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1.11 Schematic of the Hanbury-Brown and Twiss (HBT) interferometer, illus-
trating the light field exclusively in input port a, with the vacuum field
present in input port b. The output detection signals from the two de-
tectors are analyzed using appropriate electronics to yield the measured

g(2)(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



1.12 a) On the top, the setup for the g(2) measurement for the sFWM process is
depicted, along with a typical outcome showing super-Poissonian statis-
tics on the bottom. The pump is pulsed with a repetition rate of 1/T.
b) On the top, the setup for the measurement of the heralded second-

order correlation function, g
(2)
H , in the case of sFWM is shown, with a

typical anti-bunching dip, indicating non-classical single-photon (sub-
Poissonian) statistics, displayed on the bottom. The pump is pulsed with
a repetition rate of 1/T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.13 Timing relationship among parameters involved in the detection process. 39

2.1 a) Schematic representation of a channel waveguide. b) Cross-section of
the channel waveguide. The refractive index of the cladding material
is denoted as nclad, while the refractive index of the core is denoted as
ncore. The propagation direction is indicated by z. c) Distribution of the
dominant electric field component (Ex for TE modes, Ey for TM modes)
for the two lowest-order TE and TM modes of a silicon waveguide with
a cross-section of 1.6 µm × 0.25 µm. . . . . . . . . . . . . . . . . . . . . . . 43

2.2 a) Waveguide with direct tapering coupled with a lensed fiber. b) Waveg-
uide with inverse tapering coupled with a lensed fiber. c) Grating cou-
pler with fiber tilted by an angle relative to the grating’s normal. In all
the representations the fiber size is not depicted to scale. . . . . . . . . . 45

2.3 a) Sketch of a directional coupler (DC). It is formed by two waveguides
with the same dimension. The gap between the two waveguides is called
the coupling gap cg. b) Sketch of an asymmetric-directional coupler
(ADC). It is formed by two waveguides with different widths. . . . . . . 46

2.4 a) Simulation of the field profile entering point (A) in the upper single-
mode waveguide. The close coupling between the two waveguides en-
ables the field to pass between them. Different coupling lengths result
in beam splitting (B), total beam transfer into the adjacent waveguide
(C), or total beam return into the principal waveguide. b) Modal cross-
sections are depicted in various sections. On the left is the principal
waveguide (top in Fig. 2.4(a)), and on the right is the secondary waveguide. 47

2.5 a) Simulation of the field profile entering point (A) of the upper single-
mode waveguide of an ADC. The tight coupling between the two waveg-
uides allows the field to pass between them. Different coupling lengths
result in various behaviors: beam splitting (B) into two different modes
on the two waveguides, total transfer of the beam into the adjacent multi-
mode waveguide and its conversion into an excited mode (C), or total
return of the beam into the single-mode waveguide. b) Modal cross-
sections are shown in several sections. On the left is the single-mode
waveguide (top of Fig. 2.5(a)), and on the right is the multi-mode waveg-
uide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Layouts of a MMI 2x2. It is formed by two single-mode input waveg-
uides and by two single-mode output waveguides connected by a wide
multimode waveguide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 a) Simulation of the field profile entering point (A) in the multi-mode
waveguide of the MMI 2X2. The field is propagating along x axes. For
different lengths of the multi-mode waveguide, it is possible to obtain
the splitting of the beam into two beams of equal intensity (B), the total
transfer of the beam into the adjacent waveguide (C), or the total return
of the beam into the main waveguide. b) The modal cross-sections are
shown in several sections. On the left is the main output waveguide (top
in Fig. 2.7(a)) and on the right is the bottom output waveguide. . . . . . 51



2.8 a) Sketch of Waveguide crossing. b) Simulation of the field profile in one
input of the CR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.9 Sketch of an integrated MZI. The dark red sections represent the waveg-
uides comprising the integrated structure, while the bottom cladding
material is depicted in pink. The removal of the top cladding material
highlights the internal arrangement of the MZI. Additionally, gold marks
indicate the phase shifters (PSs) required to induce the phase shifts ϕ1

and ϕ2 due to the thermo-optic effect in the so-called push and pull con-
figuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.10 A schematic design of the aMZI is shown. The two MMI structures
are connected by two waveguides with different lengths. In the longer
waveguide, the heater is located. . . . . . . . . . . . . . . . . . . . . . . . 53

2.11 Sketch of microring resonator in All pass configuration for the point cou-
pler (a), pulley (b), and racetrack (c) configurations. . . . . . . . . . . . . 54

2.12 |HAP|2 as a function of the roundtrip phase ϕ. For all the curves, the
reflectance of the coupler is set to r = 0.95. . . . . . . . . . . . . . . . . . 55

3.1 Graphical representation of integrated sources for the sFWM process.
The microring resonator is depicted on the left (a), while the spiral waveg-
uide is shown on the right (b). The waveguides are in dark red, while the
cladding is represented in pink. . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Configuration of the HOM experiment and possible output configura-
tions. The dark red corresponds to the integrated beam splitter (MMI),
and the pink is the cladding. In each configuration, the directions of the
photons entering the two entrances of the BS, which may either be re-
flected or transmitted, are depicted at the bottom right. If the experiment
is performed with indistinguishable photons, configurations (c) and (d)
are identical and have different signs; therefore, they cancel out, and no
coincidence detection is observed at the output. . . . . . . . . . . . . . . 60

3.3 Classical light interference (red line) compared with the Reversed HOM
interference (blue line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 On the top the experimental setup for measuring photon pair gener-
ation and integrated multi-source quantum interference. From left to
right: two lasers of different wavelengths coupled into the chip via a 3-
dB coupler and grating coupler after appropriate filtering with a notch
filter (NF). Blue and red spheres denote the two pump photons with dis-
tinct frequencies. The circuit illustrates the photon pair sources based on
spiral waveguides forming the arms of a MZI. The two outputs of the
MZI feature BPF to isolate the generated degenerate photons (depicted
by purple spheres), two superconducting nanowire single-photon de-
tectors (SNSPDs), and a time-correlated single-photon counting module
interfaced with a computer. On the bottom, all components are shown. . 65

3.5 Simulated JSI for a 15-mm-long waveguide spiral plotted against signal
(¼s) and idler (¼i) wavelengths after applying a BPF centered at 1550.12
nm with a bandwidth of 100 GHz (0.8 nm) using CW pump lasers. . . . 66

3.6 a) The CAR is plotted (red dots) against the pump power coupled to the
chip. Additionally, the heralding rate (green dots) is shown as a function
of the coupled pump power. b) The heralded second-order correlation

function g
(2)
H (0) is depicted as a function of the coupled pump power

(blue dots). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7 The scheme depicted in Fig. 3.4 is displayed, and divided into five parts

to facilitate its analytical description. the rectangular block corresponds
to the PIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



3.8 a) Classical transmissions measured from the two outputs (yellow dots
for output 1, green dots for output 2) of the MZI in Fig. 3.7 plotted as a
function of the phase ϕ. The theoretical predictions are the dashed lines.
(b) Measured (dark red dots) and theoretical (dashed line) coincidence
rates between the two outputs of the MZI as a function of the phase ϕ. . 70

3.9 The PIC formed by composite photon-pair sources utilizing both waveg-
uides and microrings. These sources are then subjected to a second
MZI to measure the quantum interference of the generated photons. On
the right, the detection channels (out1-out4) are depicted. These chan-
nels consist of a series of optical fibers, BPFs, superconducting nanowire
SNSPDs, and a time-correlated single photon counting module linked to
a computer for subsequent data processing. . . . . . . . . . . . . . . . . . 71

3.10 Normalized transmission spectra measured by different photodiodes are
depicted, with the red line representing PD1, the orange line represent-
ing PD2, the blue line representing PD3, and the green line representing
PD4. These measurements were obtained while scanning the wavelength
of one of the tunable laser diodes. . . . . . . . . . . . . . . . . . . . . . . . 72

3.11 Simulated JSI plotted as a function of signal (¼s) and idler (¼i) wave-
lengths after applying a BPF centered at 1550.12 nm with a bandwidth
of 100 GHz (0.8 nm) using CW pump lasers for two configurations: (a)
a 15-mm-long waveguide spiral, and (b) a microring resonator with a
FSR approximately 3.2 nm and a quality factor of 3 × 104 (resulting in a
FWHM of 0.05 nm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.12 Measurements of the characteristics of the photon-pair sources are pre-
sented. a) The coincidence to accidental ratio as a function of the pump
power coupled to the chip, where dark red dots correspond to the spi-
ral waveguide (indicating that the microrings are off-resonant with the
pump photons wavelengths), and empty blue dots represent the micror-
ing source (denoting that the microrings are resonant with the pump
photons wavelengths). b) The heralding rate as a function of the cou-
pled pump power is shown for the spiral waveguide (dark red dots) and
microring resonator (empty blue dots). . . . . . . . . . . . . . . . . . . . . 73

3.13 The chip design of Fig. 3.9 is partitioned into 7 distinct sections for ease
of discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.14 a) Coincidence rates between the output channels of the second MZI are plotted

against the phase ϕ2 of the second MZI. The blue line represents the HOM in-

terference for the microring resonator configuration with an input pump power

of 0.3 mW, while the red line illustrates the quantum interference for the spiral

waveguide sources with two different pump powers, 0.6 mW. Experimental data

are depicted as dots, while the lines correspond to theoretical fits obtained from

eq. (3.40). b) The relationship between visibility and the overlap of JSAs is shown. 75
3.15 Simulated JSAs overlap as a function of variations in Leff for spiral waveguides

(red line), and JSAs overlap as a function of variations in Q-factor for microring

resonators (light blue line). δX represents δLe f f for the waveguide case and δQ

for the microring case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.16 a) The PM relationship for the intramodal process is depicted by the red

line, showing a continuous band, whereas for the intermodal process, it
is represented by the blue line, displaying a discrete band. The cross-
section of the waveguide is (2.45 × 0.22) µm. b) The PM relation of
the generated photons varies as the wavelength of the pump photons
changes. For the intramodal case, illustrated by dashed lines, and the
intermodal case, portrayed by solid lines, this variation is shown. . . . . 78



3.17 JSI in the intramodal case (a) and in the intermodal case (b) for a waveg-
uide long 2 cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 a) Simulated intensity profiles of the TE0 and TE1 spatial modes in the
multimode waveguide. b) Schematic diagram of the PIC comprising DC
to split the pump photons into two paths, ADC for converting between
TE0 and TE1 modes, and a multimode waveguide to generate correlated
photons. The violet balls indicate the input photons, the red balls are the
signal photons, and the blue balls are the idler photons. . . . . . . . . . . 82

4.2 a) The experimental setup depicts the detection components, showcas-
ing the idler photon path at the top and the signal photon path at the bot-
tom. From left to right, a pulsed laser operating at a fixed wavelength of
1550 nm undergoes polarization manipulation via PCs and is coupled to
the PIC using a tapered fiber. At the output of the PIC, two tapered fibers
collect idler and signal photons and guide them along separate paths. In
the signal branch, waveplates are employed for polarization selection,
followed by the UC unit converting the signal from MIR to VIS wave-
lengths, and finally, the Si-SPAD for detection. In the idler branch, there
is an SPF and an InGaAs-SPAD. b) Schematic representation of the HBT
interferometer utilized for measuring the statistics of photons generated
in the signal line subsequent to the UC system. . . . . . . . . . . . . . . . 83

4.3 a) Photo of the SPF comprising four filters and undergoing seven passes
through these filters. b) The experimental characterization of the short-
pass filter placed on the idler channel is shown, with the reference signal
represented in light blue and the filter transmission in blue. The trans-
mission spectrum shows a cutoff wavelength at 1335 nm. Notably, the
measurement visibility, which falls below -40 dB, is limited by the detec-
tor noise, which indicates the sensitivity and accuracy of the measure-
ment configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 a) Spectral response of the upconverter module. The response has been
fitted by a squared sinc function, as expected for a sum-frequency gen-
eration process. The FWHM is measured to be (1.15 ± 0.12) nm. b) MIR
(blue dots) and visible (orange dots) signal peak as a function of the tem-
perature of the UC system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 a) Schematic of the monochromator utilized in our experiment. The light
is introduced into the system via a collimator (Cin). It first hits a grating
situated on a motorized rotating stage. Subsequently, a retroreflector is
employed to send the beam back with a vertical offset, allowing for an-
other pass over the grating. Finally, after being reflected by two mirrors
(M), the light is extracted using another collimator and detected via the
InGaAs-SPAD. The entire system is managed by software that synchro-
nizes the photon counter and grating rotation, enabling automated spec-
trum measurements. b) Measured intensity spectrum of the idler beam.
A Gaussian function was employed for fitting, revealing a FWHM of
2.87 ± 0.07 nm. This measurement is influenced by the transfer function
of the monochromator utilized for the assessment, leading to an appar-
ent enlargement of the generated bandwidth. We simulated the idler
spectrum, accounting for the widening induced by the monochromator
(illustrated by the orange dashed line). To determine the actual band-
width of the idler (2.0 ± 0.3 nm), we performed deconvolution using the
response function of the monochromator. . . . . . . . . . . . . . . . . . . 87



4.6 a) Measured pump spectrum. b) Simulated JSI computed using the mea-
sured pump spectrum, the measured upconverter spectral response, and
the simulated PM function. Asymmetry in the JSI is attributed to the
pump spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Fitting functions (solid lines) applied to the experimental data (dots) for
(a) yi, (b) ys, and (c) ysi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.8 a) Twofold coincidences as a function of the delay δt between idler (start)
and signal (stop) detections. Coincidence events within a 0.05 ns coin-
cidence window are denoted in dark red, while those processed with a
larger window of 1.1 ns are shown in orange to account for a broader
range of coincidence events. The primary coincidence peak occurs at δt
= 0 ns, with clear indications of the laser repetition period from the acci-
dental peaks. Inset: A magnified view of the zero-delay bin compares the
coincidence peak shape with the post-processing coincidence window.
b) The measured CAR (dark red dots) and net coincidence rates (blue
triangles) for ∆tc = 1.1 ns against the on-chip peak pump power. Experi-
mental data is compared with simulated values for both CAR (solid red
line) and net coincidence rates (dashed light blue line). . . . . . . . . . . 92

4.9 The plot displays a comparison between the measured data (orange points)
and simulated results (light yellow area) as a function of the on-chip
peak power. An inset provides a specific measurement at an on-chip
peak power of 0.33 W. Bins adjacent to the zero-delayed one have been
omitted due to SPAD-emitted photons. . . . . . . . . . . . . . . . . . . . 93

4.10 a) The experimental g(2)(δt) for an on-chip peak pump power of 1.08 W

is illustrated, yielding g(2)(0) = 1.67(2). The histogram bins represent
the counts at various delay intervals (δt) between start and stop clicks.
The blue bars indicate the raw measurements with a coincidence win-
dow of 0.05 ns, while the light blue bars depict the measurements inte-
grated with a larger coincidence window (0.425 ns). Broadband peaks
surrounding the zero-delay peak are attributed to spurious counts orig-
inating from SPADs photon emissions. Hence, coincidence peaks neigh-
boring the zero-delay peak, impacted by SPADs emissions, are disre-

garded. b) The plot depicts the measured unheralded g(2)(0) (blue dots)

as a function of the on-chip peak power. The expected g(2) (dashed black
line) is derived from the simulation, showing compatibility with the ex-
periment. Measured points fall within the simulated values (light blue
area), upper bounded by a source with thermal emission statistics and

lower bounded by a source with Poissonian emission statistics (g(2) = 1). 94



4.11 a) The scheme of the experimental setup. Initially, a pump beam is pro-
duced by a tunable CW laser and amplified using an erbium-doped fiber
amplifier (EDFA). A BPF is then employed to eliminate the amplified
spontaneous emission (ASE) generated by the EDFA. Polarization ad-
justments are made using wave-plates, and the light is coupled to the
chip through edge-coupling using a lensed tapered fiber. Idler and sig-
nal are collected by tapered fibers. The idler is polarization filtered via
wave-plates, while Raman and pump photons are rejected using a short-
pass filter (SPF) with a cut-off wavelength at 1335 nm. Idler photons are
detected using an InGaAs single photon avalanche diode (SPAD model
IDQ-id210). Signal photons, once polarization filtered, travel through
a CO2 gas cell before being up-converted to the visible spectrum by
the UC. Detection of the up-converted signal occurs through a Silicon
SPAD (Excelitas SPCM-AQRH-12). Coincidence counts between the two
SPADs are recorded via a time-tagger (time-tagger 20 Swabian Instru-
ments). b) The simulated TE0 and TE1 modes for the channel waveguide
with a cross-section of (2 × 0.220) µm2. . . . . . . . . . . . . . . . . . . . 97

4.12 a) A qualitative comparison between the idler spectrum obtained from
direct measurements (green line) and the simulated spectrum consider-
ing the monochromator (light blue line) and without it (orange line). The
pump wavelength used is ¼ = 1569 nm. It’s worth noting that the rel-
ative error associated with each data point represented by the blue line
is less than 5%. b) The simulation depicted in this panel illustrates the
spectrum of signal photons without any influence from the resolution of
an instrument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.13 Frequency conversion of the sFWM process. The simulations of pump-
idler conversion in dotted line blue and of the pump-signal conversion
in dotted line red are shown. The blue points represent the measured
values of the idler photons, while the red points are calculated through
energy conservation from the experimental idler values. . . . . . . . . . 98

4.14 In the dark red plot, the CAR is displayed as a function of the on-chip
pump power. In blue, both the raw (unfilled dots) and net (filled dots)
coincidence rates are shown as a function of the on-chip pump power.
Both the CAR and the coincidence rates were measured with a coinci-
dence bin width of 0.35 ns. The lines serve as a visual guide. . . . . . . . 99

4.15 The plot shows the g
(2)
H (0) as a function of pump power. The measure-

ment for g
(2)
H (∆t) at an on-chip power of 10.5 mW is presented in the

inset. Adjacent bins to the zero-delayed one have been eliminated due
to the photons emitted by the Si-SPAD. . . . . . . . . . . . . . . . . . . . 100

4.16 a) The transmission spectra of CO2 in a cell filled with 1 atm CO2 are
depicted, with measurements conducted using both classical absorption
spectroscopy with signal photon counts (red dots) and the GS method
(blue dots). The black lines represent simulated spectra with (dashed
line) and without (solid line) noise, accounting for the spectral resolution
of the system. b) Transmission through the gas at a fixed wavelength,
¼ = 2003.3 nm, is shown as a function of the CO2 pressure in the gas
cell. Both classical measurements with signal photons (red dots) and
GS measurements (blue dots) are presented. The black lines represent
simulated values for a system with (dashed line) and without (solid line)
noise, using a time window of Ä = 1.1 ns around the center. . . . . . . . 106



4.17 a) The simulated dispersion of the TE0 and TE1 modes in the examined
region is presented. The MMWG is a channel waveguide composed of
SiN, surrounded by air, with dimensions of 6 µm width and 800 nm
height. b) The PM condition is illustrated for the intermodal combina-
tion 1122-TE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.18 Simulation of the CO2 considering a cell filled with 1 atm without filter
in idler side (blue line) and with a 0.2 nm band-pass filter applied to the
idler channel (gold line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 Schematic of the Integrated Photon Simulator within the EPIQUS project,
segmented into four blocks denoted by Roman numerals. In Block I, en-
tangled photon generation occurs via the Spontaneous Four-Wave Mix-
ing process. Block II contains residual pump filtering and routing of gen-
erated photons along the established path. Block III is dedicated to quan-
tum operation, comprising a circuit composed of a collection of MZIs.
Finally, Block IV represents integrated detection. . . . . . . . . . . . . . . 112

5.2 a) Cross-sectional view of the SiON core waveguide (0.3 × 2.5) µm. The
cladding consists of borophosphosilicate glass (BPSG) above the waveg-
uide and tetraethoxysilane (TEOS)-based silicon oxide as the substrate.
b) and c) Simulated electric-field intensity profiles at 750 nm for the fun-
damental TE0 (b) and TE1 (c) modes. . . . . . . . . . . . . . . . . . . . . . 114

5.3 A schematic of the experimental setup employed for the characteriza-
tion of the SiN integrated components. A supercontinuum laser serves
as the light source and is coupled with the PIC via a single-mode tapered
fiber with a Mode Field Diameter (MFD) of 2.5 µm. The desired polariza-
tion state is adjusted using free-space wave-plates ¼/4 and ¼/2. At the
output of the PIC, the signal is collected by another single-mode tapered
fiber and analyzed using an OSA, enabling high-resolution spectral anal-
ysis of the optical signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Insertion losses across the spectral range from 650 nm to 850 nm. a)
Propagation losses for TE polarization in a cross-section of (1 × 0.3) µm.
b) Butt coupling losses using a waveguide edge cross-section of (1.25 ×
0.3) µm, employing a tapered fiber with a spot size of 2.5 µm for TE-
polarized light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 An optical image of the fabricated chip shows pronounced light scatter-
ing where the waveguide intersects the metal lines. . . . . . . . . . . . . 116

5.6 Mask layout showing two designs (a-b), where dark red lines represent
waveguides and purple denotes metal wires. Overglass and trench lay-
ers are removed from the image. . . . . . . . . . . . . . . . . . . . . . . . 117

5.7 (a) SEM image depicting the CR. The multimodal waveguide measures
1.5 µm in width and extends over a total length of 10 µm. (b) ILs of a
CR measured in the wavelength range from 650 nm to 780 nm for TE
polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.8 a) Optical microscope image illustrating the configuration of G-MMI.
The multimodal waveguide has a width of 5.8 µm and a length of 163.11
µm. b) Optical microscope image illustrating the configuration of P-
MMI. The multimode waveguide has a width of 6.7 µm and a length
of 55.9 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



5.9 Variation in the unbalance (out2/out1) of G-MMIs (red markers) and P-
MMIs (blue marker) with different runs. A consistent but specular un-
balance is evident in both cases. Positive unbalanced values indicate
higher intensity in the output opposite to the input, while negative val-
ues suggest greater intensity in the output corresponding to the selected
input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.10 Characterization of G-MMI and P-MMI splitters designed for operation
at 740 nm for the C7 configuration. The black curve represents the output
port unbalance (out2/out1), while the blue curve indicates the ILs of the
integrated structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.11 (a) SEM image showing the cross-section of the ADC, with the two SiON
waveguides surrounded by the cladding clearly visible. (b) Top-view
SEM image displaying the single-mode waveguide and the multimode
waveguide, which approach each other up to a distance of 600 nm to
form the ADC structure. The width of the single-mode waveguide is 0.7
µm, the width of the multimode waveguide is 1.79 µm, and the coupling
length is 171.41 µm. c) Optical microscope image depicting two config-
urations for measuring ADCs: one where the two structures are in the
same orientation (configuration 1), and another where they are specular
(configuration 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.12 Characterization of the ADC in configurations 1 (a) and 2 (b). The red
curve represents the transmission of the drop port, indicating the cou-
pling of light carried by the single-mode waveguide into the multimode
waveguide. The blue curve represents the transmission in the through
port, representing the remaining signal in the single-mode waveguide. . 121

5.13 Optical microscope images of the two layouts of the MZI with (a) and
without (b) trenches. The normalized intensity in one of the two outputs
of the MZI as a function of the electrical power for the MZI with the
trenches (c) and without the trenches (d). A phase-π is observed with
the trenches at 79 mW, while without trenches at 105 mW. . . . . . . . . 122

5.14 Percentage variation of the nominal resistance value as the electrical power
varies in the presence (red line) and absence (blue line) of trenches. . . . 122

5.15 a) Schematic representation of the filtering stages for the pump, consist-
ing of a 4 aMZI stage to remove the 740 nm wavelength and to pass 810
nm. In the dashed rectangle an aMZI. The ∆L is 2.32 µm. b) Optical re-
sponses of the pump filter designed for the signal wavelength at 810 nm.
The output port labeled "out5" (purple line) displays the residual pump
port, while "out1" (blue line) illustrates the rejection of this pump after 4
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1

Introduction

Quantum mechanics constitutes the cornerstone supporting a multitude of scientific
and technological innovations, exerting a profound influence on society and heralding
a future full of transformative advancements across diverse sectors [1, 2]. This disci-
pline has not merely redefined existing fields but has also paved the way for entirely
new paradigms of innovation. Within this framework, numerous fields have reached
substantial benefits. Quantum computing [3] stands on the cusp of revolutionizing data
processing with its promised computational power: for example, quantum principles
are advancing in medical diagnostics [4] and imaging modalities [5]. Quantum sensors
increase accuracy in measurement science and environmental surveillance [6–8], and
quantum cryptography reinforces the security of communication networks [9]. Fur-
thermore, the insights obtained through quantum mechanics are catalyzing progress in
materials science [10], fostering the emergence of materials with different characteris-
tics.

Quantum light (or "non-classical" light) is central to these innovations [11]. It is an
essential component for leveraging the benefits of quantum mechanics. Unlike classi-
cal light, quantum light exhibits distinct statistical properties, notably characterized by
photon number distributions featuring variances (∆n) such that n > ∆n [12]. Here, n
denotes the average number of photons, surpassing classical thresholds where n f ∆n.
This distinctive attribute provides detection mechanisms with lower noise levels than
traditional classical light sources. In addition, quantum light behaves in ways that con-
tradict classical interpretations. It demonstrates the superposition phenomenon [12]
where particles can exist in multiple states simultaneously. It also involves entangle-
ment [13], a concept initially described by Einstein as "spooky action at a distance".
Entangled particles maintain a correlation despite vast separations, with one particle
instantaneously influencing its counterpart.

Quantum light is also characterized by two main features: indistinguishability and
coherence. The first feature is purely quantum, which means that each photon is an ex-
act copy of another, having no differences in any aspect. The second characteristic is
not purely quantum and refers to the consistent phase relationship among the electro-
magnetic wavefronts that make up the light. Coherence helps in creating pure states,
which are different from mixed states that do not show interference. Some examples of
non-classical light include squeezed states [14], photon-number (or Fock) states, and,
in particular, single-photon states [15]. Furthermore, examples of classical light include
thermal light from a blackbody source and coherent light from a laser.

Quantum light generation stands as a formidable challenge in the field of quantum
physics. The search for a source of quantum light—capable of consistently emitting sin-
gle photons or entangled photon pairs—has catalyzed substantial advancements in this
domain. The key to achieving this goal lies in utilizing the unique emission character-
istics of individual quantum systems, leading to sub-Poisson statistics. Single photons
exhibit such statistics, which can be achieved by making sure that a quantum system’s
transition from an excited state precludes subsequent re-emission, guaranteeing the re-
lease of a solitary photon per instance. This "anti-bunching" phenomenon of photons is
a pivotal element of quantum mechanics, highlighting the discrete nature of quantum
emissions. The observation of anti-bunching was first made in resonance fluorescence
experiments involving low-density sodium vapor, as chronicled by Hanbury Brown
and Twiss in 1979 [16]. This discovery was later confirmed within single ion systems
through the work of Mandel in 1979 [17].



2 Introduction

The journey of single photons and quantum light has seen remarkable advance-
ments over the past four decades, tracing its origins back to the early 20th century by
Max Planck. The crucial moment occurred in 1977 when Kimble’s work on the statis-
tical properties of a single photon emerged [18]. Entering the new millennium, Knill’s
groundbreaking discovery showed that single-photon pulses could be exploited for
optimal linear optical quantum computation (LOQC) [19], propelling multiple experi-
mental efforts to develop a reliable single-photon source.
Based on a thorough examination of citations and patents, as depicted in Figure 1, it is
evident that there has been significant progress in quantum light research. A review by
Shahram MohammadNejad [20] highlights a surge of interest in important areas such
as quantum communication, quantum computation, and quantum entanglement. This
surge not only reflects the growing curiosity and potential in these fields, but it also
confirms the robust and continuous advancement of research in quantum light. The

Figure 1: Trend of different quantum topics rates in both academic citations (a) and
patents (b). The data are taken from a review authored by Shahram MohammadNejad
[20]. Reproduced with permission from Springer Nature.

field of quantum light generation has seen significant expansion in recent years due to
the development of various platforms and techniques. This has opened up new pos-
sibilities for exploration and applications in science and technology. Each method has
unique features and potential advantages that require thorough examination. Let us
focus on some of the most important techniques that have emerged.
Quantum dots [21], often referred to as "artificial atoms", offer a promising approach to
creating predictable quantum light sources. These nanoscopic structures exhibit elec-
tron motion that is quantized in all three spatial dimensions, leading to an energy spec-
trum that mirrors that of natural atoms. Quantum dots provide a versatile platform
for building quantum systems within robust semiconductor frameworks, allowing for
emission properties to be tailored to specific needs.

Trapped ions [22] are becoming a leading technology in the field of quantum com-
puting, with great potential as sources of quantum light. They are known for produc-
ing qubits with minimal noise, which makes them highly desirable for both quantum
computing and communication. Additionally, trapped ions have prolonged coherence
times, which helps to ensure consistent and stable quantum operations, further solidi-
fying their essential role in advancing quantum technologies.

Diamond color centers [23], especially nitrogen-vacancy (NV) centers, are at the
forefront of quantum technology research. These atomic-scale imperfections can be
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engineered to emit single photons. Exhibiting unique quantum properties, these lat-
tice defects in diamonds become efficient quantum emitters. NV centers, in particular,
have attracted considerable interest due to their capacity to produce single photons of
remarkable purity and coherence.

Cold atomic gases [24] offer a scalable and versatile approach to quantum light
generation, with controlled interactions leading to the emission of single photons. Re-
cent research has focused on the creation of quantum droplets and supersolid states
in ultracold atomic gases, which present new opportunities for fundamental research
and quantum sensing technologies. Additionally, the generation of nonclassical photon
pairs with extensive bandwidth in hot atomic vapors highlights the potential of these
systems as high-efficiency, broad-bandwidth quantum light sources.

Alternative approaches for the generation of entangled and single photon pairs are
based on the principles of nonlinear optics, which are employed in various media such
as crystals or integrated waveguides. These media facilitate two key processes: Spon-
taneous Parametric Down-Conversion (SPDC) [25, 26] and Spontaneous Four-Wave
Mixing (sFWM) [27, 28]. These processes can simultaneously generate pairs of entan-
gled photons and emit a single photon pair at a specific input power, with probabilistic
generation events.

SPDC is a quantum optical process that occurs in nonlinear materials. In this pro-
cess, a photon is converted into two photons, known as signal and idler photons. These
photons are time-energy correlated and are generated from non-centrosymmetric ma-
terials, typically bulk crystals. This nonlinear process guarantees energy and momen-
tum conservation. The entangled nature of the generated photon pairs makes SPDC an
essential tool for conducting quantum communication and information experiments.

On the other hand, sFWM is another nonlinear optical process that can be used
in integrated optical circuits. In sFWM, two photons interact in a nonlinear medium,
creating two more photons that are time-energy correlated. As with SPDC, this process
requires energy and momentum conservation. Integrated waveguides are particularly
advantageous for sFWM due to their ability to confine light effectively, enhancing the
nonlinear interaction and, thus, the efficiency of the process.

In the case of photon pair sources, the generation of single photons is achieved
through the heralding technique. This method exploits the correlation between the
photon pairs produced in either SPDC or sFWM. When one photon (the herald) is
detected, it signals the presence of its counterpart, thereby indicating the generation
of a single photon with a higher degree of certainty. By employing this method, the
so-called Heralded photon attains sub-Poissonian statistics. This heralding process is
crucial for applications that require a deterministic source of single photons, such as
certain quantum computing protocols and quantum key distribution systems.

All these different methods give a variety of advantages and disadvantages cru-
cial for their practical application. One significant challenge lies in the requirement
for cryogenic temperatures, imperative for maintaining quantum coherence. However,
this necessity entails substantial logistical and financial burdens.

Moreover, these platforms require protection from external perturbations to pre-
vent decoherence. This requires advanced engineering solutions that may limit scala-
bility. The complexity of their manufacturing processes adds an extra level of difficulty,
often involving complicated techniques that can affect the coherence and consistency
of photon sources.

Integrated nonlinear optics is a promising solution to the challenges faced in the
field of quantum light. This approach allows for the utilization of nonlinear optical
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effects within integrated circuits, making it easier to generate and manipulate quan-
tum light. With this method, ultra-low temperatures are no longer necessary, as some
operations can be performed at more manageable temperatures.

This approach enhances protection from environmental interference by integrat-
ing optical components onto a single chip. The manufacturing process is simplified
and produces more coherent and scalable photon sources in micrometer sizes, taking
advantage of well-established semiconductor fabrication methods.

Integrated nonlinear optics offers a more refined configuration compared to tradi-
tional bulky free-space optics. It can encapsulate not only the generation of quantum
states but also their manipulation [29] and detection within a single compact platform
[30]. This fusion of nonlinear optics and integrated photonics represents a significant
step forward toward the practical realization of quantum light technologies. It paves
the way for a future illuminated by the principles of quantum mechanics.

This thesis work is dedicated to the generation of quantum light, specifically bipho-
ton states, through the nonlinear parametric process of sFWM on an integrated silicon
photonics platform. These states, composed of entangled pairs of photons, have found
various applications that exploit time-energy correlation. The thesis is structured into
six chapters, each addressing specific aspects of my research:

Chapter 1: Entangled Photons. This chapter introduces the fundamental princi-
ples of quantum optics, with a focus on the parametric non-linear sFWM process. It
elucidates critical parameters characterizing biphoton states, providing a comprehen-
sive understanding of their generation and significance.

Chapter 2: Silicon Quantum Photonics. This chapter discusses the central role
of silicon and silicon nitride materials in integrated optics. It covers the basics of in-
tegrated waveguides, integrated optical components, and the manifestation of sFWM
within them.

Chapter 3: Comparison of sFWM Integrated Sources. This chapter presents a
detailed comparison between various sFWM sources, highlighting the differences be-
tween two integrated sources of biphoton state, namely spiral sources and micror-
ing resonators. The comparison takes into consideration different quantum parame-
ters that characterize the quantum light source. It covers analytical analyses, simu-
lations, and experimental measurements to characterize the different aspects of inte-
grated sources. Additionally, the text discusses the comparison of intramodal versus
intermodal generation approaches. Here, I have performed the simulations and theo-
retical analyses reported.

Chapter 4: 2 µm Sensing. This chapter presents groundbreaking research on
the generation of single photons in the mid-infrared range achieved through the in-
termodal sFWM process using infrared lasers in the C-band. The integrated sources,
are thoroughly characterized based on various figures of merit. Finally, the chapter
discusses the application of entangled photons silicon-based sources in Ghost spec-
troscopy under noisy conditions, demonstrating their superiority over conventional
spectroscopic methods. Here I have conducted all the experimental measurements and
theoretical analyses reported.

Chapter 5: Toward Quantum Simulator in a Monolithic Platform. As part of
the EPIQUS project, this chapter focuses on the development of a quantum simulator
on a single photonic platform. The chapter discusses the use of a silicon nitride-based
platform that has been optimized for operation within the visible to near-infrared spec-
trum, along with its linear and nonlinear characterizations. The generation of bipho-
ton states is described in detail, along with the study of different integrated structures
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that are useful for enabling the selection of generated photons, the removal of resid-
ual pumps, the routing of the quantum state, and its manipulation. Here, I designed
the different building blocks and performed linear and nonlinear measurements of the
FBK-manufactured devices.

Chapter 6: SWAP Test Algorithm on a Linear Photonic Integrated Circuit. The
final chapter explores the implementation of the quantum Swap Test algorithm on a sil-
icon nitride platform, using path encoding for qudit representation. It investigates the
potential of the Swap Test for efficient kernel function estimation, presenting a novel
approach to quantum algorithms. Here, I contributed to the design and performed the
experimental measurements.

The chapters end with a summary of the key findings and suggestions for future
research. The appendices contain additional information that helps in understanding
the concepts discussed in the main chapters. In the conclusion, I reflect on the implica-
tions and contributions of my research to the field of quantum light generation.

These chapters detail the primary research conducted throughout my doctoral
years. Further work in which I have contributed without a leading role can be found in
the list of my publications.
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Chapter 1

Entangled photons

"I would not call [entanglement] one but the characteristic trait of quantum
mechanics, the one that enforces its entire departure from classical lines of
thought."

Erwin Schrödinger

The term "biphoton state" [12] refers to a fundamental quantum state in quantum optics
that describes the behavior of two interacting photons. The traits and qualities of these
two photons are inherently linked, resulting in a robust correlation. Entanglement [13,
31] characterizes this correlation that exists between these photons. In this scenario,
the quantum states of the two photons are so entwined that it becomes impossible to
describe the state of one photon without simultaneously describing the other’s.

Biphoton states are relevant across a broad spectrum of quantum phenomena and
application domains. They serve as indispensable tools for the fundamental explo-
ration of quantum entanglement. They are crucial for advancing the field of quantum
technologies, including quantum sensing [8], quantum cryptography, quantum com-
puting [3], and various other quantum optical experiments [32–34].

Two approaches to generate biphoton states, spontaneous parametric down-conversion
(SPDC) [26] and spontaneous four-wave mixing (sFWM) [28], assume prominence. The
following chapter, after the introduction of foundational aspects of quantum optics,
provides a detailed exposition of these processes. It includes an in-depth analysis of
the characteristics exhibited by these entangled photons.

1.1 Quantum aspects

1.1.1 Quantum electric field: basic description

In this chapter, we explore the fundamental principles underlying the quantum per-
spective of the electric field, drawing inspiration from the work presented in the book
by Gerry and Knight [12].

Quantized harmonic oscillator

The mathematical characterization of the quantum electric field is achieved through
the framework of quantum field operators. These operators, responsible for both the
creation and annihilation of photons, play a fundamental role in governing the inter-
play between charged particles and photons. The formulation of these field operators
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is guided by quantization rules that ensure the internal consistency of the quantum
theory.

The Hamiltonian describing the electromagnetic field is treated as a quantized har-
monic oscillator, represented as:

Ĥ = ∑
j

Ĥj = ∑
j

h̄ωj

(

â†
j âj +

1

2

)

. (1.1)

Here, h̄ denotes the reduced Planck constant, h/2π, and ωj is the frequency associated

with the j-th mode. The operators â†
j and âj are non-Hermitian boson creation and

annihilation operators for excitations in mode j.

The operator product â† â assumes particular significance, termed as the number oper-
ator or occupation number (representing the number of photons), denoted as n̂.

By applying â†, a set of normalized number states |njð is created, serving as eigenstates

of the Hamiltonian Ĥj for mode j. In the photons concept of view, â† adds a quantum
energy, h̄ω, or a photon, to the j-th mode of the radiation field. Similarly, â subtracts a
quantum energy.
The boson creation and annihilation operators follow the bosonic commutation rules:

[

âk, â†
l

]

= δlk and
[

â†
k , â†

l

]

= [âk, âl ] = 0 . (1.2)

In a quantum system, the operators n̂ and Ĥ share the same set of eigenvectors if their
commutation, i.e., [n̂,Ĥ] = 0, is satisfied. This means that both operators can be si-
multaneously diagonalized on a specific basis. This characteristic allows the state of
the system to be precisely described in terms of definite values for both energy and
particle number at the same time.

Photon number state

The quantized field can be characterized in terms of the energy eigenstates of its Hamil-
tonian. In general, the state of any radiation field can be expressed as a superposition
of energy eigenstates:

|Ψð = ∑
n

cn |nð . (1.3)

Here, cn represents the complex amplitude associated with the photon number state
|nð. Consequently, |nð denotes an energy eigenstate of a single-mode field with the
energy eigenvalue En:

Ĥ |nð = h̄ω

(

â† â +
1

2

)

|nð = h̄ω

(

n̂ +
1

2

)

|nð = En |nð . (1.4)

For the ground state, the energy eigenvalue takes the form:

Ĥ |0ð = h̄ω

(

â† â +
1

2

)

|0ð = 1

2
h̄ω |0ð , (1.5)

resulting in the lowest-energy eigenvalue, referred to as the zero-point energy h̄ω/2.
The energy eigenvalues follow the relation En+1 = En + h̄ω, giving:

En = h̄ω

(

n +
1

2

)

, n = 0, 1, 2, ... . (1.6)
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For the number operator n̂, its action on the number state |nð is defined as:

n̂ |nð = n |nð . (1.7)

In the context of multimode photon number states, such a state is simply a product of
individual number states for all modes, expressed as:

|n1ð |n2ð |n3ð .... ≡ |n1, n2, n3, ...ð = |{nj}ð . (1.8)

This state serves as an eigenstate of the Hamiltonian operator Ĥ:

Ĥ |{nj}ð = E |{nj}ð . (1.9)

The associated eigenvalue E is determined by the sum of energies across all modes:

E = ∑
j

h̄ωj

(

nj +
1

2

)

. (1.10)

These number states are mutually orthogonal, following the orthogonality relation:

ïn1, n2, n3, ...|n′
1, n′

2, n′
3, ...ð = δn1n′

1
δn2n′

2
... . (1.11)

When considering the actions of two distinct non-Hermitian operators, it can be artic-
ulated as:

âj |n1, n2, n3, ...nj, ...ð = √nj |n1, n2, n3, ...nJ − 1, ...ð , (1.12a)

â†
j |n1, n2, n3, ...nj, ...ð =

√

nj + 1 |n1, n2, n3, ...nJ + 1, ...ð . (1.12b)

These equations delineate the actions of the annihilation operator âj and the creation

operator â†
j on multimode number states. The square roots of nj and nj + 1 in the

respective equations capture the quantum behavior of these operations.
The multimode vacuum state is represented as:

|{0}ð = |01, 02, 03, ...0j, ...ð , (1.13)

for which the action of the annihilation operator âj results in:

âj |{0}ð = 0 , (1.14)

for all modes j. All possible number states can be generated from the vacuum state
through:

|{nj}ð = ∏
j

(

â†
)nj

√
nj!

|{0}ð . (1.15)

This expression encapsulates the generation of multimode number states from the vac-
uum state, illustrating the versatility and power of the creation operator.

Quantization of the electric field

We introduce the quantized vector potential at position r and time t through the non-
Hermitian operators:

Â(r, t) = ∑
j

(

h̄

2ωjε0V

)1/2

iej

[

âje
i(kjr−ωjt) + â†

j e−i(kjr−ωjt)
]

. (1.16)
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Here, ε0 represents the vacuum permittivity, ej is the real polarization vector of mode
j, V is the volume of the free space modeled as a cavity, and k is the wave vector.
The electric field operator is expressed as:

Ê(r, t) = i ∑
j

(

h̄ωj

2ε0V

)1/2

ej

[

âje
i(kjr−ωjt) + â†

j e−i(kjr−ωjt)
]

. (1.17)

It can be decomposed into positive and negative frequency components:

Ê(r, t) = ∑
j

[

Ê
(+)
j (r, t) + Ê

(−)
j (r, t)

]

. (1.18)

The positive and negative frequency components are related by Ê
(−)
i (r, t) = Ê

(+)
i (r, t)†,

with † indicating the Hermitian conjugate. The positive part is defined as:

Ê
(+)
i (r, t) = i ∑

j

(

h̄ωj

2ε0V

)1/2

ej âje
i(kjr−ωjt). (1.19)

Following the introduction of the Â and Ê operators, we can use the relations Ê = − ∂Â
∂t

and B̂ = ∇× Â to define the Hamiltonian of the electromagnetic field in terms of the
electric and magnetic fields. The Hamiltonian H therefore has the following form:

Ĥ =
1

2

(

ε0E2 +
1

µ0
B2

)

. (1.20)

Substituting Ê and B̂ into this expression yields:

Ĥ =
1

2



ε0

(

−∂Â

∂t

)2

+
1

µ0

(

∇× Â
)2



 . (1.21)

Substituting the eq. (1.16) into H enables us to express the Hamiltonian in terms of
creation and annihilation operators. The resulting Hamiltonian represents a collection
of harmonic oscillators, thereby reflecting the quantized nature of the system.

Continuous-mode operators

In the contest of non-monochromatic fields, the continuous-mode creation and annihi-
lation operators are defined as

[

â(ω), â†(ω′)
]

= δ(ω − ω′) and
[

â†(ω), â†(ω′)
]

=
[

â(ω), â(ω′)
]

= 0 . (1.22)

The number operator in this case is

n̂j =
∫

dωâ†
j âj(ω) , (1.23)

and the positive component of the electric field becomes

Ê
(+)
j (r, t) =

∫

dωε jej âje
i(kjr−ωjt) , (1.24)

where ε j =
(

h̄ωj

2ε0V

)1/2.
.
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Pulsed Light Consideration

When producing photon wave packets using pulsed light, the operator is expressed as:

â†
j,k =

∫

dωFj(ω)â†
j (ω) , (1.25)

where Fj(ω) is the spectral profile of the photon wavepacket in mode j, and the positive
frequency component becomes

Ê
(+)
j (r, t) =

∫

dωε jejFj(ω)âj(ω)ei(kjr−ωit) . (1.26)

If the non-zero band of the spectrum is significantly narrow around ωi, the following
approximation is applied:

Ê
(+)
i (r, t) ≃ εieie

i(kir−ωit)
∫

dωFi(ω)âi(ω) . (1.27)

Quadrature operators of a single-mode field

Quadrature operators play a crucial role as fundamental mathematical tools. Denoted
conventionally as X̂1 and X̂2, these operators, respectively, follow the canonical com-
mutation relation:

[X̂1, X̂2] =
i

2
. (1.28)

This equation represents the quantum uncertainties related to making measurements
of position and momentum at the same time. It helps to explain the basic principles
of quantum optics. The quadrature operators can be expressed using the two field
operators, â and â† as:

X̂1 =
1

2

(

â + â†
)

, (1.29a)

X̂2 =
1

2i

(

â − â†
)

. (1.29b)

These expressions provide a detailed representation of the quadrature operators within
the framework of the electric field, establishing a basis for the analysis of the quantum
field characteristics.

The uncertainty relation holds:

ï(∆X̂1)
2ð ï(∆X̂2)

2ð g 1

16
. (1.30)

Here ∆X̂1 and ∆X̂2 are the uncertainties associated with X̂1 and X̂2. Additionally, for
number states |nð, it is observed that:

ïn|X̂1|nð = ïn|X̂2|nð = 0 . (1.31)

Additionally,

ïn|X̂2
1 |nð = ïn|X̂2

2 |nð =
1

4
(2n + 1) . (1.32)

This implies that for a number state, the uncertainties in both quadratures are equal.
Furthermore, the vacuum state (n = 0) minimizes the uncertainty product, as evi-
denced by:

ï(∆X̂1)
2ð = ï(∆X̂2)

2ð = 1

4
. (1.33)
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1.1.2 Density matrix

The density matrix [35], also known as the density operator, is a mathematical tool
used in quantum mechanics to describe the statistical state of a physical system. It
facilitates the analysis of quantum system evolution within a statistical framework and
the computation of various physical observables.
For a pure state |ψð, if we define the density matrix as:

ρ = |ψð ïψ| , (1.34)

the expectation value of an observable Ô can be expressed:

ïÔð = ïψ|Ô|ψð . (1.35)

Alternatively, the expectation value can be expressed in terms of the density matrix as

ïÔð = Tr(ρÔ) . (1.36)

Real-world scenarios frequently involve systems in mixed states, characterized as a
statistical combination of pure states. In such instances, the density matrix takes the
form as

ρ = ∑
i

pi |ψið ïψi| . (1.37)

Here, pi is the probability of the system being in the pure state |ψið and ∑i pi =1. In the
case where only one of the coefficients pi is non-zero, the state is pure and ρ̂ = ρ̂2; other-
wise, it is a mixed state. The density matrix is Hermitian, enabling its diagonalization
through a unitary transformation. Its utility extends to scenarios involving multiple
subsystems. For a composite system A and B, the density operator ρA is effectively
described by the reduced density operator for system A [2]:

ρ̂A ≡ TrB{ρ̂AB}. (1.38)

The partial trace over B (TrB) allows the extraction of accurate observable quantities
related to subsystems within a composite quantum system. It is defined by

TrB{|a1ð ïa2| × |b1ð ïb2|} ≡ |a1ð ïa2| Tr{|b1ð ïb2|}. (1.39)

The purity of a quantum system can be quantified starting from the density matrix.
Purity (P) serves as a metric to understand how closely a state resembles a pure state
in quantum mechanics, calculated as the trace of the square of the density matrix (ρ2)
[35]:

P = Tr(ρ2) . (1.40)

In the scenario of a pure state, where the density matrix functions as a projection op-
erator onto that state, the square of the density matrix (ρ2 = ρ) results in a purity of 1.
Conversely, for a mixed state—a statistical ensemble of pure states—the density matrix
is expressed as a sum of outer products of individual pure states, each weighted by
their probabilities. The purity of such a state is less than 1, signifying the presence of
mixedness or uncertainty. Generally, the lower purity limit for a mixed state with N
dimensions is P = 1/N.
The degree of entanglement in a system is closely linked to the purity of the subsystem
states involved in the correlation. For maximally entangled states, the purity serves
as an indicator of the degree of entanglement. Conversely, when the system exhibits
no correlation (N = 1), the subsystem states are pure, and the state of the composite
system is separable into the produced states of the subsystems. In cases of maximally
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entangled states (N > 1), the composite states become completely mixed, signifying
the impossibility of assigning a defined pure state to the subsystems.

1.1.3 The Schmidt decomposition

A common mathematical method in quantum mechanics for representing a bipartite
quantum state is the Schmidt decomposition [36]. This method is particularly useful
when dealing with composite quantum systems and understanding the separability of
the two subsystems.

Consider orthonormal bases {|aið , i = 1, 2, 3, ...} and {|bjð , j = 1, 2, 3, ...} for subsys-
tems U and V respectively. For any state |Ψð ∈ H = HU ¹HV , it can be expressed
as

|Ψð = ∑
i,j=1

cij |aið ¹ |bjð , (1.41)

where cij are non-negative coefficients satisfying ∑ij |cij|2 = 1. The density matrix for
the composite system is given by

ρ̂ = |Ψð ïΨ| = ∑
i,j,k,l

cijc
∗
kl |aið ïak| ¹ |bjð ïbk| , (1.42)

with cijc
∗
kl = ρijkl . For a pure state described by a projection operator ρ̂, an orthonormal

basis {|uið} ∈ HU and {|við} ∈ HV exist such that

|Ψð = ∑
i

gi |uið ¹ |við , (1.43)

where the number of terms in the sum, referred to as the Schmidt rank, provides infor-
mation about the entanglement between the two subsystems. In terms of the density
operator ρ̂, this becomes

ρ̂ = ∑
i,k

gig
∗
k |uið ïuk| ¹ |við ïvk| , (1.44)

with gi as the Schmidt coefficients and ∑i |gi|2 = 1.

The Schmidt decomposition stands out by requiring only a single summation index,
unlike the typical basis change involving two indices. This representation illustrates
that for a pure state in subsystem A, there exists only one nonzero Schmidt coefficient,
resulting in a factorizable state and simplifying the quantum system’s representation.

It’s important to note some remarks [36]:

1. The single-index summation in the Schmidt decomposition extends to the smaller
of the dimensions of the two Hilbert spaces HU and HV ;

2. The decomposition is not unique and generally cannot be extended to multipar-
tite systems with more than two subsystems;

3. In the chosen bases for the Schmidt decomposition, both ρU and ρV are diagonal
and have the same positive spectrum.

The purity of a state in the context of Schmidt decomposition can be expressed in terms
of the Schmidt coefficients. Referring to the density matrix previously calculated in
eq. (1.40), the purity P is defined as:

PU = Tr(ρ̂2
U ) , (1.45a)
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PV = Tr(ρ̂2
V ) , (1.45b)

where the reduced density matrices are

ρ̂U = TrV (ρ̂) = ∑
i

|gi|2 |uið ïui| , (1.46a)

ρ̂V = TrU (ρ̂) = ∑
i

|gi|2 |við ïvi| . (1.46b)

The Schmidt number (K) measuring the number of Schmidt modes is defined as [37]:

K ≡ 1

∑i |gi|4
≡ 1

Tr(ρ̂2
U )

≡ 1

Tr(ρ̂2
V )

, (1.47)

from which it is easy to deduce the following relationship

P = ∑
i

|gi|4 =
1

K
. (1.48)

When K = 1, the state is pure. As K increases, the entanglement between subsystems
increases, making the total state less factorizable.

1.1.4 Coherent light and squeezed light

Coherent State

In quantum mechanics, a coherent state [38, 39] is a unique quantum state that exhibits
characteristics similar to classical states. Often regarded as the quantum analog of the
simple harmonic motion of a classical harmonic oscillator, coherent states are defined
as eigenstates of the annihilation operator:

â |³ð = ³ |³ð , (1.49)

where the eigenvalue ³ = aeiϕ with a = |³|. By relating the equations (1.49) and (1.15),
we can express the state ³ as [39]:

|³ð = e−|³|2/2
∞

∑
n=0

³n

√
n!

|nð . (1.50)

Here, ³ denotes the displacement properties of the coherent state, while |nð represents
the number of states in the harmonic oscillator.

It is possible to define the coherent state using the displacement of the vacuum.
The displacement operator D̂(³) is define as [40]:

D̂(³) = exp (³â† − ³∗ â) . (1.51)

The coherent states are given as:

|³ð = D̂(³) |0ð . (1.52)

Applying the displacement operator to the vacuum state |0ð results in the generation
of a coherent state |³ð.
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It is important to introduce several properties of the coherent states. The average
number of photons in the coherent state |³ð is given by:

n̄ = ïn̂ð = ï³|n̂|³ð = |³|2, (1.53)

where the variance is

∆n =

√

ï³|n̂2|³ð − ï³|n̂|³ð2 =
√

n̄ = ³ . (1.54)

This characteristic indicates a Poisson process, with the fractional uncertainty in the
number of photons given by:

∆n

n̄
=

1√
n̄

, (1.55)

which decreases as n̄ increases. When measuring the number of photons in the field,
the probability of detecting exactly n photons is:

Pn = | ïn|³ð |2 = e−|³|2 |³|2n

n!
= e−n̄ n̄n

n!
. (1.56)

This distribution follows a Poisson distribution with a mean denoted by n̄. Let’s con-
sider the case where the intensity of a coherent field is significantly reduced to the
mean number n̄ j 1 (³ j 1) referred to as the weak coherent state (WCS). We ob-
serve a higher probability of the field being in its fundamental state (n = 0), with a
decreasing probability for states n = 1 and n = 2, respectively. The probabilities as-
sociated with generating states where n̄ k 2 become negligible. Utilizing a first-order
approximation, the measured field state can be effectively approximated as [38]:

|³ð = |0ð+ ³ |1ð+ o(³2)... . (1.57)

This behavior makes the WCS useful for representing single-photon state.

Another aspect of the coherent state involves its description in terms of its quadra-
ture dimensionless variables, as expressed in eq. (1.33):

ï(∆X̂1)
2ð³ = ï(∆X̂2)

2ð³ =
1

4
, (1.58)

where X̂1 = (ω/h̄)1/2q̂ and X̂2 = (ωh̄)−1/2 p̂ where q̂ and p̂ are the canonical variables
of the harmonic oscillator. We can write

∆p0 =

(

1

2
h̄ω

)1/2

, (1.59a)

∆q0 =

(

h̄

2ω

)1/2

. (1.59b)

By proving that these states contain vacuum fluctuations, the coherent states contain
equal, vacuum-like uncertainties in each quadrature, minimizing (in fact, equalizing)
the uncertainty product with respect to the field quadrature operators. This property
provides another way to define coherent states.

Squeezed State

A squeezed state is a quantum state where the equality relation between the two ob-
servables’ uncertainty, ∆ps and ∆qs, is no longer applicable [14, 41]. This deviation,
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known as quantum squeezing, is characterized by one of the following inequalities:

∆ps <

(

1

2
h̄ω

)1/2

, ∆qs >

(

h̄

2ω

)1/2

, (1.60a)

or

∆ps >

(

1

2
h̄ω

)1/2

, ∆qs <

(

h̄

2ω

)1/2

, (1.60b)

where s indicates the term squeezing. When one of these conditions is met, the fluc-
tuations in one quadrature are compressed, resulting in reduced noise compared to a
coherent or vacuum state. However, to uphold the uncertainty principle, the fluctu-
ations in the complementary quadrature must increase. Hence, while one variance is
reduced (squeezed), the other expands. Mathematically, this can be expressed in terms
of the ground state uncertainties as:

∆qs = e−r∆q0 , (1.61a)

∆ps = er∆p0 , (1.61b)

where r is the squeeze parameter.

