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Introduction

The beginning is half of every work.

Greek proverb

Topology is the branch of mathematics that studies those properties of geometrical objects
that remain unaltered under continuous deformations, such as stretching or twisting. This already
tells us something very special about this field: it is not concerned with the particular details of a
certain object at a local level, but rather with non-local properties known as topological invariants
which cannot be changed unless we tear or glue different parts of the object.

Such ideas found an unexpected spin-off in condensed matter physics when the quantization
of the Hall resistance occurring in a two-dimensional electron gas subjected to a strong magnetic
field was discovered [1]. This phenomenon, part of the so-called integer quantum Hall effect,
is a consequence of time-reversal symmetry breaking, which leads to the nontrivial geometrical
properties of the quantum wavefunctions [2] associated to the resulting energy spectrum. This
is quantized in a set of Landau levels [3], each characterized by a topological invariant known as
Chern number whose value cannot be changed unless the gaps separating the levels are closed.
Another remarkable consequence of the topological invariant character of the Chern number is the
existence of topological insulators [4]. These materials feature fully-occupied energy bands with
non-zero Chern numbers. As a result, they exhibit an insulating bulk while simultaneously hosting
conducting states at their surface which propagate in a well-defined direction and are protected
against local disorder and perturbations by time-reversal symmetry breaking.

Afterwards it was found that such topological phases of matter arise in a variety of quantum
(and even classical! [5, 6]) systems. In particular, the development of quantum simulators such as
cold atomic gases and photonic systems opened promising perspectives for a deeper understanding
of such physics. The main advantage of these platforms is that they offer a larger degree of
experimental control over the parameters of the Hamiltonian one wishes to implement, as well as
the possibility of employing measurement techniques not available for solid state samples.

In particular, topological photonics aims at exploring topological phases of matter using optical
setups [7]. On the one hand, photons pose their own challenges which have no analog in other
platforms: they are bosons, massless, do not carry electrical charge, do not interact between
each other, and possess an intrinsic driven-dissipative nature. However, on the other hand, these
unique features allow to investigate new physics that would be impossible to explore in traditional
conservative setups. Moreover, optical systems offer several advantages, like the possibility of
directly accessing the system’s properties by means of the emission spectrum or to probe specific
parts of the system. Since the existence of energy bands is a ubiquitous property of waves inside
spatially periodic media, band theory can be applied to photonic crystals realized by subjecting
electromagnetic waves to spatially periodic modulations of the electric susceptibility tensor [8, 9].

Several strategies have been employed to obtain a topologically nontrivial band structure in
photonic crystals. Perhaps the most straightforward one capitalizes on magneto-optic materials
breaking time-reversal symmetry under an external magnetic field [10]. However, magnetic ele-
ments are difficult to integrate with state-of-the-art silicon photonics technology. A non-magnetic
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Introduction 2

alternative is posed by quantum spin-Hall insulators: These consist on two copies of a topologi-
cal insulator, each supporting photons that experience an opposite synthetic magnetic field and
therefore display opposite Chern numbers. These are the two pseudospins of the system. For
bosonic particles such as photons the absence of coupling between the two pseudospins is required
in order to preserve time-reversal symmetry and grant topological protection to the resulting he-
lical modes propagating in the surface. For this reason the experimental realization of bosonic
quantum spin-Hall insulators posed a more challenging problem. However, such a system was
successfully implemented in a two-dimensional array of silicon ring resonators supporting a pair of
whispering-gallery modes circulating in clockwise (CW) and counterclockwise (CCW) directions,
which constitute the two pseudospins. These resonators are connected through link resonators
introducing opposite complex hopping phases for the two pseudospins, therefore giving rise to op-
posite synthetic gauge fields for counterpropagating photons [11]. In such a platform disorder and
fabrication defects give rise to backscattering coupling the two pseudospins; remarkably, this was
sufficiently small to preserve the existence of the helical modes.

The study of topologically nontrivial band structures in systems with gain and losses led to the
development of the non-Hermitian topological photonics field. A particularly interesting problem
concerns the addition of saturable gain to the chiral edge modes of a topological insulator. These
topological lasers have been shown to display several advantages with respect to their trivial coun-
terparts, such as absence of light localization at defects, single-mode lasing, and enhanced slope
efficiency [12]. Recently, the active analog [13] of the quantum-spin Hall insulator of Ref. [11] was
experimentally demonstrated. However, the existence of this system relies on the presence of a
sufficiently weak backscattering as a consequence of well-established fabrication process that do
not introduce disorder into the samples, and needs to be robust against operational degradation
of the array. To address these concerns, the authors of [13] also implemented a different strategy:
promoting lasing in a single pseudospin. This was achieved by employing Taiji resonators (TJRs)
as the building block of the quantum spin-Hall array. TJRs consist of a ring resonator embedding
an S-shaped element that breaks space-reversal (parity) symmetry as it establishes a unidirectional
coupling between the two pseudospins. Such resonators have been extensively employed to obtain
unidirectional lasing in a single whispering-gallery mode [14].

Notwithstanding the proved importance of TJRs in the realization of quantum spin-Hall topo-
logical lasers, a theoretical description of the physical mechanisms behind single-pseudospin lasing
is needed. In fact, the use of TJRs opens up exciting connections with Lorentz reciprocity breaking
and optical isolators [15] in which light propagates in a single direction. Besides, the robustness
of the resulting helical modes under different levels of backscattering must be assessed. Motivated
by these open questions, the first part of this Thesis (Chapters 1 to 5) is devoted to explore the
physics of nonlinear TJRs and their use as optical isolators and unidirectional lasers. We finally
ascertain their role in quantum spin-Hall insulators in the presence of backscattering in Chapter 5.

Up to this point, strong interactions have been out of the discussion. However, a whole new
set of topological phases appear when these are considered. In the case of systems with broken
time-reversal symmetry we enter the so-called fractional quantum Hall (FQH) regime. Perhaps one
of the most remarkable predictions is that the charged bulk excitations of such a system feature
a fraction of the elementary charge and intermediate (fractional) statistics between bosons and
fermions. Such objects are known as anyons and they are expected to play a crucial role in the
development of fault-tolerant topological quantum computers immune to local perturbations and
disorder. In spite of this great incentive, a direct experimental demonstration of fractional statistics
remains elusive to date, partially due to the difficulty to perform interferometry experiments in
two-dimensional electron gases. However, quantum simulators can provide alternative strategies
in order to shine more light into the exotic nature of FQH liquids. In the second part of this
Thesis (Chapters 6 and 7) we explore in detail the physics of FQH liquids and propose a scheme
to experimentally access the fractional charge and statistics of anyons using cold atomic gases and
photonic systems. In particular, our calculations are focused on the former platform due to the
well-established and conceptually easier techniques employed to generate synthetic gauge fields and
strong interactions for cold atoms. However, our proposal can be directly translated to the scheme
of Ref. [16] in which a two-photons FQH state of light was recently demonstrated.

The structure of the Thesis is the following:

Chapter 1. We introduce the concepts of topological invariants and topological insulators and
explain the physical origin of topological band structures. We present the theory describing
the integer quantum Hall effect, focusing on Landau levels arising in continuum geometries,

Non-Hermitian and Topological Features of Photonic Systems Alberto Muñoz de las Heras



Introduction 3

and the Harper-Hofstadter model for particles on a square lattice. We also introduce quantum
spin-Hall systems displaying a nontrivial topology while preserving time-reversal symmetry.
We discuss the concept of quantum simulators, focusing on cold atomic gases and photonic
systems, and explore how the integer quantum Hall and spin-Hall effects can be realized
in such platforms. Finally, we provide an introduction to the non-Hermitian topological
photonics field and review the most relevant realizations of topological insulator lasers in
one and two dimensions. A special attention is devoted to the quantum spin-Hall laser of
Ref. [13].

Chapter 2. We demonstrate that a single TJR breaks Lorentz reciprocity at high intensities due
to the optical nonlinearity. First, we review the Lorentz reciprocity theorem and the pro-
posed strategies to obtain nonreciprocal devices capable of working as optical isolators. We
then introduce TJRs and employ the coupled-mode theory equations for the electric field
amplitudes in each whispering-gallery mode in order to explain the assymetrical power en-
hancement leading to reciprocity breaking. We present our joint theoretical and experimental
study of the transmittance through TJRs coupled to a bus waveguide. The experiments show
a different transmittance when the resonator is pumped in opposite directions. Our results
are reproduced by a numerical finite-element model. This Chapter is based on the work
published in [17].

Chapter 3. We add a saturable gain to a single TJR and assess the unidirectionality of the laser
emission in the presence of backscattering. We first present our theoretical formalism based
on the coupled-mode equations of motion and a linearized analysis of the small perturbations
around their steady state. In the backscattering-free case we investigate the possible lasing
regimes of ring resonators and TJRs depending on the type of saturable gain considered
and the strength of the coupling between the ring and the embedded S element. We then
include backscattering of different strengths and show that the S element of TJRs imposes
unidirectionality to the laser emission. The efficiency of this mode selection process is further
enhanced by the Kerr nonlinearity of the material. This Chapter is based on the work
published in [18].

Chapter 4. We demonstrate optical isolation in practical conditions over a broad frequency band
by employing ring resonators and TJRs strongly pumped in one direction. In the resulting
devices, four-wave mixing and transmission of signals are only possible in the pump direction,
but not in the opposite one. We first derive the coupled-mode equations for pump, signal, and
idler by treating the latter two as small perturbations to the first one. We apply this scheme to
coherently pumped passive ring resonators, and to incoherently pumped active ring resonators
and TJRs. Further insight about the asymmetrical four-wave mixing leading to reciprocity
breaking is obtained by diagonalizing the Bogoliubov matrix and looking at the spectrum
of eigenvalues. Our proposal is not subjected to the dynamic reciprocity restrictions [19]
present in the nonlinear Taiji studied in Chapter 2, where the strong unidirectional pump
was not considered.

Chapter 5. We study quantum spin-Hall topological lasers featuring TJRs as site resonators.
After introducing the coupled-mode theory we employ in our simulations, we investigate the
effect of backscattering in passive arrays of ring resonators and TJRs. We then consider an
active, backscattering-free lattice of ring resonators and study the possible lasing regimes
depending on the type of saturable gain employed. Focusing on a local saturable gain, we
assess the effect of backscattering. We demonstrate that the sign of the optical nonlinearity
determines the topological gap in which the system lases. Finally, we introduce TJRs and
show that the resulting quantum spin-Hall laser features an improved unidirectionality, slope
efficiency, and lasing threshold even in the presence of backscattering. The combination of
TJRs and optical nonlinearities promotes lasing in a single helical mode.

Chapter 6. We review the main features of the FQH effect and justify the Laghlin’s Ansatz
describing its ground state. We then introduce the plasma analogy and we employ it to assess
several properties of FQH liquids, like its incompressibility and the fractional charge and
statistics of the bulk excitations. We discuss why FQH phases of matter cannot be described
with Landau’s theory of symmetry breaking, and we introduce the concept of topological
order. We then explore the most interesting properties of Abelian and non-Abelian anyons,
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Introduction 4

and briefly explain why the latter hold great promise as the qubits of fault-tolerant topological
quantum computers. Finally, we review the most promising avenues for realizing FQH liquids
using quantum simulators, namely cold atomic gases and photonic systems.

Chapter 7. We propose strategies to experimentally access the fractional charge and statistics of
quasihole excitations in atomic FQH liquids. Our key idea is to capture quasiholes by means
of impurities, forming composite objects that we label anyonic molecules. We employ a Born-
Oppenheimer approximation in order to derive an effective Hamiltonian for such objects. In
the single impurity case, we calculate the renormalized mass of the anyonic molecule due
to the the motion of the quasihole alongside the impurity, as well as the fractional charge,
which features contributions from both the impurity and the quasihole. These two quantities
can be measured from the cyclotron orbit described by the anyonic molecule. In the two
impurities case, we demonstrate that anyonic molecules inherit fractional statistics from its
quasihole part. Finally, we show that the statistics of the molecule can be directly measured
in a scattering experiment by looking at the interference fringes in the differential scattering
cross section. This Chapter is based on the work published in [20].
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Chapter 1

Review of topological photonics

In the last decades photonic platforms have gained a reputation as quantum simulators,
i.e. environments where it is possible to replicate the behavior of more complex systems—such
as electron gases in solid state samples—capitalizing on a higher level of control over the experi-
mental parameters, which even allows to implement specific Hamiltonians with a great precision.
Furthermore, these systems constitute an ideal playground in which to observe physics without
correspondence in other platforms due to the unique properties of photons, like their bosonic,
massless, and driven-dissipative nature, the absence of photon-photon interactions in vacuum, etc.
In particular, topological photonics is a rapidly-evolving field rooted in the application of the topo-
logical concepts originally developed for solid state physics to optical setups like photonic crystals,
arrays of coupled propagating waveguides, metamaterials, cavity arrays, etc.

The nontrivial topology of these systems stems from the symmetries of their respective Hamil-
tonians, that allow the association of topological invariants to the energy bands of the spectrum.
As long as the gap structure is preserved the topogical invariants cannot change their values, which
makes these systems especially robust against defects, disorder, and local perturbations in general.
An important consequence of the nontrivial topology of the energy bands is the appearance of
chiral edge states at the system’s boundaries. Historically, the first evidence of a nontrivial topol-
ogy was observed in integer quantum Hall systems which break time-reversal symmetry. Another
promising avenue is represented by quantum spin-Hall insulators in which time-reversal symmetry
is preserved.

It is precisely the study of the interplay between the nonequilibrium nature of photons and
the recently discovered topological effects in optical setups that led to the development of the
non-Hermitian topological photonics field. An especially interesting byproduct is the addition of
saturable gain to the system’s boundaries in order to promote lasing in the topologically protected
edge states. The resulting topological laser is expected to outperform trivial lasers and display an
extraordinary efficiency and immunity against disorder.

In this Chapter we first provide an introduction to basic topology concepts and their relation
with integer quantum Hall and spin-Hall systems of electrons, cold atoms, and photons. We then
analyze the most promising platforms enabling topological lasing. We refer the interested reader
to the more exhaustive review [7]. Regarding active topological photonics one can consult [12].
[21] is instead devoted to the combination of topological photonics and nonlinear optics effects.

1.1 Why topology? Some basic concepts

In this Section we reveal the connection between topology—which apparently is just a branch of
mathematics—and condensed matter physics. We introduce the basic topology concepts that we
will employ through this Thesis, and we justify the importance of topology in order to correctly
account for the dynamics of quantum particles.

5
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We start by considering non-interacting particles subjected to a periodic potential in a d-
dimensional space, as it is the case, for instance, of free electrons in a crystal [22]. This problem
is described by the single-particle Hamiltonian H(r,p) satisfying H(r,p) = H(r + ai,p) for a set
{ai} of d lattice vectors.

The spatial periodicity of the Hamiltonian allows us to make use of Bloch’s theorem. This
warrants that the eigenstates of such a Hamiltonian can be written as a plane wave modulated by
a periodic function un,k, i.e.

ψn,k(r) = eik·run,k(r), (1.1)

where n is the band index, and k is the crystal momentum defined within the first Brillouin zone.
un,k is the so-called Bloch wavefunction, which inherits the spatial periodicity from its parent
Hamiltonian, i.e. un,k(r + ai) = un,k(r). A corollary of Bloch’s theorem implies that the Bloch
wavefunction is an eigenstate of the Bloch Hamiltonian Hk, i.e.

Hkun,k(r) = En(k)un,k(r), (1.2)

where En,k is the energy dispersion of the n-th band. The Bloch Hamiltonian is defined by the
rotation

Hk = e−ik·rH(r,p)eik·r (1.3)

on the parent Hamiltonian H(r,p).
Usually, in standard solid state undergraduate courses we learn that the electron dynamics

inside a crystal is solely determined by the band structure En,k of the Hamiltonian. However, the
key idea that led to physicists employing topology concepts to study solid state physics is that
there is a missing ingredient in such a description: the geometrical properties of the electronic
bands in the crystal momentum space.

Let us consider a localized wavepacket built from states in a certain band n. If such a state is
adiabatically moved along a closed path C in momentum space, according to the adiabatic theorem
it will acquire the standard dynamical phase, which is given by the time integral of En(k). However,
due to the dependence of the Bloch wavefunctions un,k on the crystal momentum k, the state will
also pick an additional geometrical phase given by

γ =

∮
C

An(k) · dk, (1.4)

which is called Berry phase. In general, a similar reasoning can be followed for any Hamiltonian
depending on some set of external parameters. In the case of electrons in a periodic potential, it
is the crystal momentum k which plays the role of the external parameter.

In Eq. (1.4) An(k) is the so-called Berry connection, defined as

An(k) = i 〈un,k| ∇k |un,k〉 . (1.5)

Note that the Berry connection is not a gauge-invariant quantity, as under a gauge transformation
un,k → eiχ(k)un,k it transforms as An(k)→ An(k) +∇kχ(k). Nevertheless, the phase eiχ(k) must
be single-valued at the beginning and at the end of the closed path C, imposing that the Berry
phase must be gauge invariant modulo 2π.

It is also possible to define a gauge-invariant Berry curvature encoding the geometrical prop-
erties of the n-th band as

Ωn(k) = ∇k ×An(k). (1.6)

The next question we should ask ourselves is whether we can find a topological invariant, i.e.
some quantity describing the topological properties of the band which is invariant under smooth
transformations (known as homeomorphisms in a more mathematical language). On more physical
grounds, such a transformation of the Hamiltonian must preserve the gap structure of the energy
bands.

This topological invariant is known as Chern number and it is defined as

Cn =
1

2π

∫
BZ

d2k ·Ωn(k). (1.7)

Non-Hermitian and Topological Features of Photonic Systems Alberto Muñoz de las Heras
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The Chern number reflects the continuity of the phase of the Bloch wavefunction along a closed path
encircling the whole Brillouin zone (BZ). If the phase of the Bloch wavefunction is continuous over
the Brillouin zone, then the Berry connection will be also a continuous function of k. Therefore,
Eq. (1.6) and Stokes’ theorem imply that the Chern number must be necessarily zero. On the
other hand, a finite Chern number implies a discontinuous Bloch wavefunction un,k and Berry
connection An(k).

It can be easily proven that the Chern number can only take integer values [23]. For the sake
of simplicity we focus on the two-dimensional (2D) case where particles live in the x− y plane and
only the z component of the Berry curvature takes a finite value. This can therefore be rewritten
as a scalar quantity as follows:

Ωn(kx, ky) = i
(〈
∂kxun,k

∣∣∂kyun,k〉− 〈∂kyun,k∣∣∂kxun,k〉) . (1.8)

We now consider a closed path ∂S inside the Brillouin zone, separating the enclosed surface S from
the external one S′. We can then use Stokes’ theorem to rewrite the Chern number in terms of
the common boundary ∂S = −∂S′, i.e.

Cn =
1

2π

∫
S

d2kΩn(kx, ky) +
1

2π

∫
S′
d2kΩn(kx, ky)

=
1

2π

∮
∂S

dk · An(kx, ky)− 1

2π

∮
∂S

dk · A′n(kx, ky)

=
1

2π
(γ − γ′) (1.9)

where An and A′n are the Berry connections calculated using the gauge choices for S and S′,
respectively, and γ and γ′ are the corresponding Berry phases. Since γ and γ′ have been calculated
along the same path, they can only differ by a multiple of 2π, implying that the Chern number
must be an integer.

The topological invariant character of the Chern number is manifested as it remains constant
under smooth perturbations preserving the gap structure of the electronic energy spectrum [24,
25, 26]. A fermionic system in which bands displaying finite Chern numbers are completely filled
is known as Chern insulator.

Obviously, in this Thesis we are interested in systems displaying finite Chern numbers. The
question we should be asking ourselves now is: How can we generate a nontrivial topology? It
turns out that the system symmetries have some words to say. In particular, when time-reversal
symmetry is present we have that the Berry curvature is an odd function of k, i.e. Ωn(−k) =
−Ωn(k). When we integrate such a quantity over the whole BZ the contributions from k and −k
cancel out. Applying this identity to the definition of Chern number (1.7) we see that

2πCn =

∫
BZ

Ωn(k) · d2k =

∫
BZ

Ωn(−k) · d2k = −
∫

BZ

Ωn(k) · d2k → Cn = 0, (1.10)

i.e. under time-reversal symmetry the Chern number must be zero. A straightforward route to
guarantee a non-vanishing Chern number is to break time-reversal symmetry while preserving
spatial-inversion symmetry (also known as parity symmetry). A system invariant under spatial-
inversion features Ωn(−k) = Ωn(k) and therefore we will have that

2πCn =

∫
BZ

Ωn(k) · d2k =

∫
BZ

Ωn(−k) · d2k =

∫
BZ

Ωn(k) · d2k, (1.11)

which a priori does not impose any value of Cn.
Time-reversal symmetry breaking is the key ingredient of the so-called integer quantum Hall

(IQH) systems, which constitute, historically, the first category in which topological effects were
observed. However, we can also capitalize in the coupling between the electron spin and momentum
in order to obtain a nontrivial topology while preserving time-reversal symmetry. These are the
so-called quantum spin-Hall systems, in which two spin species feature opposite Chern numbers,
which globally add up to zero. The next Sections of this Chapter are devoted to introduce the two
kinds of systems.

Note that up to this point we have only relied on the band theory for noninteracting particles in
a crystal. However, the previous discussion can be generalized in order to account for interactions
between particles [26]. When these become very strong the particles form an exotic, strongly
correlated phase known as fractional quantum Hall (FQH) fluid. We will devote more attention to
this physics in Chapter 6.

Non-Hermitian and Topological Features of Photonic Systems Alberto Muñoz de las Heras
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1.1.1 The zoo of topological insulators

Finally, prior to studying into detail the IQH and quantum spin-Hall effects, we would like to
point out that these are not the only possible systems exhibiting a nontrivial topology. Topological
insulators generalize the concept of Chern insulators beyond time-reversal symmetry breaking to
systems in which different symmetries are broken and preserved. In any case, topological insulators
feature an insulating bulk with a topological band structure preserved by the symmetries of the
system, and host topologically protected chiral edge states by virtue of the bulk-edge correspon-
dence (that we will study into detail in Sec. 1.2.5). There exists a myriad of topological insulator
phases classified according to their symmetries, and characterized by topological invariants that
can be different from the Chern number [4, 27]. Topological insulators emerge in both bosonic and
fermionic systems, and in different dimensions beyond the paradigmatic 2D case. For instance,
the one-dimensional SSH model that we will discuss in the context of the topological laser (see
Sec. 1.6.1) features a chiral symmetry as its Hamiltonian commutes with the σz Pauli matrix.
As a consequence, a pair of zero-dimensional edge states appear inside the topological gap. The
topological invariant in this case is known as winding number. In this Thesis, we will focus on
IQH and quantum spin-Hall systems, and therefore we will use interchangeably the terms Chern
insulator and topological insulator.

1.2 The integer quantum Hall effect in the continuum

In this Section we will briefly discuss the most prominent features of the integer quantum Hall
(IQH) effect in the continuum (i.e. without considering an external periodic potential). This
phenomenon can be understood without taking into account the interaction between particles.
The interested reader can widen the information about this topic in the more exhaustive notes
by [28, 29, 30]. The IQH effect in a discrete lattice will be studied in Sec. 1.3.

We concluded the previous Section wondering what kind of physical mechanisms could lead
to the observation of a nontrivial topology. One of the possibilities consisted on breaking time-
reversal symmetry while preserving spatial-inversion symmetry. This can be achieved, for instance,
by subjecting a collection of charged particles to a magnetic field.

This is exactly what happened in the pioneering experiments of von Klitzing [1], where the IQH
effect was observed for the first time. The setup consisted on a MOSFET transistor where a 2D
electron gas was subjected to a strong magnetic field perpendicular to the confinement plane. We
know from our undergraduate physics textbooks that in the classical Hall effect the Hall resistance
RH

1 follows a linear dependence with respect to the magnetic field strength B. Quite unexpectedly,
von Klitzing found that RH forms a plateaux structure as a function of B. Inside each plateau
the value of RH is determined by universal constants, namely h, the Planck’s constant, and e, the
electron charge. More precisely, RH can be expressed as

RH =

(
h

e2

)
1

ν
, (1.12)

where ν was found to be a positive integer characterizing each plateau. This is why this phe-
nomenon was labeled as IQH effect. The experimental results of von Klitzing are shown in Fig. 1.1.

As we advanced before, it turns out that this physics can be understood in the single-particle
picture, without taking into account the Coulomb repulsion between electrons. In the next Sub-
section we will derive the energy spectrum of a noninteracting 2D electron gas under a strong
perpendicular magnetic field, which is organized in bands known as Landau levels (LL).

1.2.1 Landau levels

In this Subsection we present the quantum mechanical treatment of the dynamics of noninteracting
charged particles in 2D under a strong magnetic field perpendicular to the plane of motion. As
we will see, the single-particle energy spectrum is quantized, forming macroscopically degenerate
energy bands known as Landau levels (LLs) [3]. A very clear analogy can be established between
these energy levels and those of a 1D harmonic oscillator featuring the cyclotron frequency ωc =

1In two dimensions, resistance and resistivity are interchangeable concepts, and the same occurs between con-
ductance and conductivity.
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Figure 1.1: The integer quantum Hall effect. Hall and longitudinal resistances as a function of the
magnetic field strength B. The Hall resistance forms a series of plateaux, while the longitudinal
resistance vanishes in each of them. Figure taken from The Nobel Prize website.

qB/m as its natural frequency (in our notation B is the magnetic field, q the particle charge, and
m is its mass).

The Lagrangian of a spinless electron of charge q = −e and mass m inside a background
magnetic field B = ∇×A = Buz is given by

L =
1

2
mṙ2 − eṙ ·A. (1.13)

Here A is the vector potential and uz is an unit vector perpendicular to the 2D plane where the
electron motion is restricted (namely the x − y plane). The canonical momentum can then be
calculated in the following form:

p =
∂L
∂ṙ

= mṙ− eA. (1.14)

A closer inspection of the last equation reveals that the canonical momentum is not invariant
under a gauge transformation A→ A +∇α. Instead, one can define a gauge-invariant mechanical
momentum Π as

Π = p + eA = mṙ. (1.15)

The Hamiltonian can now be computed as

H = ṙ · p− L =
1

2m
(p + eA)2 =

Π2

2m
, (1.16)

which is obviously a gauge-invariant quantity.
In order to promote this so far classical Hamiltonian function to a quantum operator we will

employ the canonical quantization formalism. We start by writing the Poisson brackets for the
canonical variables, which are the electron’s position r = (x, y) and canonical momentum p =
(px, py):

{ri, pj} = δij , {ri, rj} = {pi, pj} = 0. (1.17)

We now consider r and p to be operators and replace the Poisson brackets by the corresponding
canonical commutation relations

[ri, pj ] = i~δij , [ri, rj ] = [pi, pj ] = 0. (1.18)

For the gauge-invariant mechanical momentum operator Π these commutation relations translate
into

[Πx,Πy] = −ie~B = −i~
2

`2B
, (1.19)

Non-Hermitian and Topological Features of Photonic Systems Alberto Muñoz de las Heras
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where `B =
√
~/eB is the so-called magnetic length, which is the length scale that characterizes

the quantum dynamics of the particles inside a magnetic field.
We now introduce a couple of creation and annihilation operators operators, entirely analogous

to those employed to describe the spectrum of a 1D quantum harmonic oscillator. They are defined
as

a =
`B√
2~

(Πx − iΠy), a† =
`B√
2~

(Πx + iΠy). (1.20)

The normalization prefactor ensures that they satisfy the same commutation relations as the ladder
operators of the harmonic oscillator:

[a, a†] = 1. (1.21)

Inverting Eq. (1.20) and inserting it into Eq. (1.16) we find that the system’s Hamiltonian can be
written in the very familiar form

H = ~ωc

(
a†a+

1

2

)
, (1.22)

which is identical to that of a 1D harmonic oscillator of characteristic frequency ωc. We can now
exploit this resemblance in order to construct the Hilbert space of the Hamiltonian (1.22) as it is
done for a quantum harmonic oscillator. We first consider the ground state |0〉 obeying a |0〉 = 0
and then build the rest of the Hilbert space acting with the creation operator a†. By applying the
ladder operators on a general state |n〉, where n is a non-negative integer, we get

a† |n〉 =
√
n+ 1 |n+ 1〉 , a |n〉 =

√
n |n− 1〉 . (1.23)

Such a general state |n〉 can then be written as

|n〉 =
(a†)n√
n!
|0〉 . (1.24)

By applying the Hamiltonian (1.22) to the state (1.24) we can calculate its energy:

En = ~ωc

(
n+

1

2

)
. (1.25)

Therefore we conclude that the energy spectrum of a 2D charged particle inside a perpendic-
ular magnetic field consists of equally-spaced levels separated by energy gaps determined by the
cyclotron frequency ~ωc. These are the so-called Landau levels (LLs).

At first glance it may seem that something is missing from the previous derivation of the LL
spectrum: we started from a 2D system and we arrived at a seemingly one-dimensional Hilbert
space completely determined by just a non-negative integer number which labels the different LLs.
If we take a closer look at the Hamiltonian (1.16) we see that it is a function of two couples of
conjugate operators: (x, px) and (y, py). Therefore, our guess would have been that a pair of
quantum numbers are needed in order to describe its energy spectrum. The important point here
is that the Hamiltonian solely depends on the mechanical momentum Π, i.e. on just one pair
of conjugate operators. This means that each LL |n〉 must be degenerate. In order take this
into account we need to construct a second operator that depends on the other pair of conjugate
operators and that commutes with the Hamiltonian.

In this sense we introduce the pseudomomentum

Π̃ = p− eA, (1.26)

which, remarkably, is not a gauge-invariant quantity. Its commutation relations differ from those
of the mechanical momentum (1.19) by a minus sign, i.e.

[Π̃x, Π̃y] = i
~2

`2B
. (1.27)
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We choose to calculate the commutators [Πi, Π̃j ] and [H, Π̃i] in the symmetric gauge, which is
defined by the vector potential

A = −1

2
r×B =

B

2
(−y, x). (1.28)

This gauge choice breaks translational symmetry in the x and y directions; in spite of this, it
has the great advantage of preserving rotational symmetry around the z axis. As we will see,
this means that the third component of the angular momentum will be a good quantum number.
Choosing Eq. (1.28) as our vector potential A we get the commutation relations

[Πx, Π̃x] = [Πy, Π̃y] = [Πx, Π̃y] = 0. (1.29)

Furthermore, all the pseudomomentum components commute with the Hamiltonian (1.16):

[H, Π̃x] = [H, Π̃y] = 0. (1.30)

At this point we can introduce a second couple of ladder operators

b =
`B√
2~

(Π̃x + iΠ̃y), b† =
`B√
2~

(Π̃x − iΠ̃y) (1.31)

which satisfy the commutation relation [b, b†] = 1. In the symmetric gauge both pairs of ladder
operators (a and b) commute with each other, and therefore we have that [H, b] = [H, b†] = 0.

Following the same reasoning as for the a ladder operators we can introduce a ground state
|0〉 and apply b† in order to construct the corresponding Hilbert space. This latter set of dagger
operators allows us to account for the degeneracy of the LLs. The (normalized) most general state
now takes the form

|n,m〉 =
(a†)n(b†)m√

n!m!
|0, 0〉 . (1.32)

In the equation above we have introduced the second quantum number m that can take any non-
negative value and that was missing in our first description. This explicitly shows the degeneracy
of the LLs and, as we will see, it is actually the quantum number related to the z-component of
the angular momentum. By |0, 0〉 we label the ground state, which is annihilated both by a and
b. The most general state |n,m〉 accounting for the degeneracy of the LLs is still an eigenstate
of the Hamiltonian (1.22) and its energy is given again by Eq. (1.25), which only depends on the
quantum number n corresponding to the a set of ladder operators.

