a consequence of our result
is that we obtain round-optimal M-OT in the plain model under the same set of
assumptions (in a black-box way). In particular, this yields the first such protocols
from LPN, LWE (with modulus noise ratio

√
n), CDH, and Subset Sum.1 Note

that our LWE parameter setting relates to an approximation factor of n1.5 for SIVP
in lattices of dimension n [Reg05], which is the weakest LWE assumption known to
imply PKE.

In our construction, we use a special kind of “commit-and-open” protocols which
were implicitly used in previous works [Kil92, ORS15]. As a conceptual contribution,
we formalize their security properties, which allows for a more modular presentation
and security analysis.

1.1.2 Related Work
Maliciously secure OT. Jarecki and Shamtikov [JS07], and Peikert, Vaikun-
tanathan, and Waters [PVW08], show how to construct 2-round M-OT in the com-
mon reference string model.

1We can also base our construction on Factoring when relying on the hardness of CDH over the
group of signed quadratic residues [HK09], but this requires a trusted setup of this group which is
based on a Blum integer.
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A result by Haitner et al. [Hai08, HIK+11] gives a black-box construction of
M-OT from SH-OT. While being based on weaker assumptions (i.e., plain SH-
OT instead of Strongly Uniform SH-OT), assuming the starting OT protocol has
round complexity r, the final protocol requires 4 additional rounds for obtaining
an intermediate security flavor known as “defensible privacy”, plus 4 rounds for cut
and choose, plus 2 times the number of rounds required for running coin tossing,
plus a final round to conclude the protocol. Assuming coin tossing can be done in
5 rounds [KO04], the total accounts to r+19 rounds, and thus yields 21 rounds by
setting r = 2.

Lindell [Lin08] gives constructions of M-OT with 7 rounds, under the DDH
assumption, the Nth residuosity assumption, and the assumption that homomor-
phic PKE exists. Camenish, Neven, and shelat [CNS07], and Green and Hohen-
berger [GH07], construct M-OT protocols, some of which even achieve adaptive
security, using computational assumptions over bilinear groups.

There are also several efficient protocols for OT that guarantee only privacy
(but not simulatability) in the presence of malicious adversaries, see, e.g. [KO97,
NP01, AIR01, Kal05, BD18].

Round-optimal MPC. Katz and Ostrovsky [KO04] proved that 5 rounds are
necessary and sufficient for realizing general-purpose two-party protocols, with-
out assuming a simultaneous broadcast channel (where the parties are allowed to
send each other messages in the same round). Their result was later extended
by Garg et al. [GMPP16] who showed that, assuming simultaneous broadcast, 4
rounds are optimal for general-purpose MPC. Together with a result by Ishai et
al. [IKO+11]—yielding non-interactive maliciously secure two-party computation
for arbitrary functionalities, in the OT-hybrid model—the latter implies that 4
rounds are optimal for constructing fully-simulatable M-OT in the plain model.

Ciampi et al. [COSV17b] construct a special type of 4-round M-OT assuming
certified TDPs,2 and show how to apply it in order to obtain (fully black-box)
4-round two-party computation with simultaneous broadcast. In a companion pa-
per [COSV17a], the same authors further give a 4-round MPC protocol for the
specific case of multi-party coin-tossing.

1.2 Blockchain as a Tool to Enforce Security Properties
The rise of blockchains3 is progressively changing the way transactions are executed
over the Internet. Indeed, the traditional client-server paradigm turns out to be
insufficient when many parties want to perform a distributed computation, espe-
cially in cases where features like public verifiability and automatic punishment are
desired. Blockchains through the execution of smart contracts naturally allow many
players to perform a joint computation, even when they are not simultaneously on-
line; moreover, they allow to publicly check the actions of all players4 and enforce

2They also claim [COSV17b, Footnote 3] that their OT protocol can be instantiated using PKE
with special properties, however no proof of this fact is provided.

3We use the terms “blockchain” and “distributed ledger” interchangeably.
4We will often use the two terms “party” and “player” as synonyms.



6 1. Introduction

a proper behavior through financial punishments.

1.2.1 Blockchain Overview
The first conceptualization of a Blockchain was given in the famous “Bitcoin: A
Peer-to-Peer Electronic Cash System” by Satoshi Nakamoto [Nak19]. Bitcoin, as
well as all the other well-known blockchain systems (e.g. Ethereum, Algorand, Rip-
ple, Cardano, etc) is also called public ledger. Each message stored in the ledger
can be represented in the form of a transaction moving some cryptocurrency (we
will often refer to it as coins) from a wallet A to a wallet B (or from a set of wal-
lets to another set of wallets). An important feature of these types of transactions
is that they can also store additional information like raw data or scripts. The
term “blockchain” stems from the fact that the data structure is organized in an
ordered chain of blocks, each containing a set of transactions. When a party owning
a wallet sends a transaction to the blockchain, he can be sure that, after a fixed
period of time, if the transaction was indeed valid, it will eventually appear to the
ledger (Liveness property). Moreover, it can be sure that once a transaction has
been issued to the ledger at some block, if it ends “deep” enough in the chain, it
will be included in every honest player’s blockchain. It means that if you cut the
last k blocks, such transaction cannot be changed unless the honest nodes are less
than 51% (Persistence property). In Chapter 2 we will formally describe the live-
ness property [GKL15] and a sub-property of persistence, called chain consistency
[GG17, PS17], informally stating that a transaction appearing k blocks deep in the
blockchain, will be part of the common prefix (obtained by cutting the last k blocks)
of all the honest nodes.

Bitcoin Proof-of-Work and the Blockchain Model. In Bitcoin, a set of nodes
called ”miners” must use their computational power to solve cryptographic puzzles
needed to create new blocks. When a miner succeeds in solving the puzzle, a reward,
called coin-base transaction is assigned to him. This particular type of transaction
incentivizes the miners to keep the mining procedure alive 5. Solving such puzzles
is a non-trivial task. To mine a new block, a Bitcoin miner has to provide, together
with the block, a proof-of-work demonstrating that he used enough computational
power during the mining procedure (and therefore spent enough time and money
in electricity and computational supplies). In bitcoin, such puzzles can be solved
by computing the pre-image of a hash function whose output must be less than
a fixed value. As the chain grows, this value decreases, making the proof-of-work
more expensive in terms of computation.

Many different blockchain models have been proposed in the literature. The
stronger model known until assumes the existence of a global functionality [BGM+18]
that can be accessed by any protocol. It is proven secure in a hybrid model, as-
suming that any entity can query such functionality. Unfortunately, such a model
is too much stronger for our purposes. To guarantee the prescribed properties, this
global functionality assumes only the common prefix of honest nodes, not the entire

5In [GG17, PSS17] such incentive guarantees the chain growth property, informally stating that
if a transaction has been issued to the network, it will be eventually included in some block. It can
be seen as a sub-property of Liveness
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subchain owned by each miner. Since updating this functionality with this such a
feature increases its complexity and dramatically changes the way the blockchain
players can access it, we decided to use a weaker model based on an external but
not global functionality. In [GG17, PSS17] they enrich the MPC model with the
possibility for any entity (adversary, honest players, simulator) to access in a black-
box way to an interface Γ. Such interface offers the players a set of algorithms to
communicate with the blockchain that can be queried from any entity to update
the local state of the blockchain, extract the list of blocks (i.e., the blockchain) from
such state, and broadcast a new transaction into the blockchain network. This
model gives us enough flexibility to deal with forks and smoothly prove our result.
A formal treatment of this model, that will be used in our protocols in Chapter 4,
is given in Section 2.8.

1.2.2 Overcoming Impossibility Results: Fairness
An important property in MPC is the so-called cryptographic fairness, which intu-
itively says that corrupted parties learn the output only if honest parties learn it as
well. Unfortunately, without assuming honest majority (e.g., for two parties) there
are concrete examples of functions for which cryptographic fairness is impossible to
achieve [Cle86].

To circumvent this impossibility, several solutions have been proposed: re-
stricted functionalities [GHKL11], partial fairness [GK12, MNS16], gradual release
protocols [GMPY11], optimistic models [CC00], and incentivized computation [ALZ13].
A recent trend is to guarantee cryptographic fairness via monetary compensation
(a.k.a. cryptographic fairness with penalties6).

This approach gained momentum as decentralized payment systems (e.g., Bit-
coin and Ethereum) offer a convenient way to realize such penalty protocols [ADMM14,
BK14, KB14, KMB15a, KVV16, KB16, KZZ16, BKM17, DDL18]. The main idea
is that each party can publish a transaction containing a time-locked deposit which
can be redeemed by honest players in case of malicious aborts during a protocol
run. On the other hand, if no abort happens, a deposit owner can redeem the
corresponding transaction by showing evidence of having completed the protocol.

1.2.3 Public Verifiability and Asynchrony
Blockchains offer public verifiability of distributed computations, in the sense that
in case of dispute everyone can verify what happened and when. Moreover, smart
contracts can automatically punish whoever violates some a-priori established rules.
Clearly, the above advantages are useful also when players are running a privacy-
preserving computation, in the form of a multi-party computation (MPC) protocol.

A popular example of MPC that can benefit from a blockchain is e-voting, since
public verifiability is an important property of remote elections and several systems
rely on a bulletin board that can be instantiated with a blockchain. Another well
known example is the one illustrated by Andrychowicz et al. [ADMM14, ADMM16]
mentioned in the previous subsection who, despite the very limited expressive

6In Chapter 4 the term “cryptographic” is omitted.
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power of Bitcoin transactions, have shown how to use blockchains to obtain fairness
through penalties to MPC protocols with dishonest majority.

Note that executing an MPC protocol on-chain7 allows players not to be online
all at the same time. Moreover, differently from protocols running on a TCP/IP
WAN where players must know each other’s IP address beforehand, with the aid
of a ledger any player can join a protocol execution by just reading8 a transaction
containing the required information (e.g., the functionality, the minimum number
of parties, or any other identifying information).

1.3 Forking Blockchains and Hasty Players
Forks, finality and double spending. Typical blockchains experience some
delays before a transaction can be considered confirmed. Indeed, a large part of the
most used blockchains consists of a list of blocks that can temporary fork. In such
cases, fork-resolution mechanisms decide which branch is eventually part of the list
of blocks and which one is discarded, at the price of cutting off some transactions
that for some time have appeared on the blockchain. These finality limitations
generate delays and uncertainty, and a significant effort has been made recently to
design blockchains with better finality [MMNT19, BG17, PS17, PS18, GHM+17,
CPS18].

It is well known that the existence of transactions that appear and then disap-
pear from a blockchain is the source of the (in)famous double-spending attack. The
solution to the double spending problem is pretty harsh: the receiver of a payment
will have to wait long time (i.e., until the transaction is confirmed and becomes
irreversible) before taking future actions. Obviously, this can be problematic when
an entire process consists of many sequential transactions and the confirmation time
is long.

The double spending problem does not seem to extend to the case where another
on-chain transaction is connected to the payment transaction. Indeed, in this case,
if as a consequence of a fork the payment transaction disappears, then the connected
transaction disappears too. This chaining of transactions related to the same process
can be easily implemented through smart contracts.

Insecurity of smart contracts with hasty players. Since transactions are
not immediately confirmed in a forking blockchain, the full execution of a smart
contract with multiple sequential transactions might take too long. It would thus
be natural to speed up the execution of smart contracts by playing messages im-
mediately. Indeed, as mentioned above, by appropriately chaining the transactions
of a smart contract, attacks exploiting the cancellation of a transaction like in the
double-spending attack are not effective,9 and therefore playing immediately with-
out waiting confirmations could be a valid option.

7Running an MPC protocol with the aid of a blockchain simply means that the players exchange
messages using the blockchain.

8Blockchain identifiers are usually public pseudonyms not necessarily correlated with the real
user identities. This feature offers some privacy compared to IP addresses.

9Since we are considering protocols running entirely on-chain, double spending attacks can not
be exploited to avoid the payment of some off-chain service.
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However, we notice that forks can help an adversary to mount more subtle
attacks. For example, let us consider a smart contract executed by two players, Alice
and Bob, willing to establish jointly a random string: 1) Alice starts the protocol by
sending to the smart contract a commitment to a random string r1; 2) Bob sends a
random string r2 to the smart contract; 3) Alice then opens the commitment, and if
the opening is valid the common string is defined to be r = r1⊕r2. For concreteness,
say that Alice is honest and Bob is corrupted, and assume that a fork happens after
Alice already sent the commitment. If Bob runs the protocol honestly on the first
branch, he gets to see Alice’s opening, and thus he can completely bias the output
on the other branch by just sending r′2 = r′ ⊕ r1 to the smart contract, for any
value r′ of his choice. The above scenario can be a serious threat for integrity of
data and even confidentiality in other protocols. This motivating example clearly
shows that, unless one has proven some kind of resilience to forks, it is certainly
preferable to always wait that transactions are confirmed, at the price of having
very slow executions of a smart contract. Such slowness could be unacceptable in
some applications.

The above features, and the dilemma about playing immediately risking security
or waiting for confirmation making the entire process very slow, motivate our work
aiming at obtaining smart contracts for fast/fair/secure/publicly-verifiable MPC
protocols on forking blockchains.

We remark that at least some of the aforementioned advantages provided by our
constructions do not come already from the use of payment channels. Consider for
instance payment channels allowing to run a computation in large part off-chain.
The use of similar channels for MPC would require players to be simultaneously
online with point-to-point connections, therefore suffering of the issues discussed
above.

1.3.1 Our Contributions

Defining on-chain MPC with hasty players. We model the execution of a
smart contract through transactions sent by different players as a computation
involving multiple parties, and therefore when considering “security” of such com-
putations we naturally refer to secure MPC.

Intuitively, a player is called non-hasty if she always waits that the previous
messages are confirmed on the blockchain before sending the next one. On the
other hand, a hasty player sends her next message by just looking at her current
view of the blockchain (without pruning blocks).

Apart from these changes, security is defined similarly as in the standard real-
ideal world paradigm. Intuitively, in a protocol running with hasty players, block
confirmation is not needed. However, if parties wants to keep a natural blockchain
feature like public verifiability, the last message exchanged in the protocol must be
necessary confirmed. Throughout the paper, when we talk about no confirmation
we implicitly assume the last message is confirmed for public verifiability guarantees.

The definition of security in the presence of hasty players has importance in
forking blockchains, in which miners can discard non-confirmed blocks, achieving
consensus on other blocks. Our definition applies to forking sidechains too.
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Fair lottery with penalties and fully hasty players. In Andrychowicz et
al. [ADMM14, ADMM16] and in Kumaresan et al. [BK14, KB14] it was shown
how to obtain fairness (i.e., the adversary should be discouraged from avoiding that
honest players learn the output after he gets it) through penalties. The idea is that
a player should deposit some coins of the underlying cryptocurrency and the smart
contract should return the coins back only in case the player completes correctly
the execution of the protocol defined by the smart contract.

In light of the negative result by Cleve [Cle86] on achieving fairness without
honest majority, we will also consider fairness with penalties. Recall that we are
planning to do so still admitting that the blockchain could fork and trying to obtain
fast executions avoiding as much as possible to wait for confirmations of transac-
tions.

We analyze a variant of the attack described earlier that can be applied to a
smart contract based on Andrychowicz et al. [ADMM14, ADMM16] protocol for
securely realizing multi-party lotteries10 The main difference with the toy example
from above is that in their work each player commits to a random value ri between
1 and n (where n is the total number of participants to the lottery), and then, after
all the commitments have been opened, the winner of the lottery is defined to be the
player w = r1 + . . .+ rn (mod n) + 1. An appealing feature of this protocol is that
it achieves fairness with penalties: if a malicious player aborts the protocol (e.g.,
it does not open the commitment before a certain time bound), then a previously
deposited amount of coins is automatically transferred to the honest players (i.e.,
to those that correctly opened the commitment on time).

We note that in the protocol of Andrychowicz et al. it is vital that players
are non-hasty and therefore post new transactions only after the previous ones
are already confirmed on the blockchain. Indeed, in the presence of hasty players, a
malicious party can commit to a value ri such that

∑
i ri (mod n)+1 = i, assuming

that all players already opened the commitments on a minor branch of a fork. As
our main contribution, in Section 4.3, we circumvent the limitations of [ADMM14,
ADMM16], and present a smart contract that implements the lottery functionality11

remaining secure even in the presence of hasty players. Fairness with penalties can
be added without affecting the efficiency of the protocol. In fact, the smart contract
we design is more general, in that it allows the players to establish a common,
uniformly random, string (which in turn allows to run a lottery). When referring to
our protocol depending on the context we will sometimes say lottery protocol and
sometimes parallel coin-tossing protocol.

The main idea in our construction consists of combining unique signatures [Lys02]
and random oracles (similarly to constructions of verifiable random functions) as
follows: first of all, players compute unique signatures on input the concatenation of
the ordered sequence of their public keys. Notice that as long as at least one player
is honest, we have a long string that no PPT player could predict when selecting his

10Protocols of [ADMM14, ADMM16] is based on Bitcoin, but this makes no difference for our
attack.

11We specify that our smart contract implements a parallel coin-tossing protocol. In some cases,
we say that our smart contract implements a lottery protocol since we are interested in comparing
our protocol with the lottery protocol of Andrychowicz et al. We remark that the output of a
coin-tossing protocol can be used to compute a lottery winner.
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public key. Then this long string is given in input to a random oracle, returning a
uniformly distributed string as an output. The simulator will program the random
oracle to force in the simulation the same random string obtained in the ideal-world
execution.

There is still an attack that can be mounted. Assume that in the presence of a
fork the entire protocol is executed in a branch. The adversary could take advantage
of the output in one branch to decide to play the same first round or a different
first round in the other branch biasing successfully the distribution of the output.
To circumvent this problem, we make executions in different branches completely
independent by also passing a branch id as input to the unique signature evaluation
procedure. As branch id we take the hash of the block containing the last deposit.
Therefore, when a protocol is entirely run in a branch, we have that the two branch
ids are different and thus there is no point in adaptively choosing the same or a
different message in another branch. Indeed, in any case, the outputs in different
branches will be completely independent. In order to deal with multiple executions
of the real-world protocol in different branches, we will also have a simulator that
will play multiple times in the ideal world. Since the output of the protocol is a
random string, it can be then used in many applications, not only to run a multi-
party lottery. Note that our protocol is around 50% more efficient than the lottery of
Andrychowicz et al. Let’s say that t is the number of blocks needed for transaction
confirmation, then our lottery protocol can be run by using only t+1 blocks, whereas
Andrychowicz et al. requires 2 · t blocks to be completed.

Notice that this result makes no use of finality of transactions on a blockchain
except from the one needed for calculating the output. The protocol can be run in
the presence of fully hasty players, and is therefore very efficient.

We stress that we consider the adversary as a player that tries to exploit the
existence of forks in order to bias the output of the smart contract. We are not
modelling the adversary of the smart contract as a player that has control over forks,
deciding which branch will eventually be discarded and which one will become per-
manently part of the blockchain. Obviously, a powerful adversary that has control
over the forks can always play the protocol with a different input on each branch
to then select the one that produced the output that she likes the most. This is
unavoidable when there is little use of finality of transactions. Nevertheless, notice
that in many cases this is not a problem. Indeed think of the need of establishing
a random string to then use it as first round of a statistically hiding commitment
scheme or as common reference string for a non-interactive zero-knowledge proof.
In such scenarios the adversary can freely select a random string from any polyno-
mially large set of randomly sampled strings without compromising any security.
In other cases like playing bingo, the fact that the adversary can decide the string
out of several candidates can be an issue.

General-purpose MPC with hasty players and fairness with penalties.
Having motivated the problem of running MPC protocols on forking blockchains,
we show a general compiler to obtain smart contracts that implements ideal multi-
party functionalities retaining security in the presence of forks and allowing players
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to be hasty.12

When engaging in the compiled MPC protocol, a party A as soon as reads a
message m(r)

B,A of round r posted from party B (and directed to A) in the blockchain,
decides to immediately post his next message m(r+1)

A,B directed to B without waiting
that the message m(r)

B,A is confirmed. Moreover, even in the case that the A’s view
changes, and an older message m(r′)

B,A (where r′ < r) is present in her view, A answers
immediately with the message m(r′+1)

A,B .
In order to preserve security in the presence of forks, our compiler makes sure

that, whenever an execution of the MPC protocol is repeated in multiple branches,
each honest player protects herself from attacks exploiting forks by refusing to play
again a message of the same execution of the protocol in case the blockchain shows
a different prefix in the transcript of the execution. Specifically, if on one branch B2
there is a player B that changes a message m(r)

B,A already played in a different branch
B1 with m′

(r)
B,A ̸= m

(r)
B,A , then each honest player (A in our example) that played

her message m(r+1)
A,B already in B1 and is asked to play again on input a different

m′
(r)
B,A in B2, will abort the execution in B2. Clearly, this strategy forces a unique

execution regardless of forks, and thus security holds even in the presence of fully
hasty players. An exhaustive description of our compiler and its extension adding
fairness with penalties is given in Section 4.4.

1.3.2 Related Work
Following [ADMM14, ADMM16], other works focus on achieving fairness with
penalties for different applications of interest, including lotteries [BK14], decentral-
ized poker [KMB15a, BKM17], and general-purpose computation [BK14, KMS+16,
KB16, KVV16, BDD20]. In the more recent work of [BDD20] the authors proposed a
fair with penalties MPC protocol with increased efficiency of the off-chain phase. In
particular, the line of works by Kumaresan et al. relies on an elegant paradigm work-
ing in two phases: 1) during the first phase, players run an MPC protocol to obtain
the output in hidden form (e.g., a secret sharing of the output); since the output is
hidden, such a protocol can be executed off chain, as malicious aborts do not violate
fairness; 2) during the second phase, the output is reconstructed in a fair manner
on chain. Unfortunately, the security of this paradigm in the presence of hasty
players is difficult to assess, as protocols relying on intermediate ideal functional-
ities (such as the “claim-or-refund” and “multi-lock” functionality [BK14, KB14],
or a smart contract functionality [BDD20]), although implementable using Bitcoin
or Ethereum, may be insecure when executed with hasty players. Moreover, known
results about designing protocols in a hybrid model allowing to make calls to a
functionality are applicable only to the classical setting where multiple executions
of the same instance of the protocol due to forks are not possible. Also note that

12In this work all our positive results consist of on-chain protocols for secure computation that
are stand-alone secure, with security preserved under sequential composition. The reason why we
do not try to obtain universal composability is that existing notions of universal composability with
a ledger [CGJ19] rely on non-forking ledger functionalities and therefore on non-hasty players.
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performing a large part of the computation off chain hinders one of the main advan-
tages of blockchain-aided MPC (i.e., public verifiability of the entire process). Our
results, in contrast, consider MPC protocols executed completely on-chain through
smart contracts.

A different line of works, shows how to perform MPC in the presence of an
abstract transaction ledger [KZZ16, GG17, BMTZ17, SSV19, CGJ19], of which
Bitcoin and Ethereum are possible implementations. However, such an idealized
ledger does not account for the possibility of forks, thus (implicitly) meaning that
the players using it are modeled as non-hasty.

Our main contribution is a protocol to jointly generate a random beacon. It is
known that there exist protocols suited for blockchains generating random values.
A well known implementation is RANDAO [RT]. The smart contract introduced in
RANDAO is similar to a smart contract implementation of the Andrychowicz et al.
lottery protocol [ADMM16]. As we show in Section 4.3 even this smart contract is
subject to attacks in case some party does not wait for the confirmation of the first
phase of the protocol. On the contrary, our lottery protocol described in Section
4.3.1 is secure even if parties do not wait for block confirmations.

1.4 Fairness with Penalties under a Financial Lens

An efficient construction for fairness with penalties proposed by Kumaresan, Vaikun-
tanathan, and Vasudevan [KVV16] requires a number of rounds/transactions linear
in the number of parties, and script complexity independent of the function being
computed. Unfortunately, the above efficiency comes at the price of controversial
assumptions: the players need to engage in an offline MPC protocol (i.e., without
relying on the blockchain) for obtaining a “non-committing” encryption [CFGN96]
of the output. However, the latter requires to represent the encryption function
itself as a circuit, which is problematic since non-committing encryption with good
parameters only exists in the random oracle model [Nie02].

An additional concern that is often not discussed in penalty protocols is that
the amount of money that should be put into escrow does not matter, nor how long
it should stay there, because all parties would be eventually made whole. While
true when the deposit d is a symbol in a crypto paper, things differ when d is a
noticeable amount in a bank account.

In fact, empirical studies show that people have a strong preference for imme-
diate payments, and receiving the same amount of money later than others is often
not acceptable [BIW15]. Even for the wealthy, there is the opportunity cost of not
investing it in better endeavors [LVM16]. For example, in a classical experimental
study [BRY89], individuals asked to choose between immediate delivery of money
and a deferred payment (for amounts ranging from $40 to $5000) exhibited a dis-
count rate close to the official borrowing rate. These results are consistent across
countries (e.g., [BRY89] in the US and [AW97] in Germany). Individuals and compa-
nies exhibit varying degree of risk aversion [BIW15, LVM16], but they all agree that
money paid or received “now” has a greater value than the same amount received
or paid “later” [ALR+01], and that small deposits are always preferable to large de-
posits. In FinTech, where the base chip d to play is a million US$ [Hat09, MNN+18],
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the timings and amounts of deposits can make a huge difference in practice.

1.4.1 Our Contribution
As a useful guide to the extant and future literature we provide three important
criteria for characterizing penalty protocols: security models and assumptions, pro-
tocol efficiency and financial fairness. While the first two criteria are classical ones,
the third one is a new property we, for the first time, define and motivate below.

Criteria #1: Security Models and Assumptions Following the principles of
modern cryptography, a secure protocol should be accompanied with a formal proof
of security in a well defined framework. The standard definitions for MPC (with
and without penalties) follow the simulation-based paradigm and are reviewed in
Section 2.7.1, along with the main assumptions required for proving security.

Criteria #2: Protocol Efficiency The efficiency of penalty protocols over
blockchains is typically measured in terms of: (i) the number of transactions that
the parties send to the public ledger (relative to the total transaction fees); (ii) the
number of rounds of interaction with the public ledger; and (iii) the script com-
plexity, that intuitively corresponds to the public ledger miners’ verification load
and the space occupied on the public ledger. To measure the script complexity
we usually consider the cumulative script size of all the transactions issued by a
user through the overall protocol execution. We elaborate more on these efficiency
criteria in Section 5.1.1.

Criteria #3: Financial Fairness In a nutshell, a penalty protocol is financially
fair if the difference between the total discounted value of cash inflows and the total
discounted value of cash outflows of honest parties at the end of the protocol is
the same (even when some parties cheat). In Section 5.2, we discuss the principle
of financial fairness at a level of abstraction that captures a large class of penalty
protocols implementing monetary compensation via any kind of currency (with or
without smart contracts).

After describing the main state-of-the-art penalty protocols in Section 5.3, we
do an exhausting comparison using the above criteria. Our results are summarized
in Tab. 1.1. More in details, in Section 5.4, we compare penalty protocols in terms
of security model and assumptions (Section 5.4.1) and protocol efficiency (Section
5.4.2). In Section 5.5, we instead study financial fairness both on paper and via
empirical simulations on the differences in deposits and net present values as the
number of parties increases to a level that would be needed for realistic FinTech
applications.

From the perspective of security and efficiency, in Section 5.4, we show that the
CCS’16 Compact Ladder and Compact PL achieve script complexity independent
on the size of the output of the function being computed, at the cost of giving up
to proving provable security security13. To highlight possible efficiency trade-offs,

13 This is due to the fact that such functionality uses an encryption algorithm that needs to
invoke the random oracle which cannot be implemented as a circuit.
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Table 1.1. Comparing Penalty Protocols

We compare state-of-the-art penalty protocols under the criteria
of security models and assumptions, efficiency, and financial fair-
ness. The first five protocols realize non-reactive functionalities,
while the last four are for multistage functionalities. Regarding ef-
ficiency, a more detailed discussion with a concrete analysis tailored
to Bitcoin implementations is given in Section 5.4.

Criteria Description
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#1 Security (model)
Universal Composability
Sequential Composability
Not Provably Secure

#1 Security (assumptions)
Plain Model
Random Oracle Model
Not Provably Secure

#2 Efficiency (rounds)
Constant
Linear in the num. of parties
Quadratic in the num. of parties

#2 Efficiency (transactions) Linear in the num. of parties
Quadratic in the num. of parties

#2 Efficiency (complexity) Output independent
Output dependent

#3 Financial Fairness Financially fair
Financially unfair o

we propose an illustrative protocol (Compact Multi-Lock) achieving the same effi-
ciency of Compact Ladder under standard assumptions, but giving up on universal
composability [Can00, Can20].

Moving to financial fairness, in Section 5.5, we find that the CRYPTO’14 Ladder [BK14]
and its variants (Locked Ladder [KMB15a], Amortized Ladder [KB16], Planted
Ladder [KVV16]) are not financially fair (in any practical case of interest), whereas
the CCS’14 Multi-Lock protocol by Kumaresan and Bentov [KB14], as well as the
FC’20 Insured MPC protocol by Baum et al. [BDD20], are financially fair. In par-
ticular, our analysis shows that the protocols in [BK14, KMB15a, KB16, KVV16]
are only financially viable for the “big guy” with deep pockets beyond the money
at stake in the protocol. “Small guys” must rush to be first, or participating would
be out of reach. Furthermore, the latter happens even in the practical case of opti-
mistic computation for honest parties [KB14]: Playing first or last can yield a gap
of several basis points (the units for discount rates of financial institutions).

Another surprising finding is that the CCS’15 Locked Ladder is better than its
“improved” version, the CCS’16 Planted Ladder, in terms of financial fairness. As
we will show in Section 5.5, the difference of amount of the total deposit between
the first and the last player in in Ladder (the amount grows with the player’s index
in such type of protocols) is “tolerable”, meaning that even if some player do not
rush to deposit, participating to the protocol can still be worthy. Importantly, these
negative results hold regardless of which technology is used in order to implement
the penalty protocol (be it simple transactions, or smart contracts).

One may wonder whether financial fairness of the above protocols can be savaged
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by playing with the collateral, or by running a financially unfair protocol in a round-
robin fashion. Interestingly, in Section 5.6, we show that these approaches are
deemed to fail for all practical purposes. The proof uses game-theoretic arguments.
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Chapter 2

Useful Tools

2.1 Notation
We use λ ∈ N to denote the security parameter, sans-serif letters (such as A, B) to
denote algorithms, caligraphic letters (such as X , Y) to denote sets, and bold-face
letters (such as v, A) to denote vectors and matrices; all vectors are by default row
vectors, and τv denotes a column vector. An algorithm is probabilistic polynomial-
time (PPT) if it is randomized, and its running time can be bounded by a polynomial
in its input length. By y←$ A(x), we mean that the value y is assigned to the output
of algorithm A upon input x and fresh random coins. We implicitly assume that all
algorithms are given the security parameter 1λ as input.

A function ν : N → [0, 1] is negligible in the security parameter (or simply
negligible) if it vanishes faster than the inverse of any polynomial in λ, i.e. ν(λ) ∈
O(1/p(λ)) for all positive polynomials p(λ). We often write ν(λ) ∈ negl(λ) to
denote that ν(λ) is negligible.

For a random variable X, we write P [X = x] for the probability that X takes
on a particular value x ∈ X (with X being the set where X is defined). The
statistical distance between two random variables X and X′ defined over the same
set X is defined as SD (X;X′) = 1

2

∑
x∈X |Pr[X = x] − Pr[X′ = x]|. Given two

ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to denote that
they are identically distributed, X ≈s Y to denote that they are statistically close
(i.e., SD (Xλ;Yλ) ∈ negl(λ)), and X ≈c Y to denote that they are computationally
indistinguishable—i.e., for all PPT distinguishers D there exists a negligible function
ν : N→ [0, 1] such that |Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| ≤ ν(λ).

We call a group efficiently sampleable if and only if there is a PPT sampling pro-
cedure Samp for the uniform distribution over the group, and moreover there exists
a PPT simulator SimSamp that given an element of the group, outputs the random-
ness used by Samp. More precisely, r ≈c r′ where r′←$ SimSamp(1λ,Samp(1λ; r))
and r←$ {0, 1}∗.1

If f : ({0, 1}∗)n → ({0, 1}∗)n is a function, then fi(x1, . . . , xn) is the i-th element
of f(x1, . . . , xn) for i ∈ [n], and (x1, . . . , xn) 7→ (out1, . . . , outn) is its input-output
behavior.

1The existence of a simulator is crucial for constructing SUSH-OT from SU-KA; we solely use
it for this purpose.
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2.2 Non-Interactive Commitment Schemes
A non-interactive commitment scheme is an efficient randomized algorithm Commit
taking as input a message m ∈M together with random coins ω ∈ {0, 1}λ, and re-
turning a commitment γ. The opening of a commitment γ consists of strings (m,ω)
such that γ = Commit(m;ω); we sometimes write δ(m) to denote the randomness
that is needed to open successfully a value γ, i.e. γ = Commit(m; δ(m)).

As for security, commitment schemes should satisfy two properties called hiding
and binding. Intuitively, the first property says that a commitment does not leak
any information on the committed message; the second property says that it should
be hard to open a given commitment in two different ways. The formal definitions
follow.

Definition 1 (Hiding of commitments). A commitment scheme is perfectly (resp.,
computationally or statistically) hiding, if for all m0,m1 ∈M it holds that the en-
sembles {Commit(m0;Uλ)}λ∈N and {Commit(m1;Uλ)}λ∈N are identically distributed
(resp., computationally or statistically close), where Uλ denotes the uniform distri-
bution over {0, 1}λ.

Sometimes we find more useful to define hiding by defining a LR (Left-Right
oracle) to capture cases where multiple commitment are used inside the protocol.

Definition 2 (Hiding of commitments (LR Oracle)). We say that a non-interactive
commitment Commit is computationally hiding if for all non-uniform PPT adver-
saries A the following quantity is negligible∣∣∣P [

ALR(0,·,·)(1λ) = 1
]
− P

[
ALR(1,·,·)(1λ) = 1

]∣∣∣ ,
where the oracle LR(b, ·, ·) with hard-wired b ∈ {0, 1} takes as input pairs of messages
m0,m1 ∈ {0, 1}ℓ, and outputs Commit(mb).

Definition 3 (Binding of commitments). A commitment scheme is computationally
binding, if for all PPT adversaries A there is a negligible function ν : N → [0, 1]
such that

Pr
[
Commit(m;ω) = Commit(m′;ω′) ∧m ̸= m′ : ((m,ω), (m′, ω′))←$ A(1λ)

]
≤ ν(λ).

In case the above probability equals zero for all even unbounded adversaries, we say
that the commitment scheme is perfectly binding.

2.3 Secret Sharing Schemes
An n-party secret sharing scheme (Share,Recon) is a pair of poly-time algorithms
specified as follows. (i) The randomized algorithm Share takes as input a message
m ∈M and outputs n shares σ = (σ1, . . . , σn) ∈ S1×· · ·×Sn; (ii) The deterministic
algorithm Recon takes as input a subset of the shares, say σI with I ⊆ [n], and
outputs a value in M∪ {⊥}.
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Definition 4 (Threshold secret sharing). Let n ∈ N. For any t ≤ n, we say that
(Share,Recon) is an (t, n)-threshold secret sharing scheme if it satisfies the following
properties.

• Correctness: For any message m ∈ M, and for any I ⊆ [n] such that
|I| ≥ t, we have that Recon(Share(m)I) = m with probability one over the
randomness of Share.

• Privacy: For any pair of messages m0,m1 ∈ M, and for any U ⊂ [n] such
that |U| < t, we have that

{Share(1λ,m0)U}λ∈N ≈c {Share(1λ,m1)U}λ∈N.

2.4 Secret-Key Encryption
A secret-key encryption (SKE) scheme over key space K is a pair of polynomial-time
algorithms (Enc,Dec) specified as follows. (i) The randomized algorithm Enc takes
as input a key k ∈ K and a message m ∈ M, and outputs a ciphertext c ∈ C; (ii)
The deterministic algorithm Dec takes as input a key k ∈ K and a ciphertext c ∈ C,
and outputs a value in M∪ {⊥}. Correctness says that for every key k ∈ K, and
every message m ∈ M, it holds that Dec(k,Enc(k,m)) = m with probability one
over the randomness of Enc.

Definition 5 (Semantic security). We say that (Enc,Dec) satisfies semantic security
if for all pairs of messages m0,m1 ∈M it holds that

{Enc(k,m0) : k←$K}λ∈N ≈c {Enc(k,m1) : k←$K}λ∈N.