A more general generator of squeezed states is given by the unitary squeeze operator
Ŝ. It is responsible for transforming the vacuum state into a squeezed state and it can
be written as:

Ŝ = exp(−ξ â†2 + ξ∗ â2) , (1.62)

where ξ = reiθ is the complex squeeze parameter, representing the strength of squeez-
ing with 0 f r < ∞ and 0 f θ f 2π.

The canonical variables are compressed and expanded along directions inclined at
angles θ/2 to the X̂1 and X̂2 axes, under this transformation.

Preparing the initial state of light as a squeezed state allows for the reduction of
uncertainty in one of the optical field quadratures [42].

1.2 Entangled Biphoton state

Let’s discuss the quantum representation of biphoton (two-photon) states [38] and how
a composite system composed of two photons can be characterized, even if the subsys-
tems undergo significant spatial separation. According to quantum theory, a composite
system can be described within a Hilbert space, even if the subsystems are spatially sep-
arate. This Hilbert space is constructed as the direct or tensor product of the individual
Hilbert spaces associated with the two subsystems, as shown in the equation:

H = H1 ¹ H2 . (1.63)

If the state |Ψ1ð ∈ H1 and the state |Ψ2ð ∈ H2, then their composite state |Ψð can be
expressed as:

|Ψð = |Ψ1ð ¹ |Ψ2ð . (1.64)

The inner product between two composite states |Ψð and |Ψ′ð is given by:

ïΨ|Ψ′ð = ïΨ1| ¹ ïΨ2|Ψ′
1ð ¹ |Ψ′

2ð = ïΨ1|Ψ′
1ð ïΨ2|Ψ′

2ð . (1.65)
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Now, considering the two orthogonal Schmidt bases |mð (orthogonal to H1) and |nð
(orthogonal to H2), the composite system can exhibit two different configurations: in-
dependent or correlated/entangled.
In the case of independence, the wavefunction can be written as:

|Ψð = ∑
m,n

Cm,n |mð |nð , (1.66)

where the coefficient Cm,n is factorizable, i.e., Cm,n = CmCn. Conversely, in a corre-
lated or entangled scenario, although the wavefunction remains similar, the coefficient
Cm,n is non-factorizable, resulting in a non-factorizable state. The two subsystems are
described by a correlated state dependent on the form of Cm,n.

An example of an entangled state is the two-photon state. The simplest two-
photon state is the Fock state:

|Ψð = â†
1(ω)â†

2(ω
′) |0ð = |0, .., 0, 11(ω), 0, ..., 12(ω

′), 0ð . (1.67)

In general, the two-photon Fock state can be represented as:

Ψ = ∑
∫

ω

∑
∫

ω′

f (ω, ω′)â†
1(ω)â†

2(ω
′) |0ð , (1.68)

where ∑

∫

means that is possible to have a sum or an integral depending on the state.
The f (ω, ω′) represents the amplitude of probability for the quantized state to be in the
two-photon Fock state.

Now, focusing on f (ω, ω′), if it is factorable ( f (ω, ω′) = f (ω) f (ω′)), then the state
is factorable into the product state of two independent single photons. Conversely, if
the coefficient is not factorable, we are dealing with an entangled two-photon state.

Various mechanisms, such as atomic cascade [43], can generate entangled two-
photon states. In photonics, this can be achieved through nonlinear parametric pro-
cesses like SPDC [44, 45] or sFWM [46–48].

1.2.1 Squeezing parameter

As previously noted, it is feasible to produce two-mode squeezed vacuum states through
nonlinear processes like SPDC or sFWM. Before delving into the details of these pro-
cesses, let us establish some fundamental aspects of these two-mode squeezed vacuum
states.

In this section, we introduce the standard description of two types of squeezers: the
single-beam squeezer, also known as the degenerate case, and the twin-beam squeezer,
known as the non-degenerate case [28].

Degenerate squeezed state

In the degenerate scenario, the Hamiltonian describing the single mode squeezing is
given by:

∫

dtĤSMS = i
h̄

2

(

ξ â†2 + ξ∗ â2
)

, (1.69)

where "SMS" denotes single-mode squeezing. The evolution of any quantum mechan-
ical system is determined by its Hamiltonian H(t) through the Schrödinger equation.
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This leads to the unitary operator ÛSMS:

ÛSMS = e−
i
h̄

∫

dtHSMS = e1/2(ξ â†2+ξ∗ â2). (1.70)

Following the steps outlined in the reference [12], we derive the following relationship
for this degenerate scenario:

|ΨðSMS = USMS |0ð =
1√

cosh r

∞

∑
n=0

einϕ tanhn r

√
2n!

2nn!
|2nð . (1.71)

Here, |nð represents the Fock states defined as |nð = â†n√
n!
|0ð. In a multimode scenario

under low-gain conditions, a simplified description is obtained:

ÛMMS = exp

(

1

2 ∑
k,l

Jkl â
†
l â†

k − h.c.

)

, (1.72)

The unitary operator U can then be described as a tensor product of N beam squeezers:

|ΨðMMS = exp

(

1

2 ∑
k,l

Jkl â
†
l â†

k − h.c..

)

|0ð

= exp

(

1

2 ∑
¼=1

r¼ A†2
¼ − h.c..

)

|0ð

=
⊗

¼=1

exp

(

1

2
r¼ A†2

¼ − h.c..

)

|0ð

=
⊗

¼

S a2

¼ (−r¼) |0ð ,

(1.73)

with A†
¼ = ∑k=1 a†

k Fk¼ represents the joint amplitude of the squeezed state, defined as

J = F(
⊗

¼=1 r¼)FT and S a2

¼ (−r¼) = exp( 1
2 r¼ A†2

¼ ) [49].
Considering the eq. (1.71) it is possible to define the probability of detecting 2n photons
in the field as

P2n = | ï2n|Ψð |2 =
(2n)!

22n(n!)2

(tanh r)2n

cosh r
, (1.74)

while the probability to detect 2n + 1 photons it is

P2n+1 = | ï2n + 1|Ψð |2 = 0 . (1.75)

The photon probability distribution for a squeezed vacuum state oscillates, with the
probability vanishing for all odd photon numbers, as illustrated in Fig. 1.1(a). Despite
the oscillatory pattern, the distribution resembles that of thermal radiation, although
the squeezed vacuum state is pure while the thermal state is mixed.
The statistical distribution of photons in this degenerate case is given by:

ïn̂ð = ïΨ|â† â|Ψð = 1

(cosh r)2

∞

∑
n=0

n(tanh r)2n = ... = (sinh r)2 . (1.76)

It is useful to write the variance of the squeezed state as:

ï∆n̂ð = ïΨ|(â† â − ïn̂ð)2|Ψð = (sinh r)2(1 + (sinh r)2) . (1.77)
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Non-degenerate squeezed state

In this analysis, we focus on a specific scenario involving the partitioning of modes into
two categories: idler and signal modes, denoted as ai and bi respectively. The canonical
commutation relations are satisfied for these modes. The unitary operator U for this
non-degenerate scenario is described as:

UTMS = exp

(

la

∑
i=1

lb

∑
i=1

Ja,b
ij a†

i b†
j − h.c.

)

. (1.78)

The two-mode squeezed (TMS) vacuum states, in terms of number states, are repre-
sented as:

|ΨðTMS = UTMS |0ð =
1

cosh r

∞

∑
n=0

(−1)neinϕ(tanh r)n |n, nð . (1.79)

Similar to the degenerate case, the unitary operator U can be described as a tensor
product of N beam squeezers:

|ΨðTMS = exp

(

1

2 ∑
k,l

Jkl â
†
l b̂†

k − h.c.

)

|0ð

= exp

(

1

2 ∑
¼=1

r¼ A†
¼B†

¼ − h.c.

)

|0ð

=
⊗

¼=1

exp

(

1

2
r¼ A†

¼B†
¼ − h.c.

)

|0ð

=
⊗

¼

S a,b
¼ (−r¼) |0ð ,

(1.80)

with

A†
¼ =

la

∑
k=1

a†
k Fa

k,¼ , (1.81a)

B†
¼ =

lb

∑
k=1

b†
k Fb

k,¼ . (1.81b)

From eq. (1.79) the joint probability Pna, nb of finding na photons in mode a and nb in
mode b is given by:

P(na, nb) = | ïna, nb|Ψð |2 =
(tanh r)2n

(cosh r)2
δna ,nδnb ,n . (1.82)

Fig. 1.1(b) illustrates the probability P(na, nb) concerning the variables na and nb. It
is evident that the joint probability exhibits a monotonic decrease along the diagonal
where na equals nb.
To analyze the properties of individual modes, we introduce the density operator for
the state |ΨðTMS:

ρ̂a =
∞

∑
n=0

(tanh r)2n

(cosh r)2
|nað ïna| , (1.83a)

ρ̂b =
∞

∑
n=0

(tanh r)2n

(cosh r)2
|nbð ïnb| . (1.83b)
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Figure 1.1: a) The probability Pn for the degenerate squeezed vacuum state for r = 1.
b) The probability Pn1,n2 for the non-degenerate squeezed vacuum state for r = 1.

The probability of finding n photons in a single mode a or b is given by:

P
(a/b)
n = ïn|ρ̂a/b|nð =

(tanh r)2n

(cosh r)2
. (1.84)

Due to correlations and symmetry between the modes, the average photon number and
the variance in each mode are the same:

ïn̂ið = (sinh r)2 , (1.85)

ï∆n̂ið = (sinh r)2(1 + (sinh r)2) . (1.86)

This implies that the radiation field in one mode, when the other is neglected within
the context of the two-mode compressed vacuum, resembles radiation from a thermal
source. However, ï∆n̂ið > ïn̂ið (i = a, b), indicating super-Poissonian photon statistics
for both modes. Indeed, the squeezed source exhibits emission statistics that can range
between thermal and Poissonian distributions [50].

1.2.2 Photon statistics and second order coherence function

The investigation of photon statistics is fundamental for understanding the behavior of
light, offering insights into the distribution and correlation patterns of photons within
a given field. To explore this domain, the concepts of "bunching" and "anti-bunching"
are introduced [51].

Bunching and anti-bunching statistics

Temporal correlations between photon detections can be qualitatively understood through
observations of bunching and anti-bunching behaviors. While photon anti-bunching is
a quantum phenomenon observed in nonclassical light sources, photon bunching is as-
sociated with classical light sources. The definitions of bunching and antibunching are
shown in Fig. 1.2. Assume that each row’s spheres correspond to a collection of pho-
tons’ locations along a timeline. (They might also stand for the timings of arrival at a
detector.)
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Figure 1.2: Detection of photons as a function of time t. The Äc is the coherence time. In
blue the anti-bunching photons, in gold the Poissonian photons (coherent light) and in
orange the bunching photons.

In the central row, coherent photons are represented by gold spheres. This coherent
state displays Poissonian photon number statistics, where each sphere’s position is in-
dependent of others, resembling random arrangements. Such a source, characterized
by Poissonian statistics, exhibits neither bunching nor anti-bunching behavior.

The lower row, depicted in orange, illustrates photons exhibiting bunching behavior.
These photons tend to cluster together more frequently compared to independent par-
ticles.

The upper row, shown in blue, represents particles demonstrating anti-bunching be-
havior. In this scenario, there is a reduced probability of detecting a second photon
when one has been observed at an earlier time.

Second order coherence function

To characterize these statistics, it is useful to introduce the second-order coherence func-
tion g(2). It serves as a fundamental concept in quantum optics, providing a means to
quantify the degree of bunching or anti-bunching and offering insights into the sta-
tistical properties of photon distribution over time. Mathematically, the second-order
coherence function between two modes j and k at a fixed position r is defined as [52]:

g
(2)
j,k (Ä) =

ïÊ
(−)
j (r, t)Ê

(−)
k (r, t + Ä)Ê

(+)
k (r, t + Ä)Ê

(+)
j (r, t)ð

ïÊ
(−)
j (r, t)Ê

(+)
j (r, t)ð ïÊ

(−)
k (r, t + Ä)Ê

(+)
k (r, t + Ä)ð

, (1.87)

which represents the conditional probability of detecting a photon at t + Ä given that
one was detected at t, where Ä = t2 − t1 and t1 and t2 are the detection times of the two
modes.
In the case where only one mode is measured (j = k) and in the presence of a stationary
source (e.g., continuous-wave source), the second-order coherence function is defined
as the normalized correlation function of the photon field operators:

g(2)(Ä) =
ïâ†(t)â†(t + Ä)â(t + Ä)â(t)ð
ïâ†(t)â(t)ð ïâ†(t + Ä)â(t + Ä)ð , (1.88)
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with Ä = 0, and recalling the relation n̂ = â† â, we derive [53]:

g(2)(0) =
ïâ†(t)â†(t)â(t)â(t)ð
ïâ†(t)â(t)ð ïâ†(t)â(t)ð =

ïn̂(t)(n̂(t)− 1)ð
ïn̂(t)ð2

= 1 +
ï(∆n̂)2ð − ïn̂ð

ïn̂ð2
,

(1.89)

Where (∆n̂) = ïn̂2ð − ïn̂ð2 represents the variance. It is important to note that g(2)

remains unchanged even if the field under investigation is affected by losses, assuming
uniform losses across all modes [53]. For pulsed sources, a similar treatment yields the

discrete analog of g(2)[0]:

g(2)[0] =
ïâ†[l]â†[l]â[l]â[l]ð
ïâ†[l]â[l]ð ïâ†[l]â[l]ð =

ïn̂(n̂ − 1)ð
ïn̂ð2

, (1.90)

where l is the integer indicating the pulse number and the average is taken over l. In
the case of pulsed sources, photon statistics are averaged throughout the pulse.

For coherent state |³ð described in eq. (1.50), it follows that:

g(2)(0) = 1 , (1.91)

indicating that the probability of a delayed coincidence is independent of time, where
(∆n̂)2 = n̂. In the case of the super-Poissonian field, it can be shown that:

1 < g(2)(0) f 2 , (1.92)

typical of bunching behavior where the variance is larger than the mean value, indicat-
ing a higher probability of detecting coincident photons.
In the case of the variance is smaller than the mean value, the anti-bunching behavior

is observed, and the g(2)(0) is:

g(2)(0) f 1 , (1.93)

here we observe the sub-Poissonian light. In addition, g(2)(0) < 1/2 is often defined as
the condition for a single photon behavior [18].

In Fig. 1.3 is reported the g(2)(Ä) for perfect super-Poissonian (g(2)(0) = 2), Poissonian

(g(2)(0) = 1) and perfect sub-Poissonian (g(2)(0) = 0) statistics for CW (a) and Pulsed
(b) sources.

1.2.3 Heralding method for removing vacuum states

As detailed in Section 1.2.1, individual photons within a biphoton state exhibit Super-
Poissonian statistics. However, this section raises the question: Can sub-Poissonian
statistics be derived from a biphoton state? The affirmative response to this query
is achieved through the heralding method, which enables the elimination of vacuum
statistics, thereby increasing the probability of considering only photon pairs.

When photon 1 is successfully detected, it serves as a heralding (or herald) event,
providing instantaneous information on the status of photon 2. The concept behind
"heralding" is that the presence of the associated photon is indicated by the success-
ful detection. Fig. 1.4(a) illustrates a schematic of the apparatus and the acquisition
process. Fig. 1.4(b) depicts the heralding method and the removal of vacuum states
using a Click/no-click detector with a positive operator-valued measure (POVM). This
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Figure 1.3: Second coherence function g(2) as a function of coincidence time Ä for the
CW(a) and pulsed(b) source. In blue the anti-bunching photons, in gold the Poissonian
photons and in orange the bunching photons.

Figure 1.4: a) Schematic description of the heralding process, consisting of squeezing
sources that generate the biphoton state and a detector responsible for reading the her-
ald photons. b) Diagram of heralding approach using a click/co-click measurement.

method, dependent on its efficiency η, yields a "Click" (C) event when photons are de-
tected and a "No-Click" (NC) event when no photons are detected. The measurement
operators are defined as follows [54]:

Π̂NC =
∞

∑
n=0

(1 − η)n |nð ïn| , (1.94a)

Π̂C =
∞

∑
n=0

[1 − (1 − η)n] |nð ïn| . (1.94b)

Here, cn = (1 − (1 − η)n) represents the probability of detecting at least one out of n
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photons. Considering the eqs. (1.79) and (1.94b), the probability of a successful herald-
ing event is then calculated as:

P(r, cn) = ïΨ|Π̂cn |Ψð = (sinh r)2
∞

∑
n=0

cn(tanh r)2n , (1.95)

with the heralded state given by:

ρH
b (r, cn) = ïΨ|Π̂cn |Ψð = ∑

∞
n=0 cn(tanh r)2n |nbð ïnb|

∑
∞
n=0 cn(tanh r)2n

=
∑

∞
n=1(tanh r)2n−1

(cosh r)2
|nbð ïnb| .

(1.96)

Subsequently, the heralding probability of photon b is:

PH
b =

(tanh r)2n−1

(cosh r)2
. (1.97)

The strategic use of heralding allows for the elimination of vacuum state probability
while significantly increasing the likelihood of observing a single photon, heralded
by the presence of its counterpart within the photon pair. This heralding mechanism
serves as a discriminating factor, facilitating the selective detection of photon pairs.
Depending on the chosen squeezing parameter (r), the probability distribution can be
tailored to favor the generation of exclusively single pairs, thereby reducing the occur-
rence of multipair events. Fig. 1.5 graphically illustrates the different probabilities asso-

Figure 1.5: a) Normalized photon number distribution of a super-Poissonian signal
beam. b) Normalized photon number distribution of a super-Poissonian signal beam
under heralding detection. The presence of twin photons gives rise to a conditional
probability. n represents the mean photon number per pulse. In the two cases r = 0.35.

ciated with detecting a two-photon state, both in the absence and presence of heralding.
In this particular scenario, we encounter conditional probability, which emerges when
a twin photon is present. As a result, occurrences where no photons are detected are
neglected, as the system only acknowledges photon counts when accompanied by their
twin counterparts.



1.2. Entangled Biphoton state 25

1.2.4 Joint Spectral amplitude

The joint spectral amplitude (JSA) describes how photon pairs are spectrally correlated
[26, 55]. The generic biphoton state can be expressed as:

|Ψð =
∫

dω1dω2F(ω1, ω2)â†(ω1)â†(ω2) |0ð , (1.98)

with

ïΨ|Ψð =
∫

dω1dω2|F(ω1, ω2)|2 = 1 , (1.99)

where F(ω1, ω2) denotes the JSA, and the modulus square defines the joint spectral
intensity (JSI). The JSI is directly related to the field intensity, a measurable quantity.
Utilizing the Schmidt decomposition for the JSA and two complete sets of orthonormal

functions {u1/2
n } the expression for F(ω1, ω2) becomes:

F(ω1, ω2) = ∑
¼

√
r¼u

(1)
¼ (ω1)u

(2)
¼ (ω2) . (1.100)

Here u
(1/2)
¼ represents the orthonormal functions, satisfying:

∫∫

dωu
(1/2)
¼1

(ω)u
∗(1/2)
¼2

(ω) = δ¼1,¼2
and ∑

¼

r¼ = 1 . (1.101)

This allows the bi-photon state to be expressed as a sum of product states:

|ψð = ∑
¼

√
r¼

[

∫

dω1u
(1)
¼ â†(ω1)

]

¹
[

∫

dω2u
(2)
¼ â†(ω2)

]

|0ð . (1.102)

Here, the coefficients {r¼} are referred to as the Schmidt coefficients. The Schmidt num-
ber K allows quantification of the entanglement degree, where 1

K = ∑¼ r2
¼. Typically,

employing a single value decomposition of the square root of the JSI provides a lower
bound for the Schmidt number, facilitating the determination of the purity of the her-
alded single photon, expressed as P = 1/K. The JSI maintains a direct correlation with

a) b)

Figure 1.6: JSI for (a) correlated and (b) uncorrelated photon pairs.

the degree of correlation, manifesting as an oblique line for perfect correlation or a cir-
cular shape for perfect uncorrelation, as depicted in Fig. 1.6. The circular JSI indicates a
separable state, reflecting maximum purity (P = 1), where F(ω1, ω2) = F1(ω1)F2(ω2).
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The purity of the bi-photon state is determined by:

P =
∫

dω1dω2dω′
1dω′

2F(ω1, ω2)F∗(ω1, ω′
2)F(ω′

1, ω′
2)F∗(ω′

1, ω2) = ∑
¼

r2
¼ . (1.103)

This parameter, bounded between 0 and 1, quantitatively delineates the degree of fac-
torizability inherent in the state. The process to obtain the partial trace of the density
matrix associated with the state of eq. (1.100) is:

ρ̂2 = Tr1 |Ψð ïΨ| =
∫

dω2dω′
2

[

dω1F(ω1, ω2)F∗(ω1, ω′
2)
]

â†(ω2) |0ð ï0| â(ω′
2)

= ∑
¼

r¼

[

∫

dω2u
(2)
¼ (ω2)â†(ω2)

]

|0ð ï0|
[

∫

dω′
2u

∗(2)
¼ (ω′

2)â(ω′
2)

]

.
(1.104)

The equations presented above reveal that a pure state emerges following the appli-
cation of a partial trace to the two-photon state when a singular Schmidt coefficient
attains unity, and all other coefficients are null. Consequently, in the context of a bi-
photon state source, the purity parameter offers a quantitative measure describing the
intrinsic value of an individual photon within the ensemble when the pair is in a pure
state. This parameter serves as a quality of the state and extends its significance to
characterize the source itself.

1.3 Spontaneous Four-Wave Mixing process

1.3.1 Nonlinear optical processes

The generation of a two-photon state in optics is often based on the leverage of nonlin-
ear optical processes that produce entangled pairs of photons.

The theoretical basis of optical nonlinearities is derived from the polarization vector
(or polarization density), which describes the reaction of material to an external elec-
tromagnetic field. Let us consider a general dielectric structure. At low optical powers,
the relationship between the applied electric field (E) and the resulting polarization
(P) comprises a linear segment and a nonlinear component. This relationship can be
expressed as [28]:

P = PL + PNL , (1.105)

where PL is the linear polarization, and PNL is the nonlinear part. For sufficiently weak
optical fields, the polarization, considering only the first two terms, can be expanded
as a Taylor series:

Pi(r, t) =PL(r, t)+PNL(r, t)

= PL(r, t)+P
(2)
i (r, t) + P

(3)
i (r, t)+...

= ε0

[

∑
jk

χ
(1)
j (r)Ej(r, t)+∑

jk

χ
(2)
jk (r)Ej(r, t)Ek(r, t)+∑

jkl

χ
(3)
jkl (r)Ej(r, t)Ek(r, t)El(r, t)+...

]

,

(1.106)

with P(2)(r, t) and P(3)(r, t) are the second and third-order nonlinear polarization vec-

tors respectively, while χ(2)(r) and χ(3)(r) are the second and third order susceptibili-
ties, which are tensors of third and fourth order respectively.
The nonlinear susceptibility of order j is, in general, a tensor of rank (j + 1): in the case
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of isotropic or amorphous materials (like silica-based optical fibers), it can be regarded
as a scalar quantity, but in the case of crystalline structures (like silicon), it must be
regarded as a tensorial quantity. Higher-order susceptibility terms only work at high
field strengths because they get smaller and smaller.
The displacement field D(r, t) is given by D(r, t) = ε0E(r, t)+P(r, t). Expressing E(r, t)
in terms of D(r, t), we have:

Ei(r, t) =
Di(r, t)

ε0ε1(r)
−

χ
(2)
ijk (r)

ε1(r)
Ej(r, t)Ek(r, t)−

χ
(3)
ijkl(r)

ε1(r)
Ej(r, t)Ek(r, t)El(r, t) + . . . (1.107)

where ε1(r) = 1 + χ(1)(r). At the first order,

Ei(r, t) = Di(r, t)/[ε0ε1(r)] , (1.108)

leading to:

Ei(r, t) =
Di(r, t)

ε0ε1(r)
−

Γ
(2)
ijk (r)

ε0
Dj(r, t)Dk(r, t)−

Γ
(3)
ijkl(r)

ε0
Dj(r, t)Dk(r, t)Dl(r, t)+. . . (1.109)

where Γ
(2)
ijk (r) and Γ

(3)
ijkl(r) are related to the second and third-order susceptibilities, re-

spectively:

Γ
(2)
ijk (r) =

χ
(2)
ijk (r)

ε0ε3
1(r)

, (1.110a)

Γ
(3)
ijkl(r) =

χ
(3)
ijkl(r)

ε2
0ε4

1(r)
− 2

χ
(2)
ijm(r)χ

(2)
mkl(r)

ε2
0ε5

1(r)
. (1.110b)

Finally, using eq. (1.109), and considering the variation of the electromagnetic field
energy h for a variation of B and D fields [56]:

dh = H · dB + E · dD , (1.111)

we can express the Hamiltonian H of the electric field as [28]:

H =
∫

[

D(r, t) · D(r, t)

2ε0ε1(r)
+

B(r, t) · B(r, t)

2µ0

]

dr

− 1

3ε0

∫

[

Γ
(2)
ijk (r)Di(r, t)Dj(r, t)Dk(r, t)

]

dr

− 1

4ε0

∫

[

Γ
(3)
ijkl(r)Di(r, t)Dj(r, t)Dk(r, t)Dl(r, t)

]

dr + . . . ,

(1.112)

representing the total energy, the last two terms in the expression above correspond to
the nonlinear terms.

1.3.2 First-order processes

In nonlinear optics, linear susceptibility, denoted as χ(1), continues to occupy a central
position. This parameter reflects the material’s ability to undergo electronic excitations

induced by single photons. The relationship between χ(1) and the refractive index n is
[57]:

n2 = 1 + χ(1). (1.113)
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Here, the real parts of χ(1) and n are intertwined, while the imaginary part signifies
the gains or losses within the material [58]. In semiconductor materials, the first-order
susceptibility coefficient must account for the influence of free carriers. The presence
of free carriers induces alterations in both the real and imaginary components of the
refractive index, giving rise to Free Carrier Absorption (FCA) and Free Carrier Disper-
sion (FCD) effects. Incorporating these effects yields the complex refractive index of
silicon as [57]:

n(¼, Ne, Nh) = n0(¼) + δnFC(Ne, Nh) + i
¼

4π
[³0(¼) + δ³FC(Ne, Nh)] , (1.114)

here, δnFC and δ³FC represent the alterations in refractive index and additional losses
induced by free carriers, respectively. n0(¼) and ³0(¼) denote the standard refraction
and absorption coefficients dependent on the wavelength ¼.

In nonlinear optical processes, free carriers primarily arise from two-photon ab-
sorption (TPA), a third-order nonlinear process discussed in Section 1.3.4.

1.3.3 Second-order processes

A nonlinear optical phenomenon known as a second-order process occurs when the
photons interact with a material. This process is nonlinear since it depends on the
intensity of the incident light. More in detail, a second-order nonlinear process involves
interactions between 3 photons. We can write the relation between polarization vector

P(2) and the two waves E1 and E2 as a superposition [57]

P(2)(r, t) = ε0χ(2) :
[

E2
1(r, ω1)e

−i2ω1t
]

+ ε0χ(2) :
[

E2
2(r, ω2)e

−i2ω2t
]

+ ε0χ(2) :
[

2E1(r, ω1)E2(r, ω2)e
−i(ω1+ω2)t

]

+ ε0χ(2) :
[

2E1(r, ω1)E
∗
2(r, ω2)e

−i(ω1−ω2)t
]

+ ε0χ(2) : [E1(r, ω1)E
∗
1(r, ω1)]

+ ε0χ(2) : [E2(r, ω2)E
∗
2(r, ω2)]

+ c.c. ,

(1.115)

with c.c. the complex conjugate. The first two terms correspond to the second harmonic
generation (SHG). In this case, a photon with frequency 2ω1 is generated from the an-
nihilation of two photons at frequency ω1. A virtual state diagram of this process is
shown on the left side of Fig. 1.7. The polarizations related to frequency sum genera-
tion (SFG) and difference generation (DFG) are shown in the third and fourth lines of
the eq. (1.115). In SFG, shown on the center side of Fig. 1.7, two photons at ω1 and
ω2 vanish to generate a new photon with frequency ω1 + ω2. In DFG, shown on the
right side of Fig. 1.7, the created photon has frequency ω1 − ω2. The last terms give rise
to the generation of a DC component of the polarization vector. This process is called
optical rectification (OR). In the context of integrated optics, the utilization of second-
order nonlinearity is typically precluded due to our reliance on non-centrosymmetric
semiconductors. This restriction stems from the intrinsic centrosymmetry of the mate-
rial, which lacks inversion symmetry, thus preventing the manifestation of even-order
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Figure 1.7: Scheme diagram for SHG, SFG, and DFG nonlinear processes.

nonlinearity. This deduction is drawn from an examination of the second-order polar-
ization in the absence of the inversion operator

P
(2)
i = ε0

[

∑
jk

χ
(2)
jk EjEk

]

. (1.116)

The inversion operator is

−P
(2)
i = ε0

[

∑
jk

χ
(2)
jk (−Ej)(−Ek)

]

. (1.117)

with χ
(2)
jk = −χ

(2)
jk holds according to the inversion symmetry of materials as silicon.

Due to this behavior, we can obtain

−P
(2)
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[

∑
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(2)
jk (−Ej)(−Ek)

]

= ε0

[

∑
jk

χ
(2)
jk EjEk

]

= P
(2)
i , (1.118)

which is valid only for χ
(2)
jk = 0. The property of centrosymmetry, particularly evident

in materials such as silicon and silicon nitride, introduces a distinctive pathway for
exploring nonlinear effects rooted in third-order polarization phenomena.

1.3.4 Third-order processes

Third-order nonlinearity in optics refers to the nonlinear optical effects that result from
the interaction of three photons within a material. The third-order nonlinear polariza-

tion vector P(3) can be expressed by expanding the total electric field as the sum of
these three waves, as in the second-order case [57].
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(1.119)

For reasons of simplicity, all potential combinations of the photon indices, or the waves,

Figure 1.8: Scheme diagram for THG, FWM, and SPM nonlinear processes.

have been left out of this formula. Third harmonic generation (THG) is associated with
the first term in this equation. Three photons with the same frequency, ω1, combine to
form a triple-frequency photon, 3ω1, as the diagram illustrates on the left in Fig. 1.8.
Four-wave mixing (FWM), which is caused by the annihilation of two incident pho-
tons, the pump photons, results in the generation of two additional frequencies, the
signal photons and idler photons, which are identified as photons at frequencies ω3

and ω4. This process is carried out by the second through fifth elements of the sum-
mation. The illustration shows a possible diagram for this method, positioned at the
center. Both TPA and self-phase modulation (SPM) are described by the sixth term of
the summation. The scheme for THG, FWM, and SPM are reported in Fig. 1.8. SPM

is related to the real part of the third-order susceptibility χ(3), while TPA is related to

the imaginary part of χ(3). Plugging this term into the nonlinear wave equation yields
intensity-dependent perturbations of the refractive index and absorption coefficient in
the form [57]

n = n0 + n2 I + i
¼

4π
[³0 + ´TPA I] , (1.120)
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with I is the field intensity, n2 is the Kerr coefficient or nonlinear coefficient and ´TPA is
the TPA coefficient. The coefficients n2 and ´TPA are related to the third-order suscep-
tibility by [57]

n2 =
3

4ε0cn2
R(χ

(3)
ijkl) , (1.121a)

´TPA =
3ω

2ε0c2n2
I(χ

(3)
ijkl) , (1.121b)

with c the speed of light, R and I are the real and the imaginary parts. The absorption
of two photons whose combined energies equal the energy needed to excite an electron
from the valence band to the conduction band is the physical source of the TPA process.
As a result of this process, one electron is excited from the valence band to the conduc-
tion band, changing the initial and final quantum-mechanical states. Because of this,
the TPA effect can be considered a non-parametric process as opposed to a parametric
process, which has the same initial and final quantum-mechanical states and allows the
population to shift from the fundamental state to a virtual level only momentarily.
The cross-phase modulation (XPM) is the result of the final term in the equation. Al-
though the signal at frequency ω2 affects the propagation of the signal at frequency
ω1, XPM is still related to an intensity-dependent refractive index in this scenario. The
coefficients in the equation show that the refractive index is altered by XPM by a factor
of two with respect to SPM.

In addition to the TPA process mentioned earlier, another noteworthy non-parametric
process in nonlinear optics is Stimulated Raman Scattering (SRS) [59]. SRS is a phe-
nomenon that arises from the interaction between propagating photons and the vibra-
tional modes of the material structure. More specifically, within the context of SRS, the
energy exchange process involves the annihilation of a photon at frequency ω and the
simultaneous generation of a Stokes-shifted photon at ωSRS. This relationship adheres
to the conservation of energy, expressed as ωSRS = ω - ωM, where h̄ωM represents
the energy associated with the phonons exchanged within the medium. In addition
to SRS, another significant Raman-scattering-related effect is Coherent Anti-Stokes Ra-
man Scattering (CARS). In the CARS process, the interaction of two pump photons at a
frequency ω with a signal photon at a frequency ωS leads to the generation of an output
photon at a frequency ωCARS = 2ω - ωs [60, 61]. This nonlinear optical phenomenon
amplifies the vibrational signal in a coherent manner, offering valuable insights into
the molecular structure of materials.

1.3.5 Four-Wave Mixing

FWM is a nonlinear optical process that can be used to generate a two-photon state [28,
62–64]. In FWM, when two photons of frequency, say ω1 and ω2, are combined, they
can produce two photons with frequencies ω3 and ω4. The prevalent approach em-
ployed for FWM involves a scheme shown in Fig. 1.9(a), in which two input photons,
referred to as pump photons with frequencies ωp1 and ωp2, undergo a conversion pro-
cess. This transformation results in generating signal photons with frequency ωs and
idler photons with frequency ωi respectively. Throughout this thesis, the convention
ωi g ωs will be adopted to distinguish the idler photons from the signal photons.

Before describing in detail the aspects of this process, it is important to define dif-
ferent cases. In general the FWM process is categorized into two main regimes based
on the frequencies of the generated photons: non-degenerate and degenerate FWM.
In instances where the two generated photons possess identical frequencies ωi = ωs,
the corresponding process is termed degenerate. The term "degenerate" means the
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identical nature of the generated frequencies. Conversely, the process is denoted as
non-degenerate when the frequencies differ ωi > ωs. The term "non-degenerate" em-
phasizes the disparity in the frequencies of the generated photons. In Fig. 1.9(b) these
two processes are shown.

Two distinct scenarios in FWM are often delineated based on the nature of the
photon generation process: stimulated FWM (SFWM) and spontaneous FWM (sFWM).
In the context of SFWM, the introduction of a seed signal at either the signal or idler
frequency enhances the FWM process. Conversely, the absence of a seed characterizes
sFWM. While SFWM can be adequately described using classical electromagnetic the-
ory, sFWM necessitates a quantum framework. From the quantum perspective, one can
consider quantum vacuum fluctuations as the initiating seed for the process, drawing
an analogy with stimulated FWM.

Figure 1.9: a) Illustration of FWM in a waveguide: Pump photons enter through the
waveguide facet and undergo FWM, generating signal and idler frequencies, which
exit from the end facet of the structure. b) Scheme diagram for degenerate FWM and
non-degenerate FWM processes.

The parametric process of FWM is linked to the conservation of two fundamental
aspects: the conservation of energy and the conservation of momentum, often referred
to as the phase-matching condition [65]. In the case where two input photons are an-
nihilated to produce a signal-idler pair, the energy of the resulting pair must precisely
match the energy of the input pump photons [26]. This first conservation principle is
expressed mathematically as:

ωp1 + ωp2 = ωi + ωs , (1.122)

where ωj is the frequency and j = p1, p2, i and s are the pumps, idler and signal pho-
tons, respectively. The second aspect arises from the phase-sensitive nature of FWM.
The efficiency of FWM depends upon the phase relationship among the waves involved
in the process. This condition is represented by the equation:

kp1 + kp2 = ki + ks . (1.123)

It is important to note that, when dealing with nonlinear processes, the conservation of
momentum is not automatically satisfied. The lack of phase matching is quantified by
the phase mismatch parameter, denoted as ∆k, and is calculated as [48]:

∆k = kp1 + kp2 − ki − ks . (1.124)

This parameter provides a quantitative measure of the deviation from phase-matching
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conditions in FWM processes. Understanding and controlling these conservation prin-
ciples are imperative for the precise manipulation and optimization of FWM in vari-
ous optical applications. In the case where ∆k = 0, the phase matching condition is
achieved, and the maximum efficiency of the process is obtained. otherwise, where
∆k ̸= 0, the process is not optimized and the generation efficiency is lower than in the
previous case.

This thesis will primarily focus on spontaneous photon generation. A feature of
sFWM is the simultaneous emission of the idler and signal photons in pairs. The degree
of correlation in this emission depends on the bandwidth of the pump and the inherent
characteristics of the FWM process.
The quantum description of the sFWM process in waveguide will be extensively ana-
lyzed at the end of chapter 2 and in Appendix A after the introduction of the material
description.

1.4 Parameters of quantum correlated photon sources

An important aspect is the study of different experimental parameters that are funda-
mental in revealing the characteristics of the generated photon pairs.

1.4.1 Coincidence to accidental ratio

In the context of quantum optics, the Coincidence-to-Accidental Ratio (CAR) is a pa-
rameter used to quantify the goodness degree of generated pairs in an experimental
setup [65–67]. It is a sort of signal-to-noise ratio of the coincidence measurement be-
tween the correlated pair photons and the uncorrelated noise. This useful parameter
is introduced to assess the coincidences between the idler and the signal when pair
creation occurs through parametric processes. Thus, CAR is dependent on both the
generating process and the experimental setting. The probability that the detection of a
signal or idler photon includes the simultaneous detection of its twin partner decreases
with increasing losses on the signal or idler detection arm. Losses are an important
challenge since they lower the coincidence rate by increasing the probability of coin-
cidences between other detections, such as noise or successive/previous photons, and
the idler (signal). The so-called effective net coincidences, which define the temporal
correlation of the emitted pairs, are the coincidences that take place between the signal
and the idler that belong to the same pair. Accidental coincidences are those that hap-
pen between two photons of the noise, between a photon from the pair and the noise,
or between signal and idler photons that belong to different pairs. Mathematically it
can be defined as [68]

CAR =
CC

AC
=

Rsi

Racc
, (1.125)

where CC or Rsi is the idler-signal net coincidence rate, commonly referred to as bright-
ness. The AC or Racc is the accidental coincidence rate. CC is defined as

CC = Ãη2
³η2ηsηiς = Ãη2

³η2ηsηiξP2
0 . (1.126)

Here Ã is the duty cycle parameter, Ã = ÄB, where B is the pulse repetition rate and Ä is
the pulse width. For continuous wave (CW), Ã = 1. The pair-photon loss in the waveg-
uide is taken into account by the parameter η³; the waveguide-fiber (or waveguide-
objective lens) coupling efficiency is denoted by η; the detection efficiencies for the
signal and idler photons are represented by ηs and ηi, respectively. ς describes the pair
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generation probability defined as

ς = ξP2
0 = ∆ν(γP0Le f f )

2sinc2[∆kL/2 + γP0L] , (1.127)

where ξ is the generation probability coefficient, γ is the nonlinear coefficient based
on the nonlinear refractive index, and ∆ν is the pair-photon channel’s bandwidth; ν
is the signal frequency shifted from the pump channel; P0 is the input power, Le f f is
the effective waveguide length taking into account the propagation loss ³ (i.e., Le f f =
[1− exp(−³L)]/³); L is the waveguide length; and ∆k is the phase mismatch parameter.
In eq. (1.125) AC is defined as:

AC = RsRi∆t , (1.128)

where
Rs/i = Ãηηs/i(Ns/i + η³r) + dcs/i , (1.129)

where the noise photon generation rates for idler and signal photons, respectively, are
represented by Ns/i. The dark count rates for signal (s) and idler (i) photons in the de-
tectors are dcs/i; Ns/i has all the non-correlated photons inside. This aspect is important
in the process where also SRS is involved. ∆t is, for the CW situation ∆t = t where t is
the time window for the coincidence measurement (i.e., the FWHM of the coincidence
peak), and is, for the Pulsed case, ∆t = 1/B.
Note that singles and coincidence rates are determined by multiplying the probabilities
by the repetition rate of the pump laser. In the real experiment the measured coinci-

dence CC(m) is the sum of the net coincidences CC and the accidentals AC. Therefore
[66, 69]

CARexp =
CC(m) − AC

AC
. (1.130)

One method of performing CAR measurements is the "start-and-stop" technique. In
this approach, an electronic timing device employs an internal timer that starts count-
ing when a photon is detected by detector D1. The timer stops counting when another
photon is registered by detector D2. The time duration between the start and the stop of
the timer produces the delay, denoted "t" which represents the time separation between
the two detected photons.

Next, a histogram is generated that captures the distribution of all observed delays be-
tween the paired photons. At time t=0, the histogram reflects a sum of pure generation
coincidences and accidental coincidences. In contrast, at time points other than t=0, the
histogram shows accidental coincidences. Fig. 1.10 illustrates on the left the sketch of

Figure 1.10: Setup for Coincidence-to-Accidental Ratio (CAR) measurement with
Pulsed sFWM in Waveguide, featuring a pump repetition rate of 1/T. The timing elec-
tronics acquires the coincidences and the single counts.
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the CAR measurement and on the right the histogram of coincidence acquisitions.

1.4.2 Second order coherence function: experimental point of view

The second-order coherence function, g(2), is another helpful experimental parameter.
As described in Section 1.2.2, based on its value, the photon statistics can be defined.
In the case of the biphoton state generated by the FWM process, we expect the value of

g(2) for the single photon signal/idler beam to be bounded between 1 and 2. This value

generally describes the super-Poissonian statistic. The experimental g(2) is obtained
performing the Hanbury Brown-Twiss (HBT) interferometric measurement [16].

Figure 1.11: Schematic of the Hanbury-Brown and Twiss (HBT) interferometer, illus-
trating the light field exclusively in input port a, with the vacuum field present in input
port b. The output detection signals from the two detectors are analyzed using appro-

priate electronics to yield the measured g(2)(t).

The schematic representation of the HBT interferometer is depicted in Fig. 1.11. In this
setup, a photon beam is directed into the a-port of a beam splitter. Subsequently, the
photons are detected by D1, located in the reflected path (c-port), or D2, situated in the
transmitted path (d-port). The electrical signals generated upon photon detection are
then subjected to processing by either a correlator or a start-and-stop timing system.
The fundamental concept underlying the HBT experiment is rooted in the idea that
when only one photon at a time interacts with the beam splitter, the probability of both
detectors simultaneously registering the photon is essentially zero at t = 0. This con-

dition translates to a zero coincidence value, signifying g(2)(0) = 0. On the contrary,
if more than one photon is present, coincidences occur, leading to a non-zero value of

g(2)(0).

Furthermore, the HBT interferometer allows for an exploration of g(2)(t) at time inter-
vals later or earlier than the zero-delay coincidence. This is achieved by introducing a
time shift or electronic delay, denoted as ∆t, to one of the detectors. Notably, when ∆t

is non-zero, the expectation is that in sub-Poissonian statistics, g(2)(0) will be less than

g(2)(∆t).

The parameter measured via the start-and-stop electronics is the Rcc coincidence rate

between the two HBT detectors. The resulting g(2) is then expressed as a function of
the delay ∆t between the detections made by the two HBT detectors in this form

g(2)(∆t) =
Rcc(∆t)

R1R2
t−1
b =

pcc(∆t)

p1 p2
, (1.131)
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where tb is the time coincidences window, pcc(∆t) is the probability of a coincidence
detection at a fixed delay ∆t and p1(p2) is the probability of a signal detection on one
of the two detectors. Notice that the time delay is not explicit in p1(p2), since p1(t) =
p1(∆t) is a constant probability.
In practical terms, while the process coherence time (tc) is ideally substituted for tb in
eq. (1.131) due to the typical relationship tb j tc, it is crucial to note that tb represents
the actual time interval within which a coincidence can occur. From an experimental

standpoint, the calculation of g(2)(0) is facilitated by monitoring the coincidence and

single rates at ∆t = 0. The expression for g(2)(0) can be articulated as follows

g(2)(0) =
Rcc(0)

R1R2
t−1
b =

pcc(0)

p1 p2
. (1.132)

From this equation, we can then conclude that g(2)(0) can be measured as the ratio of
coincidences at time ∆t = 0 to coincidences at ∆t ̸= 0.
Based on this parameter, we can determine the values of Purity and Schmidt number
K through the following relation

P =
1

K
= 1 − g(2)(0) . (1.133)

From this relationship we can experimentally trace the purity of the photons generated
by the integrated source.

As previously mentioned, performing measurements on the photon, such as the signal
depicted in Fig. 1.12(a), enables the derivation of a super-Poissonian statistic for the
photon. The recovery of sub-Poissonian behavior is contingent upon the application of
heralding, as described in Section 1.2.2. In this context, we assume the idler photon as
the "herald photon" and the signal photon as the "heralded photon".

The introduction of heralding fundamentally alters the g(2) expression. In this con-

figuration, the conditional g(2), denoted as heralded g(2) (g
(2)
H ), emerges. It is defined as

the autocorrelation of the signal beam, contingent upon the detection of its idler twin.
This conditional approach allows the selection of only those photons in the signal beam
that correlate with the photons in the idler beam. The experimental setup is accordingly
modified, as illustrated in Fig. 1.12(b), where an additional detector for the idler beam
is added to the system. The detection of the herald beam serves as a trigger, initiating

the acquisition of signal/signal coincidences. This heralded g(2) can be expressed as
follows

g
(2)
H (∆t) =

Rs1s2i

Rs1i(t)Rs2i(∆t)
Ri(t) =

ps1s2i pi

ps1i ps2i
, (1.134)

where Rs1s2i is the three-fold coincidence rate and Rs1i and Rs2i are the rates of coinci-
dences between the idler and the signal1 or idler and signal2. ps1s2i is the probability
of having a threefold coincidence, ps1i and ps1i are the probability of having a twofold
coincidence. This equation works for both CW and pulsed situations.

1.4.3 Heralding efficiency

A critical parameter defining the practical viability of a heralding approach for a bi-
photon source is the heralding (or herald) efficiency, denoted as ηH . This parameter
quantifies the probability that, upon detecting the herald photon, the heralded photon
will also be detected. In this straightforward definition, ηH , known as the Klyshko
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Figure 1.12: a) On the top, the setup for the g(2) measurement for the sFWM process
is depicted, along with a typical outcome showing super-Poissonian statistics on the
bottom. The pump is pulsed with a repetition rate of 1/T. b) On the top, the setup for

the measurement of the heralded second-order correlation function, g
(2)
H , in the case

of sFWM is shown, with a typical anti-bunching dip, indicating non-classical single-
photon (sub-Poissonian) statistics, displayed on the bottom. The pump is pulsed with
a repetition rate of 1/T.

efficiency ηK, can be measured by [65, 69]

η
s(i)
K =

Ris

Ri(s)
, (1.135)

where Ris is the rate of coincidences between signal and idler photons, while Ri(s) is the
generation rate of the idler (signal) photons. A more favored definition of heralding
efficiency takes into account the detection efficiency of the detector, denoted as ηd. In
this scenario, the heralding efficiency is defined as:

η
s(i)
H =

Ris

Ri(s)η
s(i)
d

, (1.136)

with η
s(i)
d the detection efficiency of the signal (idler) detector. The presence of ηd allows

us to decouple the quality of the overall source from the available detectors.
Another parameter to consider is the intrinsic heralding efficiency, denoted as ηI . This
parameter takes into consideration the efficiency of the heralding process by excluding
losses dependent solely on the quality of the instrumentation, encompassing factors
such as filter losses, detector efficiencies, coupling losses, and, broadly, all losses from
the source to the detectors. This approach allows for the exclusive consideration of
intrinsic losses associated with the photon source. The intrinsic efficiency of the photon
source is evaluated as:

η
s(i)
I =

η
s(i)
I

η
s(i)
T

, (1.137)
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where η
s(i)
T represents the transmission efficiency of the (idler) signal through the pho-

ton source.

An important consideration is the use of filters, built-in or otherwise, to improve
source purity. This aspect will be comprehensively discussed in the comparison of
sources in Chapter 3. In this context, efficiency must also encompass the impact of
filtering on state purification. Hence, a correlated efficiency is introduced for compar-
ing different filtered sources, referred to as the heralding filtered efficiency, denoted as
ηF. This efficiency quantifies the probability that, given the herald has passed its fil-
ter, the heralded photon will also pass the corresponding filter. From the Joint Spectral
Intensity (JSI), this parameter can be defined as:

ηF =
SF

JSI

SJSI
, (1.138)

where the regions of unfiltered and filtered JSI are denoted by SJSI and SF
JSI , respec-

tively. The most promising solutions to guarantee excellent purity and efficiency in
a PIC are based on intermodal phase matching or microring resonators, which can
achieve the JSI with high purity without the need for external filters thanks to their
discrete-by-discrete band emission. These points will be covered in Section 3.

1.4.4 Single photon detectors

Single photon detectors (SPDs) are devices engineered for the detection of single pho-
tons, converting optical input signals into electronic signals [53, 70]. In the ideal sce-
nario, this conversion would be instantaneous with a detection efficiency of ηDE = 1.
However, real-world devices are subject to limitations, partly due to the experimental
setup. To characterize the detection efficiency of SPDs in different configurations, we
define the parameters ηDE for free-space detectors and for fiber-coupled detectors as
follows [53]:

ηx
DE = ηx

couplη
i
absηi

QEηth . (1.139)

Here, ηx
coupl represents the coupling efficiency associated with the collection optics, de-

noted as ηarea
coupl for the free-space SPD or ηfiber

coupl for the fiber-coupled SPD. ηi
abs quantifies

the probability of photon absorption at the detector’s active area. ηi
QE denotes the in-

ternal quantum efficiency of the detector, and ηth refers to the efficiency related to the
external electronics recording the electrical signal.

In practical scenarios, several other parameters must be considered to effectively
manage the detection process. These parameters, illustrated in Fig. 1.13, include:

• Timing latency (tlat): The delay between photon arrival and the output pulse
crossing a threshold.

• Rise time (trise): Duration for the output pulse to transition between 10% and 90%
of its maximum value.

• Timing jitter: Variation in timing between successive pulses.

• Dead time (tdead): Interval during which the detector cannot produce an output
pulse.

• Reset time (treset): Time required to restore maximum detection efficiency after
dead time.

• Recovery time (trecovery = tdead + treset): Time to return to optimal efficiency after
a detection event.
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• Dark count rate (dc): Average counts per second in the absence of incident light.

• Afterpulse probability (Pafterpulse): Probability of additional output signals after a
previous detection event.

Figure 1.13: Timing relationship among parameters involved in the detection process.

The detection efficiency crucially determines the probability of the detector producing
an output signal when photons reach its active area. For ideal threshold detectors like
single photon avalanche detectors (SPADs), unable to resolve the number of photons
detected, the probability of remaining inactive (pDE(0)) when P(n) represents incident
light flux is [71]:

pDE(0) =
∞

∑
n=0

(1 − ηDE)
nP(n) , (1.140)

while the probability of producing an output signal is:

pDE(n) =
∞

∑
n=1

[1 − (1 − ηDE)
n]P(n) . (1.141)
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Chapter 2

Silicon quantum photonics

2.1 Basics on integrated Photonics

In recent decades, silicon photonics has emerged as a prominent technology platform
for photonic integrated circuits (PICs), representing a significant advancement in the
design of complex optical devices and systems that can be integrated onto a single sub-
strate or chip [72, 73]. This technological evolution can be traced back to the 1960s when
integrated optics were developed, laying the foundation for such innovations. The
success of silicon photonics is based on two important features: high refractive index
contrast and compatibility with complementary metal-oxide-semiconductor (CMOS)
processes [74, 75].

The index contrast, achieved by utilizing a silicon waveguide core and a silicon ox-
ide cladding, facilitates the development of circuits within a compact system, allowing
for the efficient production of multiple chips per wafer. The compatibility with CMOS
processes further empowers the production of silicon photonic products at both mod-
erate and high volumes, leveraging existing CMOS factories primarily dedicated to
electronic integrated circuits (ICs). This, coupled with high energy efficiency, positions
silicon photonics as a distinct advantage over other photonic integration platforms re-
lying solely on photonic ICs to mitigate manufacturing costs [72].

It is noteworthy that integrated photonics has recently ventured into the field of quan-
tum optics [76]. This expansion, occurring approximately 15 years ago, has spurred
extensive research into novel platforms, including glass, silica, III-V semiconductors,
diamond, lithium niobate, silicon carbide, silicon, and silicon nitride waveguides, for
applications related to photon manipulation at the quantum scale [77]. Against this
backdrop, this thesis concentrates on devices and circuits based on silicon and silicon
nitride. The following chapter will discuss the differences between these two materials.

2.1.1 Silicon vs Silicon Nitride waveguide

Silicon (Si) and Silicon Nitride (SiN) photonic platforms play a key role in today’s tech-
nology landscape, and the choice of a platform is influenced by various parameters,
including the intended application and spectral region. This section aims to outline the
common aspect and divergence between these two platforms [78, 79].
Currently, silicon-on-insulator (SOI) wafers [80], composed of a crystalline silicon layer
atop a silicon oxide buffer layer, dominate the field of photonic products. This technol-
ogy, with a silicon layer typically ranging from 200 to 400 nm, facilitates the implemen-
tation of various passive optical structures. The integration of electrically controllable
thermo-optical micro-heaters or P-N junctions further increases functionality by allow-
ing tunable or switchable operations.
Despite its prevalence, the desire to operate in spectral bands where silicon exhibits
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absorption has led to the exploration of materials beyond SOI. SiN waveguide sys-
tems, featuring a silicon nitride core while maintaining CMOS compatibility, emerge as
significant contenders in this regard. Unlike SOI-based waveguides, SiN waveguides
offer transparency across a broader spectrum, extending from 0.35 µm to 7 µm (or up
to 3.0 µm if embedded in silica) [79]. This makes them suitable for implementing "sil-
icon photonics" at wavelengths in the visible and mid-infrared (MIR) spectral regions
[81]. SiN’s versatility extends to applications such as the direct integration of single-
photon silicon detectors in the visible [30, 82] and compatibility with various quantum
dot semiconductor compounds [83, 84].
An application arises from the trapped ion systems, which operate in the visible range
(493 nm, 650 nm, etc.), falling within SiN’s transparency window. This paves the way
for integrated devices that benefit from trapped ion platforms. Silicon nitride, com-
monly deposited through LPCVD or PECVD, offers manufacturing flexibility, enabling
seamless integration with other photonic structures. The combination of SiN and SOI
waveguides on a single platform allows the unique characteristics of both materials to
be combined.
Comparatively, SiN waveguides exhibit a lower index contrast than SOI waveguides,
striking a balance between functionality and reduced susceptibility to scattering losses.
In terms of nonlinearity, SiN presents a weaker n2 nonlinear coefficient [85] but prac-
tically zero two-photon absorption (TPA), a limiting factor in silicon waveguides for
nonlinear applications [86].
In essence, SiN emerges as a versatile alternative to SOI, boasting advantages such as
transparency in the visible, lower losses, and greater manufacturing flexibility, particu-
larly in integrated quantum photonic applications [34].
The upcoming sections will delineate the fundamental aspects of structures adaptable
for integration into both Si and SiN platforms, laying the groundwork for subsequent
chapters. The primary distinction in fabricating these structures lies in the cross-section
and size, intimately tied to the variance in refractive index between the materials.

2.2 Integrated photonic building blocks

2.2.1 Optical waveguide

Waveguides are essential components within optical circuits and play an essential role
in the efficient transport of optical signals. These elements are composed of a core of
material with a higher refractive index (ncore) than a cladding with a lower refractive
index (nclad), where nclad < ncore [87]. Similar to the operation of optical fibers, light
is confined within the core due to the phenomenon of total internal reflection, which
allows efficient transport of optical signals through the waveguide.