So far we have elaborated the spectrum of eigenstates and eigenvalues of 2D charged particles
in a uniform magnetic field. At this point we can ask ourselves a couple of interesting questions:
How does the ground state of such a system look like? And what is the degeneracy of each Landau
level? These questions will be addressed in the following Subsections.

1.2.2 The lowest Landau level wavefunction

In this Subsection we will construct the wavefunction for the ground state of a system of 2D
particles under a uniform perpendicular magnetic field in the position representation—that is, we
will compute

ψ0,0(x, y) = 〈x, y|n = 0,m = 0〉 . (1.33)

The ground state receives the name of lowest Landau level (LLL). For this calculation we will work
in the symmetric gauge introduced in the previous Subsection (i.e. with the vector potential in
Eq. (1.28)).

We know that the LLL must be annihilated by the a lowering operator:

a |0,m〉 = 0 ∀m. (1.34)
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We would like to associate a differential equation to the expression above. With this objective in
mind we write the annihilation operator as

a =
`B√
2~

(Πx − iΠy)

=
`B√
2~

[px − ipy + e(Ax − iAy)]

=
`B√
2~

[
−i~ (∂x − i∂y) +

eB

2
(−y − ix)

]
(1.35)

using Eqs. (1.15) and (1.28), and the position representation of the momentum operator p =
−i~∇ = −i~(∂x, ∂y). In order to simplify the notation, at this point it is useful to introduce the
complex coordinates

z = x− iy, z̄ = x+ iy. (1.36)

We warn the reader that, from now on, the variable z does not represent a position in the third
spatial coordinate. We define the corresponding partial derivatives as

∂ =
1

2
(∂x + i∂y), ∂̄ =

1

2
(∂x − i∂y), (1.37)

which obey ∂z = ∂̄z̄ = 1 and ∂z̄ = ∂̄z = 0.
We can now rewrite the ladder operators a, a† as a function of the complex coordinates as

a = −i
√

2

(
`B∂̄ +

z

4`B

)
, a† = −i

√
2

(
`B∂ −

z̄

4`B

)
. (1.38)

By implementing this change of variables we can now simplify the differential equation (1.34) for
the annihilation of the LLL wavefunctions ψ0,m(z, z̄) ≡ ψm(z, z̄):(

`B∂̄ +
z

4`B

)
ψm(z, z̄) = 0. (1.39)

In general, the set of solutions to this equation can be written as

ψm(z, z̄) = fm(z)e−|z|
2/4`2B , (1.40)

for any holomorphic function fm(z) 2.
Such an indefiniteness on the ground state wavefunction is again telling us that the LLL is

degenerate. To sort this out and find the explicit form of the functions fm(z) we can follow a similar
procedure as we did for the annihilation of the n = 0 states by associating another differential
equation to the annihilation of the m = 0 states by the b lowering operator, i.e. b |n, 0〉 = 0. In
this case, the b ladder operators can be written as

b = −i
√

2

(
`B∂ +

z̄

4`B

)
, b† = −i

√
2

(
`B∂̄ −

z

4`B

)
, (1.41)

which leads to (
`B∂ +

z̄

4`B

)
ψn,0(z, z̄) = 0. (1.42)

Similarly to Eq. (1.39), the most general solution to the equation above is

ψn,0(z, z̄) = gn(z̄)e−|z|
2/4`B , (1.43)

where gn(z̄) can be any antiholomorphic function. Specifically, ψ0 ≡ ψ0,0 must be a solution to both
Eqs. (1.39) and (1.43). The requirement that the function outside the Gaussian exponential must

2A complex-valued function f(z) is holomorphic in a certain domain if for every point z of that domain the func-
tion is differentiable in a neighbourhood of the point. Similarly, a complex-valued function f(z̄) is anti-holomorphic
if it is differentiable with respect to z̄ in a neighbourhood of every point of its domain.
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be holomorphic and antiholomorphic at the same time leaves a constant as the only possibility,
which will be determined by the normalization of ψ0. This leads to

ψ0(z, z̄) =
1√

2π`2B
e−|z|

2/4`2B . (1.44)

We can now construct the rest of degenerate states within the LLL by using the differential equa-
tion (1.41) for b†. This gives

ψm(z, z̄) =
1√

2π`2Bm!

(
z√
2`B

)m
e−|z|

2/4`2B . (1.45)

The wavefunctions (1.45) constitute a basis for the LLL. They also have the further advantage of
being eigenstates of the z-component of angular momentum. We can clearly see this if we look at
the definition of the angular momentum operator Lz:

Lz = i~ (x∂y − y∂x) = ~(z∂ − z̄∂̄). (1.46)

Acting with this operator on the set of LLL wavefunctions we get

Lzψm(z, z̄) = ~mψm(z, z̄). (1.47)

Since the expression above is nothing but the eigenvalue equation for the Lz operator, we have
therefore discovered that m is the angular momentum quantum number.

1.2.3 The degenaracy of the Landau levels
Here we explicitly calculate the degeneracy of a given Landau level. To make this calculation, we
will employ the Landau gauge, which features a vector potential of the form

A = (0, x, 0). (1.48)

Although this gauge choice breaks both rotational symmetry around the z axis and translation
invariance in the x direction, it preserves translation invariance along the y direction.

The Hamiltonian (1.16) can now be written in the form

H =
1

2m

[
p2
x + (py + eBx)2

]
. (1.49)

Due to the explicit translational invariance of the Hamiltonian in the y direction, we can simul-
taneously diagonalize the Hamiltonian H and the y component of the canonical momentum py.
The common basis of eigenstates will of course consist on plane waves in the y direction, which
motivates the Ansatz

ψk(x, y) = eikyfk(x). (1.50)

The action of the Hamiltonian (1.49) on ψk gives

Hψk(x, y) =
1

2m

[
p2
x + (~k + eBx)2

]
ψk(x, y) = Hkψk(x, y), (1.51)

where the effective Hamiltonian Hk mimics that of a harmonic oscillator in the x direction, with its
center displaced from the origin and located at a position x = −k`2B. The oscillation frequency is
again given by the cyclotron frequency ωc. In order to show explicitly these properties we rearrange
the effective Hamiltonian in the more simple shape

Hk =
1

2m
p2
x +

mωc

2
(x+ k`2B)2. (1.52)

The eigenvalues of Hk are the LLs

En = ~ωB

(
n+

1

2

)
, (1.53)
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which are labeled by the set of {n} non-negative integers and do not depend on the y-momentum
quantum number k. The corresponding eigenstates in the position representation can be written
as

ψn,k(x, y) ∝ eikyHn(x+ k`2B)e−(x+k`2B)2/2`2B , (1.54)

where Hn is the n-th Hermite polynomial.
So far we have arrived at the same results as we had obtained in the previous Subsection using

the symmetric gauge. However, the main advantage of the Landau gauge is that we can calculate
the degeneracy of each LL in a very straightforward manner. Let us ask ourselves how many states
fit inside a rectangle of side lengths Lx and Ly in the x and y directions, respectively, for fixed
n. We know that the effect of the finite size in the y direction will be the quantization of the k
momentum in units of 2π/Ly. Instead, in the x direction translational symmetry is broken due to
the Landau gauge choice, and therefore the finite size of our rectangle does not result in an analog
quantization of the x momentum. Nevertheless, since the wavefunctions (1.54) are exponentially
localized around x = −k`2B, for a finite sample restricted to 0 ≤ x ≤ Lx we will have k values
laying within the range −Lx/`2B ≤ k ≤ 0. With this in mind we can compute the number of states
in a LL inside the rectangle as

N =
Ly
2π

∫ 0

−Lx/`2B
dk =

A

2π`2B
=
eBA

2π~
=
BA

Φ0
. (1.55)

Here, A = LxLy is the area of the sample and Φ0 = 2π~/e is the magnetic flux quantum. This
result implies that the number of states inside each LL is simply given by the number of magnetic
flux quanta trespassing the sample. The reader should keep in mind that, in general, this can be
a macroscopically large quantity. This will be important when we try to add interactions to this
picture in Chapter 6. Note that, even though we chose a rectangular shape to make the calculation,
this result holds under a different sample shape choice.

1.2.4 The quantization of the Hall conductance
We are now in a position to explain the quantization of the Hall conductance σH = R−1

H in units
of e2/h giving rise to the plateaux structure shown in Fig. 1.1. How does this correlate with
the quantization of the energy spectrum of the electrons in terms of the LLs? The fact that
both phenomena are described in terms of non-negative integer numbers should raise suspicions.
Indeed, such a connection exists and, as we will see, the Hall resistance takes the value in Eq. (1.12)
precisely when ν LLs are fully occupied.

So far we have talked extensively about the energy spectrum of a 2D electron gas in a magnetic
field, but we have not mentioned topology in our discussion. Soon after the discovery of von
Klitzing, Thouless [2] used linear response theory [31] in order to show that the IQH effect could be
understood in terms of the nontrivial topology of the LLs. Applying for the first time topological
concepts to condensed matter physics, Thouless demonstrated that the Hall conductance of an
electron gas in a two-dimensional periodic potential and subjected to a uniform magnetic field can
be related to the Chern numbers of the occupied bands, i.e.

σH = −e
2

h

∑
n∈occ.

Cn. (1.56)

In our case, it can be shown that each LL features a Chern number Cn = −1. The equation
above is known as TKNN formula (after Thouless, Kohomoto, Nightingale, and den Nijs), and
it provides an explanation for the plateaux structure found in the Hall resistance: each time a
LL is completely filled the sum in the right-hand side of Eq. (1.56) increases by −1. The Hall
conductance is therefore proportional to the number of fully occupied LLs.

An important consequence of the topological invariant character of the Chern number is that
the value that it takes in a given LL cannot change unless the energy gap separating it from other
LLs is closed. As a consequence, what Eq. (1.56) is telling us is that the Hall conductance itself is
another topological invariant. This is why it exhibits a special robustness against the presence of
disorder in the samples and other local perturbations.

Prior to concluding our discussion about the TKNN formula, we warn the reader that there
is a subtle point here: the definition of the Chern number (1.7) as an integral over the whole
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BZ works fine for periodic Hamiltonians but breaks down when we consider a continuum system.
However, the Chern number of LLs can be calculated by discretizing space employing the so-called
Harper-Hofstadter model (that will be studied in detail in Sec. 1.3) and then taking the limit of
small flux per plaquette, in which the LLs energy spectrum is recovered, as was demonstrated by
Harper in Ref. [32].

The role of disorder

We will now make some remarks about the role of disorder in the quantization of the Hall resistance.
The experimental samples inevitably contain impurities that can be modelled with a random
potential V (r). If the strength of disorder is weak compared to the gap separating the LLs (V �
~ωc), then it follows from quantum perturbation theory that disorder will break the degeneracy
inside each LL. A further consequence of disorder will be to turn some of the quantum states
from extended to localized. It can be shown (see [30]) that for each band only the states close to
its center will be extended, while those close to the edges of the band will be localized. This is
important if we want to explain the behavior of conductance because only the extended states can
give a contribution to it.

Consider a LL with fully-filled extended states. According to Eq. (1.55) as B is decreased the LL
can accomodate fewer electrons, and as a consequence the Fermi energy will increase. This means
that the localized states will begin to be populated. Since these states cannot give a contribution
to the conductance, this quantity does not change. Only when the extended states located at
the center of the bands are populated the value of the conductance experiences a sudden change.
This is the origin of the plateaux that were observed in von Klitzing’s experiments where the Hall
resistance takes constant values over certain ranges of B. Quite remarkably, this explains why
Eq. (1.12) is still valid even when a LL is not fully occupied.

1.2.5 Chiral edge states and the bulk-edge correspondence

Up to this point we have focused our attention in bulk properties only. However, the story is not
complete if we do not look at the sample edges as well. Even in classical physics we know that, as
a result of the cyclotron motion of the electrons inside a uniform magnetic field, the boundaries of
the sample will host an electron current moving in a single direction.

In the case of topologically nontrivial materials there exists an intimate relation between the
topology of the energy bands in the bulk and the edge modes propagating along the surface of
the sample. This is the so-called bulk-edge correspondence: when two materials featuring different
topological invariants are put into contact, their interface must host spatially localized edge states
at energies within the energy gap of the surrounding bulk materials [33, 34]. Of course, this
statement also holds in the case of a topologically nontrivial material surrounded by the trivial
vacuum, leading as well to the appearance of edge states [4]. The bulk-edge correspondence can
be understood in terms of the different topological invariants exhibited by both materials: if the
value of such a quantity must be changed, then the only possiblity is that the energy gap has to
be closed somewhere, leading to the appearance of the boundary states.

This kind of edge modes is also characterized by a well-defined chirality: each of them propa-
gates in a particular direction around the bulk of the sample, but not in the opposite. The absence
of degenerate surface states featuring an opposite group velocity makes the chiral edge modes re-
sulting from the bulk-edge correspondence topologically protected against backscattering caused,
for example, by the presence of impurities in the system.

In the case of the IQH effect, the sum of the Chern numbers associated to the occupied bulk
bands is equal to the difference between the number of edge modes featuring a positive and a
negative chirality. Since all LLs have Cn = −1, all edge modes propagate in the same direction and
give the same contribution to the edge current, therefore explaining once again the quantization
of the Hall conductance reviewed in the previous Subsection. The chirality of the edge states is
actually determined by the sign of the Chern number: −1 implies a counterclockwise propagating
edge state, while +1 means that the edge state propagates in the clockwise direction.
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1.3 The IQH effect in a lattice: the Harper-Hofstadter model
Of course, the nontrivial topology of the energy spectrum is not an exclusive property of electrons in
the continuum under a magnetic field. Tight-binding Hamiltonians for spatial-periodic potentials
can also display a band structure with a nontrivial topology if they feature the key ingredient: time-
reversal symmetry breaking. In particular, this Section is devoted to review the Harper-Hofstadter
model [35, 36], which is the tight-binding version on a square lattice of the continuum IQH effect.
Again, interactions play no role and it is sufficient to look at the single-particle spectrum.

The magnetic flux trespassing each plaquette of the square lattice can be accounted for in the
tight-binding Hamiltonian by including a complex hopping phase between neighboring sites known
as Peierls phase [37, 38]. From the definiton of magnetic flux, employing the Stokes’ theorem it is
straightforward to show that such a phase takes the form

Φr1→r2 =
e

~

∫ r2

r1

A(r) · dr, (1.57)

for a particle hopping from r1 to r2, in terms of the magnetic vector potential A(r).
In order to include this complex hopping phase in the system’s Hamiltonian we can use the

Landau gauge, in which the vector potential takes the especially appealing form A(r) = (−By, 0, 0).
The Hamiltonian of the Harper-Hofstadter model reads

H = −J
∑
x,y

(e−i2παy/da†x+d,yax,y + a†x,y+dax,y + H.c.), (1.58)

where a†x,y (ax,y) is the creation (annihilation) operator of a particle at a site (x, y), J is the
hopping amplitude and d is the lattice spacing. The parameter α takes into account the number
of flux quanta piercing each plaquette, i.e. α = Bd2/Φ0, where Φ0 = 2π~/e is the magnetic flux
quantum.

Unlike the continuum IQH effect, the physics described by the Harper-Hofstadter model is gov-
erned by the competition between the magnetic length `B =

√
~/eB and an additional lengthscale

d describing the site separation of the lattice. As a consequence, the allowed energy bands adopt
a fractal structure as a function of α. This energy spectrum, plotted in Fig. (1.2), is commonly
known as Hofstadter butterfly and was experimentally observed for the first time in a microwave
waveguide by exploiting the analogy between the transfer matrix governing its transmittance and
the eigenvalues of the Harper-Hofstadter Hamiltonian [39].

We can shine more light into the particular structure of the spectrum by considering rational
values of α, i.e. α = p/q, where p and q are integer numbers. Due to the spatial dependence of the
hopping phase describing the gauge field in Eq. (1.58) the d periodicity of the square lattice is not
inherited by the Hamiltonian. Nevertheless, periodicity is recovered if one considers the so-called
magnetic unit cell, consisting of a 1× q plaquette. Therefore, a Harper-Hofstadter model featuring
a magnetic flux α = p/q will have q bands, since in a tight-binding model the number of bands is
determined by the number of sites per unit cell.

We can now apply the concepts introduced in Sec. 1.1 in order to study the nontrivial topology
of the bulk energy bands and the robust chiral modes of the surface. The Chern number Cν of the
ν-th band is given by Eq. (1.7) and depends on the magnetic flux α trespassing each plaquette of
the system. For instance, it can be shown [40] that the α = 1/4 Harper-Hofstadter model features
four bands of Chern numbers

C1 = −1, C2 + C3 = 2, C4 = −1. (1.59)

If one considers a semi-infinite lattice with a finite number of sites in the y direction then the
TKNN formula [2, 26, 41, 42] dictates that the Hall conductance is given again by Eq. (1.56).

When a finite number of bands are completely filled the system behaves as a topological insu-
lator, i.e. it features an insulating bulk but it can also host topologically protected chiral modes
at its surface according to the bulk-edge correspondence. The sum of the Chern numbers of the
occupied bands below a given gap determines the difference between the number of edge modes
with positive (N+) and negative (N−) chirality that exist inside that gap, i.e.

N+ −N− =
∑

Eν<Egap

Cν . (1.60)
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Figure 1.2: Energy bands of the Harper-Hofstadter model. The vertical axis is the magnetic flux
Φ running from 0 to Φ0, while the horizontal axis represents the energy, running from −4J to 4J .
Figure taken from [36].

In the equation above, Eν is the energy of the ν-th band and Egap is the energy of the considered
gap. For instance, in the case of the Harper-Hofstadter model with α = 1/4 the bottom gap
features an edge state with CCW chirality, the central gap is not well-defined as the two central
bands touch at several Dirac points and therefore no propagating edge states can exist, and in the
upper gap we find an edge sate propagating in the CW direction.

To conclude this Section, we note that the Landau level energy structure of the continuum
IQH effect can be recovered from the butterfly-like Harper-Hofstadter spectrum in the limit of
small flux density, i.e. α = 1/q and q → ∞. In fact, in Ref. [32] it was demonstrated that the
Harper-Hofstadter energy bands near rational values of α can be written as a superposition (given
by a unitary matrix) of the continuum Landau levels. When q → ∞ this unitary change of basis
is given by the identity matrix, granting a one-to-one correspondence.

1.4 Quantum spin-Hall systems
In this Section we introduce quantum spin-Hall systems, which exhibit a nontrivial topology and
at the same time preserve time-reversal symmetry.

Both the continuum IQH effect and the Harper-Hofstadter model relied on the presence of a
magnetic field breaking time-reversal symmetry in order to generate a nontrivial topology, i.e. an
energy band structure featuring finite Chern numbers. On the other hand, in systems with time-
reversal symmetry, the Berry curvature satisfies Ωn(−k) = −Ωn(k) and, as we saw with Eq. (1.10),
this implies that the Chern number of non-degenerate bands must be zero. Even in the case of
degenerate bands the definition (1.7) can be straightforwardly generalized [43, 44] in order to show
that their Chern numbers must also be zero for 2D systems in which time-reversal symmetry is
preserved [45].

Apparently we are left with the intuition that time-reversal symmetry breaking is necessary
to obtain a nontrivial topology, at least in momentum space. However, in 2005 a new class of
time-reversal symmetry-preserving topological phase was proposed: the so-called quantum spin-
Hall insulators [46, 47]. Such systems are often called Z2 insulators, as they are characterized by
a topological invariant which can only take the values 0 or 1 depending on its trivial or nontrivial
nature, respectively. Quantum spin-Hall insulators consist of two copies of a Chern insulator,
each one associated to an opposite spin: up (↑) and down (↓). The magnetic field acting on each
spin points in opposite directions, and as a consequence the Chern numbers for spin up and down
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are the opposite, i.e. C↓ = −C↑. Overall, the total magnetic field applied is zero, time-reversal
symmetry is preserved, and the sum of the Chern numbers for the two spins is zero. As long as
spin-flipping processes are not present in the system, both spin components can be treated as two
uncoupled Chern insulators. From the the bulk-edge correspondence it follows that the number
of topologically protected edge states will be the same for each spin; however, they will propagate
with opposite chirality. These kind of surface modes are known as helical edge states.

In fermionic systems preserving time-reversal symmetry, even when spin-flip processes are
present, Kramers’ theorem grants topological protection for at least one pair of edge modes. The
theorem implies that given an eigenstate with a certain energy, its time-reversal counterpart must
be degenerate, forming a so-called Kramers pair. More importantly, a couple of helical states
forming a Kramers pair are orthogonal, meaning that no backscattering coupling both states can
be introduced without breaking time-reversal symmetry, for instance by means of the presence of
magnetic impurities. The first experimental realization of such a system was due to [48] using
HgTe quantum wells. Generalizations of quantum spin-Hall systems to higher dimensions have
also been proposed [49].

In the case of bosonic particles Kramers’ theorem does not hold anymore. This means that the
helical states of such a system will not be robust against terms coupling the two pseudospin degrees
of freedom. This poses a big challenge in order to study analogs of quantum-spin Hall systems
using photons or bosonic atoms. However, if no such coupling exists then the resulting edge states
will be granted topological protection even if one is dealing with bosonic particles [50, 11]. In
Sec. 1.5.2 we will see an example of such a system.

1.5 Beyond electron gases: quantum simulators

So far, we have focused on the topological properties of 2D electron gases in solid state systems.
However, Bloch’s theorem does not care about the particular nature of the particles involved: it
reflects a universal property of waves under spatially-periodic Hamiltonians. The same occurs
regarding the topology of the wavefunction describing some quantum-mechanical system: the con-
cepts presented in Sec. 1.1, such as the Berry curvature and the topological invariant Chern number,
are still valid beyond electron gases. Actually, even classical setups like acoustic structures [5] and
arrays of coupled pendula [6] can be engineered to display a topological dispersion. The question
arising at this point is whether there are advantages in studying topology in alternative systems.
Both from the theoretical and experimental point of view, the objective would be to employ quan-
tum systems granting a large degree of control over them, to the point that one could implement
particular Hamiltonians (such as the Harper-Hofstadter model introduced in Sec. 1.3) in wide pa-
rameter ranges, and allowing to produce neat measurements of the physically relevant quantities.
This would facilitate the exploration and understanding of new physics which otherwise would be
difficult to study using traditional solid state samples.

The idea of such a platform, whose scope goes far beyond that of topology, was proposed back
in 1982 by Richard Feynman [51] and receives the name of quantum simulator. Of course, the
study of the topological properties of electron gases in solid state materials continues attracting
attention and generating valuable results with a great impact in society. However, the complexity
of these systems and the little room for tuning the experimental parameters can pose extraordinary
challenges.

A plethora of systems have been proposed to be employed as quantum simulators and, in fact,
many of them serve very well this purpose. The most popular ones include ultracold atoms [52],
quantum fluids of light [53], photonic systems [54], superconducting circuits [55], and trapped
ions [56]. Today, these artificial systems are interesting on their own, leading to completely new
observations beyond their electronic counterpart, and some implementations are even strong can-
didates to build a functional quantum computer.

In this Thesis we will focus on the case of ultracold atoms and, especially, photonic systems.
This, of course, arises some particular difficulties: we saw that breaking time-reversal symmetry
is a necessary condition to reproduce IQH physics. Nevertheless, atoms and photons are neutrally
charged particles, and therefore, it seems impossible that they can mimic the dynamics of charged
particles in a magnetic field. In both cases several strategies have been developed in order to design
synthetic gauge fields. For photons, however, even more challenges are present: they are bosons,
massless, and they have an intrinsic non-equilibrium nature. In the following Subsections we will
see how to overcome these difficulties.
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1.5.1 Cold atoms
Dilute gases of neutral atoms cooled down to a temperature range between 10−6 and 10−9 K
have gained a reputation as the leading platform where to study Bose-Einstein condensation and
superfluidity [57]. This is a consequence of the highly-developed experimental techniques available
to manipulate neutral atoms using laser light and magnetic fields [58]. In addition, one can explore
the cloud properties by means of time-of-flight experiments, absorption imaging, and even quantum
gas microscopes with single-atom resolution [59, 60].

For instance, the laser beams can be appropriately designed in order to subject the atoms to
different trapping potentials (harmonic, box-like, etc.) and, even more importantly, to trap them
in optical lattices with the desired spatial periodicity [61, 62, 63]. This opened the door to the
study of topological band structures using neutral atoms [64, 65].

In the particular case of quantum Hall physics, neutral atoms can mimic the behavior of charged
particles under a magnetic field by employing different strategies resulting in an effective magnetic
field.

The most straightforward one [66, 67] relies on a mathematical analogy between the Lorentz
force experienced by a charged particle in a magnetic field and the Coriolis force in a rotating
reference frame, i.e.

FLorentz = qv ×B, FCoriolis = −2MΩ× v. (1.61)

In the equation above M and q are the mass and charge of the particle, v is its velocity, B = Buz
is the orthogonal magnetic field and Ω = Ωuz is the rotation frequency of the trap. We see that
if we set 2MΩ = qB the two expressions are the same.

It is also worthwhile to look at this analogy at the level of the Hamiltonian. A general Hamil-
tonian in a reference frame rotating at a frequency Ω is given by

HΩ =
p2

2M
+ V (r)−Ω · L, (1.62)

where V (r) is a trapping potential in the x − y plane and L is the angular momentum operator.
This Hamiltonian can be rewritten in the more suggestive form

H =
(p− qA(r))2

2M
+ V (r) + Vc(r), (1.63)

where the effective vector potential A and the effective centrifugal potential Vc(r) are given by

qA(r) = MΩ(xuy − yux), Vc(r) = −1

2
MΩ2r2. (1.64)

It can be easily shown that ∇ ×A gives B = 2MΩ/q, therefore justifying the analogy between
the Lorentz and Coriolis forces. The resulting centrifugal potential can be countered by adding an
additional harmonic trapping of the same frequency, i.e.

Vh(r) =
1

2
MΩ2r2. (1.65)

However, this approach requires a perfect balance between the centrifugal potential Vc and
the harmonic confinement Vh. This can be circumvented by resorting to an additional quartic
potential like in Ref. [68]. The setup can also suffer from anisotropies in the harmonic potential
that make difficult to balance the centrifugal one. This inconvenient can be tackled by employing
more refined experimental techniques like the so-called evaporative spin-up method [69].

Alternate strategies to generate a synthetic magnetic field for neutral particles include the
association of a Berry phase to the atom dynamics by employing appropriate optical and magnetic
fields [70, 71, 72, 73]. The Berry phase can mimic the Aharonov-Bohm phase collected by the
wavefunction of an electron in a magnetic field. As we already know, this leads to the introduction
of an effective vector potential known as Berry connection in the Hamiltonian [67]. This solution
was exploited by [74] in order to observe the nucleation of quantized vortices in a rubidium Bose-
Einstein condensate, therefore proving the existence of a synthetic gauge field for neutral atoms.
Nevertheless, this approach suffers from undesired thermal issues due to spontaneous emission and
the subsequent recoil heating in the atomic cloud.
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Artificial gauge fields can also be designed for neutral atoms in periodic potentials. The seminal
work of [75] introduced the fundamental concept of laser-assisted tunneling. This proposal consists
on a 2D lattice alternating columns loaded with atoms in two different internal states. In such a
system tunneling in the horizontal direction is only possible by means of laser beams coherently
transferring the atoms between the two internal states. This allowed to implement complex hop-
pings in the lattice whose effect on the atom dynamics resembles those of charged particles in a
magnetic field. This idea led to the experimental realization of the Harper-Hofstadter model for
cold atoms [76, 77].

Finally, it is worth mentioning an alternative approach which relies on the temporal modulation
of some external parameters of the Hamiltonian. This is known as Floquet engineering. In the
case of a shaken optical lattice in which the modulation breaks time-reversal symmetry complex
hoppings can be obtained [78]. This led to the first experimental realization of the Haldane
model [79].

1.5.2 Photonic systems

Possibly the most fundamental difference between solid state setups and photonic systems is the
nature of the constituent particles: electrons are fermions, while photons are bosons. We have
already encountered one of the consequences of such a difference: in the case of bosonic quantum
spin-Hall systems studied in Sec. 1.4 Kramers’ theorem does not hold and the helical surface modes
lose their topological protection whenever the two pseudospins are coupled.

At the many body level, the different quantum statistics translate in the different states that
these particles occupy at low temperatures. In the case of fermions, all the states below the Fermi
level are occupied with just one particle, while bosons form Bose-Einstein condensates where a
macroscopic number of particles occupies the lowest-energy state. In the case of optical systems
this picture is a bit different due to the intrinsic driven-dissipative nature of photons. This implies
that, typically, the ground state is the trivial vacuum and, in order to circumvent the absorption
by the material medium and the radiative losses, an external pumping mechanism is needed in
order to refill the system with photons. As a consequence of this balance between pumping and
losses, optical systems are far from thermal equilibrium.

This, however, is not bad news at all, as the nonequilibrium nature of photons provides us
with a formidable set of probes and measurement tools which are not available in the solid state or
ultracold atoms cases. In fact, light radiated away by the system contains fundamental information
about the field distribution and the photon statistics inside the device. We can directly access this
information by imaging the emission in free space, or by collecting it locally by means of antennas
or waveguides. It is also possible to probe different parts of the system by injecting light only into
them.

Concerning the massless nature of photons, it does not constitute a problem as it is well-known
that the confinement inside a cavity provides the photons with an effective mass [80].

As we discussed at the beginning of the present Section, Bloch’s theorem is also valid for
electromagnetic waves under spatially-periodic Hamiltonians. This allows the existence of elec-
tromagnetic bands and gaps in metamaterials known as photonic crystals, which are engineered
by means of a spatially periodic variation of the electric permittivity and magnetic permeability
tensors [8, 9]. Such photonic bands are also characterized by Chern numbers that vanish unless
time-reversal symmetry is broken. This key idea is at the bottom of the topological photonics field.

It turns out that, as in the case of dilute atomic gases, it is possible to design artificial gauge
fields for photons. The first proposal due to Haldane and Raghu [81, 82] contemplated the realiza-
tion of photonic crystals using magneto-optic materials that break time-reversal symmetry. This
led to the observation of the photonic equivalent of the chiral edge modes of the IQH effect in the
microwave regime [10]. These works represent the roots of the topological photonics field.

After that, many alternative structures have been proposed in order to develop a better integra-
tion with state of the art silicon photonics technology operating at telecommunication wavelengths
(around 1.5 µm). An important example is the all-dielectric quantum spin-Hall photonic crystal de-
signed by [11], which realizes two copies of a Harper-Hofstadter topological insulator. This platform
consists on an array of silicon ring resonators, each supporting a pair of degenerate whispering-
gallery modes which propagate in clockwise and counterclockwise directions. These constitute
the two pseudospins of the system. Globally, time-reversal symmetry is preserved, but the links
connecting different resonators realize opposite complex hopping phases for the two pseudospins.
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Therefore, photons belonging to different pseudospins experience opposite artificial magnetic fields
and belong in photonic bands featuring opposite Chern numbers. An optimized design guarantees
a negligible backscattering coupling the two pseudospins, which preserves the robustness of the
topological helical modes.

