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Abstract

A sensor is a device which is used to detect physical parameters of interest like tem-

perature, pressure, or strain, performing the so called sensing process. This kind of

device has been widely adopted in different fields such as aeronautics, automotive,

security, logistics, health-care and more. The essential difference between a smart

sensor and a standard sensor is its intelligence capability: smart sensors are able to

capture and elaborate data from the environment while communicating and inter-

acting with other systems in order to make predictions and find intelligent solutions

based on the application needs. The first part of this thesis is focused on the problem

of sensor selection in the context of virtual sensing of temperature in indoor environ-

ments, a topic of paramount importance which allows to increase the accuracy of the

predictive models employed in the following phases by providing more informative

data. In particular, virtual sensing refers to the process of estimating or predict-

ing physical parameters without relying on physical sensors, using computational

algorithms and predictive models to gather and analyze data for accurate predic-

tions. We analyze the literature, propose and evaluate methodologies and solutions

for sensor selection and placement based on machine learning techniques, includ-

ing evolutionary algorithms. Thereafter, once determined which physical sensors to

wield, the focus shifts to the actual methodology for virtual sensing strategies for

the prediction of temperatures allowing to uniformly monitor uncovered or unreach-

able locations, reducing the sensors deployment costs and providing, at the same

time, a fallback solution in case of sensor failures. For this purpose, we conduct

a comprehensive assessment of different virtual sensing strategies including novel

solutions proposed based on recurrent neural networks and graph neural networks

able to effectively exploit spatio-temporal features. The methodologies considered

so far are able to accurately complete the information coming from real physical

sensors, allowing us to effectively carry out monitoring tasks such as anomaly or

event detection. Therefore, the final part of this work looks at sensors from another,

more formal, point of view. Specifically, it is devoted to the study and design of a

framework aimed at pairing monitoring and machine learning techniques in order

to detect, in a preemptive manner, critical behaviours of a system that could lead

to a failure. This is done extracting interpretable properties, expressed in a given

temporal logic formalism, from sensor data. The proposed framework is evaluated

through an experimental assessment performed on benchmark datasets, and then

compared to previous approaches from the literature.
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1
Introduction

Sensing is to grasp the nature, importance, or meaning of a physical phenomenon

or stimulus. Apart from classic components, such as transducers, amplifiers, filters

and compensators, a smart sensor differs from a traditional one as it has a data

computing unit, a signal processing unit, and communication unit allowing it to be

capable of collecting, processing, and communicating data with other devices [177].

Hence, it is important instrument for continuous monitoring and control action

performing. Thanks to the improvements of nanotechnology and microelectronic

technologies, increasingly complex and miniaturized smart sensors and devices are

spreading on the market. These smart devices, which are an integral part of the

Internet of Things (IoT) and Industry 4.0, are able to capture and elaborate data

from the environment, communicate and interact with other systems and with the

environment itself, making predictions and finding intelligent solutions based on

the application needs [192]. Such devices may be used in different areas such as

aeronautics, automotives, security, logistics, health-care, smart grid for intelligent

energy production and consumption, predictive maintenance, industrial processes

engineering and more [115, 189, 124, 83, 37, 192, 193]. More in general, what is pro-

posed is typically aimed at achieving greater efficiency by optimizing management

and processes, reducing the costs and the resources used [115].

Within the scope of this thesis, my primary objectives are to explore and propose

comprehensive strategies, methodologies, and techniques for effective, flexible, and

efficient environmental monitoring through smart sensor systems. Motivated by

the advancements in nanotechnology and microelectronic technologies, as well as

the increasing prevalence of Internet of Things (IoT) and Industry 4.0, my research

aims to address challenges related to sensor placement, virtual sensing, system failure

detection, and predictive maintenance. By optimizing the deployment of sensors,

enhancing energy efficiency, and leveraging advanced machine learning solutions, I

seek to contribute to the field by improving monitoring capabilities, reducing costs,

and optimizing management and processes. To guide my investigation, I pose the
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following key research questions: How can we determine the optimal placement

of sensors to ensure uniform monitoring of physical phenomena? How can virtual

sensing techniques be developed to predict physical quantities without relying on

certain physical sensors? How can monitoring and machine learning techniques be

integrated to detect critical system behaviors and enable predictive maintenance?

By addressing these questions through an interdisciplinary approach, this thesis aims

to contribute to the advancement of smart sensor systems and their applications in

various domains.

Physical sensors are usually costly, in need of maintainance and sometimes unre-

liable [109]. Furthermore, optimizing energy consumption is a crucial aspect both to

reduce the environmental impact given by the large scale usage of electronic devices,

and because some systems have limited autonomy. Therefore, it is important to opti-

mize energy consumption, limiting the number of engaged sensors while maintaining

a good level of accuracy in the collected data and the intelligent task. The first ob-

stacle to be tackled in order to deploy a sensors system is given by the choice of how

to set an adequate number of sensors at the desire location to ensure a uniform mon-

itoring of some physical phenomenon of interest. In [28] we deal with this problem

in the case of temperature monitoring in an open space office. Here, a systematic

analysis of several distance metrics that can be used to determine the best sensors

on which to base temperature monitoring is performed. Then, following a genetic

programming approach, we design a novel metric that non-linearly combines and

synthesizes information brought by the considered distance metrics, outperforming

their effectiveness. Thereafter, exploiting such a metric we propose an automatic

and generic approach based on a weighted Borda count voting system to determine

the best subset of sensors that are worth keeping. Borda count [19] is a widely

adopted voting method that assigns points to candidates based on their ranking by

voters, providing a fair and inclusive strategy to decision-making in voting processes.

In the considered sensor selection scenario, it allows all the examined sensors to vote

for candidate ones to select, and has been devised considering some important as-

pects. First, selected sensors may provide information that is relevant either locally

or globally. Locally-relevant solutions will be a first choice only for just a niche of

sensors, and they will rank poorly among the remaining voters. Globally-relevant

solutions may not be the first choice, but they likely be an acceptable alternative

option according to a vast majority. Anomalous sensors will be relevant only locally

if not to themselves alone, while well-behaved sensors instead will usually be aligned

with general trends and thus globally more relevant. Usually, sensors can surrogate

each other depending on distance (proximity principle). Nevertheless, each sensor

is usually predicted by itself better than by anything else, so it would likely vote
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for itself if allowed to. This holds for all sensors, especially for anomalous ones,

as they can rely only on themselves to predict their own troubled data. A voting

system should prevent anomalous sensors to drive the election by design. Instead, it

should foster the ability of different candidates to surrogate voters’ data. Anomalous

sensors will surrogate the others poorly, so they will likely lose the election.

With the aim of proposing and evaluating techniques capable of monitoring tem-

peratures in uncovered or unreachable locations, we design and produced a set of

simulation data by means of computational fluid dynamics algorithms for a generic

room model, concerning different environmental and usage conditions, as well as

different configurations in terms of arrangements of internal objects. In this sce-

nario, starting from a sensors grid extended in 3 dimensions and sufficiently dense,

we devised an optimal sensor placement strategy based on graph attention mecha-

nisms, along with an algorithm capable of transferring the displacement to another

simulated room with a different internal configuration.

Once the problem of sensor placement was addressed and the commissioning

was done, we might focus on the issue of sensing physical quantities present in the

environment, production processes or machinery. In many practical applications,

obtaining the sensing data by placing the sensors at the optimal locations is difficult

or even impossible, for this purpose, it may be necessary to implement virtual sensing

solutions. Virtual sensing is a set of techniques to replace a subset of physical sen-

sors by virtual ones, allowing the monitoring of unreachable locations, reducing the

sensors deployment costs, and providing a fallback solution for sensor failures [107].

Hereafter, we take into account a real-world scenario of an indoor open space

office dataset [26], and propose a black-box virtual sensing framework, capable of

predicting temperatures exploiting spatio-temporal information, that, in principle,

can be adapted to any indoor environment. More in detail, in [28] we proposed some

solutions, including among all a long short-term memory recurrent neural networks-

based model for the prediction of temperatures observed by physical sensors based

on other sensors’ data, and carried out a comparison with other approaches from the

literature, including baseline methods, and some classical machine learning models

evaluating also the reliability of the generated predictions.

The problem of monitoring temperatures in indoor environments, which is crit-

ical for several reasons, including satisfaction of comfort levels, energy efficiency,

and safe temperature constraints, may require the devising of virtual sensing tech-

niques capable of performing spatial interpolation, i.e., able to uniformly monitor

each location of an examined environment. In this scenario, in order to evaluate the

interpolation capacity of the assessed models, we focus on the aforementioned simu-

lation dataset concerning different environmental and usage conditions for a generic
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room model. The data observed from the sensor grid are exploited to evaluate

the effectiveness of the analysed solutions. In detail, we propose deep learning ap-

proaches including a graph neural network model, capable of acting as a simulations

approximant, representing information in order to learn physical characteristics of

the measured phenomena. Here the spatial interpolation is possible thanks to the

flexible structure of the graphs and exploiting the inductive learning capabilities of

this model. This ensures it is possible to reuse models generated in the training

phase, while adding and removing nodes (or edges) of the graph, or modifying their

features. Subsequently, besides a systematic comparative concerning classical spatial

interpolation approaches, we conducted a series of experiments aimed at verifying

the ability of the proposed model to generalize on different simulated environmental

conditions.

Once a sensors system has been made operational and efficient, regardless of

whether it includes virtual or real sensors, it is able to provide a large amount of

dynamic and heterogeneous data, as continuous streams collected over time and

related to different kinds of statistical variables, such as categorical and numeri-

cal ones. This raw data can be analyzed in real time and processed to carry out

event, anomaly or failure detection activities. Regardless of whether a commercial

or private use is considered, this is a task that plays a fundamental role and allows

the sensor system to be enhanced with control functions. The possible applications

are many and vary, for example, from production process control, predictive main-

tenance of machinery and household appliances, to the detection of environmental

comfort condition violations.

With this premise, the last part of this thesis is focused on system failure de-

tection and predictive maintenance. In particular, on the basis of a set of values

recorded by sensors, it is desired to recognize whether or not a production envi-

ronment, a machine or a device shows an anomaly or an internal fault. The early

detection of the latter can be useful, e.g., to prevent a failure of the entire system,

a serious damage, a production block, or the occurrence of critical safety condi-

tions. In the literature deep learning models have been exploited for these tasks

with increasing success. Although these models offer good performances in terms of

predictions, they hardly provide guarantees over their execution, a problem which is

exacerbated by their lack of interpretability (i.e., they do not provide any qualitative

understanding on the process leading from input variables to the final decision [154]).

For this reasons, in many critical contexts, formal methods, which are able of en-

suring the correct behavior of a system, are thus necessary. However, specifying in

advance all the relevant properties and building a complete model of the system

against which to check them is often out of reach in real-world scenarios. To over-
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come these limitations, we proposed [24] a framework that resorts to monitoring (a

lightweight verification technique that does not require an explicit model specifica-

tion) and pairs it with machine learning, in order to automatically derive relevant

properties, related to a bad behavior of the considered system, encoded by means

of interpretable formulas expressed in a temporal logic formalism.

The extracted properties are stored in a monitoring pool. As we will see, the

management of this pool raises a number of issues that were taken into account in the

design phase. First of all, the validity of an originally well-predictive property may

change over time, for example due to updates/upgrades performed on the monitored

system. Therefore, it is necessary to handle the pool in a non-monotonic way,

providing a mechanism for removing ineffective properties based on a validity score.

In addition, in the monitoring pool there may be multiple properties showing a

similar behavior against the incoming input data. In that case, it suffices to keep

just a single representative of those formulas. Finally, the framework must be able

to handle cases where inserted properties conflict.

The latter topic represents, at the same time, the culmination of the entire

research path, and the starting point for further research directions. With this

thesis, we propose a comprehensive set of strategies, methodologies and techniques

for effective, flexibile, and efficient environmental monitoring through smart sensor

systems. Furthermore, we present a general framework based on monitoring and

learning techniques, applicable to different contexts and complex systems, which is

able to exploit sensors and telemetry data in order to perform early failure detection

through the extraction temporal logic properties.

Below we present a synopsis of the thesis structure. In Chapter 2, we pro-

vide background information on the relevant topics, including temporal data, ma-

chine learning, deep learning, evolutionary algorithms, and runtime verification tech-

niques. Thereafter, in Chapter 3, we focus on the task of sensor selection introducing

the application domains related to real-world and simulated indoor environments,

proposing two solutions based on weighted Borda count and graph attention net-

works, and assessing their effectiveness. Considering the same settings, Chapter 4,

, deals with the temperature prediction task, providing a comprehensive assessment

of different virtual sensing strategies including baseline approaches, and novel so-

lutions proposed based on recurrent neural networks and graph neural networks.

In Chapter 5, we present a framework combining monitoring and machine learn-

ing techniques to perform failure detection and predictive maintenance tasks. The

framework is then evaluated on different case studies widely adopted in the liter-

ature. Finally, we provide an overall assessment of the work done, together with

future research directions.





2
Background

This chapter gives an overview of the main topics discussed in the thesis. Specifically,

in Section 2.1 the notion of temporal data is introduced. Then, Section 2.2 focuses on

machine learning, a subfield of artificial intelligence concerning different algorithms

able to learn from data and make predictions without being explicitly programmed,

and Section 2.3 on deep learning, which extends the capabilities of machine learning

to extract complex features from data. This latter section introduces the notions of

deep feedforward networks, recurrent neural networks, and graph neural networks.

Section 2.4 discusses evolutionary algorithms, which are inspired by the process of

natural selection and can be used for optimization problems. Here, genetic program-

ming and NSGA-III multi-objective evolutionary algorithm are introduced. Finally,

Section 2.5 explores runtime verification techniques, such as monitoring, a set of

methods used to verify the correctness of a system while it is running. The applica-

tion domains and case studies considered in this work will be presented progressively

as they are addressed in the subsequent chapters.

2.1 Temporal data

Two common representations for temporal data are time series and temporal se-

quences. Time series are real-valued sequences of measurements taken at regular

temporal intervals. A time series X = {x1, x2, . . . , xn} for T = {t1, t2, . . . , tn} is a

discrete function having value x1 for time t1, x2 for t2, and so on. A time series

might be multivariate or univariate. A multivariate time series is formed by more

than one variable, whereas a univariate time series has only one underlying variable.

Another distinction between time series is whether they are stationary or nonsta-

tionary. Stationary time series have constant mean and variance over time, whereas

nonstationary time series have no discernible mean and can decrease or increase

over time. Temporal sequences are discrete sequence of finite-domain values taken

at regular or irregular time intervals. An example of temporal sequence could be a

sequence of logged events, function calls, alarms, etc. It is worth noticing that also
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a single event could be considered as a degenerate case of a temporal sequence with

one time-stamped element.

In order to be fruitfully analyzed and processed, data must be appropriately

treated to make them “clean” and suitable for the intended task of interest. This

stage typically includes steps such as handling missing data [167], noise removal [122],

normalization [59], feature engineering [191] and dimensionality reduction [38]. Given

their strong dependence on the specific dataset and task, the latter will be described

from time to time while proceeding with the following chapters of the thesis.

Within the scope of this study, as a normalization technique, we consider scaling

the temporal data to a desired range. Specifically, we employ the method of min-

max scaling, which transforms the data so that it falls within a predefined interval,

typically between 0 and 1. Min-max scaling offers several benefits for the analysis

of temporal data. Firstly, it standardizes the data, making it comparable across

different features or variables. This standardization ensures that no single feature

dominates the analysis based on its magnitude. Secondly, min-max scaling preserves

the relative relationships among data points, allowing for meaningful comparisons

and interpretations. Conversely, normalization for a normal distribution (e.g., z-

score normalization), involves transforming the data to have a mean of 0 and a

standard deviation of 1. In this case, the purpose of adapting data to a normal

distribution is primarily relevant when statistical assumptions require the data to

meet specific criteria, such as in tests that rely on distributional assumptions.

2.2 Machine learning

Machine learning is a branch of Artificial Intelligence focused on algorithms and

statistical models able to learn from the experience automatically, hence, without

any explicit programming. There exist two main categories of learning: supervised

and unsupervised [16].

In supervised learning, the set of data employed in the training phase is made

up of instances (or examples) labeled with ground truth target values (called labels).

The objective of supervised learning is to learn how to predict the correct values

for the target vector starting from a given input instances. In the case of classifica-

tion problems, target values could consists in a finite number of discrete categories.

Otherwise, in regression problems the target of the prediction is a numerical vari-

able [4]. More formally, an instance is represented as a vector x ∈ R
n, where each

of the n entries of the vector is called feature (or predictor). In classification tasks,

the learning algorithm is usually asked to produce a function f : Rn → {1, . . . , k}
mapping an input x to a category y = f(x). Instead, in regression tasks models are
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asked to learn a function with a numeric output f : Rn → R.

On the other hand, unsupervised learning does not make usage of labels, but is

rather focused on studying the data distribution, finding relations between variables,

general patterns in the data, or groups of data instances [84].

In an intermediate position between supervised and unsupervised learning, lies

semi-supervised learning. In this case, a model learns from both labeled and unla-

beled data. By incorporating both types of data, this learning approach can improve

the accuracy of a model and make it more robust, while reducing the reliance on

labeled data. Due to the large amount of unlabeled data available in many domains,

semi-supervised learning has been an active area of research in recent years. Some

popular approaches in this field include self-training, co-training, and graph-based

methods [39].

In machine learning, we often need to make predictions about new, unseen data

based on the patterns observed in the data that we have. Inductive learning and

transductive learning are two approaches to deal with this problem [175].

In more detail, inductive learning refers to the process of learning a general rule

from a set of specific examples. The goal is to generalize from the observed examples

to make accurate predictions on new, unseen ones.

Transductive learning, on the other hand, refers to the process of making pre-

dictions about specific, already known examples in the test set (i.e., the set of test

instances), rather than generalizing to unseen ones. The goal of transductive learn-

ing is to make accurate predictions on the test set based on the observed patterns

in the training set (i.e., the set of instances used in the training phase).

The capacity of a machine learning algorithm to perform effectively on new

unseen cases that are not part of the training set is known as generalization. On

the other hand, overfitting is a phenomena that happens when the algorithm is

too closely fitted to a peculiar and limited set of instances, and fails to apply its

knowledge to new data.

As we shall see in Chapter 4, both inductive and transductive learning have their

own advantages and disadvantages, and the choice between the two depends on the

specific problem and available data.

2.3 Deep learning

In traditional machine learning, an handcrafted mapping from raw input data to a

feature space is often required to fed predictive models with proper input in order

to pursue a learning task effectively. Deep learning differs from this classical form of

”shallow” learning as is able to learn far higher degrees of hierarchical abstraction
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Figure 2.1: Model of an artificial neuron.

and representation [72]. The aim is to learn representations from the data with a

progressive level of abstraction in another space (a latent space), where the problem

become easier to solve.

In the following sections two of the main deep learning solutions used in this

thesis are presented. In Section 2.3.1 deep feedforward networks are introduced

along with some basic notions related to their employment. Finally, in Section 2.3.2

some recurrent neural networks architectures able to deal with sequential data are

presented.

2.3.1 Deep feedforward networks

Deep feedforward networks, also called feedforward neural networks (FFNNs), or

multilayer perceptrons (MLPs) [161] have served as the cornerstone of deep learn-

ing for decades. They are the fundamental building blocks of deep learning and

could form complex architectures combining different non-linear transformations.

Although they may not be regarded as pure deep learning models, the seminal role

of MLPs in the development of deep learning cannot be overstated, as they have

played a pivotal role in shaping the field and paving the way for subsequent advance-

ments. This model, inspired by the biological brain, consists of simple processing

units, the artificial neurons, organized in layers and connected by directed weighted

edges.

As illustrated in Figure 2.1, artificial neurons compute a weighted sum of their

inputs w1x1 + w2x2 + . . . + wnxn + b. Then, the result is passed through an

activation function ϕ. The purpose of activation functions is to, determine how

the information flows from one neuron to the followings. This usually introduce

non-linearities into the network, enabling it to approximate extremely non-linear

functions [81]. The choice of this function depends on the architecture of the neural

network and the specific task at hand. The most common activation functions
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Figure 2.2: A basic feedforward neural network.

considered in the literature [137] are the sigmoid (logistic) function ϕ(x) = 1
1+exp(−x)

,

the hyperbolic tangent (tanh) function ϕ(x) = exp(x)−exp(−x)
exp(x)+exp(−x)

, the rectified linear unit

(ReLU) function ϕ(x) = max(0, x), and the leaky rectified linear unit (Leaky ReLU)

function ϕ(x) = max(αx, x) where α is the negative input slope.

In Figure 2.2, an example of FFNN with an input layer, L intermediate layers,

called hidden layers, and an output layer, is depicted. This network is able to cal-

culate the output value y = f(x, θ) starting from an input x and from parameters

in θ = (W1,b1, . . . ,WL+1,bL+1) applying the functions sequence f1, f2, . . . , fL+1

such that, for each k in {1, . . . , k + 1}, the output vector for layer k is hk =

fk(h
k−1, (Wk,bk)) = ϕk(Wkhk−1 + bk) with hk−1 ∈ R

nk−1 output vector of level

k − 1, ϕk activtion function, Wk ∈ R
nk×nk−1 weights matrix, bk ∈ R

nk bias vector,

nk number of units (artificial neurons) of layer k, and h0 = x input vector.

After deciding on the network’s architecture, the parameters θ must be estimated

using a set of training samples. The estimation of θ is usually produced minimizing

a loss function by employing a gradient descent algorithm [160]. The loss function

quantifies how well the FFNN outputs are approximating the target values. Gra-

dient descent is used to determine how to vary the weights and biases, in order to

minimize the loss function. The variant of gradient descent primarily involved in

modern neural networks training is the stochastic gradient descent algorithm. Here,

as a first step, the parameters in θ are randomly initialized. This operation is crucial

for FFNNs as it impacts convergence rate, stability, and the avoidance of poor local

optima. An appropriate initialization breaks symmetry between units and controls

variance to prevent vanishing or exploding gradients [69]. After the initialization

of θ, for each training instance xi and related target value yi weights are updated
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Unfold

Figure 2.3: An unfolded vanilla recurrent neural network.

such that θ = θ − η∇θL(θ,x
i, yi), where L is the loss function, ∇θL(θ,x

i, yi) its

gradient obtained by deriving L on θ, and η is the learning rate. Instead of com-

puting every gradient value associated to each parameter, the propagation of the

gradients from the output layer, to the preceding ones is carried out through the

back-propagation algorithm (introduced in [162]) taking advantage of the fact that

all operations used in the network are differentiable. Furthermore, it is important

to point out that the calibration of the learning rate η is of paramount importance

for the convergence of the algorithm: if too small, the optimization can be blocked

on a local minimum; conversely, if too large, the network will oscillate around an

optimum. In order to reduce this oscillation effect and accelerate the convergence

process, variations of the optimization algorithm, like Nesterov accelerated gradient

(NAG) [134], root mean square propagation (RMSProp) [78] or adaptive moment

estimation (Adam)[94], have been proposed in the literature.

Finally, It is worth noticing that, in order to avoid the effects of noisy or unin-

formative inputs, the gradient is not computed for each singular example, but on an

entire subset of the training set, called batch, taken at random without replacement.

2.3.2 Recurrent neural networks

Feedforward neural networks have some limitations when they have to process tem-

poral data. In fact, considering a sequence of data supplied as input, each of its

elements is processed by a network independently of the position occupied within

the sequence itself. Hence, temporal dependencies are implicitly ignored by this

kind of models. To deal with this kind of data, feedforward neural networks have

been extended in order to include feedback connections. Those kind of networks are

called recurrent neural networks (RNNs) [168].

RNNs can learn from sequences and produce a sequence of states and outputs.

In Figure 2.3 an example of ”vanilla” RNN architecture is shown. As can be seen
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forget
gate

input gate

output gate

Figure 2.4: A long short-term memory recurrent neural network cell.

from the unfolded representation of the network on the right, this RNN processes

a sequence by iterating through each of its elements, keeping a state containing

information on what it has seen so far.

In the training phase, the gradient is propagated backward through all the se-

quence of states generated by the input. This process, called back-propagation

through time [182], is the RNN counterpart for FFNN’s back-propagation algorithm.

In this settings, architecture like vanilla RNN could experience problems due to the

gradient vanishing effect. The latter occurs in the presence of long sequences of

input data and small weights in the network, making the gradient shrink at each

step until it disappears. In fact, as could happen with very deep FFNNs made up

of several layers, long products of matrices can lead to vanishing (or exploding) gra-

dients. This cause RNN to be biased towards capturing only short-term relations

and, consequently, to loose information on data seen several timesteps before. As

we will see in the following part, A possible solutions to this issue, is the adoption of

gated architectures like gated recurrent unit (GRU) [44] or long short-term memory

(LSTM) [79].

Long short-term memory RNNs

The Long Short-Term Memory architecture, which is a special kind of RNN archi-

tecture, was created in order to enable the learning of long time dependencies from

input sequences. This is done, thanks to a special cell architecture as depicted in

Figure 2.4. As we can see, here two types of state are provided: ht, which is the short-
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term state exposed to the outside, and ct, the internal long-term state of the cell. The

core components of this architecture are the gates which control the flow of informa-

tion learning what to store and what to throw away from the states and from the in-

put data. In detail, given the parameters θ = (Wxf ,bf ,Wxi,bi,Wxo,bo,Wxg,bg, )

an LSTM cell has three gates:

• the forget gate ft, which learns what part of the previous state ct−1 should be

erased, and is defined by the function ft = σ(Whfht−1 +Wxfxt + bf );

• the input gate it, which determines what relevant new information store in the

long-term state ct, and is defined by the function it = σ(Whiht−1+Wxixt+bi);

• the output gate ot, controlling what information encoded in the new long-term

state ct should be read and processed as output and as new value for ht; this

gate is defined by the function ot = σ(Whoht−1 +Wxoxt + bo).

