
UNIVERSITY OF TRENTO
Department of Computer Science and Information Engineering

International ICT Doctoral School

PhD Dissertation

Learning and Reasoning
in Hybrid Structured Spaces

Paolo MORETTIN

Advisor Co-Advisor
Andrea PASSERINI Roberto SEBASTIANI
University of Trento University of Trento

May 2020

Abstract

Many real world AI applications involve reasoning on both continuous and discrete variables,
while requiring some level of symbolic reasoning that can provide guarantees on the system’s
behaviour. Unfortunately, most of the existing probabilistic models do not e�ciently support
hard constraints or they are limited to purely discrete or continuous scenarios. Weighted
Model Integration (WMI) is a recent and general formalism that enables probabilistic model-
ing and inference in hybrid structured domains. A di�erence of WMI-based inference algo-
rithms with respect to most alternatives is that probabilities are computed inside a structured
support involving both logical and algebraic relationships between variables. While some
progress has been made in the last years and the topic is increasingly gaining interest from
the community, research in this area is at an early stage. These aspects motivate the study
of hybrid and symbolic probabilistic models and the development of scalable inference pro-
cedures and e�ective learning algorithms in these domains. This PhD Thesis embodies my
e�ort in studying scalable reasoning and learning techniques in the context of WMI.

Acknowledgments

Now that’s almost over, I can say it has been a fun ride. This crazy-fast, colorful journey wouldn’t
have been the same without the wonderful people I met along the way. Thank you Andrea, thank you
Roberto for your kindness and patience in guiding me through these challenging years. Doing a PhD
under your supervision has been a life-changing experience and one of the best decisions I’ve ever made.
Life in Trento wouldn’t have been as joyful without Marco, Stefano, Dragone, Gianni, Luca, Gianluca
and the whole SML family, Edoardo, Zaki, Alessandra, Daniele, Sivam, Genc, Mesay.. I couldn’t hope for
more supportive and easy-going pals to hang with. I would like to thank Luc, Samuel, Guy, Antonio,
Zhe, Fanqi and all the people I met during my visits at KU Leuven and UCLA. Thank you for being
so welcoming, working with you was a pleasure and a privilege. Un grazie a Maurizio, Efrem, Matteo,
Dozzi, Fabio, Alessandro, Giulia, Lucia, Jacopo, Ceci, Damiano, Fabi, Usha, Giovi, Pola. Tutti questi anni
assieme mi hanno insegnato cosa voglia dire amicizia. Non avrei mai potuto arrivare in fondo a questo
percorso senza il supporto della mia famiglia. Grazie a Ilario, Liliana e Daniele per essere una fonte
inesauribile di a�etto, ispirazione e coraggio. Grazie Alessia per aver portato gioia e amore nella mia
vita.

Thank you Pollo, so long.

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Contributions . 2
1.3 Outline of the Thesis . 3

2 Background 5

2.1 Probabilistic Graphical Models . 5
2.1.1 Bayesian Networks . 6
2.1.2 Markov Networks . 9
2.1.3 Factor graphs . 10
2.1.4 The belief propagation algorithm . 11

2.2 Inference by Weighted Model Counting . 13
2.2.1 Propositional satis�ability . 13
2.2.2 Weighted Model Counting . 14

2.3 Inference by Weighted Model Integration . 17
2.3.1 Satis�ability Modulo Theories . 17
2.3.2 Weighted Model Integration . 20

3 Related work 25

3.1 Modelling and inference . 25
3.2 Learning . 28

4 WMI-PA 31

4.1 Predicate Abstraction . 33
4.2 Weighted Model Integration, Revisited . 34

4.2.1 Basic case: WMI Without Atomic Propositions 35
4.2.2 General Case: WMI With Atomic Propositions 36
4.2.3 Conditional Weight Functions . 40
4.2.4 From WMI to WMIold and vice versa 43

4.3 A Case Study . 44
4.3.1 Modelling a journey with a �xed path 45
4.3.2 Modelling a journey under a conditional plan 47
4.3.3 E�ciency of the encodings . 49

vi

4.4 E�cient WMI Computation . 50
4.4.1 The Procedure WMI-AllSMT. 50
4.4.2 The Procedure WMI-PA. 51
4.4.3 WMI-PA vs. WMI-AllSMT . 53

4.5 Experiments . 54
4.5.1 Synthetic Setting. 54
4.5.2 Strategic Road Network with Fixed Path. 57
4.5.3 Strategic Road Network with Conditional Plans. 58
4.5.4 Discussion . 59

4.6 Final remarks . 61

5 MP-MI 63

5.1 Preliminaries . 63
5.1.1 Computing MI . 66
5.1.2 Hybrid inference via MI . 66

5.2 On the inherent hardness of MI . 67
5.3 MP-MI: exact MI inference via message passing 70

5.3.1 Propagation scheme . 70
5.3.2 Amortizing Queries . 72
5.3.3 Complexity of MP-MI . 73

5.4 Experiments . 73
5.5 Final remarks . 74

6 lariat 77

6.1 Learning WMI distributions . 77
6.1.1 Learning the support . 77
6.1.2 Learning the weight function . 80
6.1.3 Normalization . 81

6.2 Experiments . 83
6.3 Final remarks . 87

7 Conclusion 89

Chapter 1

Introduction

1.1 Motivation

Arti�cial intelligence applications often times involve dealing with uncertainty, such as a
partially observed environment or noisy observations. Probability theory is a principled way
of modelling uncertainty. Thanks to their sound theoretical foundations, their data e�ciency
and interpretability, probabilistic models �nd applications in many �elds, such as bioinfor-
matics [41], �nance [65] and robotics [97]. Many complex real world applications involve
reasoning on both continuous and discrete variables. Unfortunately, most of the current prob-
abilistic models are incapable of dealing with hybrid numerical and logical domains. Existing
hybrid continuous/discrete models are typically limited in expressiveness by distributional
assumptions or support approximate inference only, with no guarantees on the approxima-
tion error. This implies that many real world problems are out of reach of the current systems,
making the development of more expressive models a relevant research direction.

Although most of the recent research focuses on end-to-end sub-symbolic models, many real
world applications require some level of symbolic reasoning that can provide guarantees
on the system’s behaviour. This aspect is pivotal in safety-critical applications and policy-
making [87]. At the same time, it has been shown that providing structured prior knowledge
on the domain is bene�cial in many learning tasks, in particular when the availability of train-
ing data is limited [104], or unlabelled for a speci�c task [98]. Unfortunately, there is limited
literature on learning hybrid structured probabilistic models. Enabling scalable probabilis-
tic inference in these domains is thus an important research direction also from a learning
perspective.

Weighted Model Integration (WMI) [9] is a recent and general formalism that enables prob-
abilistic modeling and inference in hybrid structured domains. WMI is a generalized form
of Weighted Model Counting (WMC), a state-of-the-art technique for probabilistic inference
in the purely discrete case. A key di�erence of WMI with respect to most inference algo-
rithms is that probabilities are computed in the constrained space that is explicitly de�ned by
a structured support. The support of the distribution can be a complex formula involving both
logical and algebraic relationships between variables. While some progress has been made in

2

the last years and the topic is increasingly gaining interest from the community, research in
this area is at an early stage. Much work has to be done in tracing the complexity boundaries
of the inference problem, identifying tractable subclasses of problems and studying the many
issues related with learning WMI distributions from data. In particular, structure learning is
an unexplored research direction.

Probabilistic inference is notoriously a computationally hard problem, even in simpler do-
mains. Thus, hybrid probabilistic inference in structured spaces is a particularly challenging
task. Nonetheless, advancements in this area have a potential to bring bene�ts in many high-
impact applications. These aspects motivate the study of hybrid and symbolic probabilistic
models and the development of scalable inference procedures and e�ective learning algo-
rithms in these domains.

1.2 Contributions

This PhD thesis embodies my e�ort in studying scalable reasoning and learning techniques
in the context of WMI. My research on this topic focused on the following aspects:

• improving over the state-of-the-art algorithms for exact probabilistic inference;

• studying tractability of WMI problems;

• investigating the problem of learning the structure and parameters of WMI distribu-
tions from data.

The content of this manuscript is mainly based upon the following articles:

[75] “E�cient Weighted Model Integration via SMT-Based Predicate Abstraction”. Moret-
tin, P.; Passerini, A.; Sebastiani, R. In International Joint Conference on Arti�cial
Intelligence (IJCAI), 2017.

[74] “Advanced SMT techniques for weighted model integration”. Morettin, P.; Passerini,
A.; Sebastiani, R. In Journal of Arti�cial Intelligence (AIJ), 2019.

[108] “Hybrid Probabilistic Inference with Logical Constraints: Tractability and Message-
Passing”. Zeng, Z.; Yan, F.; Morettin, P.; Vergari, A.; Van den Broeck, G. In Knowl-
edge Representation & Reasoning Meets Machine Learning (KR2ML) workshop at
NeurIPS, 2019.

[76] “Learning Weighted Model Integration Distributions”. Morettin, P.; Kolb, S.; Teso,
S.; Passerini, A. In Proceedings of AAAI, 2020.

While the content of this thesis focuses on theory, I also contributed to pywmi [50]1, a Python3
library that uni�es the technical e�orts of di�erent research groups into a single framework
for WMI modelling and inference.

1https://github.com/weighted-model-integration/pywmi

Chapter 1. Introduction 3

1.3 Outline of the Thesis

The rest of the manuscript is structured as follows:

Chapter 2: Background A brief introduction on the theoretic concepts this thesis builds
on. Speci�cally, this chapter covers Probabilistic Graphical Models and inference algorithms
based on reducing the problem to Weighted Model Counting/Integration.

Chapter 3: Related work This chapter summarizes the related work in hybrid probabilis-
tic models with a focus on alternative techniques for WMI and similar formalisms, hybrid
density estimation and learning of structured distributions subject to hard constraints.

Chapter 4: WMI-PA This chapter presents WMI-PA, an exact, solver-based WMI algo-
rithm that leverages SMT-based predicate abstraction techniques for exploiting the struc-
tural properties of the weight function, thus reducing the number of integrations required
to compute the weighted model integral. This algorithm is based on a revised formulation
of the problem, introduced in section 4.2. Section 4.3 describes a real-world case study that
motivates the performance gain obtained by reasoning on the conditions that govern the be-
haviour of the unnormalized density. The formal description of WMI-PA and an empirical
evaluation of its performance are reported in sections 4.4 and 4.5.

Chapter 5: MP-MI A di�erent approach to the WMI problem is presented in this chap-
ter. Section 5.1 reports a theoretical result that describes how WMI problems can be reduced
to a MI problem under some conditions. Tractability boundaries for the unweighted case
are formally investigated in section 5.2. Then, section 5.3 presents an exact message-passing
algorithm, dubbed MP-MI, that enables e�cient probabilistic inference and moments compu-
tation in some families of distributions. Finally, the performance of MP-MI on these families
of MI problems is studied in section 5.4.

Chapter 6: lariat In section 6.1, we �rst introduce the problem of learning a WMI dis-
tribution, then we present lariat, the �rst approach to this problem. The method separately
learns the structured support and estimates the density inside the feasible hybrid space, ulti-
mately renormalizing the density to account for the learned constraints. Section 6.2 provides
an empirical evaluation of the method on both synthetic and real world settings.

Chapter 7: Conclusion This chapter summarizes the presented work and concludes the
thesis with an overview of the future work related to the topics presented here.

Chapter 2

Background

2.1 Probabilistic Graphical Models

Probabilistic Graphical Models [51, 44] (PGMs) are well known approaches for modelling un-
certainty and implement systems that are able to make informed decisions in a partially ob-
served environment. Probability theory is the formal framework that allows PGMs to deal
with the uncertainty in a principled manner. In these models, the observed and the latent
stochastic variables are represented as nodes in a graph, while the dependencies among them
are represented by the edges. The resulting graph, often called the structure of the probabilis-
tic model, is augmented with functions that weight local con�gurations according to their
probabilities. Using these two ingredients, PGMs encode a joint probability distribution on its
variables in a compact, factorized form. Explicitly encoding the dependencies in graphical
form has two main bene�ts:

• it allows representing a highly dimensional distribution compactly, while an unstruc-
tured table would be exponential in the number of variables. Moreover, the regularities
and (conditional) independencies in the structure can be leveraged by the inference
procedures;

• the resulting probabilistic graphical model is usually much more interpretable com-
pared to alternative approaches, thus allowing a human expert to analyse the model
and its decisions.

These aspects contributed to the adoption of PGMs in a wide range of applications, such as
bio and medical informatics [41] and robotics [97]. Most PGMs are trained in a generative
fashion to model the full joint distribution, thus supporting a larger number of probabilistic
queries with respect to discriminative models. PGMs are usually divided into directed and
undirected graphical models, called Bayesian Networks and Markov Networks respectively.
These two formalism are not equivalent, as they can encode di�erent families of joint prob-
ability distributions.

What follows is a brief introduction on PGMs, for additional reference the reader can con-
sult [10, 51].

6

2.1.1 Bayesian Networks

Bayesian Networks (BNs) model the probabilistic dependencies between variables with a di-
rected acyclic graph G and factorize the joint probability parameterized by Θ as the product
of conditional probabilities between each variables with respect to its parents, or marginals
for the variables having no parents. BNs are usually adopted for capturing the causal relation-
ships between the variables, such as those occurring between the symptoms and a potential
disease. More formally, a BN B = 〈G,Θ〉 encodes the joint probability distribution over
variables X = {X1, ..., XN}:

P (X|Θ) =

N∏
i=1

P (Xi|PaG(Xi),Θi)

where PaG(Xi) denotes the set of parents of Xi in G and Θi is the subset of parameters
that govern the probability of Xi. The independence assumptions encoded in BNs enable a
more compact representation of the joint probability over the variables. Usually, the param-
eters of the BN are represented with conditional probability tables (CPTs). Modelling a joint
categorical distribution over N K-ary variables X1, ..., XN with a BN requires

|Θ| =
N∑
i=1

(K − 1) ·KPaG(Xi)

parameters instead of KN .

Example 1. The BN B = 〈G,Θ〉, with G depicted in �gure 2.1, models the following joint
distribution over the binary variables An (Andrea goes to the conference), Pa (Paolo goes to
the conference) and Po (Pollo goes to the conference):

P (An,Pa, Po) = P (Po|An,Pa) · P (Pa|An) · P (An)

The parameters Θ are encoded in the CPTs:

P (An)

0.7

An P (Pa|An)

> 0.3
⊥ 0.2

An Pa P (Po|An,Pa)

> > 1
> ⊥ 0.4
⊥ > 0.6
⊥ ⊥ 0

With this factorization, the full joint probability can be represented using one less parameter
(22 + 2 + 1) with respect to the 23 parameters used by an exhaustive tabular representation.

Chapter 2. Background 7

Po

An Pa

Figure 2.1: The graphical representation of the structure of the BN in Ex. 1, modelling the
probabilities of Andrea, Paolo and Pollo of being at a machine learning conference.

2.1.1.1 Conditional independence

The structure of a graphical model encodes some independence assumptions between the
stochastic variables. Many inference algorithms in graphical models go beyond that and try
to leverage conditional independence to further decompose the problem in separate compu-
tations involving disjoint sets of variables. Fortunately, the conditional independencies can
be readily inferred from G without requiring any analytical evaluation of the joint probability
expression.

Two variables A, B are conditionally independent given C (denoted with A ⊥⊥ B | C) if
P (A,B|C) = P (A|C) · P (B|C). Consider the following three structures, each one rep-
resenting a di�erent factorization of the joint probability P (A,B,C) and di�erent condi-
tional independence assumption given C . In what follows, we consider the (undirected) path
A− C −B and the directionality of the edges connecting C .

C is head-to-tail

A C B

P (A,B,C) = P (B|C) · P (C|A) · P (A)

When none of the variables are observed, then

P (A,B) = P (A) ·
∑
C

P (B|C) · P (C|A)

= P (A) · P (B|A)

Thus, it doesn’t hold A ⊥⊥ B |∅. On the contrary, if we condition for C , then

P (A,B|C) =
P (A,B,C)

P (C)

=
P (A) · P (B|C)

P (C)

When C is observed, the probabilities of A and B do not interact, i.e. A ⊥⊥ B | C .

8

C is tail-to-tail

C

A B

P (A,B,C) = P (A|C) · P (B|C) · P (C)

Again, when none of the variables are observed, A ⊥⊥ B |∅, since

P (A,B) =
∑
C

P (A|C) · P (B|C) · P (C)

doesn’t factorize as P (A) · P (B). When conditioning for C we obtain

P (A,B|C) =
P (A,B,C)

P (C)
= P (A|C) · P (B|C)

Again, this implies that A ⊥⊥ B | C .

C is head-to-head

A

C

B

P (A,B,C) = P (C|A,B) · P (A) · P (B)

This third case is di�erent from the previous ones, in fact:

P (A,B) = P (A) · P (B) ·
∑
C

P (C|A,B) = P (A) · P (B)

Thus, A ⊥⊥ B | ∅. If we condition for C though, a dependency between the probabilities of
A and B is introduced.

P (A,B|C) =
P (A) · P (B) · P (C|A,B)

P (C)

Thus, A ⊥⊥ B | C doesn’t hold.

The concept of d-separation (directed-separation) [80] generalizes the examples above to dis-
joint sets of variables. Given three sets of variables A, B, C, the conditional independence
A ⊥⊥ B |C can be checked by considering all the (undirected) paths in G between variables
in A and B. A path is blocked with respect to C, if one of the two holds:

• the node is head-to-tail or head-to-head in the path and it is contained in C;

Chapter 2. Background 9

X

Figure 2.2: The Markov blanket of X in the directed case.

• the node is tail-to-tail in the path but neither itself nor its descendants are in C;

If every path between A and B is blocked with respect to C, then A ⊥⊥ B |C.

Given a variable in a BN, its Markov blanket is the set of its parents, its children and the
children’s co-parents, as depicted in �gure 2.2. By the d-separation criterion, any node is
independent with respect to every other node in G given its Markov blanket.

2.1.2 Markov Networks

Markov Networks (MNs) [45] are used to model mutual interaction between sets of variables,
such as neighbouring pixels in images. A MN M = 〈G,Θ〉 models undirected and possi-
bly cyclic dependencies among variables X = {X1, ..., XN} using an undirected graph and
factorize the joint probability as the product of non-negative potential functions assigned to
the (maximal) cliques in the graph Cl(G). More formally, a MN encodes the joint probability
distribution

P (X|Θ) =
1

Z(Θ)
·
∏

c∈Cl(G)

fc(Xc,Θc)

where Xc denote the set of variables in the clique c, fc is the potential associated to c, pa-
rameterized by Θc. Since the potentials are non-negative but not necessarily normalized, the
partition function Z is computed as a normalizing constant

Z(Θ) =
∑
X

∏
c∈Cl(G)

fc(Xc,Θc)

Again, assuming that the probabilistic independencies in G hold, a joint categorical distribu-
tion over N K-ary variables X1, ..., XN can be modelled with

|Θ| =
∑
c∈ClG

|Xc| · (K − 1) ·K(|Xc|−1)

parameters instead of N · ((K − 1) ·K(N−1)).

10

X1,1

X1,2

X1,3

X1,4

X2,1

X2,2

X2,3

X2,4

X3,1

X3,2

X3,3

X3,4

X4,1

X4,2

X4,3

X4,4

Figure 2.3: The graphical representation of the pairwise MN in Ex. 2.

Example 2. Let’s consider a toy pairwise MN modelling a distribution over N ×N bitmaps.
The interactions between variables X = {Xi | i ∈ [1, N]2} are modelled as pairwise rela-
tionships between neighboring pixels. The number of bivariate potential functions is equal
to the number of edges of the architecture, |GE | = 2 · [(N − 1)2 +N · (N − 1)]. Each poten-
tial function models the interaction of two binary variables, having |Θi,j | = 4 parameters.
Figure 2.3 depicts the graphical representation of a MN M over 4 × 4 bitmaps. The joint
distribution modelled byM is

P (X|Θ) =
1

Z(Θ)
·
∏

{i,j}∈GE

fi,j(Xi, Xj ,Θi,j)

Assuming that the pixels in an image are exclusively related to their neighbors is probably not
a good modelling assumption, but it greatly reduces the number of parameters with respect
to the fully connected case with bivariate potentials, having |Θ| = 4 · (2 + 4N2 − 6N)

parameters instead of |Θ| = 4 · N
2(N2−1)

2 .

2.1.3 Factor graphs

Both directed and undirected graphical models de�ne a factorization of the joint probabil-
ity. Factor graphs [54] represent a common formalism that captures this decomposition by
explicitly introducing factor nodes. Formally, a factor graph F = 〈G,Θ〉 is a undirected
bipartite graph G having variable nodes X connected to factor nodes F = {F1, ..., FK}.
Factors nodes Fi are associated with functions of their neighbors and Θ. This unifying for-
malism is noteworthy as many inference algorithms can be expressed as computations on a
factor graph and can thus be applied to BNs and MNs alike. A BN B = 〈G,Θ〉 can be turned
into the corresponding factor graph by �rst moralizing G, i.e. adding an undirected edge
between every parent of a node. Then, we obtain the factor graph by dropping the direction-
ality of the edges and encoding each conditional probability P (Xi|PaG(Xi),Θi) as a factor
f(Xi, PaG(Xi),Θi). For MNs, the conversion into factor graph is straightforward.

Example 3. Consider the BN in �gure 2.4 (top), representing the joint probability distribution

Chapter 2. Background 11

X1

X3

X2

X5

X4

X1 X2 X3 X4 X5

F1 F2 F3 F4 F5

Figure 2.4: The graphical representation of the BN in Ex. 3 (top) and its factor graph counter-
part (bottom).

over X = {X1, X2, X3, X4, X5}:

P (X|Θ) = P (X5|X3, X4,Θ) · P (X4|Θ) · P (X3|X1, X2,Θ) · P (X1|Θ) · P (X2|Θ)

Using the procedure described above, we can convert it into the corresponding factor graph
representation, depicted in �gure 2.4 (bottom), with factors:

fa(X1,Θ) = P (X1|Θ)

fb(X2,Θ) = P (X2|Θ)

fc(X1, X2, X3,Θ) = P (X3|X1, X2,Θ)

fd(X4,Θ) = P (X4|Θ)

fe(X3, X4, X5,Θ) = P (X5|X3, X4,Θ)

2.1.4 The belief propagation algorithm

The belief propagation algorithm (also known as sum-product algorithm) is a well known ef-
�cient inference algorithm for tree-structured graphical models. In the following, the variant
on factor graphs is presented [54]. The algorithm is exact for acyclic factor graphs 1. The
algorithm computes for any variable node Xi ∈ X the marginal P (Xi) by sending variable
and factor messages through the edges the factor graph. A message from a variable Xi to a
factor Fj is simply the product of the factor messages coming from the neighbors other than

1When the factor graph contains cycles the junction tree algorithm can be used, or an approximate version of
the algorithm called loopy belief propagation can be used

12

Xi

Figure 2.5: Message passing scheme for computing P (Xi).

the recipient:

mXi→Fj (Xi) =

{∏
Fk∈Ne(Xi)\{Fj}mFk→Xi(Xi) if Ne(Xi) 6= {Fj}

1 otherwise

A factor message from Fj to variable Xi is the product of the its factor function fj and the
variable messages coming from the neighbors other than the recipient, marginalized for every
possible values of X1, ..., XM ∈ Ne(Fj) \ {Xi}:

mFj→Xi(Xi) =
∑
X1

...
∑
XM

fj(X1, ..., Xi, ..., XM) ·
∏

Xk∈Ne(Fj)\{Xi}

mXk→Fj (Xk)

The factor graph is initially oriented as a tree havingXi as a root, as shown in �gure 2.5. Then,
messages are sent from leaf nodes up to the parents. WhenXi receives all the messages from
neighboring factors Ne(Xi), its marginal given the evidence is:

P (Xi) =
∏

Fj∈Ne(Xi)

mfj→Xi(Xi)

A similar message passing scheme, presented in section 5.3, is used in MP-MI to perform
tractable inference in hybrid, tree-structured models.

Example 4. Consider again the BN in Example 1. In this case, the structure does not allow the
full decomposition of the joint probability into an acyclic factor graph. In order to remove
the cycles, we must merge into a single factor both f2(An,Pa, Po) = P (Po|An,Pa) ·
P (An|Pa), as depicted in �gure 2.6.

Assuming variable Pa as the root, then the messages sent with the belief propagation algo-

Chapter 2. Background 13

An Pa Po

F1 F2

Figure 2.6: The acyclic factor graph in Example 4, corresponding to the BN in Example 1.

rithm to compute the marginal P (Pa) are:

mF1→An(An) = f1(An) = P (An)

mAn→F2
(An) = mF1→An(An) = P (An)

mPo→F2
(Po) = 1

mF2→Pa(Pa) =
∑
An

∑
Po

f2(An,Pa, Po) ·mAn→F2
(An) ·mPo→F2

(Po)

=
∑
An

∑
Po

P (Po|An,Pa) · P (Pa|An) · P (An) = P (Pa)

Indeed, computing the marginal requires the marginalization of each other variable for com-
puting mF2→Pa.

2.2 Inference by Weighted Model Counting

2.2.1 Propositional satis�ability

Propositional logic (PL) is the classical branch of logic that describes an algebra over propo-
sitions. A propositional variable (sometimes simply called atom or boolean variable) is an
atomic statement that can either be true (>) or false (⊥). Propositional formulas combine
atoms by means of the usual logical operators: negations (¬), conjunctions (∧), disjunctions
(∨). In what follows, we denote with Atoms(ϕ) the set of atoms appearing in a logical
formula ϕ, while we denote the literals, i.e. the set of the atoms and their negation, with
Literals(ϕ) = Atoms(ϕ) ∪ {¬A |A ∈ Atoms(ϕ)}. Sometimes, the variables appearing in
the formula are explicitly denoted in parenthesis, e.g. ϕ(A1, A2). A truth assignment µ is
a function that maps (a subset of) variables of a propositional formula ϕ to boolean values,
i.e. given A ⊆ Atoms(ϕ), µ : A → {⊥,>}. A truth assignment is total when it assigns
a truth value to every variable in the formula, otherwise it is called partial. In what follows,
with a slight abuse of notation the truth assignments are represented as sets of literals cor-
responding to atoms in the formula, i.e. µ ⊆ Literals(ϕ). A truth assignment satis�es a
formula ϕ if and only if the formula is true under that assignment, written µ |= ϕ. µ is also
called a model of ϕ2. Given a logical formula ϕ, let TTA(ϕ) and TA(ϕ) be the set of total and

2In this context, the term “model” refers to an assignment to the formula variables that satis�es it, thus it is
equivalent to “satisfying truth assignment”. This is not the case when we later introduce continuous numerical

14

partial truth assignments that satisfy ϕ respectively. A formula ϕ is satis�able if and only
if ∃µ . µ |= ϕ, while ϕ is valid if and only if ∀µ . µ |= ϕ. The propositional satis�ability
problem (SAT) consists in deciding whether a given formula is satis�able3. Although SAT is
the canonical NP-complete problem [21] and thus is inherently hard to solve, nowadays we
can solve instances involving hundreds of thousands of variables, thanks to the theoretical
and technological advancements of specialized procedures called SAT solvers. Thanks to this
advancements, SAT solvers are the backend engine of many symbolic reasoning systems that
are used in an enormous number of applications.

2.2.2 Weighted Model Counting

Model Counting (#SAT) is the counting analogue of the SAT decision problem. Given a propo-
sitional formula ϕ, the goal is to count/enumerate all its satisfying total truth assignments.
More formally, the model count of ϕ is #SAT(ϕ) = |TTA(ϕ)|.