2.5 Public-key encryption
A public-key encryption (PKE) scheme is a tuple of polynomial-time algorithms
(Gen,Enc,Dec) specified as follows. (i) The randomized algorithm Gen takes as
input the security parameter, and outputs a pair of keys (pk, sk); (ii) The randomized
algorithm Enc takes as input a public key pk and a message m ∈ M, and outputs
a ciphertext c; (iii) The deterministic algorithm Dec takes as input a secret key sk
and a ciphertext c, and outputs a value in M∪ {⊥} (where ⊥ denotes decryption
error). Correctness says that for every key λ ∈ N, every (pk, sk) in the support of
Gen(1λ), and every message m ∈ M, it holds that Dec(sk,Enc(pk,m)) = m with
probability one over the randomness of Enc.

Definition 6 (Semantic security). We say that (Gen,Enc,Dec) satisfies semantic
security if for all PPT attackers A := (A0,A1) there exists a negligible function ν(·)
such that:

∣∣∣∣P [
b′ = b :

(pk, sk)←$ Gen(1λ); (m0,m1, z)←$ A0(pk)
b←$ {0, 1}; c←$ Enc(pk,mb); b

′←$ A1(z, c)

]
− 1

2

∣∣∣∣ ≤ ν(λ).
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2.6 Signature schemes
A signature scheme is a tuple of polynomial-time algorithms (Gen,Sign,Verify) spec-
ified as follows. (i) The randomized algorithm Gen takes as input the security pa-
rameter and outputs a secret key sk together with a public verification key pk; (ii)
The deterministic algorithm Sign takes as input the secret key sk and a message
x ∈ {0, 1}∗ and outputs a signature y; (iii) The randomized algorithm Verify takes
as an input the verification key pk, a message/signature pair (x, y) and outputs a
decision bit.

Correctness says that for all λ ∈ N, for all (pk, sk) ∈ Gen(1λ), and for all x ∈
{0, 1}∗ it holds that Verify(pk, x, Sign(sk, x)) = 1 (with probability one over the coin
tosses of Verify).

We will need so called unique signature schemes, which satisfy two properties
known as uniqueness and unforgeability as defined below.

Definition 7 (Uniqueness). For every pk, x, y0, y1 with y0 ̸= y1 there exists a neg-
ligible function ν(·) such that the following holds for either i = 0 or i = 1:

P [Verify(pk, x, yi) = 1] ≤ ν(λ).

In words, for every string pk and every x, there exists at most one value y that
is a accepting signature of x.

Definition 8 (Unforgeability). For all PPT valid attackers A there exists a negli-
gible function ν(·) such that:

P
[
Sign(sk, x) = y :

(pk, sk)←$ Gen(1λ)
(x, y)←$ ASign(sk,·)(pk)

]
≤ ν(λ),

where A is called valid if it never queries x to its oracle.

Unique signatures are sometimes also known under the name of verifiable un-
predictable functions, and exist based on a variety of assumptions [BR96, MRV99,
Lys02, DY05].

2.7 MPC Definitions and Functionalities
In order to define security of an n-party protocol π for computing a function f , we
compare an execution of π in the real world with an ideal process where the parties
simply send their inputs to an ideal functionality Ff that evaluates the function
on behalf of the players. In the ideal world the ideal functionality, acting as a
trusted third party, takes the parties’ inputs (xi)i∈[n] privately, and outputs the
value fi(x1, . . . , xn) to each party i ∈ [n]. In the real world, where parties directly
exchange messages between themselves, such trusted third party does not exist. A
protocol is said to be secure if the two worlds are (computationally) indistinguish-
able.

An important feature of simulation-based security is composability. Intuitively,
this property refers to the guarantee that an MPC protocol securely realizing an
ideal functionality, continues to do so even if used as a sub-protocol in a larger
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protocol, which greatly simplifies the design and security analysis of MPC protocols.
The most basic form of composition is known as sequential composability, which
roughly corresponds to the assumption that each sub-protocol is run sequentially
and in isolation. A much stronger flavor of composition is the so-called universal
composability (UC) [Can20, Can01, CLOS02], which instead corresponds to the more
realistic scenario where many secure protocols are executed together. In particular,
in UC, both the real and ideal world are coordinated by an environment Z that can
run multiple interleaved executions of different protocols. We say that π t-securely
computes Ff if for all efficient adversaries A corrupting at most t parties in the real
execution, there exists an efficient simulator Sim, such that no efficient environment
Z interacting with the adversary in both worlds can tell apart the output of A in
the real world from the output of A when its view is simulated by Sim.

In the case of sequential composition, Z is replaced by a distinguisher D handling
inputs to the parties and waiting to receive the output and an arbitrary function
of A’s view at some point. The latter allows the simulator to internally control the
adversary, e.g. by rewinding it. Since in the UC setting the interaction between
Z and A can be arbitrary, eventual rewinds of the adversary from the simulator
can be spotted by the environment, and thus input extraction techniques adopted
by the simulator cannot be based on rewinding (this is usually called straight-line
simulation).

2.7.1 Sequential Composability
The Real Execution. In the real world, protocol π is run by a set of parties
P1, . . . ,Pn in the presence of a PPT adversary A coordinated by a non-uniform
distinguisher D. At the outset, D chooses the inputs (1λ, xi)i∈[n] for each player Pi,
the set of corrupted parties I ⊂ [n], auxiliary information z ∈ {0, 1}∗, and gives
((xi)i∈I , z) to A. Hence, the protocol π is run with the honest parties following
their instructions (using input xi), and with the attacker A sending all messages of
the corrupted players by following any polynomial-time strategy. Finally, A passes
an arbitrary function of its view to D, who is also given the output of the honest
parties, and returns a bit.

The Ideal Execution. The ideal process for the computation of f involves a
set of dummy parties P1, . . . ,Pn, an ideal adversary Sim (a.k.a. the simulator),
and an ideal functionality Ff . At the outset, D chooses (1λ, xi)i∈[n], I, z and
sends ((xi)i∈[n], z) to Sim. Hence, each player Pi sends its input x′i to the ideal
functionality—where x′i = xi if Pi is honest, and otherwise x′i is chosen arbitrarily by
the simulator—which returns to the parties their respective outputs fi(x′1, . . . , x′n).
Finally, Sim passes an arbitrary function of its view to D, who is also given the
output of the honest parties, and returns a bit.

Securely Realizing an Ideal Functionality. Intuitively, an MPC protocol is
secure if whatever the attacker can learn in the real world can be emulated by
the simulator in the ideal execution. Formally, if we denote by REALπ,A,D(λ)
the random variable corresponding to the output of D in the real execution, and
by IDEALf,Sim,D(λ) the random variable corresponding to the output of D in the
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ideal execution, the two probability ensembles have to be computationally indistin-
guishable.

Definition 9 (Simulation-based security). Let n ∈ N. Let Ff be an ideal function-
ality for f : ({0, 1}∗)n → ({0, 1}∗)n, and let π be an n-party protocol. We say that
π s-securely computes Ff if for any PPT adversary A there exists a PPT simulator
Sim such that all PPT non- uniform distinguishers D corrupting at most s parties,
we have {

IDEALf,Sim,D(λ)
}
λ∈N ≈c {REALπ,A,D(λ)}λ∈N .

When replacing IDEALf,Sim,D(λ) with IDEALf⊥,Sim,D(λ) in Def. 9, we say that
π s-securely computes f with aborts.

The Hybrid Model. Let HYBRIDg
π,A,D(λ) denote the random variable corre-

sponding to the output of D in the Fg-hybrid model. We say that a protocol πf for
computing f is secure in the Fg-hybrid model if the ensembles HYBRIDg

πf ,A,D(λ)

and IDEALf,Sim,D(λ) are computationally close.

Definition 10 (MPC in the hybrid model). Let n ∈ N. Let Ff , Fg be ideal func-
tionalities for f, g : ({0, 1}∗)n → ({0, 1}∗)n, and let π be an n-party protocol. We
say that π s-securely realizes Ff in the Fg- hybrid model if for all PPT adversaries A
there exists a PPT simulator Sim such that for all PPT non-uniform distinguishers
D corrupting at most s players, we have{

IDEALf,Sim,D(λ)
}
λ∈N ≈c

{
HYBRIDg

π,A,D(λ)
}
λ∈N

.

2.7.2 Universal Composability
The Real Execution In the real world, the protocol π is run in the presence of an
adversary A coordinated by a non-uniform environment Z = {Zλ}λ∈N. At the outset,
Z chooses the inputs (1λ, xi) for each player Pi, and gives I, {xi}i∈I and z to A,
where I ⊂ [n] represents the set of corrupted players and z is some auxiliary input.
For simplicity, we only consider static corruptions (i.e., the environment decides
who is corrupt at the beginning of the protocol). The parties then start running
π, with the honest players Pi behaving as prescribed in the protocol (using input
xi), and with malicious parties behaving arbitrarily (directed by A). The attacker
may delay sending the messages of the corrupted parties in any given round until
after the honest parties send their messages in that round; thus, for every r, the
round-r messages of the corrupted parties may depend on the round-r messages of
the honest parties. Z can interact with A throughout the course of the protocol
execution.
Additionally, Z receives the outputs of the honest parties, and must output a bit.
We denote by REALπ,A,Z(λ) the random variable corresponding to Z’s guess.

The Ideal Execution In the ideal world, a trusted third party evaluates the
function f on behalf of a set of dummy players (Pi)i∈[n]. As in the real setting, Z
chooses the inputs (1λ, xi) for each honest player Pi, and gives I, {xi}i∈I and z
to the ideal adversary Sim, corrupting the dummy parties (Pi)i∈I . Hence, honest
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parties send their input x′i = xi to the trusted party, whereas the parties controlled
by Sim might send an arbitrary input x′i. The trusted party computes (y1, . . . , yn) =
f(x′1, . . . , x

′
n), and sends yi to Pi. During the simulation, Sim and A can interact

with Z throughout the course of the protocol execution. Additionally, Z receives the
outputs of the honest parties and must output a bit. We denote by IDEALf,Sim,Z(λ)
the random variable corresponding to Z’s guess.

Definition 11 (UC-Secure MPC). Let π be an n-party protocol for computing a
function f : ({0, 1}∗)n → ({0, 1}∗)n. We say that π t-securely UC-realizes f in
the presence of malicious adversaries if such that for every PPT adversary A there
exists a PPT simulator Sim such that for every non-uniform PPT environment Z
corrupting at most t parties the following holds:

{REALπ,A,Z(λ)}λ∈N ≈c
{

IDEALf,Sim,Z(λ)
}
λ∈N .

When replacing IDEALf,Sim,Z(λ) with IDEALf⊥,Sim,Z(λ) we say that π s-securely
computes f with aborts in the presence of malicious adversaries.

UC Hybrid Model. Let HYBRIDg
π,A,Z(λ) denote the random variable corre-

sponding to the output of Z in the Fg-hybrid model. We say that a protocol πf for
computing f is secure in the Fg-hybrid model if the ensembles HYBRIDg

πf ,A,Z(λ)

and IDEALf,Sim,Z(λ) are computationally close.

Definition 12 (UC-Secure MPC in the hybrid model). Let n ∈ N. Let Ff , Fg
be ideal functionalities for f, g : ({0, 1}∗)n → ({0, 1}∗)n, and let π be an n-party
protocol. We say that π s-securely realizes Ff in the Fg- hybrid model if for all PPT
adversaries A there exists a PPT simulator Sim such that for all PPT non-uniform
environments Z corrupting at most t players, we have

{
IDEALf,Sim,Z(λ)

}
λ∈N ≈c

{
HYBRIDg

π,A,Z(λ)
}
λ∈N

.

2.7.3 Random Oracle Model

In the Random Oracle Model (ROM), all the parties involved in a protocol have
oracle access to a truly-random hash function. In particular, when a value v is given
as an input from a party to the RO, the latter samples a random answer, stores the
pair (v, r), and outputs r to the party. If the RO is queried on the same value v
multiple times, the same answer r is output. In the ROM, the simulator needs to
further simulate the interaction between the parties and the RO. While doing so,
the simulator may program the output of the RO at specific inputs to particularly
convenient random-looking values. This powerful feature is known as random-oracle
programmability. In the setting of generalized UC, the RO is defined as a global
ideal functionality GRO. In this case, the simulator can only interact with the RO by
sending queries to it, which severely limits random-oracle programming. Security
proofs in the ROM only guarantee heuristic security. This is because ROs do not
exist in the real world, and thus a security proof in the ROM only guarantees that
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the protocol remains secure so long as the hash function is close enough to behave
as a truly-random function.2

While the above may look controversial, security proofs in the ROM are generally
considered useful as they essentially guarantee that any security vulnerability can
only depend on the hash function.

2.7.4 Security with Penalties
Following [BK14], we extend the MPC framework to the setting of “MPC with
coins”, where each party is provided with his own wallet and safe3. As in [BK14,
KMB15a, KVV16], we use coins(x) to represent a coin of value x, and denote special
functionalities dealing with coins with the apex ∗. If a party owns coins(x) and
deposits (resp. receives) coins(d) (resp. coins(q)), it will own coins(x − d) (resp.
coins(x+ q)).

To define fairness with penalties, we modify the ideal world using the following
ideal functionality F∗f (see Fig. 2.1 for a formal description):

1. At the outset, F∗f receives the inputs and a deposit from each party; the coins
deposited by the malicious parties must be enough to compensate all honest
players in case of abort.

2. Then, in the output phase, the functionality returns the deposit to the honest
parties; if the adversary deposited enough coins, it is given the chance to
look at the output, and finally decides whether to continue delivering the
output to the honest players, or to abort, in which case all honest players are
compensated using the penalty amount deposited during the input phase.

In this setting, we say that a protocol π s-securely computes F∗f with penalties
(in the hybrid model). We note that this definition captures so-called “fair output
delivery” (but not “fair computation”): an adversary can always abort after the
inputs are provided for the MPC but before the collateral is deposited, without
being punished. However, the latter is tolerated so long as intermediate outputs
reveal nothing on the final output. Aborts during the computation can be eliminated
by adding business requirements (collaterals first, output later).

The formal definition of secure MPC with penalties (in the hybrid model) is
identical to one described in Section 2.7.2, except that F⊥f is replaced by the ideal
functionality F∗f depicted in Fig. 2.1. At the outset, the distinguisher D (or the
environment Z) initializes each party’s wallet with some number of coins. D (or Z)
may read or modify (i.e., add coins to or retrieve coins from) the wallet (but not the
safe) of each honest party, whereas in the hybrid (resp. ideal) process, the adversary
A (resp. Sim) has complete access to both wallets and safes of corrupt parties.

2Even worse, there exist (albeit contrived) cryptoschemes that are secure in the ROM but
become always insecure for any possible instantiation of the RO with a real-world hash func-
tion [CGH98, CGH04].

3To ensure indistinguishaibility between real and ideal world it is crucial that the environment
is only allowed to access and modify the wallet of each party, but not the safe. Precise details
about the model can be found at [BK14].
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At the end of the protocol, honest parties release the coins locked in the protocol
to their wallet, the distinguisher is given the distribution of coins and outputs its
final output.

Functionality F∗
f

The functionality runs with security parameter 1λ, minimum penalty amount q, parties
P1, . . . ,Pn, and adversary Sim that corrupts parties {Pi}i∈I for some I ⊆ [n]. Let H = [n] \ I
with h = |H|, and d be the amount of the safety deposit.
Input Phase: Wait to receive a message (input, sid, ssid, i, xi, coins(d)) from Pi for all i ∈ H,

and message (input, {xi}i∈I , coins(hq)) from Sim.
Output Phase: Proceed as follows.

• Send (return, sid, ssid, coins(d)) to Pi for all i ∈ H, and let (y1, . . . , yn) =
f(x1, . . . , xn).

• Send (output, sid, ssid, {yi}i∈I) to Sim.
• If Sim returns (continue, sid, ssid,Hout), then send (output, sid, ssid, yi) to Pi

for each i ∈ H, send (payback, sid, ssid, coins((h − |Hout|)q) to Sim, and send
(extrapay, sid, ssid, coins(q)) to Pi for each i ∈ Hout.

• Else, if Sim returns (abort, sid, ssid) send (penalty, sid, ssid, coins(q)) to Pi for
each i ∈ H.

Figure 2.1. The functionality F∗
f for secure computation with penalties [BK14].

2.7.5 Oblivious Transfer

An interactive protocol Π for the Oblivious Transfer (OT) functionality, features
two interactive PPT Turing machines S, R called, respectively, the sender and the
receiver. The sender S holds a pair of strings s0, s1 ∈ {0, 1}λ, whereas the receiver
R is given a choice bit b ∈ {0, 1}. At the end of the protocol, which might take
several rounds, the receiver learns sb (and nothing more), whereas the sender learns
nothing.

Typically, security of OT is defined using the real/ideal paradigm. Specifically,
we compare a real execution of the protocol, where an adversary might corrupt
either the sender or the receiver, with an ideal execution where the parties can
interact with an ideal functionality. The ideal functionality, which we denote by
FOT, features a trusted party that receives the inputs from both the sender and
the receiver, and then sends to the receiver the sender’s input corresponding to the
receiver’s choice bit. We refer the reader to Fig. 2.2 for a formal specification of the
FOT functionality.

In what follows, we denote by REALΠ,R∗(z)(λ, s0, s1, b) (resp., REALΠ,S∗(z)(λ,
s0, s1, b)) the distribution of the output of the malicious receiver (resp., sender)
during a real execution of the protocol Π (with s0, s1 as inputs of the sender, b
as choice bit of the receiver, and z as auxiliary input for the adversary), and by
IDEALFOT,SimR∗(z)(λ, s0, s1, b) (resp., IDEALFOT,SimS∗(z)(λ, s0, s1, b)) the output of
the malicious receiver (resp., sender) in an ideal execution where the parties (with
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Ideal Functionality FOT

The functionality runs with Turing machines (S,R) and adversary Sim, and
works as follows:

• Upon receiving message (send, s0, s1,S,R) from S, where s0, s1 ∈ {0, 1}λ,
store s0 and s1 and answer send to R and Sim.

• Upon receiving a message (receive, b) from R, where b ∈ {0, 1}, send sb
to R and receive to S and Sim, and halt. If no message (send, ·) was
previously sent, do nothing.

Figure 2.2. Oblivious transfer ideal functionality

analogous inputs) interact with FOT, and where the simulator is given black-box
access to the adversary.

Definition 13 (OT with full simulation). Let FOT be the functionality from Fig. 2.2.
We say that a protocol Π = (S,R) securely computes FOT with full simulation if the
following holds:

(a) For every non-uniform PPT malicious receiver R∗, there exists a non-uniform
PPT simulator Sim such that{

REALΠ,R∗(z)(λ, s0, s1, b)
}
λ,s0,s1,b,z

≈c
{

IDEALFOT,SimR∗(z)(λ, s0, s1, b)
}
λ,s0,s1,b,z

where λ ∈ N, s0, s1 ∈ {0, 1}λ, b ∈ {0, 1}, and z ∈ {0, 1}∗.

(b) For every non-uniform PPT malicious sender S∗, there exists a non-uniform
PPT simulator Sim such that{

REALΠ,S∗(z)(λ, s0, s1, b)
}
λ,s0,s1,b,z

≈c
{

IDEALFOT,SimS∗(z)(λ, s0, s1, b)
}
λ,s0,s1,b,z

where λ ∈ N, s0, s1 ∈ {0, 1}λ, b ∈ {0, 1}, and z ∈ {0, 1}∗.

Game-based security. One can also consider weaker security definitions for OT,
where simulation-based security only holds when either the receiver or the sender is
corrupted, whereas when the other party is malicious only game-based security is
guaranteed. Below, we give the definition for the case of a corrupted sender, which
yields a security notion known as receiver-sided simulatability. Intuitively, the latter
means that the adversary cannot distinguish whether the honest receiver is playing
with choice bit 0 or 1.

Definition 14 (OT with receiver-sided simulation). Let FOT be the functionality
from Fig. 2.2. We say that a protocol Π = (S,R) securely computes FOT with
receiver-sided simulation if the following holds:
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(a) Same as property (a) in Definition 13.

(b) For every non-uniform PPT malicious sender S∗ it holds that{
viewR

Π,S∗(z)(λ, s0, s1, 0)
}
λ,s0,s1,z

≈c
{

viewR
Π,S∗(z)(λ, s0, s1, 1)

}
λ,s0,s1,z

where λ ∈ N, s0, s1 ∈ {0, 1}λ, and z ∈ {0, 1}∗, and where viewR
Π,S∗(z)(λ, s0,

s1, b) is the distribution of the view of S∗ (with input s0, s1 and auxiliary input
z) at the end of a real execution of protocol Π with the honest receiver R given
b as input.

Receiver-sided simulatability is a useful stepping stone towards achieving full
simulatability. In fact, Ostrovsky et al. [ORS15] show how to compile any 4-round
OT protocol with receiver-sided simulatability to a 4-round OT protocol with full
simulatability. This transformation can be easily extended to hold for any r-round
protocol, with r ≥ 3; the main reason is that the transform only relies on an
extractable commitment scheme, which requires at least 3 rounds.

Theorem 2 (Adapted from [ORS15]). Assuming t ≥ 3, there is a black-box trans-
formation from t-round OT with receiver-sided simulation to t-round OT with full
simulation.4

2.8 A Blockchain Model
Below, we describe verbatim the blockchain model of [GG17] (which in turn builds
on [PSS17, GKL15]). A blockchain protocol Γ consists of the following algorithms:

• UpdateState(1λ): It is a stateful algorithm that take as input a security param-
eter λ ∈ N, and maintains a local state α ∈ {0, 1}∗ which essentially consists
of the entire blockchain (i.e., the sequence of minted blocks).

• GetRecords(1λ, α): It takes as input the security parameter and a state α ∈
{0, 1}∗. It outputs the longest ordered sequence of valid blocks (or sim-
ply blockchain) B = (β1, β2, . . .) contained in the state variable, where each
block β in the chain itself contains an unordered sequence of records/messages
(m1,m2, . . .).

• Broadcast(1λ,m): It takes as input the security parameter and a message m ∈
{0, 1}∗, and broadcasts the message over the network to all nodes executing
the blockchain protocol. It does not give any output.

The blockchain protocol is also parameterized by a validity predicate V that captures
the semantics of any particular blockchain application. The validity predicate takes
as input a sequence of blocks B and outputs a bit, where the value 1 certifies the
validity of the blockchain B. Since V is immaterial for our purposes, in what follows
we simply omit it.

4They also need the existence of one-way functions. Since OT implies OT extension which
implies one-way functions [LZ13, LZ18], OT implies one-way functions.
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Blockchain execution. Each participant in the protocol runs UpdateState to
keep track of the latest blockchain state. This corresponds to listening on the
broadcast network for messages from other nodes. GetRecords is used to extract
an ordered sequence of blocks encoded in the blockchain state variable, which is
considered as the common public ledger among all the nodes. Finally, Broadcast
is used by a party when it wants to post a new message on the blockchain; such
messages are accepted by the blockchain protocol only if they satisfy the validity
predicate given the current state.

The execution of a blockchain protocol Γ = (UpdateState,GetRecords,Broadcast)
is directed by an environment Z(1λ) which activates the parties as either honest or
corrupt, and is also responsible for providing inputs/records to all parties in each
round. All the corrupted parties are controlled by the adversary A, which is also
responsible for delivery of all network messages. Honest parties start by executing
UpdateState on input 1λ, with an empty local state α = ε. Then, the protocol
execution proceeds in rounds that model times steps, as detailed below.

• In round r ∈ N, each honest player Pi potentially receives messages from Z,
and incoming network messages (delivered by A). It may then perform any
computation, broadcast a message to all other players (which will be delivered
by the adversary as explained below), and update its local state αi. It could
also attempt to add a new block to its chain i.e., run the mining procedure.

• The attacker A is responsible to deliver all messages sent by parties (honest or
corrupted) to all other parties. The adversary cannot modify the content of
messages broadcast by honest players, but it may delay or reorder the delivery
of a message as long as it eventually delivers all messages within a certain time
limit.

• At any point, Z can communicate with A or access GetRecords(1λ, αi) where
αi is the local state of player Pi.

With the notation B ⪯ B′, we denote that the blockchain B is a prefix of B′.
We also let B⌈k be the chain resulting from pruning the last k blocks in B. Let
EXECΓ,A,Z(λ) be the random variable denoting the joint view of all parties in the
execution of protocol Γ with adversary A, and environment Z. Note that this view
fully determines the execution.

Blockchain properties. We now define two natural guarantees that are re-
spected by an ideal ledger. The first property, called consistency, intuitively states
that the view of the blockchain obtained by different players is identical up to prun-
ing a certain number of blocks from the top of the chain. Let Consistentk(·) be the
predicate that returns 1 iff for all rounds r ≤ r̃, and all parties Pi,Pj (potentially
the same) such that Pi is honest at round r with blockchain B and player Pj is
honest at round r̃ with blockchain B̃, we have that B⌈k ⪯ B̃.
Definition 15 (Chain consistency). A blockchain protocol Γ satisfies k(·)-consistency
with adversary A and environment Z, if there exists a negligible function ν(·) such
that for every k̄ > k(λ), the following holds:

P
[
Consistentk̄(view) = 1 : view←$ EXECΓ,A,Z(λ)

]
≥ 1− ν(λ).
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We note that previous work considered an even stronger property, called per-
sistence, stipulating that if some honest player reports a message m at depth k in
its local ledger, then m will be always reported in the same position and equal or
more depth by all honest parties. We omit a formal definition, as this property is
not required for our purposes.

The second property, called liveness, intuitively says that if all honest parties
attempt to broadcast a message m, then after w rounds, an honest party will see m
at depth k in the ledger. Let Livek(·, w) be the predicate that returns 1 iff for any
w consecutive rounds r, . . . , r +w there exists some round r′ ∈ [r, r +w] and index
i ∈ [n] such that: (1) Pi is honest and received a message m at round r, and (2) for
every player Pj that is honest at r + w with blockchain B, it holds that m ∈ B⌈k.

Definition 16 (Liveness). A blockchain protocol Γ satisfies (w(·), k(·))-liveness
with adversary A and environment Z, if there exists a negligible function ν(·) such
that for every w̄ ≥ w(λ) the following holds:

P
[
Livek(view, w̄) = 1 : view←$ EXECΓ,A,Z(λ)

]
≥ 1− ν(λ).
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Chapter 3

Round-Optimal OT from LWE
and Low-Noise LPN
Assumptions

3.1 Technical Overview
We proceed to a high level overview of the techniques behind our main result,
starting with the notion of strong uniformity and the abstraction of commit-and-
open protocols, and landing with the intuition behind our construction of M-OT
(cf. Fig. 3.1).

As an important stepping stone to our main result, in Section 3.3 we introduce
the notion of strong uniformity. Recall that a KA protocol allows Alice and Bob
to share a key over a public channel, in such a way that the shared key is indis-
tinguishable from uniform to the eyes of a passive eavesdropper. Strong uniformity
here demands that, even if Bob is malicious, the messages sent by Alice are com-
putationally close to uniform over an efficiently sampleable group.1 This flavor of
security straightforwardly translates to SH-OT and PKE, yielding so-called SUSH-
OT and SU-PKE. In the case of SUSH-OT, it demands that all messages of the
receiver have this property (even if the sender is malicious). For SU-PKE, we dis-
tinguish two types, which are a strengthening of the types defined by Gertner et
al. [GKM+00].2

• Type-A PKE: The distribution of the public key is computationally in-
distinguishable from uniform. This type of PKE is known to exist under
DDH [Gam84] and CDH [GM84] over efficiently sampleable groups,3 LWE [Reg05],

1We call a group efficiently sampleable if we can efficiently sample uniform elements from the
group and, given a group element, we can simulate this sampling procedure. In the context of public
key encryption a similar property is called oblivious key generation [DN00]. In our construction, we
require a stronger property where the public keys are additionally indistinguishable from uniform.

2The difference is that the notions in [GKM+00] only ask for oblivious sampleability, rather
than our stronger requirement of uniformity over efficiently sampleable groups.

3These are groups for which one can directly sample a group element without knowing the
discrete logarithm with respect to some generator. The latter requires non black-box access to the
group, which is also needed when using ElGamal with messages that are encoded as group elements
and not as exponents.
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M-OT MPC

SUSH-OT SU-KA

SU-PKE (Type A) SU-PKE (Type B)

TDP‡Low-noise LPN LWE Subset Sum CDH DDH

t+ 1, t odd
[BL18], t ≥ 5

t

t = 2 t = 3

† †† †

Figure 3.1. Overview over equivalence and implications of the notion of strong uniformity.
The value r ∈ N denotes the round complexity. † This holds over efficiently sampleable
groups. ‡ We need an enhanced certified TDP.

low-noise LPN [Ale03], and Subset Sum [LPS10].

• Type-B PKE: The encryption of a uniformly random message w.r.t. a mali-
ciously chosen public key is computationally close to the uniform distribution
over the ciphertext space. This type of PKE is harder to obtain, and can
be constructed from enhanced certified TDPs, and from CDH and DDH over
efficiently sampleable groups. In case of a TDP f , a ciphertext has the form
(f(r), h(r) ⊕ m), where h is a hardcore predicate for f , and r is a random
element from the domain of f . Under CDH or DDH, a ciphertext is defined
as gr and h(gxr) ·m, gxr ·m respectively, where gr is a uniform group element,
and gx is the public key. Clearly, for a uniform message m, these ciphertexts
are uniform even under maliciously chosen public keys.

In Section 3.3, we show that SU Type-A and SU Type-B PKE imply, respec-
tively, 2-round and 3-round SU-KA, whereas 2-round SU-KA implies SU Type-A
PKE. Further, we prove that SU-KA is equivalent to SUSH-OT. The latter implies
that strong uniformity is a sufficiently strong notion to bypass the black-box sepa-
ration between OT and KA, in a similar way as Type-A and Type-B PKE bypass
the impossibility of constructing OT from PKE [GKM+00].

Commit-and-open protocols. A 1-out-of-2 commit-and-open (C&O) protocol
is a 3-round protocol with the following structure: (1) In the first round, the prover,
with inputs two messages m0,m1 and a choice bit b, sends a string γ (called “com-
mitment”) to the verifier; (2) In the second round, the verifier sends a value β to
the prover (called “challenge”); (3) In the third round, the prover sends a tuple
(δ,m0,m1) to the verifier (called “opening”). Security requires two properties. The
first property, called existence of a committing branch, demands that a malicious
prover must be committed to at least one message already after having sent γ. The
second property, called choice bit indistinguishability, asks that a malicious verifier
cannot learn the committing branch of an honest prover.

A construction of C&O protocols for single bits is implicit in Kilian [Kil92]. This
has been extended to strings by Ostrovsky et al. [ORS15]. Both constructions make
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black-box use of a statistically binding commitment scheme,4 and allow a prover to
equivocally open one of the messages. In Section 3.2.2 , we revisit the protocol and
proof by Ostrovsky et al. to show that it indeed satisfies the two security notions
sketched above.

M-OT from SUSH-OT: A warm up. In order to explain the main ideas behind
our construction of M-OT, we describe below a simplified version of our protocol
for the special case of r = 2, i.e. when starting with a 2-round SUSH-OT (S′,R′);
here, we denote with ρ the message sent by the receiver, and with σ the message
sent by the sender, and further observe that for the case of 2 rounds the notion
of strong uniformity collapses to standard semi-honest security with the additional
property that the distribution of ρ is (computationally close to) uniform to the eyes
of an eavesdropper. We then construct a 4-round OT protocol (S,R), as informally
described below:

1. (R → S): The receiver picks a uniformly random value m1−b ∈ M, where b
is the choice bit, and runs the prover of the C&O protocol upon input m1−b,
obtaining a commitment γ that is forwarded to the sender.

2. (S→ R): The sender samples a challenge β for the C&O protocol, as well as
uniformly random elements r0, r1 ∈ M. Hence, it forwards (β, r0, r1) to the
receiver.

3. (R → S): The receiver runs the receiver R′ of the underlying 2-round OT
protocol with choice bit fixed to 0, obtaining a value ρb which is used to
define the message mb = ρb−rb required to complete the execution of the C&O
protocol in the non-committing branch b. This results in a tuple (δ,m0,m1)
that is forwarded to the sender.

4. (S → R): The sender verifies that the transcript T = (γ, β, (δ,m0,m1)) is
accepting for the underlying C&O protocol. If so, it samples u0, u1 ∈ M
uniformly at random, and runs the sender S′ of the underlying 2-round OT
protocol twice, with independent random tapes: The first run uses input
strings (s0, u0) and message m0 + r0 from the receiver, resulting in a message
σ0, whereas the second run uses input strings (s1, u1) and message m1 + r1
from the receiver, resulting in a message σ1. Hence, it sends (σ0, σ1) to the
receiver.

5. Output: The receiver runs the receiver R′ of the underlying 2-round OT pro-
tocol, upon input message σb from the sender, thus obtaining sb.

Correctness is immediate. In order to prove simulation-based security we pro-
ceed in two steps. In the first step, we show the above protocol achieves a weaker
security flavor called receiver-sided simulatability [NP05, ORS15] which consists of
two properties: (1) The existence of a simulator which by interacting with the ideal

4Statistically binding commitment schemes are implied by SUSH-OT, since any SUSH-OT
implies a (trivial) OT extension from n to n + 1 (where n is the security parameter), which
in turn implies OWFs [LZ13, LZ18], which imply PRGs [HILL99] and thus statistically binding
commitments [Nao91].
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OT functionality can fake the view of any efficient adversary corrupting the receiver
in a real execution of the protocol (i.e., standard simulation-based security w.r.t.
corrupted receivers); (2) Indistinguishability of the protocol transcripts with choice
bit of the receiver equal to zero or one, for any efficient adversary corrupting the
sender in a real execution of the protocol (i.e., game-based security w.r.t. corrupted
senders). In the second step, we rely on a round-preserving black-box transformation
given in [ORS15], which allows to boost receiver-sided simulatability to fully-fledged
malicious security. To show (1), we consider a series of hybrid experiments:

• In the first hybrid, we run the first 3 rounds of the protocol, yielding a
partial transcript γ, (β, r0, r1), (δ,m0,m1). Hence, after verifying that T =
(γ, β, (δ,m0,m1)) is a valid transcript of the C&O protocol, we rewind the ad-
versary to the end of the first round and continue the execution of the protocol
from there using a fresh challenge (β′, r′0, r

′
1), except that after the third round

we artificially abort if there is no value b̂ ∈ {0, 1} such that mb̂ = m′
b̂
, where

(δ′,m′0,m
′
1) is the third message sent by the adversary after the rewinding.

Notice that an abort means that it is not possible to identify a committing
branch for the C&O protocol, which however can only happen with negligible
probability; thus this hybrid is computationally close to the original experi-
ment.

• In the second hybrid, we modify the distribution of the value r′1−b (right after
the rewinding) to r′′1−b = ρ1−b − m1−b, where we set 1 − b

def
= b̂ from the

previous hybrid, and where ρ1−b is obtained by running the receiver R′ of the
underlying 2-round OT protocol with choice bit fixed to 1.
To argue indistinguishability, we exploit the fact that the distribution of m1−b
is independent from that of r′1−b, and thus by strong uniformity we can switch
r′1−b +m1−b with ρ1−b from the receiver R′.

• In the third hybrid, we use the simulator of the underlying 2-round SH-OT
protocol to compute the messages σ1−b sent by the sender. Note that in both
the third and the second hybrid the messages (ρ1−b, σ1−b) are computed by
the honest sender, and thus any efficient algorithm telling apart the third and
the second hybrid violates semi-honest security of (S′,R′).

In the last hybrid, a protocol transcript is independent of s1−b but still yields a well
distributed output for the malicious receiver, which immediately implies a simulator
in the ideal world.

To show (2), we first use the strong uniformity property of (S′,R′) to sample
mb uniformly at random at the beginning of the protocol. Notice this implies that
the receiver cannot recover the value sb of the sender anymore. Finally, we use the
choice bit indistinguishability of the C&O protocol to argue that the transcripts
with b = 0 and b = 1 are computationally indistinguishable.

M-OT from SUSH-OT: The general case. There are several difficulties when
trying to extend the above protocol to the general case where we start with a r-round
SUSH-OT. In fact, if we would simply iterate sequentially the above construction,
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where one iteration counts for a message from R′ to S′ and back, the adversary could
use different committing branches from one iteration to the other. This creates
a problem in the proof, as the simulator would need to be consistent with both
choices of possible committing branches from the adversary, which however requires
knowing both inputs from the sender.