The value of the new long-term state is computed as ct = ft ⊙ ct−1 + it ⊙ gt,

where gt = tanh(Whght−1 +Wxgxt + bg) is the new candidate state and ⊙ is the

element-wise multiplication operator. Finally, the short-term state is updated as

ht = ot ⊙ tanh(ct).
It is worth noticing that the forget gate allows to completely filter or keep intact

the information coming from the previous state ct−1. Thus, guaranteeing a theo-

retically back-propagation through time with uninterrupted gradient computation

flow, LSTM RNNs can potentially learn long time dependencies related to input

sequences. Considering the large amount of parameters in θ, the training phase

can be computationally intensive. Hence, lighter architectures, with only a single

state and fewer gates, such as RNNs with GRU cells, have been proposed in the

literature [44].

2.3.3 Graph neural networks

In recent years, graph neural networks (GNNs) have emerged as a popular class of

deep learning models for learning representations of graph-structured data. A graph

is a mathematical structure that consists of a set of vertices or nodes connected by

edges. Graphs can be used to represent a wide range of complex systems, such as

social networks, biological molecules, and natural language sentences. GNNs extend

the idea of convolutional neural networks (CNNs) [104] to graphs, enabling us to

learn node and graph-level representations that capture the structural information

of the input graphs.

Formally, a graph G = (V , E) is defined as a set of nodes (vertices) V and a set

of edges E , where each edge connects two nodes. The edges can be either directed
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1 2

3 4

Figure 2.5: An example of undirected graph

or undirected, and can have weights that represent the strength of the relationship

between the nodes.

The adjacency matrix A is a binary or weighted matrix that represents the

connections between the nodes in the graph. For an undirected graph, the adjacency

matrix is symmetric, and the diagonal entries represent the self-loops of each node.

Formally, the adjacency matrix is defined as:

Ai,j =

{

1 if (i, j) ∈ E
0 otherwise

(2.1)

It is worth noticing that, for a weighted graph, the adjacency matrix may contains

arbitrary real-values rather than {0, 1}.
As an example, considering the undirected graph in Figure 2.5 with nodes V =

{1, 2, 3, 4} and edges E = {(1, 2), (1, 3), (2, 4)}, the corresponding adjacency matrix

for this graph is

A =











0 1 1 0

1 0 0 1

1 0 0 0

0 1 0 0.











(2.2)

In graph theory, each vertex and edge can be associated with a representation

that captures some of its characteristics. In particular, we can define node represen-

tations and edge representations. A node representation hi is a vector that captures

the properties of the vertex i in the graph. The exact definition of hi depends on

the application and can vary widely. For example, in machine learning tasks on

graphs, node representations may encode information about the node’s attributes,

its neighbors, or its position in the graph. An edge representation hi,j is a vector that

captures the properties of the edge between vertices i and j. Edge representations

can also vary depending on the application. For example, in some cases, hi,j may

represent the weight or distance of the edge, or a more complex feature vector that

captures the relationship between the two vertices. The adjacency matrix A can be
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seen as an example of an edge representation that encodes the binary existence of

edges in the graph.

GNNs can be broadly categorized into two types: spectral-based and spatial-

based [75]. Spectral-based GNNs are founded on the spectral graph theory and rely

on the eigenvalues and eigenvectors of the graph Laplacian matrix to define filters

that operate on the graph. Spatial-based GNNs, on the other hand, are based on

the message-passing paradigm, where each node aggregates information from its

neighboring nodes and updates its representation accordingly. In our study, we will

focus on spatial-based approaches and, in particular, on message passing neural

networks.

Message passing neural networks

Message passing neural networks (MPNNs) [68] are a general framework for GNNs

that use message passing to update node representations. In an MPNN, the message

passing scheme is explicitly defined as a set of update rules that determine how each

node’s representation is updated based on messages received from its neighbors. The

update rules can be formulated as follows:

m
(t)
i =

∑

j∈N (i)

M (t)(h
(t−1)
i ,h

(t−1)
j , ei,j)

h
(t)
i = U (t)(h

(t−1)
i ,m

(t)
i )

where h
(t−1)
i represents the node representation of node i at iteration t − 1 and

ei,j the edge representation between nodes i and j, m
(t)
i is the message received by

node i at iteration t, N (i) is the set of neighbours of node i, M (t) is a message

function that determines how the message is computed based on the current node

representations and the edge features, and U (t) is an update function that computes

the new node representation based on the previous representation and the received

messages.

There exist several specific models of MPNNs, which are defined by appropri-

ately choosing which message function and update function should be employed.

Specifically, in Chapters 3 and 4, we will adopt a particular type of MPNNs, namely

graph attention neural networks (GATs) [176].

2.4 Evolutionary algorithm

Evolutionary algorithms (EAs) are population-based metaheuristics inspired by the

process of biological evolution and genetics, that excel in the solution of combinato-
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rial optimization problems [57]. Differently from classic random search, EAs make

use of historical information to direct the search into the most promising regions of

the search space.

In nature, a population of individuals tends to evolve to adapt to its environment.

Similarly, EAs are characterized by a population, where each individual represents

a candidate solution to a given optimization problem; each solution is evaluated

with respect to its degree of “adaptation” to the problem through a single- or multi-

objective fitness function.

The EA population iteratively goes through a series of generations. At each

generation, individuals chosen by a selection strategy undergo a process of repro-

duction. Such a selection strategy is the fundamental factor that distinguishes one

evolutionary-based approach from another, although, typically, individuals with high

degree of adaptation are more likely to be chosen (elitism). In this way, the elements

of the population iteratively evolve toward better solutions. Reproduction involves

the application, with a certain degree of probability, of suitable crossover and mu-

tation operators. As a result, an offspring is generated, which is finally merged with

the previous population, and the cycle repeats until a stopping condition is met,

e.g., based on a given fitness threshold.

Crossover is the EA counterpart of natural reproduction, by which the charac-

teristics of two individuals are combined by generating one or two offspring. As a

general rule, a high crossover probability tends to pull the population towards a local

minimum or maximum. Mutation applies random changes to the encoding of the

selected solution, with the goal of maintaining genetic diversity in the individuals; it

prevents premature convergence of the algorithm to a local optimum, thus allowing

it to explore the search space more broadly.

Evolutionary approaches have a tendency to develop solutions that are as good

as they can be for the collection of examples against which the fitness function is

measured, without taking into account the performances on potential new cases. As

a consequence, generalization in evolutionary computation has been acknowledged

as a significant open issue, and numerous efforts are being undertaken to address

this problem [71, 48].

2.4.1 Genetic programming

In this work, we deal with a specific kind of optimization task, that is, genetic

programming (GP). Such a technique evolves programs starting from a population

of random solutions [146]. Each individual is encoded by means of a computation

tree, where each leaf represents an input value (either a variable or a constant)

and internal nodes encode operators applied over such values. In GP input val-
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max

+

x x

+

x ×

3 y

Figure 2.6: Genetic programming syntax tree representing the expression max(x +

x, x+ 3 ∗ y).

ues are called terminals, while internal nodes functions. Joining the set of allowed

terminals with that of functions we obtain the primitive set of the GP system. Fur-

thermore, GP programs can be classified in two main kinds [128]: loosely typed GP,

in which primitives’ arguments can be any element of the primitive set; strongly

typed GP, in which a specific type is assigned to every primitive, and the input type

of each primitive argument must match the type of its child primitive. The output

value is generated by the primitive encoded in the root. Typical crossover/mutation

operations applied on computation trees are subtree exchange and node/leaf addi-

tion/removal/replacement. As an example, the program in Figure 2.6 represents the

function max(x + x, x + 3 ∗ y). Here the set of functions is {+, ∗,max}, while the

set of terminals is {x, y, 3}.
Finally, it is important to notice that through GP it is also possible to represent

properties encoded by means of formulas expressed in some logical formalism. In

this case, the computation trees take the place of syntax trees of formulas, and their

evaluation will be obtained according to a semantics defined for the adopted logic.

2.4.2 NSGA-III multi-objective evolutionary algorithm

As we shall see, a generalization technique may also be implemented by employ-

ing two or more objective functions. EAs designed to solve a group of minimiza-

tion/maximization problems for a tuple of n functions f = ⟨f1, . . . , fn⟩ are called

multi-objective EAs. A set F of solutions for an n-objective problem with fitness

function f = ⟨f1, . . . , fn⟩ is said to be non-dominated if and only if for each x ∈ F ,
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there exists no y ∈ F such that (i) fi (y) improves fi (x) for some i, with 1 ≤ i ≤ n,

and (ii) for all j, with 1 ≤ j ≤ n and j ̸= i, fj (x) does not improve fj (y). The set

of all non-dominated solutions is called Pareto front.

NSGA-III (Non-dominated Sorting Genetic Algorithm) [50] is a multi-objetive

optimization methodology which aims to solve multi-objective optimization prob-

lems efficiently and with the ability of distributing population members over the

entire Pareto front (i.e., preserving its diversity), while giving to best solutions bet-

ter chances of being carried over to subsequent generations (i.e., ensuring elitism).

In detail, NSGA-III is an extension of NSGA-II [51], whose peculiarity lies in

the selection strategy. This latter is applied after the offspring generation phase in

which the population has doubled in size. Here the combined (current and offspring)

population of size 2∗N is grouped into fronts in {F1,F2, . . . } such that Fi is a Pareto

front for the set ∪j>iFj. Then, the selected population F ′ is such that F ′ = ∪i<lFi,

with l defined as argminl(|∪i≤lFi| > N) (i.e., solutions with a higher non-dominant

rank are preferred following an elitist criterion). The remaining N − |F ′| solutions
are chosen from Fl applying a selection process based on reference points. These

points are widely and uniformly distributed on the normalized hyperplane inherent

to the optimization objectives of the problem addressed by the algorithm. With the

aim of preserving the diversity and distribution of the new population, this process

emphasizes the selection of remaining solutions from Fl which are associated with

every reference point by means of a distance function giving priority to individuals

covering a greater number of reference points (niching strategy).

2.5 Runtime verification techniques

Runtime verification is the branch of computer science that deals with the research,

development, and application of verification techniques capable of checking that a

run of a system under scrutiny meets or violates certain correctness properties. This

kind of techniques arose as a lightweight complement of more traditional verification

techniques such as model checking [46] and testing [129]. A system run is defined

as a possibly infinite sequence of system states. Formally, a run is considered to be

a word (or a trace), and a system execution is a finite prefix of a run, hence a finite

word (or trace).

In model checking, an exhaustive analysis is performed typically on finite-state

systems, and the satisfaction or violation of a property is established by exploring

every possible behavior. On the contrary, runtime verification allows to detect satis-

faction of violation of a property by analyzing a single behavior (a run) of the system.

Furthermore, in model checking a suitable model of the system to be checked must
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Figure 2.7: Example of monitoring setup.

be constructed. However, the inherent complexity of system’s components and of

their interactions could raise a state explosion problem, and it may be difficult to

derive a complete model of the system against which to check the properties of in-

terest. On the other hand, runtime verification is applicable to black-box systems

for which no system model is at hand and, considering a single run, does usually

not yield any memory problems. Nevertheless, the real system under analysis might

behave in a slightly different way than how model predicts (e.g., because it strongly

depends on the environment). In this scenario, runtime verification can be paired

with model checking to double check behaviors or properties that have been already

statically proved or tested.

Testing techniques, instead, require a test suite consisting of a finite set of finite

input-output sequences. Then, the execution of these test cases checks whether the

output of the system matches what was expected when the input sequence is fed to

the system under test. In a sense, runtime verification can be seen as a continuous

testing process. This latter, however, does not require a test suite as the inputs are

generated directly from the execution of the system itself.

2.5.1 Monitoring

Monitoring [106] is a runtime verification techniques that is gaining much interest in

the realm of formal methods for automated system verification. The basic principle

on which monitoring is built are the ability of reaching a verdict by just observing a

finite prefix of a single execution trace (a finite trace) and the fact that, once a verdict

is reached, it is irrevocable and it is a guarantee that the system satisfies or violates

the property, independently of all the other possible (unobserved) behaviors it might

exhibit afterwards. This latter ensures the soundness of a monitor and makes such

a technique naturally applicable to data streaming contexts.
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A typical monitoring setup is depicted in Figure 2.7, and it consists of three

main components: the system under scrutiny, the monitor and the instrumentation

mechanism. A monitor is defined [135] as a computational entity executed along

side a system so as to observe its runtime execution and possibly determine whether

a property φ is satisfied or violated from the exhibited behavior. When a suffi-

ciently long system execution trace is observed, a monitor may reach a verdict (e.g.,

acceptance or rejection). This verdict is assumed to be definite, as it cannot be

retracted or revised. Instrumentation mechanism typically determines what aspects

of the system behavior are notified to the monitor and also dictates how interaction

between the components is carried out.

Monitors can be divided into two main classes, namely online and offline moni-

tors. Online monitors are executed while the system is in operation and must be able

to receive notifications about relevant events occurring in the system under scrutiny

and make a decision on the basis of the information collected so far in an incre-

mental fashion. Instead, offline monitors analyse relevant system events simulated

or recorded as an execution trace inside a permanent data store after the system

has finished running. Since in offline monitoring the execution of the monitor is

independent of that of the system, an offline analysis is less intrusive, thus causing

less runtime overhead. By contrast, online monitoring is capable of making early

detections often exploited by runtime adaptation tools [34, 35] to solve or mitigate

potential failures.

The simultaneous execution of the system and the monitor may be performed in

different ways. In the case of synchronous online monitoring, every time the system

generates an event, it waits for the monitor to process it before proceeding with its

execution. Conversely, asynchronous online monitoring detaches the execution of

the monitor from that of the system. This approach is less intrusive and typically

leads to lower overheads, but may still yield a degree of late detections. Due to this,

hybrid approaches [31] that fall on the spectrum in between these two are used to

obtain the best of both worlds.

As we shall see in Section 5.2, although monitoring is a lightweight technique, the

gain in efficiency is paid in terms of expressivity. Therefore, monitorable properties

are a subset of the class of specifications that can be expressed in common temporal

formalisms used for automated verification. Although monitoring has been mainly

investigated in the context of linear time temporal logics[77], notable efforts have

been devoted to studying monitoring of branching-time properties. A comparison

between the two settings can be found in [1], and it is beyond the scope of this

thesis, which focuses on the monitoring of linear time temporal properties.
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Selection

In recent years, the development of sensor systems and their widespread availability

have increased the potential for monitoring indoor environments. However, as dis-

cussed in Chapter 1, deploying and maintaining a large number of sensors can be

expensive, and the sheer volume of data produced by such a system can pose signif-

icant challenges for data processing and analysis. Sensor selection has emerged as a

promising practice to these challenges. By selecting a subset of sensors from a larger

system, the cost of deploying and maintaining the system can be reduced while still

monitoring the environment in an accurate and uniform manner. In addition, as we

shall see in Chapter 4, virtual sensing techniques can be leveraged to complement

the information grasped by physical sensors and provide a more complete picture of

the environment.

This chapter focuses on the sensor selection task considering two distinct scenar-

ios: the selection of sensors in real-world indoor environments and the placement

of sensors in simulated indoor environments. The main goal is to propose solutions

that, considering the task of temperature monitoring, maximize the efficiency and

effectiveness of a sensor system while minimizing costs. Here, the primary objective

of our research is to identify the relevant sensors for data collection rather than

selecting specific features or attributes of the data itself. By focusing on sensor

selection techniques that directly address the goal of selecting sensors, we can gain

a clearer and more direct understanding of the performance of the proposed ap-

proaches. While a comparison with feature selection techniques may be interesting,

it might be more meaningful and relevant to compare sensor selection techniques

with other specific alternatives tailored to the problem domain taking also into ac-

count aspects related to sensor ranking and explainability.

After an introduction to the problem domain, in Section 3.1 we propose a novel

procedure for sensor selection based on the weighted Borda count method. We

demonstrate the effectiveness of this approach through a series of experiments con-

ducted in a real-world indoor environment comparing with a brute force solution.

Afterwards, in Section 3.2, we propose a solution based on graph attention neural
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networks for sensor placement through sensor selection in simulated indoor environ-

ments. We conclude the latter section comparing the performance of our proposed

solutions to each other and to a baseline of random sensor combinations. Our ex-

perimental results indicate that the method based on graph attention networks out-

performed the weighted Borda count one in the considered scenario. Furthermore,

both proposed solutions outperform the baseline, proving their ability to provide

accurate monitoring of the environment while reducing costs.

3.1 Sensor selection in real-world indoor eviron-

ments

The problem of sensor selection refers to the task of selecting a subset of sensors from

a larger pool of available ones to optimally acquire information from an environment

or a target system. In order to address this problem, different approaches have

been explored in the literature in various domains. In [130], an optimal sensor

selection and fusion solution is proposed for the case of an heat exchanger fouling

diagnosis in aerospace systems. It is based on the minimum Redundancy Maximum

Relevance (mRMR) algorithm, and it can be applied only for classification tasks with

discretized features. Another sensor selection approach for optimal Fault Detection

and Isolation (FDI) tests in complex systems is presented in [141]. In this case,

steady-state or dynamic models are assumed to be available, and the estimation is

based on their contribution to information gain through Hellinger distance (HD)

and Kullback–Leibler divergence (KLD).

In the context of mobile crowd sensing (MCS) systems, which leverage a public

crowd equipped with various mobile devices for large scale sensing tasks, a solution

based on reverse combinatorial auctions is proposed in [87], that integrates the

concepts of social welfare, quality of information, and cost required by each single

user to provide an observation, in order to select an optimal subset of users from

whom it is convenient to request data in exchange of a reward. This approach is not

applicable to our case, as both the quality level of the sensors and the cost of each

observation are the same.

A different class of problems where sensor selection techniques can be exploited is

that of sensor scheduling problems, where one or more sensors have to be selected at

every time step. As an example, in the domain of linear dynamical systems, a greedy

algorithm for sensor scheduling based on submodular error functions is described in

[86]. As another example, in the context of active robotic mapping, a technique to

prune the search tree of all possible sensor schedules, based on a weighted function of

the error covariances related to the state estimates, is illustrated in [178]. Lastly, an
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Figure 3.1: Location of the sensors in the considered premise. The blue cells repre-

sent the reference sensors that will be selected during the sensors selection phase.

algorithm for stochastic sensor selection minimizing the expected error covariance,

based on Kalman filters with an underlying Hidden Markov Model, is proposed

in [73]; it relies on the assumptions of process model linearity and sensor noise

Gaussianity.

Finally, another domain where sensor selection techniques are of interest is that

of Wireless Sensor Networks (WSN). WSN are networks extended over large ge-

ographical regions that feature low power sensors interconnected to each other to

receive and transmit data. In [185], an event-based sensor data scheduler deriving an

approximate minimum mean-squared error (MMSE) estimator has been developed

for remote state estimation over a network. In [123], the sensor selection problem

over WSN has been addressed by using Kalman filters with various different cost

functions and network constraints and assuming a predetermined time horizon. Fi-

nally, a distributed sensor node-level energy management approach for minimizing

energy usage has been outlined in [76], which is based on target trajectory prediction

through Kalman filters and Interacting Multiple Model (IMM) filters.

In contrast to all the above solutions, continuing with this chapter, we propose a

couple of black-box sensor selection approaches, applicable to a generic indoor envi-
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Figure 3.2: One of the Raspberry Pi Zero boards used in the study.

ronment, and well-suited also for non-linear process models and time series consisting

of both real and discrete values. Although we focus on the temperature estimation

scenario, the approach can, in principle, be applied to any other prediction task.

Before delving into the heart of the matter, the next subsection will introduce

the first application domain under consideration for this study.

3.1.1 The application domain

The first considered scenario is an open space office at Silicon Austria Labs, in Vil-

lach (Austria). As shown in Figure 3.1, the room is fairly large, having an overall

surface of 127m2, and it is characterized by the presence of an always-on air con-

ditioning system, intermittently used workplaces equipped with high-performance

workstations, individually controlled radiators, and some windows, at the top and

the bottom of the map, that can be independently opened and blinded. Twelve

Raspberry Pi Zero boards (Figure 3.2) are deployed for the measurements, each

one equipped with an Enviro pHAT sensor board featuring temperature, pressure,

light, color, motion, and analog sensors. The recordings are transmitted via WLAN,

through a FritzBox access point, towards a Raspberry Pi 3 which acts as a database

server. The clients do not store any data: all measured values are sent immediately

to the database with a preset periodicity of approximately 10 seconds. Both servers

and clients run on Raspbian OS, while the server-side database is based on MySQL.

Each client is programmed through a Python 3 script.

The placement of sensors has been organized with the goal of monitoring a variety

of operating conditions as large as possible. As an example, sensor 9 is placed near

the center of the room and thus ought to be less affected by weather conditions

than, for instance, sensors 2, 5, 6, 8, 10 and 11, that are located close to a window.

A grid has been superimposed over the map, that allows us to assign to each sensor

a unique coordinate, expressed by a tuple (X, Y ), with 0 ≤ X ≤ 10 and 0 ≤ Y ≤ 9.

The size of each grid cell is approximately 1.15 m2.
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Figure 3.3: Pearson (lower triangular part) and Kendall (upper triangular part)

correlation values among the recorded temperatures.

The considered dataset consists of measurements taken from the twelve sensors

over the period from 10/23/2019 to 03/03/2020 (henceforth, dates will be repre-

sented in the Month/Day/Year format). Data is recorded every 10 seconds, for a

total of around 13,500,000 instances. The maximum observed temperature (Celsius)

was 48.95, while the minimum was 5.36. This confirms the impact of weather: while

in the first case the high temperature can be explained by both the sun influence

and the temperature of the Raspberry circuitry, in the latter case it is likely to be

caused by an open window placed in close proximity to one of the sensors.

Descriptive analysis

The Pearson correlation values among sensor temperatures are depicted in the lower

triangular part of Figure 3.3, and they show that some of them are naturally more

correlated than others. This is the case, for instance, with sensors located close to a

window in the upper part of the room. Moreover, sensor 9 shows a high correlation

with sensor 1, which is not surprising, as both of them are placed near the center

of the room. However, there are also some notable exceptions. As an example,

sensor 10 correlates more with sensor 5 than with sensor 3, despite the fact that it
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Figure 3.4: Temperatures recorded by sensors 8, 9, and 11 on the day 10/25/2019.

is much closer to the latter than to the former. A similar pattern can be observed

for the pair of sensors 12 and 1, as opposed to 12 and 2. These phenomena might

be explained by the proximity of a window, the heat emitted by desk lights or other

kinds of electrical device, or by the presence of some obstacles that may interfere

with air flows, or block the light reaching a specific sensor.

In order to investigate whether these pairs of neighboring sensors share some non-

linear relationships or are simply measuring different phenomena, a further analysis

based on Kendall’s tau, a non-linear rank correlation measure, has been carried out.

Results are depicted in the upper triangular part of Figure 3.3. In this case, the

correlation between the pair of sensors 12 and 2 is higher than the one estimated for

the pair of sensors 12 and 1. Conversely, sensor 10 still correlates more with sensor

5 than with sensor 3, which, not being directly adjacent to a window, is probably

measuring a different kind of phenomenon.

As for the temporal evolution of the temperatures, Figure 3.4 shows the mea-

surements of three different sensors for the day 10/25/2019, which follow a typical

pattern along a 24 hours period. It is worth noticing that the temperature recorded

by sensor 11 has a spike around 11:30 in the morning. This is probably due to the

heating effect of direct sunlight, that is not present on sensor 8, which is close to

another window but on the opposite side of the building. Instead, the latter sensor

shows a drop in the temperature around 5:00 a.m., which can be explained by the

daily cleaning staff operations, that include opening the nearby windows to circulate

air. Finally, sensor 9 is characterized by a rather stable behavior, being placed close

to the center of the room. It is worth pointing out that, as witnessed by the high

average temperatures, sensors have not been calibrated. This was done on purpose,

in order to evaluate the performance of the proposed methods in a more challeng-

ing scenario, also considering that a proper calibration process might not always be

possible in a real-world deployment.
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As we shall see, in the remainder of the section we will always consider an 80%-

20% training-test split of the dataset, randomly assigning entire weeks to the two

partitions. The use of this fixed random split in our study can be justified based

on several factors. Firstly, such a choice has been made taking into account the

fact that the recordings span less than one year and cover months that typically

exhibit considerable meteorological variations. Thus, it would have been otherwise

difficult for the machine learning approaches that we are going to consider to learn

models over a subset of the first days capable of generalizing well to the remaining

time period. In addition, upon data inspection, it emerged that even contiguous

weeks tend to have rather different behaviors. Secondly, the dataset employed in

the study is of a substantial size, ensuring an adequate representation of the data for

training, validation, and testing. Additionally, implementing cross-validation tech-

niques could be computationally intensive, requiring significant resources and time.

Considering the practical constraints and limitations, such as limited computational

capacity, the use of a fixed random split provides a reasonable compromise between

computational efficiency and reliable performance assessment.

The performed analysis allows us to conclude that the considered setting is not

trivial, as there are some irregularities and local phenomena that influence and differ-

entiate the temperature recordings of the different sensors, making the temperature

prediction task quite challenging.

