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Abstract

The unprecedented rise of IoT has revolutionized every business vertical

enthralling people to embrace IoT applications in their day-to-day lives to

accrue multifaceted benefits. It is absolutely fair to say that a day without

connected IoT systems, such as smart devices, smart enterprises, smart

homes or offices, etc., would hamper our conveniences, drastically. Many

IoT applications for these connected systems are safety-critical, and any

unauthorized access could have severe consequences to their consumers

and society.

In the overall IoT security spectrum, human-to-machine authentication

for IoT applications is a critical and foremost challenge owing to highly

prescriptive characteristics of conventional user authentication schemes,

i.e., knowledge-based or token-based authentication schemes, currently

used in them. Furthermore, studies have reported numerous users’ con-

cerns, from both the security and usability perspectives, that users are

facing in using available authentication schemes for IoT applications.

Therefore, an impetus is required to upgrade user authentication schemes

for new IoT age applications to address any unforeseen incidents or un-

intended consequences.

This dissertation aims at designing next-generation user authentication

schemes for IoT applications to secure connected systems, namely, smart

devices, smart enterprises, smart homes, or offices. To accomplish my

research objectives, I perform a thorough study of ways and types of
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user authentication mechanisms emphasizing their security and usabil-

ity ramifications. Subsequently, based on the substantive findings of my

studies, I design, prototype, and validate our proposed user authentica-

tion schemes. I exploit both physiological and behavioral biometrics to

design novel schemes that provide implicit (frictionless), continuous (ac-
tive) or risk-based (non-static) authentication for multi-user scenarios.

Afterward, I present a comparative analysis of the proposed schemes in

terms of accuracy against the available state-of-the-art user authentica-

tion solutions. Also, I conduct SUS surveys to evaluate the usability of

user authentication schemes.
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Chapter 1

Introduction

“User authentication for IoT (Internet of Things) applications is not
a trifle. Without any stupefaction, user authentication is a primary
defense mechanism to secure IoT applications. Nonetheless, it is a
fundamental building block for most types of Human-to-Machine
accountability principles and access-control methods.”

IoT applications for smart devices, smart homes or offices, smart enter-

prises, etc., have become an epicenter of our lives. From online banking

or shopping to door access, taxi ride-bookings, and so on, everything

literally revolves around IoT applications to accomplish our day-to-day

activities. It sounds fascinating but yet unnerving owing to highly pre-

scriptive characteristics of conventional user authentication schemes that

foster wanton disconcert for security among the users of IoT applica-

tions [92].

Biometrics, naturally, come as a first choice to instigate sophisticated

security solutions capable of overcoming drawbacks present in conven-

tional user authentication schemes [132]. Our next-generation user au-

thentication schemes exploit biometrics to leverage novel solutions that

profoundly bring the balance between the security and usability require-

ments for IoT applications.
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1.1 The Problem

A threat to IoT applications in any circumstances or events with the po-

tential to adversely impact their end-users is blatantly perturbing. Un-

deniably, usable security for IoT applications is today’s unprecedented

demand, and an impetus is required to design next-generation user au-

thentication schemes for them.

• IoT applications touch on nearly every aspect of our lives, offering: 1)

sensitive activities such as online banking and shopping, 2) business

operations such as the on-demand ride and share applications, or 3)

security management of smart homes or offices. Any cyber-threat will

bring unfavorable consequences to their users lacking robust user au-

thentication schemes.

• User authentication schemes that are widely provided by smart devices

(e.g., smartphones, tablets, smart-watches, etc.), smart homes and of-

fices (e.g., door access system, etc.), or smart enterprises (e.g., driver-

less, on-demand ride and ride-sharing taxis, etc.), require an upgrade.

As studies have shown that user authentication mechanisms deployed

in them have several security issues, and they can be easily exploitable

by attacks such as random-, mimicry-, insider-, social-engineering-, and

spoofing-attacks.

• Typically, IoT applications are used by both experts and non-experts

(negligible information technology knowledge) people. Therefore, us-

ability must be incorporated into user authentication mechanisms.

• Also, the form factor and usage pattern are equally responsible for mak-

ing knowledge- or token-based user authentication schemes unsuitable

to deploy them for IoT applications.

2
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1.2 The Solutions

Our next-generation user authentication schemes exploit biometrics by

leveraging both physiological and behavioral human traits to achieve us-

able security solutions for IoT applications. The schemes are designed for

multi-user authentication scenarios incorporating a risk-based or contin-

uous verification approach that can be easily deployed for client-server

infrastructures. We also perform a security and usability assessment for

our proposed user authentication schemes.

HOLD & TAP is a risk-driven one-shot-cum-continuous for IoT applica-

tions that strengthens the widely used PIN/password-based authentica-

tion technology by giving flexibility to users to enter any random 8-

digit alphanumeric text, instead of pre-configured PIN/Passwords. Our

scheme authenticates users based on their invisible tap-timings and hand-

movements during the application sign-in process and then continuously
monitors risk to safeguard the entire user session of sensitive applica-

tions.

STEP & TURN offers a secure and usable user authentication scheme for

smart homes or offices to secure door access to the authorized users. The

scheme exploits users’ single footsteps and hand-movements by taking

the benefit of their implicit body actions.

DRIVERAUTH and RIDERAUTH are risk-based user authentication schemes

for smart enterprises such as on-demand rides and driverless taxis, re-

spectively, strengthening the security and safety of their customers. DRIVER-

AUTH utilizes three biometric modalities, i.e., swipe, text-independent
voice, and face, in a multi-modal fashion to verify the identity of driver-

partners at the time of ride-booking to minimize the threat(s) posed by

illegitimate, fake or malicious drivers. RIDERAUTH is a proposal for a

real-time rider authentication system to verify the customers before al-
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lowing them the rides to foster safety and security to their customers and

the general public.

1.3 Innovative Aspects

1.3.1 Motivation

Biometrics involves measuring individual body characteristics, such as

a face, fingerprints, and behavioral patterns, such as voice-prints, hand-

movements, touch-strokes that can be used to identify a legitimate person

more intricately in contrast to the conventional authentication schemes.

Motivations for this research work are as follows:

(i) To design next-generation user authentication schemes for IoT appli-

cations by using multi-modal biometrics that can address the safety and

security of their users, unerringly.

(ii) To design a risk-based and/or continuous authentication approaches

that can protect the entire user-session while users can execute their de-

sired activities, confidently.

(iii) To assert the usability, performance, scalability, maintainability, and

robustness against the attacks such as random-, mimicry-, insider-attacks,

etc, of our user authentication schemes.

By doing so, the motivation is to cultivate the knowledge that can be

applied to similar problem IoT applications for improving user authenti-

cation schemes.

1.3.2 Challenges

The important research challenges that we tackled in designing authen-

tication schemes for IoT applications are as follows:

• Identification of suitable biometric modalities that can be collected

easily and efficiently fulfilling criterion as covered in Section 2.4.2.
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• Availability of inexpensive biometric sensors that can accurately and

efficiently acquire and recognize biometric patterns sustainable over

a long period.

• User authentication schemes design to be compliant with the CIA

triad, i.e., Confidentiality, Integrity, and Availability, to ensure the

physical, logical, and perceptual security of users’ biometric data.

• User authentication schemes minimize the ominous presence of risk

and offer continuous authentication that can improve the security

and usability paradigm.

• To bridge gaps in quality attributes such as usability, security, per-

formance, and reliability, etc., to achieve robust user authentication

systems.

1.3.3 Contributions

The recent explosive growth of IoT applications as a result of techno-

logical advances such as connected IoT systems availability, information

processing capabilities, and widespread data connectivity is noteworthy.

Numerous IoT applications for smart devices allow users to access sen-

sitive systems and confidential data anytime, anywhere. PINs and pass-

words are still widely used user authentication mechanism in a large

number of security-sensitive IoT applications, despite the inherent weak-

nesses [19].

HOLD & TAP provides an enjoyable and satisfying experience by giv-

ing the flexibility to enter random alphanumeric text to access security-

sensitive applications. Although, behind the scene, users’ invisible tap-

timings and hand-movements are exploited to secure access to IoT appli-

cations.
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STEP & TURN can contribute to simplifying access to authorized per-

sons for smart homes, and offices smart by providing on-the-go next-

generation user authentication system. We introduce these conveniences

by amalgamating three technologies: biometrics, IoT devices, and ma-

chine learning.

The meteoric rise of IoT-driven smart enterprises has revolutionized the

transportation market rapidly, with their on-demand ride or ride-sharing

services and driverless taxis. Alone, Uber, Lyft, and Ola are providing

approximately, 20 million rides per day worldwide [56, 57, 58]. Unfor-

tunately, rider’s assault or abuse incidents by fake or malicious drivers

are surfacing every now and again [22, 274]. DRIVERAUTH can con-

tribute to curbing unforeseen incidents by deploying risk-based multi-

modal biometric-based user authentication in on-demand ride and ride-

sharing services for proactive verification of driver-partners before allo-

cating the new ride assignments to them.

Similarly, driverless vehicles (e.g., Waymo) as Transportation-As-A-Service

is inevitable in the coming years. However, unsupervised physical access

to riders in driverless taxis may lead to unexpected safety and security

risks. RIDERAUTH - a proposal for rider authentication can address po-

tential risks that may materialize as a consequence customers’ diversified

motivations like curiosity, monetary benefits, malicious intentions, or ter-

rorism [50].

1.4 Thesis Structure

The structure of the thesis is as follows:

1.4.1 Chapter 2

The chapter put forward relevant information to understand the need

for next-generation user authentication schemes for IoT applications. It
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discusses the different ways and types of authentication mechanisms.

Authentication ways refer to the common modalities used to authenti-

cate humans, while authentication types refer to different authentication

mechanisms, e.g., one-shot, multi-factor, continuous, multimodal, etc.,

utilizing these modalities. It presents design goals for usable security and

usability evaluation methods. Eventually, describe the biometric recogni-

tion system and performance metrics for reporting validation results for

our authentication schemes.

1.4.2 Chapter 3

This chapter apprises readers with IoT fact sheet, IoT architecture, and

challenges in user authentication available for them, to understand the

need for next-generation user authentication schemes for IoT applica-

tions.

1.4.3 Chapter 4

The chapter presents HOLD & TAP that is a risk-driven one-shot-cum-

continuous behavioral biometric-based user authentication scheme for

IoT applications. The scheme can be seamlessly integrated into the exist-

ing PIN/password-based authentication schemes to enhance their usabil-

ity and security. It discusses the threat model, proposed scheme, archi-

tecture, validation, and usability assessment of our proposed system.

1.4.4 Chapter 5

The chapter presents STEP & TURN that is a novel bimodal behavioral

biometric-based authentication system based on two natural human ac-

tions, i.e., single footstep and hand-movement. This scheme can be eas-

ily deployed to secure smart homes or offices access to their authorized

users. It describes the experimental setup and hardware details of the
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STEP & TURN user authentication system. It covers the methodology

for system validation including data collection, features extraction, and

features selection and the usability assessment of STEP & TURN user au-

thentication system.

1.4.5 Chapter 6

The chapter presents DRIVERAUTH - a novel risk-based multi-modal au-

thentication scheme that exploits three biometric modalities, i.e., swipe

gestures, text-independent voice and face, to make the on-demand ride

and ride-sharing services secure and safer for riders. It covers the prob-

lems in the existing driver registration process and the risk involved in on-

demand ride and ride-sharing services and it explains the need for risk-

based user verification method along with the considered threat model.

1.4.6 Chapter 7

The chapter presents a study for RIDERAUTH - a proposal for biometric-

based secure and usable riders authentication schemes for driverless taxis.

It discusses the motivation for the need for rider authentication for driver-

less taxis. Subsequently, the survey results are analyzed to study rider au-

thentication requirements followed by the proposal for a rider authenti-

cation framework that uses physiological and behavioral biometric traits.

1.4.7 Chapter 8

The chapter concludes the thesis and covers the possible future work

emerging from this work.

1.5 Summary

This chapter is an introduction to our research work on next-generation

user authentication schemes for IoT applications. We briefly familiarised
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readers with the user authentication problems for IoT applications and

presented the synopses of our solutions followed by a discussion on the

innovative aspects of our research work.

In the next chapter, we give an overview of user authentication schemes

and biometric-based authentication system design.
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Chapter 2

Background

This chapter familiarizes readers with user authentication schemes, us-

able security concepts, biometric recognition system design, and perfor-

mance metrics for their evaluation.

Some sections of this chapter are published in [92]: Sandeep Gupta, At-
taullah Buriro, and Bruno Crispo. “Demystifying authentication concepts
in smartphones: Ways and types to secure access.” Mobile Information Sys-
tems, Volume 2018, Article ID 2649598, 16 pages, Hindawi, 2018.

2.1 Introduction

In recent years, a large number of IoT applications for smart devices,

smart homes or offices, on-demand rides, and driverless taxis, etc., have

boomed for the benefit of our lives. With such an unprecedented rise of

IoT applications, our work towards next-generation user authentication

schemes is of utmost significance in the interest of their users.

2.1.1 Chapter Organization

The rest of the chapter is organized as follows: Section 2.2 presents

the possible Ways and Types of user authentication mechanisms. The

Ways refers to the common modalities used to authenticate humans,
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while the Types refers to different authentication mechanisms, e.g., one-

shot, multi-factor, continuous, multimodal, etc., utilizing these modali-

ties. Section 2.2 discusses design goals for usable security, and usability

evaluation methods. Section 2.4 and 2.5 describe biometric recognition

system and performance metrics for reporting validation results for our

authentication schemes.

2.2 User Authentication Schemes

By and large, authentication schemes for IoT applications can be envis-

aged in multitudinous Ways and Types to authenticate their users [92].

Section 2.2.1 and 2.2.2 cover Ways and Types of user authentication re-

spectively, with their compendious security and usability analysis.

2.2.1 Ways of User Authentication

The Ways, in which, humans can be authenticated are broadly catego-

rized into three groups, i.e., “Something You Know”, “Something You

Have”, and “Something You Are”, as depicted in Figure 2.1.

Figure 2.1: Ways to authenticate humans.
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2.2.1.1 Something You Know

Something You Know or Knowledge-based Authentication (KBA) schemes

are based on some sort of secret that users enter at the time of registra-

tion and they need to re-enter the same to sign-in the system later. PINs

(Figure 2.2a), graphical passwords (Figure 2.2b), and password (Fig-

ure 2.2c), are among the most widely used KBA schemes.

Figure 2.2: (a) PIN, (b) Graphical pattern, and (c) Password.

According to a web-report [275], average smart devices users get them-

selves engaged in 76 separate sessions, while heavy users (the top 10%)

peaked to 132 sessions per day. PIN/passwords, and graphical patterns,

require users to memorize their text, they had set earlier, to unlock their

devices, every time they need to initiate the session (76 times a day).

The capacity of the human brain to process information varies from per-

son to person [46]. Zhang et al. [283] found that users faced problems

in remembering their passwords and more especially, to memorize and

correctly recall numerous passwords. This encouraged users to go for an

easy or simple password which is quick to remember [1] but this opens

plenty of opportunities for attackers to guess or crack their passwords,

easily [8]. When the system enforces stringent password policies, users

due to memorability issues [147, 21], allow their browsers or password

managers to save their username/password information to make future

logins easier. However, users trusting their browsers or password man-
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agers are more likely to be a victim of a wide variety of attacks [20, 232].

Overall, 82% of end-users are frustrated with managing passwords [15].

Clearly, this indicates the lack of usability, and a result, nearly, 75 million

smartphones users in the US do not use any of PIN, pattern, or passwords,

because they consider them annoying and an obstacle in quick access to

their smartphones [192]

From security perspective, PINs, passwords, are vulnerable to various

attacks, e.g., guessing [140], because users choose date of births [20],

easier digits (1111, 2222, etc.) [251], to set up their PIN. Alternatively,

Android users (40% of them) prefer graphical patterns for device unlock-

ing. But this approach also requires users to remember them, hence users

choose simple and less secure patterns, i.e., if a user connects at least

four dots without repeating any of them in their patterns, the maximum

number of combinations are 389,112 which could be easily cracked by

brute-force [227]. Ye at al. [281] managed to crack 95% of 120 unique

patterns collected from 215 independent users within just five attempts

by recording their smartphone screen, remotely, while they were unlock-

ing their devices. Also, these schemes are more vulnerable to shoulder

surfing than textual passwords [247].

Knowledge based authentication schemes are generally used as one-shot,

static, or unimodal authentication types (refer Table 2.1), they are prone

to several attacks, such as smudge attacks [7], shoulder surfing or obser-

vation attacks [140, 244], or dictionary based attacks or rainbow table

password attacks [35]. Recently, Mehrnezhad et al. [174] demonstrated

the recovery of entered PIN or password from the sensory data collected,

while the users were entering their secrets. They installed PINlogger.js -

a JavaScript-based side-channel attack, capable of recording motion and

orientation sensor streams without requiring any user permission from

the user. The attack resulted in 94% accuracy in recovering the correct
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PIN in just three rounds of tries. Similarly, Sarkisyan et al. [223] demon-

strated an approach to exploit smartwatch motions sensors to recover the

entered PINs. They infested smartwatches with malware to get access to

the smartwatch’s motion sensors and inferred user activities and PINs. In

a controlled scenario, authors obtained PINs within 5 guesses with an ac-

curacy of at least 41% using the Random Forest classifier over a dataset

of 21 users.

Table 2.1: Synopsis of knowledge-based schemes.

Modalities Authentication Types Usability pros and
cons indicated

Security solutions or
concerns reported

PIN [20, 192, 251],
Password [192, 283],

Pattern [192, 281]

One-shot, Static,
Periodic, Single

sign-on, Unimodal

[1, 8, 20, 26, 46,
104, 147, 173, 192,

251, 283]

[7, 35, 140, 174,
223, 227, 232, 244,

247, 251, 281]

2.2.1.2 Something You Have

Something You Have is also referred as token-based authentication. Many

service providers and financial institutions are offering sensitive services,

such as net-banking, e-wallet, and e-commerce, adopting 2-factors au-

thentication, i.e., one-time-passcodes (OTP) along with usual username/

password for authentication purpose. Service providers usually supply a

small security device to each of their users for generating the one-time

passcodes.

OTP schemes can be easily implemented on smartphones (Figure 2.3a)

which could be sent either via SMS on the registered number or user

could generate this OTP offline (Figure 2.3b) on the mobile apps pro-

vided by service providers [37, 40, 243]. Additionally, wearable devices

(Figure 2.3c) could be used for receiving the OTPs via SMS [229].

As defined in the section 2.2.1.2, smart devices are being utilized for au-

thentication purposes in several sensitive operations by the means of OTP
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Figure 2.3: (a) One-time passcode (OTP) via SMS, (b) Offline OTP using App, and (c)
Paired devices.

via SMS, offline OTP using Apps, or pairing the wearable devices, e.g.,

smart-watches, smart-glasses, smart-cards, etc. However, this idea of en-

hancing security with multi-factor authentication, i.e., topping knowledge
based authentication with token based authentication (one-time-passcode),

eventually perishes too due to side-channel attacks, e.g., MITM (Man-in-

the-Middle), and MITPC/Phone (Man-in-the-PC/Phone) [40]. Software-

based OTP solutions also do not guarantee the confidentiality of the gen-

erated passwords or the seeds as the mobile OS could be compromised,

at the same time, could also suffer from denial-of-service attacks on the

account of mobile OS crashes [243].

The adversaries by the means of real-time phishing or intercept attacks

could reveal the users’ secret information and valid OTP by breaking

into their smartphones [37]. Verizon’s Data Breach Investigation Re-

port [269] published that the National Institute of Standards and Tech-

nology (NIST) listed scenarios involving banking Trojans and malicious

code on mobile endpoints as reasons to rule out recommending the users

for two-factor authentication via SMS1. Seemingly, adversaries can sur-

reptitiously capture second factors delivered by SMS or offline-OTP gen-

1https://pages.nist.gov/800-63-3/sp800-63b.html
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erated using apps and can reuse them. Secure device pairing schemes

allow access to smartphones by pairing it with a trusted Bluetooth device

like a smartwatch and use the same to unlock the phone. This concept

from the usability point of view is a very elegant solution but not safe

from insider attacks or sniffing attacks [2, 77].

Table 2.2: Synopsis of token-based schemes.

Modalities Authentication Types Usability pros and
cons indicated

Security solutions or
concerns reported

OTP [37], Device
pairing [2, 11]

Multi-factor,
Adaptive, Dynamic,

Risk-based

[23, 11, 41, 151,
292]

[2, 40, 77, 37, 243,
269]

Token based authentication (TBA) schemes are used in multi-factor, adap-

tive, dynamic, and risk-based authentication types (see Table 2.2). Un-

fortunately, they could not add too much to the usability because the

users are required to manage always an additional hardware for the sole

purpose of authentication. As a result, Braz [23] gave usability rating 3

(out of 5) to one-time generator acquisition devices. Additionally, Belk

mentioned token-based authentication mechanism incurred more cost to

users and are comparatively slower [11]. According to a study by Zink

and Waldvogel [292], 83.3% of users considered SMS based Transaction

Authentication Number is not a usable solution. Another in-depth us-

ability study by Krol et al. [151] evaluated 2-factor authentication on 21

online banking customers (16 among 21 were having multiple accounts

with more than one bank). A total of 90 separate login sessions of all

the participants were collected meticulously, over a period of 11 days.

Their analysis showed that approximately 13.3% faced problems due to

mistyped credentials, misplaced token, forgotten credentials, etc.

Another way to authenticate humans under Something You Have, i.e., In-
sertable Tokens [109, 240, 137] (see Table 2.3) includes implantable med-
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ical devices (IMDs) [108] and emerging technologies such as Bespoke de-

vices [248, 91], Neodymium Magnets [74], NFC or RFID chips [264, 79],

smart-piercings [107, 49], smart-tattoos [49] are the newer addition to

biometrics that potentially can be used to provide increased usability over

the existing solutions [110]. Researches are exploring the further possi-

bilities of insertable tokens as a go-to solution for improving digital secu-

rity and usability in IoT applications.

Table 2.3: Synopsis of insertable/implantable tokens.

Modalities Authenti-cation Types Usability pros and
cons indicated

Security solutions or
concerns reported

Bespoke
devices [248, 91],

Neodymium
magnet’s [74], NFC

or RFID
chips [264, 79],

smart-
piercings [107, 49],
smart-tattoos [49]

Continuous,
Multimodal,
Transparent

[110] Data not available

2.2.1.3 Something You Are

Authentication schemes under Something You Are rely on the measure-

ment of users’ biometric characteristics and they can be further classi-

fied as physiological and behavioral biometrics. Figure 2.4 illustrates the

commonly available authentication ways for smartphone users under this

category.

Physical traits, i.e., ear, face, fingerprint, and iris, can be collected by

hardware like a camera. Similarly, behavioral biometric modalities, such

as gait, grip, swipe, pick-up, touch, and voice can be profiled unobtru-

sively, using various built-in sensors [78], namely, accelerometer, gyro-

scope, magnetometer, proximity sensor, touch-screens, and microphone.
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Figure 2.4: (a) Fingerprint, (b) Face, (c) Iris, (d) Voice, (e) Gait, (f) Swipe, and (g)
Touch.

Smart devices manufacturers have started embedding sensors in their

flagship smartphones for reliable and convenient user authentication with

the intuition that biometric approaches are better than their conven-

tional authentication schemes. For example, Apple, Huawei, Lenovo

(Motorola), Microsoft (Nokia), Samsung, and many other leading man-

ufacturers have integrated fingerprint sensors, iris scanners, and face

recognition algorithms, in some of their high-end devices.

Physiological biometrics e.g., face, fingerprint, iris, eyes, etc., are com-

monly used modalities for user authentication. Behavioral biometrics,

e.g., voice, handwritten signature, keystroke/touch dynamics, gait, and

hand-movements are considered as the future of user authentication [121].

According to Jain et al. [132], biometric-based authentication schemes

are more secure than other authentication schemes because biometrics

cannot be lost or stolen (if used securely) and is harder to be forged.

Table 2.4 and 2.5 present the synopsis of existing physiological and be-

havioral biometric-based schemes.

Evidently, conventional authentication schemes, i.e., PIN, passwords, graph-

ical patterns, are no more considered secure and convenient [104], be-

cause they are not able to distinguish between the users, rather they
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Table 2.4: Synopsis of physiological biometrics.

Modalities Authentication Types Usability pros and
cons indicated

Security solutions or
concerns reported

Face [150, 252],
Eyes [47, 221],

Iris [112],
Fingerprint [38, 172]

One-shot,
Multi-factor,
Multimodal

[14, 130, 152, 52,
241, 279]

[38, 18, 112, 132,
150, 172, 175, 209,

235, 252]

Table 2.5: Synopsis of behavioral biometrics.

Modalities Authentication Types Usability pros and
cons indicated

Security solutions or
concerns reported

Touch [33],
Keystroke [287],
Signature [254],

Gait [183, 113, 185],
Behavior

Profiling [242]

Adaptive,
Continuous,
Multimodal,
Risk-based,
Transparent

[33, 47, 48, 142,
194, 199, 242]

[32, 29, 30, 113, 170,
183, 184, 146, 220,
246, 255, 256, 287]

authorize everyone (regardless of whether that person is the legitimate

owner of the device or not) who enter the correct credentials. Biometric-

based solutions are considered more secure because it is assumed hu-

man body traits cannot be shared, copied, lost, or stolen. Moreover, they

genuinely authenticate their users by forcing them to present themselves

physically to the system. However, studies suggest that no single biomet-

ric trait can ideally fit all the scenarios [29, 146, 199].