We resolve this issue by having the receiver sending all commitments γi for
the C&O protocol in the first round, where each value γi is generated including a
random message mi

1−b concatenated with the full history mi−1
1−b, . . . ,m

1
1−b. Hence,

during each iteration, the receiver opens one commitment as before. As we show,
this prevents the adversary from switching committing branch from one iteration
to the next one.

We refer the reader to Section 3.4.1 for a formal description of our protocol, and
to Section 3.4.2 for a somewhat detailed proof intuition. The full proof appears in
Section 3.4.3.

3.1.1 Application to Round-Efficient MPC
Since M-OT implies maliciously secure MPC [BL18, GS18], a direct consequence of
Theorem 1 is the following:

Corollary 1. For any odd r ∈ N, there is a non-black-box construction of a max((r+
1), 5)-round maliciously secure multi-party computation protocol in the plain model,
from any r-round strongly uniform key agreement protocol.

Corollary 1 yields 5-round maliciously secure MPC from any of low-noise LPN,
high-noise LWE, Subset Sum, CDH, DDH, and RSA, all with polynomial hardness.
Previously to our work, it was known how to get maliciously secure MPC in the
plain model, for arbitrary functionalities:

• Using 5 rounds, using interactive ZK proofs and SH-OT [BL18], assuming
polynomially-hard LWE with super-polynomial noise ratio and adaptive com-
mitments [BHP17], polynomially-hard DDH [ACJ17], and enhanced certified
trapdoor permutations (TDP) [ORS15, BL18];

• Using 4 rounds, assuming sub-exponentially-hard LWE with super-polynomial
noise ratio and adaptive commitments [BHP17], polynomially-hard LWE with
a SIVP approximation factor of n3.5 [BD18], sub-exponentially-hard DDH and
one-way permutations [ACJ17], polynomially-hard DDH/QR/DCR [BGJ+18],
and either polynomially-hard QR or QR together with any of LWE/DDH/DCR
(all with polynomial hardness) [HHPV18].

3.2 Commit-and-Open and ORS Construction
Receiver-sided simulatability (described in Section 2.7.5) is a useful stepping stone
towards achieving full simulatability. In fact, Ostrovsky et al. [ORS15] show how
to compile any 4-round OT protocol with receiver-sided simulatability to a 4-round
OT protocol with full simulatability. This transformation can be easily extended
to hold for any r-round protocol, with r ≥ 3; the main reason is that the transform
only relies on an extractable commitment scheme, which requires at least 3 rounds.
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Theorem 3 (Adapted from [ORS15]). Assuming t ≥ 3, there is a black-box trans-
formation from t-round OT with receiver-sided simulation to t-round OT with full
simulation.5

3.2.1 Commit-and-Open Protocols
We envision a 3-round protocol between a prover and a verifier where the prover
takes as input two messages m0,m1 ∈ M and a choice bit b ∈ {0, 1}. The prover
speaks first, and the protocol is public coin, in the sense that the message of the
verifier consists of uniformly random bits. Intuitively, we want that whenever the
prover manages to convince the verifier, he must be committed to at least one of
m0,m1 already after having sent the first message.

More formally, a 1-out-of-2 commit-and-open (C&O) protocol is a tuple of ef-
ficient interactive Turing machines Πc&o

def
= (P = (P0,P1),V = (V0,V1)) speci-

fied as follows. (i) The randomized algorithm P0 takes mb and returns a string
γ ∈ {0, 1}∗ and auxiliary state information α ∈ {0, 1}∗; (ii) The randomized algo-
rithm V0 returns a random string β←$ B; (iii) The randomized algorithm P1 takes
(α, β, γ,m1−b) and returns a string δ ∈ {0, 1}∗; (iv) The deterministic algorithm V1

takes a transcript (γ, β, (δ,m0,m1)) and outputs a bit.
We write ⟨P(m0,m1, b),V(1λ)⟩ for a run of the protocol upon inputs (m0,m1, b)

to the prover, and we denote by T def
= (γ, β, (δ,m0,m1)) the random variable corre-

sponding to a transcript of the interaction. Note that the prover does not nec-
essarily need to know m1−b before computing the first message. We say that
Πc&o satisfies completeness if honestly generated transcripts are always accepted
by the verifier, i.e. for all m0,m1 ∈ M and b ∈ {0, 1}, we have Pr[V1(T ) =
1 : T ←$ ⟨P(m0,m1, b),V(1λ)⟩] = 1, where the probability is over the randomness
of P0,V0, and P1.

Security properties. Roughly, a C&O protocol must satisfy two security re-
quirements. The first requirement is that at the end of the first round, a malicious
prover is committed to at least one message. This can be formalized by looking at a
mental experiment where we first run the protocol with a malicious prover, yielding
a first transcript T = (γ, β, (δ,m0,m1)); hence, we rewind the prover to the point it
already sent the first message, and give it a fresh challenge β′ which yields a second
transcript T ′ = (γ, β′, (δ′,m′0,m

′
1)). The security property now states that, as long

as the two transcripts T and T ′ are valid, it shall exist at least one “committing
branch” b̂ ∈ {0, 1} for which mb̂ = m′

b̂
. The second requirement says that no mali-

cious verifier can learn any information on the choice bit of the prover. The formal
definitions appear below.

Definition 17 (Secure commit-and-open protocol). Let Πc&o = (P0,P1,V0,V1)
be a 1-out-of-2 commit-and-open protocol. We say that Πc&o is secure if, besides
completeness, it satisfies the following security properties.

5They also need the existence of one-way functions. Since OT implies OT extension which
implies one-way functions [LZ13, LZ18], OT implies one-way functions.
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• Existence of Committing Branch: For every PPT malicious prover P∗ =
(P∗0,P∗1) there exists a negligible function ν : N→ [0, 1] such that

Pr

 (V1(T ) = 1) ∧ (V1(T
′) = 1)

∧(m0 ̸= m′0) ∧ (m1 ̸= m′1)
:

(γ, α0)←$ P∗0(1λ);
β, β′←$ V0(1

λ);
(δ,m0,m1)←$ P∗1(α0, β);
(δ′,m′0,m

′
1)←$ P∗1(α0, β

′)

 ≤ ν(λ),
with T = (γ, β, (δ,m0,m1)) and T ′ = (γ, β, (δ,m′0,m

′
1)), and where the prob-

ability is taken over the random coin tosses of P∗ and V.

• Choice Bit Indistinguishability: For all PPT malicious verifiers V∗, and
for all messages m0,m1 ∈M, we have that{
T̃ : T̃ ←$ ⟨P(m0,m1, 0),V∗(1λ)⟩

}
λ∈N
≈c

{
T̃ : T̃ ←$ ⟨P(m0,m1, 1),V∗(1λ)⟩

}
λ∈N

.

We show in the next subsection that a protocol by Ostrovsky et al. [ORS15]
achieves this definition.

3.2.2 The ORS Construction
The ORS string C&O protocol Πc&o = (P0,P1,V0,V1) for string length n is depicted
in Fig. 3.2. It relies on a statistically binding commitment scheme (Commit, δ) and
a linear error detection code G with minimal distance of at least 1

2(n + κ), which
can be instantiated with, e.g., a Reed-Solomon code. In what follows, the code G
is a public parameter of the protocol, and we write G(m) to denote an encoding of
message m under code G. For simplifying the presentation of the protocol, we use
ψ : Zqq → Zq−1q to denote the linear map

(x[0], . . . ,x[q − 1]) 7→ (x[1]− x[0], . . . ,x[q − 1]− x[0]),

where x[i] is the i-th entry of a vector x ∈ Zqq.

Remark 1. In the ORS protocol, the prover does not need to known or fix m̂1−b till
the second round. Nevertheless, during the choice bit indistinguishability experiment,
both messages need to be fixed before the first round.

Lemma 1 (Completeness of the ORS protocol). For any ϵ ∈ [0, 1), assuming that
the commitment scheme Commit is complete with probability at least 1− ϵ, then the
ORS protocol from Fig. 3.2 is complete with probability at least (1− ϵ)(q+1)n.

Proof. The verifier opens (q + 1)n commitments. By completeness, the openings
will be correct with probability (1− ϵ)(q+1)n. In the following, we assume that this
is the case. The protocol will succeed if and only if the checks do not fail, i.e. all of
the below equations hold:

c0 + c1 = β m̂0 = G(m0) m̂1 = G(m1)

∀k ∈ {0, 1}, i ∈ [n] : ψ(Mk,i[ck[i], ∗]) = (−1)ck[i]vk,i.
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Verifier V(1λ) Prover P(m0,m1, b)

m̂b := G(mb), c1−b←$ {0, 1}n

∀i ∈ [n] :

Mb,i←$ Z2×q
q s.t. ∀j ∈ Zq :∑

k∈{0,1}
Mb,i[k, j] = m̂b[i]

σi←$ Perm(Zq)

M1−b,i←$ Z2×q
q s.t. ∀j ∈ Zq :∑

k∈{0,1}
M1−b,i[k, j] = σi(j)

vb,i := ψ(Mb.i[0, ∗])

v1−b,i := (−1)c1−b[i]ψ(M1−b.i[c1−b[i], ∗])
γ := {vk,i,Commit(Mk,i)}k∈{0,1},i∈[n]

γ

β←$ {0, 1}n

β

m̂1−b := G(m1−b), cb := β − c1−b

d1−b ∈ Zn
q s.t.∑

k∈{0,1}
M1−b,i[k,d1−b[i]] = m̂1−b[i]

db←$ Zn
q

δc := δ(Mk,i[ck[i], ∗])k∈{0,1},i∈[n]

δd := δ(Mk,i[1− ck[i],dk[i]])k∈{0,1},i∈[n]

δ,m0,m1 δ := (c0, c1,d0,d1, δc, δd)

∀ℓ ∈ {0, 1}, i ∈ [n] :

m̂ℓ[i] :=
∑

k∈{0,1}
Mℓ,i[k,dℓ[i]]

check if
c0 + c1 = β

m̂0 = G(m0), m̂1 = G(m1)

∀k ∈ {0, 1}, i ∈ [n] :

ψ(Mk,i[ck[i], ∗]) = (−1)ck[i]vk,i

output 0 iff check fails

Figure 3.2. The ORS string 1-out-of-2 commit-and-open protocol. Perm(Zq) is the set
of permutations over Zq, and δ(m) denotes the randomness that is needed to open
commitment Commit(m).

By construction, it is easy to see that β = c0 + c1. Next we will show that in a
honest execution of the protocol, both m̂0 and m̂1 will be codewords w.r.t. code G.
The entries of m̂0 and m̂1 are computed by the verifier as

m̂ℓ[i] :=
∑

k∈{0,1}

Mℓ,i[k,dℓ[i]]

for ℓ ∈ {0, 1}, i ∈ [n]. For branch 1− b, the vector d ∈ Znq is chosen by the receiver



3.2 Commit-and-Open and ORS Construction 39

such that ∑
k∈{0,1}

M1−b,i[k,d1−b[i]] = m̂′1−b[i]

holds for all i ∈ [n], where m̂′1−b[i] denotes m̂1−b[i] on the receiver’s side. Further,
such a vector d1−b always exists due to the fact that there are q columns in M1−b,i
and each column sums to a different value in Zq. For branch b,∑

k∈{0,1}

Mb,i[k,db[i]] = m̂′b[i]

holds for any db ∈ Znq . Therefore the vectors m̂0 and m̂1 computed by the verifier
are identical to the vectors m̂′0 and m̂′1 computed by the prover, which are in
particular chosen to be codewords w.r.t. code G for messages m0 and m1.

The last part of the checking procedure checks whether the image of ψ for the
two rows of M is indeed consistent with the transmitted value vk,i. More specifically,
∀k ∈ {0, 1}, i ∈ [n],

ψ(Mk,i[ck[i], ∗]) = (−1)ck[i]vk,i

must hold. Again, by construction this is true for all i ∈ [n] and k = 1− b, simply
because v1−b,i is chosen such that it holds. In case k = b it holds as well, since
for each i ∈ [n] all the columns of Mb,i sum to m̂b,i or equivalently for all j ∈ Zq,
Mb,i[1, j] = m̂b,i −Mb,i[0, j]. Due to this fact, for all c ∈ {0, 1}, i ∈ [n]

ψ(Mb,i[c, ∗]) = (Mb,i[c, 1]−Mb,i[c, 0], . . . ,Mb,i[c, q − 1]−Mb,i[c, 0])

= (−Mb,i[1− c, 1] + Mb,i[1− c, 0], . . . ,−Mb,i[1− c, q − 1] + Mb,i[1− c, 0])
= (−1)ψ(Mb,i[1− c, ∗])

holds. Further, vb,i := ψ(Mb.i[0, ∗]) and therefore

ψ(Mb,i[cb[i], ∗]) = (−1)cb[i]vb,i

holds for any choice of cb ∈ {0, 1}n. This concludes proving completeness.

Lemma 2 (Existence of a committing branch for the ORS protocol). Let κ ∈ N be
a statistical security parameter. Assuming that the commitment scheme Commit is
statistically binding except with probability at most ϵ, and that code G has minimal
distance 1

2(n + κ), then the ORS protocol from Fig. 3.2 satisfies the property of
existence of a committing branch except with probability at most 2ϵ+ 2−κ.

Proof. We define several hybrids to prove the lemma. In the first hybrid, a malicious
prover P∗ loses if, for any i ∈ [n] and any k ∈ {0, 1}, a partial message m̂k[i] differs
from m̂′b[i] and the opened row of Mk,i differs as well, i.e. ck[i] ̸= c′k[i].

In the second hybrid, the adversary will lose as well if there are more than κ
positions i ∈ [n] for which both messages m̂0[i] and m̂1[i] differ from the messages
m̂′0[i] and m̂′1[i] of the second run.
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Hybrid H0(λ): This is the original security game, i.e.

(γ, α0)←$ P∗0(1λ);
β, β′←$ V0(1

λ);

(δ,m0,m1)←$ P∗1(α0, β);

(δ′,m′0,m
′
1)←$ P∗1(α0, β

′)

and the prover wins iff

(V1(T ) = 1) ∧ (V1(T
′) = 1)

∧(m0 ̸= m′0) ∧ (m1 ̸= m′1).

Hybrid H1(λ): Identical to H0(λ) except that the prover wins iff

(V1(T ) = 1) ∧ (V1(T
′) = 1)

∧(m0 ̸= m′0) ∧ (m1 ̸= m′1)

∧∀i ∈ [n], k ∈ {0, 1} : (m̂k[i] = m̂′k[i]) ∨ (ck[i] = c′k[i]).

Hybrid H2(λ): Identical to H1(λ) except the prover wins iff

(V1(T ) = 1) ∧ (V1(T
′) = 1)

∧(m0 ̸= m′0) ∧ (m1 ̸= m′1)

∧∀i ∈ [n], k ∈ {0, 1} : (m̂k[i] = m̂′k[i]) ∨ (ck[i] = c′k[i])
∧|{i ∈ [n] | m̂0[i] ̸= m̂′0[i] ∧ m̂1[i] ̸= m̂′1[i]}| < κ.

Claim 1. SD (H0(λ);H1(λ)) ≤ 2ϵ.

Proof. There is a difference between the two hybrids if and only if there is an i ∈ [n]
and k ∈ {0, 1} such that

(m̂k[i] ̸= m̂′k[i]) ∧ (ck[i] ̸= c′k[i]).

By the checking procedure of the verifier, we have

ψ(Mk,i[ck[i], ∗]) = (−1)ck[i]vk,i,

which implies the two equalities

v[dk[i]] = Mk,i[0,dk[i]]−Mk,i[0, 0] = −Mk,i[1,dk[i]] + Mk,i[1, 0],

v[dk[i]] = M′
k,i[0,d′k[i]]−M′

k,i[0, 0] = −M′
k,i[1,d′k[i]] + M′

k,i[1, 0].

Further,

m̂k[i] = Mk,i[0,dk[i]] + Mk,i[1,dk[i]] = Mk,i[0, 0] + Mk,i[1, 0]

as well as m̂′k[i] = M′
k,i[0, 0] + M′

k,i[1, 0]. Since m̂k[i] ̸= m̂′k[i], either Mk,i[0, 0] ̸=
M′

k,i[0, 0] or Mk,i[1, 0] ̸= M′
k,i[1, 0] which breaks statistical binding.
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Claim 2. SD (H1(λ);H2(λ)) ≤ 2−κ.

Proof. A malicious prover P∗ is successful in H1(λ) but not in H2(λ) if for set

S := {i ∈ [n] : m̂0[i] ̸= m̂′0[i] ∧ m̂1[i] ̸= m̂′1[i]}

the inequality |S| ≥ κ holds. To prove the claim, we show this bound on set S.
For any i ∈ [n] and k ∈ {0, 1}, either m̂k[i] ̸= m̂′k[i] or ck[i] ̸= c′k[i] holds.

Hence, for all elements i in S, we necessarily have c0[i] = c′0[i] and c1[i] = c′1[i].
This implies that challenge β = c0 + c1 is identical with β′ on position i. Since β′
is uniformly random, this is only the case with probability 1/2. If it is not the case,
the verifier rejects. Since the size of S has to be at least κ, the probability of this
to happen is at most 2−|S| ≤ 2−κ.

In H2(λ), the adversary’s choice of m̂0 and m̂1 will both differ from m̂′0 and
m̂′1 on at most κ positions. On all other positions, m̂0 and m̂1 will be identical to
m̂′0 and m̂′1. Since there are n − κ positions left, at least one of the pairs will be
identical on at least 1

2(n− κ) positions. Let this be m̂b.
Due to the minimal distance 1

2(n + κ) of code G, there is a unique codeword
that matches these 1

2(n− κ) positions. Hence, in both runs, a malicious receiver is
committed to m̂b = m̂′b, because if m̂b or m̂′b is not a codeword, the verifier rejects.
Thus, m̂b = m̂′b decodes to a unique message mb and therefore for all unbounded
provers P∗ experiment H2(λ) returns 1 with zero probability, which concludes this
proof.

Lemma 3 (Choice bit indistinguishability of the ORS protocol). Assuming that the
commitment scheme Commit satisfies computational hiding, the ORS protocol from
Fig. 3.2 satisfies choice bit indistinguishability.

Proof. To show indistinguishablity, we define a hybrid in which a prover commits
to both messages and both branches will follow the same distribution. Let H0(λ, b)
be the experiment defining choice bit indistinguishability, where the adversary V∗
acts as a malicious verifier; our goal is to show that for all PPT V∗, we have
H0(λ, 0) ≈c H(λ, 1). Consider the hybrid experiment H(λ, b) where in the first
round the prover takes the following actions:

m̂b := G(mb), c1−b←$ {0, 1}n, m̂1−b := G(m1−b)

db,d1−b←$ Znq
∀i ∈ [n], ℓ ∈ {0, 1} :

Mℓ,i←$ Z2×q
q s.t. ∀j ∈ Zq :∑

k∈{0,1}

Mℓ,i[k, j] = m̂b[i]

vℓ,i := ψ(Mℓ.i[0, ∗])
γ := {vk,i,Commit(Mk,i)}k∈{0,1},i∈[n],
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and moreover during the third round, the prover acts as follows:

cb = β − c1−b
δc := δ(Mk,i[ck[i], ∗])k∈{0,1},i∈[n]
δd := δ(Mk,i[1− ck[i],dk[i]])k∈{0,1},i∈[n]

Notice that sampling first c1−b and setting cb = β− c1−b has the same distribu-
tion as c0, c1←$ {0, 1}n conditioned on β = c0 + c1. Therefore both branches have
the same distribution.

Claim 3. For all PPT V∗, and for all b ∈ {0, 1}, we have that H0(λ, b) ≈c H1(λ, b).

Proof. We will define n(q − 1) sub-hybrids. For each i ∈ [n], there are q − 1
commitments in branch b − 1 that are not opened in the third round. We will
switch their committed value M1−ci,i step by step from the distribution in H0 to
the distribution in H1, i.e. from being uniform conditioned on summing to σi(j) to
summing to m̂[i].

We denote the sub hybrids with H0,0,0(λ, b) to H0,n,q(λ, b), where H0,0,0(λ, b) ≡
H0(λ, b) and H0,n,q(λ, b) ≡ H1(λ, b). We switch from H0,i,j(λ, b) to H0,i,j+1(λ, b),
and from H0,i,q(λ, b) to H0,i+1,0(λ, b). In the following, we will just show how to
transition from H0,i,j(λ, b) to H0,i,j+1(λ, b). The other step is done analogously.
Further notice that the the hybrids

H0,i,d1−b[i]−1(λ, b) and H0,i,d1−b[i](λ, b)

are already distributed identically. Next, we show that for any i∗ ∈ [n], j∗ ∈ Zq,
and for all PPT V∗ and b ∈ {0, 1}, hybrids H0,i∗,j∗(λ, b) and H0,i∗,j∗+1(λ, b) are
computationally close, which finishes the proof of the claim.

Recall that an adversary A against the hiding of the commitment scheme chooses
two messages m̃0 and m̃1, and receives a commitment γ̃ of one of the two messages.
We denote this by γ̃←$OCommit(m̃0, m̃1). Attacker A wins if he successfully deter-
mines which message has been committed to. In what follows, we mostly ignore
branch b since it has the same distribution in both hybrids. In the first round, A
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simulates the prover as follows.

c1−b←$ {0, 1}n, m̂1−b := Gm1−b,d1−b←$ Znq
∀(i < i∗ ∨ (i = i∗ ∧ j ≤ j∗)), σi(j) := m̂1−b[i]

σ′←$ Perm(Zq) s.t. σ′(d1−b[i
∗]) = m̂1−b[i

∗]

∀j > j∗, σi∗(j) := σ′(j)

∀i > i∗, σi←$ Perm(Zq) s.t. σi(d1−b[i]) = m̂1−b[i]

∀i ∈ [n],M1−b,i←$ Z2×q
q s.t.∑

k∈{0,1}

M1−b,i[k, j] = σi(j)

∀i < i∗,v1−b,i := ψ(M1−b,i[0, ∗])
∀i ≥ i∗,v1−b,i := (−1)c1−b[i]ψ(M1−b.i[c1−b[i], ∗])
∀(i ̸= i∗ ∨ j ̸= j∗ ∨ k ̸= c1−b[i]), γi,k,j ←$ Commit(M1−b,i[k, j])

γi∗,c1−b[i∗],j∗ ←$OCommit(σ
′[j∗]−M1−b,i∗ [cb[i∗], j∗],M1−b,i∗ [c1−b[i∗], j∗])

γ := {v0,i,v1,i,Commit(Mb,i), (γi,k,j)k∈{0,1},j∈[q]}i∈[n].

Since A does not open γi∗,c1−b[i∗],j∗ , he can easily simulate the third round:

cb = β − c1−b
δc := δ(Mk,i[ck[i], ∗])k∈{0,1},i∈[n]
δd := δ(Mk,i[1− ck[i],dk[i]])k∈{0,1},i∈[n].

If the challenger of the commitment security game commits to message σ′(j∗)−
M1−b,i∗ [cb[i∗], j∗], attacker A simulates hybrid H0,i∗,j∗(λ, b), and otherwise if the
challenger commits to M1−b,i∗ [c1−b[i∗], j∗] the attacker simulates hybrid H0,i∗,j∗+1(λ, b).
This concludes the proof of this claim.

Clearly, the distribution of hybrid H1(λ, b) is independent of bit b. Therefore,
H1(λ, 0) ≡ H1(λ, 1). This and the previous claim result in the statement of the
lemma.

3.3 Strongly Uniform PKE, Key Agreement and OT
3.3.1 Strongly Uniform PKE
We start with defining strongly uniform public-key encryption (PKE). Here, we
differ between two types of PKE. A Type-A PKE has a public key that is compu-
tationally close to uniform, while for a Type-B PKE this is the case for ciphertexts
of uniform messages (under malicious public keys).

In general, a PKE scheme Πpke consists of three efficient algorithms (Gen,Enc,
Dec) specified as follows. (i) The probabilistic algorithm Gen takes as input the
security parameter and outputs a pair of keys (pk, sk); (ii) The probabilistic algo-
rithm Enc takes as input the public key pk and a message µ ∈ M, and returns a
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ciphertext c ∈ C; (iii) The deterministic algorithm Dec takes as input the secret key
sk and a ciphertext c ∈ C, and returns a value µ ∈ M ∪ {⊥}. We say that Πpke
meets correctness, if for all λ ∈ N, all (pk, sk) output by Gen(1λ), and all µ ∈ M
the following holds: P [Dec(sk,Enc(pk, µ)) = µ] = 1.

Definition 18 (Strongly uniform Type-A PKE). A PKE scheme Πpke = (Gen,Enc,Dec)
is called a strongly uniform Type-A PKE if for any PPT distinguisher D the fol-
lowing holds:

|Pr[D(pk) = 1]− Pr[D(u) = 1]| ∈ negl(λ) ,

where (pk, sk)←$ Gen(1λ) and u is uniform over a suitable, efficiently sampleable
group.

In case of strongly uniform Type-B PKE, we even ask that a ciphertext of a
uniform message is indistinguishable from uniform to a distinguisher that chooses
a public key for the encryption procedure in an arbitrary way.

Definition 19 (Strongly uniform Type-B PKE). A PKE scheme Πpke = (Gen,Enc,Dec)
is called a strongly uniform Type-B PKE if for any PPT distinguisher D the fol-
lowing holds:

|Pr[D(c) = 1]− Pr[D(u) = 1]| ∈ negl(λ) ,

where pk ∈ {0, 1}∗ is chosen by D, µ←$M, c←$ Enc(pk, µ), and u is uniform over
a suitable, efficiently sampleable group.

When using PKE in the following, we also ask for standard security against
chosen plaintext attacks, since this is not implied by the notion of strong uniformity
in all generality.

3.3.2 Strongly Uniform Key Agreement

Let Πka = (P1,P2) be a key agreement (KA) protocol, where P1 sends messages
during r′ rounds, which we denote by ρ1, . . . , ρr′ . The messages from P2 to P1 are
denoted with σ1, . . . , σr′+1, and are at most r′+1. W.l.o.g. we will assume that P2

sends the last message.
More precisely, algorithms P1 and P2 are stateful interactive Turing machines

such that for each i ∈ [r′]: (i) Algorithm P1 takes the current state information αi−1P1

(where α0
P1

is equal to P1’s input 1λ) and a message σi−1 from P2 (with σ0 empty),
and returns ρi together with updated state information αiP1

; (ii) Algorithm P2 takes
the current state information αi−1P2

(where α0
P2

is equal to P2’s input 1λ) and message
ρi from the receiver, and returns σi together with updated state information αiP2

.
For strong uniformity, we ask that P1’s messages are computationally close to

uniform over an efficiently sampleable group M. For simplicity, we assume that
this is the same group for all messages. Our results still hold when the messages
are uniform in different groups.

Additionally, we ask that given a transcript, one cannot distinguish the key P1

and P2 agreed upon from a uniformly random string.
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Definition 20 (Strongly uniform secure key agreement). A KA protocol Πka =
(P1,P2) as defined above is a strongly uniform secure KA if there exists an ef-
ficiently samplable group M such that the messages (ρ1, . . . , ρr

′
) sent by P1 in a

honest execution of the protocol are distributed overM, and moreover the following
conditions are met:

(a) Key Indistinguishability: For an honest execution of the protocol with
agreed key K,(

⟨P1(1
λ),P2(1

λ)⟩,K
)
≈c

(
⟨P1(1

λ),P2(1
λ)⟩, U

)
,

where U is uniform and independent of the view of P1 and P2.

(b) Uniformity w.r.t. Malicious Interaction: For all PPT distinguishers D
the following quantity is negligible:∣∣∣∣Pr

[
D(αr′D, (ρi, σi)i∈[r′]) = 1 :

∀i ∈ [r′], (αiP1
, ρi)←$ P1(α

i−1
P1

, σi)

∧ (αiD, σ
i)←$D(αi−1D , ρi−1)

]
− Pr

[
D(αr′D, (ρi, σi)i∈[r′]) = 1 :

∀i ∈ [r′], ρi←$M
∧ (αiD, σ

i)←$D(αi−1D , ρi−1)

] ∣∣∣∣,
where ρ0 is the empty string, and α0

P1
= α0

P2
= 1λ.

We show now that the property of strong uniformity is preserved within known
construction of KA from Type-A or Type-B PKE, as well as Type-A PKE from
KA. Both of the following lemmata are straightforward, and therefore we forego a
more formal proof and just sketch them.

Lemma 4. There exists a 2-round strongly uniform secure KA if and only if there
exists a strongly uniform CPA-secure Type-A PKE (constructive).

Proof. It is a well known fact that 2-round KA implies PKE and vice versa. What we
will show is that this construction preserves strong uniformity. In the construction
of KA from PKE the receiver sends a public key and receives back an encryption
of a uniform key. If the public key is indistinguishable from uniform with all but
negligible probability, then all the receivers messages are, and hence the KA is
strongly uniform.

In the construction of PKE from KA, one uses the first message of the KA as
public key. In a 2-round strongly uniform KA this message is indistinguishable from
uniform with all but negligible probability by definition. Hence, the public key is
computationally indistinguishable from uniform with all but negligible probability.

Lemma 5. If there exists a strongly uniform CPA-secure Type-B PKE, then there
exists a 3-round strongly uniform secure KA (constructive).

Gertner et al. [GKM+00] showed a similar lemma, namely that Type-B PKE
implies 3-round semi-honestly secure OT. For simplicity, we prefer showing that
there is a 3-round strongly uniform secure KA given a strongly uniform CPA-secure
Type-B PKE.
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Proof. The idea is simple and similar to the proof of Lemma 4. P1 sends a public
key, P2 sends an encryption of a uniform key. Finally, P2 decrypts the ciphertext
and sends a dummy message. The last message is required by the definition of
strongly uniform KA, which asks that P1’s messages are indistinguishable from
uniform, where P2 sends the last message.

In order to achieve strongly uniform KA, even for maliciously chosen public key,
the ciphertext needs to be indistinguishable from uniform with all but negligible
probability. Type-B PKE has this property, and hence the described protocol is
strongly uniform. Security follows trivially, and for identical reasons, as in Lemma 4.

3.3.3 Strongly Uniform OT

In an OT protocol Π = (S,R) we can w.l.o.g. assume that the sender S always speaks
last. We use the same notation as described above for a key agreement protocol. In
particular, ρ1, . . . , ρr′ are the messages from R to S, and σ1, . . . , σr′+1 the messages
from S to R. The initial states are identical with the inputs, i.e. α0

R = b ∈ {0, 1}
and α0

S = (s0, s1) ∈ {0, 1}2λ.
Correctness means that for all b ∈ {0, 1}, and for all s0, s1 ∈ {0, 1}λ, the following

probability is overwhelming:

Pr
[
ρr

′+1 = sb : ∀i ∈ [r′ + 1], (αiR, ρ
i)←$ R(αi−1R , σi) ∧ (αiS, σ

i)←$ S(αi−1S , ρi−1)
]
,

where ρ0 is the empty string, and α0
S = (s0, s1), α0

R = b.
As for security, we require two properties. The first property is equivalent to

simulation-based security for honest-but-curious receivers. The second property
says that a malicious sender cannot distinguish the case where it is interacting with
the honest receiver, from the case where the messages from the receiver are replaced
by uniform elements over an efficiently sampleable group M.

Definition 21 (Strongly Uniform semi-honestly secure OT). An OT protocol Π =
(S,R) as defined above is a strongly uniform semi-honestly secure OT if there exists
an efficiently samplable groupM such that the messages (ρ1, . . . , ρr′) sent by R in a
honest execution of the protocol are distributed overM, and moreover the following
conditions are met:

(a) Security w.r.t. Semi-Honest Receivers: There exists a PPT simulator
SimR such that for all b ∈ {0, 1} and for all s0, s1 ∈ {0, 1}λ the following holds:{

SimR(1
λ, b, sb)

}
λ,b,sb

≈c
{

viewR
Π(λ, s0, s1, b)

}
λ,s0,s1,b

,

where viewR
Π(λ, s0, s1, b) denotes the distribution of the view of the honest

receiver at the end of the protocol.

(b) Uniformity w.r.t. Malicious Senders: For all PPT distinguishers D, and
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for all b ∈ {0, 1}, the following quantity is negligible:∣∣∣∣Pr
[
D(αr′D, (ρi, σi)i∈[r′]) = 1 :

∀i ∈ [r′], (αiR, ρ
i)←$ R(αi−1R , σi−1)

∧ (αiD, σ
i)←$D(αi−1D , ρi−1)

]
− Pr

[
D(αr′D, (ρi, σi)i∈[r′]) = 1 :

∀i ∈ [r′], ρi←$M
∧ (αiD, σ

i)←$D(αi−1D , ρi−1)

] ∣∣∣∣,
where ρ0 is the empty string, and α0

R = b.

Note that the second property implies game-based security w.r.t. malicious
senders (i.e., property (b) of Definition 14). Furthermore, for the special case of
r′ = 1 the above definition collapses to standard semi-honest security, as the only
message sent by the malicious sender plays no role in distinguishing the two distri-
butions.

Next, we show a lemma that is not very surprising, namely that strongly uniform
secure KA can be constructed from strongly uniform semi-honestly secure OT.

Lemma 6. If there exists a r-round strongly uniform semi-honestly secure OT, then
there exists a r-round strongly uniform secure KA (constructive).

Proof. We construct a r-round KA Πka from a r-round OT Π as follows. P1 and P2

run Π, where P1 takes the role of the receiver with choice bit 0. P2 takes the role
of the sender, with inputs equal to a uniform key k, i.e. s0 = k, and a uniformly
random string u, i.e. s1 = u.

Given that Π is semi-honestly secure, Gertner et al. [GKM+00, Theorem 5] have
shown that Πka is indeed a secure KA. The rough idea is to first switch the receiver’s
choice bit to 1 by using the game-based security of Π against honest-but-curious
senders (which in our case is implied by strong uniformity). Afterwards, we can use
the security against an honest-but-curious receiver to argue that an eavesdropper
cannot distinguish s0 = k from random anymore, since even the receiver can only
learn s1 but has no information about s0. Therefore Πka is a secure KA. It remains
to prove strong uniformity.

Claim 4. Assuming Π is strongly uniform, so is Πka.

Proof. Let PPT D′ break the strong uniformity of Πka, then we construct a PPT
distinguisher D that breaks the strong uniformity of Π as follows. Distinguisher
D chooses k and u uniformly, and interacts as a honest sender in Π, where the
receiver’s messages are either distributed according to the protocol description or
uniform. Hence, P1’s messages are either conform with the protocol or uniform.
Distinguisher D′ receives the view of P2 generated by D. Now, if D′ distinguishes
the messages of P1 being conform with the protocol from uniform, D breaks the
strong uniformity of Π.

The next lemma is more surprising, as it implies that strongly uniform secure
KA is equivalent to strongly uniform semi-honestly secure OT. Hence, the notion
of strong uniformity is sufficiently strong to bypass the black-box separation of KA
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and OT by Gertner et al. [GKM+00, Corollary 7], which is a consequence of the
separation between PKE and OT, and the fact that 2-round KA implies PKE. The
above also implies that 2-round secure KA is separated as well from 2-round strongly
uniform secure KA.

Lemma 7. If there exists a r-round strongly uniform secure KA, then there exists
a r-round strongly uniform semi-honestly secure OT (constructive).

Proof. We construct an OT protocol Π using two parallel executions of a KA pro-
tocol Πka, which we denote with Π0

ka and Π1
ka. The receiver of the OT acts in

both executions as P1. For his choice bit b, he runs Πbka according to the protocol
description, and in Π1−b

ka he samples and sends uniform messages.
In the last round the sender sends k0 + s0 and k1 + s1, where for j ∈ {0, 1}

the key kj is the exchanged key in Πjka, and s0, s1 are the OT inputs of the sender.
Notice that this is a r-round protocol, since the sender can send his masked inputs
together with his last messages of the KA protocols.

Claim 5. Assuming Πka is strongly uniform, so is Π.

Proof. Let there be a PPT distinguisher D′ that distinguishes the receiver’s messages
in Π from uniform. We construct a PPT distinguisher D for P1’s messages using
D′. Distinguisher D acts in Πka as P2, where P1’s messages are either distributed
according to the protocol description or uniform. Hence, D picks b←$ {0, 1} and
uses the messages sent by D′ in Π to interact with P1 in Πbka. For Π1−b

ka , distinguisher
D sends uniform messages as in the protocol description. Finally, D outputs the
output of D′. Hence, if D′ is successful, then so is D.