3.1.2 Data pre-processing

In order to carry out the experiments, it is necessary to define a set of features that

can be used as predictors by the machine and deep leaning models we are going

to develop. To this end, for each temperature measurement, we considered a set

of temporal attributes, that are useful to locate the observation in time. They are

sec from midnight, that tracks the number of seconds elapsed from 00:00:00 hour,

dow, a numerical identifier of the day of the week, and moy, a numerical identifier

of the month of the year. In order to account for time periodicity (and be able to

consider, e.g., the fact that 11:59:59 PM is close to 00:00:00 AM), we encoded each

feature by means of two trigonometric transformations:

sin(2 ∗ π ∗ x/δ) and cos(2 ∗ π ∗ x/δ),

where x represents the original attribute value and δ is the length of the period, e.g.,

12 for the attributemoy. As a result, 6 features were obtained: dow sin and dow cos,

whose values are shown in Figure 3.5, moy sin andmoy cos, whose values are shown

in Figure 3.6, and and sec from midnight sin and sec from midnight cos, whose

values are shown in Figure 3.7.
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Distance metrics

In this part of the section, the main goal of our work is to study a solution capable

of exploiting a subset of sensors to make predictions in place of a sensor to be virtu-

alized. To achieve it, distance metrics can be useful to decide which physical sensors

to consider as predictors, and to compute the predicted temperature. Furthermore,

distance metrics may be quite useful for the task of optimizing the positioning of a

given set of sensors within a certain environment.

The following distance metrics between two sensors sensori and sensorj, whose

spatial positions are respectively pi := (xi, yi) and pj := (xj, yj), have been consid-

ered:

• Euclidean distance: length of a line segment between the two points pi, pj
defined as the L2-norm

√

(xi − xj)2 + (yi − yj)2.

• Manhattan distance: the L1-norm of the distance, defined as |(xi − xj)| +
|(yi − yj)|.

• Chebyshev distance: the L∞-norm of the distance, defined as max{|(xi −
xj)|, |(yi − yj)|}.
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• Genetic Programming distance: a combination of the previous 3 distances

obtained by means of a genetic programming algorithm which generates a

computation tree whose leaves may contain the 3 aforementioned distance

values or a randomly generated constant and whose internal nodes are the

scalar/vector operations defined as a set of primitives.

• Pearson correlation: it expresses a possible linear relationship between the

statistical variables given by the temperature values of the two sensors, and it

is defined as

(

n
∑

k=1

(

tki − t̄i
) (

tkj − t̄j
)

)

/





√

√

√

√

n
∑

k=1

(tki − t̄i)2
√

√

√

√

n
∑

k=1

(tkj − t̄j)2


 ,

where n is the sample size, tki and tkj are the individual sample points for

sensori and sensorj, that is, the temperature values, and t̄i and t̄j are the

sample means.

• Kendall correlation: it expresses a possible ordinal (non-linear) association

between the statistical variables given by the temperature values of the two

sensors, and it is defined as

2

n(n− 1)

∑

k<l

sgn(tki − tli) sgn(tkj − tlj)

where n is the sample size, tki and t
l
i are the individual sample points for sensori

in position k and l, tkj and tlj are the individual sample points for sensorj in

position k and l, and sgn(x) is the function sgn : R→ {−1, 0, 1} that returns
−1, if x < 0, 1, if x > 0, and 0 otherwise.

• SHAP distance: SHAP is a game-theoretic method that allows one to eval-

uate the contributions to the final result of the different predictors used in a

machine learning model, the relevance of the contribution of a predictor to

the model being proportional to its SHAP value [112]. In our case, SHAP

values for a generic sensor sensori are obtained from an XGBoostRegressor

model [41] that predicts the temperature value of sensori on the basis of the

temperature values of the other sensors. It is worth noticing that such a metric

is not symmetric.

• SAX-CBD distance: SAX-CBD is a Compression-Based Dissimilarity mea-

sure [90] based on the assumption that the size of the compressed file of the

concatenation of two discrete time series is inversely proportional to the num-

ber of patterns that they share. As a preliminary step, the temperature values
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obtained from sensori and sensorj are discretized by means of Symbolic Aggre-

gate approXimation (SAX) [108]; then, the value of the distance is computed

as

size of(compress([di∥dj]))/(size of(compress(di))+size of(compress(dj))),
where ∥ is the concatenation operator, di and dj are the time series consist-

ing of, respectively, the discrete temperature values related to sensori and

sensorj, and compress(data) is the output of the application of the algorithm

DEFLATE [140] to data.

The estimation of the above metrics is straightforward and it has been made con-

sidering only the training set data, in order to obtain for each sensor an ordering

of the remaining 11 sensors, from the closest to the farthest one. These ranks are

calculated for each distance metric listed above.

Turning to the genetic programming algorithm, it was designed relying on the

Distributed Evolutionary Algorithms in Python (DEAP) framework [61]. The hy-

perparameters used by the EA have been established through grid search tuning

performed over a further 90%-10% training-validation subsplit of the training data,

randomly assigning entire weeks to the two sets. They are as follows: popula-

tion size = 600 individuals, i.e., computation tree-encoded functions (tested values

[500, 600, 700, 800, 900, 1000]); crossover probability = 0.7 (tested values [0.5, 0.6, 0.7,

0.8]); mutation probability = 0.4 (tested values [0.3, 0.4, 0.5, 0.6]); max generations

= 100 (tested values [50, 100, 250, 500]). As for the evolutionary operators, we em-

ployed one point crossover and a mutation where a randomly chosen primitive from

an individual is replaced by another randomly chosen operation within the primi-

tive set. To avoid bloat, that is, an excessive increase in mean program size with-

out a corresponding improvement in fitness, we placed a static limit of 17 on the

children’s height (DEAP’s staticLimit), as suggested by Koza in [98]. The chosen

selection method is the double tournament [111], which evaluates both the fitness

and the size of the individuals in order to discriminate good solutions, following

a 3-individuals fitness-based first tournament and a size-based second tournament

with a parsimony size of 1.4 (tested values [1.2, 1.4, 1.6, 1.8]). This last tournament

favours the choice of low-complexity solutions, represented by trees of limited height.

Individuals are built considering as terminal leaves the three (0-1 normalized) dis-

tance metrics Euclidean distance, Manhattan distance, and Chebyshev distance, and

a set of random constants ranging from −1 to 1. The set of primitives consists of

the following scalar/vector operations: min,max,+,−, ∗,÷, log10, exponentiation,
square root, negation, and absolute value. Note that, despite the normalization step

performed on the distance metrics, the absolute value operation is still useful given

the presence of potentially negative constants in the tree.
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Figure 3.8: The computation tree generated by the genetic programming algorithm

representing a spatial distance metric.

In order to determine the fitness function, we considered a the aforementioned

90%-10% training-validation subsplit of the training data. In both datasets, each

instance consists of a label, that is, the temperature recording of a given sensor, and

a list of predictors, that are, the 11 temperature values of the other sensors, and the

temporal features sec from midnight sin, sec from midnight cos, dow sin, dow cos,

moy sin, and moy cos. The fitness function was computed for each individual as

follows: we assessed the prediction error obtained from a series of linear regression

models built on the training split and evaluated on the validation split; different

models were trained and evaluated, considering each different sensor as a target

and increasingly discarding other predictor sensors according to the rank defined

by the distance function encoded by the individual, starting from the sensor with

the highest value. Then, for each number of considered predictors, we summed the

resulting prediction errors, coming from the different target sensors, obtaining an

error curve. Finally, to determine the fitness value, we calculated the area under

the curve. The computation tree generated by the genetic programming algorithm

is shown in Figure 3.8. It is equivalent to the function GP function(d1, d2, d3) =

min{c1, d2} + d1/c2 + d3, where d1 is the Euclidean distance, d2 is the Manhattan

distance, d3 is the Chebyshev distance, c1 ≃ 0.296, and c2 ≃ 0.480. It is clear that the

variables d1, d2, and d3 generally provide an incrementally increasing contribution

in this function, but the precise nature and rate of increase depend on their specific

values and relationships with the constants c1 and c2.

The evaluation of the rankings generated by each distance metric d was carried

out according to the following procedure on the 80%-20% training-test split:

• for each sensor sensori, the rank rankd,i of the other sensors according to the

metric d was considered;

• then, we proceeded in an iterative way: for k ∈ {0, . . . , 10}, k sensors among

the worst ones in rankd,i were discarded and a regression model was built. In

more detail,
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Area under the curve: 
  > Pearson: 72.01
  > GP_function: 73.28
  > Kendall: 74.33
  > Euclidean: 74.7
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  > Manhattan: 75.1
  > SHAP: 75.15
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Figure 3.9: Performance of linear regression, evaluated discarding sensors based on

training set ranks. The dashed vertical line represents the elbow of the Pearson

error graph.

– the sensors whose temperature values were to be used as predictors were

determined considering the set of all sensors, except sensori and the k

sensors located in the last k positions of rankd,i ;

– exploiting the training set data, a linear regression model was built to

predict the temperature of sensori using as input the temperature values

of the sensors selected in the previous step and the features moy sin,

moy cos, dow sin, dow cos, seconds from midnight sin, and seconds from

midnight cos;

– the resulting model was evaluated on the test set.

For each value of k, the sum of the 95th percentile of the absolute errors obtained for

each predicted sensor was computed, obtaining a curve over k. Then, the final error

for each metric was determined by calculating the area under the considered curve.

It is worth noticing that here the 95th percentile can be thought of as a worst-case

prediction scenario.

The outcome of the evaluation is reported in Figure 3.9. The curves show a

bowl-shaped pattern. This can be explained by the fact that the first sensors being

discarded may have little correlation with the temperatures to predict, and thus they

may interfere with the accuracy of the final result. On the other hand, the lastly

discarded ones were probably carrying useful information. The best metrics turned

out to be genetic programming distance and Pearson correlation. More precisely,

genetic programming distance provided the best results considering a subset of at
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least 5 sensors as predictors and, as expected, outperformed in general all the other

metrics based exclusively on spatial distances. The Pearson correlation showed an

overall better performance than genetic programming distance, in particular when 4

or less sensors were considered as predictors. However, Pearson correlation cannot

be employed in a more general setting, that is, to determine the best sensors to use

as features to predict the temperature at a given cell, where a reference physical

sensor may or may not be present. As for the genetic programming distance, while

we cannot exclude its ability to generalize on each cell, the latter should be actually

demonstrated, and it will be the subject of future investigations based on physical

data simulations. As a last remark, we observe that Figure 3.9 clearly shows that

excellent results, in terms of prediction error, can be obtained from just a subset of

4–6 sensors, while they begin getting worse when considering 3 or fewer sensors.

3.1.3 Sensors selection

In order to automatically select a subset of sensors to be used as predictors, we

need to specify a procedure to determine the number nrefs of sensors to select and

to establish which sensors to actually consider. To this end, we make use of a

procedure based on the Borda count voting method [19]. As a preliminary step,

let us introduce some auxiliary notions. First, for i ∈ {1, . . . , 12}, let ranki be the

ranking of sensor i obtained by sorting in descending order the remaining 11 sensors

according to their Pearson correlation with reference to sensor i. Then, let us define

wi, with i ∈ {1, . . . , 12}, as the weight of ranki, defined as 1− (εi/maxi∈{1,...,12} εi),

where εi is given by the sum of the 95th percentile of the absolute errors evaluated

for ranki, computed training different LinearRegression models varying the number

of sensors used as predictors from 1 to 11, as described for the case of the metric

evaluation procedure at the end of the previous subsection (Section 3.1.2).

The procedure consists of the following five steps: (i) for each sensor i, we

compute ranki; (ii) for each sensor j, we determine its weighted Borda count, which

is defined as votej =
∑

i∈{1,...,12}, i ̸=j(nsensors − posi(j)) · wi, where posi(j) is the

position of sensor j in ranki, nsensors = 12 is the total number of used sensors, and

wi is the weight of ranki; (iii) the sensors are sorted in descending order according

to their final weighted Borda count vote; (iv) an approximation of the elbow of the

curve obtained in the previous step is computed by using the Kneedle algorithm [165]

– the x-axis value corresponding to the elbow represents the point of maximum

curvature of the graph, and the best trade-off between prediction accuracy and

number of sensors, after which a law of diminishing returns applies: we choose it to

be the nrefs value which, in our case, corresponds to 4 reference sensors (dashed line

in Figure 3.10); (v) finally, the first nrefs sensors are selected as the reference ones.
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Figure 3.10: Weighted Borda count vote for each sensor. The vertical line represents

the elbow of the graph, and it separates the selected sensors from the discarded ones.

It is worth to underline that the weights wi in the vote counting formula allow us

to give greater importance to the ranks that provided better results with respect to

the error obtained on the validation data split. In addition, the sensors located on

the left side of elbow intuitively correspond, by construction, to the best predictors.

Figure 3.10 shows the weighted Borda count votes for all sensors obtained by

applying the procedure to the considered setting. The proposed criterion led to the

selection of sensors 1, 8, 4, and 9 as the references for the prediction. It is noteworthy

that the elbow estimate also corresponds to the minimum error point of Pearson

distance in Figure 3.9. Even if in our case no ex aequo placements occur, as a

methodology to deal with them, we suggest to consider for each sensor the median

of its Pearson correlations with respect to the other ones, prioritizing those with

higher values.

3.1.4 Feature selection

When performing tasks, such as virtual sensing of temperature, the selection of

features used to train the considered models is crucial to achieving high prediction

accuracy. The inclusion of irrelevant or redundant features can lead to overfitting,

increased model complexity, and computational costs. Therefore, feature selection

is an essential step to improve the model’s performance and generalization ability.

On the basis of the feature engineering and sensor selection phases, we identified

16 attributes that describe each observation: the temporal features sec from midnight

sin, sec from midnight cos, dow sin, dow cos, moy sin, moy cos, the spatial fea-

tures 01 ref dist, 04 ref dist, 08 ref dist, 09 ref dist, and the reference temperatures

01 ref temp, 04 ref temp, 08 ref temp, 09 ref temp. To them, we added X coord and

Y coord, that is, the two grid coordinates of the sensor that recorded the observation.
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Figure 3.11: Boxplots of the 95th percentile of the error provided by the XGBoost

models built on the 5 spatial distances considered in this study.

At this point, it is necessary to establish which spatial distance metric to consider

among Euclidean distance, Manhattan distance, Chebyshev distance, and their com-

bination obtained via genetic programming for the estimate of 01 ref dist, 04 ref dist,

08 ref dist, and 09 ref dist. To this end, we determined the 95th percentile of the val-

idation error values obtained from 4 global 16-attribute XGBoostRegressor models,

one for each spatial distance metric, trained on the usual 90% subsplit of the original

training data pertaining to all the sensors, except for the reference ones (that are

already used as predictors). The outcome of such an analysis is depicted in Figure

3.11 and led to the selection of the genetic programming distance, that outperformed

all the other ones. At the end, the following 16 attributes have been chosen to de-

scribe each observation: the 6 temporal features, the 4 reference temperatures, the

4 spatial features 01 ref gpdist, 04 ref gpdist, 08 ref gpdist, and 09 ref gpdist, which

are the genetic programming distances from the reference sensors, and the 2 grid

coordinates X coord and Y coord of the sensor that recorded the observation.

Since some of these attributes may be redundant, we executed a 2-step feature

selection process working on the training split. As a preliminary data preparation

step, all attributes were standardized by subtracting their mean and dividing by their

standard deviation. The first selection step searched for highly correlated attributes,

that is, attributes with a Pearson correlation value above 99%. As a matter of fact,

no feature was removed from the dataset by this step. The second step evaluated

the potential impact of the remaining attributes on the final prediction. To this end,

the SHAP values extracted from a single global XGBoostRegressor model trained on

the training data split related to all the sensors, except for the reference ones, were
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Figure 3.12: SHAP values of the attributes considered in the second step of the

feature selection process.

taken into consideration. The outcome of such an analysis is depicted in Figure 3.12.

We first observe that all reference temperature values have a large impact on the

final prediction and, naturally, higher values of these attributes increase the value

of the prediction. Focusing on the office map, there is a clear variation across the X

and Y axes. As for the Y axis, from the distribution of the values, we can conclude

that, during the data collection period, the northern side of the room was generally

warmer than the southern one. As for the X axis, the eastern side of the room

seems to be warmer than the western one. Interestingly, the moy cos and dow cos

features do not seem to be important for the overall prediction when compared with

the counterpart obtained from the sine transformation. As pointed out by Figure

3.5 and Figure 3.6, this means that the contribution to the prediction given by

the features that discriminate the first half of the week/year from the second half

are more important than those that discriminate the first/fourth quarters from the

second/third ones. Furthermore, the genetic programming distances from sensors 1,

4, and 9 are considered of marginal importance when compared to the distance from

sensor 8. On the basis of the SHAP results, we ultimately decided to remove the

5 attributes dow cos, moy cos, 01 ref gpdist, 04 ref gpdist, and 09 ref gpdist, ending

up with a total of 11 ones.

From a general point of view, the first correlation-based feature selection step
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Figure 3.13: Results obtained from XGBoost on all possible combinations of k

reference sensors, with k ∈ {1, . . . , 4}. For each value of k, the vertical line represents

the extent of the errors given by the different combinations, while the dots represent

the median error. The red dashed horizontal line represents the error obtained by

the subset of reference sensors selected by our approach.

must be considered as a preliminary, coarse screening of the predictor variables; it

should discard a feature when it is found to be almost identical to another one in

the dataset, without the risk of removing predictors that might still be preserved

by the subsequent, SHAP-based feature selection step. This is the reason why we

recommend to rely on a high threshold, which should nevertheless be established

considering the specific scenario. Indeed, such a pre-screening may be useful in

a more general situation, characterized by a large amount of input features, to

reduce the time requirements needed to train the XGBoost model in the second

step of the feature selection phase. In our case, as already discussed, relying on a

correlation threshold of 99% led to no attribute being discarded. However, lowering

the threshold to 94% would have led to the removal of feature 04 ref gpdist which

would have been also discarded in the subsequent SHAP-based step. To remove

the first feature kept in the SHAP-based step, namely 04 ref temp, the correlation

threshold should have been reduced to a value less than or equal to 88%.

3.1.5 Comparison with a brute force approach

As a final experiment, in order to evaluate the effectiveness of the proposed sensor

selection procedure, we carried out a comparison with a brute force approach which

considers any possible combination of 4 or less sensors chosen as the reference ones.

For each possible combination, we trained an XGBoost model on the training data

split based on the features discussed in Section 3.1.4, before the feature selection

phase. To ensure comparability, we performed our evaluation considering the test
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Figure 3.14: High-level steps which characterize the proposed procedure.

data split of the four sensors 2, 5, 7, and 10, since they cover the whole room and

are also typically placed in the lower tier of the rankings analysed in Section 3.1.2.

Excluding the aforementioned 4 sensors, the possible reference sensor combinations

are
∑

k∈{1,...,4}

(

8
k

)

. As for the cardinality k of the subset of selected reference sensors,

a maximum value of 4 was chosen to ensure that there is no combination with a

lower number of sensors capable of providing a better prediction accuracy than the

one obtained with the proposed solution. Results are shown in Figure 3.13. The

performance of the proposed solution is very close to the optimal one achieved by

brute force. This is remarkable, especially considering that the brute force solution

performs an exhaustive search in the problem space, and can thus be applied only

in scenarios involving a small number of sensors.

3.1.6 Discussion

While it is clear that prediction performances are expected to improve together with

the number of sensors and historical training data available, it is typically worth to

find a trade-off between the accuracy of the models and the cost of the employed

resources.

Here, we provide a final overview of the overall procedure for this first proposed

sensor selection solution detailed thus far in this chapter, whose steps, as portrayed

in Figure 3.14, are as follows: (i) a set of sensors is placed inside a room; (ii) the

temperature values measured by these sensors are collected over a significant period

of time; (iii) following the steps outlined in Section 3.1.3, a subset of sensors is

selected from those present in the room by exploiting the Pearson correlation of

their temperature measurements; (iv) the other sensors can be removed from the

room and replaced by the output of predictive models built using information from

the remaining reference sensors, as we shall see in Section 4.1.1.

Specifically, it is once again worth to highlight the role played by the sensor

selection technique, which, in the considered scenario, provided a very good result

when compared to a plain brute force approach. This could be achieved leveraging

the weighted Borda count method in combination with the Kneedle algorithm: the
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former allows us to give a greater importance to the sensor ranks that provided the

better results, thus favoring sensors that ought to be the most relevant predictors;

the latter reasonably approximates a trade-off point at which the cost of increas-

ing the number of sensors used as predictors is no longer worth the corresponding

performance benefit.

3.2 Sensor placement in simulated indoor envi-

ronments

With the aim of proposing and evaluating techniques capable of monitoring tem-

peratures in uncovered or hard-to-reach locations, we design and produced a set of

simulation data by means of computational fluid dynamics algorithms for a generic

room model, concerning various environmental and usage conditions, as well as

differing internal object arrangements. Using this type of simulation data has a

number of advantages. Physical simulations provide a controlled and replicable en-

vironment, allowing for the generation of large quantities of high-quality data with

known ground truth values. This is particularly important when developing and

testing smart sensing solutions, as it allows for more accurate and reliable training

and validation of the models. In contrast, real-world sensor data can be noisy and

subject to various environmental factors, making it difficult to discern the true un-

derlying patterns and trends. Secondly, physical simulations can be used to model

a wide range of scenarios and conditions that may not be feasible or practical to

reproduce in the real world. Additionally, simulations can be scaled up or down to

generate data at different resolutions and spatial scales, making it possible to tailor

the datasets to the specific needs of the smart sensing application.

Before describing the devised sensor placement solution in Section 3.2.2, in the

following part we introduce the second application domain under consideration for

this study.

3.2.1 The application domain

The considered scenario for the physical simulation data is a generic indoor environ-

ment inspired by an actual room located at the Silicon Austria Labs office in Villach

(Austria). As shown in Figure 3.15, the room has an overall surface of 22 m2 and

a height of 3, 1 m. In order to simulate a common usage of the room the follow-

ing objects have been inserted into it mimicking different configurations: convective

heaters, representing a heat source with an air flow; non-convective heaters, such

as stoves or radiators, representing sources of heat diffused only by radiation; and,
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Figure 3.15: Original configuration of the modeled room. Measures are expressed

in meters if not differently specified.

Figure 3.16: Configurations of the modeled indoor room considered for the physical

simulations. Measures are expressed in meters.

partial walls and wooden tables that can affect the air distribution. Room walls are

conductive and have windows and doors that can be individually opened and closed;

in our modeled scenario one of the walls is external, while the others are internal to

the building. In addition, there are air vents on the floor and ceiling that are part

of the air conditioning system.

As shown in Figure 3.16, we considered 2 different room configurations in order

to evaluate the generalization capability of the approaches proposed in this study.

Moreover, for each of these configurations two conditions have been taken into ac-

count. The first, winter-related, is characterized by a temperature of 19°C indoors

and 5°C outdoors, while the second, summer-related, by 25°C indoors and 35°C

outdoors. The simulated events are of various types: opening/closing of windows

and doors, switching on/off of heaters, radiators and air conditioning systems. The



3.2. Sensor placement in simulated indoor environments 43

Figure 3.17: Room sensor grid map.

simulations of these events are carried out relying on CFD algorithms for transient

conditions and take place both individually and in a sequence until a temperature

stabilization point is reached. The sequence of simulated events for the winter sea-

son, hereinafter referred to as Seqw, is as follows: (1) temperatures stabilized (19°C

inside, 5°C outside); (2) radiator on (60°C); (3) heat source H on (60°C); (4) air

conditioning vents on (22°C, 0.004 Kg/s); (5) window w2 opened; (6) door opened;

(7) window w2 closed and heater 1 on (60°C, 0.06 Kg/s); (8) door closed; (9) heater

2 on (60°C, 0.06 Kg/s); (10) heater 2 reoriented towards west.

Finally, for the summer season the following sequence of events, hereinafter re-

ferred to as Seqs, has been simulated: (1) temperatures stabilized (25°C inside, 35°C

outside); (2) heat source H on (60°C); air conditioning vents on (17°C, 0.004 Kg/s);

(3) window w2 opened; (4) door opened; (5) window w2 and door closed; (6) heater

1 on (60°C, 0.06 Kg/s); (7) heater 2 on (60°C, 0.06 Kg/s); (8) heater 2 reoriented

towards west.

The ambient temperature is recorded with a 10 seconds frequency through mon-

itors acting as sensor devices arranged inside the simulated environment as vertices

of a cubic grid that divides the x, y, z axes of the room into equally separated levels

1 m away from each other. More precisely, in our case the x axis is divided into

4 levels (corresponding to 0.5 m, 1.5 m, 2.5 m and 3.5 m from the western side of



44 3. Selection

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92 0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Figure 3.18: Pearson (lower triangular part) and Kendall (upper triangular part)

correlation values among the recorded temperatures. The black lines split every z

axis level.

the room), the y axis into 6 (corresponding to 0.25 m, 1.25 m, 2.25 m, 3.25 m and

4.25 m from the southern side of the room) and the z axis into 4 (corresponding

to 0.05 m, 1.05 m, 2.05 m and 3.05 m from the floor), for a total of 96 tempera-

ture sensors. As illustrated in Figure 3.17, the latter are numbered from 0 to 95 in

ascending order with respect to the lexicographical ordering of their z, y, x coordi-

nates. Finally, every element inside the room is represented by (x, y, z) coordinates

in the 3-dimensional Euclidean space R
3.