In our research, we focus to combine biometrics modalities that can be

deployed as implicit, continuous or risk-driven authentication schemes

to address users’ security, safety, and usability concerns for IoT applica-

tions [95, 93, 94]. Furthermore, we stitched our schemes to the knowledge-

based user authentication schemes as an additional transparent authen-

tication layer that enhances the reliability and usability of the whole au-

thentication process, significantly [32, 33].
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2.2.2 Types of User Authentication

Researchers have been investigating the utilization of different ways, i.e.,

PIN, passwords, OTP, face, touch, voice, etc., to design and develop the

different types of authentication schemes. Different authentication types

are concisely described as follows:

2.2.2.1 One-shot Authentication

One-shot authentication is a type of authentication mechanism in which

a user credentials are verified at the beginning of the session [33, 175,

215]. It is a simple process, where users claim their identity by entering

correct credentials or fulfilling the challenges to access a smart device or

ecosystem. The session remains valid until the user signs-off or closes the

session. For example, PINs, passwords, graphical patterns, fingerprints,

face, and voice, are some of the commonly used modalities on smart

devices to authenticate users.

Roth et al. [215] discussed the limitations of one-shot authentication,

such as short sensing time, inability to rectify decisions, and enabling the

access for potentially unlimited periods. Meng et al. [175] introduced

the term one-off authentication for one-shot authentication and they con-

cluded that authenticating just once leaves the possibilities for impostors

to gain access to the current session and retrieve sensitive information

from smart devices.

2.2.2.2 Periodic Authentication

Periodic authentication is simply the variant of “one-shot authentication”

in which idle-timeout-duration is set, for closing the session, automati-

cally [13, 72]. If a User remains inactive for more than the idle-timeout-

duration, the device locks itself. Bertino et al. [13] defined periodic autho-
rization with a mathematical expression “{[begin, end], P, auth}” holding
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of 3 prime attributes, where ‘begin’ is authorization-start-date, ‘end’ is ei-

ther the constant ∞, or a deauthorization date after the start-date, ‘P’ is

the duration of a session, and ‘auth’ is an authorization function.

Feng et al. [72] determined that periodic authentication or automatic

logouts are more detrimental while one-shot authentication solutions are

prone to a wide variety of attacks. Typing an error-free username and/or

password on a smartphone’s keyboard is a tedious task, especially when

an average user initiates 76 phone sessions a day [275]. Single Sign-On
(SSO) has been seen as the solution to the problem.

2.2.2.3 Single Sign-On (SSO) Authentication

Single sign-on (SSO) is a type of long-term or persistent authentication

in which users remain signed-on till the time they revoke or terminates

the session. In case, the system observes any discrepancy with respect to

some fixed attributes, e.g., change in location, network connection, an

anomaly in usage pattern, the session is terminated or the user is asked

for re-authentication [71, 119, 222].

In an SSO system, users are authenticated to a single Identity Provider

(IDP) that acts as a trusted party between the users and multiple ser-

vice providers (SPs). When a user demand for their authentication, IDP

generates a token for that SP asserting the user’s identity, and in turn,

SP allows the user to access the services [71]. Users can access as many

different applications, using SSO, as they what to access, once they are

authenticated to the system [222]. SSO can be further divided into the

Enterprise Single Sign-On (ESSO) and Reduced Sign-On (RSSO) [119].

ESSO enables users to enter the same id and password to sign into mul-

tiple applications within an enterprise domain. RSSO tends to reduce

the frequency with which users are prompted to provide credentials af-

ter their authentication into a system. Many organizations are willing to
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reduce the burden of repeated login prompts for users. However, these

systems are considered less secure because there could be a curious ad-

versary who can spoof easily, which may result in identity theft.

VMware identity manager provides APIs to implement mobile sign-on

authentication for Airwatch-Managed Android devices [270]. Similarly,

Google offers G Suite apps for single sign-on for Android devices which

can be done by pairing smartphones with smartwatches [89]. Single Sign-
On (SSO) enables users to sign-in to an app using a single or federated

identity, e.g., Facebook, Twitter, Google+, etc., however, misplacing or

sharing smart devices or ecosystems inadvertently, could make this con-

cept risky for their users.

2.2.2.4 Multi-Factor Authentication

Multi-factor authentication introduces a concept that combines two or

more authentication ways, i.e., email verification, OTP via SMS, phone-

call to the predefined numbers, push notification to the paired device,

smart-tokens, etc., to the conventional authentication schemes [212, 237,

272]. A common practice is to register a mobile number with service

providers and whenever the user accesses that service for sensitive op-

eration, e.g., online-banking, the service provider sends the one-time-

passcodes (OTP) via SMS, getting assured that a legitimate user has re-

quested access to that service.

Generally, security experts suggest the use of multi-factor authentica-

tion by processing multiple factors, simultaneously, for verification pur-

poses [272]. In multi-factor authentication, commonly a PIN or pass-

word is the baseline authentication standard, while more factors can be

augmented from a wide variety of available modalities to verify users.

Readers can observe in Figure 2.5 that as the number of authentication

factors increases the authentication levels are also get added. For in-
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Figure 2.5: Authentication factors [272].

stance, if only PIN is used the authentication level is minimum, but when

other factors like tokens and fingerprints are added, the authentication

level tends to increase proportionally.

The common mechanism for the secondary authentication can be deliv-

ered either by sending SMS to the registered mobile number or can be

obtained directly from a secure authenticator mobile app. Other forms

of multi-factor authentication involve the use of a smart-card or smart-

token entitled to the user, biometrics like the face or fingerprint scans,

or a dedicated code generator linked to user’s account [212]. This con-

cept is mainly influenced by the notion that not all the authentication

factors could be hacked at the same time. Stanislav [237] explained the

various technical methods by which two-factor authentication can be im-

plemented.

2.2.2.5 Static and Dynamic Authentication

Static authentication scheme works with a fixed set of challenges, whereas

dynamic authentication mechanism capitalizes on a diverse set of pre-

stored challenges, every time users unlock their smart devices [211, 255].
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Furthermore, static authentication schemes verify the user’s identity only

at the start of the session like a one-shot authentication scheme, while in

case of dynamic authentication users are presented with a variable set of

challenges to enable the dynamic scaling of access controls. According to

Ren and Wu [211], dynamic authentication utilizes a one-time password

derived from the user’s password, the authenticating time, and a unique

attribute only known to the user.

Figure 2.6: Static authentication process [255].

As illustrated in Figure 2.6, a static authentication process like any other

authentication types, mainly consists of three steps: enrollment, presen-

tation, and evaluation and the outcome of the evaluation is a binary de-

cision [255]. In the enrollment step, the system generates a feature tem-

plate by processing the information gathered from the user, profile the

feature vectors with the label of the user, and save it for the evaluation

or matching. During the presentation step, the system asks the user to

confirm her credentials. In the final step, i.e., evaluation, the informa-

tion was given by the user is compared with the stored templates of the

claimed identity. Subsequently, the access is granted or denied as per the

match result.

2.2.2.6 Continuous Authentication

Continuous authentication is a mechanism that repeatedly verifies the

identity of users for the entire duration of the authorized session [255].

The continuous authentication process dynamically iterates over the three

steps throughout the session as illustrated in Figure 2.7. However, these

iterations can be event-based or can be adjusted at fixed intervals (pe-
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Figure 2.7: Continuous authentication process [255].

riodically) or randomly. If any anomaly is detected by the device, the

access to the device is disabled, immediately, and the device asks for ex-

plicit re-authentication [72, 80]. In other words, the users are passively

and periodically monitored throughout their interactive session with any

device or system [194].

This concept seems to promise higher security as compared to the other

type of authentication mechanisms, such as one-shot authentication, one-
time authentication, and periodic authentication, but at the same time

much more complex to implement. Thus, overcoming the limitations of

one-shot authentication, where authentication happens only at the time

of login and any future changes in user identity goes undetected [65].

However, it is desirable that a continuous authentication system should

not interrupt the user’s normal activity and be light-weight, i.e., on bat-

tery consumption. Biometric-based continuous authentication solutions

have shown to be more viable because biometric modalities can be col-

lected with minimal effort from the users [80].

Evidently, continuous authentication, active authentication, implicit au-

thentication, and transparent authentication have been interchangeably

used in many papers [47, 142, 165, 239]. Patel et al. [194] considered
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continuous authentication and active authentication systems as similar

and explained it as continuous monitoring of the user activities after the

initial access to the mobile device. Active authentication, as defined by

Stolerman [239], is the process of continuously verifying users based

on their on-going interaction with the device. The Defense Advanced

Research Projects Agency (DARPA) started Active Authentication pro-

gram [90] to seek solutions by shifting the focus during authentication

from the password to people themselves. The first phase of their Active

Authentication program focused on the behavioral traits, i.e., cognitive

fingerprint, which could be processed without the need for additional

sensors.

According to Fridman et al. [81], active authentication is the problem of

continuously verifying the identity of an individual. They experimented

using Android mobile devices and collected both behavioral and contex-

tual modalities, namely, text entered via the soft keyboard, applications

used, websites visited, the physical location of the device as determined

from GPS (when outdoors) or WiFi (when indoors), and stylometry, of

200 volunteers approximately for a period of at least 30 days. Their

authentication system achieved an ERR of 0.05 (5%) after 1 minute of

user interaction with the device, and an EER of 0.01 (1%) after 30 min-

utes in identifying a legitimate user. In another stylometric based con-

tinuous authentication, an EER of 12.42% for message blocks of 500

characters is achieved using Support Vector Machine (SVM) for classi-

fication [27]. However, stylometry based authentication schemes must

improve accuracy, delays, and forgery. Khan et al. [142] mentioned that

implicit authentication employs behavioral biometrics continuously and

transparently to recognize and validate smartphone users’ identity and

conducted a field study on implicit authentication usability and security

perceptions with 37 participants. Their experiment indicated that 91%
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of participants found implicit authentication to be convenient and 81%

perceived defined protection level to be satisfactory.

2.2.2.7 Transparent Authentication

Transparent authentication is an authentication mechanism with minimal

or no noticeable involvement of users [47]. Transparent authentication

implicitly authenticates the users based on their unique interactions with

the device and create logic for authentication decisions. However, this

concept stresses more on the procedure of collecting and analyzing user-

authentication-identifiers [47, 72].

If systems perform users’ authentication in the background (without re-

quiring explicit user cooperation) [47, 33], they can be termed as im-
plicit, transparent, or unobtrusive authentication systems. However, vari-

ous authentication types (one-shot, risk-based, or continuous) could col-

lect input transparently. Feng et al. [72] utilized the term transparent and

continuous for their Finger-gestures Authentication System using Touch-

screen (FAST) to secure mobile systems. The approach transparently cap-

tures the touch data without intervening in the user’s normal activities.

After the successful login, the FAST continues to authenticate the user in

the background by transparently acquiring touch data that is generated

as a result of normal activities with the device.

2.2.2.8 Risk-based Authentication

Generally, risk-based authentication schemes contain a non-static authen-

tication decision engine that accepts or denies users access by comparing

their real-time risk-score with their stored risk-profiles, and accordingly,

the system challenges the users to authenticate themselves. For instance,

if a user is checking a bank account balance from a verified secure loca-

tion (home or workplace), verification of identity should not be required.
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Otherwise, in case of a non-verified location, the service requires addi-

tional evidence about the identity of the user thus asking for the authen-

tication credentials. Nowadays, risk-based authentication schemes tend

to offer frictionless authentication providing user experience, that could

be tailored as per threats observed by the service providers [36, 105,

189, 256]. Google proposed a BeyondCorp security framework [191]

based on the zero trust model. The zero-trust model advises that all re-

sources are accessed securely regardless of their location, inspects and

logs all traffic, and adopts a least-privileged strategy and strictly enforces

access control [98]. Consequently, the BeyondCorp security framework

considers both internal- and external networks completely unreliable and

enables access to IoT applications by dynamically asserting and enforcing

access levels or tiers based on behavioral perception strategy.

ClearLogin [42] defines risk-based user authentication as a method which

adapts authentication levels based on the apparent risks, to mitigate

the potential intrusion, before they happen. Existing risk-based user au-
thentication schemes generate a risk-profile to determine the complex-

ity of challenge to authenticate a user during a session, i.e., higher-risk

profiles lead to stronger authentication, whereas usual authentication

scheme should be sufficient in normal scenarios [226]. Identity Automa-

tion [123] consider risk-based user authentication similar to adaptive au-
thentication because they adapt to the stringency of authentication pro-

cesses based on the likelihood that access to a given system could result

in its compromise.

Earlier risk-based user authentication mechanisms were mainly based on

contextual or historical user information or both [114]. Furthermore,

these systems rely on ad-hoc or simplistic risk management models with

some rule-based techniques, which proved to be ineffective due to human

factors [99]. However, nowadays as NuData Security [189] mentioned
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risk-based authentication schemes are getting fueled by behavior pierc-

ing technology that gives maximum security with minimal interruption

to the user experience. Risk-based user authentication can be applied

from two different perspectives, i.e., proactive or reactive [256]. Authors

explained the main benefits of applying a proactive risk-based authen-

tication is that the genesis of potential attacks, failures, or any kind of

security issues can be anticipated for administrating prompt actions. On

the contrary, reactive risk-based authentication accepts some of the risks

until the risk-score goes beyond the permissible threshold level to prompt

for the reauthentication.

2.2.2.9 Adaptive Authentication

Adaptive user authentication boasts the concept of having the ability to

change and to prepare for different conditions and situations, while se-

curing any unauthorized access [9, 117, 216]. It entails multi-factor user

authentication mechanisms that should be readily configurable and de-

ployable by performing risk-assessment [124]. Thus, it is a method for

selecting the appropriate authentication factors accustomed to the sit-

uation accordingly to the user’s risk profile and tendencies. It can be

deployed as follows:

• By setting static policies based on risk levels for different factors, such

as user role, resource importance, location, time of day, or day of the

week.

• By learning day-to-day activities of users based on their habits to gen-

erate dynamic policies.

• Lastly, by combing both static and dynamic policies.

Hulsebosch et al. [117] exploited the ability to sense and use context in-

formation to augment or replace the traditional static security measures
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Figure 2.8: RSA adaptive authentication [216]. The RSA Risk Engine measures over one
hundred indicators and assigns a unique risk-score to each activity.

by making them more adaptable to a given context and thereby less in-

trusive to derive Context-Sensitive Adaptive Authentication. RSA Risk

Engine [216] used the self-learning risk model and adapts itself based

on received feedback. The feedback loop includes case resolution and

genuine or failed authentication results as well as chargeback files for

adaptive authentication for eCommerce (see Figure 2.8).

2.2.2.10 Unimodal and Multi-modal Authentication

Typically, this terminology is used for biometric authentication schemes

based on the number of modalities or traits used in authentication sys-

tems [133, 131, 214]. The literal meaning of modality2 is a particular

way of doing or experiencing something.

Unimodal authentication systems leverage only a single biometric modal-

ity or trait, whereas multi-modal systems, are developed by combining

two or more modalities (sources of information). Multi-modal authen-

tication systems demonstrate several advantages, such as higher recog-

nition rate, accuracy, and universality [214]. Jain et al. [131] showed

2https://dictionary.cambridge.org/dictionary/english/modality
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that multi-modal biometric systems driven by multiple biometric sources

perform, generally, better recognition performance as compared to uni-

modal systems. As per the type of multiple modalities being used, multi-

modal biometric systems can be further divided into three categories: 1)

Multi-physiological, 2) Multi-behavioral, and 3) Hybrid Multi-modal sys-

tems [132]. The multi-physiological category includes multi-modal bio-

metric systems, where only physiological traits, such as the face, finger-

print, iris, etc., are fused at different levels, whereas a multi-behavioral

system combines data from keyboard, mouse, and graphical user inter-

face interactions. Hybrid multi-modal system [196] fused face, ear, and

signature with social network analysis at the decision level to enhance

the biometric recognition performance.

Researchers have been actively working on combining different modali-

ties to design multi-modal user authentication schemes, however, usable

security schemes for emerging IoT applications are yet to be studied, and

evolved thoroughly.

2.3 Usable Security

This section explores the design goals and evaluation methods for us-

able security. Unarguably, the usability of a security system is emerged

out as a critical factor that influences users to use security for their IoT

applications.

2.3.1 Why Usability Matters?

The ISO standard:13407 defines usability as “the extent to which a product
can be used by specified users to achieve specified goals with effectiveness,
efficiency, and satisfaction, in a specified context of use [126].” We present

some important considerations that account for the growing significance

of usability.
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• Usage easiness is an intrinsic characteristic that impacts end-users’ de-

cision to go for a security mechanism. Usability helps in determining

the effort required by users to interact with a particular user authenti-

cation scheme.

• Many critical sectors, e.g., banking and finance, transport, smart-offices,

etc., enforce user authentication to maintaining and safeguarding them-

selves from adversaries. And, at the same time, consolidate the security,

privacy, and safety of their legitimate users. Usable security can aid to

overcome the inadvertent (or even deliberate) undermining of security

by end-users.

• Usability evaluation aid to determine user experience, challenges, skills,

and attitudes in using authentication schemes, thus, achieving usable

security goals.

2.3.2 Usable Security Design Goals

We present some important design goals that address valid and non-

trivial concerns specific to usable security [282]. The design goals include

some terminologies such as Actor, Action, and Boundaries. An actor can

be defined as an application, service, or system that interacts with end-

users. Actions are the various task performed by actors. And, boundaries

can be specified as conditions or circumstances that are important for

end-users.

• Appropriate boundaries: Systems must acknowledge to the users about

the actions demanded by the actors along the boundaries that are mat-

ter to them. This goal is based on the principle of boundaries [179].

• Clarity: Notify the consequences of any security-relevant decisions pre-

cisely that the user is most likely to perform.
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• Explicit authorization: Any authorization to other actors must only

be granted in accordance with user actions which should be well un-

derstood by a user while acknowledging the consent.

• Expressiveness: Enable the user to express safe security policies in

terms that fit the user’s goals.

• Identifiability: Any specific actors or specific actions must be clearly

identifiable and transparent to the user.

• Path of least resistance: Selection of the natural methods to grant

permissions to the actors without compromising security processes.

• Revocability: A user should be able to revoke others’ authority to ac-

cess the system.

• Self-awareness: Maintain accurate awareness of the user’s own au-

thority to control the system.

• Trusted path: Protect the user’s channels to any entity that manipu-

lates authority on the user’s behalf.

• Visibility: A user should be aware of others’ active authority affecting

any security-relevant decisions.

2.3.3 Usability Evaluation Methods

Usability evaluation can be performed during the design and develop-

ment phase of a system, i.e., formative evaluation, or based on users’ as-

sessment after they use the system, i.e., summative evaluation. Typically,

usability evaluation methods incorporate techniques, such as inspection,

testing, or survey, to assess the extent to which usability objectives are

achieved for a system.
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2.3.3.1 Usability Inspection Methods

In the usability inspection method, experienced practitioners like usabil-

ity specialists and security professionals examine the usability aspects of a

system. The goal is to gather some useful insights by testing designs and

systems. The popular usability inspection methods are Pluralistic Walk-

through [16], Heuristic Evaluation [111], Cognitive Walkthrough [236],

Heuristic Walkthrough [31], Metaphors of Human Thinking (MOT) [82],

and Persona Based Inspection [59].

2.3.3.2 Usability Testing with Users

Usability testing approaches involve representative users to work on typ-

ical tasks using the system. The task execution result of each user is

analyzed to assess the system’s friendliness. Testing methods for us-

ability evaluation include Think Aloud Testing, Wizard of Oz, Coaching

Method, Co-discovery Learning, Question asking protocol, Benchmark

Testing, and Retrospective testing [120, 207].

2.3.3.3 Questionnaire and Survey Methods

Questionnaire and survey methods analyze the usability of a system by

assessing 1) users’ satisfaction to accomplish their objectives with the sys-

tem and, 2) the mental model perceived by users after using the system

for some time. In this category, Rating Scales, Satisfaction Questionnaire,

and System Usability Scale (SUS) are some commonly used methodolo-

gies [75].

To evaluate the usability of our prototypes, we employed the System Us-

ability Scale (SUS) as it is a reliable tool for the subjective assessments

of a system’s usability [28, 257, 188]. The SUS questionnaire consists of

10 questions or statements. The response to each question/statement is

measured on a 5-point Likert scale that ranges from “Strongly Disagree”
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to “Strongly Agree”. The final SUS score ranges between 0 and 100,

where a higher value indicates a more usable system. The System Us-

ability Scale (SUS) template for questionnaire and scoring is available

online [265].

2.4 Biometric Recognition System

The ISO standard:24741 defines the term biometrics, or biometric recog-

nition as “the automated recognition of individuals based on their biolog-
ical and behavioral characteristics [128].” Typically, a biometric recogni-

tion system can utilize for either or both authentication (verification) and

identification purposes [132].

2.4.1 Authentication vs. Identification Process

• The biometric authentication process is a one-to-one comparison be-

tween a claimed identity and the biometric templates of that individual

stored securely, in the system database. Authentication is also known

as verification.

Generally, a biometric-based authentication system requires a labeled

claimant identity as an input to be matched with the stored biometrics

templates corresponding to the given label, to assert the individual’s

claim. Often, authentication systems are deployed for positive identifi-

cation to prevent systems from impostors and illegitimate persons.

• The biometric identification process is a one-to-many comparison to rec-

ognize an individual by searching the templates of all available persons

in the system database for a match. The system asserts the claim if the

individual is already enrolled in the system database.

Biometric-based identification can be employed for both negative recog-

nition preventing a single person from using multiple identities or pos-
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itive recognition for authentication purposes.

2.4.2 Biometric Trait Selection

Simple, convenient, and user-friendly biometrics traits are the first re-

quirement for flawless security systems. The selection of a biometric trait

for a particular security application usually depends on the degree to

which the following attributes are satisfied [282].

• Universality: Is specific biometric trait presence in each person?

• Distinctiveness: How efficiently biometric traits can differentiate one

person from another?

• Permanence: Is biometric trait sufficiently invariant (with respect to

the matching criterion) over a period of time?

• Collectability: How easily biometric traits can be acquired from a per-

son?

• Performance: How accurate and robust is the biometric trait?

• Acceptability: Indicates the extent to which people are willing to ac-

cept a particular biometric.

• Circumvention: How difficult is it to tamper with the biometric trait?

2.4.3 Biometric Recognition System Building Blocks

As shown in Figure 2.9, a biometric recognition system primarily consists

of five modules: 1) Data Acquisition Module, 2) Data Processing Mod-

ule, 3) Features Processing Module, 4) Database Module, and 5) Classi-

fication Module. It operates in two modes, namely, the enrollment mode

and the recognition mode. Each module is described as follows.
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Figure 2.9: Buildings blocks of a biometric system.

1. Data Acquisition Module: This module consists of sensors that ac-

quire the biometric traits of an individual. It is desired that the mea-

sured biometric modalities are both distinctive between individuals

and repeatable over time for the same individual. This module is also

referred to as a data collection module.

2. Data Processing Module: This module preprocesses the acquired

data and subsequently, extracts the features from the processed data.

3. Features Processing Module: In this module, the extracted features

are fused and selected for the generation of a user biometric tem-

plate. Biometric traits may be acquired separately or simultaneously

and they are processed as per the fusion model used.

4. Database Module: Database module stores the users’ biometric tem-

plate generated during the enrollment process.

5. Classification Module: Classification module compares between the

input query and stored biometric template of an individual to accept

or reject the claimed identity.

During the enrollment process, a biometric system acquires the various

biometric trait of an individual. The features are processed and extracted

38



CHAPTER 2. BACKGROUND

from the raw sensor data. Then, the extracted features are selected and

fused to create an individual biometric template to be stored in the sys-

tem database.

During the recognition process, the system once again acquires the bio-

metric trait of an individual. Subsequently, features from the raw sensor

data are processed, extracted, selected, and fused to form a query tem-

plate. The query template is then compared with the stored template

present in the database to determine a match or to verify a claimed iden-

tity.

2.4.4 Classification Model Design

The machine-learning based classification model designing is a system-

atic approach to derive a precise mapping function that learns from the

labeled dataset (training data) to predict labels of new data. Typically,

classification models can be divided as multi-class classification and one-

class classification to address user authentication scenarios.

2.4.4.1 Multi-class Classification Model

Smart homes or offices and applications such as online banking, online

shopping, ride-booking, are used by multiple users. For multiple user

authentication scenarios, multi-class classification models are best suited.

The multi-class classification model classifies more than two classes (users).

Classes are mutually exclusive and each new instance belongs to a single

class.

2.4.4.2 One-class Classification Model

One-class classification model suffices for scenarios such as user authen-

tication for accessing smart devices. The main goal of one-class classi-

fication is to detect an anomaly or a state other than the one for the

39



CHAPTER 2. BACKGROUND

target class (legitimate user). Therefore, information regarding other

classes (illegitimate users) is not required to build a one-class classifica-

tion model.

The one-class classification model is trained only with the target class

samples. And, no information about outlier objects is available during

the training of the model. This model is often called outlier (or novelty)

detection.

2.4.5 Privacy Issues for Biometrics

While designing a user authentication scheme, the attributes - security,

privacy, and usability emerged out to be orthogonal to each other. Studies

have shown that none of the available authentication schemes can satisfy

these three attributes, simultaneously [101]. For instance, PIN/password

or smart-token based schemes do not affect users’ privacy, but they have

several security and usability issues. Whereas, biometric-based schemes

can fulfill security and usability criteria, but affect the privacy of a user.