It is also worth mentioning that propagating geometries in which the z coordinate plays the role
of time can also be employed to mimic the effects of the temporal modulation of the Hamiltonian.
A seminal example is provided by the evanescently coupled helical waveguides of [83].

Regarding the generation of synthetic gauge fields for photons in the continuum, the experiment
of [84] employed a twisted multimode cavity which induces a photon rotation in each round-trip.
Due to the previously commented analogy between rotating reference frames and magnetic fields,
this design allowed the observation of photonic Landau levels as in the IQH effect.

1.6 Non-Hermitian topological photonics
In the previous Sections we reviewed the fascinating properties that topologically nontrivial mate-
rials can display. We learned that, although originally developed for electron gases in solid state
devices, topology in physics is a universal phenomenon emerging from the geometrical properties
of the wavefunction of a quantum system. Therefore, all these concepts and ideas can also be
applied in other platforms, like cold atomic gases and photonic setups. The latter, in particular,
promise exciting applications like waveguide propagation immune to backscattering, but also pose
exciting challenges rooted in the nonequilibrium nature of photon gases.

What sets topological photonics apart from every other field is the possiblity to introduce active
materials into such topologically nontrivial structures in order to study the interplay between gain
and losses. This gave rise to the so-called topological lasers or, in short, topolasers. Of course, the
most promising application is to promote lasing in the topologically protected chiral edge modes.

In general, disorder is present in laser cavities due to fabrication defects, operational degrada-
tion, malfunctioning, etc. Disorder gives rise to light localization at defects, ultimately resulting
in a degraded overlap between the lasing mode and the gain profile. As a consequence, the laser
performance decreases due to lower output coupling, multimode lasing, and reduced slope effi-
ciency. These issues are enhanced in arrays of coupled laser resonators featuring a large number
of elements (employed to produce high output powers). The topological protection of the edge
modes against local perturbations, however, can lead to an improved performance with respect to
topologically trivial lasing, and it is expected to grant robust single-mode emission.

The existence of non-Hermitian topological insulators and the robustness of the protected edge
modes under the presence of gain remained as open questions for a long time [85, 86]. Recently,
several experiments have demonstrated that lasing in topologically protected edge states is possible
in such systems. In this Chapter we discuss the most promising platforms in which topological
lasing has been achieved. For a more comprehensive review, we refer the reader to [12].

1.6.1 The one-dimensional topolaser
In this Subsection we focus on the first experimental realization of a topolaser: a one-dimensional
(1D) chain of exciton-polariton micropillars implementing the Su–Schrieffer–Heeger (SSH) model [87].

A schematic illustration of the SSH model can be found in panels (a) and (b) of Fig. 1.3. It
consists on a 1D chain with a unit cell formed by two sites, labeled a and b, each hosting one state
of the same energy. The intracell coupling t is, however, different from the intercell coupling t′.
The Hamiltonian reads

H =
∑
j

(
tb†jaj + t′a†j+1bj + h.c.

)
, (1.66)

where aj (bj) are the annihilation operators on the site a (b) of the unit cell j. As we known
from textbook solid state physics, a tigh-binding model featuring a two-sites unit cell will have two
bands separated by a gap.

The topology of the system is encoded in the so-called winding number, which is a topological
invariant, analog of the Chern number in 1D. It is given by

W =
1

2π

∫
BZ

∂φ(k)

∂k
dk. (1.67)
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Figure 1.3: (a) and (b) show sketches of the SSH model in the trivial and topological cases, re-
spectively. The resulting energy eigenvalues are found in panels (c) (trivial) and (d) (topological).
(e) shows a SEM image of the zig-zag micropillars chain. (f) and (g) show a sketch of the spatial
distribution of the px and py modes in the lattice, respectively. (h) displays the photoluminiscence
emission of the bands as a function of their energy and crystal momentum when the edge of the
chain is excited. (i) shows the emission in real space of some of the bands displayed in (h). Figure
adapted from [87].

The winding number reflects the number of times that the phase of the energy eigenvectors φ winds
around the origin. It can only take the values 0 (trivial) when t > t′, or 1 (nontrivial) when t′ > t.
If one considers an infinite chain, no physical consequence should emerge from this distinction, as
one is free to choose a different unit cell, therefore interchanging the values of t and t′. However,
in a finite lattice the unit cell is univocally determined by the first site. As a consequence, when
W = 0 no edge states appear within the gap (Fig. 1.3c), but when W = 1 each edge site hosts a
zero-dimensional (0D) topological edge state (Fig. 1.3d) in the middle of the gap.

The reader may wonder what is the origin of the nontrivial behavior of the SSH model. After all,
time-reversal symmetry is preserved, and the model does not fall into the category of quantum spin-
Hall systems. Topology in this case stems from the geometry of the model: the SSH Hamiltonian
anticommutes with the σz Pauli matrix, and therefore presents a chiral symmetry (manifested in
the fact that the Hamiltonian is purely off-diagonal in the basis of the (a,b) sites of each unit cell).
This means that the lasing edge modes will be robust against disorder in the hopping parameters
t, t′, which preserves the chiral symmetry. Remarkably, the edge modes also exhibit robustness
against local perturbations breaking chiral symmetry, such as a change in the onsite energy of a
micropillar, as long as these perturbations remain smaller than the bandgap.

The experimental implementation of the SSH model of [87] consists on an active zig-zag chain
of semiconductor micropillars (Fig. 1.3e). The coupling between photons and excitons gives rise
to hybrid quasiparticles with both light and matter properties known as polaritons [53]. Each
micropillar hosts a quantum well embedded by distributed Bragg reflectors to confine photons
inside it. These display a series of collective photonic modes labelled by their angular momentum
symmetry: s, p, d, etc. The SSH model is reproduced by exploiting the different spatial shape
of the px and py modes, which controls the strength of the overlap between intracell and intercell
micropillars: The subspace of the px modes (Fig. 1.3f) gives rise to the trivial case at if features
t > t′, while that of the py modes (Fig. 1.3g) exhibits a nontrivial topology as couplings in this
case satisfy t′ > t.

In order to obtain polariton lasing, the authors of Ref. [87] optimized the gain for the p modes
and optically pumped the chain using a continuous-wave laser. When the elliptical spot of the
laser is placed at the edge of the lattice, emission in momentum space (Fig. 1.3h) reveals the s,
p and d bands, but also the appearance of an edge mode within the p bands. When we look at
the emitted intensity in real space (Fig. 1.3i) we observe that, at the corresponding energies, the p
modes are extended in all the optically pumped area, while the edge state is confined to the edge
micropillar.
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Figure 1.4: Sketches of the unit cell of the nontrivial square lattice (a) and of the trivial triangular
lattice (b). To their right one can find their respective energy band diagrams. (c) SEM picture of
the topolaser. (d) Real-space camera image of the optically-pump device. (e) Emission power as
a function of the pump density of the driving laser ρ and of wavelength. (f) Emission power as a
function of wavelength for opposite directions of the magnetic field. Figure taken from [12], who
adapted it from [88].

1.6.2 The two-dimensional IQH laser

Of course, having a point-like topologically-protected edge state was already a great success. How-
ever, 0D modes do not propagate, which leaves out of reach some of the most appealing properties
of topological laser emission, like chiral transport immune to backscattering defects. Propagat-
ing 1D edge modes can instead be obtained by employing a 2D photonic topological insulator.
We know from Sec. 1.1 that the most straightforward route to open a topological gap is to rely
on time-reversal symmetry breaking. This is exactly what was proposed by Haldane and Raghu
in Ref. [81, 82] in order to produce the analog IQH effect for photons. Such a system was first
implemented by Ref. [10] in the microwave regime using a 2D photonic crystal made of ferrite
rods, which is a magneto-optic material that breaks time-reversal symmetry for photons when an
external magnetic field is applied. This led to the first observation of unidirectional photonic edge
modes, which furthermore were found to be topologically protected against backscattering caused
by a defect inserted in the lattice boundaries.

Motivated by the promising perspectives that the addition of gain to such a system holds, the
first 2D topolaser was built by Ref. [88]. The authors employed a square lattice formed by star-
like unit cells made of an active multi-quantum well structure on top a magneto-optic material
(Fig. 1.4a). The band structure of this lattice under a uniform magnetic field perpendicular to the
lattice plane shows a topological band gap (green-shaded region). The sum of the Chern numbers
of the bands below this gap gives |

∑
C| = 1, which implies the existence of a chiral edge state in

the lattice surface. This nontrivial square lattice was embedded inside a trivial triangular lattice
with cylindrical air-hole unit cells (Fig. 1.4b). The band structure of this lattice features a broad
gap (yellow-shaded area) even in the absence of the external magnetic field. In this case the sum
of the Chern numbers of the bands below this band gap gives

∑
C = 0, and therefore this lattice

cannot host chiral surface modes. The dimensions of the two lattices were chosen to overlap their
band gaps around 1.5 µm, where the gain of the active material peaks. The edge modes are probed
by means of a defect waveguide evanescently coupled to the square lattice. This was created by
removing a line of air holes in the triangular lattice.

In order to test the topological protection of the edge states against local perturbations, an
arbitrary-deformed geometry square lattice was designed (Fig. 1.4c) 3. The external magnetic field
was turned on and the system was probed by means of optical pumping with a laser. Fig. 1.4d
shows a real-space camera image of the device, where the edge mode is clearly seen in the boundary
between the two lattices. The authors also showed that this edge mode disappears when the

3The authors claim that their topological photonic crystal has a USA map-like shape. We kindly advise the
reader to consult a tea leaves reader in order to get a more founded insight.
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Figure 1.5: (a) Plaquette of the quantum spin-Hall insulator based on an array of silicon ring
resonators implementing two copies of the Harper-Hofstadter model (see [11]). (b) The chiral
helical mode is able to bypass a defect as a consequence of its topological protection. (c) SEM
image of the active spin-Hall topolaser of [13]. (d) Output intensity as a function of the pump
intensity for topological (with flux per plaquette α = 1/4) and trivial (α = 0) lattices. (e) Emission
spectra for the two lattices. (f) Lasing response of the topological lattice in the presence of two
defects intentionally inserted in the perimeter. (g) The same for the trivial lattice. Figure adapted
from [11] and [13].

external magnetic field is removed (not shown in the Figure). Fig. 1.4e displays the emission power
as a function of both the pump power density of the driving laser ρ and of wavelength. By increasing
ρ, a threshold appears separating the trivial (non-lasing) regime from the spontaneous emission
(lasing) regime. Remarkably, laser emission takes place at a single wavelength. The chiral character
of the edge mode is confirmed by Fig. 1.4f, which shows the output of the probing waveguide. When
the direction of the external magnetic field is reversed, the emission through the output waveguide
is strongly suppressed, indicating that the edge mode has switched its propagation direction.

1.6.3 Quantum spin-Hall lasers

This Section is devoted to present topological lasers based on quantum spin-Hall insulators where
time-reversal symmetry breaking is not required in order to obtain a nontrivial topology. Such
systems were introduced in Sec. 1.4.

In particular, we will focus on topological lasers built upon the work of [11] in a passive (with-
out gain) platform. This system consists on a 2D square lattice of silicon ring resonators, each
supporting two degenerate whispering-gallery modes that propagate in clockwise (CW) and coun-
terclockwise (CCW) directions. As a result, counterpropagating photons can be considered as
carrying an opposite pseudospin-1/2. The site resonators forming the square lattice are connected
via anti-resonant link resonators whose position and length is designed in such a way that pho-
tons circulating in a closed path around a plaquette in different directions get the opposite complex
phase (see Fig. 1.5a). This implements two copies of the Harper-Hofstder model where photons be-
longing to different pseudospins experience opposite synthetic gauge fields. However, time-reversal
symmetry is globally preserved as the magnetic fields for each pseudospin add up to zero.

As we learned in Sec. 1.4, a bosonic quantum spin-Hall system requires a negligible coupling
between the two pseudospins in order to grant topological protection to the helical edge modes.
This is, of course, the most critical point of the realization of [11]. However, the authors optimized
the lattice by using directional couplers between ring resonators in order to obtain a very weak
backscattering causing photons to change propagation direction. As a result, they observed the
chiral helical states and demonstrated their immunity against local disorder such as a missing
resonator on the lattice boundary (Fig. 1.5b).

The active version of such a platform was implemented by [13] by employing ring resonators
built on top of InGaAsP quantum wells (Fig. 1.5c). One of the corner resonators is coupled to
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Figure 1.6: (a) SEM image of the quantum spin-Hall lattice of Taiji resonators (TJRs). (b) SEM
image of the unit cell of the lattice. (c) Field distribution in an individual TJR, as obtained from
finite-element simulations. (d) Measured spatial intensity profile when the perimeter of a lattice
with flux per plaquette α = 1/4 is optically pumped. Figure taken from [13].

an output waveguide that can be harnessed to assess the edge modes chirality. When the authors
optically pumped the perimeter resonators of the lattice, they observed lasing in the helical modes.
The topolaser features a larger slope efficiency compared with trivial lasing in a lattice with α = 0
(Fig. 1.5d) and a single-wavelength spectrum around 1.5 µm (Fig. 1.5e). The topological protection
is demonstrated when one of the resonators is removed from the perimeter: the helical modes are
able to circumvent the defect and continue propagating (Fig. 1.5f), while in the trivial lattice lasing
occurs in separated sections (Fig. 1.5g).

Of course, lasing in the topologically protected helical modes of a quantum spin-Hall lattice
relies on the absence of coupling between the two pseudospins, i.e. on the lack of backscattering
causing photons to reverse their propagation direction. In the setups of [11, 13] this is measured to
be negligible thanks to an optimized lattice design and a well-established fabrication process leading
to the absence of defects. However, even if these conditions are met, operational degradation can
introduce disorder and rule out the topological protection of the helical modes.

In the next Subsection we will comment about the use of nonreciprocal elements in the experi-
ments of [13] in order to grant topological protection to a single pseudospin even in arrays featuring
spurious backscattering.

1.6.4 Nonreciprocity and quantum spin-Hall helical modes

Lorentz reciprocity is a general property of linear media characterized by spatially-symmetric elec-
tric permittivity and magnetic permeability tensors. In practice it implies that the transmittance
through a reciprocal device must be direction-independent. Nonreciprocal devices are therefore
necessary in order to build optical isolators allowing light to propagate in a certain direction only.
The most common pathway employed in order to break reciprocity relies on the use of magneto-
optic materials that break time-reversal symmetry. However, this is not the only possibility. For
instance, as we will show in Chapter 2 one can exploit the Kerr nonlinearity of the material in de-
vices breaking spatial-reversal symmetry in order to achieve a direction-dependent transmittance.
We will study into detail Lorentz reciprocity and its implications in Sec. 2.2.

The authors of [13] decided to employ the latter route in order to preserve the topological pro-
tection of a single pseudospin of the quantum spin-Hall laser even in the presence of backscattering.
The key ingredient is the so-called Taiji resonator (TJR), an all-silicon dielectric device breaking
reciprocity solely due to the combination of nonlinearities and its parity-symmetry breaking shape.
This consists of a ring resonator embedding an S-shaped waveguide which recirculates light from
one of the two degenerate whispering-gallery modes supported into the other one, but forbids the
opposite process. Of course, the direction of the S waveguide can be arbitrarily chosen in order to
promote lasing in the desired pseudospin.

The TJR was employed as the site resonator of the active quantum spin-Hall insulator of [13]
(see Fig. 1.6). The authors found that power recirculation through the S-like waveguide of the
TJRs led to lasing in the favored pseudospin with more than 12 dB of intensity difference with
respect to the opposite pseudospin. Fig. 1.6d shows the emitted intensity when the perimeter of
a lattice featuring flux per plaquette α = 1/4 is optically pumped. It can be clearly seen that the
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majority of light exits the system via one of the two output couplings. This implies that intensity
in the lattice is circulating predominantly in the CCW pseudospin.

This is great news: TJRs can be employed to solve the problem of pseudospin coupling in active
bosonic quantum spin-Hall insulators, as they rule out the possibility of lasing in the unfavored
pseudospin. However, a clear theoretical analysis of the pseudospin selection by active TJRs is still
needed. Such a theory must take into account how does backscattering affect this process, and
what level is tolerable. Also, further research about the mode competition for the gain saturation
between the two surviving helical modes belonging to the same pseudospin is necessary. In the
following Chapters we will shine more light on these open questions regarding the nonreciprocal
behavior of TJRs and their role in quantum spin-Hall topolasers.

1.7 Concluding remarks
Prior to start discussing our original results, we would like to summarize the most important
messages of the present Chapter.

The nontrivial topology of the energy bands of a given physical system stems from the geomet-
rical properties of the wavefunction that describes it, which are encoded by means of an integer
number known as Chern number. This is a topological invariant: its value cannot be changed by
local perturbations preserving the band structure of the system. This has the remarkable con-
sequence of producing chiral edge states at the boundaries of a topologically nontrivial material
where the topological gap must be closed. A material hosting topological edge states while simulta-
neously presenting an insulating bulk is known as topological insulator. Although generalizations
for interacting particles exist, in this Chapter we have focused on the noninteracting single-particle
picture.

The most straightforward path to obtain a finite Chern number is to break time-reversal sym-
metry, for example by means of an external magnetic field. These are the so-called integer quantum
Hall (IQH) systems. However, it is also possible to achieve a nontrivial topology while preserving
time-reversal symmetry. This is realized in the so-called quantum spin-Hall effect, which features
particles belonging to two different spins that are subjected to opposite gauge fields. As a result
one has two copies of a topological insulator, one for each spin, that display counterpropagating
edge modes labelled as helical modes. For fermionic particles even though spin-coupling processes
are present at least a pair of helical modes is preserved; however in bosonic spin-Hall systems the
helical modes are not robust against spin coupling.

Even though this physics was discovered in 2D electron gases the same behavior arises in
quantum simulators like cold atoms and photonic systems. These platforms have the advantage
of offering a larger degree of experimental control and parameter tunability, as well as highly-
developed measurement techniques that cannot be applied in electron gases. In particular, the
advent of topological photonics expanded the landscape of topological phases of matter due to
the unique features of photons, like their bosonic and non-conservative nature. For instance, non-
Hermitian topological photonics aims at exploring the interplay between topology and systems
with gain and losses. The so-called topological lasers result from the addition of a saturable gain
to the chiral edge states of a topological insulator, and have been shown to display an enhanced
efficiency and robustness against disorder which outperforms their trivial analogs.

Very recently, a quantum spin-Hall laser was realized in a lattice of silicon ring resonators in
which the two counterpropagating whispering-gallery modes supported by each resonator play the
role of the two opposite pseudospins [13]. Backscattering coupling counterpropagating photons was
very small and the topological protection of the helical modes was preserved. However, Ref. [13] also
showed that a better strategy consists on promoting lasing in a single pseudospin by employing the
so-called Taiji resonators (TJRs) instead of ring resonators. TJRs are ring resonators embedding
an S-shaped element that recirculates the backscattered light into the lasing pseudospin.

The next Chapters are devoted to a complete study of nonlinear TJRs and their connections
with Lorentz reciprocity breaking (Chap. 2), dynamical time-reversal symmetry breaking in the
presence of a saturable gain (Chap. 3), and their use as optical isolators blocking counterpropa-
gating light (Chap. 4). We finally capitalize on our insight about such devices to investigate the
quantum spin-Hall laser made of TJRs (Chap. 5).
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Chapter 2

Lorentz reciprocity breaking in a single
nonlinear Taiji resonator

In this Chapter we demonstrate an effective, nonlinearity-induced non-reciprocal behavior
in a passive non-magnetic multi-mode Taiji resonator. Non-reciprocity is achieved by a combination
of an intensity-dependent refractive index and of a broken spatial reflection symmetry. The work
presented in this Chapter was carried out in collaboration with the experimental group of Prof.
Lorenzo Pavesi at the University of Trento 1. Our main results were published in [17].

Continuous wave power dependent transmission experiments show non-reciprocity and a direc-
tion dependent optical bistability loop. These can be explained in terms of the unidirectional mode
coupling that causes an asymmetric power enhancement in the resonator. The observations are
quantitatively reproduced by a numerical finite-element theory and physically explained by an an-
alytical coupled-mode theory. Our results represent an important step towards the miniaturization
of nonreciprocal elements for photonic integrated networks. Overall, Taiji resonators have excit-
ing applications regarding single-mode lasing (see Chapter 3), optical isolators (see Chapter 4),
and large arrays where to study the interplay between topological and non-Hermitian effects (see
Chapter 5).

2.1 Introduction
Lorentz reciprocity is a fundamental property of electromagnetic fields propagating in linear and
non-magnetic media [89]. In optics, it imposes that transmission through any device built by such
media is independent on the direction of propagation. However, nonreciprocal elements such as
optical isolators [15] play a crucial role in a variety of technological applications. Such devices
only allow the transmission of signals in a certain direction: hence, they are employed to grant the
appropriate operation of lasers in spite of spurious back-reflections and noise, and as the analog of
diodes for photonic integrated circuits [90, 91, 92].

The usual path to optical non-reciprocity relies on employing magnetic elements that explicitly
break the time-reversal T symmetry [93, 94, 10, 95, 96, 97, 98]. Due to the technical challenges
associated to the monolithic integration of such elements into integrated photonics devices, al-
ternative strategies compatible with state-of-the-art photonic technologies are being explored to
circumvent Lorentz reciprocity. Time-dependent modulations of the material refractive index have
been used but their operation requires an external driving field for the modulation and a large on-
chip footprint [99, 100, 101, 102, 103]. Since the reciprocity theorem crucially relies on the linearity
of the field equations, another promising avenue is to exploit optical nonlinearities of materials. A
first configuration involved a cascade of two nonlinear resonators with different properties, which
made transmission strongly direction-dependent [104]. Similar non-reciprocal devices were then

1R. Franchi and S. Biasi performed the experiments. A. Muñoz de las Heras derived the theoretical models and
performed the numerical simulations.
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Figure 2.1: a) Optical image of the Taiji resonator (TJR) coupled to a bus waveguide. In the
forward configuration (light blue arrows) light enters the sample from the left; in the reverse
configuration (dark blue arrows) light is injected from the right. The dashed arrow represents
the reflected light in the reverse case. The orange arrows indicate the propagation direction of
clockwise (+) and counterclockwise (−) modes. b,c) Simulated intensity I (in units of the input
intensity Iin) inside a TJR operating in the forward (b) and reverse (c) configurations for the
same excitation frequency and power. The intensity maps are produced using the finite-element
approach of Eq. (2.17). The physical parameters were chosen in order to improve the readability
of the Figure.

studied exploiting complex resonator designs [105, 106], PT -symmetric coupled cavities [107, 108],
and two-beam interactions [109, 110]. Related nonlinearity-induced topology and unidirectional
propagation phenomena were experimentally realized in [111].

In this Chapter, we combine material nonlinearities and a broken spatial reflection symmetry
to observe an effective breaking of Lorentz reciprocity in a single multi-mode Taiji resonator. Taiji
micro-ring resonators (TJRs) are formed by a microring with an S-shaped waveguide across as
sketched in Fig. 2.1a. In the linear regime, reciprocity of the transmission across a TJR coupled
to a bus waveguide is preserved and the effect of the S-shaped waveguide element is limited to
an efficient unidirectional reflection [112]. Still, different optical powers are accumulated in the
TJR depending on the direction of illumination (Fig. 2.1b,c). At large input powers this leads to a
direction-dependent effective nonlinearity and, thus, to an effective non-reciprocal transmission. In
addition to providing an intuitive explanation to the mechanism underlying this key nonreciprocal
behavior, we also show the important practical advantages offered by TJR-based nonreciprocal
elements in silicon photonics: a smaller footprint than previous non-magnetic proposals; an intrinsic
degeneracy of the resonator modes which is protected by T -reversal without the need for any fine
tuning of the resonant frequencies of several devices; a reduced power threshold to non-reciprocity
due to the use of the inter-mode nonlinearity and of the spatial overlap of the two degenerate
modes.

The structure of the Chapter is the following: In Sec. 2.2 we study into detail Lorentz reciprocity
theorem, the restrictions it imposes on the transmittance through a photonic device, and how we
can overcome them. In Sec. 2.3 we develop an analytical coupled-mode theory of light propagation
across the TJR and we make use of it to illustrate the reciprocity breaking for a TJR operating
in the nonlinear regime. Sec. 2.4 presents all technical details of the experimental samples and
the optical setup and summarizes the finite-element model used to describe ab initio the light
propagation in our device. The experimental results are shown in Sec. 2.5 and compared to the
theory. Conclusions are finally drawn in Sec. 2.6.

2.2 Lorentz reciprocity theorem and Taiji resonators

In this Section we would like to say a few words about what is Lorentz reciprocity, where does it
stem from, its implications in the quest for optical isolation, and what strategies we can implement
in order to construct nonreciprocal devices. At the end of the Section we introduce nonlinear
TJRs and explain the physical mechanism by which they break reciprocity. More information
about Lorentz reciprocity and optical isolators can be found in [15].

Lorentz reciprocity is a general property of linear media featuring spatially-symmetric electric
permittivity ε and magnetic permeability µ tensors. Consider a couple of solutions to the Maxwell
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equations in a source-free medium. They must satisfy

∇×E1,2 = −iωµH1,2, ∇×H1,2 = iωεE1,2. (2.1)

After a bit of manipulation we can transform the equations above into the identity

∇ · (E1 ×H2 −E2 ×H1) = iω(E2εE1 −E1εE2 −H2µH1 + H1µH2). (2.2)

In the case in which ε and µ are symmetric tensors the right-hand side of Eq. (2.2) is zero and thus
we have

∇ · (E1 ×H2 −E2 ×H1) = 0. (2.3)

This is the Lorentz reciprocity theorem. We can get a more profound physical insight about it
by considering the electric currents J1,2 that give rise to the electric and magnetic fields E1,2 and
H1,2, respectively. Using Maxwell’s equations we can rewrite Eq. (2.3) as

J1 ·E2 = E1 · J2. (2.4)

This means that the field measured at one point generated by a source at a second point is the
same as the field measured at the second point due to the same source at the first point.

An important corolary of Lorentz reciprocity theorem is that, in the case of photonic devices,
transmission through such a reciprocal system must be identical if we interchange input and output.
Hence, isolation cannot be realized if the system is reciprocal. In order to understand this we
consider the scattering matrix S of such a device

b = Sa, (2.5)

which relates the input a = (a1, a2, ..., an)T and output b = (b1, b2, ..., bn)T field amplitudes in the
ports 1, 2, ..., n. We assume that each port supports only one mode.

We can write the guided electric and magnetic fields orthogonal to the propagation direction
as

Et,m = (ame
−iβmz + bme

iβmz)et,m, (2.6)

Ht,m = (ame
−iβmz − bmeiβmz)ht,m, (2.7)

where z points in the forward direction of each waveguide, et,m and ht,m are unit vectors lying on
the transverse x−y plane, and βm is the propagation constant of mode m. The orthonormalization
condition between modes at different ports reads

1

2

∫ ∫
em × h∗n · dS = δm,n, (2.8)

where δm,n is the Kronecker delta.
In particular, if we take the surface of the optical device to lie at z = 0, we can express the

electric and magnetic fields there as

Et,m = (am + bm)et,m, (2.9)
Ht,m = (am − bm)ht,m. (2.10)

For the sake of simplicity let us consider a device with two ports, labelled 1 and 2. Applying Gauss’
theorem to a pair of electric and magnetic fields satisfying Eq. (2.3) (namely E′, H′, and E′′, H′′)
and using the orthonormalization relation (2.8) we can write∫

E′ ×H′′ · dS = (a′1 + b′1)(a′′1 − b′′1) + (a′2 + b′2)(a′′2 − b′′2)

=

∫
E′′ ×H′ · dS = (a′′1 + b′′1)(a′1 − b′1) + (a′′2 + b′′2)(a′2 − b′2). (2.11)

The equation above can be simplified by employing the definition of the vectors a and b, giving

b′ · a′′ = a′ · b′′. (2.12)
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We now introduce the scattering matrix (2.5), and thus we get

a′
T
STa′′ = a′

T
Sa′′. (2.13)

This implies that the scattering matrix must be symmetric, i.e.

ST = S. (2.14)

In particular, this means that the off-diagonal elements must be equal, i.e. S12 = S21. Therefore,
transmission must be the same if we switch the input and output directions. This fact forbids the
possibility to build an optical isolator using reciprocal media. Such devices only display a non-zero
transmittance in a certain direction, and therefore we would need S12 6= 0 and S21 = 0 at the same
time.

A crucial question at this point is how we can circumvent the Lorentz reciprocity theorem.
Probably the most common path relies on breaking time-reversal symmetry by means of magneto-
optic materials. In the presence of a magnetic field (either externally applied or because the
material itself is ferromagnetic) this would result in asymmetric electric permittivity ε and mag-
netic permeability µ tensors. As a consequence, the right-hand side of Eq. (2.2) will in general yield
a finite quantity, because matrix multiplication is not commutative. For example, the textbook
Faraday effect produces a polarization rotation with opposite signs for backwards and forwards
propagation. Some of the proposals relying on magneto-optic materials are based on waveguides
displaying different propagation constants when light travels in opposite directions [93, 96], non-
reciprocal losses [113], frequency splitting in resonators [94, 95], and the IQH effect for light in
topological photonic crystals [10].

It is also possible to obtain an asymmetric scattering matrix by means of a time-dependent
refractive index. This strategy relies on the presence of an external driving field producing a
propagating perturbation of the refractive index which couples two specific forward-propagating
modes but does not couple pairs of backward-propagating modes [114, 100].

However, time-reversal symmetry breaking is not the only possibility to break reciprocity. For a
nonlinear material one has that the electric permittivity tensor ε depends on the electric field, and
therefore E1ε(E2)E2 6= E2ε(E1)E1. This implies that in general one cannot neglect the right-hand
side of Eq. (2.2), as we did to demonstrate Lorentz reciprocity theorem in linear media. Therefore,
another class of nonreciprocal systems rely on exploiting optical nonlinearities. We can mention
devices based on Raman amplification [115], stimulated Brillouin scattering [116], chirped nonlinear
photonic crystals [117, 118], and the direction-dependent resonance frequency shift produced by a
Kerr optical nonlinearity [109, 110].

The nonlinear Taiji resonator (TJR) studied in this Thesis falls in the latter category. As it is
shown in Fig. 2.1a, TJRs support whispering-gallery modes propagating in clockwise (CW) and
counter-clockwise (CCW) directions, whose pairwise degeneracy is protected by T -reversal. The
effect of the S-shaped waveguide is to unidirectionally couple light from the CW mode into the
CCW one, while both modes display the same effective loss rate. In the forward configuration
(Fig. 2.1b), light accesses the bus waveguide from its left side and excites the CCW mode of the
resonator through a directional coupler, but does not propagate into the S-shaped waveguide. On
the other hand, in the reverse configuration (Fig. 2.1c) light enters the bus waveguide from the
right and excites the CW mode; via the S-shaped waveguide it partially transfers excitation into
the CCW one. The resulting increase of the total light intensity stored in the resonator, combined
with an intensity-dependent nonlinear refractive index, is at the heart of the Lorentz reciprocity
breaking.

In the following Section we will employ the coupled-mode equations for the field amplitudes in
each mode to demonstrate that this asymmetry leads to a different transmittance in each configu-
ration.