Descriptive Analysis

In this part of the section we analyze the salient characteristics of the data obtained

by simulating the event sequences Seqw and Seqs for room configuration 1. The

Pearson correlation values among sensor temperatures are shown in the lower tri-

angular part of Figure 3.18. It can be clearly seen that most of them are highly
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Figure 3.19: Instance of the configuration 1 room thermal mapping with simulated

2D temperature section cuts.

correlated (except for sensors 21, 22 located, respectively, in front of the radiator

and window w2 at 0.05m above the floor). This means that the information car-

ried by the provided sensors is largely redundant and, therefore, a subset of them

is sufficient to accurately monitor the environment. Furthermore, sensors at floor

level are relatively poorly correlated with respect to those at other elevation levels

In general, it can be seen that correlation values tend to be stratified for sensors

located at the same z-axis level.

In order to investigate non-linear relationships between sensors, a further analysis

based on Kendall’s tau, a non-linear rank correlation measure, has been depicted in

the upper triangular part of Figure 3.18. In this case, correlations of sensors at floor

level (first 24 rows of the matrix) are still relatively poorly correlated with respect

to those at other z-axis levels. However, unlike Pearson correlation there are some

sensors which have a high correlation with the ones near the roof on the last z-level

(i.e., in the upper right square of the matrix). This means that a high-capacity

model is preferable to capture these relationships adequately.

As for the temperatures measured in the simulations, they vary from a minimum

of 7.56°C to a maximum of 43.67°C. Figure 3.19 shows an instance of the simulated
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Figure 3.20: Simulated sensors temperature values in Kelvin for sequence Seqw in

room configuration 1 horizontally divided by event number.

3D room with temperature values depicted by means of vertical and horizontal

section cuts. The graphs of the observed temperatures related to each of the 10

events which make up the winter sequence Seqw for configuration 1 are presented in

Figure 3.20. As can be seen, there are perturbations in particular during the event 9

in which the flow of the heater 2 overlaps with the one generated by heater 1. This

reveals that the considered setting is not trivial, as there are some irregularities

and phenomena which influence the temperature recordings at different positions,

making the prediction task challenging.

3.2.2 Sensors placement

In this part of the section, a solution to the optimal sensor placement problem

based on graph attention networks (GATs) is proposed. In our case, the goal is

to provide a methodology able to select a subset of sensors among those present in

the grid provided with the simulations. Thereafter, we make a comparison with the

approach previously proposed in Section 3.1.3 and a brute-force baseline consisting

of random sensor subsets. It is worth noticing that, by leveraging the grid of sensors

encompassed in the simulation data, it is possible to reduce the sensor placement

problem to that of sensor selection, as previously formulated in Section 3.1.3.
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3.2.3 Graph attention networks-based solution

Graph attention networks [176] are a kind of neural network architecture able to

operate on graph-structured data leveraging masked self-attention layers in which

nodes are able to attend over their neighborhoods with different level of attention.

Briefly, in a node embedding learning phase, attention layers allow to focus only on

the edges of the graph that are relevant to the task of interest.

More formally, given the directed graph G = (V,E), a set of nodes features

hv = {hi|vi ∈ V }, hi ∈ R
Fv where Fv is the number of features associated to each

node and a set of edge features he = {hi,j|(vi, vj) ∈ E},hi,j ∈ R
Fe where Fe is the

number of features associated to each edge, the graph attention layer produces a new

set of node embeddings hv
′ = {h′

i|vi ∈ V }, h′i ∈ R
F ′
v (i.e., of potentially different

cardinality F ′
v). The attention coefficient indicating the importance of node vj’s

features to node vi is defined as

αi,j =
exp(aTLeakyReLU(Wa[hi∥hj∥hj,i])

∑

k∈Ni
exp(aTLeakyReLU(Wa[hi∥hk∥hk,i])

where Wa ∈ R
F ′
v×(2Fv+Fe) is a learnable linear transformation weight matrix,

a ∈ R
F ′
v is a learnable weight vector, Ni is the neighborhood of the node vi, ∥

is the concatenation operation, ·T represents a transposition and LeakyReLU is

the nonlinear leaky rectified linear function with negative input slope of 0.2. The

attention coefficients are computed only for pairs of nodes actually connected by an

edge e ∈ E of G. Finally, the new node embedding for the node vi is computed

as h′
i =

∑

vj∈Ni
αi,jWhj, with W ∈ R

F ′
v×Fv learnable linear transformation weight

matrix.

The proposed sensors selection procedure is designed as follows: (i) for each

sensor vi in V a model GATi is trained to forecast the temperature values observed

in vi using the temperatures observed in the remaining sensors vj ∈ V \ {vi}; (ii)
then, the rank score scorej for all nodes vj ∈ V is computed as

scorej =

∑

vi∈V \{vj}
αi,j degin(vi)

degout(vj)

where αi,j is the attention coefficient extracted from the trained model GATi
predicting the temperatures of node vi, degout(vj) is a function returning the number

of outlinks from a node vj ∈ V , and degin(vi) is a function returning the number of

inlinks to a node vi ∈ V . Intuitively, dividing by degout(vj) allows to equalize the

contribution of nodes with different number of outgoing edges; while, multiplying

by degin(vi) allows to limit the softmax distribution of attention coefficients towards

nodes with a high number of incoming edges; (iii) the sensors in V are sorted in
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Figure 3.21: Graph attention-based score for the considered train sensors. The

vertical line represents the elbow of the graph and separates the selected sensors

from the discarded ones.

descending order according to their rank score; (iv) the number of selected sensors

nrefs is computed by approximating the elbow of the curve obtained in the previous

step through the Kneedle algorithm [165] – the x axis value corresponding to the

elbow represents the point of maximum curvature of the graph, and the best trade-

off between prediction accuracy and number of sensors used – we choose it to be the

nrefs value; (v) finally, the first nrefs sensors are selected as the reference ones.

3.2.4 Experiment setup

The experimentation has been carried out on the Seqw winter sequence simulation

data for room configuration 1 shown in Figure 3.16. The considered graph G =

(V,E) is formed by a set of node labels V = {0, . . . , N − 1}, N = 96 corresponding

to the 96 sensors observed in the simulations data, and by the set of edges E =

{(v1, v2)|v1, v2 ∈ V and dist(v1, v2) ≤ dmax} which links nodes with the maximum

Euclidean distance dmax. This later has been set equal to
√
3, the diagonal of a cube

with a 1-meter side, in order to model the neighborhood of the simulated sensors

grid.

With the aim of consistently comparing the results obtained with the ones given

by the other methodologies considered, the set of sensor nodes V is split into 2

subsets: Vtest = {10, 11, 18, 33, 34, 51, 76, 78, 92}, a total of 10% reserved sensors

randomly chosen for performance evaluation purposes, and Vtrain = V \ Vtest, the
set of sensors actually employed in the learning phase. The resulting graph Gtrain =

(Vtrain, Etrain) is obtained by restricting the set of edges E only to nodes in Vtrain
(i.e., Etrain = {(v1, v2)|(v1, v2) ∈ E and v1, v2 ∈ Vtrain}). The aforementioned graph

attention-based procedure is applied to Gtrain with the temperature values of vi ∈
Vtrain in Celsius (°C) as node feature hi ∈ R, and the coordinates differences hi,j ∈ R

3

between the nodes vi, vj on the 3 axes (z, y, x) as edge features.

The considered winter sequence Seqw concerns 3183 samples (time instants),

which means that for each sensor in the grid there are 3183 observed temperature

values. In order to tune the hyperparameters for the GAT model, 10% of these ran-
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Figure 3.22: Graph attention-based score mapping for room configuration 1 on

different z axis levels.

domly chosen samples are reserved for the validation set. In particular, the tuning of

the hyperparameters took place via grid search optimization considering the follow-

ing intervals: learning rate in {0.1, 0.01, 0.001}, weight decay in {0.1, 0.01, 0.001},
size of node embeddings F ′ in {1, 2, 4, 8, 16, 32}, size of edge embeddings F ′

e in

{1, 2, 4, 8, 16, 32}. As a result of the tuning phase, the hyperparameters have been

set with the values 0.001 for learning rate, 0.01 for weight decay, and 8 for F ′
v. The

training of the GAT model is performed through the Adam optimization algorithm

minimizing the mean squared error loss function based on the temperature values

actually observed and those predicted for each sensor in Vtrain. Additional hyper-

parameters values adopted for the training phase are the batch size set to 16, the

momentum and RMSProp terms β1 = 0.9 and β2 = 0.999, and the training epochs

equal to 200.

3.2.5 Results

Here we present the results obtained by the proposed graph attention-based ranking

procedure, comparing them with those observed by applying a method outlined in

the previous section, the weighted Borda count ranking (see Section 3.1.3), and a

baseline solution based on a random ordering of the considered sensors.

In Figure 3.21, the results obtained by carrying out the experimentation de-

scribed in the previous subsection are shown. Here the sensors in Vtrain (x axis) are

sorted in descending order with respect to their achieved score (y axis). Applying

the Kneedle algorithm, the nrefs value equal to 9 corresponding to the elbow of

this curve is found. The final output of this procedure is the set of selected sensors

V att
refs = {66, 65, 41, 29, 42, 90, 61, 62, 70}. Furthermore, in Figure 3.22 the score val-

ues are mapped in 4 partition levels of z axis. This mapping shows that the proposed
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Figure 3.23: Boxplots of prediction errors provided by graph attention-based and

weighted Borda count solutions.

procedure privileges points located in the central area with respect to the coordi-

nates x, y, z, near the windows and the door. Although the procedure selected also

nearby sensors such as 61, 62, and 65, 66, this provides several advantages. When

sensors are positioned close to each other, local temperature fluctuations are likely

to be similar among the sensors. This implies that sensor-specific errors, such as

noise or drift, are likely to be similar as well. By utilizing multiple measurements

from nearby sensors and combining them, it is possible to reduce uncertainty and

obtain a more accurate estimation of the actual temperature. Furthermore, these

sensors, albeit close in proximity, are spatially distributed accounting for the ther-

mal characteristics of the surrounding area. Placing sensors strategically can provide

better coverage and representation of temperature variations. In our case, sensors

61 and 62 are located near heater 1 and the partial wall, while sensors 65 and 66

are situated close to the air vents and window w2.

For the considered case, the set of sensors selected with the procedure based on

weighted Borda count of Section 3.1.3 is V borda
refs = {61, 38, 57, 65, 41, 58, 42, 66, 60}.

Briefly, this method computes the rank scores by exploiting orderings based on

a distance metric between nodes obtained through a genetic algorithm capable of

synthesizing 3 spatial distance measures: Chebishev, Manhattan and Euclidean. For

each sensor vi ∈ Vtrain a ranking of the remaining |Vtrain|−1 sensors is computed by

sorting these latter in ascending order according to their genetic distance from sensor

vi. The final scores are given exploiting the Borda count vote mechanism weighted

considering the error given by each ranking for the prediction of the temperature in

vi.



3.2. Sensor placement in simulated indoor environments 51

Compared to the graph attention-based method, the sensors selected by means

of the weighted Borda count procedure are placed towards the first half of the rank.

As for the room coverage, they are located in the north-central area in front of the

stoves 1, 2 and H. This indicates that the attention-based graph ranking method

tends to provide greater coverage of the room area, also considering elements which

do not directly generate air flows.

The comparative tests were carried out by training two XGBoostRegressor[41]

models to predict the temperatures of test sensors in Vtest: the former makes use

of the temperatures observed by the sensors in V att
refs as input data, while the latter

those from sensors in V borda
refs . We chose to adopt these models for the comparison

considering the limited usage of computational resources and their ease of train-

ing. The obtained results can be found in Figure 3.23 where boxplots include the

prediction errors for each test tensor. The whiskers correspond respectively to the

minimum and maximum errors excluding the outliers (< 1st quartile - 1.5 IQR

or > 3rd quartile + 1.5 IQR, where IQR is the interquartile range given by the

difference between the 3rd and the 1st quartile), while the orange line represents

the median of the errors. As can be seen from the boxplots, the attention-based

ranking graph shows better performance as regards outliers, while the two solutions

are substantially equivalent as regards the distribution of prediction errors of lower

magnitude.

A further evaluation of these sensor selections procedures was carried out consid-

ering as baseline a set of random combinations of 9 sensors in Vtrain extracted with

different seeds. This is done in order to evaluate whether the sensors selected using

weighted Borda count and graph attention perform better than a casual selection

of equal cardinality (|V att
refs| = |V borda

refs | = 9). Since the total number of combina-

tions is equal to
(

|Vtrain|
9

)

= 87!
(87−9)!9!

, evaluating all of them is intractable. Therefore,

a sample of 1000 drawings generated with different seeds is considered. For each

generated combination, an XGBoostRegressor model is trained using the extracted

sensors as predictors for the temperatures of test sensors in Vtest. As an outcome of

the latter evaluation we consider the distribution of the prediction error ϵ averaged

over these latter 1000 trained models.

The values reported in Table 3.1 are the outcome of the Wilcoxon signed-ranked

test [183] comparing for each test sensor in Vtest the distributions of the errors

computed for the three methods in comparison. As can be seen, for this setting graph

attention-based ranking performs better than weighted Borda count. Moreover, both

of the latter techniques exhibited better results when compared to a pure random

combinations-based solution. In order to control the family-wise error rate of the

multiple hypothesis tests, the last row of Table 3.1 reports the Holm-Bonferroni [80]

adjusted p-values.
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Table 3.1: Sensor selection methods error distributions compared through Wilcoxon

signed-rank test.

Random Combinations Weighted Borda

Test sensor Vs. Weighted Borda Vs. Graph Attention

Sensor 10
stat. 1.762e+ 006 1.288e+ 006

p-value 2.480e− 050 7.112e− 128

Sensor 11
stat. 1.875e+ 006 1.158e+ 006

p-value 2.820e− 037 2.506e− 155

Sensor 18
stat. 1.496e+ 006 1.824e+ 006

p-value 1.821e− 089 5.981e− 043

Sensor 33
stat. 2.031e+ 006 8.164e+ 005

p-value 1.587e− 022 7.806e− 241

Sensor 34
stat. 1.476 + 006 1.378e+ 006

p-value 8.111− 093 2.657− 110

Sensor 51
stat. 1.273e+ 006 1.387e+ 006

p-value 6.417e− 131 1.366e− 108

Sensor 76
stat. 2.380e+ 006 8.722e+ 005

p-value 1.552e− 003 1.230e− 225

Sensor 78
stat. 2.361e+ 006 1.866e+ 006

p-value 4.339e− 004 3.274e− 038

Sensor 92
stat. 1.850e+ 006 1.802e+ 006

p-value 4.891e− 040 1.521e− 045

Holm-Bonferroni

Correction p-value 0.006 0.006

Note: the performed test is one-sided with alternative hypothesis defined such as the distri-

bution underlying d = Xi−Yj is stochastically less than a distribution symmetric about zero,

where Xi is the absolute prediction errors given by the first compared method, while Yi the

absolute prediction errors given by the second one.

3.2.6 Discussion

Besides providing better performance in terms of predictive model accuracy, the

sensor selection solution proposed in this section has further advantages when com-

pared to the one based on weighted Borda count. First of all, it is more efficient in

terms of the number of trained models while performing the procedure. In particu-

lar, considering a set V of candidate reference sensors, the method based on graph

attention requires the training of |V | trained sensors using only the information pro-

vided by a small subset of sensors positioned near of each of those to be predicted.

Instead, the weighted Borda count procedure requires the creation of |V | ∗ (|V | − 1)

models trained considering the information coming from all the sensors present in

the subset of reference candidates considered. Secondly, a graph attention network-

based solution has the ability to learn complex patterns and relationships among

sensors in the environment. Furthermore, a graph attention network-based solution
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can scale to larger sensor grids with more sensors and complex topologies, whereas

a genetic programming generated spatial distance metric-based solution may strug-

gle to handle the increased complexity. Finally, it is worth noticing that, being

based on genetic programming, the weighted Borda count solution may be more

interpretable, as the generated distance metrics can be directly analyzed and un-

derstood. However, a graph attention network-based solution can also provide some

level of interpretability through visualization of the attention weights.

To conclude with a brief summary, the sensor placement procedure based on

graph attention networks described in this section is applied starting from simulation

data generated through a sufficiently dense sensing monitor grid. This latter returns

a list of reference positions whose observed temperature values allow the training

of a predictive model acting as an efficient simulation approximator. This is done

by encoding the environmental information in a graph structure fed as input during

training as we shall see in Section 4.2.1.Furthermore, in Section 4.2.2 we propose

and analyze an algorithm capable of transferring the selected set of sensors to a

different room configuration.





4
Prediction

In the previous chapter of this thesis, we addressed the problem of sensor selection for

temperature monitoring in indoor environments. In light of what has been achieved,

in this chapter, we delve into the prediction of temperatures through virtual sensing

techniques. Specifically, we compare the performance of virtual sensing strategies

including novel solutions proposed for two different case studies: the real-world

indoor environment, which was presented in Section 3.1.1, and the simulated indoor

environment, presented in Section 3.2.1.

In the first section of this chapter, after an introduction to the problem domain,

we focus on the virtual sensing of temperatures in the real-world indoor environ-

ment case, exploring various baseline methods, particle filters, machine learning

approaches, and a deep learning approach. Here, we also conduct an analysis of

prediction intervals and errors per single sensor. Additionally, we investigate the

effects of reducing the training data size on the accuracy of the predictions.

Subsequently, in Section 4.2.1, we shift our attention to the monitoring of temper-

ature problem in simulated indoor environments. Here, we compare the performance

of some of the previously analysed inductive baseline methods and machine learning

approaches with a novel proposed transductive learning solution based on graph

neural networks. Our experimental results indicate that the latter is able to provide

better performance by exploiting environmental information more effectively. We

conclude the section analysing the behavior of the proposed predictive model, and

the adaptability of the sensor placement procedure presented in Section 3.2.2 in case

of different environmental conditions.

4.1 Virtual sensing of temperatures in real-world

As argued in Chapter 1, virtual sensing is a set of techniques to replace a subset of

physical sensors by virtual ones, allowing the monitoring of unreachable locations,

reducing the sensors deployment costs, and providing a fallback solution for sensors

failures.
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Over the years, virtual sensing has found application in several domains including

robotics, automation, anomaly/leak detection, air quality control, active noise sup-

pression, wireless communication, automotive, and transportation [109, 107, 163].

In the literature, three main virtual sensing modeling methods have been taken into

account: (i) first-principle, where virtual sensors are developed by hand on the basis

of fundamental laws of physics and an extensive domain knowledge; (ii) black-box,

where models capable of exploiting empirical correlations present in the data are

built, without any knowledge of the underlying physical processes (most of the sta-

tistical and machine learning methods belong to this category); (iii) grey-box, that

exploits a combination of first-principle and black-box approaches. In this study, we

focus on the latter two approaches, in order to develop generic models that do not

require complex domain knowledge and are not tied to the specific use case.

As for black-box techniques, the estimation of a variable at locations where it

has not been observed by exploiting data available at other locations can be made

by means of approaches commonly used for the interpolation of scatter points, such

as Inverse Distance Weighting (IDW) and Kriging [138]. IDW assumes that the

interpolating surface is more influenced by closer points than distant ones, while

Kriging is a geostatistical regression method used in spatial analysis that spatially

interpolates a quantity minimizing the mean squared error. As it comes out, both

approaches find difficult application in real-world settings, being them typically af-

fected by spatial-temporal anisotropy and unable to deal with non-linear relations

among predictor variables. When partial observations are made and random pertur-

bations are present in the data, methods such as Kalman filters and particle filters

[55] can be relied upon for the estimation of the internal states of dynamical systems.

These methods compute the unknown quantities through posterior distributions ob-

tained from Bayesian inference models [180, 127]. Although particle filters are not

subject to the constraints of non-Gaussianity of perturbations and linearity of the

dynamic systems that affect Kalman ones, they have some disadvantages as well,

related to possible resampling biases and to the coarseness of the definition of the

likelihood distribution, which may be unable to capture all relevant real-world char-

acteristics. To overcome the limitations of these techniques, some authors explored

approaches based on machine learning, like support vector machines, decision trees,

and ensembles (such as random forests) [179, 102, 101]. More recently, deep learning

solutions have been considered as well [156, 172, 186, 187], and were deemed able

to exploit implicit information on temporal trends and spatial associations among

sensors. As an example, in [113, 114] the authors employ respectively a Long Short-

Term Memory (LSTM) network and a combined Convolutional LSTM (ConvLSTM)

network capable of learning from long-term dependencies in spatial-temporal infor-

mation. Despite the latter ConvLSTM-based model achieved a good performance,
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it is not applicable in context like ours where the positions of sensors are fixed and

quite sparse.

4.1.1 Temperature prediction

In this part of the section, to determine the performance of the sensor and feature

selection phases presented in the Sections 3.1.3 and 3.1.4 with respect to the task

of temperature virtual sensing, and to identify the best prediction methodology, we

experiment and contrast the following approaches:

• Baseline: simple and Inverse Distance Weighted (IDW) average of the tem-

peratures;

• Particle filters;

• LinearRegression – Python’s package Scikit-learn [143];

• XGBoostRegressor – Python’s package xgboost [41];

• An LSTM recurrent neural network, trained by means of the PyTorch Deep

Learning library [142].

As pointed out in Section 3.1.3, except for the baseline methods and particle filters,

predictions make use of the temperature values recorded by the 4 chosen reference

sensors (sensors 1, 4, 8, and 9) depicted in blue in Figure 3.1. To ensure the compa-

rability of the results obtained from the various approaches, prediction errors were

evaluated on the remaining 8 sensors (the original 12, except the 4 reference sen-

sors, that are already used as predictors). In addition, as previously mentioned, we

always considered the same 80%-20% split training-test of the dataset.

The predictive analysis tasks are organized as follows in the remainder of this

section. Firstly, we evaluate the various approaches to temperature virtual sensing.

Then, we analyze the prediction errors assessing the uncertainty associated with

the predicted quantities, investigating the errors per single sensor, and linking the

prediction error to the available portion of training data. Finally, the outlined

framework is evaluated with respect to the optimal result that can be achieved by

means of a brute force approach to sensor selection.

Baseline methods

This first analysis allowed us to define a baseline against which to compare the

results of the other approaches. Given a sensor for which we want to predict the

temperature readings on the test set, the idea is that of approximating such values
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by a simple combination of the temperatures recorded by the other ones at the same

time instant. To this end, we applied two different techniques: classical average and

Inverse Distance Weighted Average (IDWA), according to which closer sensors have

an impact on the overall prediction greater than that of those sensors which are

farther away. In more detail, the weight assigned to the i-th predictor is computed

as wi = 1
d(x,xi)

, where d(·, ·) is the genetic programming-based distance (Section

3.1.2) between two points of the grid, xi is the position of the i-th sensor, and x is

the position of the sensor to predict. The weighted temperatures are summed and

then divided by the sum of the weights.

Moreover, to determine the impact on the prediction accuracy of the distance

between sensors, we performed several experiments by considering as predictors just

the k sensors closest to the one to predict, for k ∈ [1, 11]. For each approach and

sensor to evaluate, we determined the temperature absolute error, considering its

95th percentile, ϵ95, which can be thought of as a worst-case prediction scenario.

Figure 4.2 collects the boxplots of ϵ95. Each boxplot includes a value for every test

tensor, for a total of 8 values. The orange line represents the median of ϵ95, while the

whiskers correspond respectively to the minimum and maximum values excluding

the outliers (< 1st quartile - 1.5 IQR or > 3rd quartile + 1.5 IQR, where IQR is the

interquartile range given by the difference between the 3rd and the 1st quartile). It

clearly emerges that classical average is largely influenced by the number of closest

sensors used for the prediction. Here, the optimal number of sensors seems to lie in

the range [3, 5]. On the other hand, IDWA seems to be less affected by the number

of predictor sensors. Indeed, looking at the median, large values of k led to better

results. This is to be expected, as the contributions of the different sensors are

already weighted according to their distances.

Particle filters

Particle filters are a class of Sequential Monte Carlo algorithms used to approximate

the internal states of dynamic systems starting from partial measurements with

random disturbances which afflict the sensors as well as the dynamic system itself

[55]. Given the noisy and partial observations, this approach aims at measuring the

state posterior distributions of some Markov process. Particle filters leverage a set

of particles to represent such a posterior distribution. Each particle has an assigned

weight, indicating the chance of that particle being sampled from the probability

density function of the quantity we want to compute. As for this experimentation,

we considered one particle filter for each of the 8 evaluated sensors, and the k-closest

sensors as landmarks, with k ∈ [1, 11]. Each particle thus represents a likelihood

estimation of a temperature and is moved at each time-step following the average
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Table 4.1: XGBoostRegressor parameters (rounded to the 5th decimal digit).
Parameter name max depth learning rate n estimators reg alpha reg lambda gamma subsample colsample bytree min child weight

Value 16 0.015 350 78.87396 0.50044 5.95353 0.66425 0.65694 1.0

temperatures of the landmarks. The likelihood probability is computed on the basis

of the genetic programming distance between particles and landmarks.

As with the baseline approaches, we estimated the error’s 95th percentile for

each evaluation sensor and each potential k value. Results are reported in Figure

4.2. It is evident that also particle filters are affected by the choice of k. For the

sake of readability, we decided to ignore the results for k ∈ [1, 3], as those values led

to very weak predictions, with boxplot whiskers extending over 6 degrees. As for

the remaining values, according to the median, the best predictions are achieved for

values of k equal to 4 or 5.

Machine learning approaches

We considered two different machine learning approaches, namely, a simple Scikit-

learn’s LinearRegression model, and a more complex XGBoostRegressor ensemble

approach.

LinearRegression implements an ordinary least squares linear regression. For the

sake of our study, it has been trained on the 11 (standardized) features selected in

Section 3.1.2, with training labels corresponding to the temperatures recorded by 8

evaluation sensors (the original 12, except the 4 reference sensors, that are used as

predictors).