Thus, a trade-off between security, privacy, and usability is a viable option

for designing biometric-based authentication schemes.

Concerning users’ privacy, cross-matching, and the inability to revoke a

biometric are two major issues. Although, a number of privacy-preserving

techniques [253], such as Template Protection Schemes, Biometric Crypto-
Systems, and Pseudonymous Biometric Identities are available to safeguard

user’s biometric data complying with criteria like irreversibility, revoca-

bility, and unlinkability, published in ISO24745:2011 [129].

• Template protection schemes exploit features transformation mecha-
nisms, in which users’ biometric templates are stored after bio-hashing,

biometric salting, or non-invertible transformation of extracted fea-

tures from the freshly acquired biometric data. Cancelable Biometrics is

another type of template protection scheme that leverages noninvert-
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ible geometric transformations (e.g., cartesian-, polar-, or functional

transformation), random projections (e.g., a random subspace used

for projection of biometric templates), random convolution (e.g., ran-

dom user-specific convolution kernels applied for encryption of biomet-

ric templates), BioConvolving (e.g., applicable to biometric templates

comprises of sequential feature-set), or Bloom filters (e.g., utilizes a

space-efficient probabilistic data structure) [195].

• Biometric crypto-systems involves key-binding (e.g., fuzzy vault, fuzzy

commitment, etc.), and key generation (e.g., fuzzy extractor, secure

sketches, etc.) [15].

• Pseudonymous Biometric Identities exploit non-invertible functions to

create pseudo-identities based on the references of biometric data [39].

According to kindt [145], the most effective and advanced techniques for
guaranteeing irreversibility, unlinkability, and renewability of biometric iden-
tities shall be used, if the implementation of such techniques under econom-
ically and technically viable conditions is possible enabling design require-

ments into regulation, such as Privacy-by-Design (PbD). Technically, it

is computationally exhaustive to recover the original biometric from a

transformed one by incorporating privacy-preserving techniques. Also,

they are capable of preventing cross-matching between databases since

each application uses a different transformation.

2.5 Performance Metrics

The performance metrics to report validation results for our authentica-

tion schemes are described below.

• True Acceptance Rate (TAR): It is a ratio of correctly accepted le-

gitimate user’s attempts to all the attempts made [128]. Higher TAR
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indicates that the system performs better in recognizing a legitimate

user.

• False Rejection Rate (FRR): It is a ratio of wrongly rejected attempts

of a legitimate user to all the attempts made [128]. It is calculated as

FRR = 1 - TAR.

• False Acceptance Rate (FAR): It is a ratio of wrongly accepted impos-

tor attempts to all the attempts made [128]. Lower FAR means the

system is robust to impostor attempts.

• True Rejection Rate (TRR): The ratio of correctly rejected attempts of

impostors to all the attempts made. It is calculated as TRR = 1 - FAR.

• Receiver- or Relative-Operating Characteristic (ROC): ROC plot is

a visual characterization of trade-off between FAR and TAR [70]. In

simple words, it is a plot between true alarms vs. false alarm. The curve

is generated by plotting the FAR versus the TAR for varying thresholds

to assess the classifier’s performance.

We reported our results mostly in terms of TAR and FAR, and ROCs to

avoid redundancy, as TAR is a complement of FRR and FAR is a comple-

ment of TRR.

2.6 Summary

We are plainly dependable on IoT applications to sort-out our day-to-day

activities. User authentication for IoT applications is the basic require-

ment to secure Human-to-Machine interaction. This chapter covered the

topics in the realm of next-generation user authentication for IoT appli-

cations.

• We covered various ways and types of user authentication schemes

with their security and usability analysis.
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• We presented design goals and evaluation methods for usable secu-

rity.

• We described biometric recognition system and performance metrics

to report validation results for our authentication schemes.

The next chapter describes the problem domain to understand the need

for next-generation user authentication schemes for IoT applications.
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Chapter 3

The Problem

This chapter apprises readers with relevant information to understand

the need for next-generation user authentication schemes for IoT appli-

cations.

3.1 Introduction

In the IoT age, smart devices, smart homes/offices, and smart enterprises

have brought omnipotent experiences to their users.

Figure 3.1: Smart Devices, smart homes/offices and smart Enterprises.
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The smart devices, smart homes/offices, and smart enterprises illustrated

in Figure 3.1 are consistently improving the quality of their users’ life.

Typically, they offer numerous IoT applications that can be used for many

personalized activities like (i) to store sensitive data, e.g., photos, emails,

documents, etc., (ii) to perform sensitive operations, e.g., online banking,

online shopping, GPS navigation, etc., and (iii) to offer or access sensitive

services, e.g., on-demand ride and ride-sharing taxi services, driverless

taxis, etc. Any unauthorized access to these IoT applications raises secu-

rity and safety concerns for their users. Thus, it becomes imperative to

design usable authentication schemes for them that can safeguard users’

interests against potential risks, cyber-attacks, or inherent vulnerabilities,

unerringly.

3.2 Problem Description

We present the fact sheet followed by an overview of IoT architecture

and the challenges related to available authentication schemes for IoT

applications.

3.2.1 The Fact Sheet

1. Harvard Technology Fact Sheet [106] stated that by 2030 more than

500 billion devices are expected to be IoT powered. Each device will

be capable of interacting with the surrounding, collecting data, and

communicating over a network with humans.

2. IoT Analytics1, a leading provider of market insights and strategic busi-

ness intelligence for Industry 4.0 and the Internet of Things (IoT),

published in their report for the period 2017 to 2022 that authentica-

tion/authorization is one of the biggest issues for IoT applications.
1https://iot-analytics.com/new-iot-security-report/
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3. The 2019 State of Password and Authentication Security Behaviors Re-
port published by Ponemon Institute [200], reported that 57% of re-

spondents expressed a preference for passwordless logins. 51% of

respondents stated that managing passwords is too difficult and the

same percentage of respondents have faced a number of phishing at-

tacks, regularly. 67% of respondents do not use any form of two-factor

authentication. On average, respondents have spent approximately

10.9 hours per year entering and/or resetting their passwords. This

analysis is based on inputs from 1761 IT security practitioners.

4. According to Gartner2, by 2020, 20% of organizations will use IoT Ap-

plications in place of traditional physical access cards to enable access

to offices and other premises.

5. The Safety Report released by Uber3 revealed that there were 5,981

incidents of sexual assault were reported against their driver-partners

in 2017 and 2018.

6. Table 3.1 categories the most targeted IoT applications based on Veri-
zon Data Breach Report [269].

Table 3.1: Most targeted IoT applications.

Category Description

Smart Devices Digital devices for communication, navigation,
entertainment, or any personal use.

Smart Home/Offices Devices for lighting, heating and air conditioning, security,
or sanitation.

Smart Enterprises Public transportation, driverless vehicles.

2https://www.gartner.com/document/3515618
3https://www.uber.com/newsroom/2019-us-safety-report/
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3.2.2 IoT Architecture

IoT enables Human-to-Machine (H2M) and Machine-to-Machine (M2M)

nexus by introducing intelligence to sense, collect, react, and communi-

cate, to enrich our lives. Figure 3.2 illustrates the simplified three-layer

IoT architecture [291] consisting of perception, network and application

layers.

Figure 3.2: A 3-layer IoT architecture.

• Perception layer: The perception layer is the lowest-most layer in

three-layer IoT architecture. It is also known as physical layer and con-

tained all the physical devices and embedded sensors. It collects, pro-

cesses, and sends the physical data to the network layer. It also receives

commands from the network layer to execute the tasks.

• Network layer: The network layer interfaces the perception and ap-

plication layers. It is also known as transmission layer consists of wired

or wireless communication networks, e.g., Wi-Fi, LAN, WAN, etc., and

sensor networks, e.g., Ad-hoc, Mesh, Zigbee, industrial bus, etc.

• Application layer: The application layer houses various IoT appli-

cations that must ensure confidentiality, integrity, and authenticity to

their consumers, i.e., humans or machines.
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3.2.3 User Authentication Challenges

Studies have shown that application-layer attacks are much more com-

plex to detect and deflect [245]. Considering the ubiquity of IoT applica-

tions and their fast adoption by almost everyone and every domain, user

authentication (i.e., Human-to-Machine authentication) can play a pivotal

role in the overall IoT security spectrum [159, 258].

Conventional (knowledge-based and token-based) authentication schemes

are the most widely used methods for IoT devices, platforms, services,

and application [67, 73]. However, there are many drawbacks in the

conventional user authentication scheme [118, 84, 158]. According to

Antonakakis et al. [5], weaker passwords were the main cause of bot-

attacks like Mirai on various IoT applications. Lack of robust authenti-

cation mechanisms resulted in an easy hacking of IoT applications for

smart devices, smart homes, and offices [160, 55]. Likewise, smart en-

terprises lack real-time authentication systems that can ensure the safety

and security of their consumers [93, 97].

Chapter 2, Section 2.2 presented a detailed security and usability analy-

sis of conventional authentication schemes suggesting their unsuitability

for IoT applications. Taking all of those factors into consideration, we

see both opportunities and challenges to design next-generation user au-

thentication schemes for IoT applications.

3.3 Summary

The IoT applications’ users are experiencing numerous security issues

such as brute-force, presentation, shoulder-surfing, social engineering,

etc., and usability issues such as cognitive load, form-factor, application

interfaces, etc., in using convectional user authentication schemes[92,

62]. The challenges described above have led to a realization that user
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authentication schemes need upgrading for these new IoT age applica-

tions, Chapter 4 to 7 present our novel user authentication schemes for

most targeted IoT applications as indicated in Table 3.1.

Chapter 4 presents HOLD & TAP a risk-driven one-shot-cum-continuous

user authentication solution for smart devices’ IoT applications based on

users’ invisible tap-timings and hand-movements. Chapter 5 presents

STEP & TURN that offers a secure and usable authentication solution for

smart homes and offices by exploiting users’ single footstep and hand-

movement to secure physical access only to their authorized users. Chap-

ter 6 and 7 present DRIVERAUTH and RIDERAUTH offer risk-based au-

thentication schemes for smart enterprises strengthening the security and

safety of their consumers.
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Chapter 4

Hold & Tap: A Risk-driven
One-Shot-Cum-Continuous Behavioral
Biometric-based User Authentication
Scheme For Smart Devices

The chapter presents a risk-driven one-shot-cum-continuous behavioral

biometric-based user authentication scheme for smart devices. HOLD

& TAP strengthens the widely used PIN/password-based authentication

technology by giving flexibility to users to enter any random 8-digit al-

phanumeric text and authenticates users based on their invisible tap-

timings and hand-movements, instead of pre-configured PIN or Pass-

words. Moreover, the entire user session is continuously safeguarded by

assessing risk. Thus, HOLD & TAP, not only authenticates users during

the application sign-in process but also, throughout the entire active user

session.

Partially, this work is published in [33]: Attaullah Buriro, Sandeep Gupta,
and Bruno Crispo. “Evaluation of motion-based touch-typing biometrics in
online financial environments. BIOSIG 2017 (2017).
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4.1 Introduction

Smart devices provide a large number of IoT applications, such as bank-

ing app, m-commerce app, social networking app, etc., enabling users

to access them anytime, anywhere. Many of these applications rely on

PIN or password-based user authentication schemes despite numerous

security and usability issues present in these schemes [238, 92]. Some

of these IoT applications also deploy 2-factor authentication schemes by

introducing smart-tokens, one-time-passcodes (OTP), verification over-

the-call, etc., to enhance security, however, on the contrary, they degrade

usability without providing any continuous risk assessment of the active

user session.

From the security perspective, PIN/password-based schemes are vulner-

able to guessing [140], smudge [7], shoulder-surfing [140, 281], dictio-

nary [35] attacks. Similarly, from the usability perspective, users face

difficulty to manage numerous PINs/passwords [15] and complex pass-

words add cognitive load on users [286, 147]. Additionally, it is not easy

to employ PIN/password-based schemes for continuous user authentica-

tion without affecting the user experience [231]. Further, it is worth

mentioning that these schemes do not necessarily authenticate the users,

but authorize anyone who enters the correct PIN/password [92]. Thus,

it becomes requisite to redesign the PIN/password-based authentication

mechanism to overcome their inherent shortcomings.

HOLD & TAP supplements the existing PIN/password-based authentica-

tion schemes with two behavioral biometric traits to enhance their us-

ability and security, i.e., users do not require to remember their PINs,

or passwords and authentication decision is not simply a binary com-

parison. Internally, the scheme exploits two behavioral biometric traits,

i.e., tap-timings and hand-movement gesture recorded during the ran-
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dom text entry, to authenticate users. Then, throughout the active user

session, the scheme continuously performs risk-assessment. If the risk-

score is higher than the predefined threshold, the current user session

terminates. Afterward, the scheme requests the user to re-authenticate.

Thus, the dependency on any dedicated devices (e.g., smart token) that

are required to generate One Time Password (OTP) to finish critical oper-

ations is eliminated.

The results obtained on 11, 400 user-samples (collected by 3 days in-the-
wild testing) and user-experience responses (received from the Software
Usability Scale1 survey) of 95 testers demonstrate HOLD & TAP as an ac-

curate and acceptable user authentication scheme.

4.1.1 Contributions

In brief, the main contributions are:

• The proposal of a bimodal behavioral biometric-based one-shot-cum-

continuous user authentication scheme that authenticates users based

on how they enter the text instead of what they enter, thus strengthen

username/password-based schemes.

• The introduction of a novel risk-assessment mechanism that continu-
ously determines the need of user re-authentication during the active

user session, by computing cumulative deviation of client-attributes.

• The validation of our proposed scheme on a dataset collected in-the-
wild from 95 testers in three different activities, i.e., sitting, standing,
and walking.

• The security evaluation of HOLD & TAP to assess its robustness against

the most common (random and mimic) attacks

• The usability evaluation of HOLD & TAP by conducting a System Usabil-
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ity Scale1 survey.

4.1.2 Chapter Organization

The rest of the chapter is organized as follows: Section 4.2 surveys the re-

lated behavioral biometric-based user authentication and risk assessment

approaches. Section 4.3 discusses the assumed threat model, working

of our proposed scheme, and architecture of our system. In Section 4.4,

we discuss the methodology used to design our one-shot-cum-continuous

authentication scheme. Section 4.5 presents the obtained results. In Sec-

tion 4.7, we assess the usability of our proposed system.

4.2 Related Work

This section presents some of the behavioral biometric-based user au-

thentication schemes, and risk assessment approaches relevant to HOLD

& TAP. Behavioral biometrics offers a simple way to implement a fric-

tionless user authentication schemes that can be suited for implicit or

continuous authentication [92]. This is possible due to the advantages

associated with behavioral biometrics: 1) transparent collection, 2) no

special hardware requirements, and 3) cost-effective deployment [212].

4.2.1 Behavioral Biometric-based User Authentication

Behavioral data, such as gait, grip, swipe, pick-up, tap, and voice can be

collected, unobtrusively, due to the availability of sensors, particularly ac-

celerometer, gyroscope, magnetometer, proximity sensor, soft keyboards,

touch-screens and microphone in smartphones and have become widely

researched subject these days.

We survey various behavioral authentication schemes proposed for user

authentication over the years with the emphasis on: (i) novel behaviors,
1https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
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(ii) use of smart devices sensory data and/or (iii) focus on user effort

minimization.

4.2.1.1 Keystroke/Touch based Authentication

The concept of augmenting keystroke/touch-based behavioral biometrics

to PIN or password is predicated on the understanding that users need

a better way to prove their identities. The musculoskeletal structure in

human produces unique finger movements resulting in distinguishable

keystrokes or touch-points which can be utilized in anchoring an extra

layer of security for user authentication.

Touch dynamics refers to user profiling based on touch patterns (i.e.,

touch duration and direction, etc.) on the touchscreen. The touchscreen

allows the user to interact with the smartphone by taping at different

locations on the screen. Touch-biometrics have been proposed for both

one-shot and continuous user authentication on smartphones.

The touch-based scheme [51] leverages different touch features: X and Y

coordinates, touch-pressure, the size of touch, and the time offset, gen-

erated from different slide operations to identify a user. Authors report

77% accuracy (with 19% FRR and 21% FAR) using Dynamic Time Warp-

ing (DTW) as the classifier over a dataset of 48 participants. Feng et

al. [72] presented a finger-gesture based authentication system (called

as FAST) in addition to the digital gloves. Every touch gestures include

53 features: X & Y coordinates, the direction of finger motion, the pres-

sure at each sample touch-point, and the distance between multi-touch

points. Digital gloves add angular values from X, Y and Z direction in

addition to roll, pitch, and yaw values. FAST achieved a FAR of 4.66%

and FRR of 0.13% on a dataset of 40 users using Gesture Sequence-Based

Authentication.

A study by Frank et al. [80] also explores the touchscreen gestures for
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continuous smartphone user authentication. This mechanism exploits the

very common navigational movements (e.g., horizontal/vertical strokes)

and shows their efficacy to authenticate the real user. This study achieves

an EER of 0%, 2−3% and<4%, respectively, in intra-session, inter-session

and authentication tests after one week of enrollment using KNN classi-

fier and SVM - with Gaussian Radial Basis Function (RBF) kernel, on a

dataset of 41 testers.

Sae-Bae et al. [219] exploit single and multitouch gestures for user au-

thentication on touch-sensitive devices, i.e., smartphones and tablets. On

a dataset of 34 participants, they report an average EER of 7.88% using a

single instance of multi-touch gesture and an EER of 1.58% with a com-

bination of three gestures (static counter-clockwise rotation, closed and

opened, with all five fingertips). Authentication solution [278] profiles

simple touch actions, i.e., keystroke, sliding, pinch, and handwriting, and

continuously authenticates the smartphone user. The scheme leverages

multiple features related to coordinates, pressure, size, etc, and achieves

the lowest EER of 0.75% for sliding gesture and all other action types,

lower than 10% with SVM classifier using RBF kernel.

4.2.1.2 Sensors/motion based Authentication

In addition to the touch-based solutions, researchers have also exploited

smartphone’s built-in physical 3-dimensional sensors, such as accelerom-

eter, gyroscope, orientation, etc., to profile phone movements, for smart-

phone user authentication. The data from these sensors is used to identify

users from their walking patterns [166], general hand-movement [157,

289, 230], special hand-movement (while entering PIN, password) [33,

233], and hand-movement (how a user moves the phone to place or an-

swer a call [45] and profiled gesture models [289], etc.

The study by Shi et al. [230] presents a multi-sensor-based approach to
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passively identify a real user. Their system incorporates the accelerome-

ter, touch screen, voice, and location data for user authentication. They

achieve around 97% TPR, using the Naive Bayes as the classifier, from

their dataset of 7 users (three females and four males). The study [157]

explores the role of three sensors: accelerometer, orientation, and com-

pass in addition to the touch gestures towards continuous user authenti-

cation. This transparent mechanism profiles finger movements with clas-

sical touch-based features and interprets the sensed data as different ges-

tures. It then trains the SVM classifier on those gestures and performs

authentication tasks. The paper reports as high as 95.78% accuracy on a

dataset of 75 users.

The study by Zhu et al. [289] proposes a mobile framework model Sensec
based on the accelerometer, orientation, gyroscope, and magnetometer,

to construct a user gesture profile. The model then continuously com-

putes the sureness score and keep the user sign-in. By concatenating X,

Y, Z values from these sensors, they identify a valid user with 75% accu-

racy and an adversary with an accuracy of 71.3% (with 13.1% FAR) on

their collected dataset of 20 users. However, the study required a user to

follow a script and collect the sensory data for the entire duration of that

interaction.

4.2.1.3 Sensor-enhanced Touch-typing based Authentication

Our scheme is a bimodal system that leverages the timing-differences

from the entered 8-digit “text-independent” secret and the hand-movements

while the user enters the text to sign-in to the security-sensitive apps, we

compare our work with the closely related works proposed in the litera-

ture, i.e., [87, 33].

Giuffrida et al., [87], proposed sensor enhanced fix-text scheme for user

authentication on Android smartphones. They reported 4.97% EER on
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fixed-text passwords and 0.08% on sensor data on a dataset of 20 users.

The papers discussed here implemented a behavioral biometric-based

authentication scheme performed in in-the-lab supervised settings, and

their analysis was based on a small number of users. We evaluated our

scheme on a comparatively larger dataset of 95 users collected in-the-

wild. Since the number of users in previous studies was less and data was

collected in in-lab settings, it is difficult to examine how their achieved

error would have varied if the number of users was more and data was

collected in-the-wild. Also, we evaluated our data by applying multi-class

classification to replicate a server-based remote client authentication with

the risk-based authentication mechanism. However, the papers discussed

here evaluated their data either using one class or binary class classifica-

tion approaches - replicating authentication only on smartphones [233].

4.2.2 Risk-based Authentication Schemes

Most of the systems deploying risk-based authentication approaches typi-

cally generate a risk profile for each of the users. Based on the risk-score,

the complexity of the challenge is determined to authenticate the user,

i.e., a higher risk-score leads to stronger authentication, whereas a risk-

score below the threshold means minimal or no authentication require-

ment [226].

Risk-based authentication approaches based on basic communication in-

formation [34], such as the source-destination IP addresses, or frequency

of transactions, performed by a user on her devices to determine risk, are

easily exploitable. According to Traore [255], such systems could be ex-

ploited by polling or cloning users’ devices. Then, the same settings can

be replicated on different machines to access their systems by attackers.

The cognitive fraud detection system by IBM Trusteer [122] is designed

for PCs and laptops. Whereas, IBM’s Tivoli Federated Identity Man-
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ager [250] is designed for web platform based on policy rules that de-

termine the access request to be allowed, denied, or challenged at run-

time. However, these are limited to static devices only, e.g., a personal

computer and laptops, etc.

Sepczuk et al. [228] designed the remote-services for authentication man-

agement, which can be registered by the user either manually or au-

tomatically. Manual registration requires users to fill a form describing

their day-to-day activities, e.g., what they do between 9 a.m. to 5 p.m? or

which network they use at home or workplace. Whereas, automatic data

gathering configures the system to collect contextual data, spontaneously.

However, the solution may be subjected to insider attacks and lacks trans-

parency, as service providers could misuse user contextual data, i.e., they

are aware of an individual’s day-to-day activities.

Generally, the contextual or historical data or both, to generate a risk

profile of a user, is considered more suitable for risk-based authenti-

cation approaches [122, 202, 114]. However, the existing systems ap-

ply simplistic risk management models or ad-hoc rule-based techniques,

which prove to be ineffective for risk assessment [99]. Furthermore,

they mainly rely on knowledge-based authentication mechanisms such

as username/password, or multi-factor authentication (e.g., OTP, token

generator) [92], which affects the usability of a system adversely.

4.3 HOLD & TAP: Our Solution

This section presents the assumed threat model. Afterward, we explain

the working of our risk-driven one-shot-cum-continuous authentication

system and its architecture.
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4.3.1 Threat Model

We considered physical attacks, where (i) the adversary accidentally finds

an unlocked smartphone, (ii) the adversary is a friend or colleague (who

possibly knowing user’s PIN/Passwords), and (iii) the adversary records

users while they interact with their smart devices. Eventually, the ad-

versary exploits the weaknesses of PIN/password-based authentication

schemes to gain access to sensitive resources (data and applications) re-

siding on users’ smart devices.

Prior studies [231, 203] also indicated that the above-discussed scenarios

are quite apparent, as users use their smart devices at commons places

like offices, homes, meeting rooms, or streets, which may give opportuni-

ties to adversaries to target their smart devices, easily. As a consequence,

smartphone users can be a victim of monetary frauds, identity thefts, or

similar unfavorable incidents.

4.3.2 How HOLD & TAP Works?

Figure 4.1 illustrates the design of our one-shot-cum-continuous authen-

tication scheme explaining how it addresses security and usability issues

in existing user/password-based, and 2-factor authentication schemes.

The scheme enables users to enter any random 8−digit alphanumeric text

to access the application to enhance the usability of existing PIN/Password-

based one-shot authentication schemes. Further, the scheme verifies the

users’ identity based on timing differences between the entered keystrokes

and their hand-movement in 3-dimensional space instead of just a binary

comparison, to enhance security.

After the successful sign-in, the scheme continuously monitors client-

attributes and computes the risk-score at the instant users initiate crit-

ical activities. Based on the risk-score, it permits users to perform that

activity, otherwise, scheme prompts for re-authentication. Thus, HOLD
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Figure 4.1: HOLD & TAP authentication scheme design.

& TAP is capable of detecting any anomalies in the users’ usage pattern

throughout the life-cycle of a typical user session and apparently, 2-factor

authentication can be safely disregarded.

4.3.3 HOLD & TAP Architecture

The system adopts a client-server architecture [94] as shown in Fig-

ure 4.2. The client consists of data acquisition (DA) modules that can

be added to existing smartphone applications, seamlessly. The DA col-

lects the two behavioral biometric traits along with client-attributes and

transfers the encrypted data to the server at runtime for further process-

ing.

The server includes two independent modules, i.e., the User Authentica-

tion (UA) and the Risk Assessment (RA) module those work in tandem.

The UAmodule performs user authentication based on features extracted

from touch-typing and hand-movements behavioral traits, as explained in

Section 4.4.2. The RA module, using the Runtime-Risk-Assessor (RRA)

inside the Risk Engine (RE), computes the risk-score at run time, as ex-
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Figure 4.2: HOLD & TAP: system architecture.

plained in Section 4.4.6, each time a critical operation is performed. The

RE then notifies the Session Manager (SM) if the computed risk-score

is higher than the predefined threshold. Afterward, the SM sends the

command to the UA module for re-authentication.