Example 5. Consider the formula ϕ, which encodes the knowledge:

• “If it rains (R) then the sky must be cloudy (C)”

• “The sky cannot be cloudy (C) and bright (B) at the same time”

ϕ = (¬R ∨ C) ∧ ¬(C ∧B)

then:

TTA(ϕ) =


{¬R,¬C,¬B}
{¬R,¬C, B}
{¬R, C,¬B}
{ R, C,¬B}


thus, #SAT(ϕ) = 4.

Many combinatorial problems can be solved by enumerating the solutions of a logical for-
mula. In this context, every model of ϕ has the same relevance. In fact, no degree of un-
certainty is postulated in the problem. A system that has to make decisions in a partially
observed environment needs to reason not only about what is possible, but also about what
is probable.

Weighted Model Counting (WMC) [88, 14] generalizes #SAT by assigning a weight to the
models of the formula. The weight function is typically de�ned on the literals corresponding
to the atoms appearing in the formula and the weight of a model is the product of the literals
in the model.

variables.
3Typically, a positive answer comes with the model that was found.

Chapter 2. Background 15

De�nition 1 (Weighted Model Count). Letϕ be a propositional formula and letw be a function
associating a non-negative constant weight to each literal whose atom occurs in ϕ, i.e.

w : Literals(ϕ)→ R+

. Then, the Weighted Model Count of ϕ is de�ned as:

WMC(ϕ,w) =
∑

µ∈TTA(ϕ)

weightµ (2.1)

weightµ =
∏
`∈µ

w(`)

The introduction of a weight function enables probabilistic reasoning, as it enables the quan-
ti�cation of the uncertainty on the symbolic knowledge encoded in the formula.

Example 6. Consider the following weight function, which assigns weights to Literals(ϕ)

from Example 5:

w(l) =


0.2 if l = R

0.6 if l = C

1.0 otherwise

then, the weighted model count of ϕ and w is:

WMC(ϕ,w) = [w(¬R) · w(¬C) · w(¬B)]

+ [w(¬R) · w(¬C) · w(B)]

+ [w(¬R) · w(C) · w(¬B)]

+ [w(R) · w(C) · w(¬B)]

= [1.0 · 1.0 · 1.0] + [1.0 · 1.0 · 1.0] + [1.0 · 0.6 · 1.0] + [0.2 · 0.6 · 1.0]

= 2.72

If the weight function quanti�es the degree of uncertainty on the truth values of the atoms,
then the weight of each model can be interpreted as its unnormalized probability, withWMC(ϕ,w)

being the analogue of the partition function in undirected graphical models. Thus, the pair
〈ϕ,w〉 de�nes a probabilistic model where w is the unnormalized mass function over the sup-
port of the distribution ϕ. Given two propositional formulas ϕQ and ϕE on Atoms(ϕ), en-
coding respectively the query and evidence, the normalized conditional probability of a query
Q given evidence E is computed as4:

P〈ϕ,w〉(Q|E) =
WMC(ϕ ∧ ϕQ ∧ ϕE , w)

WMC(ϕ ∧ ϕE , w)

4The de�nition assumes that the model conjoined with the evidence is consistent, otherwise the result is de�ned
to be 0 to avoid the degenerate 0

0
cases.

16

For instance, in the model described above, we could compute:

• “The probability of a cloudy sky”

P〈ϕ,w〉(C) =
0.72

2.72
∼ 0.26

• “The probability that it rains or there’s a bright sky”

P〈ϕ,w〉(R ∨B) =
1.12

2.72
∼ 0.41

• “The probability of rain given that the sky is not bright”

P〈ϕ,w〉(R|¬B) =
0.12

1.72
∼ 0.07

Reducing probabilistic inference to WMC is the state-of-the-art approach in many discrete
probabilistic models. As a motivating example, we report the original reduction technique
for computing conditional probability queries in discrete BNs by WMC [89]. Without loss of
generality, the variables are assumed to be binary. The resulting formula ϕ is in CNF.

Given B = 〈G,Θ〉, modelling a joint distribution over X = {X1, ..., XN}, we need to in-
troduce state and chance variables in our propositional theory. For each Xi, a state vari-
able encodes its binary value 5. In what follows, we denote the state variables with the
same name as the original variables in the BN. For each CPT entry j in P (Xi|PaG(Xi)) =

[〈µj , pj〉]2
|PaG(Xi)|

j=1 , where µj denotes an assignment to PaG(Xi) and pj = P (Xi = >|µj),
we add a chance variableChjXi withw(ChjXi) = pj and two clauses toϕ: (µj∧ChjXi → Xi)

and (µj ∧ ¬ChjXi → ¬Xi). Notice that, if the j-th entry of the CPT is deterministic, i.e. has
pj ∈ {0, 1}, there is no need to introduce two clauses and the chance variable. If pj = 0,
then the clause (µj → ¬Xi) is added. If pj = 1, (µj → Xi) is added instead.

Example 7. Consider again the binary BN in Example 1, modelling the participation of Andrea
(An), Paolo (Pa) and Pollo (Po) to a ML conference. Inference can be reduced to a WMC

computation with formula:

ϕ = (Ch1
An → An) ∧ (¬Ch1

An → ¬An)

∧ (An ∧ Ch1
Pa → Pa) ∧ (An ∧ ¬Ch1

Pa → ¬Pa)

∧ (¬An ∧ Ch2
Pa → Pa) ∧ (¬An ∧ ¬Ch2

Pa → ¬Pa)

∧ (An ∧ Pa→ Po)

∧ (An ∧ ¬Pa ∧ Ch2
Po → Po) ∧ (An ∧ ¬Pa ∧ ¬Ch2

Po → ¬Po)
∧ (¬An ∧ Pa ∧ Ch3

Po → Po) ∧ (¬An ∧ Pa ∧ ¬Ch3
Po → ¬Po)

∧ (¬An ∧ ¬Pa→ ¬Po)

5As pointed out in the original paper, this is not actually needed for variables with no parents.

Chapter 2. Background 17

and weights:

w(Ch1
An) = 0.7,

w(Ch1
Pa) = 0.3, w(Ch2

Pa) = 0.2,
w(Ch2

Po) = 0.4, w(Ch3
Po) = 0.6

Notice how the deterministic entries in the CPT P (Po|An,Pa) are converted in hard propo-
sitional constraints.

The e�ectiveness of this method and the body of research in this area motivated the e�orts
in generalizing the techniques used in the discrete case to hybrid domains. The �rst step in
this direction is to move from PL to more expressive languages that can represent our hybrid
symbolic knowledge.

2.3 Inference by Weighted Model Integration

2.3.1 Satis�ability Modulo Theories

Satis�ability Modulo Theories (SMT) generalizes SAT to theories like uninterpreted functions
with equality (EUF), linear algebra over reals (LRA), bit-vectors (BV), etc. Given a theory T ,
a SMT-T formula can contain both propositional and theory atoms. Given a SMT-T formula
ϕ, the SMT problem consists in deciding whether there exists a satisfying truth assignment
to its atoms. In SMT, a satisfying truth assignment has to both propositionally satisfy ϕ
and be consistent with T . Applications of SMT include hardware/software veri�cation (see
e.g. [18, 27]), symbolic optimization [63] and bioinformatics [67].

In what follows, we focus on SMT-LRA. This language can represent complex logical and al-
gebraic relationships between boolean variables A = {A1, ..., An} and continuous variables
X = {X1, ..., Xm}. Speci�cally, LRA-atoms are linear equalities or inequalities between
continuous variables:

(
∑
Xi∈X

ai ·Xi ./ b) where ./∈ {<,≤, >,≥,=, 6=}, ai, b ∈ R

We denote by TTA(ϕ)
def
= {µ1, ..., µj , ...} the set of allLRA-satis�able total truth assignments

µ on Atoms(ϕ) propositionally satisfying ϕ. TTA(ϕ) is unique. We denote by TA(ϕ)
def
=

{µ1, ..., µj , ...} any set of LRA-satis�able partial truth assignments µ on Atoms(ϕ) propo-
sitionally satisfying ϕ, s.t. (i) every total truth assignment η ∈ TTA(ϕ) is a super-assignment
of one µj in TA(ϕ), and (ii) every pair µi, µj assigns opposite truth values to at least one
element, i.e., µi ∧ µj |=B ⊥ (hence µi ∧ µj |=LRA ⊥). TA(ϕ) is not unique, and TTA(ϕ) is a
particular case of TA(ϕ).

18

The disjunction of the µ’s in TA(ϕ) is LRA-equivalent to ϕ (see e.g. [93]):

ϕ =LRA
∨

µ∈TA(ϕ)

µ (2.2)

Example 8. Consider the SMT-LRA formula with A = {faulty} and X = {temp}:

ϕ = ((temp < −40.0) ∨ (temp > 200.0))→ faulty

then:

TTA(ϕ) =


{¬(temp < −40.0),¬(temp > 200.0),¬faulty}
{¬(temp < −40.0),¬(temp > 200.0), faulty}
{¬(temp < −40.0), (temp > 200.0), faulty}
{ (temp < −40.0),¬(temp > 200.0), faulty}


In this example, the assignment

{(temp < −40.0), (temp > 200.0), faulty}

does propositionally satisfyϕ but it is not consistent with theLRA theory, since temp cannot
be at the same time smaller than −40.0 and larger than 200.0.

In contrast with SAT, the satisfying assignments or solutions of an SMT problem do not
necessarily correspond to the models of the formula. In fact, when we consider continuous
numbers, there might be an in�nite number of models for a single solution.

In the following sections, given an assignment µ to the atoms of a SMT-LRA formula, we
denote with µLRA and µA the subparts of µ regarding LRA-atoms and propositional atoms
respectively. From a representation perspective, SMT-LRA formulas can encode complex
hybrid supports, where the projection on the continuous subspace is a combination of mul-
tivariate polytopes.

Example 9. Consider the SMT-LRA formula on variables X = {x, y}, A = {A}:

χ = (1 ≤ y) ∧ (y ≤ 3)

∧ (A→ ((1 ≤ x) ∧ (x ≤ 2)))

∧ (¬A→ ((1 ≤ x) ∧ (x ≤ 3) ∧ (x+ y ≤ 3)))

This formula de�nes two sub-spaces of x×y conditioned on the truth value ofA, as depicted
in �gure 2.7.

As in the purely discrete case, we can enable probabilistic reasoning by introducing a weight
function over the solutions of an SMT problem.

Chapter 2. Background 19

Figure 2.7: The hybrid space de�ned in Example 9, χ = (1 ≤ y) ∧ (y ≤ 3) ∧ (A → ((1 ≤
x) ∧ (x ≤ 2))) ∧ (¬A→ ((1 ≤ x) ∧ (x ≤ 3) ∧ (x+ y ≤ 3)))

2.3.1.1 Formula and term abbreviations

In the rest of the thesis we use the following formula and term abbreviations, all written in the
form “J〈expression〉K”, denoting the LRA-encoding of 〈expression〉, the latter being some
mathematical concept which is not an LRA formula or term. Let t, ti be LRA terms, ϕ,ϕi
be LRA formulas, and I = [l, u] be some interval; then we use “Jt∈ IK” as a shortcut for the
formula (t ≥ l)∧(t ≤ u), possibly with “>” or “<” if some end of the interval is open;6 we use
“JOneOf{ϕ1, ..., ϕn}K” as a shortcut for the formula (

∨n
i=1 ϕi) ∧

∧
1≤i<j≤n ¬(ϕi ∧ ϕj), i.e,

exactly one ϕi holds; we use “JIf ϕ Then t1 Else t2K” to represent an if-then-else expression,
that is, t = JIf ϕ Then t1 Else t2K is equivalent to (ϕ→ (t = t1))∧ (¬ϕ→ (t = t2)); we use
“JCase ϕ1 : t1; ϕ2 : t2; ...K" to generalize the if-then-else to the case of multiple mutually-
exclusive and exhaustive conditions, that is, t = JCase ϕ1 : t1; ϕ2 : t2; ...K is equivalent to∧
i(ϕi → (t = ti)), under the assumption that the conditions ϕi are exhaustive –that is,
|=LRA

∨
i ϕi– and mutually exclusive – that is, ϕi ∧ ϕj |=LRA ⊥ for every i, j. 7

6We often represent strict inequalities “(t1 < t2)” as negated non-strict ones “¬(t1 ≥ t2)”, see [93].
7Note that the mutual exclusion guarantees that the semantics of JCase ϕ1 : t1; ϕ2 : t2; ...K is not sequential,

and it does not depend on the order of the conditions ϕ1, ϕ2,

20

2.3.2 Weighted Model Integration

The analogue of WMC in the hybrid continuous/discrete case is called Weighted Model Inte-
gration (WMI) [9].

De�nition 2 (Weighted Model Integral). Let ϕ be a SMT-LRA formula on the set of continu-
ous variables X and Boolean variables A. Letw(`,X) be a function associating an expression
on X to Literals(ϕ). The Weighted Model Integral of ϕ is de�ned as:

WMI(ϕ,w) =
∑

µ∈TTA(ϕ)

∫
µLRA

weightµ(X) dX (2.3)

weightµ(X) =
∏
`∈µ

w(`,X)

Again, the weight factorizes according to Literals(ϕ) 8 but, contrarily to the discrete case,
the potential associated with a literal is not necessarily constant. Another di�erence with
respect to WMC is that, due to the introduction of continuous variables, we might have in-
�nite models for each satisfying truth assignment µ. For this reason, we need to integrate
weightµ(X) over the subspace de�ned by µLRA. Regarding the weight function expressions,
most works use multivariate polynomials on X, although exceptions do exist (e.g. [68, 109]).
Piecewise polynomials have some useful properties:

• they can arbitrarily approximate any density function;

• they are closed under sum, product and integration;

• there exist both numerical and symbolic procedures for integrating (piecewise) poly-
nomials over convex polytopes [5].

Notice that, in order to have a well-de�ned WMI, the densities weightµ(X) have to be non-
negative for every assignment to X that is consistent with µ.

Example 10. Consider the formula χ from 9 and the following weight function:

w(`, x, y) =


−x2 − y2 + 2x+ 3y if ` = A

−2x− 2y + 6 if ` = ¬A
1.0 otherwise

Since w(`, x, y) = 1 ∀` /∈ {A,¬A}, the weight function encodes two mutually exclusive
cases conditioned on the truth value of A, as depicted in �gure 2.8.

Analogously to the discrete case, probabilistic inference in hybrid probabilistic models can
be reduced to WMI. The pair 〈ϕ,w〉 de�nes a probabilistic model where w is the unnormal-
ized density function over the support of the distribution ϕ. Given two SMT-LRA formulas

8While this is an intuitive generalization of the WMC de�nition in Def. 1 to the hybrid case, an alternative for-
mulation will be later introduced in chapter 4 to accommodate the theory behind the improved algorithm presented
there.

Chapter 2. Background 21

Figure 2.8: The unnormalized density de�ned in Example 10.

ϕQ and ϕE on Atoms(ϕ), encoding respectively the query and evidence, the normalized
conditional probability of a query Q given evidence E is computed as9:

P〈ϕ,w〉(Q|E) =
WMI(ϕ ∧ ϕQ ∧ ϕE , w)

WMI(ϕ ∧ ϕE , w)

Example 11. Consider the SMT-LRA formula on X = {x} and A = {A1, A2, A3}:

ϕ = (1 ≤ x) ∧ (x ≤ 5)

∧ (A1 ↔ (¬A2 ∧ ¬A3))

∧ (A2 → ((1 ≤ x) ∧ (x ≤ 3)))

∧ (A3 → (¬(x ≤ 3) ∧ (x ≤ 5)))

Let the weights of all literals be 1 except for w(A1) = 0.1, w(A2) = 0.25 · x − 0.25 and
w(A3) = 1.25− 0.25 · x. First, it is easy to see that:

TTA(ϕ) =


{ A1,¬A2,¬A3, (1 ≤ x), (x ≤ 5), (x ≤ 3)}
{ A1,¬A2,¬A3, (1 ≤ x), (x ≤ 5),¬(x ≤ 3)}
{¬A1, A2,¬A3, (1 ≤ x), (x ≤ 5), (x ≤ 3)}
{¬A1,¬A2, A3, (1 ≤ x), (x ≤ 5),¬(x ≤ 3)}



9As in WMC, the de�nition assumes that the model conjoined with the evidence is consistent, otherwise the
result is de�ned to be 0.

22

then, we have10:

WMI(ϕ,w) =

∫
(1≤x)∧(x≤5)∧(x≤3)

w(A1) dx+

∫
(1≤x)∧(x≤5)∧¬(x≤3)

w(A1) dx

+

∫
(1≤x)∧(x≤5)∧(x≤3)

w(A2) dx+

∫
(1≤x)∧(x≤5)∧¬(x≤3)

w(A3) dx

=

∫
[1,3]

0.1dx+

∫
(3,5]

0.1 dx

+

∫
[1,3]

0.25 · x− 0.25 dx+

∫
(3,5]

1.25− 0.25 · x dx

= [0.1 · x]
3
1 + [0.1 · x]

5
3

+
[
0.125 · x2 − 0.25 · x

]3
1

+
[
1.25 · x− 0.125 · x2

]5
3

= 0.3− 0.1 + 0.5− 0.3 + 0.375 + 0.125 + 3.125− 2.625 = 1.4

This example models an unnormalized distribution over x ranging from one to �ve, which is
uniform if A1 is true, and is modeled as a triangular distribution with mode at x = 3 other-
wise. Again, WMI(ϕ,w) is the partition function constant. Suppose that we are interested
in computing the probability that x ≤ 2 (query), given the unnormalized distribution repre-
sented by 〈ϕ,w〉 pair and the information that A1 = ⊥ (evidence). This probability can be
computed as:

P〈ϕ,w〉(x ≤ 2|A1 = ⊥) =
WMI(ϕ ∧ ¬A1 ∧ (x ≤ 2), w)

WMI(ϕ ∧ ¬A1, w)
=

0.125

1.0
= 0.125

because:

WMI(ϕ ∧ ¬A1, w) =

∫
(1≤x)∧(x≤5)∧(x≤3)

w(A2) dx+

∫
(1≤x)∧(x≤5)∧¬(x≤3)

w(A3) dx

=

∫
[1,3]

0.25 · x− 0.25 dx+

∫
(3,5]

1.25− 0.25 · x dx

=
[
0.125 · x2 − 0.25 · x

]3
1

+
[
1.25 · x− 0.125 · x2

]5
3

= 0.375 + 0.125 + 3.125− 2.625 = 1.0

WMI(ϕ ∧ ¬A1 ∧ (x ≤ 2), w) =

∫
(1≤x)∧(x≤5)∧(x≤3)∧(x≤2)

w(A2) dx

=

∫
[1,2]

0.25 · x− 0.25 dx

=
[
0.125 · x2 − 0.25 · x

]2
1

= 0.0 + 0.125 = 0.125

Remark 1. The main motivation behind the introduction of WMI was that of enabling prob-
abilistic inference in hybrid domains. In that scenario, it was implicitly assumed that a pair

10For better readability, we drop from products the weights w(`) which are equal to 1.

Chapter 2. Background 23

〈ϕ,w〉 de�nes the unnormalized distribution, and that any additional formula representing
evidence or queries does not introduce any additional Boolean or continuous variables with
respect to those inϕ, and that the weight of any literal of atoms not inϕ has a constant weight
of 1. The alternative formulation introduced in section 4.2 is more explicit in that sense.

Chapter 3

Related work

3.1 Modelling and inference

Conditional Gaussian (CG) models are the �rst formalism that was proposed for modelling
hybrid domains [58, 59]. Originally, in order to support exact inference, discrete variables
could not be conditioned on continuous ones. This requirement is quite restrictive, for in-
stance it doesn’t allow modelling a �re alarm triggered by smoke concentration, or a thermo-
stat. Conditional Linear Gaussian (CLG) models were extended with logit or probit distribu-
tions, thus supporting discrete variables with continuous parents at the cost of approximating
the local computations with variational inference [77] or Gaussian quadrature [61].

Discretization is a well-studied approach to hybrid modelling [26, 17] and is widely adopted in
applications where distributional assumptions cannot be made. Speci�c discretization tech-
niques in the context of BNs were also proposed [31, 53, 78]. A drawback of discretization
is that the algebraic relationships between variables are lost. Moreover, approximating a
continuous distribution with piecewise constant densities is often prohibitive in high dimen-
sions or results in poor accuracy. Non-uniform discretization mitigates this problem but is
still problematic for variables whose posterior marginal depends on the evidence of related
variables.

An alternative representation involves mixtures of truncated exponentials (MTEs) [73, 20],
which generalize the piecewise constant approximations used for discretization with piece-
wise exponentials. Although easy to integrate, MTEs are di�cult to estimate from data as
it requires solving non-linear optimization problems. Mixtures of polynomials (MOPs) [96]
were proposed as an easier-to-estimate alternative to MTEs. MOP approximations of a di�er-
entiable PDF can be found by considering its Taylor series expansion or by using Lagrange in-
terpolation. As for MTEs, multi-dimensional MOPs were originally de�ned over axis-aligned
hypercubes and thus couldn’t easily capture deterministic multivariate relationships. This
limitation was removed by allowing MOPs to be de�ned over hyper-rhombuses [94], hitting
the middle-ground between axis-aligned hypercubes and arbitrary polytopes. Mixtures of
truncated basis functions (MTBFs) [56] unify MTEs and MOPs by observing that potentials

26

in the two representations di�er in the type of core functions while sharing the same struc-
ture. Finally, [106] generalize undirected Generalized Linear Models [105] to hybrid domains.

Although BNs and similar formalisms were extended to hybrid domains, they are typically
more suited for modelling uncertainty rather than deterministic relations. Statistical Rela-
tional Learning (SRL) [52] is an active area devoted to designing probabilistic models for
structured, relational domains. While SRL models are typically restricted to discrete settings,
there has been a growing interest in designing hybrid SRL formalisms, such as Hybrid Markov
Logic Networks (HMLNs) [101] or Hybrid Problog (HPB) [40]. Constraints pose additional
challenges for inference and special purpose algorithms must be devised to deal with the
deterministic structure e�ectively [24, 57]. Scalability is obtained by either restricting the
expressivity of the underlying formalism, or by resorting to approximate inference.

Traditional Markov Chain Monte Carlo (MCMC) [35] techniques can be readily applied in the
hybrid case, but they typically struggle when the support of the distribution is highly struc-
tured, as the convergence rate is prohibitive due to rejection. Sampling approaches that ac-
count for the constrained structure of the problem were proposed for purely discrete settings
setting [36, 37, 13], for hybrid probabilistic programs [102, 103] and for hybrid probabilistic
models with mixed propositional and piecewise polynomial potentials [2, 1, 3].

Extended Algebraic Decision Diagrams (XADDs) [92] were introduced in the context of hy-
brid planning to compactly encode the value function of a broad class of discrete/continuous
Markov Decision Processes (DC-MDPs). The same data structure was later used in Symbolic
Variable Elimination (SVE) [91], an exact probabilistic inference algorithm for piecewise poly-
nomial factor graphs (PPFGs). The PPFG formalism is equivalent to WMI. In fact, XADDs
were recently considered as a compilation language for solving WMI problems [48].

Closest to SVE is Probabilistic Inference Modulo Theories [110] (PIMT), a symbolic frame-
work where a combination of DPLL and variable elimination is used to solve inference prob-
lems on a variety of theories. While initially focused on integer arithmetic, the system de-
veloped by the authors (called PRAiSE) was later extended with support for arithmetic over
the reals and polynomial densities. In contrast with SVE, PRAiSE directly operates on the
symbolic representation of the problem rather than compiling a circuit.

The PSI solver [34] is a �exible symbolic inference engine for hybrid continuous/discrete
probabilistic programs that can be used to compute exact inference for many classes of hybrid
probabilistic models, although it lacks an e�cient support for combinatorial reasoning and
thus is not indicated for probabilistic models with a complex logical structure.

Exact algorithms for WMI usually fall in two categories (with some exceptions mentioned
in the following): solver-based and circuit-based algorithms. The former approach decom-
poses the problem in two steps: �rst, the combinatorial enumeration of the satisfying truth
assignments is delegated to a specialized SMT solver, then the integration of the solutions is
performed either by numerical or symbolic procedures. The latter approach leverages com-
pact representations of the problem (often in conjunction with knowledge compilation tech-
niques) to reduce inference to a series of repeated symbolic operations on the data structure.
The �rst algorithms that explicitly solved WMI problems [9] were based on SMT solvers

Chapter 3. Related work 27

and either relied on a block clause1 strategy (WMI-BC) or more advanced SMT features like
parallel enumeration of all solutions (WMI-AllSMT).

In the propositional (WMC) case, substantial e�ciency gains can be obtained by leveraging
component caching techniques [90, 4], in which the weighted model counts of disjoint com-
ponents of a formula are cached once and reused whenever the formula is encountered again
in the computation. Unfortunately, these strategies are di�cult to apply in the WMI case,
because of the additional coupling induced by algebraic constraints. A recent work [7] did
show substantial computational savings in adapting #DPLL with component caching from
the WMC to the WMI case. The approach however works with purely piecewise polynomial
densities, with no additional constraints between theory variables. In this setting, the rea-
soning part boils down to plain SAT, and an eager encoding of the piecewise structure allows
to apply component caching at the propositional level and leave the integration of densities
to the �nal steps of the decomposition procedure. Albeit e�ective, this solution cannot be
applied whenever algebraic constraints exist between variables, e.g. their sum being within
a certain range, a rather common situation in many practical cases (see section 4.3).

By recognizing that the partial symbolic marginalization computed on an XADD results in
a parameterized WMI computation, a symbolic dynamic programming algorithm [48] was
proposed. The resulting solver overcomes the limitation of SVE by caching intermediate
results and thus exploit the DAG structure of the compiled XADD. Moreover, the solver can
compute partial WMI problems and supports integer variables.

The unique approach of Search-based MI (SMI) [107] consists in reducing the WMI prob-
lem to MI, as described in section 5.1. Then, the problem of computing the volume in the
full continuous space is reduced to �nding an equivalent univariate piecewise integral. This
step leverages context-speci�c independence to perform an e�cient search of the bounds and
degrees of the integrands involved in the univariate integration. Finally, each of the actual in-
tegrands can be recovered by polynomial interpolation inside the corresponding bounds and
the integral can be computed e�ciently in the number of pieces. The search-based procedure
in the dependency structure of the problem later inspired the algorithmic ideas presented in
chapter 5.

Approximate WMI inference is a less explored �eld. The �rst approximate algorithm for
WMI [8] leverages hashing-based sampling techniques that has proven e�ective in WMC [13,
28]. Contrarily to the discrete case, the probabilistic guarantees on the error bounds do not
hold in the general hybrid scenario. Knowledge compilation is used in [109] to compactly
represent the combinatorial structure of WMI problems. The compiled problem can then
be solved either by exact symbolic integration using the PSI solver [34], or by computing a
Monte Carlo approximation with the Edward library [99]. This approach has the bene�t of
supporting non-linear constraints and probability density functions.

1The solver is iteratively called on the original formula conjoined with the negation of previously found solutions.

28

3.2 Learning

Learning in hybrid domains hasn’t received as much attention as the purely discrete and
purely continuous cases. In the context of hybrid BNs, the structure can be learned on dis-
cretized data, using the original hybrid data for parameter estimation as proposed in [71].
Algorithms for structure and parameter learning were proposed for hybrid BNs with MTE
potentials [86, 72], undirected Manichean graphical models [106].

Most works for learning hybrid SRL models assume a given structure, focusing on parameter
learning. Learner of Local Models (LLM) [85] is an approach for learning the structure of
hybrid Relational Dependency Networks. [79] leverages LLM in order to learn the state tran-
sition model of hybrid relational MDPs, expressed in the language of Dynamic Distributional
Clauses.