XGBoost [41] implements gradient boosted decision trees focusing on compu-

tational speed and model performance. Gradient boosting iteratively builds new

models to predict the residuals of errors of previous models exploiting a gradient

descent algorithm to minimize the loss [63]. The resulting models are then com-

bined to generate the final prediction. As a first step, we tuned the XGBoostRe-

gressor model with the above-described training set, from which a validation set

of size 20%, consisting of randomly chosen weeks, was extracted. The task was

performed by means of Hyperopt [15], a library for hyperparameter optimization

written in Python, minimizing the 95th percentile of the error loss function for

40 evaluation steps on the following hyperparameters: max depth, learning rate,

n estimators, reg alpha, reg lambda, gamma, subsample, colsample bytree, and

min child weight. Resulting values are listed in Table 4.1. With the tuned hyper-

parameters, the model was trained on the entire training set, and then evaluated on

the test set over the usual 8 sensors.

The outcomes shown in Figure 4.2 suggest that the tested machine learning
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Figure 4.1: The LSTM recurrent neural network model architecture.

methods vastly outperform the baseline approaches. Specifically, XGBoost shows a

better performance than LinearRegression on all 95th error quantiles. Furthermore,

XGBoost’s boxplot is wider than that of LinearRegression, suggesting a more unsta-

ble behavior across the sensors predictions. This is to be expected, being XGBoost

a far more complex and flexible model.

Deep learning approach

Up to this point, to predict the temperature at a given time instant we have just

considered reference sensor values from the same instant. In the literature on remote

and virtual sensing, it has already been shown that deep learning methods are able

of taking temporal and spatio-temporal knowledge into account (see, e.g., [156, 172,

186]). Specifically, in our context, it may be the case that the recent history of

temperatures reported by the reference sensors provides information relevant to the

overall prediction. As an example, opening a window in winter time, one may

notice a regular and continuous decrease of the temperatures recorded by a nearby

temperature sensor. This, together with information recorded by the other reference

sensors, may give the model a hint about the temperature propagation in the room.

We designed an LSTM-based model that takes such histories into account. Its

architecture, which is depicted in Figure 4.1, consists of three subparts:

• the first (temporal) part (LSTM on the upper left side of Figure 4.1) takes

a history of the 4 (standardized) reference temperatures as input. Then, a

unidirectional LSTM layer, consisting of 128 units, from which we retrieve

just the last outputs, followed by LayerNormalization, is applied;

• the second (atemporal) part (FCNN 1 on the bottom left side of Figure 4.1)

takes the 7 remaining (standardized) attributes as input, resulting from the
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Figure 4.2: Boxplots of the 95th percentile of the error provided by the considered

approaches.

feature selection process (Section 3.1.2). These attributes do not have any

significant history, but are still important to generate the final output, since

they allow the model to pinpoint the prediction in space and time. The afore-

mentioned 7 features are passed to a Dense layer, consisting of 64 neurons,

followed by a ReLU activation function and a BatchNormalization layer;

• the third part (FCNN 2 on the right side of Figure 4.1) takes the outputs of the

first two parts and concatenates them, generating a tensor of size 192. Then,

BatchNormalization and Dropout with 0.1 rate are applied to the result of

such a concatenation. Next, the data goes through a dense layer of 128 units,

followed by a ReLU activation function, and a BatchNormalization layer. The

final output is produced by a single-unit Dense layer with linear activation

function.

In order to train the neural network, we relied on Adam optimizer with a 9e-5

learning rate minimizing the mean squared error loss function. The architecture of

the model and all the other hyperparameters have been chosen through iterative

random search tuning performed on a fixed 80%-20% training-validation subsplit,

as already done for the previous machine learning approaches. At last, the same

tuning process suggested a length of 18 samples (equivalent to a period of 3 minutes)

for the reference temperature histories, over a tested range of 1 to 5 minutes.

As shown in Figure 4.2, with respect to the test set, the network essentially

provided the same performance as XGBoostRegressor: while the upper whisker is

marginally better than that of the ensemble approach, the lower one is slightly
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worse. Furthermore, the broader extension of the boxplot suggests a more variable

behavior than XGBoost. Based on these results, perhaps surprisingly, we can infer

that, in our setting, historical knowledge of temperatures alone does not contribute

much to the accuracy of the prediction. This can be justified by the fact that

the sensors we want to predict are typically located much closer to a window than

the reference ones, and thus they should also be the first to be affected by any

weather-related phenomenon. Accordingly, reference sensors’ historical data are not

so important from this point of view. As an additional confirmation, results of an

auto-correlation analysis showed that information conveyed by the reference sensors

at the time instant in which the prediction is carried out is way more relevant than

information present in the historical temperature values related to the same sensors.

In future work, we plan to evaluate the performance of a CNN-LSTM-based

neural network that, in principle, should allow us to relate the temporal dimension

of temperature histories to spatial information about the placement of the reference

sensors, the distances among them, and their distance from the location we want to

predict.

Prediction intervals analysis

Usually, a regression model generates a single value for each prediction, which rep-

resents itself a random variable. However, under several circumstances, quantifying

the uncertainty associated with the prediction, instead of computing just a single

value, is very useful, as it gives an indication of the reliability of the results. This

can be done by setting proper prediction intervals. Such intervals provide proba-

bilistic upper and lower bounds on the estimate of an outcome variable and can

be computed via quantile regression [96]. Typically, regressions minimize the mean

squared-error loss function L(y, ŷ) = 1
N

∑N

i=1(yi − ŷi)
2, while quantile regression

aims at estimating conditional quantiles of the response variable. This is achieved

by adopting the loss function Lγ(y, ŷ) =
∑N

i=yi<ŷi
(γ−1)|yi−ŷi|+

∑N

i=yi≥ŷi
(γ)|yi−ŷi|,

where N is the number of the samples in the training set, γ is the quantile of the

response variable to forecast, ŷi is the predicted value for the i-th sample, and yi is

the real target value for the i-th sample.

We explored two different approaches to quantile regression: a linear regression

model and a gradient boosting regression model [63]. In both cases, two models

were trained: one for the upper (γ = 0.025) and one for the lower (γ = 0.975)

bound of the interval. This means that 95% of the actual values should lie between

these two predicted bounds. The training procedure was the same as in Section

4.1.1 and an excerpt of the results for the sensor 3 test data is shown in Figure 4.3,

in the case of linear regression, and in Figure 4.4, in the case of gradient boosting
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Figure 4.3: Linear regression prediction intervals related to sensor 3 test data with

γ = 0.025 and γ = 0.975.

Figure 4.4: Gradient boosting regression prediction intervals related to sensor 3 test

data with γ = 0.025 and γ = 0.975.

regression. Although both approaches were indeed observed to guarantee that 95%

of the observed values end up between their estimated lower and upper bounds, the

intervals obtained from the Gradient Boosting models are generally less coarse, thus

providing a better approximation of the uncertainty intervals.

Errors per single sensor

Let us now take a closer look at the performance of the machine and deep learning

approaches. Figure 4.5 reports the 95th percentile errors of such models for each

of the 8 evaluation sensors. Although the LSTM and XGBoost models typically

exhibit a better performance than LinearRegression, the latter, despite being a much

simpler model, is a close match, with the notable exception of sensor 10, where it is

vastly outperformed by its contenders. It is also worth observing the relatively high

error rates on sensor 7: upon closer inspection, this sensor displayed a very strange,
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Figure 4.5: Results of machine and deep learning approaches for each evaluation

sensor.

fluctuating curve, as shown in Figure 4.7. It may be difficult to predict this kind of

irregular temperature values using a global model for all 8 sensors, as done in this

section. Therefore, as a future analysis, we plan to compare the outcomes of the

global models with those that can be obtained by building a single model for each

sensor to be predicted.

Effects of reducing the training data size

Given the large quantity of training data available, we examined the effects of reduc-

ing its size, relying on the XGBoost model introduced in Section 4.1.1. We tested

various training set cardinalities obtained by sampling the data at one week granular-

ity. The experiment was conducted using 10 sampling rates of r ∈ {0.1, 0.2, . . . , 1.0},
repeating each execution with 10 different random seeds to prevent sampling bias.

As expected, the findings in Figure 4.6 show that, as the training data size decreases,

the median of the 95th percentile of the errors raises, probably due to the fact that

some seasonal trends may be overlooked if a too small data sample is employed.

To further investigate the prediction error related to the outliers, we iteratively

discarded the test data belonging to different devices, and it ultimately emerged

that the anomalous values belonged to the predictions made for sensor raspihat07.

Figure 4.7 shows the temperature values of sensor raspihat07 and of its 3 closest

neighbors (raspihat01, raspihat04, and raspihat08 ) limited to the time instants at

which outliers are present in the prediction error (mean absolute error ≥ 2◦C). At

these time instants, sensor raspihat07 shows a more marked fluctuation behavior

for both high and low values, that may suggest a degradation or bad calibration of
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Figure 4.6: XGBoost results obtained by varying the training set size.
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Figure 4.7: Sensor raspihat07 temperature values related to the prediction error

outliers compared with the 3-nearest neighbours sensors.

the device. Finally, we reran the training data size reduction experiment discarding

the data related to sensor 7 from the evaluation. In this way, a more predictable

monotonic decrease of the prediction performance was observed.

4.1.2 Discussion

In the previous parts of this section, we focused on how to perform virtual sensing

efficiently, dealing with the problem under different points of view. Our proposed

solution encompasses all the relevant aspects of virtual sensing, including sensor

selection, the estimate of the needed amount of training data, the choice of the

predictive model, and the evaluation of its performance. Most importantly, the

approach can be regarded as a black-box, completely independent of the physical

characteristics of the considered scenario, such as any element capable of influencing

the internal temperature (windows, radiators, and so on). Thus, in principle it can

be applied to any generic indoor environment with an arbitrary set of pre-located

sensors.



66 4. Prediction

4.2 Virtual sensing in simulated indoor environ-

ments

In this section, we focus on the task of temperature monitoring in a general indoor

environment, where temperature data is provided through a set of physical simu-

lations. Our main goal is to develop a temperature prediction framework through

virtual sensing and spatial interpolation techniques able to model the physical char-

acteristics of the considered scenario, and to adapt to other, similar environments.

Hereafter, several solutions available in the literature are examined highlighting

their strengths and limitations when applied to the considered scenario.

A family of methods able to deal with the indoor thermal monitoring problem is

the one given by classical spatial interpolation approaches such as inverse distance

weighting, nearest neighbor, spline and Kriging. Applications of these methods

can be found in the literature for the case of data center thermal monitoring [138],

indoor environmental thermal and quality distribution [190, 42, 188], or radio envi-

ronment [53] mapping. Although easy to implement, these approaches, can only be

used as a baseline, as they are based on limiting assumptions, such as non anisotropy

or simple linear (and non-linear) relations among predictor variables, and are typi-

cally inaccurate when applied within complex settings. To overcome some of these

limitations, [100] presents an approach which separates spatial and temporal infor-

mation combining local autoregressive prediction based on past observations, with

spatial interpolation. Since local forecasts can be parallelized, this latter has the

advantage of being efficiently computed. Furthermore, the subsequent application of

spatial interpolation via Kriging ensures a good accuracy. Conversely, this approach

relies on assumptions, such as isotropy and independence of spatial and temporal

phenomena, that may not hold in some scenarios.

As for virtual sensing, we consider the three modeling methods introduced in

Section 3.1, namely, (i) first-principle, (ii) black-box, and (iii) grey-box.

In the case of first-principle methods, techniques such as computational fluid

dynamics [6] are employed to generate simulations starting from a specification of

the considered indoor environment and the elements placed into it. This type of ap-

proach, exploited in this work to produce the ground truth simulation data, is based

on mathematical modeling through laws of physics describing physical phenomena.

For this reason, they are particularly accurate in measuring characteristics of these

simulated phenomena. On the other hand, since they typically rely on the solution

of differential equations, they are computationally expensive, especially for real time

applications concerning complex environments. Even if some lightweight solutions,

based on order reduction of the energy balance equation through proper orthogonal
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decomposition (POD), have been proposed [170, 58], these models are tailored to

a given specific environment and difficult to implement. Furthermore, generating

physical simulations with this kind of approaches is an expensive activity in terms

of effort required for the creation of numerical models for different environmental

configurations.

Rather, we are interested in approaches able to learn how to model physics dy-

namics and characteristics of the environment to be monitored, allowing the resulting

predictive models to generalize to other environments with different configurations

and conditions.

A step in this direction is represented by physics-informed neural networks

(PINN) [152], a grey-box approach in which the training process is guided imposing

an inductive bias that adheres to the physics of the system at hand, described by

means of partial differential equations (PDEs) to solve. As an example, for the

case of heat diffusion, this is done by adding a regularization term like LPDE =
1
N

∑N

i=1

∥

∥

∥

[

∂
∂t
−D

(

∂2

∂x2 +
∂2

∂y2

)]

û(t(i), x(i), y(i))
∥

∥

∥

2

to the loss function, penalizing for

instance the solutions that do not satisfy the PDE
[

∂
∂t
−D

(

∂2

∂x2 +
∂2

∂y2

)]

u(t, x, y) =

0, where N is the number of samples, D is the thermal diffusivity constant, u(t, x, y)

and û(t, x, y) are the functions returning, respectively, the real and predicted temper-

atures in position (x, y) at time step t. An application of this solution to the thermal

modeling of buildings and heat transfer problems is presented in [70] and [30]. De-

spite being able to simulate physical processes with good accuracy (if compared with

common fully connected neural networks), this family of models still requires a man-

ual design phase and hardly generalizes to complex environments or configurations

that are different from those examined during training.

For the sake of completeness, we point out that other solutions based on machine

learning, like support vector machines, decision trees, and ensemble methods (such

as extreme gradient boosting and random forests) have been explored by different

authors [102, 101]. As for classical deep learning solutions, in [156, 172, 113, 114] a

multi-layer perceptron (MLP) neural network, a Long Short-Term Memory (LSTM)

network and a Convolutional LSTM (ConvLSTM) network able to exploit inferred

information on spatial and temporal associations among sensors are presented.

Tipically, the aforementioned deep learning approaches require a retraining of

the models or a fine-tuning phase in case of changes in environmental conditions

or configurations. In contrast to all the above mentioned solutions, we propose

an approach based on graph networks as approximators of physical simulations via

learned message-passing functions where room elements, such as furnishing items

or air flows sources, are represented by nodes in a graph. Such an approach has

already been applied in the literature to challenging domains, involving fluids, rigid
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solids, and deformable materials [164] proving its ability to learn how to simulate

complex physics. Despite being focused on the temperature monitoring scenario,

the considered approach can, in principle, be applied to any other sensor prediction

task linked to indoor physical dynamics.

4.2.1 Temperature prediction

In this part of the section, our main focus is the evaluation of the accuracy in ap-

proximating the physical simulations with respect to the task of temperature virtual

sensing and to identify the best prediction methodology. With these objectives in

mind, we begin the analysis by describing and evaluating some state-of-the-art in-

ductive learning approaches, including simple and inverse distance weighted (IDW)

average of the temperatures as baseline, and XGBoostRegressor (using Python’s

package xgboost [41]) as machine learning approach.

Thereafter, considering the nature of the context which pertains to a room with

a grid of sensors and various elements such as walls, heaters, windows, and doors, we

aim to study the benefits of models able to represent spatial relationships between

sensors and other room elements, and exploit this information to make accurate

predictions of the temperature in each part of the room. With this premise, we

propose a transductive learning graph network model (based on the PyTorch Ge-

ometric graph neural networks library [60]). Representing the room as a graph

where nodes correspond to internal elements, and edges represent interactions be-

tween them. Together with a comparison of the graph networks-based model with

the aforementioned inductive approaches, a systematic assessment of the impact,

in terms of improved accuracy, of incorporating information from various sets of

elements characterizing the indoor environment is carried out.

As pointed out in Section 3.2.2, predictions make use of positions and tempera-

ture values captured by 9 chosen reference sensors in V att
refs as depicted in Figure 3.21.

Prediction errors were evaluated on a specific set Vtest of the remaining sensors, de-

fined as V \ V att
refs. Furthermore, to ensure the comparability of the results obtained

from the various approaches, the set of dataset timesteps T = {0, . . . , 3183} has been
divided in Ttrain and Ttest according to an 80%-20% training-test split. Therefore,

the accuracy of the considered approaches has been evaluated on the temperature

values observed at time instants in Ttest for sensors in Vtest.

In the remainder of this section, we evaluate the various approaches of temper-

ature prediction, and analyze the obtained results.
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Figure 4.8: Boxplots of the 95th percentile of the error provided by the considered

approaches.

Baseline methods

This first analysis allowed us to define a baseline against which to compare the results

of the other approaches. Given a sensor in Vtest for which we want to predict the

temperature readings on the test set, the idea is that of approximating such values

by a simple combination of the temperatures recorded by the other ones in V att
refs at

the same time instant. To this end, as conducted in Section 4.1.1, we applied two

different techniques, namely, classical average and inverse distance weighted average

(IDW).

Operationally, to determine the impact on the prediction accuracy of the distance

between sensors, we performed several experiments by considering as predictors just

the k sensors closest to the one to predict, for k ∈ [1, |V att
refs|]. For each approach

and sensor to evaluate, we determined the temperature absolute error, considering

its 95th percentile, ϵ95, which can be thought of as a worst-case prediction scenario.

In fact, by focusing on the upper tail of the error distribution, this metric provides

a more conservative estimate of model performance, which is particularly relevant

in applications where large prediction errors can have significant consequences.

Figure 4.8 collects the boxplots of ϵ95. Each boxplot includes a value for every

test tensor in Vtest, for a total of 87 values. Considering median values of ϵ95, it

clearly emerges that both classical average and IDW solutions are influenced by the

number of closest sensors used for the prediction. The optimal number of sensors

lies in the range [3, 5]. Overall, both baseline methods behave similarly and exhibit

rather high upper quartile values, which indicates that they are unable to grasp

complex relationship between the data. Furthermore, they follow a bowl pattern, a

sign that the use of an excessive number of predictors leads to noise in the prediction

phase.
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Table 4.2: XGBoostRegressor parameters (rounded to the 5th decimal digit).
Parameter name max depth learning rate n estimators reg alpha reg lambda gamma subsample colsample bytree min child weight

Value 16 0.015 350 78.87396 0.50044 5.95353 0.66425 0.65694 1.0

Machine learning approach

In this experimentation, as described in Section 4.1.1, XGBoost has been considered

as machine learning approach.

Operationally, an XGBoostRegressor model has been trained considering as in-

put information the following room elements: the 9 reference sensors in V att
refs as

defined in Section 3.2.2, and the 17 room elements (including partial and perimeter

walls) as depicted in Figure 3.16 for room configuration 1. Overall, for each of these

elements we consider as input feature the observed (in case of sensors) or emitted (in

case of heater, radiator or vent elements) air temperatures in Celsius (°C), the emit-

ted mass flow in kilogram per second (Kg/s) and the element orientation angle with

respect to the z axis expressed in radians, 12 Boolean features representing the one-

hot encoding of the element type which could be one choice from all possible room

element types defined as T := sensor | heater non convective | heater convective

| vent | door closed | door opened | window closed | window opened | wall external
| wall internal | wall partial | table. Each feature in this resulting training set has

been standardized among all timesteps in Ttrain before training.

As a first step, we tuned the XGBoostRegressor model with the above-described

training set, from which a validation set of size 20%, consisting of randomly cho-

sen timesteps, was extracted. The task was performed by means of Hyperopt [15],

a library for hyperparameter optimization written in Python, minimizing the 95th

percentile of the error loss function for 100 evaluation steps on the following hy-

perparameters: max depth, learning rate, n estimators, reg alpha, reg lambda,

gamma, subsample, colsample bytree, and min child weight. The resulting values

are listed in Table 4.2. With the hyperparameters appropriately tuned, the model

was trained on the entire training set, and then evaluated on the test set.

The outcomes shown in Figure 4.8 suggest that excluding high ϵ95 values, XG-

Boost fails to outperform the baseline approaches. This indicates that, in our case,

increasing the complexity of the model does not does not positively influence its

accuracy. Hence, it makes sense to investigate different approaches able to better

exploit the environmental information contained within the dataset.

Graph networks approach

In this specific section, we propose and evaluate the effectiveness of a transductive

graph neural network approach which, unlike the inductive approaches analysed
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Figure 4.9: Architecture of the graph neural network model considered for the tem-

perature prediction task.

so far, is able to learn dependencies and interactions between the elements within

the simulated room. The GNN solution, formerly proposed in Section 3.2.3, is

oriented towards the selection, based on attention mechanisms, of informative sensor

nodes to be used in the predictive task. For this predictive task, instead, a more

extensive architecture able to exploit knowledge coming from a graph containing

nodes related to each element placed inside the monitored environment is needed.

On this premise, as depicted in Figure 4.9, our proposed solution is obtained by

increasing the capacity of the employed GAT layer and adding a couple of dense

fully connected layers on top of it.

Considering the task of indoor temperatures prediction, given an input graph,

the GAT layer allows to create one embedding for each node. Such embeddings are

obtained reducing information, like temperatures, air flows exchanges or radiation ef-

fects coming from a node neighborhood. Finally, the fully connected layers compute

an embedding representing a node’s state information from which the temperature

value is predicted as outcome.

Beside comparing the accuracy attained in temperature prediction with respect

to other approaches, this experimentation aims to assess the impact, in terms of

improved accuracy, of incorporating information from various sets of elements char-

acterizing the indoor environment. For this purpose, the simulation data have been

modeled as four set of graphs which differ in terms of node types and features em-

ployed. In detail, the four sets of graphs considered for this experimentation are the
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following:

• sensors only graphs, Gsens = {Gt|Gt = (V t
sens, Esens)}t∈T where T is the set

of time samples considered, Vsens = Vrefs ∪ Vtest the set of all provided room

sensors, and Esens the set of edges defined as {(vi, vj)|vi, vj ∈ Vsens and vi ̸=
vj}; at each timestep t ∈ T , there corresponds a different graph, characterized

by the observed values contained in the set of node features hv = {hi|vi ∈
Vsens} with hi ∈ R air temperatures in Celsius (°C), along with the set of

time-independent edge features he = {hi,j|(vi, vj) ∈ Esens},hi,j ∈ R
3 where

the 3 real values are the coordinates differences on the z, y, x axes between the

starting node and the destination node of the associated edge (vi, vj) ∈ Esens;

• room nodes only graphs, Groom = {Gt|Gt = (V t
room ∪ V t

test, Eroom)}t∈T where T

is the set of time samples considered, Vroom the set of room nodes modeling

walls and objects located inside the room, Vtest the set of test sensors, and

Eroom the set of edges defined as {(vi, vj)|vi, vj ∈ Vroom ∪ Vtest and vi ̸= vj};
here the set of node features is defined as hv = {hi|vi ∈ Vroom ∪ vtest} with

hi ∈ R
3×B12 where the 3 real input features associated to each node vi are the

emitted air temperatures in Celsius (°C), the emitted mass flow in kilogram

per second (Kg/s) and the node orientation angle with respect to the z axis

expressed in radians, and the 12 Boolean features are the one-hot encoding of

the node type which could be one choice from all possible room element types

T ; the set of time-independent edge features is he = {hi,j|(vi, vj) ∈ Eroom},
with hi,j ∈ R

3 defined as above;

• all nodes graphs, Gall = {Gt|Gt = (V t
refs ∪ V t

room ∪ V t
test, Eroom)}t∈T where T

is the set of time samples considered, Vrefs the set of room reference sensors,

Vroom the set of room nodes, Vtest the set of test sensors, and Eall is the set

of edges defined as {(vi, vj)|vi, vj ∈ Vrefs ∪ Vroom ∪ Vtest and vi ̸= vj}; the

set of node features is defined as hv = {hi|vi ∈ Vrefs ∪ Vroom ∪ vtest} with

hi ∈ R
3 × B

12 as above; also for the set of time-independent edge features

he = {hi,j|(vi, vj) ∈ Eall}, hi,j ∈ R
3 is defined as above;

• no edge features graphs, Gnoedge = {Gt|Gt = (V t
refs ∪ V t

room ∪ V t
test, Eroom)}t∈T

defined as the all nodes graphs set, but without edge features (i.e., with he

empty).

For this experimentation, the evaluated GNN has been implemented extending

the GATv2Conv model from the PyTorch Geometric library as follow:
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• the embedding h′
i for node vi is computed through a 2 head GAT layer

(GATv2Conv on the upper left side of Figure 4.9) consisting of 128 units,

aggregating information of its neighbors as in the equation

h′
i = ReLU





∑

vj∈Ni

α
(1)
i,j W

(1)hj∥
∑

vj∈Ni

α
(2)
i,j W

(2)hj



 ,

where W(1) and W(2) ∈ R
128×Fv , are learnable linear transformation weight

matrices, hj are the input features associated to a node vj, Fv is the number

of features associated to each node, α
(1)
i,j and α

(2)
i,j ∈ R are the attention coef-

ficients for nodes vi, vj ∈ V of, respectively, the first and the second attention

head. The output of this step is obtained passing the vector h′
i ∈ R

256 to a

BatchNormalization layer;

• after a Dropout layer with 0.5 probability, the resulting vector in R
256 is passed

to a dense fully connected layer (FCNN on the lower left side of Figure 4.9)

consisting of 256 units with a ReLU activation function followed by a Batch-

Normalization layer;

• as final step, again after a Dropout layer with 0.5 probability, the resulting

vector is passed to a dense fully connected layer (FCNN 2 on the right side of

Figure 4.9) of 256 units. At last, on the top of this architecture a final linear

layer with one output unit is applied.