In the specific context of channel waveguides [88], as illustrated in the Fig. 2.1(a-b), the
core is fully embedded in the cladding, allowing the maximum degree of light confine-
ment and enabling the manipulation of optical signals along the desired path within
the optical circuit. Light propagates in the form of discrete modes with electric field
profiles described by em(x, y, ω), where m represents the mode index. These modes are
solutions to the Helmholtz equation, expressed as [88]:

(▽2
xy + ´2

m)em(x, y, ω) =
ω2

c2
n2(x, y)em(x, y) , (2.1)

where ω is the frequency of the optical wave, n the refractive index spatial distribution,
c the light velocity. Owing to the constancy of the refractive index distribution, denoted
as n(x; y), along the direction of propagation z, we can express the field propagating in
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Figure 2.1: a) Schematic representation of a channel waveguide. b) Cross-section of the
channel waveguide. The refractive index of the cladding material is denoted as nclad,
while the refractive index of the core is denoted as ncore. The propagation direction
is indicated by z. c) Distribution of the dominant electric field component (Ex for TE
modes, Ey for TM modes) for the two lowest-order TE and TM modes of a silicon
waveguide with a cross-section of 1.6 µm × 0.25 µm.

the waveguide as a superposition of different modes [88]:

E(x, y, z; ω) =
M

∑
m=0

em(x, y)e−i´m(ω)z , (2.2)

where ´m ≈ ω
c ne f f ,m represents the propagation constant. ne f f ,m denotes the effective

refractive index on the mode m, a complex quantity in which the real component re-
veals information about the phase acquired during the wave’s propagation, while the
imaginary component is proportional to the losses sustained within the waveguide.
The relations are described as:

e(z) = e0e−³mz ³m =
2ω

c
ℑ(ne f f ,m) , (2.3)

where e(z) is the field after the length z, e0 is the input field, ³m is the attenuation coeffi-
cient and ℑ(ne f f ,m) is the imaginary part of the effective refractive index ne f f ,m. Differ-
ent effective refractive indices arise for each mode m due to the interplay of waveguide
geometry and light polarization. This dependency is further mirrored in the confine-
ment factor Γcon f of the optical mode:

Γcon f =

∫∫

core n2(x, y)|em(x, y)|2dxdy
∫∫

A∞
n2(x, y)|em(x, y)|2dxdy

, (2.4)

in which the integral at the numerator is performed only in the core region. As the
modal order increases, the modal Γcon f decreases. This phenomenon becomes evident
in the decreasing effective index as the modal order increases, indicating that the optical
field interacts less with the core’s refractive index.
Another property is the mode effective area Ae f f ,m. It is defined as:

Ae f f ,m =

(∫

|em(x, y)|2dxdy
)2

∫

|em(x, y)|4dxdy
, (2.5)
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which is a measure of the effective extension of the optical mode into the core and
cladding regions.
Waveguide modes can be categorized into different types, including transverse electric
modes (TE) and transverse magnetic modes (TM). Each mode exhibits distinct charac-
teristics influenced by various factors such as the waveguide geometry, polarization,
modal order, chromatic dispersion of the core and cladding, and the wavelength of the
optical beam.

As illustrated in Fig. 2.1(c), the classification between TE and TM modes is determined
by the dominant electric field component — aligning with the x direction for TE modes
and the y direction for TM modes. Additionally, the effective index of each mode is
wavelength-dependent; with increasing wavelength, the mode experiences reduced
confinement, resulting in a corresponding decrease in its effective index.
In waveguides characterized by micrometer-scale dimensions, geometric dispersion
takes precedence over chromatic dispersion, distinguishing it from the behavior ob-

served in optical fibers [89]. The high-order dispersion coefficients ´
(i)
m = di ´m

di¼
serve as

indicators for the dispersion in the effective index. Considering the first order (i = 1):

´
(1)
m =

d´m

d¼
=

1

c

(

ne f f ,m − ¼
dne f f ,m

d¼

)

=
ng,m

c
= ν−1

g,m , (2.6)

the dispersion coefficient is related to the inverse of the group velocity νg,m = c/ng,m,

where ng,m is the group index. In the situation of i = 2, the ´
(2)
m is called Group Velocity

Dispersion (GVD). The GVD in a waveguide emerges from the differing propagation
speeds of various frequencies. This dispersion stems from the wavelength-dependent
group velocity characteristics, impacting the pulse’s temporal expansion or contraction
during its passage through the waveguide.

2.2.2 Couplers

A challenge in the implementation of photonic chips is the efficient coupling of light
into waveguides. Various structures can be used including objective lenses or fibers.
The most used are the latter. This challenge arises due to the substantial difference in
effective mode area between the fibers and waveguides. For instance, a typical single-
mode silica fiber operating at a wavelength of 1550 nm has a core size of approximately
10 µm and an effective mode area of about 315 µm2, while the mode area of a silicon
waveguide is typically around 1 µm2, representing a difference of more than two orders
of magnitude. Conical lens fibers have been developed to address this issue, gradually
tapering one end to approximately 2.5 µm in diameter. This design effectively focuses
light into an area of about 9 µm2, resulting in coupling losses close to 1.5 dB. However,
achieving even lower losses necessitates engineering the input side of the waveguide.

Two primary approaches have been devised for this purpose: tapering and grat-
ing couplers. Tapering involves gradually adjusting the size of the waveguide core
as it approaches the fiber while grating couplers involve the design of periodic sub-
wavelength structures at the waveguide ends. Both approaches are illustrated in Fig. 2.2.

Tapering can be implemented in two main forms: direct tapering (a), where the
waveguide end smoothly increases to match the fiber spot size, and inverse tapering
(b), where the waveguide end gradually decreases to spread the modal profile outside
the core. Both approaches offer comparable performance, although the specific cou-
pling efficiencies and dimensions may vary depending on the material of the PIC and
the operating wavelength.
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Figure 2.2: a) Waveguide with direct tapering coupled with a lensed fiber. b) Waveg-
uide with inverse tapering coupled with a lensed fiber. c) Grating coupler with fiber
tilted by an angle relative to the grating’s normal. In all the representations the fiber
size is not depicted to scale.

Grating couplers (c) operate on a distinct principle compared to tapering meth-
ods. These structures are composed of silicon that is periodically etched with specific
periodicity, resulting in alternating regions with varying refractive indices. This peri-
odicity causes the propagation mode to convert into a diffracted wave, which exits the
cladding at an angle relative to the propagation direction. This phenomenon occurs
when the periodicity, expressed with Λ, satisfies a particular phase-matching relation-
ship given by:

sin θ =
Λneff − ¼

Λn
. (2.7)

Here, neff represents the effective index of the mode diffracting light, ¼ denotes the
wavelength, and n represents the refractive index of the medium through which the
wave is radiated. A fiber positioned at an appropriate angle θ can then collect the
diffracted light, and conversely, this process can be utilized to couple light from the
fiber into the waveguide.

2.2.3 Integrated Beam splitter

Beam splitters or beam couplers are components in integrated optics, playing a key role
in the functionality of PICs. These devices are designed to split or couple optical sig-
nals, enabling a wide range of functionalities in integrated photonics. Their versatility
is demonstrated through various applications:

• Power Splitting: Beam splitters divide an input optical signal into two or more
output channels, ensuring a balanced distribution of optical power [90];

• Interferometry: These devices are fundamental to the creation of on-chip interfer-
ometers, enabling the manipulation of light waves to generate intricate interfer-
ence patterns [91];
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• Wavelength Division Multiplexing (WDM): Integrated beam splitters can be adapted
to separate different wavelengths of light, facilitating wavelength-specific filter-
ing, routing, and manipulation [92].

The multifaceted utility of these components extends to the specific type of beam split-
ter employed. In the context of this thesis, two distinct types will be developed and
exploited: the multi-mode interferometer (MMI) [93] and the directional coupler (DC)
[94, 95]. This chapter will offer an overview, while a more in-depth exploration of vari-
ous aspects will be presented in the subsequent chapters.

Directional Coupler

A DC [96], as illustrated in Fig. 2.3, consists of two closely spaced waveguides, where
the proximity is defined by the coupling distance (cg). The coupling length (L) desig-
nates the region where the waveguides are in close proximity. Both L and the size of
the gap depend on factors such as material properties, wavelength, and intended ap-
plication.

Figure 2.3: a) Sketch of a directional coupler (DC). It is formed by two waveguides
with the same dimension. The gap between the two waveguides is called the coupling
gap cg. b) Sketch of an asymmetric-directional coupler (ADC). It is formed by two
waveguides with different widths.

During the design, the coupling gap must be carefully determined. It should be small
enough to enable the evanescent tail of the optical mode from each waveguide to ex-
tend through the cladding and penetrate the core of the adjacent waveguide. This de-
sign facilitates modal cross-talk between the two waveguides, ensuring effective inter-
action.

When the waveguides are of equal size, the configuration is termed a DC as shown
in Fig. 2.3(a). In contrast, if the two waveguides have different widths, as illustrated in
Fig. 2.3(b), the device is referred to as an asymmetric DC (ADC). The ADC functions
as a mode coupler. Specifically, when a single-mode waveguide is positioned adjacent
to a multi-mode waveguide, the ADC facilitates the selective excitation of one of the
supported higher-order modes. DCs and ADCs exhibit bidirectional functionality in
this context. In general, Coupled Mode Theory (CMT) examines the coupled modes of
the structure, which are combinations of individual waveguide modes. In this part I
follow the notation of [88]. The theoretical framework involves solving a set of coupled
mode equations to describe the evolution of amplitudes for these coupled modes as
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Figure 2.4: a) Simulation of the field profile entering point (A) in the upper single-
mode waveguide. The close coupling between the two waveguides enables the field
to pass between them. Different coupling lengths result in beam splitting (B), total
beam transfer into the adjacent waveguide (C), or total beam return into the principal
waveguide. b) Modal cross-sections are depicted in various sections. On the left is the
principal waveguide (top in Fig. 2.4(a)), and on the right is the secondary waveguide.

light traverses the coupler’s coupling region. In the presence of both waveguides, these
changes can be expressed as [88]:

e1(y, z) = a1(z)u1(y)e
−i´1z , (2.8a)

e2(y, z) = a2(z)u2(y)e
−i´2z . (2.8b)

The coupling between the two waveguides exclusively alters the amplitudes a1/2(z).
During z propagation, these amplitudes undergo changes according to the following
relationships:

da1

dz
= −ic21ei∆´za2(z) , (2.9a)

da2

dz
= −ic12ei∆´za1(z) , (2.9b)

where the phase mismatch per unit length is ∆´ = ´1 − ´2 and the coupling coefficients
are described as

c21 =
k2

0

2´1
(n2

2 − n2)
∫ a+d

a
u1(y)u2(y)dy , (2.10a)

c12 =
k2

0

2´1
(n2

1 − n2)
∫ −a

−a−d
u2(y)u1(y)dy . (2.10b)

When the amplitude a1(0) is launched into waveguide 1 without exciting waveguide
2, at a specific propagation distance z, the amplitudes in the two waveguides a1(z) and
a2(z) evolve as follows:

a1(z) = a1(0)

(

cos (γz)− i
∆´

2γ
sin (γz)

)

ei∆´z/2 , (2.11a)

a2(z) = a1(0)
c12

iγ
sin (γz)e−i∆´z/2 , (2.11b)
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where γ2 = (∆´/2)2 + c2 and c =
√

c12c21.

Thus the optical power P1(z) and P2(z) are:

P1(z) = P1(0)

(

cos2(γz) +

(

∆´

2γ

)2

sin2(γz)

)

, (2.12a)

P2(z) = P1(0)
|c21|2

γ2
sin2(γz) . (2.12b)

In the situation where the two waveguides are equal (´1 = ´2, ∆´ = 0) the relations
become [97]:

P1(z) = P1(0) cos2(cz) = P1(0) cos2

(

π

2

z

Lc

)

= |r|2P1(0) , (2.13a)

P2(z) = P1(0) sin2(cz) = P1(0) sin2

(

π

2

z

Lc

)

= |k|2P1(0) . (2.13b)

The term Lc = π
2C , known as the transfer length, designates the length of the coupler

required for a complete power transfer between the two waveguides. Power splitting

between the two outputs occurs up to z = Lc
2 . In this scenario, the DC can be configured

as a beam splitter. Fig. 2.4 illustrates the field profile in a top view (a) and the modal
cross-section (b) at different points. It can be seen that by "cutting" the coupling length
is possible to achieve various outcomes: (A) the light is totally in the upper waveg-
uide, (B) a beam splitter configuration, (C) complete intensity transfer into the adjacent
waveguide, or (D) full field return into the primary waveguide. Therefore, the selection
of the length enables different behaviors to be realized.

In general, the coupler is defined by its reflection coefficient (r) and transmission
coefficient (k). Without losses, these coefficients follow the relation |r|2 + |k|2 = 1. The
transmission matrix representing the DC, for ∆´ = 0, is:

UCD =

(

r −ik
−ik r

)

. (2.14)

In the case of a balanced DC (r = k = 1/
√

2) the matrix becomes:

UCD =
1√
2

(

1 −i
−i 1

)

. (2.15)

In the context of an ADC, where varying waveguide widths and spatial modes come
into play, it is sufficient to consider the propagation constants ´ for the corresponding
modes and geometries. In the case of a DC, the coupling efficiency is obtained when the
waveguides are identical. In the case of ADCs, the optimal efficiency is achieved when
the neff of the single-mode waveguide matches with the neff of a specific higher-order
mode of the multimode waveguide. Although CMT may exhibit lower precision for
ADCs compared to DCs, it still provides a reliable approximation of the true coupling
and is widely employed in device design. Fig. 2.5 depicts the field profile in a top view
(a) and the modal cross-section (b) at different points for the asymmetrical structure.
Similar to the DC case, different behaviors can be achieved by adjusting the coupling
length at different points. At point (B), a beam splitter behavior is evident, where half
of the intensity is converted into the upper mode while the other half remains in the
fundamental mode, split across two distinct waveguides. At point (C), the fundamental
mode undergoes conversion into the first excited mode within the multi-mode waveg-
uide. Finally, at point (D), the entire field is recovered in the primary waveguide.
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Figure 2.5: a) Simulation of the field profile entering point (A) of the upper single-
mode waveguide of an ADC. The tight coupling between the two waveguides allows
the field to pass between them. Different coupling lengths result in various behaviors:
beam splitting (B) into two different modes on the two waveguides, total transfer of
the beam into the adjacent multi-mode waveguide and its conversion into an excited
mode (C), or total return of the beam into the single-mode waveguide. b) Modal cross-
sections are shown in several sections. On the left is the single-mode waveguide (top
of Fig. 2.5(a)), and on the right is the multi-mode waveguide.

There are cases where it is preferred to incorporate more robust structures in the man-
ufacturing process, a strategic choice aimed at improving their reliability and stability.

Multimode Interferometer

The multimode interferometer (MMI) [90, 93] is an integrated optical device that lever-
ages interference effects within a multimode waveguide to perform various functions
in integrated photonic circuits. The MMI offers a compact and efficient method for
either splitting or recombining photon beams. These configurations consist of a spec-

Figure 2.6: Layouts of a MMI 2x2. It is formed by two single-mode input waveguides
and by two single-mode output waveguides connected by a wide multimode waveg-
uide.

ified number of single-mode input and output waveguides connected by a wide mul-
timode waveguide. The operational principle hinges on the self-imaging phenomenon
[98, 99]. At the heart of an MMI device is a waveguide designed to support differ-
ent modes. These devices are commonly referred to as MMI (N × M) couplers [100],
where N represents the number of input waveguides, and M represents the number of
output waveguides. In this contest, only MMIs 2 × 2 are described. Fig. 2.6 shows the
representation of the MMI 2 × 2.
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A thorough examination of full-modal propagation is likely the most comprehensive
theoretical approach to describe self-imaging phenomena in multimodal waveguides
[98]. The field profile, expressed in eq. (2.2), in the multimodal waveguide is described
as [90]:

E(x̄, y, z) = e−i´0z
M

∑
m=0

e(x̄, y)ei(−´m+´0)z , (2.16)

where the input light injected into the multimode waveguide originates from the waveg-
uide centered at (x̄, y). It can be demonstrated that [90]:

´0 − ´m =
m(m + 2)π

3Lπ
, (2.17)

where

Lπ =
π

(´0 − ´1)
≃ 4nmwW

3¼
, (2.18)

is the beating length of the mode with nmw, the refractive index of the multimode
waveguide, W, the width of the multimode waveguide, and ¼, the working wave-
length. The eq. (2.16) becomes:

E(x̄, y, z) = e−i´0z
M

∑
m=0

e(x̄, y)e

[

i
m(m+2)π

3Lπ
z
]

, (2.19)

where ´m is the propagation constant of the mode m. Taking note of the phase term,
under specific conditions, the field E(x̄, y, z) will manifest a duplicate (self-image) of
the input field E(x̄, y, 0). Indeed, the output varies based on the value of z, leading to
scenarios ranging from the reconstruction of single images to the generation of multiple
images. Let’s examine the relationship

z =
n

2
(3Lπ) (n = 0, 1, 2, 3, ..) . (2.20)

A single image is obtained in cases where n is even. Conversely, when n is odd, two
images are obtained. By utilizing eq. (2.19), we can observe that by adjusting the length
of the multi-mode waveguide while keeping its width fixed, different outputs can be
achieved. These include splitting the beam into two different waveguides (B), com-
pletely transferring it into a waveguide at the bottom (C), or retaining it within the
waveguide at the top (D). This behavior mirrors that of the DC but leverages the self-
imaging mechanism. Fig 2.7 illustrates this behavior. It is easy to observe that at point
(B), the implementation of 2 x 2 couplers achieving 3-dB coupling is achieved. The
Scattering Matrix UMMI that describes the MMI 2X2 50/50 is:

UMMI =
1√
2

(

1 i
i 1

)

. (2.21)

Typically, the MMI bandwidth is higher than the DC bandwidth.

2.2.4 Waveguide Crossing

A waveguide crossing, often abbreviated as CR, is used when one or more waveguides
intersect. These crossings are typically constructed using MMIs as the core component,
as depicted in Fig. 2.8(a). The primary objective of a CR is to facilitate the intersec-
tion of two waveguides without causing coupling between the light propagating in
each waveguide. The desired outcome is to achieve a transmission coefficient close to
unity and minimal crosstalk between the different lateral waveguides. This is possible
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Figure 2.7: a) Simulation of the field profile entering point (A) in the multi-mode
waveguide of the MMI 2X2. The field is propagating along x axes. For different lengths
of the multi-mode waveguide, it is possible to obtain the splitting of the beam into two
beams of equal intensity (B), the total transfer of the beam into the adjacent waveguide
(C), or the total return of the beam into the main waveguide. b) The modal cross-
sections are shown in several sections. On the left is the main output waveguide (top
in Fig. 2.7(a)) and on the right is the bottom output waveguide.

through the self-imaging mechanism of MMI. In the simulation depicted in Fig. 2.8(b),

Figure 2.8: a) Sketch of Waveguide crossing. b) Simulation of the field profile in one
input of the CR.

it can be observed that the electromagnetic field propagates exclusively in the main
waveguide, with no observable crosstalk occurring in the lateral waveguide.

2.2.5 Integrated MZI

The Mach-Zehnder interferometer (MZI) is a device used for different applications, in-
cluding signal modulation and quantum information processing. The MZI, illustrated
in Fig. 2.9, comprises two integrated beam splitters, which can be constructed using ei-
ther MMIs or DCs, connected by two waveguides. The process of splitting and recom-
bining an incoming optical signal generates an interference pattern based on the phase
difference between the light propagating in the two arms. In detail, light is guided
through the waveguides, and phase modulation is achieved by introducing a phase
change in one or both two arms. The output interference pattern depends on the rela-
tive phase between the arms, allowing precise control and manipulation of the optical
signal. The constructive interference condition of the MZI at the output is expressed as:

∆ϕ = ϕ1 − ϕ2 =
2π∆ne f f

¼
L , (2.22)
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Figure 2.9: Sketch of an integrated MZI. The dark red sections represent the waveg-
uides comprising the integrated structure, while the bottom cladding material is de-
picted in pink. The removal of the top cladding material highlights the internal ar-
rangement of the MZI. Additionally, gold marks indicate the phase shifters (PSs) re-
quired to induce the phase shifts ϕ1 and ϕ2 due to the thermo-optic effect in the so-
called push and pull configuration.

where ∆ϕ represents the phase difference between the phases, ϕ1 and ϕ2, of the two
arms and ∆ne f f is a variation of the refractive index induced by a variation of its tem-
perature, and it is described as:

∆ne f f =
dn

dT
∆T , (2.23)

where dn
dT is the thermo-optic coefficient [101]. To achieve Phase Shifting (PS), a metal

wire is strategically positioned above the waveguide, ensuring minimal impact on
propagation losses. By passing a current through the wire and leveraging the Joule
effect, the wire’s temperature rises, consequently heating the waveguide and changing
the ne f f locally. In integrated photonics, PS is also achieved by carrier injection into a
p-i-n waveguide. This method achieves higher speed but with high insertion losses.

Considering the MMI matrix representation in eq. (2.21) and the matrix represen-
tation of the phase operator

UPh(ϕ1, ϕ2) =

(

e2iϕ1 0
0 e2iϕ2

)

, (2.24)

the matrix representation of the MZI is:

UMZI(ϕ1, ϕ2) = iei(ϕ1+ϕ2)

(

sin(∆ϕ) cos(∆ϕ)
cos(∆ϕ) − sin(∆ϕ)

)

. (2.25)

When ϕ1 = ϕ2 = 0, the MZI effectively implements the SWAP operation, albeit with a
global phase π

2 :
(

0
i

)

= i

(

0 1
1 0

)(

1
0

)

, (2.26a)

(

i
0

)

= i

(

0 1
1 0

)(

0
1

)

. (2.26b)

In the case where ∆ϕ = π/2, it is possible to obtain the identity or through configura-
tion:

(

i
0

)

= i

(

1 0
0 1

)(

1
0

)

, (2.27a)

(

0
i

)

= i

(

1 0
0 1

)(

0
1

)

. (2.27b)
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In the scenario with minimal energy consumption (where no current is applied), the
system adopts the SWAP configuration as described in eq. (2.26). However, when try-
ing to achieve a specific configuration, energy consumption becomes necessary.

In practical settings, it’s common to have spurious phases caused by fabrication
imperfections. To achieve the desired configuration, an electrical current must be sup-
plied. To reduce power dissipation and energy consumption, the best approach is to
use a push-pull configuration, which involves installing heaters in both arms of the
MZI. Additionally, trenching techniques can be employed to minimize the required
current and reduce thermal crosstalk in adjacent structures. This will help to optimize
efficiency and save costs.

Asymetric MZI

An alteration of the traditional MZI, known as an asymmetric MZI (aMZI), intention-
ally features mismatched arm lengths. This difference induces a phase mismatch be-
tween the arms, leading to a modification in the output interference pattern. Fig. 2.10
shows the schematic design of this device. The aMZI is suitable for diverse applica-
tions, ranging from wavelength selection to the creation of integrated filters, offering
precise control over interference conditions. The optical path length difference ∆L be-
tween the two MZI arms can be written as:

∆L =
m¼res

ne f f
, (2.28)

with m the order, ¼res the center resonance wavelength of the targeted spectrum. The
aMZI produces an output transmission pattern characterized by an FSR described as

FSR =
¼2

ng · ∆L
, (2.29)

and resonance wavelength, ¼res =
neff·∆L

m , where ng is the group index of the propagat-
ing mode in the waveguide [102, 103]. In the 2 × 2 aMZI, when light propagates from

Figure 2.10: A schematic design of the aMZI is shown. The two MMI structures are
connected by two waveguides with different lengths. In the longer waveguide, the
heater is located.

left to right, it functions as a demultiplexer, splitting distinct wavelengths into the two
output paths. However, reciprocity dictates that if these wavelengths enter through the
same port on the right side, they will be combined at the same output on the left side,
effectively operating as a multiplexer. The repetition of aMZIs in series can accentuate
this behavior, selectively filtering certain wavelengths and enabling the realization of
an integrated filter. This aspect will be explored in detail in Chapter 5.



54 Chapter 2. Silicon quantum photonics

2.2.6 Microring resonator

Microring resonators [104–106] play a crucial role in integrated quantum photonics,
serving as compact structures that facilitate essential functionalities like the nonlinear
generation of biphoton states, filtering, and modulation. In the context of this thesis,
their primary application revolves around the generation of biphoton states [27, 107].
In the field of silicon photonics, microresonators are typically composed by wrapping a

Figure 2.11: Sketch of microring resonator in All pass configuration for the point cou-
pler (a), pulley (b), and racetrack (c) configurations.

waveguide around itself to form a ring, strategically positioned near a straight waveg-
uide, resulting in the "All Pass" (AP) configuration [108]. AP configuration possesses an
input and an output port. Various geometries, including point coupler (a), pulley (b),
and racetrack (c) configurations, as depicted in Fig. 2.11, present distinct advantages
and disadvantages. The careful selection of the most suitable resonator type for an ex-
periment becomes imperative. Regardless of the chosen geometry, the shared aspect
of each resonator involves the coupling of light from the straight waveguide with the
closed ring path, selectively supporting specific wavelengths ¼m. For traveling-wave
resonators like microrings or racetracks, these wavelengths adhere to the resonance
condition [104]:

m¼m = ne f f L , (2.30)

where m is an integer number, L is the microring perimeter, and ne f f is the effective
refractive index.
The electric field’s amplitude at the output port Eout is linked to the amplitude at the
input port Ein by the transfer function H(ω), a complex function dependent on the light
frequency ω. Obtaining the transfer function H(ω) involves employing the transfer
matrix method (TMM), and its mathematical representation is [109]:

H(ω) =
Eout

Ein
=

r − Äe−iϕ(ω)

1 − rÄe−iϕ(ω)
, (2.31)

Here, Ä = e−³L (where ³ is the scattering loss coefficient) represents the roundtrip
losses, r is the reflection coefficient of the coupler, and ϕ(ω) = ω

c neff(ω)L denotes the

roundtrip phase. The magnitude of |H(ω)|2 is depicted in Fig. 2.12 as a function of ϕ.
The resonance criterion is met anytime ϕ = 2mπ, which causes a transmission dip to
develop in the spectral response. Energy accumulates inside the resonator during this
event, with some of it being lost due to scattering caused by the roughness of the side
walls, among other factors. Consequently, the transmission power decreases. When
the resonance criterion is not met, such as by changing the input wavelength, no light
is coupled into the resonator, and the device functions as a straight waveguide.

Below, we outline essential properties that characterize a resonator: the quality factor
(Q), the free spectral range (FSR), and the field enhancement factor (FE). The quality
factor Q for the mth resonant order is defined as the ratio of the resonant wavelength



2.3. Quantum description of sFWM in photonic waveguides 55

Figure 2.12: |HAP|2 as a function of the roundtrip phase ϕ. For all the curves, the
reflectance of the coupler is set to r = 0.95.

¼m to the Full Width at Half Maximum (FWHM) ∆¼m of the peak [88, 110]:

Q =
¼m

2∆¼m
=

πng(¼m)L
√

rÄ

(1 − rÄ)¼m
. (2.32)

The peak follows a Lorentzian function. The FSR, representing the separation between
two consecutive resonance wavelengths, is denoted as:

FSR =
¼2

m

ng(¼m)L
. (2.33)

Finally, the FE factor is the ratio between the internal field of the resonator and that of
the input waveguide. The expressions for this parameter are provided as follows:

FE =
ik

1 − rÄe−iϕ(ω)
. (2.34)

where k is the cross-coupling of the microring resonator.

2.3 Quantum description of sFWM in photonic waveg-

uides

In this section, I will explain the quantum description of the parametric nonlinear
sFWM process in waveguide. The comprehensive analytical procedures are detailed
in the appendix A; here, I present only the key steps1. We can describe the Hamiltonian
of the nonlinear process of sFWM in the material as [26, 28]:

HsFWM =
3

ϵ0

∫

Γ
(3)
ijkl(r)D

−
s (r, t)D−

i (r, t)D+
p (r, t)D+

p (r, t)dr + h.c. , (2.35)

where

D+ = ∑
j

D+
j = ∑

j

∫

√

h̄ωjk

4π
aj(k, t)dJk(y, z)eikxdk + h.c. , (2.36)

1For readers seeking further insight, I recommend the following two papers: [26] and [28].
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with j = p, i or s. From eq. (1.110b):

Γ
(3)
ijkl(r) =

χ
(3)
ijkl(r)

ϵ2
0ϵ4

1(r)
. (2.37)

The Hamiltonian in frequency domain becomes

HsFWM =
γSiP1P2

h̄2ωISP1P2

4π2

∫

dωPdωPdωidωsa†
i (ωi)a†

s (ωs)aP(ωP)aP(ωP)

× ei∆kxei(ωp+ωp−ωi−ωs)t + h.c.

(2.38)

where ∆k = kp + kp − ki − ks with k the wavevector of the four photons, and the cou-
pling coefficient γSiP1P2

is the parameter that characterizes the strength of the FWM
process [28], is

γSiP1P2
=

n2ωSIP1P2

cAe f f
SIP1P2

, (2.39)

with n2 the non linear coefficient, Ae f f
SIP1P2

the effective area, c the speed of light and
ωSIP1P2

= 4
√

ωiωsωP1
ωP2

.

We are ready to examine how a quantum state evolves under the influence of this
Hamiltonian. If the initial state is in the vacuum state, the state’s evolution is char-
acterized by:

|Ψð = Û |0, 0ði,s = exp

[−i

h̄

∫ ∞

−∞
dtĤsFWM(t)

]

|0, 0ði,s , (2.40)

where |0, 0ði,s = |vacð.
Let us consider the case of coherent laser pumps ³p. Since we are interested in

weak interactions, we can expand the unitary evolution operator from eq. (2.40) using
a first-order Taylor series. We discard the residual pump:

|Ψð = Û |0, 0ði,s ≃

= I |0, 0ði,s +
(γSiP1P2

h̄ωISP1P2
L

2π

∫

dωPdωidωsa†
i (ωi)a†

s (ωs)

× ³P(ωP1)³P(ωi + ωs − ωP1)ϕ(ωs, ωi, ω) + h.c.
)

|0, 0ði,s

= |0, 0ði,s + ´ |I Iði,s ,

(2.41)

where ϕ(ωs, ωi, ω) is the phase matching function. The biphoton wavefunction, de-
noted as |I Iði,s, can be expressed in a general form using a two-dimensional complex
function F(ωs, ωi), referred to as the joint spectral amplitude (JSA). The JSA can be
written as

F(ωs, ωi) =
∫

dω ³P(ω)³P(ωs + ωi − ω)ϕ(ωs, ωi, ω) , (2.42)

where ³(ω), which is typically thought of as having a Gaussian profile, is the complex
amplitudes of the pump beams. The |I Iði,s can be write:

|I Iði,s =
∫∫

dωi dωs F(ωi, ωs)â†
i (ωi)â†

s (ωs) |0, 0ði,s . (2.43)

We used the method described in [26] to determine the power of each photon in a pair
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generated by continuous wave sFWM in a channel waveguide when pumped at ωP.
This was done within a limited spectral range of bandwidth 2πB. The mean power
calculation is given by [26]:

Pi(s) = Bh̄ωp(γSIP1P2PPL)2sinc2 [(2k(ωP)− k(ωP + Ω)− k(ωP − Ω))L/2] . (2.44)

where Pi(s) is the power of the idler (signal) photons. In the context of the microring
resonator, we specifically examine the filtered case where the filter’s bandwidth is nar-
rower than the resonator’s band. Under these conditions, the relationship is given by
[26]:

Pi(s) = h̄B(γPP)
2

64ν4
µP

π2ω3
µP

Q4
µP

R2
, (2.45)

where QµP
is the quality factor of the ring, R is the radius, and νµP

is the group velocity.
For the unfiltered case (without filter), we obtained:

Pi(s) = h̄(γPP)
2

8ν4
µP

π2ω2
µP

Q3
µP

R2
. (2.46)

There is a difference also in the description of F(ωs, ωi) in the microring resonator case.
Here, the enhancement effect due to the microring can be taken into account.

F(ωs, ωi) = ls(ωs)li(ωi)
∫

dω ³P(ω)lp(ω)³P(ωs + ωi − ω)lp(ωs + ωi − ω)ϕ(ωs, ωi, ω) ,

(2.47)

where lj(ω) (with j = i,s) is the Lorentzian function, which corresponds to the microring
resonance linewidth of the jth resonance involved in the process.
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Chapter 3

Comparison of sFWM integrated
Sources

This chapter conducts an analysis of different approaches to initiate the sFWM process
while examining the characteristics of the biphoton state generated.

3.1 Which type of source performs best among integrated

probabilistic sources?

Determining the optimal integrated probabilistic source for quantum computing is a
multifaceted effort. The complexities involved stem from several factors, amplified by
the limitations of current quantum technology. In this context, the search for the most
suitable photon source is closely intertwined with the specific requirements of the cho-
sen algorithm. Considerations such as photon generation rate, indistinguishability be-
tween photons, spectral purity, robustness of fabrication, and scalability are important
in choosing the appropriate source.

In the context of quantum computing applications, this chapter aims to provide
an evaluation of different integrated silicon sFWM sources in the C-band, highlighting
their respective strengths and weaknesses in the given configuration.

3.2 Comparison between waveguide and microring res-

onator sources for sFWM

This chapter is the result of a collaboration with the ETRI center. Dr. Jong-Moo Lee
and coworkers designed the photonic integrated circuit (PIC) and performed the ex-
perimental measurements at the ETRI center. Dr. Alessio Baldazzi and I conducted
the analytical treatment and simulations at the University of Trento. We perform a di-
rect comparison of two distinct sources for the generation of degenerate photon pairs
(ωs = ωi) within the same silicon PIC [111]. These sources are based on microring
resonators and waveguides, as illustrated in Fig. 3.1.

Before delving into the results, I introduce a quantum measure that furnishes experi-
mental insights into the characteristics of the generated photons: the Hong-Ou-Mandel
(HOM) interference measure [112–114]. The HOM interference measurement offers ex-
perimental insights into the nature and quantum properties of generated photons [115].
As a fundamental tool in quantum optics and quantum computing, it holds significant
importance for characterizing photon behavior and verifying the indistinguishability
of quantum particles.
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Figure 3.1: Graphical representation of integrated sources for the sFWM process. The
microring resonator is depicted on the left (a), while the spiral waveguide is shown on
the right (b). The waveguides are in dark red, while the cladding is represented in pink.

3.2.1 Hong-Ou-mandel effect

Quantum interference plays a central role in various quantum protocols, such as boson
sampling and quantum linear optical computation [116–118], and has been the subject
of intense study. A notable example of quantum interference is the HOM effect. This
effect occurs when two indistinguishable photons simultaneously encounter the two
inputs of a beam splitter [119]. Due to their indistinguishability, they give rise to a dis-
tinct interference pattern in the coincidence detection probabilities, as shown in Fig. 3.2.
The beam splitter is characterized by two input ports with associated photon annihila-

Figure 3.2: Configuration of the HOM experiment and possible output configurations.
The dark red corresponds to the integrated beam splitter (MMI), and the pink is the
cladding. In each configuration, the directions of the photons entering the two en-
trances of the BS, which may either be reflected or transmitted, are depicted at the
bottom right. If the experiment is performed with indistinguishable photons, configu-
rations (c) and (d) are identical and have different signs; therefore, they cancel out, and
no coincidence detection is observed at the output.

tion operators â1,in and â2,in, and two output ports with associated photon annihilation
operators â1,out and â2,out. The connection between the input and output operators is
represented by the matrix relation [119]:

[

â1,out

â2,out

]

= UBS

[

â1,in

â2,in

]

=
1√
2

[

1 i
i 1

] [

â1,in

â2,in

]

, (3.1)

where UBS corresponds to the unitary matrix of an ideal integrated 50:50 beam splitter
expressed in eq. (2.21) constituted by the MMI.
Consider a scenario in which the two inputs include two indistinguishable single pho-
tons, i.e., |inð = |1ð1|1ð2 = â†

1,in â†
2,in|0ð1|0ð2. The state at the output of the beam

splitter can be determined by considering the transformation on the mode operators
â†

out = U†
BS â†

in. Through the inverse evolution of the mode operators, we can explicitly
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express the output state as:

â†
1,in â†

2,in|0ð1|0ð2 =
1

2

(

â†
1,out + iâ†

2,out

) (

â†
2,out + iâ†

1,out

)

|0ð1|0ð2

=
1

2

[

i
(

â†
1,out

)2
+
(

â†
2,out

)2
+ â†

1,out â
†
2,out − â†

1,out â
†
2,out

]

|0ð1|0ð2

=
i√
2
(|2ð1 |0ð2 + |0ð1 |2ð2) .

(3.2)

To obtain the final expression, I utilized the relation |nð = (â†
y)

n/
√

n!|0ð. Eq. (3.2)
captures the effect of quantum interference with indistinguishable photons. The prob-
ability amplitudes for both transmitted photons ((c) component in Fig. 3.2) and both
reflected photons ((d) component) emerge with opposite signs, resulting in a cancella-
tion effect. Hence, the output state forms an equal superposition of both photons in
output mode 1 and both photons in output mode 2. Consequently, only cases where
the two photons are grouped in the same output mode persist, i.e., Pcoinc = 0. No
coincidences are observed.

In the case of coherent states |³ð and |´ð into modes a1,in and a2,in, respectively, the
situation changes. Considering the BS as described in eq. (2.21) and the displacement
operator described in eq. (1.51), we can express the output state as:

|Ψoutð = e³â†
1,in+´â†

2,in |0ð

= e
³

(

â†
1,out+iâ†

2,out√
2

)

+´

(

iâ†
1,out+â†

2,out√
2

)

|0ð

= e
â†

1,out

(

³+i´√
2

)

+â†
2,out

(

i³+´√
2

)

|0ð .

(3.3)

The average number of photons, denoted as ïn̂a1
ð and ïn̂a2ð, in the two output ports

can be computed as follows:

ïn̂a1
ð =

∣

∣

∣

∣

³ + i´√
2

∣

∣

∣

∣

2

=
³2 + ´2

2
, (3.4)

ïn̂a2ð =
∣

∣

∣

∣

i³ + ´√
2

∣

∣

∣

∣

2

=
³2 + ´2

2
. (3.5)

Here, ³ and ´ are complex numbers representing the field amplitudes in the two output
ports. The expressions show that the average photon numbers in both output ports are

equal and given by
³2+´2

2 .

General case of HOM

The aforementioned analysis illustrates the quantum interference principle. However,
to incorporate the individual distinguishability and mixing of the two interfering pho-
tons, a more comprehensive framework is required [119]. For this purpose, let us con-
sider the scenario in which the two photons in spatial input modes 1 and 2 possess
spectral amplitude functions φ1 and φ2. The two-photon input state is then defined by:

|ψðin = |1; φ1ða1
|1; φ2ða2

=
∫

dω1 φ1(ω1)â†
1,in(ω1)

∫

dω2 φ2(ω2)â†
2,in(ω2) |0ð1 |0ð2 .

(3.6)
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Our purpose is to investigate variations in the coincidence probability related to the
overlap between photons. To explore this aspect, we introduce a time delay Ä, typically
implemented in mode a2. The creation operator becomes:

â†
2,in(ω) → â†

2,in(ω)e−iωÄ . (3.7)

Considering the ÛBS the state of the two photons becomes:

|ψðin =
1

2

∫

dω1 φ1(ω1)
(

â†
1,out(ω1) + iâ†

2,out(ω1)
)

×
∫

dω2 φ2(ω2)
(

â†
2,out(ω2) + iâ†

1,out(ω2)
)

e−iω2Ä |0ð1 |0ð2

=
1

2

∫

dω1 φ1(ω1)
∫

dω2 φ2(ω2)e
−iω2Ä

×
(

â†
1,out(ω1)â†

2,out(ω2) + iâ†
1,out(ω1)â†

1,out(ω2)+

+ iâ†
2,out(ω1)â†

2,out(ω2)− â†
2,out(ω1)â†

1,out(ω2)
)

|0ð1 |0ð2 .

(3.8)

Determining the coincidence probability requires explicit calculation. We will represent
each detector with a flat frequency response. The projectors describing the detection in
mode a1 and a2 are then given by

P̂a1
=
∫

dωâ†
1(ω) |0ð1 ï0|1 â1(ω) , (3.9a)

P̂a2 =
∫

dωâ†
2(ω) |0ð2 ï0|2 â2(ω) . (3.9b)

The coincidence probability of detecting one photon in each mode is

p = Tr[|ψðout ïψ|out P̂a1
¹ P̂a2 ] = ïψout|P̂a1

¹ P̂a2 |ψoutð . (3.10)

Considering the equations, the coincidence probability is:

p =
1

2
− 1

2

∫

dω1 φ∗
1(ω1)φ2(ω1)e

−iω1Ä
∫

dω2 φ∗
2(ω2)φ1(ω2)e

−iω2Ä . (3.11)

In the case where both photons have identical Gaussian spectral amplitude function
(φ1 = φ2), the coincidence probability becomes [119]:

p =
1

2
− 1

2
e−

Ã2Ä2

2 , (3.12)

where Ã is the spectral width and Ä is the time delay. Eq. (3.12) indicates that having a
delay increases the distinguishability between the two photons.

Based on the eq. (3.11) it is common to define a quantum-interference visibility as:

VHOM =
pmax − pmin

pmax
=

Pa1a2(∞)− Pa1a2(0)

Pa1a2(∞)
, (3.13)

which is a measure of the depth of the HOM dip, and it depends on the overlap of
the photon spectra. This definition of Visibility has been chosen in the analysis of the
experimental data, but there are other choices [120], which lead to different values of
visibility. Additional details will be included in section 3.2.2.
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Reversed Hong-Ou-Mandel effect

The standard HOM effect involves photons initially occupying separate modes, rep-
resented by the state |11ð. They then evolve into a uniform superposition (|20ð +
|02ð)/

√
2, signifying the possibility of both photons being in the top mode or both

in the bottom one. Another quantum interference phenomenon is the time reversal of
the HOM effect, known as the reversed HOM effect (rev-HOM).
In this configuration, we start from the superposition (|20ð + |02ð)/

√
2, introduce a

phase shift to the lower mode, combine the two modes using a beam-splitter, and de-
tect coincidences in the two output modes. The impact of a phase shifter on a mode
operator is expressed as â†

k → eiϕ â†
k , where ϕ is the phase shift. Accordingly, the state

injected into the beam-splitter can be represented as:

|ψðin =
1√
2

[

(â†
1)

2 + ei2ϕ(â†
2)

2
]

|0ð . (3.14)

Please note that the phase in the superposition state undergoes a factor of 2, attributed
to the fact that two photons pass through the phase shifter. After applying the BS
transformation as previously described, we obtain the output state, up to a global phase

|ψðout = cos (ϕ) |11ð − sin (ϕ)(|20ð − |02ð)/
√

2 . (3.15)

The probability of detecting a coincidence denoted as pcoinc, is dependent on the ap-
plied phase and is expressed as

pcoinc = cos2(ϕ) . (3.16)

As shown in Fig. 3.3, quantum interference fringes in the rev-HOM effect arise through
phase variation ϕ. Compared to classical light interference, where the power in one
of the output ports fluctuates as ∝ cos2(ϕ/2), quantum interference fringes have a
frequency that is two times higher.

Figure 3.3: Classical light interference (red line) compared with the Reversed HOM
interference (blue line).

As in the HOM situation, let us now treat the case of distinct photons. Specifically,
we can examine a broad scenario where the frequency of the two photons differs. The
input state in this generic case is provided by

|ψðin =
1√
2
(|ψð1 + |ψð2) , (3.17)
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where

|ψð1 =
∫

dω1ϕ(ω1)â†(ω1) , (3.18a)

|ψð2 =
∫

dω2 φ(ω2)â†(ω2) . (3.18b)

Considering these equations, the coincidence probability will be

p =
1

2
− 1

2
Re

[

e2iϕ
∫

dω1dω2 φ∗(ω2)ϕ(ω1)

]

=
1

2
− 1

2
cos (2ϕ + θ0)

∣

∣

∣

∣

e2iϕ
∫

dω1dω2 φ∗(ω2)ϕ(ω1)

∣

∣

∣

∣

,

(3.19)

where θ0 = 1
2 arg

∫

dω1dω2ϕ(ω1)φ(ω2)
∗. The visibility of the fringes precisely is re-

lated to the overlap between the two joint spectral amplitudes. Defining visibility in
terms of coincidence probabilities as:

V exp
rev−HOM =

pmax − pmin

pmax
, (3.20)

and considering:

N =

∣

∣

∣

∣

e2iϕ
∫

dω1dω2 φ∗(ω2)ϕ(ω1)

∣

∣

∣

∣

, (3.21)

the visibility becomes:

V exp
rev−HOM =

2N

1 + N
. (3.22)

3.2.2 Rev-HOM effect from waveguide spiral sources

We expand on the rev-HOM effect to photons generated by two identical degenerate
sFWM sources constructed with spiral waveguides, as shown in Fig. 3.4. These results
come from our work [111].

Quantum silicon PIC and experimental setup

The generation of photon pairs in the silicon PIC is achieved through degenerate sFWM
processes (ωi = ωs) in a low squeezing regime [28, 121–123]. The state of the output
photons is a single-mode squeezed state [39, 124], and it is described in eq. (1.71). The
PIC is packaged on a metal-based printed-circuit board (MPCB) with 24-port electri-
cal wiring and is connected to a 24-channel fiber array. The MPCB is in contact with
a thermo-electric cooler (TEC) to control the chip temperature. The PIC is based on
silicon waveguides with a nominal 450 x 220 nm2 cross-section (typically 480 x 210
nm2 after fabrication) and was fabricated through IMEC foundry using their passive+
Silicon-on-Insulator (SOI) platform.
The measured waveguide propagation loss is 2 dB/cm. Fig. 3.4 shows schematically
the experimental setup. Two CW tunable laser diodes (CoBrite from IDPhotonics) at
¼P1=1544.08 nm and ¼P2=1556.18 nm are combined by a 3-dB fiber-optic (FO) cou-
pler and provide the pump photons. The combined beam is passed through an opti-
cal notch filter (NF) [114] to eliminate photon noise within 1.6 nm bandwidth around
¼i = ¼s = 1550.12 nm, which is the wavelength of the on-chip generated photon pairs.
Then, the pump photons are inserted into the selected input fiber of the fiber array
which is coupled to the chip by grating couplers, whose coupling loss is measured to
be 4.2 dB.
In the PIC, the circuit is based on 2 MZIs with two nominally identical photon-pair
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Figure 3.4: On the top the experimental setup for measuring photon pair generation
and integrated multi-source quantum interference. From left to right: two lasers of
different wavelengths coupled into the chip via a 3-dB coupler and grating coupler af-
ter appropriate filtering with a notch filter (NF). Blue and red spheres denote the two
pump photons with distinct frequencies. The circuit illustrates the photon pair sources
based on spiral waveguides forming the arms of a MZI. The two outputs of the MZI fea-
ture BPF to isolate the generated degenerate photons (depicted by purple spheres), two
superconducting nanowire single-photon detectors (SNSPDs), and a time-correlated
single-photon counting module interfaced with a computer. On the bottom, all compo-
nents are shown.

sources located in their arms. The photon-pair sources are based on 15 mm-long waveg-
uide spirals. Micro-heaters are also integrated into one arm of the MZI to act as phase
shifters (ϕ) in order to compensate for unwanted phase differences between the two
arms. The efficiency of the micro-heater of the MZI is measured to be about 25 mW/π
with an overall resistance of about 50 Ω. At the output of the PIC, the photons are
extracted via a grating coupler by the fiber arrays, filtered off the pump photons with
bandpass filters (BPFs, with a 0.8 nm bandwidth centered at 1550.12 nm), and detected
by using super-conducting-nanowire single-photon detectors (SNSPDs, EOS from Sin-
gle Quantum) [114, 125]. Then the SNSPD single-photon events are counted by a time-
correlated single-photon counter (TCSPC, Logic16 from UQdevices) and analyzed by
logical post-selection.

Figure of merit of the integrated sources

The examination of the overall quality of the integrated sources involved simulation of
the JSI of the generated pairs and measurements of the CAR [125], the heralding rate

[114, 125], and the zero-delay heralded second-order coherence function g
(2)
H (0) [115].

To determine g
(2)
H (0), a 3-dB fiber splitter was introduced between the PIC outputs and

the SNSPDs, creating a HBT interferometer [115]. The theoretical description of these
parameters is provided in Chapter 1.

Fig. 3.5 illustrates the JSI for 15 mm long spiral waveguides. Notably, even in a de-
generate sFWM process, the wavelengths of the generated photon pairs are dispersed
around ¼s ≃ ¼i due to the spectral width of the pump laser and the generation band
of the FWM process. Additionally, the broad shapes of the JSIs for the waveguides
suggest a significant correlation in the photons generated by these waveguides. The
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Figure 3.5: Simulated JSI for a 15-mm-long waveguide spiral plotted against signal
(¼s) and idler (¼i) wavelengths after applying a BPF centered at 1550.12 nm with a
bandwidth of 100 GHz (0.8 nm) using CW pump lasers.

filtering process reduces this correlation and the brightness of the photon pair source.
The purity was calculated using eq. (1.103), yielding a value of 81%. Fig. 3.6(a) displays
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Figure 3.6: a) The CAR is plotted (red dots) against the pump power coupled to the
chip. Additionally, the heralding rate (green dots) is shown as a function of the coupled

pump power. b) The heralded second-order correlation function g
(2)
H (0) is depicted as

a function of the coupled pump power (blue dots).

the measured CAR and heralding rate. The CAR is calculated as eq. (1.130). The max-
imum value obtained is 715 at 0.2 mW on-chip pump power. The heralding rate for a
spiral waveguide is 1 kHz with a pump power of 1.5 mW (equivalent to a conversion
efficiency of -126 dB for heralding). The chosen coincidence time window of the time-
correlated single-photon counter (TCSPC) is set to 0.2 ns.

In Fig. 3.6(b), the g
(2)
H (0) of the photons generated by the spiral waveguide sources is

depicted. At low input pump power, high-quality heralded single photons are present.

With an increase in pump power, g
(2)
H (0) increases due to multiphoton contributions.

Remarkably, antibunching behavior is observed across all pump power levels.

Our experiments were conducted with low pump powers to achieve optimal values
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of CAR and g
(2)
H (0), where the quadratic behavior of the generation rate is observable.

This places us in a regime where TPA does not limit performance. Indeed, at low pump
powers, the conversion efficiency of photon-pair generation is low, but nonlinear losses
due to TPA and FCA can be neglected compared to linear losses from scattering [126].
Consequently, we can assert that sFWM in PIC should be exclusively performed at low
optical pump powers to avoid a sudden decline in performance at higher powers [127].

Evolution state description of the rev-HOM interference

Before proceeding with the measurement, we reconstruct the output state from the
interferometer. To facilitate this, we segment the Fig. 3.4 into four parts, identified by
the Roman numerals I-V in Fig. 3.7. In Section I, the pump photons are divided into

Figure 3.7: The scheme depicted in Fig. 3.4 is displayed, and divided into five parts to
facilitate its analytical description. the rectangular block corresponds to the PIC.

two paths, denoted as path 1 (upper) and path 2 (lower), utilizing the first 1X2 MMI.
Section II includes the degenerate sFWM process, generating a pair of photons along
the two designated routes. Section III introduces a phase shifter φ in path 1, thereby
incorporating a relative phase compared to path 2. Subsequently, Section IV employs a
2X2 MMI to induce interference between the photons propagating in the two arms. In
Section V, the filtering and detection of the two pathways are carried out.
The initial state, consisting of two pump beams at the frequencies ωP1 and ωP2, can be
expressed as:

|Ψð0 = exp

[

∫

dω (α(ω) + β(ω)) Â†(ω)

]

|vacð (3.23)

Here, Â†(ω) represents the creation operator, while α and β are the amplitude functions
of the pump beams centered at ωP1 and ωP2, respectively. It is important to note that
we are dealing with unnormalized states; consequently, any meaningful quantity must
arise from a proper ratio.

Due to the filter at the entrance of the chip, we can make the assumption that

∫

dω α(ω)β̄(ω) = 0 . (3.24)
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In Section I, the pump photons undergo interference with a 1X2 MMI. Applying this
evolution to the initial state, we obtain:

|ΨðI = exp

[

∫

dω
(α(ω) + β(ω))√

2

(

â†
1(ω) + â†

2(ω)
)

]

|vacð, (3.25)

where â†
1 corresponds to the upper waveguide and â†

2 to the lower one.

In Section II, the degenerate sFWM mechanism generates correlated photons that an-
nihilate two pump photons (see chapter 2 for details). As we explained in the eq. (2.43),
the state is

|ΨðII = exp

{

ξ

2

∫

dωidωs

[

F1(ωi, ωs) â†
1(ωi)â†

1(ωs) + F2(ωi, ωs) â†
2(ωi)â†

2(ωs)
]

}

|vacð.
(3.26)

Here, F1/2 represents the JSA of the source in the upper/lower waveguides. We omit
the residual contribution from the pumps and the non-degenerate generation process
since our detection will focus solely on the contributions around the degenerate gener-
ation process.

In Section III, a phase shifter is introduced into path 1. This allows the photons from
that path to undergo an additional phase shift. The resulting state will be:

|ΨðIII = exp

{

ξ

2

∫

dωidωs

[

F1(ωi, ωs)e
2iφ â†

1(ωi)â†
1(ωs) + F2(ωi, ωs) â†

2(ωi)â†
2(ωs)

]

}

|vacð .

(3.27)

In Section IV, we consider the interference between two paths, 1 and 2, through a 2X2
MMI. In eq. (2.21) its unitary matrix is provided. Applying this unitary matrix, the state
evolves.

|ΨðIV = exp
{ ξ

4

∫

dωidωs

[

F1(ωi, ωs) e2iφ
(

â†
1(ωi) + i â†

2(ωi)
) (

â†
1(ωs) + i â†

2(ωs)
)

(3.28)

+ F2(ωi, ωs)
(

â†
2(ωi) + i â†

1(ωi)
) (

â†
2(ωs) + i â†

1(ωs)
) ]}

|vacð

= exp
{ ξ

4

∫

dωidωs

[ (

F1(ωi, ωs) e2iφ − F2(ωi, ωs)
) (

â†
1(ωi) â†

1(ωs)− â†
2(ωi) â†

2(ωs)
)

+ 2i
(

F1(ωi, ωs) e2iφ + F2(ωi, ωs)
)

â†
1(ωi) â†

2(ωs)
]}

|vacð .

Considering the filtering in the eq. (3.9) of operator describing the detection, we obtain:

P̂i :=
∫

dω f (ω) ∑
n ̸=0

1

n!

(

âi(ω)†
)n

|vacðïvac| (âi(ω))n , (3.29)

where the function f represents the spectral amplitude of the filter. Note that we have
implemented operators that take into account threshold detectors. The probability of
detecting coincidences in channels 1 and 2 is given by the eq. (3.10). We obtain:

p12 ≈ 1

4

∫

dωidωs f (ωi) f (ωs)
[

|F1(ωi, ωs)|2 + |F2(ωi, ωs)|2 + 2Re
[

F1(ωi, ωs)F̄2(ωi, ωs)e
2iφ

]]

=
1

2

{

1 + Re
[

e2iφ
∫

dωidωs f (ωi) f (ωs)F1(ωi, ωs)F̄2(ωi, ωs)
]

}

. (3.30)
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The approximation consisting of keeping only the leading term is based on the fact that
we can choose to work in the low gain regime once the sources have been characterized.
In terms of JSAs overlap, p12 takes the form

p12(φ, δ, N) =
1

2
{1 + N cos (2φ + δ)} , (3.31)

where N eiδ :=
∫

dωidωs f (ωi) f (ωs)F1(ωi, ωs)F̄2(ωi, ωs) . (3.32)

It is easy to see that F1 = F2 implies N = 1 and δ = 0 and, therefore, p12 = cos(φ)2 and
pmax

12 = p12(φ = 0) and pmin
12 = p12(φ = π/2) .

In the generic case, the maxima of p12 are located at 2φ + δ = 2Nπ and the minima at
2φ + δ = Nπ with N ∈ Z and the visibility reads

V =
2N

1 + N
, (3.33)

where N :=
∣

∣

∣

∫

dωidωs f (ωi) f (ωs)F1(ωi, ωs)F̄2(ωi, ωs)
∣

∣

∣
. (3.34)

Hence, from the experimental value of V, we can determine the JSA overlaps N for our
two sources. The normalized coincidence probability is given by:

pnorm
12 (φ, δ, N) =

1

1 + N
{1 + N cos (2φ + δ)} . (3.35)

From the formula for the normalized coincidence probability, we observe that a relative
phase difference between the JSAs of the two sources can shift the interference pattern
of the rev-HOM experiment. However, it’s essential to acknowledge that such a relative
phase can be easily obscured from our observation due to non-idealities arising from
the fabrication process. In our case, even a small difference in the length of the two
arms of the MZI involved in the HOM dynamics could significantly contribute to these
non-idealities.