The seminal work on WMI [9] covers maximum likelihood estimation of piecewise constant
densities, assuming that both the support and the piecewise structure of the density is given.

Finding the support of a WMI distribution is a constraint learning problem. A discussion of
the di�erent aspects of the problem, as well as an extensive survey of the existing approaches,
is presented in to [83]. An algorithm for learning SMT-LRA constraints from labelled data
is presented in [49].

Weight learning in WMI is closely related to non-parametric multivariate density estimation,
a venerable �eld of study. Textbook approaches include histograms [29] and kernel density
estimation (KDE) [39]. Histograms partition the space into regularly sized bins, each associ-
ated to a constant density. Adaptive histograms �t a local regressor (e.g., a spline) at each bin
to capture the �ner details while allowing the bin size to grow adaptively [43]. KDE �ts a local
density around each data point. The runtime of these methods grows quickly with the num-
ber of dimensions and/or data points. Multivariate adaptive regression splines (MARS) [30]
is another classical, greedy space-partitioning model (with polynomial leaves) that tends to
be more e�cient than histograms and KDE.

Recently, more e�cient tree- and grid-based approaches have been introduced to address the
e�ciency issues of classical methods. Tree-based methods [62, 69] such as Density Estimation
Trees (DETs) [84] achieve considerable scalability by recursively partitioning the space based
on axis-aligned splits. The splits are obtained in an adaptive manner by greedily optimizing
the integrated square error. Notably, DETs support hybrid domains. Grid-based methods [81]
recursively partition the space too, but they place the splits at �xed, progressively �ner-
grained locations.

In the discrete case, learning of structured distributions has been explored for probabilis-
tic sentential decision diagrams [46] from both examples and pre-speci�ed constraints [64].
These techniques, however, have not been extended to hybrid domains. On the other hand,
MSPNs [70] are state-of-the-art density estimators that extend Sum-Product Networks [82] by
introducing continuous variables and polynomial densities at the leaves. Like DETs, MSPNs
allow e�cient inference so long as the query formula is axis-aligned, and are learned using

Chapter 3. Related work 29

a greedy scheme. DETs and MSPNs will be discussed in detail later on. Hybrid SPNs [11] is
another very recent alternative and could be used in place of MPSNs.

None of the above models can learn or represent structured, oblique supports, which are
crucial in many applications, including safety-critical ones. As the experimental evaluation
in section 6.2 highlights, taking the support into account can lead to dramatically improved
performance in some applications.

Chapter 4

WMI-PA

We begin this chapter with an example that motivated our work on improving the existing
solver-based algorithms.

Example 12. Consider the WMI distribution over x, y depicted in �gure 4.1 (left), where the
two disjoined regions are characterized by di�erent densities f1 and f2. The change in the
weight depends on whether (x > 1

2). The support of the distribution is encoded by the
formula

χ(x, y) = (0 ≤ x) ∧ (x ≤ 1) ∧ (0 ≤ y) ∧ (y ≤ 1)

∧ ((x >
1

2
)→ (y >

1

3
))

∧ (¬(x >
1

2
)→ (y <

2

3
))

and the weight function associates f1(x, y) and f2(x, y) to the literals (x > 1
2) and ¬(x > 1

2)

respectively. In order to compute the weighted model integral, we need to enumerate all total
truth assignments of Atoms(χ), i.e.:

µ1 = { (0 ≤ x), (x ≤ 1), (0 ≤ y), (y ≤ 1),¬(x >
1

2
), (y >

1

3
), (y <

2

3
)}

µ2 = { (0 ≤ x), (x ≤ 1), (0 ≤ y), (y ≤ 1),¬(x >
1

2
),¬(y >

1

3
), (y <

2

3
)}

µ3 = { (0 ≤ x), (x ≤ 1), (0 ≤ y), (y ≤ 1), (x >
1

2
), (y >

1

3
),¬(y <

2

3
)}

µ4 = { (0 ≤ x), (x ≤ 1), (0 ≤ y), (y ≤ 1), (x >
1

2
), (y >

1

3
), (y <

2

3
)}

Notice however that µ1 and µ2 share the same integrand and that their conjunction is convex,
and the same applies for µ3 and µ4, as depicted in �gure 4.1 (right). In principle, the WMI

could be computed with 2 integrations if it were possible to enumerate the truth assignments
of the relevant atoms only.

32

Figure 4.1: Left: the distribution in example 12, whose support is encoded as χ(x, y) = (0 ≤
x) ∧ (x ≤ 1) ∧ (0 ≤ y) ∧ (y ≤ 1) ∧ ((x > 1

2)→ (y > 1
3)) ∧ (¬(x > 1

2)→ (y < 2
3)). Right:

the partitioning induced by enumerating all total truth assignment of Atoms(χ), as done by
the existing solver-based WMI algorithms.

Numerical integration, is a computationally demanding procedure. In fact, integrating a poly-
nomial over a convex polytope is a #P-hard problem [5]. Avoiding needless integrations is
thus crucial for solving WMI exactly.

Abstraction is a fundamental notion in automated reasoning and formal veri�cation. Intu-
itively, abstraction enables reasoning over a set of predicates of interest without explicitly
reasoning over the full model. We rely on the notion of predicate abstraction [38], a widely
used technique in hybrid veri�cation that enables reasoning over �nite-state abstractions of
systems with potentially in�nite state spaces [38, 55, 12]. In our context, these predicates are
the conditions that de�ne how the density changes over the support. In the original de�ni-
tion of WMI, the weight function is a map from literals to polynomial expressions and the
unnormalized density in the di�erent regions is the product of (subsets of) these expressions.
In order to fully leverage abstraction techniques in WMI, a more structured formulation for
the weight function must be introduced.

These considerations led to WMI-PA, an exact solver-based algorithm that e�ciently per-
forms combinatorial reasoning while abstracting from the full LRA theory. This technique
drastically reduces the number of integrations performed by the existing solver-based ap-
proaches, with huge performance gains in computing probabilistic queries.

Section 4.1 formally introduces predicate abstraction, followed by the alternative formulation
described in section 4.2. For clarity, in the following the original de�nition in 2.3 is dubbed
WMIold. Section 4.3 presents a real-world case study that further motivates the introduction
of the alternative formulation. Our algorithm, WMI-PA, is described in section 4.4. Finally,
we evaluate the proposed method in section 4.5 on both synthetic and real world scenarios.

Chapter 4. WMI-PA 33

4.1 Predicate Abstraction

De�nition 3. Let ϕ be a LRA-formula on X and A; let Ψ
def
= {ψ1, ..., ψK} be a set of LRA-

formulas over X and A, and B
def
= {B1, ..., BK} be a set of fresh atomic propositions s.t.

A ∩ B = ∅. Then we call a Predicate Abstraction of ϕ with respect to Ψ on B, namely
PredAbs[ϕ,Ψ](B), any propositional formula equivalent to the formula 1

∃A∃X.

(
ϕ(X,A) ∧

K∧
k=1

(Bk ⇐⇒ ψk(X,A))

)
. (4.1)

We de�ne PredAbs[ϕ](Ψ)
def
= PredAbs[ϕ,Ψ](B)[B← Ψ], that is, the LRA-formula obtained

from the propositional formula PredAbs[ϕ,Ψ](B) by substituting each Bk with its corre-
sponding ψk .

Note that in de�nition 3 the formulas ψk are neither necessarily atomic, nor necessarily sub-
formulas of ϕ. PredAbs[ϕ,Ψ](B) de�nes an equivalence class of propositional formulas over
B, i.e., (4.1) may represent many syntactically-di�erent albeit logically-equivalent proposi-
tional formulas.

Example 13. Consider A
def
= {A1}, X

def
= {x1, x2}, ϕ

def
= A1∧(x1+x2 > 12), ψ1

def
= (x1+x2 =

2), ψ2
def
= (x1 − x2 < 10). Then we have that:

PredAbs[ϕ,Ψ](B)
def
= ∃A1.∃x1x2.

 A1 ∧ (x1 + x2 > 12)∧
(B1 ⇐⇒ (x1 + x2 = 2))∧
(B2 ⇐⇒ (x1 − x2 < 10))

 (4.2)

= (¬B1 ∧ ¬B2) ∨ (¬B1 ∧B2) (4.3)
= ¬B1. (4.4)

PredAbs[ϕ](Ψ) =
(¬(x1 + x2 = 2) ∧ ¬(x1 − x2 < 10)) ∨
(¬(x1 + x2 = 2) ∧ (x1 − x2 < 10))

(4.5)

= ¬(x1 + x2 = 2). (4.6)

Note that both the equivalent propositional formulas (4.3) and (4.4) match the de�nition of
PredAbs[ϕ,Ψ](B): (4.3) is built as the disjunction of total assignments on B, whereas (4.4) is
built as the disjunction of partial ones s.t.:

TTA(PredAbs[ϕ,Ψ](B)) = {(¬B1 ∧ ¬B2), (¬B1 ∧B2)} (4.7)
TA(PredAbs[ϕ,Ψ](B)) = {(¬B1)} (4.8)

TTA(PredAbs[ϕ](Ψ)) =

{
(¬(x1 + x2 = 2) ∧ ¬(x1 − x2 < 10)),

(¬(x1 + x2 = 2) ∧ (x1 − x2 < 10))

}
(4.9)

TA(PredAbs[ϕ](Ψ)) = {(¬(x1 + x2 = 2))} (4.10)

1In principle we should existentially quantify only the variables xn and Am which actually occur in either ϕ or
Ψ. Nevertheless, this is not restrictive since ∃An.ϕ =LRA ϕ if An does not occur in ϕ; the same holds for xi.

34

Note also that the other two total assignments, B1 ∧B2 and B1 ∧¬B2, do not occur in (4.3)
because they would both force the formula to be LRA-unsatis�able because of the contra-
dictory conjuncts (x1 + x2 > 12) ∧ (x1 + x2 = 2).

We highlight a few facts about predicate abstraction.

1. If Ψ is A, then PredAbs[ϕ](A) reduces to ∃X.ϕ(X,A).

2. If Ψ is Atoms(ϕ), then PredAbs[ϕ](Atoms(ϕ)) is equivalent to ϕ.
Therefore TTA(PredAbs[ϕ](Atoms(ϕ))) [resp. TA(PredAbs[ϕ](Atoms(ϕ))) if and only
if we admit partial assignments] is the same as TTA(ϕ) [resp. TA(ϕ)], that is, AllSMT(ϕ).

3. If Ψ ⊂ Atoms(ϕ) and |Ψ| is signi�cantly smaller than |Atoms(ϕ)|, then typically
|TTA(PredAbs[ϕ](Ψ))| � |TTA(ϕ)|.

Very e�ective SMT-based techniques for computing TTA(PredAbs[ϕ,Ψ](B)) —and hence for
TTA(PredAbs[ϕ](Ψ))— have been proposed in the literature (e.g. [55, 12]) and are imple-
mented in modern SMT solvers like MathSAT5 [19]. Very importantly for our purposes,
these techniques work by iteratively producing a set of propositional truth assignments on
B, which are then disjoined as in (2.2). Therefore, MathSAT5 computes PredAbs[ϕ,Ψ](B) di-
rectly in the form TTA(PredAbs[ϕ,Ψ](B)) [resp. PredAbs[ϕ](Ψ) in the form TTA(PredAbs[ϕ](Ψ))

].

In particular MathSAT5, on demand, can produce either the set of total assignments on B,
TTA(PredAbs[ϕ,Ψ](B)), or a set of partial ones, TA(PredAbs[ϕ,Ψ](B)), by means of assignment-
reduction techniques. To this extent, we recall that MathSAT5 does not provide an explicit
command for AllSMT(ϕ); rather, the user has to set explicitly the de�nitions

∧
k(Bk ⇐⇒

ψk) and specify the (sub)set of B of interest.

4.2 Weighted Model Integration, Revisited

De�nition 2 is a very direct and intuitive generalization of WMC to the hybrid case. However,
it is very abstract and directly turning it into a computational procedure, as was done in all
previous implementations [9, 8, 7], can result in major ine�ciencies.

In the following we present a revised formulation of WMI that:

• easily captures the previous de�nition;

• decouples the speci�cation of the formula and of the weight function from that of the
variables on which WMI is to be computed, removing all implicit assumptions of the
original formulation (see remark 1);

• is not restricted to weight functions in the form of products of weights over literals,
but allows for much more general forms (4.2.3). This gives a remarkable �exibility in
designing e�cient encodings for hybrid domains, as shown with the case study on
modelling journey times on road networks (4.3);

Chapter 4. WMI-PA 35

• makes it easier to develop algorithms for WMI computation that fully exploit the po-
tential advantage of advanced SMT techniques like predicate abstraction, as will be
shown in 4.4.

We start by introducing a revisited and very general de�nition of WMI, starting from the
Boolean-free case (4.2.1) and then covering the general case (4.2.2), and �nally we describe a
very general class of weight functions s.t. WMI is computable (4.2.3).

4.2.1 Basic case: WMIWithout Atomic Propositions

We investigate �rst the simple case where no atomic proposition comes into play. Let X
def
=

{x1, ..., xN} ∈ RN . We consider a generic total weight function w(X) s.t. w : RN 7−→ R+,
and LRA formulas ϕ(X) s.t. ϕ : RN 7−→ B.

De�nition 4. Assume ϕ does not contain atomic propositions and w : RN 7−→ R+. Then we
de�ne the Weighted Model Integral of w over ϕ on X as:

WMInb(ϕ,w|X)
def
=

∫
ϕ(X)

w(X)dX, (4.11)

“nb” meaning “no-Booleans”, that is, as the integral ofw(X) over the set {X | ϕ(X) is true}.

The following property of WMInb(ϕ,w|X) derives directly from de�nition 4. 2

Property 1. Given X, w, ϕ, and ϕ′ as above,

1. if ϕ is LRA-unsatis�able, then WMInb(ϕ,w|X) = 0.

2. if ϕ⇒LRA ϕ′, then WMInb(ϕ,w|X) ≤WMInb(ϕ
′, w|X)

3. if ϕ⇔LRA ϕ′, then WMInb(ϕ,w|X) = WMInb(ϕ
′, w|X)

4. for every LRA-formula ψ(X),

WMInb(ϕ,w|X) = WMInb(ϕ ∧ ψ,w|X) + WMInb(ϕ ∧ ¬ψ,w|X).

Remark 2. We stress the fact that in the de�nition of WMInb specifying the domain “|X” is
of primary importance. In fact, even if some xn does not occur in ϕ,3 WMInb(ϕ,w|X) =∫
R WMInb(ϕ,w|X\{xn})dxn 6= WMInb(ϕ,w|X\{xn}). “|X” de�nes the dimensions of the

space we are integrating on, which must be stated. (E.g., integrating on volumes di�ers from
integrating on surfaces.)

The above de�nition of WMInb(ϕ,w|X) does not (yet) imply a practical technique for com-
puting it, because “

∫
ϕ(X)

...dX” cannot be directly computed by numerical integration pro-
cedures, which typically can handle only conjunctions of LRA-literals, not arbitrary Boolean
combinations of them. To cope with this fact, we need decomposing ϕ into conjunctions of

2We understand that Property 1 holds also for WMIold, provided the implicit assumptions of remark 1.
3It may be the case that xn does not occur in ϕ even though w depends on xn: e.g., w may be a Gaussian on

xn, so that no restriction on the domain of xn is expressed by ϕ.

36

LRA-literals. This is where TTA(), TA() and the SMT-based techniques to compute them
come into play, as described in the following.

The following property of WMInb(ϕ,w|X) derives directly from the de�nition of TTA(ϕ)

and TA(ϕ) and from (2.2), by recalling that the domains of the assignments µLRA in TTA(ϕ)

and TA(ϕ) are pairwise disjoint.

Proposition 1. Given X, w (X), ϕ(X), TTA(ϕ) and TA(ϕ) as above,

WMInb(ϕ,w|X) =
∑

µLRA∈TTA(ϕ)

WMInb(µ
LRA, w|X) (4.12)

=
∑

µLRA∈TA(ϕ)

WMInb(µ
LRA, w|X). (4.13)

Proof. We prove only (4.13), because TTA(ϕ) is a subcase of TA(ϕ):

WMInb(ϕ,w|X)

{by (2.2)} = WMInb(
∨

µLRA∈TA(ϕ)

µLRA, w|X)

{disjoint domains of the µLRA′s} =
∑

µLRA∈TA(ϕ)

WMInb(µ
LRA, w|X)

Importantly, theµLRAs in both (4.12) and (4.13) are conjunctions of literals, so thatWMInb(µ
LRA, w|X)

is computable by standard integration solvers under reasonable hypotheses (e.g., w is a poly-
nomial) which will be discussed in 4.3. Note that if (i) w is in the form of products of weights
over a set of literals as in de�nition 2 and (ii) ϕ is de�ned only over such literals and (iii) ϕ
contains no Boolean atom, then (4.12) corresponds to (2.3).

4.2.2 General Case: WMIWith Atomic Propositions

We investigate now the general case, where atomic propositions come into play and both
w and ϕ depend also on them. Let A

def
= {A1, ..., AM} ∈ BM . We consider thus a generic

total weight function w(X,A) s.t. w : RN × BM 7−→ R+, and LRA formulas ϕ(X,A) s.t.
ϕ : RN × BM 7−→ B.

In what follows, µA denotes a total truth assignment on A, ϕ[µA](X) denotes (any formula
equivalent to) the formula obtained from ϕ by substituting every Boolean value Ai with its
truth value in µA, and w[µA](X) is w computed on X and on the truth values of µA. Thus,
ϕ[µA] : RN 7−→ B and w[µA] : RN 7−→ R+.

De�nition 5. Given X, A, the Weighted Model Integral of w over ϕ is de�ned as follows:

WMI(ϕ,w|X,A)
def
=

∑
µA∈BM

WMInb(ϕ[µA], w[µA]|X), (4.14)

Chapter 4. WMI-PA 37

where the µA’s are all total truth assignments on A.

Example 14. Let ϕ def
= (A ⇐⇒ (x ≥ 0)) ∧ (x ≥ −1) ∧ (x ≤ 1), and w(x,A)

def
=

JIf A Then x Else − xK. If µA def
= {(¬A)}, then ϕ[µA] = ¬(x ≥ 0)∧ (x ≥ −1)∧ (x ≤ 1) and

w[µA] = −x. Note that ϕ[µA] can be simpli�ed into the equivalent formula ¬(x ≥ 0)∧ (x ≥
−1). Similarly, if µA def

= {(A)}, then ϕ[µA] can be simpli�ed into (x ≥ 0) ∧ (x ≤ 1) and
w[µA] = x. Thus,

WMI(ϕ,w|X,A)
def
= WMInb(ϕ[{¬A}], w[{¬A}]|x) + WMInb(ϕ[{A}], w[{A}]|x)

=

∫
[−1,0)

−xdx +

∫
[0,1]

xdx

=
1

2
+

1

2
= 1

Note that in de�nition 5 the truth assignments µA of practical interest are only those for
whichϕ[µA] isLRA-satis�able, because for the others WMInb(ϕ[µA], w[µA]|X) = 0 by Prop-
erty 1.1. We address this issue in 4.4.

The following property of WMI(ϕ,w|X,A) derives directly from de�nition 5, by applying
Property 1 to w[µA], ϕ[µA], ϕ′[µA], (ϕ ∧ ψ)[µA], and (ϕ ∧ ¬ψ)[µA], for every µA.

Property 2. Given X, A, w, ϕ, and ϕ′ as above,

1. if ϕ is LRA-unsatis�able, then WMI(ϕ,w|X,A) = 0.

2. if ϕ⇒LRA ϕ′, then WMI(ϕ,w|X,A) ≤WMI(ϕ′, w|X,A)

3. if ϕ⇔LRA ϕ′, then WMI(ϕ,w|X,A) = WMI(ϕ′, w|X,A)

4. for every LRA-formula ψ(X,A),

WMI(ϕ,w|X,A) = WMI(ϕ ∧ ψ,w|X,A) + WMI(ϕ ∧ ¬ψ,w|X,A).

Remark 3. As with remark 2, in WMI(ϕ,w|X,A), specifying not only “|X”, but also “|X,A"
is of primary importance. In fact, even if some of the Am does not occur in ϕ,

WMI(ϕ,w|X,A)

= WMI(ϕ,w[{Am}]|X,A\{Am}) + WMI(ϕ,w[{¬Am}]|X,A\{¬Am})
6= WMI(ϕ,w|X,A\{Am}).

To this extent, hereafter and if not explicitly speci�ed otherwise, we implicitly assume w.l.o.g.
that A and ϕ are such that each Boolean atom in A occurs in ϕ. (If this were not the case, we
could rewrite ϕ into the equivalent formula ϕ∧

∨
k(Ak∨¬Ak), s.t. theAk’s are the atoms in

A not occurring in ϕ.) Consequently, each truth assignment in TTA(ϕ) assigns every atom
in A. We make the same assumption w.l.o.g. for the formula ∃X.ϕ.

The following properties of WMI(ϕ,w|X,A) derive from the de�nition of TTA(...).

38

Proposition 2. Given X, A, w(X,A), ϕ(X,A) and TTA(ϕ) as above, we have that:

WMI(ϕ,w|X,A) =
∑

µA∧µLRA∈TTA(ϕ)

WMInb(µ
LRA, w[µA]|X) (4.15)

Proof. By applying (4.12) to de�nition 5 we have that:

WMI(ϕ,w|X,A) =
∑

µA∈BM

∑
µLRA∈TTA(ϕ[µA])

WMInb(µ
LRA, w[µA]|X). (4.16)

In order to pass from (4.16) to (4.15), consider µA ∧ µLRA s.t. µA ∈ BM and µLRA ∈
TTA(ϕ[µA]). By construction µA ∧ µLRA |=B ϕ (otherwise µLRA 6∈ TTA(ϕ[µA])).

IfµA∧µLRA 6∈ TTA(ϕ), thenµA∧µLRA is notLRA-satis�able by the de�nition of TTA(ϕ),
so that WMInb(µ

LRA, w[µA]|X) = 0. Hence (4.16) equals (4.15).

Proposition 3. Given X, A, w(X,A), ϕ(X,A) and TTA(ϕ) as above, we have that:

WMI(ϕ,w|X,A) =
∑

µA∈TTA(∃X.ϕ)

WMInb(ϕ[µA], w[µA]|X) (4.17)

Proof. Compare (4.14) with (4.17). Let µA ∈ BM s.t. µA 6∈ TTA(∃X.ϕ). Then ϕ[µA] ⇔LRA
⊥, so that WMInb(ϕ[µA], w[µA]|X) = 0. Hence (4.14) equals (4.17).

Predicate abstraction in de�nition 3 and other forms of frequently-used formula manipula-
tions require the introduction of fresh propositions B “labelling” sub-formulas ψ. The next
result shows that this does not a�ect the value of WMI.

Lemma 1. Let X, A, w, and ϕ be as in de�nition 5; let ψ(X,A) be some LRA-formula; let
ϕ′

def
= ϕ ∧ (B ⇐⇒ ψ), where B 6∈ A; let w′ extend w s.t. w′(X,A ∪ {B}) = w(X,A) for

every X, A and B. Then we have that

WMI(ϕ′, w′|X,A ∪ {B}) = WMI(ϕ,w|X,A). (4.18)

Proof. We note that ϕ′[µA∧B] ⇔LRA (ϕ ∧ ψ)[µA] and that ϕ′[µA∧¬B] ⇔LRA (ϕ ∧ ¬ψ)[µA].

Chapter 4. WMI-PA 39

x,Ax,A

w w′

WMI(ϕ,w|X,A) WMI(ϕ ∧ (B ⇐⇒ ψ), w′|X,A ∪ {B})

ψ = >ψ = ⊥
B

B = >
B = ⊥

Figure 4.2: Graphical representation of Lemma 1.

Also, we have that w′[µA∧B](X) = w′[µA∧¬B](X) = w[µA](X). Thus:

WMI(ϕ′, w′|X,A ∪ {B})

=
∑

µA∈BM
(WMInb(ϕ

′
[µA∧B], w

′
[µA∧B]|X) + WMInb(ϕ

′
[µA∧¬B], w

′
[µA∧¬B]|X))

=
∑

µA∈BM
(WMInb((ϕ ∧ ψ)[µA], w[µA]|X) + WMInb((ϕ ∧ ¬ψ)[µA], w[µA]|X))

=
∑

µA∈BM
(WMInb(ϕ[µA] ∧ ψ[µA], w[µA]|X) + WMInb(ϕ[µA] ∧ ¬ψ[µA], w[µA]|X))

=
∑

µA∈BM
WMInb(ϕ[µA], w[µA]|X)

= WMI(ϕ,w|X,A).

The intuitive meaning of Lemma 1 is represented in Figure 4.2. (For graphical convenience, we
abstract the whole space X,A into only one horizontal dimension.) Suppose Figure 4.2 (left)
represents WMI(ϕ,w|X,A). The formula ψ cuts the space X,A, and thus WMI(ϕ,w|X,A),
into two parts. In Figure 4.2 (right) we add a new Boolean dimension B, and we represent
WMI(ϕ ∧ (B ⇐⇒ ψ), w′|X,A ∪ {B}), which is split into the sum of two parts, for B = ⊥
and B = >, corresponding respectively to ψ = ⊥ and ψ = >. Thus WMI(ϕ′, w′|X,A ∪
{B}) is identical to the sum of the two pieces of WMI(ϕ,w|X,A), for ψ = ⊥ and ψ = >
respectively.

40

4.2.3 Conditional Weight Functions

We call a (non-minimal) support of a weight function w(X,A) any subset of RN ×BM out of
which w(X,A) = 0. 4 In many situations it is useful to provide explicitly the representation
of a support of w(X,A) as a LRA-formula χ(X,A). (When this is not the case, then we
implicitly set χ(X,A)

def
= >.) For instance, it is useful to cut part of the domain where a

polynomial function is negative.

The following property follows trivially.

Property 3. Let ϕ and w be as above. If χ(X,A) is a LRA-formula representing a support of
w, then:

WMI(ϕ,w|X,A) = WMI(ϕ ∧ χ,w|X,A). (4.19)

We introduce a novel kind of weight function, which can be de�ned also in terms ofLRA con-
ditions. (See 4.3 for an example application). We consider �rst the generic class of functions
w(X), which we call feasibly integrable on LRA (FILRA), which contain no combinatorial
component, and for which there exists some procedure able to compute WMInb(µLRA, w|X)

for every set of LRA literals on X. (E.g., polynomials are FILRA [5]). Such background
procedure, which we use as a black box, is the basic building block of our WMI calculations.

De�nition 6. We call a total weight function w(X,A), feasibly integrable under LRA
conditions (FIUCLRA) if and only if it can be described in terms of

• a support LRA-formula χ(X,A) (if no support description is provided, then χ def
= >),

• a set Ψ
def
= {ψ1(X,A), ..., ψK(X,A)} of LRA-formulas (conditions),

in such a way that, for every total truth assignment µA to A and for every total truth as-
signment µΨ to Ψ, w[µAµΨ](X) is FILRA in the domain given by the values of 〈X,A〉which
satisfy (χ∧µΨ)[µA]. We denote such FILRA functions by fµAµΨ(X), s.t. for every 〈µA, µΨ〉,

if µA ∧ µΨ holds, then w(X) = fµAµΨ(X). (4.20)

(Note that a plain FILRA weight function is a subcase in which χ def
= > and Ψ

def
= ∅.)

A very relevant subcase of FIUCLRA functions, which we denote by PLRA (“Polynomials
under LRA conditions”), is given by arbitrary combinations of polynomials with LRA con-
ditions, such that each fµAµΨ(X) in (4.20) is a polynomial whose value is non-negative in the
domain de�ned by µΨ. PLRA functions are FIUCLRA because polynomials can always be in-
tegrated on the domains given by a set of LRA literals [5]. The syntax of PLRA weight func-

4Note that a support is not unique and it is not necessarily minimal with respect to⊆, that is, it may be the case
that w(X,A) = 0 also if 〈X,A〉 is in the support. This de�nition allows dealing with cases in which the minimal
support is not known or hard to characterize.