Training the newly defined GNN on the four sets of graphs Gsens,Groom,Gall and
Gnoedge, we obtain the respective modelsGNNsens, GNNroom, GNNall andGNNnoedge.

This phase is performed through the Adam optimization algorithm with learn-

ing rate equal to 0.001 minimizing the mean squared error loss function based on

the temperature values actually observed and those predicted by the GNN mod-

els for each sensor in Vtest and timestep t ∈ Ttrain. Furthermore, the temperature

values for sensor nodes in Vtest are masked and each feature of the embeddings in

hv and he is standardized considering values observed in all of the Ttrain samples.

Additional hyperparameters values adopted for the training phase are the batch size

set to 16, the momentum and RMSProp terms β1 = 0.9 and β2 = 0.999, and the

training epochs equal to 500. Finally, the evaluation of the trained model is carried

out for all graphs Gt with t in Ttest where, again, the temperature values to predict

for all nodes in Vtest are masked. The architecture of the model and all the other

hyperparameters were chosen through iterative random search tuning performed on

a fixed 80–20% training-validation subsplit of timesteps in Ttrain.
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From the results shown in Figure 4.8 it is clear that the proposed model based on

graph networks is able to outperform all other approaches as regards the smallest,

the median and the largest values of the 95th percentile of the prediction error. Al-

though the GNNnoedge model (without edge features) behaves similarly to XGBoost,

the inclusion of edges features (models GNNsens, GNNroom and GNNall), and of

nodes related to the elements of the room in addition to sensor nodes (as for model

GNNall), allows to consistently increase the accuracy of the model.

4.2.2 Analysis with different room conditions

Apart from the ability of yielding accurate predictions, a desired feature of the

methodologies under study is that of being adaptable to environments with different

simulated conditions and configurations, in some terms, proving to have learned

physical characteristics and phenomena caused by the presence of certain elements

within a room. In the remainder of this section, we evaluate both the adaptability of

the sensor placement method considering a simulated environment with a different

internal configuration, and the behavior of the predictive model in case of mixed

environmental conditions.

Sensor placement method analysis

With the aim of evaluating the relocation capability of the solution based on graph

attention mechanisms proposed in Section 3.2.2, we define an algorithm able of

transferring the outcome of this procedure to a different (in terms of configuration

of elements placed inside) room simulation.

This latter is outlined in Algorithm 1 and takes as inputs the set of selected

sensors Vrefs, the set of nodes in the original room Vroom, the scores scorei yielded

by the sensor placement procedure for each vi ∈ Vsens and the set of nodes in the

new room V ′
room. At the beginning, for each node type τ ∈ T the support set Sτ

is initialized as ∅ (line 1). These support sets are used to trace the information

necessary to arrange a set of sensors in the new room considering the type of the

nodes placed in it. On lines 2–11 this support information is extracted, where type

is a function V → T returning the type of a node, coords a function V → R
3

returning the spatial coordinates of a node and angle a function V → R returning

the orientation angle of a node. In detail, for each sensor vi ∈ Vrefs and for each

node vj ∈ Vroom of type τ ∈ T such that the Euclidean distance between vi and vj
is less than or equal to dmax, a tuple in R

3 × R × R is added to Sτ . In detail, this

tuple contains the vector given by the element-wise difference of the coordinates of

nodes vi and vj, the orientation angle θj of vj and the score scorei associated with
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vi.

Algorithm 1: Room Sensors Transfer

input : selected sensors set Vrefs, sensor score scorei ∀vi ∈ Vsens, set of
room nodes Vroom, set of new room nodes V ′

room

global: max distance dmax, node type set T
1: init Sτ ← ∅, ∀τ ∈ T
2: for vi ∈ Vrefs do
3: ci ← coords(vi)

4: for vj ∈ Vroom do

5: cj, τ ← coords(vj), type(vj)

6: if dist(ci, cj) ≤ dmax then

7: θj ← angle(vj)

8: Sτ ← Sτ ∪ {⟨ci − cj, θj, scorei⟩}
9: end if

10: end for

11: end for

12: for ⟨c, θ, score⟩ ∈ Sτ , ∀τ ∈ T do

13: for vk ∈ V ′
room such that type(vk) = τ do

14: c′, θ′ ← coords(vk), angle(vk)

15: c′ ← (c · Rθ′−θ) + c′

16: if score′c′ is defined then

17: score′c′ ← score′c′ + score

18: else

19: score′c′ ← score

20: end if

21: end for

22: end for

23: return score′

Thereafter, following the steps on lines 12–24, the sensors selected for the original

room are mapped to the new one through a new score variable score′c defined as

a map R
3 → R which associates to a point c in the new room R

3 space a score

representing the importance of that position if considered as a predictor sensor.

More in detail, for each tuple ⟨c, θ, score⟩ in the support Sτ and each new node vk
in V ′

room with type(vk) equal to τ , the coordinates c are transferred in the new room

space considering the position and orientation angle of vk. The salient point of this

strategy is found in line 16, where the spatial coordinates vector ck of node vk is

summed element-wise to the dot product of c and a rotation matrix defined as
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Figure 4.10: Boxplots of sensor prediction errors provided in the new room configu-

ration 2 considering as reference sensors the outcome of an ex-novo graph attention-

based selection and the room sensors transfer procedure compared to the original

reference sensors selected for room configuration 1.

Rθ′−θ :=





1 0 0

0 cos(θ′ − θ) sin(θ′ − θ)
0 − sin(θ′ − θ) cos(θ′ − θ)





where θ′ is the orientation angle of vk and θ the angle stored in the support tuple.

This makes it possible to reallocate reference sensors in the new room considering

the orientation angle of the elements in the original setting (θ) coupled to that

of the elements in the new configuration (θ′). Finally, exploiting the output of

Algorithm 1 we obtain the set of new sensor nodes V ′ = {c′ | score′c′ is not undefined
and score′c′ > 0}. The final set of reference sensors is selected sorting the values of

score′c′∀c ∈ V ′ in decreasing order and applying to the resulting curve the Kneedle

algorithm (as already illustrated in Section 3.2.2).

As for the experimentation on our case study, we applied the Algorithm 1 to the

outcome of the sensor placement procedure presented in Section 3.2.4 trained on the

sequence of events Seqw data for room configuration 1 (so that Vrefs = V att
refs) with

the aim of obtaining an optimal sensor arrangement for room configuration 2 (see

Figure 3.16). Considering a value dmax equal to
√
3 m, the set of sensors obtained

after the transfer procedure is V ′
refs = {66, 65, 41, 29, 61, 62, 53, 30, 57}. For the

sake of comparison, we perform an ex-novo execution of the graph attention-based

sensor allocation procedure for room configuration 2 obtaining as outcome the set
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of selected sensors V ′ att
refs = {66, 65, 72, 80, 41, 29, 61}. In Figure 4.10 a comparison

of the obtained results using the three sets of reference sensors V ′ att
refs (ex-novo graph

attention-based selected sensors for room configuration 2), V ′
refs (outcome of the

room sensors transfer procedure) and Vrefs (original reference sensors selected for

room configuration 1) as predictors for the temperatures observed by nodes in Vtest is

reported. Here, a graph attention neural network configured and trained as outlined

in Section 4.2.1 is employed. As can be seen, for the models trained considering nodes

in V ′ att
refs and V ′

refs as reference sensors, the error distributions are substantially

similar, especially as regards intermediate values. Moreover, the model trained

considering sensors in Vrefs gives the worst performances for both intermediate error

values and outliers.

To conclude, it is worth noticing that, in our case, having a discrete grid of

sensing monitors the values of score′ (lines 16–20) are assigned to sensors located

within a radius of
√
3 m from the estimated coordinates c′. However, the proposed

procedure is meant to be more general, providing transfer solutions in a potentially

continuous R3 space.

Predictive model analysis

Here we evaluate the graph network-based solution presented in Section 4.2.1 with

reference to a different indoor scenario. First of all, the training of the predictive

model is performed as defined in Section 4.2.1 on data obtained from the independent

simulation of each individual event included in the winter and summer sequences

(Seqw and Seqs) described in Section 3.2.1 (exception made for event 4, regarding

the activation of the air conditioning vents) for room configuration 1. In this step,

the sensors in V att
refs are used as predictors, and the remaining ones in V \ Vtest as

labels. Subsequently, the evaluation of this pre-trained GNN model takes place on

the unseen simulated sequences of Seqw and Seqs, as above for sensors in V \ V att
refs

in room configuration 1. In details, Seqw and Seqs differ from the training data

as, being simulated in sequence, each event depends on the final environmental

conditions of the preceding ones.

Below, the graph network model trained on independent events is compared with

3 other models with the same architecture: one trained only on Seqw, one only on

Seqs, and one on both Seqw and Seqs. The split between training and test set was

performed extracting Ttrain and Ttest which contain, respectively, 80% and 20% of

the time instants of each event in Seqw and Seqs.

The results in Figure 4.11 and 4.12 show the distribution of the 95th percentile

of the prediction error ϵ95 for sensors in Vtest regarding each event in the evaluation

sequences of, respectively, Seqw and Seqs (considering samples in Ttest). As regards
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Figure 4.11: Boxplots of the 95th percentile of the error provided for the considered

events in the winter sequence Seqw by GNNs trained on different conditions.

Figure 4.12: Boxplots of the 95th percentile of the error provided for the considered

events in the summer sequence Seqs by GNNs trained on different conditions.

the median value of ϵ95, the model trained on single events provided comparable

performances both to the model trained ad hoc for the sequence Seqw, and to that

trained on Seqs. The same holds for the model trained on both the Seqw and Seqs
sequences, with lower maximum values than the model trained on single events. As

might be expected, GNN trained on Seqw performed poorly on Seqs events, and vice

versa. In particular, the maximum values of ϵ95 are very high using a Seqs-trained

model to predict events in Seqw. This is probably determined by the greater effect

yielded in winter by heaters compared to the heat dispersion supplied by them in

summer.

4.2.3 Discussion

In this section, we presented a novel framework for the efficient thermal monitoring in

a general indoor environment. Our proposal encompasses multiple, relevant aspects

of virtual sensing, including the placement of physical sensors, the choice of the

predictive model, and the evaluation of its performance.

For the sake of clarity, below we summarize how the steps of the proposed pro-

cedure are organized. The overall idea is to carry out simulations from sufficiently

detailed and complex 3D environment models, in order to cover all types of furniture

elements, events and physical phenomena of interest (e.g., simulating the switching

on of a radiator or the opening of a window). Starting from this simulated data,

the sensor placement procedure described in Section 3.2.2 returns a list of refer-

ence positions whose observed temperature values allow the training of a predictive
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Figure 4.13: Example of input graph structure.

model acting as a simulation approximator. This is accomplished by encoding the

environmental information into a graph structure serving as input during the train-

ing process, as outlined in Section 4.2.1. Figure 4.13 shows an example of such

a structure where blue nodes represent reference sensors or room nodes, and red

nodes virtual sensors. The values associated with them correspond to temperature

values. The adoption of this graph structure has several advantages. In fact, the

obtained models are able to work independently of the order of nodes and capture

dependencies and interactions between them.

Thus, the graph network trained on the initial simulation data can be employed

with good efficacy for temperature monitoring in similar contexts, regardless of its

environmental conditions, or usage scenarios. This is possible provided that the

initial simulations include all types of elements placed in the new configurations

and all the events capable of generating the physical phenomena to be monitored

modeled with sufficient complexity and level of detail.

Operationally, it suffices to prepare an input graph for the model with nodes of

correct typology and relative features appropriately set according to what is actually

present in the new room configuration to be monitored. Once the set of nodes has

been encoded, the coordinates of the reference sensors to be placed in the room

are obtained using the algorithm in Section 4.2.2. After an inital training phase

on simulation data as described in Section 4.2.1, when the physical sensors have

been arranged and their observed temperatures have been collected, an input graph

for the predictive model is created. At this point, to predict the temperature in

a specific point of the room, a sensor type node with the desired coordinates is

employed. Spatial interpolation can be easily obtained varying the coordinates of

this virtual sensor, by reading the relative output predicted by the graph network

per-node model.





5
Monitoring

The ability of sensor systems to generate large volumes of dynamic and heteroge-

neous data has opened up new possibilities for a wide range of applications, from

industrial process control to environmental monitoring. In the previous chapters,

we have explored various aspects of sensor systems, including sensor selection and

virtual sensing of indoor environments. Once a sensor system has been made op-

erational and efficient, it can be used for tasks such as event, anomaly, or failure

detection, providing enhanced control functions.

In many application domains, during its operation a system produces several

data streams, that may contain valuable telemetry information. This is the case,

for instance, with the logs generated by web servers, smart sensors, and industrial

machinery. Such data can be used for tasks like predictive maintenance and early

failure detection, typically carried out, due to their complexity, by means of machine

or deep learning approaches. Despite their success, these methods hardly provide

any guarantees over their execution, a problem which is exacerbated by their lack

of interpretability, which is an essential requirement in many critical domains, such

as, for instance, healthcare and avionics. In those scenarios, formal methods can, in

principle, be used to automatically verify software and hardware systems. However,

the presence of different operating conditions combined with the complexity of the

system components and their interactions make it quite difficult to define in advance

all the relevant conditions that must be guaranteed (or avoided) during execution;

moreover, the specification of a complete system model against which to check these

properties may be simply impossible [106].

To overcome these limitations, various methods, that combine classic exhaus-

tive formal verification techniques with model-based testing and monitoring, have

recently been proposed in the literature (see, e.g., [36, 67]). Here, we focus on the

latter. Monitoring [106] is a runtime verification technique which is receiving more

and more attention from the formal verification community. It allows one to detect

the fulfilment or violation of a property (usually expressed by a temporal logic for-

mula) by evaluating a single system run, without requiring a model of the system
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being considered. This makes it naturally applicable to data streaming scenarios.

In this chapter, we present a novel online system verification framework that

combines monitoring with supervised machine learning and can be used for tasks

like preemptive failure detection over streams of data. The framework starts its

operation by considering a limited set of properties encoding bad behaviors, to be

monitored against the system, learnt during a warmup phase and/or specified with

the help of domain experts. Then, during the runtime phase, by means of an iterative

refinement process, the framework autonomously discovers new relevant properties,

becoming able, over time, to identify undesired behaviors in advance, and with a

significantly higher level of detail and coverage than the initial specifications. The

process of property discovery and extraction is carried out by means of an original

bi-objective evolutionary algorithm.

The distinctive features of the proposed solution are the following:

• the framework poses as a monitoring-based tool to perform preemptive failure

detection;

• its operation relies on the seamless and automatic interaction between formal

methods and machine learning approaches;

• thanks to its modularity and flexibility, the framework can be adapted to

different application domains and contexts; in particular, Signal Temporal

Logic (STL) can possibly be replaced by other logical formalisms for property

specification;

• interpretability is a distinguishing feature of the framework, as the produced

responses can be easily read by domain experts; this allows people to validate

the overall behavior of the framework, and to gain insights about the causes

that led to a failure;

• the framework works in an online fashion, and it can adapt to changes in the

behavior of the system, due, for instance, to updates or upgrades.

The framework has been evaluated against three public datasets, and it has

shown to be able of actually predicting in advance system failures. Results are on

par with those obtained from other state-of-the-art solutions that, however, suffer

from a lack of interpretability. In order to deal with the task of failure detection,

we chose to validate our approach on different datasets and use cases compared to

those analyzed in the previous chapters. However, as a future direction it would

be interesting to extend the framework to address situations where the focus is not

solely on failure detection, but also on anomaly, degradation, or event detection (e.g.,

violations of comfort constraints in the case of indoor temperature monitoring).
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The rest of the chapter is organized as follows. Section 5.1 analyses related

work. Section 5.2 provides background knowledge about monitoring, STL, and evo-

lutionary algorithms. Section 5.3 describes the implementation of the evolutionary

algorithm used in the property extraction phase. Section 5.4 shows how such an

algorithm has been incorporated in the proposed framework. The experimental

evaluation of the framework is reported in Section 5.5. Finally, Section 5.6 provides

a critical assessment of the work done and discusses its strengths and limitations.

5.1 Learning to detect failure

Learning techniques for the real-time detection of undesired behaviors (failures) of

complex systems are getting increasingly popular. A significant line of research

makes use of machine learning and deep learning, that realize failure detection via

black-box models rather than by providing explicit properties capable of characteriz-

ing bad behaviors of a system. Despite their lack of interpretability, that makes it dif-

ficult to understand and validate the resulting verdicts, these approaches have been

employed in several domains due to their effectiveness. For instance, machine learn-

ing strategies based on Logistic Regression (LR), Support Vector Machine (SMV),

Random Forest (RF), and K-Nearest Neighbours (KNN) applied to the domains of

aircraft components post-flight reports, gearbox failures in industrial robots, high-

performance computing, and cloud systems are described in [97, 174, 126]. Deep

learning solutions are typically exploited to extract temporal relations in time series

data, as witnessed in [65, 3, 110, 144], where Long Short-Term Memory (LSTM)

and Recurrent Neural Networks (RNNs) are applied to the domains of job failures

in large-scale cloud data centers, turbofan engine degradation, hard drive telemetry

data, and heart atrial fibrillation detection on routine screening electrocardiogram

(ECG) signals. A common limitation of all these solutions is that historical data

used for the predictions are often defined through a time window of fixed size, which

may be inadequate when heterogeneous failure behaviors have to be captured.

In the attempt to cope with the interpretability requirement, which is funda-

mental in many critical domains, some approaches for the extraction of properties

that distinguish between failure and normal execution traces of a system have been

recently proposed in the literature [92, 132, 18, 125, 133, 17, 40]. However, learn-

ing temporal properties from the observed system traces is a challenging task that

involves intractable optimization problems [92]. To overcome them, heuristics were

suggested [92, 132, 18, 125]. In this spirit, some ad hoc, domain-specific solutions

have been devised to assess the condition of electrical rotating machines through real-

time vibration measurement and analysis instruments [47], to discover temporally-
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constrained alarm sets from dynamic systems’ logs [56], to diagnose rolling bearings

faults through a hardware architecture with a reconfigurable logic based on field

programmable gate arrays (FPGAs) [89], to detect system intrusions through tem-

poral logic specifications [131], and to ensure the safety of synthesized policies for

robotics through model predictive shielding [5]. Nonetheless, a general technique,

applicable to different domains and contexts, is still missing. A step towards such

a goal was taken in [29], where an STL-based solution to the problem of detecting

ineffective respiratory effort in intensive care patients, which includes a learning

phase supporting some adaptive behaviors, is outlined. Still, the generative data

models employed in the learning phase are tailor-made, thus limiting the flexibility

and generality of the proposed solution.

With the goal of generalizability in mind, approaches explicitly aimed at com-

bining the points of strength of machine learning and formal methods have been

recently proposed. Specifically, in [133, 17, 40], techniques for the mining of STL

properties that distinguish between two different sets of time series data are pre-

sented. The proposal in [133] relies on a genetic algorithm combined with parameter

learning through Gaussian process confidence upper bound. The solution originally

presented in [18], and then extended with online learning in [17], exploits a deci-

sion tree learner based on STL primitives. Finally, the approach in [40] relies on a

reinforcement learning-based property extractor that combines data- and knowledge-

driven methodologies. Still, the aforementioned proposals significantly differ from

what is presented in this work, as they are not designed to work iteratively, managing

a pool of properties in real-time. Beyond STL, in [181], a failure prediction method

for cloud data centers, based on message pattern recognition via Bayesian probabil-

ity, is described. As for failure detection in cyber-physical systems, a Ripple down

rule-based (RDR) framework was proposed in [91], that exploits a machine learning

technique based on the algorithm InductRDR [64]; the result is then maintained by

domain experts, who refine the RDR knowledge base.

A related field is that of specification mining, whose goal is to generate/integrate

the formal specification of a system by analyzing its execution traces. Various ap-

proaches to this problem have been proposed in the literature. In [105], a Linear

Temporal Logic (LTL) property template miner, based on support and confidence

thresholds, is devised. A Bayesian inference-based probabilistic model that gener-

ates LTL task specifications from examples, by exploiting a Markov Chain Monte

Carlo algorithm, is outlined in [171]. In [88], an algorithm to infer LTL specifi-

cations by combining the representational power and interpretability of temporal

logic with the generalizability of inverse reinforcement learning is proposed. The

problem of mining finite state automata to generate formal specifications in the

context of software applications and libraries is dealt with in [103]. To this end,
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the authors make use of prefix tree acceptors, language models based on recurrent

neural networks, and clustering algorithms to merge similar automaton states. In

the context of failure detection and specification mining, it is worth mentioning that

recent developments in learning temporal formulas for sensor-based prediction, such

as temporal decision trees [27] and forests [119], provide an alternative approach

that is focused on leveraging temporal relationships in time series data. These ap-

proaches hold potential for enhancing both the effectiveness and interpretability of

failure detection systems. However, it is important to consider certain drawbacks.

The construction and training of temporal decision trees and forests can be compu-

tationally intensive, particularly when dealing with large-scale and high-dimensional

datasets. Additionally, the scalability of these methods might be a concern when

confronted with substantial amounts of streaming data or when the dynamics of the

system change over time. To conclude, despite the relevance of specification mining,

the proposed solutions extract non-contrastive properties from the observed execu-

tions of a system, and thus they cannot be naturally applied to failure detection,

where properties able to discriminate between good and bad behaviors are needed.

5.2 Background knowledge

In this section, we recall some basic notions about monitoring and STL

5.2.1 Monitoring

As introduced in Section 2.5, while classic verification techniques, like, for instance,

model checking [46], perform an exhaustive analysis of the behaviors of a system,

monitoring [106] aims at establishing satisfaction or violation of a property by ana-

lyzing a finite prefix of a single behavior (trace/run), and then issuing an irrevocable

verdict [106]. It is thus a lightweight technique, but the gain in efficiency is paid

in terms of expressivity: monitorable properties are a subset of those expressible in

temporal logics commonly used for automated verification.

We say that a property is positively (resp., negatively) monitorable if every trace

satisfying (resp., violating) it features a finite prefix that witnesses the satisfaction

(resp., violation). A monitorable property is a property that is either positively

or negatively monitorable. Safety properties, informally requiring that “something

bad will never happen”, are negatively monitorable, as their violation is witnessed

by a finite prefix exhibiting a violation; dually, co-safety properties, stating that

“something required will eventually happen”, are positively monitorable. Notably,

there are meaningful properties, like, e.g., “a good state is accessed infinitely often”
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(an essential ingredient of strong fairness requirements [118]), which are clearly

neither positively nor negatively monitorable.

As we will see in Section 5.4, the online nature of monitoring makes it a natural

candidate for the proposed framework.

5.2.2 Signal Temporal Logic (STL)

Signal Temporal Logic (STL) [116] extends propositional logic with future modalities

that allow one to express temporal properties over linear structures. It can be

directly applied to time series data characterized by continuous values.

Let N>0 (resp., N[t,t′]) be the set of positive naturals (resp., naturals in between

t and t′, for all t, t′ ∈ N) and R
n be the n-dimensional Euclidean space over reals. A

discrete-time STL signal (or trace) is a function x : N→ R
n, for some n ∈ N>0; a

partial signal is a function x : N[0,t] → R
n, for some n ∈ N>0 and t ∈ N.1 We denote

the length of a (partial) signal x by len(x). For a signal x, it holds that len(x) =∞,

whereas len(x) = t + 1 for a partial signal x : N[0,t] → R
n. Let X (resp., X̄ ) be

the set of signals (resp., partial signals). If the codomain of a (partial) signal x is

R
n, then n is the dimension of x, denoted by |x|. Let x ∈ X ∪ X̄ . We denote by

xi, with 1 ≤ i ≤ |x|, the function from the domain of x to R such that xi(t) is

equal to the i-th component of x(t), for all t. Moreover, we denote by x[j, k], with

0 ≤ j ≤ k < len(x), the restriction of the function x to the domain N[j,k].

The syntax of STL is given by the grammar:

ϕ ::= ⊤ | xi ≥ c | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1UIϕ2,

where x is a signal, 1 ≤ i ≤ |x|, c ∈ R, and I is an interval of the form (a, b), (a, b],

[a, b), or [a, b], with a ∈ N, b ∈ N∪{∞}, and a ≤ b. Modality U (until) is paired with

an interval I which defines its validity scope. For every t ∈ N and interval I = (a, b),

we denote by t + I the interval (t + a, t + b) (the same for intervals of the forms

(a, b], [a, b), and [a, b]). Derived modalities are defined as usual. As an example,

modalities eventually and globally are defined as FIϕ = ⊤UIϕ and GIϕ = ¬FI¬ϕ,
respectively.

STL pairs the standard Boolean semantics with a quantitative one, which mea-

sures the robustness of the satisfaction of ϕ by a signal x at a time t ∈ N.

The quantitative semantics of STL is inductively defined as follows:

• ρ(⊤, x, t) = +∞;

1As a matter of fact, STL allows one to deal with continuous-time signals by simply redefining

x as x : R≥0 → R
n, where R≥0 is the set of non-negative reals. Here, we restrict ourselves to the

discrete-time case given that a sampling is required to represent time series data within a dataset.
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• ρ(xi ≥ c, x, t) = xi(t)− c;

• ρ(¬ϕ, x, t) = −ρ(ϕ, x, t);

• ρ(ϕ1 ∧ ϕ2, x, t) = min{ρ(ϕ1, x, t), ρ(ϕ2, x, t)};

• ρ(ϕ1UIϕ2, x, t) = maxt1∈t+I min{ρ(ϕ2, x, t1),

mint2∈[t,t1) ρ(ϕ1, x, t2)}.