Claim 6. Assuming Πka is strongly uniform and secure, then Π is secure against
honest-but-curious receivers.

Proof. We use the following hybrids, where a simulator Sim generates a view of the
receiver. In the last hybrid, Sim only uses sb but not s1−b and therefore implements a
simulator Sim(1λ, b, sb) as required for security against honest-but-curious receivers.

H1(λ): Sim generates the receivers messages in Π1−b
ka as in an actual key agreement

Πka, i.e. not uniform as in Π. The receiver’s view only contains the messages,
not the randomness used in Πka to generate these messages.

H2(λ): Sim sends a uniform value u instead of k1−b + s1−b.

To prove the claim, we need to show that the receiver’s view in the real protocol is
indistinguishable from H1(λ), and that H1(λ) is indistinguishable from H2(λ).

Let D′ be a PPT distinguisher that distinguishes the recevier’s view in the
real protocol from H1(λ) with non-negligible probability. We show that there is
a PPT distinguisher D that breaks the strong uniformity of the KA Πka with the
same probability. Distinguisher D runs Π, but replaces the interaction in Π1−b

ka on
the receiver’s side with a challenge instance of Πka against the strong uniformity.
To simulate the view of the receiver correctly, we need to simulate the sampling
procedure of the uniform messages in the protocol given only the challenge messages.
We can do this by using the simulator SimSamp of efficiently sampleable groups.
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The challenge messages are either uniform, as in the receiver’s actual view in Π,
or honestly generated, as in H1(λ). Otherwise, D acts exactly according to the
protocol description of Π. If D′ distinguishes the two cases, D breaks the uniformity
of Πka.

Now let D′ be a PPT distinguisher that distinguishes H1(λ) from H2(λ) with
non-negligible probability. Then we can construct a PPT distinguisher that breaks
security, i.e. key indistinguishability, of Π with the same probability. Distinguisher
D receives a transcript of Πka and a challenge z which is either the key k or uniform.
Hence, D uses the transcript of Πka as transcript of Π1−b

ka , and the challenge z to
generate the message k1−b + s1−b as z + s1−b. Finally, D generates the remaining
parts of the receiver’s view honestly. If z = k, then D simulates H1(λ), and if z = u,
and hence z+s1−b is uniform, D simulates H2(λ). Hence, whenever D′ distinguishes
H1(λ) from H2(λ), then D distinguishes the actual key from uniform.

3.4 From Strongly Uniform Semi-Honestly Secure OT
to Maliciously Secure OT

Our protocol is described in Section 3.4.1. In Section 3.4.2 we provide a somewhat
detailed proof sketch, whereas in Section 3.4.3 we formally show the protocol satisfies
receiver-sided simulatability; recall that by using Theorem 3 we immediately get a
fully simulatable OT protocol.

3.4.1 Protocol Description

Let Πc&o = (P0,P1,V0,V1) be a 1-out-of-2 C&O protocol and Π′ = (S′,R′) be a
(2r′+1)-round OT protocol, where the first message σ1 might be the empty string.
Our OT protocol Π = (S,R) is depicted in Fig. 3.3 on the following page. The
protocol consists of (2r′ + 2) rounds as informally described below.

1. The receiver samples m1−b,i ∈ M for all i ∈ [r′], where b is the choice bit.
Then he runs the prover of the C&O protocol upon input (m1−b,j)j∈[i] for all
i ∈ [r′], obtaining (γi)i∈[r′] which are forwarded to the sender.

2. The sender samples uniform values u0, u1←$M. Then, he runs the underlying
(2r′+1)-round OT twice with inputs (s0, u0) and (s1, u1) to generate the first
messages σ10 and σ11. Further, the sender samples a challenge β1 for the C&O
protocol, as well as two uniformly random group elements r0,1, r1,1 from M,
and forwards (β1, r0,1, r1,1) to the receiver together with the first messages of
the OTs (i.e. σ10 and σ11).

3. Repeat the following steps for each i ∈ [r′]:

(a) (R → S): The receiver runs the receiver R′ of the underlying (2r′ + 1)-
round OT protocol with choice bit fixed to 0, and upon input message σib
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Sender S(s0, s1) Receiver R(b)

u0, u1←$M α0
R,b = 0

α0
S,0 = (s0, u0) ∀i ∈ [r′] :

α0
S,1 = (s1, u1) m1−b,i←$M

(α1
S,0, σ

1
0)←$ S′(α0

S,0) (γi, αi)←$ P0((m1−b,j)j∈[i])

(α1
S,1, σ

1
1)←$ S′(α0

S,1)
(γi)i∈[r′]

β1←$ V0(1
λ)

r0,1, r1,1←$M (β1, (rk,1, σ
1
k)k∈{0,1})

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Repeat for each i ∈ [r′] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(αi
R,b, ρ

i
b)←$ R′(αi−1

R,b , σ
i
b)

mb,i = ρib − rb,i

if V(γi, βi, (δi, (m0,j)j∈[i], (m1,j)j∈[i])) = 0 (δi,m0,i,m1,i) δi←$ P1(αi, βi, γi, (mb,j)j∈[i])

return ⊥
(αi+1

S,0 , σ
i+1
0 )←$ S′(αi

S,0,m0,i + r0,i)

(αi+1
S,1 , σ

i+1
1 )←$ S′(αi

S,1,m1,i + r1,i)

βi+1←$ V0(1
λ)

r0,i+1, r1,i+1←$M (βi+1, (rk,i+1, σ
i+1
k )k∈{0,1})

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(αr′+1
R,b , ρr

′+1
b )←$ R′(αr′

R,b, σ
r′+1
b )

output sb = ρr
′+1

b

Figure 3.3. (2r′ + 2)-round OT protocol achieving receiver-sided simulatability from
(2r′ + 1)-round strongly uniform semi-honestly secure OT. Note that the initial state
information α0

S,0, α
0
S,1 and α0

R,b is set to be equal, respectively to the inputs used by the
sender and the receiver during the runs of the underlying OT protocol (S′,R′). The
values βr′+1, r0,r′+1, r1,r′+1 are not needed and can be removed, but we avoided to do
that in order to keep the protocol description more compact.

from the sender, obtaining a message ρib which is used to define the mes-
sage mb,i = ρib−rb,i required to complete the execution of the C&O proto-
col in the non-committing branch b. This results in a tuple (δi,m0,i,m1,i)
that is forwarded to the sender.

(b) (S→ R): The sender verifies that the transcript Ti = (γi, βi, (δi, (m0,j)j∈[i],
(m1,j)j∈[i])) is accepting for the underlying C&O protocol. If so, he con-
tinues the two runs of the sender S′ for the underlying (2r′+1)-round OT
protocol. The first run uses state αiS,0 and message m0,i + r0,i from the
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receiver resulting in a message σi+1
0 and state αi+1

S,0 , whereas the second
run uses state αiS,1 and message m1,i+r1,i from the receiver resulting in a
message σi+1

1 and state αi+1
S,1 . Finally, the sender samples a challenge βi+1

for the C&O protocol, as well as another two uniformly random group el-
ements r0,i+1, r1,i+1 fromM, and forwards (σi+1

0 , σi+1
1 ) and βi+1, r0,i+1,

r1,i+1 to the receiver.

4. Output: The receiver runs the receiver R′ of the underlying (2r′ + 1)-round
OT protocol, upon input the (r′ + 1)-th message σr′+1

b from the sender, thus
obtaining an output ρr′+1

b .

Correctness follows by the fact that, when both the sender and the receiver are
honest, by correctness of the C&O protocol the transcripts Ti are always accepting,
and moreover the messages produced by the sender σib are computed using message
mb,i + rb,i = ρib from the receiver, so that each pair (ρib, σ

i
b) corresponds to the i-th

interaction of the underlying (2r′+1)-round OT protocol with input strings (sb, ub)
for the sender and choice bit 0 for the receiver, and thus at the end the receiver
outputs sb. As for security, we have:

Theorem 4 (Receiver-sided simulatability of Π). Assuming that Π′ is a (2r′ + 1)-
round strongly uniform semi-honestly secure OT protocol, and that Πc&o is a secure
1-out-of-2 commit-and-open protocol, then the protocol Π from Fig. 3.3 securely
realizes FOT with receiver-sided simulation.

3.4.2 Proof Intuition
We give a detailed proof in Section 3.4.3, and here provide some intuition. In order
to show receiver-sided simulatability we need to prove two things: (1) The existence
of a simulator Sim which by interacting with the ideal functionality FOT can fake
the view of any efficient adversary corrupting the receiver in a real execution of the
protocol; (2) Indistinguishability of the protocol transcripts with choice bit of the
receiver equal to zero or one, for any efficient adversary corrupting the sender in a
real execution of the protocol.

To show (1), we consider a series of hybrid experiments that naturally lead to
the definition of a simulator in the ideal world. In order to facilitate the description
of the hybrids, it will be useful to think of the protocol as a sequence of r′ iterations,
where each iteration consists of 2 rounds, as depicted in Fig. 3.3 on the preceding
page.

• In the first hybrid, we run a malicious receiver twice after he has sent his
commitments. The purpose of the first run is to learn a malicious receiver’s
input bit, i.e. on which branch he is not committed. If he is committed on
both branches, simulation will be easy since he will not be able to receive
any of the sender’s inputs. We use the second run to learn the output of a
malicious receiver. We describe the two runs now.

1. The first round of each iteration yields an opening (δi,m0,i,m1,i). Hence,
after verifying that the opening is valid, we rewind the adversary to the
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end of the first round of the i-th iteration to receive another opening
(δ′i,m

′
0,i,m

′
1,i).

Now, let b ∈ {0, 1} such that mb,i ̸= m′b,i. By the security of the C&O
protocol, there can be at most one such b. If there is no b we continue the
first run. Otherwise, if there is such a b, we have learned the equivocal
branch and start the second run.

2. We execute the second run according to the protcol with the difference
that we now know the equivocal branch, i.e. b, from the very beginning,
which will help us later to simulate correctly right from the start. Notice
that by the security of the C&O protocol, a malicious receiver cannot
change the equivocal branch in the second run. Obviously, he cannot
change it during the same iteration since then he would be equivocal on
both branches and contradict the security of the C&O protocol. He can
also not change the equivocal branch of one of the later rounds j > i,
since in the j-th commitment δj he cannot be committed to both mb,i

and m′b,i, so he needs to equivocally open δj as well. Thus, he needs to
be committed on the other branch, i.e. branch 1− b.

• The values m′k,i (right after the rewinding) of each iteration of the first run
for k ∈ {0, 1}, and second run for k = 1− b, are identical to mk,i. Moreover,
m′k,i ̸= mk,i holds only for the second run for branch k = b. Therefore, in the
second hybrid, we can change the distribution of r′k,i to r′k,i = ρik −mk,i for
k ∈ {0, 1}, and both runs except branch k = b during the second run. The
value ρik is obtained by running the simulator for the receiver of the underlying
strongly uniform semi-honest OT protocol with choice bit 1 and input uk. We
can use the messages generated by this simulator on the sender’s side as well.

We will use the strong uniformity of the OT to argue that a malicious receiver
cannot distinguish r′k,i = ρik−mk,i from uniform. By the semi-honest security,
the messages generated by the simulator are indistinguishable from the actual
semi-honest OT. At the same time this simulator is independent of the sender’s
inputs s0 and s1. Note that in this hybrid, we only need to known sb for the
second run after having learned b.

In the last hybrid, a protocol transcript is independent of s1−b but still yields a well
distributed output for the malicious receiver, which directly yields a simulator in
the ideal world.

To show (2), we first use the strong uniformity of the underlying OT protocol to
sample mb,i uniformly at random at the beginning of the protocol. Notice that this
implies that the receiver cannot recover the value sb of the sender anymore. Further,
we need the strong uniformity property here, since the receiver is interacting with
a malicious sender who could influence the distribution of mb,i sent by the receiver.
Once both messages, m0,i and m1,i for all iterations are known before the start
of the protocol, we can challenge the choice bit indistinguishability of the C&O
protocol. As a consequence, we can argue that the transcripts with b = 0 and b = 1
are computationally indistinguishable, which implies game-based security against a
malicious sender.
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3.4.3 Security Analysis
Simulatability Against a Malicious Receiver

We need to prove that for all non-uniform PPT malicious receivers R∗, there exists
a PPT simulator Sim such that{

REALΠ,R∗(z)(λ, s0, s1, b)
}
λ,s0,s1,b,z

≈c
{

IDEALFOT,SimR∗(z)(λ, s0, s1, b)
}
λ,s0,s1,b,z

where λ ∈ N, s0, s1 ∈ {0, 1}∗, b ∈ {0, 1}, and z ∈ {0, 1}∗.
To this end, we introduce several hybrid experiments naturally leading to the

definition of an efficient simulator in the ideal world. Let H0(λ) be the real world
experiment with a malicious receiver R∗. (All experiments are further parameterized
by the inputs s0, s1 for the sender, but we omit to explicitly write this for simplicity.)

First hybrid. Hybrid H1(λ) proceeds as follows.

1. The sender picks u0, u1←$M and lets α̃0
S,0 = α0

S,0 = (s0, u0), α̃0
S,1 = α0

S,1 =
(s1, u1), and b, b′, b′′ = ⊥.

2. R∗ forwards (γi)i∈[r′], to which the sender replies with (β1, r0,1, r1,1, σ̃
1
0, σ̃

1
1),

where (α̃1
S,0, σ̃

1
0)←$ S′(1λ, α̃0

S,0), (α̃1
S,1, σ̃

1
1)←$ S′(1λ, α̃0

S,1).

3. Repeat the steps below, for each i ∈ [r′]:

(a) R∗ sends a tuple (δi,m0,i,m1,i). Let Ti = (γi, βi, (δi, (m0,j)j∈[i], (m1,j)j∈[i])).
Hence:

i. If V1(Ti) = 0, restart the experiment with fresh randomness for R∗.
Since the protocol is correct with non-negligible probability, it will
only take polynomial time to find a run where R∗ never gets restarted
within this step in any iteration.

ii. Rewind R∗ at the beginning of the current iteration, and send a
freshly sampled tuple (β′i, r

′
0,i, r

′
1,i) with the same distribution as be-

fore.
(b) R∗ replies with (δ′i,m

′
0,i,m

′
1,i). Let T ′i = (γi, β

′
i, (δ

′
i, (m

′
0,j)j∈[i], (m

′
1,j)j∈[i])).

Hence:
i. If V1(T

′
i ) = 0, we restart R∗ as in step 3(a)i (again this can be done in

polynomial time). If V1(T
′
i ) = 1 and on both branches (m′0,j)j∈[i] ̸=

(m0,j)j∈[i] and (m′1,j)j∈[i] ̸= (m1,j)j∈[i], the sender aborts.
ii. Attempt to define b′ as the binary value for which (m′b′,j)j∈[i] ̸=

(mb′,j)j∈[i], but (m′1−b′,j)j∈[i] = (m1−b′,j)j∈[i]. If such value is found,
halt and go directly to step 4 after setting b def

= b′.
(c) The sender computes (α̃i+1

S,0 , σ̃
i+1
0 )←$ S′(α̃iS,0,m′0,i+r′0,i), (α̃

i+1
S,1 , σ̃

i+1
1 )←$

S′(α̃iS,1,m′1,i+r′1,i), samples (βi+1, r0,i+1, r1,i+1) as in the original protocol,
and forwards (σ̃i+1

0 , σ̃i+1
1 , βi+1, r0,i+1, r1,i+1) to R∗.

4. Rewind R∗ to step 2, and re-start running the experiment from there with the
following differences applied to each iteration i ∈ [r′]:
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(a) Denote by (β′′i , r
′′
0,i, r

′′
1,i) the new challenges sent to R∗ in step 3(a)ii, and

with (δ′′i ,m
′′
0,i,m

′′
1,i) the corresponding answer computed by R∗ in step 3b.

Also let T ′′i = (γi, β
′′
i , (δ

′′
i , (m

′′
0,j)j∈[i], (m

′′
1,j)j∈[i])).

(b) If either V1(T
′′
i ) = 0, or V1(T

′′
i ) = 1 and on both branches (m′′0,j)j∈[i] ̸=

(m0,j)j∈[i] and (m′′1,j)j∈[i] ̸= (m1,j)j∈[i], the sender aborts.
(c) Attempt to define b′′ as the binary value for which (mb′′,j)j∈[i] ̸= (m′′b′′,j)j∈[i],

but (m1−b′′,j)j∈[i] = (m′′1−b′′,j)j∈[i]. If such value is found, but b′′ ̸= b the
sender aborts.

(d) The sender aborts if b′′ ̸= ⊥, but (m′′b′′,j)j∈[i] = (mb′′,j)j∈[i].

(e) The sender computes (αi+1
S,0 , σ

i+1
0 )←$ S′(αiS,0,m′0,i+r′0,i), (α

i+1
S,1 , σ

i+1
1 )←$

S′(αiS,1,m′1,i+r′1,i) samples (βi+1, r0,i+1, r1,i+1) as in the original protocol,
and forwards (σi+1

0 , σi+1
1 , βi+1, r0,i+1, r1,i+1) to R∗.

5. Experiment output: The output of R∗.

Lemma 8. {H0(λ)}λ∈N ≈c {H1(λ)}λ∈N.

Proof. First notice that all the restarts and rewindings of R∗ do not change R∗’s
output distribution, they only decrease the probability of a protocol abort at the
cost of a polynomial increase in the running time.

For i ∈ [r′], consider the following events defined over the probability space of
H1(λ).

Event Wi
1,1: The event becomes true if the sender aborts during step 3(b)i, i.e. the

values (δi,m0,i,m1,i) and (δ′i,m
′
0,i,m

′
1,i) output by R∗ are such that there is no

b̂ ∈ {0, 1} for which (mb̂,j)j∈[i] = (m′
b̂,j
)j∈[i], and furthermore both transcripts

Ti and T ′i are valid transcripts for the underlying commit-and-prove protocol.

Event Wi
1,2: The event becomes true if the sender aborts during step 4b, i.e. the

values (δi,m0,i,m1,i) and (δ′′i ,m
′′
0,i,m

′′
1,i) output by R∗ are such that there is no

b̂ ∈ {0, 1} for which (mb̂,j)j∈[i] = (m′′
b̂,j
)j∈[i], and furthermore both transcripts

Ti and T ′′i are valid transcripts for the underlying commit-and-prove protocol.

Event Wi
1,3: The event becomes true if the sender aborts during step 4c, i.e., the

non-committing branches b′ and b′′ are different for the two runs of the ad-
versary (after rewinding).

Event Wi
1,4: The event becomes true if the sender aborts during step 4d, i.e., the

value b′′ was set in some previous iteration k < i, meaning that (mb′′,j)j∈[k]
̸= (m′′b′′,j)j∈[k], but during the i-th iteration the same branch becomes again
committing, meaning that (mb′′,j)j∈[i] = (m′′b′′,j)j∈[i].

Define Wi
1

def
= Wi

1,1 ∨Wi
1,2 ∨Wi

1,3 ∨Wi
1,4. For all PPT distinguishers D, by a union

bound, we can write

∆D(H0(λ);H1(λ)) ≤ Pr[∃i ∈ [r′] : Wi
1] ≤

r′∑
i=1

4∑
j=1

Pr[Wi
1,j ],
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and thus it suffices to prove that each of the events happens with negligible prob-
ability for all i ∈ [r′]. We show this fact below, which concludes the proof of the
lemma.

Claim 7. For all PPT R∗, and for all i ∈ [r′], we have that Pr[Wi
1,1] ∈ negl(λ).

Proof. The proof is down to the property of existence of a committing branch for the
commit-and-prove protocol. By contradiction, assume that there is a pair s0, s1 ∈
{0, 1}λ, some i ∈ [r′], a non-uniform PPT adversary R∗, and an auxiliary input
z ∈ {0, 1}∗, such that R∗(z) provokes event Wi

1,1 in an execution of H1(λ) with
non-negligible probability. We build a non-uniform PPT adversary P∗ that, given
i ∈ [r′], attacks the security of Πc&o as follows:6

1. Run R∗(z), and after receiving (γi)i∈[r′], forward γi to the challenger, thus
obtaining a challenge β.

2. Emulate a run of experiment H1(λ) with R∗, except that the value βi is defined
by embedding the value β received from the challenger.

3. Upon receiving (δi,m0,i,m1,i) from R∗, check that Ti = (γi, βi, (δi, (m0,j)j∈[i],
(m1,j)j∈[i])) is a valid transcript; if so, forward (δi, (m0,j)j∈[i], (m1,j)j∈[i]) to
the challenger.

4. Upon receiving a fresh challenge β′ for the commit-and-prove protocol from
the challenger, rewind R∗ as described in H1(λ), except that the value β′i is
defined by embedding the value β′ received from the challenger.

5. Upon receiving (γ′i,m
′
0,i,m

′
1,i) from R∗, check that T ′i = (γi, β

′
i, (δ

′
i, (m

′
0,j)j∈[i],

(m′1,j)j∈[i])) is a valid transcript; if so, forward (γ′i, (m
′
0,j)j∈[i], (m

′
1,j)j∈[i]) to

the challenger.

6. Complete the remaining steps of the protocol with R∗, as described in H1(λ).

Notice that the above simulation is perfect; this is because the values (β, β′) that
the reduction embeds during the i-th iteration have exactly the same distribution
as in an execution of experiment H1(λ), whereas all other iterations are perfectly
distributed as in H1(λ). It follows that adversary R∗ will provoke event Wi

1,1 with
non-negligible probability, which means that both the transcripts Ti and T ′i are
accepting, and moreover (m0,j)j∈[i] ̸= (m′0,j)j∈[i] and (m1,j)j∈[i] ̸= (m′1,j)j∈[i]. Thus,
P∗ wins with non-negligible probability, which concludes the proof of the claim.

Claim 8. For all PPT R∗, and for all i ∈ [r′], we have that Pr[Wi
1,2] ∈ negl(λ).

Proof. The proof is similar to the one of the previous claim, and therefore omitted.
The only difference is that the challenge β′ is now embedded by the reduction in
β′′i , and also the tuple (γ′′i , (m

′′
0,j)j∈[i], (m

′′
1,j)j∈[i]) is sent to the challenger after the

rewinding.

6We can also make the reduction uniform, at the cost of losing a polynomial factor in the
computational distance between the two hybrids (which is needed to guess the index i for which
event Wi

1,1 is provoked).
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Claim 9. For all PPT R∗, and for all i ∈ [r′], we have that Pr[Wi
1,3] ∈ negl(λ).

Proof. Without loss of generality, assume that b′ = 0 and b′′ = 1. Notice that event
Wi

1,3 means that both transcripts Ti and T ′′i are accepting for the commit-and-prove
protocol, and additionally (m0,j)j∈[i] ̸= (m′0,j)j∈[i], whereas (m1,j)j∈[i] ̸= (m′′0,j)j∈[i].
The latter contradicts the property of existence of a committing branch for the
commit-and-prove protocol. The formal reduction is similar to the one given above,
and is therefore omitted.

Claim 10. For all PPT R∗, and for all i ∈ [r′], we have that Pr[Wi
1,4] ∈ negl(λ).

Proof. Notice that event Wi
1,4 means that, for some iteration k < i, both tran-

scripts Tk = (γk, βk, (δk, (m0,j)j∈[k], (m1,j)j∈[k])) and T ′′k = (γk, β
′′
k , (δ

′′
k , (m

′′
0,j)j∈[k],

(m′′1,j)j∈[k])) are accepting for the commit-and-prove protocol, and additionally
there exists a value b ∈ {0, 1} such that branch b is non-committing, which means
(m1−b,j)j∈[k] = (m′′1−b,j)j∈[k]. However, during the i-th iteration, both transcripts
Ti and T ′′i are accepting for the commit-and-prove protocol, but branch b becomes
committing again. The latter implies that there exist accepting transcripts Tk and
T ′′k for which both (m1−b,j)j∈[i] = (m′′1−b,j)j∈[k] and (mb,j)j∈[k] = (m′′b,j)j∈[k], which
contradicts the property of existence of a committing branch for the commit-and-
prove protocol. The formal reduction is similar to the one given above, and is
therefore omitted.

Second hybrid. Hybrid H2(λ) proceeds identically to H1(λ), except for the fol-
lowing differences.

1. In step 1, the sender additionally sets α̃0
R′,0 = 1.

2. The distribution of the values r′0,i computed during step 3(a)ii is changed by
evaluating (α̃iR′,0, ρ̃

i
0)←$ R′(α̃i−1R′,0, σ̃

i
0), and by letting r′0,i = ρ̃i0 −m0,i.

Notice that the latter change is applied only to the first run of R∗ (i.e., up to the
point where the value b′ is set). This means that the distribution of the values
(r′′0,i)i∈[r′] is not modified.

Lemma 9. {H1(λ)}λ∈N ≈c {H2(λ)}λ∈N.

Proof. Let Wi
2 be the same event as Wi

1, but over the probability space of H2(λ).
For all PPT distinguishers D, we can write:

∆D(H1(λ);H2(λ)) ≤ ∆D(H1(λ);H2(λ)|∀i ∈ [r′] : ¬Wi
2) + Pr[∃i ∈ [r′] : W2].

An argument similar to that used in the proof of Lemma 8 shows that Pr[∃i ∈
[r′] : Wi

2] is negligible, hence it suffices to prove that ∆D(H1(λ);H2(λ)|∀i ∈ [r′] :
¬Wi

2) is also negligible. Note that the only difference between the two experiments
comes from the distribution of the messages (r′0,j)j∈[i∗], with i∗ ≤ r′ being the
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index corresponding to the round (if any) where the bit b′ is set during a run of
the protocol: In experiment H1(λ) these values are uniformly random, whereas in
experiment H2(λ) they are set to ρ̃j0−m0,j , where ρ̃j0 is generated by a fresh run of
the receiver for Π′ with choice bit fixed to one.

By contradiction, assume that there exists a pair of values s0, s1 ∈ {0, 1}λ, and
a non-uniform PPT distinguisher D, such that D can tell apart H1(λ) and H2(λ)
with non-negligible probability. We use D to construct a PPT distinguisher D̂
attacking the uniformity property (cf. property (b) in Definition 21) of protocol Π′.
Actually, for this particular step of the proof we only need a weaker property where
the distinguisher D̂ is honest but curious. The reduction works as follows:

1. Forward b̂ = 1, ŝ0 = s0, and uniform ŝ1 = u0 to the challenger.

2. Receive a challenge ((ρ̂i, σ̂i)i∈[r′], σ̂
r′+1) from the challenger.

3. Run experiment H2(λ) with D, except that the changes below are applied to
each iteration of the first run of the distinguisher:

(a) During step 3(a)ii, the value r′0,i is set to be r′0,i = ρ̂i−m′0,i, whereas r′1,i
is chosen uniformly at random in M.

(b) During step 3c, the value σ̃i+1
0 is defined by embedding the value σ̂i+1

from the challenge.

4. Output the same as D(output of R∗).

By inspection, depending on each pair (ρ̂i, σ̂i) being distributed either as in a hon-
est execution of protocol Π′ between S′(s0, u0) and R′(1), or as in an interaction
between S′(s0, u0) and using uniformly random group elements for the messages of
the receiver, the distribution generated by the reduction is identical either to that
of H1(λ) or to that of H2(λ). The latter in particular holds since we are condi-
tioning on the event Wi

2 not happening for all i ∈ [r′], which means that in H2(λ)
the values σ̃i+1

0 are computed by running the honest sender S′(s0, u0) upon input
r′0,i +m0,i = (ρ̃i0 −m0,i) +m0,i = ρ̃i0.

It follows that D̂ makes a perfect simulation, and thus it retains the same dis-
tinguishing advantage as that of D, which concludes the proof of the lemma.

Third hybrid. Hybrid H3(λ) proceeds identically to H2(λ), except for the fol-
lowing differences.

1. In step 1, the sender additionally sets α̃0
Sim′,0

= (1, u0) and defines σ̃10 as
(α̃1

Sim′,0
, σ̃10)←$ Sim′R′(1λ, α̃0

Sim′,0
).

2. The distribution of the values ρ̃i0 defined during step 3(a)ii, and of the val-
ues σ̃i0 defined during step 3c is changed by evaluating (α̃i+1

Sim′,0
, ρ̃i0, σ̃

i+1
0 )←$

Sim′R′(α̃1
Sim′,0

).

Notice that the latter change is applied only to the first run of R∗ (i.e., up to the
point where the value b′ is set). This means that the distribution of the values
(ρi0, σ

i
0)i∈[r′] is not modified.
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Lemma 10. H2(λ) ≈c H3(λ).

Proof. Let Wi
3 be the same event as Wi

2, but over the probability space of H3(λ).
For all PPT distinguishers D, we can write:

∆D(H2(λ);H3(λ)) ≤ ∆D(H2(λ);H3(λ)|∀i ∈ [r′] : ¬Wi
3) + Pr[∃i ∈ [r′] : W3].

An argument similar to that used in the proof of Lemma 8 shows that Pr[∃i ∈
[r′] : Wi

3] is negligible, hence it suffices to prove that ∆D(H2(λ);H3(λ)|∀i ∈ [r′] :
¬Wi

3) is also negligible. Note that the only difference between the two experiments
comes from the distribution of the values σ̃r′+1

0 ,(ρ̃j0, σ̃
j
0)j∈[i∗], with i∗ ≤ r′ being the

index corresponding to the round (if any) where the bit b′ is set during a run of
the protocol: In experiment H2(λ) these values are generated through a honest
execution of protocol Π′ between receiver R′ with choice bit fixed to 1 and sender
S′ with inputs (s0, u0), whereas in experiment H3(λ) they are generated by running
the simulator Sim′R′ .

The proof is down to the security of the underlying (2r′+1)-round OT protocol
Π′ = (S′,R′) w.r.t. semi-honest receivers (cf. property (a) of Definition 21). By
contradiction, assume that there exists a pair of inputs s0, s1 ∈ {0, 1}λ, and a non-
uniform PPT distinguisher D, such that D can tell apart H2(λ) and H3(λ) with
non-negligible probability. We construct a PPT distinguisher D̂ that given (s0, s1)
attacks semi-honest security of Π′ as follows:

1. Forward b̂ = 1, ŝ0 = s0, and ŝ1 = s1 to the challenger.

2. Receive a challenge (ρ̂i, σ̂i)i∈[r′], σ̂
r′+1 from the challenger.

3. Run experiment H3(λ) with D, except that the changes below are applied to
each iteration of the first run of the distinguisher:

(a) During step 3(a)ii, the value r′0,i is set to be r′0,i = ρ̂i−m′0,i, whereas r′1,i
is chosen uniformly at random in M.

(b) During step 3c, the value σ̃i+1
0 is defined by embedding the value σ̂i+1

from the challenge.

4. Output the same as D(output of R∗).

By inspection, depending on each pair (ρ̂i, σ̂i) being distributed either as in a honest
execution of protocol Π′ between S′(s0, u0) and R′(1), or as computed by the sim-
ulator Sim′R′ with inputs (1λ, 1, u0), the distribution generated by the reduction is
identical either to that of H2(λ) or to that of H3(λ). The latter in particular holds
since we are conditioning on the event Wi

3 not happening for all i ∈ [r′], which
means that in H2(λ) the values σ̃i0 are computed by running the honest sender
S′(s0, u0) upon input r′0,i +m0,i = (ρ̃i0 −m0,i) +m0,i = ρ̃i0.

It follows that D̂ makes a perfect simulation, and thus it retains the same dis-
tinguishing advantage as that of D, which concludes the proof of the lemma.
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Fourth hybrid. Hybrid H4(λ) proceeds identically to H3(λ), except for the fol-
lowing differences.

1. In step 1, the sender additionally sets α̃0
R′,1 = 1.

2. The distribution of the values r′1,i computed during step 3(a)ii is changed by
evaluating (α̃iR′,1, ρ̃

i
1)←$ R′(α̃i−1R′,1, σ̃

i
1), and by letting r′1,i = ρ̃i1 −m1,i.

Notice that the latter change is applied only to the first run of R∗ (i.e., up to the
point where the value b′ is set). This means that the distribution of the values
(r′′1,i)i∈[r′] is not modified. The proof of the lemma below is identical to the proof of
Lemma 9, and is therefore omitted.

Lemma 11. {H3(λ)}λ∈N ≈c {H4(λ)}λ∈N.

Fifth hybrid. Hybrid H5(λ) proceeds identically to H4(λ), except for the follow-
ing differences.

1. In step 1, the sender additionally sets α̃0
Sim′,1

= (1, u1) and defines σ̃11 as
(α̃1

Sim′,1
, σ̃11)←$ Sim′R′(1λ, α̃0

Sim′,1
)

2. The distribution of the values ρ̃i1 defined during step 3(a)ii, and of the val-
ues σ̃i1 defined during step 3c is changed by evaluating (α̃i+1

Sim′,1
, ρ̃i1, σ̃

i+1
1 )←$

Sim′R′(α̃iSim′,1
).

Notice that the latter change is applied only to the first run of R∗ (i.e., up to the
point where the value b′ is set). This means that the distribution of the values
(ρi1, σ

i
1)i∈[r′] is not modified. The proof of the lemma below is identical to that of

Lemma 10, and is therefore omitted.

Lemma 12. {H4(λ)}λ∈N ≈c {H5(λ)}λ∈N.

Sixth hybrid. Hybrid H6(λ) proceeds identically to H5(λ), except for the fol-
lowing differences.

1. In step 4, the sender additionally sets α0
R′,1−b = 1. If b = ⊥, set both α0

R′,0 =

α0
R′,1 = 1.

2. The distribution of the values r′′1−b,i computed during step 4a is changed by
evaluating (αiR′,1−b, ρ

i
1−b)←$ R′(αi−1R′,1−b, σ

i
1−b), and by letting r′1−b,i = ρ̃i1−b −

m1−b,i. If b = ⊥, such a change is applied on both branches.

The proof of the lemma below is identical to the proof of Lemma 9, and is therefore
omitted.

Lemma 13. {H5(λ)}λ∈N ≈c {H6(λ)}λ∈N.
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Seventh hybrid. Hybrid H7(λ) proceeds identically to H6(λ), except for the
following differences.

1. In step 4, the sender additionally sets α0
Sim′,1−b = (1, u1−b) and defines σ11−b as

(α1
Sim′,1−b, σ

1
1−b)←$ Sim′R′(1λ, α0

Sim′,1−b). If b = ⊥, set both α0
Sim′,0

= (1, u0),
α0

Sim′,1
= (1, u1) and generate σ10, σ11 as (α1

Sim′,0
, σ10)←$ Sim′R′(1λ, α0

Sim′,0
),

(α1
Sim′,1

, σ11)←$ Sim′R′(1λ, α0
Sim′,1

)

2. The distribution of the values ρi1−b defined during step 4a, and of the values
σi+1
1−b defined during step 4e is changed by evaluating (αi+1

Sim′,1−b, ρ
i
1−b, σ

i+1
1−b)←$

Sim′R′(αiSim′,1−b). If b = ⊥, such changes are applied on both branches.

The proof of the lemma below is identical to that of Lemma 10, and is therefore
omitted.

Lemma 14. {H6(λ)}λ∈N ≈c {H7(λ)}λ∈N.

Simulator. We are now ready to describe the simulator Sim, interacting with the
ideal functionality FOT. The simulator works as follows:

1. Pick u0, u1←$M, and let α̃0
Sim′,0

= (1, u0), α̃0
Sim′,1

= (1, u1), (α̃1
Sim′,0

, σ̃10)

←$ Sim′R′(1λ, α̃0
Sim′,0

), (α̃1
Sim′,1

, σ̃11)←$ Sim′R′(1λ, α̃0
Sim′,1

), and b, b′, b′′ = ⊥.

2. Upon receiving (γi)i∈[r′] from R∗, sample β1←$ V0(1
λ), r0,1, r1,1←$M, and

send (β1, r0,1, r1,1, σ̃
1
0, σ̃

1
1) to R∗.

3. Repeat the steps below, for each i ∈ [r′]:

(a) Upon receiving a tuple (δi,m0,i,m1,i) from R∗, let Ti = (γi, βi, (δi, (m0,j)j∈[i],
(m1,j)j∈[i])). Hence:

i. If V1(Ti) = 0, restart R∗.
ii. Rewind R∗ at the beginning of the current iteration, and send a tuple

(β′i, r
′
0,i, r

′
1,i) where β′i←$ V0(1

λ), r′0,i = ρ̃i0−m0,i and r′1,i = ρ̃i1−m1,i,
for (α̃i+1

Sim′,0
, ρ̃i0, σ̃

i+1
0 )←$ Sim′R′(α̃iSim′,0

) and for (α̃i+1
Sim′,1

, ρ̃i1, σ̃
i+1
1 )←$

Sim′R′(α̃iSim′,1
).