Chapter 4. WMI-PA 41

tions can be de�ned by the following grammar, expressed in standard Backus-Naur form: 5

w ::= c | x | (4.21)
−w | (w + w) | (w − w) | (w · w) |
JIf ϕ Then w Else wK |
JCase ϕ : w; ϕ : w; ...K

χ ::= ϕ (4.22)

where c denotes a real value, x denotes a real variable, w denotes a PLRA weight function, ϕ
denotes anLRA formula. We stress that the conditions ϕ in the case-terms must be mutually
exclusive and exhaustive. (In practice, it su�ces that the conditions are exhaustive within the
domain described by the supportχ, that is, for the term JCase ϕ1 : w1; ϕ2 : w2; ... ϕk : wkK
we must have that χ |=LRA

∨k
i=1 ϕi.) In short, w can be any arbitrary combination of sums,

products and LRA-conditions.

Note that all the LRA-formulas ϕ occurring as conditions in the weight function or in the
support formula must be such to restrict the domains of the polynomials to areas where they
are non-negative.

Example 15. Let X
def
= {x1, x2}, A

def
= {A}, and

χ(X,A)
def
= Jx1∈ [−1, 1)K ∧ Jx2∈ [−1, 1)K ∧ (A ⇐⇒ (x2 ≥ 0))

w(X,A)
def
= JIf x1 ≥ 0 Then x3

1 Else − 2x1K + JIf A Then 3x2 Else − x5
2K.

w is PLRA, and hence FIUCLRA. In fact, its value depends on the combination of the truth
values of the conditions Ψ

def
= {(x1 ≥ 0)} and A

def
= {A}, so that:

f{A,(x1≥0)} = x3
1 + 3x2 s.t. x1 ∈ [0, 1), x2 ∈ [0, 1),

f{A,¬(x1≥0)} = −2x1 + 3x2, s.t. x1 ∈ [−1, 0), x2 ∈ [0, 1),

f{¬A,(x1≥0)} = x3
1 − x5

2, s.t. x1 ∈ [0, 1), x2 ∈ [−1, 0),

f{¬A,¬(x1≥0)} = −2x1 − x5
2 s.t. x1 ∈ [−1, 0), x2 ∈ [−1, 0).

All four fµAµΨ are positive polynomials in their respective domain and as such they can be
integrated.

Intuitively, de�nition 6 captures the class of all the weight functions which can be described
by means of arbitrary combinations of nested if-then-elses on conditions in A and Ψ, s.t.
each branch 〈µA, µΨ〉 results into a FILRA weight function. Each pair 〈µA, µΨ〉 describes a
portion of the domain of w, inside which w is the FILRA function fµAµΨ .

The expressivity of FIUCLRA weight functions allows the direct encoding of a number of
probabilistic models or density estimators into the weighted model integration framework.
For instance, it is possible to readily perform WMI inference on a trained Mixed Sum-Product
Network (MSPN) [70] with piecewise-polynomial leaves, whose internal nodes are product

5The obvious standard syntactic simpli�cations apply, e.g., “((1 · x1)− (4 · x2)) +−(5 · x3))” is rewritten as
“(x1 − 4x2 − 5x3)”.

42

or weighted sums. In this case, the circuit is already a FIUCLRA function and the support
corresponds to the disjunction of the domains of its polynomial leaves. This procedure al-
lows MSPNs to answer complex probability queries that couldn’t normally be computed by
their inference algorithms, such as those involving hard constraints. Density Estimation Trees
(DETs) [84] are hybrid non-parametric6 density estimators composed of internal univariate
split nodes and constant leaves. Also in this case, the tree can be represented by a FIUCLRA

function without additional processing and probabilistic queries can be performed using the
estimator’s bounding box as the support, thus enabling probabilistic queries on DETs.

Theorem 1. Let w(X,A), Ψ and χ be as in de�nition 6. Let B
def
= {B1, ..., BK} be fresh

propositional atoms and let w∗(X,A∪B) be the weight function obtained by substituting in
w(X,A) each condition ψk with Bk , for every k ∈ [1..K]. Let ϕ∗ def

= ϕ∧ χ∧
∧K
k=1(Bk ⇐⇒

ψk). Then:

WMI(ϕ ∧ χ,w|X,A) = WMI(ϕ∗, w∗|X,A ∪B). (4.23)

Proof. To every truth assignment µΨ to Ψ we associate the corresponding truth assignment
µB to B s.t. µB(Bk) = µΨ(ψk), for every k ∈ [1..K]. We note that, for every µA ∈ BM and
µB ∈ BK (with its corresponding µΨ):

ϕ∗[µA∧µB] ⇔LRA (ϕ ∧ χ ∧ µΨ)[µA∧µB], (4.24)

because every ψk is forced by µΨ to assume the same truth value Bk assumes in µB. Let w′
extend w s.t. w′(X,A ∪B) = w(X,A) for every X, A and B. Then, since ϕ∗ forces every
Bk to hold if and only if Ψk holds, we have:

WMInb(ϕ∗[µA∧µB], w
′
[µA∧µB]|X) (4.25)

= WMInb((ϕ ∧ χ ∧ µΨ)[µA∧µB], w
′
[µA∧µB]|X)

= WMInb((ϕ ∧ χ ∧ µΨ)[µA∧µB], fµAµΨ |X)

= WMInb((ϕ ∧ χ ∧ µΨ)[µA∧µB], w
∗
[µA∧µB]|X)

= WMInb(ϕ∗[µA∧µB], w
∗
[µA∧µB]|X).

6In this context, the intended meaning of “non-parametric” is that no distributional assumption is made by the
model.

Chapter 4. WMI-PA 43

Then, by applying K times Lemma 1, and then (4.25):

WMI(ϕ ∧ χ,w|X,A)

= WMI(ϕ ∧ χ ∧
K∧
k=1

(Bk ⇐⇒ ψk), w′|X,A ∪B)

=
∑

µA∈BMµB∈BK
WMInb(ϕ∗[µA∧µB], w

′
[µA∧µB]|X)

=
∑

µA∈BMµB∈BK
WMInb(ϕ∗[µA∧µB], w

∗
[µA∧µB]|X)

= WMI(ϕ∗, w∗|X,A ∪B).

Example 16. Let A = ∅, χ def
= Jx∈ [−1, 1]K, ϕ def

= >, ψ def
= (x ≥ 0), and the weight w(x)

def
=

JIf (x ≥ 0) Then x Else − xK. (I.e.,w(x)
def
= |x|.) ThenWMI(ϕ,w|{x},∅) = WMInb(ϕ,w|X) =∫

[−1,1]
|x|dx = 1. By Lemma 1, ϕ∗ = Jx∈ [−1, 1]K ∧ (B ⇐⇒ (x ≥ 0)) and w∗ =

JIf B Then x Else − xK, which are the same formula and weight function as in Example 14
(modulo some reordering and variable renaming), s.t. WMI(ϕ∗, w∗|X,B) = 1

Theorem 1 enables the computation of WMI with complicated FIUCLRA weight functions by
substituting with a fresh Boolean variable Bk each condition ψk in the if-then-else and case
constructs and by adding

∧K
k=1(Bk ⇐⇒ ψk) to ϕ ∧ χ. Intuitively, during the computation

of the WMIs, Theorem 1 allows extracting out of the integrals the conditional component on
LRA conditions, which are labeled by Boolean atoms and can be thus handled externally.
Note that the pairs of truth assignments 〈µA, µΨ〉 of practical interest are only those for
which (χ ∧ µΨ)[µA] is LRA-satis�able. We will address this issue in 4.4.

4.2.4 FromWMI toWMIold and vice versa

We can now compare the original de�nition of WMI in [9] (de�nition of WMIold in 2.3) with
our new notion of WMI applied to FIUCLRA weight functions. One key di�erence is that in
the former the weight w is de�ned as a product of weights on literals in ϕ, whereas with the
latter the weight w is a FIUCLRA function over the LRA domain 〈X,A〉 (and hence it does
not depend on the LRA-atoms in ϕ).

To this extent, we note that we can easily express and compute WMIold (2.3) as WMI in the
following way, by using an equivalent FIUCLRA weight function:

WMI(ϕ,
∏

ψ∈Atoms(ϕ)

JIf ψ Then w(ψ) Else w(¬ψ)K|X,A).

The vice versa is tricky, in the sense that, to the best of our knowledge and understand-
ing, there is no obvious general way to encode an arbitrary FIUCLRA weight function into
a WMIold one while always preventing an explosion in the size of its representation. In

44

order to understand the di�culty in �nding such a general encoding, consider a generic
FIUCLRA weight function w(X,A). In order to write it as a WMIold weight function, one
should �nd an integer K , a set of conditions {ψk(X,A)}Kk=1 and a set of positive functions
{fψk(X), f¬ψk(X)}Kk=1 so that w(X,A) could be written into the WMIold-equivalent form:

w(X,A) =

K∏
k=1

JIf ψk(X,A) Then fψk(X) Else f¬ψk(X)K (4.26)

where the conditionsψk can be either (a) Boolean atoms in A, (b)LRA-atoms on X, (c)LRA-
formulas on atoms in the form (a) and (b) by labeling them with fresh Boolean atoms, so that
their truth values derive deterministically from the values of X,A, written “ψk(X,A)”.

Sincew(X,A), fψk(X) and f¬ψk(X) are positive for every k, and the log function is continu-
ous, strictly increasing and invertible, noticing that JIf A Then b Else cK = JIf A Then b Else 0K+
JIf A Then 0 Else cK, we see that (4.26) is equivalent to:

log(w(X,A)) =

K∑
k=1

JIf ψk(X,A) Then log(fψk(X)) Else 0K +

JIf ψk(X,A) Then 0 Else log(f¬ψk(X))K
(4.27)

for every X,A. Thus, if we �x the value for X and call yk>
def
= log(fψk(X)) and yk⊥

def
=

log(f¬ψk(X)) s.t. yk>, yk⊥ ∈ R ∪ {−∞}, then (4.27) can be represented as a system of 2|A|

linear equalities, one for each total truth assignment on A, on 2K variables {yk>, yk⊥}Kk=1

whose {0, 1}-coe�cients are given by the truth values of ψk(X,A). Thus, for every value of
X, we have 2|A| linear equations with 2K real-valued variables. This suggests that, in order
(4.26) to hold, the size K of the product may blow up in size with |A|.

For instance, a trivial general solution consists in �rst converting the problem intoWMI(ϕ∗, w∗|X,A∗)
as in Theorem 1 and then, for every total truth assignment µ in TTA(ϕ∗), introducing a fresh
new Boolean atom Bµ adding Bµ ⇐⇒ µ to the formula, and de�ning w(Bµ)

def
= wµ(X),

w(¬Bµ)
def
= 1, w(l)

def
= 1 for every other literal l. This solution is obviously not practical for

non-trivial size of A∗ because it generates an exponential growth in the size of the formula.

4.3 A Case Study

Consider modelling journey time on a road network for e.g. a delivery agency. In order to
safely organize priority deliveries, the agency could be interested in knowing well in advance
the probability of completing the journey within a certain time, given the time of departure.
An accurate estimate requires to consider how travel duration between locations can change
according to the time of the day, and combine these duration distributions over the entire
route. A di�erent encoding for the same problem was presented in the originalWMIwork [9].

Suppose that (the part of interest of) the day is partitioned into {I1, ..., IM} disjoint and
consecutive intervals such that, for each adjacent location li and lj in the road network and
for each Im def

= [cm, cm+1), we know the distribution of the journey time from location li to

Chapter 4. WMI-PA 45

location lj given that we move at time t ∈ Im. Let fmli,lj : R 7→ R+ denote such distribution
and let the interval Rmli,lj

def
= [amli,lj , b

m
li,lj

) be its support. (Note that the Ims are intervals in
absolute time and are all disjoint whereas the Rmli,lj s are intervals in relative time and are
typically not disjoint.)

4.3.1 Modelling a journey with a �xed path

Given a path (l0, ..., lN) and departure and arrival times tdep and tarr, we are interested in
answering queries of the form P (tN ≤ tarr | t0 = tdep, {li}Ni=0). We can encode the problem
as follows. Let tn be the time at step n and xn the journey time between ln−1 and ln. Let
X

def
= {x1, ..., xN}. (Here A

def
= ∅.) Then:

χ(X)
def
=

N∧
n=0

Jtn∈ [c1, cM+1]K ∧
N∧
n=1

JOneOf{Jtn−1∈ ImK}Mm=1K

∧
N∧
n=1

M∧
m=1

(Jtn−1∈ ImK→ Jxn∈ Rmln−1,lnK)

w(X)
def
=

N∏
n=1

r
Case Jtn−1∈ I1K : f1

ln−1,ln(xn); ... Jtn−1∈ IM K : fMln−1,ln(xn)
z

ϕ(X)
def
= >,

where forn > 0, “tn” is a shortcut for the term “
∑n
i=1 xi+t0”, so that “Jtn−1∈ ImK” is a short-

cut for the formula “(
∑n−1
i=1 xi+t0 ≥ cm)∧¬(

∑n−1
i=1 xi+t0 ≥ cm+1)”, and “Jxn∈ Rmln−1,ln

K”
is a shortcut for the formula “(xn ≥ amln−1,ln

) ∧ ¬(xn ≥ bmln−1,ln
)”.

This encoding allows us to answer the up-mentioned queries as follows:

P (tN ≤ tarr | t0 = tdep, {li}Ni=0) =
WMInb(χ(X) ∧ (tN ≤ tarr) ∧ (t0 = tdep), w(X)|X)

WMInb(χ(X) ∧ (t0 = tdep), w(X)|X)

where the locations {li}Ni=0 are used to generate a query-speci�c encoding for χ(X) and
w(X).

Under the assumption that each distribution fmli,lj (x) is feasibly integrable if x ∈ Rmli,lj , then
w(X) is FIUCLRA with N ·M conditions ψmn

def
= Jtn∈ ImK. Thus we can introduce N ·M

fresh Boolean atoms Bmn and apply Theorem 1, obtaining:

ϕ∗(X,B)
def
=ϕ(X) ∧ χ(X) ∧

N∧
n=1

M∧
m=1

(Bmn−1 ⇐⇒ Jtn−1∈ ImK)

w∗(X,B)
def
=

N∏
n=1

r
Case B1

n−1 : f1
ln−1,ln(xn); ... BMn−1 : fMln−1,ln(xn)

z
.

46

.

.

.

.

.

.

Figure 4.3: This �gure shows the journey time densities for a pair of consecutive time steps,
from location li to li+2. Each edge shows the corresponding journey time distribution for
each of the intervals.

Each distribution fmln−1,ln
is thus associated to Bmn . Note that, for each step n, exactly one

condition variable Bmn is true, representing the fact that the n-th location is reached during
the m-th interval. Intuitively, this allows the algorithm to select at each step the distribution
corresponding to the interval in which the location is reached, as shown in Figure 4.3.

Example 17. Consider an instance of our case study where A
def
= ∅, N = 2, M = 3,

χ(X)
def
=Jt0∈ [7, 10)K

∧Jt0 + x1∈ [7, 10)K

∧JOneOf{Jt0∈ [7, 8)K, ..., Jt0∈ [9, 10)K}K
∧JOneOf{Jt0 + x1∈ [7, 8)K, ..., Jt0 + x1∈ [9, 10)K}K∧ Jt0∈ [7, 8)K→ Jx1∈ [0.5, 1)K

∧Jt0∈ [8, 9)K→ Jx1∈ [1, 1.5)K

∧Jt0∈ [9, 10)K→ Jx1∈ [1, 2)K∧ Jt0 + x1∈ [7, 8)K→ Jx2∈ [1, 1.5)K

∧Jt0 + x1∈ [8, 9)K→ Jx2∈ [1.5, 2)K

∧Jt0 + x1∈ [9, 10)K→ Jx2∈ [1, 2)K

Chapter 4. WMI-PA 47

w(X)
def
=

u

wwww
v

Case

Jt0∈ [7, 8)K : f1
l0l1

(x1);

Jt0∈ [8, 9)K : f2
l0l1

(x1);

Jt0∈ [9, 10)K : f3
l0l1

(x1);

}

����
~
·

u

wwww
v

Case

Jt0 + x1∈ [7, 8)K : f1
l1l2

(x2);

Jt0 + x1∈ [8, 9)K : f2
l1l2

(x2);

Jt0 + x1∈ [9, 10)K : f3
l1l2

(x2);

}

����
~

ϕ(X)
def
=>

where the fmln−1ln
(xn) are functions which are integrable and positive in their respective

domain stated in χ(X) (e.g., f1
l0l1

(x1) is integrable and positive in Jx1∈ [0.5, 1)K).

Then, by applying Theorem 1, we can introduce 6 Boolean variablesBmn and reformulate the
problem as follows:

ϕ∗(X,B)
def
= ϕ(X) ∧ χ(X) (4.28)
∧ (B1

0 ⇐⇒ Jt0∈ [7, 8)K)

∧ ...

∧ (B3
1 ⇐⇒ Jt0 + x1∈ [9, 10)K)

w∗(X,B)
def
=

u

wwww
v

Case

B1
0 : f1

l0l1
(x1);

B2
0 : f2

l0l1
(x1);

B3
0 : f3

l0l1
(x1);

}

����
~
·

u

wwww
v

Case

B1
1 : f1

l1l2
(x2);

B2
1 : f2

l1l2
(x2);

B3
1 : f3

l1l2
(x2);

}

����
~

4.3.2 Modelling a journey under a conditional plan

We generalize the previous scenario to the case in which the path is not given in advance.
Rather, they are provided only a maximum path length N , a �nal target location ltarget and a
conditional plan, establishing the successor location for every location at each time slot. In-
tuitively, the conditional plan mimics the empirical knowledge of a driver that, given his/her
current location and time of the day, chooses the next step towards the �nal destination. (E.g.,
if one road passes aside a school entrance, the driver arriving there from 8am to 9am knows it
is better to choose an alternative path to avoid the queues of cars leaving the children there.)

Let I = {1, ...,M} be the set of indices of the time intervals. Let L = {1, ..., L} be the set of
indices of each location. Given a target destination ltarget ∈ L, a conditional plan is a function
next : L×I×L → L such that, for any current location l ∈ L and time interval indexm ∈ I ,
next(l,m, ltarget) is the next location in the path, as shown in Figure 4.4. To handle the special
case of the �nal location ltarget, we set next(ltarget,m, ltarget)

def
= ltarget and Rmltarget,ltarget

def
= [0, 0],

so that Jx∈ Rmltarget,ltargetK
def
= (x = 0). The queries we want to address are of the form

P (tN ≤ tarr | t0 = tdep, ldep, ltarget, next).

48

Figure 4.4: The �gure shows two alternative (sub)paths from lcurr to ltarget: the successor of
lcurr is selected according to the time interval at which the node is reached (m in the �gure).

The encoding generalizes the previous encoding for �xed paths. This time we need to intro-
duceN sets ofLmutually-exclusive Boolean variablesAn,l which encode the location visited
at each time step – with the intended meaning that An,l is true if and only if the location at
step n is the one indexed by l – and JOneOf{An,l | l ∈ [1, L]}K is added to the formula for ev-
ery n. 7 Unless otherwise speci�ed, in the following we use the same notation and shortcuts
of the case study presented in 4.3 (in particular, we recall that for n > 0, “tn” is a shortcut for
the term “

∑n
i=1 xi + t0”):

χ(X,A)
def
=

N∧
n=0

Jtn∈ [c1, cM+1]K ∧
N∧
n=1

JOneOf{Jtn−1∈ ImK |m ∈ [1,M]}K

∧
N∧
n=0

JOneOf{An,l | l ∈ [1, L]}K

∧
N∧
n=1

(L∧
l=1

(
An−1,l →

M∧
m=1

(Jtn−1∈ ImK→ Jxn∈ Rml,next(l,m,ltarget)K)
))
,

ϕ(X,A)
def
=A0,l0 ∧

N∧
n=1

(L∧
l=1

(
An−1,l →

M∧
m=1

(Jtn−1∈ ImK→ An,next(l,m,ltarget))
))

7Alternatively, this can be encoded by a distinct truth assignment to dlog2(L)e Boolean variables representing
the binary encoding of the index l, using overall N · dlog2(L)e Boolean variables. However, since L is quite small,
this is not worth doing in our case.

Chapter 4. WMI-PA 49

w(X,A)
def
=

N∏
n=1

u

wwwwwwwwwwww
v

Case

(An−1,l1 ∧An,l2) :

JCase Jtn−1∈ I1K : f1
l1,l2

(xn); ... ; Jtn−1∈ IM K : fMl1,l2(xn) K;
(An−1,l1 ∧An,l3) :

JCase Jtn−1∈ I1K : f1
l1,l3

(xn); ... ; Jtn−1∈ IM K : fMl1,l3(xn) K;
...

(An−1,lL ∧An,lL−1) :

JCase Jtn−1∈ I1K : f1
lL,lL−1

(xn); ... ; Jtn−1∈ IM K : fMlL,lL−1
(xn) K;

}

������������
~

Note that in the de�nition of w(X,A) the pairs of locations of interest in the outer case-
expression are only those connected by an edge. Moreover, we can safely consider only
the edges which appear in the conditional plan for the desired ltarget, i.e. pairs in Lreach =

{〈li, lj〉 | li 6= lj ∈ L, ∃m ∈ [1,M] . next(li,m, ltarget) = lj}.

If we compare the description ofχ(X),w(X) andϕ(X) for the �xed-path-setting in 4.3.1 with
these of χ(X,A), w(X,A) and ϕ(X,A) for the conditional-plan setting described above, we
note that the former can be seen as a particular subcase of the latter. 8 This encoding allows
us to answer the queries of interest as follows:

P (tN ≤ tarr | t0 = tdep, ldep, ltarget, next) =

WMI(ϕ(X,A) ∧ χ(X,A) ∧ (tN ≤ tarr) ∧ (t0 = tdep), w(X,A)|X,A)

WMI(ϕ(X,A) ∧ χ(X,A) ∧ (t0 = tdep), w(X,A)|X,A)

where ldep, ltarget and next are used to generate a query-speci�c encoding forϕ(X,A),χ(X,A)

and w(X,A).

4.3.3 E�ciency of the encodings

Note that, with both encodings in 4.3.1 and 4.3.2, in the formula χ the constraints

JOneOf{Jtn−1∈ ImK}Mm=1K

are not strictly necessary from the logical perspective because the Im’s are mutually exclusive
by construction and Jtn∈ [c1, cM+1]K for n ∈ [0, N]. Nevertheless, adding such constraints
may improve the performances of the SMT solver the formula is fed to, because they allow
the solver to infer the disjunction and the mutual exclusion directly via Boolean constraint
propagation instead of using less e�cient LRA-deduction steps (see e.g. static learning in
[93]).

8In fact, if we impose a given path l0, l1, ..., lN by substituting the part “A0,l0 ∧
∧N
n=1(...)” in ϕ(X,A) with

“
∧N
n=0 An,ln ”, then it is easy to see that χ(X,A) ∧ ϕ(X,A) simpli�es by unit-propagation into µA ∧ χ(X) ∧

ϕ(X), where µA def
=

∧N
n=0(An,ln ∧

∧
l6=ln ¬An,l), and that w[µA](X) simpli�es into w(X) because only one

condition (An−1,ln−1
∧An,ln) holds for the n-th external Case.

50

For the same reason, adding the following logically-redundant constraints to χ may improve
the performances of the SMT solver:

(

n−1∑
i=1

xi + t0 ≥ cm+1)→ (

n−1∑
i=1

xi + t0 ≥ cm) ∀n ∈ [1, N], m ∈ [1,M − 1]

(xn ≥ vi)→ (xn ≥ vj) if vi ≥ vj , ∀n ∈ [1, N],

where the vi, vj are among the upper- and lower-bound values of the intervals Rmln−1,ln
. 9

4.4 E�cient WMI Computation

We address the problem of computing e�ciently the WMI of a FIUCLRA weight function
w(X,A), with support formula χ and set of conditions Ψ, over a formula ϕ(X,A).

The �rst step (if needed) is a preprocessing step in which the problem is transformed by
labelling all conditions Ψ with fresh Boolean atoms B, as in Theorem 1. Let ϕ∗, w∗,X,A∗
be the result of such process, where ϕ∗ def

= ϕ ∧ χ ∧
∧K
k=1(Bk ⇐⇒ ψk), w∗ def

= w[B ← Ψ],
and A∗

def
= A ∪B. Consequently, for every µA∗ , w∗

[µA∗]
is feasibly integrable on ϕ∗

[µA∗]
.

Remark 4. Following up with remark 3, hereafter we assume w.l.o.g. that each Boolean atom
in A occurs in ϕ∧χ or in Ψ, so that every atom in A∗ occurs in ϕ∗. Consequently, each truth
assignment in TTA(ϕ∗) assigns every atom in A∗. The same assumption applies to ∃X.ϕ∗. 10

4.4.1 The Procedure WMI-AllSMT

Consider µ = µA∗ ∧µLRA ∈ TTA(ϕ∗). Then µLRA ∈ TTA(ϕ∗
[µA∗]

), so that we can compute
WMInb(µLRA, w∗

[µA∗]
|X). Combining Theorem 1 with Proposition 2 allows us to compute

the WMI as follows:

WMI(ϕ,w|X,A) (4.29)
= WMI(ϕ∗, w∗|X,A∗).
=

∑
µA∗∧µLRA∈TTA(ϕ∗)

WMInb(µLRA, w∗[µA∗]|X).

The set TTA(ϕ∗) is computed by an AllSMT procedure implemented on top of an SMT solver
like MathSAT5—i.e., as TTA(PredAbs[ϕ∗](Atoms(ϕ

∗))), without the assignment-reduction

9In practice, we do not need adding such constraints for every pair 〈vi, vj〉; rather and more e�ciently, it su�ces
to sort all such values for each xn, and to add one constraint only for pairs of consecutive values, because the others
are obtained implicitly by transitivity.

10We note that this assumption is necessary for our basic procedureWMI-AllSMT (see 4.4.1) but it is not necessary
with our much more e�cient procedure WMI-PA (see 4.4.2) because the SMT-based procedure we use for computing
predicate abstraction, TTA(PredAbs[ϕ](A)), allows forcing the branches even on atoms Ai which do not actually
occur in the input formula ϕ. Nevertheless, this assumption makes the explanation simpler.

Chapter 4. WMI-PA 51

Algorithm 1 WMI-PA(ϕ, w, X, A)
〈ϕ∗, w∗,A∗〉 ← LabelConditions(ϕ,w,X,A)
MA∗ ← TTA(PredAbs[ϕ∗](A

∗))
vol← 0
for µA∗ ∈MA∗

do

Simplify(ϕ∗
[µA∗]

)

if LiteralConjunction(ϕ∗
[µA∗]

) then

vol← vol + WMInb(ϕ∗
[µA∗]

, w∗
[µA∗]

|X)

else

MLRA ← TA(PredAbs[ϕ∗
[µA∗]

](Atoms(ϕ
∗
[µA∗]

)))

for µLRA ∈MLRA do

vol← vol + WMInb(µLRA, w∗
[µA∗]

|X)

return vol

technique (see fact (2) in section 4.1). Each WMInb(µLRA, w∗
[µA∗]

|X) is computed by invok-
ing our background integration procedure for FILRA functions of 4.2.3. We call this algorithm
WMI-AllSMT.