4.4 Methodology

In this section, we explain the steps taken to design and evaluate the

HOLD & TAP.

4.4.1 Data Collection

We develop a prototype application (app) that can be installed on An-

droid devices having OS version 4.4.x or higher for data collection. We

then collaborated with Ubertesters2 - a crowdsourcing software testing

platform to conduct our experiment. Ubertesters recruited vetted testers

having a diversified background, and they billed us on an hourly basis
2https://ubertesters.com
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per tester. They strictly ensure that the ethical guidelines prescribed by

the government or controlling bodies of the countries of the testers’ lo-

cation were maintained. And, we followed the GDPR ethics and data

protection guideline [86] that states, “in research settings, data protection
impose obligations on researchers to provide research subjects with detailed
information about what will happen to the personal data that they collect.”
We provided the complete instructions to test our prototype application

that includes installation steps and the details of the motion sensor data

being collected. Each tester signed the consent form after reading the

instruction to test our application.

The app enables testers to test the app for approximately, an hour that

spans over 3 days with 1 session per day, i.e., 3 sessions in 3 days. A

unique label was assigned to each tester. During each training session,

testers can interact with the app for 15 minutes in 3 different activities,

i.e., sitting, standing, and walking. On the third day, the testers can also

test the app with 30 testing samples in any activity of their choice. Af-

terward, the testers performed the SUS survey, and they filled their de-

mographic information presented in Appendix A. During the experiment,

the survey data and motion sensors data generated on each tester’s smart-

phone were securely transferred to our servers in an automated manner

and no direct contact was established with any testers to protect their

privacy.

Approximately 100 testers participated to test our prototype application.

Each tester tested our prototype application on their smartphones under

real-life conditions. However, we discard the data from 5 testers for rea-

sons like their smartphones did not have the required sensors or Internet

connectivity was too slow to transfer the sensors’ data in real-time to

our server. Table 4.1 summarizes the demographics of testers selected to

participate in our experiment.
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Table 4.1: User demographics (M = Male, F = Female, R = Right, L = Left).

Parameter Description

No. of Users 95

Sample Size

Sitting - 2, 850 (95× 30)
Standing - 2, 850 (95× 30)
Walking - 2, 850 (95× 30)
Testing - 2, 850 (95× 30)

Devices Android Smartphones having OS 4.4.x version or above

No. of
Sessions

3

Password 8-digit free-text

Gender 75(M), 20(F)

Handedness 89(R), 6(L)

Age Groups 90 (20− 40), 5 (41− 60)

Overall, we collected 11, 400 samples with 120 samples from each tester

(30 samples in each of the 3 different training activity and 30 samples

during testing) and received 95 SUS responses in this experiment. Thus,

we evaluated HOLD & TAP on a collected dataset of 95 users having a

total of 11, 400 samples.

4.4.2 Feature Extraction

We used the touchscreen sensor and seven 3-dimensional motion sensors

(i.e., the accelerometer, the high-pass sensor, the low-pass sensor, the orien-
tation sensor, the gravity sensor, the gyroscope, and the magnetometer) to

collect raw data for touch-stroke and hand-movement, respectively [4].

The high-pass and low-pass sensory data are computed mathematically,

by applying High-Pass (HP) and Low-Pass (LP) filters as shown in Equa-

tion 4.1 and 4.2.

V alueHP = V alueGravity × α + V alueAccelerometer × (1− α) (4.1)
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V alueLP = V alueAccelerometer − V alueGravity (4.2)

Where, V alueHP , V alueLP , V alueAccelerometer, and V alueGravity represent

the value of the high-pass, low-pass, accelerometer, and gravity sensor,

respectively at a time t. We set α to 0.1 that was determined, empirically.

As shown in Figure 4.3, touch-typing features consist of 8 Type0 (tim-

ing difference between each key release and key press), 7 Type1 (timing

difference a key press and previous key release, 7 Type2 (timing differ-

ence two successive keys release), 7 Type3 (timing difference two suc-

cessive keys press), and 1 Type4 (timing difference between last and first

key press). Thus, we extracted 30 touch-typing features from the 8-digit

random-text entry.

Figure 4.3: Touch-typing features for 8-keys entry.

Similarly, a user’s hand-movement is modelled in terms of 3-D data streams,

i.e., X, Y and Z, from each motion sensor. In addition, we computed the

4th dimension, Magnitude (M), by using Equation 4.3.

V alueM =
√

(V alue2
x + V alue2

y + V alue2
z) (4.3)

Where, V alueM is the Magnitude and V aluex, V aluey and V aluez are the

values of X, Y and Z value of a sensor, at a time t.
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We obtained 4 data streams from each of the seven motion sensors with

the delay set at SENSOR DELAY GAME [4]. Then, from each data stream,

we extracted 4 statistical features, namely Mean (µ), Standard Devia-

tion (σ), Skewness (s), and Kurtosis (k), that gives 16 statistical features

per sensor as shown in Table 4.2.

Table 4.2: Statistical features per sensor for a hand-movement behavior.

No. Hand-movement Features

1-4 µX µY µZ µM

5-8 σX σY σZ σM

9-12 sX sY sZ sM

13-16 kX kY kZ kM

Finally, we concatenate 30 touch-stroke features and 112 hand-movements

features to create a feature vector of size 142. Here, we prefer to choose

the feature level fusion over the sensor level fusion because sensory data

could have inconsistent and/or unusable data that may affect classifiers’

accuracy [198].

4.4.3 Feature Selection

The primary purpose of any feature selection scheme is to filter out the

redundant and less productive features to determine the most produc-

tive features [95]. This improves the performance of a classifier as pro-

cessing smaller feature vectors would be computationally faster. We ap-

plied Information Gain Attribute Evaluator (IGAE) - a Weka [276] imple-

mented Information Gain based feature selection scheme. We obtained

the threshold for feature selection by dividing the number of users (95)

by the total number of features (142). The feature with higher weight

was picked for further analysis.
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4.4.4 Classifier Selection

Classifier selection depends on various parameters, such as data size,

data characteristics, and training time, etc. We selected simple, yet effec-

tive state-of-the-art classifiers: Naive Bayes (NB), Neural Net (NN), and

Random Forest (RF) classifiers.

Bayesian classifiers, such as Belief Networks and Naive Bayes employ

the probabilistic technique for the classification tasks. The Naive Bayes

method starts with a strong but “näıve” assumption that the features are

independent of each other. It works perfectly well if this condition holds.

Furthermore, it is widely used because of its super simplicity, faster learn-

ing capability, elegance, and robustness [102].

NN classifier belongs to the Artificial Neural Network (ANN) family. These

models represent many interconnected network elements designed es-

sentially to classify different patterns. These models have been shown to

be quicker and accurate [53]. We used the Levenberg-Marquardt trained

feed-forward neural network as the classifier in our analysis.

RF has been considered as an accurate and efficient classifier in recent

years [25]. The reasons for their popularity include: (i) its accuracy

among the current algorithms even without any optimization, (ii) it gen-

erally does not overfit, (iii) it efficiently handles the missing data, and (iv)

its effectiveness on small as well as for large datasets, etc. We preferred

this classifier because of its effectiveness in the previous studies [33]. RF

classifier works on the principle of growing many classification trees and

to classify, it puts the query sample down to each of the trees in the for-

est. Each tree classifies that sample and “vote” for a particular class. The

final decision chosen by the forest is based on the higher number of votes

(over all the trees in the forest).
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4.4.5 Classifier Training & Testing

We consider remote-user-authentication to access security-sensitive ap-

plications on smartphones as a multiclass classification problem. We used

PRTools [60], a Matlab-based toolbox, to construct a classification model

and validated users in two scenarios, (i) a verifying legitimate user sce-

nario, and (ii) an attack scenario.

We evaluate the classification model by partitioning the dataset into train-

ing and testing sets. We trained selected classifiers with 5, 10, and 15

samples and used the remaining samples for testing.

4.4.6 Risk Assessment Model

According to ISO 9000:2015 [127], the risk is the “effect of uncertainty

on objectives” and an effect can be a positive or negative deviation from

what is expected. An objective can be strategic, tactical, or operational.

Generally, the existing risk-driven authentication system uses a risk-score

to estimate the risk associated with the user’s activities including the sign-

in attempt, in a typical user session [125]. A user-session can be charac-

terized by using historical and contextual attributes, such as transactions

pattern, user’s geographic location, access-time, IMEI number, MAC and

IP address of registered devices, the user’s typing speed and so on, col-

lectively can be defined as the client-attributes.
The risk-score can be computed by determining cumulative uncertainty
(degree of deviation) associated with each client-attribute. By using a

mathematical formula or expression, the degree of deviation can be easily

determined to establish a relationship between the present value, and

previously recorded values (where the objectives achieved successfully)

of client-attributes.

In our system, the Risk Engine (RE) configures a client profile of each

customer by using contextual and historical data, e.g., transactions pat-
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terns, location, access-time, IMEI number, MAC and IP address of reg-

istered devices, operating system, applications installed, and stylometry,

etc., as client-attributes.

To create the user’s client profile, RE initially assigns a unique weight

(natural value) to each client-attribute as per the user’s preferences.

CAi = WEIGHT

 ∀ i ∈M

WEIGHT ≥ 1
(4.4)

Equation 4.4 describes the weight assignment process to each of the M

client-attributes. RE assigns a higher value to the client-attribute based

on the user preference order. For example, if a user has given more im-

portance to Smartphone IMEI over access time than will be CAIMIE >

CAAccessT ime. Two client-attributes can have a common integer value.

However, the model can reassign the weights by analyzing the user’s us-

age pattern, thus, updates the client-profile, automatically.

Table 4.3 presents the structure of a user’s client-profile. Each row com-

prises of a client-attribute, its weight, and values of the current ses-

sion, i.e., SessionN to all the N − 1th previous sessions. Frequency of

Non-occurrence (FNOi) and Impact of Non-occurrence (INOi).

To obtain Frequency of Non-occurrence (FNOi) and Impact of Non-

occurrence (INOi), we first calculate Frequency of Occurrence (FOi)

as follows:

The Frequency of Occurrence (FOi) is an estimate of how often the

current client-attribute value (V alueiN) has occurred in previous N − 1

sessions [277], which is determined using Equation 4.5.
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Table 4.3: Structure of User’s Client Profile.

# Client-
Attributes

Weight of
Client-

Attributes

SessionN SessionN−1 ... Session2 Session1 Frequency
of Non-

occurrence

Impact of
Non-

occurrence
1 TRANSACTION

PATTERN

CA1 V alue1N V alue1(N−1) ... V alue12 V alue11 FNO1 INO1

2 LOCATION CA2 V alue2N V alue2(N−1) ... V alue22 V alue21 FNO2 INO2

3 ACCESS

TIME

CA3 V alue3N V alue3(N−1) ... V alue32 V alue31 FNO3 INO3

4 IMEI
NUMBER

CA4 V alue4N V alue4(N−1) ... V alue42 V alue41 FNO4 INO4

5 MAC
ADDRESS

CA5 V alue5N V alue5(N−1) ... V alue52 V alue41 FNO5 INO5

6 IP
ADDRESS

CA6 V alue6N V alue6(N−1) ... V alue62 V alue61 FNO6 INO6

7 OS
VERSION

CA7 V alue7N V alue7(N−1) ... V alue72 V alue71 FNO7 INO7

8 APPS

INSTALLED

CA8 V alue8N V alue8(N−1) ... V alue82 V alue81 FNO8 INO8

9 TOUCH-
TYPING

SPEED

CA9 V alue9N V alue9(N−1) ... V alue92 V alue91 FNO9 INO9

... ... ... ... ... ... ... ... ... ...
M STYLOMETRY CAM V alueMN V alueM(N−1)... V alueM2 V alueM1 FNOM INOM

Oi =
N−1∑
j=1

[V alueiN = V alueij] ∀ i ∈M, and

FOi =
Oi

N − 1
∀ i ∈M

(4.5)

Where, Oi is the occurrence of V alueiN of a ith client-attribute. The value

of FOi towards ≈ 1 indicates lower risk, whereas towards ≈ 0 indicates

higher risk.

Subsequently, Frequency of Non-occurrence (FNOi) and Impact of

Non-occurrence (INOi) are measured at runtime using Equation 4.6 and

Equation 4.7, respectively.

FNOi = 1 − FOi ∀ i ∈M (4.6)
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INOi = FNOi × CAi ∀ i ∈M (4.7)

Where, FOi is defined as the frequency of occurrence, which can be cal-

culated using Equation 4.5, CAi is the weight of each client-attribute and

M is the number of client-attributes. The value of FNOi towards ≈ 0

indicates lower risk, whereas towards ≈ 1 indicates higher risk.

For example, a customer has accessed her banking app from X loca-

tion ±10KM in the previous 10 sessions. But, in the current session,

the access location is found to be Y so the frequency of its occurrence

(FOlocation =
0
10) becomes 0. Therefore, the frequency of its non-occurrence

(FNOlocation) becomes 1, which is calculated using Equation 4.6. As de-

scribed in Equation 4.7, multiply FNOlocation with CAlocation to calculate

INOlocation, which gives a positive number. Similarly, the impact of the

non-occurrence of other client-attributes can be calculated.

Finally, the risk-score is computed using Equation 4.8, which can be

defined as the sum of all the impact-of-non-occurrence of each client-

attribute. Higher the number means higher the risk.

Risk Score =
M∑
i=1

INOi (4.8)

Where, M is number of client-attributes.

The risk-score is computed and matched with the threshold before any

of the critical operations is performed. If the risk-score is higher than the

predefined value (e.g., an average of the risk-scores in previous N−1 ses-

sions), re-authentication is exercised leveraging the proposed behavioral

biometric-based bimodal authentication scheme.

Thus, our authentication scheme utilizes the concept of one-shot and

continuous authentication mechanisms driven by risk assessment, as ex-

plained in Section 4.3.2, offering a user-friendly verification mechanism.
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4.5 Results

Figure 4.4, 4.5, and 4.6 report TAR and FAR on full features for sitting,

standing, and walking postures, respectively. RF classifier performed con-

sistently well across all the activities and for the different number of sam-

ples. We achieved a TAR of 80.51% (in sitting), 82.91% (in standing), and

81.38% (in walking), on just 5 training samples, and this TAR increased

up to 91.79%, 91.58%, and 86.95%, on 15 training samples. The highest

achieved TAR by RF is 91.79% (at just 0.04% FAR), on 15 training samples.
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Figure 4.4: Results for sitting posture with all features for 5, 10, and 15 training sam-
ples.

Figure 4.7, 4.8, and 4.9 report TAR and FAR on IGAE selected features

for sitting, standing, and walking postures, respectively. The results of all

the classifiers improved, significantly, over the extracted IGAE features

except for NB in standing and walking activities, over 5 training sam-

ples. NN performed comparatively well on the smaller feature vectors.

RF classifier improved the authentication results on IGAE features, i.e.,

from 88.04% to 89.10%, 92.88% to 95.18% and 94.87% to 96.00% for three
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Figure 4.5: Results for standing posture with all features for 5, 10, and 15 training
samples.
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Figure 4.6: Results for walking posture with all features for 5, 10, and 15 training
samples.
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activities, on 5, 10, and 15 training samples, respectively. It is evident

that HOLD & TAP is very robust against the zero-effort attacks, i.e., TRR

is much higher and FAR is very low.
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Figure 4.7: Results for sitting posture with selected features for 5, 10, and 15 training
samples.

We, also, show the results of RF classifier in terms of ROC curves (see

Figures 4.10, 4.11, and 4.12). We show an average ROC of all the users

obtained through Vertical Averaging (VA) [69]. In this averaging, the av-

erages of the TAR rates are plotted against the researcher-defined fixed

FAR. Due to the space limitations, we illustrate ROC curves for best-

performing classifiers, i.e., for RF, for all the activities, and all the training

sample scenarios. Figure 4.10 to 4.12 reflects RF classifier as very pro-

ductive and accurate classifier throughout.

RF classifiers outperformed both NB and NN classifiers because of its

ability to reduce the variances and its most unlikeliness to over-fitting.

NB classifier requires Gaussian distributed data, which might not be true

in the dataset, hence it failed to address the problem of concept-drift. The
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Figure 4.8: Results for standing posture with selected features for 5, 10, and 15 training
samples.
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Figure 4.9: Results for walking posture with selected features for 5, 10, and 15 training
samples.
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(a) 5 Training samples (b) 10 Training samples

(c) 15 Training samples

Figure 4.10: The ROC curves of RF classifier on full and IGAE features for sitting posture
with different training samples.
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(a) Standing (5 Training samples) (b) Standing (10 Training samples)

(c) Standing (15 Training samples)

Figure 4.11: The ROC curves of RF classifier on full and IGAE features for standing
posture with different training samples.
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(a) Walking (5 Training samples) (b) Walking (10 Training samples)

(c) Walking (15 Training samples)

Figure 4.12: The ROC curves of RF classifier on full and IGAE features for walking with
different training samples.
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NN classifier did not perform well due to the limited number of training

samples. It generally requires more training samples to learn well.

4.6 Security Analysis

To determine the robustness of HOLD & TAP, we performed some ad-

ditional experiments to replicate a couple of attack scenarios, namely,

random attack and mimic attack.

4.6.1 Mimic Attack

We recruited 8 testers to carry out the mimic attack. Each one of the

8 testers trained the prototype application installed on a smartphone,

which is closely observed by the remaining 7 testers to learn the holding

and typing patterns. In each tester’s training session 30 observations (10

per 3 postures, i.e., sitting, standing, and walking) are collected. Then,

the remaining 7 testers tried 10 times to carry out the mimic attack.

A multi-class classification model for 8 testers is generated by using RF

classifier with 30 training samples per class, i.e., a total of 240 training

samples. Subsequently, we tested this classification model with 8 sets

of 70 mimic attack samples collected from the remaining 7 testers (10

samples per tester), labeling each set from 1 to 8.

Table 4.4: Mimic attack results.

Class True Acceptance False Rejection Robustness(%)
1 0 70 100
2 0 70 100
3 0 70 100
4 1 69 98.57
5 0 70 100
6 0 70 100
7 2 68 97.14
8 0 70 100

3 237 98.75
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Table 4.4 presents the result for each class in terms of True Acceptance

(TA) and False Rejection (FR). Higher the FR better the robustness of

the system. Thus, the overall robustness of HOLD & TAP against mimic

attack comes out to be 98.75%.

4.6.2 Random Attack

To carry out the random attack, we asked each of the 8 testers to test the

application 10 times in any of the 3 postures. Then, we tested the classi-

fication model robustness with 70 random attack samples (excluding the

samples of a legitimate user) 8 times by assigning labels from 1 to 8.

Table 4.5: Random attack results.

Set True Acceptance False Rejection Robustness(%)
1 0 70 100
2 0 70 100
3 0 70 100
4 0 70 100
5 0 70 100
6 0 70 100
7 0 70 100
8 0 70 100

0 240 100

Table 4.5 presents the random attack results for each class in terms of TA

and FR. None of the 240 random attack attempts were successful. Thus,

the overall robustness of HOLD & TAP against random attack comes out

to be 100%.

4.7 Usability Analysis

Figure 4.13 illustrates the SUS questionnaire and the collected responses

from all the 95 participants. We did not collect any information relating

to an identified or identifiable natural person, as defined by GDPR ethics

and data protection guideline [86]. Overall, HOLD & TAP achieves the
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SUS score of≈ 73, which is significantly above the standard average score

of 68 [225]. After analyzing the recorded feedback, it can be inferred the

majority of the participants are satisfied to use HOLD & TAP and they

perceived our proposed scheme as simple, extremely convenient, user-

friendly, and intuitive.

Figure 4.13: SUS questionnaire and users responses.

Overall most of the testers seem comfortable and confident about HOLD

& TAP mainly because of the flexibility of typing any combination of 8-

digit text. Experimental results show that our scheme as usable, practical

and would be widely acceptable.

4.8 Summary

The proposed one-shot-cum-continuous user authentication scheme is

a simple, effective, and user-friendly solution for smartphone security-

sensitive applications (e.g., social networking app, online mobile bank-

ing app, etc.). The scheme can be seamlessly integrated into the existing

PIN/password-based authentication schemes to enhance their usability
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and security. Flexibility to access an application by entering any random

8-digit alphanumeric text makes the sign-in process very convenient for

smartphone users. At the same time, mimicking invisible, and inherently

secure natural human behaviors simultaneously can be an onerous job

for attackers.

With RF classifier, we obtained 96% TAR (at the cost of 0.01% FAR) in

sitting activity for 15 samples training-set with selected features, whereas

95.92% and 94.87% TAR is achieved in standing and walking activity, re-

spectively. Security analysis involving ≈ 480 adversarial attempts demon-

strated HOLD & TAP resilience against mimic and random attacks. HOLD

& TAP obtained a SUS score of ≈ 73 out of 100 that can be considered

positive feedback.
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Chapter 5

STEP & TURN - A Novel Bimodal
Behavioral Biometric-based User
Authentication Scheme for Smart
Ecosystems

This chapter presents STEP & TURN - a novel bimodal behavioral biometric-

based authentication system that utilizes two natural human actions, i.e.,

single footstep and hand-movement, to secure access to smart ecosys-

tems. In today’s rapidly evolving digital world, smart ecosystems such

as smart homes, smart offices, and smart cities cannot rely on conven-

tional authentication systems (e.g., digital keypads, physiological bio-

metrics sensors, smart-card readers, or smart device pairing) entirely, to

secure user access.

This work is partially published in [95]: Sandeep Gupta, Attaullah Buriro,
and Bruno Crispo. “SmartHandle: A Novel Behavioral Biometric-based Au-
thentication Scheme for Smart Lock Systems.” Proceedings of the 3rd Inter-
national Conference on Biometric Engineering and Applications. ACM (pp.
15-22). 2019.
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5.1 Introduction

Over recent years, the world is going through vast digital reforms, which

is evident by the rapid evolvement of smart homes, smart offices, and

smart cities, collectively, can be dubbed as smart ecosystems. Indeed,

user authentication plays a vital role in safeguarding the smart ecosys-

tems’ security spectrum. However, studies have shown that the con-

ventional authentication systems, i.e., knowledge-based schemes (e.g.,

PIN/Password), or device-pairing (e.g., smartphones, smart cards), de-

ployed to secure user access are vulnerable to common attacks, such as

a dictionary-, insider-, observation-, replay-, spoofing-attack, as well as

they are reported to have several usability concerns [83, 115]. Conse-

quently, smart ecosystems require next-generation user authentication

systems owing to various drawbacks present in conventional authentica-

tion schemes.

Our authentication scheme exploits behavioral biometric traits to secure

access to smart ecosystems. Some of the benefits of behavioral biometrics

are that: 1) they do not require to be remembered like PIN or password,

2) they can not be shared or transferred to an unauthorized person, 3)

they possess characteristics to meet usability criteria more stringently, in

contrast to conventional authentication methods, and 4) the sensors, e.g.,

accelerometer, gyroscope, pressure, etc., required to acquire behavioral

biometrics modalities are less expensive as compared to fingerprint, face,

or iris data acquisition sensors [92]. Consequently, behavioral biomet-

ric traits open avenues to provide usable and secure user authentication

schemes.

We present a novel bimodal behavioral biometric-based user authentica-

tion scheme for smart ecosystems that exploit the user’s single footstep

and their hand-movement to turn the door handle, as illustrated in Fig-
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Figure 5.1: A pictorial illustration of STEP & TURN user authentication system.

ure 5.1. The left and right footstep pressure-data recorded from the ar-

ray of 88 pressure sensors fitted in the 2 doormats and hand-movement

is modeled in terms of X, Y , and Z coordinates in 3-dimensional space

by using 3-axis accelerometer, magnetometer, and gyroscope sensors. To

build the user authentication system, we selected three simple, yet effec-

tive, state-of-the-art machine learning classifiers, namely, random forest,

state vector machine, and Fisher linear discriminant classifier. Classifi-

cation Learner [168] is used to assess the classifiers’ prediction perfor-

mance and their selection. Furthermore, we performed usability analysis

to establish the efficiency, effectiveness, and satisfaction of our user au-

thentication methods.

5.1.1 Contributions

The main contributions of this paper are presented below:

• STEP & TURN - a novel user authentication scheme based on user’s

single footstep and hand-movement, which can be easily deployed to

secure smart ecosystems access to their authorized users.
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• We collect the hand-movement of 40 participants and then, constitute

a chimerical dataset by combining the Swansea University Speech and

Image Research Group footstep data of an equal number of participants

with our collected dataset containing 1, 600 samples (40 per partici-

pants).

• The experimental validation and usability assessment of STEP & TURN

by replicating a smart-office scenario.

5.1.2 Chapter Organization

The rest of the chapter is organized as follows: Section 5.2 discusses

the related work. Section 5.3 covers the experimental setup and hard-

ware details of STEP & TURN user authentication system. Section 5.4

describes the methodology used in data collection, features extraction,

and features selection. Section 5.5 presents the design of the user au-

thentication model and the experimental results under different settings.

Section 5.6 presents the usability assessment of STEP & TURN user au-

thentication system. Finally, Section 5.7 concludes the paper with the

outline for possible future works.

5.2 Related Work

In the next few years, behavioral biometrics will irrevocably transform

the user authentication landscape for smart ecosystems, such as smart

homes, offices, and cities [93, 94]. The availability of various sensors

(refer Section 5.3.2) has expedited the use of behavioral biometric traits,

e.g., voice, digital signatures, keystroke/touch dynamics, gait, footsteps,

and hand-movement to hold or wear smart devices, etc., for user authen-

tication schemes [92]. This section reviews the prior work that utilized

hand-movement and footstep behavioral biometric traits for user authen-
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tication.