(b) Upon receiving a tuple (δ′i,m′0,i,m′1,i) from R∗, let T ′i = (γi, β
′
i, (δ

′
i, (m

′
0,j)j∈[i],

(m′1,j)j∈[i])). Hence:
i. If V1(T

′
i ) = 0, restart R∗. If V1(T

′
i ) = 1 and on both branches

(m′0,j)j∈[i] ̸= (m0,j)j∈[i] and (m′1,j)j∈[i] ̸= (m1,j)j∈[i], abort.
ii. Attempt to define b′ as the binary value for which (m′b′,j)j∈[i] ̸=

(mb′,j)j∈[i], but (m′1−b′,j)j∈[i] = (m1−b′,j)j∈[i]. If such value is found,
halt and go directly to step 4 after setting b def

= b′.
(c) Forward (σ̃i+1

0 , σ̃i+1
1 , βi+1, r0,i+1, r1,i+1) to R∗, where βi+1←$ V0(1

λ), and
r0,i+1, r1,i+1←$M.
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4. Query FOT upon input b, obtaining a value sb ∈ {0, 1}λ.7 Let α0
Sim′,1−b =

(1, u1−b), α0
S′,b = (sb, ub) and define σ10, σ11 as (α1

Sim′,1−b, σ
1
1−b)←$ Sim′R′(1λ,

α0
Sim′,1−b),(α

1
S′,b, σ

1
b )←$ S′(1λ, α0

S′,b). Rewind R∗ to step 2, sample β1←$ V0(1
λ),

r0,1, r1,1←$M, and send (β1, r0,1, r1,1, σ
1
0, σ

1
1) to R∗.

5. Repeat the steps below, for each i ∈ [r′]:

(a) Upon receiving a tuple (δi,m0,i,m1,i) from R∗, let Ti = (γi, βi, (δi, (m0,j)j∈[i],
(m1,j)j∈[i])). Hence:

i. If V1(Ti) = 0, restart R∗.
ii. Rewind R∗ at the beginning of the current iteration, and send a

tuple (β′′i , r
′′
0,i, r

′′
1,i) where β′′i ←$ V0(1

λ), r′′1−b,i = ρi1−b −m1−b,i and
r′′b,i←$M, for (αi+1

Sim′,1−b, ρ
i
1−b, σ

i+1
1−b)←$ Sim′R′(αiSim′,1−b).

(b) Upon receiving a tuple (δ′′i ,m′′0,i,m′′1,i) from R∗, let T ′′i = (γi, β
′′
i , (δ

′′
i , (m

′′
0,j)j∈[i],

(m′′1,j)j∈[i])). Hence:
i. If either V1(T

′′
i ) = 0, or V1(T

′′
i ) = 1 and on both branches (m′′0,j)j∈[i] ̸=

(m0,j)j∈[i] and (m′′1,j)j∈[i] ̸= (m1,j)j∈[i], abort.
ii. Attempt to define b′′ as the binary value for which (m′′b′′,j)j∈[i] ̸=

(mb′′,j)j∈[i], but (m′′1−b′′,j)j∈[i] = (m1−b′′,j)j∈[i]. If such value is found,
but b′′ ̸= b, abort.

iii. If b′′ ̸= ⊥, but (m′′b′′,j)j∈[i] = (mb′′,j)j∈[i].
(c) Forward (σi+1

0 , σi+1
1 , βi+1, r0,i+1, r1,i+1) to R∗, where βi+1←$ V0(1

λ), and
r0,i+1, r1,i+1←$M, and further (αi+1

S′,b, σ
i+1
b )←$ S′(αiS′,b,m

′′
b,i+r

′′
b,i), while

σi+1
1−b was obtained in step 5(a)ii above.

6. Return the output of R∗.

The distribution of H7(λ) is identical to that of the ideal experiment IDEALFOT,SimR∗(z)

(λ, s0, s1, b) for the above defined simulator. This concludes the proof of property
(a) in the definition of receiver-sided simulatability.

Indistinguishability Against a Malicious Sender

We need to show that given the view of a malicious sender it is hard to distinguish
whether he has interacted with a receiver using choice bit b = 0 or b = 1. More
precisely, for every non-uniform PPT malicious sender S∗ it holds that{

viewR
Π,S∗(z)(λ, s0, s1, 0)

}
λ,s0,s1,z

≈c
{

viewR
Π,S∗(z)(λ, s0, s1, 1)

}
λ,s0,s1,z

where λ ∈ N, s0, s1 ∈ {0, 1}λ, and z ∈ {0, 1}∗, and where viewR
Π,S∗(z)(λ, s0, s1, b) is

the distribution of the view of S∗ (with input s0, s1 and auxiliary input z) at the
end of a real execution of Π with the honest receiver R (with input b).

7In case b = ⊥, it is not necessary to query the ideal functionality. In fact, the latter means
that in all iterations of the first run with the adversary, both branches for the C&O protocol
are committing, and so they will be in the second run. Thus, the simulator can simply use the
simulation strategy for the committing branch, which is independent of the sender’s input, on both
branches.
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Let H0(λ, b) ≡ viewR
Π,S∗(z)(λ, s0, s1, b). To show the above, we define the follow-

ing hybrid H(λ, b).

1. The receiver picks for all i ∈ [r′] m1−b,i←$M. Then, he computes (γi, αi)←$

P0((m1−b,j)j∈[i]) and sends (γi)i∈[r′].

2. Repeat for each i ∈ [r′]: Upon receiving (σi0, σ
i
1, βi, r0,i, r1,i) the receiver picks

ρib←$M, sets mb,i = ρib − rb,i, computes δi←$ P1(αi, βi, γi, (mb,j)j∈[i]), and
sends (δi,m0,i,m1,i).

3. The experiment outputs the view of malicious sender S∗.

Notice that the output distribution of H1(λ, b) does not change when we sample
mb,i←$M during the first step and define ρib = mb,i + rb,i in the second step.

Lemma 15. For all b ∈ {0, 1}, we have that {H0(λ, b)}λ∈N ≈c {H1(λ, b)}λ∈N.

Proof. By contradiction, assume that there exists a PPT distinguisher D, a bit
b ∈ {0, 1}, and a polynomial p(λ) ∈ poly(λ) such that for infinitely many values of
λ ∈ N:

|Pr[D(H0(λ, b) = 1]− Pr[D(H1(λ, b)) = 1]| ≥ 1/p(λ).

We will construct a PPT distinguisher D′ such that∣∣∣∣P [
D′(αr′D, (ρi, σi)i∈[r′]) = 1 :

∀i ∈ [r′], (αiR, ρ
i)←$ R(αi−1R , σi)

∧ (αiD, σ
i)←$D(αi−1D , ρi)

]
− P

[
D′(αr′D, (ρi, σi)i∈[r′]) = 1 :

∀i ∈ [r′], ρi←$M
∧ (αiD, σ

i)←$D(αi−1D , ρi)

] ∣∣∣∣ ≥ 1/p(λ).

We define D′ as follows. Distinguisher D′ invokes D and acts as in the actual
protocol, except for the way he samples the values ρi which are obtained from
the challenger after forwarding each of the values σi sent by the malicious sender.
Finally, D′ outputs the same as D. It is easy to see that when ρi is generated
by R, then D′ simulates H0(λ, b), and when ρi is picked uniformly at random he
generates H1(λ, b). Hence, D′ has the same distinguishing advantage as that of D.
This finishes the proof.

In H1(λ, b) we can sample both messages m1,i, m0,i for all i ∈ [n] of the C&O
protocol in the very beginning. Therefore we can use the choice bit indistinguisha-
bility to argue that the receivers choice bit is hidden. This fact is formalized in the
lemma below.

Lemma 16. {H1(λ, 0)}λ∈N ≈c {H1(λ, 1)}λ∈N.

Proof. The proof is by a standard hybrid argument. For each j ∈ [0, r′], let
H1,j(λ, b) be the hybrid experiment that is identical to H1(λ, b) except that af-
ter sampling (m0,i,m1,i)i∈[r′] uniformly from M, the receiver defines all commit-
ments (γi)i≤j by running the prover P of the underlying C&O protocol upon input
(m1−b,i)i≤j , whereas the commitments (γi)i>j are defined by running the prover
P upon input (mb,i)i≤j . Observe that H1,0(λ, b) ≡ H1(λ, 1 − b) and H1,r′(λ, b) ≡
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H1(λ, b); hence, it suffices to show that H1,j(λ, b) ≈c H1,j+1(λ, b) holds for all
b ∈ {0, 1} and for all j ∈ [0, r′].

By contradiction, assume that there exists a PPT distinguisher D, a value b ∈
{0, 1}, an index j ∈ [0, r′], and a polynomial p(λ) ∈ poly(λ), such that for infinitely
many values of λ ∈ N:

|P [D(H1,j(λ, b)) = 1]− P [D(H1,j+1(λ, b)) = 1]| | ≥ 1/p(λ).

We will construct a PPT distinguisher D′ and a PPT malicious verifier V∗ such that∣∣P [
D′(⟨P((mb,i)i≤j+1, (m1−b,i)i≤j+1, 0),V∗(1λ)⟩) = 1

]
− P

[
D′(⟨P((mb,i)i≤j+1, (m1−b,i)i≤j+1, 1),V∗(1λ)⟩) = 1

] ∣∣ ≥ 1/p(λ),

where for all i ∈ [r′], the values m0,i,m1,i are uniformly sampled by D′ fromM. Ver-
ifier V∗ invokes D and emulates faithfully a run of H1,j(λ, b) except that it embeds
the commitment received from the challenger in the value γj+1 which is part of the
first message sent to D, and similarly, after receiving (σj+1

0 , σj+1
1 , βj+1, r0,j+1, r1,j+1)

from D, it forwards βj+1 to the challenger, obtaining a value δj+1 that is used to-
gether with (mb,i)i≤j+1 and (m1−b,i)i≤j+1 in order to terminate the execution of the
experiment. In the end, D′ outputs the output of D.

Clearly, when the challenger uses committing branch zero, the reduction per-
fectly simulates H1,j(λ, b), and when the challenger uses committing branch 1, the
reduction perfectly simulates H1,j+1(λ, b). Since r′ ∈ poly(λ), the statement follows.
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Chapter 4

Fair and Publicly Verifiable
MPC on Forkable Blockchains

4.1 Threat Model

Our n-party parallel coin-tossing (PCT) protocol in the presence of hasty players is
secure w.r.t. dishonest majority, meaning that it can tolerate up to n− 1 corrupted
players. We assume that the blockchain adversary is computationally bounded, and
when there is a fork in the blockchain, we pragmatically assume that the adversary
has negligible impact on deciding which branch will be confirmed. Our generic
compiler can be secure in the presence of hasty players w.r.t. dishonest majority
when the protocol to be compiled is secure w.r.t. dishonest majority. We point
out that if one would like to consider a very strong adversary with even 49% of
the computational power of the network, then clearly our assumption does not
hold. However, we stress that with such an adversary even the 6-block rule in
Bitcoin does not make much sense. To guarantee that a delicate transaction (i.e.,
the coinbase transaction) is confirmed with a strong enough adversary, up to 144
blocks are necessary in Bitcoin [BW], meaning 1 day to communicate even a single
protocol message. Therefore if one would like to consider such strong adversaries
even a protocol requiring one confirmation might be impractical.

We will also consider adversaries mounting DoS attacks through aborts. In our
context the adversary can mount this attack by causing an abort to the protocol
by e.g. not playing anymore and, in our generic compiler, also by sending different
messages on different branches, making honest players abort the execution. Such
adversaries have the only purpose of penalizing honest players that will therefore
waste time and transaction fees and perhaps restarting the protocol from scratch.

4.2 Running MPC on Forking Blockchains

In this section, we formalize different ways how to run an MPC protocol with the
aid of a blockchain. In Section 4.2.1 we specify what it means to run an MPC
protocol on the blockchain both in the presence of hasty and non-hasty players.
The security definition appears in Section 4.2.2.
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4.2.1 Blockchain-Aided MPC
Next, we define what it means to run an n-party protocol π for securely computing
some function f : ({0, 1}∗)n → ({0, 1}∗)n over a blockchain protocol Γ.

Intuitively, running π on Γ simply means that the players write the protocol’s
messages on the blockchain instead of using point-to-point connections. However,
since the blockchain may fork, the protocol’s participants have to choose how to
manage possibly unconfirmed blocks that are part of the current chain. Looking
ahead, this choice will have impact both on the efficiency and on the security of
the protocol execution. In particular, we distinguish between hasty and non-hasty
players as formalized below.

Non-hasty execution. Roughly speaking, a player is said to be non-hasty if it
always decides its next message by looking at the transcript of the protocol that is
obtained by pruning the last k blocks of the blockchain, where k is the parameter
for the consistency property of the underlying blockchain.

Definition 22 (Non-hasty player). Let Γ = (UpdateState,GetRecords,Broadcast)
be a blockchain protocol with k-consistency. A player Pi is said to be non-hasty if
it behaves as follows:

• Initialize τ (0)i := ε, αi := ε and ri := 0.

• Run the following loop:

– Update the state αi by running UpdateState(1λ), and retrieve Bi←$

GetRecords(αi) until the partial transcript τ (ri) is contained in B⌈ki .
– If the protocol is over (i.e., the transcript τ (ri) is sufficient for determining

the output), output the value yi as a function of τ (ri)i and terminate.

– Else, compute the next protocol messagem(ri+1)
i , invoke Broadcast(m(ri+1)

i ),
and set ri := ri + 1.

Hasty execution. On the other hand, a player is hasty if it decides and broadcasts
its next message by looking at the latest version of the blockchain (i.e., without
pruning blocks). Since the consistency property does not hold for the last k blocks,
hasty players may retrieve different protocol’s transcripts as the protocol proceeds.
In particular, it may happen that at a given time step party Pi reads from the
blockchain a partial transcript τ (r̃), whereas at a later time step the same player
reads τ (r̃′) for some r̃′ < r̃. This is due to the fact that some of the messages
contained in τ (r̃) may end up in unconfirmed blocks, and thus be discarded.

Definition 23 (Hasty execution). Let Γ = (UpdateState,GetRecords,Broadcast) be
a blockchain protocol with k-consistency. A player Pi is said to be hasty if it behaves
as follows:

• Initialize τ (0)i := ε and αi := ε.

• Run the following loop:
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– Update the state αi by running UpdateState(1λ), and let Bi←$ GetRecords(αi).
– Let r̃ ≥ 0 be the maximum value such that the partial transcript τ (r̃) ∈
Bi.

– If the protocol is over (i.e., the transcript τ (r̃) is sufficient for determining
the output), output the value yi as a function of τ (r̃) and terminate.

– Else, compute the next protocol messagem(r̃+1)
i and invoke Broadcast(m(r̃+1)

i ).

More generally, we call φ-hasty a player that is non-hasty until a partial tran-
script τ (φ) is at least k blocks deep in the blockchain, and afterwards it starts being
hasty. We sometimes call φ the finality parameter. Note that a 0-hasty player is
identical to a hasty player, whereas an ∞-hasty player is identical to a non-hasty
player. We call (χ, φ)-hasty a player that is hasty for the first χ rounds, and then
behaves like a φ-hasty player.

4.2.2 Security in the Presence of Hasty Players
We can now define security of MPC protocols running on the blockchain. As in the
standard setting, the definition compares a protocol execution in the real world with
one in the ideal setting where a trusted party is made available. The main difference
with the standard definition is that the attacker A is given black-box access to the
algorithms in Γ, which it can use arbitrarily. The simulator is not allowed to control
the blockchain (i.e. it must simulate the view of the adversary while invoking the
algorithms in Γ on behalf of the honest players).

The real model: This is the execution of π on Γ, where the honest players are φ-
hasty. As usual, the adversary A is coordinated by a non-uniform distinguisher
D. At the outset, D chooses the inputs (1λ, xi) for each player Pi, and gives
I, {xi}i∈I and z to A, where I ⊆ [n] represents the set of corrupted players
and z is some auxiliary input. The parties then start running π on Γ, with
the honest players Pi being φ-hasty and behaving as prescribed in π (using
input xi), and with malicious parties behaving arbitrarily (directed by A). At
some point, A gives to D an arbitrary function of its view; note that the latter
includes the view generated via EXECΓ,A,D(λ) in the blockchain protocol.
Finally, D receives the outputs of the honest parties and must output a bit.
We denote by REALΓ,φ

π,A,D(λ) the random variable corresponding to D’s guess.

The ideal model: This is identical to the ideal model for standard MPC, with
the only difference that the simulator Sim is also responsible for simulating
the attacker’s view corresponding to the interaction of the honest players with
the blockchain. The latter is achieved using the algorithms of the underlying
blockchain protocol Γ. We denote by IDEALΓ

f,Sim,D(λ) and IDEALΓ
f⊥,Sim,D(λ)

the random variable corresponding to D’s guess in the ideal world, where the
latter is for the case of security with aborts.

Definition 24 (Secure MPC in the presence of hasty players). Let π be an n-
party protocol run over a blockchain protocol Γ. We say that π t-securely computes
f in the presence of φ-hasty players and malicious adversaries if for every PPT
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adversary A there exists a PPT simulator Sim such that for every non-uniform PPT
distinguisher D corrupting at most t parties the following holds:{

REALΓ,φ
π,A,D(λ)

}
λ∈N
≈c

{
IDEALΓ

f,Sim,D(λ)
}
λ∈N .

When replacing IDEALΓ
f,Sim,D(λ) with IDEALΓ

f⊥,Sim,D(λ) we say that π t-securely
computes f with aborts in the presence of φ-hasty players and malicious adversaries.

Remark 2 (On φ = ∞). One may think that every protocol π that t-securely
computes f (with or without aborts) in the presence of malicious adversaries, must
t-securely compute f (with or without aborts) in the presence of ∞-hasty (i.e.,
non-hasty) players and malicious adversaries.

Remark 3 (On φ = 0). Note that when the players are fully hasty (i.e., φ = 0), the
adversary’s view in the real world may include multiple executions of the original
protocol π (upon the same inputs chosen by the distinguisher). This view may not
be possible to simulate in the ideal world, where the simulator can invoke the ideal
functionality f only once.

For this reason, whenever φ = 0, we implicitly assume that the simulator is
allowed to query the ideal functionality f multiple times. Note that this yields a
meaningful security guarantee only for certain functionalities f , similarly to the
setting of resettably secure computation [GS09].

Remark 4 (On the power of the adversary). We stress that we assume that the
adversary of the MPC protocol has no impact on the execution of the consensus
protocol of the underlying blockchain. Note that if we would instead assume that
the adversary of the MPC protocol also creates new branches and/or contributes in
deciding which branch of a fork is eventually confirmed on the blockchain then he
can have an unfair advantage. Indeed the adversary can start more branches when
he does not like the output computed in a branch, and/or can decide which output
among the various outputs appearing in different branches should be confirmed on
the blockchain. Obviously the above unfair advantages are unavoidable and our
protocol is still secure by introducing the unavoidable real-world attack into the ideal
world, similarly to the classical fairness issue resolved through aborts in the ideal
world.

Remark 5 (On public verifiability). We notice that any on-chain MPC protocol
with hasty players admits the case where a honest player complete her execution
computing an output that does not necessarily correspond to the transcript that
others later on will see on the blockchain. In other words, the local output computed
by players could not match the publicly verifiable execution that remains visible on
the blockchain. The reason why public verifiability could fail is that an execution of
the protocol could be entirely contained in a branch of a fork that will not become
permanent in the blockchain. The above issue is intrinsic in all protocols played on-
chain in the presence of forks and hasty players. An obvious solution for a honest
player consists of waiting that the last message of the protocol is confirmed on the
blockchain and only after that the computation ends returning the computed output.
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Random oracle model. Our result in Section 4.3.1 are secure in the random
oracle model (ROM). The definition remains the same, except that each player in
the real world has now access to a truly random hash function Hash chosen at the
beginning of the experiment. The simulator of the ideal world can program the
random oracle.

4.3 Parallel Coin Tossing
A coin-tossing protocol allows a set of players to agree on a uniformly random
string, and has many important applications (e.g., it allows to easily implement
a decentralized lottery). Our protocol leverages standard techniques to achieve
fairness with penalties, but does not require finality (thus allowing players to be
fully hasty). We start summarizing the protocol of [ADMM16] below and we show
that their protocol becomes completely insecure in the presence of hasty players.
This naturally leads to our new protocol, which we describe and analyze in Section
4.3.1.

The protocol of Andrychowicz et al. Recall that in the Bitcoin ledger, each
account is associated to a pair of keys (pk, sk), where pk is the verification key
of a signature scheme—representing the address of an account—while sk is the
corresponding secret key used to sign (the body of) the transactions. Each block
on the ledger contains a list of transactions, and new blocks are issued by an entity
called miner. The blockchain is maintained via a consensus mechanism based on
proof of work; users willing to add a transaction to the ledger forward it to the
miners, which will try to include it in the next minted block.

In the description below, we say that a transaction is valid if it is computed
correctly (i.e., the signature is valid, the coins have not been spent already, and so
on), and that it is confirmed if it appears in the common-prefix of all the miners
(i.e., it is at least k-blocks deep in the ledger). Each transaction Tx includes:

• A set of input transactions Tx1,Tx2, · · · from which the coins needed for the
actual transaction Tx are taken;

• A set of input scripts containing the input for the output scripts of Tx1,Tx2, · · · ;

• An output script defining in which condition Tx can be claimed;

• The number of coins taken from the redeemed transactions;

• A time lock t specifying when Tx becomes valid (i.e., a time-locked transaction
won’t be accepted by the miners before time t has passed).

The construction by [ADMM14, ADMM16] relies on a primitive called time-
locked commitment. Let n denote the number of parties. Each party Pj creates n−1
Commitji ̸=j transactions containing a commitment to its lottery value. In particular,
the output script of such a transaction ensures that it can be claimed either by Pj via
an Openji transaction exhibiting a valid opening for the commitment, or by another
transaction that is signed by both Pj and Pi. Before posting these transactions on
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the ledger, Pj creates a time-locked transaction PayDepositji redeeming Commitji ,
sends it off-chain to each Pi ̸=j , and finally posts all the Commitji transactions on the
ledger. In case Pj does not open the commitment before time τ , then each recipient
of a PayDepositji transaction can sign it and post it on the ledger; since time τ has
passed, the miners will now accept the transaction as a valid transaction redeeming
Commitji . More in details:

Deposit phase: Each player Pj computes a commitment yj = Hash(xj ||δj), where
δj is some randomness, sends off-chain the PayDepositji transactions (with
time-lock τ) to each Pi ̸=j , and posts the Commitji transactions.

Betting phase: Pj bets one coin in the form of a transaction PutMoneyj (redeem-
ing a previous transaction held by Pj , and with Pj ’s signature as output
script). All the players agree and sign off-chain a Compute transaction taking
as input all the (PutMoneyj)j∈[n] transactions, and then the last player that
receives the Compute transaction posts it on the ledger. In order to claim this
transaction, a player Pw′ must exhibit the openings of the commitments of
all participants: The script checks that the openings are valid, computes the
index of the winner w (as a function of the values x1, . . . , xn), and checks that
w′ = w (i.e., the only participant that can claim the Compute transaction is
the winner of the lottery).

Compensation phase: After time τ , in case some player Pj did not send all
of its {Openji}i∈[n],i ̸=j transactions, all the other players Pi ̸=j can post the
PayDepositji transaction, thus obtaining a compensation.

A simple attack in the presence of hasty players. The main idea behind our
attack is that, in the presence of hasty players, the protocol’s messages can end-up
answering messages appeared on (still) unconfirmed blocks. By looking at different
branches of a fork, an attacker can try to change an old (in the sense that even
an answer to it has already been published on-chain) unconfirmed transaction by
re-posting it, with the hope that it will end-up on a different branch and become
part of the common prefix. This essentially corresponds to a reset attack on the
protocol.

The construction described above relies on the (implicit) assumption that the
players are non-hasty. In particular, each player Pj should wait to post its PutMoneyji
transaction only after all the Commitji transactions are confirmed on the ledger, in
such a way that all players are aligned on the same branch (and so the miners have
the {Commitji}i∈[n],j ̸=i transactions in their common prefix). In the case of hasty
players, when a fork occurs, an attacker can take advantage of the openings of the
other parties played in a faster branch in order to bias the result of the lottery
on a slower branch. If eventually the slower branch remains permanently in the
blockchain, then clearly the attack is successful.

For concreteness, let us focus on Blum’s coin tossing, in which the winner is
defined to be w = x1 + . . .+ xn mod n+ 1. Consider the following scenario:

• The (hasty) players P1, . . . ,Pn run a full instance of the protocol; note that
this requires at least 3 blocks.
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• The attacker Pn hopes to see a fork containing all the {Commitij} transactions
of the other n− 1 players.

• Since the attacker Pn now knows the openings x1, . . . , xn−1, it can post a new
set of {Commit′in}i∈[n],i ̸=n transactions containing a commitment to a value x′n
such that x1 + . . .+ xn−1 + x′n mod n+ 1 = n.

In case the new set of transactions ends up on a different branch which is finally
included in the common prefix, Pn wins the lottery. In the next section, we propose
a new protocol that does not suffer from this problem.

4.3.1 Our PCT Protocol
We now present a parallel coin-tossing (PCT) protocol on blockchain that is secure
in the presence of hasty players. The main challenge that we face is that the protocol
must prevent an adversary from choosing adaptively her contribution to the coin
tossing in a branch of a fork, after possibly seeing the contributions of the other
players in different branches.

We tackle this problem by requiring that each honest party computes his con-
tribution by evaluating a unique signature upon input the public keys of all players.
Notice that if the adversary A sees some signatures in a branch, and changes her
public key in another branch, then A cannot predict the signatures of the honest
players on this other branch by the unforgeability property of the signature scheme,
and thus A will not manage to bias the final output. Hence, we hash the concate-
nation of all the signatures in order to determine the final output. Assuming that
the hash function is modelled as a random oracle, we would like to argue that the
output of the protocol looks uniform.

However, the following subtlety arises. Assume without loss of generality that
only Pn is corrupt and that the protocol proceeds until the end on a given branch
of the blockchain. Denote by pkn the public key chosen by the attacker. Further,
assume that A notices another branch where all honest players have already sent
their public keys. Now, the adversary can either: (i) publish a different public key
pk′n, or (ii) publish the same public key pkn as in the other branch. In case A “likes”
the outcome of the protocol on the first branch, she will choose option (ii) and thus
can bias the protocol output.

To avoid the above attack, we identify each branch with a string bid that is
uniquely associated to it, and include bid as part of the message to sign. Intuitively,
this solves the previous problem as, even if all the public keys stay the same on two
different branches, the value bid will change thus ensuring that the protocol output
will also be different (and uniformly random). We proceed with a more detailed
description of our protocol (see also Fig. 4.1).1

• One of the players chooses a random value sid that represents the identifier
of the current protocol execution, and publishes sid on the blockchain.

1Note that our protocol can be run on generic blockchains. In Section 4.5 , we provide an
implementation using Ethereum smart contracts, but the protocol can also be implemented in
Bitcoin using the opcode OP_RETURN in case players do not need to get fairness with penalties.
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• Each player Pi willing to participate generates the public and private keys for
the unique signature (pki, ski)←$ Gen(1λ), and publishes pki on the blockchain.

• Each player Pi lets yi = Sign(ski, pk1|| · · · ||pkn||sid||bid), where bid is the hash
of the blockchain2 up to the block that contains the last public key, and
publishes yi on the blockchain.

• Each player Pi checks that Verify(pkj , x, yj) = 1 for all j ̸= i, where x = pk1||
· · · ||pkn||sid||bid, and outputs Hash(y1|| · · · ||yn).

We stress that thanks to the value bid, the protocol execution becomes branch
dependent. In particular, the chances of success of a corrupted Pj to bias the output
are not affected by the potential use of different public keys in branches of a fork
corresponding to a protocol run with a given sid.

Parallel Coin Tossing Protocol π∗
pct

Let (Gen, Sign,Verify) be a signature scheme with message space M = {0, 1}∗, and Hash :
{0, 1}∗ → {0, 1}λ be a hash function.

• P1 picks sid←$ {0, 1}λ, and runs Broadcast(sid).
• For each i ∈ [n], Pi generates (pki, ski)←$ Gen(1λ) and runs Broadcast(pki).
• For each i ∈ [n], Pi executes Bi←$ GetRecords(1λ,UpdateState(1λ)) until all public keys

pk1, . . . , pkn are contained in Bi, and then defines bid := Hash(Bi).
• For each i ∈ [n], Pi computes yi = Sign(ski, x), where x = pk1|| . . . ||pkn||sid||bid and

runs Broadcast(yi).
• For each i, j ∈ [n], with i ̸= j, Pi checks that Verify(pki, x, yi) = 1, and, if so, it outputs

Hash(y1|| · · · ||yn) and else it aborts.

Figure 4.1. Our new protocol for parallel coin tossing.

Security analysis. Let fpct be the n-party functionality that picks a uniformly
random string ω and sends it to all the n parties. The theorem below establishes
the security of our coin-tossing protocol in the (programmable) random oracle (RO)
model. We note that the security of the original protocol by Andrychowicz et
al. [ADMM14, ADMM16] also relies on the RO heuristic, as do all currently known
analysis of blockchain protocols [GKL15, PSS17].

Theorem 5. If (Gen,Sign,Verify) is a unique signature scheme, the protocol of
Fig. 4.1 securely implements the functionality fpct in the presence of hasty players
and malicious adversaries with aborts, in the programmable RO model.

We need to show that for every PPT adversary A, there exists a PPT simulator
Sim such that no non-uniform PPT distinguisher D can tell apart the experiments

2For efficiency the hash can be more simply applied to the block containing pkn. Nevertheless,
for the sake of simplicity of the protocol description and of the security analysis we will stick with
hashing the entire blockchain.
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REALΓ,0
π,A,D(λ) and IDEALΓ

fpct
⊥ ,Sim,D(λ). In particular, the simulator needs to sim-

ulate the interaction of the honest players with the blockchain protocol Γ as it
happens in the real experiment.

Recall that the ideal coin-tossing functionality does not take any input, and
returns a random string ω to all parties. Intuitively, the simulator Sim will just
emulate a real execution of the protocol by reading the attacker’s messages from the
blockchain. Furthermore, after querying the ideal functionality, Sim will program
the random oracle upon input ω. At the same time, Sim needs to simulate the
answer to A’s random oracle queries q, which is done as follows:

• If A already queried the random oracle upon q, obtaining answer ω̃, then Sim
returns the same value ω̃;

• Else, if pk1, . . . , pkn are not all available on the blockchain, Sim answers the
query q with a fresh random value ω̃;

• Otherwise, Sim parses q as ỹ1|| . . . ||ỹn, and checks that Verify(pki, x, ỹi) = 1
for all i ∈ [n], where x = pk1|| . . . ||pkn||sid||bid and bid is derived by hashing
the blockchain up to the block containing the last public key. If the check
passes, Sim programs Hash(q) to the value ω obtained by fpct

⊥ , else it answers
with a fresh random value ω̃.

The above strategy does not consider the fact that the real protocol may be run
multiple times on different branches. However, since each execution has associated
a different bid′ ̸= bid, the simulator can simply query again the functionality in
order to obtain a new random value ω′, and program the random oracle on ω′ in the
execution corresponding to bid′. Roughly speaking, the attacker A can potentially
take advantage from the following three actions: (i) A can refuse to publish her
signed message; (ii) A can try to change the public keys of corrupted parties over
different branches; (iii) A can try to choose the signature that produces the best
possible output. Action (i) is equivalent to aborting the protocol, and can be easily
handled by the simulator, since we achieve security with aborts. Action (ii) is tackled
by the use effect of the of bid: regardless of A using the same or another public key,
the outcome of the protocol in different branches are always independent. Finally,
as for action (iii), note that this attack is prevented by the uniqueness property of
the signature scheme that ensures that for every (possibly malicious) public key pk
and every input x, there exists at most one valid signature y that is not rejected by
the verification algorithm.

Proof. We begin by describing the simulator. Upon input the set of corrupted
parties I, and auxiliary input z, the simulator Sim proceeds as follows:3

1. Initialize an empty array L. Sample a random value sid←$ {0, 1}λ, and run
Broadcast(sid).

2. Generate (pki, ski)←$ Gen(1λ) and run Broadcast(pki) for each i ̸∈ I.

3For simplicity, we assume that the player P1 initiating the protocol is honest; if not, it is easy
to adapt the simulation by having Sim using the value sid written by A on the blockchain.
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3. Keep running GetRecords(UpdateState(1λ)) until all public keys pk1, . . . , pkn
are published on the blockchain; when that happens define bid to be the hash
of the blockchain up to the block containing the last public key.

4. If L does not already contain the value bid, query the ideal functionality fpct
⊥ ,

obtaining a random value ω, and store (bid, ω) in L. Then complete the
simulation for branch bid as follows:

(a) For each i ̸∈ I, let yi = Sign(ski, x) where x = pk1|| · · · ||pkn||sid||bid.
Then run Broadcast(yi).

(b) Keep running GetRecords(UpdateState(1λ)) until all values y1, . . . , yn are
published on the blockchain; when that happens check that Verify(pki, x, yi) =
1 for all i ∈ [n]. If any of these checks fails, send abort to fpct

⊥ , simulate
A aborting, and terminate. Else, in case Hash(y1|| · · · ||yn) was already
set to ω′ ̸= ω, abort the simulation and terminate. In this last case, we
say that the simulator fails to program the random oracle.

5. Upon input a random oracle query q from A, answer as follows:

(a) If there exists a pair (bid, ω) ∈ L for which it is possible to parse q :=
y1|| · · · ||yn so that Verify(pki, x, yi) = 1 for all i ∈ [n]—where x =
pk1|| · · · ||pkn||sid||bid for the values sid, (pk1, . . . , pkn) that appear in the
simulation of branch bid—program Hash(q) := ω and answer query q
with ω. If ω was already given as output for a different query then we
say that the simulator fails creating a collision when programming the
random oracle.

(b) Else, return a random value (maintaining consistency among repeated
queries).

Notice that Sim simulates perfectly the messages written on the blockchain by
the honest players in a real execution of π∗pct, including their interaction with the
blockchain protocol Γ. Moreover, in each branch bid, the simulator perfectly emu-
lates an abort of the protocol due to the fact that A sends invalid signatures. Hence,
the only difference between the real and ideal experiment is that in the latter, for
each branch bid, the simulator forces the protocol output to be a fresh random value
received from the ideal coin-tossing functionality. Consider the following events:

Event BAD1: The event becomes true in case the simulator fails to program the
random oracle in step 4b of the simulation.

Event BAD2: The event becomes true in case, the simulator fails creating a col-
lision as described in step 5a. This is possible when for a given branch bid,
there exists an index i ∈ I such that the attacker produces two outputs yi and
y′i such that yi ̸= y′i and Verify(pki, x, yi) = Verify(pki, x, y′i) = 1, and queries
the random oracle first using y′i therefore obtaining ω, and then querying yi
therefore obtain again ω.

Event BAD3: The event becomes true in case there exist two branches with dif-
ferent public keys, but for which the value bid is the same.
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Let BAD = BAD1∪BAD2∪BAD3. We claim that conditioning on BAD, the
experiments REALΓ,0

π,A,D(λ) and IDEALΓ
fpct
⊥ ,Sim,D(λ) are identical. This is because

conditioning on BAD1 not happening, the attacker never queries the random oracle
on pk1|| · · · ||pkn||sid||bid before the protocol execution on branch bid terminates, and
thus the final output ω on that branch is uniformly distributed from the point of
view of A (as it happens to be in the ideal world). Furthermore, conditioning on
BAD2 and BAD3 not happening, the simulator correctly assigns a single random
value ω to each branch identified by bid.

Next, we show that each of the above events happens at most with negligible
probability. By a standard argument, this concludes the proof as the computational
distance between REALΓ,0

π,A,D(λ) and IDEALΓ
fpct
⊥ ,Sim,D(λ) is at most equal to the

probability of event BAD.

Lemma 17. For all PPT A, there exists a negligible function ν1(·) such that
P [BAD1] ≤ ν1(λ).