4.4.2 The Procedure WMI-PA

A much more e�cient technique, which we call WMI-PA because it exploits SMT-based
predicate abstraction in its full pruning power rather than simply as AllSMT 11, can be im-
plemented by noticing that, combining Theorem 1 with Proposition 3, we have that:

WMI(ϕ,w|X,A) (4.30)
= WMI(ϕ∗, w∗|X,A∗).
=

∑
µA∗∈TTA(∃X.ϕ∗)

WMInb(ϕ∗[µA∗], w
∗
[µA∗]|X)

and that, due to Proposition 1, each WMInb(ϕ∗
[µA∗]

, w∗
[µA∗]

|X) can be computed as:∑
µLRA∈TA(ϕ∗

[µA∗]
)

WMInb(µLRA, w∗[µA∗]|X). (4.31)

Note that in (4.30) we must use TTA(...) instead of TA(...) because by construction w∗
[µA∗]

requires each µA∗ to be total, whereas in (4.31) we can use TA(...) because there is no need
for the µLRAs to be total (Proposition 1).

The pseudocode of WMI-PA is reported in Algorithm 1. First, the problem is transformed (if
11To this extent, compare facts (3) and (2) in section 4.1.

52

needed) by labelling conditions Ψ with fresh Boolean variables B, as in Theorem 1. After this
preprocessing stage, the setMA∗ def

= TTA(∃X.ϕ∗) is computed by invoking TTA(PredAbs[ϕ∗](A
∗))

(see 4.1). Then, the algorithm iterates over each Boolean assignment µA∗ inMA∗ . ϕ∗
[µA∗]

can be simpli�ed by the Simplify procedure, by propagating truth values (e.g., ϕ1 ∧ (> ∨
ϕ2) ∧ (⊥ ∨ ϕ3) ∧ (¬ϕ3 ∨ ϕ4)⇒ ϕ1 ∧ ϕ3 ∧ ϕ4) and by applying arithmetical simpli�cations
like LRA theory propagation [6] (e.g., (x ≥ 1) ∧ (¬(x ≥ 0) ∨ ϕ1) ∧ ((x ≥ 0) ∨ ϕ2) ⇒
(x ≥ 1)∧ϕ1). This improves the chances of reducing ϕ∗

[µA∗]
to a conjunction of literals, and

allows reducing the size of Atoms(ϕ∗
[µA∗]

) to feed to PredAbs (see below). Then, if ϕ∗
[µA∗]

is already a conjunction of literals, then the algorithm directly computes its contribution
to the volume by calling WMInb(ϕ∗

[µA∗]
, w∗

[µA∗]
|X). Otherwise, TA(ϕ∗

[µA∗]
) is computed as

TA(PredAbs[ϕ∗
[µA∗]

](Atoms(ϕ
∗
[µA∗]

))), using the assignment-reduction technique to produce
partial assignments (see 2.3.1), and the algorithm iteratively computes the contributions to
the volume for each µLRA.

Example 18. Consider the problem described by ϕ∗ and w∗ in Example 17. Since A = ∅,
then A∗ = B.

Suppose �rst we generically want to leave l0 no earlier than 7 and no later than 10, and arrive
to l2 strictly before 11. These constraints correspond to conjoining

Jt0∈ [7, 10)K ∧ (t0 + x1 + x2 < 11)

to ϕ∗. In such case, PredAbs[ϕ∗](A∗) is the following formula:

(B1
0 ∧ ¬B2

0 ∧ ¬B3
0 ∧ B1

1 ∧ ¬B2
1 ∧ ¬B3

1) (4.32)
∨(B1

0 ∧ ¬B2
0 ∧ ¬B3

0 ∧ ¬B1
1 ∧ B2

1 ∧ ¬B3
1) (4.33)

∨(¬B1
0 ∧ B2

0 ∧ ¬B3
0 ∧ ¬B1

1 ∧ ¬B2
1 ∧ B3

1) (4.34)

so thatMA∗ def
= TTA(PredAbs[ϕ∗](A

∗)) is the set of the three disjuncts (4.32)-(4.34). Impor-
tantly, note that the other 6 assignments, which would make ϕ∗ LRA-unsatis�able causing
WMInb to return 0, are not generated by TTA(PredAbs[ϕ∗](A

∗)). (E.g., if B1
0 = > then l1 is

necessarily reached strictly before 9, which forces B3
1 = ⊥, s.t. the assignment (B1

0 ∧¬B2
0 ∧

¬B3
0 ∧ ¬B1

1 ∧ ¬B2
1 ∧B3

1) is not generated.)

Now suppose instead that we �x t0 to some value tdep ∈ [7, 10) by conjoining (t0 = tdep) to
ϕ∗ (see 4.5). Depending on the value tdep, we distinguish four cases:

• tdep ∈ [7, 7.5): forces B1
0 = > and TTA(PredAbs[ϕ∗](A

∗)) reduces to (4.32) and (4.33);

• tdep ∈ [7.5, 8): forces B1
0 = > and TTA(PredAbs[ϕ∗](A

∗)) reduces to (4.33) because
(4.32) cannot be extended with any LRA-satis�able µLRA;

• tdep ∈ [8, 9): forces B2
0 = > and TTA(PredAbs[ϕ∗](A

∗)) reduces to (4.34);

• tdep ∈ [9, 10): makes the whole formulaLRA-unsatis�able, s.t. TTA(PredAbs[ϕ∗](A
∗))

is empty.

E.g., in the �rst case, if we set tdep to 7.4 by conjoining (t0 = 7.4) toϕ∗, then TTA(PredAbs[ϕ∗](A
∗))

Chapter 4. WMI-PA 53

contains only (4.32) and (4.33). Let (4.32) be the �rst assignment selected in the “for” loop,
that is, µA∗ def

= (B1
0 ∧ ¬B2

0 ∧ ¬B3
0 ∧ B1

1 ∧ ¬B2
1 ∧ ¬B3

1). Propagating its truth values inside
ϕ∗ and w∗ in (4.28) and (4.29) and simplifying the truth values by means of Simplify(), we get
rid of most LRA-literals in ϕ∗, obtaining thus: 12

ϕ∗[µA∗] =(t0 = 7.4) ∧ Jt0∈ [7, 10)K

∧(t0 + x1 + x2 < 11)

∧ Jt0∈ [7, 8)K ∧ Jx1∈ [0.5, 1)K

∧ Jt0 + x1∈ [7, 8)K ∧ Jx2∈ [1, 1.5)K

w∗[µA∗] = f1
l0l1(x1) · f1

l1l2(x2)

ϕ∗
[µA∗]

is a conjunction of LRA-literals, so that the condition of the “if” is veri�ed, then
WMInb can be invoked on it directly at the cost of one integration only, without further
invoking another predicate abstraction and hence without running the internal “for”, which
would cost one integration for every internal loop.

4.4.3 WMI-PA vs. WMI-AllSMT

As a general remark, comparing (4.30) with (4.14) —even if ϕ∗, w∗,X,A∗ were respectively
ϕ,w,X,A— we note that in WMI-PA the restriction of the sum to TTA(∃X.ϕ∗) in (4.30)
removes a priori all the assignments µA∗ which cannot be expanded by any assignment µLRA
s.t. µA∗ ∧ µLRA propositionally satis�es ϕ∗ and µLRA is LRA-satis�able, whose integrals
would be 0-valued.

We argue that WMI-PA produces much less calls to the background integration procedure
WMInb(µLRA, w∗

[µA∗]
|X) than WMI-AllSMT for two main reasons.

First, the size of Atoms(ϕ∗
[µA∗]

) which is fed to PredAbs in (4.31) can be made much smaller
than the number of LRA-atoms in Atoms(ϕ∗) fed to PredAbs in (4.29), since many LRA-
atoms are simpli�ed out by µA∗ . (E.g., ((x ≤ 1)∧(A2∨(x ≥ 0))[A2] is simpli�ed into (x ≤ 1),
so that (x ≥ 0) is eliminated.) Thus, for each µA∗ , the number of assignments in the form
µA∗ ∧ µLRA which are enumerated in (4.30)-(4.31) can be drastically reduced with respect
to those enumerated in (4.29).

Second, with (4.31) it is possible to search for a set TA(...) of partial assignments, each of
which substitutes 2i total ones, i being the number of unassigned LRA-atoms. Note that,
unlike with Boolean atoms, we can safely produce partial assignments on LRA-atoms be-
cause w(X,A) does not depend directly on them, since the integrals can be computed also
on a partial assignment of the LRA-atoms. (E.g., if ϕ∗

[µA∗]

def
= (x ≥ 0) ∧ ((x ≤ 2) ∨ (x ≤ 1)),

the partial assignment µLRA def
= (x ≥ 0) ∧ (x ≤ 2) prevents enumerating the two total ones

µLRA ∧ (x ≤ 1) and µLRA ∧ ¬(x ≤ 1), computing one integral rather than two.

12Note that Jt0∈ [7, 10)K and Jt0∈ [7, 8)K are made redundant by (t0 = 7.4); however, they do not a�ect the
result.

54

4.5 Experiments

We have evaluated the performance of WMI-PA on both synthetic (4.5.1) and real-world
(4.5.2 and 4.5.3) problems, comparing it with WMIold techniques and alternative symbolic
approaches. These problems have been chosen also because they can be suitably encoded
to be fed to all tools under test; in particular, they are very naturally encoded into WMIold
without the exponential blowup described in 4.2.4.

In our empirical evaluation we compared the following tools:

• WMI-BC is our re-implementation of the WMIold procedure in [9];

• WMI-AllSMT and WMI-PA are our implementations of the procedures described in
4.4.1 and 4.4.2 respectively;

• SVE is the implementation of the algorithm in [91] provided by the authors, adapted
in order to parse our input format;

• PRAiSE13 is the implementation of Probabilistic Inference Modulo Theories [110] pro-
vided by the authors.

The implementations of WMI-BC, WMI-AllSMT and WMI-PA use MathSAT5 14 [19] to
perform SMT reasoning and LattE Integrale 15 [66] to compute integrals of polynomials.
To perform internal manipulations of the weight components, we used SymPy 16, a Python
library for symbolic mathematics. The software implementation of all algorithms, as well
as all data and scripts for replicating the experiments in this paper are publicly available
online. 17

All experiments were run on a Virtual Machine with 7 cores running at a frequency of 2.2 GHz
and 94 GB of RAM. The timeout was set at 10,000 seconds for each 〈query, tool〉 job pair. Im-
portantly, comparing the numerical results of the tests it turned out that, when terminating,
all tools returned the same values on the same queries (modulo roundings).

4.5.1 Synthetic Setting

The synthetic setting is conceived in order to test the performance of the di�erent tools on
generic WMI problems. The setting we use here is more elaborate than the one we employed
in [75], with the aim of making it more challenging for WMI-PA, in particular to force WMI-
PA to enter more frequently its inner loop (the loop in the “else” case in Algorithm 1). Note
however that the results in the simpler setting reported in [75] are qualitatively similar to the
ones we report here, with an even more pronounced advantage of the WMI-based approaches
over the symbolic alternatives.

13http://aic-sri-international.github.io/aic-praise/
14http://mathsat.fbk.eu/
15https://www.math.ucdavis.edu/∼latte/
16http://www.sympy.org/
17https://github.com/unitn-sml/wmi-pa

Chapter 4. WMI-PA 55

Figure 4.5: Query execution times in seconds for all methods on the synthetic experiment
(left); number of integrals (right) for WMI-BC, WMI-AllSMT and WMI-PA on the same in-
stances.

In what follows, let AB denote a random Boolean atom drawn from A, let AR denote a ran-
dom LRA-atom over variables in X, let AB/R denote a random Boolean or LRA-atom. In
this experiment, we used two recursive procedures to generate random formulas and nested
weight functions with a given depth d:

randϕ(d) =

{⊕Q
q=1 randϕ(d− 1) if d > 0

[¬]AB/R otherwise

randw(d) =


JIf randϕ(d) Then randw(d− 1) Else randw(d− 1)K

or
randw(d− 1)⊗ randw(d− 1) if d > 0

Prandom(X,maxdeg) otherwise

where
⊕
∈ {
∨
,
∧
,¬
∨
,¬
∧
}, ⊗ ∈ {+, ·} are randomly-picked Boolean and arithmetical

operators respectively, “[¬]” means that a negation is added at random, “w1 orw2” means that
one of the two alternative functions w1 and w2 is chosen randomly, and Prandom(X,maxdeg)

are random polynomials over X with maximum degree maxdeg.

Using the procedures above, we generated the problem instances as follows:

χ(X,A) = randϕ(D) ∧
∧
x∈X

Jx∈ [lx, ux]K

w(X,A) = randw(D)

ϕquery(X,A) = randϕ(D)

where D is a parameter that control the depth of χ, w and ϕquery, and [lx, ux] are random
lower and upper bounds for each variable x ∈ X.

Figure 4.5 (left) shows the query execution times on the randomly generated problem in-

56

Figure 4.6: The subgraph of the Strategic Road Network used in our experiments. Locations
are coloured according to their out degree.

stances for all the methods. Instances are ordered by increasing hardness, measured as the
running time of the slowest method. For instances in which the slowest method reaches the
timeout, the second slowest method is used to order instances, and so on. (Here and in next
�gures, a value of 10, 000s denotes the fact that the procedure under test reached the timeout
without producing a solution.)

In this experimental setting, the WMI methods achieve better performance with respect to
the symbolic approaches, suggesting that the latter struggle with combinatorial reasoning, in
contrast with theWMI approaches which rely on the full reasoning power of a state-of-the-art
SMT solver.

Whereas WMI-AllSMT performs better than the baseline WMI-BC for the most di�cult
cases, WMI-PA achieves drastic speedups with respect to both the alternatives. Figure 4.5
(right) reports the number of integrals computed by the three WMI methods. The curves
for WMI-BC and WMI-AllSMT are indistinguishable, an expected result as the two formu-
lations enumerate the same set of total truth assignments, with WMI-AllSMT doing it more
e�ciently. Conversely, the predicate abstraction steps of WMI-PA allow it to drastically re-
duce the number of assignments, and thus integrals to be computed. Note that a comparison
with the symbolic approaches in terms of number of integrals is not possible because of their
complex combination of variable elimination and integration steps.

Chapter 4. WMI-PA 57

4.5.2 Strategic Road Network with Fixed Path

In order to show the applicability of our method to real world tasks, we implemented the
case study described in 4.3.1. The data was taken from the Strategic Road Network Dataset
18, which provides a record of journey times on all the motorways managed by the English
Highways Agency. From this dataset we extracted a graph between junctions whose edges
were labelled with distributions of average journey times for each time interval (15 minutes
long). For our experiments, we considered the largest strongly connected component of this
graph, shown in Figure 4.6. In this setting, the task is to perform queries of the form:

P ((tN ≤ tarr) | t0 = tdep, {li}Ni=0),

that is, computing the probability of completing a �xed path l1, ..., lN within tarr, given the
departure time tdep. We encoded an equivalent formulation for PRAiSE and compared it with
the WMI approaches. SVE was not considered in this setting because its execution times are
prohibitive for all but the smallest path lengths. Another issue we encountered with SVE is
that it often runs out of memory due to the size of the underlying XADDs.

The results in Figure 4.7 show median, �rst and third quartiles of the query execution times,
computed over 10 randomly generated queries for each path length. Whereas WMI-BC and
WMI-AllSMT cannot scale to the path lengths handled by PRAiSE, our approach is much
faster than all alternatives, being able to compute queries up to two steps longer than PRAiSE
without reaching the timeout.19

In contrast with the synthetic experiment, in this setting PRAiSE performs much better than
WMI-BC and WMI-AllSMT. On the one hand, PRAiSE seems to bene�t from the determin-
istic relationships between the journey time variables, being able to symbolically decompose
the integration much more e�ciently with relation to the synthetic experiment, in which the
continuous variables can relate to each other in diverse and entangled ways. On the other
hand, the number of overlapping intervals in this encoding makes the enumeration of total
truth assignments performed by WMI-BC and WMI-AllSMT prohibitive (see 4.5.4).

Figure 4.8 shows the number of integrals computed by the three WMI techniques. (As be-
fore, this data cannot be provided with PRAiSE.) Note that the plots for WMI-BC and WMI-
AllSMT coincide, whereas that for WMI-PA cannot be distinguished from the x axis. From
this, we observe that predicate abstraction techniques used in WMI-PA allow to drastically
reduce the number of integrations.

18https://data.gov.uk/dataset/dft-eng-srn-routes-journey-times
19Note that the complexity of the query is due to the combination of the path length and the number of time

intervals in which the time horizon is divided (M=12 in these experiments). For paths of length 8, the total number
of potential cases is 128 = 429, 981, 696. Clearly, most of these cases are unfeasible and are thus ruled out by the
SMT solver before the integration.

58

PRAiSE WMI
BC AllSMT PA

1 2 1 0 0
2 3 10 8 0
3 7 425 253 0
4 22 > 10000 3994 2
5 174 > 10000 > 10000 8
6 6722 > 10000 > 10000 86
7 > 10000 > 10000 > 10000 850
8 > 10000 > 10000 > 10000 8884

Figure 4.7: Query execution times in seconds (1st quartile, median and 3rd quartile) in the
Strategic Road Network setting with �xed path (left). Table showing the medians for each
length (right).

WMI
BC AllSMT PA

1 14 14 2
2 96 96 2
3 1653 1653 2
4 15105 15105 2
5 - - 2
6 - - 5
7 - - 6
8 - - 6

Figure 4.8: Number of integrations (1st quartile, median and 3rd quartile) computed by the
WMI methods in the Strategic Road Network setting with �xed path (left). Table showing the
medians for each method and path length (right).

4.5.3 Strategic Road Network with Conditional Plans

In order to further investigate the impact of combinatorial reasoning on the performance
of WMI-PA and PRAiSE, we generalized the previous experiment to the case in which the
path is not given in advance, using the encoding described in 4.3.2. In this experiment, we
precomputed the conditional plan for each triple 〈li,m, lj〉 using a greedy procedure based
on expected journey time between adjacent locations. WMI-BC and WMI-AllSMT were
not considered in this experiment, given their inability to scale on the simpler �xed path
experiment. Recall that in this setting, the task is answering queries of the form:

P (tN ≤ tarr | t0 = tdep, ldep, ltarget, next),

that is, computing the probability of reaching ltarget within tarr, leaving from ldep at time tdep
and using the conditional plan encoded in next to make local decisions on the route to follow.

Chapter 4. WMI-PA 59

PRAiSE WMI-PA
1 799 1
2 > 10000 2
3 > 10000 4
4 > 10000 6
5 > 10000 14
6 > 10000 77
7 > 10000 708
8 > 10000 6203

Figure 4.9: Query execution times in seconds (1st quartile, median and 3rd quartile) in the
Strategic Road Network setting with conditional plan (left). Table showing the medians for
each maximum length (right).

The results displayed in Figure 4.9 show that with the conditional-plan setting WMI-PA dras-
tically outperforms PRAiSE, the performance gaps being even superior than that with the
�xed-plan setting in Figure 4.7. 20 These results suggest that PRAiSE struggles with the heav-
ier combinatorial aspect of this generalization. On the other hand, WMI-PA can prune the
combinatorial space much more e�ciently.

4.5.4 Discussion

The remarkable performance gaps of WMI-PA with respect to its competitors, in particular
with respect to WMI-AllSMT and WMI-BC, can be explained in terms of what discussed in
4.4.3. In particular, we analyze the Strategic Road Network with Fixed Path setting of 4.5.2 by
generalizing the scenario of Example 18. (In what follows we have omitted the literals from
the query, which can simply be conjoined to each truth assignment.)

Consider ϕ∗(X,B) as in 4.3.1, and consider some µA∗ ∈ MA∗ as in Algorithm 1. Then,
for every n, only one Bmn−1 is true (say, Bmnn−1) and all others are false in µA∗ , so that∧M
m=1(Bmn−1 ⇐⇒ Jtn∈ ImK) forces Jtn∈ ImnK to be true and all the others to be false,

so that
∧M
m=1(Jtn−1∈ ImK → Jxn∈ Rmln−1,ln

K) forces Jxn∈ Rmnln−1,ln
K to be true and satis-

�es all other constraints (Jtn−1∈ ImK → Jxn∈ Rmln−1,ln
K) for m 6= mn, with no need to

assign truth values to the other constraints Jxn∈ Rmln−1,ln
K.

With WMI-AllSMT (and WMI-BC) only total truth assignments µA∗ ∧ µLRA are generated
from TTA(ϕ∗). We note that there can be up to (2M − 1)N such assignments sharing the
same µA∗ with di�erent µLRA part, each of which must be integrated separately. In fact,
consider one µA∗ as above. WMI-AllSMT is forced to enumerate all total assignments µA∗ ∧

20Comparing Figure 4.9 with Figure 4.7 one may got the (false) impression that the �xed plan problem is com-
parable or even harder for WMI-PA than the conditional-plan one. We note, however, that the two plots cannot be
compared because in Figure 4.7 the x axis represents the length of the (�xed) plan whereas in Figure 4.9 it represents
the maximum plan length, which can be bigger than the length of the actual plans.

60

µLRA1 , µA∗ ∧ µLRA2 , ... extending µA∗ which cover all possible truth value combinations of
the atoms in Jxn∈ Rmln−1,ln

K withm 6= mn which are LRA-consistent with Jxn∈ Rmnln−1,ln
K,

although a truth value assignment to these atoms is not necessary to satisfy the formula, as
pointed out above. (Recall that the intervals {Rmln−1,ln

}m are not disjoint.) Depending on the
possible overlappings of Rmnln−1,ln

with the other intervals Rmln−1,ln
with m 6= mn, there are

up to (2M − 1)N such potential combinations: the extreme case is where, for every n, the
bounds of the intervals Rmln−1,ln

are all di�erent and for every m 6= mn R
m
ln−1,ln

⊂ Rmnln−1,ln
,

so that Rmnln−1,ln
is partitioned into 2M − 1 sub-intervals, totaling (2M − 1)N combinations.

We stress the fact that this partitioning is unnecessary because inside Rmnln−1,ln
the weight

function is not partitioned.

With WMI-PA, instead, the constraints (Jtn−1∈ ImK → Jxn∈ Rmln−1,ln
K) for m 6= mn are

removed from ϕ∗
[µA∗]

by Simplify(), so that ϕ∗
[µA∗]

is simpli�ed into 21

N∧
n=1

(
Jtn−1∈ ImnK ∧

mn−1∧
m=1

(tn−1 ≥ cm) ∧
M∧

m=mn+1

¬(tn−1 ≥ cm−1) ∧ Jxn∈ Rmnln−1,ln
K

)

which is a conjunction of LRA-literals (namely µLRA). Thus, with the �xed-path setting,
WMI-PA generates only one µLRA to integrate for every µA∗ ∈MA∗ .

A direct theoretical comparison of the WMI techniques with respect to the symbolic tech-
niques in SVE [91] and PRAiSE [110] is not possible, because of the very di�erent nature
of such procedures—and of the fact that the code of PRAiSE is much more complex and so-
phisticated than the general algorithm described in [110]—so that we limit to express a few
conjectures.

Concerning the performance of SVE, we conjecture that its major limitation is that it re-
quires to enumerate all paths from the root to the leaves in the XADD during computation,
thus producing a blow-up both in memory requirements and number of alternatives to be
evaluated.

An analysis of the performance di�erence between PRAiSE and WMI-BC/WMI-AllSMT is
more di�cult. On the one hand, to the best of our understanding of the algorithm in [110],
PRAiSE supports some form of reasoning on partial LRA-subassignments, which we con-
jecture to provide a good advantage with respect to WMI-BC and WMI-AllSMT on the road-
network setting, where this feature is critical. On the other hand, where the above issue is
less critical as with the synthetic setting, we conjecture that the usage of variable-elimination
techniques might be less e�cient than the Boolean decomposition plus numerical integra-
tions, as done by WMI-BC and WMI-AllSMT.

Finally, when comparing PRAiSE and WMI-PA—in addition to what mentioned in the last
paragraph—we conjecture that the superiority in performance might be due mostly to the
two-step usage of predicate abstraction interleaved with formula simpli�cation, which allows

21Recall from 4.3.1 that Jtn−1∈ ImnK def
= (tn−1 ≥ cm−1) ∧ ¬(tn−1 ≥ cm); consequently, we have that

¬Jtn−1∈ ImnK = ¬(tn−1 ≥ cm−1) ∨ (tn−1 ≥ cm), which is simpli�ed into (tn−1 ≥ cm) if m < mn and
into ¬(tn−1 ≥ cm−1) if m > mn.

Chapter 4. WMI-PA 61

both for getting rid of mostLRA-atoms fromϕ∗
[µA∗]

and for enumerating partial assignments
on them, so that to drastically prune the number of LRA-assignments µLRA produced and
thus the number of integrals performed.

4.6 Final remarks

While the comparison in section 4.5 seems to suggest that solver-based approaches with nu-
merical integration procedures are generally superior, this is not always the case. In fact, SVE
was later improved with caching techniques in [48], showing superior performance with re-
spect toWMI-PA in a range of syntheticWMI problems. Moreover, symbolic approaches have
the advantage of being generally more �exible with respect to solver-based approaches. For
instance, symbolic solvers can return partial WMI computations [48] and di�erent solving
schemes can be easily combined [47]. Symbolic approaches also shine whenever computa-
tions can be reused for answering multiple queries, as reported both in section 5.4 and in [48].
In order to implement this feature in solver-based approaches, a much more complex inter-
action with a stack-based incremental SMT solver has to be realized.

The major limitation of WMI-PA is its inability to automatically decompose the integral
whenever possible. This aspect hinders the use of this algorithm in high-dimensional scenar-
ios. Currently, the algorithm requires total truth assignments to the conditions of the weight
function, but this is often unnecessary for many densities of practical interest. Lifting this re-
quirement is another promising research direction. Hybridisation of solver-based approaches
with symbolic or approximate integration procedures is also currently being investigated.

Chapter 5

MP-MI

While relevant for some applications, the improvement to solver-based approaches described
in the previous chapter does not achieve scalableWMI inference to high-dimensional settings.
This motivated the study of the theoretical aspects of WMI inference. This chapter is based on
a recent e�ort to trace the tractability boundaries of WMI problems [108] and provide the hy-
brid equivalent of the Belief Propagation (BP) algorithm (refer to section 2.1 for a description
of BP on factor graphs).

Recently, [107] showed that a WMI problem can be reduced in poly-time to a Model Inte-
gration (MI) problem over continuous variables only. This reduction is appealing because it
allows us to cast hybrid probabilistic reasoning with logical constraints in terms of volume
computations over polytopes. In the following chapter we focus on the undirected case, al-
though a more recent work that extends our �ndings to the weighted case and further expand
the tractability bounderies is currently under revision.

Our theoretical analysis and the message passing algorithm are based on the concept of pri-
mal graph, a graphical structure that encodes the dependencies between variables of a WMI

problem. Both primal graphs and the reduction to the unweighted case are described in
section 5.1. Section 5.2 provides an analysis of the hardness of MI problems. Tracing the
boundaries of tractability is not only relevant from a theoretical standpoint, but it also has
practical utility in characterizing the problems that can be e�ciently solved, thus suggest-
ing an algorithm for tractable inference. The algorithm, dubbed MP-MI, allows the e�cient
computation of marginal densities and statistical moments of all the variables in linear time.
As such, it is possible to amortize inference for rich MI queries when they conform to the
dependency structure. Section 5.3 presents MP-MI, followed by a preliminary evaluation of
its performance on synthetic data in section 5.4.

5.1 Preliminaries

De�nition 7. In order to characterize the dependency structure of an SMT-LRA formula ϕ
as well as the hardness of inference, we denote the primal graph [25] of formula ϕ by Gϕ,

64

as the undirected graph whose vertices are variables in ϕ and whose edges connect any two
variables that appear together in at least one clause in ϕ.