Rev-HOM effect measurement

We conduct a quantum rev-HOM interference measurement between photons gener-
ated by the two degenerate sources. As previously outlined in the chapter’s intro-
duction, this measurement serves to assess the indistinguishability of the photons pro-
duced by these sources. Fig. 3.8 shows the counts detected on the two output channels
of the MZI, representing the classical transmission of light (a), and the coincidence rates
(b) between the two channels. These coincidence rates reveal the quantum interference
among photons generated as a result of the phase φ introduced by the thermal phase
shifter in one of the arms of the MZI. Notably, these measurements were conducted
at a fixed on-chip power of 1.5 mW. The outcome of the coincidence measurement is
attributed to the rev-HOM interference of degenerate photon pairs at the second MMI
of the MZI. The high visibility of 98.8% was obtained by applying the formula (3.20).
This result confirms the indistinguishability of photon pairs generated by the two spi-
rals [113, 115]. As explained in eq. (3.33), we can determine the overlap coefficient of
the JSAs from the visibility. The calculated value of the JSAs overlap is 97.6%. This
parameter provides information on the difference between the two JSAs and, therefore,
the distinguishability of the generated photons and sources.
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Figure 3.8: a) Classical transmissions measured from the two outputs (yellow dots for
output 1, green dots for output 2) of the MZI in Fig. 3.7 plotted as a function of the
phase φ. The theoretical predictions are the dashed lines. (b) Measured (dark red dots)
and theoretical (dashed line) coincidence rates between the two outputs of the MZI as
a function of the phase φ.

3.2.3 Comparative analysis of microring resonator and spiral waveg-
uide photon pair sources

Quantum silicon PIC and experimental setup RHR-HOM

A schematic illustration of the experimental setup, designed to compare spiral and mi-
croring waveguide sources directly, is illustrated in Fig. 3.9. This configuration expands
upon the previously mentioned concept, as shown in Fig. 3.7, by integrating an experi-
mental HOM configuration with the rev-HOM effect.

In this new PIC, two nominally identical microring resonators are coupled to two
nominally identical spiral waveguides forming the arms of an MZI. Similar to the pre-
vious case, the PIC is pumped by two lasers at different wavelengths, at 1543.78 nm
and 1556.53 nm, to generate pairs of degenerate photons at 1550.12 nm through spon-
taneous four-wave mixing. Specifically, microring resonators can be thermally tuned to
enter or exit resonance with the pump wavelengths, allowing the selection of microring
resonators or waveguides as sources of photon pairs, respectively. Fine-tuned micror-
ings exclude the spiral waveguides placed next to them due to their efficient rejection
of the pump wavelengths.
The microrings have 28.5-µm radius, a Q factor of 3 × 104, and an FSR of 3.2 nm. The
spiral waveguides have the same length as in the previous experiment (15 mm). The
grating couplers exhibit a measured coupling efficiency of 3.3 dB.
The photon pump filters formed by aMZIs are placed after the first MZI to eliminate
residual pumps and reduce accidental coincidence counts. The asymmetric length of
the aMZI is designed to be 47.2-µm, resulting in an FSR of 12.8 nm (1600 GHz) and a
pump rejection ratio exceeding 30 dB.

The circuit then incorporates an additional MZI to measure the quantum interference
of the generated photon pairs (HOM-revHOM interference). This is achieved through
a thermal phase shifter φ2 after achieving perfect source matching with φ1.
At the output of the PIC, the photons are coupled through gratings from the fiber array.
Outputs 1 and 2 are filtered by pump photons using BPF with a bandwidth of 0.8 nm
centered at 1550.12 nm and detected by SNSPDs. A small portion (1% of the power) is
extracted before the two filters and directed to two photodiodes PD1 and PD2. Outputs
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Figure 3.9: The PIC formed by composite photon-pair sources utilizing both waveg-
uides and microrings. These sources are then subjected to a second MZI to measure the
quantum interference of the generated photons. On the right, the detection channels
(out1-out4) are depicted. These channels consist of a series of optical fibers, BPFs, su-
perconducting nanowire SNSPDs, and a time-correlated single photon counting mod-
ule linked to a computer for subsequent data processing.

3 and 4 are coupled to two additional photodiodes PD3 and PD4.

Fig. 3.10 displays the normalized transmission spectra measured with the photodiodes
(PD1-PD4) visible in Fig. 3.9. Thermal tuning of filters allows them to match the wave-
length of the generated photons and appropriately remove the pump wavelengths. PD1

and PD2 indicate the transmission of the generated photons and pump removal, while
PD3 and PD4 allow tracking of the residual power and proper filter operation.

Figure of merit of the integrated sources

Similar to the rev-HOM case, we analyze various performance metrics for the two types
of sources under consideration. Fig. 3.11 illustrates the simulated JSI as a function of
signal (λs) and idler (λi) wavelengths after applying a BPF centered at 1550.12 nm using
CW pump lasers for (a) waveguide spiral and (b) microring resonator. The simulation
carried out for the JSI of the spiral source is consistent with Fig. 3.5. Notably, even in
a degenerate sFWM process, the wavelengths of the generated photon pairs are dis-
tributed around λs ≃ λi due to the spectral width of the pump laser lines and the gen-
eration bandwidth of the FWM process. The JSI shapes of the waveguides are broader
than those of the microring resonators, indicating a higher correlation in the photons
generated by the waveguides compared to the microring resonators. These broad JSIs
are attributed to the BPF filtering of the broad waveguide generation band (between
the two wavelengths of pump photons). The filtering also diminishes the brightness
of the photon pair source. In the case of microring resonators, the effect of the BPF is
negligible due to the narrow width of the microring resonance spectrum. Addition-
ally, high Q-factor values result in narrow JSIs and increased probability of photon pair
generation, which follows a cubic law with respect to the Q-factor value, as given in
eq. (2.46). However, high Q-factor values make the microring resonator more suscepti-
ble to thermal crosstalk, and TPA.
In the simulations for JSI and purity, the two microring waveguides/resonators are
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Figure 3.10: Normalized transmission spectra measured by different photodiodes are
depicted, with the red line representing PD1, the orange line representing PD2, the blue
line representing PD3, and the green line representing PD4. These measurements were
obtained while scanning the wavelength of one of the tunable laser diodes.

a) b)

Figure 3.11: Simulated JSI plotted as a function of signal (λs) and idler (λi) wavelengths
after applying a BPF centered at 1550.12 nm with a bandwidth of 100 GHz (0.8 nm)
using CW pump lasers for two configurations: (a) a 15-mm-long waveguide spiral,
and (b) a microring resonator with a FSR approximately 3.2 nm and a quality factor of
3 × 104 (resulting in a FWHM of 0.05 nm).

assumed to be identical to their nominal design values. This implies that the simu-
lated values are not affected by small variations in the nominal parameters present in
the fabricated structures. The purity was calculated using eq. (1.103). The simulated
purity corresponds to 81% for the spiral waveguide source and 90% for the microring
resonator. An interesting aspect to note is that the purity in the case of the waveguide
source without an inserted filter decreases dramatically, reaching a simulated value of
20%. The simplicity of fabricating a waveguide source faces a bottleneck in the need to
use a high-quality BPF to produce photons with high spectral purity.

Fig. 3.12 presents the CAR (a) and heralding rate (b) measurements for the two sources.
Throughout the measurements, the phase φ2 of the second MZI is fixed at zero. Two
ways are possible in this configuration: microring in resonance, where the generation
contribution of the microring resonator is considered (blue dots), and microring out of
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resonance, where only the generation contribution of the spiral waveguide is consid-
ered (red dots). The maximum CAR value surpasses 1000 for spirals and 600 for mi-
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Figure 3.12: Measurements of the characteristics of the photon-pair sources are pre-
sented. a) The coincidence to accidental ratio as a function of the pump power coupled
to the chip, where dark red dots correspond to the spiral waveguide (indicating that
the microrings are off-resonant with the pump photons wavelengths), and empty blue
dots represent the microring source (denoting that the microrings are resonant with
the pump photons wavelengths). b) The heralding rate as a function of the coupled
pump power is shown for the spiral waveguide (dark red dots) and microring res-
onator (empty blue dots).

croring resonators. These values emphasize the effectiveness of pump photon removal
achieved by incorporating on-chip aMZI-based pump filters in addition to external fil-
ters placed before detection.

In Fig. 3.12(b), the heralding rate is depicted, with a rate of 10 kHz for the spiral waveg-
uide and 3 kHz for the microring resonator at 5 mW pump power. Both the CAR and
the heralding rate for the rings are influenced by propagation losses due to the 15 mm
long spirals following the microring on the arms of the first MZI, as well as substantial
TPA losses in the microring due to the high Q factor.
To minimize the impact of TPA, our comparative experiments were conducted using
low pump powers to achieve optimal CAR values, where the quadratic behavior of
the generation rate is observable. Using low pump powers results in low conversion
efficiency of photon pair generation, but nonlinear losses due to TPA and FCA can be
neglected in comparison to linear losses due to scattering [126].

Evolution state description of the RHR-HOM interference

Let’s examine the theoretical aspect of the reverse HOM-HOM-reverse HOM experi-
ment, as seen in the integrated system shown in Fig. 3.9. For convenience, I define this
experiment as RHR-HOM.
We divided the integrated system into different sections, as shown in Figure 3.13. No-
tably, by replacing φ with φ1, the circuit remains unchanged up to Sec. IV, mirroring the
setup displayed in Figure 3.7. In Sec. V, the two paths undergo further division into
two new paths using two aMZIs. At this stage, path 1 is split into two additional paths,
denoted as path 1 (corresponding to detection channel 1) and path 3 (corresponding to
detection channel 3). Similarly, path 2 is split into path 4 (corresponding to detection
channel 4) and path 2 (corresponding to detection channel 2). In Sec. VI, an integrated
MZI composed of two 2X2 MMIs and a phase shifter φ2 induces interactions between
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Figure 3.13: The chip design of Fig. 3.9 is partitioned into 7 distinct sections for ease of
discussion.

photons from paths 1 and 2. The final steps involve filtering and detection of the two
internal pathways in Sec. VII. Let’s start from the state in Sec. IV:

|ΨðIV = exp
{ ξ

4

∫

dωidωs

[

F1(ωi, ωs) e2iφ1

(

â†
1(ωi) + i â†

2(ωi)
) (

â†
1(ωs) + i â†

2(ωs)
)

(3.36)

+ F2(ωi, ωs)
(

â†
2(ωi) + i â†

1(ωi)
) (

â†
2(ωs) + i â†

1(ωs)
) ]}

|vacð .

In Section V, we treat the effect of aMZIs as if they were acting as filters. For simplicity,
we assume that the two aMZIs are identical, meaning that their frequency responses
are the same, denoted as faMZI1 = faMZI2 = faMZI . In principle, aMZIs do not affect
the generated photons but are designed solely to eliminate the residual pump. How-
ever, to account for their dependence on the frequency, I denote them with the notation
faMZI(ω). The state is

|ΨðIV = exp
{ ξ

4

∫

dωidωs faMZI(ω)
[

F1(ωi, ωs) e2iφ1 b̂†
1(ωi)b̂

†
1(ωs) (3.37)

− F2(ωi, ωs) b̂†
2(ωi)b̂

†
2(ωs)

]}

|vacð .

with
b̂†

1 = â†
1(ωi) + i â†

2(ωi) , (3.38a)

b̂†
2 = â†

1(ωi)− i â†
2(ωi) . (3.38b)

In Section VI, the second MZI exclusively influences photons propagating along cen-
tral pathways â1 and â2. Therefore, the resulting state in Section VI reads

|ΨðVI = exp
{ ξ

4

∫

dωidωs faMZI(ω)
[

F1(ωi, ωs) e2iφ1 b̂†
3(ωi) b̂†

3(ωs)− F2(ωi, ωs) b̂†
4(ωi) b̂†

4(ωs)
]}

|vacð ,

(3.39)

where b̂†
3(ω) ≡ −â†

1(ω) + i â†
2(ω) ,

and b̂†
4(ω) ≡ eiφ2

(

â†
1(ω) + i â†

2(ω)
)

.
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In the final Section VII, the filtering and detection are represented by the operators
defined in eq. (3.29). Consider the probability after Sec. VII we find:

p12 =
1

4

{

1 + Re
[

e2i(φ1−φ2)
∫

dωidωs f (ωi) f (ωs)F1(ωi, ωs)F̄2(ωi, ωs)
]

}

. (3.40)

Visibility is defined as

V =
pmax

12 − pmin
12

pmax
12

. (3.41)

By performing the same manipulations as detailed in the rev-HOM case, we arrive at
identical formulas. This consistency stems from the fact that all the designs leverage
the same features, especially when normalizing the coincidence data. The visibility in
the context of the overlap of JSAs can be expressed as follows:

V =
2
∫

dωidωsF1(ωi, ωs)F̄2(ωi, ωs)

1 +
∫

dωidωsF1(ωi, ωs)F̄2(ωi, ωs)
. (3.42)

RHR-HOM effect measurement

The measured RHR-HOM interference for this new configuration is shown in Fig. 3.14(a).
These measurements were conducted by varying the φ2 phase of the second MZI. For
the configuration with the resonant microring (blue dots), a HOM interference visibility
of 94% is measured at a pump power of 0.3 mW. For the configuration with the spiral
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Figure 3.14: a) Coincidence rates between the output channels of the second MZI are plotted
against the phase φ2 of the second MZI. The blue line represents the HOM interference for the
microring resonator configuration with an input pump power of 0.3 mW, while the red line il-
lustrates the quantum interference for the spiral waveguide sources with two different pump
powers, 0.6 mW. Experimental data are depicted as dots, while the lines correspond to theoreti-
cal fits obtained from eq. (3.40). b) The relationship between visibility and the overlap of JSAs is
shown.

waveguide (red dots), a remarkable 99% visibility HOM interference is achieved at a
pump power of 0.6 mW. In both cases, the theoretical behaviors expressed in eq. (3.40),
as represented by the red and blue lines, align with the experimental results. The vis-
ibility is related, via eq. (3.42), to the overlap of JSAs of the considered sources. These
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results suggest that in the case of spirals, the indistinguishability of the generated pho-
tons is greater than in the case of microring resonators. This implies that microring res-
onators are more susceptible to manufacturing defects than spiral waveguides. Specif-
ically, in the case of spirals, an overlap of JSAs of 97.6% is obtained, while in the case of
microring resonators, an overlap of JSAs of 88.7% is achieved.
The relationship between visibility and the overlap of JSAs is illustrated in Fig. 3.14(b),
displaying data for the two types of sources.

Spiral Waveguide vs. Microring Resonator: Unveiling the optimal Source for Inte-
grated Spontaneous Four-Wave Mixing

I present a comprehensive comparison between the two types of sources, combining
simulation results and experimental analyses. Table 3.1 outlines the key characteristics
of microring resonators and spiral waveguides analyzed in the different configurations.

Observed
Visibility

Simulated
Purity

Computed JSAs overlap

Spirals (rev-HOM) 98.8% 81% 97.6%
Spirals (RHR-HOM) 99% 81% 98%
Microrings (RHR-HOM) 94% 90% 88.7%

Table 3.1: Summary of the relevant properties of the analyzed photon-pair source.

In the simulations for JSI and purity, both microrings-waveguides are assumed to be
identical to their nominal design values. This ensures that the simulated values re-
main unaffected by small variations in the nominal parameters present in the fabricated
structures. Purity calculations were executed using eq. (1.103), and the JSAs overlaps
were determined based on experimental visibility results.

From a purity perspective, it is evident that the microring resonator exhibits higher
purity without the need for an additional BPF. On the other hand, while demonstrat-
ing more robustness in fabrication, the spiral waveguide requires appropriate filtering
to generate photons with high spectral purity. Plots showing the behavior of the JSA
overlap when perturbations in one of the two sources’ parameters occur are shown in
Fig. 3.15. In particular, we investigate fluctuations in Leff (δLeff = ∆Lerror

eff /Lnominal
eff [%])

for spiral waveguides and the Q-factor (δQ = ∆Q) for microring resonators. This result
emphasizes the greater sensitivity of ring resonators to fabrication errors, leading to
distinguishing generated photons.
The comparison of the indistinguishability of generated photons reveals that the visi-
bility in the case of the spiral waveguide is higher than that of the microring resonator,
despite the opposite trend observed in purity. An important aspect in our case is the
interdependence of the sources, which distinguishes our experiment from many pub-
lished experiments where sources are independent [119, 128, 129]. In the context of
independent sources, non-degenerate sFWM is commonly employed to generate two
pairs of idler photons and signals, resulting in a separable overall wave function of the
state. In our case, the state is not separable, and the generated state involves a superpo-
sition of pairs of photons from the two sources. The state generated by the source pair,
expressed in eq. (3.26), is

|ΨðII ∼
∫

dωidωs

[

F1(ωi, ωs) â†
1(ωi)â†

1(ωs) + F2(ωi, ωs) â†
2(ωi)â†

2(ωs)
]

|vacð .
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Figure 3.15: Simulated JSAs overlap as a function of variations in Leff for spiral waveguides
(red line), and JSAs overlap as a function of variations in Q-factor for microring resonators (light
blue line). δX represents δLe f f for the waveguide case and δQ for the microring case.

In this equation, F1 and F2 are the JSAs of the two sources. It is important to note that
|ΨðII represents a superposition of photon pairs generated in the two sources1.

When choosing between source types of generated photons, it is important to con-
sider the trade-offs between their purity and indistinguishability and choose a source
based on the specific needs of the application.

3.3 Intra-modal and Inter-modal approaches

The sFWM needs to conserve energy and momentum:

ωp1 + ωp2 = ωi + ωs

kp1 + kp2 = ki + ks .

Considering that the wave vector is expressed as k = ω ne f f /c, with c the speed of light,
ω the frequency, and ne f f the effective refractive index, we can write the conservation
of momentum in the waveguide as:

∆k =
ωp

c
n

j
e f f (ωp) +

ωp

c
n

q
e f f (ωp)−

ωs

c
nl

e f f (ωs)−
ωi

c
nm

e f f (ωi) , (3.43)

where j, q, l, m represent the modes of the fields.

We define the sFWM process as intramodal when all 4 photons involved belong to the
same mode (j = q = l = m). In contrast, we define the process intermodal when
the different propagation constants of different order modes can be exploited to obtain
an additional degree of freedom in the design of phase matching (PM). In this case,
higher-order waveguide modes with different effective index profiles are employed.
The intermodal PM condition offers more flexibility than the intramodal case due to
the degree of freedom introduced by the waveguide modes.

An aspect of intermodal PM is the possibility, depending on the excited optical modes
and geometry, to obtain discrete phase-matched bands with controllable wavelengths.

1In our case, a photon pair is generated in a superposition of two paths. In the case of non-degenerate
FWM, two pairs are generated, and after the heralding, a state with one heralded photon in each path is
obtained.
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This feature allows for broadly tunable spectral conversions, with detunings that vary
widely. In this contest, I will assume a specific scenario where p1 = s denotes the first
excited mode TE1, and p2 = i represents the fundamental mode TE0. To ensure clar-
ity I term this particular process as "intermodal 1221-TE sFWM", where the numerical
values denote whether the photon propagates in the fundamental mode (1) or the first
excited mode (2). The sequence of numbers denotes the involvement of the pumps p1,
p2, and the corresponding idler (i) and signal (s) photons in the process.

3.3.1 Intermodal 1221-TE sFWM vs. intramodal 1111-TE sFWM

In the context of intermodal phase matching, it is imperative to adopt a comprehen-
sive design approach that takes into account all effective index profiles involved in the
PM relationship, particularly when dealing with substantial spectral shifts. Compar-
ing intermodal and intramodal PM, it is observed that intermodal PM shows discrete
behavior, offering the flexibility to be fine-tuned away from the pump wavelength. In
contrast, intramodal PM is characterized by a narrow PM condition restricted in prox-
imity to the pump wavelength, forming a continuous band.
In Fig. 3.16(a), by comparing the intramodal case (red line) with the intermodal case
(blue line), we can observe the spectral dependence of the generation efficiency. Fig. 3.16(b)
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Figure 3.16: a) The PM relationship for the intramodal process is depicted by the red
line, showing a continuous band, whereas for the intermodal process, it is represented
by the blue line, displaying a discrete band. The cross-section of the waveguide is (2.45
× 0.22) µm. b) The PM relation of the generated photons varies as the wavelength of
the pump photons changes. For the intramodal case, illustrated by dashed lines, and
the intermodal case, portrayed by solid lines, this variation is shown.

illustrates the PM relationship for idler and signal photons as the pump wavelength
varies for both the parametric cases. A comparison is made in a 3.45-µm-wide waveg-
uide with a height of 220 nm. It is important that in the intramodal case, a small change
in pump wavelength results in a substantial change in the signal photon wavelength.
In contrast, the intermodal case exhibits a more modest change in the signal photon
wavelength with variations in the pump wavelength as visible in Fig. 3.16(b). This
characteristic, coupled with the influence of waveguide size variations, enables the se-
lection of the generation region even at a considerable distance from that of the pump.
A detailed analysis of this aspect will be presented in Chapter 4.

Mode field overlap efficency

Another aspect between the intramodal and intermodal processes is the efficiency (η)
of the FWM in a waveguide of length L, scaled with the phase mismatch ∆k. This
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efficiency parameter is closely connected to the mode field overlap ( f jklm), where j, k,
l, and m denote the mode orders for the two pump photons, the signal, and the idler
photons. The mode field overlap ( f jklm) can be described as:

f jklm =

∫

A0
ej(r, ωj)ek(r, ωk)e

∗
l (r, ωl)e

∗
m(r, ωm) dA

∏i=jqlm

[

∫

A∞
nwg(r, ωi)2|ei(r, ωi)|2dA

]
1
2

. (3.44)

This parameter is significantly influenced by the chosen waveguide width and the
modes considered. For instance, if we configure the cross-section to favor the exis-
tence of excited modes, we observe f = 1 for the intramodal process and f = 0.639
for the intermodal process. This results in lower efficiency in the process that exploits
different modes compared to the process that exploits equal modes. Consequently, this
aspect allows us to make a well-informed choice between the two types of processes
based on the specific application requirements and desired characteristics.

JSI and purity

The comparison between intramodal and intermodal sources also involves a crucial
aspect of the purity of the generated photons. The intramodal process, especially in
the context of the ring resonator, attains purity values of up to 0.93 without requiring
additional filtering. In contrast, the intramodal waveguide source necessitates appro-
priate filtering to enhance purity. Fig. 3.17 illustrates the JSI for both intramodal (a)

Figure 3.17: JSI in the intramodal case (a) and in the intermodal case (b) for a waveguide
long 2 cm.

and intermodal (b) cases in a spiral waveguide with a length of 2 cm. Remarkably, in
the intramodal scenario, a strong correlation is observed between the generated pho-
tons, resulting in a purity of 0.2 without filters. On the other hand, in the intermodal
case, a remarkable purity of 0.99 is achieved even without the use of additional filters.
This highlights the advantages of using the intermodal process to enhance efficiency
and purity in the specific configuration under consideration. Clearly, the use of filters
can increase the purity for the intramodal case, although reducing the brightness of the
source.

3.4 Conclusions

In this chapter, we conducted a comparison of different integrated sources of correlated
photons. By presenting these comparative analyses, readers can make informed choices
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based on their specific application requirements and the type of instrumentation for
their experiments. It is worth noting that the results obtained refer to a specific spectral
region with silicon sources. Appropriate studies for different regions, materials, and
configurations are necessary according to application requirements. Subsequent chap-
ters will delve into practical applications that involve both intramodal and intermodal
processes, further illustrating their respective strengths in diverse scenarios.
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Chapter 4

2 µm sensing

4.1 Mid-infrared sensing

This chapter explores the use of the intermodal sFWM source to produce entangled
photon pairs at long wavelengths that reach the mid-infrared. The source is used as
a proof of concept for measuring Ghost spectroscopy. The data shown here are taken
from papers [130–132].

4.1.1 Mid-infrared gas sensing through biphoton state source

Mid-infrared (MIR) light (2–15 µm) has diverse technological applications, including
free space telecommunication [133], LIDAR [134], environmental monitoring [135], medicine
[136], and biology [137]. MIR’s strong absorption bands in molecules are particularly
useful for gas sensing [138], which greatly increases absorption spectroscopy sensitiv-
ity [139]. Despite the growing interest in MIR applications, progress is hampered by
immature optical MIR devices [140]. These limitations can be addressed by quantum
optics, where sub-Poissonian light and entangled photons allow for novel applications
like ghost imaging [141], ghost spectroscopy [132], undetected photon measurements
[142, 143], surpassing shot-noise limit.

A source of single or entangled photons beyond 2 µm is crucial to obtain quantum-
enhanced MIR metrology. Traditional techniques rely on bulky and expensive instru-
mentation based on free-space nonlinear crystals [144, 145]. However, miniaturization
and cost-effectiveness are imperative to develop feasible, robust, and affordable quan-
tum technologies. Silicon photonics integrated circuits, offer a solution with mature
CMOS fabrication technology, providing robust, stable, low power consumption, and
efficient light manipulation at the chip scale [75]. On-chip MIR quantum measurements
can pave the way for efficient and cost-effective sensors, advancing MIR and quantum
technologies.

In my study, I investigated the generation of a biphoton state using an intermodal
sFWM source within silicon waveguides. This innovative approach resulted in the cre-
ation of a state where one photon is situated in the near-infrared (NIR) range while
the other resides in the MIR range, facilitated by a standard C-band laser pump [130].
By leveraging this approach, both pump- and sensing-specific MIR technologies are
eliminated. Thus, this novel source was used to demonstrate Ghost spectroscopy mea-
surement of CO2 in the MIR spectrum.
The chapter is divided into two sections. Section 4.2 describes the characterization of
the intermodal source for photon generation in the mid-infrared (MIR). Section 4.4 ex-
plores its application in Ghost spectroscopy measurements.
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4.2 Intermodal sFWM and generation of single photons

at 2 µm

This section builds upon my work [130]. The results presented were obtained through
collaboration with Dr. Stefano Signorini.

4.2.1 Chip design and experimental set-up

We use TE modes, namely the fundamental (TE0) and first excited (TE1) modes, in
the intermodal process of the 1221-TE combination as described in Chapter 3.3. These
modes are generated within a rib SOI waveguide. For this initial experiment, the sam-
ples were fabricated by the Centre for Sensors and Devices of the Bruno Kessler Foun-
dation (FBK) in Trento, Italy. The multi-mode waveguide used for generation has a
width of 1.95 µm and a height of 0.190 µm on a 0.3 µm thick slab, with a total length of
1.5 cm. The waveguide and slab materials are silicon, while the top and bottom coat-
ings are silica. Simulated intensity profiles of the TE0 and TE1 modes are presented

Figure 4.1: a) Simulated intensity profiles of the TE0 and TE1 spatial modes in the
multimode waveguide. b) Schematic diagram of the PIC comprising DC to split the
pump photons into two paths, ADC for converting between TE0 and TE1 modes, and
a multimode waveguide to generate correlated photons. The violet balls indicate the
input photons, the red balls are the signal photons, and the blue balls are the idler
photons.

in Fig. 4.1(a). Fig. 4.1(b) shows the design, illustrating how the PIC is segmented into
sections, each of which includes all the integrated structures employed in the setup1.
In step I, the input pump is split into two waveguides using a 50-50 DC. In step II, the
lower waveguide was gradually expanded to accommodate the presence of the first
excited mode, TE1. An asymmetric directional coupler (ADC1) couples, with an effi-
ciency of 92%, the higher-order mode TE1 into this waveguide where half of the pump
is already propagating on the fundamental order mode TE0. Subsequently, the multi-
mode waveguide (MMWG) is tapered to the width wFWM required for the PM of the
intermodal 1221-TE sFWM (III).

1Dr. Stefano Signorini realized the design of the PIC.
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By using this configuration, it is possible to generate a signal photon wavelength
of approximately 2 µm and an idler photon wavelength of approximately 1.3 µm, using
input photons of 1.55 µm. An advantageous feature of intermodal sFWM is the ability
to generate the signal and idler photons on separate modes of the waveguide. Since the
signal is generated on a higher-order mode, it is extracted using another ADC2 (IV) and
converted to the TE0 mode on another waveguide. This device enables the entangled
photons to be split over two different waveguide paths in the fundamental TE0 mode.

The design of the DC and ADC mirrors what was illustrated in Section 2.2.3. The
lengths were selected so that the DC device functions as a beam splitter, while the ADC
device acts as a modal converter. Each ADC is designed to optimize the coupling for
the intended wavelength. However, ADCs are broadband devices, allowing them to
tolerate deviations from the expected wavelength.
The input and output ports are tapered to a width of 3.7 µm to optimize coupling with
the tapered lens fibers used for injection and light extraction. The three fibers used
are each mounted on a piezo-controlled translator stage. The experimental setup is

Figure 4.2: a) The experimental setup depicts the detection components, showcasing
the idler photon path at the top and the signal photon path at the bottom. From left to
right, a pulsed laser operating at a fixed wavelength of 1550 nm undergoes polarization
manipulation via PCs and is coupled to the PIC using a tapered fiber. At the output
of the PIC, two tapered fibers collect idler and signal photons and guide them along
separate paths. In the signal branch, waveplates are employed for polarization selec-
tion, followed by the UC unit converting the signal from MIR to VIS wavelengths, and
finally, the Si-SPAD for detection. In the idler branch, there is an SPF and an InGaAs-
SPAD. b) Schematic representation of the HBT interferometer utilized for measuring
the statistics of photons generated in the signal line subsequent to the UC system.

depicted in Fig. 4.2(a). For the pump, we utilized a pulsed laser at 1550.3 nm with a
40 ps pulse width and an 80 MHz repetition rate. After passing through a BPF and
a polarization controller (PC), the pump is coupled to the chip via a tapered lensed
fiber. The coupling losses from the fiber to the chip are (6.0 ± 0.5) dB/facet, and the
propagation losses are 3 dB/cm in the single-mode waveguide (with a width of 600
nm) at 1.55 µm resulting in a PIC total losses of 15 dB.

The chip allows easy separation of the idler and signal, both of which are sub-
sequently coupled out of the chip using two conical lens fibers. To eliminate pump
residue and Raman noise from the idler beam, a short-pass filter (SPF) with a cut-off
wavelength of 1335 nm is employed. The idler, shown in Fig. 4.2(a), is then detected by
an InGaAs Single-Photon Avalanche Diode (SPAD-ID Quantique IDQ210), triggered
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by the pump with a gate width of 1.90 ns. Fig. 4.3 shows a picture (a) and the charac-
terization (b) of the SPF used. The expected extinction ratio surpasses 100 dB, which is
not discernible in the measurement results due to the background noise of the detector.
From the point of view of losses, the cumulative losses along the idler line, extending
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Figure 4.3: a) Photo of the SPF comprising four filters and undergoing seven passes
through these filters. b) The experimental characterization of the short-pass filter
placed on the idler channel is shown, with the reference signal represented in light
blue and the filter transmission in blue. The transmission spectrum shows a cutoff
wavelength at 1335 nm. Notably, the measurement visibility, which falls below -40 dB,
is limited by the detector noise, which indicates the sensitivity and accuracy of the mea-
surement configuration.

from the collimator to the InGaAs SPAD, amount to 7 dB. This figure includes the con-
tribution of the detector’s detection efficiency, which is 28% (-5.5 dB). Consequently,
the detected idler counts exhibit an approximately 18.5 dB deviation from the photon
pairs generated on-chip.

On the signal side (the Signal line in Fig. 4.2(a)), after leaving the chip, the signal
undergoes polarization rotation through a free-space half-wave plate (λ/2) and is fur-
ther converted into the visible spectrum through an up-conversion (UC) system [146].
This UC system includes a long-pass filter with a cut-on wavelength of 1900 nm, ef-
fectively rejecting the C-band pump. However, it is important to note that the UC
system introduces collinear noise photons to the upconverted signal, centered on the
same wavelength. To address this, a BPF selectively filters out some of this noise while
preserving the upconverted signal.

In instances where the HBT measurement is not required, such as in the measure-
ment of the CAR, the up-converted light is directly detected by a Silicon SPAD (Ex-
celitas SPCM-AQRH-12) with a 100 Hz dark count rate (Fig. 4.2(a)). Conversely, when
an HBT measurement is needed, the light is split through a free-space beam splitter
(BS) and directed to two visible Si-SPADs, monitoring the BS reflection and transmis-
sion ports (Fig. 4.2(b)). The Si-SPADs operate in free-running mode, and a time tagging
unit (Swabian Time Tagger 20) is used to monitor individual singles and coincidences
among the three detectors.

The total signal losses are 26.6 dB between the on-chip photons and the detected
counts. The higher losses in the signal optical line stem from the low efficiency of the
UC module and the use of optical elements not optimized for wavelengths beyond 2
µm.
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Up-conversion module

To enable signal counting, a detection system capable of measuring photons with wave-
lengths longer than 2 µm and exhibiting sensitivity down to the single-photon level
was employed. SNSPDs, known for their efficiency in the NIR [147], exhibit reduced
performance in the MIR with an efficiency of about 30-50% at a 2 µm wavelength [148,
149]. A significant drawback of these detectors is their need for cryogenic temperatures,
which adds complexity to the experimental setup. An alternative approach using sum-
frequency generation (SFG) allows for single-photon detection at room temperature
and tunability across the entire MIR spectrum, although it suffers from low efficiencies
[150].

The fundamental principle involves utilizing the SFG2 process in a periodically
poled lithium niobate (PPLN) crystal to up-convert the 2 µm signal photon into a visible
photon. The latter is then detectable by high-efficiency Si-SPADs. The PPLN is quasi-
phase-matched with respect to the target wavelength. The SFG process follows the
energy and momentum conservation relations:

1

λs
+

1

λSFGp

=
1

λup
, (4.1a)

2π
n(λSFGp

, T)

λSFGp

= 2π

[

n(λs, T)

λs
+

n(λup, T)

λup
+

1

Λ

]

, (4.1b)

where λs, λSFGp
, and λup represent the signal wavelength at 2 µm, the pump for the SFG

process, and the converted wavelength, respectively. T denotes the temperature of the
non-linear medium, and Λ represents the poling period. To enhance system efficiency,
the used system involves incorporating a PPLN inside a free-space Fabry-Perot cavity,
taking advantage of the high circulating power induced by the cavity. For interested
readers, I refer to [146]. Here, I report the key points relevant to my application.

The employed up-converter integrates PPLN crystals fabricated for 2 µm with
Λ = 15.8 mm. Coupled with the UC cavity is the pump source, featuring a broad-area
diode laser (BAL) pumping an Nd:YVO4 crystal at 880 nm, generating light circulating
in the cavity at λ = 1.064 µm. The cavity construction involves a germanium long-pass
filter to confine the pump wavelength within while allowing MIR and up-converted
photons to enter and exit.

The PPLN, 2 cm in length, incorporates waveguides of 1 µm in height with varied
widths depending on the wavelength for PM. For the experiment, a polarized waveg-
uide of 1 µm width was chosen at a temperature of 102.2°C to phase-match the signal
photon at 2.013 µm. A PPLN from HC Photonics, 25 mm in length, was used and
tuned in temperature to convert the MIR signal at 2015 nm into visible light at 696 nm.
The UC transfer function, displayed in Fig. 4.4(a), exhibits an FWHM of 1.15 ± 0.12 nm.
The simulated PM curve as a function of temperature is depicted in Fig. 4.4(b). An es-
sential consideration pertains to the UC functioning as a filtering system for the pump
in addition to signal conversion. The overall detection efficiency of the up-converter
coupled to the SPAD is approximately 1%.

2The SFG is introduced in Chapter 2.
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Figure 4.4: a) Spectral response of the upconverter module. The response has been
fitted by a squared sinc function, as expected for a sum-frequency generation process.
The FWHM is measured to be (1.15 ± 0.12) nm. b) MIR (blue dots) and visible (orange
dots) signal peak as a function of the temperature of the UC system.

4.3 2µm heralded single photons generation

4.3.1 Data analysis

To characterize our integrated source, it is useful to start with the formulas presented in
eqs. (1.129) and (1.126) and adapt them to our specific context. As detailed in Chapter
2, beyond the sFWM, various linear and nonlinear phenomena manifest in the silicon
waveguide. To accurately capture the genuine generation and transmission efficiency
of correlated photon pairs, it is important to model TPA, two-photon cross absorption
(XTPA), and FCA.

TPA primarily affects pump photons, while XTPA introduces losses for both idler
and signal photons, occurring between a pump photon and a signal/idler photon. No-
tably, XTPA has a more pronounced impact on the idler photon than the signal photon,
attributed to the lower energy of the signal photon, resulting in a diminished proba-
bility of the process. The collective influence of TPA, XTPA, and FCA contributes to
increased losses in the silicon waveguide for both pump and generated photons. Con-
sequently, the probability of detection no longer exhibits a quadratic dependence on
the input pump power. Additionally, there is a non-linearity in the response of the
idler detector ηND that needs consideration, and these aspects have been modeled in
Appendix B. According to this modeling, we can rewrite the detection probabilities per
pulse as:

psi ≃ ξ P̄2
p η̄iη̄sηND , (4.2a)

pi ≃ (ξ P̄2
p η̄i + di)ηND , (4.2b)

ps ≃ ξ P̄2
p η̄s + ds , (4.2c)

with

P̄p =

√

1

L

∫ L

0
P2

p(z)dz , (4.3a)

η̄j = η̄on
j η

o f f
j , (4.3b)

n̄on
j =

1

L

∫ L

0
ηon

j (z)dz . (4.3c)
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Here ξ3 is the pair generation probability without the power coefficient, j = i, s, L
represents the waveguide length, Pp(z) represents the on-chip pump power along the
waveguide, ηon

j (z) stands for the transmission efficiency for a photon generated at z

along the waveguide, including only linear and non-linear losses on the chip. Corre-

spondingly, η
o f f
j denotes the transmission efficiency, considering exclusively the losses

occurring off-chip (fiber-chip coupling and filtering). Given the employed filtering,
which has been described, we omit the consideration of noise photons stemming from
pump residual and Raman scattering in eqs. (4.2). These noise components, typically
linearly correlated with pump power, are negligible in our experimental setup.

4.3.2 Parameters description and measurements

Generation spectra measurements

A crucial aspect of the characterization involves validating the intermodal generation
of idler and signal photons. The idler spectrum is analyzed using a custom-designed
monochromator with 2.5 nm resolution, illustrated in Fig. 4.5(a). Integrated with an
InGaAs SPAD, this monochromator allows a wide dynamic range of 105, covering in-
tensities from 1 fW to 0.1 nW. The measured intensity spectrum of the idler beam re-

Figure 4.5: a) Schematic of the monochromator utilized in our experiment. The light is
introduced into the system via a collimator (Cin). It first hits a grating situated on a mo-
torized rotating stage. Subsequently, a retroreflector is employed to send the beam back
with a vertical offset, allowing for another pass over the grating. Finally, after being re-
flected by two mirrors (M), the light is extracted using another collimator and detected
via the InGaAs-SPAD. The entire system is managed by software that synchronizes the
photon counter and grating rotation, enabling automated spectrum measurements. b)
Measured intensity spectrum of the idler beam. A Gaussian function was employed
for fitting, revealing a FWHM of 2.87 ± 0.07 nm. This measurement is influenced by
the transfer function of the monochromator utilized for the assessment, leading to an
apparent enlargement of the generated bandwidth. We simulated the idler spectrum,
accounting for the widening induced by the monochromator (illustrated by the orange
dashed line). To determine the actual bandwidth of the idler (2.0 ± 0.3 nm), we per-
formed deconvolution using the response function of the monochromator.

veals a distinct band centered at 1259.7 ± 0.5 nm. Fitting this spectrum with a Gaussian
function yields an FWHM of 2.87 ± 0.07 nm. It’s crucial to acknowledge that this mea-
surement is influenced by the transfer function of the monochromator, contributing

3ξ is described in Chapter 1.
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to the effective broadening of the generated signal’s bandwidth. The simulated idler
spectrum, incorporating the broadening effects of the monochromator, is depicted by
the yellow dashed line. Deconvolution with the monochromator’s response function
yields an idler bandwidth of (2.0 ± 0.3) nm. Notably, the measured FWHM of the idler
aligns with the simulated value of 1.81 nm, as shown in Fig. 4.5(b).

Due to the conservation principles outlined in eqs. (1.122) and (1.123), the signal
is generated at 2015.2 ± 1.5 nm. We estimate a FWHM of 5.1 ± 0.8 nm for the signal.
Hence, the UC effectively filters signal photons according to the efficiency spectrum
depicted in Fig. 4.4(a). The response is fitted with a squared sinc function, consistent
with expectations for a sum-of-frequencies generation process, and the FWHM of the
spectral response is determined to be 1.15 ± 0.12 nm.

Joint spectral Intensity Simulation

In our study, the shape of the JSI characterizing the generated biphoton state is in-
fluenced by various factors, including the PM function, the spectral response of the
upconverter, and the pump spectrum. Notably, the pump spectrum dictates the JSI’s
shape along the diagonal axis. Leveraging the measured pump spectrum (illustrated
in Fig. 4.6(a)) alongside simulated PM functions and the upconverter’s measured spec-
tral response (as depicted in Fig. 4.4(a)), we conducted JSI simulations following the
methodology outlined by Signorini et al. [115], as presented in Fig. 4.6(b). The asym-
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Figure 4.6: a) Measured pump spectrum. b) Simulated JSI computed using the mea-
sured pump spectrum, the measured upconverter spectral response, and the simulated
PM function. Asymmetry in the JSI is attributed to the pump spectrum.

metrical nature of the JSI, particularly evident along the diagonal axis, primarily stems
from the asymmetry in the pump spectrum. The most effective strategy to rectify this
and achieve a symmetrical JSI involves shaping the pump to attain a symmetrical spec-
tral profile. For instance, applying a narrow-band filter to the pump can effectively
restore a symmetrical JSI. Alternatively, symmetrical JSI can also be attained by ap-
plying filters to the signal and idler; however, this comes at the expense of reduced
efficiency and lower rates.

Generation probability and heralding efficiency

To quantify the coincidences between signal and idler photons, we implemented a
start-and-stop detection system as detailed in Section 1.4, utilizing the idler photon as
the initiating trigger and the signal photon as the stopping detection. The assessment
of coincidences takes place within a specified coincidence window ∆tc. The detection
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rates in the idler channel, encompassing both signal and dark counts, are dictated by
the detection gate width of the idler detector (1.90 ns). Conversely, the rates in the sig-
nal channel depend on the coincidence window chosen during post-processing. With
Rdci = 620 cps and Rdcs = 2150 cps, the dark count rates at the idler and signal detectors
are

di =
Rdc,i

Rp
= 7.75 × 10−6 (4.4a)

ds = 1 − e−Rdc,s∆tc (4.4b)

considering a Poisson distribution for the signal noise (Si-SPAD dark counts and UC
noise).

Let us delve into the determination of the generation probability ξ and heralding
efficiency ηI . To refine the measured rates and establish the generation probability ξ,
we can adapt eqs. (4.2) as follows:

yi =
p̄i − ηNDdi

η̄on
i ηND

= ξ P̄2
p ηoff

i = ai P̄
2
p , (4.5a)

ys =
p̄s − ds

η̄on
s

= ξ P̄2
p ηoff

s = as P̄2
p , (4.5b)

ysi =
p̄si

η̄on
i ηNDη̄on

s
= ξ P̄2

p ηoff
i ηoff

s = asi P̄
2
p , (4.5c)

where ai = ξηoff
i , as = ξηoff

s , and asi = ξηoff
i ηoff

s . The quantities yi, ys, and ysi can be
computed from the measured singles, coincidence, and noise rates, as well as from the
simulation of η̄on

j and the measurement of ηND. We estimate the parameters by fitting
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Figure 4.7: Fitting functions (solid lines) applied to the experimental data (dots) for (a)
yi, (b) ys, and (c) ysi.

yi, ys, and ysi for an input power < 0.5 W (P̄p < 0.4 W), where nonlinear losses are

not dominant. We utilize f (x) = ax2 + b as a fitting function, recovering ai, as, and
asi. Fig. 4.7 reports the fits performed on the data, while table 4.1 reports the different
parameters extracted by the fits. This enables us to evaluate ξ (in units of W−2 of peak
power) and off-chip transmissions, resulting in:

ξ =
aias

asi
= (0.70 ± 0.10)W−2, (4.6a)

ηoff,i =
asi

as
= (2.71 ± 0.17)× 10−3, (4.6b)
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Parameter Value 68% Confidence Bounds

ai 1.91 × 10−3 W−2 (1.86 × 10−3, 1.95 × 10−3)W−2

as 2.81 × 10−4 W−2 (2.72 × 10−4, 2.91 × 10−4)W−2

asi 7.63 × 10−7 W−2 (7.41 × 10−7, 7.85 × 10−7)W−2

bi 3.92 × 10−6 (1.49 × 10−6, 6.34 × 10−6)
bs 5.55 × 10−7 (0.47 × 10−7, 10.64 × 10−7)
bsi 1.44 × 10−9 (0.23 × 10−9, 2.65 × 10−9)

Table 4.1: Fitting Parameters of yi,ys and ysi. We use f (x) = ax2 + b.

ηoff,s =
asi

ai
= (4.00 ± 0.21)× 10−4, (4.6c)

with ∆tc = 1.1 ns ( 3σ bin width). The uncertainties are estimated at 1 standard devia-
tion of the fitting coefficients.

Table 4.2 shows the information regarding the nonlinear parameters and propaga-
tion losses utilized in the model. Other calculations correlated to these parameters are
reported in appendix B.

Parameter Value Reference

αp,TE0 0.104 cm−1 (0.45 dB cm−1) Experimental

αp,TE1 0.414 cm−1 (1.80 dB cm−1) Simulated

αi 0.067 cm−1 (0.29 dB cm−1) Simulated
αs 0.758 cm−1 (3.29 dB cm−1) Simulated
σp 1.45 × 10−21 m2 [151]
σi 0.96 × 10−21 m2 [151]
σs 2.45 × 10−21 m2 [151]

βTPA(ωp) 7.5 × 10−12 m W−1 [57]

βTPA(ωi,p) 17.5 × 10−12 m W−1 [57]

βTPA(ωs,p) 7 × 10−12 m W−1 [57]
τc 50 ps from fit

ng,TE0 3.7369 Simulated
ng,TE1 3.7911 Simulated

ng,i 3.8177 Simulated
ng,s 3.7714 Simulated

nSi(ωp) 3.4757 [152]
nSi(ωi,p) 3.4907 [152]
nSi(ωs,p) 3.4624 [152]

A0 1.95 × 0.49 mm2 Experimental

γTPA,TE0 7.00 m−1 W−1 Calculated from eq. (B.2a)

γTPA,TE1 6.81 m−1 W−1 Calculated from eq. (B.2a)

γi
X,TPA,TE0 5.38 m−1 W−1 Calculated from eq. (B.2b)

γi
X,TPA,TE1 3.44 m−1 W−1 Calculated from eq. (B.2b)

γs
X,TPA,TE0 0.97 m−1 W−1 Calculated from eq. (B.2b)

γs
X,TPA,TE1 1.50 m−1 W−1 Calculated from eq. (B.2b)

Table 4.2: Parameters used for TPA, XTPA, and FCA simulation.
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With these outcomes, we compute the intrinsic heralding efficiency ηI :

ηI =
Rnet,si

(Ri − Rdc,i)ηoff,s
= 59 ± 5% , (4.7)

where Rnet,si represents the measured net coincidence rate, Ri is the measured idler
rate, and Rdc,i is the measured dark count rate. By normalizing for the signal channel
losses, ηI enables comparison between different sources based solely on their intrin-
sic properties, eliminating the influence of specific detectors and off-chip transmission
losses of the heralded photon, such as coupling losses. The high value is attributed
to low on-chip signal losses and the absence of filtering losses for selecting the signal
wavelength. ηI is primarily constrained by signal propagation losses, approximately 3
dB/cm.

To consider the role of the detection system and off-chip losses, we calculate the
Klyshko efficiency ηK:

ηK =
Rnet,si

(Ri − Rdc,i)
= ηIηoff,s = (0.024 ± 0.002)% . (4.8)

This low ηK is mainly attributed to the upconversion system with a low detection effi-
ciency (approximately -20 dB) and a narrow upconversion bandwidth compared to the
signal one (approximately -6.5 dB). Additionally, the fiber-chip coupling losses signifi-
cantly contribute, with (-6.0 ± 0.5) dB per facet.

Coincidence to accidental ratio

CAR is used to evaluate coincidence detection efficiency. Further details on this metric
are provided in Section 1.4.1.

CAR measurements are conducted using start-stop coincidence detection, wherein
coincidences between the InGaAsSPAD and Si-SPAD signals are examined. The exper-
imental setup depicted in Fig. 4.2(a) is employed, featuring a single Si-SPAD at the UC
output. As depicted in Fig. 4.8(a), coincidences occur with a time delay (δt = 0 ns),
while other peaks, spaced according to the laser repetition period, denote accidental
coincidences. The zero-delay peak also contains also accidental coincidences. Acci-
dental counts are determined as the average of all accidental peaks. CAR is computed
using the formula (1.130). The choice of ∆tc affects the coincidence-to-accidental ratio
within individual bins, consequently influencing CAR. In Fig. 4.8(b), we present mea-
sured CAR values alongside corresponding net coincidences, plotted against the peak
power of the chip’s pump. Notably, the peak power indicated in the graph refers to
the power at the multimode waveguide input, adjusted for fiber-chip coupling losses.
Results are provided for coincidence windows of 1.1 ns. CAR peaks at 40.4 ± 0.9 at 115
mW, with a net coincidence rate of (0.316 ± 0.003) cps at this power. Simulated net co-
incidences and CAR values, based on parameters derived from previous sections, are
shown as the blue and red lines in Fig. 4.8(b) and computed as expressed in eqs (1.125)
and (1.126) considering this specific case:

CAR =
p̄si

p̄i p̄s
=

ξ P̄2
p η̄sη̄i

(ξ P̄2
p η̄s + ds)(ξ P̄2

p η̄i + di)
, (4.9a)

Nnet
si = ξ P̄2

p η̄sη̄iηNDRp . (4.9b)

Simulated and experimental CAR values consistently align across the entire range of
pump power used, confirming accurate modeling of the generation process. At lower
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Figure 4.8: a) Twofold coincidences as a function of the delay δt between idler (start)
and signal (stop) detections. Coincidence events within a 0.05 ns coincidence window
are denoted in dark red, while those processed with a larger window of 1.1 ns are
shown in orange to account for a broader range of coincidence events. The primary
coincidence peak occurs at δt = 0 ns, with clear indications of the laser repetition period
from the accidental peaks. Inset: A magnified view of the zero-delay bin compares
the coincidence peak shape with the post-processing coincidence window. b) The mea-
sured CAR (dark red dots) and net coincidence rates (blue triangles) for ∆tc = 1.1 ns
against the on-chip peak pump power. Experimental data is compared with simulated
values for both CAR (solid red line) and net coincidence rates (dashed light blue line).

power levels, net coincidence rates show agreement, albeit a tendency to overestimate
nonlinear losses is observed at higher powers. Achieving perfect agreement necessi-
tates a precise understanding of all nonlinear parameters associated with the material.
The larger CAR measured in this study, compared to other works [149], indicates the
competitiveness of the overall system.

Heralded and Unheralded g(2)

To confirm the antibunching behavior and, therefore, the single-photon nature of the
emitted photons, we conducted measurements of the heralded second-order coherence

function, denoted as g
(2)
H . This parameter is described in detail in sections 1.2.2 and

1.4.2. Using the setup depicted in Fig. 4.2(b), we adjusted delays to ensure that the
signal detection by a Si-SPAD coincided with the detection of the idler by the InGaAs-
SPAD. The coincidence between these detectors, within a window of ∆tc = 2 ns, served
as the initial trigger, while the detection from the remaining Si-SPAD, referred to as the
"delayed signal", acted as the stop trigger. We then monitored the three coincidences as
a function of the delay δt between the start and stop events. Simultaneously, we mea-
sured the double coincidences between the idler and delayed signals, employing a 2 ns

window to monitor the triple coincidences. The function g
(2)
H , expressed in eq. (1.134),

takes the following form:

g
(2)
H (δt) =

N12i(δt)

N1i(0)N2i(δt)
Ni , (4.10)

where 1, 2, i denote the detector of the first signal, the detector of the second signal
(the delayed signal), and the detector of the idler, respectively. N12i corresponds to the
triple coincidence counts, N1i and N2i are the double coincidence counts between the
idler and signal detectors, and Ni corresponds to the idler counts.
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If the emission truly occurs at the single-photon level, g
(2)
H (0) should be less than 0.5

[115]. In our measurements, for an input on-chip peak power of 0.33 W, we obtained

g
(2)
H (0) = 0.23 ± 0.08, demonstrating the single-photon regime of the source and thus

the sub-Poissonian statistics of the emitted photons. The corresponding g
(2)
H (δt), calcu-

lated as in eq. (1.134), is presented in the inset of Fig. 4.9. Bins close to the zero delay
bin, influenced by spurious coincidences from triggered silicon SPADs, were discarded.

To simulate the trend of g
(2)
H (0), we employed the formula expressed in eq. (1.134):
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Figure 4.9: The plot displays a comparison between the measured data (orange points)
and simulated results (light yellow area) as a function of the on-chip peak power. An
inset provides a specific measurement at an on-chip peak power of 0.33 W. Bins adjacent
to the zero-delayed one have been omitted due to SPAD-emitted photons.

g
(2)
H (0) =

p̄12i p̄i

p̄1i p̄2i
, (4.11)

where p̄12i is the probability per impulse of having a triple coincidence. To model the
experimental results, we considered all possible coincidence events involving signal
and/or noise detections. For this purpose, we utilized the previously calculated values
of ξ, P̄p, η̄i, and η̄s developed in the preceding section. We simulated a range for the

expected value of g
(2)
H (0), bounded at the top by the thermal case and at the bottom

by the Poissonian case. Further details of this analysis are provided in Appendix C.
The simulation results are presented in Fig. 4.9 as the yellow band. Remarkably, the

measured value of g
(2)
H is consistent with the simulated values.

Here, we did not perform an adaptation of the measured g
(2)
H , and the experiment

and simulation are entirely independent. The experimental data points in Fig. 4.9 are
closer to the upper bound than to the lower one, suggesting emission statistics are

more similar to thermal emission. This observation aligns with the unheralded g(2)

of the signal beams, as illustrated in Fig. 4.10(b). The unheralded g(2) is measured
at 1.67 ± 0.02 at a power of 1.08 W, which is in line with the simulated value of 1.66
(dashed line) calculated from the JSI. These results indicate that the source exhibits
emission characteristics closer to thermal emission, thus justifying the experimental

value of g
(2)
H .

Furthermore, in Fig. 4.10(b), we illustrate the simulated values for a source whose
statistics lie between the thermal (upper bound) and Poissonian (lower bound) cases.
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Figure 4.10: a) The experimental g(2)(δt) for an on-chip peak pump power of 1.08 W

is illustrated, yielding g(2)(0) = 1.67(2). The histogram bins represent the counts at
various delay intervals (δt) between start and stop clicks. The blue bars indicate the raw
measurements with a coincidence window of 0.05 ns, while the light blue bars depict
the measurements integrated with a larger coincidence window (0.425 ns). Broadband
peaks surrounding the zero-delay peak are attributed to spurious counts originating
from SPADs photon emissions. Hence, coincidence peaks neighboring the zero-delay
peak, impacted by SPADs emissions, are disregarded. b) The plot depicts the measured

unheralded g(2)(0) (blue dots) as a function of the on-chip peak power. The expected

g(2) (dashed black line) is derived from the simulation, showing compatibility with the
experiment. Measured points fall within the simulated values (light blue area), upper
bounded by a source with thermal emission statistics and lower bounded by a source

with Poissonian emission statistics (g(2) = 1).