The Boolean semantics of STL is defined on the basis of the sign of ρ(ϕ, x, t):

x, t |= ϕ if and only if ρ(ϕ, x, t) ≥ 0.

Finally, given a partial signal x ∈ X̄ over N[0,t], the set of completions of x is

defined as C(x) = {x̂ ∈ X | x̂(t′) = x(t′) for all t′ ∈ N[0,t]}.
STL monitoring is formally defined by the function mon : X̄ × STL→ {⊤,⊥, ?}

such that mon(x, φ) returns ⊤ iff x̂, 0 |= φ for all x̂ ∈ C(x) iff ρ(φ, x̂, 0) ≥ 0 for

all x̂ ∈ C(x); ⊥ iff x̂, 0 ̸|= φ for all x̂ ∈ C(x) iff ρ(φ, x̂, 0) < 0 for all x̂ ∈ C(x); ?
otherwise.

The choice of STL as the formalism for the specification of the properties to

monitor has various advantages. First of all, STL allows one to directly deal with

real values, still featuring quite compact and interpretable formulas. Moreover, its

quantitative semantics provides one with an additional tool to evaluate the behavior

of the extracted formulas, a feature that will be described in detail in Section 5.3.

5.2.3 Monitoring bounded STL formulas

Monitoring properties that refer to both the current and the future behavior of a

system is a challenging task since their evaluation at a given time t may also depend

on the observed inputs at some time t′ > t. In Section 5.2.1 and Section 5.2.2, we

introduced the notion of monitorable properties and provided syntax and semantics

of STL, respectively. To the best of our knowledge, no tool supporting the monitoring

of arbitrary STL formulas is available. Luckily, in most application domains, the

properties to monitor can be expressed by means of bounded-time STL (bSTL)

formulas, and a tool to deal with such a class of formulas has been developed in [136].

Basically, the fragment bSTL constrains the interval I associated with modality U to

be finite, that is, I = [a, b], with both a and b belonging to N (b =∞ is excluded).

Let ϕ be a bSTL formula. By analyzing its syntactic structure, one can compute a

temporal horizon H(ϕ), that intuitively represents the maximum number of (future)

time points that one must take into consideration to establish whether or not ϕ is

true. In the following, when evaluating a bSTL formula ϕ, with temporal horizon
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H(ϕ), at a given time t, the monitor will wait until time t+H(ϕ) is reached, since

at that time all the data necessary for the quantitative evaluation of the formula

and the possible formulation of a ⊤ or ⊥ verdict have surely been observed. As an

example, the horizon of the bSTL formula ϕ = x ≥ 3 U[0,3] x ≥ 5 is 3, and thus only

after 3 time units we can complete its (quantitative) evaluation.

Formally, the temporal horizon H(ϕ) of a bSTL formula ϕ is defined as follows:

• H(⊤) = 0;

• H(xi ≥ c) = 0;

• H(¬ϕ) = H(ϕ);

• H(ϕ1 ∧ ϕ2) = max{H(ϕ1), H(ϕ2)};

• H(ϕ1 U[a,b]ϕ2) = b+max{H(ϕ1)− 1, H(ϕ2)}.

Notice that the monitor, when applied to a bSTL formula ϕ, may output the truth

values ⊤ or ⊥, as well as the undefined verdict ? when the horizon of ϕ still has to

be reached. As previously mentioned, a ⊤ or ⊥ can always be reached when the

horizon is met.

Formally, bSTL monitoring is defined by the function b-mon : X̄ × bSTL →
{⊤,⊥, ?} such that b-mon(x, φ) returns ⊤ if mon(x, φ) returns ⊤ and len(x) ≥
H(φ) + 1; ⊥ if mon(x, φ) returns ⊥ and len(x) ≥ H(φ) + 1; ? otherwise.

Now, we observe that, by the definition of monitoring and the nature of bSTL for-

mulas, monitors evaluate bSTL formulas only based on prefixes of signals of bounded

length, the bound depending on the temporal horizon of the formulas. As an ex-

ample, formula φ = F[0,3] temperature ≥ 3 states that there must exist at least

one time point where temperature ≥ 3 among the first 4 (i.e., H(φ) + 1) time

points of the signal, that is, in the set of time points {0, 1, 2, 3}. This limits the

applicability of monitoring in real-world scenarios where one is interested in detect-

ing the possible occurrence of a given condition at any time point of a signal. This

is the case, for instance, with the property: “in 25 time units from now the tem-

perature will exceed 30 degrees”. To accommodate for that, we extend the notion

of monitoring by making it possible to apply it to any time point, that is, to any

suffix of a signal. To this end, building upon function b-mon, we define function

eb-mon : X̄ × bSTL→ {⊤,⊥, ?} such that:

eb-mon(x, φ)=











? if len(x) < H(φ) + 1
∨

0≤i≤len(x)−1−H(ϕ)
b-mon(x[i, len(x)− 1], φ)

otherwise



5.3. The evolutionary algorithm 89

0 1 2 3 4 5 6

4 4 3 1 1 12

time

temperature

Figure 5.1: eb-mon run on a partial signal x. The execution of b-mon over all the

suffixes of x longer than the horizon is also reported.

We are interested in identifying signals exhibiting bad behaviors, which are en-

coded by means of bSTL properties. As noted before, a conclusive verdict can be

issued for a signal only if it is longer than the horizon of the bSTL property under

consideration. Therefore, given a partial signal x and a bSTL property φ, function

eb-mon(x, φ) returns ? whenever x is no longer than the horizon of φ. Otherwise,

we monitor (through b-mon) φ against all suffixes y of x longer H(φ): if at least one

such monitoring procedures returns ⊤, then so does eb-mon(x, φ), meaning that the

signal is considered a bad-behaving one (see Figure 5.1).

The monitoring tool we used to realize the above-described approach is rtamt,

a Python library for monitoring discrete- and dense-time bSTL properties [136].

5.3 The evolutionary algorithm

As explained in Section 2.4, evolutionary algorithms (EAs) are population-based

metaheuristics inspired by the process of biological evolution and genetics, that

excel in the solution of combinatorial optimization problems.

In this study, we deal with a specific kind of optimization task, that is, genetic

programming. As already discussed in Section 2.4.1, such a technique evolves pro-

grams starting from a population of random solutions. Each individual is encoded

by means of a computation tree, where each leaf represents an input value (either a

variable or a constant) and internal nodes encode operators.

As we will see, our proposed solution relies on a multi-objective evolutionary

algorithm for the property extraction task. Such an EA is able to simultaneously

follow different optimization goals, producing a set of Pareto-optimal solutions as a

result which could be subsequently combined. Furthermore, it is a flexible approach,
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as it allows one to customize the syntax of the generated formulas by constraining

the computation trees, e.g., enabling/disabling specific operators or allowing only

some kinds of combinations among them.

The evolutionary algorithm we are going to exploit relies on DEAP (Distributed

Evolutionary Algorithms in Python) [61], a framework that provides practical tools

for the prototyping of custom evolutionary algorithms. In this section, we will

illustrate how the different components of the optimizer have been developed.

The algorithm receives a set of finite traces X (all of the same length) as input,

then, it partitions each trace into a normal behavior prefix and a failure behavior

suffix, and, finally, it generates a bSTL formula which is able of discerning between

the two cases.

5.3.1 Population and its initialization

Each individual belonging to the population consists of a pair (φ,w), where φ en-

codes a computation tree representing a syntactically correct bSTL formula and w

is its associated normal behavior window length.

As for φ, it is generated following DEAP’s genHalfAndHalf method, which out-

puts a random tree with a maximum height of 6, as suggested by Koza in his seminal

work [98]. More precisely, half the time a tree whose leaves have all the same depth

is returned; in the remaining cases, different leaves may have different depths.

The window length w is used to partition each trace x ∈ X into a normal behavior

prefix of length w and failure suffix of length len(x) − w (see the definition of the

fitness function below). Note that, in the generation process of the individual, a

formula φ with a horizon H(φ) ≥ len(x)−w might be obtained. In such a case, the

individual is discarded and another one is generated. The process is iterated until

a valid individual is obtained.

5.3.2 Nodes of the computation tree

A node of the computation tree may represent a constraint, e.g., xi ≥ c, a bSTL

formula whose outermost operator is a temporal one, e.g., φU[a,b]ψ, or a Boolean

formula like, for instance, φ ∨ ψ, where φ and ψ are bSTL sub-formulas which are

represented, in their turn, as trees. A node may also encode the following terminal

values: (i) interval bounds of a temporal operator, i.e., [a, b], with a, b ∈ N and

a ≤ b, (ii) signal identifiers xi, with 1 ≤ i ≤ |x|, and (iii) constants c occurring in

formulas, with c ∈ Dom(xi) for some i. All these terminals are implemented by

means of DEAP’s EphemeralConstants. As for the length of the normal behavior

window, it is implemented as an EphemeralConstant w, with 0 < w < len(x), where



5.3. The evolutionary algorithm 91

len(x) is the length of the traces x ∈ X (they are all of the same length).

5.3.3 Fitness function

In order to evaluate an individual of the population, each trace x ∈ X is logically

partitioned into a good behavior prefix x[0, w−1] and a failure suffix x[w, len(x)−1],
following a windowing approach which takes w as the length of the normal behavior

window. A bi-objective fitness function is then defined by making use of the rtamt

monitoring algorithm for bSTL.

Formally, the first objective measures how good a formula φ is in discriminating

between the normal behavior prefixes and the failure suffixes. For each trace x and

each formula φ, let us define the numerical counterpart of eb-mon(x, φ) as follows:

NUM(eb-mon(x, φ))=

{

1 if eb-mon(x, φ) = ⊤,
0 otherwise.

The first objective measure is defined as follows:

Acc(X ,φ) =
∑

x∈X

1−NUM(eb-mon(x[0, w − 1 +H(φ)], φ))

+
∑

x∈X

NUM(eb-mon(x[w, len(x)− 1], φ))

2 · |X | ,

It is worth noticing that, to maximize Acc(X , φ), a formula φ should evaluate to ⊥
on the normal behavior prefixes and to ⊤ on the failure suffixes. In this respect, it

is very important to be able to evaluate a formula φ to ⊤ or ⊥ till the last instant of

the good behavior prefix of a trace x. To this end, we simply extend the prefix with

the first H(φ) points taken from the failure suffix. Intuitively, the reason is that,

otherwise, there may be some failure patterns beginning on the prefix and ending

on the suffix, that would not be captured (? verdict).

The second objective measures the robustness of the formula (normalized in the

[0, 1] interval) by means of bSTL quantitative semantics. As a preliminary step,

at the beginning of the execution of the genetic algorithm, every signal in X is

normalized in the [0, 1] interval so that ρ ranges between −1 and 1. This step is

handled implicitly and it does not alter the constant value c of constraints xi ≥ c

in the generated output formula, which are still represented with their raw, non-

normalized value.

This second objective is defined as follows:
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Rob(X , φ) =
2 · |X | − ∑

x∈X

max
0≤i≤w−1

{ρ(φ, x, i)}

+
∑

x∈X

min
w≤i≤len(x)−1−H(φ)

{ρ(φ, x, i)}

4 · |X | .

Since two objectives are taken into consideration, no single best-performing so-

lution can be directly selected from a given population by means of the fitness

function. Rather, a Pareto front of optimal solutions can be identified, containing

all non-dominated solutions.2

As a final note, observe that including the window length w in each individual

allows each bSTL formula to define its own (optimal) way of splitting the traces: we

may indeed expect different kinds of failure, captured by different formulas, to be

characterized by different temporal extensions.

5.3.4 Crossover

Given two parent solutions, the crossover operation generates two new individuals.

As for their computation trees, they are generated by one-point crossover (DEAP’s

cxOnePoint). The operator randomly chooses a node in each individual and ex-

changes the subtrees rooted at it. To avoid bloat, that is, an excessive increase

in mean program size without a corresponding improvement in fitness, we placed

a static limit of 17 on the children’s height (DEAP’s staticLimit), following once

more a suggestion from Koza [98]. When an invalid (over the height limit) child is

generated, it is simply replaced by one of its parents, randomly selected. As for the

associated window lengths, they are randomly chosen from the parents. Observe

that, in performing the crossover operation, non-valid individuals can be generated

concerning the relationship between their horizon and normal behavior window w;

given an individual with formula φ, if H(φ) ≥ len(x) − w, we replace it by one of

the parents, randomly chosen.

5.3.5 Mutation

As for the mutation operation, two operators have been used among those available

in DEAP, each one chosen with uniform probability: mutNodeReplacement, that

2A set S of solutions for an n-objective problem with fitness function f = ⟨fi, . . . , fn⟩ is said to

be non-dominated if and only if for each x ∈ S, there exists no y ∈ S such that (i) fi (y) improves

fi (x) for some i, with 1 ≤ i ≤ n, and (ii) for all j, with 1 ≤ j ≤ n and j ̸= i, fj (x) does not

improve fj (y).
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replaces a randomly chosen node in the individual, and mutEphemeral, that changes

the value of a single constant used within an individual (including, possibly, the

window length). As we did for crossover, in order to control bloat we impose a

staticLimit constraint equal to 17 to the height of the tree. Moreover, it must be

checked whether the resulting individual is valid, with reference to its horizon and

window length. If this is not the case, the original individual is returned.

5.3.6 Selection

To promote population diversity, we rely on the elitist selection strategy imple-

mented in NSGA-III [50], based on the concepts of reference points and niche preser-

vation (we refer the reader to [50] for details).

5.3.7 Termination criteria and extraction of final solutions

Let us now focus on the termination criteria of the algorithm and on the extraction

of the final solution. As it is commonly done, we impose an upper bound on the

number of generations. In addition, we define an early stopping strategy, based on

the hypervolume measure. According to it, the execution of the algorithm is inter-

rupted when no improvement over the hypervolume is observed for a given number

of generations. Intuitively, the hypervolume of a Pareto front measures the volume

of the search space, bounded by a given reference point, that is weakly dominated

by the points on the Pareto front [33]. The assumption is that populations of het-

erogeneous and well-performing solutions are characterized by a high hypervolume.

Since the EA provides a Pareto front of optimal individuals (φ,w) as its result,

to determine the final solution to output we first filter the last population’s front

keeping all individuals whose formula φ has an accuracy greater than 0.5, that is,

better than a random classifier. Then, among such individuals, we return the formula

φ of the individual with the highest hypervolume. If no formula with accuracy

greater than 0.5 is present in the final front, we return null.

5.3.8 Other hyperparameters

The other hyperparameters used by the EA have been established a-priori through

grid search tuning performed over a specifically developed synthetic dataset of binary

labelled bSTL traces, with the two classes characterized by a heterogeneous set of for-

mulas. They are as follows: population size = 100 (tested values [50, 100, 500, 1000]);

crossover probability = 0.7 (tested values [0.5, 0.6, 0.7, 0.8]); mutation probability =

0.5/ 2
√
num gen (tested values [0.3, 0.4, 0.5, 0.6]); max generations = 500 (a rather
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conservative upper bound); hypervolume early stopping = 25 generations (tested

values [10, 25, 50]). Note that mutation probability starts rather high to ensure an

effective exploration of the search space; then, it rapidly decays with the number

of generations to foster the exploitation of the most promising solutions that have

been found. Although we recognize that, in principle, each dataset has a different

and optimal set of hyperparameters, as we will see, the above values still provide

a solid basis when it comes to the overall framework performance, and can thus be

considered default choices.

Another hyperparameter, used by the EA in this specific implementation, based

on bSTL and rtamt, is max horizon, whose meaning is fairly natural. Intuitively,

it sets an upper bound on the horizon of the formulas that can be explored within

the EA. Enforcing a max horizon h has three effects: first, formulas can capture

phenomena that are temporally extended at most h+1 time points (in terms of the

sampling rate of the considered time series); second, given the way rtamt (equiv-

alently, eb-mon) works, at run time, when evaluating the truth of a formula, the

verdict will be ? for the first h time points; third, it has been experimentally ob-

served that the execution time of rtamt grows more than linearly with the size of

the horizon of a formula. As we will see in Section 5.5, multiple runs of the frame-

work have been taken into consideration in order to collect statistically relevant

data. Thus, to allow for faster experimentation, we set a small value of 20 for max

horizon on all datasets. Although this might seem restrictive, it still allows us to

extract meaningful and well-performing properties. In a general usage scenario, max

horizon should be set by domain experts considering the previously mentioned three

aspects. The impact of the horizon length on the framework performance is studied

in Section 5.5.3.

5.4 The general framework

In the following, we describe the proposed framework for preemptive failure detec-

tion. As already pointed out, it works in an online fashion and it uses the rtamt

monitoring algorithm to check the incoming system trace for undesired behaviors.

As we will see, in terms of binary classification, the occurrence of a bad behavior is

considered as a positive event. Thus, a false positive corresponds to an erroneous in-

dication of a bad situation, while a false negative corresponds to a missed detection.

Bad behaviors are encoded by bSTL formulas, which are collected in a monitoring

pool P .
Operationally, we distinguish between two distinct execution phases of the frame-

work: an optional warmup phase and a runtime phase. In the first one, the pool
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P is populated with an initial set of formulas encoding bad behaviors, following a

teacher forcing-like approach [184] on supervised training data. In the second one,

the framework online monitors the system, starting with a non-empty pool P .

Algorithm 2: Framework execution (warmup phase)

input: initial pool P of formulas, training dataset X
1: for (x, l) ∈ X do

2: has triggered← ⊥
3: S ← ∅
4: for i← 0 to len(x)− 1 do

5: y ← x[0, i]

6: F ← {ψ ∈ P \ S | eb-mon(y, ψ) returns ⊤}
7: if F ̸= ∅ then
8: updatePoolInformation(P \ S,F , y)
9: if l then

10: has triggered← ⊤
11: Y ← generateTrainData(y)

12: ϕ ← extractDiscrFormula(Y)
13: if ϕ ̸= null then

14: farϕ ← 0

15: P ← P ∪ {ϕ}
16: end if

17: break

18: else

19: S ← S ∪ F
20: end if

21: end if

22: end for

23: if l and not has triggered then

24: Y ← generateTrainData(x)

25: ϕ ← extractDiscrFormula(Y)
26: if ϕ ̸= null then

27: farϕ ← 0

28: P ← P ∪ {ϕ}
29: end if

30: end if

31: end for

32: return P
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Algorithm 3: updatePoolInformation

input: pool P of formulas, set F of failure formulas, trace x

1: for ϕ ∈ F do

2: farϕ ← (1− α)· newFAR(ϕ, x) + α · farϕ
3: if farϕ > farthr then

4: remove(ϕ,P)
5: end if

6: end for

7: handleRedundancy(P)

During both phases, P is iteratively refined by (i) adding new formulas which

are able to predict bad behaviors earlier and with increased reliability and coverage,

and (ii) removing formulas that are ill-behaved or redundant. In addition to this

refinement process autonomously operated by the framework, at any time, domain

experts can, in principle, make changes to the pool P , e.g., by manually specifying

a new formula encoding a bad behavior.3

5.4.1 Warmup execution phase

In the warmup phase, we assume that a supervised learning training dataset X is

available, consisting of pairs (x, l), where x represents a system execution trace of

length len(x), and l is its corresponding label (⊤, if x is a trace ending with a failure;

⊥ otherwise). The overall idea is to monitor, one after the other, all available system

traces and, for each of them, to simulate its point-by-point arrival.

The warmup phase is dealt with by Algorithm 2. The procedure gets, as input,

a pool P of bSTL formulas and the set X of training system traces. P may possibly

be empty. This is the case when no formula is inserted into it by domain experts.

For each training trace x, with label l, two variables are set: has triggered, which

keeps track of whether the framework has correctly identified the trace x as a failure

one (when l = ⊤); and a set S of suspended formulas. S includes all formulas that,

at some point, erroneously signalled a bad behavior in x (when l = ⊥), and are thus

ignored by the framework for its operation on the remainder of trace x.

Next, the framework starts the iterative part of its execution, during which

the trace x is monitored sequentially, point-by-point. At each iteration i, with

0 ≤ i ≤ len(x) − 1, the system restricts its attention to the prefix y = x[0, i] of

trace x, and it computes the set F of formulas leading to a violation (Algorithm 2,

3It is worth noticing that this manual specification can complement the warmup phase when

limited supervised training data regarding the system are available.
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line 6). To this end, it executes the monitoring algorithm rtamt that verifies each

(non-suspended) formula in P \ S against the current trace y. Since all formulas

are meant to encode bad behaviors, we say that a formula ψ leads to a violation if

eb-mon(y, ψ) returns ⊤ (eb-mon is defined in Section 5.2).

If at least one violation is detected, procedure updatePoolInformation is

executed (Algorithm 3) to detect and remove redundant or non-reliable formulas

from the pool, the latter being formulas issuing several false positives. The procedure

will be described in detail later.

Then, if x is an actual failure trace, P is updated (Algorithm 2, lines 10–17) as

follows. Training data to be used for the extraction of a new formula are generated

by the function generateTrainData (Algorithm 2, line 11). The latter perturbs

the execution trace y by adding random Gaussian noise as a counter-overfitting mea-

sure, thus producing a set of augmented traces Y of size naug (global parameter of

the system). Next, function extractDiscrFormula (Algorithm 2, line 12) ex-

tracts a (bSTL) formula ϕ that discriminates between normal and failure (sub)traces

obtained from those in Y , by exploiting the evolutionary algorithm as described in

Section 5.3. Notice that ϕ may be null, an event that, according to the proposed

definition of EA, occurs if none of the formulas in the final front has an accuracy

greater than 0.5. If ϕ is not null, the initial false alarm rate (FAR) of ϕ is set to

0, and the formula is added to P (Algorithm 2, lines 13–16).4 At this point, since

the trace x was recognized as a failure one by the framework, the execution on x is

halted (Algorithm 2, line 17), and the framework is applied to the next trace in X .
On the contrary, if the framework detected a violation and trace x was not a

failure one, all involved formulas f ∈ F are suspended, meaning that they are not

going to be considered by the framework for its execution on the remainder of trace

x (Algorithm 2, line 19). This prevents them from repeatedly triggering the extrac-

tion of other ill-behaved formulas. Note how formulas in F are not immediately

removed from P , as such an approach would be too aggressive: their false positive

detection might not be a generalized behavior, but something caused by random

characteristics of trace x itself. As we will see, false positive detections are still con-

sidered by the procedure updatePoolInformation for the maintenance of the

pool P . Suspended formulas are reactivated when the next training trace is taken

into account by the framework.

The iterative phase of the framework on trace x ends when either x is correctly

recognized as a failure trace by a formula in P , or x has run out of points without

4The False Alarm Rate (FAR) is expressed as the ratio between the number of negative events

wrongly categorized as positive (false positives) and the total number of actual negative events

(false positives + true negatives). Recall that, in our setting, a positive event represents a failure

of the monitored system. Formulas with a low FAR are to be preferred.
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any failure detection. In the latter case, if trace x was a failure one, we force the

formula extraction process (Algorithm 2, lines 23–30). As the last operation of the

framework (Algorithm 2, line 32), after being run on every training system trace,

the obtained monitoring pool P is returned.

We would like to conclude this account of the operation of Algorithm 2 by ob-

serving that the warmup mode draws inspiration from the teacher forcing technique

employed in deep learning [184]. Such an approach is used here to correct both

false positive (Algorithm 2, line 9) and false negative (Algorithm 2, line 19 and line

23) framework predictions. For instance, as we already pointed out, the framework

starts its execution with a possibly empty pool P of properties. Thus, in the most

extreme case (P = ∅), it cannot identify any bad behaviors of the system. In such

a case, the failure is “detected” by observing the training label associated with the

training execution trace, an event that forcedly triggers the pool update process.

Intuitively, the whole scenario can be thought of as having an oracle assisting and

instructing the framework. It is to be expected that, over time, the pool P becomes

large enough so as to allow for the effective detection of bad behaviors of the system,

progressively substituting the oracle in its role of correcting false positive and false

negative predictions.

Let us focus now on the procedure updatePoolInformation(P ,F , x) (Al-

gorithm 3). Operationally, for each formula ϕ ∈ F that leads to a violation, the

corresponding FAR farϕ ∈ [0, 1] is updated. Formulas whose FAR crosses a given

threshold farthr (a global parameter of the framework) are removed from the mon-

itoring pool (Algorithm 3, lines 3–4). As already pointed out, a FAR equal to 0 is

associated with every formula when added to P . Then, the value of FAR is suitably

updated according to the exponential moving average with smoothing constant α,

which takes into account the “historical” FAR and the new FAR of the formula (Al-

gorithm 3, line 2); the latter is considered to be 0 if the triggered formula actually

anticipated a failure, 1 otherwise (false positive case). In the absence of detailed

historical data, assigning an initial FAR equal to 0 to the formulas in the pool is a

sensible choice, as they are either defined by a domain expert or generated by the

evolutionary algorithm, which in turn optimizes accuracy and robustness measures.

The choice of relying on FAR for the pool maintenance instead of on other

“symmetric” performance metrics, say F1-score, is twofold. First, formulas providing

several false detections may cause a degradation of the monitoring pool, where other

ill-founded formulas are added as a result of their triggering. Thus, they should be

avoided at all costs. On the contrary, formulas leading to false negatives do not bring

any adverse effect on the monitoring pool, except for increasing its size. The second

reason pertains to the very nature of F1-score and similar metrics. To calculate it,
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it is necessary to establish when a formula experiences both false positives and false

negatives. False positives, that is, false detections of bad behaviors, can be easily

recognized: if a formula triggers and the forecasted bad event does not occur, that

can be unequivocally considered as a false positive. The detection of false negatives

is, instead, more subtle, and not well-defined. Indeed, it is perfectly admissible for

the system to encounter a total failure not anticipated by any formula in the pool,

since they may correctly model completely different failure scenarios. In that case,

formulas should not be penalized for the missed detection.