In the next sections, we will extensively refer to the diameter and treewidth of a primal graph
de�ned as usual for undirected graphs [51].

We now brie�y review the poly-time reduction from WMI to MI. We refer the readers to [107]
for a detailed exposition.

First, without loss of generality, a WMI problem on continuous and Boolean variables of the
form WMI(ϕ,w|X,A) can always be reduced to new WMI problem WMInb(ϕ′, w′|X′) on
continuous variables only. To do so, we substitute the Boolean variables A in formula ϕwith
fresh continuous variables in X′ and replace each Boolean atom and its negation in formula
ϕ by two exclusiveLRA atoms over the new real variables in formula ϕ′, and distilling a new
weight functionw accordingly. Note that the primal graph of formulaϕ′ retains its treewidth,
i.e., if primal graph Gϕ is a tree, then so is the graph Gϕ′ .

Furthermore, WMI problems on continuous variables with polynomial weights can be re-
duced to equivalent MI problems whose de�nition will be formally presented in the next
paragraph. Speci�cally, WMInb with polynomial weights w′ have equivalent MI problems
WMInb(ϕ′, w′|X′) = MI(ϕ′′|X′′), with X′′ containing auxiliary continuous variables whose
extrema of integration are chosen such that their integration is precisely the value of weights
w′.

ϕ =


Γ1 : 0 < X1 < 2

Γ2 : 0 < X2 < 2

Γ3 : X1 + X2 < 2

Γ4 : B ∨ (X1 > 1)

ϕ′ =



Γ1 : 0 < X1 < 2

Γ2 : 0 < X2 < 2

Γ3 : X1 + X2 < 2

ΓB : −1 < ZB < 1

Γ
′
4 : (0 < ZB)

∨(X1 > 1)

ϕ
′′

=


ϕ
′

Γ5 : 0 < Z
′
X1

< X1

Γ6 : 0 < ZX2 < X2

Γ7 : 0 < Z
′′
X1

< 2

B X1 X2 ZB X1 X2

ZB X1 X2

Z
′

X1
ZX2Z

′′

X1

Figure 5.1: From WMI to MI, passing by WMInb. An example of a WMI problem with
an SMTLRA CNF formula ϕ over real variables X = {X1, X2} and Boolean variable B
and corresponding primal graph Gϕ in (a). Their reductions to ϕ

′ and Gϕ′ as an WMInb
problem in (b). The equivalent MI problem with formula ϕ′′ and primal graph Gϕ′′ over
only real variables X′′ = X ∪ {ZB , ZX1 , ZX2} after the introduction of auxiliary variables
ZB , ZX1 , ZX2 . Note that Gϕ and G′′ϕ have the same treewidth one.

Example 19. Figure 5.1 illustrates one example of a reduction of aWMI problem to oneWMInb
one to a MI problem. Consider the WMI problem over formula ϕ = (0 < X1 < 2) ∧ (0 <

X2 < 2) ∧ (X1 + X2 < 1) ∧ (B ∨ (X1 > 1)) on variables X = {X1, X2},A = {B}
whose primal graph Gϕ is also shown in �gure 5.1 (left). Assume a weight function which

Chapter 5. MP-MI 65

decomposes as

w(X1, X2, B) = wa(X1, X2) · wb(X1) · wc(B)

wa(X1, X2) = X1 ·X2

wb(X1) = JIf (X1 > 1) Then 2 Else 1K

wc(B) = JIf B Then 3 Else 1K

The WMI of formula ϕ is:

WMI(ϕ,w; X, {B}) =

∫ 1

0

dx1

∫ 2−x1

0

1× 3x1x2 dx2 (5.1)

+

∫ 2

1

dx1

∫ 2−x1

0

2× 3x1x2 dx2

+

∫ 2

1

dx1

∫ 2−x1

0

2× 1x1x2 dx2 .

In �gure 5.1 (center) we show the reduction to the above example problem to a WMInb one.
A free real variable ZB is introduced to replace Boolean variable B. Then, the equivalent
problem to the WMI one in Equation 5.1, can be computed as:

WMInb(ϕ′, w′) =

∫ 1

0

dzB

∫ 1

0

dx1

∫ 2−x1

0

1× 3x1x2 dx2 (5.2)

+

∫ 1

0

dzB

∫ 2

1

dx1

∫ 2−x1

0

2× 3x1x2 dx2

+

∫ 0

−1

dzB

∫ 2

1

dx1

∫ 2−x1

0

2× 1x1x2 dx2 .

Figure 5.1 (right) illustrates the additional reduction from the above WMInb problem to a MI

one. There, additional real variables Z ′X1
, ZX2 and Z ′′X1

are added to formula ϕ′′ in substitu-
tion of the monomial weights attached to literals. Therefore, the same result as Equation 5.1
and Equation 5.2 can be obtained as

MI(ϕ′′) =

∫ 3

0

dzB

∫ 1

0

dx1

∫ 2−x1

0

dx2

∫ x1

0

dz
′

X1

∫ x2

0

dzX2 (5.3)

+

∫ 2

0

dz
′′

X1

∫ 3

0

dzB

∫ 2

1

dx1

∫ 2−x1

0

dx2

∫ x1

0

dz
′

X1

∫ x2

0

dzX2

+

∫ 2

0

dz
′′

X1

∫ 2

1

dx1

∫ 2−x1

0

dx2

∫ x1

0

dz
′

X1

∫ x2

0

dzX2 .

In the case of monomial weights, the treewidth of G′′ϕ will not increase w.r.t. G′ϕ. This is
not guaranteed for generic polynomial weights. For a detailed description of these reduction
processes refer to [108].

66

5.1.1 ComputingMI

Given a set X of continuous random variables over R, and an SMT-LRA formula ∆ =
∧
i Γi

over X, the task ofMI over formulaϕ, w.r.t. variables X is de�ned as computing the following
integral [107]:

MI(ϕ|X)
def
=

∫
x|=ϕ

1 dx =

∫
R|X|

Jx |= ϕK dx =

∫
R|X|

∏
Γ∈ϕ

Jx |= ΓK dx. (5.4)

The �rst equality can be seen as computing the volume of the constrained regions de�ned
by formula ϕ, and the last one is obtained by eliciting the "pieces" associated to each clause
Γ ∈ ϕ. Again, in the following we will use the shorthand MI(ϕ) when integrating over all
variables in formula ϕ. Moreover, the problem MI(ϕ) can be rewritten in an iterated integral
form as follows:

MI(ϕ) =

∫
R
dx1 · · ·

∫
R
dxi−1

∫
R
fi(xi) dxi, i = 2, · · · , n. (5.5)

In a general way, we can always de�ne a univariate piecewise polynomial fi as a function of
the MI over the remaining variables in a recursive way as follow:

fi(xi) =

∫
R
Jxi, xi+1 |= ϕ̃iK · fi+1(xi+1) dxi+1, i ∈ [1, n− 1] fn(xn) = Jxn |= ϕ̃nK

where the formula ϕ̃i = ∃x1:i−1.ϕ. Recall that the formula ϕ is de�ned by SMT-LRAwhich
means that the integration bounds are linear arithmetic over the real variables. Thus the MI

can be expressed as the integration over an arbitrary variable Xr ∈ X where the integrand
fr is a univariate piecewise polynomial and the pieces are the collection I of intervals of the
form [l, u]:

MI(ϕ) =

∫
R
fr(xr) dxr =

∑
[l,u]∈I

∫ u

l

fl,u(xr)dxr. (5.6)

5.1.2 Hybrid inference viaMI

Before moving to our theoretical and algorithmic contributions, we review the kind of prob-
abilistic queries computable via MI.1 Analogously to WMI(∆, w), MI(ϕ) computes the parti-
tion function of the unnormalized distribution induced over the models of formula ϕ. There-
fore, it is possible to compute the (now normalized) probability of any logical query Φ ex-
pressable as an SMT-LRA formula involving complex logical and numerical constraints as

Pϕ(Φ) = MI(ϕ ∧ Φ) /MI(ϕ).

In the next section, we will show how to compute the probabilities of a collection of rich
queries {Φt}t in a single message-passing evaluation if all Φt are univariate formulas, i.e.,

1Note that equivalent queries can be de�ned for WMI and WMInb problem formulations.

Chapter 5. MP-MI 67

contain only one variableXi ∈ X, or bivariate ones conforming to graph Gϕ, i.e., Φt contains
only Xi, Xj ∈ X and they are connected by at least one edge in Gϕ. Moreover, one might
want to statistically reason about the marginal distribution of the variables in X, i.e., pϕ(xi)

which is de�ned as:

Pϕ(xi)
def
=

1

MI(ϕ)
fi(xi) =

1

MI(ϕ)

∫
R|X|−1

Jx |= ϕK dx \ {xi}. (5.7)

5.2 On the inherent hardness of MI

It is well-known that for discrete probabilistic graphical models, the simplest structural re-
quirement to guarantee tractable inference is to bound their treewidth [51]. For instance, for
tree-shaped Bayesian Networks, all exact marginals can be computed at once in polynomial
time [80]. However, existing WMI solvers show exponential blow-up in their runtime even
when the WMI problems have primal graphs with simple tree structures [107]. This obser-
vation motivates us to trace the theoretical boundaries for tractable probabilistic inference
via MI. As we will show in this section, we �nd out that requiring a MI problem to only
have a tree-shaped structure is not su�cient to ensure tractability. Therefore, inference on
MI problems is inherently harder than its discrete-only counterpart.

Speci�cally, we will show how the hardness of MI depends on two structural properties: the
treewidth of the primal graph and the length of its diameter. To begin, we prove that even
for SMT-LRA formulas ϕ whose primal graphs Gϕ are trees but have unbounded diameters
(i.e., they are unbalanced trees, like paths), computing MI(ϕ) is hard. This is surprising since
for its discrete counterpart, the complexity of model counting problem is exponential in the
treewidth but not in the diameter.

Theorem 2. Computing MI(ϕ) of an SMT-LRA formula ϕ whose primal graph over n vari-
ables is a tree with diameter O(n) is #P-hard.

Proof. We prove our complexity result by reducing a #P-complete variant of the subset sum
problem [32] to an MI problem over an SMT-LRA theory ϕ with a tree primal graph whose
diameter is O(n). This problem is a counting version of the subset sum problem saying that
given a set of positive integers S = {s0, s1, · · · , sn−1}, and a positive integer L, the goal is
to count the number of subsets S′ ⊆ S such that the sum of all the integers in the subset S′
equals to L.

In a nutshell, one can always construct in polynomial time a theory ϕ such that its primal
graph Gϕ is a chain (hence has O(n) diameter) and where computing MI(ϕ) equals solving
(up to a constant) the aforementioned subset sum problem variant, which is known to be
#P-hard [22, 15]. Firstly, we reduce the counting subset sum problem in polynomial time to
a model integration problem with the following SMT-LRA theory whose primal graph is

68

X1 X2 X3 Xn−1 Xn

s1 s2
sn−1

Figure 5.2: Primal graph used for #P-hardness reduction

shown in �gure 5.2.

∆ =

{
(− 1

2n < X1 − s1 <
1

2n) ∨ (− 1
2n < X1 <

1
2n)

(− 1
2n < Xi −Xi−1 − si < 1

2n) ∨ (− 1
2n < Xi −Xi−1 <

1
2n), i = 2, · · ·n

For brevity, denote the �rst and the second literal in the i-th clause by `(i, 0) and `(i, 1),
respectively. Also we choose two constants l = L − 1

2 and u = L + 1
2 . In the following, we

prove that nnMI(∆ ∧ (l < Xn < u)) equals the number of subset S′ ⊆ S whose element
sum is L.

Let vak = (a1, a2, · · · , ak) be some assignment to Boolean variables {A1, A2, · · · , Ak} with
ai ∈ {0, 1}, i ∈ [k]. De�ne S(vak)

def
=
∑k
i=1 aisi−1 as subset sums, and formulas ∆vak

def
=∧k

i=1 `(i, ai) for each vak .

We claim that given an assignment vak ∈ {0, 1}k , the model integration for theory ∆vak is
(1
n)k . Moreover, using induction we conclude that for each variable xi in ∆vak , its satisfying

assignments form the interval [
∑i
j=1 ajsj−1 − i

2n ,
∑i
j=1 ajsj−1 + i

2n]. Speci�cally, the sat-
isfying assignments for variable xn in theory ∆van is the interval [S(van)− 1

2 , S(van) + 1
2].

For any subset S′ ⊆ S, we can have one-to-one correspondence to assignments in {0, 1}n by
de�ning van as ai = 1 if and only if si ∈ S′. Furthermore, each assignments van ∈ {0, 1}n,
the model integration of ∆van ∧ (l < Xn < u) falls into one of the following two cases:
1) if S(van) < L or S(van) > L, then MI(∆van ∧ (l < Xn < u)) = 0; 2) otherwise if
S(van) = L, then MI(∆van ∧ (l < Xn < u)) = (1

n)n. Indeed, we have shown that variable
Xn has its satisfying assignments in interval [S(van) − 1

2 , S(van) + 1
2] in theory ∆van for

each van ∈ {0, 1}n. If S(van) < L, given that S(van) is a sum of positive integers, then it
holds thatS(van)+ 1

2 ≤ (L−1)+ 1
2 = L− 1

2 = l and therefore, MI(∆van∧(l < Xn < u)) = 0;
similarly, if S(van) > L, then it holds that S(van)− 1

2 ≥ u and therefore, MI(∆van ∧ (l <

Xn < u)) = 0. If S(van) = L, we have MI(∆van ∧ (l < Xn < u)) = MI(∆van) = (1
n)n.

Observe that for each clause in SMT-LRA ∆, literals are mutually exclusive since each si is
a positive integer. Then we have that formulas ∆van are mutually exclusive and meanwhile
∆ =

∨
van ∆van . Thus it holds that MI(∆) =

∑
van MI(∆van). Similarly, we have formulas

(∆van ∧ (l < Xn < u))’s are mutually exclusive and meanwhile MI(∆ ∧ (l < Xn < u)) =∑
van MI(∆van ∧ (l < Xn < u)). From the above results, we can conclude that MI(∆∧ (l <

Xn < u)) = t(1
n)n where t is the number of assignments van such that S(van) = L. Notice

that for each van ∈ {0, 1}n, it one-to-one corresponds to a subset S′ ⊆ S and S(van) equals
to L if and only if the sum of elements in S′ is L. This �nishes our proof of the statement
that nnMI(∆ ∧ (l < Xn < u)) equals to the number of subset S′ ⊆ S whose element sum
equals to L. Therefore, model integration problems with tree primal graphs whose diameter

Chapter 5. MP-MI 69

is O(n) is #P-hard.

Furthermore, when the primal graphs are balanced trees, i.e., they haveO(log(n)) diameters,
increasing their treewidth from one to two is su�cient to turn MI problems from tractable to
#P-hard.

Theorem 3. ComputingMI(ϕ) of an SMT-LRA formulaϕwhose primal graphGϕ has treewidth
two and diameter of length O(log(n)) is #P-hard, with n being the number of variables.

Proof. [Sketch of proof] As before, we construct a poly-time reduction from the #P-complete
variant of the subset sum problem to an MI problem. This time, the SMT-LRA formula ϕ is
built such that the graph Gϕ has treewidth two with cliques (hence not a tree). Meanwhile
the primal graph has diameter to be at most log(n) by putting the cliques in a balanced way.
Then the MI over a subtree could potentially be a subset sum over the integers that appear
in the formulas associated with the subtree. Then computing the MI of formula ϕ equals to
solving the subset sum problem. For the complete proof, refer to [108].

From Theorems 2 and 3 we can deduce that having a tree-shaped and balanced primal graph
is a necessary condition for tractability. Together with the fact that our proposed exact MI

solver, which will be introduce in the next section, achieves quasi-polynomial complexity on
MI with balanced tree-shaped primal graphs, we shows that the balanced tree-shape is both
necessary and su�cient. This sets the standard for the solver complexity: every exact MI

solver that aims to be e�cient, need to operate in the aforementioned regime.

In next section we introduce a novel and e�cient exact MI solver on MI with balanced tree-
shaped primal graphs together with its complexity analysis. It computes exact MI by ex-
changing messages among the nodes of the primal graph of an SMT-LRA formula. As the
reader might guess at this point, devising a message passing inference scheme for MI will be
inherently more challenging than for discrete domains.

From the previous section we know that MI actually can be viewed as integration over uni-
variate piecewise polynomials. Piecewise polynomials are universal and compact represen-
tations that are closed under multiplication, addition, marginalization and conditioning on
evidence. This will allow us to distill a message passing scheme where both messages and
beliefs are still in the univariate piecewise polynomial family.

When operating on primal graphs that are trees, our MI via message passing will be exact.
The belief update is done in a upward-and-downward manner and by performing it one can
directly obtain the marginals for each node – the same nice property as its only-discrete and
only-continuous counterparts [51, 80]. Besides doing model integration, the stored beliefs
will allow us to amortize computations for multiple queries on SMT-LRA formulas, at in-
ference time.

70

X1 X2 X3

([0, 2], X2)

([2, 3], 2)

m1→2

([1, 2], 1
2
X2

3)

m2→3

X1 X2 X3

([1, 2], X1)

([0, 1], X2
1)

m2→1 ([0, 1], 1)

([1, 2], -X2 +

2)

m3→2

Figure 5.3: An example of a run of MP-MI. Upward (blue) and downward (pink) messages
are shown as piecewise polynomials in boxes for a tree primal graph rooted at X3. The �nal
belief for X2 can then be computed as the piecewise polynomial b2 = m1→2 · m3→2 =
{([0, 1], X2), ([1, 2],−X2

2 + 2X2)}.

5.3 MP-MI: exact MI inference via message passing

Deriving an equivalent message passing scheme for MI to what belief propagation is for the
discrete case [80] poses unique and considerable challenges. First, by allowing complex log-
ical constraints such as those creating disjoint feasible regions, one might have to integrate
over exponentially many polytopes. This is computationally expensive even though numer-
ical integration is a consolidated �eld. Additionally, di�erent from discrete domains, in real
or hybrid domains one generally does not have universal and compact representations for
distributions [51, 100]. And when these are available, e.g. in the case of Gaussians, the cor-
responding density models might have restricted expressiveness and not allow for e�cient
integration over arbitrary constraints. In fact, in the case of exponentiated polynomials, exact
integration of is limited to polynomials of low degree (usually, two).

5.3.1 Propagation scheme

In what follows we describe a message passing scheme for MI problems with tree-shaped
primal graphs.

Let ϕ be an SMT-LRA formula and Gϕ its tree primal graph, rooted at node r corresponding
to variable Xr ∈ X. This can always be done by choosing an arbitrary node r as root and
then orienting all edges away from node r.

Also let V be the set of indexes of variables X in formula ϕ and let E be the set of edges
i − j in graph Gϕ connecting variables Xi and Xj . Then the formula can be rewritten as
ϕ =

∧
i∈V ϕi ∧

∧
(i,j)∈E ϕi,j , with ϕi being formulas involving only variable Xi and, anal-

ogously, formula ϕi,j involving only variables Xi and Xj . Notice that the tree primal graph
assumption implies that each clause in the formula has at most two variables; otherwise if
there are more than two variables in one clause, these variables would be pairwise connected
by one edge in the primal graph and create loops.

Our inference scheme, which we name MP-MI, will be able to compute the unnormalized
marginals of each node in Gϕ, de�ning the belief associated to that node.

Chapter 5. MP-MI 71

De�nition 8. Let ϕ be an SMT-LRA formula with tree primal graph Gϕ. The belief bi of
node i in graph Gϕ is the unnormalized marginal pi(xi) of variable Xi ∈ X.

As we will show, in MP-MI beliefs can be computed by exchanging messages between nodes
in Gϕ.

De�nition 9. The message from a node i (corresponding to variable Xi ∈ X) in primal graph
Gϕ to one of its neighbor nodes j ∈ neigh(i) is computed recursively as follows,

mi→j(xj) =

∫
R
Jxi, xj |= ϕi,jKJxi |= ϕiK×

∏
c∈neigh(i)\{j}

mc→i(xi) dxi (5.8)

MP-MI operates in two phases: an upward pass and a downward one. First we send messages
up from the leaves to the root (upward pass) such that each node has all information from
its children and then we incorporate messages from the root down to the leaves (downward
pass) such that each node also has information from its parent node. When the message
passing process �nishes, each node in graph Gϕ is able to compute its belief by aggregating
the messages received from all its neighbors.

Proposition 4. Let ch(i) be the set of children nodes for node i in Gϕ. The belief of node i in
the upward pass, bupi , and the downward belief bdowni , can be computed as:

bupi (xi) =
∏

c∈ch(i)

mc→i(xi), bi(xi) = bdowni (xi) =
∏

c∈neigh(i)

mc→i(xi) (5.9)

where mc→i denotes the message sent from a node c to its neighbor node i. The �nal belief of
node i is its downward belief which is the unnormalized marginal, i.e. MI(ϕ) =

∫
RJxi |= ϕiK ·

bi(xi) dxi.

Notice that even though the integration is symbolically de�ned over the whole real domain,
the SMT-LRA logical constraints in formulas ϕi,j and ϕi would give integration bounds
that are linear in the variables. This guarantees that our messages will be univariate piecewise
polynomials.

Proposition 5. Let ϕ be an SMT-LRA formula with tree primal graph, then the messages
as de�ned in Equation 5.8 and beliefs as de�ned in Equation 5.9 are univariate piecewise
polynomials.

Remark 5. The multiplication of two piecewise polynomial functions f1(x) and f2(x) is de-
�ned as a piecewise polynomial function f(x) whose domain is the intersection of the do-
mains of these two functions and for each x in its domain, the value is de�ned as f(x) =

f1(x) · f2(x).

In �gure 5.3 we show an example of the two passes in MP-MI and we summarize the whole
MP-MI scheme in Algorithm 2. There, two functions critical-points and symbolic-bounds are
subroutines used to compute the numeric and symbolic bounds of integration for our pieces
of univariate polynomials. Both of them can be e�ciently implemented, see [107] for details.
Concerning the actual integration of the polynomial pieces, this can be done e�ciently sym-

72

Algorithm 2 MP-MI(ϕ) – Message Passing Model Integration
1: Vup ← sort nodes in Gϕ, children before parents
2: for each Xi ∈ Vup do send-message(Xi, Xparent(X

i

))
. upward pass

3: Vdown ← sort nodes in Gϕ, parents before children
4: for each Xi ∈ Vdown do . downward pass
5: for each Xc ∈ ch(Xi) do send-message(Xi, Xc)
6: Return {bi}i:X

i

∈G
ϕ

send-message(Xi, Xj)
1: bi ← compute-beliefs . cf. Equation 5.9
2: P ← critical-points(bi, ϕi, ϕi,j), I ← intervals-from-points(P) . cf. SMI in [107]
3: for interval [l, u] ∈ I consistent with formula ϕi ∧ ϕi,j do
4: 〈ls, us, f〉 ← symbolic-bounds(bi, [l, u], ϕi,j)
5: f ′ ←

∫ u
s

l
s

f(xi) dxi, mi→j ← mi→j ∪ 〈l, u, f ′〉
6: Return mi→j

bolically, a task supported by many scienti�c computing packages. Next we will show how
the beliefs and messages obtained from MP-MI can be leveraged for inference tasks.

5.3.2 Amortizing Queries

Given a SMT-LRA formula ϕ, in the next Propositions, we show that we can leverage beliefs
and messages computed byMP-MI to speed up (amortize) inference time over multiple queries
on formula ϕ. More speci�cally, when given queries that conform to the structure of formula
ϕ, i.e. queries on a node variable or queries over variables that are connected by an edge in
graph Gϕ, we can reuse the local information encoded in beliefs.

Expectations and moments can also be computed e�ciently by leveraging beliefs and taking
ratios. They are pivotal in several scenarios including inference and learning.

Proposition 6. Let ϕ be an SMT-LRA formula with a tree primal graph, and let Φ be an
SMT-LRA query over variableXi ∈ X. It holds thatMI(ϕ∧Φ) =

∫
RJxi |= ΦKJxi |= ϕiKbi(xi)dxi.

Proposition 7. Letϕ be an SMT-LRA formula and let Φ be an SMT-LRA query overXi, Xj ∈
X that are connected in tree primal graph Gϕ. The updated message from node j to node i is
as follows.

m∗j→i(xi) =

∫
R
bj(xj)/mi→j(xj)× Jxi, xj |= ϕi,j ∧ ΦKJxj |= ϕjK dxj

It holds that MI(ϕ∧Φ) =
∫
RJxi |= ϕiK·b∗i (xi)dxi with b∗i obtained from the updated message

m∗j→i.

Proposition 8. Let ϕ be an SMT-LRA formula with tree primal graph, then the k-th moment

Chapter 5. MP-MI 73

of variable Xi ∈ X can be obtained by E[Xk
i] = 1

MI(ϕ)

∫
RJxi |= ϕiK× xki bi(xi) dxi.

Pre-computing beliefs and messages can dramatically speed up inference by amortization, as
we will show in section 5.4.

This is especially important when the primal graphs have large diameter. In fact, recall from
section 5.2 that even when the formula ϕ has a tree-shaped primal graph, but unbounded
diameter, computing MI is still hard.

5.3.3 Complexity of MP-MI

As we mention in our analysis on the inherent hardness of MI problems in section 5.2, our
proposed MP-MI scheme runs e�ciently on MI problems with tree-shaped and balanced tree
primal graphs. Here we formally derive its algorithmic complexity. To do so, we leverage the
concept of a pseudo tree. The pseudo tree is a directed tree with the shortest diameter among
all the spanning trees of an undirected primal graph. In MP-MI this is equivalent to select
a root r in the primal graph such that it is the root of the pseudo tree and its child-parent
relationships guide the execution of the upward and downward passes.

Theorem 4. Consider an SMT-LRA formula ϕ with a tree primal graph with diameter hp,
and a pseudo tree with l leaves and diameter ht. Letm be the number of literals in formula ϕ,
and n be the number of variables. Then MI (ϕ) can be computed in O(l · (n3 ·mh

p)ht) by the
MP-MI algorithm.

This result comes from the fact that, when choosing the same node as root, the upward pass
of MP-MI essentially corresponds to the SMI algorithm in [107] when symbolic integration is
applied. While SMI can only compute the unnormalized marginal of the root node, MP-MI can
obtain all unnormalized marginals for all nodes. Therefore, the complexity of MP-MI is linear
in the complexity of one run of SMI. Based on the complexity results in Theorem 4, MP-MI
is potentially exponential in the diameter of Gϕ. Note that this results from the fact that the
size of a single message, i.e. the number of pieces in its piecewise polynomial representation
(cf. Eq. 5.8), is not bounded by the treewidth of primal graph Gϕ but increases exponentially
in the diameter of Gϕ.

This, together with the fact that belief propagation is polynomial for discrete domains with
tree primal graphs, indicates that performing inference over hybrid or continuous domains
with logical constrains in SMT-LRA is inherently more di�cult than that in discrete do-
mains. The increase in complexity from discrete domains to continuous domains is not simply
a matter of our inability to �nd good algorithms but the inherent hardness of the problem.

5.4 Experiments

In this section, we present a preliminary empirical evaluation to answer the following re-
search questions: i) how does our MP-MI compare with SMI, the search-based approach to

74

100 101 102

102

104

cu
m

. t
im

e
(s

ec
s)

STAR (univ.)

SMI (10)
MP-MI (10)
SMI (20)
MP-MI (20)
SMI (30)
MP-MI (30)

100 101 102

SNOW (univ.)

100 101 102

PATH (univ.)

100 101 102

STAR (biv.)

100 101 102

SNOW (biv.)

100 101 102

PATH (biv.)