At low powers, dark counts dominate, resulting in a g(2) approaching 1 in both sce-

narios. However, at higher powers, the g(2) increases asymptotically to its actual value,
thus explaining the power-dependent behavior observed in the experimental data. Fur-

ther details concerning the simulation of g(2) are provided in Appendix C. In Fig. 4.10(a),
we present the measured histogram obtained for an on-chip peak pump power of 1.08

W, revealing a g(2) value of 1.67 ± 0.02. In this measurement, we employed a ∆tc value
of 0.425 ns to enhance the SNR. This adjustment was necessary due to the influence
of spurious coincidences originating from emissions of the Si-SPADs. In Fig. 4.10(a),
these coincidences stemming from photons emitted from Si-SPADs are clearly observ-
able [153]. When a photon triggers a detection event on one of the silicon SPADs, the
subsequent breakdown process within the detector results in the emission of additional
photons. These emitted photons follow the reverse path of the original signal photon.
Consequently, the emission from the SPAD is reflected by the UC window and then
split by the beam splitter, ultimately causing a correlated detection event on the other
detector. It’s important to note that these spurious emissions do not elicit a detection
event on the emitting SPAD if they arrive within the detector’s dead time window.

4.3.3 Conclusions

In this section, I have presented a single heralded photon source operating beyond 2
µm, employing sFWM on a silicon chip. This study introduces a novel approach to
MIR quantum photonics, providing a high-quality quantum light source beyond 2 µm
without relying on MIR-specific technologies.

This source exhibits two notable features: discrete-band generation and signifi-
cant detuning between signal and idler photons. Discrete-band generation eliminates
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the need for stringent filtering to select signal and idler wavelengths, while the gener-
ated photons experience higher transmission compared to standard continuous-band
sources, as demonstrated by the high experimental intrinsic efficiency (ηI = 59 ± 5%).
Substantial detuning offers two advantages: simplification of the pump treatment and
rejection of non-linear noise, and the capability to generate the herald photon in the
NIR, taking advantage of efficient detection technology.

Moreover, this intermodal sFWM-based heralded single-photon source utilizes a com-
mon C-band pump laser, facilitating integration and operation on a silicon chip.

In the section 4.4, I demonstrate for the first time an application of the integrated
source in performing "Ghost" spectroscopy of a specific gas in this spectral region [132].
To achieve this, improvements were made to the source concerning coupling and prop-
agation losses by optimizing the match between signal and upconverter bandwidths.

4.4 2µm Ghost spectroscopy with sFWM source

In this section, we show the practical application of an entangled photon source pro-
duced through intermodal sFWM for gas spectroscopy purposes. This section reports
my works [131, 132]. The design was implemented by Dr. Stefano Signorini, while
the measurements were carried out with the assistance of Mr. Davide Rizzotti and Dr.
Stefano Signorini.

4.4.1 Quantum Ghost spectroscopy

Ghost spectroscopy (GS), also known as correlated photon spectroscopy, is a technique
that combines the strengths of NIR and MIR spectral domains. In GS, pairs of corre-
lated photons are employed, with one photon probing the sample while the other is
spectrally analyzed. This approach provides several advantages over traditional ab-
sorption spectroscopy. Firstly, by temporally filtering out non-coincident events, GS
significantly reduces the overall noise floor [154], a crucial asset in noisy environments
where fluctuating noise levels obscure accurate measurements [155]. Secondly, the
energy correlation between the correlated photons enables spectral analysis at wave-
lengths where optical technologies are more cost-effective and efficient. Notably, any
manipulation applied to one photon, such as spectral filtering, is mirrored to the other.
Additionally, if the source operates at the single-photon level, measurements can be
conducted below the shot noise limit (SNL), a feature particularly beneficial for miti-
gating illumination effects in light-sensitive samples [156].

The concept of exploiting correlations for quantum-enhanced transmission mea-
surements traces back to 1986 [157], culminating in the pioneering experimental demon-
stration of ghost imaging (GI) in 1995 [141]. Despite the quantum origin of its initial
demonstration, it was discovered a decade later that many features of ghost imaging
system could be replicated using classical correlations. By employing two pseudo-
thermal light sources, ghost image can be produced [158]. However, in this classical
approach, the correlations are partial and influenced by the overlap between the beam
pattern and the object, resulting in a nearly uniform background in the final image
[159]. In contrast, parametric down-conversion generates entangled photon pairs with
perfect correlations, yielding a background-free image. In the single-photon pair de-
tection regime, the entangled case exhibits higher visibility than classically correlated
thermal beams [158]. Since then, quantum sensing and pair-based imaging experi-
ments, including GS and GI, have garnered considerable attention. While most efforts
in photon pair generation have centered on SPDC in bulk or polarized crystals [160],
recent advancements have explored sFWM in birefringent fibers, particularly in the
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context of GS between VIS and IR [154]. Fiber-based solutions offer robustness and
cost efficiency, with sFWM-based systems offering tunability and simplified spectral
measurements through pump wavelength adjustment.

Silicon photonics presents an intriguing prospect, offering potentially greater ro-
bustness and lower costs compared to fiber-based solutions. In this section, we leverage
the intermodal process to generate photon pairs in both the MIR-NIR regions. Utiliz-
ing this photon source, ghost spectroscopy based on a PIC is demonstrated. Here, the
analysis and reconstruction of the carbon dioxide (CO2) spectrum is performed.

4.4.2 Chip design and experimental set-up

The source is based on intermodal sFWM within a multimodal SOI waveguide, similar
to the experiment detailed in Section 4.2. Here, we outline the differences from the
previous scenario. The sample was fabricated through IMEC foundry, and we observe
higher performances with respect to the previous sample. The multimodal waveguide,
measuring 1.5 cm in length with a channel waveguide with a cross-sectional area of (2
× 0.220) µm2, facilitates PM for signal and idler wavelengths around 2000 nm and 1290
nm, respectively, with a CW pump situated in the L-band. The simulated profiles of the
TE0 and TE1 modes are reported in Fig. 4.11(b). Reduced propagation losses, notably at
1.8 dB/cm at 1550 nm, enable tunable CW pumping of sFWM. Another notable change
involves substituting the DC with a more robust MMI, known for its resilience against
manufacturing defects, to split the input pumps.

Further modifications include the utilization of bends to compactly arrange the
PIC while preserving a substantial generation length. The MMWG comprises five ex-
tended waveguides, each measuring 0.3 cm in length, interconnected by four Bezier
curves, each 42 µm long. Special attention is directed towards the Bezier curves [161],
as they induce a distinctive phase variation in the modes compared to the straight
waveguides, thereby influencing the PM condition and, consequently, the spectra of
the generated twin photons.

Fig. 4.11(a) illustrates a schematic of the setup, wherein no alterations are evident
in the detection part with respect to the setup in Fig. 4.2, particularly in the initial char-
acterization stage. The only variation is the use of a tunable CW laser amplified using
an erbium-doped fiber amplifier (EDFA). In the detection part, a gas-filled cell (red
dotted square) is introduced into the signal path preceding the UC module during the
spectroscopy measurement.

4.4.3 Experimental characterization

To characterize the source, various parameters were measured, including the generated
spectra, spectral correlation between the generated photons and the pump, coincidence

rate, CAR, and g
(2)
H .

Generated photons

The analysis of the spectra of the generated photons is illustrated in Fig. 4.12 (a), where
a comparison between the measured and simulated spectra of idler photons is pre-
sented. These measurements were conducted with the chip pumped at λ = 1569 nm,
utilizing the same power levels as employed in the GS experiment (on-chip power of
45 mW). A custom monochromator with 2.5 nm resolution, detailed in Section 4.3.2, fa-
cilitated the measurements. The simulated spectrum (orange line), derived from the JSI
of the sFWM process, requires special consideration due to the distinct structure of the
multi-mode waveguide. The presence of Bezier curves alters the effective modal index,



4.4. 2µm Ghost spectroscopy with sFWM source 97

Figure 4.11: a) The scheme of the experimental setup. Initially, a pump beam is pro-
duced by a tunable CW laser and amplified using an erbium-doped fiber amplifier
(EDFA). A BPF is then employed to eliminate the amplified spontaneous emission
(ASE) generated by the EDFA. Polarization adjustments are made using wave-plates,
and the light is coupled to the chip through edge-coupling using a lensed tapered fiber.
Idler and signal are collected by tapered fibers. The idler is polarization filtered via
wave-plates, while Raman and pump photons are rejected using a short-pass filter
(SPF) with a cut-off wavelength at 1335 nm. Idler photons are detected using an In-
GaAs single photon avalanche diode (SPAD model IDQ-id210). Signal photons, once
polarization filtered, travel through a CO2 gas cell before being up-converted to the
visible spectrum by the UC. Detection of the up-converted signal occurs through a Sil-
icon SPAD (Excelitas SPCM-AQRH-12). Coincidence counts between the two SPADs
are recorded via a time-tagger (time-tagger 20 Swabian Instruments). b) The simulated
TE0 and TE1 modes for the channel waveguide with a cross-section of (2 × 0.220) µm2.
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Figure 4.12: a) A qualitative comparison between the idler spectrum obtained from di-
rect measurements (green line) and the simulated spectrum considering the monochro-
mator (light blue line) and without it (orange line). The pump wavelength used is
λ = 1569 nm. It’s worth noting that the relative error associated with each data point
represented by the blue line is less than 5%. b) The simulation depicted in this panel
illustrates the spectrum of signal photons without any influence from the resolution of
an instrument.
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thus influencing the PM condition. To simulate the impact of these curves, each Bezier
curve was divided into segments of approximately constant radius. The effective index
for each segment was calculated, and the total phase was determined as the integral
of the phases acquired in each segment. The total phase mismatch then comprises the
sum of these contributions and those of the straight waveguides. Consequently, rather
than a single peak in the PM condition, the generated photons exhibit spectra with
multiple peaks due to the coherent sum of the different contributions stemming from
the large PM region (orange line). The simulation (light blue line) closely matches the
experimental data (green line).

Figure 4.12 (b) illustrates the simulation of the photon spectrum of the signal with-
out the influence of the resolution of any instrument. This represents the intrinsic
spectrum of the probe used for measurement. As previously explained, two main un-
balanced peaks are observed, surrounded by several smaller peaks resulting from the
multiple curves on the chip.

Further validation of the simulation is provided through a quantitative measure-
ment of the FWHM of the generated photons. For the signal line, we measured the
spectrum after the up-conversion module using both a MIR laser and GS.

Considering the associated errors, a FWHM of 0.8 ± 0.1 nm for the idler photons
and 1.8 ± 0.3 nm for the signal photons were obtained, both of which are consistent
with the simulated values.

Frequency correlation of the biphoton state

An essential aspect of GS is the wavelength dependence of the generated photons on
the pump wavelength, as illustrated in Figure 4.13. These measurements are conducted
by utilizing the monochromator for the idler line. On the signal side, as well as the
relationship depicted in Fig. 4.4(b), we use the UC module which correlates the tem-
perature of the system to the wavelength of the up-converted signal. Notably, due
to the conservation of energy, it is feasible to determine the dependence of the sig-
nal (in the MIR) by measuring only that of the idler (in the NIR). The results reveal

Figure 4.13: Frequency conversion of the sFWM process. The simulations of pump-
idler conversion in dotted line blue and of the pump-signal conversion in dotted line
red are shown. The blue points represent the measured values of the idler photons,
while the red points are calculated through energy conservation from the experimental
idler values.
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that minor variations in the pump wavelength (within approximately a 12 nm inter-
val) correspond to significant variations in the MIR region (within approximately a 30
nm interval), surpassing what is achievable with commonly used intramodal FWM
processes. The waveguide geometry and modes were selected to produce the signal
around the absorption peak near 2 µm when pumping takes place in the L-band. This
specific absorption peak was chosen due to the absence of H2O absorption lines [162],
and also because the current source is incapable of reaching wavelengths longer than
2020 nm with the available pumping wavelengths (< 1575 nm).

CAR

A parameter to characterize a photon pair source is the CAR, shown in Fig. 4.14. As
evident from the figure, the CAR is constrained at lower powers by dark counts and
ambient noise, while at higher powers, it is limited by multiple-pair generation. In

Figure 4.14: In the dark red plot, the CAR is displayed as a function of the on-chip
pump power. In blue, both the raw (unfilled dots) and net (filled dots) coincidence rates
are shown as a function of the on-chip pump power. Both the CAR and the coincidence
rates were measured with a coincidence bin width of 0.35 ns. The lines serve as a visual
guide.

this regard, we observed a fourfold enhancement in CAR compared to state-of-the-
art silicon sources, achieving a net coincidence rate of approximately 1 Hz [130, 149].
The maximum CAR achieved (105.8 ± 2.5) represents a state-of-the-art for integrated

photonics [130] and is close to other approach values reported for χ(2) crystals [145].

Heralded g(2)

To verify the single-photon behavior of the source, the g
(2)
H (0) was measured using the

signal as the heralded photon and the idler as the herald photon as explained in section
1.4.2. This measurement was conducted using a HBT interferometer in the signal line.

The variation of g
(2)
H (0) with pump power is depicted in Figure 4.15. A minimum value

of g
(2)
H (0) = 0.06± 0.02 was observed at 10.5 mW, confirming the anti-bunching regime

of the generated photons in the MIR and thus establishing the single-photon regime

of our source. The inset in Figure 4.15 shows the measurement for g
(2)
H (∆t) at an on-

chip power of 10.5 mW, with the adjacent bins to the zero-delayed one removed due to
SPAD-emitted photons.
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Figure 4.15: The plot shows the g
(2)
H (0) as a function of pump power. The measurement

for g
(2)
H (∆t) at an on-chip power of 10.5 mW is presented in the inset. Adjacent bins to

the zero-delayed one have been eliminated due to the photons emitted by the Si-SPAD.

4.4.4 Ghost spectroscopy versus Classical Spectroscopy

The time-energy correlation of the photons in the pair offers four concurrent advan-
tages when applied to GS:

• Increased Measurement Visibility: Even under low SNR conditions, the temporal
filtering provided by coincidence measurement enhances measurement visibility.
This is achieved by rejecting noise counts falling outside the coincidence window.

• Preservation of Sample Integrity: GS can operate at the single-photon level with-
out degrading the sample. Moreover, it maintains higher measurement visibility
compared to classical spectroscopy methods [156].

• Real-Time Background Removal: Simultaneous monitoring of coincidences and
accidentals enables real-time background removal. This capability allows vari-
able background noise to be managed.

• Spectral Information Conversion: GS facilitates the conversion of spectral infor-
mation from the MIR to the NIR, thereby simplifying MIR spectral analysis.

Thus, in scenarios characterized by high and fluctuating noise levels, GS surpasses
standard absorption spectroscopy methods. It is useful to compare the two cases in
terms of SNR to demonstrate the advantage of GS. To achieve this, we compute two
parameters: the SNR, also called CAR in the context of coincidence measurements, and
the relative error on the transmission measurement.

Assumption and basic parameters

To perform the comparison we assume that the beam generated by the chip follows a
Poisson distribution with a rate of ρ, while the constant thermal background noise also
follows a Poisson distribution with a rate of ν. Here, η denotes the system efficiency,
which contains the detector efficiency and the transmission losses of the system, in-
cluding gas absorption.

The noise is assumed to be generated before the chip and co-propagating with the
generated beam. This assumption holds because the noise, being classical light, retains
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its statistics despite experiencing losses. Eventually, we will discard this assumption
and reframe the results with νM, denoting the measured noise at the detectors.

To facilitate calculations, we rely on fundamental results from the theory of Poisson
distributions. For a rate ρ and a time window τ, both the mean value and the variance
of the distribution are equal to ρτ. Furthermore, the probability of encountering zero
photons in the time window is given by:

P(0) = e−ρτ . (4.12)

Another crucial parameter for the calculations is the probability of detecting n photons
using a bucket detector with efficiency η as reported in eq. (1.141):

PD(n) = 1 − (1 − η)n −−→
ηj1

nη. (4.13)

Transmission spectroscopy

In classical spectroscopy, the noise cannot be concurrently measured with the signal.
An independent measurement is required to enable its subtraction from the transmis-
sion measurement. However, this is feasible only if the noise remains constant during
measurements. We differentiate between the noise measured without the signal, de-
noted as ν̃, and the actual noise present during the signal measurement, denoted as ν.
The two noise measurements are uncorrelated and generally distinct. Nonetheless, for
our calculations, we assume ν̃ and ν to have the same statistics, facilitating the removal
of the noise contribution from the transmission measurement.

During spectroscopy with intense light, photodiodes (PDs) are commonly em-
ployed. These devices are responsive to the number of photons incident on the de-
tector, thus exhibiting behavior distinct from that of bucket detectors. For PDs, the
measurement averages the output signal over a time T. Table 4.3 presents the measure-
ments and the calculated last result, along with their respective errors. The final row
is computed as the difference between the first and second rows while propagating the
errors.

Measurement Mean Error (std)

Transmission signal ρη + νη
√

ρη
T + νη

T

Noise ν̃η = νη
√

ν̃η
T

Transmission signal - Noise ρη
√

ρη
T + 2

νη
T

Table 4.3: Conventional spectroscopy measurements with a photodiode. η includes the
transmission coefficient of the system, that of the gas, and the detector efficiency. The
final row assumes that ν̃ and ν have the same statistics.

From the values in Table 4.3, we can compute the SNR and relative error on the final
result:

SNR =
ρ

ν
, (4.14)

σrel,cl =

√

1

T

√

1

ρη

(

1 + 2
ν

ρ

)

−−−→
T→∞

0 . (4.15)
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The limit is for long integration times and represents the best-case scenario for this
type of measurement. Notably, neither the SNR nor the relative error depends on the
integration time in this limit.

Now, let’s consider the scenario where detection is conducted with a bucket de-
tector, as in our experiment. The detector is insensitive to the number of photons, and
the counting mechanism yields a binomial distribution to the measurement: either the
detector clicks or not. While this alters the statistics of the measurements, it ultimately
leads to the same result as described in eq. (4.14) and eq. (4.15), under certain assump-
tions. The subsequent paragraph elucidates all the approximations used to derive this
result.

Quantum ghost spectroscopy

The coincidence time window τ is introduced. A coincidence is registered if both the
signal and idler detectors are triggered within this interval; otherwise, the event is dis-
regarded (utilizing the start-and-stop technique). Accordingly, we define the average
number of photons within the time window τ originating from the generated beam as
r, and from the noise as n. This determines the rates as:

r = ρτ , (4.16a)

n = ντ . (4.16b)

Using these parameters, we express the probability that a single bucket detector, with
efficiency η, registers a click in the time window τ when both processes are active [71]:

Pclick = 1 − e−(r+n)η −−−−−→
rη,nηj1

(r + n)η +
(rη + nη)2

2
. (4.17)

The limit in eq. (4.17) characterizes the single-photon regime and corresponds to the
second-order Taylor expansion.

The subsequent analysis involves calculating two probabilities: the probability of
accidental counting, denoted as Pacc, and the probability of coincidence counting, de-
noted as Pcc. The former represents the likelihood of the signal detector triggering after
a time |∆t| > τ/2 relative to the idler detector, while the latter signifies the probabil-
ity of both detectors triggering within a time τ/2. Considering coincidences between
time-correlated pairs of photons, accidental coincidences are seen as noise. Signal and
idler detectors are identified by subscripts s and i, respectively.

The probability of accidental coincidences arises from the product of three proba-
bilities: (1) the probability that the idler detector triggers within a time τ, (2) the prob-
ability that the signal detector does not trigger for a time |∆t| > τ/2, and (3) the prob-
ability that the signal detector triggers within a time τ. The first and third terms are
given by eq. (4.17). For the second term, we introduce r̃ = ρ∆t and ñ = νs∆t, leading
to [71]:

PNOclick(∆t) = e−(r̃+ñ)η −−−−−→
r̃η,ñηj1

1 − (r̃ + ñ)η +
(r̃η + ñη)2

2
. (4.18)

Given the typically low probability of photon pair generation, the non-zero order terms
in eq. (4.18) are negligible, implying rη, niηi, nsηs j 1 since ∆t > τ/2. Hence, the
probability of an accidental count is:

Pacc = (1 − e−(r+ni)ηi )(e−(r̃+ñs)ηs)(1 − e−(r+ns)ηs) −−−−−−−→
rη,niη,nsηj1

(r + ni)ηi(r + ns)ηs .

(4.19)
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To compute the probability of coincidences at time ∆t = 0, occurring within the
same time window τ, we consider four distinct events that lead to a coincidence. The
optimal approach is to derive this probability as one minus the probability of not hav-
ing a click. Consequently, we calculate the probability of not having a coincidence for
each of the four events and then multiply these probabilities together. These events are:
(1) coincidence between the generated idler and signal photons (P1), (2) coincidence of
a generated idler and a noise signal (P2), (3) coincidence of noise idler and a generated
signal (P3), and (4) coincidence between two noise photons (P4)4. The probabilities of
not having these events are given by:

P1 = e−rηs + e−rηi − erηsηi−rηs−rηi , (4.20a)

P2 = e−rηi + e−nsηs − e−rηi−nsηs , (4.20b)

P3 = e−rηs + e−niηi − e−rηs−niηi , (4.20c)

P4 = e−niηi + e−nsηs − e−niηi−nsηs . (4.20d)

Therefore, by applying the assumption of a low-intensity regime, the final result is:

Pcc = 1 − P1P2P3P4 −−−−−−−→
rη,niη,nsηj1

rηsηi + r2ηsηi

[

1

2
ηsηi − (ηs + ηi)

]

+ Pacc . (4.21)

This result comprises three terms: the first term is proportional to ηs, representing gas-
induced losses and providing a means of recovering the gas spectrum; the third term is
identical to Pacc, allowing for an independent, simultaneous measurement; and the sec-
ond term, showing a non-linear dependence on gas-induced losses, presents challenges
in recovering spectral information.

We introduce the assumption ηs, ηi j 1, valid in our system, which makes the
second term negligible with respect to the first. Consequently, Pcc can be approximated
as:

Pcc ≃ rηi + Pacc . (4.22)

Connecting this theoretical framework to our measurements, we note that the calcu-
lated probabilities refer to a time window τ. Defining M = T/τ to relate the measure-
ment time T to the time window τ, and assuming independence between each time
window, we establish the relationship between the counts N (and hence the rate R)
and the probabilities:

Nacc = Pacc · M =⇒ Racc =
Pacc

τ
, (4.23a)

Ncc = Pcc · M =⇒ Rcc =
Pcc

τ
. (4.23b)

From these equations, the SNR, or the CAR, is expressed as:

CAR =
Rcc − Racc

Racc
=

1

τ

ρ

(ρ + νs)(ρ + νi)
. (4.24)

An important feature of this equation relies on its dependence on the time window
τ: a smaller τ produces a higher CAR, which represents a "time filtering" of the noisy
counts. This occurs because the signal/idler counts leading to informative coincidences
occur simultaneously, while the accidental counts are evenly distributed over all possi-
ble delay ∆t. Although the infinite reduction of the time window is not feasible due to
the limitations of the instrument, the principle is valid, with the time window having a

4Each P1, P2, P3, and P4 is calculated as one minus the probability of having the respective event.
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lower limit dictated by the temporal resolution of the instrument or the coherence time
of the photon.

Finally, considering the relative error on the final measurement, we treat the counts
as binomial events, allowing for simple error propagation. The variance of a binomial
distribution is given by:

var = MP(1 − P) −−→
Pj1

MP , (4.25)

where P denotes Pacc or Pcc, and the approximation is valid due to the previous as-
sumptions. The relative error on the final measurement, subtracting Racc from Rcc, is
then given by:

σrel, qu =
1√
T

√

1

ρηiηs
+ 2

τ

ηiηs

(

1 +
νi + νs

ρ
+

νiνs

ρ2

)

. (4.26)

Note that, as in the classical case, a longer measurement duration results in a smaller
relative error.

Limit for High Signal Noise

Let’s explore the experimental context. We employed a halogen lamp to augment the
noise in the signal detector. Consequently, this noise remains localized and can be
recalculated by substituting νs,i = νM

s,i /ηs,i, where the superscript denotes "measured".

Furthermore, under the approximation of very high noise, where νM
s k ρηs, the SNR

and CAR are given by:

SNR =
ρηs

νM
s

, (4.27a)

CAR =
ηi

τ(ρηi + νM
i )

· ρηs

νM
s

. (4.27b)

The difference between SNR and CAR is represented in the first part of the CAR equa-
tion. This parameter shows how CAR can be improved compared to SNR by reducing
losses in the idler channel, using shorter time windows, and lowering idler rates. In
particular, the former depends on losses and idler noise, showing the dependence of
coincidences on both signal and idler rates. In conclusion, eq. (4.27) is true in the low-
intensity regime (i.e., when the average number of photons is much less than 1 within
a time window τ) and when the noise significantly surpasses the signal itself. Eq. (4.27)
demonstrates that, maintaining the same ratio ρηs/νM

s , and considering typical values
such as (ρηi + νM

i ) ≃ 150 kHz, ηi = 10−3, and τ ≃ 0.35 ns, the CAR improves by a
factor of approximately 38 compared to the SNR.

The relative error can be derived from eqs. (4.15) and (4.26) as follows:

σrel,cl =
1√
T

√

2νM
s

ρηs
σrel,qu =

1√
T

1√
ρηsηi

√

1 +
2τνM

s

ηs
. (4.28)

Eq. (4.28) illustrates that classical error is predominantly influenced by noise, while
quantum error comprises Poisson process error with a noise correction. Quantum error,
however, suffers from the drawback of being impacted by a significantly lower count
rate due to idler losses. Yet, the time filter effectively mitigates much of the noise’s
contribution to the error. Although this correction is not negligible in our setup, it can
be further improved by reducing the time window and losses.
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Overall, owing to elevated losses and limitations on the time window τ, our sys-
tem exhibits higher relative errors during ghost spectroscopy compared to classical
spectroscopy. By substituting typical measurement values, we find:

σrel,qu

σrel,cl
≃ 6 . (4.29)

Despite not gaining an advantage under our conditions, eq. (4.28) provides insight
into critical parameters for improving the relative error in the quantum case.

4.4.5 Ghost spectroscopy measurements

In Fig. 4.11, we illustrate the experimental setup utilized for the GS measurement. By
tuning the CW pump wavelength within the range of 1565−1572 nm, we ensure that
the signal generation spans the spectral region relevant for probing the CO2 absorption
peak near 2 µm, as depicted in Fig. 4.13. Two distinct measurements were performed,
as delineated in Fig. 4.16.

In the initial measurement (a), we acquired the CO2 spectrum via GS and com-
pared it with the spectrum obtained through direct photon transmission measurement
of the signal. In the subsequent measurement (b), we maintained a fixed signal wave-
length while varying the CO2 pressure within the cell to measure the transmission
vis-a-vis gas concentration. The process of adjusting the CO2 pressure (concentration)
within the cell involved first evacuating the cell to 0.001 mbar using a rotary pump,
followed by introducing CO2 until reaching the desired pressure. Pressure monitoring
was facilitated by a strain gauge.

To evidence the advantage of GS in noisy environments, we increased the noise
floor in the signal channel by employing a halogen lamp positioned between the up-
converter and the Si-SPAD, thereby reducing the SNR from 5.8 to 0.04.

Fig. 4.16 (a) depicts the transmission spectrum of CO2. The blue dots denote mea-
surements conducted via GS using net coincidences, while the red dots represent the
ratio between counts of transmitted signal photons in the presence and absence of gas.
Notably, noise subtraction was omitted in this scenario to emulate real-time measure-
ment conditions without a separate noise assessment. Normalization of the graphs was
achieved using a reference measurement conducted without gas in the cell. Each data
point is derived from 45 acquisitions, each lasting 20 seconds. The error bars include
both the standard deviation and the error associated with the reference measurement.
Furthermore, in Fig. 4.16 (a), a simulation of the transmission under noise (dashed
line) and noise-free (solid line) conditions is presented. These simulations were cal-
culated by convolving the Hitran database [163] spectrum with the signal spectrum
in the absence of noise. Remarkably, despite the presence of ambient noise, the GS
data points (blue dots) align with the expected transmission curve without noise. This
implies that, under our conditions (with SNR 0.04), the GS is not affected by ambient
noise within the measurement error margin. In contrast, the signal transmission mea-
surements (red dots), representing standard absorption spectroscopy, correspond to the
simulated spectrum only when background noise (dashed line) is considered.

In Fig. 4.16 (b), the transmission of the gas at a fixed wavelength (λ = 2003.3 nm) as
a function of gas pressure is depicted. This wavelength selection maximizes gas absorp-
tion. While the GS measurements (blue dots) align with the theoretical values expected
in the absence of noise (solid line), the signal transmission measurements (red dots)
correspond to the model incorporating noise (dashed line). Consequently, in practical
scenarios, GS can accurately determine the gas concentration even at low SNR levels,
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Figure 4.16: a) The transmission spectra of CO2 in a cell filled with 1 atm CO2 are
depicted, with measurements conducted using both classical absorption spectroscopy
with signal photon counts (red dots) and the GS method (blue dots). The black lines
represent simulated spectra with (dashed line) and without (solid line) noise, account-
ing for the spectral resolution of the system. b) Transmission through the gas at a fixed
wavelength, λ = 2003.3 nm, is shown as a function of the CO2 pressure in the gas
cell. Both classical measurements with signal photons (red dots) and GS measurements
(blue dots) are presented. The black lines represent simulated values for a system with
(dashed line) and without (solid line) noise, using a time window of τ = 1.1 ns around
the center.

whereas classical spectroscopy encounters difficulties. To quantitatively compare GS
and classical detection, we calculated the sensitivity (S) and limit of detection (LOD)
for both methods. These parameters are defined as [164]:

S = − ∂T

∂C
, LOD =

3σ

|S| . (4.30)

Here, T represents the measured transmission for both classical and GS measurements,
C denotes the gas concentration in g l−1, and σ denotes the standard deviation of the
data. The values obtained through the linear fits of the curves in Fig. 4.16 (b) are sum-
marised in Table 4.4. The sensitivity of the GS measurement exceeds that of the clas-

Ghost spectroscopy Classical spectroscopy

S [l g−1] (5.7 ± 0.1)× 10−2 (5.9 ± 0.1)× 10−3

LOD [g l−1] (6.7 ± 1.8)× 10−1 (1.3 ± 0.84)

Table 4.4: Sensitivity, S, and limit of detection, LOD, values for conventional and ghost
spectroscopy measurements generated from Figure 4.16 (b).

sical measurement by almost an order of magnitude. However, due to the GS’s lower
coincidence rate than the classical experiment’s detection rate, the GS method demon-
strates lower measurement statistics, which leads to a higher uncertainty than its clas-
sical counterpart. Consequently, although the GS achieves a slightly higher LOD than
the classical method, this improvement is modest.
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Under equivalent background noise conditions, coincidence-based GS detection
allows for smaller concentration changes to be detected than the classical approach.
This advantage can be further improved by optimizing the losses in the idler chan-
nel, thus increasing the coincidence while maintaining a constant signal rate (i.e., the
corresponding classical rate). It is worth noting that, with the classical approach, it is
possible to obtain S and LOD values identical to those of the GS, albeit at the expense
of a higher illumination intensity. This intensity adjustment becomes necessary to mit-
igate the impact of background noise.

Ghost spectroscopy: improvements

One way to improve the LOD is to reduce the σ, which is closely related to the relative
error in measurements. A model that clarifies this parameter is provided in the previ-
ous section (see eq. (4.26)), where we outline its dependence on critical parameters of
the system, including losses and the τ time window.

A further way to improve the sensor and its parameters, i.e., the S and the LOD,
can be to probe absorption peaks with higher cross sections, such as those occurring
around 4.3 µm for CO2 always using a laser belonging to the C-L band. To achieve
this, it is necessary to develop a new source capable of PM at this wavelength. This can
be achieved by engineering the mode dispersions, e.g. by modifying the waveguide
cross-sections or the spatial modes involved in the process.
To maintain the cost-effectiveness and feasibility of integration, opting for a pump
wavelength in the C or L band results in the idler being generated in the NIR region,
around 950 nm. Consequently, silicon cannot be used as a waveguide material due to
its lack of transparency at this wavelength. Materials such as SiN [165, 166] and Silicon
Oxynitide (SiON) [167] with large operating regions can be considered. For our simu-
lations, Si3N4 is chosen due to its higher nonlinearity and refractive index than SiON.
In this scenario, the PM condition is expressed as:
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where x = p1, p2, i, s denote the pumps, idlers and signal respectively, M represents
the spatial mode, λ is the wavelength, ∆k denotes the phase mismatch and kM

i denotes
the wave vector of the x beam in the M mode. According to our simulations, PM can

a) b)

Figure 4.17: a) The simulated dispersion of the TE0 and TE1 modes in the examined
region is presented. The MMWG is a channel waveguide composed of SiN, surrounded
by air, with dimensions of 6 µm width and 800 nm height. b) The PM condition is
illustrated for the intermodal combination 1122-TE.
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be achieved around 4.3 µm when the pump photons are in the TE0 mode and the idler
and signal are in the TE1 mode.
We adopt a suspended-channel waveguide to circumvent the problem of absorption
by the silica coating [168], with a waveguide height of 800 nm, a typical value for MIR
photonics. The waveguide width optimized for generation at the wavelength of inter-
est is 6 µm. Fig. 4.17 (a) shows the dispersions of the TE0 mode and the TE1 mode with
the chosen waveguide cross-section. Fig. 4.17 (b) shows the generated signal and idler
wavelengths as a function of pump wavelength.
This simulation result underlines the versatility of the intermodal sFWM source, demon-
strating the feasibility of developing an integrated photonic device suitable for MIR
quantum photonics and sensing.

In addition to the increase in visibility, it is possible to exploit other advantages
of the energy-time correlation. The first aspect I would like to focus on is the ability
to improve the resolution of the measurement without the need for MIR equipment.
This improvement can be achieved by narrowing the bandwidth of the idler through
filtering. In particular, due to the energy correlation of the photon pair, the impact
on the coincidence counts mirrors that of filtering the signal [131]. Fig. 4.18 shows

Figure 4.18: Simulation of the CO2 considering a cell filled with 1 atm without filter
in idler side (blue line) and with a 0.2 nm band-pass filter applied to the idler channel
(gold line).

the simulated spectrum of CO2 by inserting a bandpass filter in the idler branch and
without its insertion. With its insertion, the spectral resolution of the gas is improved in
order to resolve the vibrational modes of CO2. Therefore, these simulation results show
both the time filtering allowed by the correlated twin photon measurements and the
resolution improvement due to the spectral correlations between the idler and signal
photons. An alternative to inserting the BPF into the idler branch is to employ a longer
multi-mode waveguide source. The longer waveguide length produces a narrower
generation spectrum, resulting in higher spectral resolution [48]. This simultaneously
provides for a device with low propagation losses.

4.4.6 Conclusions and future perspectives

In this chapter, we used an integrated source of silicon photon pairs to experiment with
Ghost spectroscopy beyond the 2 µm threshold. Our investigation delves into probing
absorption spectra and concentrations under low SNR conditions, showcasing the ad-
vantages of Ghost spectroscopy over conventional measurement techniques. Notably,
our approach works even when background noise remains unpredictable.
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Based on intermodal Spontaneous Four-Wave Mixing, the integrated source out-
performs existing silicon sources above 2 µm. Moreover, intermodal sFWM allows
spectral tuning for spectroscopic applications. Although our study is a proof-of-concept
for the feasibility of gas spectroscopy, the techniques and sources employed are promis-
ing in various areas that require high visibility and compact device profiles.
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Chapter 5

Toward Quantum Simulator in a
monolithic platform

5.1 Quantum Simulator in a Photonic monolithic platform

5.1.1 Quantum Simulation

By the 1980s, it became evident that classical simulation of quantum problems poses a
significant challenge [169, 170]. This challenge arises from the fact that simulating the
system and its temporal evolution necessitates a computational effort that grows ex-
ponentially with its size. This exponential increase is inevitable unless approximation
methods, such as Monte Carlo methods [171], tensor networks [172], coupled-cluster
[173], density functional theory [174], mean-field dynamical theory [175], density ma-
trix renormalization group theory [176], and others, are employed. These methods have
been successfully used to address a variety of problems. However, there remain entire
classes of many-body problems that remain beyond the reach of these techniques. The
first category includes problems with fermions or spin frustration in two or more spa-
tial dimensions, where conventional Monte Carlo methods face limitations due to the
sign problem. A second category of problems involves dynamics, which includes most
models that cannot be solved exactly for long periods of time. Despite ongoing re-
search aimed at advancing technology to address current computational barriers [177],
simulating quantum systems remains challenging even for supercomputers.

In this context, quantum simulation [178, 179] is emerging as a solution, enabling
the modeling and study of complex physical systems using quantum mechanical prin-
ciples. Quantum simulators (QSs) are physical devices that mimic the behavior of spe-
cific complex quantum systems, allowing for the analysis and study of the properties
and phenomena of a given quantum problem in a controlled and manipulable environ-
ment. Recent demonstrations have highlighted the potential of quantum computers
over classical computing. These demonstrations have been based on problems that
are artificially tailored to suit specific configurations [180, 181]. QSs are essential for
advancing research in various areas, such as simulating materials [182], chemical re-
actions [183, 184], and quantum computation [185–187]. Several platforms stand out,
including ultracold quantum gas systems [188], polar molecules [189], trapped ions
[190], photonic systems [181], quantum dots [191], and superconducting circuits [180].
Each of these platforms possesses distinct characteristics and advantages, and the se-
lection among them is contingent upon the particular requirements of the application
at hand.

In the past decade, integrated photonics has attracted significant interest due to
its ability to manipulate photons with high precision and integrate multiple quantum
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components onto a single chip. This approach enables the creation of complex, con-
trollable systems for building high-performance QSs [29]. The potential of integrated
photonics platforms is diverse and includes generating quantum states, manipulating
and precisely controlling photons, integrating multiple optical components on a single
micrometer-sized chip, and offering greater resilience to external factors compared to
non-integrated counterparts.
Several papers have discussed QSs using integrated photonics [29, 118, 192, 193]. How-
ever, photonics has several challenges, notably losses during photon propagation within
waveguides and the incomplete integration of all fundamental building blocks, such as
single photon detectors. This partial integration results in photon losses to the system
and a hybrid, non-fully integrated configuration.

In response to these challenges, the European project EPIQUS (Electronic-Photonic
Integrated Platform for Quantum Simulator) [194] works to construct a quantum pho-
tonic simulator where the three primary components—quantum state generation, ma-
nipulation, and detection—are integrated within a single monolithic platform. This
integrated approach promises a substantial reduction in coupling losses and enhanced
simulation efficiency within a unified platform. Within this project, my research has
centered on quantum state generation and manipulation. This chapter aims to elu-
cidate the various advancements made, with a particular emphasis on the different
photonic components.

5.1.2 EPIQUS platform

The EPIQUS initiative is aimed at demonstrating a cost-effective, user-friendly, and
high-performance QS by fully integrating silicon nitride photonics with Si-SPADs [30,
82]. As illustrated in Fig. 5.1, the core concept of EPIQUS revolves around the develop-

Figure 5.1: Schematic of the Integrated Photon Simulator within the EPIQUS project,
segmented into four blocks denoted by Roman numerals. In Block I, entangled photon
generation occurs via the Spontaneous Four-Wave Mixing process. Block II contains
residual pump filtering and routing of generated photons along the established path.
Block III is dedicated to quantum operation, comprising a circuit composed of a collec-
tion of MZIs. Finally, Block IV represents integrated detection.

ment of an integrated QS, comprising a quantum photon interference circuit housing
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(I) entangled photon sources, (II) the state preparation stage, and (III) the QS compo-
nent. The integration entails the utilization of Si-SPADs operating within the spectral
range of 500 to 850 nm and at room temperature (IV). The quantum algorithm embed-
ded in the hardware will support the simulation, with a customized analog electronic
chip orchestrating the QS module. This chip will manage the pump laser, the phase
shifters required for QS reconfiguration, and the SPADs to collect the single counts.
Subsequently, the output data will be processed by a digital chip to facilitate software
algorithm execution. The primary emphasis of the project lies not in the demonstra-
tion of its scalability but rather in achieving complete integration of all components
constituting the QS.

5.1.3 Quantum Simulator photonic Platform

This thesis exclusively explores the photonic platform, particularly focusing on steps
I to III in Fig. 5.1. Specifically, this chapter centers on the study of suitable materials
to construct the platform, along with their linear and nonlinear characterization, and
on the development of an integrated interferometric system for executing quantum
operations. Two distinct materials, silicon oxynitride (SiON) and SiN are examined for
the QS. This chapter is based on two of our published papers [166, 167].

5.2 Silicon Oxynitride Material

Stoichiometric silicon nitride (Si3N4) emerges as a compelling alternative to silicon;
however, to prevent film cracking due to significant tensile stress, film thicknesses must
be maintained below 200 nm. Techniques such as Damascene [195] photonic processes
and multilayer TriPleX [196] offer solutions to overcome this limitation.

Another strategy to mitigate film stress involves incorporating oxygen into the SiN
material through direct deposition of a SiON film. The refractive index of SiON can be
finely tuned between 1.45 (similar to SiO2) and 2.00 (similar to SiN) by controlling the
relative content of oxygen and nitrogen in the film. Additionally, SiON exhibits lower
material loss compared to SiN in the visible and ultraviolet regions, while maintaining
low stress levels for film thicknesses up to a few micrometers. However, this approach
may result in an increased device footprint and a reduction of the thermo-optical and
nonlinear characteristics due to the reduced refractive index of the material.

In this section, we introduce a photonic platform based on SiON channel waveg-
uides capable of accommodating a wide range of wavelengths in the VIS-NIR region
[167]. The base material is SiON with a relatively high refractive index of 1.66 at a wave-
length of 850 nm. This material possesses an optical bandgap of 4.0 eV and exhibits a
relatively strong optical nonlinearity between SiO2 and SiN. Its fabrication was per-
formed by the Centre for Sensors and Devices of the FBK in Trento, Italy. Dr. Massimo
Borghi and I developed the design of the different structures. Experimental measure-
ments were conducted in collaboration with Mr. Gioele Piccoli from FBK.

5.2.1 SiON Photonic platform

The PIC is structured with a high-index SiON core material and SiO2 coatings, resulting
in an index contrast of approximately 15 percent between the core and coatings. More-
over, the channel waveguide is enclosed between two nm-thick SiN thin films, serving
as etch-stop barriers during wet chemical etching. Additionally, the application of a
conformal SiN thin film alleviates the sidewall roughness of the SiON waveguides. The
cross-section configuration is shown in Fig. 5.2(a). Starting with a 6-inch silicon wafer,
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Figure 5.2: a) Cross-sectional view of the SiON core waveguide (0.3 × 2.5) µm.
The cladding consists of borophosphosilicate glass (BPSG) above the waveguide and
tetraethoxysilane (TEOS)-based silicon oxide as the substrate. b) and c) Simulated
electric-field intensity profiles at 750 nm for the fundamental TE0 (b) and TE1 (c) modes.

a 1.7-µm silicon oxide layer is grown (TEOS oxide) at 710°C by a low-pressure chemical
vapor deposition tube (LPCVD). Subsequently, a 20-nm-thick stoichiometric SiN film
is deposited at 770°C, followed by a 320-nm-thick SiON film in a plasma-enhanced
chemical vapor deposition (PECVD) chamber utilizing a mixture of SiH4, N2O, and
NH3 gas precursors. The SiON film acts as the waveguide layer for all photonic cir-
cuits within this process. Photonic devices are defined through photoresist using i-line
stepper lithography (365nm), followed by the transfer of the pattern to the SiON/SiN
layers via reactive ion etching (RIE). Thermal treatment of the SiON waveguides at
975°C for 1 hour in an N2 atmosphere facilitates the release of residual hydrogen and
enhances the optical properties of the SiON film, resulting in a film thickness of 300 nm
and refractive index dispersion suitable for simulations and PIC design. Subsequently,
a second 20-nm deposition of SiN is conducted, followed by the deposition of LPCVD
BPSG and SiO2 PECVD films at 640°C and 300°C, respectively, to form the top coating
with a total thickness of 1.6 µm.

A multi-stack composed of 150 nm TiN and 1200 nm Al is sputtered, patterned,
and etched with RIE to fabricate metal lines, contact pads, and micro-heaters (phase
shifters) for thermo-optical tuning of photonic components. The top Al film is selec-
tively removed atop the micro-heaters by wet chemical etching to create efficient TiN
micro-resistors with a sheet resistance of 5 Ω/sq. Subsequently, the wafer is coated
with a 500-nm SiO2 PECVD protective film (overglass), selectively removed from the
pad locations to facilitate wiring. The fabrication process ends with the definition of
chip boundaries, waveguide facets, and thermal insulation trenches by RIE. An addi-
tional 140-µm deep etching in the Si substrate via a Bosch high-aspect-ratio etching
process is finally performed at the edges to facilitate butt coupling between the optical
fibers and waveguides. Subsequently, the wafers are diced, and the chips are subjected
to further optical characterization. Figs. 5.2(b) and (c) illustrate the optical profiles of
the TE0 and TE1 modes, respectively.

Propagation and Coupling Losses

Linear characterization measurements were performed utilizing the experimental setup
illustrated in Fig. 5.3. This setup shows a supercontinuum laser (FYLA SCT500) as the
light source, facilitating the measurement of a broad spectral response spanning wave-
lengths from 650 to 850 nm. The input polarization was controlled using achromatic
half-wave and quarter-wave plates. Output spectra were collected by an Optical Spec-
trum Analyzer (OSA, Yokogawa-AQ6373B), enabling high-resolution (100 pm) charac-
terization of the optical signals emitted by the supercontinuum laser.
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Figure 5.3: A schematic of the experimental setup employed for the characterization
of the SiN integrated components. A supercontinuum laser serves as the light source
and is coupled with the PIC via a single-mode tapered fiber with a Mode Field Di-
ameter (MFD) of 2.5 µm. The desired polarization state is adjusted using free-space
wave-plates λ/4 and λ/2. At the output of the PIC, the signal is collected by another
single-mode tapered fiber and analyzed using an OSA, enabling high-resolution spec-
tral analysis of the optical signals.

The performance metric used to characterize the fabricated waveguides is inser-
tion losses (ILs), which include propagation losses (PLs) and coupling losses (CLs). To
determine PLs and CLs, the cut-back method [197] was employed in waveguides with
a cross-section of (1 × 0.3) µm2. Based on Lumerical simulations, we have chosen to
implement a tapering with a waveguide width of 1.25 µm as the optimal compromise.
This choice is made with the goal of achieving coupling losses of approximately 2.2 dB,
assuming an MFD of 2.5 µm. Fig. 5.4 illustrates PLs (a) and CLs (b) in the spectral range
from 650 to 850 nm, evaluated in TE polarization. The band highlighted in light blue
represents the measurement uncertainty, calculated by the standard deviation of mea-
surements on identical structures within different but nominally identical PICs. This
approach accounts for potential variations among the fabricated PICs. At around 750
nm, PLs of (2.9 ± 0.3) dB/cm and CLs of (4.2 ± 0.6) dB/facet were observed. Regarding
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Figure 5.4: Insertion losses across the spectral range from 650 nm to 850 nm. a) Prop-
agation losses for TE polarization in a cross-section of (1 × 0.3) µm. b) Butt coupling
losses using a waveguide edge cross-section of (1.25 × 0.3) µm, employing a tapered
fiber with a spot size of 2.5 µm for TE-polarized light.

PLs, the measured values are significantly higher than the specifications provided by
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the FBK center. Initially, this discrepancy was attributed to the metal layer overlaying
the optical circuits, which are utilized to control the thermo-optical phase shifters of
other structures on the chip. It is hypothesized that the optical modes may undergo
substantial interaction with the highly absorbing metal lines, resulting in large losses.
This conclusion is drawn from the pronounced scattering observed when the waveg-
uide traverses the metal lines, which indicates a significant interaction between the PIC
and the top metal layer. Fig. 5.5 shows an optical image of the chip where scattering
can be observed.

Figure 5.5: An optical image of the fabricated chip shows pronounced light scattering
where the waveguide intersects the metal lines.

A "reverse-engineering" approach was performed to validate this hypothesis on one of
the measured chips, selectively eliminating the metal film from the chip’s top surface,
thereby preserving only the photonic layer. Subsequently, the spiral waveguides were
re-evaluated to characterize the loss. Meanwhile, various configurations were fabri-
cated to mitigate PLs and prevent issues that could potentially affect the performance
of the integrated devices.

The results of these different configurations are reported in the table 5.1. These
findings validate this hypothesis. Therefore, other PICs were fabricated with a higher
layer separation between the waveguides and the metal layer. However, the obtained

Wafer label Features PLs [dB/cm] CLs [dB/facet]
W1 with 20 nm SiN layer 2.9 ± 0.3 4.2 ± 0.6

W1 Rev-eng. with 20 nm SiN layer 2.2 ± 0.1 3.9 ± 0.6
W2 No SiN – SiON thickness 300 nm 2.3 ± 0.1 3.2± 0.4
W3 No SiN – SiON thickness 300 nm 1.8 ± 0.1 10.4 ± 0.5

Table 5.1: PLs and CLs vary with changes in the manufacturing configuration.

propagation results still exhibit elevated values despite these efforts. This suggests that
additional factors beyond the separation distance may be contributing to the observed
PLs.

An observation is that in the most recent fabrication cycle (W3) while achieving
the lowest PLs to date, there is a notable increase in CLs. This highlights the need for a
more detailed examination of the fabrication process and its influence on both PLs and
CLs.

5.2.2 Integrated components

This section is dedicated to the analysis of fundamental integrated optical components.
The devices were simulated using Lumerical software, with material dispersions from
the FBK center. Figs 5.6(a)-(b) depict the designs of various integrated structures opti-
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Figure 5.6: Mask layout showing two designs (a-b), where dark red lines represent
waveguides and purple denotes metal wires. Overglass and trench layers are removed
from the image.

mized for operation around 750 nm, each in a (1 × 1) cm2 area. Waveguides are high-
lighted in dark red, while metal wires are represented in purple. All measurements
were carried out with the setup of Fig. 5.3.

Waveguide crossings

The CRs, introduced in Chapter 2, were based on an optimized multimode crossing.
This design integrates a symmetrical four-port MMI with a cross-shaped geometry
(Fig. 5.7(a)), where geometric parameters are adjusted to concentrate the field profile
at the center of the cross. By employing this optimization strategy, crosstalk between
adjacent ports is minimized, while propagation to opposite ports is maximized through
the self-imaging phenomenon. A scanning electron microscope (SEM) image of a single
crossing is presented in Fig. 5.7(a). Fig. 5.7(b) shows the ILs of one CR for TE polariza-
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Figure 5.7: (a) SEM image depicting the CR. The multimodal waveguide measures 1.5
µm in width and extends over a total length of 10 µm. (b) ILs of a CR measured in the
wavelength range from 650 nm to 780 nm for TE polarization.

tion. To provide an accurate estimation of ILs, the transmission of a sequence of 150
cascaded crossings was used. The uncertainty in these measurements, depicted by the
highlighted band, arises from multiple measurements of nominally identical crossings.
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Across the spectral range of 650-780 nm, our CRs demonstrate ILs of less than 0.13 dB
in the TE polarization.

In contrast, crosstalk could not be directly measured due to its extremely low levels
falling below the sensitivity threshold of the setup (-60 dB), consistent with simulations.

MMI Beam Splitters

As described in Section 2, beam splitters can be implemented using MMI devices. We
use two configurations: General Interference MMI (G-MMI) and Pairwise Interference
MMI (P-MMI). In G-MMIs, the interference mechanism involves all modes, while in
P-MMIs, only a few modes of the multi-mode waveguide are excited, resulting in a
different interference pattern. Specifically, in this design, termed P-MMI, the second-
order, fifth-order, eighth-order, etc. modes are left unexcited, ensuring that for every
pair of excited modes, there is one unexcited mode [90]. In general, G-MMIs are longer

Figure 5.8: a) Optical microscope image illustrating the configuration of G-MMI. The
multimodal waveguide has a width of 5.8 µm and a length of 163.11 µm. b) Optical
microscope image illustrating the configuration of P-MMI. The multimode waveguide
has a width of 6.7 µm and a length of 55.9 µm.

than P-MMIs and are more tolerant to fabrication errors due to their position tolerance
of the input waveguide. Fig. 5.8 depicts the optical microscope images of a 2x2 beam
splitter based on G-MMI (a) or P-MMI (b), with parameter values obtained from FDTD
3D simulations at 740 nm for a TE0 input. It’s worth noting that the length is almost
three times shorter for the P-MMI, and the input and output ports of the G-MMI are
located at the edge of the multimode waveguide.

Wafer label Features
C1 with 20 nm SiN layer*
C2 with 20 nm SiN layer*
C3 No SiN – SiON thickness 300 nm
C4 No SiN – Drie etching angled sidewalls
C5 No SiN – No SiN – Oxford SiON
C6 No SiN –No SiN – Oxford SiO2**
C7 With SiN thin layer – Oxford SiO2

C8 No SiN –No SiN – Oxford SiO2**

Table 5.2: The different configurations. These marked with an asterisk (* or **) denote
identical settings across different experimental runs.

In the initial fabrication run, a significant unbalance was observed in the integrated
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devices, with the disparity between the two outputs exceeding 2 dB. Various configu-
rations were attempted to address the issue, as listed in Table 5.2. However, the unbal-
ance between the outputs persisted.

An observation is the contrasting unbalances in signs observed between the PM-
MIs and the GMMIs. This discrepancy suggests a manufacturing process-dependent
issue, enhanced by the interference mechanisms utilized in these two types of MMIs.
An illustrative example of these measurements is presented in Fig. 5.10, which shows

Figure 5.9: Variation in the unbalance (out2/out1) of G-MMIs (red markers) and P-
MMIs (blue marker) with different runs. A consistent but specular unbalance is evi-
dent in both cases. Positive unbalanced values indicate higher intensity in the output
opposite to the input, while negative values suggest greater intensity in the output cor-
responding to the selected input.

the ILs (blue lines) and output unbalance (black dashed lines) of a 2x2 beam splitter
based on G-MMI (a) or P-MMI (b) across a wavelength range of 650 − 850 nm for the
C7 configuration. An unbalance of approximately 1 dB is noticeable at the nominal
wavelength of 740 nm. It is evident that the insertion band is shifted towards shorter
wavelengths, with a displacement of 20 nm for G-MMIs and 40 nm for P-MMIs, com-
pared to the expected minimum loss at the 740 nm wavelength. For the successful
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Figure 5.10: Characterization of G-MMI and P-MMI splitters designed for operation at
740 nm for the C7 configuration. The black curve represents the output port unbalance
(out2/out1), while the blue curve indicates the ILs of the integrated structure.
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implementation of QPICs, the proper functioning of the MMI is paramount, as any
unbalance could potentially impact the performance of the entire simulator.

Asymetric Directional Couplers

A crucial component for the successful implementation of the intermodal sFWM pro-
cess is the ADC, as extensively discussed in Chapter 2. ADCs play a dual role: they
are essential for preparing the pump beam in a coherent superposition of TE0 and TE1
modes, and for separating the generated photon pairs propagating in the same multi-
modal waveguide. Fig. 5.11(a) displays the SEM measurement taken orthogonally to

Figure 5.11: (a) SEM image showing the cross-section of the ADC, with the two SiON
waveguides surrounded by the cladding clearly visible. (b) Top-view SEM image dis-
playing the single-mode waveguide and the multimode waveguide, which approach
each other up to a distance of 600 nm to form the ADC structure. The width of the
single-mode waveguide is 0.7 µm, the width of the multimode waveguide is 1.79 µm,
and the coupling length is 171.41 µm. c) Optical microscope image depicting two con-
figurations for measuring ADCs: one where the two structures are in the same orienta-
tion (configuration 1), and another where they are specular (configuration 2).

the cross-section of the ADC, revealing the single-mode waveguide core and the multi-
mode waveguide core. In Fig. 5.11(b), the SEM photo from the top of the chip zooms
in on the coupling area of the two waveguides. To characterize this integrated struc-
ture, two ADCs were cascaded. The concept involves total conversion of the field in
TE0 mode entering the first single-mode waveguide on the left to the TE1 mode in the
multi-mode waveguide through the first ADC, followed by reconversion to the TE0
mode in the second single-mode waveguide through the second ADC. An analysis is
performed by studying the output of the second single-mode waveguide (Drop) and
the remainder in the first single-mode waveguide (Through). To investigate poten-
tial fabrication issues, two different configurations of ADCs shown in Fig. 5.11(c) were
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examined. In configuration I, the two ADCs face the same orientation (single-mode
waveguide above the multimode waveguide), while in configuration II, the ADCs are
mirrored to each other.
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Figure 5.12: Characterization of the ADC in configurations 1 (a) and 2 (b). The red curve
represents the transmission of the drop port, indicating the coupling of light carried by
the single-mode waveguide into the multimode waveguide. The blue curve represents
the transmission in the through port, representing the remaining signal in the single-
mode waveguide.