Studies have shown that behavioral biometric can be utilized to design

and develop usable authentication schemes [33, 32]. SMARTHANDLE - a

user authentication scheme deployed in door handle utilized the user’s

hand-movement in 3-dimensional space by fetching the X, Y , and Z

coordinates from 3 sensors, namely, accelerometer, magnetometer, and

gyroscope corresponding to the hand-movement trajectory, to generate

a user-identification-signature [95]. They validated their solution for a

multi-class classification scenario and achieved a True Acceptance Rate

(TAR) of 87.27% at the False Acceptance Rate (FAR) of 1.39% with the

Linear Discriminant Classifier (LDC) on their collected dataset of 11 users.

Jang et al. [136] proposed a bimodal door locking scheme that leverages

fingerprint and grip patterns to authenticate users, however, they did not

publish any experimental results to validate their schemes.

A motion-based authentication method for smart wearable devices, MO-

TIONAUTH, constructed users’ identifiable signature by profiling their dif-

ferent natural gestures such as raising or lowering the arm [280]. They

achieved an equal error rate of 2.6% on a dataset of 30 users. Similarly,

SNAPAUTH [32] exploited users’ hand-movement to authenticate them on

smartwatches, while they perform finger-snapping action. They achieved

the TAR of 82.34% by using Multilayer Perceptron (MLP) classifier on a

dataset of 11 users.

Another user authentication scheme for smartphones leveraged users’

hands-movement while they type on their phone, holding it in their hand.

The scheme achieved a TAR of 96% on a dataset of 95 users by using

MLP classifier. Similarly, HMOG user authentication scheme collected

hand movement, orientation, and grasp data to continuously authenti-

cate smartphone users by exploiting features like micro-movement and

orientation dynamics when they interact with their smartphone [233].
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They achieved an authentication Equal Error Rate (EER) of 7.16% and

10.05% for walking and sitting postures, respectively.

Rodriguez et al. [268] performed footstep biometric assessment on their

collected 9,990 stride signals from 127 persons by using floor-based sen-

sors. Their approach studied footstep signals in both time and space

domains. In the time domain, the extracted features included the ground

reaction force (GRF), the spatial average, and the upper and lower con-

tours of the pressure signals, whereas, in the spatial domain, the features

extracted include 3D images of the accumulated pressure. In their eval-

uation, they achieved the EERs of 15.2%, 13.4%, and 7.9% by training

classification model with 40, 100, and 500 single footstep signals respec-

tively, after fusing both time-domain and space-domain features. Simi-

larly, Edwards et al. [66] extracted geometric and wavelet features from

the footstep dataset collected by the Swansea University Speech and Im-

age Research Group. They achieved an EER of 16.3% by retaining spatial

information for wavelet analysis by using the Random Forest classifier for

individual prediction within a dataset of 10,413 footstep pair instances

from 94 participants.

Zhou et al. [288] proposed a system that identifies users based on their

single footstep biometric without considering the shape details or inter-

step relationships of users’ footprints. They utilized fabric sensors to reg-

ister features such as shifting of the gravity center, maximum pressure

point, and overall pressed area. They achieved an average identification

accuracy of 76.9% on a dataset containing 529 footsteps collected from 13

participants.

To our knowledge, the work presented in this chapter is the first step to-

wards a behavioral biometric-based bimodal user authentication scheme

that promises higher convenience and security over the conventional au-

thentication schemes.
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5.3 STEP & TURN: User Authentication System

This section presents the experimental setup and hardware details of the

STEP & TURN user authentication system for smart homes and offices.

5.3.1 Experimental Setup

We created a smart office setup by fixing the hardware to the door han-

dle in our lab. As depicted in Figure 5.2, the hardware is installed on

the door’s interior handle that can be rotated by the door exterior han-

dle. The Adafruit LSM9DS0 hardware (refer 5.3.2) interfaced with an

Adafruit Trinket M0 micro-controller for programming and controlling,

is mounted on a breadboard and fixed to the door handle. Thus, the

hardware installation does not alter the usage pattern of the door handle

for their users, to open the door from outside.

(a) Locked position (b) Unlocked position

Figure 5.2: Hardware installation on the door handle, in our lab.

This setup enables us to record the hand-movement of users as they open

the door from outside by rotating the door exterior handle to enter our

office. Despite, the hardware is attached mechanically to the door handle

(not embedded inside the handle assembly), it still replicates the concep-

tual model allowing us to conduct the experiments, successfully.
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However, for footstep data, we utilized the data collected by Rodriguez et

al. [268, 267]. They created a footstep pressure-data acquisition system

by mounting 88 high-density piezoelectric sensors on a printed circuit

board (PCB) of size 30 by 45 cm. These sensors are then placed under

2 separate doormats to capture users’ single stride, i.e., left and right

footstep pressure data. Subsequently, when users step on these 2 inde-

pendent doormats, their left and right foot pressure data are recorded.

We assumed that the doormats are installed in front of our smart office

door fitted with the smart handle, as illustrated in Figure 5.1.

5.3.2 Hardware Details

We used the Adafruit 9-DOF Breakout Board - LSM9DS01 to register users

hand-movements while they turn the door handle to open the door. This

chip consists of three sensors, namely, accelerometer, magnetometer, and

gyroscope (refer Figure 5.3). Additionally, it has a small form factor (see

Table 5.1), with a dimension of 33mm length, 20mm breadth, and 2mm

thickness.

Figure 5.3: Adafruit 9-DOF Accel/Mag/Gyro+Temp Breakout Board1.

The 3-axis accelerometer tells how fast the board is accelerating in 3D

space or which direction is down towards the Earth by measuring gravity.

The 3-axis magnetometer is used to detect the magnetic north by sensing
1https://www.adafruit.com/product/2021
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Table 5.1: LSM9DS0 sensors specifications.

Sensor Axis Adjustable range Resolution

Accelerometer X, Y, Z ±2 g, ±4 g, ±8 g,
±16 g

16 bits @9600 bps

Magnetometer
(compass)

X, Y, Z ±4, ±8, ±12, ±16

gauss
13 bits @9600 bps

Gyroscope X, Y, Z ±245, ±500, and
±2000 ◦/sec

16 bits @9600 bps

from where the strongest magnetic force is coming. Lastly, the 3-axis

gyroscope measures the spin and twist.

Rodriguez et al. [268, 267] deployed high-density piezoelectric sensors

with a sampling frequency of 1.6 kHz to acquire footstep pressure data.

Piezoelectric sensors measure a differential voltage output that is directly

proportional to the applied pressure on a piezoelectric material.

(a) Sensors arrangement (b) Sensors geometry

Figure 5.4: Piezoelectric sensors for a doormat of size 45 by 30 cm.

Figure 5.4a and Figure 5.4b depicts the arrangement and geometry of 88

sensors for a 45 by 30 cm size doormat used for footstep data collection by

Rodriguez et al. [268, 267]. The diameter of each sensor is 2.7 cm. The

adjacent sensors are separated by a distance of 1.2 cm at an angle of 60◦to

provide a compact layout with uniform inter-sensor distance. Table 5.2
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presents some specifications of the latest piezoelectric sensors available

in the market.

Table 5.2: Piezoelectric sensors specifications.

Property Value

Impedance ≤ 500 Ω

Operating Temperature −20 ◦C to + 60 ◦C

Strain sensitivity 5V/µε

Material used Quartz

Sampling Rate 1.6 kHz

5.4 Methodology

In this section, we present the methodology to design user authentica-

tion scheme by using hand-movements and footsteps biometric. Both the

hand-movement and footsteps biometric data of a user can be collected

unobtrusively, which is a requisite criterion to design a usable user au-

thentication scheme [92, 32, 267].

5.4.1 Datasets

We evaluated STEP & TURN on a chimerical dataset of 40 users by com-

bining the hand-movement and footstep data. For hand-movement data

collection, 40 persons volunteered and provided consent for their behav-

ioral biometric data collection. The volunteers were mainly university

students and staff with a diversified background. We strictly adhere to

ethics and data protection guidelines [86] and followed the process de-

scribed in Section 4.4.1 in getting participants’ consent. As illustrated

in Figure 5.1, the participants were required to step on a doormat and

turn the door handle downwards from its rest position. Each participant

performs this step 40 times to test our prototype.
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To model the user’s hand-movement trajectory in 3-D space, X, Y , and Z

data streams are recorded from the three sensors at 9600 bits per second

(refer Section 5.3.2). Generally, door handles are not rigid at the hinge,

therefore, the sensors register both the horizontal micro-movement and

the vertical movement. Thus, the hand-movement dataset contains 4 raw

X, Y , Z, and M data streams per sensor.

The 4th dimension, called as magnitude, is mathematically derived for

each sample (X, Y , Z) by using Equation 5.1.

M =
√
(X2 + Y 2 + Z2) (5.1)

Where, M is the magnitude and X, Y , and Z are the X, Y, and Z coordi-

nates of each sensor sample in 3-D space.

For footstep data, we rely on the Swansea University Speech and Image

Research Group footstep dataset [268, 267]. It is worth mentioning that

participants were allowed to walk over the footstep sensors by wearing

footwear (shoes, trainers, boots, barefoot, etc.) and carrying weights

such as office bags, which makes the collected dataset more realistic.

This dataset consists of left and right pressure amplitude recorded from

88 pressure sensors (refer Section 5.3.2) at the sampling rate of 1.6 kHz.

Thus, a single user footstep contains left and right foot pressure data of

size 88 × 2200 each.

Figure 5.5a and 5.5b show a user hand-movement and footstep pressure

data, respectively. As the two modalities, i.e., a user’s hand-movement

and footstep, are mutually independent of each other, we augmented

the pressure-based footstep samples of 40 users to our collected hand-

movement data to form a single dataset of 40 users with 40 observations

per user. One clear benefit of the chimerical dataset is that biometric

traits for each label are disjointed restricting our bi-modal classification

model to establish any strong linkage to the volunteers, thus, ensuring
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Figure 5.5: Each modality raw data streams for a single observation.
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their privacy.

5.4.2 Feature Extraction

We computed statistical information from each raw data streams. Uni-

variate statistical properties, i.e., min, max, mean, standard deviation,

kurtosis, or skewness [93]. Extracting statistical features reduce the di-

mensionality of raw data, improve the signal-to-noise ratio, and enhance

classifier performance.

5.4.2.1 Hand-movement

For each data-stream, 6 independent features, namely, min, max, mean,

standard deviation, kurtosis, and skewness are computed, by using Equa-

tion 5.2.

Minimum (Min) =
N
min
i=1

Si

Maximum (Max) =
N

max
i=1

Si

Mean (µ) =
1

N

N∑
i=1

Si

Standard Deviation (σ) =

√∑N
i=1(Si − µ)

N

Kurtosis (k) =
1
N

∑N
i=1(Si − µ)4

σ4

Skewness (s) =
1
N

∑N
i=1(Si − µ)3

σ3

(5.2)
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Where, Si is the ith sample in a data-stream. N is the number of samples

in a data-stream. Min and Max are the minimum and maximum values

respectively, in a given data-stream. Mean (µ) is the average of all sam-

ples. Standard deviation (σ) is the square root of the variance. Kurtosis

(k) measures the degree of peakedness of a data-stream that helps in de-

tecting the outlier-proneness of the distribution. Skewness (s) measures

the degree of asymmetry of a data-stream from its mean value.

We extracted 6 statistical features from each data-stream. As there are 4

data-streams per sensor so 24 (4× 6) features are obtained per sensor, as

shown in Table 5.3.

Table 5.3: Statistical features extracted from a sensor for the hand-movement.

# Statistical features
1-6 MinX MaxX µX σX kX sX

7-12 MinY MaxY µY σY kY sY

13-18 MinZ MaxZ µZ σZ kZ sZ

19-24 MinM MaxM µM σM kM sM

Thus, with 3 sensors, a total of 72 (3 × 4 × 6) statistical features are

extracted. The final feature vector for hand-movement consists of 73

features in total including 72 statistical features and handle-movement

action time [93].

5.4.2.2 Footstep

To obtain the footstep features, we first transformed each pressure am-

plitude array of size 88 × 2200 into 4-independent time-series arrays,

namely, Spatial Average (Save), Ground Reaction Force (GRFcumulative),

Upper (Supper) and Lower (Slower) Contours of size 1 × 2200 each [66],

by using Equation 5.3.
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Save[t] =
N∑
i=1

Si[t] GRFcumulative[t] =

Tmax∑
t=1

Save[t]

Supper[t] =
N

max
i=1

Si[t] Slower[t] =
N
min
i=1

Si[t]

(5.3)

Where, Si[t] is the differential pressure sample from the ith piezoelectric

sensors at the time t. N is the total number of piezoelectric sensors, i.e.,

88. Then, 6 statistical features are computed from each time-series array

by using Equation 5.2. In total, we get 48 statistical features (8 × 6) from

8 time-series arrays that were obtained from both left and right pressure

amplitude arrays.

Ground Reaction Force (GRFi) per sensor is computed by accumulating

each sensor pressure amplitude from time T1 to Tmax by using 5.4.

GRFi =

Tmax∑
t=1

Si[t] (5.4)

Where, Si[t] is the differential pressure sample from the ith piezoelectric

sensors with i ranges from 1 to 88 and t ranges from 1 to 2200. In total,

176 features are obtained from both left and right pressure amplitude

arrays.

Finally, we extracted 73 features from hand-movement to turn the door

handle and 224 features (48+ 176) from both left and right foot differen-

tial pressure against time collected from the piezoelectric sensors.

5.4.3 Feature Selection

The feature selection process improves the performance of classification

models by maximizing the classifier’s accuracy and reducing their com-

putation time. Gupta et al. [95] analyzed 3 different filter-based feature
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selection methods, namely, 1-Nearest Neighbour leave-one-out rank (R-

NN) method, Information Gain Attribute Evaluation (IGAE) method, and

Relief-based feature selection (RBFS) method on a similar feature-set.

And, they find that the performance of the RBFS method is slightly bet-

ter than the other two methods. Thus, we considered the Relief-based

feature selection method to obtain the most productive feature subset to

be used as the users’ training template for constructing the classification

model.

The advantages of RBFS are: 1) they generate a unified view on the

estimation of the features in the classification, 2) they are able to deter-

mine conditional dependencies between features, and 3) they are rela-

tively faster (with asymptotic time complexity of order O (instances2 ×
features)) than the other feature selection methods [93, 263].

We fused 73 features from hand-movement and 224 features from both

left and right foot differential pressure versus time to determine the most

productive feature subset. RBFS compute ranks and weights of features

to derive feature statistics using the concept of nearest neighbors [169]

as shown in Equation 5.5.

[RANKED,WEIGHT ] = relief(X, Y,K) (5.5)

Where, X (m × n) is a given 2-d dataset, Y (m × 1) is the response vec-

tor, and K is a number of nearest neighbors. RANKED are indices of

columns in X ordered by attribute importance, meaning RANKED[1] is

the index of the most important feature. WEIGHT are features weights

ranging from −1 to +1 with large positive weights assigned to most im-

portant attributes.

Figure 5.6 shows the plots between features and their weights obtained

by the RBFS method. We picked the top 33% features (98), which is de-

termined empirically, out of the full feature-sets (297) demarcated by the
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Figure 5.6: Plot between features vs. weights.

red line in Figure 5.6. We tested and validated our system on both the

full feature set and selected feature set to achieve an optimal classifica-

tion model.

5.5 Validation

In this section, we explain our authentication model that is built by us-

ing the multi-class classification approach. Each user is profiled as the

“owner” and the remaining users as “impostors” for validation purposes.

Each of the 40 users is validated in two scenarios, i.e., (i) a verifying legit-

imate user scenario, and (ii) an attack scenario. The results are reported

in terms of true acceptance rate (TAR), false acceptance rate (FAR), and

Receiver-Operating Characteristic (ROC).
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5.5.1 User Authentication Model

We construct a multi-class classification model by using Matlab’s PRtools2.

We utilize 3 different types of classifiers (refer table 5.4), namely, Ran-

dom Forest classifier, Support Vector Machine, and Fisher’s Least Square

Linear Discriminant classifier, to construct the authentication model.

Table 5.4: An overview to classifiers.

Classifier Description

Breiman’s random
forest (RF) [70]

The classifier ensembles a decision forest by generating a number of decision trees
on random feature subsets of the given dataset. While splitting a node in the decision
tree, it searches for the best feature among a random subset of features rather than
searching for the most important feature. Then, the decision forest aggregates the
votes from all the decision trees to decide the final class of the new query. Typically,
it uses averaging to improve the predictive accuracy and to control over-fitting.

Stats support
vector classifier
(STATSVC) [206]

The support vector machines (SVM) are a discriminative classifier that segregates
the classes in a given dataset by constructing an optimal hyperplane. Internally,
SVM uses different kernels, e.g., linear, quadratic, polynomial, radial basis function
(RBF), and sigmoid, etc., to construct the hyperplanes. SVM possesses a special
property to minimize the empirical classification error and maximize the geometric
margin simultaneously, hence it is also known as maximum margin classifiers.

Fisher’s Least Square
Linear Discriminant
(FISHERC) [205]

The classifier estimates linear discriminant function to characterize or separate two
or more classes in a given dataset. The multi-class implementation uses the one-
against-all strategy by selecting a decision function that maximizes the distance be-
tween classes.

To evaluate the performance of the model, the dataset consisting of 40

samples per class is divided into 2 independent and disjoint training and

testing subsets. The model is first trained on the training dataset contain-

ing T training samples. We used 3 different number of training samples

(T ), i.e., 10, 20, and 30, to evaluate the model effectiveness. Then, the

testing dataset with 40 − T samples is used to test the model for all the

40 classes.

2http://www.37steps.com
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5.5.2 Results

The results are reported in terms of TAR, and FAR for legitimate users,

and the impostors, respectively. RF gives the best TAR of 97.25% (@FAR

= 0.01%) with 30 training samples on selected feature-set obtained by

Relief-based feature selection method. With 10 and 20 training samples,

the RF classifier gives the TAR of 93.25% (@FAR = 0.12%) and TAR of

94.62% (@FAR = 0.04%), respectively. Figure 5.7 and 5.8 present the

performance of all the classifiers on the full features and Relief-based

feature selection method.
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Figure 5.7: Results of different classifiers with 10, 20, and 30 training samples for full
features (297).

Figure 5.9 presents the ROC curves for the RF classifier plotted for all

the 40 classes with 10, 20, and 30 training samples with full and selected

feature set obtained by RBFS method.

The two-dimensional graphs shown in Figure 5.9 plots the TAR on the

Y-axis and FAR on the X-axis showing the relative trade-offs between the

true positives and the false positives [93]. Coordinate (0, 0) represents
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Figure 5.8: Result of different classifiers with 10, 20, and 30 training samples for se-
lected features (98) by using RBFS method.

the strategy of never issuing a positive classification; such a classifier

commits no false-positive errors but also determines no true-positives.

However, the opposite strategy, of unconditionally issuing positive classi-

fications, is represented by coordinate (1, 1). Whereas, coordinate (0, 1)

represent the perfect classification strategy of maximizing TAR and mini-

mizing FAR. In Figure 5.9, it can be observed that with the increase in the

number of training samples classifier performance also tends to improve.

5.6 Usability Assessment

This section presents the usability analysis of the STEP & TURN system.

Usability assessment becomes the strategic criteria to establish the effi-

ciency, effectiveness, and satisfaction of the user authentication meth-

ods [24]. We used the System Usability Scale (SUS) tool [28] to per-

form usability assessment of STEP & TURN system as explained in Sec-

tion 2.3.3.3. As shown in Appendix B, we included 3 more questions
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(c) Full features with 20 Training Samples
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Figure 5.9: A comparison between ROCs of all the classes obtained for RF classifier with
10, 20, and 30 training samples.
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related to the number of training samples, age-range, and gender.

We received the survey response from 29 participants, and the partici-

pants’ demographic statistics are displayed in Figure 5.10.

17 - 25 years

75.9%

26 - 35 years

20.7%
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3.4%

(a) Participants age group

Male

72.4%
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27.6%

(b) Participants gender

Figure 5.10: Demographic statistics.
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Figure 5.11: Training samples for user biometric template creation.

The number of training samples required to create users’ biometric trait

template is a significant criterion for a usable user authentication system

design [132, 97]. The survey poll for training samples, as depicted in

Figure 5.11 exhibits that 6.3%, 48.3%, 34.5%, and 10.3% of participants

are happy to provide 5− to− 10, 10− to− 40, 40− to− 100 samples, and

more than 100 samples, respectively to train the system.

The ten SUS questionnaire and the responses obtained from the 29 partic-

ipants are displayed in Figure 5.12. Overall, our scheme achieves the SUS

score of ≈ 76.72, which is significantly above the standard average score

of 68 [156]. Thus, it can be interpreted from the survey results that the
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Figure 5.12: SUS questionnaire and users responses.

majority of users are satisfied with the STEP & TURN user authentication

system.

5.7 Summary

STEP & TURN offers a secure and usable user authentication scheme for

smart ecosystems unlike conventional authentication schemes, it does

not require the active participation of the user.

We validated our solution for a multi-class classification scenario. We

achieved the TAR of 97.25% (@FAR of 0.01%) by using RF classifier on a

chimerical dataset of 40 users. We acknowledge that the accuracy must

not be the only criteria for the real deployment of our solution. It is

equally important to deploy doormats fitted with pressure sensors at the

door entrance and to integrate the hardware inside the handle assembly

without affecting the form and appearance of the door handles, for mass

production.
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Chapter 6

DRIVERAUTH: A Risk-based
Multi-modal Biometric-based Driver
Authentication Scheme for
Ride-sharing Platforms

DRIVERAUTH is a novel risk-based multi-modal authentication scheme, to

make the on-demand ride and ride-sharing services secure and safer for

riders. DRIVERAUTH utilizes three biometric modalities, i.e., swipe, text-
independent voice, and face, in a multi-modal fashion to verify the iden-

tity of driver-partners at the time of ride-booking to address customers

safety and security.

We published this works in [93]: Sandeep Gupta, Attaullah Buriro, and
Bruno Crispo. “DriverAuth: A risk-based multi-modal biometric-based driver
authentication scheme for ride-sharing platforms.” Computers & Security
(COSE), 83 (2019): pp. 122-139, Elsevier, and [94]: Sandeep Gupta,
Attaullah Buriro, and Bruno Crispo. “DriverAuth: Behavioral biometric-
based driver authentication mechanism for on-demand ride and ridesharing
infrastructure.” ICT Express, 5.1 (2019): pp. 16-20, Elsevier.

107



CHAPTER 6. DRIVERAUTH

6.1 Introduction

On-demand ride and ride-sharing services have revolutionized the point-

to-point transportation market. Customers can book these rides services

on short notices with 24 × 7 availability in all major cities in the world.

Alone, Uber [56] and Lyft [57] are providing over 18 million rides per

day, and they are rapidly gaining acceptance among customers world-

wide.

Customers can book their rides easily, through dedicated smartphone-

based ride-offering applications provided by different companies, which

are downloadable at popular application stores like Play-store, App-store.

Service providers rely on well-proven client-server infrastructures to de-

sign their systems. The client is a smartphone-based application used for:

i) registering riders and drivers, ii) connecting drivers with riders, iii)

car-sharing to share the expenses, minimize traffic congestion and saving

traveling time, and iv) allowing customers to book their rides. The server

typically, run by multi-national companies such as Uber, Lyft, BlaBlaCar,

Ola, manages drivers and customers registrations, allocates ride assign-

ments, sets tariffs, guarantees payments, ensures safety and security of

riders, etc.

On-demand ride and ride-sharing services have facilitated quick business

opportunities, allowing individuals to become partners (drivers) to of-

fer rides to customers. However, the reliability of drivers has emerged

as a critical problem, and as a consequence, issues related to riders’

safety and security have started surfacing. News related to fake drivers

and assaults by dishonest drivers is a severe safety and security risk

for the riders [274]. Further, being a lucrative business and easy to

start, on-demand rides and ride-sharing services are attracting people

also with unclean police records to become driver-partners using false
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identities [10].

Ride-sharing companies rely on government-issued documents, e.g., pass-

ports, driver licenses, etc., to verify their drivers-partners identity and

their eligibility to drive. Generally, this verification is performed only

once at the time of registration. However, forging these documents is not

difficult [3], as well as, all the countries do not use the same security stan-

dards to issue them. Often ride-sharing services support drivers’ rating

services on social media such as Facebook, LinkedIn, Twitter, and Google

Plus can be easily manipulated, thus, not always reliable [12, 155, 180].

The lack of robust driver verification mechanisms has opened a room to

an increasing number of misconducts (i.e., drivers subcontracting ride-

assignments to an unauthorized person, registered drivers sharing their

registration with other people whose eligibility to drive is not justified,

etc.) [116, 141, 266].

All these factors have contributed to an increasing number of incidents

involving on-demand and shared rides in recent years [274, 22]. This

trend has motivated ride-sharing companies to implement more rigorous

checks on their drivers [262]. The checks that have been implemented,

however, did not stop the abuses, e.g., dishonest drivers creating multi-

ple accounts with forged documents [164]. These abuses are becoming

also a liability concern [43], thus, the search for new, secure, and robust

driver verification mechanisms becomes extremely important. Despite

background checks on the drivers at the time of registration, the system

lacks a robust mechanism [204], to verify the driver’s identity each time

she is offering a ride [266]. Some companies have introduced a real-time

identity check that requires drivers to take a selfie before going online to

drive [260] but not before each ride.