Proof. Notice that event BAD1 happens if and only if there exists a protocol execu-
tion corresponding to a branch bid for which the attacker A queries the random ora-
cle upon input y1|| · · · ||yn before these values appear on the blockchain. Intuitively,
this requires that A forges a signature for one of the public keys corresponding to
one of the honest players, and thus P [BAD1] must be negligible. The reduction is
straightforward: Given a PPT attacker provoking event BAD1 with non-negligible
probability, we can construct a PPT attacker A′ as follows. Initially, A′ tries to
guess the index i ̸∈ I and the branch index j ∈ poly(λ) (λ) corresponding to the
protocol execution in which A will provoke event BAD1. Hence, A′ simulates the
execution of protocol π∗pct with A as done in the real experiment, except that on the
j-th branch it sets pki to be the public key pk∗ received from the challenger.

Finally, A′ waits that A makes a random oracle query y1|| · · · ||yn such that
Verify(pki, x, yi) = 1, where x = pk1|| · · · ||pkn||sid||bid; if the latter does not hap-
pen, A′ aborts, else it forwards (x, yi) to the challenger. The proof follows by ob-
serving that, with non-negligible probability, A′ does not abort, and thus it breaks
unforgeability with non-negligible probability.

Lemma 18. For all PPT A, there exists a negligible function ν2(·) such that
P [BAD2] ≤ ν2(λ).

Proof. Notice that event BAD2 directly contradicts uniqueness of the signature
scheme (Gen,Sign,Verify). Hence, P [BAD2] must be negligible. The reduction is
straightforward: Given a PPT attacker provoking event BAD2 with non-negligible
probability, we can construct a PPT attacker A′ as follows. Initially, A′ tries to
guess the index i ∈ I and the branch index j ∈ poly(λ) (λ) corresponding to the
protocol execution in which A will provoke event BAD2. Hence, A′ simulates the
execution of protocol π∗pct with A as done in the real experiment.

Finally, A′ waits that A publishes on the j-th branch the two values yi, y′i which
make the event BAD2 become true; if the latter does not happen, A′ aborts, else
it forwards (pki, yi, y′i) to the challenger where the public key pki is the public
key corresponding to the i-th player on the j-th branch. The proof follows by
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observing that, with non-negligible probability, A′ does not abort, and thus it breaks
uniqueness with non-negligible probability.

Lemma 19. For all PPT A, there exists a negligible function ν3(·) such that
P [BAD3] ≤ ν3(λ).

Proof. Notice that event BAD3 directly contradicts collision resistance of the hash
function Hash. Hence, P [BAD3] must be negligible. The reduction is straightfor-
ward: Given a PPT attacker provoking event BAD3 with non-negligible probability,
we can construct a PPT attacker A′ that simply emulates a protocol execution with
A as in the real experiment. The values bid, as well as the answers to A’s random
oracle queries, are obtained by querying the target random oracle. Hence, whenever
A′ finds a fork with two different branches B and B′ such that Hash(B) = Hash(B′),
it outputs (B,B′) and stops. Since A provokes event BAD3 with non-negligible
probability, A′ wins with the same probability. This concludes the proof.

Putting the above lemmas together, by a union bound, there exists a negligible
function ν(·) such that P [BAD] ≤ ν(λ), as desired.

Fairness with penalties. We now discuss how to augment the protocol π∗pct in
order to achieve fairness with penalties. First of all, each party should publish also
a deposit along with her public key on the blockchain. The deposit can be redeemed
by showing a valid signature on the value x = pk1|| · · · ||pkn||sid||bid.

Assume that Pn is corrupted. The adversary can wait that the honest parties
publish their value y1, . . . , yn−1 on a given branch, and thus locally compute the
output Hash(y1|| · · · ||yn), where yn is Pn’s signatures on x corresponding to public
key pkn. Now, if Pn does not like the output it can either: (i) publish yn in any
case , or (ii) decide not to publish yn. In case (i), Pn plays honestly, takes back his
deposit and every player obtains the output. In case (ii), Pn aborts the protocol,
but loses her deposit.

Note that the penalty mechanism for our protocol is too sophisticated for the
scripting language used in Bitcoin. Instead in Ethereum we can design a smart
contract to define the PCT protocol, having fairness with penalties and without
penalizing the efficiency.

In Section 4.5 we give details about how the smart contract works.
We call π̃∗pct the fair (with penalties) version of protocol π∗pct. The informal

description of the smart contract used in π̃∗pct is given in Fig. 4.2 and the protocol
is described below:

(i) Setup phase: At the beginning, one of the players creates the smart contract.
When the contract is posted on the blockchain, the constructor automatically
generates a unique session identifier sid.

(ii) Deposit phase: For each i ∈ [n], Pi can decide to participate to the PCT
protocol by triggering the function d to send a safety deposit and his public
key pki of an unique signature scheme. After time1 blocks have passed, if
(pk1, . . . , pkn) are collected by the smart contract, it computes bid as Hash(B),
where B is the blockchain that contains (pk1, . . . , pkn). The deposit phase ends
and parties can start to redeem their deposit.
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(iii) Claim phase: For each i ∈ [n], Pi can claim his deposit back by triggering
the function claim of the smart contract and sending a value yi such that
Verify(pki, x, yi) = 1, where x = pk1|| · · · ||pkn||sid||bid, and pki is the public
key of Pi. After time2 blocks have passed, the claim phase ends and the smart
contract computes and publishes the output as Hash(y1|| · · · ||yn).

The Parallel Coin Tossing Smart Contract runs with players P1, . . . ,Pn
and consists of two main functions d and claim and two fixed timestamps
time1,time2 and a session id sid.

Deposit Phase: In round t1, when d(pki) together with d coins is triggered
from a party Pi, store (i, pki). Then, if (pk1, . . . , pkn) are stored, compute
and store bid := Hash(B) and proceed to the Claim Phase. Otherwise, for
all i, if the message (i, pki) has been stored, send back d coins to Pi and
terminate.

Claim Phase: In round t2, when claim(i, yi) is triggered from Pi, check if
Verify(pki, x, yi) = 1, where x = pk1|| · · · ||pkn||sid||bid. If the check is
correct send d coins back to Pi.

Compute Phase: If, after time2, all the yi are correctly claimed, compute and
publish Hash(y1, . . . , yn).

Figure 4.2. Smart contract for parallel coin tossing.

Theorem 6. If (Gen,Sign,Verify) is a unique signature scheme, π̃∗pct described in
Fig. 4.2 securely realizes fpct and satisfies fairness with penalties in the presence of
hasty players and malicious adversaries, in the programmable RO model.

Proof Sketch. The privacy of the protocol is proven by following the same outline
of Theorem. 5. We have to prove that π̃∗pct is fair (with penalties).

There are four possible scenarios that can happen and in each of them either
all parties learn the output or the adversary A loses her deposit. An output out of
π̃∗pct is considered valid if it is confirmed on the blockchain. The four scenarios are
described below.

Scenario 1: A does not exploit branches to play different public keys on different
execution of π̃∗pct. Fairness follows from the smart contract execution (i.e., if
A does not provide the signature of x, A will lose her deposit).

Scenario 2: There is the following time-line: there is a fork with two branches b1
and b2 and the Setup Phase is published before the fork, but the Deposit Phase
is executed after the fork. A aborts (i.e., A does not provide the signature of
x) the execution of π̃∗pct in b1 and exploits b2 in the following way: in b2
a corrupted player Pi double spends (for any kind of transaction) the coins
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deposited in b1. In this case, either b1 gets confirmed, thus, boiling down
to Scenario 1, or b2 get confirmed and all the transactions sent to the smart
contract of π̃∗pct in branch b1 are not valid b2 since the deposit of Pi is previously
spent in another transaction. It guarantees fairness since in b1 the adversary
is punished, and in b2 there’s no execution, and so no valid output

Scenario 3: This scenario follows the same time-line of Scenario 2. A aborts (i.e., A
does not provide the signature of x) the execution of π̃∗pct in b1 and exploits b2
in the following way: a corrupted player Pi publishes a different public key pki
in b2 (wlog., we analyze the case with two executions but it can be extended to
multiple executions). In this case, the execution of π̃∗pct is restarted from the
beginning of the Deposit Phase in b2 and the output that A learned on b1 is not
valid anymore. If b1 gets confirmed it boils down to Scenario 1, otherwise the
honest players learn the valid output computed in b2. It guarantees fairness
because in b1 the adversary is punished, while in b2 all parties will learn the
output.

Scenario 4: There is the following time-line: there is a fork with two branches
b1 and b2 and the Deposit Phase is published before the fork, but the Claim
Phase is executed after the fork. A corrupted party Pi sends yi = Sign(ski, x)
in the Claim Phase in b1 and disliking the output out of the execution of π̃∗pct
in b1, Pi exploits b2 to send y′i ̸= yi. We note that if y′i is a valid signature for
x under secret key ski we can create an adversary A′ breaking the uniqueness
of the signature scheme. It means that y′i cannot be a valid signature. If b1
gets confirmed Pi is not penalized and every player will learn out, otherwise
if b2 gets confirmed Pi is penalized and no party will learn the output.

A remark on DoS attacks. Note that in π̃∗pct there is no need to fix the identity
of the participants “before” the execution of the protocol. We can consider the case
in which a party Pi participates to a protocol execution only after she triggers the
d function giving as an input her public key. Our PCT protocol can be executed
even if only two parties decide to participate and thus n does not need to be fixed
beforehand. Moreover, time1 is independent of n and of the number of blocks to
wait for considering a transaction confirmed. Registered parties are not incentivized
to abort the protocol (i.e., by not triggering the claim function) due to financial
compensation (parties must send a collateral deposit together with the first mes-
sage). This makes DoS attacks in which the attacker aborts the protocol multiple
times (making honest parties waste time and money) financially inconvenient.

4.3.2 Experimental Evaluation
We also provide some experiments to show noticeable improvements of our PCT
protocol with respect to the lottery protocol of Andrychowicz et al. in terms of
number of blocks needed for completion of the protocol.

We evaluate the efficiency of π∗pct compared with the protocol from [ADMM14,
ADMM16]. To evaluate the efficiency in the best case we consider the following
assumptions:
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• Transactions in the last k blocks are considered not confirmed yet.

• All parties send the message at round i of the protocol as soon as they read
all messages from round i− 1 on B⌈ki , where k is 0 in case of hasty executions.

• Whenever a player broadcasts a transaction, it appears in the next block.

• All messages in a round of the MPC protocol fit in a single block.

In case of non-hasty executions if we have a ρ-round MPC protocol π running
on the blockchain, the number of blocks needed to complete the execution with the
previous assumption is ρ · k.

Analysis. We now give a comparison between our coin-tossing protocol and the
one of Andrychowicz et al. In particular we will interpret the execution time as the
number of blocks needed to complete the steps of each protocol. To allow for a fair
comparison between our coin-tossing protocol and the one presented in [ADMM14,
ADMM16], we implemented both protocols in Solidity using Ethereum smart con-
tracts.4 See Fig. 4.6 and Fig. 4.7 for the code of the smart contracts.

For both protocols, in the deposit phase, a timeout t̄ must be provided by the
contract creator, so that players have enough time to send their deposits together
with the corresponding additional information required by the protocol. In the
ideal conditions described above, the timeout can be of just one block. The same
argument applies to the opening phase of [ADMM14, ADMM16]. A comparison is
described below:

• Lottery: Due to the expressiveness of smart contracts, our implementation
of [ADMM14, ADMM16] requires one step less than the original implemen-
tation using in bitcoin. Specifically, we can embed the betting phase in the
commit/deposit phase, by just requiring that the players deposit 1 more coin.
Since in their setting block confirmation is required at each step, the overall
execution takes exactly 3 ·k blocks (including one round for posting the smart
contract).

• Our PCT: As proven in Section 4.3.1, our PCT protocol can be executed in
fully-hasty mode. The entire execution consists of 2 + k blocks (including 1
block for posting the contract and confirmation of the output). In the worst
case, where all messages will appear to the state of the honest player after k
blocks for each step, the overall execution takes 3 · k, as much as [ADMM16].

GAS consumption. As it can be seen in Fig. 4.3, PCT is more expensive in
terms of GAS consumption than Lottery. It is well motivated by the fact that Lot-
tery uses only hash function to compute the commitments and no other expensive
computations. Our PCT protocol needs also unique signatures. Our GAS calcula-
tion for unique signature is based on the BLS signatures implementation provided
for testing in [Fic], but improved implementations could potentially lower the GAS
consumption. It can be seen anyway as an affordable cost to pay to achieve efficiency
still maintaining the same security guarantees.

4Notice that the average time for a new block to appear is around 15 seconds[Eth].
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Figure 4.3. GAS consumption comparison between our smart contract implementation
of PCT (Section 4.3.1) protocol and the Lottery of Andrychowicz et al. [ADMM16]
(Section 4.3).

4.4 Our Generic Compiler
Our compiler starts from the observation that a stand-alone MPC protocol could be
insecure when executed on a blockchain. To be concrete, a rewinding simulator of
the MPC protocol can not be used to prove the security of the on-chain MPC pro-
tocol, since rewinding would have the unclear meaning of rewinding the blockchain.
Moreover, we do not want to give control of the blockchain to the simulator (i.e., no
control of the majority of the stake, of the computational power, and so on) since
our result aims at being generic w.r.t. the type of blockchain used. Essentially, the
simulator is going to incarnate just the honest players of the MPC protocol during
the simulation. In order to perform a simulation in the presence of a concurrently
played blockchain protocol, (i.e., rewinding is not possible and the blockchain is
generic and therefore not controlled by the simulator), we therefore require the
initial protocol π received in input by the compiler to be universally composable
secure. This guarantees the existence of a straight-line simulator and allows us to
avoid simulators that “control” the blockchain5, therefore allowing the applicability
of our results to generic blockchains. Additionally, we require π to have only “digi-
tal” communication since players when running the protocol on-chain must produce
messages that consists of bits only. Therefore an exchange of hardware (e.g., PUFs)
in π can not be accepted.

Notice that the original protocol might require private and authenticated chan-
nels. Since the entire traffic of our protocol will be redirected to the blockchain,
we will use public-key encryption and digital signatures. The first message of each
player in the compiled protocol will consist of a pair of public keys, one to receive

5Typically a simulator that controls the blockchain requires some specific assumptions on the
blockchain like in [GG17] where only some restricted proof-of-stake blockchains were compatible
with the simulation.
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encrypted messages and one to allow others to verify signatures of messages. Intu-
itively our transformation proceeds as follows. Our starting point is any MPC pro-
tocol π UC-securely computing an n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n
in the presence of malicious players (with aborts). Hence, the honest players fix
the random tape for running π and simply execute protocol π by broadcasting their
messages on the blockchain. Furthermore, each honest player Pi keeps track of
the longest protocol transcript αi generated so far and, in the presence of a fork,
aborts the execution in case the view on a given branch is not consistent with αi.
This intuitively ensures that the underlying protocol π is run only once, even in the
presence of forks.

Since the initial protocol π may require private channels between the players,
we need to augment the above transformation in such a way that subsets of honest
parties can exchange messages in a confidential and authenticated manner. Let m(r)

i,j

be the message that Pi sends to Pj at the generic round r. The latter is achieved
by having Pi encrypting m(r)

i,j using the public encryption key ekj of Pj , and then
signing the resulting ciphertext c(r)i,j with its own private signing key ski, which is
the standard way of building a secure channel. We refer the reader to the next
sub-section for a formal description.

On fairness through penalties. To obtain a fair with penalties protocol πfair,
we use the following technique, borrowed from [KB14, BK14]. Let’s consider a
protocol π′ running with parties P1, . . . ,Pn for a functionality f ′ that, given the
output y ← f(x1, . . . , xn), where xi is the input of player Pi, secret shares y into
(σ1, . . . , σn) (for a full threshold sharing scheme), generates a set of commitments
C = (γ1, . . . , γn) such that γi is the commitment of σi. Each player Pi obtains as an
output the pair (C, σi)

6. The fair protocol with penalties in the presence of hasty
players can be obtained as follows: (i) We compile π′ with our generic compiler,
obtaining π′bc. (ii) In our protocol πfair, parties P1, . . . ,Pn first engage in π′bc. After
π′bc ends, each Pi obtains the output (C, σi). Now, each Pi has a limited time t1
to send his tuple C to a smart contract together with a payment of some deposit.
(iii) If everyone sent the correct tuple C, each player Pi has another time shift t2 to
send their share σi of γi to receive back their deposit. Else, if after t2, (σ1, . . . , σn)
are posted to the smart contract, each Pi can reconstruct the output by using all
collected shares. Else, players that have not opened their shares within t2, will be
penalized since their coins will remain frozen forever into the smart contract.
We prove that fairness can be achieved if honest parties playing πfair wait for con-
firmation only of step (ii). The reason for requiring the confirmation of phase (ii) is
that otherwise the adversary can try to generate an abort during the execution of
π′bc after learning the output of the entire protocol πfair on a different branch. Now,
let’s say that t is the time needed for transaction confirmation in the blockchain,
and r the number of rounds of π′bc, πfair requires around r + 2t blocks to complete
the on-chain execution (including output confirmation). To maintain security of
Kumaresan et al. protocols by blindly posting messages on-chain, the overall exe-
cution requires around r · t blocks to be successfully terminated. More details are

6Pi implicitly receives also a decommitment information of γi.
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provided in Section 4.4.3.

Remark on DoS attacks. Note that in our construction deposits can be made
at the end of step (ii) since adversaries trying to violate fairness can be spotted only
during step (iii). Therefore an adversary can freely abort the execution before step
(iii). Intuitively, by taking as input a protocol achieving identifiable abort [IOZ14]
that is publicly verifiable7, a player cheating in any point of the protocol execution
can be successfully spotted and punished. This can be done by making a player
posting a smart contract that will act as an external judge that exploits public
verifiability of the underlying protocol. Unfortunately, protocols compiled with our
construction would lose the identifiable abort property. This is due to the fact that
the adversary can make honest players aborting by running two correct executions
of the underlying protocol on two branches but using different messages. In such
case, the two executions would be both considered valid in both branches by the
smart contract mentioned above.

We provide the formal description of our compiler in the following section, while
in Section 4.4.2 we analyze its security. Finally, in Section 4.4.3, we formally discuss
how to extend our generic transformation in order to achieve fairness with penalties,
as long as the players start being hasty after the confirmation of the first round.

4.4.1 Compiler Description
Intuitively our transformation proceeds as follows. Our starting point is any MPC
protocol π UC-securely computing an n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n
in the presence of malicious players (with aborts). Hence, the honest players fix
the random tape for running π and simply execute protocol π by broadcasting their
messages on the blockchain. Furthermore, each honest player Pi keeps track of
the longest protocol transcript αi generated so far and, in the presence of a fork,
aborts the execution in case the view on a given branch is not consistent with αi.
This intuitively ensures that the underlying protocol π is run only once, even in the
presence of forks.

Since the initial protocol π may require private channels between the players,
we need to augment the above transformation in such a way that subsets of honest
parties can exchange messages in a confidential and authenticated manner. Let m(r)

i,j

be the message that Pi sends to Pj at the generic round r. The latter is achieved
by having Pi encrypting m(r)

i,j using the public encryption key ekj of Pj , and then
signing the resulting ciphertext c(r)i,j with its own private signing key ski, which is
the standard way of building a secure channel. We refer the reader to Fig. 4.4
for a formal description. Note that wlog. we assume that for each round of the
underlying protocol π every Pi sends a single message to each Pj ̸=i over a private
and authenticated channel. Moreover, Pi picks a sufficiently long random tape ωi
that is then used to run π over Γ. Observe that ωi includes both the randomness
required to compute the messages in π and the random coins used to encrypt them.
In particular, in the presence of forks, an honest Pi that does not abort broadcasts
on the blockchain exactly the same ciphertexts on multiple branches.

7An efficient construction can be found at [BOSS20].
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Generic Compiler π∗

Let π be an n-party ρ-round protocol, and Γ = (UpdateState,GetRecords,Broadcast) be a
blockchain protocol. Further, let (Gen,Enc,Dec) be a PKE scheme and (Gen′,Sign,Verify) be
a signature scheme, both with domain {0, 1}∗. The protocol π∗ proceeds as follows:

• For i ∈ [n], each player Pi initializes αi := ε, samples (eki, dki)←$ Gen(1λ),
(vki, ski)←$ Gen′(1λ), and ωi←$ {0, 1}∗, and invokes Broadcast(eki||vki||i).

• For i ∈ [n], each player Pi keeps running αi←$ UpdateState(1λ) and
Bi←$ GetRecords(αi) until all the messages (ekj , vkj)j∈[n] ∈ Bi.

• For i ∈ [n], each player Pi sets τ (0) := (ekj , vkj)j∈[n] and αi := τ (0), and then runs the
following loop:

1. Update the state αi by running UpdateState(1λ), and let Bi←$ GetRecords(αi).
2. Let r̃ ≥ 0 be the maximum value such that the partial transcript τ (r̃) ∈ Bi. Then:

– If the ciphertexts in τ (r̃) are not consistent with those in αi, output ⊥ and
terminate.

– Else if r̃ = ρ, output the value yi as a function of τ (ρ) and terminate.
– Else, go to the next step and if αi is a prefix of τ (r̃) let αi := τ (r̃).

3. For each j ∈ [n], with j ̸= i, and for each r ≤ r̃, decrypt the ciphertexts c(r)j,i and
use the corresponding values m(r)

j,i to compute the messages m(r̃+1)
i,j to be sent at

round r̃ + 1 (using the corresponding portion of the random tape ωi).

4. Finally, let c(r̃+1)
i,j ←$ Enc(ekj ,m(r̃+1)

i,j ) (using again random coins coming from ωi)
and σ

(r̃+1)
i,j = Sign(ski, c

(r̃+1)
i,j ), and invoke Broadcast((c(r̃+1)

i,j ||σ(r̃+1)
i,j )j∈[n]\{i}).

Figure 4.4. Generic compiler for obtaining blockchain-aided MPC with hasty players.
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4.4.2 Security Analysis
The theorem below establishes the security of our generic compiler.
Theorem 7. Let (Gen,Enc,Dec) be a semantically secure PKE scheme, and (Gen′,
Sign,Verify) be a (deterministic) unforgeable signature scheme. Furthermore, let π
be an n-party ρ-round protocol that t-securely UC-realizes a functionality f with
aborts in the presence of malicious adversaries. Then, the protocol π∗ of Fig. 4.4
t-securely computes f with aborts in the presence of hasty players and malicious
adversaries.

UC security is needed due to the fact that the attacker in the real world may
interact with the blockchain by posting messages and reading its state. As shown
in [CGJ19], such blockchain-active adversaries render standard simulation tech-
niques (e.g., black-box rewinding) moot. Note also that Remark 3 does not hold for
our protocol. If the adversary tries to furnish two different inputs in two different
branches it can be spotted by some honest player, leading to an abort. Therefore
only one possible input can be given to the functionality.

We need to show that for every PPT adversary A∗, there exists a PPT simulator
Sim∗ such that no non-uniform PPT distinguisher D∗ can tell apart the experiments
REALΓ,0

π,A∗,D∗(λ) and IDEALΓ
f⊥,Sim∗,D∗(λ). In particular, the simulator Sim∗ needs

to simulate the interaction of the honest players with the blockchain protocol Γ
as it happens in the real experiment. Intuitively, Sim∗ relies on the simulator Sim
guaranteed by the underlying protocol π as follows. At the beginning, Sim∗ samples
the public/secret keys for encryption/signatures for the honest players. Then, Sim∗
runs A∗ reading its messages from the emulated execution of the blockchain protocol
Γ, and simulates its view as follows: (i) The round-r messages m(r)

j,i sent by the
honest players Pj to the malicious players Pi are obtained from the simulator Sim;
(ii) The round-r messages m(r)

j,j′ that are exchanged by the honest players Pj ,Pj′ are
replaced with the all-zero string. Of course, Sim∗ does additional bookkeeping in
order to simulate a real execution of the protocol using the blockchain; in particular,
Sim∗ needs to check that the attacker plays consistently on different branches of a
fork, and simulate an abort whenever the latter does not happen. Moreover, when
Sim extracts the inputs for the malicious parties, the simulator Sim∗ forwards the
same inputs to the trusted party, obtains the outputs for the malicious parties, and
sends it to Sim. Finally, Sim∗ completes the simulation consistently with the choice
of Sim of aborting or not.

Very roughly, the security of the PKE scheme and of the signature scheme imply
that the view of the attacker is identical to that in a real execution of protocol π,
so that security of π∗ follows by that of π.

Proof. We begin by describing the simulator Sim∗. Let Sim be the PPT simulator
guaranteed by the malicious security of π. Upon input the set of corrupted parties
I, inputs (xi)i∈I , and auxiliary input z, the simulator Sim∗ proceeds as follows:

1. Initialize Sim upon input (I, (xi)i∈I , z), with uniformly chosen random tape
ωsim←$ {0, 1}∗.

2. For each j ̸∈ I, sample (ekj , dkj)←$ Gen(1λ), (vkj , skj)←$ Gen′(1λ), ωj ←$ {0, 1}∗,
and invoke Broadcast(ekj ||vkj ||j).
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3. For each j ̸∈ I, keep running αj ←$ UpdateState(1λ) and Bj ←$ GetRecords(αj)
until all the messages (eki, vki)i∈[n] ∈ Bj . Set τ

(0)
j := (eki, vki)i∈[n] and

αj := τ (0).

4. For each j ̸∈ I, emulate the behavior of party Pj as follows:

(a) Update the state αj by running UpdateState(1λ), and let Bj ←$ GetRecords(αj).
(b) Let r̃ ≥ 0 be the maximum value such that the partial transcript τ (r̃) ∈
Bj . Then:

• If the ciphertexts in τ (r̃) are not consistent with those in αj , send
abort to the trusted party, simulate A∗ aborting in the real protocol,
and terminate.

• Else, go to the next step and if αj is a prefix of τ (r̃) let αj := τ (r̃).

(c) Extract from τ
(r̃)
j the ciphertexts (c

(r̃)
i,j )i∈I and the signatures (σ

(r̃)
i,j )i∈I

that A∗ (on behalf of each corrupted player Pi) forwards to Pj . If there
exists i ∈ I such that Verify(vki, σ(r̃)i,j ) = 0, send abort to the trusted
party, simulate A∗ aborting in the real protocol, and terminate. Else,
for each r ≤ r̃, decrypt the ciphertexts c(r)i,j using the decryption key dkj ,
and pass the corresponding messages ((m

(1)
i,j )i∈I,j∈H, . . . , (m

(r̃)
i,j )i∈I,j∈H)

to Sim. Hence:
• Upon receiving abort from Sim, send abort to the trusted party,

simulate A∗ aborting in the real protocol, and terminate.
• Upon receiving (xi)i∈I from Sim, send (xi)i∈I to the trusted party,

obtain the outputs (yi)i∈I , and forward (yi)i∈I to Sim. In case Sim
replies with (continue,H′), send (continue,H′) to the trusted party
and terminate.

• Upon receiving a set of messages (m
(r̃+1)
j,i )j∈H,i∈I—corresponding to

the simulated messages that each honest player Pj sends to the cor-
rupted party Pi— for each j ∈ H and i ∈ I compute c(r̃+1)

j,i ←$ Enc(eki,
,m

(r̃+1)
j,i ) (using coins from ωj) and σ

(r̃+1)
j,i = Sign(skj , c(r̃+1)

j,i ). Then,

for each j, j′ ∈ H, let c(r̃+1)
j,j′ ←$ Enc(ekj′ , 0

|m(r̃+1)

j,j′ |) (using coins from
ωj) and σ(r̃+1)

j,j′ ←$ Sign(skj , c(r̃+1)
j,j′ ), and finally invoke Broadcast((c(r̃+1)

j,i ||
σ
(r̃+1)
j,i )i∈[n]\{j}).

To conclude the proof, we consider a sequence of hybrid experiments (ending with
the real experiment) and argue that each pair of hybrids is computationally close
thanks to the properties of the underlying cryptographic primitives.

Hybrid H3(λ): This experiment is identical to IDEALΓ
f⊥,Sim∗,D∗(λ).

Hybrid H2(λ): Identical to H3(λ) except that we replace the ciphertexts (c(r)j,j′)j∈H,j′∈H\{j}
that each honest party Pj sends to the other honest players Pj′ with an en-
cryption of the real messages (m

(r)
j,j′)j∈H,j′∈H\{j} that the same parties would

send in a real execution of π. Note that the other ciphertexts (c
(r)
j,i )j∈H,i∈I
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are still emulated using the simulator, and the output of the experiment is
determined by the trusted party.
The inputs for the honest parties are chosen to be the values (xi)i∈H chosen
by the distinguisher D∗ at the beginning of the experiment, and the random
tape of each player is chosen uniformly once and for all as in the real world.

Hybrid H1(λ): Identical to H2(λ) except that we artificially abort if A∗ modi-
fies one of the ciphertexts (c

(r)
j,i )j∈H,i∈[n]\{j} corresponding to the messages

that each honest player sends in a given round. Note that these ciphertexts
correspond to both the real messages (m

(r)
j,j′)j∈H,j′∈H\{j} and the simulated

messages (m
(r)
j,i )j∈H,i∈I .

Hybrid H0(λ): This experiment is identical to REALΓ,0
π∗,A∗,D∗(λ).

Lemma 20. {H3(λ)}λ∈N ≈c {H2(λ)}λ∈N.

Proof. We reduce to semantic security of (Gen,Enc,Dec). Let h = |H|. For
k ∈ [0, h], consider the hybrid experiment H3,k(λ) in which the distribution of the
ciphertexts (c

(r+1)
j,j′ )j∈H,j′∈H\{j} is modified as in H2(λ) only for the first h honest

parties. Clearly, {H3,0(λ)}λ∈N ≡ {H3(λ)}λ∈N and {H3,h(λ)}λ∈N ≡ {H2(λ)}λ∈N.
Next, we prove that for every k ∈ [0, h] it holds that {H3,k(λ)}λ∈N ≈c {H3,k+1(λ)}λ∈N

which concludes the proof of the lemma. By contradiction, assume that there exists
an index k ∈ [0, h], and a pair of PPT algorithms (D∗,A∗) such that D∗ can distin-
guish the two experiments H3,k(λ) and H3,k+1(λ) with non-negligible probability.
We construct a PPT attacker B breaking semantic security of (Gen,Enc,Dec) as
follows:

• Receive the target public encryption key ek∗ from the challenger.

• Run D∗, receiving the set of corrupted parties I, the inputs (xi)i∈[n], and the
auxiliary input z, then pass (I, (xi)i∈I , z) to A∗.

• Interact with A∗ as described in the ideal experiment, except that:

– The public encryption key for player Pk+1 is set to be the target public
key ek∗.

– For each j ≤ k, when it comes to simulating the ciphertexts (c(r)j,j′)j′∈H\{j},
use the real messages (m

(r)
j,j′)j′∈H\{j}, encrypt them using the public en-

cryption key ekj′ of Pj′ , and sign the ciphertexts with the secret key skj
(which is known to the reduction).

– When it comes to simulating the ciphertexts (c
(r)
k+1,j′)j′∈H\{j}, forward

the pair of plaintexts (m
(r)
k+1,j′ , 0

|m(r)

k+1,j′ |)j′∈H\{k+1} to the left-or-right
encryption oracle and sign the corresponding ciphertexts using the secret
signing key skk+1 of Pk+1 (which is known to the reduction).

– For each j > k+1, when it comes to simulating the ciphertexts (c(r)j,j′)j′∈H\{j},

use the dummy messages (0|m
(r)

j,j′ |)j′∈H\{j}, encrypt them using the public
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encryption key ekj′ of Pj′ , and sign the ciphertexts with the secret key
skj (which is known to the reduction).

• Finally, run D∗ upon the final output generated by A∗, and return whatever
D∗ outputs.

Note that the reduction can indeed simulate the interaction with the blockchain
protocol Γ as in the ideal experiment, and moreover it can generate the real mes-
sages (mr

j,j′)j∈H,j′∈H\{j} as it knows the parties’ inputs (xi)i∈[n]. By inspection, the
simulation performed by B is perfect in the sense that when the challenger encrypts
the messages m(r)

k+1,j′ the view of (D∗,A∗) is identical to that in H3,k+1(λ). Similarly,

when the challenger encrypts the dummy messages 0
|m(r)

k+1,j′ | the view of (D∗,A∗) is
identical to that in H3,k(λ). Hence, B breaks semantic security of (Gen,Enc,Dec)
with non-negligible probability, concluding the proof.

Lemma 21. {H2(λ)}λ∈N ≈c {H1(λ)}λ∈N.

Proof. Let BAD be the event that an artificial abort happens in H1(λ). Note that
this means that, for some j ∈ H, the attacker A∗ replaces one of the ciphertexts
c
(r)
j,i that Pj would send to Pi in the real protocol with a different ciphertext c̃(r)j,i ,

in such a way that the corresponding signature σ̃(r)j,i is still accepting. Clearly, the
experiments H2(λ) and H1(λ) are identical conditioning on BAD not happening,
and does it suffices to show that P [BAD] is negligible.

Given a PPT distinguisher D∗ and a PPT attacker A∗ such that A∗ provokes
event BAD in a run of H2(λ) with non-negligible probability, we can construct a
PPT attacker B breaking security of the signature scheme (Gen′,Sign,Verify). The
reduction works as follows:

• Receive the target public verification key vk∗ from the challenger.

• Choose a random j∗ as a guess for the index corresponding to the honest party
for which A∗ provokes the bad event.

• Run D∗, receiving the set of corrupted parties I, the inputs (xi)i∈[n], and the
auxiliary input z, then pass (I, (xi)i∈I , z) to A∗.

• Interact with A∗ as described in H2(λ), except that:

– The public verification key for player Pj∗ is set to be the target public
key vk∗.

– When it comes to simulating the round-r messages from party Pj∗ , gen-
erate the ciphertexts (c

(r)
j∗,i)i∈[n]\{j∗} as done in H2(λ), and then forward

each of c(r)j∗,i to the challenger, obtaining the corresponding signature σ(r)j∗,i
that is needed in order to complete the simulation.

– Keep updating the local state of Pj∗ until an index i ∈ [n] \ {j∗} is
found such that the partial transcript αj∗ contains a pair (c̃

(r)
j∗,i, σ̃

(r)
j∗,i)

such that Verify(vkj∗ , c̃(r)j∗,i, σ̃
(r)
j∗,i) = 1 and c̃(r)j∗,i is different from the original

ciphertext c(r)j∗,i previously sent on behalf of Pj∗ .
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• If no such pair is found, abort the simulation. Else, return (c̃
(r)
j∗,i, σ̃

(r)
j∗,i).

Note that the simulation performed by B is perfect, in that the view of (D∗,A∗) is
identical to that in a run of H2(λ). Moreover, conditioning on B guessing the index
j∗ correctly, the reduction is successful in breaking security of the signature scheme
exactly with probability at least P [BAD], which is non-negligible. Since the former
event also happens with non-negligible probability, this concludes the proof.

Lemma 22. {H1(λ)}λ∈N ≈c {H0(λ)}λ∈N.

Proof. The proof is by reduction to UC-security of the underlying protocol π. By
contradiction, assume that there exists a PPT adversary A∗ and a non-uniform
PPT distinguisher D∗ that can distinguish between H1(λ) and H0(λ) with non-
negligible probability. Consider the following PPT attacker A, initialized with a set
of corrupted parties I, inputs (xi)i∈I for the malicious players, and auxiliary input
z = (z∗, (eki, dki)i∈[n], (vki, ski)i∈[n]) which will be specified later:

• Pass (I, (xi)i∈I , z∗) to A∗.

• For each i ∈ I, upon receiving the round-r messages (m
(r)
j,i )j∈H from the

honest players to the malicious players, let c(r)j,i ←$ Enc(eki,m(r)
j,i ) and σ

(r)
j,i =

Sign(skj , c(r)j,i ), and emulate broadcasting (c
(r)
j,i , σ

(r)
j,i )j∈H,i∈I via the blockchain

protocol.

• For each j ∈ H, upon receiving the round-r messages (m
(r)
i,j )i∈I that A∗

wants to send to the honest parties, let c
(r)
i,j ←$ Enc(ekj ,m(r)

i,j ) and σ
(r)
i,j =

Sign(ski, c(r)i,j ), and emulate broadcasting (c
(r)
i,j , σ

(r)
i,j )i∈I,j∈H via the blockchain

protocol.