The transmission spectra of these mode converters are presented in Fig. 5.12 for
both configurations, normalized with respect to the transmission of a reference single-
mode waveguide. Fig. 5.12(a) illustrates the normalized intensity in the drop (red) and
pass-through (blue) output channels of the ADC mode converter. In the configuration
I, the drop efficiency reaches 98%, indicating very high mode conversion efficiency
for the pump beam and negligible loss. This ensures that the pump beam achieves
a nearly ideal coherent overlap of TE0 and TE1 modes, as required for the intermodal
sFWM process. It is important to note that the normalized intensities shown in Fig. 5.12
have a maximum uncertainty of ±1 dB, arising from variations in ILs between the two
different waveguides (single-mode waveguide and analyzed structure) and variations
in fiber-chip alignment.

An anomaly is observed in these devices when fabricated in configuration II. In
these cases, the expected behavior is not achieved, as illustrated in Fig. 5.12(b). This
anomaly is attributed to fabrication problems in the lithographic system. Specifically,
the two ADCs do not achieve conversion matching at the same wavelength, greatly
reducing the efficiency of the measurement. As a consequence, there is a shift in the
coupling length of the device depending on its orientation.

Mach-Zehner Interferometers

A fundamental component for the manipulation and implementation of photonic hard-
ware is the integrated MZI.

In the MZI the phase shifters consist of metal heaters fabricated by depositing a
thin layer of titanium nitride via sputtering, positioned approximately 1 µm from the
top of the waveguide (with a width of 2 µm) and extending to a length of about 200 µm.
Characterization of these phase shifters is performed by transmission measurements
while varying the electrical power dissipated through the heater placed on one arm
of the MZI. The design of the MZIs was conducted both with and without trenches,
positioned 2 µm away from the metal wires which serve as heat diffusion barriers.
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Figure 5.13: Optical microscope images of the two layouts of the MZI with (a) and
without (b) trenches. The normalized intensity in one of the two outputs of the MZI
as a function of the electrical power for the MZI with the trenches (c) and without the
trenches (d). A phase-π is observed with the trenches at 79 mW, while without trenches
at 105 mW.

Fig. 5.13 shows an optical microscope image displaying the heater with trenches (a)
and without trenches (b).

Fig. 5.13 shows the intensity variation at one MZI output as the heater’s electrical
power changes. It requires 79 mW (Fig. 5.13(c)) to induce a π phase change in the
MZI transfer function when trenches (a) are present, while 105 mW (Fig. 5.13(d)) is
required when trenches are absent. This is relevant when numerous phase shifters will
be employed, potentially addressing issues associated with high energy dissipation by
the chip. Fig. 5.14 displays the percentage change in resistance of the metal wires as a
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Figure 5.14: Percentage variation of the nominal resistance value as the electrical power
varies in the presence (red line) and absence (blue line) of trenches.

function of electrical power. The presence of trenches (red line) results in a higher local
temperature, leading to a more pronounced increase in resistance compared to the case
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without trenches (blue line). This observation further corroborates that less heat is
dissipated with trenches, resulting in effectively higher measured electrical resistance.
A push-pull MZI configuration can be used to further reduce the power.

Rejection Filter

A critical component in our integrated QS is an integrated wavelength-selective opti-
cal interference notch filter with high rejection capability. Such a filter serves various
purposes, including the removal of high-power pump photons from the idler and the
signal photons generated in a sFWM process. This functionality can be achieved by
employing a cascaded array of aMZIs, effectively summing the rejection provided by
individual elements [198]. The design of the filter involves fixing the FSR and the res-
onance wavelength (λres) to a specific wavelength. To comprehensively characterize

Figure 5.15: a) Schematic representation of the filtering stages for the pump, consist-
ing of a 4 aMZI stage to remove the 740 nm wavelength and to pass 810 nm. In the
dashed rectangle an aMZI. The ∆L is 2.32 µm. b) Optical responses of the pump filter
designed for the signal wavelength at 810 nm. The output port labeled "out5" (purple
line) displays the residual pump port, while "out1" (blue line) illustrates the rejection
of this pump after 4 aMZI stages.

the configuration of four cascaded aMZIs, one output port from each aMZI stage is
directed to the output of the photonic chip, as depicted in Fig. 5.15(a). The results of
the characterization of a typical device tailored to filter only the 805 nm signal photons
from the 750 nm pump photons are illustrated in Fig. 5.15(b). This figure shows the
normalized transmissions for output channels 1 to 5, where output 1 corresponds to
the channel for signal photons with the pump removed at 750 nm. Output 5 represents
the residual pump.

Output 1 exhibits a transmission of approximately -5 dB at 812 nm, deviating from
the ideal transmission close to 0 dB. This discrepancy is attributed to the use of 50:50
beam splitters, specifically the G-MMI type, which introduces an unbalance of about 2
dB. However, despite this deviation, Fig. 5.15(b) demonstrates that the cascade of four
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aMZIs provides a notably high rejection ratio at 750 nm. The low signal-to-noise ratio
observed around 750 nm, less than -37 dB, indicates that the measurement intensity has
reached the minimum detectable level (-80 dBm) of the OSA.

5.2.3 Non linear measurements

Understanding the nonlinear coefficient (n2) of the material is essential for generat-
ing biphoton states on the platform. One approach is through Self-Phase-Modulation
(SPM) measurements [199, 200]1. In SPM, the interaction of an intense laser pulse with
a nonlinear medium induces a localized variation in the refractive index due to intense
light-matter interactions. This variation causes a phase shift among the spectral com-
ponents of the pulse, resulting in a modulation of the pulse spectrum. By measuring
the spectral broadening of an ultrashort pulse with known power, we can extract the
nonlinear refractive index n2 of the material.

To estimate n2, we employed the split-step Fourier method [89, 167], which in-
volves simulating the expected SPM effect for a specific set of parameters, including
the material’s n2 coefficient, waveguide geometry, and initial pulse characteristics. We
obtained an estimate of the material’s nonlinear index by comparing the simulated re-
sults with the measured SPM spectra. SPM measurements were carried out using a
mode-locked Ti:Sapphire laser, tunable in the wavelength range from 720 nm to 840
nm, with a 3-dB pulse width of 0.2 nm and operating at a repetition rate of 82 MHz.
The laser beam was injected into the SiON waveguide with a cross-section of (1.1 ×
0.5) µm using an SM lensed glass optical fiber, and the transmitted pulse was collected
with a second identical fiber at the waveguide output. Subsequently, the pulse was
analyzed using an optical spectrum analyzer (OSA-Anritsu) with a spectral resolution
of 0.04 nm and a sensitivity of -60 dBm.

Figure 5.16: Intensity-dependent spectral broadening of ultra-short laser pulses due to
SPM in a SiON waveguide. Panels (a) and (b) depict the spectral evolution for pulse
wavelengths centered at 780 nm and 840 nm, respectively. The spectra are normalized
to their peak powers. The differences observed in the input pulse shapes (represented
by the darkest blue lines) at the two central wavelengths are attributed to variations in
the experimental setting.

To examine the intensity dependence of SPM, we conducted pulse-broadening exper-
iments for various input powers ranging from 0 dBm to -20 dBm, measured at the
waveguide output. Considering the possibility of nonlinear effects occurring in the in-
jection optics, it was imperative to attenuate the power injected into the waveguides
after the external optics without altering the power present in the input fiber. This was

1Please note that additional information on Self-phase modulation is provided in Chapter 1.3.4. For inter-
ested readers, the methodology used is explained in [89].
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achieved by adjusting the position of the input fiber relative to the waveguide facet,
thereby reducing the coupling efficiency.

Fig. 5.16 presents the experimental data, showing results obtained for two distinct
pulses with central wavelengths at 780 nm (a) and 840 nm (b). To determine the un-
known Kerr nonlinearity n2 of the SiON material, we conducted numerical simulations
to transform an input pulse spectrum into a broadened spectrum [89]. This process re-
lies on knowledge of the waveguide’s length, propagation loss, effective mode area,
and effective refractive index. The last two parameters are derived from numerical
simulations conducted using Lumerical software.

The estimation of n2 follows this procedure. Firstly, the lowest power signal (-20
dBm) is taken as the reference input pulse shape for each set of measurements. Sub-
sequently, a series of output signals are simulated using the split-step method, with
various values of n2. Fig. 5.17(a) illustrates the input spectrum (dashed line), the exper-
imental output spectrum at a given power (solid black line), and the differently colored
lines corresponding to the numerical simulations conducted at the power of the exper-
imental measurement but with varying values of n2. The determination of n2 is then
obtained by identifying the value that minimizes the spectral difference between the
experimental data and the simulated results, as shown in Fig. 5.17(b). The numerical
simulations were performed using MATLAB software. The main source of error in the

Figure 5.17: Procedure outlining the numerical process to determine the value of n2 at
a wavelength of 840 nm. a) Various output pulse shapes were simulated (ranging from
blue to red, with the color-bar indicating units of 10−20 m2/W) based on increasing
values of n2 to match the experimental pulse shape (solid black line), starting from
the input pulse lineshape (dashed line). (b) The sum of the square residuals between
the theoretical and measured pulse shapes. The optimal value of n2, yielding the best
fit to the experimental data, corresponds to the minimum position. n2 estimates are
obtained for three different values of waveguide loss (PLs and CLs): αtot, αtot + σαtot ,
and αtot − σαtot (shown in light blue, green, and blue, respectively), propagating the
error in measured loss onto the estimated n2 error.

estimation of n2 by this method stemmed from the uncertainty σαtot associated with the
total waveguide loss, calculated as the sum of PLs and CLs αtot = αp · L+ αcpl. To quan-
tify the uncertainty of the estimate of n2, the spectra were simulated with three values
of total waveguide loss: αtot, αtot + σαtot and αtot − σαtot . The estimated error of n2 was
then calculated as δn2 = (n2

max − n2
min)/2. To validate the robustness of the employed

methodology, we used a set of four waveguides at two distinct wavelengths: 780 nm
and 840 nm. Specifically, we investigated a pair of waveguides with nominal widths
of 1100 nm and 1300 nm. Table 5.3 presents the n2 values extrapolated for the different
configurations. The validation test illustrates that the estimates of n2 remain consistent
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Device Waveguide Cross-section Length n2 (780 nm) n2 (840 nm)
sample A (1.1 × 0.5) µm 27 mm 13.1 ± 0.5 5.7 ± 0.4
sample B (1.1 × 0.5) µm 37 mm 13.5 ± 0.5 5.0 ± 0.4
sample C (1.3 × 0.5) µm 27 mm 12.3 ± 0.7 5.8 ± 0.5
sample D (1.3 × 0.5) µm 37 mm 13.5 ± 0.7 5.6 ± 0.5

Table 5.3: Geometrical dimensions and estimated n2 coefficients (in units of
10−20 m2/W), at two different pump wavelengths, for the different investigated de-
vices.

across varying waveguide geometries, within the designated margin of error. Further-
more, our results are in agreement with prior research [201–203], indicating that the
n2 values of our SiON material fall within the expected range between pure SiO2 and
pure SiN. The estimated nonlinear index corresponds to a nonlinear coefficient, γ, of
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Figure 5.18: The spectral dispersion of the measured nonlinear refractive index n2 re-
veals a clear increasing trend towards shorter wavelengths. Error bars represent the
half-interval δn2 = (n2

max − n2
min)/2 between the minimum and maximum estimated

n2 values for each waveguide, factoring in various assumed waveguide losses.

1.5 m−1W−1 at a wavelength of 780 nm and 0.7 m−1W−1 at 840 nm for waveguides 1.1
µm wide.

Then, we selected one of the 1100 nm wide waveguides (sample A) and conducted
a spectral analysis to examine the variation of n2 with wavelength. Fig. 5.18 illustrates
that the Kerr coefficient substantially increases as the pump wavelength decreases from
the near-infrared to the red-visible region. This observed behavior aligns with the the-
oretical model, which predicts a maximum of the nonlinear index near the TPA edge
at Eg/2 [201], corresponding to a wavelength of approximately λTPA ≈ 310 nm for our
SiON platform.

5.2.4 Spontaneous Four-Wave mixing in SiON

Exploiting the intermodal sFWM process, Fig. 5.19(a) shows the simulated discrete
band of the idler and signal generation with a 740 nm pump wavelength and pho-
ton pairs at 690 nm (idler photons) and 796 nm (signal photons). Fig. 5.19(b) shows
the simulated idler and signal photon wavelengths relative to the pump photon wave-
length.
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a) b)

Figure 5.19: a) Simulated generation band of the intermodal sFWM process in SiON
waveguide. b) Generated photon wavelength relation at the pump wavelength varia-
tion. In red is the signal wavelength, and in blue is the idler wavelength.

Fig. 5.20(a) shows the experimental setup to measure photons generated via the in-
termodal process. Here, a Ti:Sa laser operating at 740 nm serves as the light source. A
Band-pass filter (BPF) is used to filter the pump wavelength. To mitigate input waveg-
uide effects, an optical lens facilitates butt coupling of the free-space optical beam onto
the chip. At the output, two fibers are employed to capture signal and idler photons,
preceded by a Notch filter (NF) to eliminate the pump wavelength. Subsequently, a mo-
torized grating is employed to select the wavelength by adjusting the angle, enabling
reconstruction of the photon spectrum post-NF. Several measurements were conducted
under varying run configurations, focusing on spectral analysis in both the signal and
idler regions. Despite extensive efforts, the measurements proved to be challenging due
to considerable background noise. This pervasive noise likely originates from Raman
scattering and intense photoluminescence. Fig. 5.20(b)-(c) illustrates intensity measure-
ments of waveguide photons within the expected idler range of 670 nm to 730 nm (b)
and signal range of 755 nm to 845 nm (c). Notably, despite varying on-chip power
levels, no signal or idler peaks are observed around the two generation wavelengths.

Many problems are present in these measurements:

1. The sensitivity of the intermodal approach to fabrication variations can lead to
substantial shifts in photon generation.

2. The directional sensitivity of the ADCs which results in low modal conversion
efficiencies at the wavelengths of the generated photons.

3. The non-ideal MMI with an unbalance of approximately 1.5 dB and an IL of 1.4
dB.

The simulation of the signal and idler spectrum generation rate yields generation rates
below 900 Hz in the detection. This conclusion takes into account various factors, in-
cluding PLs (2.6 dB/cm), ILs of integrated devices (6 dB), CLs (4 dB), and losses in the
detection branch (4 dB).

As a result, a decision was made to use the intramodal process based on SiN. This
shift was driven by the potential for improved device performance achievable with a
material commonly utilized by manufacturers and the higher tabulated n2 value of SiN
[85] compared to SiON. Moreover, opting for the intramodal process allowed for the
elimination of ADCs. Additionally, microring resonators can be used, and the higher
refractive index of SiN allows for more compact structures leading to size reductions
and greater integration capabilities. It is crucial to compare the nonlinear parameter
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Figure 5.20: a) Setup for the characterization of photon pair sources in the SiON PIC.
Starting from the left, we have the PBF and the waveplates (λ/2 and λ/4) to select the
TE polarization at the input of the PIC. The light is coupled to the chip via an objective
lens. After the PIC, two fibers are used to address the signal and idler in the detection
part. For simplicity, only the signal branch is depicted here, although the idler branch
is identical. Following the pump, which is filtered through a notch filter, the beam of
one of the two generated photons is sent through free space to a motorized grating that
selects the desired wavelength and directs it to the Si-SPAD. By adjusting the angle of
the grating, the spectrum of the idler and signal can be reconstructed. b-c) Spectra of
the light coupled out of the PIC in the detection for the idler line (b) and the signal line
(c) for different input on-chip powers. The peak pump is at 740 nm, and the generated
photons are at 690 nm (idler) and 796 nm (signal).
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Figure 5.21: Simulation of the continuous band generation for the SiON waveguide
(pink line) with a cross-section of (1 × 0.3) µm and the SiN waveguide (green waveg-
uide) with a cross-section of (0.14 × 0.65) µm.

γ governing the generation of correlated photon pairs between SiON and SiN waveg-
uides. For SiON, the nonlinear parameter is 0.94 [1/Wm], while for SiN (with a cross-
section of 140 nm x 650 nm), it is approximately 2.05 [1/Wm]. Fig. 5.20 depicts simu-
lations of the nonlinear parameter γ multiplied by the phase matching function φ as a
function of the idler and signal photons, considering a 1.5 cm-long waveguide and a
pump wavelength of 740 nm. Despite the wider generation band of SiON compared to
SiN, the actual generation value is less than half of the SiN case. For the SiN simulation,
a value of n2 = 23 × 10−20 [m2/W] was employed [85].

5.3 Silicon Nitride Material

In this section, I focus on the linear and nonlinear characterization of the SiN, based on
our work [166].

5.3.1 SiN Photonic platform

Figure 5.22: a) Cross-sectional view of the SiN core waveguide (nSiN = 1.991 at 750
nm). The cladding comprises two distinct materials: BPSG above the waveguide
(nBPSG = 1.459 at 750 nm) and TEOS-based silicon oxide as the substrate (nTEOS =
1.441 at 750 nm). b)-c) Simulated electric-field intensity profiles at 750 nm for the fun-
damental TE (b) and TM (c) modes.

The PICs were fabricated using stoichiometric SiN via LPCVD at the FBK cleanroom
facilities. The fabrication process began with the growth of a bottom SiO2 cladding,
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1.7 µm in thickness, utilizing TEOS gas precursor at a chamber temperature of 710°C.
This was followed by the deposition of a 140 nm-thick SiN film at 770°C. The photonic
circuits were then patterned on standard photoresist using i-line stepper lithography
and transferred onto the SiN layer through inductively coupled plasma reactive ion
etching. Finally, a top cladding, 1.6 µm thick, composed of BPSG was applied at 640°C,
after which the wafer was diced into individual chips.

The SiN channel waveguides have a refractive index of nSiN = 1.991 at 750 nm,
featuring a cross-section of 140 nm × 650 nm (Fig. 5.22(a)). These dimensions were
selected to ensure single-mode operation at 750 nm for both TE and TM polarizations,
as demonstrated by the mode field distribution depicted in Fig. 5.22(b)-(c) [204].

Propagation and Coupling Losses

Linear characterization measurements were carried out using the experimental setup
outlined in Fig. 5.3. The cut-back method [197] was employed for this purpose. Fig. 5.23(a)
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Figure 5.23: Measured ILs across the spectral range from 650 nm to 850 nm. (a) Prop-
agation losses for TE polarization (blue) and TM polarization (red). (b) Butt coupling
losses utilizing a waveguide edge cross-section of 0.14 µm × 3.25 µm, employing a ta-
pered fiber with a spot size of 2.5 µm for TE (blue) and TM (red) polarized light.

illustrates the PLs across a wavelength range from 650 to 850 nm, evaluated separately
for TE (blue line) and TM (orange line) polarizations. The highlighted band represents
the standard deviation, calculated from measurements conducted on identical struc-
tures within different, albeit nominally identical, PICs.

Within the operational range centered around 750 nm, PLs of (2.4 ± 0.2) dB/cm
were observed in the TE polarization, while in the TM polarization, PLs were (1.6 ±
0.2) dB/cm. This asymmetry in the PLs arises from higher scattering losses in the TE
polarization due to more significant mode overlap with the waveguide’s side walls,
where roughness contributes to the loss [205, 206].

PLs performance falls short of the current state-of-the-art [207, 208], encouraging
further investigation into fabrication methods aimed at reducing roughness induced
by film deposition, lithography, and waveguide etching.

Butt coupling was employed for light injection and collection, utilizing lensed
fibers with an MFD of 2.5 µm to interface with the chip. The access waveguides of the
PIC feature an adiabatic tapering section spanning 150 µm in length. Here, the waveg-
uide width gradually narrows from 3.25 µm at the facets to 0.65 µm. These dimensions
were optimized via FDTD simulations, ensuring optimal overlap between the lensed
fiber’s mode and the waveguide’s fundamental modes across different widths.
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Following the adiabatic tapering, three Euler S-bends with an effective radius of
40 µm were incorporated to scatter spurious light associated with higher-order modes.
This design choice ensures that only the fundamental modes of the two polarizations
are guided within the PIC, while also offsetting the input and output ports of the PIC
to minimize stray light collection.

Coupling Losses (CLs) are depicted in Fig. 5.23(b), revealing values of (8.4 ± 0.8)
dB per facet in the TE polarization and (7.2 ± 0.8) dB per facet in the TM polarization
at 750 nm. These values, although satisfactory, are not up to the existing state of the
art [208]. The polarization dependence of CLs can be attributed to the varying overlap
between the fiber mode and the waveguide mode, which is more pronounced for the
TM polarization.

5.3.2 Integrated components

The integrated structures for this material were simulated using Lumerical software,
followed by fabrication and characterization. These structures operate near 750 nm.
Fig. 5.24 illustrates the chip design, showing various structures including spirals of
different lengths, ring resonators, MMIs, and aMZIs.

Figure 5.24: Schematic design of various structures integrated into the SiN material.
This design was fabricated without the presence of metal heaters to simplify the fabri-
cation procedure at this stage.

Waveguide crossings

In Fig. 5.25(a) the SEM image of the single CR is shown. In Fig. 5.25(b), the ILs for
both TE (blue line) and TM (red line) polarizations of a single CR are depicted. To
ensure an accurate estimation of ILs, the transmission of a total of 40 cascaded crossings
was measured. The uncertainty in these measurements, depicted by the highlighted
band, arises from multiple measurements of nominally identical crossings. Across the
spectral range of 650-850 nm, our crossings demonstrate ILs below 0.13 dB in the TE
polarization and below 0.25 dB in the TM polarization.

MMI Beam Splitters

Two MMI configurations were also fabricated for this material: G-MMI and P-MMI.
Fig. 5.26 shows optical microscope images of a fabricated G-MMI (a) and a P-MMI (b).
Consistent with SiON, it is observed that the P-MMI is smaller in size than the G-MMI.

Fig. 5.27 illustrates the ILs (green lines), and output unbalances (blue lines) of 2x2
beam splitters based on G-MMI or P-MMI within a wavelength range of 650 − 850 nm
and for different polarizations. The uncertainties in the measurements, represented by
the highlighted bands, arise from multiple measurements of nominally identical MMIs.
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Figure 5.25: a) SEM image of a SiN CR. b) ILs in TE (blue line) and TM polarization
(red line) across the spectral range of 650 − 850 nm.
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Figure 5.26: Optical microscope images of a fabricated (a) G-MMI and (b) P-MMI.

The dashed curves depict the simulated spectra from 3D FDTD calculations. The ILs
reach a minimum at the design wavelength of 730 nm, with ILs < 0.5 dB for G-MMI,
while this occurs at 720 nm for P-MMIs.

For the G-MMI, the output unbalance (defined as the ratio between the transmis-
sion intensities at the two outputs) remains flat over a 650-800 nm wide bandwidth
with a maximum value of (0.2± 0.2) dB for TE and (0.3± 0.2) dB for TM polarization. In
P-MMIs, an unbalance of approximately (0.7± 0.6) dB is observed at the design wave-
length for TE polarization. However, the behavior is suboptimal for TM polarization,
displaying unbalanced values exceeding (1.2± 0.2) dB.

Thus, G-MMIs exhibit polarization insensitivity and demonstrate excellent output
balance. In contrast, P-MMIs are adversely affected by polarization, leading to notice-
able performance degradation in TM compared to TE. This discrepancy arises from the
fact that P-MMIs were optimized for a TE0 input mode, resulting in a wavelength and
polarization-sensitive device. Despite being less robust in terms of unbalance, P-MMIs
exhibit a wider bandwidth of minimal ILs compared to G-MMIs.

Table 5.4 provides a comparison of the 2x2 G-MMI beam splitter to the state-of-the-
art for SiN in the VIS-NIR region. It is important to note that the different components
refer to different spectral regions.

MMI ref. Op. wavelength Unbalance Polarization ILs [dB]
MMI 1X2 [209] 484.8 nm 1.1 dB TE (0.19-0.47)
MMI 1X2 [210] 633 nm 0.2 dB TE /

This work G-MMI 2X2 730 nm 0.2-0.3 dB TE-TM <0.5

Table 5.4: Comparison of SiN MMIs in the VIS-NIR spectral region.
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Figure 5.27: ILs (green lines) and output unbalance (blue lines) of 2x2 beam splitters
based on G-MMI or P-MMI within the 650− 850 nm wavelength range and for different
polarizations.
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Mach-Zehner Interferometers

The study of the aMZI in the SiN material has shown that it has a wide range of uses
and functions. Given the close proximity of the generated photons to the pump (ap-
proximately 5 nm), we implemented an aMZI with δL = 30.6 µm, yielding a FSR = 8.9
nm, considering ng = 1.961 at λ = 730 nm. Each arm of the aMZI has a width of 1
µm and consists of four identical 45◦ Euler curves with an effective radius of 80 µm.
These arms are interconnected by straight waveguides, ensuring a total length differ-
ence equal to δL. This configuration was designed to mitigate potential loss. While the
ILs of the aMZIs are primarily influenced by the MMIs, the visibility of the interfer-
ence pattern is dependent on the unbalance of the MMIs. Consequently, the spectral
bandwidth of the MZIs is linked to the bandwidth of the MMIs. Resonance matching
requires active phase shifters along the inner arms despite operating in a fully passive
configuration.
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Figure 5.28: The spectral transmission characteristics of aMZIs based on G-MMIs and
P-MMIs for both TE and TM polarizations. Panels (a) and (b) depict the spectral trans-
mission of an aMZI with G-MMIs for TE and TM polarizations, respectively, while
panels (c) and (d) show the same for an aMZI with P-MMIs.

In Fig. 5.28, the spectral responses of aMZIs based on G-MMIs (G-aMZI, panels
a-b) or P-MMIs (P-aMZI, panels c-d) are presented for TE and TM polarizations, re-
spectively. The optical signal is input at port 1 (in1), and the transmission out of output
ports 1 (out1, blue lines) and 2 (out2, red lines) is measured.

For the G-aMZI, ILs are (-0.8 ± 0.6) dB at 730 nm with a maximum rejection ratio of
(-21.1 ± 0.4) dB for TE polarization (Fig. 5.28(a)). The experimental FSR is extrapolated
by analyzing the peaks in the 50 nm region, confirming a value of (9.00 ± 0.12) nm,
consistent with the design.

In the case of TM polarization (Fig. 5.28(b)), ILs within the 730 nm band are (-
0.7 ± 0.8) dB, with a rejection ratio of (-20.6 ± 0.6) dB. Conversely, for the P-aMZI
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(Fig. 5.28(c)), ILs centered at 720 nm show a minimum of (-0.8 ± 0.8) dB and a rejec-
tion ratio of (-20.9 ± 0.4) dB for TE polarization. The measured FSR is (9.0 ± 0.3) nm.
Fig. 5.28(d) demonstrates that for TM polarization, ILs are (-0.8 ± 0.8) dB within a band
consistently centered at 720 nm, with a rejection ratio of (-18.7 ± 1.2) dB.

The different performances are attributed to the inferior behavior of P-MMIs in TM
polarization, characterized by larger ILs and a consequent low rejection ratio. Addi-
tionally, visibility decreases outside the design wavelength region, leading to increased
ILs and reduced rejection, primarily due to MMI bandwidth limitations. These find-
ings lead to the choice of the G-aMZIs for both signal polarizations, while P-aMZIs are
suitable for TE polarization exclusively.

Rejection Filter

We characterized a sequence of four aMZIs, to filter out pump photons while preserv-
ing the generated photons. In Fig. 5.29, we illustrate the results for G-aMZIs and P-
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Figure 5.29: Spectral response of a high-rejection filter based on a sequence of 4 aMZIs.
The filter is constructed with 4 G-aMZIs (a) and 4 P-aMZIs (b). The dashed lines rep-
resent the simulated response, while the insets display high-resolution measurements.
Panel (c) depicts the measured (dots) and simulated (line) ILs at the transmission peak
(near 734 nm) versus the number of aMZIs in the sequence (green G-aMZI, pink P-
aMZI). Panel (d) illustrates the measured (dots) and simulated (line) rejection ratio at
the transmission minimum (near 736 nm) as a function of the number of aMZIs in the
sequence (green G-aMZI, pink P-aMZI).

aMZIs, in TE polarization. These components were evaluated without any adjustment
of the MZI phases. We observed ILs of (-2.7 ± 0.3) dB for the G-aMZIs and (-2.9 ± 0.4)
dB for the P-aMZIs. The rejection ratio was determined using a tunable wavelength
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titanium-sapphire (Ti:Sa) laser and an optical power meter (Thorlabs-PM100USB), re-
sulting in values of (64 ± 2) dB and (61 ± 2) dB for G-aMZIs and P-aMZIs, respec-
tively (as shown in the insets of Fig. 5.29(a-b)). Fig. 5.29(c) displays the ILs at approx-
imately 735 nm for a single aMZI and for the sequence of four aMZIs (represented
by data points), with simulated results depicted as a continuous line, consistent with
experimental findings. However, when considering the rejection ratio (as shown in
Fig. 5.29(d)), a discrepancy is noted between the simulated and measured values. This
discrepancy could be attributed to the absence of active tuning in the four cascaded
aMZIs, which could enhance rejection through phase synchronization with the use of
thermal phase shifters. Despite this, the observed rejection ratio remains high, reflect-
ing the robustness of the MMI manufacturing process and its suitability for this specific
application. Our results cannot be directly compared with existing literature due to the
absence of similar studies in this spectral region. However, alternative filter structures,
such as cascaded grating-assisted contra-directional couplers (GACDC) and DC inter-
woven with Bragg gratings (BG), have been investigated in previous studies [211–213].
For instance, a sequence of 16 GACDC structures achieved a rejection of 68.5 dB with
ILs of -5.6 dB. Our aMZI-based structures, while achieving a comparable rejection level,
exhibited significantly reduced ILs. Additionally, simulations of the second alternative
filter structure showed a rejection of 60 dB. Table 5.5 provides a summary of this com-
parison.

Filters Op. wavelength ILs Rejection Ref.
GACDC 770-786 nm -5.6 dB 68.5 dB [212]

DC with BG 785 nm Not reported 60 dB (sim.) [213]
Sequence of aMZIs 700-800 nm -2.7 dB (64 ± 2) dB This work

Table 5.5: Comparison of SiN integrated filters in the VIS-NIR spectral region.

Micro-ring resonantors

Micro-ring resonators (MRs) play a crucial role in PICs due to their resonant charac-
teristics and compact footprint 2 [104, 105, 214]. In quantum PICs, the resonant field
enhancement offered by MRs can be utilized to enhance nonlinear optical processes,
such as the generation of single photon pairs through four-wave mixing [27, 86, 107].
Fig. 5.30 illustrates an SEM image of a racetrack MR in the all-pass configuration, com-

20 μm

Figure 5.30: SEM image of the racetrack microring with radius 30 µm.

prising two semicircles of radius R = 30 µm connected by two straight waveguides
of length LC, resulting in a total cavity length of L = 2πR + 2LC. The bus waveg-
uide runs parallel to one of the straight arms at a distance of 600 nm, determining the

2Further details regarding the micro-ring resonator can be found in Chapter 2.
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evanescent coupling strength. Using Lumerical’s 2.5D FDTD Propagation Method, we
conducted simulations of this design with various coupling lengths LC within the spec-
tral range of 650 − 850 nm. In order to identify the critical-coupling working point of
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Figure 5.31: Spectral characterization of racetrack microresonators with a radius of 30
µm. (a) Transmission spectrum. (b) Fit of a single resonance, with background ripples
attributed to Fabry-Perot interference in the chip. (c) Total Q-factor (light blue) and
Extinction ratio (purple) as functions of the coupling length LC. Experimental data
points are represented by solid lines, while dashed lines indicate simulation results
obtained by fixing the intrinsic quality factor to the estimated value Qi = 1.2 × 105 and
varying the value of QLC within the measured region.

our MR, we fabricated a series of racetrack MRs with varying LC, ranging from 5 µm
to 25 µm. Importantly, adjusting LC alters the expected Free-Spectral-Range of the MR,

FSR(λ) = λ2

ng ·L , while leaving its intrinsic quality factor unchanged. The intrinsic qual-

ity factor depends solely on the PLs, defined as Qi =
π·ng

λ·PLs [110]. By examining MRs
with different customized LC, we can pinpoint the critical-coupling regime, identified
as the point where the extinction ratio (ER) reaches a minimum and the total quality

factor Q−1
tot = Q−1

i + Q−1
LC

decreases to half of its intrinsic value [110, 214, 215].

Due to the spectral resolution limitations of the setup in Fig. 5.3, which is not ideal
for measuring high-Q factor, an alternative measurement configuration was adopted.
This involved employing a tunable Extended-Cavity Diode Laser (ECDL) source (Sacher
Lion) in conjunction with an optical wavelength meter (HighFinesse WS6) offering
1 pm accuracy. A series of MRs was examined in TE polarization within the 805 −
815 nm range, resulting in normalized transmission spectra as shown in Fig. 5.31(a). To
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characterize the resonant dips’ lineshape, as illustrated in Fig. 5.31(b), a fitting proce-
dure was employed utilizing a single Lorentzian function adjusted for the background
contribution induced by Fabry-Perot interference, stemming from the reflectance at the
chip facet. Fig. 5.31(c) displays the dependence of the Q-factor (light blue points) and
the Extinction Ratio (ER) (purple points) on the coupling length, compared with sim-
ulation results (dashed lines). A near-critical coupling regime is evident for Lcrit

C =

15.0 µm, with a measured Qcrit
tot = (4.5 ± 0.2) × 104 and an ER of (-11 ± 3) dB. These

values align closely with the estimated intrinsic Qi = (1.20 ± 0.05)× 105, indicating a
PL inside the MR (PLsring) of 2.6 ± 0.1 dB/cm, consistent with the directly measured
PLs at 810 nm in straight waveguides.

5.3.3 Spontaneous Four-Wave mixing in SiN

The experimental setup utilized for biphoton state generation demonstration in spirals
and microrings is depicted in Fig. 5.32. Beginning from the left, two lasers are em-
ployed: the Ti:Sa laser capable of achieving on-chip powers exceeding 20 mW but with
a spectral width of 0.2 nm, and the tunable CW laser from LEOS-solutions (Leos laser),
offering maximum on-chip powers of 9 mW with a spectral width of less than 100 kHz.

Figure 5.32: Experimental setup for nonlinear measurements. From left to right, two
lasers were utilized for measurement, with the tunable CW laser from LEOS-solutions
targeting the microring resonator and the Ti:Sa laser for the spiral waveguide. The
pump beam is filtered through a BPF, with TE polarization selected via a sequence of
half-wave (λ/2) and quarter-wave (λ/4) plates before being coupled to the chip using
an objective lens. Both the spiral source and microring are integrated into the chip.
The output beam is collected by a fiber and brought into free-space detection via a
fiber port. Inside the detection setup, a long-pass filter (LF) separates the signal and
idler photons into two paths, where residual pump light is eliminated before routing
the photons to two silicon single-photon avalanche diodes (Si-SPADs) following an
additional bandpass filter (PBF). Coincidences are registered via a timing trigger.

The choice of the pump laser depends on the quantum source and can be facilitated
by employing a flipping mirror. The laser is butt-coupled to the chip via an optical lens
(OL) with an 80 mm focal length. To ensure signal cleanliness, a BPF with 150 dB
attenuation over 3 nm is positioned before the optical objective lens. Objectives are
used to avoid spurious signals from non-linearly excited pulses.

The input cross-section measures (3400 × 140) nm, which tapers down to (650 ×
140) nm over a 200 µm distance. The positioning of the chip allows for coupling with
either the spiral waveguide or the microring resonator. At the output, the signal is
collected by a tapered fiber with an MFD of 2.5 µm. This fiber is connected to polarizer
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controls and a fibered 99/1 beam splitter (BS), where 1% of the signal is routed to a
power meter, and the remaining 99% is directed to a fiber port for conversion into a
free-space beam.

At this stage, the free-space signal comprises residual pump photons along with
the generated photons. Long-pass filters are employed to separate the pump and divert
the idler and signal into distinct paths. Specifically, two filters with a transmission of
140 dB are utilized to allow the signal to pass while reflecting the idler and pump.
Additionally, two more long-pass filters with 140 dB attenuation in the idler branch are
utilized to eliminate the pump and ensure that only the idler is reflected in the path. In
Fig. 5.32 the two paths are illustrated.

In both pathways, two bandpass filters are positioned before the two free-space Sil-
icon Single-Photon Avalanche Diodes (Si-SPADs). These filters serve to further refine
the selection of the generated photons and mitigate contributions from Raman scatter-
ing and photoluminescent light in the unfiltered spectral region.

Coincidence detection is orchestrated by a time trigger (Swabian Time Tagger 20)
with a resolution of 50 ps. The entire detection apparatus is isolated from external light
sources to prevent any interference from black-body photons.

CAR in Spiral waveguides
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Figure 5.33: Generation band simulation of sFWM process in a waveguide long 1.5 cm.
The two highlighted bands correspond to the selection of the idler (light blue band)
and the signal (light red band).

The first CAR measurement was conducted on the 1.5 cm-long spiral waveguide.
In this scenario, we opted for the Ti:Sa laser due to the absence of the need for a laser
with high coherence time, as required in the case of microring resonators. The chosen
pump wavelength was 781 nm, a selection driven by the peculiar behavior of LF-785
filters, which exhibit decreased efficiency when excessively angled.

With the intramodal process, we were able to proceed directly to the coincidence
measurement, thanks to the continuous band around the pump. This facilitated under-
standing the extent to which we could deviate from the pump without compromising
generation efficiency. Consequently, we strategically positioned the filters to maintain
the idler and signal 3.6 nm away from the pump, ensuring effective residual pump fil-
tration without sacrificing generation efficiency as shown in Fig. 5.33. We measured the
CAR value in these configured settings changing the input power. Fig. 5.34(a) depicts
the histogram of coincidences at an on-chip power of 17.5 mW within a 100 ns win-
dow, revealing the peak of coincidences and the plateau of the accidental coincidences.
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Figure 5.34: a) A histogram showing the coincidence measures at ∆t = 0 (net coin-
cidences + accidental coincidences) and ∆t ̸= 0 (accidental coincidences) for a spiral
waveguide. A histogram with a bin of coincidences of 50 ps is displayed in dark blue.
The zone containing the accidental coincidences is represented in light blue, while the
used coincidence band of 550 ps is displayed in red. It is possible to observe the coin-
cidence peak at ∆t = 0. b) The CAR value (in dark red dots) and the net coincidence
detection (in purple dots) as a function of the on-chip input power.

The resolution of the histogram matches the resolution of the electronic timing used,
which is 50 ps. The light red region indicates the area designated as the window of
coincidences (550 ps), while the light blue region is employed to account for acciden-
tal coincidences. Eq. (1.130), described in Chapter 1, was utilized to calculate the CAR
value. Fig. 5.34(b) represents the CAR and net coincidence rate across varying on-chip
power levels. We noted a CAR peak of (0.082 ± 0.001) with a net coincidence rate of 7
Hz and a coincidence window of 550 ps. Despite the low value influenced by prevalent
photoluminescence and Raman noise, this result represents the first documented result
of spiral entangled photon generation in the VIS-NIR region based on SiN.

CAR in Microring resonators

Generation measurements were also carried out on the microring resonator. For this
particular application, a Leos laser with a spectral line width of less than 100 kHz was
used (Fig. 5.32). In order to ensure that the produced photons and the pump photons
were at the same wavelengths of the spiral case, a 20 µm microring resonator was used
for the measurement, yielding a 1.6 nm FSR. As shown in Fig. 5.33, choosing its second
resonance from the pump (3.2 nm from the pump) ensures a generation efficiency of
60-70%.
Fig. 5.35(a) displays the resonances illustrating the FSR of the microring. Using this
microring resonator, we achieved the resonance shown in Fig. 5.35(b), allowing us to
quantify the Q-factor value of (18.3 ± 1.6)× 103. The coupling length was determined
at the point of maximum Extinction Ratio (ER), resulting in a length of 27.5 µm. Exper-
imental values of the coupling length are depicted in Fig. 5.35(c), showing the variation
compared to the Lumerical Simulation.

The Leos laser is precisely tuned to the microring resonator at a wavelength of
780.77 nm, yielding idler and signal wavelengths of 777.28 nm and 784.35 nm, respec-
tively.

Coincidence measurement was carried out. The coincidence histogram at a reso-
lution of 50 ps was shown in Fig. 5.36(a). The measurement is performed at an on-chip
power of 9 mW, where the coincidence peak and the accidental coincidence plateau
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Figure 5.35: a) Microring resonator resonances spectrum with a radius of 20 µm and
coupling length of 27.5 µm. b) Experimental data (dark red dots) and fit (dashed line)
of the single resonance at 780.77 nm with a resolution of 0.5 pm. c) Experimental data
(dark blue dots) and simulation (light blue line) of the extinction ratio as the coupling
length changes.
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may be easily identified. The light blue region shows the region where accidental coin-
cidences were recorded, while the red region shows the 550 ps window where coinci-
dences occurred. Again, the CAR value was determined using eq. (1.130).
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Figure 5.36: a) Histogram displaying coincidence measures at 9 mW on-chip input
power in 135 s at ∆t = 0 (net coincidences) and ∆t ̸= 0 (accidental coincidences) for a
microring resonator. The histogram features bins of coincidences of 50 ps, depicted in
dark blue. The region containing accidental coincidences is shaded in light blue, while
the utilized coincidence band of 550 ps is highlighted in red. Notably, a coincidence
peak is observable at ∆t = 0. b) Plot illustrating the CAR value, denoted by dark red
dots, alongside the net coincidence detection (represented by purple dots), plotted as a
function of the on-chip input power.

The CAR value and net coincidences as a function of the on-chip power are shown
in Fig. 5.36(b). The highest CAR value attained is 2.4, at a 190 Hz net coincidence rate.
This result, while half compared to the state-of-the-art utilizing a microring resonator
in the VIS-NIR range [86], surpasses the performance achieved with waveguides by
several factors. This improvement can be attributed to the superior pump filtering
capability of the microring resonator, as well as its higher generation efficiency and the
enhancement derived from its Q-factor.

Evaluating the rate of pair generation within the chip takes into account the losses
sustained in the signal and idler lines. Fig. 5.37 depicts the experimental rate of pair
generation compared to simulations, which are represented by dashed lines. Potential
improvements in the system are possible. First, by changing the waveguide’s cross-
section to increase the generation band, generation can be enabled farther by moving
away from the pump, lessening the effect of noise. Second, raising the Q-factor has
the potential to increase generation efficiency. Furthermore, photoluminescence and
Raman scattering noise can be reduced through an optimized fabrication process.

5.4 Toward a quantum simulator in SiN platform

5.4.1 Variational Quantum Eigensolver algorithm

The field of quantum computing has witnessed rapid advancement in recent decades,
transitioning from its conceptualization in the 1980s [170] to the realization of hard-
ware proofs of principle in the 2000s [216, 217]. At the core of quantum computing lies
the qubit [2], the fundamental unit of quantum information, capable of existing in a
superposition of states:

³ |0ð+ ´ |1ð , (5.1)
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Figure 5.37: Pair generation rate on-chip considering the losses on the signal and idler
lines of 20 dB respectively.

where |³|2 + |´|2 = 13. This stands in stark contrast to classical bits, which are confined
to states 0 or 1. This unique property empowers quantum computers to explore vast so-
lution spaces concurrently, offering exponential acceleration over classical algorithms
for certain problems.

Although quantum technology is still in its early stages, fast advancements in
quantum hardware and significant global investment have generated speculation that
in the near future, Noisy-Intermediate Scale Quantum (NISQ) devices may outperform
conventional computers [218]. NISQ devices represent short-term quantum computers
with a restricted number of qubits and insufficient physical qubits to support robust
error correction schemes. Despite their limitations, NISQ computers have exhibited
superior performance compared to classical computers on specific problems tailored
to their capabilities. Notably, current state-of-the-art devices typically have 50 to 100
qubits, enabling them to achieve "quantum supremacy"—outperforming the best clas-
sical supercomputer for certain mathematical tasks [180, 181]. However, the true po-
tential of quantum computers—acceleration for practical applications, often referred
to as quantum advantage—remains largely unrealized. Thus, a crucial technological
challenge lies in harnessing current NISQ devices to realize quantum advantage. One
promising approach is the adoption of shallow quantum circuits, comprising a modest
number of quantum gates operating on a limited set of qubits.

Variational quantum algorithms (VQAs) [219–221] are examples of shallow cir-
cuits. VQAs leverage classical optimization techniques by employing parameterized
quantum circuits to run on quantum computers, with parameter optimization dele-
gated to classical optimizers. This approach not only maintains a low depth of the
quantum circuit but also aids in noise mitigation. An example of a variational algo-
rithm introduced by Peruzzo in 2014 is the Variational Quantum Eigensolver (VQE)
[118, 222, 223]. Utilizing VQE entails a compromise, sacrificing the prolonged coher-
ence times usually required for quantum phase estimation. Instead, it opts for a poly-
nomial overhead, facilitated by iterative measurements and classical processing. The
foundation of VQE lies in the Rayleigh-Ritz variational principle, which aims to op-
timize an upper bound for the lowest possible expectation value of an observable by
using a trial wave function. This principle, when applied to a Hamiltonian Ĥ and a

3In appendix D, a description of the qubit, qudit, and quantum gates is reported
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trial wave function |Ψ(⃗θ)ð, bounds the energy associated with the ground state (E0) by
[118, 224]:

E0 f ïΨ(⃗θ)|Ĥ|Ψ(⃗θ)ð
ïΨ(⃗θ)|Ψ(⃗θ)ð

. (5.2)

Here, E0 denotes the lowest energy eigenvalue of the Hamiltonian Ĥ, and θ⃗ represents

a vector of independent parameters θ⃗ = (θ1, . . . , θn)T .

The core objective of VQE is to identify a parameterization of |Ψ(⃗θ)ð that mini-
mizes the expectation value of the Hamiltonian. A scheme is shown in Fig. 5.38. The

Figure 5.38: Scheme illustrating the VQE method, aiming to minimize the energy of
the Hamiltonian by adjusting variational parameters θ. The process utilizes classical
computing resources (depicted in blue) and quantum computing resources (depicted
in red). The simulation commences with the construction of a fermionic Hamiltonian
and subsequently, transformation into a qubit Hamiltonian, represented as a sum of
Pauli operators. An ansatz is then selected to represent the wave function, initialized
with an initial set of parameters. The trial state is prepared on a quantum computer as
a quantum circuit comprising parametrized gates. The ensuing procedure iterates until
the convergence criterion is met. At each iteration k, the energy of the Hamiltonian is
computed by measuring every Hamiltonian term on a quantum computer and aggre-
gating them on a classical computer. The computed energy is input into the classical
algorithm, which updates parameters for the subsequent optimization step based on
the chosen optimization algorithm.

ground state energy serves as a lower limit for the expectation value and ideally closely
approximates it to the desired level of accuracy. Mathematically, the goal is to find an

approximation to the eigenvector |Ψ(⃗θ)ð of the Hermitian operator Ĥ corresponding to
the lowest eigenvalue E0.

Given the inefficiency of classical computers in preparing, storing, and measuring
wave functions, quantum computers are leveraged for this task, followed by param-
eter updates using classical optimization algorithms. This workflow, as illustrated in
Fig. 5.38, involves initializing the qubit register in the zero state.
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To execute the minimization task on a quantum computer, an "ansatz" wave func-
tion is initially defined, which can be realized on a quantum device through a series of

quantum gates. This wave function |Ψ(⃗θ)ð is represented as the application of a generic

parameterized unitary operation U(⃗θ) to an initial state for N qubits, with θ⃗ represent-
ing a set of parameters within the interval (−π, π]. This circuit generates the trial wave
function:

|Ψ(⃗θ)ð = U(⃗θ)|Ψrefð , (5.3)

where |Ψrefð represents a reference state.

The term |Ψ(⃗θ)ð is referred to as the "trial state", and U(⃗θ) as the "Ansatz circuit".

It’s important to note that |Ψ(⃗θ)ð (and any U(⃗θ))) must be a normalized wave function.
Subsequently, the VQE optimization problem is formulated as:

EVQE = min
θ⃗

ï0|U† (⃗θ)ĤU(⃗θ)|Ψrefð . (5.4)

This equation, also known as the cost function of the VQE optimization problem, bor-
rows terminology from the machine learning and optimization literature. Once the
wave function is prepared, the next step is to measure the expectation value of the
Hamiltonian.

In the second quantized basis set approach, chemical Hamiltonians can be repre-
sented as a linear combination of products of local Pauli operators using the Jordan-
Wigner encoding [225]. This is expressed as:

H = ∑
j

hjPj = ∑
j

hj ∏
i

Ãji . (5.5)

Here, hj represents a real scalar coefficient, Ãji denotes one of the Pauli operators (I, X,

Y, or Z)4 acting on a specific qubit denoted by i, and j.

Using the linearity of expectation values, we can then express the energy E(⃗θk) as:

E(⃗θk) =
N

∑
j=1

hjïΨ(⃗θk)|∏
i

Ãji|Ψ(⃗θk)ð . (5.6)

To achieve the desired precision in determining the expectation value of each term in
the Hamiltonian, the process of state preparation and measurement must be iterated
multiple times. Unlike quantum phase estimation, where prolonged coherence times
are necessary, the quantum computer is reset for each iteration, reducing the required
coherence time. This strategy, termed the Hamiltonian averaging method for energy
computation, requires a number of measurements of the order O(1/ϵ2) to upload en-
ergies with a precision ϵ [226].

VQE in integrated Photonics

Within the EPIQUS project, VQE circuit was designed, specifically targeting four qubits.
This approach is based on the entanglement of two photons across four dimensions
(representing qubits), enabling the preparation of an arbitrary four-qubit fully parame-
terized state. The encoding method, termed path encoding, characterizes each qubit by
the position of the photon within one of the four waveguides. Further details on this

4Here are the matrix representations of the identity and Pauli operators:

I =

(

1 0
0 1

)

; X =

(

0 1
1 0

)

; Y =

(

0 −i
i 0

)

; Z =

(

1 0
0 −1

)

.
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encoding are provided in Appendix D. Local measurements performed on each qubit
facilitate the calculation of the expectation energy for any four-level Hamiltonian.

The integrated photonic circuit, as illustrated in Fig. 5.39(a), was conceptualized
by Dr. Massimo Borghi. Before entering into details, it is important to introduce the
equivalent circuit illustrated in Fig. 5.39(b). The state of a quartet of qubits, delineated

Figure 5.39: a) Implementation of the four-qubit VQE using a photonic circuit. In stage
I, the pump laser is coherently divided to pump four-photon pair sources. One of
the four sources emits a signal (red)/idler (blue) pair. Each photon is independently
directed into one of the four waveguides of the corresponding ququart. In stage II,
the generation of the biphoton state is performed. At the output of stage III, the four-
qubit state is ¼0|0000ð+ ¼1|0101ð+ ¼2|1010ð+ ¼3|1111ð. Stage IV completes the state
preparation and measurement by applying an SU(4) operation to each ququart. In stage
V, the pump filtering is reported as a series of aMZIs. The final stage, VI, performs the
detection using only two SPADs. b) Equivalent circuit enabling the preparation of an
arbitrary four-qubit state starting from the initial state |0000ð. The evolution from the
beginning to the rightmost CNOT gate is executed through stages I, II, and III in the
circuit of the panel (a).

within the computational basis, can be mathematically written as:

|ψð = ∑
ijkl

fijkl |ijklð , (5.7)

wherein the summation extends over the entire binary index permutations i, j, k, and
l. The notation |ijklð refers to a state of four qubits corresponding to the indices i, j, k,
and l. For the sake of notational brevity, we introduce labels m and n, representing the
binary index pairs i, j and k, l respectively, with both m and n spanning from 0 to 3. This
reformulation permits the substitution of fijkl with fmn, and correspondingly, |ijklð with
|mnð, where |mnð denotes the canonical bipartite qubit states within the computational
basis.

Upon expressing the matrix F as F = UDV, through its singular value decompo-
sition—where U and V are unitary matrices of the fourth order and D is a diagonal
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matrix—we can write the state as:

|ψð = ∑
mnq

umqdqqvqn |mnð . (5.8)

Subsequently, we define the states
∣

∣ψq
〉

= ∑m umq |mð and
∣

∣ϕq
〉

= ∑n vqn |nð, which
culminates in the Schmidt decomposition:

|ψð = ∑
q

¼q
∣

∣ψq
〉 ∣

∣ϕq
〉

, (5.9)

where ¼q = dqq. This universal scheme for state construction is described in reference
[227], as illustrated in Fig. 5.39(b). A sequence of operations on the qubits is executed to

actualize the target state starting from |0000ð. An SU(4) operation (U(A)
1;2 ) is performed

to obtain the transformation:

|0000ð → (¼0|00ð+ ¼1|01ð+ ¼2|10ð+ ¼3|11ð)|00ð . (5.10)

Given that the transformation is restricted to |00ð, the gate U(A)
1;2 is not totally defined.

It could be completed, for example, through Gram-Schmidt orthogonalization. In the
second step, it is executed a pair of CNOT operations, one on qubits (1; 3) and the
other on qubits (2; 4), thereby duplicating the states of the previous qubits onto the
subsequent pair, yielding:

¼1|0000ð+ ¼2|0101ð+ ¼3|1010ð+ ¼4|1111ð . (5.11)

Finally, it is used an SU(4) gate U(B)
1;2 to qubits (1; 2) to effectuate the basis transformation

|00ð → |ψ′
0ð, |01ð → |ψ′

1ð, |10ð → |ψ′
2ð, and |11ð → |ψ′

3ð. Concurrently, we apply a

unitary operation U(C)
3;4 to qubits (3; 4) to tranform |00ð → |ϕ′

0ð, |01ð → |ϕ′
1ð, |10ð →

|ϕ′
2ð, and |11ð → |ϕ′

3ð. The resultant sets |ψ′
ið and |ϕ′

ið are individually orthogonal,

due to the unitary nature of U(B)
1;2 and U(C)

3;4 .

The equivalent integrated photonic scheme is reported in Fig. 5.39(a) and can be
divided into five distinct sections, enumerated by Roman numerals I through VI.

Section I comprises a triangular arrangement of three MZIs to coherently divide
the pump laser and, thus, excite four integrated sources located in Section II. Here, the
four sources can generate either through intermodal sFWM or intramodal processes.
Notably, for the implementation of the VQE, purity is not a critical factor; rather, a
high degree of indistinguishability among the four sources is needed. Consequently,
waveguide spirals are favored over microrings.

Through the MZI network in Section I, adjustments in amplitudes and phases
among photons emitted from distinct sources can be made. Operating within a regime
where only one source emits a pair, post-selection is achieved by performing a coinci-
dence measurement between any of the signal and idler modes.

Section III contains the routing stage, where the generated photons if produced
through an intramodal process, are separated. For photons generated via the inter-
modal process, separation is achieved by the ADC located at the source’s end. Sub-
sequently, photons from the signal and idler are directed into four waveguides via a
network of crossing, thereby creating two entangled ququarts. The first quartet is des-
ignated qubits (1, 2), while the second quartet is assigned qubits (3, 4). Here we obtain
the same state described in eq. (5.11).
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In Section IV, arbitrary SU(4) operations are applied to each ququart, which are
performed through a square mesh of MZIs formed by thermal phase shifters. These
operations enable arbitrary operations between the qubit pairs (1, 2) and (3, 4). The
sequential execution of Sections I through IV collectively enables the synthesis of an
arbitrary four-qubit state5. This section allows for the simultaneous preparation and
measurement of the state.

In section V pump photons are removed through a sequence of aMIZs. In Section
VI the detection is performed.

Fig. 5.40 depicts two implemented layouts, showcasing the outlined scheme in (a),
alongside Perruzzo’s original VQE scheme in (b) (red rectangle). Dr. Alessio Baldazzi
and I designed these layouts, with a selection of spiral waveguides as the primary
sources. The six distinct sections of the VQE are indicated by colored contours. In

Figure 5.40: a) Design of the VQE as shown in Fig. 5.39. b) Proposed design of Pe-
ruzzo’s VQE with the inclusion of two MZIs to expand the possibilities of quantum
applications.