These open issues motivate the design of a new risk-based verification

mechanism that can verify a legitimate driver at the time of every new
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registration and ride-booking, and thus, minimize the associated risks of

abuses. An important requirement that any new driver authentication

scheme must satisfy is not to alter the existing work-flow to pose a us-

ability burden to drivers.

DRIVERAUTH authenticates drivers by leveraging three biometric modali-

ties, i.e., swipe, text-independent voice, and face, for verification purposes

in a multi-modal fashion. Multi-modal systems are expected to be more

reliable and accurate than unimodal systems, to verify a user. Further-

more, studies [17, 88, 149] have shown that multi-modal systems are

more resilient to common attacks, e.g., presentation-, mimic-, replay-,

random-attacks in comparison to unimodal systems.

6.1.1 Contributions

The main contributions are as below:

• The proposal of DRIVERAUTH - a multi-modal system that pro-actively

verifies the drivers’ identity every time drivers accept a new ride-

booking. The proposed mechanism collects three biometric modali-

ties, e.g., swipe gestures, text-independent voice and face, while they

interact with the dedicated driver-application, to verify the drivers’

identity. DRIVERAUTH that can minimize the threat(s) posed by fake

and malicious drivers. Hence, provisioning the safety and security

of riders.

• Collection of swipe and voice data of 86 participants and shared pub-

licly for research work [96].

• Experimental evaluation of DRIVERAUTH on the dataset of 86 users.
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6.1.2 Chapter Organization

The rest of the chapter is organized as follows: Section 6.2 covers the

related work. Section 6.3 describes the problems in the existing driver

registration process and the risk involved in this system along with the

need for risk-based user verification method and the considered threat

model. Section 6.4 presents DRIVERAUTH design including the verifica-

tion process at the time of new registration and ride-booking assignment.

Section 6.5 discusses the methodology used to collect the dataset, to ex-

tract features, to concatenate and selection of the best features from the

chosen modalities. Section 6.6 covers the details of the experiments, the

classification method, and presents the performance evaluation and the

obtained results.

6.2 Related Work

Face recognition is one of the most widely accepted biometric modality

mainly because it provides high recognition rates. Thus, Uber has in-

troduced “Real-Time ID Check” - a face recognition system developed by

Microsoft, to verify the identity of their registered drivers [260]. The sys-

tem collects the face images of the person registering as driver-partner,

extracts facial features, and stores them in the database for subsequent

verification purposes. Only a subset of randomly-selected driver-partners

is asked to verify themselves using “Real-Time ID Check”. Selected drivers

are requested to take a selfie, then, this query image is compared with

reference images to verify their identity. Subsequently, the system takes

necessary action, i.e., allows/disallows drivers to offer rides, based on the

obtained verification results from the face recognition algorithm. Uber

claims 99% success rate of this mechanism, however, they have not yet

published any details related to their systems’ robustness against presen-
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tation attacks and about liveness detection.

Table 6.1: Multi-modal (combination of face, voice, or touch) user authentication
schemes.

Reference Modalities Used Algorithms Used Dataset Size Performance

Gofman et
al. [88]

Face, Voice
Latent Dirichlet allocation (LDA) fusion

method
54 EER=2.14%

Soltane et
al. [234]

Face, Voice
Finite Gaussian Mixture Model (GMM)

based on Expectation Maximization
(EM) using score-level fusion

30 EER=0.087%

Wang et al. [271] Face, Voice
Quantization Index Modulation (QIM)
and Gaussian Mixture Models (GMM)

295 EER=2.76−
3.79%

Menzai et
al. [177]

Face, Voice
Dempster-Shafer theorem using belief

function
295 HTER=0.433−

2.875%

Kim et al. [143] Face, Voice
Generalized cross correlation (GCC)

algorithm and AdaBoost algorithm on
Local binary pattern

- Accuracy=95%

Menzai et
al. [178]

Face, voice
Belief functions and Particle Swarm

Optimization (PSO)
295, 52 EER=0.5% to

0.9%
Feng et al. [72] Finger gesture

Authentication
System (FAST)

Random Forest classifier 40 FAR=4.66%,
FRR=0.13%

Aronowitz et
al. [6]

Fingertip-based
writing, Face and

Voice

Dynamic time warping (DTW) 32 EER=0.1% at
quiet place, and
0.5% in noisy
surroundings

Koreman et
al [149]

Voice, face and
signature

Gaussian mixture models (GMMs) 82 EER=2%

Buriro et al. [33] Touch-timings
and hands-

movements to
holding phone

Random Forest (RF) 95 TAR=96

Eastwood et
al. [64]

Face, iris, and
fingerprints

Belief (Bayesian) networks - -

Multi-modal biometric factors can remarkably improve the identity verifi-

cation accuracy of a system by combining the pieces of evidence extracted

from single modalities [135]. Multi-modal systems are also more resilient

against spoofing in comparison to unimodal ones [194]. Our system is

the first multi-modal biometric authentication scheme to address driver’s

authentication problem for ride-sharing services. Similar proposals exist

but only for user authentication on smartphones. Table 6.1 summarizes

the most relevant multi-modal user authentication solutions on smart-
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phone.

Proteus, proposed by Gofman et. al. [88], is a bi-modal biometric verifi-

cation system based on face and voice features, for mobile devices. This

scheme extracts principle components using Principal Component Analy-

sis (PCA) and Mel Frequency Cepstral Coefficients (MFCC) from face and

voice modality, respectively, to construct a bi-model system. The system

was evaluated on a dataset of 54 users and it achieved an Equal Error

Rate (EER) of 2.14% using the latent Dirichlet allocation (LDA) fusion

method. Another bi-modal approach [234] incorporates finite Gaussian

Mixture Model (GMM) based on Expectation-Maximization (EM) and ap-

plies score-level fusion to fuse face and voice modalities. They achieved

an EER of 0.449% for face and 0.003% for voice modalities, in unimodal

settings, and their bi-modal settings yielded an EER of 0.087%, on the

dataset of 30 participants. These experiments clearly reflect the potential

of multi-modal biometrics to enhance the verification accuracy on mobile

devices.

Swiping is a very common gesture required to interact with mobile de-

vices’ touchscreen. It is a collection of touch-points generated while the

user dragged her finger on the smartphone touchscreen [176, 219, 278].

Feng et al. [72] proposed a Finger gesture Authentication System us-

ing Touchscreen (FAST). They applied the Random Forest classifier and

achieved a FAR of 4.66% and False Reject Rate (FRR) of 0.13% for the

continuous post-login user authentication on a dataset of 40 users. An-

other proposal by Aronowitz et al. [6], combines user’s fingertip-based

writing on multi-touch screens with face and voice features and uses dy-

namic time warping (DTW) engine for user verification. They achieved

an EER of 0.1% at a quiet place, and 0.5% in noisy surroundings, on their

collected dataset of 32 users (20 males and 12 females).

Koreman et al. [149] leverage voice, face, and signature modalities, for
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user authentication on mobile devices. This approach yielded an EER of

2% using Gaussian mixture models (GMMs). The system utilized BANCA

audio-visual database [201] and BIOMET on-line signature database [85]

comprising of the data collected from 82 and 84 subjects, respectively.

The authors also checked each modality in unimodal settings and achieved

an EER of 28%, 5%, and 8%, for face, voice, and signature modalities, re-

spectively. The fusion of three modalities enhanced the system accuracy

and reduced the EER to just 2%.

Liveness detection is generally deployed to detect spoofing attacks. Ac-

cording to Zhang et al. [284], mobile audio hardware can be used to

exploit the articulatory gesture of a user to detect liveness and their pro-

posed “VoiceGesture” system achieves 99% detection accuracy at approx-

imately 1% EER. Swipe gesture is the result of a user subconscious muscle

memory involving a sweeping movement on the touchscreen developed

over a period of time due to the constant use of a smartphone. Swipe

gestures are arguably considered hard to be imitated and the impostor’s

attempts are easily detectable [80]. Also, swipes have no explicit visual

indicators which make it furthermore resistant to mimicry attacks [61].

Lastly, it is comparatively easier to perform liveness detection on faces

because some of the robust liveness detection methods are already avail-

able [144], to prevent face spoofing attacks [193].

Our proposed scheme DRIVERAUTH is different from existing state-of-the-

art in several ways: firstly, DRIVERAUTH is a client-server-based multiuser

(multiclass) verification solution in contrast to the existing multimodal

systems [88]. More specifically, we model this as a multi-class classifi-

cation problem (classifier training with multiple users) whereas, the ex-

isting approaches dealing with smartphone user authentication are one-

class or binary class classification problems. Secondly, DRIVERAUTH uti-

lizes both physiological and behavioral biometric modalities, i.e., swipe,
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face, and text-independent voice, equipped with liveness detection as a

result more resilience to spoofing.

6.3 Problem Description

On-demand ride and ride-sharing services have revolutionized the point-

to-point transportation market, in a short period. Technology-based com-

panies, e.g., Uber, Ola, Lyft, Blablacar, Sidecar, etc., connect customers

and drivers using dedicated smartphone-based applications. Customers

interested in the services and individuals aspiring to become driver-partner

can download these dedicated applications free-of-cost, available at online-

app-stores, e.g., Play-store, App-store, Microsoft-store, etc.

To become a driver-partner, an individual needs to be older than 21 years

old, should have a valid driving license, valid vehicle registration, clean

driving record, and have no criminal history [261]. These background

checks are performed by the service provider just once, before the regis-

tration. Once the individuals are accepted as driver-partners, they can

accept rides’ requests, reserved by customers, using dedicated driver-

application on their smartphones, and perform their duty. Surprisingly,

the system providers do not verify their drivers’ identity while they accept

a new ride, requested by the customers [182]. Thus, system providers are

neither able to monitor fake drivers [116] nor they can curb dishonest

drivers with multiple identities [273]. Therefore, the safety and security

of the customers are always at risk, and this risk is increasing with the

increasing number of abuses reported every year [274].

The safety and security of a customer is a huge challenge in on-demand

ride and ride-sharing systems, despite being convenient, fast, and eco-

nomical. Considering the volume of rides (alone, Uber and Lyft are pro-

viding over 18 million rides per day [56, 57]), even if only one rider

in a million is victimized, this sum up to 18 victims per day. As driver-
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partners can join and leave the service at any time without any obligation

is difficult to deter abuses.

6.3.1 Threat Model

We consider two different types of malicious users in our scenario: the

first type of adversary can impersonate a driver-partner by imitating a

legitimate driver. The second type of attacker colludes with a legitimate

driver-partner and share with him/her the registration to provide rides

on behalf of the legitimate driver.

Both adversarial situations can be countered using DRIVERAUTH. DRIVER-

AUTH leverages swiping, voice, and face combined to verify the legitimate

driver at run-time and would require the driver’s presence every time she

accepts a new ride request. Additionally, the fusion of the three modali-

ties increases the resilience to common attacks, i.e., presentation, mimic,

and replay attacks [17, 88, 149].

6.3.2 Risk-based Verification Mechanism

According to ISO 9000:2015 [127], risk is the “effect of uncertainty on

objectives”. The objectives can be defined as the strategic, tactical, or op-

erational requirements pertaining to an ecosystem. Whereas, the effect
can cause both positive or negative deviations on the objectives. A risk-
based verification mechanism aims at determining uncertainties to mini-

mize their effects on the set objectives.

At present, on-demand ride and ride-sharing services use the concept

of simple verification mechanism [92], in which, users are verified at

the time of entry only, and users are considered legitimate until they

quit the system. However, with reference to the threat model, discussed

in section 6.3.1, the drivers’ verification at the time of each new ride-

assignment becomes imperative, to ensure customers’ safety and secu-
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rity. In that case, a simple verification concept does not suffice owing to

their limitations to prevent potential risk hazards. Therefore, a risk-based

verification mechanism could be a potential solution.

Figure 6.1: Risk-based verification mechanism.

The life cycle of a typical risk-based verification mechanism consists of

users’ authorization at the time of entry and their verification at every

critical operation. As illustrated in Figure 6.1, users can be authorized to

use the system by registering to it, i.e., Entry, and once they unregistered

themselves, i.e., Exit, they are unauthorized to use the system. At the

time of registration, users are added to the database for a reliable 1−to−1
verification. Every time (T1...Tn) users carry out a critical activity (e.g.,

accept a ride request) they are verified even though they are legitimate

drivers. If an incident is reported, it is added to the incidents database

tagged with the responsible user identity, for reference purposes.

The concept used in Risk Profiling tools [63, 153] to assess risk at differ-

ent stages of a critical system can be applied here for proactive risk assess-

ment [64] by analyzing the incidents database. This incidents database

can be further utilized for Evidence Accumulation and Risk Assessment

(EA&RA) to evaluate the driver’s behavior in the past and present using

special risk indicators [154].
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6.4 Our Solution: DRIVERAUTH

DRIVERAUTH authenticates the drivers at the time of registration and at

the time of new ride-assignments. Each service provider has its dedicated

system and application for its driver-partners, however, the core func-

tionalities are the same. Thus, DRIVERAUTH can easily be integrated into

these systems and provide the required safety and security to customers.

Figure 6.2: DRIVERAUTH architecture.

DRIVERAUTH uses the client-server architecture [94] as illustrated in Fig-

ure 6.2. The client application consists of a data acquisition module, an

accumulator/encryption engine, and a timing generator. Data acquisition

module collects the swipe data, voice-print, and face-image in a sequen-

tial manner using blocking-call-mechanism, i.e., the application allows to

proceed only after it receives the required user’s input. The operational

details of the data collection process for driver verification are described

in Section 6.4.3. The data collected, i.e., touch-points data, 2 − seconds
voice-prints, and a face image, are temporarily stored by accumulator and
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encryption engine module for encryption, packaging, and time-stamping.

With no delay, data is transferred to the server.

The server side consists of a) a decryption engine, b) a decomposer, c)

signal preprocessing, d) features extraction module, e) feature fusion

module, f) feature selection module, g) template creation module, and

h) database module. The decryption engine decrypts the user-data as

received from the client application, which is further decomposed into

individual modalities. As the proposed scheme uses the multi-modal

mechanism, features are fused and selected on a merit basis entailing the

selection of only productive features for user authentication. The drivers’

template is created based on the selected features subset and is then

stored in the central database as training templates with a proper label.

Later, a similar procedure is applied to the testing data to generate the

testing template. To verify the identity of the claimant, the testing tem-

plate is matched against the existing labeled training templates, present

in the database.

6.4.1 DRIVERAUTH Design

On-demand ride and ride-sharing systems have three primary stakehold-

ers: a) centralized smartphone-based administration, b) customers and

c) drivers, as illustrated in Figure 6.3.

DRIVERAUTH verifies the person both at the time of registration and at

new ride-assignments. A security layer is stitched to the driver applica-

tion to collect the biometric modalities, e.g., voice, swipe gesture, and

face. Simultaneously, the captured data (query input) is transferred to

the server for the driver’s identity verification. Also, this query input can

be looked up in the stored database for any incident flagged against it.
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Figure 6.3: On-demand ride and ride-sharing system stakeholders.

6.4.2 Verification during Driver-partners Registration

Verification process during driver-partners registration is illustrated in

Figure 6.4.

1. Individuals can apply to become drivers by filling the application

form using dedicated driver-application (see Figure 6.4) on their

smartphone.

2. During the registration process, DRIVERAUTH collects the swipe ges-

ture, text-independent voice, and face samples of a person.

3. At the server (see Figure 6.4), query input is first compared with the

stored driver-partner templates in the database. If this query input

is positively verified, the registration is completed. If there is a new

registration, the new template is added to the database confirming

the new registration.

Thus, DRIVERAUTH minimizes the threats posed by dishonest drivers by

preventing multiple or forged account creation.
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Figure 6.4: Overview of driver-partners registration process.

6.4.3 Verification during New Ride Assignment

Drivers verification process during new ride booking is illustrated in Fig-

ure 6.5.

Figure 6.5: Overview of new ride assignment process.
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1. The customers can book the ride by setting up their location us-

ing the dedicated on-demand ride and ride-sharing application on

their smartphones. Subsequently, they can locate the available cabs

(along with the driver’s picture and vehicle details) near to their lo-

cation to reserve the ride by selecting one of the cab [259].

2. On receiving a booking request from a customer, the system provider

forwards the request to the respective driver.

3. The driver upon receiving the alert can continue to accept the new

ride-assignment by swiping on the touchscreen.

4. After the swipe input is detected, the application requires a short

voice-print (2 − seconds of a voice recording) from the driver. This

voice-print can be text-independent that provides flexibility to the

drivers to use any language of their choice.

5. After the successful voice detection, the application turns on the

camera and prompts for the driver’s selfie to conclude the ride-assignment

acceptance process.

6. Subsequently, DRIVERAUTH client application transfers the encrypted

driver’s biometric modalities, i.e., swipe gesture, voice, and face, to

the server. In the meantime, the driver verification is performed on

the server.

7. Based on the driver verification results, the system provider can ap-

prove the ride-assignment to the respective driver and simultane-

ously, intimate the customer.

8. In any case if the driver abuses or assaults the rider, then the rider

can report the incident, immediately. The reported incident can be
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tagged with the driver’s identity which will automatically be added

to the incidents database.

DRIVERAUTH minimizes the potential risks towards the safety and secu-

rity of riders by verifying the drivers’ identity pro-actively, at the time of

every new ride assignment.

6.4.4 Liveness Detection and Spoofing Attacks Prevention

Liveness detection helps to distinguish between living and non-living,

during the authentication process and, thus, prevents spoofing attacks at

the data acquisition module [213]. DRIVERAUTH data acquisition mod-

ule acquires data from three modalities, i.e., voice, swipe, and face, as

described in Section 6.4.3. For voice liveness detection, the data acqui-

sition module incorporates phoneme sound localization mechanism tak-

ing advantage of the user’s unique vocal system and high-quality stereo

recording of smartphones [285]. Studies have shown that swipe ges-

ture is inherently difficult to spoof [61], however in the future, we will

incorporate technique for swipe liveness detection too. Similarly, face

modality liveliness indicators like eye blinking, mouth movements, face

posture, and motion analysis, etc., are exploited for multi-spectral and

reflectance analysis [167].

Thus, DRIVERAUTH prevents the spoofing or presentation attacks at the

sensor level by utilizing available mechanisms to detect liveness for each

modality.

6.5 Methodology

DRIVERAUTH exploits three biometric modalities, i.e., swipe gestures,

voice, and face, and collects their corresponding data, while the users

interact with a driver-application on their smartphones. Both physical
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and behavioral biometric modalities can be easily collected using smart-

phone’s built-in hardware sensors, such as a camera, microphone, and

touchscreen. We modeled this remote-user-verification as a multi-class
classification problem because the scenario demands simultaneous classi-

fier training and testing for multiple drivers, however, each query input

needs to be assigned only to one class.

6.5.1 Datasets

We evaluated DRIVERAUTH on a dataset of 86 persons. We prototyped an

Android application to collect swipe and voice data. And, for face data,

we utilized the MoBio database [171].

We outsourced swipe and voice data collection activity to Ubertesters1 -

a crowd-sourcing platform to collect data in the wild (unsupervised envi-
ronment). We paid to Ubertesters on an hourly basis per tester to carry

out our experiments. All the information regarding App setup and data

collection provided by us is duly informed to each tester by Ubertesters,

and we ensured not to record or collect any information that can link the

collected data to the testers. During the experiment, the data generated

on each tester’s smartphone were securely transferred to our servers in

an automated manner. Interested readers can refer to the “Ubertesters

License and Terms of Service” available online2.

For our experiment, Ubertesters recruited more than 150 vetted testers

worldwide having diversified background and experience. However, some

testers’ data were rejected for reasons, such as 1) tester’s smartphones

were not found compatible with our experiment because it did not have

the required sensors, 2) testers could not complete the experiment as

instructed, or 3) testers’ data was noisy.

1https://ubertesters.com
2https://ubertesters.com/license-page/
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Finally, we created a chimerical dataset by merging these three modali-

ties, i.e., swipe gesture, voice, and face, for each label. As all the three

modalities are mutually independent of each other, they can be aug-

mented randomly to form a single dataset [214]. Another benefit of

the chimerical dataset is that biometric traits for each label are disjoint,

which restricts the multi-modal classification model to establish any strong

linkage to the testers, thus, ensuring testers’ privacy during the experi-

ment.

6.5.1.1 Swipe & Voice Data Collection

The prototype application was developed for Android OS (OS version

4.4.x and above). It uses built-in hardware, i.e., touchscreen and micro-

phone, to acquire touchpoints data during swipe action and recording of

the user’s voice. Overall, we collected 10, 320 samples. The experiment

was conducted in 4 sessions for 3 days. Each user trained the application

for 90 times in 3 sessions (30 times per session) within 15 minutes each.

In the fourth session, each user tested the application for 30 times. A to-

tal 120 observations were collected per user with 7, 740 (86× 90) training

samples and 2, 580 (86× 30) testing samples.

As our developed application uses a client-server architecture, the data

generated as a result of the user’s actions, i.e., swipe and voice command,

is encrypted and zipped on the client device, i.e., smartphone, and is au-

tomatically transferred to the server, for further processing. On-demand

ride and ride-sharing companies are operating worldwide.

Our prototype collects 2 − seconds text-independent voice-print (e.g., “I

accept the ride to Y”), allowing drivers to interact in the language de-

pending on the country where they operate or the company for which

they work. Therefore, we do not limit voice modality to any specific

language or the particular word-sets.
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Table 6.2 presents the demographics data of users participated in this

experiment. Among 86 participants, 56 were males, 29 were females with

77 right-handed and 9 left-handed. Majority of participants were in Asia

(28) and Europe (52) while performing the experiment, with 60 were

between 20 to 30, 17 were between 30 to 40, and 3 were above 40.

Table 6.2: User demographics.

# Parameter Description
1 No. of Users 86

2 Gender 56 males, 29 females, 1 undisclosed
3 Handedness 77 Right, 09 Left
4 Age Groups [20 to 30] - 60, [30 to 40] - 17, 40 plus - 3
5 Participants Location Asia - 28, Europe - 52, North America - 5, South America - 1

6.5.1.2 MOBIO Dataset

This public dataset consists of face samples collected from 152 subjects

in 2 phases using a NOKIA N93i mobile phone under a realistic and un-

controlled environment over a period of 18 months from six sites across

Europe [171]. In the first phase, 21 videos per participant were collected,

whereas 11 videos per participant were acquired in the second phase. The

data acquisition was spread over 6 different sessions per phase for each

participant. The database has 1 : 2 female to male ratio, approximately.

However, we picked only 86 subjects out of 150 to match the same num-

ber of users as to our dataset.

6.5.2 Feature Extraction

In this section, we explain the extraction of features for all the three

selected modalities using statistical methods. Univariate statistical prop-

erties, i.e., mean, standard deviation, kurtosis or skewness has several
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benefits, they reduce the dimensionality of raw data, improve the signal-

to-noise ratio, and they can be processed efficiently [163].

• Swipe Modality:

A sequence of touch-events is generated every time users swipe on

smartphone touchscreen using their finger. These touch-events are

collected and encoded as an input sequence of finite length (n).

Where, each sequence contains several attributes like time-stamp

of the touch event (tn), x-and y-coordinate of the touch point (xn,

yn), pressure calculating how hard the finger was pressed on the

screen (pn), and size of touch area (sn). We processed the collected

sequences and extracted 33 features as listed in Table 6.3. The final

feature vector is the concatenation of all the 33 features.

Table 6.3: List of swipe features.

No. Swipe Features
1-4 Duration 1 Average event size 2 Event size down 3 Pressure down 4
5-8 Start X 5 Start Y 6 End X 7 End Y 8
9-12 Velocity X Min 9 Velocity X Max 10 Velocity X Average 11 Velocity X STD 12
13-16 Velocity X VAR 13 Velocity Y Min 14 Velocity Y Max 15 Velocity Y Average 16
17-20 Velocity Y STD 17 Velocity Y VAR 18 Acceleration X MIN 19 Acceleration X Max 20
21-24 Acceleration X AVG 21 Acceleration X STD 22 Acceleration X VAR 23 Acceleration Y MIN 24
25-28 Acceleration Y Max 25 Acceleration Y AVG 26 Acceleration Y STD 27 Acceleration Y VAR 28
29-32 Pressure Min 29 Pressure Max 30 Pressure AVG 31 Pressure STD 32
33 Pressure VAR 33 - - -

• Voice Modality:

The voice signal contains 2 channels sampled at 44100 Hz with 16

bits per sample. The signal is first filtered using a bandpass filter.

It can be observed in Figure 6.6 that by applying a bandpass filter

there is a significant improvement in signal-to-noise ratio.

Then, we computed MFCC [68] from these filtered voice signals.

MFCCs are analogous to filters (vocal tract) in the source-filter model
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Figure 6.6: Voice signal filtering result.

of speech. Relatively, the frequency response of the vocal tract is

smoother than the source of voiced speech. Thus, the vocal tract

can be estimated by the spectral envelope of a speech segment. This

technique is often used in voice recognition because it tracks the

invariant feature of human speech among different persons.

Figure 6.7 illustrates the MFCCs computation process. After im-

proving the signal-to-noise ratio, the Fourier transform of a window

of the voice signal is performed, then scaling of frequency axis to

the non-linear Mel scale (using triangular overlapping windows) is

done. In the next step, a Discrete Cosine Transform (DCT) is per-

formed on the log of the power spectrum of each Mel band. The

MFCCs are the amplitudes of the resulting spectrum, which is a 2−D
vector of size 13 × variable length (the length of vector depends on

the voice signal duration).
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We computed 4 statistical features, namely mean, standard devia-

tion, kurtosis, and skewness, from a 2-D MFCC vector. Thus, the

total 8 statistical features each of size 1×13 are generated from each

left and the right voice channel. Finally, these 8 vectors of size 1×13

are concatenated to form a single 1−D feature vector of dimension

1× 104.