2.3 Theory
This Section is devoted to introduce the temporal coupled-mode theory [119, 120] that will guide
our experimental analysis. In particular, here we make use of this simplified model in order to
show that the optical power inside a nonlinear TJR exhibits a direction-dependent bistability loop
when probed with large-intensity signals. This ultimately gives rise to parameter ranges where
transmittance is very different in the two configurations.
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a)

b)

Figure 2.2: a) Simulated internal power Pring for a downwards frequency sweep (black arrow) at
two input powers P . Light (dark) blue curves refer to the forward (reverse) configuration. b)
Simulated transmitted power PT for a fixed frequency ω − ω0 ' −4γT in the forward and reverse
configurations. Black arrows indicate the sweep direction. Black dashed lines label the threshold
powers. The inset shows the ratio P

(for)
T /P

(rev)
T of the transmitted powers in the forward and

reverse configurations along a decreasing P ramp. Parameters for both panels: L ' 850 µm,
LS = L/2, kw = kS = 0.14, γA = 5.7 × 109 s−1, nL = 1.83, nT = 8.8 × 10−13 cm2/W, A = 0.66
µm2, and g = 1.

We start by writing the coupled-mode equations describing the electric field amplitudes in each
counterpropagating mode of the TJR. A complete derivation of these equations can be found in
Appendix A. Focusing on the neighborhood of a TJR resonance (with resonance frequency ω0),
let us assume a monochromatic excitation at ω, a weak coupling of the microring to the S-shaped
waveguide and to the bus waveguide (real valued coupling coefficients kS, kw � 1), and a power
dependent refractive index of the TJR n = nL + nNLI, where I is the optical intensity in the
TJR (see Fig. 2.1b,c) and nL, nNL are the linear refractive index and the nonlinear coefficient,
respectively. The steady state of the electric field amplitudes E± in the CW (+) and CCW (−)
modes reads

ωE+ = ω0E+ −
nNL

nL
ω0(|E+|2 + g|E−|2)E+ − iγTE+

− c

LnL
kwE

(R)
in , (2.15)

ωE− = ω0E− −
nNL

nL
ω0(|E−|2 + g|E+|2)E− − iγTE−

− c

LnL
kwE

(L)
in − i

c

LnL
2k2

Se
iωc nLLSE+ . (2.16)

The intensity inside the TJR is then given by I = ε0cnL|E+ + E−|2/2 (where ε0 is the vacuum
permittivity and c is the vacuum speed of light). In the equations above, L and LS are the microring
and the S-shaped waveguide lengths, and γT is the TJR loss rate (see later). E(L)

in and E(R)
in are the

input fields exciting the ring from the left and the right of the bus waveguide, while the output fields
to the left and to the right are E(L)

out =
√

1− k2
w E

(R)
in + ikwE+ and E(R)

out =
√

1− k2
w E

(L)
in + ikwE−,

respectively.
The strength of the nonlinearity is quantified by nNL = nK + nT which is the sum of the Kerr

nK and thermal nT nonlinearities. Of particular interest is the parameter g which describes the
nature of the TJR nonlinearity. g = 2 represents a spatially local Kerr nonlinearity [121, 122, 123]:
this value can be understood by thinking in terms of the Feynman diagrams from the two possible
processes in which counterpropagating photons can locally interact. On the other hand, g =
1 describes a thermo-optic nonlinearity [124] mediated by a homogeneous heating of the TJR
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……

Figure 2.3: Scheme of the modelled Taiji resonator (TJR) showing the electric field amplitudes E
inside each segment zj (delimited by the short transverse lines) and the transmission and coupling
amplitudes at each directional coupler (represented by the long transverse lines) tw,S,m and ikw,S,m.

depending on the total energy that is dissipated in it. Appendix A includes an explicit derivation
of these different factors, and also shows that intermediate situations in which both processes
contribute to nNL are described by g = (2nK + nT)/(nK + nT). In our specific silicon-based TJR,
we have nT � nK and thus g ' 1.

The total effective loss rate γT = γA + ck2
w/(2LnL) + ck2

S/(LnL) is the same for the CW and
CCW modes. It results from the sum of absorption γA and radiative losses into the bus and the
S-shaped waveguides. Yet, the last term of (2.16) shows the asymmetric mode coupling introduced
by the S-shaped waveguide: while all light lost by the CCW mode into the S-shaped waveguide
is radiated away, part of the light transferred by the CW mode into the S-shaped waveguide is
re-injected in the CCW mode. This is illustrated in Fig. 2.1b,c: In the forward configuration, only
the CCW mode is excited and no reflection occurs. In the reverse one, both modes are excited, and
marked interference fringes are visible in the intensity profile. As a result, for the same frequency
and input power, the unidirectional mode coupling leads to a larger intensity inside the TJR in
the reverse configuration than in the forward one.

While this asymmetry does not affect reciprocity in the linear regime of weak excitations [112],
it has a major impact on the nonlinear response to strong fields. In Fig. 2.2a, we show the numerical
prediction of the coupled-mode equations (2.15-2.16) for the internal power propagating in the ring
Pring = AI (with A the waveguide cross section). The input power P = Aε0cnL|Ein|2/2 is kept
at constant values while the frequency is scanned downwards across a resonance in forward and
reverse configurations. At low input power the usual Lorentzian peak is found; though, because
of the S-shaped waveguide, the internal power Pring is higher in the reverse configuration. For a
larger input power, the nonlinear refractive index causes a shift of the resonance proportional to
the TJR internal power. In our nNL > 0 case, the shift is towards lower frequencies. At sufficiently
large powers, both curves display a sudden downward jump right after the resonance, as typical
in optical bistability [125, 126, 127, 128, 129]. Note that the position of the jump depends on the
direction: the larger internal intensity in the reverse configuration allows for a larger shift of the
resonance before jumping. This difference is responsible for a frequency window where the internal
intensity in the two configurations is strikingly different.

This key feature is an example of the nonlinear breaking of reciprocity and is further illustrated
in Fig. 2.2b. Here, we show the simulated transmitted power PT as a function of the input power P
for a fixed incident frequency ω−ω0 ' −4γT in the optical bistability regime. As the input power
grows, PT displays a linear increase up to a threshold P1 where a sudden jump down onto another
stable solution occurs. On the way back, for decreasing P , the threshold P2 for the upwards jump
is such that P2 � P1. Thus, a bistability loop opens that can be understood as a metastability in
a first order phase transition. Once again, the different values of the internal intensity Pring in the
forward and reverse cases lead to markedly different values for P1 and P2. This results in intensity
windows where the transmitted powers in the two directions are very different, as shown in the
inset.
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Figure 2.4: Normalized transmittance T̃ as a function of the relative wavelength shift with respect
to the resonance wavelenght (∆λ) in an upwards ramp (indicated by the black arrow) for a TJR in
the forward (light blue) and reverse (dark blue) configurations. The dashed curves were calculated
by using the coupled-mode theory (c.m.), whereas the solid lines were obtained with the finite-
element model (f.e.). The incident power is taken to be P = 0.21 W. The parameters of the
simulations are those of Fig. 2.2.

2.4 Samples and optical setup

In order to verify our predictions, we fabricated integrated TJR devices using silicon oxynitride
(SiON) single mode channel waveguides as shown in Fig. 2.1a [112]. The waveguide cross section
is A = 0.66 µm2. As measured in [130] at a wavelength λ ' 1550 nm, nL = 1.83 and the linear
absorption coefficient α = 3.5 × 10−5 µm−1. We estimated nT = (8.8 ± 0.4) × 10−13 cm2/W
from the fit of our experimental data, much larger than the typical Kerr nonlinear refractive index
nK = 8 × 10−16 cm2/W of the material [130]. The length of the bus waveguide is approximately
the same on both sides of the TJR. In order to avoid undesired mode couplings, the ends of the
S-shaped waveguide have been designed with a particular geometry (looking as rhomboids in Fig
2.1a) which prevents back-reflections [131].

The optical setup employs a fiber-coupled continuous wave tunable laser operating at the wave-
length range spanning from 1490 nm to 1640 nm. Its output is coupled to an Erbium-Doped Fiber
Amplifier to get high power. Then, a polarization control stage sets the input light to the TM
(transverse magnetic) polarization. Light is coupled in the bus waveguide by butt-coupling through
a tapered fiber. The transmitted light is collected by a fiber and sent to an InGaAs detector. In
order to switch between the forward and the reverse configurations, the sample is simply turned
without any other change in the setup.

As it was reported in [112], the response of our samples is made more complicated by Fabry-
Pérot oscillations in the transmittance due to reflections at the bus waveguide facets. Even though
this does not affect the qualitative predictions of the coupled mode theory (2.15-2.16), a quan-
titative description requires taking this effect into account 2. Besides, the coupled-mode theory
is truncated at second order in the couplings kw,S, and therefore it is not valid if the condition
kw,S � 1 is not met, as occurs for some of our fit parameters (see next Section). To this purpose,
we have built a more refined finite-element model based on the solution of the nonlinear Helmholtz
equation in our specific geometry. As it is detailed in Appendix B and in [112], the ring resonator
as well as the S-shaped and the bus waveguides are appropriately segmented and propagation of
the forward- and reverse-propagating waves along each segment of length ∆z � λ is described by
the steady-state condition

E±(z ±∆z) = exp
{
i
[ (
nL + iα

c

ω

)
(2.17)

+nT
∆z

L

N∑
j=1

(
|E±(zj)|2 + |E∓(zj)|2

) ]ω
c

∆z
}
E±(z) .

2A complete study regarding the role of the reflections at the bus waveguide facets can be found in the follow-up
work [132].
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Figure 2.5: a) Normalized transmittance T̃ = T/Tmax as a function of the detuning ∆λ = λ− λ0

from the linear resonance wavelength for an upwards wavelength sweep (black arrow). The red
dotted line represents the experimental transmittance in the linear regime for an input power
P ' 0.01 W. The light (dark) blue solid curve corresponds to the experimental transmittance in
forward (reverse) configuration at a fixed input power P = 0.21 W. The black dashed lines are
theoretical fits of each experimental curve produced using Eq. (2.17). The inset gives a magnified
view of the region of strongest nonreciprocal behavior. b) Shift ∆λ0 of the resonance wavelength
as a function of the input power P for the resonance displayed in panel a). Light (dark) blue circles
correspond to experimental data in forward (reverse) configuration. The black dashed (dotted) line
is a linear fit to the theoretically calculated ∆λ0 in forward (reverse) configuration.

where the thermo-optic nonlinear refractive index of each element results from the averaged power
within it. In the equation above we are neglecting the contribution of the local Kerr nonlinearity
which, as we saw at the beginning of the present Section, is three order of magnitude smaller than
the nonlocal thermo-optic nonlinearity. A complete expression accounting for the two types can
be found in Appendix B. Mixing of the field in the different elements is provided by directional
couplers, while reflection at both ends of the bus waveguide is taken as lossless with reflection
amplitude ikm.

A diagram of the simulated device is shown in Fig. 2.3. The TJR is assumed to be at the center
of the bus waveguide. Whilst the sample employed in the experiment features an asymmetrical TJR
with an optimized shape in order to reduce backscattering of light, to facilitate the calculations we
employed a circular TJR with the same ring length.

In the following Subsection we show that this finite-element theory matches the coupled-mode
theory in the appropriate limits and can be used to quantitatively fit our experimental data.

2.4.1 Coupled-mode theory and finite-element model in the weak cou-
pling regime

Here we show that the finite-element simulations recover the coupled-mode theory results for the
transmittance across the single nonlinear Taiji resonator in the weak coupling limit (kw,S � 1)
without Fabry-Pérot oscillations (km = 0). Fig. 2.4 displays the normalized transmittance T̃ =
T/Tmax for a TJR operating in forward and reverse configurations as obtained by using both
formalisms. The parameters of the simulations are those employed in Fig. 2.2 for an incident
power P = 0.21 W. The agreement between both models is best found around resonance where the
coupled-mode equations are valid. The discontinuities and the non-reciprocal window are found to
lie at the same wavelengths in both simulations.

2.5 Experimental results
To probe the TJR response, we performed sweeps of the laser wavelength at fixed powers around
the cold TJR resonance at λ0 = 1545.76 nm. When operated at a small input power, P . 0.03
W, the thermal nonlinearity plays no role and the cold sample behaves as a linear device. Indeed,
we observed the same transmittance T when pumped from the left or from the right. The linear
transmittance normalized to its maximum value T̃ = T/Tmax is shown as a function of the detuning
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Figure 2.6: Optical bistability in the normalized transmittance T̃ = T/Tmax along a round-trip
sweep of the laser detuning ∆λ across the resonance at a fixed input power P = 0.21 W. The ramp
direction is indicated by the black arrows. Experimental data are shown as solid lines while the
black dashed lines are the fits obtained with the finite-element theory of Eq. (2.17). a) Forward
configuration (light blue). b) Reverse configuration (dark blue).

∆λ = λ − λ0 from the resonance wavelength as the red dash-dotted line of Fig. 2.5a. From
a fit of this curve with the theoretical model (black dashed lines), we extracted the coefficients
kw = 0.49± 0.02, kS = 0.14± 0.03 and km = 0.24± 0.04. A list of all parameters employed in the
fits of the experimental data can be found in Table 2.1.

Rr 135.11 µm nL 1.83
RS 62.45 µm nK 8× 10−16 cm2/W
LL 687.50 µm nT (8.8± 0.4)× 10−13 cm2/W
LR 687.50 µm α 0.3454× 10−4 µm−1

A 0.66× 10−8 cm2 kw 0.49± 0.02
Nr 8 kS 0.14± 0.03
NS 2 km 0.24± 0.04
Nw 4

Table 2.1: Fit parameters: ring radius Rr, S waveguide radius RS, bus waveguide length to the
left LL and right LR of the TJR, waveguide cross section A, number of segments in which the
ring, S and bus waveguides are divided Nr,S,w, linear refractive index nL, nonlinear Kerr refractive
coefficient nK, nonlinear thermal refractive coefficient nT, absorption losses α, coupling parameters
kw,S for the ring-bus waveguide and ring-S waveguide couplers, and reflection amplitude km at the
bus waveguide facets.

In order to investigate the nonlinear response, we then performed upwards wavelength ramps
at larger input powers (an example for P = 0.21 W is shown in Fig. 2.5a). As predicted by the
model (Fig. 2.2), the resonance dip in T̃ is pushed towards longer wavelengths by the nonlinearity
due to the accumulated power in the TJR up to the threshold where T̃ jumps back to a value
close to one. In the reverse configuration, since a larger intensity is present inside the resonator
for the same input power, the resonance wavelength experiences a larger displacement than in the
forward configuration. This is our first evidence of a nonlinearity-induced nonreciprocal behavior.
A magnified view around the transition points where the difference is the largest is shown in
the inset of Fig. 2.5a. Here, the ratio of the transmittance in the two directions reaches a value
Tfor/Trev ' 6 dB at ∆λ ' 0.34 nm. The displacement ∆λ0 of the resonance from its linear position
as a function of the input power P is displayed in Fig. 2.5b: the non-reciprocity is clearly visible
as a larger slope in the reverse case because of the higher internal power. The small deviations
of the experimental points (circles) from a linear fit of the theory (lines) are mostly due to the
Fabry-Pérot oscillations.

Further insight in this physics is provided by the bistability loops that are observed when
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Figure 2.7: Shift of the resonance wavelength ∆λ0 with respect to its linear value λ = 1545.76 nm
as a function of the input power P . All curves are linear fits of the numerically calculated data using
the finite-element model. Dashed lines are the curves displayed in Fig. 2.5b for the experimental
case of a thermo-optic nonlinearity with nT = 8.8 × 10−13 cm2/W. Solid lines are obtained by
employing a purely Kerr nonlinearity (nT = 0) whose strength has been artificially increased to
nK = 8.8×10−13 cm2/W to match the strength of the thermo-optic nonlinearity of the experiment.
Light (dark) blue lines correspond to the forward (reverse) configuration.

comparing the transmittance along frequency ramps in upwards and downwards directions at the
same fixed input power. In agreement with the coupled-mode theory of Fig. 2.2, the experimental
observations in Fig. 2.6 show that the bistable loop observed in the reverse configuration (bottom)
is wider than the one in the forward configuration (top), due to the different feedback caused by
the S-shaped waveguide in the TJR. This is also reproduced by the finite element model (dashed
lines).

Finally, it is worth wondering what would be different if our samples displayed a Kerr non-
linearity instead of a thermo-optic one. In the following Subsection we investigate the difference
between the resonance shift shown in Fig. 2.5b and that produced by a Kerr nonlinearity of the
same magnitude.

2.5.1 Resonance shift for equivalent thermo-optic and Kerr nonlineari-
ties

Here we compare the resonance shift ∆λ0 produced by the thermo-optic nonlinearity displayed
by the single nonlinear Taiji resonator (TJR) with the one that would exhibit a fictitious TJR
featuring a Kerr nonlinear parameter of the same magnitude nK = 8.8 × 10−13 cm2/W and a
negligible nT ' 0. In all calculations, ∆λ0 is measured with respect to the linear position of the
resonance at λ = 1545.76 nm. Fig. 2.7 shows linear fits of the numerical results of the finite-
element model in each case, which slightly deviate from the linear behaviour due to Fabry-Pérot
oscillations: quite unexpectedly, for a given value of the input power the Kerr nonlinearity with
g = 2 gives a slightly smaller nonlinear shift ∆λ0 than the thermo-optic nonlinearity (g = 1).

These numerical results can be physically understood using the coupled-mode equations (2.15-
2.16). In the forward configuration light circulates in the CCW mode only and no significant
difference between both kinds of nonlinearity arises. In the reverse configuration, one could have
expected that the presence of the g = 2 factor in the Kerr nonlinear term of Eq. (2.16) would
give a larger nonlinear shift ∆λ0 compared to the thermo-optical case. The complete calculation
displayed here shows that this is not the case, since the very presence of this factor g = 2 quickly
pushes the CCW mode out of resonance from the CW one and the pump laser. This results in a
smaller value of the intensity in the CCW mode, which may well overcompensate the factor 2. As
a result, the net effective nonlinear shift ∆λ0 turns out to be a bit smaller for a Kerr nonlinearity
than for a thermal one at the same input power.

2.6 Conclusions and perspectives

In this Chapter we have demonstrated how the combination of optical nonlinearities and a spatially
asymmetric design gives rise to an effective violation of reciprocity in a single non-magnetic multi-
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mode Taiji resonator (TJR). This device goes one step beyond previous multi-resonator proposals
and realizations in terms of integrability in silicon photonics circuits. The simplicity of its design
allows a transparent theoretical analysis and facilitates its use as the unit cell of more complex
structures.

The effective breaking of reciprocity is visible in the dependence of both the nonlinear shift of the
resonance wavelength and the width of the optical bistability loop on the direction of illumination.
The experimental observations are quantitatively reproduced by a finite-element model and the
effect is intuitively understood by a coupled-mode theory in terms of the asymmetric coupling
introduced by the S-shaped waveguide and the consequently different strength of the nonlinear
feedback effect.

The nonreciprocal bandwidth can be extended by engineering TJRs built of highly nonlin-
ear materials in a properly designed critical coupling regime maximizing the optical power inside
the resonator, and by employing an optimized coupling with the S-shaped waveguide allowing to
achieve simultaneously a high quality factor and a larger exchange of energy between the counter-
propagating modes.

Once the nonreciprocal behavior of the passive nonlinear TJR is understood, our next step
will be to consider the addition of a saturable gain to the coupled-mode equations (2.15-2.16)
and investigate the role of the unidirectional coupling enabled by the embedded S element in
promoting unidirectional lasing under strong incoherent pumping of the TJR [14]. Moreover, we
will address whether unidirectional lasing in this device is also possible in the presence of spurious
backscattering coupling the two counterpropagating modes. This will be the subject of Chapter 3.

Even though the work presented in the present Chapter demonstrates nonreciprocal transmis-
sion when waves are injected in the forward and reverse directions, in practice an optical isolator
needs to block reverse-propagating noise while a forward-propagating signal is being simultaneously
transmitted. Ref. [19] showed that if the frequency spectrum of the two counterpropagating waves
does not overlap, nonreciprocity breaks down in the latter case. This is called dynamic reciprocity.
We will propose an alternative that circumvents this problem and grants isolation under practical
working conditions in Chapter 4.

Finally, in Chapter 5 we will explore the richer variety of nonlinearity-induced nonreciprocal
effects in quantum spin-Hall topological insulator lasers made of TJRs in which backscattering is
also present [97, 12, 21].
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Chapter 3

Unidirectional lasing in a single nonlinear
Taiji resonator

In this Chapter we develop a general formalism to study laser operation in active micro-
ring resonators supporting two counterpropagating modes. Our formalism is based on the coupled-
mode equations of motion for the field amplitudes in the two counterpropagating modes and
a linearized analysis of the small perturbations around the steady state. We show that Taiji
resonators introduced in Chapter 2 —i.e. devices including an additional S-shaped waveguide
establishing an unidirectional coupling between both modes— feature a preferred chirality on the
laser emission and can ultimately lead to unidirectional lasing even in the presence of sizable
backscattering. The efficiency of this mode selection process is further reinforced by the Kerr
nonlinearity of the material. This stable unidirectional laser operation can be seen as an effective
breaking of T -reversal symmetry dynamically induced by the breaking of the P-symmetry of the
underlying device geometry. This mechanism appears as a promising building block to ensure
non-reciprocal behaviors in integrated photonic networks and topological lasers without the need
for magnetic elements. The latter spin-off will be the core subject of Chapter 5. The main results
of the present Chapter were published in [18].

3.1 Introduction

Ring resonator lasers have always received a great attention for both the interesting physics they
host and their rich technological applications [133]. These systems support two degenerate coun-
terpropagating modes in clockwise (CW) and counterclockwise (CCW) directions which are in
strong mode competition. It has been shown that ring lasers can host stable unidirectional las-
ing in each direction [134], yet with the undesired possibility of spontaneous switching between
the two states due to quantum fluctuations [135, 136, 137, 138]. Other unsought features include
backscattering processes coupling the two counterpropagating modes and even light localization at
defects [139, 140, 141, 142, 143]. This leads to a finite emission in the two directions and a spectral
broadening of the emission with possible multi-mode behaviours and can even place the system in
a self-oscillation regime where the intensity and phase of the emission periodically vary in time.

Preferential laser oscillation in one of the two counterpropagating modes is an appealing mile-
stone due to the features that come alongside: increased output power, single-frequency spectrum,
closer overlap with the gain profile, and improved mode stability, among others [144]. Stable
unidirectional lasing in ring resonators has been investigated by adding an S-shaped waveguide
element to the ring resonator, so to form a Taiji resonator (TJR). As we saw in Chapter 2, this
S-shaped element breaks spatial reflection P-symmetry as it allows light of one mode to couple into
the other one but forbids the opposite process. Robust unidirectional operation in this laser was
first demonstrated in the near-infrared in [14, 145] and then has been further extended to other
wavelengths and cavity designs [146, 147, 148].
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(a) (b)

Figure 3.1: Schematic diagrams of the ring (a) and “Taiji” (b) microresonators. The field am-
plitudes of the clockwise (CW) and counterclockwise (CCW) modes are denoted by a+ and a−,
respectively. In the Taiji microresonator (TJR) directional couplers of transmittance (coupling)
amplitude tS (ikS) are signalized with the dashed green rectangles. The loss rate γA accounts for
absorption and radiative couplings, for instance with a bus waveguide.

The active TJR has found further application in parity-time (PT ) symmetric micro-ring lasers
[149] and non-Hermitian active structures [150], and holds great promise to explore the physics of
exceptional points [151]. The idea of controlling the chirality of the laser emission via P-symmetry
breaking has also been exploited by establishing a loss imbalance [152], a coupling asymmetry
between the two counterpropagating modes using two non-Hermitian nanoscatterers [153], and a
bias in the pump direction [154]. As we saw in Chapter 1, active TJRs have started being em-
ployed [155, 13] as the building block of 2D topological lasers [7, 12] in order to select a preferential
chirality for the surface modes and prevent backscattering reflections.

Notwithstanding the proven importance of TJRs to achieve unidirectional lasing and their
connections with deeply rooted physical ideas, we still lack a complete theory describing their
operation. In this Chapter we develop a general theory of lasing in active resonators featuring
sizable couplings between counter-propagating modes such as ring and Taiji resonators. We analyze
the steady-state solutions of the coupled-mode equations of motion for the fields’ amplitudes and
we study their stability by looking at the small fluctuations dynamics. In this way we prove
the crucial advantage of including an S-shaped element to guarantee robust unidirectional lasing
and protect it against spurious backscattering-mediated mode couplings, e.g. by disorder in the
resonator and interface roughness. Finally, we show how this protection is reinforced in nonlinear
resonators displaying an intensity-dependent refractive index.

The Chapter is organized as follows: In Sec. 3.2 we present the coupled-mode theory equations
describing the system and the linearized approximation employed to assess the stability of their
steady-state solutions. Sec. 3.3 makes use of these theoretical tools in order to study the laser
emission of backscattering-free ring resonators (Sec. 3.3.1) and TJRs (Sec. 3.3.2). The effect of a
weak backscattering is explored in Sec. 3.4, where we show the robustness of unidirectional lasing
in TJRs. This analysis is then extended to larger values of the backscattering in Sec. 3.5. The
positive effect of the optical nonlinearity on the unidirectional lasing is highlighted in Sec. 3.6.
Conclusions are finally drawn in Sec. 3.7.

3.2 The physical system and the theoretical model

In this Section we mathematically describe an active resonator using the coupled-mode equations
of motion for the field amplitudes of the CW and CCW modes. We then solve these equations
for the long-time steady states for different values of the system parameters. We also present the
linearized approximation that allows us to study the stability of the steady-states under small
fluctuations.

We consider a ring resonator of circumference L0 (see Fig. 3.1a) and the equivalent TJR with the
same perimeter enclosing an S-shaped waveguide (shown in Fig. 3.1b). Without loss of generality
the S waveguide was chosen to couple the CW into the CCW mode but not viceversa. The two
elements of the TJR are coupled at two points separated by a distance LS via lossless and reciprocal
directional couplers with transmission and coupling amplitudes given by t and ik, respectively (t
and k are real numbers satisfying t2 + k2 = 1). The S waveguide tips are assumed to feature
a reflection killer geometry where light is scattered away, thus preventing back-reflections [131].
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The ring resonator case is recovered from the TJR equations by setting t = 1. Even though we
considered a circular external perimeter, the model and its results are still valid for any other
shape, like racetrack or square-like resonators. In realistic experiments the shape of the external
waveguide can be optimized to reduce backscattering.

In all cases the resonator supports two counterpropagating modes in CW (+) and CCW (−)
directions whose amplitudes a± can be described using an extended version of the coupled-mode
equations of motion introduced in Chapter 2 which accounts for the saturable gain [156, 157, 158,
159]

iȧ± = ω0a± −
nNL
nL

ω0

(
|a±|2 + g|a∓|2

)
a± + i

P0

1 + 1
nS

(|a±|2 + ξ|a∓|2)
a± − iγTa± + β±,∓a∓, (3.1)

where ω0 is the resonance frequency of the resonator, nL is the dimensionless linear refractive
index, nNL quantifies the strength of the optical nonlinearity, and g is a dimensionless parameter
describing the character of the nonlinearity. As discussed in Chapter 2, g = 1 represents a nonlocal
thermo-optic nonlinearity, while g = 2 describles a purely local Kerr-like one.

The key novelty of Eq. (3.1) with respect to the coupled-mode theory equations (2.15-2.16) for
the passive TJR is the introduction of a saturable gain term featuring an amplification rate P0 and a
gain saturation coefficient nS. The nature of the saturable gain is summarized in the cross-coupling
parameter ξ: while a homogeneously broadened gain medium yields a spatially local saturable gain
described by ξ = 2, an inhomogeneously broadened gain medium gives rise to a spatially non-local
saturable gain featuring ξ < 2 [160]. As we will see in Sec. 3.3, the value of ξ ultimately governs the
mode competition for gain: in particular, for ξ ' 1 lasing can be obtained simultaneously in the
two modes of a backscattering-free ring resonator. However, the saturable gain in ring resonator
lasers is usually provided by a collection of quantum wells, and therefore falls in the ξ = 2 category.
Therefore, in this Chapter we will focus on lasers featuring either ξ = 1 or ξ = 2, even though the
results in this latter case also apply to media described by 1 < ξ < 2. In any case, we will always
consider a class-A laser in which the dynamics of the reservoir of incoherent excitations giving rise
to the saturable gain is very fast in comparison with all the other timescales of the problem, and
therefore can be integrated out in the saturable gain term [161, 162]. In practice, this implies that
the response of the gain medium to the light intensity in the resonator is instantaneous.

The total losses γT = γA + γS include the intrinsic absorption and radiative losses γA of the
ring (which for instance account for the coupling with a bus waveguide) and the effective losses due
to radiation into the S waveguide γS = cκ2

S/L0nL (where c is the vacuum speed of light and κs is
the amplitude for light insertion into the S waveguide). The generalized coupling coefficients β±,∓
account for all kinds of mode coupling, including backscattering and the S-waveguide couplings. A
backscattering-free ring resonator features β±,∓ = 0, while our backscattering-free TJR is described
by β± = 0, β∓ = −i2ck2

Se
iω0nLLS/c/L0nL

1.
In this coupled-mode formalism, the loss γS,A,T and amplification P0 rates as well as the gen-

eralized coupling coefficients β±,∓ have the same units of inverse time as the resonance frequency
ω0. On the other hand, some arbitrariness exists for the choice of the normalization and, even,
the units of the field amplitudes a±: in the quantum literature, they are often normalized so that
their squared modulus |a±|2 give the number of photons present in each mode. In the photonics
literature, one rather normalizes them so that their squared modulus |a±|2 corresponds to the
light intensity (usually expressed in W/cm2) circulating around the cavity in each mode. With
this choice, nS also has the dimension of an intensity, while nNL has the usual meaning of a non-
linear refractive index with the dimension of an inverse intensity and can be directly extracted
from tables of material parameters.

Our calculations have been carried out with a silicon photonics implementation in mind. As
typical parameters, we considered a resonator of perimeter L0 = 20 µm and S-waveguide length
LS = L0/2, a refractive index nL = 3.5 and a loss rate γA = 6.8 × 109 s−1 (or equivalently
γAnL/c = 8× 10−5 µm−1). For a resonance wavelength of 1.55 µm, corresponding to a frequency
ω0 ∼ 2π× 194 THz, this gives a quality factor for the ring resonator (without S element) of about
Q ∼ 1.5× 105.

But a key advantage of our coupled-mode formalism is its independence from the specific phys-
ical realization, where all physical parameters of the system are summarized into a few parameters.

1Of course all results in this Chapter are directly transferred to TJRs where the S waveguide recirculates light
in the opposite direction from the CCW mode into the CW one. To do this, it is enough to exchange the indices
+↔ −.
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As one can see in what follows, all figures can be plotted in terms of adimensional quantities of
transparent physical meaning: rates are normalized in units of the (experimentally accessible) loss
rate or linewidth γA,T of the passive system; the amplification appears in the ratio P0/γT character-
izing the relative pumping compared to the laser threshold. These choices make the translation of
our results into physical units a straightforward task for any given system once its basic parameters
are known.