• For each j ∈ H, compute the messages (m(r)
j,j′)j′∈H\{j} exchanged between hon-

est parties as done in H0 (which is the same in H1(λ)), let c(r)j,j′ ←$ Enc(ekj′ ,
m

(r)
j,j′) and σ(r)j,j′ = Sign(skj , c(r)j,j′), and emulate broadcasting (c

(r)
j,j′ , σ

(r)
j,j′)j∈H,j′∈H\{j}

via the blockchain protocol.

• In case a fork appears during the simulation of the underlying blockchain
protocol, replicate the messages from the honest players as done in the other
branches (using exactly the same randomness). On the other hand, if the
messages from A∗ differ from those sent on the simulation of a previous branch,
simulate A∗ aborting and terminate.

• Output whatever A∗ outputs.

Additionally, let Z be the following PPT distinguisher:

• Run D∗, receiving the set of corrupted parties I, the inputs (xi)i∈[n], and the
auxiliary input z∗, then sample (eki, dki) and (vki, ski) for all i ∈ [n], and pass
(I, (xi)i∈I , z) to the above defined attacker A, where z = (z∗, (eki, dki)i∈[n],
(vki, ski)i∈[n]).
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• Upon receiving the final output from A, pass it to D∗ and output whatever
D∗ outputs.

By inspection, in case the attacker A is playing in a real execution of protocol π,
the view of D∗ is identical to that in an execution of H0(λ) with A∗ controlling the
malicious parties. Similarly, in case the view of A is emulated using the simulator
Sim (corrupting the dummy parties controlled by A) of protocol π, the view of D∗ is
identical to that in an execution of H1(λ) with A∗ controlling the malicious parties.
It follows that Z can distinguish between REALπ,A,Z(λ) and IDEALf⊥,Sim,Z(λ)
with non-negligible probability, a contradiction.

The theorem now follows directly by combining the above lemmas.

4.4.3 Extending to Fairness with Penalties

In their work, Andrychowicz et al. [ADMM14, ADMM16] proposed a different no-
tion of fairness for MPC protocols that run on blockchain: fairness with penalties.
This notion states that if an adversary in an MPC protocol decides to abort the
execution of the protocol it will be financially penalized. To obtain the penalization
in the lottery protocol, Andrychowicz et al. added a deposit step in the protocol.

W discuss here how to obtain fairness with penalties following in part the outline
of [KB14, BK14].

Let’s now assume the existence of an (n, n)-secret sharing scheme (Share,Recon),
non-interactive commitment schemes, and consider a functionality f ′ that first cal-
culates y ← f(x1, . . . , xn), where each party Pi holds xi, and then calculates the
shares of the output (σ1, . . . , σn)←$ Share(y), the commitments C = (γ1, . . . , γn),
where γi←$ Commit(σi), and outputs (C, σi) to each player Pi. Let’s call π′ the
protocol realizing f ′, we can apply our generic compiler to π′ to obtain a protocol
π′bc that can be run in the blockchain. Our protocol πfair, running with players
P1 . . . ,Pn works as follows

(i) Protocol execution: All the players engage in the protocol π′bc. A party Pi
aborts the execution if π′bc aborts. Otherwise, obtains (C, σi) in the last round.

(ii) Smart contract: P1 publishes the smart contract depicted in Fig. 4.5.

(iii) Commitment phase: For each i ∈ [n], Pi triggers d(Ci) together with d coins,
where d is a fixed deposit. If some player does not publish his commitments
with the deposit or there is a disagreement on the commitments within time1
(i.e., a player Pj sends Cj ̸= Ci for some Pi ̸=j , or deposits a value di < d,
Pi abort the execution. Recall that abort in this phase is still fine, since no
information about the output y is released. Otherwise, if time1 has passed,
go to the Opening Phase.

(iv) Opening phase: For each i ∈ [n], Pi opens his commitment by sending openCom(i,
σi), thus receiving back his d coins, wait that all the openings are published
in the smart contract (within time2) and calculates y ← Recon(σ1, . . . , σn).
If, after time2, some share is missing, Pi aborts the execution.
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During the last phase, if some player did not open the commitment or sent an
incorrect value, the smart contract will penalize him by freezing his deposit. Thus,
the adversary is not incentivized to send an incorrect share.

This attempt to add fairness with penalties, however, introduces an attack.
Given an n-party protocol πΓf ′ obtained by the compiler described in Section ??
applied to πf ′ , with the addition of the smart contract, commit and opening phases
described above, we have the following scenario:

• For all i ∈ [n], party Pi runs πfair obtaining (C, σi).

• For all i ∈ [n], party Pi triggers d(C) together with d coins to the smart
contract.

• For all i ∈ [n− 1], party Pi opens his commitment by triggering openCom(σi).

• Wlog., we say that Pn is an adversary. Pn compute the output y. If Pn does
not like y in the current branch, Pn can try to exploit a fork happening during
the execution of πfair to change the in a different branch to obtain a new couple
(C ′, σ′n).

• The honest parties P1, . . . ,Pn−1 notice that there is a message published by
Pn that differs from the value previously received always by Pn. Since the
transcript obtained from the blockchain differs from the transcript stored in
their local state, they will abort.

The protocol described is not fair, since we can construct a counterexample that
prove that the unfair party Pn can obtain the output without being penalized.

P1, . . . ,Pn will play πΓf ′ to obtain (C, σi). As the smart contract is published,
Pn will trigger d(C) together with d coins. At this point, Pn waits that all Pi, with
i ∈ [n] publish the opening σi.

When Pn sees σ1, . . . , σn−1 on the blockchain, computes the output. If Pn dislikes
the output, then he tries to exploit a branch created before the end of the execution
of πfair to change messages in that branch to obtain an advantage. Since Pn publishes
different messages on different branches of the blockchain, there exist some party
Pi, with i ∈ [n] that will notice it, causing an abort in the protocol.

Let’s call b1 the branch where Pn learned the output and b2 the branch exploited
to change the execution of πfair. We have two cases:

• If b1 is the branch that will be confirmed on the blockchain, Pn will be penal-
ized.

• If b2 is the branch that will be confirmed on the blockchain, Pn will cause an
abort in the protocol before that the commitment phase starts. In this case
he does not get penalized for learning the output.

With this counterexample we show that the proposed solution is not enough
to obtain fairness with penalties, since Pn has the possibility to learn the output
without incurring in any punishment. It is possible to obtain fairness with penalties
with our general compiler, and waiting that the commitment phase is confirmed on
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The General Compiler Smart Contract runs with players P1, . . . ,Pn and
consists of two main functions d and openCom and two fixed timestamps
time1,time2.

Commitment Phase: In round t1, when d(Ci) together with d coins is trig-
gered from a party Pi, store (i, Ci). Then, if ∀i, j : Ci = Cj proceed to
the Opening Phase. Otherwise, for all i, if the message (i, Ci) has been
stored, send message d coins to Pi and terminate.

Opening Phase: In round t2, when openCom(i, σi) is triggered from Pi, check
if Commit(σi) = γi, where γi is obtained from parsing Ci = (γ1, . . . , γn)
(recall that all the Ci are the same), and send d coins back to Pi.

Figure 4.5. General compiler smart contract.

the ledger. Since in this case the commitment phase is finalized, an adversary A
cannot learn y unless she decides to lose the d coins deposited in the commitment
phase. Since the commitment phase is confirmed on the ledger, A cannot find a
fork to exploit the execution of the protocol on another branch. Yet, A can cause
an abort in the protocol, but if it happens before the commitment phase she will
not learn the output y. If the abort happens after the commitment phase, A will
learn the output but will be penalized.

Theorem 8. Let’s assume the existence of non-interactive commitment schemes
and (n, n)-secret sharing schemes. Let π′bc be an n-party ρ-round protocol realizing
f ′ in the presence of hasty players. Then, the protocol πfair described above securely
realizes f satisfying fairness with penalties in the presence of (ρ, 1)-hasty players.

Proof Sketch. We can claim security of the compiled protocol π′bc obtained by ap-
plying the general compiler to π′, by referring to the same proof of Theorem. 7.
Now, we argue that the overall protocol πfair achieves fairness with penalties. As
mentioned before, aborts during the execution of π′bc are acceptable, since the adver-
sary cannot learn any information about the output. After the committing phase,
that is finalized, the adversary could try to exploit different branches to send differ-
ent openings of his commitments. We have the following time-line: The execution
started in a branch b1 and a forks happens right after the committing phase, gen-
erating a branch b2. Wlog. of generality we can extend this argument to multiple
parallel executions in different branches. We have the following scenarios:

Scenario 1: A corrupted player abort in both branches. Since the commitments
are finalized, fairness with penalties follows in a straightforward manner, since
he did not open his commitments in each branch, and so also in the confirmed
one.

Scenario 2: A corrupted player opens his share in b1 and aborts the execution in
b2 (after the commitment phase). If b1 gets confirmed, the honest parties will
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learn the output. If b2 gets confirmed, it automatically boils down to Scenario
1.

Scenario 3: A corrupted player Pi opens his share in b1 and tries to open on a
different share in b2. Since the commitment is always confirmed, the adversary
cannot try to change his commitment by exploiting forks. If A is able to open
the commitment by providing two different shares, then we can define an
adversary Acom breaking the binding property of the underlying commitment
scheme with non-negligible probability. That means that at least in one of the
two branches Pi gets penalized, and if he provides the correct opening in one
of the branches and it gets confirmed, honest players will learn the output.

4.4.4 Efficiency Analysys
Given an n-party ρ-round UC-secure MPC protocol π, we evaluate the efficiency of
a protocol π∗ obtained compiling π with the compiler described in Fig. 4.4. Our
compiler adds only one round to the execution of the protocol, in which the parties
publish their encryption keys of the underlying encryption scheme and signature
keys of the signature scheme. We analyze the number of block needed to end π∗

in case of standard MPC with aborts and in case of fairness with penalties. As
we noted in Section 4.4.3, to obtain fairness with penalties in π∗, the players of
the protocol have to wait that the first round (the deposit) became final on the
blockchain before continuing to run the protocol with a hasty execution.

Let us consider the case of MPC with aborts first. Since in this setting the pro-
tocol can be run a full-hasty mode, if the underlying protocol π has ρ rounds, then
π∗ will have ρ+1 rounds and the number of blocks needed to end the computation
is ρ+ 1.

In case of fairness with penalties, the execution time will be ρ+w blocks, where
w ≥ k is the liveness parameter. Since we assume that in the ideal conditions all
the players broadcast the deposit message at the same time, their deposit will be
posted and confirmed after at most w blocks.

4.5 Smart Contracts
We describe below our smart contract implementations in details.

Lottery protocol by [ADMM16]. The smart contract execution is described
as follows:

• Setup phase: A player publishes the smart contract in Fig. 4.7 on page 95,
indicating in the constructor the addresses of the players’ wallet, and the
committing phase timeout time1 and opening phase timeout time2.

• Committing phase: The players trigger the commit function upon input the
commitment to some value and a deposit of minDep = n(n − 1) + 1, where
n(n − 1) coins are used for the penalty mechanism and 1 coin is used to put
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money for the lottery. After time1 blocks, the n commitments are collected
and the committing phase ends.

• Opening phase: All the participants open their commitment by triggering the
openCom function, and the winner can then claim his bet by triggering the
claimWinner function of the smart contract (if all the parties have opened).

• Compensation phase: If, after time2 blocks, some player did not open his
commitment, the function payDeposit can be triggered, so that all player that
hasn’t open before time2 will be penalized and the players who had opened
receive their deposit back together with a fraction of the adversaries’ deposit.

Our coin-tossing protocol. The description of the smart contract execution of
π∗pct on Fig. 4.6 works as follows:

• Setup phase: At the beginning, one of the players creates the smart contract
specifying a deposit amount minDep and timeout time1. When the contract is
posted on the blockchain, the constructor automatically generates a unique
session identifier sid by triggering generateSid.

• Deposit phase: For each i ∈ [n], Pi can decide to participate to the PCT
protocol by triggering the function depositFunc to send a safety deposit and
his public key pki for an unique signature scheme. After that (pk1, . . . , pkn)
are collected by the smart contract and time1 blocks are passed, the deposit
phase ends parties can start to redeem their deposit. 8

• Claim phase: During this phase, each player Pi can claim his deposit back by
triggering the function claim of the smart contract and sending a value yi such
that Verify(pki, x, yi) = 1, where x = pk1|| · · · ||pkn||sid||bid, pki is the public
key of Pi. For the signature verification, we can use a unique signature scheme
with fast verification like BLS Signatures [BLS01], invoked with BLSVerify in
the code, or RSA-FDH [BR96].9

8Note that when some party Pi sends his deposit to the smart contract, the variable bid is
updated with the hash of the last block of the contract state (uniquely identifying the branch in
which the smart contract state is updated). This implies that bid is fixed after the last player sends
his public key.

9We do not explicitly implement this signature, but solidity implementations are available for
testing [Fic].
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1 pragma solidity ^0.4.0;
2
3 contract ParallelCoinTossing {
4 struct Player {
5 bool isPlaying ;
6 bool hasClaimed;
7 string pk;
8 uint d; //Player's deposit
9 uint c ; //Player's claim

10 }
11 address [ ] playersAddr;
12 mapping(address => Player) players ;
13 uint sid , time1, time2;
14 bytes32 bid ;
15
16 //flags
17 bool claimPhase = false ; //true if the claimPhase starts
18
19 //common message to be signed
20 uint x;
21
22 constructor(uint _time1, uint _time2) public {
23 sid = generateSid() ; //session id
24 time1 = _time1; //first timelock
25 time2 = _time2; //second timelock
26 }
27 function deposit(string pubKey) public payable {
28 require (msg.sender.balance >= minDep && msg.value >= minDep && players [msg.sender ] .d == 0 && now < time1

) ;
29 playersAddr.push(msg.sender) ; //add the public key of the current sender
30 Player p = players [msg.sender ] ;
31 p. isPlaying = true;
32 p.pk = pubKey;
33 p.d = msg.value; //msg.value is the deposit value of the player
34 bid = block.blockhash(now) ; //Every time he receives a public key, it updates the blockhash, so that the

correct bid is the blockchain state of the last public key deposited.
35 }
36 function claim(uint y) public {
37 require (claimPhase && now < time2 && players [msg.sender ] . isPlaying && ! players [msg.sender ] . hasClaimed &&

BLSVerify(players [msg.sender ] .pk,x,y)) ;
38 Player p = players [msg.sender ] ;
39 p. c = y;
40 p.hasClaimed = true;
41 msg.sender.transfer(p.d) ;
42 }
43
44 //automatic check functions run after a certain time
45 function checkDeposit() public {
46 require (!claimPhase && now>= time1) ;
47 uint n = playersAddr.length;
48 x = sha3(player [playersAddr [ 0 ] ] .pk | | . . . | | players [playersAddr[n−1]].pk| | sid | | bid) ;
49 claimPhase = true;
50 }
51 }

Figure 4.6. Pseudocode implementation of our smart contract for realizing parallel coin
tossing. For simplicity, we omit an explicit definition of the concatenation function in
the computation of x.
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1 pragma solidity >=0.4.21 <0.6.0;
2
3 contract FairLottery {
4 struct Player {
5 address addr;
6 bool hasCommitted, hasOpened, isPlaying ;
7 uint balance, index ;
8 bytes32 com;
9 int opn;

10 }
11 uint public n, time1, time2;
12 address [ ] addresses ;
13 mapping (address => Player) players ;
14
15 constructor(address [ ] _addresses , uint _time1, uint _time2) public { //creates a new instance of the lottery

for a set of prescribed players
16 addresses = _addresses ;
17 for (uint i = 0; i < addresses .length; i++) {
18 Player p = players [ addresses [ i ] ] ;
19 p. isPlaying = true;
20 p. index = i ;
21 }
22 n = addresses .length;
23 time1 = _time1;
24 time2 = _time2;
25 }
26 function commit(bytes32 _com) public payable { //sha3 value commit (n*(n-1) coins + 1 coin for bet)
27 require(msg.value >= (n∗(n−1)+1)) && players [msg.sender ] . isPlaying && ! players [msg.sender ] .hasCommitted

) ;
28 Player p = players [msg.sender ] ;
29 p.com = _com;
30 p.hasCommitted = true;
31 p.balance = msg.value;
32 }
33 function openCom(int openVar) public { //opening of the commitment
34 require(players [msg.sender ] .hasCommitted && now > time1 && now < time2 && ! players [msg.sender ] .hasOpened

&& sha3(openVar) == players [msg.sender ] .com) ;
35 Player p = players [msg.sender ] ;
36 p.hasOpened = true;
37 msg.sender.transfer(n∗(n−1)) ; //pays the sender back
38 }
39 function payDeposit() public { //compensation function
40 require(players [msg.sender ] . isPlaying && now>= time2) ;
41 uint index = players [msg.sender ] . index ;
42 for (uint i = 0; i < n; i++)
43 i f ( i != index && ! players [ addresses [ i ] ] . hasOpened) msg.sender.transfer(players [msg.sender ] .balance/n

) ; //the player msg.sender get is compensation of n coins
44 }
45 function claimWinner(uint [ ] secrets) public { //function triggered by the winner
46 require (secrets .length == n && checkWinner(secrets ,msg.sender)) ;
47 msg.sender.transfer(n) ; //redeem the won coins
48 }
49 //private local functions
50 function checkWinner(uint [ ] secrets , address _sender) private returns (bool) {
51 int sum = 0;
52 for (uint i = 0; i < secrets .length; i++) {
53 i f (sha3(secrets [ i ] != players [ addresses [ i ] ] .com) return false ;
54 sum += secrets [ i ] ;
55 }
56 i f ((sum%n != players [_sender ] . index))
57 return false ;
58 return true;
59 }
60 }

Figure 4.7. Pseudocode implementation of the lottery protocol by Andrychowicz et
al. [ADMM16], when using smart contracts.
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Chapter 5

Financial Fairness in
Blockchain-Aided MPC

5.1 Security and efficiency
To compare protocols in terms of security, we refer to the security definitions given
in 2.7.

5.1.1 On-chain and Off-chain Efficiency
The efficiency of a penalty protocol can be broken down into two parts: off-chain and
on-chain efficiency. The former refers to traditional MPC efficiency in terms of: the
number of communication rounds, the required bandwidth, and the computational
complexity; the latter refers to efficiency in terms of the interaction between the
blockchain and the miners in terms of: the number of transactions, the number of
round executed on-chain, and the script complexity.

On-chain efficiency in a penalty protocol is much more important compared to
off-chain efficiency, as:

• The number of transactions determine the transaction fee that a penalty pro-
tocol incurs;

• The number of rounds executed on-chain determine how long the protocol
runs, as a round executed on-chain requires for a transaction to be confirmed
which corresponds to, e.g., 6 blocks (i.e., 1 hour) in Bitcoin;

• The script complexity needs to be multiplied with the number of miners in
the network, which could be more than 100K.1

• off-chain complexity is not dependent of blockchain’s block generation rate
and transaction throughput

Transaction, round and script complexity can asymptotically depend on the security
parameter λ, the number of players n, the size of the output of the function m = |f |,
and the number of stages (for multistage protocols).

1As of Dec 2020, the Bitcoin mining pool called Slushpool (https://slushpool.com/stats/
?c=btc) has 116157 active miners.

https://slushpool.com/stats/?c=btc
https://slushpool.com/stats/?c=btc
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5.2 Financial Fairness
5.2.1 Economics Principles
To capture financial fairness, economists introduced the concept of net present value
and discount rate. The former tells us how much an amount of money received (or
paid) later (at time r) is discounted w.r.t. the same amount of money received (or
paid) now (at time r = 0). The difference in value between two adjacent instances
is captured by the discount rate.2

The Cost of Participation. Let ηi(r) be the function representing the net
present value at the beginning of the protocol (i.e., at time 0) of a unit coin that
is transacted at a later round3 (i.e., at round r), according to the i-th party’s own
discount rate. Let di,r be the coins put into escrow by player i during round r, and
let qi,r be the coins that the same player receives at round r (possibly including
compensating penalties extracted from misbehaving parties). Given a sequence of
deposits di,r and refunds qi,r made by Pi at rounds r ∈ [0, τ ] of a protocol running
up to time τ , the net present cost of participation for Pi is then

χi(τ) := −
∑

r∈[0,τ ]
(−di,r + qi,r) · ηi(r).t (5.1)

ADDED MINUS SIGN at the beginning of Eq. 1 to make the cost POSITIVE.
The intuition behind the net present value calculated using Eq. (5.1) is that money received

at a later round t′ is less valued than the money received at the current round t. A real world
analogy would be the money that is needed to buy a property, e.g a car or a house, now, is
always not enough, to buy the very same property in 2 years, e.g. due to inflation.

Let us consider a toy example as follows. Supposed the discount rate is 50% (hourly rate),
at the beginning of the protocol, a party deposit 100$ into the blockchain, after 1 hour, the
party withdraws 50$, and after 2 hours, the party withdraw the rest 50$. The net present
value for the party in this case, would be

1. +50/(1+0.5) = 33.3$ (first withdrawal)
2. +50/[(1+0.5)*(1+0.5)] = 22.2$ (second withdrawal)

thus 55.5$. The cost of participation will be thus
1. -(-100)$ (deposit)
2. -(+55.5)$ (net present value at the end)

= 44.5$.

The Payment Interest. The basic fixed interest rate model (used for home
mortgages) is sufficient to show the marked financial unfairness of some protocols.
Tab. 5.1 reports the December 2019 rates used by US depository institutions, mea-
sured in basis points (bps, 1/100th of 1%). Those are the rates at which depository
institutions (e.g. commercial banks) can deposit money in each other (in the US) to

2In general, the discount rate may depend on the risk aversions of the players [LVM16], or
the confidence in the certainty of future payments [BIW15]. The net present value may also have
different functional forms (e.g. exponential, hyperbolic, etc.) or different values for borrowing or
receiving money [ALR+01].

3For simplicity, we think of a round as a single time unit.
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Table 5.1. US depository inst. rates in 2019 (per annum).

Fund Min Max Median Median Hour Median Minute
EFFR 245 155 238 0.0272 0.0005
SOFR 525 152 238 0.0272 0.0005

A basis point, bps, is 1/100th of 1%. It is the standard unit of measure for interest rates
at which depository institutions can deposit money in each other to adjust their capital
requirements.

adjust their capital requirements. A quantity of money paid or received by a party
Pi after a time r is cumulatively discounted at a constant discount rate δ, i.e. ηi(r)
can be computed as follows.

Conversion of Interest Rate
To convert the Overnight Rate δd (per annum) to Hourly Rate δh and Minute Rate δm, and
using those to compute the corresponding payment interest, one needs to follow several inter-
mediate steps:

1. Convert the Overnight Rate δd into continuous time, i.e. δ = ln(1 + δd) (where ln(·)
is the natural logarithm); using the NYFed’s Secured Overnight Financing Overnight
Rate δd = 238 = 2.38% = 0.0238, δ := ln(1 + 0.0238) = 0.0235;

2. Multiply the continuous rate by 1
365·24 for the Hourly Rate δh or 1

365·24·60 for the Minute
Rate δm; then convert back to discrete time by taking erδ to obtain the payment interest
factor,

3. Hence ηi(r) := e−rδh if we are using the Hourly Rate
4. (or ηi(r) := e−rδm if we are using the Minute Rate);

Notice that we deliberately do not consider the value that parties might give to
protocol’s outputs (i.e., obtaining the output may be significantly more valuable to
party i than party j). This issue is definitely relevant from the viewpoint of protocol
participants to decide whether the whole MPC hassle (with or without penalties)
is worth the bother. However, we believe that the outcome’s valuation should be
at least fair from the viewpoint of a protocol designer: all parties being equal the
construction should be fair for them all, and they should not be discriminated by
going first, last, or third.4

5.2.2 The Escrow Functionality
Our functionality F∗escrow (Fig. 5.1) is meant to capture any n-party protocol in the
hybrid model with a so-called escrow ideal functionality in which: (i) Each player
Pi can deposit a certain number of coins in the escrow (possibly multiple times);
(ii) At some point the functionality might pay Pi with some coins from the escrow.
In concrete instantiations, case (ii) can happen either because Pi claims back a
previous deposit, or as a refund corresponding to some event triggered by another
party (e.g., in case of aborts).

Fix an execution of any protocol π in the F∗escrow-hybrid model. For each message
(deposit, coins(di,r), ∗) sent by Pi, we add an entry (r, di,r) into an array Di to

4In a formal model this could be simply achieved using an utility function so that instead of
(−di,r + qi,r) · ηi(r) we have U((−di,r + qi,r) · ηi(r)).
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The Escrow Functionality F∗
escrow runs with security parameter 1λ, parties P1, . . . ,Pn, and

adversary Sim corrupting a subset of parties. Its behavior is unspecified, except for the fol-
lowing:

• Upon input (deposit, sid, ssid, coins(di,r), ∗) from an honest party Pi at round r, record
(deposit, sid, ssid, i, r, di,r, ∗) and send it to all parties.

• During round r the functionality might send (refund, sid, ssid, r, coins(qi,r), ∗) to party
Pi and (refund, sid, ssid, r, qi,r, ∗) to all parties.

• The functionality is not allowed to create coins, i.e. at any round r the following
invariant is maintained: ∑

i∈[n],r′≤r
qi,r′ ≤

∑
i∈[n],r′≤r

di,r′

Figure 5.1. The family of escrow functionalities.

book keep all deposits Pi made. For the commands (refund, r, qi,r, ∗) received by
Pi, we maintain an array Ri of entries (r, qi,r) keeping track of all claims/refunds
Pi received.

Deposits/refunds can appear in an arbitrary order; we only keep track of the
round in which those are made. Apart from these commands, and the impossibility
of creating money from nothing, the behavior of F∗escrow is unspecified. As we
argue later, common ideal functionalities used in cryptographically fair MPC with
penalties are of the escrow type.

The functionality F∗escrow captures inter-temporal economic choices (i.e. a party
can abort or continue the protocol), and formalizes a notion of fairness grounded in
the economic literature. The experimental evidence about inter-temporal economic
choices [BRY89, AW97, BIW15, LVM16] is that money paid or received “now” has
a greater value than the same amount of money received or paid “later”. At the
end all parties could still be made whole, but whoever was forced by the protocol to
pay into escrow at noticeably different times, or held deposits of noticeably different
sizes, would clearly call unfair play.5

5.2.3 Financial Fairness
Financial fairness then says that, even in a run of π with possibly corrupted parties,
the net present cost of participation χi associated to each honest player is the same.
Here, we make no assumption on ηi, but one may limit fairness to specific, empirical,
forms of ηi (e.g., known to hold for poker players).

Definition 25 (Financial fairness). Consider an n-party protocol π that is crypto-
graphically fair with penalties in the F∗escrow-hybrid model, and let (Di,Ri)i∈[n] be
as described above. We say that π is financially fair if for every possible discount
rate function η(r) ∈ [0, 1], for all transcripts resulting from an arbitrary execution

5One could argue that these deposits are comparable to security deposits, as those used in the
U.S. for interest-bearing accounts, with the interest accrued to the depositor’s benefit. That is not
true for the deposits used in penalty protocols based on cryptocurrencies: once the deposits are
locked, they cannot be used, and therefore no interest is accrued to the depositor.
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of π (with possibly corrupted parties), and for all i, j ∈ [n] such that Pi and Pj
are honest, it holds that χi = χj where the net present cost of participation χi is
defined in Eq. (5.1).

Def. 25 could be weakened by considering specific discount rates η(r) (e.g. fi-
nancial fairness with hyperbolic discount).

5.2.4 Instances of Escrow
Two instances of F∗escrow are commonly used for designing state-of-the-art penalty
protocols: the Claim-Or-Refund functionality F∗CR and the Multi-Lock functionality
F∗ML. Both functionalities can be implemented using both the Bitcoin network and
Ethereum smart contracts.
F∗CR [BK14], allows a sender Pi to conditionally send coins to a receiver Pj ,

where the condition is formalized as a circuit ϕi,j with time-lock τ : Pj can obtain
Pi’s deposit by providing a satisfying assignment w within time τ , otherwise Pi can
have his deposit refunded at time τ + 1.

The Claim-or-Refund Functionality F∗
CR runs with security parameter 1λ, parties

P1, . . . ,Pn, and ideal adversary Sim.
Deposit Phase: Upon receiving the tuple (deposit, sid, ssid, i, j, ϕi,j , τ, coins(d)) from Pi,

record the message (deposit, sid, ssid, i, j, ϕi,j , τ, d) and send it to all parties. Ignore
any future deposit messages from Pi to Pj .

Claim Phase: After round τ , upon receiving (claim, sid, ssid, i, j, ϕi,j , τ, d, w) from Pj , check
if: (1) a tuple (deposit, sid, ssid, i, j, ϕi,j , τ, d) was recorded, and (2) if ϕi,j(w) =
1. If both checks pass, send (claim, sid, ssid, i, j, ϕi,j , τ, d, w) to all parties, send
(claim, sid, ssid, i, j, ϕi,j , τ, coins(d)) to Pj , and delete the record (deposit, sid, ssid,
i, j, ϕi,j , τ, d).

Refund Phase: In round τ + 1, if the record (deposit, sid, ssid, i, j, ϕi,j , τ, d) was not
deleted, then send (refund, sid, ssid, i, j, ϕi,j , τ, coins(d)) to Pi, and delete the record
(deposit, sid, ssid, i, j, ϕi,j , τ, d).

F∗ML [KB14] allows n parties to atomically agree on a timeout τ , circuits ϕ1, . . . , ϕn,
and a deposit d. Hence, if Pi within round τ reveals to everyone a valid witness wi
for ϕi, it can claim its deposit back; otherwise, at round τ + 1, the deposit of Pi is
split among all other players.

The Multi-Lock Functionality F∗
ML runs with security parameter 1λ, parties P1, . . . ,Pn,

and adversary Sim.
Lock Phase: Wait to receive (lock, i,Di = (d, sid, ssid, ϕ1, . . . , ϕn, τ), coins(d)) from each

Pi and record (locked, sid, ssid, i,Di). Then, if ∀i, j : Di = Dj send message
(locked, sid, ssid) to all parties and proceed to the Redeem Phase. Otherwise, for all
i, if the message (locked, sid, ssid, i,Di) was recorded, then delete it, send message
(abort, sid, ssid, i, coins(d)) to Pi and terminate.

Redeem Phase: In round τ , upon receiving a message (redeem, sid, ssid, i, wi) from Pi, if
ϕ(wi) = 1 then delete (locked, sid, ssid, i,Di), send (redeem, sid, ssid, coins(d)) to Pi

and (redeem, sid, ssid, i, wi) to all parties.
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Compensation Phase: In round τ + 1, for all i ∈ [n], if (locked, sid, ssid, i,Di)
was recorded but not yet deleted, then delete it and send the message
(payout, sid, ssid, i, j, coins( d

n−1
)) to every party Pj ̸= Pi.

5.3 Penalty Protocols
5.3.1 Protocols Description
In what follows we briefly describe the penalty protocols on a high level, we invite
the readers to find their details in the respective papers.

Ladder (L) [BK14]. Let f be the function being computed, and xi be the private
input of party Pi. At the beginning, the players run a cryptographically unfair, off-
chain, MPC protocol for a derived function f̃ that: (i) computes the output y =
f(x1, . . . , xn); (ii) divides y into n shares6 σ1, . . . , σn; (iii) computes a commitment
γi (with opening αi) to each share σi, and gives (σi, αi) to the i-th party and (γj)j∈[n]
to every player.

Then, the players engage in a sequence of “claim-or-refund” transactions divided
into two phases. During the Deposit Phase, each player conditionally sends some
coins to another party via F∗CR. These transactions are parameterized by the values
γi, and require the receiving player to reveal the opening αi before a fixed timeout,
during the Claim Phase, in order to “claim” the reward (thus compensating honest
players),7 which otherwise will be refunded to the sender who will lose the coins sent
to the honest parties without being able to redeem the coins received from them
(i.e., a penalty to the dishonest player). Finally, every party either reconstructs the
output or receives a monetary compensation.

More in details, the Deposit Phase of Protocol L consists of Roof/Ladder De-
posits, as illustrated below for n = 4:

ROOF: Pj

ϕj,4−−−−−−−−−−−−−−→
d,τ4

P4 (for j ∈ {1, 2, 3})

LADDER: P4
ϕ4,3−−−−−−−−−−−−−−→
3d,τ3

P3

P3
ϕ3,2−−−−−−−−−−−−−−→
2d,τ2

P2

P2
ϕ2,1−−−−−−−−−−−−−−→
d,τ1

P1

where Pi ϕi,j
−−−−−−−−−−−−−−−−−→

d,τ
Pj indicates that Pi deposits d coins that can be claimed

by Pj before time τ , as long as Pj sends to F∗CR a valid witness w for the predicate
ϕi,j . Importantly, the protocol requires that the claims happen in reverse order
w.r.t. the deposits. Assume that P3 is malicious and aborts the protocol during the
Claim Phase. In such a case, P1 would claim d coins from P2 at round τ1, whereas

6The secret sharing scheme ensures that an attacker corrupting up to n− 1 players obtains no
information on the output y at the end of this phase.

7More precisely, in L the condition requires the recipient i to publish the share σj and coins αj

such that Commit(σj ;αj) = γj for each j ≤ i.
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P2 would claim 2d coins from P3 at round τ2. If P3 aborts (and thus it does not
provide a valid witness), P4 is refunded 3d coins at round τ4. After that, at round
τ5 > τ4, each Pi≤3 is refunded d coins (from the roof deposits). Thus, P3 loses 2d
coins, while each Pi≤2 is compensated with d coins.8

Locked Ladder (LL) [KMB15a]. This protocol is specifically tailored for play-
ing distributed poker. To support multiple stages, a locking mechanism is designed
to penalize aborting players in each phase of computation (in L players are penalized
only during the Claim Phase). Moreover, LL yields a more complicated deposit se-
quence, as it requires additional deposits (called Bootstrap and Chain Deposits) to
force the first party to start the new stage of the poker ideal functionality. See Sec-
tion 5.6.3 for more details. The efficiency of this protocol has been further improved
in [BKM17] using Ethereum smart contracts.

Compact Ladder (CL) [KVV16]. To prevent the explosion in script complexity
(note that in L the witness in the last round is n times larger than the witness in the
first round), protocol CL uses a trick that makes the size of the witness independent
of the number of players. The basic idea is to replace (σ1, . . . , σn) with a secret
sharing (k1, . . . , kn) of the secret key k for a symmetric encryption scheme, and to
reveal to every party an encryption c of the output y.

Planted Ladder (PL) [KVV16]. This protocol extends L to reactive function-
alities by stacking multiple instances of L, i.e. an n-party r-stage functionality is
handled as a run of L with r · n parties, using additional deposits to force the next
stage to start (the so-called Underground Deposits). As a result, PL requires more
transactions and very high deposits from each player. We illustrate the total amount
of coins locked by each player in every round in Fig. 5.10 (see Section 5.6.3).To im-
prove efficiency, one can replace CL with L; we denote the resulting protocol as
CPL.

Amortized Ladder (AL) [KB16]. This protocol aims at performing multiple
MPCs using a single instance of a penalty protocol. The sequence of deposits/claims
is the same as in LL, except that all the deposits/claims happen in parallel.

Multi-Lock (ML) [KB14]. This protocol relies on the ideal functionality F∗ML,
instead of F∗CR, in order to realize the “claim-or-refund” transactions. The latter
allows to manage multiple deposits/claims in an atomic fashion, thus resulting in
an improved round complexity.

Insured MPC (IMPC) [BDD20]. This protocol follows the same blueprint of
ML, i.e. IMPC manages multiple deposits/claims in an atomic fashion. However, the
protocol further improves the efficiency in the evaluation of the commitments in
the off-chain MPC and the on-chain reconstruction phase using publicly-verifiable
additively homomorphic commitments.

8Player P4 has not moved, and thus it is not compensated.



104 5. Financial Fairness in Blockchain-Aided MPC

Other Protocols. The idea of guaranteeing cryptographic fairness through mon-
etary compensation was originally studied in the setting of e-cash or central bank
systems [BCE+07, Lin09, KL12], and implemented using Bitcoin by Andrychowicz
et al. [ADMM14]. Other penalty protocols also exist for the concrete case of cryp-
tographic lotteries [ADMM14, BK14, MB17]. Another type of penalty protocol is
the one introduced in Hawk [KMS+16, Appendix G, Section B]. This construction
follows the blueprint of ML except that it employs a semi-trusted manager in order
to enforce a correct cash distribution. For further discussions see [AHM18].