Figure 6.7: Voice features: MFCC computation process.

• Face Modality:

On the server, the region of interest (ROI) is extracted automatically,

by cropping the original images, as illustrated in Figure 6.8. Then,

each image is converted into an 8-bit grayscale format. We used the

Binarized Statistical Image Features (BSIF) filter to obtain statistical

features [139].

Given an image patch X of size l×l pixels and a filter W of size n×n
pixels, where n is less than l. The filter response si can be obtained

as shown in Equation 6.1.

si = X[l, l] ∗W [n, n] (6.1)

We extracted 256 features per image using a filter of size 3×3 with 8

bits word-length. BSIF filter applies learning, instead of manual tun-

ing, to compute statistically meaningful representation of an image.
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Figure 6.8: Face features: BSIF computation process

6.5.3 Features Concatenation

Data fusion in a biometric system is a process of integrating multiple

modalities to produce more accurate, consistent, and comprehensive in-

formation of users. Biometric researchers often consider that early data

fusion increases the accuracy of the system [135, 88]. However, sensor-

level fusion does not yield the best results owing to the presence of noise

during data acquisition. Thus, feature-level fusion is a better choice to

improve the accuracy of the system, because feature representation re-

flects more relevant information on users. Lastly, this setting is preferred

as it combines independent modalities [165]. Therefore, we applied fea-

ture level concatenation to generate the final features vector.

6.5.4 Feature Subset Selection

Feature selection plays an important role in the fine-tuning of the chosen

classifiers. It helps in reducing the dimension of data as well as prevent

130



CHAPTER 6. DRIVERAUTH

the over-fitting by identifying productive features out of the full feature-

set. This process not only maximizes the accuracy of a classifier but also

contributes to improving the classifier’s decision-making time. Feature

selection methods can be categorized as Filter, Wrapper, Embedded, and

hybrid methods, based on their relationship with the construction of a

model [263]. We considered Information Gain Ranking Filter[276], Sim-

ple Correlation Ranking Filter [276], CFS Subset Evaluator with greedy

forward search [276], and ReliefF [263] to obtain most productive fea-

ture subset, for our analysis. However, relief-based algorithms (RBAs)

provided the best accuracy result.

RBAs belong to the individual evaluation filter method. The advantages

of RBAs are: 1) they can detect conditional dependencies between fea-

tures, 2) they provide a unified view on the estimation of the features

in classification, and 3) they are relatively faster (with asymptotic time

complexity of order O (instances2× features)) to other feature selection

methods [263, 181].

RBAs compute ranks and weights of features to derive feature statistics

using the concept of nearest neighbors as shown in Equation 6.2.

[RANKED,WEIGHT ] = relief(X, Y,K) (6.2)

Where, X (m × n) is a given 2-d dataset, Y (m × 1) is the response

vector, and K is a number of nearest neighbors. RANKED are indices of

columns in X ordered by attribute importance, meaning RANKED[1] is

the index of the most important feature. WEIGHT are features weights

ranging from −1 to + 1 with large positive weights assigned to most

important attributes.

We performed feature selection in three settings and evaluated DRIVER-

AUTH in unimodal, bimodal, and trimodal settings. Then, we tested and

validated our system on both the full feature set and selected feature set

131



CHAPTER 6. DRIVERAUTH

to achieve an optimal design. In the following sections, we explain our

feature selection strategy for our experiments.
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Figure 6.9: Unimodal system: plot between features vs. weights.

• Unimodal: We obtained in total 33, 104, and 256 features from pro-

cessed swipe, voice, and face modalities, respectively, to design the

unimodal systems. We evaluated the system firstly on the full fea-

ture set. To evaluate the system on the selected feature set, we es-

timated the importance of features of each modalities using ReliefF

algorithm3. Then, we picked top 30% or 20 features of the total

(whichever is less) as per their weights. The features vs. weight for

the three modalities are shown in Figure 6.9.

The number of features required for the best classification model

creation was computed, empirically. In case of a swipe, the total

number of features available are 33, we, firstly, trained our classi-

fication model by picking all the features with positive rank, i.e.,

above zero as shown in Figure 6.9a and observed that the same TAR

is achieved with top 11 features, i.e. 33% of total available features

as demarcated by a red line in Figure 6.9a. Whereas, in case of voice

and face, the classification model is trained by picking top 33% of to-
3https://in.mathworks.com/help/stats/relieff.html
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tal available features, i.e., 34 and 85 features, respectively. But, we

observed that with only the top 20 features the same TAR is achieved

as demarcated by a red line in Figure 6.9b and Figure 6.9c.

1 34 137

0

2

4
·10−2

W
ei

gh
ts

Swipe features (1 to 33)

Voice features (34 to 137)

(a) Swipe + Voice features (31)

1 34 289

0

2

4

6

8

·10−2

W
ei

gh
ts

Swipe features (1 to 33)

Face features (34 to 289)

(b) Swipe + Face features (40)

1 105 360

0

5

·10−2

W
ei

gh
ts

Voice features (1 to 104)

Face features (105 to 360)

(c) Voice + Face features (40)

Figure 6.10: Bimodal system: plot between features vs. weights.

• Bimodal: We concatenated swipe and voice, swipe and face, and

voice and face creating feature set of dimension 137, 289, and 360,

respectively, to design a bimodal system. In this case, for each com-

bination, the two feature sets are firstly fused and then ranked using

the ReliefF algorithm. Finally, the system is evaluated on a full and

selected feature set. The dimension of selected features for swipe +

voice, swipe + face, and voice + face are 31, 40, and 51, as demar-

cated by a red line in Figure 6.10a, Figure 6.10b and Figure 6.10c,

respectively.

• Trimodal: We concatenated the feature sets of each modality to-

gether to create a single feature set of dimensions 393 for evaluation

of DRIVERAUTH in trimodal settings. Figure 6.11 represents features

ranking obtained by applying the ReliefF algorithm on the fused fea-

ture set. Finally, the system is evaluated on both full and selected

feature-set of dimension 51.
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Figure 6.11: Trimodal system: plot between features vs. weights (51).

6.6 Validation

We utilized Classification Learner [168] to generate a classification model.

Classification Learner can perform automated training to search for the

best classification model type, e.g., support vector machines, nearest

neighbors, ensemble classification, etc. We used 5-fold cross-validation

to assess the classifiers’ prediction performance. Cross-validation protects

against over-fitting by partitioning the data set into folds and estimate

accuracy on each fold. Thus, this method gives a good estimation of the

predictive accuracy of the final model trained with full data.

However, security-sensitive infrastructures, e.g., banks, prefer to design

classification models with a fewer number of training samples (typically

up to 10). Thus, we evaluated our trimodal system with the most pro-

ductive feature-set achieved by applying the ReliefF algorithm for a dif-

ferent number of training samples, i.e., 10, 20, 30, and 40, to determine
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its effectiveness. To achieve it, we split the dataset into two parts, i.e.,

training- and testing- datasets and evaluated the model in two different

scenarios. In the first scenario, we utilized a designated number of train-

ing samples (n) to train the classifier and used 120 − n samples to test

the model. Here, we presented the result in terms of TAR, which can

be further studied in Figure 6.12. In the second scenario, i.e., the zero-

effort attack scenario (where an impostor could only make random tries

to access the system without knowing the actual user), we excluded le-

gitimate samples, i.e., 120 samples, of each user and used the remaining

samples, i.e., 10200 (85× 120) to attack the model, for all the remaining

85 users. Here, we presented the results in terms of FAR, which can be

further studied in Figure 6.13.

6.6.1 Classification Methods

In a biometric system, the role of a classifier is to recognize the sim-

ilarities or detect the anomalies between the query input and stored

templates to authenticate a user. We selected Support Vector Machines,

Nearest Neighbor, and Ensemble classifiers to evaluate DRIVERAUTH, us-

ing a multi-class classification model. These classifiers are well suited

for the multi-class environment and have shown to be very effective for

similar biometric modalities, i.e., swipe, voice, and face, in recent stud-

ies [72, 139, 165].

6.6.2 Results

Table 6.4 and 6.5 show the performance of classifiers with full and se-

lected features, respectively.

The results are presented for each modality, independently, as well as for

binary and ternary feature-level fusion. The performance is measured in

terms of TAR averaged for all the 86 users with 120 observations per user
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Table 6.4: Performance of classifiers with full features for unimodal, bimodal and tri-
modal configuration based on 5-fold cross-validation.

Unimodal Bimodal Trimodal
Modalities Swipe Voice Face Voice +

Face
Swipe

+ Voice
Swipe
+ Face

Swipe
+ Voice
+ Face

Total
number of
features

33 104 256 380 137 289 393

Classifier TAR(%)
Quadratic

SVM
87.0 90.9 91.2 98.2 95.1 97.5 99.0

Ensemble
Bagged

Tree
84.7 88.2 85.0 95.2 94.3 96.6 98.2

Weighted
KNN

70.2 85.4 88.7 94.7 90.4 94.1 96.7

Table 6.5: Performance of classifiers with selected features for unimodal, bimodal and
trimodal configuration based on 5-fold cross-validation.

Unimodal Bimodal Trimodal
Modalities Swipe Voice Face Voice +

Face
Swipe

+ Voice
Swipe
+ Face

Swipe
+ Voice
+ Face

Number of
selected
features

11 20 20 40 31 31 51

Classifier TAR(%)
Quadratic

SVM
79.99 89.60 90.61 97.63 93.53 98.04 99.04

Ensemble
Bagged

Tree
77.66 86.00 86.72 95.04 91.89 97.08 98.02

Weighted
KNN

68.83 86.51 90.71 96.36 90.68 96.93 98.26
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using a 5-fold cross-validation method.
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Figure 6.12: True acceptance rate (TAR) with selected features for trimodal configura-
tion with 10, 20, 30, and 40 training samples.
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Figure 6.13: False acceptance rate (FAR) with selected features for trimodal configura-
tion with 10, 20, 30, and 40 training samples.
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Figure 6.12 and 6.13 show the results of the trimodal system for 10, 20,

30, and 40 training samples with selected feature-set, in term of TAR and

FAR, respectively.

TAR=0.9044, FAR=0.001

(a) 10 Training Samples

TAR=0.9519, FAR=0.0004

(b) 20 Training Samples

TAR=0.9576, FAR=0.0003

(c) 30 Training Samples

TAR=0.9648, FAR=0.0002

(d) 40 Training Samples

Figure 6.14: Average ROC curves of EBT classifier for different training samples.

Managing ROC curves for a multi-class classification problem is much

more complex in comparison to 2-class classification [70]. Typically, in

a multi-class classification model with n-classes, the resultant confusion

matrix having dimension n by n possesses n correct classifications (the

major diagonal entries) and n2 =-n possible errors (the off-diagonal en-

tries). According to Fawcett [70], a class reference formulation is an effi-

cient method to handle n-classes by producing n-different ROC graphs.
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Specifically, if C is the set of all classes, ROC graph i reports the classi-

fier performance per class ci by plotting positive results (Pi), i.e., TAR, as

shown in Equation 6.3 and negative results (Ni), i.e., FAR, as shown in

Equation 6.4.

Pi = ci (6.3)

Ni =
⋃
j 6= i

cj ∈ C (6.4)

This method is reasonably flexible as an optimal threshold ti can be set,

at which TAR is maximum and FAR is minimum. Thus, improving the

overall performance of the classification model.

Figure 6.14 illustrates average ROC curves of EBT classifier for (a) 10, (b)

20, (c) 30, and (d) 40 training samples. In the two-dimensional graphs

as shown in Figure 6.14, TAR is plotted on the Y-axis, and FAR is plotted

on the X-axis, depicting relative trade-offs between the true positives and

false positives. Coordinate (0, 0) represents the strategy of never issuing

a positive classification; such a classifier commits no false-positive errors

but also determines no true positives. However, the opposite strategy, of

unconditionally issuing positive classifications, is represented by coordi-

nate (1, 1). Whereas, coordinate (0, 1) represent the perfect classification

strategy of maximizing TAR and minimizing FAR. Readers can observe in

Figure 6.14 with the increase in the number of training samples classifier

performance also tends to improve, accordingly.

6.6.3 Discussion on Results

The cross-validation method is used to evaluate how well the model is

trained and how it performs when it is tested on the test dataset. K-

fold cross-validation is popular because it is computationally cheap as
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compared to other cross-validation variants. In K-fold cross-validation,

the dataset is divided into K equal folds and the model is trained on the

dataset of K − 1 folds, and the remaining fold is used to test the system.

The process is repeated K times. Cross-validation is preferred when the

dataset size is small and it ensures the testing of all the samples. As

we had 120 samples for each user, we started the evaluation with 5-fold

cross-validation. SVM performed well in this scenario resulting in 99.04%

TAR.

Training/Testing split is another method to evaluate the performance of

the classifier. The dataset is generally split into two parts, i.e., training

and testing sets. The model is trained on the training set (generally, 66%

of the whole data) and the remaining test dataset is used to test the

model.

In real-world scenarios, e.g., banking applications, generally, the systems

require a few attempts to train the classifier and is evaluated every time

the user wants to access their services. Thus, it is worthy to test the

classifier with a few numbers of training samples and check for the per-

formance. We tested the pre-trained classifier (trained on 10, 20, 30, and

40 training samples each) and report our obtained results.

In the case train/test split scenario, the EBT classifier performed better

than the SVM and KNN classifiers owing to its ability to reduce the vari-

ances and affinity against over-fitting with fewer training samples. It can

be noticed that with an increase in the number of training samples, the

performance (TAR and FAR) of each classifier improves. For instance, the

TAR of EBT classifier improved by +4.75%, +0.57% and +1.29%, whereas

FAR became better by −0.06%, −0.01% and −0.01%, with 20, 30 and 40

training samples in comparison to performance with 10 training samples.

The same trend can be observed for the other 2 classifiers, i.e., SVM and

KNN, in Figure 6.12 and 6.13.
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6.7 Summary

DRIVERAUTH is a highly accurate drivers’ verification system designed for

the on-demand ride and ride-sharing services in which customers and the

driver-partners are connected to the service provider (server) by the ded-

icated smartphone applications (clients). Based on the news related to

violent altercations, or assaults by malicious drivers and fake drivers of-

fering rides [116, 266, 273, 43]. It is evident that the safety and security

of customers are obviously at risk. Therefore, the risk-based verification

mechanism can equip service providers to verify the subject at the time of

critical decisions (e.g., accepting new registration from a person to join

as a driver or assigning new ride assignments to the driver-partners) and

trusting the subject with the lives of customers.

We presented a risk-based multi-modal biometric-based driver authen-

tication scheme that uses swipe gesture, voice, and face modalities to

profile the driver’s identity. We evaluated, DRIVERAUTH, on a dataset of

86 users with 120 observations per user and achieved a TAR of 99.0%,

98.2%, and 96.7% for a trimodal system using SVM, EBT, and KNN classi-

fiers, respectively, on the full feature set.

Feature selection plays a critical role in optimizing the classification model

in terms of reduction of feature set dimension and improvement in the

decision-making time of computationally exhaustive classifiers. We achieved

a TAR of 99.04%, 98.02%, and 98.26% using SVM, EBT, and KNN classi-

fiers, respectively, on a selected feature set of dimension 51, which is

one-fourth of full feature set, approximately.
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Chapter 7

RIDERAUTH: A perspective study
towards biometric-based rider
authentication schemes for driverless
taxis

RIDERAUTH is a proposal for biometric-based secure and usable riders

authentication schemes for driverless taxis. Our study is complemented

by an online survey that comprises 75 responses from participants, world-

wide. We published the survey on social media platforms like Linkedin,

Facebook, Twitter, and various public transport users groups to collect

public poll for rider authentication for driverless taxis. Approximately,

90% of the overall participants in our survey either strongly agreed or

agreed with the necessity to deploy biometric-based rider authentication

for driverless taxis.

Some sections of this chapter are published in [97]: Sandeep Gupta, and
Bruno Crispo. “A Perspective Study Towards Biometric-based Rider Authenti-
cation Schemes For Driverless Taxis.” In proceedings of the 3rd International
Conference On Innovation And Intelligence For Informatics (3ICT), Bahrain,
2019.
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7.1 Introduction

Driverless vehicles are no more science fiction. Driverless vehicles exploit

Artificial Intelligence (AI) to offer rides to their users with minimal or

no human input. In 2019, Waymo1 unveiled driverless taxi services in

the United States dubbed as Waymo One (refer Figure 7.1). Customers

can book Waymo’s service by using a smartphone application, similar to

the on-demand ride-booking applications provided by companies, such

as Uber, Lyft, etc. Typically, driverless taxis use Artificial Intelligence

(AI) by exploiting sensors and digital systems to control, navigate, and

drive the vehicle. However, riders authentication, i.e., verifying the riders

identity, is an important requirement among the many other overarching

challenges in driverless taxis.

Figure 7.1: Driverless taxis by c©Waymo One1.

Driverless vehicles as taxis are indeed evolving an entirely new trans-

portation concept. They have reached a point where they can be used

to provide Transportation-As-A-Service2 (TAAS) to facilitate rides to their

customers with high efficiency and safety on the road, steered by efficient

IoT architectures [210]. Typically, the servers, managed by multinational

1https://waymo.com
2https://taas.technology
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companies (e.g., Waymo), operate driverless taxis for public transporta-

tion, whereas the clients are simply the smartphone-based applications

that can be used by customers for one-time registration and booking rides

with driverless taxis anytime anywhere.

Several studies have been performed to assess crucial security mecha-

nisms deployed in driverless vehicles to ensure secure sensing, position-

ing, vision, and networking [50, 103, 148]. However, unsupervised phys-

ical access to riders in the driverless taxis may lead to unexpected safety

and security risks. Section 7.3.1 outlines the potential risks that may ma-

terialize as a consequence of customers’ diversified motivations like cu-

riosity, monetary benefits, malicious intentions, or terrorism [50]. Thus,

research on rider authentication schemes for driverless taxis is essential

for the security and safety of their customers and the general public.

We perform a perspective study to design biometric-based rider authen-

tication schemes for driverless taxis. For this study, we conducted an

online survey to gather public opinion on different biometric traits for

rider identification. In the survey, we also collect information to under-

stand the security and usability criteria to design a secure and usable

rider authentication schemes. Then, we propose a rider authentication

framework for driverless taxis to verify customers in real-time before al-

lowing the rides, by using a client-server architecture.

7.1.1 Contributions

The main contributions are presented below:

• Online survey to study public opinion about rider authentication for

driverless taxis by publishing the survey on social media platforms

like Linkedin, Facebook, Twitter, and various public transport users

groups.
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• Proposal for a real-time rider authentication system to verify the cus-

tomers before allowing them the rides to foster safety and security

to their customers and the general public. The rider authentication

system for driverless taxis is designed taking into consideration the

results of the survey.

7.1.2 Chapter Organization

The rest of the chapter is organized as follows: Section 7.2 presents a

study of user authentication schemes that use physiological and behav-

ioral biometric traits that can be deployed for rider authentication. Sec-

tion 7.3 discusses the motivation for rider authentication for driverless

taxis. Section 7.4 presents the survey results with the analysis of the

rider authentication requirements. Section 7.5 presents the proposal for

the rider authentication framework by considering survey results.

7.2 Related Work

This section surveys different physiological and behavioral biometric-

based user authentication schemes that can be deployed for rider au-

thentication in driverless taxis. In autonomous vehicles to improve the

human-vehicle relationship biometric devices can be either embedded

inside the vehicle or can be included as the accessories and wearables,

externally [161]. These biometric devices can enhance the security, effi-

ciency, and reliability of autonomous vehicles by authenticating genuine

riders.

Face, fingerprint, and iris are among the most popular physiological bio-

metric traits in deployed systems owing to their high recognition rates

and simplicity to acquire them [132]. Driverless taxis are already fit-

ted with the high-resolution digital camera that can be used to acquire

face images of customers for their authentication. DRIVERAUTH 6, a
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multimodal biometric-based authentication scheme, exploits face, text-

independent voice, and swipe. They achieved a True Acceptance Rate

(TAR) of 96.48% at False Acceptance Rate (FAR) of 0.02% using En-

semble Bagged Tree (EBT) classifier on a dataset of 86 users for the

on-demand ride and ride-sharing services. A face and appearance-based

real-time driver authentication framework proposed by Derman et al. [54]

combine a CNN-based face classifier with a GMM-based appearance ver-

ifier to authenticate legitimate vehicle owner among 52 different sub-

jects. They achieved an average True Positive Rate (TPR) of 92.46% and

87.13% corresponds to 1% and 0.1% False Positive Rate (FPR), respec-

tively for multiple drivers test scenarios.

Fingerprint and grip patterns based authentication scheme for door ac-

cess proposed by Jang et al. [136], can be used in driverless taxis doors

handle for riders authentication. However, the authors did not publish

any experimental results for the validation of their proposed scheme.

There are several fingerprint-based authentication schemes are proposed

for the vehicle owner identification [76, 290]. These fingerprint-based

authentication schemes can be deployed for rider authentication in driver-

less taxis by modifying the design, accordingly.

Iris recognition based scheme proposed by Raiyn [208] to authenticate

vehicle to vehicle communication in autonomous vehicles (AVs) can be

applied for rider authentication. Biometric identification based on inner

eye organs, i.e., iris and retina, are very precise and can be used in areas

with high-security requirements [100].

A multimodal authentication scheme based on fingerprint, iris, and voice-

prints proposed for identifying drivers by installing sensors on the doors,

steering wheel, and camera mounted on the front mirror of vehicles [162].

This scheme can also be utilized for riders’ authentication by modifying

the sensors’ installations as per the requirements. Similarly, another user
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authentication scheme on the Java platform combines face, fingerprint,

and speech for automobile locking purpose [186]. A human vehicle inter-

action system, VoGe, based on voice and gestures can be used for rider

authentication [224]. The authors presented the proof of concept in a

driving simulator that enables users to communicate with the vehicle and

make spontaneous decisions over the route.

The user-identification-signatures can be generated for various gestures,

such as swiping, holding or typing, by extracting statistical features from

X, Y , and Z coordinates fetched by sensors, i.e., accelerometer, mag-

netometer, and gyroscope, while the users do that action on their smart

devices 4. Interested readers can refer to the driver authentication frame-

work designed for the on-demand ride and ride-sharing services based on

the aforementioned behavioral biometric traits while the drivers interact

with their dedicated smartphone-based application [94].

Tolosana et al. [254] proposed a signature verification architecture based

on the number of lognormal from the Sigma LogNormal writing gener-

ation model that is adapted to the signature complexity. Additionally,

they performed an exhaustive comparative analysis of both pen- and

touch-based scenarios for smartphones and tablets. Another bimodal

authentication scheme for financial applications exploits users’ touch-

typing and hand-movements transparently, while the users access their

banking apps by inserting 8-digit PIN/password [33]. This client-server

based multiclass authentication scheme achieved 96% TAR with 0.01%

FAR by using 15 training samples on a dataset of 95 users. Similarly, DI-

ALERAUTH authenticated users based on touch-stroke timing-differences

and hand micro-movements for 10-digit PIN/password [33]. And, they

achieved the TAR of 85.77% by using one-class Multilayer Perceptron

(MLP). Smartphone-based authentication scheme, SNAPAUTH, exploited

users’ hand-movement while the users perform finger-snapping action [32].
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This authentication scheme achieved the TAR of 82.34% by using MLP

classifier with 15 training samples on a dataset of 11 users.

Human gait can be collected unobtrusively, as users do not require to

perform any explicit interaction with their smart devices. Biometric gait

recognition based on vision, underfoot pressure, accelerometry, and au-

dio sensory features can be explored for rider authentication [44]. A

smartphone-based gait recognition system against zero-effort- and live-

minimal-effort- impersonation attacks under realistic scenarios and it

achieved an Equal Error Rate (EER) of 13% on a dataset of 35 partic-

ipants [183]. Similarly, smartwatch-based gait biometrics can be de-

ployed for rider authentication for driverless taxis [138]. However, to

deploy gait-based recognition schemes, a vehicle trusting biometric mea-

surements from external devices (e.g. a smartwatch) may have some

security implications that need careful evaluation.

Biometrics, such as the face, fingerprint, iris, retina, voice, touch signa-

ture, keystroke/touch dynamics, gait, and hand-movements to hold or

wear smart devices, can be easily employed for riders’ authentication. To

acquire these traits, requisite sensors or devices can be either installed in

the driverless taxis; or can be fetched from the smart devices paired by

the customers, at the time, they board the driverless taxi that they have

booked online. In the realtime, the acquired customers’ biometric data

can be used for their authentication before the driverless taxis commence

their ride.

Our survey for rider authentication will provide some insights for tech-

nology providers to implement rider authentication schemes that can be

acceptable by the customers.
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7.3 Motivation

In January 2019, Waymo1 has launched the driverless taxi services through-

out Phoenix, Arizona. Similarly, other companies involved in driver-

less technologies are planning to launch their driverless taxi services

soon. However, there has been minimal research for rider authentication

schemes requirements for driverless taxis. We conducted an online sur-

vey to collect public opinion to study the requirements for the rider’s au-

thentication as these taxis can be used individually or shared with other

riders.

7.3.1 Threat Model

[50] and [93] analyze what are the security threats associated with the

possible human intervention in driverless taxis.