In order to simulate the response of the resonators we numerically solved Eq. (3.1) for the
long-time (t → ∞) steady states a(0)

± employing a 4th order Runge-Kutta algorithm and starting
from random initial conditions at t = 0. As we will see in the following Sections, in general the
steady states oscillate at a single frequency and therefore it is useful to define ã± = a±e

−iωt, where
ω is a reference frequency. The stationary values of the field amplitudes ã(0)

± = ã±(t→∞) satisfy
∂tã

(0)
± = 0 and therefore we can write the steady-state equation

0 = (ω0 − ω)ã
(0)
± −

nNL
nL

ω0

(
|ã(0)
± |2 + g|ã(0)

∓ |2
)
ã

(0)
± + i

P0

1 + 1
nS

(|ã(0)
± |2 + ξ|ã(0)

∓ |2)
ã

(0)
± − iγTã

(0)
±

+ β±,∓ã
(0)
∓ . (3.2)

We now describe the linearized approximation employed to assess the stability of the steady-
state solutions to Eq. (3.1). We start by writing the field amplitudes ã± as the sum of the stationary
states ã(0)

± satisfying Eq. (3.2) and the small fluctuations |δã±| � |ã(0)
± |, i.e. ã± = ã

(0)
± + δã±.

Introducing these expressions into Eq. (3.1) and keeping fluctuations at linear order O(δã±) we
arrive to the equations

i
d

dt

[
δã+ δã∗+ δã− δã∗−

]T
= A

[
δã+ δã∗+ δã− δã∗−

]T
, (3.3)

where the matrix A is given by

A =



(ω0 − ω) − 2
nNL
nL

ω0|ã
(0)
+
|2

−nNL
nL

ω0g|ã
(0)
− |

2

+i
P0

1+ 1
nS

(|ã(0)
+
|2+ξ|ã(0)− |

2)

−iγT
−i P0/nS[

1+ 1
nS

(|ã(0)
+
|2+ξ|ã(0)− |

2)

]2
×|ã(0)

+
|2

−nNL
nL

ω0ã
(0)2
+

−i P0/nS[
1+ 1

nS
(|ã(0)

+
|2+ξ|ã(0)− |

2)

]2
×ã(0)2

+

−nNL
nL

ω0gã
(0)∗
− ã

(0)
+

+β±
−i P0/nS[

1+ 1
nS

(|ã(0)
+
|2+ξ|ã(0)− |

2)

]2
×ξã(0)∗− ã

(0)
+

−nNL
nL

ω0gã
(0)
− ã

(0)
+

−i P0/nS[
1+ 1

nS
(|ã(0)

+
|2+ξ|ã(0)− |

2)

]2
×ξã(0)− ã

(0)
+

nNL
nL

ω0ã
(0)∗2
+

−i P0/nS[
1+ 1

nS
(|ã(0)

+
|2+ξ|ã(0)− |

2)

]2
×ã(0)∗2

+

−(ω0 − ω) + 2
nNL
nL

ω0|ã
(0)
+
|2

+
nNL
nL

ω0g|ã
(0)
− |

2

+i
P0

1+ 1
nS

(|ã(0)
+
|2+ξ|ã(0)− |

2)

−iγT
−i P0/nS[

1+ 1
nS

(|ã(0)
+
|2+ξ|ã(0)− |

2)

]2
×|ã(0)

+
|2

nNL
nL

ω0gã
(0)∗
− ã

(0)∗
+

−i P0/nS[
1+ 1

nS
(|ã(0)

+
|2+ξ|ã(0)− |

2)

]2
×ξã(0)∗− ã

(0)∗
+

nNL
nL

ω0gã
(0)
− ã

(0)∗
+

−β∗±
−i P0/nS[

1+ 1
nS

(|ã(0)
+
|2+ξ|ã(0)− |

2)

]2
×ξã(0)− ã

(0)∗
+

−nNL
nL

ω0gã
(0)∗
+

ã
(0)
−

+β∓
−i P0/nS[

1+ 1
nS

(|ã(0)− |
2+ξ|ã(0)

+
|2)

]
×ξã(0)∗

+
ã
(0)
−

−nNL
nL

ω0gã
(0)
+

ã
(0)
−

−i P0/nS[
1+ 1

nS
(|ã(0)− |

2+ξ|ã(0)
+
|2)

]2
×ξã(0)

+
ã
(0)
−

(ω0 − ω) − 2
nNL
nL

ω0|ã
(0)
− |

2

−nNL
nL

ω0g|ã
(0)
+
|2

+i
P0

1+ 1
nS

(|ã(0)− |
2+ξ|ã(0)

+
|2)

−iγT
−i P0/nS[

1+ 1
nS

(|ã(0)− |
2+ξ|ã(0)

+
|2)

]2
×|ã(0)− |

2

−nNL
nL

ω0ã
(0)2
−

−i P0/nS[
1+ 1

nS
(|ã(0)− |

2+ξ|ã(0)
+
|2)

]2
×ã(0)2−

nNL
nL

ω0gã
(0)∗
+

ã
(0)∗
−

−i P0/nS[
1+ 1

nS
(|ã(0)− |

2+ξ|ã(0)
+
|2)

]2
×ξã(0)∗

+
ã
(0)∗
−

nNL
nL

ω0gã
(0)
+

ã
(0)∗
−

−β∗∓
−i P0/nS[

1+ 1
nS

(|ã(0)− |
2+ξ|ã(0)

+
|2)

]2
×ξã(0)

+
ã
(0)∗
−

nNL
nL

ω0ã
(0)∗2
−

−i P0/nS[
1+ 1

nS
(|ã(0)− |

2+ξ|ã(0)
+
|2)

]2
×ã(0)∗2−

−(ω0 − ω) + 2
nNL
nL

ω0|ã
(0)
− |

2

+
nNL
nL

ω0g|ã
(0)
+
|2

+i
P0

1+ 1
nS

(|ã(0)− |
2+ξ|ã(0)

+
|2)

−iγT
−i P0/nS[

1+ 1
nS

(|ã(0)− |
2+ξ|ã(0)

+
|2)

]2
×|ã(0)− |

2



.

(3.4)

Altogether, Eqs. (3.3-3.4) describe the fluctuation dynamics. The steady states described by
Eq. (3.2) are asymptotically stable whenever all eigenvalues of the matrix A in Eq. (3.4) have
a negative imaginary part. This means that fluctuations are damped out as t→∞ and the steady
states behave as attractors in the (a+, a−) space.

Non-Hermitian and Topological Features of Photonic Systems Alberto Muñoz de las Heras



The physical system and the theoretical model 43

1

3

4 4

1

1

2

Figure 3.2: (a,b) Steady-state intensity of the CW (|ã(0)
+ |2) and CCW (|ã(0)

− |2) modes for a
backscattering-free ring resonator laser as a function of the pump rate P0. Panel (a) refers to
an inhomogeneously broadened gain medium with ξ = 1, while panel (b) corresponds to a homo-
geneously broadened gain medium (ξ = 2). The black dashed line represents the total intensity
summed over the two directions. (c,d) Imaginary part of the system eigenvalues λ for a ring res-
onator laser as a function of the pump rate P0. Panel (c) refers to an inhomogeneously broadened
gain medium with ξ = 1, while panel (d) corresponds to a homogeneously broadened gain medium
(ξ = 2). The numbers below the curves indicate their degeneracy.
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Figure 3.3: (a,b) Steady-state intensity of the CW (|ã(0)
+ |2) and CCW (|ã(0)

− |2) modes for a
backscattering-free TJR laser as a function of the pump rate P0. Panel (a) refers to an inho-
mogeneously broadened gain medium with ξ = 1, while panel (b) corresponds to a homogeneously
broadened gain medium (ξ = 2). The black dashed line represents the total intensity summed over
the two directions. (c,d) Imaginary part of the system eigenvalues λ for a TJR laser as a function
of the pump rate P0. Panel (c) refers to an inhomogeneously broadened gain medium with ξ = 1,
while panel (d) corresponds to a homogeneously broadened gain medium (ξ = 2). The numbers
below the curves indicate their degeneracy.
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3.3 Backscattering-free resonators
In this Section we present the results for the paradigmatic cases of a ring resonator and a TJR
without backscattering. We solve Eq. (3.1) to find the possible steady-state solutions and plug
them into Eqs. (3.3-3.4) in order to determine their stability. We will also address the role of the
cross-coupling parameter ξ in the saturable gain. The analysis in this Section is valid in both the
linear and nonlinear regimes, regardless of the optical nonlinearity kind (given by g). Without loss
of generality, the field amplitudes ã± can be taken as real quantities by choosing a rotating reference
frame co-moving with the (possibly nonlinear-shifted) resonance frequency of the resonator.

3.3.1 Ring resonator
We begin by studying the solutions to Eq. (3.1) in the simplest backscattering-free ring resonator
case (i.e. t = 1, β±,∓ = 0). Fig. 3.2 shows the steady-state intensities |ã0

±|2 of both modes (panels
(a) and (b)) together with the imaginary parts of the eigenvalues of the fluctuation dynamics
matrix (3.1) (panels (c) and (d)) for growing values of the pump rate from P0 = 0 to P0 = 4γT in
the ξ = 1 (panels (a) and (c)) and ξ = 2 (panels (b) and (d)) cases. In both situations, below the
lasing threshold P0 < γT the intensity |ã(0)

± |2 of both modes is zero and the four eigenvalues

λ1,2 = +(ω0 − ω) + i(P0 − γT), (3.5)
λ3,4 = −(ω0 − ω) + i(P0 − γT), (3.6)

feature the same negative imaginary part. Since gain saturates with ã(0)
± , in this regime the only

possible stable solution is that no coherent light is present. Above the lasing threshold P0 > γT

the eigenvalues change to

λ1/γT = −nNL

nL
ω0(g − 1)nS

(
P0

γT
− 1

)
+ i

(
P0/γT

1 + ξ(P0/γT − 1)
− 1

)
, (3.7)

λ2/γT = +
nNL

nL
ω0(g − 1)nS

(
P0

γT
− 1

)
+ i

(
P0/γT

1 + ξ(P0/γT − 1)
− 1

)
, (3.8)

λ3 = 0, (3.9)

λ4/γT = −2i
P0/γT − 1

P0/γT
. (3.10)

The ξ = 1 case presents a particular behaviour as it is the only situation in which the sys-
tem shows effective gain in both directions and features a threefold degenerate imaginary part
Im{λ1,2,3} = 0. This is due to the phase freedom of each direction and the CW ↔ CCW symme-
try which is present in this case only. Beyond the bifurcation point both intensities depart linearly
with randomly-chosen values satisfying (|ã(0)

+ |2 + |ã(0)
− |2)/nS = P0/γT − 1.

For a homogeneously broadened gain medium (ξ = 2) the resonator lases randomly in one mode
only with equal probability as |ã(0)

± |2/nS = P0/γT − 1, while the other one remains unamplified.
This is also true for intermediate values 1 < ξ < 2. In contrast to the ξ = 1 case, now the linearized
analysis features a single imaginary part (since Im{λ1,2,4} 6= 0) corresponding to the Goldstone
mode λ3 = 0. Due to the asymmetric gain amplification terms in Eq. (3.1) a larger intensity in a
certain direction randomly determined by the initial conditions leads to a smaller amplification in
the other one. As t evolves this asymmetry drives the system into a unidirectional lasing state in
the randomly favored mode, while the other is killed.

By employing a Fourier transform we were able to ascertain that for P0 > γT the steady-state
field amplitudes a(0)

± oscillate in time at the nonlinear-shifted resonance frequencies ω± of each
mode. In the ξ = 1 case these are given by

ω± = ω0 −
nNL

nL
ω0(|ã(0)

± |2 + g|ã(0)
∓ |2), (3.11)

while for ξ > 1 the intensity in one of the two directions vanishes and one has either

ω± = ω0 −
nNL

nL
ω0|ã(0)

± |2 (3.12)

for unidirectional lasing in the CW or CCW direction, respectively.
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In general, we found that no bidirectional lasing is observed for ξ > 1. This fact can be put on
more solid grounds as follows. From Eq. (3.2) one sees that if both field amplitudes ã(0)

± are taken
as real numbers a finite intensity in the two directions (i.e. ã(0)

± 6= 0) would simultaneously imply

P0

1 + 1
nS

(|ã(0)
± |2 + ξ|ã(0)

∓ |2)
= γT, (3.13)

which necessarily sets |ã(0)
+ |2 = |ã(0)

− |2. Diagonalizing the matrix in this case, one obtains the
eigenvalues

λ1,2 = 0, (3.14)

λ3/γT = +2i
P0/γT − 1

P0/γT

ξ − 1

ξ + 1
, (3.15)

λ4/γT = −2i
P0/γT − 1

P0/γT
. (3.16)

Having ξ > 1 implies Im{λ3} > 0 and therefore this solution is unstable. We conclude that for
ξ > 1 the only possible stable solutions involve unidirectional lasing in one of the two counter-
propagating modes, randomly chosen by the initial conditions.

3.3.2 TJR
We now move on to the study of the stability of an active TJR under the same ramp in the pump
rate employed in the previous Subsection. For these simulations we set γS = 0.2γA, β± = 0,
and β∓ = −i2ck2

Se
iω0nLLS/c/L0nL. We have neglected the nonlinear phase shift inside the S

waveguide as the optical power inside it is very small compared to that circulating along the
external waveguide.

Fig. 3.3 shows the steady-state intensities |ã(0)
± |2 (in panels (a) and (b) for ξ = 1 and ξ = 2,

respectively) and the imaginary part of the eigenvalues (in panels (c) and (d) for ξ = 1 and ξ = 2,
respectively) for the family of steady-state solutions that are most commonly reached. Below the
lasing threshold P0 < γT the two directions feature a zero intensity for both interaction types.
Above the lasing threshold P0 > γT the intensity of the mode in which the S-waveguide coupling
is directed (in our case the CCW) departs linearly from the bifurcation as |ã(0)

− |2/nS = P0/γT− 1,
while the other mode (the CW one) remains empty. The off-diagonal S-waveguide coupling in
Eq. (3.4) does not change the eigenvalues of the linearized theory with respect to the ring resonator
case and therefore they are given again by Eqs. (3.5-3.6) below threshold and by Eqs. (3.7-3.10)
above threshold. As opposed to the ring resonator case, not even for ξ = 1 one can have a
finite intensity in both modes simultaneously: the presence of the S waveguide breaks in fact
the CW ↔ CCW symmetry and favors unidirectional lasing in the CCW direction. As in the
previous Subsection using a Fourier transform we found that above P0 > γT the steady-state field
amplitudes a(0)

± oscillate at the nonlinear-shifted resonance frequency of the resonator, which is
taken as the reference frequency ω. For our TJR this is given by

ω = ω0 −
nNL

nL
ω0|ã(0)

− |2 (3.17)

for any value of ξ.
While the unidirectional CCW-only solutions depicted in Fig. 3.3 are the steady-state that is

most frequently reached by the numerics, it is important to verify whether other solutions are
possible in specific parameter regimes. To this purpose, we considered Eq. (3.2) assuming a finite
intensity in both modes, i.e. ã(0)

± 6= 0. Without loss of generality ã(0)
+ is taken to be a real number.

From Eq. (3.2) this would require

ω0 − ω =
nNL

nL
ω0(|ã(0)

+ |2 + g|ã(0)
− |2), (3.18)

P0

1 + 1
nS

(|ã(0)
+ |2 + ξ|ã(0)

− |2)
= γT, (3.19)

ã
(0)
− =

i c
L0nL

2κ2
Se
iω0nLLS/c

(ω0 − ω)− nNL
nL

ω0

(
|ã(0)
− |2 + g|ã(0)

+ |2
)

+ i P0

1+ 1
nS

(|ã(0)− |2+ξ|ã(0)+ |2)
− iγT

ã
(0)
+ . (3.20)
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Figure 3.4: (a) Pump rate P0 vs. square root of the S-coupling losses √γS diagram for a
backscattering-free TJR with ξ = 2 and nNL = 0. The region where only the trivial solution
is present is depicted in white. The light blue region represents the parameter range where only
CCW lasing is possible. In the dark blue region two solutions exist: single-mode lasing in the
preferred CCW direction and bidirectional lasing with |ã(0)

+ | � |ã
(0)
− |. Each region is labeled by

the numbers 0, 1, and 2, respectively. (b) Normalized steady-state intensity |ã(0)
± |2 obtained by

numerically solving Eq. (3.1) as a function of √γS for a fixed P0 = 5γA as indicated by the dashed
horizontal line in (a). (c) Imaginary part of the system eigenvalues λ as a function of √γS corre-
sponding to the path shown as the dashed horizontal line of panel (a). The points are numerically
calculated by diagonalizing the matrix A in Eq. (3.4) for the steady-state solutions displayed in
panel (b). The dashed lines correpond to the analytic eigenvalues (3.5-3.10).

In particular, in the g = ξ = 1 case the first two conditions impose the denominator in Eq. (3.20)
to vanish, which implies that ã(0)

+ = 0.
To carry on this analysis when we have g > 1, ξ > 1, or both, we explored the phase space of

the problem by numerically solving Eq. (3.1) using different values of P0 and γS in order to explore
its possible steady-state solutions. We found that stable bidirectional lasing is possible for values
of P0 and γS within the dark blue region of Fig. 3.4a. This kind of solutions involve a strong lasing
in the CW direction and a smaller intensity populating the CCW due to the presence of a weak S
coupling. For larger values of γS, |ã(0)

− |2 increases up to a threshold in which the ã(0)
+ 6= 0 solution

disappears and only the ã(0)
− 6= 0 one remains. While this figure is plotted in the linear (nNL = 0)

regime and for a local saturable gain (ξ = 2), we have verified that the same conclusion holds for
nNL 6= 0 and other values of the g and ξ parameters. However, the larger the values of g and nNL

employed, the smaller is |ã(0)
− |2 in the bidirectional solution and the larger the value of γS at which

the transition to the single solution region takes place for a fixed P0. This is a consequence of
the different shifts of the resonance frequency for opposite directions introduced by nonlinearities
with g > 1. On the other hand, when both g, ξ → 1 the region featuring the bidirectional solution
shrinks to smaller values of γS, ultimately disappearing for g = ξ = 1.

The light blue parameter range of Fig. 3.2 features a single solution with emission in the CCW
mode only. The lower limit is given by the pump threshold P0 = γT. Of course, this CCW-mode
lasing solution also extends in the dark-blue region of Fig. 3.2 where it coexist with the other,
bidirectional solution. Which of the two solutions is actually chosen by the system will depend on
the initial conditions.

Panels (b) and (c) show the lasing intensity and the imaginary part of the eigenvalues (calculated
by diagonalizing the matrix A in Eq. (3.4)) for the ramp depicted as the dashed line in panel (a),
respectively. The initial conditions correspond to unidirectional lasing in the CW direction. As γS

is increased the initially unfavored CCW mode gets rapidly populated and the emission intensity
in the CW mode decreases. As this happens the imaginary part of one of the eigenvalues grows and
eventually crosses zero towards positive values. At this point the solution becomes unstable and
the system experiences a transition towards a unidirectional lasing regime in the CCW direction.
Note that as γS grows, the total loss rate γT is also enhanced so that the CCW intensity decreases
until the system ends up in the trivial solution.

We conclude that the presence of the S-shaped element breaking P-symmetry in Eq. (3.1) rules
out the possibility of pure unidirectional lasing solutions in the unfavored direction. For g = ξ = 1
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not even bidirectional emission is possible and beyond the lasing threshold the system compulsory
lases in a single direction with the preferential chirality introduced by the S waveguide. For other
choices of the g, ξ coefficients bidirectional lasing is possible for a small enough S-coupling, but
only for particular values of the parameters and always giving |ã(0)

+ |2 � |ã
(0)
− |2.

From a more abstract perspective, we can conclude this section by noting that, in contrast to
what happens in a passive device or for a pump rate P0 < γT, the solution for P0 > γT is not
invariant under T -reversal even though the underlying equations of motion are fully T -reversal
symmetric. We can therefore state that the presence of the P-breaking S-shaped element induces
a dynamical breaking of T -symmetry above the lasing threshold.

3.4 Small backscattering

In this Section we study how the laser emission of active ring resonators and TJRs is affected by
a random backscattering smaller in modulus than the intrinsic absorption and radiative loss rate
γA of the ring. The analog analysis for a backscattering larger than γA can be found in Sec. 3.5.
In both Sec. 3.4 and Sec. 3.5 the nonlinear shift of the resonance frequency of the resonator is
neglected (i.e. we set nNL = 0). This effect will be studied in Sec. 3.6. As an inhomogeneously
broadened medium yielding a nonlocal gain saturation is not representative of a semiconductor-
based laser, starting from the present Section we will focus in the ξ = 2 case, although our results
are also valid for values of ξ within the range 1 < ξ ≤ 2. As in Sec. 3.3 we employ the reference
frequencies (3.12) and (3.17) which for nNL = 0 reduce to the resonance frequency of the resonator
ω = ω0.

In general, the effect of backscattering can be summarized by the Hermitian and non-Hermitian
coefficients

h = −
β∓ + β∗±

2
, (3.21)

n = i
β∓ − β∗±

2
, (3.22)

defined in [163]. The former gives rise to a symmetric, conservative exchange of energy between the
CW and CCW modes, while the latter introduces a different balance between the back-reflection
in each mode that can lead to gain and losses beyond the saturable gain (∝ P0) and losses (∝ γT)
terms in Eq. (3.1). Therefore we need |n| ≤ γT in order to preserve the validity of our model.

The distinction between small and large backscattering made through this Chapter is referred
to the loss rate without S couplings γA. By small backscattering we intend that it is at least one
order of magnitude smaller than γA, i.e. |h|, |n| . 10−1×γA. On the other hand, we labeled as large
backscattering that which is at least comparable with γA, i.e. |h| & 10−1γA. For all parameter
choices, simulations are carried by solving Eq. (3.1) for different values of n and h and finding the
t → ∞ steady states ã(0)

± . As usual, the stability of the solutions is assessed by calculating the
corresponding eigenvalues of the fluctuation dynamics matrix in Eq. (3.4).

3.4.1 Perturbative solution

Prior to the numerics we discuss the perturbative analytical solution of Eq. (3.1) valid for both the
ring resonator and the TJR as microscopic backscattering is added. We assume that this is so small
that the backscattering-free solution of Eq. (3.1) involving unidirectional lasing does not substan-
tially change. In order to account for the small intensity in the suppressed mode we considered the
backscattering couplings β̃±,∓ as the small perturbations to the backscattering-free ring resonator
and TJR solutions explored in Sec. 3.3. The new coupling parameters for the ring resonator are
β±,∓ = β̃±,∓, while those for the TJR are β± = β̃± and β∓ = −i2ck2

Se
iω0nLLS/c/L0nL + β̃∓.

Without loss of generality, and in order to use the same indices in both cases, we considered an
unperturbed solution in which the ring resonator lases unidirectionally in the CCW mode. We can
then write the perturbed solutions as ã(0)

± = ã
(0)
±,un + δã

(0)
± , where ã(0)

±,un are the unperturbed solu-
tions with β̃±,∓ = 0. As shown in Sec. 3.3 these are given by ã(0)

+,un = 0 and |ã(0)
−,un|2/nS = P0/γT−1.

On the other hand δã
(0)
± are the first-order perturbative corrections. Introducing the perturbed

solution into the steady-state given by Eq. (3.2) and staying at linear order O(β̃±,∓), O(δã
(0)
± ) in
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(a) (b)

Figure 3.5: Ring resonator with ξ = 2 and backscattering parameters |n| = 0.1γA and h = 0. (a)
Steady-state intensity |ã(0)

± |2 in each mode as a function of the pump rate P0. The dashed line
is the backscattering-free intensity. (b) Imaginary part of the fluctuation dynamics eigenvalues
λ as a function of P0. The dashed lines represent the imaginary part of the backscattering-free
eigenvalues (3.5-3.10).
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Figure 3.6: Probability of a ring resonator with ξ > 1 to lase preferentially in the CW (dark
blue) and CCW (light blue) direction for different values of the backscattering. (a) Fixed modulus
|h| = |n| ' 5×10−4γA as a function of the relative phase angle ∆φ = φn−φh. (b) Fixed ∆φ = π/2
and |h| ' 5× 10−4γA as a function of |n|. (c) Fixed ∆φ = π/2 and |n| ' 5× 10−4γA as a function
of |h|.
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the perturbation we arrive at

δã
(0)
+ =

iβ̃±
P0

1+ ξ
nS
|ã(0)−,un|2

− γT

ã
(0)
−,un. (3.23)

The intensity in the perturbatively populated CW mode is given by |δã(0)
+ |2. This means that as

long as backscattering couples light from the CCW into the CW mode (i.e. for β̃± 6= 0) the CW
mode will host a finite emission. Note that the intensity in the CW mode increases whenever the
system features a smaller value of ξ, that is a more nonlocal gain saturation. The perturbation
theory breaks down for ξ = 1 as Eq. (3.23) diverges at such a value. This is a consequence of the
threefold-degenerate Goldstone mode that appears in this case (see Eqs. (3.7-3.10) for nNL = 0
and ξ = 1).

Our simulations confirm that Eq. (3.23) correctly accounts for the intensity of the perturba-
tively populated CW mode as long as |β̃±| � γT. The intensity in the preferred mode is still given
with a large precision by the unperturbed solution |ã(0)

−,un|2 and the eigenvalues of the matrix A
in Eq. (3.4) do not significantly change. Therefore we conclude that in the presence of perturba-
tive backscattering both the ring resonator and the TJR lase unidirectionally to a great extent,
although some light is also present in the unfavored mode at the same frequency, with an intensity
proportional to the backscattering coupling in its direction.

3.4.2 Ring resonator
Here we demonstrate how the values of the Hermitian and non-Hermitian coefficients describ-
ing backscattering (3.21-3.22) control the lasing chirality in a ring resonator. This fact can be
employed to construct unidirectional lasers by properly engineering the resonator’s microscopic
backscattering, for example by means of one or more nanotips coupled with the evanescent field
of the resonator, similarly to the experiment of [153]. Note that in a ring resonator γS = 0 and
therefore γT = γA.

As was shown in Sec. 3.4.1 the presence of perturbative backscattering does not appreciably
change the fluctuation dynamics eigenvalues and the system lases unidirectionally to a great extent.
Nevertheless, for values |β̃±,∓| & 10−2|γA| the perturbation theory (3.23) breaks down, a significant
intensity populates the unfavored lasing direction and the intensity in the preferred direction falls
below its usual value P0/γA − 1. Fig. 3.5 shows the intensities (panel (a)) and imaginary part of
the eigenvalues of matrix A (panel (b)) for a ring resonator featuring ξ = 2, h = 0 and |n| = 0.1γA.
Above the lasing threshold located at P0 ' 0.9γA both counterpropagating modes are amplified
with the same intensity and oscillate simultaneously in a coherent way. As P0 and |ã(0)

± |2 grow
the effect of mode competition in the gain saturation gets reinforced and intensity fluctuations
become more susceptible of breaking the symmetry of the laser emission. This is evident from
panel (b), where one of the imaginary parts quickly grows as P0 increases and at some point turns
positive. Here, the system undergoes a transition towards a regime with a larger lasing intensity
in a preferred mode. The larger ξ (that is, the larger the local character of the gain saturation),
the smaller the value of P0 necessary to drive the system out of the bidirectional emission state as
gain saturation asymmetry becomes more important. Nevertheless, the unfavored mode maintains
a small intensity due to the finite backscattering in both directions.

The smaller lasing threshold obtained in Fig. 3.5 can be understood by diagonalizing the matrix
A of Eq. (3.4). In the general coupling case β±,∓ 6= 0 below the lasing threshold (i.e. for |ã(0)

± |2 = 0)
the eigenvalues are

λ1 = +(ω0 − ω) + i(P0 − γA) + (β±β∓)1/2, (3.24)

λ2 = −(ω0 − ω) + i(P0 − γA)− (β∗±β
∗
∓)1/2, (3.25)

λ3 = +(ω0 − ω) + i(P0 − γA)− (β±β∓)1/2, (3.26)

λ4 = −(ω0 − ω) + i(P0 − γA) + (β∗±β
∗
∓)1/2. (3.27)

The terms in the square roots can modify their imaginary parts, therefore shifting the threshold
position with respect to the backscattering-free case, where these terms were zero. The new lasing
threshold takes place at a power P0 = γA − Im{(β±β∓)1/2}. If n = 0 one has that β∓ = β∗± and
the square roots are purely real. In this case the lasing threshold remains at its usual position
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(a) (b)

Figure 3.7: Ramp in the S-waveguide coupling from γS = 0 to
√
γS/γA = 1.5 for a ring resonator

with ξ = 2 in the presence of a backscattering described by |n| = 0.1γA and h = 0 for a fixed
pump rate P ' 36γA. (a) Intensities in each mode |ã(0)

± |2 as a function of the square root of the
S-coupling losses √γS. (b) Imaginary part of the linearized fluctuation dynamics eigenvalues λ as
a function of √γS. The dashed lines correspond to the backscattering-free eigenvalues (3.7-3.10).

P0 = γA. The same is true for a unidirectional coupling (featuring either β± = 0 or β∓ = 0). The
maximum shift for fixed |β±,∓| occurs for h = 0 and is given by P0 = γA − |β±|.

In spite of the finite intensity circulating in the unfavored direction, in the small backscattering
regime the majority of the ring resonator’s emission still takes place in a preferential direction
determined by the particular choice of backscattering coefficients. Fig. 3.6 shows the probability
of a ring resonator featuring ξ > 1 to lase preferentially in a certain direction as a function of the
Hermitian and non-Hermitian parameters. Here, the probability is calculated by averaging over
many independent realizations of the initial noise used to seed the laser operation.

We first study the situation in which both of them are finite and of equal strength, i.e. |h| =
|n| 6= 0. In panel (a) these are kept at a fixed modulus |h| = |n| ' 5 × 10−4γA while the phase
angle between them ∆φ = φn−φh is varied. For ∆φ = 0, π (which implies |β±| = |β∓|) the system
has equal probabilities of lasing in each mode, while for ∆φ = ±π/2 the emission preferentially
takes place in one particular direction with 100% probability. It is easy to realize that ∆φ = +π/2
implies β∓ = 0 while ∆φ = −π/2 corresponds to having β± = 0. These results are in perfect
agreement with the behavior of passive microdisk resonators reported in [163].

However, this is only valid when |h| = |n| 6= 0. If one of the two parameters is kept fixed and
the other is reduced to zero, the lasing probability in each direction tends to P = 0.5 regardless
of the phase difference ∆φ, as shown in panels (b) and (c). This is easily understood by exploring
Eqs. (3.21-3.22): either n = 0 or h = 0 imply in fact an equal coupling strength in the two
directions, i.e. |β±| = |β∓|.

3.4.3 TJR

In the case of a TJR coupling unidirectionally the CW into the CCW direction one has that
|β∓| � |β±| and therefore

h '− β∓
2
, (3.28)

n ' i
β∓
2
, (3.29)

which falls into the |n| = |h|, ∆φ = −π/2 case. As already shown in this Section, this implies
that even though the resonator hosts a small intensity in the CW mode due to the finite coupling
β± 6= 0, the majority of the system emission takes place in the CCW mode. The presence of
additional backscattering coupling light into the CCW direction does not have any visible effect
as it does not modify the coupling β∓ significatively 2.

2For a TJR with an oppositely oriented S-element, one still has |n| = |h| but ∆φ = π/2. As expected, this
implies a preferred emission in the CW direction.
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Figure 3.8: Ring resonator with ξ = 2 and backscattering given by |h| = γA and n = 0. (a)
Intensity in each mode |ã±|2 as a function of time t. The pump rate is fixed at P0 = 4.5γA. (b)
Amplitude ∆N± of the oscillations of the intensity in each mode as a function of the pump rate
P0 (pink circles). The amplitude is the same in the two directions. The dashed line corresponds to
the usual dependence in the absence of backscattering. (c) Frequencies ωFT of the two emission
components (whose beating leads to the intensity oscillations visible in panel (a)) as a function of
the Hermitian backscattering coefficient |h|. The pump rate is fixed at P0 = 4.5γA. The frequencies
are the same in the two directions.