Finally, procedure handleRedundancy(P) (Algorithm 3, line 7) removes re-

dundant formulas, i.e., it detects groups of formulas with similar behavior and keeps

a single representative for the entire group (the formula with the lowest FAR or the

newest one, if the FAR is the same). To detect the similarity of two formulas, we

rely on the Jaccard/Tanimoto test [45] that compares the histories of failures flagged

by the formulas along the framework execution.

As a last remark, note how procedure updatePoolInformation, in the way

it is used by Algorithm 2, allows us to continuously update the monitoring pool P
as the training instances are processed, ensuring its quality.

Algorithm 4: Framework execution (runtime phase)

input: initial non-empty pool P of formulas, non-empty set G of good

behavior training traces, incoming system trace x

1: while true do

2: F ← {ψ ∈ P | eb-mon(x, ψ) returns ⊤}
3: if F ̸= ∅ then
4: handleRedundancy(P)
5: X ← generateTrainData(x)

6: ϕ ← extractDiscrFormula(X )
7: if ϕ ̸= null then

8: farϕ ← FAR(G, ϕ)
9: if farϕ ≤ farthr then

10: P ← P ∪ {ϕ}
11: end if

12: end if

13: end if

14: end while
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Figure 5.2: A simplified example of the framework operation. Good and failure

behavior subtraces are represented in green and red, respectively.

5.4.2 Runtime execution phase

Let us now concentrate on the runtime phase of the framework which is implemented

by Algorithm 4. Here, the framework is used to continuously monitor an incoming

trace x, generated by a system during its execution. Other than the trace, the

procedure gets in input a pool P of properties, that can be assumed to be non-empty,

either because it is returned by Algorithm 2 or hand-filled by domain experts. In

addition, it takes into consideration a non-empty set G of past good execution traces

of the system. The latter can be either extracted from the training warmup data, if

available, or derived directly from the execution history of the system, restricting to

those portions that are sufficiently far from failure events, following the suggestions

of domain experts.

Algorithm 4 behaves as follows. At each time step, the set F of formulas leading

to a violation is computed (Algorithm 4, line 2) by executing the monitoring algo-

rithm rtamt, which checks each formula in P against the incoming system trace x.

If at least one formula is triggered, P is updated (Algorithm 4, lines 3–13). First,

procedure handleRedundancy is called, to identify and remove from the pool

P possible redundant formulas, exactly in the same way as in the warmup phase.

Next, training data to be used for the extraction of a new formula are generated

by the function generateTrainData(x). Finally, function extractDiscrFor-

mula(X ) extracts a bSTL formula ϕ that discriminates between normal and failure

(sub)traces by using the EA. If the formula ϕ generated by the EA is not null, its

FAR is computed with respect to the reference set of good traces G and, if such a

value is less than or equal to the threshold farthr, the formula is added to the pool

P .
As it can be noticed, the main differences between the warmup and runtime

phases are that, in the latter, there is no teacher forcing, and thus the entire failure

detection task is carried out by means of monitoring; moreover, the FAR of a formula

is established only once by considering all traces in the reference set G, being the

latter fixed.
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As a final remark, note that Algorithm 4 (runtime) can, in principle, be run

independently from Algorithm 2 (warmup), if there is at least one property in P
and a set of good traces G of the considered system is available. This allows one to

use the framework in a runtime setting even in the absence of supervised training

data, as long as at least one failure property has been provided by domain experts

and some (portions of) unlabeled past execution traces of the system, that express

good/normal behaviors, are accessible.

An intuitive account of the operation of the framework is depicted in Figure

5.2. The framework is first attached to a trace x generated by the system for its

runtime monitoring, with a pool P containing just the formula ϕ = F[7,9]y < 3 (left

picture). Function eb-mon(x, ϕ) is run against the incoming trace and, specifically,

b-mon(x[0, 9], ϕ) identifies a failure occurring at time point 7. This leads to the

extraction of a new formula. To this end, trace x[0, 7] is augmented, and then the

EA is run on the set of resulting traces. In the middle picture, just for illustrative

purposes, an exemplary splitting of the augmented traces based on a window length

w = 4 is reported. Each trace is partitioned into a good behavior prefix and a failure

suffix. For formula evaluation purposes, in the EA each subtrace is considered as to

be starting from index 0. As a result, the formula ψ = F[0,2]y < 5, which is able to

distinguish between the augmented prefixes and suffixes, is generated and added to

the pool P . Finally, a subsequent part of the operation of the framework is described

(right picture) Here, the recently discovered formula ψ identifies a failure occurring

at time point 53 (b-mon(x[51, 53], ψ) = ⊤). Without such a formula, ϕ would have

detected a violation only with respect to time point 58.

For the sake of convenience, all the global parameters of the framework are listed

in Table 5.1, with an intuitive account and a short description of their expected

behavior.

5.5 Experimental evaluation

In this section, we give a detailed account of the experimental evaluation of the

framework on 3 public datasets. In addition, we make a comparison with previous

results from the literature. First, we introduce the datasets; then, we describe the

experimental workflow; finally, the obtained results are portrayed. We pay particular

attention to interpretability issues.
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Table 5.1: Global parameters of the monitoring framework.

Description Value Search range Expected behavior

α smoothing

constant

for formu-

las FAR

update

0.9 {0.7, 0.8, 0.9} A lower value gives greater

weight to new scores. Such a be-

havior is preferred, for instance,

in the event of a system under-

going rapid changes.

farthr maximum

allowed

FAR for

formulas

in the pool

0.2 {0.1, 0.2, 0.3} A low value leads to more reli-

able formulas being kept in the

monitoring pool. Still, in the

presence of noise/outliers in the

monitored traces, it may cause a

formula to be inadvertently re-

moved from the pool. There, a

higher value should be consid-

ered.

naug number of

augmen-

tations

for each

failure

trace

100 {50, 100, 150} A large value should help avoid

overfitting; however, it also in-

creases the computational bur-

den of the formula extraction

phase.

5.5.1 Datasets

We considered the datasets Backblaze Hard Drive5, Tennessee Eastman Process6,

and NASA C-MAPSS7.

The Backblaze Hard Drive dataset (also referred to as SMART dataset hereafter)

contains continuously updated information on the “health” status of hard drives

in the Backblaze data center. Here, we focus on Self Monitoring Analysis and

Reporting Technology (SMART) attributes of the ST4000DM000 hard drive model

recorded daily from 2015 to 2017. Each trace is described by the following features:

the date of the report, the serial number of the drive, a label indicating a drive

failure and 21 SMART parameters with both discrete and real values. To compare

5https://www.backblaze.com/b2/hard-drive-test-data.html
6https://doi.org/10.7910/DVN/6C3JR1
7https://data.nasa.gov/dataset/C-MAPSS-Aircraft-Engine-Simulator-Data/

xaut-bemq
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Figure 5.3: Trace length distributions.
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the framework with the literature, two training/test set splits are considered:

• Split S1: training set from October to November 2016 with 0.68% failure

traces, test set December 2016 with 0.64% failure traces. The total number of

traces is 34970, and their length distributions are depicted in Figure 5.3;

• Split S2: training set from January 2015 to December 2016 with 0.71% failure

traces, test set January to December 2017 with 0.66% failure traces. The total

number of traces is 36242, and their length distributions are depicted in Figure

5.3;

The Tennessee Eastman Process (TEP) dataset contains simulated data from a

fictitious chemical plant. This dataset includes 1000 training and 1000 test traces

labelled with Type 0 (normal behavior) or Type 1 (faulty behavior) sampled every

3 minutes. Each training trace lasts for 25 hours, whereas test traces last for 48

hours. There are 500 faulty traces in both sets. Each simulation is represented by

a multivariate time series with the following features: trace ID, fault type, and 52

variables tracking data about the operating values of plant components.

TheNASA Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)

dataset includes run-to-failure simulated data of turbofan jet engines. Specifically,

in the considered dataset FD001, engines are simulated according to a single oper-

ating condition (called Sea level) and their failures are attributable to one possible

cause (HPC degradation). Each engine simulation is represented by a multivariate

time series obtained from 21 engine sensors. Although each trace represents the

simulation of a different engine, the data can be considered to be from a fleet of

engines of the same type. Data are sampled at one value per second, and the trace

length distributions are depicted in Figure 5.3. The dataset includes 100 training

traces, each ending with a failure, and 100 test traces, each ending an arbitrary and

known number of time steps before the failure (gap). In order to compare our frame-

work with the literature [93], failure traces are generated by considering the 30%

suffix of each engine observation as faulty, and the remaining 70% prefix as normal

behavior. Thus, this leads to 200 training traces. On the other hand, 43 failure and

100 normal behavior traces are generated for the test set. The reason is that, given

a test set trace, the 30% suffix is computed over the trace length including the gap

and, thus, it may result to be empty.

5.5.2 Experiment setup

For each dataset, we performed the initial warmup phase by running Algorithm 2 on

a sample of training execution traces related to both malfunctions (failure traces)
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and good executions. The traces were considered by the framework one after the

other, according to a random ordering.

Once the warmup phase ended, the framework was evaluated on test set traces

(Algorithm 4) in two modes: the online mode, where the framework continues

to learn new properties from the execution traces, and the offline mode, where

the properties in the monitoring pool are not updated, so that only the properties

learnt in the warmup phase are taken into account when predicting failures on test

set traces. This latter mode was useful to compare the proposed solution with

those from the literature, while the former let us determine how the values of the

considered metrics evolved over time. The two test set evaluation modes were carried

out on a random ordering of both good and failure traces.

The performance of the two test phases was evaluated in terms of precision (P),

recall (R), FAR, and F1-score (F1 ). Let TP be the number of true positives, that

is, bad behaviors identified as such, FP be the number of false positives, TN be the

number of true negatives, and FN be the number of false negatives. The metrics are

defined as follows:

P =
TP

TP + FP

,

R =
TP

TP + FN

,

FAR =
FP

FP + TN
,

F1 = 2 · P ·R
P +R

.

All experiments were run 10 times varying the random seed governing the order

in which execution traces are presented to the framework during the warmup and the

online test phases, so as to collect statistical data regarding the considered metrics.

5.5.3 Results

To begin with, the global parameters of the framework, chosen through grid search

optimization on training set data, are shown in Table 5.1. In the remainder of the

section, we will assess the framework performance in several respects. First, we will

present the results of the offline and the online evaluation, as described in Section

5.5.2. Then, we will focus on the impact of teacher forcing and formula max horizon.
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Table 5.2: Experimental results of the monitoring framework.

Dataset Approach Precision Recall FAR F1-score

SMART S1

[110] 0.87 0.41 0.00 0.55

[82] 0.51 0.54 0.00 0.52

our 0.54 0.60 0.00 0.56

SMART S2

[110] 0.98 0.87 0.01 0.92

[173] 0.91 0.94 0.05 0.93

our 0.89 0.97 0.00 0.93

TEP

[74] 1.00 1.00 − 1.00

[139] 1.00 1.00 0.00 1.00

our 1.00 1.00 0.00 1.00

C-MAPSS
[93] 0.71 1.00 − 0.83

our 0.96 0.77 0.01 0.86

Note: the results of [82], [173], [74], [139], and [93] are listed as reported in

the original references; those of [110] have been determined by the authors of this

work running the code made available in the original publication on the considered

datasets. Numbers are rounded to two decimal places.

Offline evaluation

As for the offline evaluation mode, we compared the proposed solution with other

state-of-the-art approaches to failure detection on the three previously-described

datasets. Given the continuously updating nature of the Backblaze dataset, we

focused our analysis on two studies that take into account the specific versions we

consider, namely, those reported in [82] and [173]. The first one [82] makes use of a

feed-forward neural network model on split S1, while the second one [173] evaluates

a Long-Short Term Memory (LSTM) recurrent neural network on split S2. In

addition, we took into account a third proposal [110], that is, a model obtained by

combining a convolutional neural network (CNN) and an LSTM recurrent neural

network, applying it to both S1 and S2 splits, following the setup outlined by the

authors for the SMART features group. As for the case of fault detection on the TEP

dataset, we considered an approach based on image processing techniques along with

feed-forward and radial basis function neural networks [74], and a solution based on

a nonlinear support vector machine [139]. Finally, as for the C-MAPSS case study,

we compared our framework with a solution based on a CNN model presented in

[93].

Results achieved by the above solutions are reported in Table 5.2, together with
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those of the proposed framework (label our). In terms of F1-score, our solution

exhibits an average performance on par with the considered state-of-the-art ones.

This is even more relevant if we also bear in mind that all the contenders provide

no explanation for the predicted failures. On the contrary, a distinguishing feature

of the proposed approach, compared to previous ones, is that it is interpretable:

it relies on the extraction of properties expressed as temporal logic formulas, that

provide an understandable explanation of the undesired behaviors of the system.

Moreover, they can be subsequently exploited for tasks such as root cause analysis,

diagnosis, and preemptive failure detection.

Online evaluation

As for the online evaluation mode, results for the SMART, TEP, and C-MAPSS

datasets are shown in Figure 5.4. Note that, as the number of traces seen by the

framework increases, a slight but consistent improvement of the metrics occurs.

This is not obvious, since in such a case maintaining a good performance requires

the ability to discover new properties able to reflect the evolution of the behavior of

the monitored system over time.

Figure 5.5 illustrates, for each considered dataset, the average number of formulas

in the monitoring pool at each warmup and runtime iteration. Note that, at certain

iterations, there is a decrease in the pool size. This happens when formulas are

removed because they are redundant.

As an example of removal from the pool, we present the case in which two

properties, F[30,45]SENSOR11 < 49.60 and F[36,41]SENSOR11 < 49.77 ∧ F[45,52]

SENSOR11 < 49.39, were extracted in a framework execution on the C-MAPSS

dataset. After a series of iterations, their failure detection histories were, respec-

tively, [1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1] and [1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1], while

the FAR values were 0.07 and 0.0. Since both properties were considered to be redun-

dant according to the Jaccard/Tanimoto test, the framework kept only the second

one, by reason of its lower FAR. From a domain perspective, the two formulas refer

to a similar behavior of the same sensor (SENSOR11) which indicates a loss of

static pressure in the high-pressure compressor outlet.

Let us now consider some examples of the bSTL formulas used within the frame-

work. An example for the Backblaze dataset is formula (G[0,2]SMART194>45.6) ∧
(F[2,3]SMART198>0.32). Such a formula makes evident a bad behavior where the

hard drive maintains a temperature exceeding 45.6 °C in the first 3 days, and then,

in the following 2 days, its uncorrectable sector count becomes greater than 0. As an-

other example of framework execution, consider the formula f1 = F[0,19]SMART198 >

2.59, extracted (and added to the monitoring pool) during an iteration of the frame-
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Figure 5.4: Metrics average and standard deviation for the considered datasets. The

vertical dashed line represents the transition from warmup to online traces.
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Figure 5.5: Average and standard deviation of the pool size for each framework

iteration in the case of the SMART S1, SMART S2, TEP, and C-MAPSS datasets,

in both warmup (transparent area) and runtime (opaque area) phases. The x-axis

is on a logarithmic scale.

work. According to the definitions of the SMART attributes, sensor SMART198 is

a critical one and f1 expresses the fact that the threshold 2.59 of sector read/write

errors is exceeded. During a later iteration of the warmup phase, a failure prediction

is issued thanks to the triggering of f1. As a consequence, f2 = F[1,16]SMART189 >

8.28 is extracted, meaning that a certain number (8.28) of unsafe fly height condi-

tions is reached before the critical number of sector read/write errors is exceeded.

This pattern is quite reasonable, as it describes a case in which the disk head is

operating at an unsafe height, ultimately damaging a disk sector and consequently

causing read and write errors. Notice that the framework allows us to predict a fail-

ure based on sensor SMART189, which is not considered to be critical in the SMART

specification, by uncovering a pattern linking it to the critical sensor SMART198.

Turning to the TEP dataset, an extracted formula is (G[1,4]XMEAS21 > 94.6)∧
(G[2,4]XMEAS20 > 341). It reveals a bad behavior where the compressor is operat-

ing with a power greater than 341 kW, while the temperature of the reactor of the

plant exceeds 94.6 °C.

As for the C-MAPSS dataset, the formula (SENSOR10 < 1.3)∧(F[4,6]SENSOR11

< 47.62) was generated, which signals a bad behavior where a loss of pressure in the

high-pressure compressor outlet follows a loss of pressure in the engine. Notice that

the subformula SENSOR10 < 1.3 does not contain any time operator, meaning

that it is evaluated at the currently observed time point.

Impact of teacher forcing

Figure 5.6 reports the number of teacher forcing interventions during the warmup

phase, as more and more false positives and negatives are encountered. Specifically,
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Figure 5.6: Teacher forcing interventions during the warmup phase. For each amount

of encountered failure traces, the sum over multiple (10) framework executions is

reported.
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Figure 5.7: Impact of maximum horizon value in test F1-score for different datasets.

for each amount of encountered failure traces, the sum over multiple (10) framework

executions is reported. As expected, teacher forcing triggers mainly at the beginning

of the warmup phase, when the monitoring pool is empty. As formulas are learned

over time, teacher forcing interventions decrease till a stationary behavior is reached.

Of course, the latter depends on the specific dataset, and it confirms what was to

be expected from the performance reported in Table 5.2. As an example, on the

TEP dataset, where an F1-score of 1.0 is achieved, the number of teacher forcing

interventions rapidly approaches 0.

Impact of max horizon

Figure 5.7 reports, for a single execution of the framework, the offline mode per-

formance on each dataset, as obtained by varying the max horizon value. Once

more, different datasets exhibit different behaviors. Although results might appear

rather counterintuitive (setting a large max horizon does not prevent, in principle,

the discovery of formulas with shorter horizons), following a preliminary analysis,

they are likely due to an overfitting effect. Indeed, formulas with a larger horizon

have the capability of capturing more detailed and extended phenomena, that could

be highly trace-dependent. Moreover, we would like to recall that the concept of

horizon does not apply to the framework in general, but is tied to the particular

kind of logic and monitoring tool employed here.

5.6 Discussion

The proposed framework relies on approaches originating from the two fields of ma-

chine learning and formal methods, combining their strengths in an effective way.

More precisely, the former domain provided us with tools and techniques for the
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extraction of properties from temporal data, while the latter allowed us to formalize

such properties by means of logic formulas and to online monitor a given system

against them in a principled manner. The key feature of the proposed approach

is its interpretability: as shown in Section 5.5.3, by means of the extracted logi-

cal formulas, the framework gives an understandable account of settings leading to

future failures, allowing domain experts to take appropriate action and enriching

their overall knowledge. While contributions from the literature show that inter-

pretability is often achieved at the expense of prediction accuracy, e.g., by relying

on a simple white-box model instead of a more complex black-box one, quantita-

tive results showed that the performance of the proposed approach is on par with

previous, non-interpretable solutions.

As a final note, while in this work we applied the proposed framework to the

domain of failure detection, similar ideas can in principle be employed to detect and

predict any type of event or anomaly, whether positive or negative in nature. Among

the first, we mention a spike in the history of sales of a retail store, or a generalized

increase in the grade point average of students enrolled in the latest edition of a

course; among the latter scenarios, the detection of seizures in hospitalized patients

based on their continuously recorded vital signs, or the identification of violations of

a level of service agreement in the context of a contract between a service provider

and a customer.

We would like to conclude this section by pointing out some limitations of the

framework. First, in the considered datasets, all traces come from the same plant

(resp. hard disk, jet engine model) operating under the same conditions. To deal

with more than one type of system, separated monitoring pools have to be employed

to prevent conflicts among formulas. Second, the considered datasets only deal

with numerical data. It is worth evaluating the proposed approach on datasets

encompassing categorical data, naturally leading to the usage of other logics like, for

instance, LTL. Third, Algorithm 4 operates in a sequential fashion: (i) the system is

monitored until a formula is satisfied by the incoming data; (ii) such an event triggers

the phase of the property extraction, that results in the addition of a new formula to

the pool; (iii) then, the monitoring of the system resumes. Although this behavior is

perfectly acceptable for a prototype implementation applied on benchmark datasets,

as the one described here, a multithreaded version, able to update the property pool

asynchronously, while monitoring the system, remains to be developed. Finally,

Algorithm 4 makes use of a fixed reference set of good behavior traces to prevent

formulas with a high FAR to be added to the monitoring pool. This is definitely a

reasonable approach, but it does not take into account changes in the behavior of

the monitored system, that may happen due to, for instance, updates, upgrades, or

degradation phenomena. To overcome this limitation, we may think of extracting
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new normal behavior traces from runtime data and adding them to the reference

set.





Conclusions

In this thesis, we addressed three main problems related to the employment of

sensor systems, namely sensor selection, virtual sensing of temperature in indoor

environments, and the design of a monitoring and machine learning framework for

early failure detection.

In the first part, we analyzed the problem of sensor selection and placement in

virtual sensing of temperature. We proposed and evaluated different methodologies

and solutions based on evolutionary algorithms and machine learning techniques.

Our results showed that the proposed models are able to achieve satisfactory perfor-

mance using a limited set of optimally placed predictor sensors in the environment.

These attained findings have been published in [28] that appeared in the open access

journal MDPI Sensors.

The second part of our work was dedicated to the development and evaluation

of different virtual sensing strategies for temperature prediction. We conducted a

comprehensive assessment of these strategies, including novel solutions based on

recurrent neural networks and graph neural networks, able to effectively exploit

spatio-temporal features. Our results showed that our proposed models are able to

accurately complete the information coming from real physical sensors, allowing us

to effectively carry out monitoring tasks such as anomaly or event detection. This

research activity led to the drafting and presentation of [26] to the 13th International

Workshop on Spatial and Spatiotemporal Data Mining (abbreviated SSTDM, in

cooperation with IEEE ICDM 2020). In this work, we analyze the performance of

various techniques, including simple average and inverse distance weighted average,

particle filters, linear regression, extreme gradient boosting regression, and long

short-term memory recurrent neural networks.

In the final part of our work, we proposed a monitoring and machine learning

framework for early failure detection. This framework extracts interpretable prop-

erties, expressed in a given temporal logic formalism (STL) from sensor data, and

leveraged monitoring techniques to detect critical behaviors of a system that could

lead to a failure. Our proposed framework was evaluated through an experimental

assessment performed on benchmark datasets, and then compared to previous ap-

proaches from the literature. In terms of contributions, the developed framework was

presented at the Workshop on Reasoning about ACtions and Events over Streams

(RACES), that has been held as part of KR 2020. Then, an experiment carried

out on the NASA C-MAPSS dataset containing run-to-failure execution traces of
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turbojet engines led to the submission of [25] to the 2nd Workshop on Artificial In-

telligence and formal VERification, Logic, Automata, and sYnthesis (OVERLAY) @

BOSK 2020. After a series of analysis, design, development, and evaluation cycles,

the final and extended version of the framework was thoroughly discussed in detail

through its publication [24] in the open access journal IEEE Access.

Looking ahead, there are still several open research directions in these areas. For

instance, for sensor selection and virtual sensing in indoor environments, we plan

to develop other models, such as temporal graph networks, to improve predictive

accuracy or perform tasks such as temperature trend simulation. In detail, this kind

of models is able to exploit historical data to learn the dynamics of the environment,

such as the rate of heat loss through walls or the amount of heat generated by a

stove. This information can then be used to make short- and long-term predictions

about the temperature in any part of the room. Providing physical simulations

with first-principle approaches is an expensive activity in terms of computational

resources and work required for the creation of numerical models related to different

considered environmental configurations. Although the usage of transductive graph

networks has proven effective in approximating such simulation data, as a future

research direction it could be profitable to deeply investigate the generalization ca-

pacity of such models for monitoring environments with different configurations. In

particular, focusing on an inductive learning approach able to provide a fair trade-off

between accuracy and generalizability. This last factor is of paramount importance,

considering that it would allow to reduce the amount of physical simulations needed

to train the models.

Finally, for the monitoring and machine learning framework, we plan to extend

our framework to other types of critical systems and evaluate its performance in

real-world scenarios. We also plan to investigate the use of reinforcement learning

techniques to improve the adaptability of our framework to changing system con-

ditions. Furthermore, given its modular and extensible nature, we plan to extend

our approach using other logical formalisms capable of expressing spatio-temporal

properties in order to exploit the information learned from graph networks such as

those studied in the case of virtual sensing of indoor environments. Another poten-

tial extension of this work involves conducting a more comprehensive investigation

into the integration of extracted logical formulas, their structure, and their interac-

tion with offline knowledge. This future research avenue aims to delve deeper into

the intricate relationships between logical formulas derived from the framework and

how they interface with existing knowledge. By examining the interplay between

these logical structures and offline information, we can gain valuable insights into

the broader applicability and generalizability of our findings, as well as potentially

uncover novel connections that further enhance the understanding and utilization
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of monitoring systems in different practical scenarios.

In conclusion, this thesis has contributed to the advancement of smart sensor

technology, by proposing novel solutions and methodologies. In today’s world, the

use of sensors has become ubiquitous, with various industries adopting smart sensing

technology to enhance their products and services. This technology involves the

integration of advanced sensors and data analytics techniques, which allow for real-

time monitoring, prediction, and diagnostic. The integration of the latter offers

various benefits, including increased efficiency, cost savings, improved accuracy and

safety. We hope that our work will inspire and guide further research in these areas,

ultimately leading to more accurate, efficient, and effective sensor-based systems.
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