• How to identify a person who hires the driverless taxi, and then

causes some damages to the taxi, which could be hazardous for fol-

lowing customers of that taxi?

• How to deny rides to the persons who were indulged in activities,

intentionally or unintentionally, that resulted in the malfunctioning

of crucial safety systems of driverless taxis?

• How to catch persons having malicious intentions, e.g., someone

who planted some illicit object like explosives in a taxi that resulted

in mass casualties or caused serious damage to the subsequent cus-

tomers?

• Do the customers prefer to share a ride with strangers in a driverless

taxi without their verification done by the service providers?
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• How to identify a rider who robs or abuses the fellow passengers in

the shared driverless taxis?

• Lastly, how to avoid unforeseen incidents as the consequences of

unsupervised access to riders with diversified motivations, such as

curiosity, monetary benefits, malicious intentions, or terrorism?

Thus, reliable riders’ authentication schemes for driverless taxis become

imperative to mitigate the possible threats that we just discussed. Con-

ventional authentication techniques, i.e., knowledge-based and token-

based mechanism, are reported to be less reliable due to their inher-

ent drawbacks [92, 132]. Moreover, it is evident that biometric-based

authentication schemes are more efficient to counter attacks when em-

ployed in security-critical systems [190].

7.3.2 Why Biometrics for Authenticating Riders?

Biometrics refers to the identification of individuals based on their phys-

iological and/or behavioral characteristics [134]. The advances in sen-

sor technologies, data processing techniques, and machine learning algo-

rithms led to the strengthening of biometric-based authentication sys-

tems. Many studies have shown that biometric-based authentication

schemes are more reliable than conventional authentication schemes like

knowledge-based and token-based authentication schemes [217]. Thus,

multi-modal biometrics has the potential to become the defacto standard

for authentication for various IoT services to enhance consumers’ safety

and security [218].

Some benefits of biometrics are: 1) biometrics are capable of ensuring

the fast and reliable establishment of the individual’s identity, 2) they

can not be easily stolen, shared, transferred, conjectured, or hacked,

3) they do not add cognitive load on users, 4) they are hard to falsify,
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and 5) for smart devices, biometric-based authentication schemes have

shown higher usability acceptance in contrast to conventional authenti-

cation schemes [92, 187, 190].

7.4 Rider Authentication Survey

We conducted an online survey3 to study public opinion about rider au-

thentication requirements for driverless taxis. The survey consists of 20

questions (refer Appendix C for questionnaire), overall. The question-

naire collects basic demographic data of the participants and includes

questions from the need of rider authentication to the participants’ aware-

ness of biometrics, their opinion on physiological and behavioral biomet-

ric traits selection for rider authentication, their preferences for the em-

ployment of authentication mechanisms, and their major usability con-

cerns.

The survey was published on various online public transport users groups

and social media platforms like Linkedin, Facebook, Twitter for 4 weeks.

We received approximately 75 responses, worldwide that were completely

anonymous. The reporting of the survey results is divided into four

sections: 1) demographic statistics, 2) rider authentication acceptance

analysis, 3) security requirements analysis, and 4) usability requirements

analysis.

7.4.1 Demographic Statistics

Our survey contains 3 demographics questions related to the participant’s

continent-wide location, age group, and gender. Demographic statistics

of 75 participants are displayed in Figure 7.2.

Continent-wise participants distribution reported in Figure 7.2a shows

the participation of all the continents having people’s presence. Fig-
3https://forms.gle/BMg4aVbMqoZVf5mH7
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ure 7.2b shows approximately 93.3% of survey participants were from

the 17 to 45 age group, which is likely to be the age-group using public

transport the most. Figure 7.2c exhibits gender-wise distribution with

69.3% male and 26.7% female participants.

7.4.2 Rider Authentication Acceptance Analysis

Figure 7.3 exhibits that approximately 90% of the overall participants

either strongly agreed or agreed for the introduction of rider authentica-

tion for driverless taxis. However, only 4% of participants disagreed to

introduce rider authentication, and 6.7% of participants’ responses were

neutral.

Participants’ self-declaration on biometrics knowledge can be examined

in Figure 7.4. Among all participants, 92% of participants are aware of

biometric-based authentication schemes, and 76% of participants are us-

ing biometric-based authentication schemes as reported in Figure 7.4a

and 7.4b, respectively. Lastly, 16%, 46.7%, 29.3%, and 8% indicated their

knowledge on biometrics as excellent, good, fair, and negligible, respec-

tively.

7.4.3 Security Requirements Analysis

Rider authentication survey poll shown in Figure 7.3 suggests that a ro-

bust authentication scheme to identify riders for driverless taxis emerged

as a genuine requirement to foster better safety and security of customers

and the general public.

The physiological and behavioral traits evaluated for rider authentication

in the survey are listed below.
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Figure 7.2: Demographic statistics.
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Strongly agree
60%

Agree
29.3%

Neutral
6.7%

Disagree
4%

Figure 7.3: Rider authentication acceptance.

7.4.3.1 Physiological Traits

The traits included in this category are the face, fingerprint, iris, and

retina.

• Face: It can be captured by using a two-dimensional (2D) camera

operating in the visible spectrum [93, 197].

• Fingerprint: Similarly, either capacitive scanners or optical scanners

can be used to capture fingerprints [161].

• Iris/Retina: Iris or retina can be captured with both ordinary light

and invisible infrared camera [100, 208].

Driverless taxis are equipped with high-end imaging devices that can be

utilized to acquire physiological traits. For example, Tesla fitted their

driverless cars with eight external surround cameras to provide 360 de-

grees of visibility around the car at up to the range of 250 meters [249].

7.4.3.2 Behavioral Traits

The traits included in this category are voice, touch signature, keystroke/touch

dynamics, gait, and hand-movements to hold or wear smart devices.
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Yes
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No

24%
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29.3%
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8%

(c) Participants knowledge

Figure 7.4: Participants self-declaration on biometrics.
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• Voice: A digital voice recorder can be used to record the voice

prints [93].

• Touch signature: A touch signature can be drawn by pen or stylus

on touchscreen devices [254].

• Keystroke/touch dynamics: Features for keystroke and touch dy-

namics can be generated by fetching 2-D coordinates from touch sen-

sors corresponding to the customer typing or swiping action [33].

• Gait: A human gait features can be extracted by fetching X, Y , and

Z coordinates from sensors, such as accelerometer, magnetometer,

and gyroscope [183, 138].

• Hand-movements: Similarly, a 3-D model for hand-movement tra-

jectory can be created by fetchingX, Y , and Z coordinates from sen-

sors, such as accelerometer, magnetometer, and gyroscope [32, 95].

Some behavioral biometric traits, e.g., voice, touch signature, etc., can be

easily implemented with existing technology deployed in modern auto-

mobiles, while others, e.g., gait, etc., may require some hardware adapta-

tion. Seemingly, to acquire customers’ voiceprints and touch signatures,

hardware such as digital voice recorders and touchscreen devices can be

deployed within the driverless taxis, seamlessly. Whereas, some traits

like gait may depend on external devices for acquiring riders’ data.

Participants’ preference to introduce biometric-based rider authentica-

tion schemes for driverless taxis is shown in Figure 7.5. Approximately,

82.7% of participants suggested to employ physiological biometric-based

authentication schemes, and 52% of participants suggested to employ

behavioral biometric-based authentication schemes.

Furthermore, our survey poll determines that for critical systems like

driverless taxis knowledge-based and token-based authentication schemes
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Figure 7.5: Biometric-based rider authentication scheme: participants preference.

for rider authentication have much less acceptability over biometric-based

authentication schemes.

PIN or
Password

25.3%

Biometrics
74.7%

(a) PIN/Password-based schemes vs. Biometrics

Smart cards
26.7%

Biometrics
73.3%

(b) Smart cards vs. Biometrics

Figure 7.6: Other authentication schemes vs. biometrics for rider authentication.

It can be observed in Figure 7.6a and Figure 7.6b, only 25.3%, and 26.7%
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of overall participants suggested to employ PIN/ Password, and smart

card, respectively for rider authentication in comparison to biometric-

based authentication schemes. Interested readers may refer to a compre-

hensive literature survey by Gupta et al. [92] for more insights on types

and ways of authentication schemes.

Figure 7.7a to 7.7c presents the survey participants’ preferences to em-

ploy physiological biometric traits, i.e., face (74.7%), fingerprint (57.3%),

and iris/retina (64.0%), for rider authentication for driverless taxis, and

Figure 7.8a to 7.8e presents the survey participants’ preferences to em-

ploy behavioral biometric traits, i.e., voice (49.3%), touch signatures

(48.0%), keystroke/touch dynamics (38.7%), gait (26.6%), and hand-

movements (33.4%) to hold or wear smart devices, for rider authenti-

cation for driverless taxis. These responses are measured on a 5-point

scale ranging from “strongly agree” to “strongly disagree”.

The level of acceptance (i.e. total of strongly agreed and agreed per-

centage) of biometric traits by the participants is shown in Figure 7.9.

According to the survey poll, the human face emerged out as the most

preferred biometric trait for rider authentication. From a deployment

point of view, acquiring customers’ face image to authenticate them be-

fore allowing access to driverless taxis does not require any additional

hardware, as driverless taxis are already equipped with high-resolution

digital cameras. Our survey poll suggests biometric-based rider authen-

tication schemes for driverless taxis clearly emerged as security require-

ments towards the safety and security of their customers and the general

public.
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Figure 7.7: Participants’ preferences to use physiological biometric traits.
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Figure 7.8: Participants’ preferences to use behavioral biometric traits.
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Figure 7.9: Rider authentication scheme: biometric traits-wise participants suggestion.

7.4.4 Usability Requirements Analysis

To design a usable user authentication scheme, correct implementation

of desired usability requirements plays a pivotal role [24, 92]. Moreover,

the usability requirements described for a particular product or system

security must be feasible, verifiable, and comprehensive.

The number of training samples required to create users profile for a

biometric trait is an important usability criterion for a usable user au-

thentication system design [132]. The survey poll for training samples,

as depicted in Figure 7.10, exhibits that 48%, 25.3%, and 6.7% of partici-

pants are happy to provide 1− to−5, 5− to−10 and 10− to−30 samples,

respectively. However, only, 6.7% of participants are willing to provide

more than 30 samples.

The time to acquire training samples is directly proportional to the num-

ber of training samples. Users may be annoyed with authentication schemes

having longer training samples acquisition time [132]. It is necessary to
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20%
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Figure 7.10: Training samples for user profile creation.

keep the number of training samples to a minimum, yet guaranteeing an

acceptable level of accuracy, thus security. Most likely, a minimal number

of training samples can motivate customers to accept rider authentication

schemes for driverless taxis.

For a comprehensive usability requirements analysis of a rider authentica-

tion system, there are several more norms to be considered and fulfilled,

however, they are out of the scope of this survey. Conclusively, the us-

ability and security requirements to design a rider authentication system

can be traded accordingly, to befitting the end-user experience.

7.5 A Proposal for Rider Authentication Framework

The Transportation-As-A-Service (TAAS) primarily consists of three stake-

holders: (a) the servers maintained by a service provider, (b) the riders,

and (c) the driverless taxis.

7.5.1 Interaction between the Stakeholders

During the ride-booking process, the typical interaction between these

three stakeholders is illustrated in Figure 7.11.

1. A customer can book a ride by using the ride-booking smartphone

application (client) provided the service provider (server). Before
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Figure 7.11: TAAS: interaction between the stakeholders.

booking a ride, a customer requires to register with the service provider,

which is the one-time activity. The driverless taxis can collect the

training samples from customers during their first ride and transfer

the data to the server to construct the classification model.

Taking various driverless taxi usage scenarios into account, e.g., cus-

tomers that prefer to use driverless taxis for a short term or only

once, the user registration process is required to be user-friendly.

One way to achieve a user-friendly registration design includes fur-

nishing important information such as the number of training sam-

ples, sample acquisition time, and classification model training time,

for each biometric trait a priori to customers [92]. This information

will guide customers to select biometric traits for enrolment accord-

ingly, and at the same, their expectations will meet. Similarly, a

simplified method to unregister from taxi-booking applications can

be incorporated into the design that ensures a hassle-free exit for

customers.

2. Upon receiving a ride-booking, the server assigns the driverless taxi

to pick or drop the customer from/to the location as requested by

the customer.

164



CHAPTER 7. RIDERAUTH

3. The driverless taxi asks the customers to authenticate themselves be-

fore letting them board the taxi. Driverless taxi’s client application

provides an interface to collect the biometrics from the customer for

authentication purpose. The data collected from the customer is sent

to the server by the driverless taxi (client application) and matched

against the training data collected from the customer during the reg-

istration process.

4. The driverless taxi transmits the data collected from the customer to

the server. The server verifies the input data of the customer with

her stored template at the server’s database.

5. The driverless taxi decides to accept or reject the customer according

to the authentication result obtained from the server.

7.5.2 Methodology for Rider Authentication

According to the survey’s results, our design refers to a biometric-based

authentication mechanism. Authentication or verification can be termed

as a one-to-one matching process. This further can be elaborated as the

process to assert the claimant’s identity by matching against one or more

previously enrolled templates with the help of various classification algo-

rithms [92].

Since driverless taxis can offer rides to multiple customers, customer au-

thentication problem can be addressed by implementing a multi-class

classification model, i.e., an n-classification problem. Multi-class classi-
fication model can classify more than two classes. Each class represents

an enrolled customer. Classes are mutually exclusive to each other, and

each new instance particularly belongs to one of the classes present in

the model.
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Mathematically, the authentication process can represented by Equation 7.1.

RA =

M if CM(CI , CT ) is ≥ T

NM if CM(CI , CT ) is < T
(7.1)

Where, CM is a classification model that receives the claimant’s input

(CI) and claimant’s templates (CT ) to find the similarity between them

for a given threshold (T ). The authentication result (RA) is set to Match

(M) or Not Match (NM) according to the result obtained from classifi-

cation model.

7.5.3 System Design Details

The authentication system uses a client-server architecture [94] to parti-

tions the tasks (refer Figure 7.11) between the service providers, called

servers, and service consumers, called clients. Figure 7.12 describes the

design details of the Rider Authentication system. The client application

consists of three layers, a) data acquisition layer, b) data processing layer,

and c) the network layer as shown in Figure 7.12a. The data acquisition

layer contains the required sensors to collect the biometrics data in a se-

quential manner using blocking-call-mechanism. Thus, the application

ensures that all the user’s input is acquired, successfully.

Inside the data processing layer, the data collected are temporarily stored

by the accumulator and the encryption engine, for encryption, packaging,

and time-stamping. Subsequently, the data is transferred to the server by

the network layer.

The server side consists of a) a decryption engine, b) a decomposer, c)

data preprocessing, d) features extraction module, e) feature fusion mod-

ule, f) feature selection module, g) template creation module, and h)

database module as shown in Figure 7.12b.

The decryption engine decrypts the user-data received from the client
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(a) Client (b) Server

Figure 7.12: Rider authentication system architecture.
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application, which is further decomposed into individual biometric traits

by decomposer module. After the data preprocessing and feature extrac-

tion, the feature fusion module fuses all the features extracted from each

biometric. Further, inside the future selection module, the fused features

are selected on the merit basis such that only productive features can be

allocated for template creation.

During the user registration process, the user-training-template with se-

lected features set is created and stored in the database by assigning a

unique label for each user. When the customer access the driverless taxi

to commence her ride, the driverless-taxi-client application collects and

transmits the customer data to generate a test template for her in real-

time. Thus, the customer is authenticated by matching her test template

with her stored labeled training templates on the server.

7.6 Summary

The research community has started determining and addressing poten-

tial security risks and vulnerabilities in different areas of driverless vehi-

cles. However, unsupervised physical access to driverless taxis exposes

them to customers with different motivations, such as curiosity, mone-

tary benefits, malicious intentions, or terrorism [50]. From customers

and the general public safety and security standpoint, rider authentica-

tion for driverless taxis become an essential requirement that can also be

interpreted from our online survey results.

Our online survey received 75 responses from participants, worldwide.

Approximately, 90% of the overall participants in our survey either agreed

or strongly agreed with the necessity to deploy biometric-based rider au-

thentication for driverless taxis. Among several compelling challenges to

be resolved, which may stymie the adoption of driverless taxis by masses

- the deployment of a usable and secure rider authentication scheme is
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equally requisite.
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Chapter 8

Conclusions

The burgeoning IoT applications are so ingrained in our lives that it is

nearly impossible to think a day without smart devices, smart enter-

prises, smart homes or offices, etc. Almost every business verticals, e.g.,

automotive, energy, entertainment, education, food, finance, healthcare,

manufacturing, transportation, etc., have embraced IoT, wholeheartedly.

Cisco1 has predicted that there will be more than half a trillion IoT-

enabled ecosystem by 2030. The IoT applications can be a critical part

of business strategies for all the business verticals going forward. Many

of these IoT applications are safety-critical and any unauthorized access

could have severe consequences to their consumers and society.

Human-to-machine authentication is critical for IoT applications, how-

ever, drawbacks of conventional user authentication schemes, from both

security and usability perspectives, have been identified as a crucial con-

cern to the IoT security spectrum. The various security and usability

challenges that users are facing in using conventional user authentica-

tion schemes led to a realization that user authentication schemes require

upgrading for new IoT age applications.

HOLD & TAP is a risk-driven one-shot-cum-continuous user authentica-
1https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-g

lance-c45-731471.pdf

171

https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf


CONCLUSIONS

tion solution for smart devices’ IoT applications based on users’ invis-

ible tap-timings and hand-movements. The scheme can be seamlessly

integrated into the existing PIN/password-based authentication schemes

to enhance their usability and security. It strengthens the widely used

PIN/password-based authentication technology by giving flexibility to

users to enter any random 8-digit alphanumeric text, instead of pre-

configured PIN/Passwords. STEP & TURN is a novel bimodal behavioral

biometric-based authentication system based on two natural human ac-

tions, i.e., single footstep and hand-movement to secure smart homes or

offices access to their legitimate users.

DRIVERAUTH and RIDERAUTH offer risk-based authentication schemes

for smart enterprises strengthening the security and safety of their con-

sumers and society. DRIVERAUTH is a risk-based multi-modal authentica-

tion scheme that exploits three biometric modalities, i.e., swipe gestures,

text-independent voice and face, to make the on-demand ride and ride-

sharing services secure and safer for riders. RIDERAUTH discussed var-

ious biometric-based riders authentication schemes for driverless taxis.

Survey results are analyzed to study rider authentication requirements

along with the proposal for a rider authentication framework that uses

physiological and behavioral biometric traits.

Our user authentication designs for smart devices, smart enterprise, smart

home, or office applications are novel contributions towards the devel-

opment of next-generation user authentication schemes for IoT applica-

tions.
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[101] Kimmo Halunen, Juha Häikiö, and Visa Vallivaara. Evaluation of user authentication
methods in the gadget-free world. Pervasive and Mobile Computing, 40:220–241, 2017.

[102] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques. Else-
vier, 2011.

[103] Shuangshuang Han, Dongpu Cao, Li Li, Lingxi Li, Shengbo Eben Li, Nan-Ning Zheng,
and Fei-Yue Wang. From software-defined vehicles to self-driving vehicles: A report on
cpss-based parallel driving. IEEE Intelligent Transportation Systems Magazine, 11(1):6–14,
2019.

[104] Marian Harbach, Emanuel Von Zezschwitz, Andreas Fichtner, Alexander De Luca, and
Matthew Smith. It’sa hard lock life: A field study of smartphone (un) locking behav-
ior and risk perception. In Proceedings of the Symposium on usable privacy and security
(SOUPS), pages 9–11, 2014.

[105] Austin Jay Harris and David C Yen. Biometric authentication: assuring access to informa-
tion. Information Management & Computer Security, 10(1):12–19, 2002.

[106] Harvard. Technology factsheet series: Internet of things. https://www.belfercenter.o
rg/sites/default/files/2019-06/TechFactSheet/iot%20-%205.pdf, 2019 (Accessed
on 2020-07-28). Online web resource.

[107] Hasib Hassan, Sylvie Wacquant, and Heinz B Seifert. Vehicle driver monitoring system,
March 20 2017. US Patent App. 15/463,293.

[108] Kayla J Heffernan. Insertables workshop. https://insertables.wordpress.com/,
2016 (Accessed on 2020-07-28). online web resource.

[109] Kayla J Heffernan, Frank Vetere, Lauren M Britton, Bryan Semaan, and Thecla
Schiphorst. Insertable digital devices: Voluntarily under the skin. In Proceedings of the
Companion Publication on Designing Interactive Systems, pages 85–88. ACM, 2016.

[110] Kayla J Heffernan, Frank Vetere, and Shanton Chang. Towards insertables: Devices inside
the human body. First Monday, 22(3), 2017.

[111] Setia Hermawati and Glyn Lawson. Establishing usability heuristics for heuristics evalu-
ation in a specific domain: Is there a consensus? Applied ergonomics, 56:34–51, 2016.

182

https://www.belfercenter.org/sites/default/files/2019-06/TechFactSheet/iot%20-%205.pdf
https://www.belfercenter.org/sites/default/files/2019-06/TechFactSheet/iot%20-%205.pdf
https://insertables.wordpress.com/


BIBLIOGRAPHY

[112] Alex Hern. The guardian - samsung galaxy s8 iris scanner fooled by german hackers.
https://www.theguardian.com/technology/2017/may/23/samsung-galaxy-s8-i

ris-scanner-german-hackers-biometric-security, 2017 (Accessed on 2020-07-28).
online web resource.

[113] Martin Reese Hestbek, Claudia Nickel, and Christoph Busch. Biometric gait recognition
for mobile devices using wavelet transform and support vector machines. In Proceedings
of the 19th International Conference on Systems, Signals and Image Processing (IWSSIP),
pages 205–210. IEEE, 2012.

[114] Daniel Hintze, Eckhard Koch, Sebastian Scholz, and René Mayrhofer. Location-based risk
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[150] Steve Kovach. Business insider - samsung’s galaxy s8 facial recognition feature
can be fooled with a photo. http://www.businessinsider.com/samsung-galaxy-s8-facial-
recognition-tricked-with-a-photo-2017-3?IR=T, 2017.

[151] Kat Krol, Eleni Philippou, Emiliano De Cristofaro, and M Angela Sasse. ”they brought
in the horrible key ring thing!” analysing the usability of two-factor authentication in uk
online banking. arXiv preprint arXiv:1501.04434, 2015.

[152] Mohit Kumar, Aditya Insan, Norbert Stoll, Kerstin Thurow, and Regina Stoll. Stochastic
fuzzy modeling for ear imaging based child identification. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 46(9):1265–1278, 2016.

[153] Ruggero Donida Labati, Angelo Genovese, Enrique Muñoz, Vincenzo Piuri, Fabio Scotti,
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Appendix A

Hold & Tap: Demographic Survey
Questionnaire

1. What is your gender?

• Male

• Female

• I don’t want to disclose

2. How old you are?

• ≤ than 20 years.

• > 20 years and ≤ 40 years.

• > 40 years and ≤ 60 years.

• > than 60 years.

• I don’t want to disclose

3. Tell us about your nationality.

•

• I don’t want to disclose

4. Which hand(s) do you use for interacting with your smartphone?
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• Right

• Left

• Both

• I don’t want to disclose
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Appendix B

Step & Turn: Generic Survey
Questionnaire

1. I think I can provide training samples between

• 1 to 5

• 5 to 10

• 10 to 40

• 40 to 100

• More than 100

2. Please select your age category

• 16 years and below

• 17 - 25 years

• 26 - 35 years

• 36 - 45 years

• 46 - 60 years

• 60 years and above

3. Please select your gender
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• Female

• Male

• Prefer not to say
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Appendix C

RiderAuth Survey Questionnaire

1. I think rider authentication is essential for driverless taxis for their

customers’ security.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

2. I think I am aware of biometric-based authentication schemes?

• Yes

• No

3. I would rate my knowledge of biometrics as

• Excellent

• Good

• Fair

• Negligible

203



APPENDIX C. RIDERAUTH

4. I am using biometric-based authentication schemes on smart devices?

• Yes

• No

5. I think I prefer to use biometrics over PIN/Password-based schemes

for authentication purposes.

• Yes

• No

6. I think I prefer to use biometrics over smart cards for authentication

purposes.

• Yes

• No

7. I think I can use my physiological biometric characteristics for authen-

tication purposes

• Yes

• No

8. I think I am willing to use my fingerprints for authentication purposes.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree
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9. I think I am willing to use my face for authentication purposes.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

10. I think I am willing to use my iris/retina for authentication purposes.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

11. I think I can use my behavioral biometric characteristics for authenti-

cation purposes

• Yes

• No

12. I think I am willing to use my voice for authentication purposes.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree
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13. I think I am willing to use my handwritten signatures for authentica-

tion purposes.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

14. I think I am willing to use my keystroke/touch dynamics for authenti-

cation purposes.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

15. I think I am willing to use my gait for authentication purposes.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

16. I think I am willing to use my hand-movements to hold or wear smart

devices for authentication purposes.
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• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

17. I think I can provide training samples between

• 1 to 5

• 5 to 10

• 10 to 30

• 30 to 100

• More than 100

18. Please select your age category

• 16 years and below

• 17 - 25 years

• 26 - 35 years

• 36 - 45 years

• 46 - 60 years

• 60 years and above

19. Please select your gender

• Female

• Male

• Prefer not to say

207



APPENDIX C. RIDERAUTH

20. Please select the continent where you are residing at present?

• Africa

• Asia

• Australia

• Europe

• North America

• South America
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