In order to shine more light into the role of the S waveguide we performed a coupling ramp
from γS = 0 (which corresponds to a ring resonator) to

√
γS/γA = 1.5 in a resonator featuring

ξ = 2 and a fixed pump rate P0 ' 36γA. The initial situation is described by the backscattering
parameters employed in Fig. 3.5, namely |n| = 0.1γA and h = 0, for which the two directions
have equal probabilities of hosting the preferential lasing emission. Our results are displayed in
Fig. 3.7. As γS grows β∓ increases: This leads to an intensity transfer from the CW to the CCW
mode. For

√
γS/γA & 0.25 the S-waveguide coupling strength grows beyond the backscattering

couplings and the imaginary part of one of the eigenvalues of matrix (3.4) crosses zero from below.
The system then experiences a transition towards a state with preferential lasing in the CCW
direction. As γS continues growing the relative importance of backscattering with respect to the S
coupling decreases. For

√
γS/γA ' 1 the ratio between backscattering in the CW direction β± and

the total loss rate γT already gives |β±| ' 5×10−2γT, which means that the system is approaching
the perturbative backscattering regime described in Sec. 3.4.1. As this happens the spectrum of
eigenvalues of the matrix A in Eq. (3.4) approaches the backscattering-free eigenvalues (3.7-3.10)
and the intensity ratio between the two directions already gives a sizable value |ã(0)

− |2 ' 250|ã(0)
+ |2

for
√
γS/γA = 1.5. The eventual decrease of the intensity also in the CCW direction that is

observed at higher γS is due to the growth of the total loss rate γT that is naturally associated to
the increasing γS.

These results confirm the possibility to use the S waveguide in order to guarantee unidirectional
lasing. The necessary condition is to implement a sufficiently large coupling allowing to treat
backscattering as a microscopic perturbation to unidirectional lasing, which according to our model
is legitimate at least up to |β̃±,∓| . 10−2γT.

3.5 Large backscattering

In this Section we investigate lasing in ring resonators and TJRs characterized by the presence of
a large Hermitian backscattering compared with the resonator loss rate in the absence of the S
element, i.e. |h| & γA. As we will show such a coupling introduces self-oscillations of the intensity in
the two directions. The requirement |n| ≤ γT that is needed to avoid an unphysical backscattering-
induced gain implies that our model can only account for a large Hermitian backscattering. For
simplicity, we will then consider n = 0 throughout this Section. The addition of a non-Hermitian
coupling would only introduce an asymmetry between the two counter-propagating directions that
damps the oscillating behavior for values of n approaching γT. As in Sec. 3.4, the analysis carried
in this Section does not take into account the resonance shift due to the nonlinearity, i.e. nNL = 0.
This additional effect will be studied in Sec. 3.6. Under this condition, lasing occurs at the resonator
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Figure 3.9: Ramp in S-waveguide coupling from γS = 0 (ring resonator) to
√
γS/γA = 2.5 for a

ring resonator with ξ = 2 in the presence of a backscattering given by n = 0 and |h| = γA for
a fixed pump rate P ' 20γA. (a) Mean value between intensity maxima and minima in each
direction N± as a function of the square root of the S-coupling losses √γS. Data corresponding to√
γS/γA . 0.5 falls into the oscillation regime. (b) Frequency of the field amplitudes in the two

directions ωFT as a function of √γS.

frequency ω0.

Fig. 3.8a shows the time evolution of the intensity in each mode for a ring resonator featuring
ξ = 2, n = 0, and |h| = γA at a pump rate P0 = 4.5γA. As observed in previous works [141, 143]
for such a large backscattering coupling the resonator enters a regime in which the intensity in
the two directions oscillates in phase opposition at a frequency given by twice the modulus of
the backscattering coupling |h|. Panel (b) shows the amplitude ∆N± of these oscillations as a
function of P0. This is equal in the two directions and is slightly smaller than the backscattering-
free amplitude, which is given by P0/γA − 1. The frequency at which the field amplitudes ã±
oscillate ωFT is extracted from a Fourier transform, and displayed in panel (c) for a fixed pump
rate P0 = 4.5γT as a function of |h|. As shown in Sec. 3.4 for a small backscattering in our
reference frame rotating at a frequency ω = ω0 the field amplitudes do not oscillate. As |h| grows
beyond approximately 0.1γA both field amplitudes start oscillating with two opposite frequency
components which rapidly approach ±|h| as the Hermitian backscattering grows.

This situation changes dramatically when the S-shaped waveguide of the TJR is introduced.
In Fig. 3.9 a ring resonator featuring the same ξ parameter and backscattering coefficients as in
the simulation displayed in Fig. 3.8 is subjected to an S-coupling ramp. The pump rate is fixed
at P0 = 20γA. Panel (a) shows the mean value between the maximum and minimum intensities
N± = (max{|ã±|2}+min{|ã±|2})/2 emitted in each direction. In the oscillatory regime that takes
place for

√
γS/γA . 0.5 this quantity corresponds to half the amplitude of the oscillations. In the

nonoscillatory regime (for
√
γS/γA & 0.5) one has that max{|ã±|2} = min{|ã±|2} and therefore

N± = |ã(0)
± |2. On the other hand, Fig. 3.9b shows the oscillation frequency ωFT extracted from

a Fourier transform of the field amplitudes ã± in each direction for the same ramp in γS. In
the oscillatory regime the two amplitudes oscillate with two frequency components given by the
Hermitian backscattering coefficient ±|h|. For

√
γS/γA & 0.5 the coupling strength with the S

waveguide increases beyond the backscattering couplings given by |h| = γA and the oscillations
disappear (see panel (b)). This regime is equivalent to the situation studied in Sec. 3.4.3. Panel (a)
shows that the S-shaped waveguide imposes a definite chirality in the laser emission, as the CCW
mode becomes the favored mode when γS is increased. Once again, the eventual decrease of the
intensity in the two directions that is visible at larger γS is due the growth of the total loss rate γT.
Interestingly, this effect mainly affects the unfavored CW mode, whose emission becomes rapidly
negligible. For instance, already at

√
γS/γA = 2.5 the intensity ratio between both directions is

|ã(0)
− |2 ' 17|ã(0)

+ |2.
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(a) (b)

Figure 3.10: (a) Mean value between intensity maxima and minima N± as a function of the
nonlinear refractive index nNL for a ring resonator featuring an optical Kerr nonlinearity (g = 2)
and a local gain saturation (ξ = 2). The backscattering parameters are n = 0, |h| = γA. The pump
rate is fixed at P0 = 4.5γA. Data corresponding to nNLnSω0/nLγA . 1 fall into the oscillatory
regime. (b) Absolute values of the oscillation frequencies ωFT of the field amplitudes ã± as a
function of nNL. Squares and circles are the values extracted from the Fourier transform (FT) of
the data presented in panel (a). Dashed lines represent the expected oscillation frequency in the
linear regime |h| and the nonlinear frequency shifts for each mode.

3.6 Effect of the optical nonlinearities

In this Section we show that the local Kerr nonlinearity indigenous to the waveguide material rein-
forces the unidirectionality of the ring laser emission. This effect can be combined with the action
of the S-waveguide in order to further reinforce unidirectional lasing even in the large backscat-
tering regime. The nonlinearity modifies the resonance frequency of each mode ω(0)

± according
to

ω
(0)
± = ω0

[
1− nNL

nL
(|ã(0)
± |2 + g|ã(0)

∓ |2)

]
. (3.30)

In the backscattering-free ring resonator and unidirectional TJR lasers the nonlinearity has no
effects beyond the shift of the resonance frequency. The behavior is therefore the same as the one
described in Sec. 3.3 for the linear regime. The same is true for a pure thermo-optic nonlinearity
with g = 1 even in the presence of backscattering. In this case the resonance frequency of the two
modes is in fact shifted by equal amounts and therefore the coupling between them is not perturbed
by the nonlinearity. On the other hand, if one has g > 1 and finite and unequal intensities in the
two modes, as is possible for a sufficiently large backscattering in a ring resonator, the resonance
frequency in the two directions will be different. This fact further suppresses the intermodal
coupling as it reduces the probability of light to scatter from one mode to another.

Fig. 3.10a shows the mean value between the intensity maxima and minima N± as the nonlinear
refractive index nNL is varied. In the nonoscillatory regime this quantity reduces to the steady-
state intensity |ã(0)

± |2. Panel (b) of the same figure shows the field oscillation frequencies ωFT

in the two directions for the same nNL ramp, as extracted from a Fourier transform of the field
amplitudes. Once again we chose a rotating reference frame at the linear resonance frequency
ω0. The calculation was made for a ring resonator featuring a g = 2 optical nonlinearity and
a ξ = 2 saturable gain. The backscattering parameters are n = 0, |h| = γA, which fall into
the large backscattering regime described in Sec. 3.5. The pump rate is fixed at P0 = 4.5γA.
Similarly to Fig. 3.9, as nNL increases oscillations disappear, leading to a regime in which the laser
emission is concentrated in a randomly chosen direction (the CW one in the figure), each with 50%
of probability. This effect is reinforced as nNL grows, ultimately achieving a pure unidirectional
emission for nNLnSω0/nLγA & 10. For the largest value of nNL calculated, the intensity ratio gives
|ã(0)

+ |2 ' 104|ã(0)
− |2.

As shown in panel (b), for negligible values of nNL both modes oscillate with two frequency
components given by the Hermitian backscattering coefficient±|h|, as demonstrated in Sec. 3.5. For
the purpose of using a logarithmic scale, the absolute values |ωFT| are displayed. As nNL increases,
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(a) (b)

Figure 3.11: Pump rate ramp in a TJR featuring an S-waveguide coupling
√
γS/γA = 2.5, a ξ = 2

gain saturation, a g = 2 nonlinearity given by nNLnSω0/nLγA = 50, and backscattering parameters
n = 0 and |h| = γA. (a) Steady-state intensity |ã(0)

± |2 in each mode as a function of the pump
rate P0. The dashed line is the backscattering-free intensity. (b) Imaginary part of the fluctuation
dynamics eigenvalues λ as a function of P0. The dashed lines correspond to the imaginary parts
of the backscattering-free eigenvalues given by Eqs. (3.5-3.10). The black circles are not visible as
they lay below the light blue ones.

the frequencies blue shift until a transition takes place at nNLnSω0/nLγA & 1 back to a regime
with stationary intensity values, in which the two field amplitudes oscillate at a single frequency
given by the nonlinear displacement of the resonance frequency of the resonator (Eq. (3.30)) for
the preferred lasing direction. This is telling us that the unfavored CCW direction does no longer
feature laser oscillations at its own resonance frequency but that all the light that populates it is
being backscattered from the preferential CW direction.

Finally, Fig. 3.11 displays the steady-state intensities |ã(0)
± |2 and the corresponding imaginary

part of the eigenvalues of matrix A (Eq. (3.4)) for a pump rate ramp in a TJR featuring an S-
waveguide coupling

√
γS/γA = 2.5, a g = 2 Kerr nonlinearity of strength nNLnSω0/nLγA = 50,

a ξ = 2 saturable gain, and large backscattering parameters n = 0 and |h| = γA. In the absence
of the S-waveguide and the nonlinearity, the corresponding ring resonator would feature intensity
oscillations at a frequency given by 2|h|. Instead, the nonlinear TJR capitalizing on these two
crucial elements shows unidirectional lasing with a preferred CCW chirality with 100% probability.
The intensity in the CW direction is four orders of magnitude smaller than that in the CCW
one and can therefore be safely neglected. The Bogoliubov analysis of the small perturbations
to this steady state reveals that the eigenvalues of the linearized fluctuation dynamics matrix
A are identical to those calculated in the backscattering-free case, ensuring the stability of the
unidirectional emission.

3.7 Conclusions

In this Chapter we demonstrated that an active “Taiji” micro-ring resonator (TJR) formed by a
standard ring resonator supplemented by an S-shaped element unidirectionally coupling the two
counterpropagating modes shows a preferential chirality in the laser oscillation even in the presence
of a large backscattering. The presence of the S-shaped element implies robust unidirectional lasing
in the favored direction and restricts the emission in the other direction to negligible values.

Our theoretical investigation is based on the most general version of the coupled-mode equations
of motion for the field amplitudes in the two counter-propagating modes. These equations are first
solved for the steady-states. The dynamical stability of these latter against small perturbations is
then assessed within a linearized theory by looking at the imaginary part of the eigenvalues of the
linearized fluctuations dynamics matrix.

In the absence of backscattering, one of the two counterpropagating lasing solutions of the ring
resonator disappears for a sufficiently strong coupling by the S-element, leaving a single stable
solution with laser emission only in the mode which is favored by the S-shaped element. This
unidirectional emission remains stable even in the presence of backscattering effects due, e.g.,
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to the roughness of the resonator surface, as long as the coupling by the S-element exceeds the
backscattering strength. The robustness of the unidirectional laser emission is further reinforced
by a Kerr nonlinearity shifting the resonance of the two counterpropagating modes by different
amounts.

While unidirectional laser emission in a random direction in ring resonators can be seen as
a spontaneous breaking of the time-reversal T -symmetry in the lasing state above threshold, the
explicit breaking of P-symmetry in the geometrical shape of our Taiji resonator leads to a preferred
chirality of the laser emission. This can be understood as an explicit dynamical breaking of T -
symmetry induced by the broken P-symmetry in an otherwise T -symmetric device.

This novel mechanism for breaking T -reversal appears of great interest in view of realizing
optical isolators and other non-reciprocal devices based on wave-mixing phenomena without the
need for magnetic elements. Further research along these lines will be the subject of Chapter 4.

Furthermore, as we will demonstrate in Chapter 5, in the context of topological photonics [7, 13]
TJRs allow to dynamically generate a topological Chern insulator using structures based on non-
magnetic active dielectric materials.
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Chapter 4

Optical isolators based on parity-symmetry
breaking and four-wave mixing

In this Chapter we numerically demonstrate effective optical isolation over a broad fre-
quency range in all-dielectric and non-magnetic devices operating at telecommunication frequen-
cies. The proposed strategy capitalizes on the reciprocity breaking due to the asymmetric action
of four-wave mixing coupling a large intensity pump with the transmitted signal but not with
reverse-propagating undesired ones. This allows our devices to circumvent the dynamic reciprocity
restrictions [19]. Our theoretical formalism is based on a linearized analysis of the signal and idler
fields which are treated as small perturbations in the temporal coupled-mode theory equations
for the large intensity pump. Nonreciprocity is further investigated by diagonalizing the Bogoli-
ubov matrix for fields propagating in the two directions and examining the resulting spectrum
of eigenvalues and the norm of the associated eigenvectors. We propose three setups where this
one scheme can be realized in different flavors: a passive ring resonator in add-drop configuration
optically pump from one side, an active ring resonator in which an external bias triggers lasing in
the forward direction, and an incoherently pumped active Taiji resonator.

4.1 Introduction

Optical isolators [15] —introduced in Chapter 2— are devices that allow the transmission of light
in a certain direction (known as forward) while simultaneously preventing light propagation in
the opposite direction (labelled reverse). As reviewed in Sec. 2.2, isolation requires breaking
Lorentz reciprocity [89]. For this purpose many strategies have been proposed: Some authors
employed magneto-optic materials that break time-reversal symmetry in the presence of an external
magnetic field [93, 95, 96, 98]. Others relied on an external driving field producing a time-dependent
modulation of the material’s refractive index [99, 100, 101, 102, 103]. A more promising strategy to
break reciprocity consists on exploiting the optical nonlinearity of the employed dielectric material.
Such isolators have the further advantage of offering a smaller on-chip footprint and an easier
integration with state-of-the-art silicon-based photonic networks.

Along the latter line, several devices have demonstrated non-reciprocal transmittance when
light is injected first in the forward and then in the reverse direction [104, 164, 107, 108, 17].
However, the work of Ref. [19] showed that such systems cannot grant isolation against arbitrary
backwards-propagating noise when a strong signal is being transmitted in the forward direction.
This is called dynamic reciprocity, and it constitutes an extremely important weak point as these
are the usual operation conditions in which an optical isolator is expected to work.

Nevertheless, there are some exceptions to dynamic reciprocity. Ref. [19] demonstrated that
when the frequency spectrum of the noise overlaps with that of the forward signal, four-wave mixing
(FWM) coupling between the two fields preserves nonreciprocity. A specific case in this class is
obtained when both signal and noise are monochromatic waves featuring the same frequency. An
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example is provided by Ref. [110], who capitalized on the different Kerr nonlinearity shifts of
the resonance frequencies of two counterpropagating whispering gallery modes in a silicon ring
resonator [109], namely clockwise (CW) and counterclockwise (CCW). After being transmitted
through the device, light was reflected at a mirror and could not couple to the counterpropagating
mode of the resonator.

In this Chapter we show that all-dielectric ring resonators strongly pumped in a single direction
behave as optical isolators over a broad frequency range as they permit the propagation of signals in
the pump direction while preventing transmission in the opposite one. This asymmetry stems from
the fact that FWM coupling pump and signal is only possible when both propagate in the same
direction. This allows our proposal to circumvent the restrictions imposed by dynamic reciprocity.

We consider three different setups where isolation can be realized, all based in very similar
concepts. The first one is a passive ring resonator coupled to a pair of bus waveguides in add-drop
configuration. The system is coherently pumped through one of the bus waveguides. The second
one corresponds to its active analog where an incoherent pumping promotes lasing in a randomly
chosen whispering-gallery mode. By means of a small driving injected through one of the bus
waveguides one can unambiguously select the lasing chirality. After lasing is triggered the bias
driving can be switched off. In the third one, we consider replacing the ring resonator by a Taiji
resonator (TJR) laser which eliminates the need for the bias in order to determine its emission
direction. Introduced in Chapter 2, TJRs are ring resonators embedding an S-shaped waveguide
which couples light propagating in one direction of the external ring into the opposite one, but
forbids the inverse process. They have been extensively employed to promote unidirectional las-
ing [14, 145] (see Chapter 3) and play a central role in order to preserve the topological protection
of a pair of chiral surface modes in quantum spin-Hall topological insulator lasers [13, 155, 7, 12]
due to the high immunity of their unidirectional emission against backscattering coupling light in
counterpropagating modes. The interplay between TJRs and topological band structures will be
the subject of Chapter 5.

In order to study this behavior we make use of a time-dependent coupled mode theory. We
consider the signal and idler fields as small perturbations to the pump, whose intensity is assumed to
be much larger than that of any other field inside the resonator. We then linearize the dependence
on the field amplitudes of signal and idler in the coupled-mode equations. By solving for the
steady state of the resulting system of equations we are able to ascertain the signal transmittance
across such systems and to probe optical isolation from signals propagating in the reverse direction.
In order to further investigate the role of the FWM asymmetry we set up the 4 × 4 Bogoliubov
matrix connecting the signal and idler fields in the two directions and diagonalize it to obtain the
frequency of the transmittance peaks and assess the stability of the considered modes. This is also
employed to highlight a connection between our passive and active optical diodes, and coherently
and incoherently pumped polariton condensates [53].

The Chapter is organized as follows. Sec. 4.2 introduces the coupled-mode theory and the
linearized approximation employed in our simulations. Our results for a passive ring resonator
coherently pumped from one side are shown in Sec. 4.3. Sec. 4.4 is devoted to a similar setup
based on active ring resonators. Our results for the TJR laser isolator can be found in Sec. 4.5.
Conclusions are finally drawn in Sec. 4.6.

4.2 The physical system and the theoretical model

Light propagating inside a ring resonator of radius R and linear refractive index nL (nonlinear
effects are neglected here) is restricted to discrete modes featuring a free-space wavelength

λ` =
2πRnL

|`|
(4.1)

where ` is an integer number, namely determining the angular momentum of the mode. The sign
of ` describes its propagation direction: ` > 0 indicates a CCW-propagating mode, while ` < 0
corresponds to CW modes.

Since resonators are a material medium, the dispersion relation for light inside them is not
linear on the angular momentum ` and features higher order terms due to the dependence of the
linear refractive index nL on the probing wavelength λ, which ultimately results in nL being a
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function of `. We can then write the dispersion relation as

ω
(0)
` =

c

nL(`)

|`|
R
, (4.2)

where ω(0)
` is the resonance frequency of mode ` and c is the vacuum speed of light. We now

consider the Taylor expansion of nL around a certain angular momentum mode, which we label
`P:

nL(`) = nL(|`P|) +

(
dnL

d|`|

)
|`P|

(|`| − |`P|) +O(`2). (4.3)

By combining Eqs. (4.2-4.3) we arrive at the expression

ω
(0)
` =

c

nL(|`P|)

[
1 +

1

nL(|`P|)

(
dnL

d|`|

)
|`P|
|`P|

]
|`|
R

− c

n2
L(|`P|)

(
dnL

d|`|

)
|`P|

`2

R
, (4.4)

which is valid whenever the condition(
dnL

d|`|

)
|`P|
�
(
d2nL

d|`|2

)
|`P|
|`P| (4.5)

is satisfied. We now capitalize on Eq. (4.1) in order to rewrite Eq. (4.4) in terms of the derivative
dnL/dλ:

ω
(0)
` =

c

|`P|

[
1− 2πR

|`P|

(
dnL

dλ

)
λP

]
|`|
R

+
c

nL(|`P|)
2π

`2P

(
dnL

dλ

)
λP

`2, (4.6)

where the derivatives are evaluated at λP = 2πRnL/|`P|. For instance, around λP = 1500 nm
SiON waveguides of transverse area 1200 nm × 570 nm display an effective linear refractive index
(including the effect of confinement) nL ' 1.59. Its first derivative gives (dnL/dλ)λP = −1.42 ×
10−4 nm−1. The second derivative is zero with a large precision [130]. Thus, in that case the
condition (4.5) is met and the quadratic approximation for the dispersion relation is valid.

Eq. (4.6) can be recast in the more suggestive form

ω
(0)
` = ω

(0)
P + v (|`| − |`P|) +

α

2
(|`| − |`P|)2

, (4.7)

by defining

ω
(0)
P =

c|`P|
nL(|`P|)R

, (4.8)

v =
c

nL(|`P|)R

[
1 +

2πR

|`P|

(
dnL

dλ

)
λP

]
, (4.9)

α = 2
c

nL(|`P)|
2π

`2P

(
dnL

dλ

)
λP

. (4.10)

It is instructive to compare Eq. (4.7) with the dispersion of a polariton condensate moving at a
constant velocity v [53]. In this sense, ω(0)

P ≡ ω(0)
`P

is the bare resonance frequency of the `P mode,
analogous to the ground state frequency at the bottom of the lower polariton branch; v(|`| − |`P|)
plays the role of the Doppler shift, and α(|`| − |`P|)2/2 sets the curvature of the dispersion, where
α−1 represents an effective mass.

A sketch of the dispersion relation given by Eq. (4.7) can be found in Fig. 4.1a. The key idea
behind our proposal for optical isolators is to pump with a large intensity at a frequency ωP in
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(a) (b) (c)

P +

I +

S +S -

Figure 4.1: (a) Frequency ω as a function of the angular momentum ` of the modes of a ring
resonator and TJR. The green dashed lines are the dispersion relations for CCW (` > 0) and
CW (` < 0) modes including the curvature given by Eq. (4.7). (b) Scheme of a ring resonator
pumped in the CCW direction by an external field a(in)

P+ . The dashed rectangles signal directional
couplers of transmission and coupling parameters tw and ikw, respectively. The field amplitude aP+

corresponds to the large intensity pump mode inside the resonator. The system is probed in the
two directions by the external fields a(in)

S± . The field amplitudes of these modes inside the resonator
are given by aS±. (c) Similar scheme for a TJR in which light is unidirectionally coupled from
the CW into the CCW direction. The transmission and coupling parameters for the directional
couplers between the ring and the S waveguides are given by tS and ikS, respectively.

the vicinity of the resonance frequency ω(0)
P . Without loss of generality we take the corresponding

angular momentum to be positive (i.e. `P > 0), implying propagation in a CCW whispering-gallery
mode of the resonator. This mode is labeled P+ 1. Due to the intrinsic optical nonlinearity of
the material, a couple of photons from the P+ mode can scatter into the S+ (signal) and I+
(idler) modes featuring angular momenta (frequencies) `S (ωS) and `I = 2`P − `S (ωI = 2ωP −
ωS), respectively. Such a process is known as four-wave mixing (FWM). Due to the dependence
nL(λ) and the frequency detuning of the pump the S+ and I+ modes will also be detuned with
respect to the corresponding resonance frequencies ω(0)

S ≡ ω
(0)
`S

and ω
(0)
I ≡ ω

(0)
`I

given by the
dispersion relation (4.7). Furthermore, as we will see, when the optical nonlinearity of the material
is considered the resonance frequencies ω(0)

P,S,I of pump, signal, and idler will also be shifted with
respect to the linear value appearing in Eq. (4.7). Such a deviation is proportional to the pump
intensity.

The resonator is then probed in opposite directions around the ω(0)
S resonance by means of a

signal with a smaller intensity than that of the pump. When the signal is coupled into the S+
mode propagating in the CCW direction FWM alters its transmittance spectrum. However, a
signal S− propagating in the CW direction cannot be coupled with the pump P+ though FWM
because no available resonance exists in the vicinity of the resulting I− mode, which is determined
by conservation of energy and angular momentum.

Such an asymmetry sets the pump direction as the forward operation direction (in our case we
chose the CCW) for the optical isolator, and its opposite direction as the reverse one (in our case
the CW). Therefore, reciprocity is broken for signals propagating in the two directions. The two
ingredients allowing this are the P-symmetry (parity) breaking due to the unidirectional pump
and the optical nonlinearity giving rise to FWM.

The proposed setup consists on a ring resonator (see Fig. 4.1b) or TJR (see Fig. 4.1c) coupled to
a pair of bus waveguides located at opposite sides (i.e. the so-called add-drop configuration). Light
is injected into the resonator through one of the bus waveguides and transmittance is measured at
the output of the other bus waveguide. In this Chapter we follow three different strategies in order
to achieve a large intensity in the P+ mode. In a passive ring resonator one can optically pump
through one of the bus waveguides at the desired frequency ωP. Taking ideas from Chapter 3
of this Thesis, an alternative strategy consists on employing active resonators and incoherently
pump above the lasing threshold. In this Chapter we will assume that the system features an
instantaneous saturable gain (i.e. we consider class-A lasers where the dynamics of the reservoir

1Note that in this Chapter, contrary to the usual notation employed thorough the rest of this Thesis, CW (CCW)
modes are identified with the − (+) sing. This is done in order to allow a straightforward identification with the
sign of their angular momenta.
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giving rise to light amplification is fast enough and has been integrated out in the saturable
gain [161, 162]) and that only a pair of counterpropagating modes P± can compete for it. In the
case of an active ring resonator, if undesired backscattering coupling modes propagating in opposite
directions is sufficiently small, the system will host unidirectional emission in a randomly chosen
direction. This can be set by means of an external driving propagating in the desired forward
direction with a small intensity and a frequency in the vicinity of ω(0)

P . Once lasing is triggered
such a bias can be turned off. Finally, in an active TJR the laser emission already features a well-
defined chirality without the need for an external driving. Besides, its unidirectionality is further
protected against spurious backscattering.

In order to model the system we consider perfect directional couplers between all its components.
These are described by transmission and coupling amplitudes tw,S and ikw,S, respectively, being
tw,S and kw,S real numbers satisfying t2w,S + k2

w,S = 1. The subindices w, S refer to the bus
waveguide-resonator and S waveguide-resonator couplings, respectively. The couplings of a ring
of perimeter L = 2πR with the bus waveguides and the S waveguide introduce the loss rates
γw = ck2

w/(LnL) and γS = ck2
S/(LnL), respectively.

We start by writing the most general version of the temporal coupled-mode equations for the
P± modes, valid for both passive and active ring resonators and TJRs. Let us express the spatio-
temporal dependence of the field amplitudes aP±(z, t) = ãP±(t)ei(±`Pz/R−ωPt) with respect to the
angular momentum ±`P and the frequency ωP. The intensity in the P± modes is then given by
|ãP±|2. The coupled-mode equations read

i ˙̃aP± = (ω
(0)
P − ωP)ãP± −

nNL

nL
ω

(0)
P

(
|ãP±|2 + 2|ãP∓|2

)
ãP±

+ i
P0

1 + 1
nS

(|ãP±|2 + 2|ãP∓|2)
ãP± − iγTãP±

+ β
(P)
±,∓ãP∓ −

c

LnL
κwã

(in)
P± . (4.11)

In this Chapter we will assume that our system features a g = 2 local Kerr nonlinearity described
by a nonlinear refractive index nNL, and a ξ = 2 local saturable gain with P0 the pump rate and nS

the gain saturation coefficient (see Chapters 2 and 3). We label γT = γA+γw+γS the total loss rate
including absorption losses γA. We can define a kA parameter entirely analogous to the coupling
coefficients kw,S to ensure a better comparison between absorption and radiative losses. This will be
given by kA =

√
LnLγA/c. The coupling parameters between counterpropagating modes for a ring

resonator are β(P)
±,∓ = 0, while in the case of a TJR featuring an S element of length LS that couples

light from the CW into the CCW direction one has β(P)
∓ = 0 and β(P)

± = −i2ck2
Se
iω

(0)
P nLLS/c/LnL

(nonlinear effects can be safely neglected in the exponential factor). The last term of Eq. (4.11)
represents the coupling with an external driving field a

(in)
P± = ã

(in)
P± e

i(±`Pz/R−ωPt) featuring a fre-
quency ωP, which can account for the coherent pump of a passive ring resonator or for the small
driving setting the lasing direction of the active ring resonator.

We now introduce the signal aS± and idler aI± fields as small perturbations to the pump with
frequency (angular momentum) ωS,I (±`S,I), respectively, i.e.