Fig. 5.40(b), Perruzzo’s scheme is presented as a Clements scheme6 improved by two
auxiliary MZIs. This configuration serves as a versatile network capable of facilitating
Bell state preparation.

Additionally, the green part illustrates Reck’s scheme, which, together with Clements’
scheme enclosed in the red box, has other applications such as boson sampling [228].
Further discussion of this topic will be provided in the next section. These configu-
rations are designed without the integrated sources. In this case, one has to use an
external SPDC source.

5.4.2 Boson sampling

One problem where quantum supremacy has been demonstrated is the Boson sam-
pling problem. Scott Aaronson and Alex Arkhipov (AA) in 2011 introduced a problem
known as boson sampling (BS) [228]. They argued that classical computers are inca-
pable of accurately simulating the behavior of a linear passive optical system with Fock

5Details regarding the representation of qudit can be found in Appendix D.
6In the App.D the Clements and the Reck schemes are reported.
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state inputs. In particular, predicting the results of sampling the output distribution
of indistinguishable bosons undergoing interference on a randomly chosen linear net-
work involves an exponential overhead in terms of time or resources. This problem is
associated with the difficult #P-hard complexity class problem of evaluating the perma-
nents of matrices with complex elements, making it unsolvable for classical computers.
Photonic systems, with their integrated sources, linear propagation and detectors, offer
promising platforms for its implementation. As AA themselves stated "it is like watch-
ing a dolphin in its natural habitat then we might see it displays equal intelligence with
no special training at all"[228].

In response to theoretical advancements, significant experiments have been un-
dertaken to conduct increasingly large boson sampling experiments [181, 192, 229,
230]. This has spurred a competitive race to achieve quantum advantage in photonic
platforms, where the experiment surpasses classical computers. In the context of the
EPIQUS project, the decision was made to implement boson sampling in the monolithic
SiN platform.

Let’s focus on how BS operates [231]. It is possible to develop two types of BS:
the Scattershot BS [229], and the Gaussian BS [117]. Let us consider the case of the
Scattershot BS (SBS). Imagine a set of m modes characterized by creation operators
a†

i , where i = 1, . . . , m, complying with bosonic commutation relations. A Fock state
representing n photons spread across these modes, is denoted as:

|Sð = |s1s2 . . . smð =
m

∏
i=1

(a†
i )

si

√
si!

|0ð , (5.12)

where si are non-negative integers indicating photon counts in each mode, and ∑i si =
n. When si f 1 for all i, the state indicates a scenario without photon collisions, which
means that no mode has more than one photon.

Now, let’s consider a linear-optical mode transformation U in SU(m), also known
as a linear interferometer. The input state undergoes evolution through a passive linear
optical network, which applies a unitary transformation to the creation operators as
follows:

Ûâ†
i Û† =

m

∑
j=1

Uij â
†
j , (5.13)

where Û represents a unitary matrix describing the linear optics network. Conse-
quently, the transition probability from an input state |Sð = |s1s2 . . . smð to an output
state |Tð = |t1t2 . . . tmð is given by:

P[S → T] =
|Perm(US,T)|2√

s1! . . . sm!t1! . . . tm!
, (5.14)

where Perm is the permanent, US,T is an n × n submatrix of U, built by replicating the
i-th row of U ti times and the j-th column of U sj times.

If we consider a scenario where we insert a photon into each input, then the prob-
ability of finding a photon in each output is equal to Perm2. A fascinating example of
this is the HOM interference, where we can observe that the Perm(MMI matrix) = 0.

Due to the complexity of computing the permanent, this transition probability
shows the computational challenge associated with a specific class of linear optical ex-
periments. Specifically, the permanent is #P-hard, and the best-known classical algo-
rithm for its computation requires exponential time.
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The Boson Sampling system involves preparing an input state with n photons dis-
tributed across m modes, followed by a multimode interferometer described by a ran-
dom unitary operator U. Photon detectors are then employed to measure the output
states. The system does not compute the determinant of the matrix each time; rather, it
leverages interference among photons within it to obtain their probability distribution
at the output. Typically, the number of modes, m, scales as n2 to prevent outputs with
more than one photon.

Boson sampling in integrated photonics

The implementation of BS according to the approach outlined by AA involves three
fundamental steps:

• Input Preparation: This step involves the initialization of the input states, which
can include vacuum states and single-photon Fock states.

• Evolution: The initialized states undergo evolution through a passive linear inter-
ferometer, which implements a unitary transformation on the creation operators
of the photons.

• Measurement: The output states resulting from the evolution process are then
measured using on-off photodetectors to record the photon counts in each output
mode.

Within the EPIQUS project, these three steps can be seamlessly executed on a mono-
lithic SiN platform. Specifically, heralded single photons can be generated through the
non-degenerate sFWM process, with the flexibility to use intermodal and intramodal
sources interchangeably. The implementation of interferometric networks involves an
ensemble of MZIs, while the detection stage utilizes integrated Si-SPADs. Let us divide
the developed scheme of the PIC into five distinct parts, as depicted in Fig. 5.41. The

Figure 5.41: Circuit sketch illustrating the implementation of a scattering boson sam-
pler. The circuit is divided into five parts. Part I: the injection of the pump into the
sources. In Part II: the sFWM process. Part III: the separation of the generated photons
by an aMZI, followed by a cascade of aMZIs to remove the residual pump. In Part IV,
the network of 6×6 matrix of MZIs is present in the signal branch to perform the SBS.
Part V: the detection process.

initial three blocks of the process are similar to the ones described in VQE, where mul-
tiple integrated sources can be excited. In this case, we consider 3 integrated sources.
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In block IV, the idler and signal photons follow separate paths, which characterizes
the SBS approach. In SBS, idler photons traverse their designated waveguides and are
subsequently detected, while signal photons enter the interferometric 6 × 6 system.

The interferometric system, comprising an ensemble of MZIs, is configured based
on either the Reck or Clements scheme, with an additional phase element. Details of
these schemes are provided in Appendix D. At the output of this system, photons are
detected by integrated Si-SPADs, and their measurements are synchronized with the
detection of idler photons to establish coincidences.

In collaboration with Dr. Alessio Baldazzi, several layouts for SBS were devel-
oped. Fig. 5.42 illustrates one of these layouts, featuring three spiral sources followed
by a photon generation separation and pump filtration process. Notably, this layout
demonstrates how signal photons are directed to specific inputs of an interferometer
system configured in the Reck scheme (block IV), while idler photons are directed to-
wards readout on integrated Si-SPADs in block V.

Figure 5.42: Layout of the SBS system. The blocks correspond to the blocks shown in
Fig. 5.41.

In addition, different Reck and Clements 4×4 (Fig. 5.40(b)) and 7×7 (Fig. 5.43(a)-
(b)) configurations were designed. These configurations were intended for use with
an external SPDC source. It is worth mentioning that in the case of the interferometric
system configured in a 7×7 Clements configuration (Fig. 5.43(a)), additional MZIs were
incorporated. This simplifies the characterization of the interferometric system and
enables the ensemble to be utilized for diverse applications, such as the implementation
of probabilistic Controlled-NOT (CNOT) gates [232].

Figure 5.43: Integrated photonic design of MZIs network in Clements configuration
(a) and Reck configuration (b). In (a), an additional MZI is inserted to perform CNOT
operation. In blue, the waveguides, and in orange, the phase shifters.
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5.4.3 Challenges and issues of the integrated platform

It is useful to introduce some aspects regarding the minimum specifications for real-
izing an integrated simulator. These specifications are closely related to the type of
application (Boson sampling or VQE), configuration (Reck or Clements), and circuit
depth. Different types of non-ideality affect the scalability of the PIC: error setting in
phase shifters, the unbalance of the MMIs, the insertion loss of the different devices,
and the coupling and propagation losses. In our case, the last two parameters con-
strain the scalability of the quantum simulator. Therefore, significant efforts are being
made in the fabrication process to reduce them.
Regarding fidelity, the type of PIC configuration has a strong impact on it. Unbalanced
losses, i.e., different paths through the interferometer suffer different losses, bring to
poor fidelity in the desired operation. In the Clements configuration, this issue is miti-
gated because of the uniform structure among all the paths. Another important aspect
concerns the rejection of integrated filters useful for residual pump removal [233]. Ini-
tial estimations suggest that 6-8 aMZIs need to be inserted in the cascade to achieve
active filtering of about 120-150 dB.

5.5 Conclusions and future prospectives

This chapter presents my contribution to the European project EPIQUS, which aims to
develop a fully integrated QS in a photonics platform with quantum light generation,
manipulation, and detection. Through an investigation of two materials, SiON and
SiN, in their linear and nonlinear regimes, SiN emerged as the preferred material for
implementation in the VIS-NIR region. Numerous components were designated and
tested within this platform, demonstrating their high performance.
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Chapter 6

Swap test algorithm on a linear
Photonic integrated Circuit

6.1 Quantum machine learning

Quantum Machine Learning (QML) [234–237] is an emerging interdisciplinary field
that merges QC [238, 239] with Machine Learning (ML) [240, 241]. The primary goal of
QML is to exploit quantum mechanical principles to devise more efficient algorithms
for various ML tasks [242–244].

Among the different ML models, there are the Support Vector Machines (SVMs)
[236, 245]. SVMs are well-known for their ability to cluster data, and they share con-
ceptual similarities with quantum wave functions. As supervised learning models,
SVMs demonstrate robustness in categorizing data clusters.[246].

Central to SVM functionality is the kernel function [247, 248], pivotal for quanti-
fying dissimilarities between datasets in feature spaces. SVMs excel at classifying data
clusters by assigning elements of the dataset to specific categories based on property
definitions in a feature space, with kernel functions evaluating the distances between
data points. The efficacy of SVM training and classification depends on the quality of
these kernel functions, often expressed as scalar products [249, 250]. However, con-
structing kernel functions requires non-linear computational complexity, particularly
challenging for classical computing systems, especially with large datasets.

On this front, speed-up can be achieved through quantum algorithms. Leverag-
ing the large configuration spaces inherent in quantum systems, these algorithms hold
promise for accelerating computations when executed on quantum hardware. The hy-
brid architecture seeks to integrate quantum-enhanced SVMs, thereby enhancing effi-
ciency and providing input for the machine learning program.

The swap test [251] stands out as a quantum algorithm capable of computing
the scalar product of two arbitrary quantum states by sampling an auxiliary qubit.
Leveraging qubit encoding, this test offers the potential to accelerate the estimation
of kernel function entries. Traditional classification algorithms for purely classical ma-
chines exhibit a scaling behavior of O(log(ϵ−1)poly(M, N)), where N represents the
feature space dimension, M denotes the number of training data points, and ϵ signifies
the desired accuracy [252]. Specifically, computing each kernel entry requires a time
complexity of O(log(ϵ−1)N), and this operation must be repeated M(M − 1)/2 times.
However, leveraging hybrid classical-quantum hardware and employing qubit-based
encoding along with the implementation of the swap test, the linear scaling with N can
be reduced to a logarithmic one, achieving a complexity of O(log(N)ϵ−2) [253].
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Present implementations of the swap test (SWT) have predominantly utilized su-
perconducting qubits and trapped ions [254, 255]. These realizations often involve a
higher number of gates and qubits compared to the gate-based representation proposed
in previous works [254].

Quantum optics is a promising approach for implementing swap tests, although
it currently exists only as a theoretical proposal [256]. Key among the challenges in
the photonic platform is the realization of controlled-SWAP (CSWAP) or Fredkin gates
[257]. Theoretical propositions and experimental demonstrations of CSWAP gates have
explored diverse strategies including linear optics with probabilistic methodologies
[258–260], cross-Kerr nonlinearities [261, 262], entangled photon pair sources [263–265],
continuous variable versions with compressed two-mode states [266], single photons
coupled with quantum dots in single-sided cavities [267], and combinations of coher-
ent states, threshold photon detectors, and classical post-processing [268, 269]. Notably,
innovative approaches encode three qubits within a single photon, exploiting its polar-
ization state and orbital angular momentum [270]. It should be noted that this encoding
is not scalable and results in a number of modes that increases exponentially with the
number of qubits.

In this chapter, we explore an alternative photon-integrated circuit implemented
on the SiN platform. The primary objective is to perform the swap test at room tem-
perature. We achieve this by employing path encoding, which translates the presence
of photons within specific waveguides to corresponding qubits. We present a proof-of-
concept approach for the two-qubit swap test algorithm using only linear optical com-
ponents—such as MMIs, waveguide crossings, and thermal phase shifters. We used
photons from a weak coherent state (WCS) generated by an attenuated laser to validate
our system. Detailed information about WCS can be found in Section 1.1.4.

6.2 Swap test algorithm

The estimation of the superposition of unknown quantum states constitutes a corner-
stone in quantum information processing, serving as a fundamental primitive with
broad applicability across diverse domains. These applications include quantum fin-
gerprinting [271, 272], entanglement estimation [273], quantum information [274, 275],
and quantum machine learning [246, 276]. In the majority of applications, the esti-
mation of the overlap between quantum states is achieved through the use of the SWT
[251]. Fig. 6.1 shows the gate notation of the SWT. The initial configuration of the circuit

Figure 6.1: Gate representation of the swap test algorithm.

is characterized by the tensor product of three states:

|ψð ¹ |ξð ¹ |0ð . (6.1)

Here, |ψð and |ξð represent the quantum states of interest, while |0ð denotes the initial
state of the ancillary qubit, also known as the ancilla.
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Subsequently, the circuit initializes the two qubits |ψð and |ξð alongside the ancil-
lary qubit |0ð. A Hadamard gate (H) is then applied to the ancillary qubit, inducing a
superposition of |0ð and |1ð. The resulting state is expressed as:

1√
2
(|ψð ¹ |ξð ¹ |0ð+ |ψð ¹ |ξð ¹ |1ð) . (6.2)

Following this, a controlled-swap gate (CSWAP) is applied to the composite state, em-
ploying the ancillary qubit as the control qubit. The CSWAP operation swaps the states
of the target qubits (|ψð and |ξð) if the ancillary qubit is in the state |1ð. Consequently,
the resulting state becomes:

1√
2
(|ψð ¹ |ξð ¹ |0ð+ |ξð ¹ |ψð ¹ |1ð) . (6.3)

Subsequent to the CSWAP operation, another Hadamard gate (H) is applied to the
ancillary qubit, resulting in the following state:

1

2
(|ψð ¹ |ξð+ |ξð ¹ |ψð)¹ |0ð+ 1

2
(|ψð ¹ |ξð − |ξð ¹ |ψð)¹ |1ð . (6.4)

Finally, a measurement is performed on the ancillary qubit, yielding the outcome prob-
abilities P(0) and P(1), which are directly related to the scalar product of the two un-
known states, as expressed by:

P(0) =
1

2
(1 + |ïψ|ξð|2) and P(1) =

1

2
(1 − |ïψ|ξð|2) . (6.5)

These relationships can be readily inverted. Specifically, we can express the scalar prod-
uct |ïψ|ξð|2 in terms of the measured probabilities P(0) and P(1) as follows:

|ïψ|ξð|2 = 2 P(0)− 1 = 1 − 2 P(1) . (6.6)

These relationships show that the scalar product calculation can be turned into a sam-
pling problem, with the statistics of the auxiliary qubit outcomes evaluating the qubit
overlap. Notably, the swap test algorithm is often characterized as non-destructive, as
the measurement is confined solely to the ancilla, allowing for continued use of the
remaining qubits for subsequent operations. Consider equations (6.5), if the two qubit
states |ψð and |ξð are equal i.e., |ïψ|ξð|2 = 1, the auxiliary qubit has a zero probabil-
ity of being in the state |1ð and a certainty of being in the state |0ð. Conversely, if the
two qubits are orthogonal, i.e., |ïψ|ξð|2 = 0, the auxiliary qubit has an equal chance of
being in either the |0ð or |1ð state. Intermediate scenarios lie between these extremes:
as evident from equations (6.5)-(6.6), in all cases, it holds that 0.5 f P(0) f 1 and
0 f P(1) f 0.5.

As previously introduced, one application of the SWT is in implementing a quan-
tum fingerprinting routine. Suppose two users, Alice and Bob, possess secret keys x and
y, respectively, and wish to compare them. They can transmit their keys to a trusted
node, which, utilizing the swap test circuit, can quantify the similarity between the
keys. This approach significantly reduces the encoding length for the equality prob-
lem, where the objective is to determine:

f (x, y) =

{

1 if x = y

0 if x ̸= y
. (6.7)
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This problem, which typically requires exponentially longer encoding in classical sce-
narios, benefits from the use of qubits, where only O(log n) qubits are needed if both
users possess n bits. The solution can be achieved with a probability dependent on the
number of quantum hardware cycles.

The number of samples required to achieve an error η in the evaluation of the
overlap with a probability P(0) = 1 − δ scales as O

(

(1 − δ)δ η−2
)

[252, 253]. This
scaling relation provides insight into the trade-off between the precision of the overlap
evaluation and the number of samples needed to achieve it.

The swap test can be transformed into the SWITCH-test [277], aimed at discrim-
inating between two quantum evolutions U1 and U2. This involves setting the two
unknown qubits |ψð and |ξð to U1|χð and U2|χð, respectively, where |χð is a reference
state. The resulting algorithm yields:

P(0) =
1

2

(

1 + |ïχ|U†
1 U2|χð|2

)

, (6.8)

P(1) =
1

2

(

1 − |ïχ|U†
1 U2|χð|2

)

. (6.9)

Thus, the sampling outcomes provide insights into the proximity between the trans-
formations U1 and U2. However, if our objective extends beyond mere discrimination
criteria to include detailed knowledge of a specific transformation, quantum Hamil-
tonian learning, as proposed in [278, 279] and implemented in [280], allows for the
estimation of salient Hamiltonian parameters.

Entangled state

The discussion outlined above applies specifically when the two qubits are prepared in
the separable state |ψð¹ |ξð. Now, let’s consider the scenario where a generic entangled
state is prepared in the first two entries of the circuit. In the computational basis, this
can be expressed as:

(A00|00ð+ A01|01ð+ A10|10ð+ A11|11ð)¹ |0ð , (6.10)

where |A00|2 + |A01|2 + |A10|2 + |A11|2 = 1. Again, the third qubit serves as the ancilla,
initialized in the state |0ð.
Applying the swap test circuit to this entangled state yields the following output:

[

A00|00ð+ A01 + A10

2
(|01ð+ |10ð) + A11|11ð

]

¹ |0ð

+
A01 − A10

2
(|01ð − |10ð)¹ |1ð . (6.11)

In this case, the probabilities are given by:

P(0) = |A00|2 + |A11|2 +
1

2
|A01 + A10|2, (6.12)

and

P(1) =
1

2
|A01 − A10|2 . (6.13)

This result illustrates that in the presence of entanglement, P(1) can exceed 0.5, which
is impossible when the two unknown qubits are in a separable state. For instance,

choosing A00 = A11 = 0 and A01 = −A10 = 1√
2

results in P(0) = 0 and P(1) = 1,
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corresponding to the Bell state 1√
2
(|01ð − |10ð). Other Bell states yield P(0) = 1 and

P(1) = 0, as the overall state remains unchanged after the CSWAP gate.

This condition provides a sufficient criterion for identifying entanglement: if the
swap test algorithm yields an outcome with P(1) > 0.5, the state is entangled. How-
ever, it is not a necessary condition, as an entangled state can still yield P(1) f 0.5.

An interpretation of this result can be offered by considering the states |±ð ≡
1√
2
(|0ð ± |1ð) and observing that the two two-qubit states:

|+ð ¹ |±ð = 1

2
{|00ð ± |01ð+ |10ð ± |11ð} (6.14)

have overlap equal to one and zero, or equivalently, they result in P(1) = 0 and
P(1) = 0.5, respectively. By applying a post-selection procedure, focusing only on
cases where the two qubits are equal or different in the computational basis (i.e., they
have the same or opposite parity), we can isolate events corresponding to Bell states.

The same-parity condition selects 1√
2
(|00ð ± |11ð), while the opposite-parity condition

selects 1√
2
(|01ð ± |10ð). For initial states |+ð ¹ |±ð, the conditional probability of the

ancilla being in the state |1ð, given the same or opposite parity, remains zero after
the swap test. When the initial state is |+ð ¹ |−ð, the conditional probability remains
zero even if the two qubits are orthogonal because the events contributing to P(1) do
not satisfy the chosen parity condition. However, for the initial state |+ð ¹ |−ð and
the opposite-parity condition, the conditional probability increases to 100%, as events
where the ancilla outcome is different from one are neglected, and normalization is
performed with respect to the opposite-parity event probability1.

6.3 The swap test in a Photonic integrated circuit

6.3.1 Analytical description

We undertake a direct translation of the gates depicted in the standard schematic illus-
trated in Fig. 6.1 into the corresponding photonic operations, as depicted in Fig. 6.2(a).
Subsequently, Fig. 6.2(b) presents a schematic of the PIC, respectively. The design of the
PIC is also performed by the contribution of Dr. Nicolo Leone and Dr. Alessio Baldazzi.
They additionally contributed to the experimental measurements. Before delving into
the individual blocks, it is useful to introduce the type of encoding utilized to define
the qubits.

Path encoding

To encode states within the PIC, we adopt a method employing path-encoded single
photons, where the state is determined by the waveguide through which a single pho-
ton travels [19, 281, 282]. This qudit representation is described in the App. D.

In our proof-of-concept experiment, we utilize photons from WCS to prepare the
two qubits |ψð and |ξð as inputs for the swap test, with one qubit set to |0ð for the
ancilla. Hence, eight paths, i.e., 23, are necessary. The encoding is achieved by simply

1More rigorously, if we define A as the event when the ancilla is in the state |1ð and B/C as the event when
the two qubits have the same/opposite parity, the conditional probabilities P(A|B) and P(A|C) are defined
by the ratio of P(A∩ B)/P(B) and P(A∩C)/P(C) respectively. P(A∩ B) = 0 for the initial states |+ð ¹ |±ð
and P(A ∩ C) = 0 only for |+ð ¹ |+ð. For the state |+ð ¹ |−ð, P(A|C) is 100% since P(A ∩ C) = 0.5 and
P(C) = 0.5.
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Figure 6.2: a) Gate Representation of our Linear Photonic Swap Test Circuit. In our
linear photonic swap test circuit, the Hadamard (H) gate is realized using MMIs, while
the PS3 gate symbolizes the phase shifters necessary to equalize the optical paths. b)
Schematic representation of the swap test PIC. In dark red the waveguides, in gold the
thermal-phase shifter and in pink the cladding. The red pulses represent the photon
statistics inside the platform.

representing the waveguide number and converting it to binary numbers:

|0ð → |000ð ≡ |0ð ¹ |0ð ¹ |0ð , |1ð → |001ð ≡ |0ð ¹ |0ð ¹ |1ð ,

|2ð → |010ð ≡ |0ð ¹ |1ð ¹ |0ð , |3ð → |011ð ≡ |0ð ¹ |1ð ¹ |1ð ,

|4ð → |100ð ≡ |1ð ¹ |0ð ¹ |0ð , |5ð → |101ð ≡ |1ð ¹ |0ð ¹ |1ð ,

|6ð → |110ð ≡ |1ð ¹ |1ð ¹ |0ð , |7ð → |111ð ≡ |1ð ¹ |1ð ¹ |1ð ,

(6.15)

where the state on the left-hand side of the arrow represents the qudit state, while the
first two positions on the right-hand side refer to the qubits, whose scalar product is of
interest, and the third position refers to the ancilla. Thus, when a photon is in the top
waveguide, or equivalently, the qudit is in the state |0ð, the corresponding prepared
three-qubit state is |000ð. This principle extends to the remaining states.

Preparation Stage

The PIC comprises two primary stages. To simplify the Fig. 6.2(b) is split into this two
parts: the preparation stage (Fig. 6.3) and the swap test stage (Fig. 6.4), corresponding
to the setup of the state |ψð ¹ |ξð and the execution of the swap test algorithm, respec-
tively.

Fig. 6.3 the preparation stage is illustrated. This stage has three Mach-Zehnder
interferometers (MZI) and six phase shifters (PS). Each MZI consists of two sequential
blocks, each comprising a balanced MMI followed by phase shifters on each waveg-
uide. As expressed in eq. (2.25), the transfer matrix UMZI(θ) associated with the MZI
is given by:

UMZI(θ) ≡ UMMI · UPS(2 θ) · UMMI = i e−i(θ(1)+θ(2))

(

sin ∆θ cos ∆θ
cos ∆θ − sin ∆θ

)

, (6.16)
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Figure 6.3: Scheme for the preparation stage circuitry for the two quantum states |ψð
and |ξð. Block I (yellow) includes one MZI and two thermal phase shifters dedicated
to the identification of the first state |ψð. Block II (green) encompasses the circuitry
for the second state |ξð, comprising two MZIs and the corresponding phase shifters.
Block III (grey) features the incorporation of four additional waveguides to facilitate
the generation of various configurations of input states, including the ancillary qubit.

where ∆θ = θ1 − θ2. Here, the top and bottom positions or states |0ð and |1ð are respec-

tively represented by the vectors
(

1 0
)T

and
(

0 1
)T

.

For ease of description, I divide the preparation stage into 3 different blocks. The
first MZI and two PSs in block I establish the state of the first qubit by applying the
phases (∆θ1, ∆ϕ1). Subsequently, in block II, the second and third MZIs along with the
last four PSs (MZI2, MZI3, and PS2 in the two rectangular regions) prepare the second
qubit by setting the phases (∆θ2, ∆ϕ2).

Starting from the initial state |0ð and applying the transformation defined as

Urot(θ, φ) ≡ UPS(φ) · UMZI(θ) , (6.17)

any point in the Bloch sphere associated with the single qubit can be reached. These
transformations can be incorporated into the qubit structure, leading to the matrix rep-
resentation of an MZI followed by PS operating on the k-th and (k + 1)-th waveguides:

U(k)
rot (θ, φ) ≡

























1 0 . . . . . . . . . 0

0
. . .

...
... (Urot)11 (Urot)12

...
... (Urot)21 (Urot)22

...
...

. . . 0
0 . . . . . . . . . 0 1

























, (6.18)
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Here, the entries of the matrix Urot are determined by eq. (6.17), and the mapping from
Dirac notation to vector notation, e.g., in the qu-quart case, is given by:

|00ð ⇐⇒
(

1 0 0 0
)T

,

|01ð ⇐⇒
(

0 1 0 0
)T

,

|10ð ⇐⇒
(

0 0 1 0
)T

,

|11ð ⇐⇒
(

0 0 0 1
)T

.

(6.19)

For a setup with four waveguides, only three positions are available for a MZI followed
by a PS, corresponding to k = 1, 2, 3. These choices correspond to the cases where this
device operates on the first and second waveguides, second and third waveguides, and
third and fourth waveguides, respectively.

The two states, considering the action of the triangular arrangement of Urots on the
input photon states |01ð can be described as:

|ψð ¹ |ξð = U(2)
rot (θ22, φ22) · U(0)

rot (θ21, φ21) · U(1)
rot (θ1, φ1) ·









0
1
0
0









= −ei ∑j=1,2(θ1(j)+θ21(j)+θ22(j))









ei(ϕ1(1)+ϕ21(1)) sin ∆θ1 cos ∆θ21

−ei(ϕ1(1)+ϕ21(2)) sin ∆θ1 sin ∆θ21

ei(ϕ1(2)+ϕ22(1)) cos ∆θ1 sin ∆θ22

ei(ϕ1(2)+ϕ22(2)) cos ∆θ1 cos ∆θ22









,

(6.20)

which can also be expressed in Dirac notation as:

|ψð ¹ |ξð = U(2)
rot (θ22, φ22) · U(0)

rot (θ21, φ21) · U(1)
rot (θ1, φ1) · |01ð

= −ei ∑j=1,2(θ1(j)+θ21(j)+θ22(j))

{

ei(ϕ1(1)+ϕ21(1)) sin ∆θ1

(

cos ∆θ21|00ð − e−i∆ϕ21 sin ∆θ21|01ð
)

+ei(ϕ1(2)+ϕ22(1)) cos ∆θ1

(

sin ∆θ22|10ð+ e−i∆ϕ22 cos ∆θ22|11ð
)}

,

(6.21)

where ∆ϕJ ≡ ϕJ(1)− ϕJ(2), and an abuse of notation is used to denote the U(k)
rot matrix

and corresponding unitary transformation.

These equations illustrate that the preparation step enables the parameterization
of any two-qubit state, including entangled states. Specifically, any state of the form
A00|00ð+ A01|01ð+ A10|10ð+ A11|11ð with |A00|2 + |A01|2 + |A10|2 + |A11|2 = 1 can
be expressed. The state is separable if θ2 ≡ θ21 − π

2 = θ22 and φ2 ≡ φ21 = φ22, and,
modulo a global phase, it reads

|ψð ¹ |ξð =
(

sin ∆θ1|0ð+ e−i∆ϕ1 cos ∆θ1|1ð
)

¹
(

sin ∆θ2|0ð+ e−i∆ϕ2 cos ∆θ2|1ð
)

=









sin ∆θ1 sin ∆θ2

e−i∆ϕ2 sin ∆θ1 cos ∆θ2

e−i∆ϕ1 cos ∆θ1 sin ∆θ2

e−i(∆ϕ1+∆ϕ2) cos ∆θ1 cos ∆θ2









,
(6.22)
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which is the generic form of a separable state of two qubits. Therefore, the first MZI sets
the first qubit, while the second and the third ones set the second qubit: the setting of
the second qubit implies a defined relationship between the phases of the second and
third MZIs. This point has important practical implications since, for a generic state, it
is required to compensate for the spurious global phase of the second and third MZIs
due to fabrication imperfections.

At block III of the preparation stage, four additional waveguides are introduced,
as depicted in Fig. 6.3. The arrangement of these additional waveguides follows the
encoding scheme established during the preparation stage for the two qubits. Consid-
ering that, this state becomes:

|Ψð = |ψð ¹ |ξð ¹ |0ð =

























sin ∆θ1 sin ∆θ2

0
e−i∆ϕ2 sin ∆θ1 cos ∆θ2

0
e−i∆ϕ1 cos ∆θ1 sin ∆θ2

0

e−i(∆ϕ1+∆ϕ2) cos ∆θ1 cos ∆θ2

0

























. (6.23)

Swap test stage

Figure 6.4: a) Our implementation of the swap test utilizing path encoding. The stage is
segmented into four blocks labeled from I to IV, distinguished by different colors. Each
block comprises MMIs, crossings, and heaters. b) Gate Representation of our Linear
Photonic Swap Test Circuit divided into the same blocks.

Following the preparation stage, we enter the swap test stage. This stage too, for
ease, is divided into blocks I to IV as shown in Fig. 6.4(a). For a direct understanding,
Fig. 6.4(b) shows the gate representation of the swap circuit. In block I, the stage begins
with a series of MMIs connecting every even and odd waveguide. This operation is
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equivalent to applying the transformation 1 ¹ 1 ¹ UMMI to the state |ψð ¹ |ξð ¹ |0ð.
In our implementation, instead of employing an H gate, we utilize the transformation
UMMI. The effect of this initial step, governed by the transformation 1 ¹ 1 ¹ UMMI, can
be expressed in matrix notation as:

1 ¹ 1 ¹ UMMI =
1√
2

























1 i 0 0 0 0 0 0
i 1 0 0 0 0 0 0
0 0 1 i 0 0 0 0
0 0 i 1 0 0 0 0
0 0 0 0 1 i 0 0
0 0 0 0 i 1 0 0
0 0 0 0 0 0 1 i
0 0 0 0 0 0 i 1

























. (6.24)

This matrix representation shows the mapping from Dirac notation to vectorial no-
tation, where each basis vector corresponds to a specific state. In block II, a central
network of crossing waveguides is established to implement UCSWAP, represented by
the matrix:

UCSWAP =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























. (6.25)

Examining the eight basis vectors reveals that the CSWAP operation primarily involves
swapping the states |011ð and |101ð, the non-diagonal terms in the matrix. Indeed, it’s
remarkable that this operation occurs within a passive circuit, contrasting with the com-
plexity of other photonic approaches reported in the literature [256, 261, 262]. However,
the price to be paid for the realization of this passive device is the non-scalability of the
encoding used. Phase shifters are introduced on all eight waveguides to compensate
for spurious phases (block III). Another layer of MMIs implements the final transfor-
mation 1 ¹ 1 ¹ UMMI before detection (block IV).

The overall manipulation stage for the swap test can be represented as

Uswaptest = (1 ¹ 1 ¹ UMMI) · UPS8
(θs) · UCSWAP · (1 ¹ 1 ¹ UMMI) . (6.26)

The matrix describing the SWT stage can be factorized in three mutually commuting
contributions:

MZI(0) (θs(1), θs(2)) · MZI(6) (θs(7), θs(8)) · Uswap-core (θs(3), θs(4), θs(5), θs(6)) .
(6.27)
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Upon setting all phases θs to zero and applying it to the generic state prepared earlier,
the Uswaptest is:

Uswaptest |Ψð =

























0 i 0 0 0 0 0 0
i 0 0 0 0 0 0 0

0 0 1
2

i
2 − 1

2
i
2 0 0

0 0 i
2 − 1

2
i
2

1
2 0 0

0 0 − 1
2

i
2

1
2

i
2 0 0

0 0 i
2

1
2

i
2 − 1

2 0 0
0 0 0 0 0 0 0 i
0 0 0 0 0 0 i 0

























·

























sin ∆θ1 sin ∆θ2

0
e−i∆ϕ2 sin ∆θ1 cos ∆θ2

0
e−i∆ϕ1 cos ∆θ1 sin ∆θ2

0

e−i(∆ϕ1+∆ϕ2) cos ∆θ1 cos ∆θ2

0

























=
1

2

























0
2i sin ∆θ1 sin ∆θ2

e−i∆ϕ2 sin ∆θ1 cos ∆θ2 − e−i∆ϕ1 cos ∆θ1 sin ∆θ2

i e−i∆ϕ2 sin ∆θ1 cos ∆θ2 + i e−i∆ϕ1 cos ∆θ1 sin ∆θ2

−e−i∆ϕ2 sin ∆θ1 cos ∆θ2 + e−i∆ϕ1 cos ∆θ1 sin ∆θ2

i e−i∆ϕ2 sin ∆θ1 cos ∆θ2 + i e−i∆ϕ1 cos ∆θ1 sin ∆θ2

0

2i e−i(∆ϕ1+∆ϕ2) cos ∆θ1 cos ∆θ2

























. (6.28)

Finally, {P(x)}x=0,1 represents the probability that the ancilla qubit is found in state x.
It can be expressed as

P(x) = Tr[Uswaptest|ΨðïΨ|U†
swaptest · (1 ¹ 1 ¹ Px)] =

1

2

(

1 − (−)x|ïψ|ξð|2
)

, (6.29)

where Px is the projector onto the state |xð for the ancilla qubit, and |ψð and |ξð are as
given in eq. (6.20). The resulting probabilities for outcomes {P(x)}x=0,1 are given by:

P(0) =
1

2

(

1−cos2(∆θ1−∆θ2) cos2

(

∆ϕ1−∆ϕ2

2

)

−cos2(∆θ1+∆θ2) sin2

(

∆ϕ1−∆ϕ2

2

))

,

P(1) =
1

2

(

1+cos2(∆θ1−∆θ2) cos2

(

∆ϕ1−∆ϕ2

2

)

+cos2(∆θ1+∆θ2) sin2

(

∆ϕ1−∆ϕ2

2

))

.

(6.30)

The scalar product of |ψð and |ξð reads

|ïψ|ξð|2 = cos2(∆θ1−∆θ2) cos2

(

∆ϕ1−∆ϕ2

2

)

+ cos2(∆θ1+∆θ2) sin2

(

∆ϕ1−∆ϕ2

2

)

.

(6.31)
Indeed, it’s worth noting that our derived result, eq. (6.29), obtained from the sampling
of even and odd outputs (x = 0 and x = 1, respectively), matches the outcome of
the standard swap test algorithm described before, with the exception of the exchange
between the P(0) and P(1) for the ancilla, as demonstrated in eq. (6.5). This is due to
the fact that, in this case, we are using MMI as Hadarmard.

Experimentally, the probabilities {P(x)}x=0,1 are determined by sampling the counts
at the even and odd outputs of the ancilla qubit. This is expressed as:

P(x) =
Nx

N0 + N1
, (6.32)

where N0 and N1 represent the photon counts detected from the even and odd waveg-
uides, respectively. To acquire these counts, the phases of the operation UPS3

in the
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swap test stage III are adjusted, and only the even outputs are sampled using four de-
tectors. A π shift of the phases in stage III, allows to detect at the same outputs the
odd outputs with the same four detectors at the cost of doubling the overall acquisition
time. Despite being based on the non-destructive swap test scheme, the implemented
scheme becomes destructive due to the nature of the detection stage, where the total
state (6.1) is written in single photon path encoding during each run.

Swapping of the outputs

To facilitate understanding, let’s illustrate how the outputs corresponding to the ancil-
lary qubit state |0ð can be interchanged with those corresponding to |1ð using the phase
shifters within the swap test setup. This simplifies the sampling process, necessitating
only four detectors across two runs.

Swapping states |000ð ⇐⇒ |001ð and |110ð ⇐⇒ |111ð is straightforward, facili-
tated by direct connections via a Mach-Zehnder interferometer, as detailed in eq. (6.27).
By appropriately adjusting two phases, this swap can be executed.

Now, let’s delve into the central segment of the swap test circuit, encompassing
the waveguides associated with states |010ð, |011ð, |100ð, and |101ð. This segment is
represented by the following matrix:

1

2









1 i 0 0
i 1 0 0
0 0 1 i
0 0 i 1

















eiθs(3) 0 0 0

0 eiθs(4) 0 0

0 0 eiθs(5) 0

0 0 0 eiθs(6)

















1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

















1 i 0 0
i 1 0 0
0 0 1 i
0 0 i 1









=
1

2









eiθs(3) i eiθs(3) −eiθs(4) i eiθs(4)

i eiθs(3) −eiθs(3) i eiθs(4) eiθs(4)

−eiθs(6) i eiθs(6) eiθs(5) i eiθs(5)

i eiθs(6) eiθs(6) i eiθs(5) −eiθs(5)









, (6.33)

This matrix constitutes the central submatrix of Uswap-core.

The generic state injected into this central structure is (A, 0, B, 0), assuming the
ancillary qubit is always in the state |0ð. The resulting state is:

1
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Aeiθs(3) − Beiθs(4)

i
(

Aeiθs(3) + Beiθs(4)
)

−Aeiθs(6) + Beiθs(5)

i
(

Aeiθs(6) + Beiθs(5)
)













. (6.34)

Inverting the computational-basis states |0ð ⇐⇒ |1ð for the ancillary qubit corre-
sponds to swapping the first and second entries, as well as the third and fourth entries:
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i
(

Aeiθs(3) + Beiθs(4)
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Aeiθs(3) − Beiθs(4)

i
(

Aeiθs(6) + Beiθs(5)
)

−Aeiθs(6) + Beiθs(5)













. (6.35)
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By adjusting (θs(3), θs(4), θs(5), θs(6)) → (θs(3), θs(4) + π, θs(5), θs(6) + π), we obtain:

1

2













Aeiθs(3) + Beiθs(4)

i
(

Aeiθs(3) − Beiθs(4)
)

Aeiθs(6) + Beiθs(5)

i
(

−Aeiθs(6) + Beiθs(5)
)













. (6.36)

Each entry modulus of the first state is equal to the modulus of each entry in the sec-
ond state. Thus, we can confirm that swapping the computational-basis states of the
ancillary qubit is equivalent to adjusting (θs(3), θs(4), θs(5), θs(6)) → (θs(3), θs(4) +
π, θs(5), θs(6) + π). Consequently, we can confidently place detectors on just half of
the outputs.

6.3.2 Experimental setup and calibration

The photonic chip was fabricated using a SiN material for applications in the visible-
to-near infrared spectral range. This photonic chip employed a photolithography pro-
cess on a multi-project wafer (MPW) platform supplied by the Ligentec SA foundry.
The waveguide core dimensions measure (150 × 550) nm2, carefully selected to ensure
single-mode propagation at the operational wavelength of 750 nm, considering the cho-
sen TE polarization. Fig. 6.5 illustrates the photo (a) of the PIC and the scheme of the

Figure 6.5: a) Photo of the PIC connected via wire bonding to the Printed Circuit Board
(PCB), depicted in green. The PIC is placed on a copper pillar bonded to a Peltier cell.
Visible in the image are the input fiber on the left and the fiber array on the right. Ad-
ditionally, electronic wires are observed, used to manipulate the heaters of the PIC and
control the temperature of the Peltier cell. b) The experimental setup consists of the
Ti:Sapphire laser in CW configuration tuned to a wavelength of 750 nm. The beam
is coupled to the chip through a lensed SM fiber, with polarization selected as TE po-
larization using a fiber wave plate. At the output, the signal from the four outputs is
collected by a fiber array and directed to the fiber Si-SPADs.

setup (b). In our experimental setup, we utilized an attenuated CW Ti:Sapphire laser,
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precisely tuned to 750 nm, as the light source. Prior to entering the chip, the laser light
was attenuated using an optical variable attenuator, and its polarization was adjusted
to TE configuration.

Optical coupling at the chip’s input was facilitated by a lensed conical fiber, while
output coupling was achieved using a standard fiber array. The currents required for
controlling the MZIs and PSs on the PIC were supplied by a dedicated power supply
(Qontrol systems - device model BP8).

Photon detection was performed using four fibered Si-SPADs from Excelitas, each
exhibiting identical efficiencies. The output counts from these detectors were collected
using time-tagging electronics from Swabian Instruments, interfaced with a PC.

During our experiments, we maintained a total photon flux of approximately 106

photons, with a time bin of 0.2 µs configured on the time tagger. Data acquisition was
carried out for a duration of 30 ms, with each measurement consisting of ten sepa-
rate acquisitions. Error estimates were obtained by analyzing the variance across these
measurements.

To normalize the data, we selected the |100ð output as a reference with an efficiency
of 1. Consequently, the relative efficiencies of the other output states were determined
as follows: 0.487 for |000ð, 0.975 for |010ð, and 0.958 for |110ð. To ensure accuracy, the
mean dark counts of each SPAD were subtracted from the raw data. The discrepancies
in the outputs can be attributed to losses occurring between the fibers of the fiber arrays
and the chip outputs, stemming from defects on the faces of the outputs.

In our setup, no post-selection operation was necessary to discard time bins where
more than one photon was detected. Additionally, a Peltier cell was employed to main-
tain thermal stability within the PIC, regulated by a proportional-integral-derivative
(PID) controller. Between each set of ten acquisitions, the circuit was allowed to ther-
malize for a few seconds.

Phase calibration

The characterization of all on-chip MZIs was performed to establish the phase-power
relation ϕ(W). This relation was determined by fitting the observed counts detected by
a SPAD at the output ports of each MZI. The fitting equations employed, depending on
the considered output port, are:

Nout1 = a cos2(bW + d) + c , (6.37a)

Nout2 = a sin2(bW + d) + c , (6.37b)

where a, b, c, and d are fitting parameters. Consequently, ϕ(W) = bW + d. The collected
data, along with the corresponding fits, are presented in Fig. 6.6. The waveguides of
each arm of the MZIs are isolated from the surrounding substrate using trenches etched
in the material. These trenches help reduce the heat diffusion coefficient, thereby miti-
gating thermal cross-talk between neighboring phase shifters.

The fit parameters for the different MZIs are summarized in Table 6.1.

MZI1 MZI2 MZI3

b [1/W] 11.74 ± 0.05 12.11 ± 0.03 11.70 ± 0.05
d 0.461 ± 0.004 0.106 ± 0.002 0.062 ± 0.004

Table 6.1: Fit parameters for different MZIs. Values of the parameters b and d were
obtained from the fitting operations.
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Figure 6.6: Characterization of different MZIs in the preparation stage. Characteriza-
tion curves at 750 nm in TE polarization: a) MZI1, b) MZI2, c) MZI3. The normalized
counts are depicted in dark red, while the fits are represented in light red.

6.3.3 Swap test measurements

Separable state |ψð ¹ |ξð
The validation of our PIC involves comparing experimental results with theoretical
predictions, as outlined by eq. (6.31). To account for the characteristics of our PIC,
including MMI unbalance, CR insertion loss, and MZI phase calibration errors, we
developed a comprehensive model detailed in Appendix E. This model enables us to
establish a confidence interval of 2Ã, within which experimental results must fall to be
deemed comparable.

Initially, we conducted a preliminary validation using the computational basis states

|0ð ¹ |0ð , |0ð ¹ |1ð , |1ð ¹ |0ð , |1ð ¹ |1ð .

In table 6.2, the theoretical values of the corresponding squared scalar products, the
model 2Ã confident interval, and the experimental measurements with error bars de-
rived from multiple runs on our PIC, are shown. We observed good agreement between
theory and experiment for the orthogonal pairs of states {|0ð ¹ |1ð, |1ð ¹ |0ð}, while a
slight deviation was noted for the parallel pairs {|0ð ¹ |0ð, |1ð ¹ |1ð}. This observed

|0ð ¹ |0ð |0ð ¹ |1ð |1ð ¹ |0ð |1ð ¹ |1ð
Theor. |ïψ|ξð|2 1 0 0 1

2Ã [0.960, 1.000] [-0.001, 0.002] [0.000, 0.039] [0.970, 1.000]
Exp. |ïψ|ξð|2 (0.991 ± 0.003) (0.01 ± 0.01) (0.01 ± 0.02) (0.990 ± 0.003)

Table 6.2: Theoretical, experimental, and confidence interval values of the squared
scalar product of the computational basis states of the two qubits. Theoretical values
are computed according to eq. (6.31), experimental results are obtained from measure-
ments run on the PIC, while the 2Ã confidence interval is calculated from the model
taking into account PIC non-idealities.

deviation is attributed to actual manufacturing imperfections in our PIC. However,
the experimental data falls within the 2Ã confidence interval. Consequently, our PIC
effectively estimates the quadratic scalar product of the computational basis states, val-
idating its functionality.

In the second part of our validation process, we explore a specific family of states
defined as follows:

|ψð = 1√
2

(

|0ð+ |1ð
)

, (6.38a)
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|ξ(ω)ð = 1√
2

(

|0ð+ eiω |1ð
)

, (6.38b)

The state |ξð has a parameter ω. We can manipulate the current of the phase shifter that
determines ω by adjusting the second phase shifter from the top in PS2 (as shown in
Fig. 6.3) to study the behavior of the PIC. This approach enables us to examine scenarios
ranging from the initial pair of parallel states (ω = 0) to the orthogonal case (ω = ±π).

The collected data are depicted in Fig. 6.7 as dark red dots accompanied by their re-
spective error bars in blue. Notably, the experimental observations closely match the
theoretical predictions represented by light red squares, yielding a root mean square er-
ror (RMSE) of 0.026. Furthermore, all data points fall within the 2Ã confidence interval
(blue lines) derived from our realistic model. Thus, we confirm that our PIC adeptly
estimates the squared scalar product of state pairs belonging to the family described in
eq. (6.38).
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Figure 6.7: Experimental results for the family of state pairs described by eq. (6.38).
Theoretical squared scalar products are depicted in light red, while experimentally ob-
tained data from repeated measurements are shown in dark red, followed by error bars.
The 2Ã confidence interval is highlighted in blue.

Finally, the validation process of our PIC’s functionality ends with the random selection
of 3342 pairs of states |ψð and |ξð, followed by the calculation of their squared scalar
product using the PIC. A subset of 50 pairs of states, randomly chosen from the 3342
pairs, is illustrated in Fig. 6.8(a).
Our PIC demonstrates accurate computation of the squared scalar products for the ma-
jority of randomly selected state pairs, with deviations from theory typically falling
within the confidence interval of our model. The histogram in Fig. 6.8(b) shows the
discrepancy between the squared scalar product obtained by our PIC and the theoret-
ical value, |ïψ|ξð|2Ex − |ïψ|ξð|2Th, for all 3342 randomly selected state pairs. The his-
togram’s bin width is 0.02, centered around multiple values of 0.01. All distance values
between theory and experiments range between −0.191 and 0.144, with a mean value
of −0.012 ± 0.001.

The histogram’s asymmetry with respect to zero primarily arises from the char-
acteristics of the PIC, which tend to diminish the calculated squared scalar product,
especially for values near 1. Fig. 6.8(c) presents the histogram of the absolute value
||ïψ|ξð|2Ex − |ïψ|ξð|2Th|, showing both the mean and the median of the distribution. The
mean distance measures 0.039 ± 0.001, and the squared scalar product of half of the
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Figure 6.8: a) The panel of a subset of 50 pairs was randomly selected from the
3342 pairs measured. The expected theoretical value for the squared scalar prod-
uct is represented by the light red bar, while the blue interval denotes the 2Ã confi-
dence interval provided by the model. Additionally, the experimental data, along with
their error bars, are depicted as dark red dots. b) The histogram displays the differ-
ence between the experimental and theoretical squared scalar products, denoted as
|ïψ|ξð|2Ex − |ïψ|ξð|2Th. c) This histogram shows the absolute distance between the ex-

perimental and theoretical squared scalar products, denoted as ||ïψ|ξð|2Ex − |ïψ|ξð|2Th|.
The median is illustrated by the green line, while the mean is represented by the red
line. Each histogram bin has a width of 0.02 and is centered around multiple values of
0.01.

considered states is estimated with an error lower than 0.033. The observed RMSE
slightly increases to 0.048 compared to the previous test on a much smaller set of states.

Our PIC yields squared scalar products within the 2Ã confidence interval for ap-
proximately 88% of state pairs within the random ensemble. Our realistic model cap-
tures the systematic non-zero mean value of the distance |ïψ|ξð|2Ex − |ïψ|ξð|2Th and de-
scribes the spread of the data around the corresponding expected theoretical values.
Results outside the 2Ã confidence interval are attributed to thermal crosstalk among
the MZIs and PSs present in the preparation stage for high applied electrical power,
phenomena not captured by our modeling.

Entangled state

Up to this point, our focus has been solely on separable states. In the validation process
of our scheme, we examine the probability P(0) of finding the ancilla in the state |0ð
when the two unknown qubits are prepared in a Bell state. In our standard case, de-
scribed in section 6.2, this corresponds to the probability of finding the ancilla in state
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|1ð. We denote the probabilities for different Bell states in Table 6.3.

As anticipated by theory, the state 1√
2
(|01ð − |10ð) yields a probability close to 100%,

1√
2
(|00ð ± |11ð) 1√

2
(|01ð+ |10ð) 1√

2
(|01ð − |10ð)

Theoretical P(0) 0% 0% 100%
Experimental P(0) (1.3 ± 0.4)% (2 ± 1)% (95 ± 2)%
Model 2Ã C.I. P(0) [0, 1.38]% [0, 5.14]% [95.49, 100]%

Table 6.3: theoretical, experimental, and confidence interval values of P(0) for the Bell
states of the two qubits. Theoretical values are derived from the theory detailed in
Section 6.2. Experimental values are acquired via measurements on the PIC, while the
2Ã confidence interval for P(0) accounts for PIC non-idealities.

while the other three states approach 0%. Our experimental results align well with
these expectations and support the predictions of our non-idealities model. Notably,

measurements on the input state 1√
2
(|01ð+ |10ð) yield a higher P(0) compared to the

input state 1√
2
(|00ð ± |11ð), as anticipated by our model.

As done in the case with separable states, in the subsequent phase of our validation
procedure, we investigate a specific category of states defined as follows:

|Ψ(ω)ð = 1√
2
(|01ð+ eiω |10ð) . (6.39)

Considering the state |Ψ(ω)ð, it is possible to obtain the probability P(0) and P(1) from
the eq. (6.12) and eq. (6.13). As in the previous case, due to MMIs instead of the H gate,
the P(0) and P(1) are reversed. For the P(1) we obtain:

P(1) =
(

cos
ω

2

)2
. (6.40)

This approach enables us to explore scenarios ranging from the initial pair of parallel
states (ω = 0) to the orthogonal case (ω = ±π). From the experimental point of

Figure 6.9: Experimental results for the family of state pairs described by eq. (6.39).
Theoretical squared scalar products are depicted in light red, while experimentally ob-
tained data from repeated measurements are shown in dark red, accompanied by error
bars. The 2Ã confidence interval is highlighted in blue.

view, we report the P(1). The experimental data, depicted in Fig. 6.9, are denoted
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by dark red dots, each accompanied by its corresponding error bars. Remarkably, these
experimental observations closely align with the theoretical predictions, represented
by light red squares. Additionally, all data points fall within the 2Ã confidence interval,
illustrated by the blue lines, derived from our realistic model. This alignment confirms
the ability of our PIC to estimate the quadratic scalar product of Bell’s pairs of states.

Comparison

These observations validate the use of our PIC in calculating the squared scalar prod-
uct across a broad ensemble of state pairs. Principal performance indicators are a mean
absolute deviation of 0.039 and an RMSE of 0.048 in comparison to theoretical predic-
tions. Additionally, the model of the PIC’s imperfections not only helps to understand
its operational mechanisms, which is crucial for creating improved versions, but also
establishes confidence intervals for the PIC’s readouts in kernel approximation.

As a benchmark, Table 6.4 provides a comparison of data for state overlap estima-
tion obtained on superconducting quantum circuits using swap test or other algorithms
such as ABA and BBA [254], which involve a higher number of qubits and resources.
Notably, experimental proofs with other platforms, such as trapped ions [283], only
demonstrate qualitative results, making quantitative comparisons challenging.

Table 6.4 highlights that our room temperature PIC estimates the squared scalar
product with a root mean square error two times lower than the best results reported
in the literature for the superconducting platform, which requires cryogenic tempera-
tures. It is important to note that, compared to other approaches, our device demon-
strates an exponential growth in resource requirements as the number of qubits in-
creases.

root mean square error
platform # qubits swap test ABA BBA Ref.

integrated photonic 3 0.05 - - our work
superconducting IBM 5 0.31 0.11 0.12 [254]

superconducting Rigetti 19 0.54 0.43 0.16 [254]
trapped ion 5 not reported - - [255]

Table 6.4: Comparison of performances of quantum circuits for states overlap estima-
tion. Our results are compared with those obtained from quantum circuits in various
quantum platforms, considering the number of qubits and RMSE across different algo-
rithms. The symbol ’-’ is used to denote cases where no experiments have been carried
out.

Furthermore, our proof-of-concept PIC demonstrates an average power consump-
tion of 1.2 watts per single evaluation. This power allocation is distributed as follows:
0.25 watts for the preparation stage and 0.3 watts and 0.4 watts for the swap test stage,
dedicated to sampling the ancilla states |0ð and |1ð, respectively. The sampling dura-
tion is set at 60 milliseconds, with ten repetitions to enhance statistical accuracy. These
power consumption figures are subject to optimization through improvements in de-
sign and fabrication, potentially at the expense of statistical robustness or by employing
advanced single-photon detectors with reduced dead times.
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6.4 Conclusions and future prospective

This study introduces a PIC engineered to compute the scalar product between any pair
of qubits using the swap test algorithm. To our knowledge, this marks the first success-
ful implementation of this quantum algorithm within an integrated photonic frame-
work. Our design stands out for its simplicity and robustness, achieved by directly
translating the gate-based swap test into our photonic system. Leveraging established
integrated components such as multimode interference devices, beam splitters, and
phase modulators, our PIC efficiently computes the quadratic scalar product for 3342
arbitrarily chosen pairs of states. The average deviation is 0.039, with a mean square
deviation of 0.048, indicating competitive performance with superconducting circuits,
while offering distinct advantages in simplicity and operation at room temperature.

Our quantum circuit promises to be a fundamental building block in quantum ma-
chine learning applications. However, it faces the limitation of resource non-scalability
as the number of qubits increases. One potential solution for linearly improving the
number of qubits relative to the resources needed is to use two swap test circuits in
parallel, employing pairs of correlated photons as input sources and measuring output
coincidences. Another potential application is to use our scheme to build two-layer
feedforward neural networks or execute swap tests on any number of qubits, with lin-
ear growth of CSWAP gates and logarithmic growth of auxiliary qubits.
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Chapter 7

Conclusions

This Thesis offers an investigation of the sources of quantum light, with a specific fo-
cus on biphoton states, generated by the parametric nonlinear sFWM process on an
integrated photonics platform. The research delves into the fundamental principles of
quantum optics, the role of silicon and silicon nitride materials in integrated optics,
and a comparative analysis of various sFWM sources. Each of these sources possesses
unique characteristics and limitations, rendering them more suitable for certain appli-
cations than others. Numerous experiments employing these sources have been con-
ducted.