Figure 5.4: Log-log plot of cumulative time (seconds, y-axis) for MP-MI (orange, red) and
SMI (blue, green) over STAR, SNOW and PATH primal graphs (see text) with 10, 20 and 30
variables for 100 univariate and bivariate queries (x-axis).

MI [107]? ii) how bene�cial is amortizing multiple queries with MP-MI? We implemented
MP-MI in Python 3, using the scienti�c computing python package sympy for symbolic in-
tegration, the MathSAT5 SMT solver [19] and the pysmt package [33] for manipulating and
representing SMT-LRA formulas.

We compare MP-MI with SMI on synthetic SMT-LRA formulas over n ∈ {10, 20, 30} vari-
ables and comprising both univariate and bivariate literals. In order to investigate the e�ect
of adopting tree primal graphs with di�erent diameters we considered: star-shaped graphs
(STAR) with diameters two and complete ternary trees (SNOW) with diameters being log(n)

and linear chains (PATH) with diameters of length n. These synthetic structures were orig-
inally investigated by the authors of SMI and are prototypical tree structures that can be
encountered in the real world while being easy to interpret due to their regularity.

Figure 5.4 shows the cumulative runtime of random queries that involve both univariate and
bivariate literals. As expected, MP-MI takes a fraction time than SMI (up to two order of mag-
nitudes) to answer 100 univariate or bivariate queries in all experimental scenarios, since it
is able to amortize inference inter-query. More surprisingly, MP-MI is even faster than SMI
to compute a single query. This is due to the fact that SMI solves polynomial integration
numerically, by �rst reconstructing the univariate polynomials using interpolation e.g. La-
grange interpolation, while in MP-MI we adopt symbolical integration. Hence the complexity
of the former is always quadratic in the degree of the polynomial, while for the latter the av-
erage case is linear in the number of monomials in the polynomial to integrate, which in
practice might be much less than the degree of the polynomial.

5.5 Final remarks

The theoretical analysis presented in section 5.2 led to the development of MP-MI, the �rst
e�cient algorithm for tractable MI problems. This work is quite preliminary, in fact, an
extended version that generalizes our �ndings to the weighted case is currently under review.

The requirements for tractability inMI are quite restrictive and the problems considered in the
empirical evaluation presented in section 5.4 are not prototypical of those that can usually

Chapter 5. MP-MI 75

arise from real world applications. Nonetheless, these advancements pave the way to the
development of approximate algorithms that work in more general settings.

A direction that we are currently exploring follows the ideas of Relax-Compensate-Recover
(RCR) [16], an anytime inference framework that works by relaxing the dependencies of an
intractable problem until tractability is achieved. An exact algorithm is then used to perform
inference in the tractable, relaxed model. This framework accounts for the relaxed depen-
dencies by introducing additional variables and potentials in the relaxed, tractable model and
matching their moments (or marginals) accordingly. Thus, the ability of MP-MI of computing
the marginals and moments e�ciently is pivotal.

A natural question is whether the message passing scheme presented in section 5.3 can be
generalized to n-dimensional messages, leading to a jointree-like algorithm [60, 42, 95] for
WMI. This interesting research direction is left for future work.

Chapter 6

lariat

6.1 Learning WMI distributions

We are concerned with learning WMI distributions, that is, hybrid distributions with a struc-
tured support. Formally, our learning problem can be stated as follows:

De�nition 10 (WMI learning). Given a dataset D of feasible samples drawn i.i.d. from an
unknown hybrid structured distribution P ∗ with true support χ∗, �nd a WMI distribution
〈ŵ, χ̂〉 that well approximates P ∗.

Notice that P ∗ is not required to be a WMI distribution, and that χ∗ is not required to be an
SMT formula. In principle this is not an issue, because (complex enough) WMI distributions
can approximate any hybrid structured distribution.

We are now ready to introduce our approach, lariat (for LeARning to IntegrATe). Let
D = {(xs,as)}Ss=1 be the samples at our disposal, where xs and as are the values assigned to
X and A, respectively. lariat estimates a WMI distribution fromD by breaking the learning
problem into two tasks: 1) learning a support χ̂; and 2) learning a weight function ŵ compati-
ble with χ̂. The �rst step is handled by a novel generalization of incal [49], a state-of-the-art
method for learning SMT formulas. The second step uses a hybrid density estimator to learn
a weight function. Finally, lariat normalizes the latter to trim away the unfeasible areas.
We discuss these steps in detail.

6.1.1 Learning the support

Given examples of positive (feasible) and negative (infeasible) variable assignments, incal
learns an SMT formula ϕ that covers all positive and no negative examples. Support learning
can be reduced to a similar problem, namely �nding a formula χ̂ that generalizes from the
feasible samples D to their underlying true support χ∗. Here we brie�y overview incal, and
then introduce incal+, our generalization of the former to support learning.

78

Learning SMT formulaswith incal Given a setD of positive and negative examples and
a maximum number of clauses k and unique linear inequalities h, incal �nds a CNF (or DNF)
formulaϕ of the given complexity that correctly classi�es all examples. The search is encoded
as an SMT-LRA satisfaction problem and solved with an SMT solver, e.g., MathSAT [19] or
Z3 [23]; the full SMT encoding can be found in [49]. This non-greedy learning strategy can
acquire SMT formulas with non-convex feasible sets and oblique LRA atoms, which lie at
the core of WMI distributions and are beyond the reach of greedier approaches (see [49] for
a discussion).

incal employs an incremental scheme whereby a candidate formula is gradually adapted
to correctly classify progressively larger subsets of the data. At iteration i, a formula ϕi
that correctly classi�es a subset Di of the data is computed. Next, some of the examples
Vi ⊆ D \ Di inconsistent with ϕi are added to Di to obtain Di+1 and the process repeats.
Empirically, this allows learning a formula by encoding a small fraction of the dataset, with
noticeable runtime bene�ts.

If the target formula complexity (k, h) is not given, incal automatically searches for a formula
of minimal complexity that covers all positive and no negative examples. This is achieved by
gradually increasing k and h (initially set to 1 and 0, respectively) until an appropriate formula
is found.

Learning supports with incal+ We cast support learning as the problem of �nding an
SMT formula χ̂ that covers all of the positive examples and does not cover regions too “far
away” from them, as determined by some distance measure d over X×A and a user-provided
threshold θ > 0 over it.

More speci�cally, let Bθ be the union of S bounding boxes, each of size θ, centered around
the samples in D:

Bθ :=

S⋃
s=1

{(x,a) | d((xs,as), (x,a)) ≤ θ}

Also, let B̄θ be its complement. Our assumption is that θ can be chosen so that Bθ is a rea-
sonably tight overapproximation of the true support χ∗. In this case, if χ̂ approximates Bθ
and does not cover any of B̄θ , then it will also be a good approximation of the true support.
(The algorithm can be trivially adapted to allow for Bθ to be an underapproximation instead.)
Since too complex supports (in terms of k and h) can over�t, we wish to minimize complexity.

This leads to the incal+ support learning problem:

minχ̂ k + h

s.t. (xs,as) |= χ̂ ∀ (xs,as) ∈ D (6.1)
(x−,a−) 6|= χ̂ ∀ (x−,a−) ∈ B̄θ (6.2)

where s = 1, . . . , S ranges over all samples in the dataset. As underlying distance we choose
d((x,a), (x′,a′)) = ite(a = a′,maxi(xi − x′i),∞), which admits an SMT-LRA representa-

Chapter 6. lariat 79

Algorithm3 The inner loop of the incal+ algorithm. FindFormula uses the incal encoding
to look for an SMT formula of complexity at most (k, h) that correctly classi�es Di.

1: procedure Learn(D: samples, (k, h): complexity)
2: V0 ← D1 ← sample from D, i← 1
3: while |Vi−1| > 0 do

4: χ̂i ← FindFormula(Di, k, h)
5: if the solver returns unsat then
6: return no support
7: Vi ← all misclassi�ed samples in D \ Di
8: if Vi 6= ∅ then

9: Vi ← sample from Vi
10: else

11: Vi ← a wrongly covered sample in B̄θ
12: Di+1 ← Di ∪ Vi, i← i+ 1

13: return χ̂i

Figure 6.1: A depiction of the iterative incal+ procedure, with the blue solid line representing
the current support χ̂i. Left: bounding box construction around Di. Center: a negative
example is sampled from B̄θ∧¬χ̂i. Right: the support χ̂i+1 accounts for the negative example.

tion.

This formulation can not be solved directly, because of the universal quanti�er in Eq. 6.2.
For given (k, h), we solve it with incal, by exploiting its incremental learning scheme (see
Algorithm 3). First, an initial subset D1 is obtained (at line 2) by sampling examples from
D. Then, at each iteration i, incal+ computes a formula ϕi that correctly classi�es Di ⊆ D
(line 4), and a set misclassi�ed variable assignments Vi is obtained fromD; if none are found,
a new, misclassi�ed negative is taken from B̄θ ∧¬χ̂i (lines 7–11). Finding a negative example
(x−,a−) ∈ B̄θ that is wrongly covered by χ̂i (line 11) is done via SMT by solving:

χ̂i ∧
∧
s

(d((xs,as), (x−,a−)) > θ) ∧ BK

where s iterates over the examples in D and BK is background knowledge that should not
be relearned, such as mutual exclusivity of Boolean variables used as a one-hot encoding of
discrete multi-valued attributes.

80

Figure 6.2: Left: an illustrative bivariate density modelled by a DET as a piecewise constant
function. constant density function encoded by a DET. Right: the same density modelled by
a MSPN with mixtures of univariate linear functions for x (in blue) and y (in red).

The violating examples are then added toDi to obtainDi+1 and the loop repeats. This process
is depicted in �gure 6.1. incal+ stops when no violating examples can be found. To improve
the runtime of the algorithm, initial negative examples sampled from B̄θ (e.g., through rejec-
tion sampling) can be added to the initial dataset.

Like the original algorithm, if the target complexity (k, h) is not known, the above procedure
can be wrapped into a loop that gradually increases k and hwhenever an appropriate formula
can not be found (line 6). This is guaranteed to converge to a correct formula, if one exists [49].

To automatically select a viable threshold θ, we dynamically explore various thresholds θi =

mi · θnn, where θnn is the average closest distance between neighbors in D. Since smaller
thresholds provide more detailed supports but increase the runtime, we use an exponential-
search based procedure to quickly �nd the smallest multiple mi for which incal+ can learn
a support within a given time budget t. Starting with an initial multiplier m1 and given a
maximal number of steps N , at each step we run incal+ with threshold θi for at most t
seconds, increasing the multiplier if a support was found, and decreasing it when incal+
timed out.

6.1.2 Learning the weight function

Since the weight function w behaves like a structured density function, it can in principle
be estimated by any hybrid density estimation technique. We focus on two state-of-the-
art models, Density Estimation Trees (DETs) and Mixed Sum-Product Networks (MSPNs),
which we introduce next. A major limitation is that these estimators can not learn nor model
oblique structured supports. Below we show how lariat lifts this limitation by normalizing
the estimated densities with respect to a learned SMT-LRA support.

Density Estimation Trees DETs are a density estimation analogue of standard decision
trees. The internal nodes recursively partition the space with univariate, axis-aligned LRA

Chapter 6. lariat 81

conditions (aka splits), while the leaves de�ne uniform density functions, as shown in �g-
ure 6.2 (left). DETs are learned from data using an iterative procedure, whereby splits are
introduced so as to greedily optimize (a surrogate of) the integrated square error [84]. The
procedure terminates when a pre-speci�ed minimal number of instances is covered by each
leaf. In order to control over�tting, the resulting tree is then pruned. The whole learning
procedure allows piecewise constant densities to be e�ciently learned from data.

DETs have a number of useful features. First, under suitable conditions, DETs are provably
consistent [84]. Just like decision trees can approximate any Boolean function, deep enough
DETs can approximate any weight function to arbitrary precision. Second, given a DET, the
weighted model integral of any axis-aligned query ϕ can be easily computed by partitioning
ϕ according to the leaves and summing the resulting integrals.

DETs also have limitations. The shallow DETs that are used in practice can not approxi-
mate oblique LRA supports. Moreover, DET leaves have constant density and may fail to
accurately represent non-constant densities. Finally, since leaves always contain at least one
example, DETs can only model trivial supports [84].

Mixed Sum-Product Networks Mixed Sum-Product Networks (MSPNs) [70] are state-
of-the-art models for hybrid domains. MSPNs extend Sum-Product Networks [82] by intro-
ducing continuous variables and densities. They encode a circuit where the leaves de�ne
piecewise polynomial distributions over the input variables, and the internal nodes are sums
(i.e., mixtures) or products of their child nodes, as depicted in �gure 6.2 (right).

Like DETs, MSPNs are learned greedily from data. The learning algorithm recursively splits
the dataset by either: i) partitioning the input variables into independent sets, which amounts
to introducing a product node, or ii) clustering similar examples together, thus introducing
a sum node. If no split can be found (e.g., if there’s only one example/variable in the cur-
rent dataset), a polynomial leaf node is �t on the data. In practice, MSPNs implementations
support univariate constant or linear leaves only.

By exploiting context-speci�c independencies, MSPNs can be much more compact than DETs,
while still allowing for tractable inference of marginal and conditional queries. Indeed, if the
queried quantity decomposes over the circuit, then inference amounts to a couple of bottom-
up evaluations.

6.1.3 Normalization

The third and �nal step of lariat is normalization. Given a support χ̂ and a learned piecewise
polynomial weight function w̃, normalization aims at redistributing the density of w̃ away
from the unfeasible region outside of χ̂ and inside the feasible one. After normalization,
the resulting weight function ŵ has to satisfy the properties: p1) WMI(¬χ̂, ŵ) = 0; and p2)
WMI(χ̂, ŵ) = 1.

82

Global normalization These two properties give rise to a simple, yet e�ective normaliza-
tion scheme which de�nes:

ŵ = ite(χ̂,
w̃

WMI(χ̂, w̃)
, 0)

As depicted in �gure 6.3 (right), the density falling outside χ̂ is distributed uniformly in the
resulting model.

It is trivial to see that properties p1 and p2 are satis�ed, however, to improve the likelihood
of the resulting density, we can resort to a more elaborate normalization scheme.

Local Normalization Local density estimators, like DETs, partition the space into sub-
regions de�ned by mutually exclusive SMT formulas χi and �t a local density w̃i for ev-
ery sub-region i. The idea behind local normalization is to retain the space partitioning in-
duced by the learner but to (locally) normalize the densities within every subregion such that:
WMI(χi ∧ ¬χ̂, ŵi) = 0 and WMI(χi ∧ χ̂, ŵi) = WMI(χi, w̃i), where ŵi is the normalized
local density. This normalization scheme is depicted in �gure 6.3 (center). It follows that,
since the χi exhaustively partition the entire space and WMI(>, w̃) = 1, the properties p1

and p2 are both satis�ed. The local normalized density ŵi can be computed as:

norm∗ : ŵi = w̃i ·WMI(χi, w̃i) /WMI(χi ∧ χ̂, w̃i)
norm+ : ŵi = w̃i + WMI(χi ∧ ¬χ̂, w̃i) / vol(χi ∧ χ̂)

Local normalization forDETs In the case of DETs, local densities w̃i are computed as w̃i =
1
S

S
i

vol(χ
i

) , and we obtain, using S = |D| for the total number of samples and Si = |D |= χi|
for the number of samples that satisfy χi:

ŵi =
1

S

Si
vol(χi)

· WMI(χi, w̃i)

WMI(χi ∧ χ̂, w̃i)
=

1

S

Si
vol(χi ∧ χ̂)

.

There are three properties of DETs which makes local normalization especially attractive:
1) DETs explicitly describe the sub-regions; 2) norm∗ and norm+ yield the same result since w̃i
is constant; and 3) since every DET subregion contains at least one sample, no subregion
can become entirely infeasible. Local normalization is computationally more expensive than
global normalization, however, for locally �t models (like DETs) it obtains more accurate
models.

Example 20. Consider a learned weight function (DET) consisting of two non-zero subregions
whose local densities have been �tted based on the number of samples in those sub-regions
(1
4 th of the samples in the �rst, and 3

4 th of the samples in the second sub-region):

w̃ =

{
0.25 if (0 ≤ x ≤ 1) ∧ (0 ≤ y ≤ 1)

0.75 if (0 ≤ x ≤ 1) ∧ (1 < y ≤ 2)

and a support χ̂ = (y ≥ x). The support only cuts away feasible volume from the �rst sub-

Chapter 6. lariat 83

Figure 6.3: Graphical representation of the proposed normalization schemes. Left: the orig-
inal piecewise constant density w̃. Center: the e�ect of the local normalization. Right: the
e�ect of the global normalization.

region, meaning that the samples falling into the �rst sub-region are now distributed over
a smaller volume. Therefore, the local normalization procedure increases the density over
the remaining feasible volume in the �rst sub-region, while leaving the second sub-region
untouched. We obtain the normalized weight function:

ŵ =

{
0.5 if (0 ≤ x ≤ 1) ∧ (0 ≤ y ≤ 1) ∧ (y ≥ x)

0.75 if (0 ≤ x ≤ 1) ∧ (1 < y ≤ 2)

Local normalization for generic densities First, to normalize generic weight functions
encoded as ASTs (e.g., MSPNs) which only indirectly describe the sub-regions and their den-
sities, we can compile the ASTs into equivalent XADDs [48] that support the enumeration of
sub-regions and integration. Second, the choice between norm∗ and norm+ is left up to the
user. Third, the density of completely infeasible sub-regions is redistributed over the entire
feasible space akin to global normalization. It is important to note that normalization of mod-
els like MSPNs that support tractable inference generally may render inference intractable.

Both normalization schemes are amenable to any support, be it learned with incal+ or pro-
vided by a domain expert (as can be the case in security applications). Since they can can
deal with arbitrary WMI distributions, other density estimators such as MARS (see Related
Work), can also be readily converted to WMI and normalized.

6.2 Experiments

In this section, we explore the following research questions1: Q1) Does incal+ learn reason-
able supports? Q2) Does lariat improve over state-of-the-art density estimators when the
true support is provided? Q3) Does lariat improve over state-of-the-art density estimators
when the support is estimated by incal+? We address the �rst two questions on synthetic
datasets of increasing complexity, and the last one on both synthetic and real-world datasets.

1The code is available at: https://github.com/weighted-model-integration/LARIAT

84

Each synthetic dataset was obtained by �rst generating a random WMI distribution 〈χ∗, w∗〉
with a given number of Boolean b and continuous variables r, and then sampling examples
(i.e. feasible con�gurations) from it. More speci�cally: i)w∗ was a random XADD sampled by
recursively adding internal and leaf nodes up to a �xed depth d = 2, where the internal nodes
partition the space with a random SMT-LRA formula, while the leaves host a randomly
generated non-negative polynomial of maximum degree 2r. ii) χ∗ was obtained by sampling
a CNF formula with h hyperplanes and l literals using the procedure of [49]. Without loss of
generality, we restricted the range of the continuous variables to [0, 1].

We evaluated how the complexity of the true distribution impacts the performance of incal+
and lariat by generating increasingly complex supports, either by �xing b = 3, l = 3

and varying h and r, or by �xing r = 3, h = 5 and increasing l and b, for a total of 30

con�gurations. For each con�guration, we generated 20 di�erent ground-truth models and
relative dataset, each consisting of 500 training and 50 validation examples.

Learning the support In order to answer Q1, we ran incal+ on the synthetic datasets,
using a timeout of 300 seconds for each call, and measured the misclassi�cation error between
the true and the learned support, which amounts to the volume of the symmetric di�erence
of the two supports, that is, vol((χ̂ ∧ ¬χ∗) ∨ (¬χ̂ ∧ χ∗)).

In these experiments we ran incal+ on training data DT and used the validation data DV to
select the learned support that minimizes:

vol(χ ∧ ¬B′θ)
vol(¬B′θ)

+

∑
(xs,as)∈D

V

1((xs,as) |= χ)

|DV |

where 1(. . .) is the indicator function and B′θ is the formula that encodes the union of bound-
ing boxes of size θ around the points in DV , being θ the threshold used to learn χ. Figure 6.4
(left) shows the average and standard deviation misclassi�cation error (normalized in [0, 1])
for each set of parameters. incal+ is compared to the trivial support, given by the range of
each single variable in the dataset. Results show that incal+ learns a support that substan-
tially improves on the trivial one in all settings, apart for a few instances for l = 4 where it
timed out. This allows us to answer question Q1 a�rmatively.

Learning synthetic distributions We addressed Q2 and Q3 by comparing the distribu-
tion learned by the density estimator alone (DET or MSPN) with the one learned by lariat
using ground truth (Q2) and incal+ estimated (Q3) support.

Contrary to the previous support learning experiment, incal+ was run onDT ∪DV . Weight
learning was performed onDT only, reserving the validation setDV to select the best support
among those learned by incal+, as the one yielding the highest log-likelihood on DV . For
DETs, the validation set was also used to prune the tree.

We measured the quality of the learned distributions 〈χ̂, ŵ〉 by measuring the integrated

Chapter 6. lariat 85

Figure 6.4: Results on the synthetic datasets. Left: volume of the di�erence of the true
support and the learned (blue) or trivial (red) ones for varying 〈l, b〉 (top) and 〈r, h〉 (bottom).
Middle: IAE of DETs (red) vs. lariat-DETs with learned (blue) and ground truth (green)
support. Right: IAE of MSPNs (red) vs. lariat-MSPNs with learned (blue) and ground truth
(green) support. (Best viewed in color.)

absolute error (IAE) with respect to the true distribution:

IAE(ŵ, w∗) =
∑
A

∫
χ̂∨χ∗

|ŵ(X,A)− w∗(X,A)| dX

Since computing the exact value of IAE is computationally prohibitive, we performed a Monte
Carlo approximation with 1,000,000 samples drawn from the ground truth distribution using
rejection sampling with a uniform proposal.

The average IAEs and their standard deviations are shown in �gure 6.4 (middle) and (right)
when using DET and MSPN estimators respectively. The results a�rmatively answer Q2, as
lariat with ground truth support achieves substantial improvements over the density esti-
mators alone, for both DET and MSPN. The same holds for Q3 when using a DET estimator,
even if the improvements are clearly more limited. Conversely, the supports learned appear
not as e�ective when applied to the global normalization.

Learning real-world distributions In order to check whether the improvements shown
by lariat in the synthetic experiments hold in real world scenarios, we tested its perfor-
mance on real-world datasets (question Q3). The categorical features found in the data were
converted to (sets of) Boolean variables via one-hot-encoding. The resulting mutual exclusiv-
ity constraints were used to initialize both incal+ and the sampling procedures. Support and
weight learning were run using the same setting used for the synthetic distributions.

We evaluated lariat on the hybrid UCI benchmarks contained in the MLC++ library, which
includes 18 hybrid datasets from di�erent real-world domains. On some datasets, incal+
was not able to discover any non-trivial support on the full hybrid space before timing out.

86

Dataset DET +lariat MSPN +lariat
anneal-U −61.2 −38.5 −41.9 6.0
australian −44.1 −30.1 −32.8 −27.8
auto −80.8 −63.5 −67.2 −58.5
balance-scale −7.2 −6.4 −7.5 −6.4
breast −29.6 −29.2 −26.1 −25.2
breast-cancer −11.8 −9.1 −11.5 −8.6
cars −40.1 −29.5 −29.2 −26.8
cleve −31.2 −26.9 −28.0 −25.8
crx −48.2 −32.7 −32.7 −28.8
diabetes −28.8 −27.9 −30.3 −29.4
german −46.1 −36.4 −39.4 −33.3
german-org −28.8 −28.6 −27.5 −25.2
glass −2.1 1.6 0.7 3.7
glass2 4.2 4.8 4.7 5.2
heart −24.1 −23.8 −24.7 −22.7
hepatitis −29.3 −24.0 −27.1 −23.7
iris −4.3 −3.4 −2.9 −2.7
solar −15.0 −2.6 −7.6 3.3

Table 6.1: Average log-likelihood on the test set for the UCI/MLC++ experiment. Bold
text highlights a statistically signi�cant improvement (p-value < 0.0001) in the test set log-
likelihood of lariat over the unnormalized model.

In those cases, the search was then performed on the numerical subspace, allowing incal+
to learn linear relationships among the continuous variables. Table 6.1 shows the average
log-likelihood computed on the test set for each dataset. Notice that the log-likelihood of test
points falling outside the model support is−∞. In order to apply the metric in our structured
and hybrid spaces, we follow the approach of [70] and substitute each log(0) in the average
with a large negative constant. Also, it is worth mentioning that in continuous (sub)spaces
the value of the average log-likelihood is not necessarily non-positive, as it is in fact computed
on the probability density function.

For the most complex tasks, lariat-DET is sometimes unable to complete the local normal-
ization within reasonable time. If the local normalization timeout (set to 1200s) is reached,
lariat’s fallback strategy is to apply the faster, global normalization.

Nevertheless, in every setting lariat improves the performance of the underlying model.
We compared the log-likelihood of test set points using a Wilcoxon test, con�rming that the
improvement is signi�cant for both DETs and MSPNs (p-value < 0.0001).

The tasks that bene�ted the most from lariat are characterized by a large amount of categor-
ical and few continuous variables. A more extensive investigation of the factors contributing
to the performance gains is left for future work.

Chapter 6. lariat 87

6.3 Final remarks

This chapter described the �rst method that jointly learns the structure and weights of a
WMI distribution from data. While the experiments in section 6.2 show that accounting for
a structured oblique supports is generally bene�cial, the approach of learning the support
and weight separately is clearly not ideal. The oblique support can encode unfeasible regions
of the space, but alone it can’t fully represent all deterministic relationships between the
variables. In fact, lariat-DETs and lariat-MSPNs retain the same internal structure of the
density. Developing an uni�ed framework for learning oblique densities and hard constraints
is a relevant future direction.

Another aspect that was not considered in this preliminary work is performace of the learned
model at inference time. Striking a balance between expressivity and tractability is crucial
for the adoption of WMI in many complex real-world settings. Another interesting direction
is thus learning tractable WMI models.

Chapter 7

Conclusion

This thesis presented my contributions to inference and learning in the context of WMI,
which can be summarized as follows:

• WMI-PA improved over the existing solver-based approaches by accounting for the
structure of the weight function. Taking into consideration the structural properties of
the WMI problem is an e�ective idea that has been leveraged in di�erent ways by more
recent solvers. The performance gain brought by predicate abstraction also motivates
further research in leveraging formal veri�cation techniques in probabilistic inference
algorithms. Prior work conceived WMI as a tool for answering probabilistic queries
in hybrid graphical models. The alternative formulation that we proposed o�ers a dif-
ferent view and broadens the scope of WMI inference to hierarchical and circuit-based
formalisms like DETs and MSPNs.

• Our work on MP-MI and the tractability boundaries of MI problems is not only founda-
tional for its theoretical implications, but also suggests di�erent research directions for
improving the existing inference algorithms. On the one hand, this work characterizes
WMI from a tractable modelling viewpoint. On the other hand, the message passing
algorithm draws a parallel between WMI and extensively studied inference techniques
in graphical models.

• Prior to our work, learning in WMI was an unexplored topic, with the exception of
the maximum likelihood estimation of the parameters in the restricted case of piece-
wise constant potentials. lariat represents the �rst algorithm for learning both the
structure and parameters of a WMI distribution directly from data. Accounting for a
learned structured support has proven bene�cial in many settings, which motivates the
adoption of WMI as a modelling formalism and not only as a inference method.

WMI has attracted growing interest from the AI community and signi�cant progress has been
made during my PhD studies. Yet, there is room for improvement in many directions.