ãP±e
i(±`Pz/R−ωPt) → ãP±e

i(±`Pz/R−ωPt) + ãS±e
i(±`Sz/R−ωSt) + ãI±e

i(±`Iz/R−ωIt). (4.12)

Making this replacement into Eq. (4.11), staying at linear order O(aS±, aI±) in the perturbations,
and neglecting the terms representing nonlinear processes that do not conserve energy or angular
momentum we arrive to the following equations for the amplitudes of signal and idler inside the
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resonator

i ˙̃aS± = (ω
(0)
S − ωS)ãS± − 2

nNL

nL
ω

(0)
S

(
|ãP±|2 + |ãP∓|2

)
ãS± −

nNL

nL

√
ω

(0)
S ω

(0)
I ã2

P±ã
∗
I±

+ i
P0

1 + 1
nS

(|ãP±|2 + 2|ãP∓|2)
ãS± − i

P0/nS[
1 + 1

nS
(|ãP±|2 + 2|ãP∓|2)

]2 (|ãP±|2ãS± + ã2
P±ã

∗
I±)

− iγTãS± + β
(S)
±,∓ã

(S)
∓ −

c

LnL
κwã

(in)
S± (4.13)

i ˙̃aI± = (ω
(0)
I − ωI)ãI± − 2

nNL

nL
ω

(0)
I

(
|ãP±|2 + |ãP∓|2

)
ãI± −

nNL

nL

√
ω

(0)
S ω

(0)
I ã2

P±ã
∗
S±

+ i
P0

1 + 1
nS

(|ãP±|2 + 2|ãP∓|2)
ãI± − i

P0/nS[
1 + 1

nS
(|ãP±|2 + 2|ãP∓|2)

]2 (|ãP±|2ãI± + ã2
P±ã

∗
S±)

− iγTãI± + β
(I)
±,∓ã

(I)
∓ , (4.14)

Similarly to what applies for the pump’s equation (4.11), only when the TJR is present the couplings
β

(S,I)
± = −i2ck2

Se
iω

(0)
S,InLLS/c/LnL are non-zero; otherwise we have that β(S,I)

±,∓ = 0. In each equation
we have substituted ω(0)

P by the corresponding resonance frequency ω(0)
S,I to include in our description

a signal and idler belonging to different modes. The second term in the right-hand side of Eqs. (4.13-
4.14) is the usual Kerr nonlinearity which is also present in Eq. (4.11). However, the coupled-
mode equations for signal and idler feature further nonlinear terms describing FWM which are
proportional to ã2

P±ã
∗
I± and ã2

P±ã
∗
S± in each case. The different frequencies ω(0)

S and ω(0)
I in the

FWM terms break the intrinsic Hermiticity of the linearized equations provided that gain and
losses are not present into the system (i.e. when P0 = γT = 0). Such a problem stems from the
fact that we did not consider the dependence of the nonlinear refractive index nNL(ωS, ωI) on the
frequency of signal and idler. In order to cure this issue we made the following approximation

−nNL(ωS, ωI)

nL
ω

(0)
S,I ã

2
P±ã

∗
S,I± ' −

nNL

nL

√
ω

(0)
S ω

(0)
I ã2

P±ã
∗
S,I±, (4.15)

and employed a geometric mean of the frequencies on the FWM terms. Overall, the linearity of
the coupled-mode equations for signal (4.13) and idler (4.14) in ãS± and ãI± will be of crucial
importance for demonstrating the isolator character of our devices. In the last term of Eq. (4.13),
ã

(in)
S± is an external forcing for the signal featuring a frequency ωS.
In the following Sections we solve Eqs. (4.11, 4.13, 4.14) for the steady state of the field ampli-

tudes ã(0)
P,S,I± = ãP,S,I±(t → ∞) using a 4th order Runge-Kutta algorithm. As typical parameters

for a realistic silicon photonics implementation we choose R = 20 µm, nL = 1.59, γAnL/c = 8×10−6

µm−1 (which implies kA = 0.032), and ω(0)
P = 2π× 200 THz, corresponding to the mode `P = 133,

for which we can employ the value of the derivative (dnL/dλ)λP
= −1.42× 10−4 nm−1 presented

at the beginning of this Section. These values yield v = 8.20 THz and α = −18.8 GHz for the
dispersion relation (4.7).

The forward (reverse) normalized transmittances Tfor (Trev) for a signal exiting the resonator
from the opposite waveguide to that in which it was injected are defined as

Tfor =
|ã(out)

S+ |2

|ã(in)
S+ |2

=
|ikwã

(0)
+ |2

|ã(in)
S+ |2

, (4.16)

Trev =
|ã(out)

S− |2

|ã(in)
S− |2

=
|ikwã

(0)
− |2

|ã(in)
S− |2

. (4.17)

As pump, signal and idler feature different frequencies, a frequency filter at the output of the bus
waveguide will allow us to get the signal of interest.

In the following Sections we present our results for the transmittance spectrum of forward and
reverse-propagating signals in the presence of a large intensity pump in the forward direction. We
start with the optically pumped passive ring resonator.
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Figure 4.2: Optical bistability in the passive ring resonator described in Sec. 4.3. The figure shows
the pump intensity inside the resonator |ã(0)

P+|2 circulating in the `P = 133 mode in units of the
incident pump intensity |ã(in)

P+ |2 as a function of frequency ωP. When frequency is scanned upwards,
the intensity is given by the thick green curve (lower branch). In a downwards frequency ramp the
intensity is instead given by the thin black line (upper branch). The vertical dashed line indicates
the frequency ωP ' 4.1777γT in which we pumped in the upper branch. The vertical dashed-dotted
line signals the frequency ωP ' 4.1782γT in which we pumped in the lower branch.

4.3 Passive ring resonator

In this Section we demonstrate isolation for signals propagating in the reverse direction of a passive
ring resonator optically pumped in the `P = 133 mode. No saturable gain is present in this case
and therefore we take P0 = 0. We employ a nonlinear refreactive index nNL = 10−14 cm2/W. As
coupling parameters between the ring resonator and the bus waveguides we take kw = kA = 0.032
to set the system on critical coupling. No S waveguide is present in this case and therefore kS = 0.
The corresponding quality factor for such a ring resonator is Q ' 4.2× 105.

The coherent pump with frequency ωP and incident intensity |ã(in)
P+ |2 injected through the

left-hand waveguide sets the CCW mode as the forward operation direction. Due to the optical
nonlinearity the resonance frequency given in the linear regime by Eq. (4.7) is red-shifted (as our
material features nNL > 0) and the pump intensity inside the resonator |ã(0)

P+|2 describes a hysteresis
cycle as a function of ωP known as optical bistability. Such a phenomenon is well-known from
Chapter 2. A frequency scan of |ã(0)

P+|2 is shown in Fig. 4.2, displaying the two intensity branches.
Thus, the value of |ã(0)

P+|2 will depend on whether we are pumping in the upper or lower branch of
this hysteresis cycle. An appropriate choice of initial conditions allows us to pump in the upper
branch, which features a larger intensity than the lower one. This enhances the effect of FWM.
For the same reason we pump at a frequency ωP ' 4.1777γT, close to the downwards intensity
jump of the upper branch, yielding a pump intensity inside the resonator |ã(0)

P+|2 ' 240|ã(in)
P+ |2.

We then probe the device in the forward direction by sending through the left-hand bus waveg-
uide a signal of incident intensity |ã(in)

S+ | = 10−1|ã(in)
P+ |2. The forward transmittance Tfor as a

function of the signal frequency ωS is plotted in Fig. 4.3a around a single resonance corresponding
to the mode with angular momentum `S = 131. The spectrum exhibits a characteristic doublet:
The left-hand peak corresponds to the resonance frequency of the signal, whose position is shifted
due to the nonlinear terms in Eq. (4.13). The right-hand peak, on the other hand, appears as a
consequence of conservation of energy and momentum in FWM processes coupling the pump with
the resonance frequency of the idler.

We now send a reverse-propagating signal of identical incident intensity |ã(in)
S− | = 10−1|ã(in)

P+ |2
through the right-hand bus waveguide and look at the transmittance Trev as its frequency ωS is
varied around the resonance corresponding to the CW mode with angular momentum `S = −131.
Since FWM is absent, in this case no photons from the pump are scattered into the idler resonance,
and therefore Trev displays a single peak. However, this is located at a different frequency from that
of the left-hand peak of the Tfor doublet. This is also due to the lack of FWM coupling between
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pump, signal, and idler: in the reverse direction the only contribution to the nonlinear shift of the
resonance peak comes from the Kerr nonlinearity. As can be seen in Fig. 4.3a, Trev is negligible
over a broad frequency range, including the frequencies at which the doublet in Tfor appears. In
particular, at the frequency ωS ' 4.1228γT (or equivalently [ωS−ω(0)

P −v(|`S|−|`P|)] = −103.47γT)
in which the forward-propagating signal achieves its maximum transmittance, the ratio between
the two transmittances reaches 33 dB, thus demonstrating the isolator character of our device.
Since Eqs. (4.13-4.14) are linear in ãS± and ãI±, the forward and reverse signals cannot interact
between each other and therefore the transmittance spectra in the two directions are unaltered
even when the two signals are propagating though the device at the same time. As a consequence
our device is not subjected to the dynamic reciprocity restrictions and hence it can work as an
optical isolator.

The different effect of FWM for counterpropagating signals can be further investigated by
means of a Bogoliubov analysis of the dynamics of signal and idler both in forward and reverse
directions, which are treated as linearized perturbations to the large intensity pump present in the
forward direction only. From Eqs. (4.13-4.14) it is straightforward to set up the Bogoliubov system
of equations

i
d

dt

[
ãS+ ã∗I+ ãS− ã∗I−

]T

=



ω
(0)
S − ωS − iγT

−2nNL

nL
ω

(0)
S |ã

(0)
P+|2

−nNL

nL

√
ω

(0)
S ω

(0)
I ã

(0)2

P+
0 0

+nNL

nL

√
ω

(0)
S ω

(0)
I ã

(0)∗2

P+

−ω(0)
I + 2ωP − ωS − iγT

+2nNL

nL
ω

(0)
I |ã

(0)
P+|2

0 0

0 0
ω

(0)
S − ωS − iγT

−2nNL

nL
ω

(0)
S |ã

(0)
P+|2

0

0 0 0
−ω(0)

I + 2ωP − ωS − iγT

+2nNL

nL
ω

(0)
I |ã

(0)
P+|2


×
[
ãS+ ã∗I+ ãS− ã∗I−

]T
. (4.18)

The next step is to diagonalize the 4×4 matrix above in order to find the eigenvalues ωS and their
corresponding (normalized) eigenvectors v for several pairs of counterpropagating signals coupled
to modes with opposite angular momentum ±|`S| in a range of |`S| around `P. On the one hand,
the real part of the eigenvalues Re{ωS} will tell us the position of the transmittance peaks for each
pair of signals. On the other hand, a positive imaginary part Im{ωS} > 0 for some `S implies that
the system is dynamically unstable around that mode. A negative imaginary part Im{ωS} < 0 at
`S signals instead the dynamical stability of that mode.

The normalization condition for each eigenvector v = [v1, v2, v3, v4]T reads√
v2

1 + v2
2 + v2

3 + v2
4 = 1. (4.19)

We will classify the four eigenvectors according to their Bogoliubov norms. This quantity is defined
as

‖v‖ = |v1|2 − |v2|2 + |v3|2 − |v4|2, (4.20)

and quantifies the coupling between signal and idler. It follows from Eq. (4.19) that the Bogoliubov
norm is restricted to values in the range

−1 ≤ ‖v‖ ≤ 1. (4.21)

A negative norm implies an idler-dominated response, while a positive norm corresponds to a larger
contribution of the signal.

After diagonalizing the matrix in Eq. (4.18) we find four eigenvectors labelled vI+, vS+, vI−,
and vS− featuring norms

‖vI+‖ = −0.724, ‖vS+‖ = 0.724, ‖vI−‖ = −1, ‖vS−‖ = 1. (4.22)

Note that the norms of the eigenvectors belonging to the reverse-propagating idler vI− and signal
vS− take the extreme values ‖vI−‖ = −1 and ‖vS−‖ = 1, signaling that there is no coupling between
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them. On the other hand, the norms of the eigenvectors belonging to the forward-propagating idler
vI+ and signal vS+ feature values closer to zero due to the FWM terms coupling them.

We will label the eigenvalues associated to these eigenvectors as ωS(vI+), ωS(vS+), ωS(vI−),
and ωS(vS−), respectively. Panels (b) and (c) of Fig. 4.3 display respectively the real and imaginary
parts of the four eigenvalues as a function of the absolute value of the angular momentum |`S| of
the pair of counterpropagating signals. For completeness, in these panels we have added the results
for non-integer values of |`S|. Although they are not relevant to study the transmittance across
our device, since only integer values of |`S| are accessible, they will allow us to understand the
physics with more clarity, as we will see. For the reverse-propagating signal, as it is evident from
the form of the Bogoliubov matrix in Eq. (4.18), the real part of the eigenvalue ωS(vS−) is solely
determined by the Kerr nonlinearity shift of the resonance frequency of the mode with angular
momentum −`S in which the signal is coupled, i.e.

Re{ωS(vS−)} = ω
(0)
S

[
1− 2

nNL

nL
|ã(0)

P+|
2

]
. (4.23)

On the other hand, the real part of the eigenvalue ωS(vI−) is given by the frequency at which
FWM would couple the pump light into the signal mode due to its interaction with pump photons
scattered into the idler resonance frequency, which is as well shifted by the Kerr nonlinearity, i.e.

Re{ωS(vI−)} = 2ωP − ω(0)
I

[
1− 2

nNL

nL
|ã(0)

P+|
2

]
. (4.24)

As shown in Fig. 4.3b the real parts of these eigenvalues form two branches separated by a gap
that takes its minimum frequency width at the angular momentum of the pump `P. The real part
of ωS(vS−) gives the frequency at which the reverse transmittance Trev displays its maximum value:
to demonstrate this we plotted a dashed-dotted line at the frequency Re{ωS(vS−)} corresponding
to the mode with angular momentum `S = −131 in Fig. 4.3a. We also plotted a second dashed-
dotted line at the frequency Re{ωS(vI−)} belonging to the mode `S = −131. However, as we can
ascertain from the Bogoliubov norm of its associated eigenvector (‖vI−‖ = −1), this eigenvalue
only features a contribution from the idler, and since FWM is not present for the reverse signal,
no peak is displayed by Trev at Re{ωS(vI−)}. Regarding the imaginary parts, both of them are
given by the total loss rate of the resonator, i.e. Im{ωS(vS,I−)} = −γT for all values of angular
momentum |`S|, as shown in Fig. 4.3c, probing the pump stability against the presence of small
reverse-propagating signals regardless of `S.

On the other hand, the eigenvalues ωS(vS,I+) associated to forward signals are given by the
diagonalization of the top-left 2 × 2 block of the Bogoliubov matrix. Again, their real parts give
rise to a couple of branches separated by a gap, as shown in Fig. 4.3b. However, in the case of the
forward signal FWM results in an effective attraction between the two branches, that get closer
together with respect to the reverse signal case. The gap between them remains nevertheless open,
and features its minimum frequency width at the pump angular momentum `P. To demonstrate
that Re{ωS(vS,I+)} give the frequencies of the peaks in Tfor for each mode, we plotted their values
at an angular momentum `S = 131 as dashed vertical lines in Fig. 4.3a. Also for the forward signal,
the two real parts agree perfectly with the transmittance maxima. Concerning the imaginary parts,
these are plotted in Fig. 4.3c and form a flat band given by the total loss rate Im{ωS(vS,I+)} = −γT

regardless of the particular value of |`S|, implying again that the pump is dynamically stable in
the presence of signal and idler in the forward direction.

Note that no unstable behaviors arise in the upper branch of the optical bistability as the
imaginary parts of the eigenvalues are always negative. As we mentioned before this is the branch
in which we are interested as it provides a larger pump intensity that enhances FWM mixing.
However, for completeness we will now take a look at the physics in the lower intensity branch
of the bistability loop. We set a pump frequency ωP ' 4.1782γT close to the upwards intensity
jump (see Fig. 4.2) and use an appropriate choice of initial conditions such that we obtain a pump
intensity |ã(0)

P+|2 ' 4.3|ã(in)
P |2 in the lower branch. As shown in Fig. 4.3d in this case the pump

intensity is not sufficiently large to give rise to a sizable FWM. As a consequence, the transmittance
spectrum Tfor,rev(ωS) for the pair of counterpropagating modes with absolute angular momenta
|`S| = 131 is identical in the two directions and features a single peak determined by the Kerr
nonlinearity shift of the resonance frequency, i.e. located at ωS = ω

(0)
S [1− 2nNL|ã(0)

P+|2/nL].
In this case the Bogoliubov norms of the four eigenvectors are

‖vI+‖ = −0.999, ‖vS+‖ = 0.999, ‖vI−‖ = −1, ‖vS−‖ = 1, (4.25)
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(a) (b)

(d) (e) (f)

(c)

Figure 4.3: (a,d) Transmittance T in forward (dark blue) and reverse (light blue) directions across
an optically pumped passive ring resonator in add-drop configuration as a function of the signal
frequency ωS for a pair of counterpropagating modes with absolute angular momenta |`S| = 131.
Panels (a) and (d) display the results when we pump in the upper and lower bistability branches,
respectively. A sketch of the device is found in the upper-right part of panel (a). The big, red arrow
represents the incident pump, while the small arrows describe the probing with the signal. The
vertical dashed-dotted and dashed lines signal respectively the real parts of the Bogoliubov eigen-
values corresponding to the reverse and forward-propagating signals. (b,c) Real and imaginary
parts of the Bogoliubov eigenvalues ωS for a pump in the upper bistability branch as a function
of the angular momenta ±|`S| of two signals propagating in the forward and reverse directions
which are varied around ±`P = ±133. The eigenvalues are labelled according to the Bogoliubov
norm ‖vS,I±‖ of the associated eigenvectors. Squares and circles are the values corresponding to
the modes of integer angular momenta |`S|. The dashed lines are calculated for non-integer values
of |`S|. Panels (e,f) show analogous plots for the case in which we pump in the lower bistability
branch. The horizontal dashed pink line in panel (f) indicates the position of zero.
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signaling a negligible but finite coupling between signal and idler in the forward case.
The corresponding real and imaginary parts of the Bogoliubov eigenvalues ωS(vS,I±) are shown

in Fig. 4.3e,f, respectively. The two real parts Re{ωS(vS,I−)} belonging to the reverse-propagating
signal intersect at two non-integer values of angular momentum in the neighborhood of the pump
angular momentum `P, therefore closing the gap. However, their corresponding imaginary parts
are still given by the total loss rate Im{ωS(vS,I−)} = −γT as in the upper bistability branch.
This grants the dynamical stability of the pump against reverse signals also in the lower bistability
branch. The situation is more interesting in the case of the forward-propagating signal: for non-
integer angular momenta around the two intersection points of Re{ωS(vS,I−)} the two real parts
Re{ωS(vS,I+)} coalesce and the corresponding imaginary parts Im{ωS(vS,I+)} are split. When the
pump frequency ωP approaches the upwards intensity jump of the bistability loop, the imaginary
part of ωS(vS+) turns positive in the aforementioned regions of `S and therefore the system would
become dynamically unstable for such non-integer values of angular momenta.

Even though non-integer values of |`S| are not accessible, the width of the two regions at which
Im{ωS(vS,I+)} are split can be broadened by employing materials featuring a smaller (negative)
curvature α in the dispersion relation. Eventually some integer values of `S will fall within these
regions.

It is interesting to note that a similar physics arises in coherently pumped polariton condensates,
in which the polariton density also features a bistable behavior [53].

4.4 Active ring resonator

Here we investigate isolation in the active analog of the passive ring resonator studied in the
previous Section. By incoherently pumping the resonator above the lasing threshold P0 > γT we
can trigger lasing in the ±`P counterpropagating modes. On the following we will assume that only
this pair of modes competes for the gain. If backscattering is negligible, a local saturable gain will
grant unidirectional lasing with a well-defined chirality in one of these two modes, as we probed in
Chapter 3. However, for this system to work as an isolator we need to deterministically set one of
the operation directions as the forward one. Otherwise the lasing chirality and thus the forward and
reverse directions are randomly set every time the device is pumped. Without loss of generality, in
our case we choose the CCW as the forward direction by means of a small driving ã(in)

P+ coupling
into the `P > 0 mode. The presence of the driving triggers lasing in the CCW-propagating `P
mode under an incoherent pumping P0 > γT. Of course, changing the driving direction will result
in a resonator lasing in the opposite mode with angular momentum −`P. Nevertheless, once lasing
in the desired direction is triggered, one could switch off the driving. In order to check how does
the driving alter the features of the transmittance spectrum, we first analyze the case in which it
is switched on during the probing with the signal in forward and reverse directions, and at the
end of this Section we will also take a look at the case in which the driving is turned off prior to
injecting the signals in the two directions.

As parameters for our simulations we employed a ring-bus waveguide coupling kw = 0.04,
absorption losses kA = 0.032 (yielding a quality factor Q ' 7.6 × 104), and a nonlinear refractive
index nNLnSω

(0)
P /(nLγT) ' 9.6. As done for the passive ring resonator, we choose a pump mode of

angular momentum `P = 133. We set a pump rate P0 = 2γT, which gives a pump intensity inside
the resonator |ã(0)

P |2/nS = P0/γT − 1 = 1. The lasing frequency will then be determined by the
Kerr nonlinear shift of the pump resonance frequency, i.e. ωP = ω

(0)
P (1− nNL/nLnS).

For now we consider that the driving ã(in)
P+ is present into the system. This features an incident

intensity |ã(in)
P+ |2 = 10−2nS and a frequency ωP = ω

(0)
P (1 − nNL/nLnS). The latter coincides with

the emission frequency of the laser in the `P mode. Nevertheless, a driving displaying any other
frequency in the neighborhood of ωP will also trigger lasing in the `P mode.

In order to demonstrate the isolation of reverse-propagating signals we follow the same strategy
as in Sec. 4.3. By means of a signal ã(0)

S+ propagating in the forward direction with incident intensity
|ã(in)

S+ |2 = 10−1nS we first probe the system around the resonance frequency ω(0)
S of the mode with

positive angular momentum `S = 131. The transmittance is shown in Fig. 4.4a and it displays the
characteristic doublet spectrum resulting from FWM. We then probe the system using a reverse-
propagating signal ã(0)

S− of the same incident intensity |ã(in)
S− |2 = 10−1nS that couples to the mode

with opposite angular momentum `S = −131. Fig. 4.4a shows that Trev is negligible over a broad
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frequency range and, as we will see, due to the absence of FWM in this case it features its maximum
at a frequency given by the Kerr nonlinearity shift of ω(0)

S . This is different from the frequencies
at which we obtained the doublet in Tfor. In fact, at a frequency ωS = 7.5132 × 104γT (i.e.
[ωS − ω(0)

P − v(|`S| − |`P|)] = −16.52γT) where Tfor achieves its maximum value, the ratio between
transmittance in the two directions reaches 23 dB. As in Sec. 4.3, the linearity of Eqs. (4.13-4.14)
with respect to the signal and idler fields makes the transmittance spectra Tfor,rev unaffected by
the presence of each other, therefore preserving the optical isolator character of our device.

Similarly to what we did in the previous Section we now study the asymmetry between forward
and reverse signals by setting up the Bogoliubov system of equations for the linearized signal and
idler fields in the two directions and diagonalizing the resulting Bogoliubov matrix in a range
of angular momenta ±|`S| around ±`P. In the case of an active ring resonator the system of
differential equations reads

i
d

dt

[
ãS+ ã∗I+ ãS− ã∗I−

]T

=
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(0)2

P+

−i P0/nS[
1+ 1

nS
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×
[
ãS+ ã∗I+ ãS− ã∗I−

]T
. (4.26)

By diagonalizing the 4×4 matrix above we get the four eigenvectors vS,I± and their corresponding
eigenvalues ωS(vS,I±). In this case, the Bogoliubov norms of the eigenvectors are

‖vI+‖ = −0.759, ‖vS+‖ = 0.759, ‖vI−‖ = −1, ‖vS−‖ = 1, (4.27)

Similarly to the coherently pumped passive resonator studied in Sec. 4.3, only in the forward case
there exists a finite coupling between signal and idler.

The real and imaginary parts of the eigenvalues are displayed in panels (b) and (c) of Fig. 4.4,
respectively. As in the previous Section, we can obtain more insight about the underlying physics
by plotting the whole spectrum of eigenvalues also for non-integer values of |`S|. Similarly to
the passive ring resonator pumped in the upper branch of the bistability loop, the real parts are
arranged in four branches separated by a gap that takes its minimum width at |`S| = `P.

For the reverse-propagating signal, FWM is not present and the Re{ωS(vS,I−)} branches are
completely determined by the Kerr nonlinear shift of the resonance frequency of the corresponding
modes for signal and idler, i.e. they are given again by Eqs. (4.23-4.24). The value of Re{ωS(vS−)}
can be associated to the frequency at which Trev features its maximum. However, as we can
ascertain by examining the Bogoliubov norm of the eigenvectors (4.27), Trev does not display a peak
at Re{ωS(vI−)} because FWM is not present for the reverse signal and therefore no light from the
pump can be coupled at this frequency while simultaneously satisfying the conservation of energy
and angular momentum. Both Re{ωS(vS,I−)} at an angular momentum `S = −131 are plotted as
vertical dashed-dotted lines in Fig. 4.4a. The corresponding imaginary parts Im{ωS(vS,I−)} take
the value

Im{ωS(vS,I−)} =
P0

1 + 2 1
nS
|ã(0)

P+|2
− γT = −γT

3
(4.28)

independently of `S. This means that the pump is dynamically stable in the presence of the reverse
signal.
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Figure 4.4: (a,d) Transmittance T in forward (dark blue) and reverse (light blue) directions across
an incoherently pumped active ring resonator in add-drop configuration lasing in the `P = 133
mode as a function of the signal frequency ωS for a pair of counterpropagating modes with angular
momenta |`S| = 131. Panels (a) and (d) display the results when a small driving employed to
trigger lasing is present and absent, respectively. A sketch of the device is found in the upper-
right part of panels (a,d). The red, dashed arrow represents the incident driving, while the solid
arrows describe the probing with the signal. The vertical dashed-dotted and dashed lines signal
respectively the values of the real part of the Bogoliubov eigenvalues corresponding to the reverse
and forward-propagating signals. (b,c) Real and imaginary parts of the Bogoliubov eigenvalues ωS

in the presence of the driving as a function of the angular momenta ±|`S| of two signals propagating
in the forward and reverse directions which are varied around ±`P = ±133. The eigenvalues are
labelled according to the Bogoliubov norm ‖vS,I±‖ of the corresponding eigenvectors. Squares and
circles are the values corresponding to the modes of integer angular momenta |`S|. The dashed
lines are calculated for non-integer values of |`S|. Panels (e,f) show analogous plots for the case
in which the driving has been switched off.

On the other hand, as demonstrated by the Bogoliubov norms (4.27) of the corresponding
eigenvectors, in the forward case FWM couples the pump with the resonance frequencies of signal
and idler. This results in a doublet of peaks in Tfor at frequencies given by Re{ωS(vS,I+)}. As
can be seen in Fig. 4.4b, FWM results in an effective attraction between transmittance peaks
as it brings the two eigenvalues branches closer together and narrows the gap. For an angular
momentum `S = 131 the values of Re{ωS(vS,I+)} are plotted as vertical dashed lines in Fig. 4.4a.
In this case the imaginary parts form a flat band that takes the value

Im{ω(up,down)
S+ } = − P0/nS[

1 + 1
nS
|ã(0)

P+|2
]2 |ã(0)

P+|
2 = −γT

2
. (4.29)

At this point we would like to address the role of the driving ã(in)
P+ in the spectrum of eigenvalues.

To do this we will compare these results with those obtained for the same active ring resonator
where the driving has been switched off after triggering lasing in the `S = 133 mode.

We first focus on evaluating the signal transmittance in the two directions around the resonance
frequency ω(0)

S of the modes with |`S| = 131. We use the same procedure that we followed in the
presence of the driving: the results for Tfor,rev are shown in Fig. 4.4d and they are identical to those
obtained when the driving was switched on. This is not a surprise as the driving intensity is so small
that it does interact with the signal via the nonlinearities. We then diagonalize the 4×4 Bogoliubov
matrix in Eq. (4.26) for several pairs of counterpropagating modes with angular momenta |`S| in a
neighborhood of `P in order to look at the driving-free eigenvalues and eigenvectors. These latter
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(a) (b) (c)

Figure 4.5: (a) Transmittance T in forward (dark blue) and reverse (light blue) directions across
an optically pumped active TJR in add-drop configuration as a function of the signal frequency
ωS, for counterpropagating modes with angular momenta |`S| = 131. The pump rate is fixed at
P0 = 2γT. A sketch of the device is found in the upper-right part of the panel. The arrows describe
the probing with the signal. The vertical dashed-dotted and dashed lines signal respectively the
values of the real part of the Bogoliubov eigenvalues corresponding to the reverse and forward-
propagating signals. (b,c) Real and imaginary parts of the Bogoliubov eigenvalues ωS as the
angular momenta ±|`S| of the modes in which the counterpropagating signals are coupled is varied
around ±`P = ±133. Squares and circles are the values corresponding to the modes of integer
angular momenta |`S|. The dashed lines are calculated for non-integer values of |`S|.

are only slightly modified by the absence of the driving:

‖vI+‖ = −0.758, ‖vS+‖ = 0.758, ‖vI−‖ = −1, ‖vS−‖ = 1. (4.30)

The real and imaginary parts of the corresponding eigenvalues ωS(vS,I±) are displayed in Fig. 4.4e,f,
respectively. In the case of the reverse-propagating signal and idler we obtain the same values of
ωS(vS,I−) both in the presence and absence of the driving. However, the eigenvalues ωS(vS,I+) cor-
responding to the forward case are modified in a region of non-integer angular momenta around the
pump angular momentum `P: their real parts coalesce at Re{ωS(vS,I+)} = ω

(0)
P [1−nNL|ã(0)

P+|2/nL]
(i.e. the frequency of the Kerr-shifted resonance at `P = 133), while simultaneously their imaginary
parts depart and take the values Im{ωS(vS+)} = 0 and Im{ωS(vI+)} = −γT at `S = `P. These
correspond to the characteristic Goldstone and amplitude modes arising under a U(1) symmetry
breaking, which in our case corresponds to the phase of the pump laser field amplitude ã(0)

P+. Such
a symmetry breaking is ruled out when the driving is switched on: in that case the incident field
ã

(in)
P+ fixes the phase of the laser emission and as a consequence the Goldstone and amplitude modes

disappear. However, the phase of the pump only enters Eq. (4.26) via the FWM terms. There-
fore the eigenvalues corresponding to the reverse-propagating signal are unaffected by the U(1)
symmetry breaking. As in the switched on driving case, we plot Re{ωS(vS,I±)} as vertical lines in
Fig. 4.4a which give the position of the respective transmittance peaks (except for Re{ωS(vI−)}, as
no FWM is present for the reverse signal). By employing materials displaying a smaller (negative)
value of the curvature α one can access the Goldstone and amplitude modes at integer values of
`S, as the width of the region in which the imaginary parts Im{ωS(vS,I+)} split will be broadened.

Also in this case, it is interesting to note that an analog behavior is obtained in the case of an
incoherently pumped polariton condensate [53].

4.5 Active TJR
In this Section we demonstrate that our asymmetric FWM scheme can also be applied using a TJR
laser. When incoherently pumped above the lasing thereshold, active TJRs impose a well-defined
chirality to the laser emission without relying on an external bias (see Chapter 3 of this Thesis).
As for the active ring resonator studied in the previous Section, we set a pump rate P0 = 2γT

which gives an intensity |ã(0)
P |2 = nS circulating in the `P = 133 mode only. We employ the usual

absorption losses kA = 0.032, the coupling parameters kw = 0.04 and kS = 0.04 (yielding a quality
factor Q ' 4× 104), and a nonlinear refractive index nNLnSω

(0)
P /(nLγT) ' 5.

As in the previous Sections of this Chapter, we first probe the system in the forward direction
using an signal whose frequency ωS is varied around the resonance frequency ω(0)

S corresponding
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to the `S = 131 mode. The forward signal features an input intensity |ã(in)
S+ |2 = 10−1nS. The

characteristic doublet structure of the forward transmittance spectrum Tfor originating from FWM
is displayed in Fig. 4.5a. We then probe the system in the reverse direction with a signal of
the same incident intensity |ã(in)

S− |2 = 10−1nS around the resonance frequency ω
(0)
S of the `S =

−131 mode. Similarly to what we obtained in Secs. 4.3 and 4.4, Trev is negligible over a broad
frequency range and due to the absence of FWM it features a single peak at a frequency given
by the Kerr nonlinearity shift of the mode’s resonance (shown in Fig. 4.5a). This is different
from the frequencies of the doublet in Tfor. In fact, at the frequency ωS = 3.9359 × 104γT (i.e.
[ωS−ω(0)

P −v(|`S|− |`P|)] = −8.51γT) where we find the maximum Tfor we get a 17 dB suppression
of the Trev signal. In the frequency range in which the reverse transmittance is negligible, the
presence of the reverse-propagating signal does not affect the value of the forward transmittance
in spite of the coupling established by the S element of the TJR. This fact, together with the
linearity of the coupled-mode equations (4.13-4.14), ensures that the TJR laser can also function
as an optical isolator in such a frequency range.