5.3.2 An Illustrative (New) Protocol

To illustrate the trade-offs that a protocol must face, we provide a simple example of
another protocol that achieves the same efficiency of the CL protocol by Kumaresan
and Bentov [KB14]. Namely, we can design a new penalty protocol that combines
ideas from [GIM+10] and [KB14, KB16], to obtain a constant-round penalty pro-
tocol with O(n) transactions and script complexity O(nλ). Looking ahead, this
protocol is both cryptographically and financially fair; however, security only holds
in the sense of sequential composition (although in the plain model and under stan-
dard assumptions).

Compact Multi-Lock (CML) We rely on some standard cryptographic primitives
(cf. Chapter 2): (i) an n-party secret sharing scheme (Share,Recon) with message
space {0, 1}λ and share space {0, 1}k; (ii) a secret-key encryption scheme (Enc,Dec)
with secret keys in {0, 1}λ and message space {0, 1}m, where m is the output size of
the function f ; and (iii) a non-interactive commitment Commit with message space
{0, 1}k.

Let f be the function to be computed. The protocol proceeds in two phases. In
the first phase, the parties run a cryptographically unfair MPC for a derived function
f̃ that samples a random key k, secret shares k into shares k1, . . . , kn, commits to
each share ki individually obtaining a commitment γi, and finally encrypts the
output f(x1, . . . , xn) using the key k yielding a ciphertext c. The output of Pi
is ((γj)j∈[n], c, ki, αi), where αi is the randomness used to generate γi. During the
second phase, the players use F∗ML to reveal the shares of the key k in a fair manner,
thus ensuring that every player can reconstruct the key and decrypt the ciphertext
c to obtain the output of the function.

This protocol requires a constant number of rounds, O(n) transactions, and
script complexity O(nλ) where λ is a security parameter. The latter holds true so
long as the secret key k for the symmetric encryption scheme is short (in fact, of
length λ independent of m).

5.3.3 Extensions

Reactive CML, In the reactive setting, we have to securely realize ideal functional-
ities whose computation proceeds in stages. After each phase, the players receive a
partial output and a state, which both influence the choice of the inputs for the next
stage. Normally, simulation-based security for non-reactive functionalities implies
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the same flavor of security for reactive ones [HL10]. However, for secure compu-
tation with penalties the naive approach (i.e. run an independent instance of the
penalty protocol for each stage of the functionality) fails in case of aborts after a
given stage is concluded (and before the next stage starts) as one needs a mechanism
to force the parties to continue to the next stage.

Let π be a protocol for securely realizing (with aborts) a reactive functional-
ity: during each stage, every player independently computes its next message as a
function of its current input and transcript so far, and broadcasts this message to
all other parties. Kumaresan et al. [KVV16] show how to deal with such protocols
using PL. We can do the same for CL by leveraging the power of F∗ML. In particular,
we consider an invocation of F∗ML for each stage of π, where during the Lock Phase
each player Pi specifies a circuit ϕi that checks the correctness of Pi’s next message
w.r.t. the protocol transcript so far. This is possible so long as the underlying MPC
is publicly verifiable, a property also used in [KVV16]. The price to pay is a larger
communication/round complexity.

The above requires to augment the F∗ML functionality so that each player can
deposit coins(d · τ̄), where τ̄ is the maximum number of stages in a run of π, and
claim back at most coins(d) for each stage (i.e., after revealing its next message).

BoBW CML, A drawback of cryptographic fairness with penalties is that a single
corrupted player can cause the protocol to abort (at the price of compensating
the other players). Ideally, we would like to have a protocol such that when s1 <
n/2 players are corrupted the protocol achieves full security, whereas in case the
number of corrupted parties is s2 ≥ n/2, the protocol achieves security with aborts
or, even better, fairness with penalties. This yields so-called best-of-both-worlds
(BoBW) security [IKK+11], which is known to be impossible in the parameters
regime s1 + s2 ≥ n.

Kumaresan et al. [KVV16] provide a dual mode protocol achieving BoBW se-
curity for any s1 + s2 < n. We can easily adapt their approach—and, in fact, even
simplify it thanks to the power of F∗ML—to our CML protocol, by using the following
modifications: (i) The function f̃ now computes an (s2+1, n)-threshold secret shar-
ing of the symmetric key k; (ii) At the end of the Reconstruction Phase, all honest
parties broadcast their share. Modification (i) ensures that, at the end of the Share
Distribution Phase, an attacker controlling at most s2 parties has no information
on the output. The dual-mode protocol of [KVV16] relies on PL, as L does not
guarantee compensation to honest parties that did not reveal their share (say, due
to an abort during the protocol); this eventuality is not possible given the atomic
nature of F∗ML, and thus no further change to CML is required to obtain fairness
with penalties in the presence of s2 corrupted parties. Modification (ii) is needed
because when s1 < n− s2 parties are corrupted, there are at least n− s2 ≥ s1 + 1
honest parties, which allows everyone to obtain the output by correctness of the
secret sharing scheme.
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5.4 Comparison over Security and Efficiency

5.4.1 Security Assumptions

Protocols L, ML, LL, AL and PL satisfy UC security, and IMPC satisfies (G)UC security
with the global RO functionality. The situation is different for CL (and CPL as well).
Recall that here the players start by engaging in an off-chain, unfair, MPC protocol
whose output for party Pi includes (c, ki), where c is an encryption of the output y
under a symmetric key k, and ki is a share of the key.

Unfortunately, the encryption must be “non-committing” [CFGN96] for the se-
curity proof to go through: the simulator first must send the adversary a bogus
ciphertext c (say an encryption of the all-zero string), and when it learns the cor-
rect output y, if the adversary did not abort, must explain c as an encryption of y
instead. In the plain model, such encryption inherently requires keys as long as the
plaintext [Nie02], which would void any efficiency improvement w.r.t. the original
L Protocol. To circumvent this problem, [KVV16] builds the encryption c in the
ROM, essentially setting c = Hash(k1 ⊕ . . . ⊕ kn) ⊕ y, where k = k1 ⊕ . . . ⊕ kn.
This allows the simulator to equivocate the ciphertext in a straight-line fashion by
programming the random oracle.

A considerable drawback of the hash-based CL Protocol is that it is not provably
secure in the ROM because one cannot assume that Hash is a random oracle: to run
an MPC protocol that computes c = Hash(k1 ⊕ . . .⊕ kn)⊕ y we must represent the
very hashing algorithm as a circuit. Hence, security only holds under the contro-
versial assumption that the above hash-based encryption scheme is non-committing
when the random oracle Hash is instantiated with a real-world hash function (e.g.,
SHA3). Note that this assumption is much stronger than just requiring that Hash
is a random oracle.

Protocol CML follows the same blueprint as ML, but intuitively replaces the ideal
functionality F∗CR with F∗ML in order to improve the round complexity and achieve
financial fairness. As a consequence, its security analysis faces a similar issue as
the one discussed above. Here, we propose an alternative solution that allows to
obtain provable security in the plain model by focusing on standalone, rather than
UC security (which in turn implies security under sequential composition). This
weakening allows us to replace the non-committing encryption scheme with any
semantically secure one, and to solve the issue of equivocating the ciphertext in the
security proof by rewinding the adversary (which is not allowed in the UC setting).
A similar solution was considered in [GIM+10] for fair MPC without coins.

Note that rewinding in our setting essentially means that the simulator should
have the ability to reverse transactions on the blockchain, whereas distributed
ledgers are typically immutable. However, there already exist certain blockchains
where blocks can be redacted given a secret trapdoor [AMVA17] (and are immutable
otherwise). In our case, such a trapdoor would not exist in the real world, but rather
it would be sampled by the simulator in the security proof, in a way very similar to
standard proofs of security in the common reference string model [BSMP91, CF01].
We further note that previous work also used limited forms of rewinding in the
setting of MPC protocols with blockchains. For instance, Choudhuri et al. [CGJ19]
construct black-box zero-knowledge protocols in a blockchain-hybrid model where
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Table 5.2. Efficiency of State-of-the-art penalty protocols

Comparing penalty protocols in terms of round complexity, number of transactions, script
complexity/capability, and fairness. We denote by n the number of parties, by m the
output size of the function being computed, by r the number of stages in the reactive/-
multistage setting, and by λ the security parameter.

Protocol #Rounds #TXs Script Complexity
L O(n) O(n) O(n2m)

CL O(n) O(n) O(nλ)

ML O(1) O(n2) O(n2m)

CML O(1) O(n2) O(nλ)

IMPC O(1) O(n) O(nm)

LL O(n) O(n2) O(n2mr)
AL O(n) O(n2) O(n2mλ)
PL O(n) O(n) O(n2mr)
CPL O(n) O(n) O(nrλ)

the simulator is allowed to rewind only during certain slots.

5.4.2 Efficiency
In this section we compare the penalty protocols w.r.t their on-chain efficiency in
both an asymptotic and an empirical way (assuming their execution is on a Bitcoin
network).In Table 5.2 we can notice that the script complexity of CL, CPL and
CMLdoes not depend on the size of the output function, but only on the number
of parties n and the security parameter λ, thus leading to a significant efficiency
speed-up. As it can be noticed also in Fig. 1.1, CLand CPL are not provably secure,
whilst our CML is secure only under standard composition. In terms of asymptotic
efficiency we can state that our CML is indeed the most efficient, but due to its
real world applicability to a blockchain9, IMPC can be considered the best protocol
among the presented ones.

Empirical efficiency is measured in terms of transaction fees (based on the num-
ber of transactions) in Fig. 5.2, execution time (based on the number of rounds)
in Fig. 5.3, and script complexity (based on input size in bits) in Fig. 5.4. In our
empirical analysis we do not take into account IMPC, CML, and CPL, since concrete
efficiency numbers are not provided in the protocol description of IMPC, while CML
is not universally composable and the latter not provable at all, and CPL is not
applicable in an existing blockchain environment.

For transaction fees we assume the Bitcoin network’s commonly used minimum
transaction fee of 546 satoshis (1 satoshi = 10−8 BTC) and a BTC costs approx-
imately 48k USD (by May 2021) . For the execution time, we use the standard
assumption that 1 BTC round is one hour. For script complexity, we assume 80
bits security with input size (shares) of 128 bits and the commitment scheme is
SHA-256 (pre-images of 512 bits and outputs of 256 bits). L, ML, and AL are non-
reactive protocols. We assume the reactive LL and PL are with 2 stages. For the PL
we evaluate both the naive version and the compact version CPL.

We simulate the on-chain efficiency for 2-55 parties using the practical case

9recall that sequential composability cannot be run in a blockchain ecosystem.



108 5. Financial Fairness in Blockchain-Aided MPC

0 10 20 30 40 50 60
100

101

102

103

Tr
an

sa
ct

io
n

Fe
e

in
U

SD

L
ML
AL
LL
PL

The most expensive LL requires 12312 transactions, which costs around 3277$ for the 55
parties case, approximately 60$ per party.

Figure 5.2. Transaction fees (based on the number of BTC transactions, where 1 trans-
action costs 546 satoshis, 1 BTC = 48k USD, by May 2021).

from the Bloomberg dark pool, just to execute one contract in the case of non-
reactive functionality, or two in the case of reactive functionality. All of the protocols
show acceptable transaction fees, even the most expensive protocol LL, costs only
3277$ for the 55 parties case (which means approximately only 60$ for each party).
However, all protocols except ML and AL show unacceptable execution time: ML
concludes in the simplest (non-reactive) protocol L takes 5 days to finish for 55
parties to execute 1 contract while the most complicated (reactive) protocol LL
requires 23 days to execute 2 contracts; the improved (reactive) protocol PL does
reduce the requirement to 14 days but it is still too slow. ML is the protocol with
the lowest script complexity in the case of non-reactive while Compact PL is the
protocol with the lowest script complexity in the case of reactive. The non-compact
version of PL yields the highest script complexity.

5.5 Comparison over Financial Fairness

5.5.1 Deposits Schedule and Illustration of Financial Unfairness

The amount of deposited coins for each player in the Ladder Protocol is illustrated
in Fig. 5.5 (for the 4-party case). Observe that P1 has to deposit only d coins, while
P4 needs to deposit 3d coins. Furthermore, P4 has to lock its coins very early (i.e.,
at the 2nd round), but can only claim its coins very late (i.e., at the last round).
Hence, this protocol is financially unfair in the following sense: (i) The amount of
deposits are different for each player (e.g., P1 deposits d coins while Pn deposits
(n − 1)d coins); and (ii) some players deposit early but can only claim late in the
protocol (e.g., P4 in Fig. 5.5).

While financial unfairness is easy to notice (by pure observation) in simple pro-
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The simplest protocol L takes 216 rounds, which is 5 days to finish, while the most
complicated protocol LL takes 23 days to finish. The improved protocol PL takes 14 days
to finish.

Figure 5.3. Execution time (based on number of protocol rounds, where 1 round = 1
hour).

tocols such as Ladder, it tends to be more difficult to judge whether a penalty
protocol is financially fair or not when it yields a more complicated sequence of
deposit and claim transactions [KMB15b, KB16, KVV16].

If the 4-party Ladder protocol was to be run on Bitcoin (that requires 8 rounds
in total, thus τ = 8) , a round would last approximately 60 minutes.We assume a
very optimistic scenario: participants could borrow money from NYFed’s SOFR to
run the protocol (see Section 5.2.1, or alternatively that could be their opportunity
costs). In essence they are wealthy, risk neutral and worth essentially cheap credit.
Normal humans would require much higher interest rates as the empirical evidence
shows [BRY89, AW97, BIW15]. The discount (minute) rate would be δm = 0.0005
for each player. To represent the net present cost of participation of each participant
as basis points we simply set d = 10000. Thus, using Eq. (5.1), we have (in bps):

χ1(8) :=− (−d · e−δm·60 + d · e−δm·5·60) ≈ 0.11

χ2(8) :=− (−d · e−δm·60 − d · e−δm·4·60 + d · e−δm·6·60) ≈ 0.19

χ3(8) :=− (−d · e−δm·60 − 2d · e−δm·3·60 + 3d · e−δm·7·60) ≈ 0.38

χ4(8) :=− (−3d · e−δm·2·60 + 3d · e−δm·8·60) ≈ 0.49.

Roughly speaking, this means that P4 loses 0.0049% of the base deposit d just to
participate, and additionally the participation cost of P4 is approximately 4 times
higher than that of P1. If one is to use the Ladder protocol in a real world use case
(e.g., dark pool futures trading), the base deposit d would be necessarily at least the
notional value of one futures contract (i.e., 1 million dollars in case of Eurodollar
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ML is the protocol with the lowest script complexity in the case of non-reactive while AL is
the protocol with the lowest script complexity in the case of reactive. We do not consider
CL and CPL since they do not satisfy the security requirements needed to be run on an
existing blockchain, and IMPC because of lack of concrete efficiency numbers.

Figure 5.4. Script complexity (input size in bits).

futures); as such, even with only 4 parties, P4 would lose $50 just to participate to
trade a single contract!

Unfairnness is manifest already (yet seems small and bearable) in this example
with a handful of participants (only 4). However, in a Bloomberg Tradebook:

• The number of parties could be 55 in an average trading day; as such, the
protocol would last 110 rounds, and thus, χ55(110) := −(−54d · eδm·2·60 +54d ·
eδm·110·60) ≈ 159(bps), i.e. P55 would lose 1.59%, which is almost $16K, just to
participate to trade a single contract!

• The number of messages (protocol executions) could reach 6000 in an average
trading day; as such, even with 4 parties, P4 would spend $300K a day.

• Combining the numbers, the last party P55 would spend $96M just to partici-
pate to an average trading day, which is unacceptably different from the first
party’s cost which is only around $60K ($10 per contract, as the cost of P1 is
only 0.1 bps) .

5.5.2 Theoretical Analysis of Financial Fairness
We formally prove that the family of Ladder Protocols does not meet financial
fairness as per our definition. The latter is achieved by interpreting L, LL, CL, PL
and AL as MPC protocols in the F∗escrow-hybrid model, and by carefully analyzing
the sequences of deposits/refunds made/received by each participant.

Theorem 9. For any n ≥ 2, and penalty amount q > 0, the following holds for the
n-party Ladder protocol πL from [BK14]:
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Figure 5.5. Coins locked in a run of the 4-party Ladder Protocol during the Deposit Phase
(in red) and the Claim Phase (in blue).

• If η = 1, the protocol is financially fair.

• If η ̸= 1, the protocol is not financially fair.

Proof. Consider the hybrid ideal functionality F∗CR described in Sec. 5.2.4; intu-
itively this functionality allows a sender Pi to conditionally send coins to a receiver
Pj , where the condition is formalized as a circuit ϕi,j with time-lock τ : The receiver
Pj can obtain Pi’s deposit by providing a satisfying assignment w within time τ ,
otherwise Pi can have his deposit refunded at time τ + 1.
F∗CR clearly belongs to the family F∗escrow described in Section 5.2.2: the De-

posit Phase corresponds to the (deposit, ∗, ∗) commands in Fescrow, whereas the
Claim/Refund Phase corresponds to the (refund, ∗, ∗) commands in Fescrow.

Given F∗CR, protocol πL proceeds as follows. First, each player Pi (except for
Pn) uses F∗CR to make a deposit of coins(q) to Pn, with predicate10 ϕn. After all
these deposits are made, each party Pi with i = n, . . . , 2 in sequence uses F∗CR to
make a deposit of coins((i− 1)q) to Pi−1 and with predicate ϕi−1. Let us call these
deposits Txi−1, and denote by Txn,i the initial deposits to Pn. Finally, the deposits

10We do not specify the predicates, as those are immaterial for characterizing the financial
fairness of the protocol.
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are claimed in reverse order: First, P1 claims Tx1, then P2 claims Tx2, until Pn
claims Txn,i for each i ̸= n. Aborts are handled as follows: If Pi+1 does not make
Txi, each party Pj≤i does not make Txj−1 and waits to receive the refund from
Txn,j , whereas each Pj>i keeps claiming Txj as described above.

For simplicity we consider all parties are honest. The loss of party Pi is:

χi̸=n = −q · η(1)− (i− 1) · q · η(n− i+ 2) + i · q · η(n+ i).

χn = −(n− 1) · q · η(2) + (n− 1) · q · η(2n).

When η = 1, we have χ1 = . . . = χn = 0. However, since, e.g., χ1 ̸= χ2 for any
choice of η < 1, we conclude that πL is not financially fair whenever η ̸= 1.

The ML protocol is financially fair. 11

Theorem 10. For any n ≥ 2, ML [BK14] is financially fair.

Proof. It is easy to see that F∗ML belongs to the family F∗escrow. Then, financial
fairness immediately follows by the fact that the loss of the i-th player can be
computed as follows:

χi = −(n−1)q ·η(1)+(n−1)q ·η(r)+s ·q ·η(r+1), where s ≤ n−1 is the number
of corrupted parties that did not redeem a valid witness in the fair reconstruction
phase.

5.5.3 Experimental Analysis of Financial Fairness
We experimentally analyze how the different penalty protocols behave in terms of
their inter-temporal choices.12.

• The Multi-Lock Protocol. ML is straightforward in this respect. Every
party deposits the same amount of coins at the same time, and can withdraw
it as soon as s/he has revealed the secret. The same holds for CML.

• The Ladder Protocols. The L, LL, PL, and AL protocols have inter-temporal
payment schedules which clearly differ in both amount and duration of de-
posits per party.13 To show the difference we implemented a script that
simulates the penalty protocol transaction schedule.

Setting the Stage

We consider the 55-party realistic case with a minimum penalty chip of q to be con-
sistent with the cited papers. Notice that the unfairness phenomena are amplified
with n parties (e.g. a lit futures trading venue would comprise up to 500 parties). If
the protocol supports reactive functionalities (i.e., LL and PL), we limit the number
of stages to 2. For each protocol L, LL, PL, AL, ML, we first simulate the sequence
of deposits {di,t} (with q being the base unit used for penalization) and withdraws

11IMPC [BDD18] can similarly be shown to be financially fair.
12 While it seems that results could be derived with pencil and paper as all protocols are known,

the simulation shows results that are not obvious as even for a small number of parties (55) the
numbers of rounds can be very large 300).

13IMPC follows the same deposit/withdrawal blueprint as ML.
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This figure shows the total amount of deposit locked by the penalty protocols before the withdrawal
phase. CRYPTO’14 L, CCS’14 ML, and CCS’16 AL are non-reactive penalty protocols, while CCS’15
LL and CCS’16 PL are reactive ones. Among the non-reactive protocols, L requires significantly
different amounts from the first party (always q) and the last party which shells 54 times as much
and should shell (n− 1)q for n parties. The reactive LL and PL require disproportionate deposits.
For each stage of computation, maximum 54 out of 55 parties may be compensated if one party
cheats. Therefore one would only expect 118q for two stages of computation (to compensate the
other 54 honest parties in 2 stages) rather than 216 or 320+.

Figure 5.6. Total Amount of Deposit per Party and Protocol

{qi,t} of each Pi from an honest execution of the protocol. We show only the results
for P1, P10, P25, and P55.14

Fig. 5.6 reports the total deposited amount of P1 (the minimum entry require-
ment of a protocol) and P55 (the maximum entry requirement of a protocol). All
protocols except ML require a different amount of deposit from each party. In terms
of total amount, L is the best protocol... for the first party! The last party has to
deposit more than 54x times more. ML requires a fixed amount of (n−1)q from each
party, while L requires such amount from only the two last parties P54 and P55. LL,
PL and AL require very high amounts of deposits (and again largely different): the
worst case party P55 has to deposit 216q in LL and 327q in PL. Even taking into
account the fact that LL and PL consist of two stages, such deposits look excessive:
one would expect to deposit 118q for two stages of computation, since we only need
to compensate at most 54 parties per stage when one of the 55 parties aborts.

Fig. 5.7 shows the maximum time window that a party has to keep his money

14 P1 and P55 are the first and the last party, which illustrates the maximum difference possible.
P10 and P25 are representative of the parties that are in the middle.
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Among the non-reactive protocols, CCS’14 ML and CCS’16 AL both conclude in one round. More-
over, AL allows multiple MPCs to be done in the one round period. The reactive CCS’15 LL and
CCS’16 PL again require a disproportionate lock time window compared to the non-reactive L, ML,
AL.

Figure 5.7. Maximum lock time window (55 parties, 2 stages)

in deposit (starting from the first deposit to the last withdrawal). ML and AL have
the smallest and fairest lock time: only one round. L must keep the deposits in
more rounds and not the same number of rounds: 55 rounds for the best case P1

and 108 rounds for the worst case P55. Again both LL and PL require very high lock
windows for the deposits: 543 rounds for LL and 328 rounds for PL.

Playing It for Real: Optimistically Unfair

The observations above refer to the worst case but in practice the inter-temporal
differences for honest parties might not be noticeable. Checking the behavior of a
protocol for honest parties, dubbed Optimistic Computation [KB14], is important
as a protocol can still be fair for all practical purposes.

To check whether this is the case (it is not), we analyze the financial fairness of
each protocol by simulating the net present cost of participation χi of party Pi (see
Eq. (5.1)) in a large sequence of random executions with honest parties:

• Use the sequence of deposits {di,r} and withdraws {qi,r} of party i obtained
from an honest execution of a protocol at each round r; and the minute ratio
derived from the Secured Overnight Financing rate of the New York Fed (238
bps, Tab. 5.1) as this is the going rate among commercial executions, and thus
is actually available;

• Simulate each protocol execution on Bitcoin. To convert “rounds” to “Bit-
coin time”, we use Bitcoin actual network data, i.e. the mean and standard
deviation of the block generation time (in minutes) for each day from Dec 29,
2018 to June 26, 2019; and consider a round of a protocol to be 6 blocks of
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Each bar reports the cost of participation for a party in basis point for an optimistic computation
(only honest parties and no aborts). CCS’14 ML is the fairest protocol with the smallest (and
statistically identical) distribution per party. CCS’16 AL provides limited financial fairness even
though deposits lock in one round (Fig. 5.7), because each party deposits a different amount
(Fig. 5.6). CRYPTO’14 L is the least fair.

Figure 5.8. Net present costs of participation

the Bitcoin blockchain for a transaction to be confirmed). From the data, a
round can take from 47 minutes to 75 minutes on average.

• Compute the net present cost of participation χi of each Pi for each of the 180
days using q = 10000 (hence χi is captured as basis points), and plot them in
Fig. 5.8.15

For all cases (both reactive and non-reactive), financial fairness is only achieved
in ML, as every party locks and releases the same deposit at the same time. ML is
also the best protocol in terms of net present cost of participation.

For non-reactive cases, L yields a huge difference in losses between different
parties: χ1 is around 1.53 bps while χ4 is around 162.75 bps. This difference is due
to the disparity in both the amount of deposits and the time windows in which the
deposits are locked (P1 deposits only q, locked for 55 rounds, while P55 deposits
54q, locked for 108 rounds). The difference is slighter in AL: all parties’ deposits are
locked for one round, but differences between amounts of deposits still exists (110q
for P1 and 216q for P55).

For reactive cases, in LL and PL the party P1 and the party P55 have a large
difference in net present costs of participation. Furthermore, the costs for the last
party P55 are unacceptable in both protocols: more than 2000 bps in LL, and more

15As the discount rate is small, i.e. δm = 0.0005, the difference due to slight changes (30 minutes)
in transaction confirmation times is negligible. Only for a very large number of transactions it
becomes significant.
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than 2300 bps in PL. However, a surprising finding is that LL is better than its
“improved” version PL in terms of financial fairness. To explain this phenomenon,
let us observe that even though LL locks the deposits for a longer time (LL concludes
in 543 rounds, while PL needs 328 rounds), the deposit amount is much less (P55

deposits 216q in LL but 327q in PL).

5.6 Simple Fixes Do Not Work
A natural idea to overcome the negative results on financial fairness shown in Section
5.5 would be to simply let parties rotate their roles in different executions, or to
select the roles randomly in each execution, with the hope of achieving financial
fairness on expectation. Unfortunately, we show here that these approaches are
also deemed to fail, except for a finite, very small, numbers of discount rates.

5.6.1 Round Robin

The “round robin” approach considers a global protocol which consists of multiple
repetitions in a round robin fashion of a financially unfair penalty-based protocol
(such as the Ladder protocol L [BK14]). This hopes to fix the unfairness in the
penalty-based protocol if the same set of parties are to run the protocol more than
once: by shifting the party index in each run, e.g. the last party becomes the
first party, the k-th party becomes the k+1-party in the next run, one might be
possible to fix the financial unfairness. We note that this is different from the
penalty protocols that support multi-stages reactive functionality (such as Locked
Ladder LL [KMB15b]), as even though those protocols seem to be based on repeated
instances of non-reactive protocol, one cannot shift the party index because it will
be insecure.

Unfortunately this solution doesn’t work in general even for the simple case in
which the reward is the same for all parties.

In the following theorem, we will show that to achieve fairness in the mentioned
round robin approach, the parties must be able to obtain a specific limited number
of discount rates (e.g. from the banks), depending on the deposit schedule, which
is very unpractical (as the discount rates are given by the banks, not asked by the
parties).

Theorem 11. Let an unfair protocol be identified by deposits di,r for each party
i ∈ [n] which may be rotated to different parties at round robin step ρ ∈ [k] thus
determining a schedule di,r+ρ. There are at most τ · k specific rates δ that admit a
fair round robin global protocol.

Proof. We observe that for the round-robin protocol to be fair we need to satisfy
the following equation for all pair of parties i and j:

∑
ρ χi,ρe

−δρ =
∑

ρ χj,ρe
−δρ

In the simple case where each party have the same reward at the end of the
protocol, it can be transformed as follows:∑

ρ

∑
(r,di,r)

di,r+ρ · e−δ(ρ+r) =
∑
ρ

∑
(r,dj,r)

di,r+ρ · e−δ(ρ+r)
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By setting e−δ(ρ+r) equal to xρ+r we obtain a polynomial equation of degree at most
kτ with integer coefficients equal to di,r+ρ − dj,r+ρ. We can repeat the procedure
for all pairs and we obtain at most n − 1 independent polynomial equations. It is
enough that we consider the pairs 1, i for all i ≥ 2. The remaining equations can
be derived from those ones. Since the original protocol is unfair, there must be at
least one polynomial where at least one of such coefficient for each value of ρ is not
zero, hence each polynomial is not identically zero and of rank at least (k−1)τ and
maximum of kτ . Hence each polynomial has at most kτ zeroes i.e. values of δ that
admit a fair round schedule. If the other polynomials are also not identically zero,
such values δ must also be zeroes for the other n− 1 polynomials.

s

5.6.2 Small Collateral and Repeated Games

Another approach to allow the use of financially unfair protocols in practice might
be the use of a small collateral. Then all parties will not worry on a small interested
rate on the collateral if they have a choice of a significant reward at the end of the
protocol. If the game is repeated several thousands times, e.g. in financial trading,
a small collateral might quickly accrue to a significant values and therefore such
solution might only hold for games that are not played often.

Unfortunately, game theoretic considerations makes such proposition (make a
small collateral wrt stakes and rewards so that interest is negligible) less practical
than it seems. It only works if all parties have a final large reward with certainty.
In cases where a party may win a lot and other parties may lose everything, such
as poker or financial trading, this is not longer true. We illustrate it for the simple
case of two players (Alice going first and Bob going last) and one scoping the full
reward leaving the other with nothing.

Playing last and abort if unsatisfied, is a strictly dominating strategy for a single
game where the collateral is negligible in comparison to the initial stake, since it is
a simple variant of the prisoner dilemma [B+07, Chap.2].

The last player can chose between abort and retrieve the initial stake minus
the collateral (if the result is in favor of the first player) or cooperate and retrieve
the full reward. The first player can decide to (1a) abort and retrieve the initial
stake minus the collateral, cooperate and if the last players cooperate (2a) retrieve
nothing for herself or (3a) grab the reward depending on the random outcome of the
computation, or (4a) retrieve the initial stake plus the collateral is the last player
aborts. In contrast the last player can (2a) retrieve the reward if he cooperates
and the outcome is positive or (4a) abort and retrieve the initial stakes minus
the collateral if the outcome is zero for him. The option (3a) of cooperating if
the outcome is nothing for him is dominated by the the option (4a) of retrieving
the initial stake minus the collateral. Hence the Nash equilibrium is first player
cooperates, last player aborts if he doesn’t win.

In a repeated games with discount rates for later moves (See Section 8.3.3 in
[B+07]) both players may cooperate if the discount rate is large enough even if the
individual game would have a dominating strategy for defecting (i.e. in our case
going last and abort if unsatisfied). Unfortunately, this case is not applicable in our
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Figure 5.9. Coins locked in a run of the 4-party 2-stages Locked Ladder Protocol during
the Deposit Phase (in red) and the Claim Phase (in blue).

scenario as it requires players to have strategies that are contingent on the previous
behavior of the game, i.e. players needs to know how the other players played in the
previous instance of the game. Since players might join with a new pseudonym, one
cannot hold them accountable for repeated aborts. Therefore the repeated game
collapses into a sequence of independent games.

5.6.3 Further Examples of Ladder Protocols
Below, we illustrate the 3-party case of the LL protocol (without considering Boot-
strap Deposits).

ROOF: Pj
TT3−−−−−−−−−−−−−−→
q,τ4

P3 (for j ∈ {1, 2})

LADDER: P3
TT2∧U3,2−−−−−−−−−−−−−−−−−→

q,τ3
P2 (Rung Unlock)

P3
TT2−−−−−−−−−−−−−−→
2q,τ2

P2 (Rung Climb)

P2
TT1∧U2,3−−−−−−−−−−−−−−−−−→

q,τ2
P3 (Rung Lock)

FOOT: P2
TT1−−−−−−−−−−−−−−→
q,τ1

P1

The tokens Ui,j are necessary to avoid specific attacks, for further details look
at

Fig. 5.9 and Fig. 5.10 show the amount of coins locked during the Deposit and
Claim Phase of the 4-party L and PL Protocols. Since L and PL are for reactive
functionalities, in the figures we assume a 2-stages functionality for each protocol.
Fig. 5.11 illustrates the amount of coins locked for the AL Protocol.
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Figure 5.10. Coins locked in a run of the 4-party 2-stages Planted Ladder Protocol during
the Deposit Phase (in red) and the Claim Phase (in blue).
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Figure 5.11. Coins locked in a run of the 4-party Amortized Ladder Protocol during the
Deposit Phase (in red) and the Claim Phase (in blue).
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Chapter 6

Conclusions

We have considered MPC protocols under different perspectives, including new
assumptions for low round MPC and publicly verifiable and fair with penalties
protocols that are financially sustainable when run with decentralized payments
systems relying on smart contracts like Bitcoin or Ethereum blockchains.

In particular, we have shown a construction of maliciously secure oblivious trans-
fer (M-OT) protocol from a certain class of key agreement (KA) and semi-honestly
secure OT (SH-OT) protocols that enjoy a property called strong uniformity (SU),
which informally means that the distribution of the messages sent by one of the par-
ties is computationally close to uniform, even in case the other party is malicious.

When starting with 2-round or 3-round SUSH-OT or SU-KA, we obtain 4-round
M-OT, and thus, invoking [BL18], 5-round maliciously secure MPC from standard
assumptions including low-noise LPN, LWE, Subset Sum, CDH, DDH, and RSA
(all with polynomial hardness).

A significant open problem is constructing round-optimal (i.e., 4-round) mali-
ciously secure MPC from 4-round M-OT. Also, it is a natural question to see whether
SU-KA with r ≥ 4 rounds can be instantiated from even weaker assumptions.

Then, we have focused on public verifiable and asynchronous (in the sense that
players can give their contribution to the protocol at any time) MPC protocols im-
plemented on forking blockchains using smart contracts, and how to design such
protocols allowing players to be hasty (i.e., without being delayed by finality limi-
tations).

Beyond the double-spending attack, there are other issues that can affect both
security and privacy of MPC protocols implemented by a smart contract. On the
negative side, we showed that a well-known MPC protocol implemented via smart
contracts becomes insecure in the presence of forks and hasty players (because the
adversary can play adaptively on a branch of a fork depending on the information
observed on the other branch). On the positive side, we have shown smart contracts
within on-chain MPC protocols that remain secure even when there are forks and
players are hasty.

Moreover we have also discussed how to get fairness with penalties. This allows
us to get smart contracts that are simultaneously safe, fair and fast. We have also
provided in Section 4.3.2 some experiments to show noticeable improvements of our
PCT protocol with respect to the lottery protocol of Andrychowicz et al. in terms



122 6. Conclusions

of number of blocks needed for completion of the protocol and gas consumption of
the smart contracts.

Finally, we have shown that cryptographically-fair (with penalties) MPC with
penalties might be unfair when it comes to the amount of money each player has to
put into escrow in a run of the protocol. Hence, that the goal is designing penalty
protocols that are both cryptographically and financially fair, while at the same
time having good efficiency in terms of round complexity, number of transactions,
and script complexity.

State-of-the art protocols either achieve low script complexity (at the price of
unrealistic assumptions) but not financial fairness [KVV16], or achieve financial
fairness but either have high script complexity [KB14] or require trusted third par-
ties [KMS+16]. Alternatively, we also showed that efficiency, cryptographic fairness,
and financial fairness are all achievable at the same time and under standard as-
sumptions, so long as one settles for sequential (rather than universal) composability
using rewinding-based proofs. The latter might indeed be an option under certain
restrictions [CGJ19], or using redactable blockchains [AMVA17].

We make no assumption on the function used to compute the net present value,
but in some settings we may want to consider financial fairness only w.r.t. specific
discount rates. An extension would be to drop the assumptions, present in the
entire literature so far (including our paper) that (a) all parties are compensated
equally; and (ii) the adversary compensates all honest parties who do not receive the
result of the computation. These two assumptions are apparent, respectively, in the
compensation step of F∗ML (where (payout, i, j, coins( d

n−1)) is sent to every Pj ̸= Pi),
and in the third step of F∗f (the extrapay step). This approach, known as the “pro-
rata” approach for the restitution of mingled funds, however, is not the only possible
one [Bur11]. For example, one could use Clayton’s rule where “first withdrawals
from an account are deemed to be made out of first payments in” [CC14], and return
the funds only to the first k parties who deposited. Adjusting to these rules requires
simple modifications to the functionalities and the corresponding protocols.

We also shown that the CML Protocol only achieves standalone security. We leave
it as an open problem to construct a penalty protocol that achieves UC security,
with the same efficiency as CML and while retaining provable security in the plain
model. Note that this question is wide open even in the ROM, as the CL Protocol
from [KVV16] fails to achieve provable security in the ROM (as discussed in Section
5.4).
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