• Existing WMI-based inference techniques do not to scale to high dimensional domains
with complex combinatorial structures. Promising directions include the hybridisa-
tion of SMT-based and symbolic techniques. Both approaches have their merits, with

90

solver-based techniques being generally faster in the combinatorial aspect of reasoning
and symbolic procedures being much more �exible and capable of exploiting structural
properties of the problem that are out of reach of SMT solvers. Developing general and
e�ective approximate algorithms is a crucial step for enabling WMI inference in large
scale industrial problems. The existing approaches are either limited by distributional
assumptions or struggle to provide practical error bounds. Another promising direction
involves targeting inference in speci�c subclasses of WMI problems.

• Learning WMI representations from data is a novel and challenging �eld of research.
Our work on lariat only scratched the surface of the problem and there is huge room
for improvements in many aspects. Learning WMI models that guarantee e�cient in-
ference, such as tractableWMImodels is currently an open problem. In lariat, the sub-
tasks of learning the support and estimating the density are performed independently.
A tighter integration between structure learning and parameter estimation would al-
most certainly be bene�cial. This could be enabled by putting together ideas from
MSPN learning, such as hybrid clustering, and hierarchical SMT learning. The existing
work assumes a fully observed and noise-free setting. Investigating more challenging
and realistic learning settings, such as those presented by noisy or missing observations
is an open problem. Learning tractable WMI models such as mixtures of the models
described in section 5.2 is another exciting but yet unexplored venue that could enable
novel applications.

• Being a relatively novel �eld of study, much work has to be done in connecting the dots
between di�erent formalisms and approaches in hybrid structured models. While an
approach for reducing inference in hybrid graphical models to WMI was initially pro-
posed, investigating e�ective reduction algorithms and implementing them is a fun-
damental step toward bridging the gap between WMI-based inference algorithms and
other techniques. In particular, recent work enabled MCMC techniques in highly com-
plex piecewise distributions [2, 1, 3]. Adopting these approaches in the context of WMI

is a promising direction.

• Promoting WMI-based techniques outside our research community and involving re-
searchers from more applied �elds is of primary importance. To this extent, pywmi is a
�rst step towards making these techniques more accessible and foster the development
of novel solvers. Releasing common benchmarks for comparing di�erent techniques in
hybrid structured domains is also an important goal. Although this research area is
at its early stages, �nding suitable real-world applications for WMI is a crucial line of
research.

While AI has seen major breakthroughs in the last decades, many applications, such as safety-
critical ones or those characterized by a high socio-economic impact, are currently out of
reach of the existing techniques. While the current predictive models have shown remark-
able performance in some tasks, aspects like robustness, veri�ability and fairness are still
considered open problems. AI has the potential of bringing huge bene�ts to humanity, al-
though much work has to be done in developing trustable systems, characterized by high-
level reasoning capabilities and transparent, veri�able behaviour. The study of hybrid logi-

Chapter 7. Conclusion 91

cal/numerical reasoning in uncertain environments is a fundamental step towards this goal.
My work on learning and reasoning in the context of WMI represents my modest contri-
bution to the development of increasingly advanced hybrid structured probabilistic models.
The proposed approaches pave the way to systems that will solve problems involving both
numerical and logical aspects, possibly learning from observations how to deal with the un-
certainty as well as the relational structure that characterize the task at hand. Thanks to their
ability of both accounting for symbolic prior knowledge and answering complex and general
queries, these techniques will enable an unprecedented level of control and transparency over
the behaviour of our AI systems.

Bibliography

[1] Hadi Mohasel Afshar and Justin Domke. “Re�ection, refraction, and hamiltonian monte
carlo”. In: Advances in neural information processing systems. 2015, pp. 3007–3015.

[2] Hadi Mohasel Afshar, Scott Sanner, and Ehsan Abbasnejad. “Linear-time gibbs sam-
pling in piecewise graphical models”. In: Twenty-Ninth AAAI Conference on Arti�cial
Intelligence. 2015.

[3] Hadi Mohasel Afshar, Scott Sanner, and Christfried Webers. “Closed-Form Gibbs Sam-
pling for Graphical Models with Algebraic Constraints.” In: AAAI. 2016.

[4] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. “Solving #SAT and Bayesian
inference with backtracking search”. In: Journal of Arti�cial Intelligence Research 34.1
(2009), pp. 391–442.

[5] Velleda Baldoni, Nicole Berline, Jesus De Loera, Matthias Köppe, and Michèle Vergne.
“How to integrate a polynomial over a simplex”. In: Mathematics of Computation
80.273 (2011), pp. 297–325.

[6] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. “Satis�abil-
ity Modulo Theories”. In:Handbook of Satis�ability. IOS Press, 2009. Chap. 26, pp. 825–
885.

[7] Vaishak Belle, Guy Van den Broeck, and Andrea Passerini. “Component Caching in
Hybrid Domains with Piecewise Polynomial Densities”. In: AAAI. 2016. url: http:
//web.cs.ucla.edu/~guyvdb/papers/BelleAAAI16.pdf.

[8] Vaishak Belle, Guy Van den Broeck, and Andrea Passerini. “Hashing-based approxi-
mate probabilistic inference in hybrid domains”. In: Proceedings of the 31st Conference
on Uncertainty in Arti�cial Intelligence (UAI). 2015, pp. 141–150.

[9] Vaishak Belle, Andrea Passerini, and Guy Van den Broeck. “Probabilistic Inference
in Hybrid Domains by Weighted Model Integration”. In: Proceedings of the Twenty-
Fourth International Joint Conference on Arti�cial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015. 2015, pp. 2770–2776.

[10] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.
[11] Andreas Bue�, Stefanie Speichert, and Vaishak Belle. “Tractable Querying and Learn-

ing in Hybrid Domains via Sum-Product Networks”. In: KR Workshop on Hybrid Rea-
soning and Learning. 2018.

http://web.cs.ucla.edu/~guyvdb/papers/BelleAAAI16.pdf
http://web.cs.ucla.edu/~guyvdb/papers/BelleAAAI16.pdf

94

[12] Roberto Cavada, Alessandro Cimatti, Anders Franzén, Krishnamani Kalyanasundaram,
Marco Roveri, and RK Shyamasundar. “Computing Predicate Abstractions by Inte-
grating BDDs and SMT Solvers”. In: FMCAD. 2007.

[13] Supratik Chakraborty, Daniel J Fremont, Kuldeep S Meel, Sanjit A Seshia, and Moshe
Y Vardi. “Distribution-aware sampling and weighted model counting for SAT”. In:
Twenty-Eighth AAAI Conference on Arti�cial Intelligence. 2014.

[14] Mark Chavira and Adnan Darwiche. “On probabilistic inference by weighted model
counting”. In: Arti�cial Intelligence 172.6-7 (2008), pp. 772–799.

[15] Qi Cheng, Joshua Hill, and Daqing Wan. “Counting value sets: algorithm and com-
plexity”. In: The Open Book Series 1.1 (2013), pp. 235–248.

[16] Arthur Choi and Adnan Darwiche. “Relax, compensate and then recover”. In: JSAI
International Symposium on Arti�cial Intelligence. Springer. 2010, pp. 167–180.

[17] A Christo�des, B Tanyi, S Christo�des, D Whobrey, and N Christo�des. “The optimal
discretization of probability density functions”. In: Computational statistics & data
analysis 31.4 (1999), pp. 475–486.

[18] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. “SMT-based veri�cation of
hybrid systems”. In: Twenty-Sixth AAAI Conference on Arti�cial Intelligence. 2012.

[19] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebas-
tiani. “The mathsat5 smt solver”. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer. 2013, pp. 93–107.

[20] Barry R Cobb and Prakash P Shenoy. “Inference in hybrid Bayesian networks with
mixtures of truncated exponentials”. In: International Journal of Approximate Reason-
ing 41.3 (2006), pp. 257–286.

[21] Stephen A Cook. “The complexity of theorem-proving procedures”. In: Proceedings of
the third annual ACM symposium on Theory of computing. ACM. 1971, pp. 151–158.

[22] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cli�ord Stein. Introduc-
tion to algorithms. MIT press, 2009.

[23] Leonardo De Moura and Nikolaj Bjørner. “Z3: An e�cient SMT solver”. In: Tools and
Algorithms for the Construction and Analysis of Systems (2008), pp. 337–340.

[24] Rina Dechter and David Larkin. “Hybrid processing of beliefs and constraints”. In:
Proceedings of the Seventeenth conference on Uncertainty in arti�cial intelligence. 2001,
pp. 112–119.

[25] Rina Dechter and Robert Mateescu. “AND/OR search spaces for graphical models”.
In: Arti�cial intelligence 171.2-3 (2007), pp. 73–106.

[26] James Dougherty, Ron Kohavi, and Mehran Sahami. “Supervised and unsupervised
discretization of continuous features”. In:Machine Learning Proceedings 1995. Elsevier,
1995, pp. 194–202.

[27] Hassan Eldib, Chao Wang, and Patrick Schaumont. “SMT-based veri�cation of soft-
ware countermeasures against side-channel attacks”. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. Springer. 2014,
pp. 62–77.

Bibliography 95

[28] Stefano Ermon, Carla Gomes, Ashish Sabharwal, and Bart Selman. “Taming the curse
of dimensionality: Discrete integration by hashing and optimization”. In: International
Conference on Machine Learning. 2013, pp. 334–342.

[29] Evelyn Fix and Joseph L Hodges Jr. Discriminatory analysis-nonparametric discrimi-
nation: consistency properties. Tech. rep. California Univ Berkeley, 1951.

[30] Jerome H Friedman. “Multivariate adaptive regression splines”. In: The annals of statis-
tics (1991), pp. 1–67.

[31] Nir Friedman, Moises Goldszmidt, et al. “Discretizing continuous attributes while
learning Bayesian networks”. In: ICML. 1996, pp. 157–165.

[32] Michael R Garey and David S Johnson. Computers and intractability. Vol. 29. wh free-
man New York, 2002.

[33] Marco Gario and Andrea Micheli. “PySMT: a solver-agnostic library for fast proto-
typing of SMT-based algorithms”. In: SMT Workshop 2015. 2015.

[34] Timon Gehr, Sasa Misailovic, and Martin Vechev. “PSI: Exact symbolic inference for
probabilistic programs”. In: International Conference on Computer Aided Veri�cation.
Springer. 2016, pp. 62–83.

[35] Walter R Gilks. “Markov Chain Monte Carlo”. In: Encyclopedia of biostatistics 4 (2005).
[36] Vibhav Gogate and Rina Dechter. “Approximate inference algorithms for hybrid bayesian

networks with discrete constraints”. In: UAI. 2005.
[37] Vibhav Gogate and Rina Dechter. “SampleSearch: Importance sampling in presence

of determinism”. In: Arti�cial Intelligence 175.2 (2011), pp. 694–729.
[38] Susanne Graf and Hassen Saïdi. “Construction of Abstract State Graphs with PVS”.

In: CAV. 1997. isbn: 3-540-63166-6. url: http://dl.acm.org/citation.
cfm?id=647766.733618.

[39] Alexander G Gray and Andrew W Moore. “Nonparametric density estimation: Toward
computational tractability”. In: Proceedings of the 2003 SIAM International Conference
on Data Mining. SIAM. 2003, pp. 203–211.

[40] Bernd Gutmann, Manfred Jaeger, and Luc De Raedt. “Extending ProbLog with con-
tinuous distributions”. In: International Conference on Inductive Logic Programming.
Springer. 2010, pp. 76–91.

[41] Dirk Husmeier, Richard Dybowski, and Stephen Roberts. Probabilistic modeling in
bioinformatics and medical informatics. Springer Science & Business Media, 2006.

[42] Finn Verner Jensen, Kristian G Olesen, and Stig Kjaer Andersen. “An algebra of Bayesian
belief universes for knowledge-based systems”. In: Networks 20.5 (1990), pp. 637–659.

[43] Junmei Jing, Inge Koch, and Kanta Naito. “Polynomial histograms for multivariate
density and mode estimation”. In: Scandinavian Journal of Statistics 39.1 (2012), pp. 75–
96.

[44] Michael I Jordan et al. “Graphical models”. In: Statistical Science 19.1 (2004), pp. 140–
155.

[45] R Kindermann and JL Snell. “Markov random �elds and their applications”. In: Amer-
ican Mathematical Society (1980).

[46] Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. “Probabilistic
Sentential Decision Diagrams.” In: KR. 2014.

http://dl.acm.org/citation.cfm?id=647766.733618
http://dl.acm.org/citation.cfm?id=647766.733618

96

[47] Samuel Kolb, Pedro Zuidberg Dos Martires, and Luc De Raedt. “How to Exploit Struc-
ture while Solving Weighted Model Integration Problems”. In: Proceedings of the Thirty-
Fifth Conference on Uncertainty in Arti�cial Intelligence, UAI 2019, Tel Aviv, Israel, July
22-25, 2019. 2019, p. 262.

[48] Samuel Kolb, Martin Mladenov, Scott Sanner, Vaishak Belle, and Kristian Kersting.
“E�cient Symbolic Integration for Probabilistic Inference”. In: Proceedings of the Twenty-
Seventh International Joint Conference on Arti�cial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden. 2018, pp. 5031–5037.

[49] Samuel Kolb, Stefano Teso, Andrea Passerini, and Luc De Raedt. “Learning SMT (LRA)
Constraints using SMT Solvers.” In: IJCAI. 2018, pp. 2333–2340.

[50] Samuel Kolb, Paolo Morettin, Pedro Zuidberg Dos Martires, Francesco Sommavilla,
Andrea Passerini, Roberto Sebastiani, and Luc De Raedt. “The pywmi framework and
toolbox for probabilistic inference using weighted model integration”. In: https://www.
ijcai. org/proceedings/2019/ (2019).

[51] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and tech-
niques. MIT press, 2009.

[52] Daphne Koller, Nir Friedman, Sašo Džeroski, Charles Sutton, Andrew McCallum, Avi
Pfe�er, Pieter Abbeel, Ming-Fai Wong, David Heckerman, Chris Meek, et al. Introduc-
tion to statistical relational learning. MIT press, 2007.

[53] Alexander V Kozlov and Daphne Koller. “Nonuniform dynamic discretization in hy-
brid networks”. In: arXiv preprint arXiv:1302.1555 (2013).

[54] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. “Factor graphs and the sum-
product algorithm”. In: IEEE Transactions on information theory 47.2 (2001), pp. 498–
519.

[55] Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliveras. “SMT Techniques for
Fast Predicate Abstraction”. In: CAV. 2006.

[56] Helge Langseth, Thomas D Nielsen, Rafael Rumı, and Antonio Salmerón. “Mixtures
of truncated basis functions”. In: International Journal of Approximate Reasoning 53.2
(2012), pp. 212–227.

[57] David Larkin and Rina Dechter. “Bayesian Inference in the Presence of Determinism.”
In: AISTATS. 2003.

[58] Ste�en L Lauritzen. “Propagation of probabilities, means, and variances in mixed
graphical association models”. In: Journal of the American Statistical Association 87.420
(1992), pp. 1098–1108.

[59] Ste�en L. Lauritzen and Frank Jensen. “Stable local computation with conditional
Gaussian distributions”. In: Statistics and Computing 11.2 (2001), pp. 191–203.

[60] Ste�en L Lauritzen and David J Spiegelhalter. “Local computations with probabilities
on graphical structures and their application to expert systems”. In: Journal of the
Royal Statistical Society: Series B (Methodological) 50.2 (1988), pp. 157–194.

[61] Uri Lerner, Eran Segal, and Daphne Koller. “Exact inference in networks with discrete
children of continuous parents”. In: arXiv preprint arXiv:1301.2289 (2013).

Bibliography 97

[62] Dangna Li, Kun Yang, and Wing Hung Wong. “Density estimation via discrepancy
based adaptive sequential partition”. In: Advances in Neural Information Processing
Systems. 2016, pp. 1091–1099.

[63] Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gur�nkel, and Marsha Chechik. “Sym-
bolic optimization with SMT solvers”. In: ACM SIGPLAN Notices 49.1 (2014), pp. 607–
618.

[64] Yitao Liang, Jessa Bekker, and Guy Van den Broeck. “Learning the structure of prob-
abilistic sentential decision diagrams”. In: Proceedings of the 33rd Conference on Un-
certainty in Arti�cial Intelligence (UAI). 2017.

[65] Steven A Lippman and John J McCall. “The economics of uncertainty: Selected topics
and probabilistic methods”. In:Handbook of mathematical economics 1 (1981), pp. 211–
284.

[66] Jesus De Loera, Brandon Dutra, Matthias Koeppe, Stanislav Moreinis, Gregory Pinto,
and Jianqiu Wu. “Software for exact integration of polynomials over polyhedra”. In:
ACM Communications in Computer Algebra 45.3/4 (2012), pp. 169–172.

[67] Curtis Madsen, Fedor Shmarov, and Paolo Zuliani. “BioPSy: an SMT-based tool for
guaranteed parameter set synthesis of biological models”. In: International Conference
on Computational Methods in Systems Biology. Springer. 2015, pp. 182–194.

[68] David Merrell, Aws Albarghouthi, and Loris D’Antoni. “Weighted Model Integration
with Orthogonal Transformations”. In: Proceedings of the Twenty-Sixth International
Joint Conference on Arti�cial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-
25, 2017. 2017, pp. 4610–4616.

[69] Daniel W Meyer. “Density estimation with distribution element trees”. In: Statistics
and Computing 28.3 (2018), pp. 609–632.

[70] Alejandro Molina, Antonio Vergari, Nicola Di Mauro, Sriraam Natarajan, Floriana
Esposito, and Kristian Kersting. “Mixed sum-product networks: A deep architecture
for hybrid domains”. In: Thirty-second AAAI conference on arti�cial intelligence. 2018.

[71] Stefano Monti and Gregory F Cooper. “Learning hybrid Bayesian networks from data”.
In: Learning in graphical models. Springer, 1998, pp. 521–540.

[72] Serafín Moral, Rafael Rumí, and Antonio Salmerón Cerdán. “Estimating mixtures of
truncated exponentials from data”. In: (2002).

[73] Serafín Moral, Rafael Rumí, and Antonio Salmerón. “Mixtures of truncated exponen-
tials in hybrid Bayesian networks”. In: European Conference on Symbolic and Quanti-
tative Approaches to Reasoning and Uncertainty. Springer. 2001, pp. 156–167.

[74] Paolo Morettin, Andrea Passerini, and Roberto Sebastiani. “Advanced SMT techniques
for weighted model integration”. In: Artif. Intell. 275 (2019), pp. 1–27.

[75] Paolo Morettin, Andrea Passerini, and Roberto Sebastiani. “E�cient Weighted Model
Integration via SMT-Based Predicate Abstraction”. In: Proceedings of the Twenty-Sixth
International Joint Conference on Arti�cial Intelligence, IJCAI 2017, Melbourne, Aus-
tralia, August 19-25, 2017. 2017, pp. 720–728.

[76] Paolo Morettin, Samuel Kolb, Stefano Teso, and Andrea Passerini. “Learning Weighted
Model Integration Distributions”. In: AAAI. 2020.

98

[77] Kevin Murphy. “A variational approximation for Bayesian networks with discrete and
continuous latent variables”. In: arXiv preprint arXiv:1301.6724 (2013).

[78] Martin Neil, Manesh Tailor, and David Marquez. “Inference in hybrid Bayesian net-
works using dynamic discretization”. In: Statistics and Computing 17.3 (2007), pp. 219–
233.

[79] Davide Nitti, Irma Ravkic, Jesse Davis, and Luc De Raedt. “Learning the structure
of dynamic hybrid relational models”. In: Proceedings of the Twenty-second European
Conference on Arti�cial Intelligence. IOS Press. 2016, pp. 1283–1290.

[80] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Elsevier, 2014.

[81] Benjamin Peherstorfer, Dirk P�üge, and Hans-Joachim Bungartz. “Density estima-
tion with adaptive sparse grids for large data sets”. In: Proceedings of the 2014 SIAM
international conference on data mining. SIAM. 2014, pp. 443–451.

[82] Hoifung Poon and Pedro Domingos. “Sum-product networks: A new deep architec-
ture”. In: Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Con-
ference on. IEEE. 2011, pp. 689–690.

[83] Luc De Raedt, Andrea Passerini, and Stefano Teso. “Learning Constraints from Ex-
amples”. In: Proceedings of the 32nd Conference on Arti�cial Intelligence (AAAI). 2018.
url: papers/aaai18_cl.pdf.

[84] Parikshit Ram and Alexander G Gray. “Density estimation trees”. In: Proceedings of the
17th ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM. 2011, pp. 627–635.

[85] Irma Ravkic, Jan Ramon, and Jesse Davis. “Learning relational dependency networks
in hybrid domains”. In: Machine Learning 100.2-3 (2015), pp. 217–254.

[86] Vanessa Romero, Rafael Rumí, and Antonio Salmerón. “Learning hybrid Bayesian net-
works using mixtures of truncated exponentials”. In: International Journal of Approx-
imate Reasoning 42.1-2 (2006), pp. 54–68.

[87] Stuart Russell, Daniel Dewey, and Max Tegmark. “Research priorities for robust and
bene�cial arti�cial intelligence”. In: Ai Magazine 36.4 (2015), pp. 105–114.

[88] Tian Sang, Paul Beame, and Henry A Kautz. “Performing Bayesian inference by weighted
model counting”. In: AAAI. Vol. 5. 2005, pp. 475–481.

[89] Tian Sang, Paul Beame, and Henry A Kautz. “Performing Bayesian inference by weighted
model counting”. In: AAAI. Vol. 5. 2005, pp. 475–481.

[90] Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann Pitassi. “Com-
bining Component Caching and Clause Learning for E�ective Model Counting”. In:
SAT. 2004. url:http://www.satisfiability.org/SAT04/programme/
21.pdf.

[91] Scott Sanner and Ehsan Abbasnejad. “Symbolic Variable Elimination for Discrete and
Continuous Graphical Models.” In: AAAI. 2012.

[92] Scott Sanner, Karina Valdivia Delgado, and Leliane Nunes de Barros. “Symbolic Dy-
namic Programming for Discrete and Continuous State MDPs”. In: UAI 2011, Proceed-
ings of the Twenty-Seventh Conference onUncertainty in Arti�cial Intelligence, Barcelona,
Spain, July 14-17, 2011. 2011, pp. 643–652.

papers/aaai18_cl.pdf
http://www.satisfiability.org/SAT04/programme/21.pdf
http://www.satisfiability.org/SAT04/programme/21.pdf

Bibliography 99

[93] Roberto Sebastiani. “Lazy Satis�ability Modulo Theories”. In: Journal on Satis�ability,
Boolean Modeling and Computation, JSAT 3.3-4 (2007), pp. 141–224.

[94] Prakash P Shenoy. “A re-de�nition of mixtures of polynomials for inference in hybrid
Bayesian networks”. In: European Conference on Symbolic andQuantitative Approaches
to Reasoning and Uncertainty. Springer. 2011, pp. 98–109.

[95] Prakash P Shenoy and Glenn Shafer. “Axioms for probability and belief-function proa-
gation”. In: Proceedings of the Fourth Annual Conference on Uncertainty in Arti�cial
Intelligence. 1990, pp. 169–198.

[96] Prakash P Shenoy and James C West. “Inference in hybrid Bayesian networks us-
ing mixtures of polynomials”. In: International Journal of Approximate Reasoning 52.5
(2011), pp. 641–657.

[97] Reid Simmons and Sven Koenig. “Probabilistic robot navigation in partially observ-
able environments”. In: IJCAI. Vol. 95. 1995, pp. 1080–1087.

[98] Russell Stewart and Stefano Ermon. “Label-free supervision of neural networks with
physics and domain knowledge”. In: Thirty-First AAAI Conference on Arti�cial Intelli-
gence. 2017.

[99] Dustin Tran, Alp Kucukelbir, Adji B Dieng, Maja Rudolph, Dawen Liang, and David
M Blei. “Edward: A library for probabilistic modeling, inference, and criticism”. In:
arXiv preprint arXiv:1610.09787 (2016).

[100] Dilin Wang, Zhe Zeng, and Qiang Liu. “Stein variational message passing for con-
tinuous graphical models”. In: Proceedings of the International Conference of Machine
Learning. 2018.

[101] Jue Wang and Pedro M Domingos. “Hybrid Markov Logic Networks.” In: AAAI. Vol. 8.
2008, pp. 1106–1111.

[102] David Wingate, Andreas Stuhlmüller, and Noah Goodman. “Lightweight implemen-
tations of probabilistic programming languages via transformational compilation”.
In: Proceedings of the Fourteenth International Conference on Arti�cial Intelligence and
Statistics. 2011, pp. 770–778.

[103] Frank Wood, Jan Willem Meent, and Vikash Mansinghka. “A new approach to proba-
bilistic programming inference”. In:Arti�cial Intelligence and Statistics. 2014, pp. 1024–
1032.

[104] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. “A se-
mantic loss function for deep learning with symbolic knowledge”. In: arXiv preprint
arXiv:1711.11157 (2017).

[105] Eunho Yang, Genevera Allen, Zhandong Liu, and Pradeep K Ravikumar. “Graphical
models via generalized linear models”. In: Advances in Neural Information Processing
Systems. 2012, pp. 1358–1366.

[106] Eunho Yang, Yulia Baker, Pradeep Ravikumar, Genevera Allen, and Zhandong Liu.
“Mixed graphical models via exponential families”. In:Arti�cial Intelligence and Statis-
tics. 2014, pp. 1042–1050.

[107] Zhe Zeng and Guy Van den Broeck. “E�cient Search-Based Weighted Model Integra-
tion”. In: Proceedings of the Thirty-Fifth Conference on Uncertainty in Arti�cial Intelli-
gence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019. 2019, p. 35.

100

[108] Zhe Zeng, Fanqi Yan, Paolo Morettin, Antonio Vergari, and Guy Van den Broeck.
“Hybrid Probabilistic Inference with Logical Constraints: Tractability and Message-
Passing”. In: (2019).

[109] Pedro Miguel Zuidberg Dos Martires, Anton Dries, and Luc De Raedt. “Exact and
Approximate Weighted Model Integration withProbability Density Functions Using
Knowledge Compilation”. In: Proceedings of the 30th Conference on Arti�cial Intelli-
gence. AAAI Press. 2019.

[110] Rodrigo de Salvo Braz, Ciaran O’Reilly, Vibhav Gogate, and Rina Dechter. “Proba-
bilistic Inference Modulo Theories”. In: IJCAI. 2016.

	Introduction
	Motivation
	Contributions
	Outline of the Thesis

	Background
	Probabilistic Graphical Models
	Bayesian Networks
	Markov Networks
	Factor graphs
	The belief propagation algorithm

	Inference by Weighted Model Counting
	Propositional satisfiability
	Weighted Model Counting

	Inference by Weighted Model Integration
	Satisfiability Modulo Theories
	Weighted Model Integration

	Related work
	Modelling and inference
	Learning

	WMI-PA
	Predicate Abstraction
	Weighted Model Integration, Revisited
	Basic case: WMI Without Atomic Propositions
	General Case: WMI With Atomic Propositions
	Conditional Weight Functions
	From WMI to WMIold and vice versa

	A Case Study
	Modelling a journey with a fixed path
	Modelling a journey under a conditional plan
	Efficiency of the encodings

	Efficient WMI Computation
	The Procedure WMI-AllSMT
	The Procedure WMI-PA
	WMI-PA vs. WMI-AllSMT

	Experiments
	Synthetic Setting
	Strategic Road Network with Fixed Path
	Strategic Road Network with Conditional Plans
	Discussion

	Final remarks

	MP-MI
	Preliminaries
	Computing MI
	Hybrid inference via MI

	On the inherent hardness of MI
	MP-MI: exact MI inference via message passing
	Propagation scheme
	Amortizing Queries
	Complexity of MP-MI

	Experiments
	Final remarks

	lariat
	Learning WMI distributions
	Learning the support
	Learning the weight function
	Normalization

	Experiments
	Final remarks

	Conclusion