Utilizing the intermodal sFWM process, the generation of heralded single photons
in the mid-infrared range has been observed, exhibiting exceptional characteristics and
functioning at room temperature. The intermodal source facilitated the employment of
silicon-based entangled photons in Ghost spectroscopy under conditions of high noise.
This enabled the reconstruction of the CO2 spectrum in scenarios where traditional
measurement methodologies are unsuccessful.

The fabrication of a quantum simulator on a single platform was discussed as part
of the EPIQUS project. This included the development of a silicon nitride-based plat-
form optimized for operation in the visible to near-infrared spectrum. The generation
of biphoton states and the examination of various integrated structures, instrumental
in enabling the generation of entangled photon pairs, were described in detail. These
results provide the basis for future experiments in integrated optics, which can be inte-
grated into a single platform in a competitive manner.

The concluding chapter explored the implementation of the Quantum Swap Test
algorithm on a silicon nitride platform, utilizing path encoding for qubit representation.
The potential of SWT for efficient kernel function estimation was examined, introduc-
ing a novel approach to quantum algorithms.

In conclusion, this dissertation is my contribution to the field of quantum optics,
offering valuable insights and paving the path for future research in this rapidly evolv-
ing and exciting field. The findings and methodologies presented in this work will
serve as a robust foundation for further advancements in the generation and applica-
tion of quantum light.
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Appendix A

Quantum description of sFWM in
photonic waveguides

Here, we report the analytical description of sFWM, starting the relation in eq. (1.112).
I follow the review [28] for this theoretical part.

HNL =
1

4ε0

∫

[

Γ
(3)
ijkl(r)Di(r, t)Dj(r, t)Dk(r, t)Dl(r, t)

]

dr . (A.1)

Let’s consider the eqs. (1.18), (1.19), (1.24) and (1.108). The displacement field operator
expansion for a waveguide is:

Di(r, t) = D+
i (r, t) + D−

i (r, t) , (A.2)

where
D− = (D+)† , (A.3a)

D+ = ∑
j

D+
j = ∑

j

∫

√

h̄ωjk

4π
aj(k, t)dJk(y, z)eikxdk + h.c. . (A.3b)

The eq. (A.1) becomes:

HNL =
1

4ε0

∫

drΓ
(3)
ijkl(r)(D

+
i (r, t)+D−

i (r, t))(D+
j (r, t)+D−

j (r, t))×

× (D+
k (r, t)+D−

k (r, t))(D+
l (r, t)+D−

l (r, t)) .

(A.3c)

Expanding all terms will result in different effects, as described in section 1.3.4. The
expression for the sFWM process can be written as:

HsFWM =
3

ϵ0

∫

Γ
(3)
ijkl(r)D

−
s (r, t)D−

i (r, t)D+
p (r, t)D+

p (r, t)dr + h.c. , (A.4)

where p, s and i refer to the pumps, signal and idler photons. Considering the eq. (A.3a)
and (A.3b) the Hamiltonian of the sFWM becomes:

HsFWM =
3h̄2

ϵ016π2

∫∫

Γ3
√

ωPkωPkωikωska†
i (k, t)a†

s (k, t)aP(k, t)aP(k, t)

× ei(kp+kp−ki−ks)xdPkdPkd∗ikd∗skdkPdkPdkidks + h.c. .

(A.5)
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After transitioning into the frequency domain and moving in the interaction picture,
the Hamiltonian HsFWM is transformed as:

HsFWM =
3h̄2ω2

ISP1P2

ϵ016π2

∫∫

Γ3a†
i (ωi)a†

s (ωs)aP(ωP)aP(ωP)

× ei(kp+kp−ki−ks)xei(ωp+ωp−ωi−ωs)tdωPdωPdωidωs + h.c. ,

(A.6)

with
ωSIP1P2

= 4
√

ωiωsωP1
ωP2

, (A.7)

and

n2 =
3χ

ijkl
3

4ϵ0cn2
P

. (A.8)

We can introduce the coupling coefficient described by:

γSiP1P2
=

n2ωSIP1P2

cAe f f
SIP1P2

. (A.9)

It is possible to rewrite the Hamiltonian as:

HsFWM =
γSiP1P2

h̄2ωISP1P2

4π2

∫

dωPdωPdωidωsa†
i (ωi)a†

s (ωs)aP(ωP)aP(ωP)

× ei∆kxei(ωp+ωp−ωi−ωs)t + h.c. ,

(A.10)

where ∆k = kp + kp − ki − ks is the phase mismatch parameter. Aeff is the effective
area of the process, k is the wavevector of the four photons, and γ is the parameter that
characterizes the strength of the FWM process [28].
We are ready to examine how a quantum state evolves under the influence of the this
Hamiltonian. If the initial state is in the vacuum state, the state’s evolution is charac-
terized by:

|Ψð = Û |0, 0ði,s = exp

[−i
h̄

∫ ∞

−∞
dtĤsFWM(t)

]

|0, 0ði,s , (A.11)

where |0, 0ði,s = |vacð. Upon conducting the time integral, a Dirac delta function is

acquired through the relationship 2πδ(ω − ω0) =
∫ ∞

−∞
dt ei(ω−ω0)t. Let’s consider the

case of coherent laser pumps. The resulting integral in its expansion is described as:

−i
h̄

∫ ∞

−∞
dtĤsFWM(t) =

iγSiP1P2
h̄ωISP1P2

2π

∫ L

0
dx

∫∫∫∫

dωp1 dωp2 dωi dωs

× ³p(ωp1)³p(ωp2)â†
i (ωi)â†

s (ωs)

× ei∆´xδ(ωp1 + ωp2 − ωi − ωs) + h.c. .

(A.12)

This allows us to eliminate the integral involving ωp2. Ultimately, we can proceed with
the integration over x. Integrating on the L path the exponential part will give:

γSiP1P2
h̄ωISP1P2

L

2π

∫

dωPdωidωsa†
i (ωi)a†

s (ωs)

× ³P(ωP1)³P(ωi + ωs − ωP1)ϕ(ωs, ωi, ω) + h.c. ,

(A.13)
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where the function ϕ is the phase matching function, given by the following relation:

ϕ(ωs, ωi, ω) = ei∆k(ωs ,ωi ,ω)L/2sinc

(

∆k(ωs, ωi, ω)L
2

)

. (A.14)

L is the waveguide length and ∆k is the phase mismatch parameter [284].

Since our primary focus is on the weak interactions, we can expand the unitary
evolution operator from eq. (A.11) using a first-order Taylor series, resulting in:

|Ψð = Û |0, 0ði,s =

=

[

I +
γSiP1P2

h̄ωISP1P2
L

2π

∫

dωPdωidωsa†
i (ωi)a†

s (ωs)

× ³P(ωP1)³P(ωi + ωs − ωP1)ϕ(ωs, ωi, ω) + h.c.

]

|0, 0ði,s

= |0, 0ði,s + |I Iði,s .

(A.15)

The biphoton wavefunction, denoted as |I Iði,s, can be expressed in a general form using
a two-dimensional complex function F(ωi, ωs), referred to as the JSA. The JSA can be
written as

F(ωs, ωi) =
∫

dω ³P(ω)³P(ωs + ωi − ω)ϕ(ωs, ωi, ω) , (A.16)

where ³(ω), which is typically thought of as having a Gaussian profile, is the complex
amplitudes of the pump beams. As we can see from eq. (A.16), the JSA receives two
contributions: one from the shape of the pump beams and one that contains the kine-
matic parameter ∆k. The JSA quantifies the probability density for the creation of the
pair’s first photon in the ωs mode and the second photon in the ωi mode. The |I Iði,s
can be write:

|I Iði,s =
∫∫

dωi dωs F(ωi, ωs)â†
i (ωi)â†

s (ωs) |0, 0ði,s . (A.17)

Let’s follow the backward Heisenberg picture approach and the approach in the refer-
ence [26]. The mean power linked to a single photon from each pair generated through
CW sFWM in a channel waveguide pumped at ωP is:

PI =
h̄ωp

T (γSIP1P2PPL)2 , (A.18)

where

T =
2π

∫ ωP
0 dΩ(1 − Ω/ωP)2sinc2 [(2k(ωP)− k(ωP + Ω)− k(ωP − Ω)) L/2]

, (A.19)

where Ω = ω1 − ωP representing positive detuning from ωP. If, instead of considering
the entire sFWM spectrum, we opt to concentrate on a limited spectral range with a
bandwidth of 2πB, we discover that

T (Ω) ≈ [Bsinc2 [(2k(ωP)− k(ωP + Ω)− k(ωP − Ω))L/2]]−1 . (A.20)

From this, we can write the generated power of idler (signal) photons through the
sFWM process in the waveguide as

Pi(s) = Bh̄ωp(γSIP1P2PPL)2sinc2 [(2k(ωP)− k(ωP + Ω)− k(ωP − Ω))L/2] . (A.21)
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In the case of the micro-ring resonator, this relation becomes:

Pi(s) =
h̄ωµP

T (γPP)
2

16ν2
µP

π2ω2
µP

Q2
µP

, (A.22)

where QµP is the quality factor of the ring, R is the radius, and νµP is the group velocity.
Considering a limited spectral range with a bandwidth of 2πB, the relation will be:

Pi(s) = h̄B(γPP)
2

64ν4
µP

π2ω3
µP

Q4
µP

R2
, (A.23)

and for the unfiltered case:

Pi(s) = h̄(γPP)
2

8ν4
µP

π2ω2
µP

Q3
µP

R2
. (A.24)

There exists a distinction in describing F(ωs, ωi) within the context of microring res-
onators. In this scenario, the enhancement effect attributed to the microring can be
factored in. The expression for F(ωs, ωi) is as follows:

F(ωs, ωi) = ls(ωs)li(ωi)
∫

dω ³P(ω)lp(ω)³P(ωs +ωi −ω)lp(ωs +ωi −ω)ϕ(ωs, ωi, ω).

(A.25)
Here, lj(ω) (where j = i, s) represents the Lorentzian function, depicting the linewidth
of the microring resonance involved in the respective resonance process.
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Appendix B

Modeling detection probabilities

The appendix outlines the methodology detailed in the supplementary of our work
[130], aimed at modeling both linear and nonlinear losses involving pump, signal, and
idler photons in photonic devices. The approach involves solving a system of differ-
ential equations governing pulse propagation, similar to the methodology reviewed in
[57]. These equations account for phenomena such as TPA, XTPA, FCA, and propaga-
tion losses.

We assume an equal distribution of pump power between the TE0 and TE1 polariza-
tions, leading to differential equations for the pump (Pp) and the signal/idler (Pj):

∂Pp

∂z
= −ÃpN(Pp)Pp − 2γ̄TPAP2

p − ³̄pPp , (B.1a)

∂Pj

∂z
= −ÃjN(Pp)Pj − 4γ̄XTPA,jPpPj − ³jPj , (B.1b)

Here, N(Pp) = Äcγ̄TPA
h̄ωpA0

P2
p denotes the density of free carriers, where Äc is the free car-

rier lifetime, ωp is the pump frequency, and A0 is the waveguide area. The TPA pa-
rameter is computed as γ̄TPA = ïγTPA,TE0, γTPA,TE1ð, where we average the nonlinear
TPA parameters for the pump over the TE0 and TE1 modes. Similarly, the absorption
coefficient for pump propagation, ³̄p, is calculated as the average of the absorption
coefficients for the pump on the TE0 and TE1 modes. The XTPA parameter is deter-

mined as γ̄
j
XTPA = ïγj

XTPA,TE0, γ
j
XTPA,TE1ð, where j = s, i refers to the signal and idler,

respectively.

The expressions for γTPA,m and γ
j
XTPA,m depend on the mode of the pump waveguide

m and are derived as follows [57]:

γTPA,m =
1

2
n2

g,mnSi(ωp)
2´TPA(ωp)

∫

A0
|em(r)|4dA

(

∫

A∞
np(r)2|em(r)|2dA

)2
, (B.2a)

γ
j
XTPA,m =

1

2

ωj

ω̄j,p
ng,mng,jnSi(ω̄j,p)

2´TPA(ω̄j,p)×

×
∫

A0
em(r)ej(r)e∗j (r)e

∗
m(r)dA

∫

A∞
np(r)2|em(r)|2dA

∫

A∞
n2

j (r)|ej(r)|2dA
.

(B.2b)

Here, m = TE0, TE1 refers to the pump mode and j = i, s. The mode for the idler
and the signal is implied in the notation of eq. (B.2b), being TE1 for the signal and TE0
for the idler. ω̄j,p = (ωp + ωj)/2 denotes the average frequency between ωj and ωp,
ng,m/j represents the group index, nSi(ω) is the bulk refractive index of silicon, np(r)
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stands for the local distribution of the refractive index, ´TPA(ω) is the TPA coefficient of
silicon, em(r) denotes the optical field profile, and A∞ represents the infinite orthogonal
plane.

The coefficients and functions have been evaluated at the wavelength of the corre-
sponding field: ¼ = 1550 nm for m or p, and ¼ = 1260 nm and ¼ = 2015 nm for i and
s, respectively. Analogous to the TPA parameter for the XTPA, a non-trivial parame-
ter needs to be measured, which, to date, cannot be found in the literature. However,
it has been demonstrated that a good approximation is to use ´TPA(ω̄j, p), calculated
at the average frequency of the two photons involved in the XTPA process [151, 285].
With eq. (B.1), we model the linear and nonlinear losses for signal and idler channels as
classical fields, using the optical power of the field instead of the single photon formal-
ism [286]. The resulting transmission efficiency can be interpreted as the transmission
probability through the waveguide experienced by signal and idler single photons.

By solving eqs. (B.1), we obtain the effective on-chip pump power Pp(z) and the
transmission efficiency of the signal and idler photons generated at z along the waveg-
uide axis, denoted as ηj(z). We calculate the total transmission as follows:

ηj(z) = ηon
j (z)ηo f f

j , (B.3)

where we separate the effect of losses happening on the chip (such as propagation
and nonlinear losses) from those happening off the chip (such as fiber-chip coupling,
filtering, and detection losses). From eq. (B.1b), we calculate ηon

j (z) as:

ηon
j (z) = e−

∫ L
z Aj(z

′) dz′ (B.4a)

Aj(z) = ÃjN(Pp) + 4γ̄XTPA,jPp + ³j , (B.4b)

where L is the waveguide length. From this study, the average detection probability of
singles and coincidences can be obtained as:

psi =
ηND

L

∫ L

0
ξP2

p(z)ηi(z)ηs(z)dz , (B.5a)

pi =
ηND

L

∫ L

0
ξP2

p(z)ηi(z)dz , (B.5b)

ps =
1

L

∫ L

0
ξP2

p(z)ηs(z)dz , (B.5c)

where we multiply the probability of generating a pair at z (ξPp(z)2) with the probabil-
ity that the photons are transmitted from z to the idler/signal detector (ηi = s(z)). We
also consider the nonlinear response ηND of the idler detector. In the low power range,
we approximate eqs. (B.5) as the product between the average generation probability
and the average transmission efficiency, yielding

psi ≈
1

L

∫ L

0
ξP2

p(z)dz
ηND

L

∫ L

0
ηi(z)dz

1

L

∫ L

0
ηs(z)dz ≈ ξ P̄2

p η̄iη̄sηND , (B.6a)

pi ≈
1

L

∫ L

0
ξP2

p(z)dz
ηND

L

∫ L

0
ηi(z)dz ≈ ξ P̄2

p η̄iηND , (B.6b)

ps ≈
1

L

∫ L

0
ξP2

p(z)dz
1

L

∫ L

0
ηs(z)dz ≈ ξ P̄2

p η̄s , (B.6c)
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where

P̄p =

√

1

L

∫ L

0
P2

p(z)dz , (B.7a)

η̄j = η̄on
j η̄

o f f
j , (B.7b)

η̄on
j =

1

L

∫ L

0
ηon

j (z)dz . (B.7c)

The reasoning behind this approximation stems from the congruence between the non-
approximated and approximated probability values in the power range below 0.5 W,
as illustrated in Fig. B.1.

0 0.5 1 1.5

On-chip peak pump power [W]

0

0.2

0.4

0.6

0.8

1

p
i

w/o approximation

approximated

0 0.5 1 1.5

On-chip peak pump power [W]

0

0.2

0.4

0.6

0.8

1

p
s

w/o approximation

approximated

0 0.5 1 1.5

On-chip peak pump power [W]

0

0.2

0.4

0.6

0.8

1

p
si

w/o approximation

approximated

a) b) c)

Figure B.1: Comparison of the pi (a), ps (b), and psi (c) approximated and non-
approximated values. Eq. (B.6) calculates the approximated values, and eq. (B.5) calcu-
lates the non-approximated values.

Parameter Value Reference

³p,TE0 0.104 cm−1 (0.45 dB cm−1) Experimental

³p,TE1 0.414 cm−1 (1.80 dB cm−1) Simulated

³i 0.067 cm−1 (0.29 dB cm−1) Simulated
³s 0.758 cm−1 (3.29 dB cm−1) Simulated
Ãp 1.45 × 10−21 m2 [151]
Ãi 0.96 × 10−21 m2 [151]
Ãs 2.45 × 10−21 m2 [151]

´TPA(ωp) 7.5 × 10−12 m W−1 [57]

´TPA(ωi,p) 17.5 × 10−12 m W−1 [57]

´TPA(ωs,p) 7 × 10−12 m W−1 [57]
Äc 50 ps from fit

ng,TE0 3.7369 Simulated
ng,TE1 3.7911 Simulated

ng,i 3.8177 Simulated
ng,s 3.7714 Simulated

nSi(ωp) 3.4757 [152]
nSi(ωi,p) 3.4907 [152]
nSi(ωs,p) 3.4624 [152]

A0 1.95 × 0.49 mm2 Experimental

γTPA,TE0 7.00 m−1 W−1 Calculated from eq. (B.2a)

γTPA,TE1 6.81 m−1 W−1 Calculated from eq. (B.2a)
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γi
X,TPA,TE0 5.38 m−1 W−1 Calculated from eq. (B.2b)

γi
X,TPA,TE1 3.44 m−1 W−1 Calculated from eq. (B.2b)

γs
X,TPA,TE0 0.97 m−1 W−1 Calculated from eq. (B.2b)

γs
X,TPA,TE1 1.50 m−1 W−1 Calculated from eq. (B.2b)

Table B.1: Parameters used for TPA, XTPA, and FCA simulation.

In Table B.1, we present the values of the parameters used in the modeling. These
values are reported also in the main text. The lifetime of free carriers, denoted by Äc,
is highly dependent on the waveguide’s cross-section and the specific fabrication pro-
cess. In the model, this value is estimated by matching the simulated pump transmis-
sion, obtained by solving eq. (B.1a), with the experimental one. The outcome of this
fitting process is presented in Figure B.2(a). The transmission measurement has been
conducted in the same waveguide used for the heralding experiment. In Fig. B.2(b) the
transmission efficiency ηND is reported.
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Figure B.2: a) Power transmitted compared to input power. The lines originate from the
simulation, while the dots represent the experimental data. b) Transmission efficiency
ηND.
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Appendix C

Simulation with thermal and
poissonian statistics of g(2) and

g
(2)
H

C.1 Heralded g(2)

According to [50], the photons produced by the sFWM process can follow either a
thermal or Poissonian distribution. The specific distribution depends on the degree of
single-mode emission. When emission is single-mode, the statistics tend to be thermal.
However, when there are multiple modes present, the statistics tend to be Poissonian.
This difference also affects the behavior of the heralded second-order correlation func-
tion (g(2)H ) [65]. As described in eq. (1.134), the g(2)H is:

g(2)H (∆t) =
Rs1s2i

Rs1i(t)Rs2i(∆t)
Ri(t) =

ps1s2i pi

ps1i ps2i
, (C.1)

where the idler photon is considered as herald and the signal photon is performed in
the HBT interferometric measurement. The ps1s2i is the probability of detecting the
three-fold coincidences at the three detectors. pij (j = s1,s2) is the probability of having
a two-fold coincidence between the j-detector and the idled one. pi is the probabil-
ity of having a click at the idler detector. The probabilities associated with different
coincidence events involving signal and/or noise detections are evaluated per pulse
or per coincidence window. By considering all possible events leading to three-fold
coincidences, the expression for ps1s2i is given by:
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ps1s2i = ∑
n=2

n2(n − 1)P(n)ηs1ηs2ηi (2 signal photons, 1 idler photon)

+ ∑
n=1

n2P(n)(ηs1d2 + d1ηs2)ηi (1 signal photon, 1 signal noise, 1 idler photon)

+
1

2 ∑
n=2

n(n − 1)P(n)ηs1ηs2di (2 signal photons, 1 idler noise)

+ ∑
n=1

nP(n)ηs1d2di (1 signal photon, 1 signal noise, 1 idler noise)

+ ∑
n=1

nP(n)d1ηs2di (1 signal noise, 1 signal photon, 1 idler noise)

+ ∑
n=1

nP(n)d1d2ηi (2 signal noise, 1 idler photon)

+ d1d2di (2 signal noise, 1 idler noise) .

(C.2)

This equation accounts for all possible events leading to three-fold coincidences involv-
ing signal and/or noise detections at the signal and idler detectors. P(n) is the photon
number distribution, n is the number of pairs, dj (j = 1, 2) and di are the noise detection
probabilities at the signal and idler detectors respectively, ηj and ηi are the signal and
idler channel transmissions respectively. The expression for pji is given by:

pji = ∑
n=1

n2P(n)ηjηi (1 signal photon, 1 idler photon)

+ ∑
n=1

nP(n)ηjdi (1 signal photon, 1 idler noise)

+ ∑
n=1

nP(n)djηi (1 signal noise, 1 idler photon)

+ djdi (1 signal noise, 1 idler noise) .

(C.3)

The photon number distribution P(n) for Poissonian emission is given by:

P(n) =
n̄n

n!
e−n̄ , (C.4)

where n̄ = ξP2
p is the average number of pairs per pulse. In this situation, the probabil-

ity for p12i become:

p12i = n̄2(2 + n̄)η1η2ηi

+ n̄(2n̄ + 1)(η1d2 + d1η2)ηi

+ n̄2η1η2di

+ n̄η1d2di

+ n̄d1η2di

+ n̄d1d2ηi

+ d1d2di .

(C.5)
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For pji:

pji = n̄(n̄ + 1)ηjηi

+ n̄ηjdi

+ n̄djηi

+ djdi .

(C.6)

Similarly, for thermal photon number distribution, P(n) is given by:

P(n) =
n̄n

(1 + n̄)n+1
. (C.7)

For p12i:

p12i =
2(3n̄4 + 5n̄3 + 2n̄2)

1 + n̄
η1η2ηi

+ n̄(2n̄ + 1)n̄(2n̄ + 1)(η1d2 + d1η2)ηi

+ n̄2η1η2di

+ n̄η1d2di

+ n̄d1η2di

+ n̄d1d2ηi

+ d1d2di .

(C.8)

For pji:

pji = n̄(2n̄ + 1)ηjηi

+ n̄ηjdi

+ n̄djηi

+ djdi .

(C.9)

In both Poissonian and thermal distribution cases:

pi = n̄ηi + di . (C.10)

This simulation approach allows us to model the behavior of the second-order corre-
lation function under different emission statistics scenarios, which can be valuable for
understanding and analyzing experimental results. This simulation approach was used

to generate the values for g(2)H in Fig. 4.9 reported in chapter 4.

C.2 Unheralded g(2)

To simulate the second-order correlation function g(2), we employ a strategy similar to

that used for the heralded case. The g(2) function is defined as eq. (1.131):

g(2) =
p12

p1 p2
. (C.11)
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where p12 represents the probability of coincidence between the two signal detectors,
and p1 and p2 denote the probabilities of single detection for the two signal detectors.
By considering all possible coincidence events, the coincidence probability p12 can be
calculated as:

p12 =
n

∑
n=2

n(n − 1)P(n)η1η2 +
n

∑
n=1

nP(n)(η1d2 + d1η2) + d1d2 , (C.12)

where P(n) represents the photon number distribution, ηj denotes the transmission
probability for signal detector j, and dj represents the noise detection probability at
signal detector j (j = 1, 2).

The probabilities of single detection pj are given by:

pj =
n

∑
n=1

nP(n)ηj + dj . (C.13)

For a source with Poisson emission statistics, solving eq. (C.12) yields:

p12 = n̄2η1η2 + n̄(η1d2 + d1η2) + d1d2 , (C.14)

where n̄ is the average number of pairs per pulse. Similarly, for a source with thermal
emission statistics:

p12 = 2n̄2η1η2 + n̄(η1d2 + d1η2) + d1d2 . (C.15)

The single probabilities remain the same for both statistics:

pj = n̄ηj + dj . (C.16)

Theoretical values of g(2) can be calculated based on these equations. The thermal case

represents an upper bound for g(2), while the Poissonian case represents a lower bound.

This simulation approach was used to generate the values for g(2) in Fig. 4.10 re-
ported in chapter 4. It’s worth noting that the simulation based on the JSI follows the
methodology reported in Signorini et al. [115].
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Appendix D

Quantum bits

D.1 Qubits

Quantum computing is based on the concept of quantum bits or qubits, which are
similar to classical bits. However, unlike classical bits that can only be in a state of 0
or 1, qubits are two-level quantum systems with two basis states, usually represented
as |0ð and |1ð. In addition to these states, qubits can also exist in a linear combination
of both, unlike classical bits. If a quantum system has n qubits, its Hilbert space will
have 2n dimensions, which means it can offer 2n mutually orthogonal quantum states.
This is a significant distinction when compared to classical bits, where n bits can only
represent up to 2n distinct entities.

The state of a qubit is described by complex probability amplitudes, enabling a
combination of classical states to be represented. A general single-qubit can be repre-
sented as:

|ψð = ³|0ð+ ´|1ð , (D.1)

where ³ and ´ are the complex numbers representing the probability amplitudes of
|0ð and |1ð respectively. This state is normalized such that |³|2 + |´|2 = 1, ensuring a
total probability of 1. The outcome of a measurement on |ψð cannot be predicted with
certainty. This probabilistic nature of measurement outcomes is a fundamental aspect
of quantum mechanics and distinguishes it from classical mechanics. The consideration
of N qubits leads to work in the 2N-dimensional Hilbert space C2N . As it is shown in
Fig. D.1, the state |ψð can be visualized as a point of the Bloch sphere S2 in R

3 and it is
describe as:

|ψð = cos

(

θ

2

)

|0ð+ eiϕ sin

(

θ

2

)

|1ð . (D.2)

Here, θ and ϕ are parameters that define the amplitudes and phases of the superposi-
tion. The angle θ lies between 0 and π, while ϕ lies between 0 and 2π.

A photonic qubit can be represented using a dual-rail encoding scheme illustrated
in Fig. D.2. In this scheme, a photon in the upper waveguide represents the state |0ð,
while a photon in the lower waveguide represents the state |1ð.
Unitary operations on qubits are called quantum logic gates. Quantum gates are repre-
sented by unitary operator U that describe how they transform the quantum state of
the qubits on which they act. The general computational basis representation of U can
be expressed as:

U = e
iθ
2





ei(ϕ1+ϕ2)/2 cos
(

θ
2

)

ei(ϕ1−ϕ2)/2 sin
(

θ
2

)

−e−i(ϕ1−ϕ2)/2 sin
(

θ
2

)

e−i(ϕ1+ϕ2)/2 cos
(

θ
2

)



 , (D.3)
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Figure D.1: Bloch sphere representation of the qubit |ψð. The angles θ and ϕ are shown.

Figure D.2: The qubit representation in path encoding.

with θ ∈
(

0, π
2

)

and ϕ1, ϕ2 ∈ (0, 2π).

In integrated photonics it is possible to realize the unitary operator U with linear optical
components: a MZI with two additional PSs positioned at the input and output. The
unitary matrix U is:

U = Rz(Φ)Ry(θ)Rz(Ψ) = eiϕ/2

(

eiΦ/2 0

0 e−iΦ/2

)(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)(

eiΨ/2 0

0 e−iΨ/2

)

.

(D.4)
Specifically, a PS inducing a relative phase ϕ between the qubit rails corresponds to
a transfer matrix Rz(ϕ), while an MZI with phase difference θ is described by Ry(θ).
The device illustrated in Fig. D.3 facilitates any rotation within the two-dimensional
Hilbert space defined by the qubit’s computational basis. Once a target transformation
U is given, we can tune the phases Ψ, θ, and Φ by acting on three separate PS (e.g., by
locally heating one of the rails). Using this integrated device is possible to obtain, for

Figure D.3: The MZI with two additional phases Ψ and Φ.

instance, the single-qubit rotation gates and the Hadamard (H) gate expressed as:

Rx(θ) = e−iθÃx/2; Ry(θ) = e−iθÃy/2; Rz(θ) = e−iθÃz/2; H =
1√
2

(

1 1
1 −1

)

. (D.5)
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where the Ãx, Ãy and Ãz are the Pauli gates described as:

Ãx =

(

0 1
1 0

)

, Ãy =

(

0 −i
i 0

)

, Ãz =

(

1 0
0 −1

)

. (D.6)

Precisely considering the eq. (D.4) we observe the following:

• Rz(Φ): A PS corresponds to the rotation operator Rz(Φ). Setting Φ = π applies
the Ãz operator, up to a global phase;

• Ry(θ): A MZI corresponds to the rotation operator Ry(θ) Setting θ = π applies
the Ãy operator, up to a global phase.

• Rx(θ): The rotation operator Rx(θ) can be derived from eq. (D.4) as Rx(θ) =
Rz(π/4)Ry(θ)Rz(−π/4). Therefore, choosing θ = π/2 applies Ãx, up to a global
phase.

• H : The Hadamard H = (Ãx +Ãz)/
√

2, which has a matrix representation 1√
2

[

1 1
1 −1

]

in the computational basis, can be obtained by applying an MZI with θ = π/2,
up to an overall phase.

D.2 Qudits

A qudit is used when more than two binaries are used to store a single photon, where
d is the number of binaries. In Fig. D.4 is reported the integrated photonic qudit repre-
sentation formed by d waveguides.

Figure D.4: General qudit representation in path encoding in d waveguides (a). The
case of 4 waveguides (b) and 8 waveguides (c) is illustrated.

This approach enhances the dimensionality of the Hilbert space while reducing the
requisite number of photons. However, it entails managing additional spatial modes,
leading to increased circuit depths for photon traversal. For instance, in Fig. D.4(b),
with a binary d = 4, the following mapping is achieved:

|0ð → |00ð , |1ð → |01ð , |2ð → |10ð , |3ð → |11ð ,

where |ið (i = 0, 1, 2, 3) denotes the binary storing the photon, and |mkð (m, k = 0, 1)
represents a two-qubit state. In this scenario, the four-dimensional qudit is referred to
as a ququart. The computational capacity of a single photon confined within a ququart
remains consistent within the Hilbert space H4, which is equivalent to that of two pho-
tons in two dimensions (qubits). Generally, a system comprising n photons in d = 2k

dimensions yields a dn = 2kn-dimensional Hilbert space, equivalent to kn qubits. For a
three-qubit state, a d = 8 configuration is utilized, as depicted in Figure D.4(c).
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The most general unitary transformation in the d-dimensional qudit space is governed
by an SU(d), just as qubit manipulation requires an SU(2). Any operation U belonging
to SU(d) can be systematically constructed by iteratively applying SU(2) operations,
each acting on a subspace characterized by just two modes. This universal decomposi-

tion, called the Reck scheme [287], consists of a triangular lattice of
d(d−1)

2 beamsplitters
with different phase and reflectivity (called Givens rotations). By implementing PS and

MZI for each rotation, an ensemble of
d(d−1)

2 components becomes available for synthe-
sizing any U within SU(d). Fig. D.5(a) illustrates a Reck scheme applicable for d = 6.
In contrast, the Clements scheme [233] offers an alternative approach, leveraging a de-

Figure D.5: The Reck (a) and the Clements (b) schemes are shown.

composition strategy that utilizes a square lattice of beamsplitters and phase shifters.
As illustrated in Fig. D.5(b) for d = 6, this scheme provides a structured arrangement
that ensures uniform optical depth along each path from input to output. Despite em-
ploying an equivalent number of tunable elements as the Reck scheme, the Clements
scheme offers the advantage of maintaining consistent optical characteristics through-
out the entire circuit.

It’s important to recognize the multidimensional approach’s limits, though. The di-
mensionality of the Hilbert space grows exponentially with the number of photons but
scales polynomially with the number of modes. As the system size grows, this ex-
ponential escalation demands a matching rise in the resources needed, such as phase
shifters and beamsplitters. Therefore, even though the multidimensional approach has
some benefits, especially with regard to encoding efficiency, the exponential resource
requirements that come with greater system sizes limit its scalability.
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Appendix E

Model for non ideal
characteristics of the PIC

This section discusses imperfections in the integrated photonic hardware used in the
swap test demonstration described in Chapter 6. The actual performance of this hard-
ware may diverge from theoretical predictions. In-depth examinations paralleling this
study have been conducted in prior works, which offer additional insights into our
methodologies [288–290]. Specifically, we address the following considerations:

1. MMIs do not precisely execute the matrix of a perfect beam splitter because of
manufacturing discrepancies;

2. Couplers lack a perfect unitary transfer function;

3. Inaccuracies in calibration and power supply influence the precise current values
set for each PS.

To account for the first point, the matrix description of an MMI is modified as follows:

UMMI(t, r) =

(

t ir
ir t

)

, (E.1)

where t ̸= r ̸= 1√
2

. It is important to recognize that typically, t2 + r2 f 1. To explicitly

account for this, we reformulate the operator as:

UMMI(³, ´) = ´

(

cos(³) i sin(³)
i sin(³) cos(³)

)

, (E.2)

´ =
√

t2 + r2 , cos(³) =
t√

t2 + r2
, sin(³) =

r√
t2 + r2

. (E.3)

Regarding point 2, we conceptualize our intersection zone in the swap test as:

UCSWAP(T) =
√

T

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























, (E.4)

where T < 1 signifies the energy transmittance of an individual crossing element.
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To address point 3, we incorporate error components in each matrix description of
the PS. We denote UPSn(θ, δ), defined as:

UPSn(θ, δ) =







ei(θ(1)+δ(1)) . . . 0
...

. . .
...

0 . . . ei(θ(n)+δ(n))






. (E.5)

Observe that the variables δ solely account for the power supply fluctuations and the
inaccuracies introduced by the calibration fitting process for the various MZIs and
PSs within the PIC. The thermal interference, which theoretically operates similarly by
adding additional phase error components, is not considered here due to the challenge
in quantifying its influence on the disparate PSs.

Before discussing the operations of the various stages of PIC, let us introduce the
function of a solitary MZI, which alters the eq. (6.16) as:

UMZI(θ, δ) = UMMI(³, ´) · UPS2
(2θ, 2δ) · UMMI . (E.6)

Note that in the aforementioned equation, we have omitted the explicit dependency on
(³, ´) for simplicity.

The matrix associated with the projection operation onto the state |xð with x = 0, 1
is given by:

Px =

(

1 − x 0
0 x

)

. (E.7)

The operation of the preparation phase is delineated by:

Upreparation(θQ1, θQ2, φQ1, φQ2, δQ1, δQ21
, δQ22

, δQ23
)

= UsetQ2(θQ2, φQ2, δQ21
, δQ22

, δQ23
) · UsetQ1(θQ1, φQ1, δQ1) .

(E.8)

The operators UsetQ1 and UsetQ2, respectively, configure the first and second qubits of
our state and are characterized as:

UsetQ1(θQ1, φQ1, δQ1) =

(P0 ¹ Ãx ¹ 1 + P1 ¹ 1 ¹ 1) · (UPS2
(φQ1, δQ1)¹ 1 ¹ 1) · (UMZI(θQ1, δQ1)¹ 1 ¹ 1) .

(E.9)
and

UsetQ2(θQ2, φQ2, δQ21
, δQ22

, δQ23
) =

(UPS4
(φQ2, δQ23

)¹ 1) ·
(

P0 ¹ UMZI(θQ2 −
π

2
, δQ22

)¹ 1 + P1 ¹ UMZI(θQ2, δQ21
)¹ 1

)

,

(E.10)
The operation of the swap examination is characterized as:

Uswaptest(φs, δs) = (1 ¹ 1 ¹ UMMI) · UPS8
(φs, δs) · UCSWAP · (1 ¹ 1 ¹ UMMI) ,

(E.11)
Subsequently, the entire operation of the PIC is articulated as:

U(θQ1, θQ2, φQ1, φQ2, φs, δQ1, δQ21
, δQ22

, δQ23
, δs) =

Uswaptest(φs, δs) · Upreparation(θQ1, θQ2, φQ1, φQ2, δQ1, δQ21
, δQ22

, δQ23
) .

(E.12)

It should be noted that in the preceding equations, the dependence of the various
operators on ³ and T has been excluded for simplicity. As a result, the output density
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matrix at the conclusion of our PIC is denoted by:

ρout = UρinU† , (E.13)

where ρin = |010ðï010|. The likelihood of detecting the outcome x in the third qubit at
the PIC’s output is then expressed as:

P(x) =
Tr[UρinU† · (1 ¹ 1 ¹ Px)]

Tr[UρinU†]
. (E.14)

The normalization term Tr[UρinU†] is imperative due to the non-unitary nature of the
operator UMMI(³, ´) and UCSWAP(T). This situation is managed as delineated in [289],
since we are employing a linear system, which operates directly at the single-photon
level. Furthermore, owing to this normalization, the values of ´ and T can be set to 1,
as they are merely scalar factors that appear in both the numerator and denominator of
eq. (E.14), thereby nullifying each other. Upon acquiring the probabilities {P(x)}x=0,1,
the scalar product is then computed in accordance with eq. (6.29). The nÃ confidence
intervals on the scalar product are determined by applying the error propagation algo-
rithm mentioned in [291], taking into account nÃ deviations on the measured quanti-
ties (³, 1Ã³ = 0.02, T, 1ÃT = 0.002) and on the inferred ones (all the phase terms). It
is noteworthy that we have adapted the solver to the Matlab pattern-search method as
opposed to the algorithm cited in [291].





195

Bibliography

1. Slussarenko, S. & Pryde, G. J. Photonic quantum information processing: A con-
cise review. Applied Physics Reviews 6 (2019).

2. Nielsen, M. A. & Chuang, I. L. Quantum computation and quantum information
(Cambridge university press, 2010).

3. Ladd, T. D. et al. Quantum computers. nature 464, 45–53 (2010).
4. Chugh, V., Basu, A., Kaushik, A. & Basu, A. K. Progression in quantum sensing/bio-

sensing technologies for healthcare. ECS Sensors Plus 2, 015001 (2023).
5. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. & Nie, S. In vivo cancer targeting

and imaging with semiconductor quantum dots. Nature biotechnology 22, 969–976
(2004).

6. Lawrie, B. J., Lett, P. D., Marino, A. M. & Pooser, R. C. Quantum sensing with
squeezed light. Acs Photonics 6, 1307–1318 (2019).

7. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Reviews of modern
physics 89, 035002 (2017).

8. Dowling, J. P. Quantum optical metrology–the lowdown on high-N00N states.
Contemporary physics 49, 125–143 (2008).

9. Pirandola, S. et al. Advances in quantum cryptography. Advances in optics and
photonics 12, 1012–1236 (2020).

10. Bauer, B., Bravyi, S., Motta, M. & Chan, G. K.-L. Quantum algorithms for quan-
tum chemistry and quantum materials science. Chemical Reviews 120, 12685–12717
(2020).

11. Shields, A. J. Semiconductor quantum light sources. Nature photonics 1, 215–223
(2007).

12. Gerry, C. C. & Knight, P. L. Introductory quantum optics (Cambridge university
press, 2023).

13. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of
physical reality be considered complete? Physical review 47, 777 (1935).

14. Loudon, R. & Knight, P. L. Squeezed light. Journal of modern optics 34, 709–759
(1987).

15. Scheel, S. Single-photon sources–an introduction. Journal of Modern Optics 56,
141–160 (2009).

16. Hanbury Brown, R. & Twiss, R. Q. in A Source Book in Astronomy and Astrophysics,
1900–1975 8–12 (Harvard University Press, 1979).

17. Mandel, L. Sub-Poissonian photon statistics in resonance fluorescence. Optics let-
ters 4, 205–207 (1979).

18. Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance flu-
orescence. Physical Review Letters 39, 691 (1977).

19. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum com-
putation with linear optics. Nature 409. https://doi.org/10.1038/35051009
(2001).

20. MohammadNejad, S., Nosratkhah, P. & Arab, H. Recent advances in room tem-
perature single-photon emitters. Quantum Information Processing 22, 360 (2023).

21. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-
dot single-photon sources. Nature nanotechnology 12, 1026–1039 (2017).

https://doi.org/10.1038/35051009


196 Bibliography

22. McKeever, J. et al. Deterministic generation of single photons from one atom
trapped in a cavity. Science 303, 1992–1994 (2004).

23. Faraon, A., Barclay, P. E., Santori, C., Fu, K.-M. C. & Beausoleil, R. G. Resonant
enhancement of the zero-phonon emission from a colour centre in a diamond
cavity. Nature Photonics 5, 301–305 (2011).

24. Trotta, R. et al. Wavelength-tunable sources of entangled photons interfaced with
atomic vapours. Nature communications 7, 10375 (2016).

25. Fasel, S. et al. High-quality asynchronous heralded single-photon source at tele-
com wavelength. New Journal of Physics 6, 163 (2004).

26. Helt, L. G., Liscidini, M. & Sipe, J. E. How does it scale? Comparing quantum and
classical nonlinear optical processes in integrated devices. JOSA B 29, 2199–2212
(2012).

27. Azzini, S. et al. Ultra-low power generation of twin photons in a compact silicon
ring resonator. Optics Express 20, 23100–23107 (2012).

28. Quesada, N., Helt, L. G., Menotti, M., Liscidini, M. & Sipe, J. E. Beyond pho-
ton pairs—nonlinear quantum photonics in the high-gain regime: a tutorial. Adv.
Opt. Photon. 14, 291–403 (2022).

29. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quan-
tum technologies. Nature Photonics 14, 273–284 (2020).

30. Acerbi, F. et al. Monolithically integrated SiON photonic circuit and silicon single-
photon detectors for NIR-range operation. Journal of Lightwave Technology (2023).

31. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entangle-
ment. Reviews of modern physics 81, 865 (2009).

32. Luo, W. et al. Recent progress in quantum photonic chips for quantum commu-
nication and internet. Light: Science & Applications 12, 175 (2023).

33. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Reviews
of modern physics 74, 145 (2002).

34. Leone, N. et al. Generation of quantum-certified random numbers using on-chip
path-entangled single photons from an LED (2023).

35. Loudon, R. The quantum theory of light (OUP Oxford, 2000).
36. Ekert, A. & Knight, P. L. Entangled quantum systems and the Schmidt decompo-

sition. American Journal of Physics 63, 415–423 (1995).
37. Mosley, P. J., Lundeen, J. S., Smith, B. J. & Walmsley, I. A. Conditional preparation

of single photons using parametric downconversion: a recipe for purity. New
Journal of Physics 10, 093011 (2008).

38. Shih, Y. An introduction to quantum optics: photon and biphoton physics (CRC press,
2020).

39. Bagchi, B., Ghosh, R. & Khare, A. A pedestrian introduction to coherent and
squeezed states. International Journal of Modern Physics A 35, 2030011 (July 2020).

40. Glauber, R. J. Coherent and incoherent states of the radiation field. Physical Re-
view 131, 2766 (1963).

41. Yuen, H. P. Two-photon coherent states of the radiation field. Physical Review A
13, 2226 (1976).

42. Grote, H. et al. First long-term application of squeezed states of light in a gravitational-
wave observatory. Physical review letters 110, 181101 (2013).

43. Al-Hilfy, A. & Loudon, R. Theory of photon correlations in two-photon cascade
emission. Journal of Physics B: Atomic and Molecular Physics 18, 3697 (1985).

44. Shih, Y. Entangled biphoton source-property and preparation. Reports on Progress
in Physics 66, 1009 (2003).

45. Magnitskiy, S. et al. A SPDC-based source of entangled photons and its charac-
terization. Journal of Russian Laser Research 36, 618–629 (2015).

46. Silverstone, J. W., Bonneau, D., O’Brien, J. L. & Thompson, M. G. Silicon quantum
photonics. IEEE Journal of Selected Topics in Quantum Electronics 22, 390–402 (2016).



Bibliography 197

47. Azzini, S. et al. Stimulated and spontaneous four-wave mixing in silicon-on-
insulator coupled photonic wire nano-cavities. Applied Physics Letters 103 (2013).

48. Signorini, S. et al. Intermodal four-wave mixing in silicon waveguides. Photonics
Research 6, 805–814 (2018).

49. Barnett, S. & Radmore, P. M. Methods in theoretical quantum optics (Oxford Univer-
sity Press, 2002).

50. Takesue, H. & Shimizu, K. Effects of multiple pairs on visibility measurements of
entangled photons generated by spontaneous parametric processes. Optics Com-
munications 283, 276–287 (2010).

51. Paul, H. Photon antibunching. Reviews of Modern Physics 54, 1061 (1982).
52. Mandel, L. & Wolf, E. Optical coherence and quantum optics (Cambridge university

press, 1995).
53. Migdall, A., Polyakov, S. V., Fan, J. & Bienfang, J. C. Single-photon generation and

detection: physics and applications (Academic Press, 2013).
54. Christ, A. & Silberhorn, C. Limits on the deterministic creation of pure single-

photon states using parametric down-conversion. Physical Review A 85, 023829
(2012).

55. Christensen, J. B., Koefoed, J. G., Rottwitt, K. & McKinstrie, C. Engineering spec-
trally unentangled photon pairs from nonlinear microring resonators by pump
manipulation. Optics letters 43, 859–862 (2018).

56. Born, M. & Wolf, E. Principles of optics: electromagnetic theory of propagation, inter-
ference and diffraction of light (Elsevier, 2013).

57. Borghi, M., Castellan, C., Signorini, S., Trenti, A. & Pavesi, L. Nonlinear silicon
photonics. Journal of Optics 19, 093002 (2017).

58. Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nature photonics
4, 535–544 (2010).

59. Jalali, B., Raghunathan, V., Dimitropoulos, D. & Boyraz, O. Raman-based silicon
photonics. IEEE Journal of Selected Topics in Quantum Electronics 12, 412–421 (2006).

60. Müller, M. & Zumbusch, A. Coherent anti-Stokes Raman scattering microscopy.
ChemPhysChem 8, 2156–2170 (2007).

61. Li, S., Li, Y., Yi, R., Liu, L. & Qu, J. Coherent anti-Stokes Raman scattering mi-
croscopy and its applications. Frontiers in Physics 8, 598420 (2020).

62. Inoue, K. Four-wave mixing in an optical fiber in the zero-dispersion wavelength
region. Journal of lightwave technology 10, 1553–1561 (1992).

63. Fukuda, H. et al. Four-wave mixing in silicon wire waveguides. Optics express 13,
4629–4637 (2005).

64. Carman, R., Chiao, R. & Kelley, P. Observation of degenerate stimulated four-
photon interaction and four-wave parametric amplification. Physical Review Let-
ters 17, 1281 (1966).

65. Signorini, S. & Pavesi, L. On-chip heralded single photon sources. AVS Quantum
Science 2, 041701 (2020).

66. Feng, L.-T., Guo, G.-C. & Ren, X.-F. Progress on integrated quantum photonic
sources with silicon. Advanced Quantum Technologies 3, 1900058 (2020).

67. Harada, K.-i. et al. Frequency and polarization characteristics of correlated photon-
pair generation using a silicon wire waveguide. IEEE Journal of Selected Topics in
Quantum Electronics 16, 325–331 (2009).

68. Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear
optics. Light: Science & Applications 6, e17100–e17100 (2017).

69. Meyer-Scott, E., Silberhorn, C. & Migdall, A. Single-photon sources: Approach-
ing the ideal through multiplexing. Review of Scientific Instruments 91, 041101
(2020).

70. Hadfield, R. H. Single-photon detectors for optical quantum information appli-
cations. Nature photonics 3, 696–705 (2009).



198 Bibliography

71. Silberhorn, C. Detecting quantum light. Contemporary Physics 48, 143–156 (2007).
72. Soref, R. The past, present, and future of silicon photonics. IEEE Journal of selected

topics in quantum electronics 12, 1678–1687 (2006).
73. Siew, S. Y. et al. Review of silicon photonics technology and platform develop-

ment. Journal of Lightwave Technology 39, 4374–4389 (2021).
74. Ye, W. N. & Xiong, Y. Review of silicon photonics: history and recent advances.

Journal of Modern Optics 60, 1299–1320 (2013).
75. Lockwood, D. J. & Pavesi, L. Silicon photonics (Berlin: Springer, 2004).
76. Pelucchi, E. et al. The potential and global outlook of integrated photonics for

quantum technologies. Nature Reviews Physics 4, 194–208 (2022).
77. Bogdanov, S., Shalaginov, M., Boltasseva, A. & Shalaev, V. M. Material platforms

for integrated quantum photonics. Optical Materials Express 7, 111–132 (2017).
78. Baets, R. et al. Silicon photonics: Silicon nitride versus silicon-on-insulator in Optical

Fiber Communication Conference (2016), Th3J–1.
79. Blumenthal, D. J., Heideman, R., Geuzebroek, D., Leinse, A. & Roeloffzen, C.

Silicon nitride in silicon photonics. Proceedings of the IEEE 106, 2209–2231 (2018).
80. Xu, D.-X. et al. Silicon photonic integration platform—have we found the sweet

spot? IEEE Journal of Selected Topics in Quantum Electronics 20, 189–205 (2014).
81. Brès, C.-S. et al. Supercontinuum in integrated photonics: generation, applica-

tions, challenges, and perspectives. Nanophotonics 12, 1199–1244 (2023).
82. Bernard, M. et al. Top-down convergence of near-infrared photonics with silicon

substrate-integrated electronics. Optica 8, 1363–1364 (2021).
83. Singh, V. N. & Kushvaha, S. S. Nanomaterials for Energy and Sensor Applications

2024.
84. Marder, A. A. et al. CdS/CdSe/CdS Spherical Quantum Wells with Near-Unity

Biexciton Quantum Yield for Light-Emitting-Device Applications. ACS Materials
Letters 5, 1411–1419 (2023).

85. Lacava, C. et al. Si-rich silicon nitride for nonlinear signal processing applications.
Scientific reports 7, 22 (2017).

86. Cernansky, R., Martini, F. & Politi, A. Complementary metal-oxide semiconduc-
tor compatible source of single photons at near-visible wavelengths. Optics Let-
ters 43, 855–858 (2018).

87. Pedrotti, F. L., Pedrotti, L. M. & Pedrotti, L. S. Introduction to optics (Cambridge
University Press, 2017).

88. Saleh, B. E. & Teich, M. C. Fundamentals of photonics (john Wiley & sons, 2019).
89. Agrawal, G. P. in Nonlinear Science at the Dawn of the 21st Century 195–211 (Springer,

2000).
90. Soldano, L. B. & Pennings, E. C. Optical multi-mode interference devices based

on self-imaging: principles and applications. Journal of lightwave technology 13,
615–627 (1995).

91. Saghaei, H., Elyasi, P. & Karimzadeh, R. Design, fabrication, and characterization
of Mach–Zehnder interferometers. Photonics and Nanostructures-Fundamentals and
Applications 37, 100733 (2019).

92. Dong, P. Silicon photonic integrated circuits for wavelength-division multiplex-
ing applications. IEEE Journal of Selected Topics in Quantum Electronics 22, 370–378
(2016).

93. Yang, B.-K., Shin, S.-Y. & Zhang, D. Ultrashort polarization splitter using two-
mode interference in silicon photonic wires. IEEE Photonics Technology Letters 21,
432–434 (2009).

94. Fukuda, H. et al. Ultrasmall polarization splitter based on silicon wire waveg-
uides. Optics Express 14, 12401–12408 (2006).

95. Dai, D. & Bowers, J. E. Novel ultra-short and ultra-broadband polarization beam
splitter based on a bent directional coupler. Optics express 19, 18614–18620 (2011).



Bibliography 199

96. Trinh, P., Yegnanarayanan, S. & Jalali, B. Integrated optical directional couplers
in silicon-on-insulator. Electronics Letters 31, 2097–2098 (1995).

97. Chen, C.-L. Foundations for guided-wave optics (John Wiley & Sons, 2006).
98. Ulrich, R. Light-propagation and imaging in planar optical waveguides. Nouvelle

Revue d’Optique 6, 253 (1975).
99. Ulrich, R. & Ankele, G. Self-imaging in homogeneous planar optical waveguides.

Applied Physics Letters 27, 337–339 (1975).
100. Peruzzo, A., Laing, A., Politi, A., Rudolph, T. & O’brien, J. L. Multimode quantum

interference of photons in multiport integrated devices. Nature communications 2,
224 (2011).

101. Komma, J., Schwarz, C., Hofmann, G., Heinert, D. & Nawrodt, R. Thermo-optic
coefficient of silicon at 1550 nm and cryogenic temperatures. Applied Physics Let-
ters 101 (2012).

102. Rizal, C. & Niraula, B. Compact Si-based asymmetric MZI waveguide on SOI
as a thermo-optical switch. Optics Communications 410, 947–955. ISSN: 0030-4018.
https://www.sciencedirect.com/science/article/pii/S0030401817308933

(2018).
103. Raghi S. El Shamy, e. a. Modelling, characterization, and applications of silicon

on insulator loop terminated asymmetric Mach Zehnder interferometer. Scientific
Reports 12 (2022).

104. Heebner, J., Grover, R. & Ibrahim, T. Optical microresonator theory. Springer (2008).
105. Ramiro-Manzano, F., Prtljaga, N., Pavesi, L., Pucker, G. & Ghulinyan, M. A fully

integrated high-Q whispering-gallery wedge resonator. Optics express 20, 22934–
22942 (2012).

106. Feng, S. et al. Silicon photonics: from a microresonator perspective. Laser & pho-
tonics reviews 6, 145–177 (2012).

107. Engin, E. et al. Photon pair generation in a silicon micro-ring resonator with re-
verse bias enhancement. Optics express 21, 27826–27834 (2013).

108. Ghulinyan, M. et al. Whispering-gallery modes and light emission from a Si-
nanocrystal-based single microdisk resonator. Optics express 16, 13218–13224 (2008).

109. Landobasa, Y. M., Darmawan, S. & Chin, M.-K. Matrix analysis of 2-D microres-
onator lattice optical filters. IEEE Journal of Quantum Electronics 41, 1410–1418
(2005).

110. Niehusmann, J. et al. Ultrahigh-quality-factor silicon-on-insulator microring res-
onator. Optics letters 29, 2861–2863 (2004).

111. Lee, J.-M. et al. Do different kinds of photon-pair sources have the same indis-
tinguishability in quantum silicon photonics? Photonics Research 11, 1820–1837
(2023).

112. Hong, C.-K., Ou, Z.-Y. & Mandel, L. Measurement of subpicosecond time inter-
vals between two photons by interference. Physical review letters 59, 2044 (1987).

113. Silverstone, J. W. et al. On-chip quantum interference between silicon photon-pair
sources. Nature Photonics 8, 104–108 (2014).

114. Lee, J.-M. et al. Controlled-NOT operation of SiN-photonic circuit using photon
pairs from silicon-photonic circuit. Optic Communications 509 (2022).

115. Signorini, S. & Pavesi, L. On-chip heralded single photon sources. AVS Quantum
Science 2 (2020).

116. Gard, B. T., Motes, K. R., Olson, J. P., Rohde, P. P. & Dowling, J. P. in From atomic
to mesoscale: The role of quantum coherence in systems of various complexities 167–192
(World Scientific, 2015).

117. Hamilton, C. S. et al. Gaussian boson sampling. Physical review letters 119, 170501
(2017).

118. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum proces-
sor. Nature communications 5, 4213 (2014).

https://www.sciencedirect.com/science/article/pii/S0030401817308933


200 Bibliography
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