Finally, we also studied the eigenvalues and eigenvectors of the Bogoliubov matrix coupling the
forward and reverse signal and idler as a function of the angular momentum |`S| of counterpropa-
gating modes. In this case the system of differential equations is given by

i
d

dt

[
ãS+ ã∗I+ ãS− ã∗I−

]T

=
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ω
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(0)2

P+

−i P0/nS[
1+ 1

nS
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|ã(0)

P+
|2
]2 ã(0)∗2P+

−ω(0)
I + 2ωP − ωS − iγT
+2

nNL
nL

ω
(0)
I |ã
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]2 |ã(0)P+|

2

0 −β∗±

0 0

ω
(0)
S − ωS − iγT

−2
nNL
nL

ω
(0)
S |ã
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×
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ãS+ ã∗I+ ãS− ã∗I−

]T
, (4.31)

where the 4×4 Bogoliubov matrix features additional terms with respect to Eq. (4.26) that account
for the coupling of the CW modes into the CCW ones enabled by the S waveguide of the TJR.
Nevertheless, it follows from the theory of block matrices that the couplings β± do not modify the
eigenvalues, which as we will see coincide with those of the active ring resonator in the absence of
the external bias.

However, the eigenvectors vS,I± do get modified due to the intermode couplings. In particular,
their Bogoliubov norms now take the values

‖vI+‖ = −0.756, ‖vS+‖ = 0.756, ‖vI−‖ = −0.948, ‖vS−‖ = 0.948. (4.32)

Contrary to what we had observed in Secs. 4.3 and 4.4, in the TJR case the unidirectional coupling
between the CW and CCW modes introduced by the S element grants Bogoliubov norms in the
reverse direction different than −1 and 1 for vI− and vS−, respectively.

The real and imaginary parts of the corresponding eigenvalues ωS(vS,I±) are shown in Fig. 4.5b
and c, respectively. To get a complete picture of the underlying physics, the eigenvalues are
calculated also for non-integer values of |`S|. As in the driving-less active ring resonator, the real
parts Re{ωS(vS,I−)} corresponding to the reverse signal are distributed in two bands separated by
a gap which achieves its minimum frequency width at |`S| = `P = 133. Re{ωS(vS−)} determines
the frequency at which the reverse transmittance Trev takes its maximum vale, which is again given
by the resonance frequency of the −`S mode shifted by the Kerr nonlinearity (see Eq. (4.23)). On
the other hand, no peak appears at the frequency given by Re{ωS(vI−)} due to the absence of
FWM in the reverse direction. This is confirmed for the particular angular momentum `S = −131
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in Fig. 4.5a, where we have plotted both Re{ωS(vS,I−)} as vertical dashed-dotted lines. The
corresponding imaginary parts take the same value Im{ωS(vS,I−)} = −γT/3 as in Sec. 4.4, implying
the dynamical stability of the pump under the presence of a small reverse signal. In the case of
the forward-propagating signal, the two bands Re{ωS(vS,I+)} give again the frequencies of the
transmittance doublet for each value of `S. This can be seen in Fig. 4.5a for `S = 131, where we have
plotted the real parts of the eigenvalues as vertical dashed lines. Differently from the reverse signal
case, the two bands are now closer between each other, implying that FWM produces an effective
attraction between transmittance peaks. Furthermore, the real parts of ωS(vS,I+) coalesce in a
non-integer neighborhood of `P = 133, taking the value Re{ωS(vS,I+)} = ω

(0)
P [1 − nNL|ã(0)

P+|2/nL]
of the Kerr-shifted resonance at `P = 133, and therefore closing the gap. In the same region, their
corresponding imaginary parts Im{ωS(vS,I+)} depart from the value −γT/2 and display the typical
Goldstone and amplitude modes already studied in Sec. 4.4, which arise as a consequence of the
U(1) symmetry breaking of the laser phase. Also in the TJR case, a smaller (negative) value of
the curvature α will broaden the Goldstone and amplitude modes and therefore allow us to probe
them at integer values of `S.

4.6 Conclusions
Our work establishes a route to optical isolation in silicon photonics devices that is not subjected to
the dynamic reciprocity restrictions addressed in previous literature. This is done by considering
ring and Taiji resonators in add-drop configuration strongly pumped in the forward direction.
Signals injected in such a direction are coupled with the pump by means of four-wave mixing
(FWM). However, conservation of energy and angular momentum prevents a similar FWM coupling
between the pump and signals propagating in the opposite (reverse) direction. This leads to
Lorentz reciprocity breaking as transmittance in the forward direction reaches its maximum value
at a frequency for which transmittance is negligible in the reverse direction. Furthermore, this
isolation from reverse-propagating signals takes place in a broad frequency range. The proposed
configuration can also be realized by employing active ring resonators in which an external driving
is initially employed to promote lasing in the forward direction and then can be switched off, or by
using active Taiji resonators which grant unidirectional lasing even when a sizable backscattering
is present into the system.

Our results are obtained by solving for the steady states of the temporal coupled-mode theory
equations with a linearized treatment of the signal and idler fields as small perturbations to the
pump, which is assumed to feature a much larger intensity. The transmittance spectrum across
several modes and the different role of FWM for forward and reverse-propagating signals are
also addressed by looking at the eigenvectors and eigenvalues of the Bogoliubov matrix coupling
counterpropagating signal and idler fields. Such an analysis reveals a very powerful analogy between
our results and the physics of polariton condensates.

Further research will address the stability of the lasing emission of the active optical isolators
for growing signal intensity. Moreover, future work will be devoted to study the interplay between
optical isolation based on asymmetrical FWM and the nontrivial band topologies and topological
edge states that can be engineered in arrays of silicon ring (and Taiji) resonators [155, 13, 7, 12].
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Chapter 5

The Taiji topological insulator laser

Topological insulators featuring a saturable gain at their boundaries display enhanced
lasing properties due to the robustness of topologically protected edge modes against local defects
and perturbations. Among these systems, arrays of micro-ring resonators realizing quantum spin-
Hall insulator lasers without relying on magneto-optic materials that break time-reversal symmetry
hold great promise due to their direct integration with state-of-the-art silicon photonics technology.
Nevertheless, spurious backscattering can destroy the topological protection of the edge modes, thus
decreasing the lasing performance.

In this Chapter we theoretically investigate lasing in such an active quantum spin-Hall topo-
logical insulator. Depending on the local or nonlocal character of the saturable gain the mode
competition leads to different lasing behaviors. Employing a local saturable gain, we assess the
effect of backscattering and conclude that it significantly reduces the lasing performance, ulti-
mately suppressing the topological edge modes when it becomes comparable with the energy scale
of the topological gap. The addition of Taiji resonators featuring an embedded S element that
couples backscattered light back into the preferred direction imposes a well-defined chirality to the
lasing emission and preserves the topological protection of a pair of edge modes. Finally, we also
demonstrate that single-mode lasing can be obtained by combining Taiji resonators with the Kerr
nonlinearity of the setup’s material.

5.1 Introduction

As we learned in Chapter 1, the two-dimensional array of silicon ring-resonators of Ref. [11] realizes
the photonic version of a quantum spin-Hall topological insulator in which the two whispering-
gallery modes supported by each ring resonator (propagating in clockwise —CW— and counter-
clockwise —CCW— directions) play the role of the pseudospins. Although time-reversal symmetry
is globally preserved, the dynamics of each pseudospin are governed by Harper-Hofstadter Hamil-
tonians with opposite flux per plaquette and therefore opposite Chern number. The edge states of
such a system are named helical modes.

A particularly interesting problem concerns the addition of saturable gain to a photonic topo-
logical insulator in order to promote lasing in the chiral surface modes. Such a non-Hermitian
and nonlinear system is known as topological laser, or in short, topolaser [12]. The active analog
of the quantum spin-Hall lattice of Ref. [11] represents the first realization of a two-dimensional
non-magnetic topolaser [13]. Such a system lases in the one-dimensional helical states propagating
along its boundaries. This work demonstrated that topolasers offer several advantages with respect
to their trivial counterparts: single-frequency lasing, higher slope efficiency, and robustness against
defects that the edge modes are able to bypass.

However, as we discussed in Chapter 1, due to the bosonic nature of photons, backscattering
processes coupling the two pseudospins of a quantum spin-Hall insulator result in the suppression of
the helical modes propagating along the lattice boundaries. In spite of this restriction Refs. [11, 13]
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were able to engineer lattices with negligible backscattering in which the helical modes survive.
Instead of relying on our capacity to fabricate samples with a small enough level of defects

causing backscattering and to maintain that level under control in spite of the operational degra-
dation of the laser, a more effective strategy would be to promote and stabilize lasing in a single
pseudospin. This motivated Ref. [13] to employ Taiji resonators (TJRs) as the building block of
the photonic spin-Hall insulator. As a result, they found a unidirectional intensity flow in the rings
of the array.

In this Chapter we capitalize in our previous study of TJR lasers (see Chapters 2 and 3) to
analyze lasing in TJR-based spin-Hall topolasers in the presence of backscattering. We employ a
set of coupled-mode theory equations describing the steady state of the field amplitudes in the two
pseudospins of each resonator. We first focus on a passive array of ring resonators where we find
the edge states at the frequencies of the topological gaps and ascertain their robustness against
local defects and backscattering disorder. We then consider an active array and study the different
lasing regimes that arise depending on the type of gain saturation employed. Backscattering
results in a coupling between the two pseudospins that leads to reduced lasing performance. The
introduction of TJRs as the site resonators of the spin-Hall topolaser drastically suppresses the
undesired coupling between pseudospins and leads to lasing with enhanced properties, including
a lasing threshold and slope efficiency very close to the single-resonator values. This effect is
combined with an optical nonlinearity in order to promote lasing in a single helical mode.

The Chapter is structured as follows: A description of the physical system and the coupled-
mode theory employed in the simulations is presented in Sec. 5.2. Sec. 5.3 analyzes the passive
spin-Hall array of ring resonators. Our study of the ring resonator and TJR topolasers is found in
Sec. 5.4. Conclusions are finally drawn in Sec. 5.5.

5.2 The physical system and the theoretical model

We consider a lattice of silicon resonators similar to the one studied in Ref. [11], but featuring
TJRs as site resonators. A single 2 × 2 plaquette of the lattice is displayed in Fig. 5.1a. The
TJRs are linked via racetrack resonators that do not host an S-shaped element inside. Every site
resonator supports a pair of degenerate whispering-gallery modes propagating in CW and CCW
directions. These correspond to the two pseudospins, up (+) and down (−), of the quantum
spin-Hall insulator. To prevent confusions, on the following we will refer to the whispering-gallery
modes simply as the ± pseudospins, while the CW/CCW directions will refer to the propagation of
the helical modes along the lattice boundaries. Light couples between the different components of
the array through directional couplers with transmission and coupling amplitudes tw,S and ikw,S,
respectively, where the w,S indices refer to the couplings between link and site resonators, and
those between site resonators and the embedded S element, respectively. As usual, tw,S and kw,S

are real numbers satisfying t2w,S + k2
w,S = 1. The site resonators of an Nx ×Ny lattice are labeled

by the indices (nx, ny), where nx = 1, ..., Nx and ny = 1, ..., Ny. The top-left resonator (1, 1) is
coupled to a bus waveguide that can be harnessed to probe the system by means of an external
signal.

Let us assume that the site resonators have a perimeter L◦ = 2πR, where R is their radius.
We can then express the perimeter of the link resonators as LL = L◦ + 2η. The parameter η takes
into account the length difference between both types of resonators, and it is chosen in order to
make the link resonators anti-resonant with the site resonators. This is done so that a photon
resonant with the site resonators spends much more time in the sites than in the links. In such a
case the system can be described by the Harper-Hofstadter tight-binding model (see Sec. 1.3). The
anti-resonant condition is given by sin(ωnLη/c) = 1, where ω is the frequency of light, nL is the
linear refractive index of the material (we are neglecting nonlinear effects), and c is the vacuum
speed of light. The hopping energy is given by J = k2

wc/(nLL◦) [11].
Each pseudospin must realize a copy of the Harper-Hofstadter model with opposite flux per

plaquette Φ = ±αΦ0, where Φ0 = h/e is the magnetic flux quantum. Consider a photon describing
a CCW-oriented closed loop along the 2×2 plaquette shown in Fig. 5.1a. When the photon jumps
horizontally the link resonators have to introduce the corresponding Peierls phase appearing in the
Harper-Hofstadter Hamiltonian (1.58). Of course, this phase has to be of opposite sign for photons
belonging to different pseudospins. On the other hand, vertical hopping does not introduce any
complex phase. The strategy of Ref. [11] achieves this by shifting the center of the link resonators
coupling sites in the same row a quantity ∆x(ny) which depends on the row number. For instance,

Non-Hermitian and Topological Features of Photonic Systems Alberto Muñoz de las Heras



The physical system and the theoretical model 75

…

…

… …

(1,1) (1,2)

(2,1) (2,2)

CCW -

CCW +CW -

CW +

(a) (b)

Figure 5.1: (a) Sketch of the top left 2×2 plaquette of the quantum spin-Hall topological insulator
formed by TJRs. (b) Energy bands of a quantum spin-Hall topological insulator with α = 1/4.
The calculation was performed in a semi-infinite lattice featuring 399 sites in the x direction and
periodic boundary conditions in the y direction. Only the edge states corresponding to one of the
boundaries are plotted. ω is the frequency, ω0 is the resonance frequency of the site resonators,
J is the hopping energy, ky is the lattice momentum along y, and d is the lattice spacing. Panel
adapted from [165].

in our 2× 2 plaquette the link resonators belonging to the first row are shifted upwards a quantity
∆x, while those placed on the second row are not shifted. After enclosing the whole plaquette, a
photon belonging to the ± pseudospin will pick up a phase ±2πα, where α = 2ωnL∆x/(2πc). We
can now choose the values of ∆x and λ such that we get the desired α for the Harper-Hofstadter
model we want to implement. In the whole Nx × Ny lattice, the shift of the links connecting
TJRs of the same row ny will be given by ∆x(ny) = ∆x(Ny − ny). Without loss of generality, in
this Chapter we will focus on a quantum spin-Hall insulator formed by two copies of the Harper-
Hofstadter model featuring opposite fluxes with α = 1/4.

The dispersion of a quantum spin-Hall topological insulator featuring a flux α = 1/4 is displayed
in Fig. 5.1b. As we know from the Harper-Hofstadter model studied in Sec. 1.3, this system displays
four energy bands. The two central bands, located within an energy scale set by the hopping
energy J , touch each other by means of Dirac points at several values of the lattice momentum.
On the other hand, the lower and upper gaps are topologically nontrivial and both feature a finite
Chern number C = −1. These two gaps contain the four helical modes that can propagate along
the boundaries of the spin-Hall insulator. The lowest energy gap hosts two helical modes: In
one of them light propagates in the − pseudospin of the site resonators and travels in the CW
direction along the lattice boundaries (this helical mode is labelled CW−). The other helical mode,
named CCW+, is formed by photons of the + whispering-gallery modes of the site resonators that
propagate in the CCW direction along the edges of the topolaser. Similarly, the upper topological
gap hosts the helical modes CW+ and CCW−.

In order to simulate the system we employ a temporal coupled-mode theory describing the field
amplitudes a(nx,ny)

± of pseudospin ± in each resonator (nx, ny). The square modulus |a(nx,ny)
± |2

gives the corresponding intensity. By means of the bus waveguide we can probe the lattice by
injecting a signal a(in)

± = ã
(in)
± e−iωt of frequency ω that couples with the ± pseudospin of the (1, 1)

resonator. We can then rewrite the field amplitudes in each resonator as a(nx,ny)
± = ã

(nx,ny)
± e−iωt.
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The time-dependent coupled-mode equations read

i
dã
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|ã(nx,ny)
± |2 + ξ|ã(nx,ny)
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(nx,ny+1)
± + β

(nx,ny)
west,± ã
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A step-by-step derivation of the equations above can be found in Appendix C. By employing a 4th
order Runge-Kutta algorithm we will solve them for the long-time stationary states ã(nx,ny)

± (t→∞)
of the field amplitudes. We denote by ω0 the resonance frequency of the site resonators. The optical
nonlinearity is accounted by means of a nNL nonlinear refractive index and a g parameter describing
its character (see Appendix A). The latter can take a value between g = 1, which corresponds to a
purely nonlocal thermo-optic nonlinearity, and g = 2, which describes a local Kerr nonlinearity. In
order to account for the addition of gain to the topological helical modes, we included a saturable
gain featuring a pump rate P (nx,ny)

0 that can be different for each resonator and a gain saturation
coefficient nS. Similarly to the optical nonlinearity, we introduced a ξ parameter describing the
type of saturable gain: ξ = 1 implies a nonlocal gain saturation typical of an inhomogeneously
broadened gain medium, while ξ = 2 accounts for a local gain as displayed by a homogeneously
broadened medium (see Chapter 3). In any case, for all values of ξ our model describes a class-A
laser in which the dynamics of the reservoir triggering lasing is assumed to be much faster than
any other timescale, and therefore it has been integrated out in the saturable gain term [161, 162].

The single resonator total loss rate γT = γA + γS is defined as the sum of the absorption losses
γA and the loss rate due to the coupling with the S element γS =

ck2S
L◦nL

. The loss rate γ(nx,ny)
out is

due to the coupling of the (1, 1) resonator to the bus waveguide and is given by

γout =


ck2w

2LsnL
if nx = ny = 1

0 otherwise

. (5.2)

The loss rates arising from the couplings between adjacent site resonators are

γnorth =

 0 if ny = 1

γw if ny > 1
, γsouth =

 0 if ny = Ny

γw if ny < Ny

,

γwest =

 0 if nx = 1

γw if nx > 1
, γeast =

 0 if nx = Nx

γw if nx < Nx

, (5.3)

where

γw =
ck2

w

2L◦nL

1 + ei
ω
c nLLL

1− eiωc nLLL
. (5.4)

The link resonators are integrated out in the coupled-mode equations and their role is accounted
by the couplings between site resonators
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, β
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βw if ny < Ny

,

β
(nx,ny)
west,+ =


0 if nx = 1

βwe
−i2πα(Ny−ny) if nx > 1

, β
(nx,ny)
east,+ =


0 if nx = Nx

βwe
+i2πα(Ny−ny) if nx < Nx

,

β
(nx,ny)
west,− =


0 if nx = 1

βwe
+i2πα(Ny−ny) if nx > 1

, β
(nx,ny)
east,− =


0 if nx = Nx

βwe
−i2πα(Ny−ny) if nx < Nx

,

(5.5)
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where

βw =
ck2

w

L◦nL

ei
ω
c nLLL/2

1− eiωc nLLL
. (5.6)

Note that, since the link resonators are anti-resonant with the site resonators, for frequencies
ω in the neighborhood of ω0 we have that exp(iωnLLL/c) ' −1, therefore leading to |γw| � |βw|.
We can thus take γw = 0 on the following.

The coupling parameters β±,∓ = β
(S)
±,∓ + β

(BS)
±,∓ describe the coupling between pseudospins

belonging to the same resonator, which can be due to the S element (β(S)
±,∓) or to backscattering

(β(BS)
±,∓ ). A backscattering-free ring resonator would feature β±,∓ = 0. The addition of the 45◦-

tilted S element coupling the + into the − pseudospin introduces the couplings β± = 0 and
β∓ = −i2ck2

Se
iω0nLL◦/ceiω0nLL◦/4c/L0nL. By switching +↔ − we would describe the analog TJR

coupling the − into the + pseudospin. As explained in Chapter 3, the effect of backscattering can
be summarized by the Hermitian and non-Hermitian parameters

n = i
β

(BS)
∓ − β(BS)∗

±
2

, h = −
β

(BS)
∓ + β

(BS)∗

±
2

. (5.7)

Finally, the coupling with the bus waveguide is given by

β
(nx,ny)
in =


− ckw
L◦nL

if nx = ny = 1

0 otherwise

. (5.8)

In the following Sections we will capitalize on this theoretical model to simulate a quantum
spin-Hall insulator both in the presence and absence of a saturable gain, and to address the role
of the TJRs in the preservation of the helical modes.

5.3 Passive spin-Hall insulator
In order to check the validity of our model, prior to studying topological lasing we first analyze the
response of a backscattering-free passive spin-Hall insulator made of ring resonators by setting the
S couplings to kS = 0 and the pump rate to P0 = 0 for all resonators. In particular, we will assess
the existence of chiral helical modes in the lattice boundaries when the system is probed by a signal
propagating through the bus waveguide at a frequency lying in the topological gaps. Furthermore,
we will check whether such helical modes exhibit topological protection against local perturbations
and backscattering couplings of different strengths. We finally include finite couplings between site
resonators and S waveguides in order to investigate if the passive spin-Hall insulator of TJRs can
counteract the effect of backscattering while preserving the helical modes.

We consider an 8 × 8 lattice with realistic parameters for silicon photonics implementations:
nL = 3.5, L◦ = 2π × 20 µm, LS = L◦/2, ω0 = 2π × 194 THz, kw = 0.31, and γAnL/c =
3.2× 10−5 µm−1. Moreover, such a value for the absorption losses will allow us to clearly identify
the propagation direction of the helical modes in Fig. 5.2. These parameters result in a single-
resonator quality factor Q ' 4.5 × 105 and a tunneling energy J ' 12γT. The width of each
topological gap is approximately 1.5J ' 18γT. For the moment we assume that the shift of the
resonance frequency of the resonators due to the optical nonlinearity is negligible, and therefore
we set nNL = 0.

We now probe the system at different frequencies ω by means of a monochromatic signal injected
through the bus waveguide and coupling to the − pseudospins only. The spatial distribution of
the steady-state intensities in the − pseudospin calculated using Eq. (5.1) is shown in Fig. 5.2 for
different frequencies belonging to the upper (panel a) and lower (panel c) topological gaps as well
as to the two central bands (panel b). The intensity in each resonator is normalized in units of the
intensity of the input signal, i.e. |ã(nx,ny)

− |2/|ã(in)
− |2.

When the probe frequency ω belongs in the topological gaps the helical modes are observed
propagating along the lattice surface. As expected, the propagation direction is the opposite for
the two gaps: in the upper gap (panel a) light circulates in the CCW direction, while in the
lower gap (panel c) the intensity propagates in the CW direction. Eventually, losses damp out
the helical modes and propagation is no longer visible. This behavior was expected from the band
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(b)(a) (c)

(e)(d) (f)

Figure 5.2: Steady-state intensity distribution |ã(0)
+ + ã

(0)
− |2/|ã

(in)
− |2 inside a passive 8× 8 spin-Hall

insulator of ring resonators with flux per plaquette α = 1/4. Panels (a,b,c) show configurations
without backscattering coupling counterpropagating pseudospins. In each case the top left res-
onator is driven by a signal a(in)

− with frequency ω = ω0 + 1.75J (panel a), ω = ω0 (panel b), and
ω = ω0 − 1.75J (panel c). Arrows indicate the propagation direction of the edge modes. Panels
(d,e,f) correspond to a lattice driven by a signal with frequency ω = ω0−1.75J featuring a random
Hermitian backscattering |h| = 0.04J (panel d), |h| = 0.5J (panel e), and |h| = J (panel f).

(c)(a)

(d)

(e)

(b) (f)

Figure 5.3: Passive 8 × 8 spin-Hall insulator with flux per plaquette α = 1/4. The top left
resonator is driven by a signal a(in)

− with frequency ω = ω0 − 1.75J . The lattice features a random
Hermitian backscattering |h| = 0.04J . Panels (a,c,e) and (b,d,f) show respectively the steady-state
intensity distribution in the − (normalized as |ã(0)

− |2/|ã
(in)
− |2) and + (normalized as |ã(0)

+ |2/|ã
(in)
− |2)

pseudospins. Arrows indicate the propagation direction of the CW− helical mode. Panels (a,b) are
calculated for γAnL/c = 3.2× 10−5 µm−1 and γS = 0. Panels (c,d) are calculated for γA = 0 and
γSnL/c = 3.2 × 10−5 µm−1 (i.e. kS = 0.06). Panels (e,f) are calculated for γAnL/c = 3.2 × 10−5

µm−1 and γSnL/c = 7.9× 10−5 µm−1 (i.e. kS = 0.1). The intensity inside the S waveguides is not
plotted.
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dispersion shown in Fig. 5.1b. In order to test the topological robustness of the helical modes
against local perturbations we removed a 2× 2 plaquette in the left boundary of the lattice (panel
a). Notwithstanding the absence of these resonators, the helical mode is able to bypass the defect
and continue propagating. On the other hand, when the probe frequency lies in the central trivial
region (panel b) only the resonators near to the top left corner of the lattice (where the probing
waveguide is coupled) host a large intensity, and no edge states are visible. A similar result is
obtained when one sets α = 0 and studies the topologically trivial lattice. Note that a probe
signal a(in)

+ coupling into the + pseudospin results in the same behavior, but interchanging the
propagation directions CW ↔ CCW of the helical modes observed at the respective topological
gaps.

We now fix the frequency of the external driving a(in)
− at ω = ω0−1.75J in the lower topological

gap and include backscattering couplings featuring a random phase in all site resonators of the
lattice. As in Chapter 3, we focus on Hermitian backscattering rather than including a non-
Hermitian backscattering that can lead to spurious gain and losses if |n| ' γT. Panels (d), (e),
and (f) of Fig. 5.2 show the spatial distribution inside the lattice of the normalized intensity
|ã(nx,ny)

+ + ã
(nx,ny)
− |2/|ã(in)

− |2 for |h| = 0.04J , |h| = 0.5J , and |h| = J , respectively. Panel (d)
actually corresponds to the level of backscattering present in the quantum spin-Hall insulator
realized in Ref. [11]. In this case the CW− mode is barely perturbed by the backscattering and
no major changes in the intensity distribution with respect to the backscattering-free lattice of
panel (c) are produced. This is in agreement with the experimental results of Ref. [11], where such
a small coupling between pseudospins could not destroy the topological protection of the helical
modes. However, a larger backscattering can rule out the edge modes: For |h| = 0.5J the CW−
mode is still present but it is damped out before reaching the lower edge of the lattice. When we
set |h| = J , the backscattering is of the order of the topological gap and the presence of the helical
mode can only be hardly intuited along the upper boundary of the lattice.

Finally, it is worth asking whether we can capitalize on the recirculation of light from the +
into the − pseudospin enabled by the embedded S element of TJRs in order to compensate the
effect of a large backscattering leading to the vanishing of the helical modes. In order to check
this assumption we introduce finite couplings kS > 0 and study a passive spin-Hall insulator made
of TJRs. Unfortunately, if the absorption losses γA remain constant, a larger coupling with the S
waveguides also increases the total loss rate γT of the resonators, which can dump the propagation
of the helical modes. This is especially compromising as the larger the backscattering present in the
sample, the larger the value of kS we will need in order to recirculate the backscattered intensity
in the + pseudospin into the − one. Fig. 5.3 shows the spatial distribution of the intensity in our
8 × 8 spin-Hall insulator with a random Hermitian backscattering of modulus |h| = 0.04J . The
− pseudospin of the top-left site is driven by an external signal a(in)

− with frequency in the lower
topological gap (ω = ω0 − 1.75J). As we know, this will excite the CW− helical mode in the
lattice boundaries. Panels (a) and (b) display the results for a lattice of ring resonators (kS = 0)
featuring γAnL/c = 3.2 × 10−5 µm−1, and show respectively the intensities in the − (normalized
as |ã(nx,ny)

− |2/|ã(in)
− |2) and + (normalized as |ã(nx,ny)

+ |2/|ã(in)
− |2) pseudospins. In order to assess

the effect of the S waveguide without altering the total loss rate γT of the lattice, panels (c,d)
show the analog spatial intensity distributions in the − and + pseudospins for an array of TJRs
(the intensity inside the S waveguides is not plotted) featuring γA = 0 and γSnL/c = 3.2 × 10−5

µm−1 (which equivalently accounts for kS = 0.06). This gives the same value of γT as in panels
(a,b) and, as a consequence, the CW− helical mode is unaffected by the S couplings. However, an
absorptionless lattice is highly unrealistic. Besides, as it is evident from panel (d), such a small
value of kS only leads to a weak recirculation of the light scattered into the + pseudospin. In
order to further suppress the intensity in the + pseudospin, we must include larger couplings kS.
Panels (e) and (f) show the spatial intensity distribution for a passive spin-Hall insulator featuring
TJRs with S couplings kS = 0.1—implying γSnL/c = 7.9 × 10−5 µm−1—, and absorption losses
γAnL/c = 3.2 × 10−5 µm−1, in the − and + pseudospins, respectively. The resulting coupling
with the S waveguide |β(S)

∓ | = 0.4J reduces the intensity in the + pseudospin in about one order
of magnitude with respect to the calculations of panel (b). However, this comes at a cost: the
total loss rate γT is now about 3.5 times larger than γA, thus producing the damping of the CW−
helical mode after having propagated through just the upper side of the lattice. For larger values
of backscattering the situation is even more dramatic, as we would need a larger light recirculation
through the S waveguide in order to suppress the backscattered intensity, therefore requiring a
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larger value of kS. The resulting increase in γT would lead to the total vanishing of the helical
modes.

While the increase in the total loss rate of the system imposes limitations in the use of TJRs
as the site resonators of passive spin-Hall insulators, in the following Section we will see that these
restrictions are not present when a saturable gain is added to the edge resonators of the lattice.
In that case, the incoherent pumping counteracts the effect of the incresed losses due to the finite
couplings with the S waveguides, and therefore the only effect of TJRs is the intensity recirculation
in the desired direction.

5.4 Active spin-Hall insulator
In this Section we add a saturable gain to the resonators located at the boundaries of the passive
spin-Hall insulator studied in the previous Section. In Subsection 5.4.1 we investigate the possible
lasing regimes in the backscattering-free ring resonator lattice and their relation with the type of
saturable gain considered. In Subsection 5.4.2 we analyze the role of backscattering in the ring
resonator topolaser and demonstrate that the Kerr nonlinearity of the material can be harnessed
in order to promote lasing in a single topological gap. Finally, in Subsection 5.4.3 we show that
the introduction of TJRs leads to single-pseudospin lasing with enhanced properties even in the
presence of backscattering. We combine this effect with the optical nonlinearity of the material in
order to grant topological protection to a single helical mode.

5.4.1 Saturable gain and lasing regimes in a backscattering-free ring
resonator array

We start by considering the active analog of the 8 × 8 backscattering-free passive lattice of ring
resonators explored in the previous Section. Only the edge resonators feature a saturable gain,
which means that

P
(nx,ny)
0 =


P0 if nx = 1, Nx
P0 if ny = 1, Ny

0 otherwise

. (5.9)

In this case there is no probe signal and therefore the value of ω appearing in Eq. (5.1) is irrelevant
as it just sets a reference frequency with respect to which the lasing frequency is measured. Without
loss of generality, we set ω = ω0. For the moment we do not take into account the shift of the
resonance frequency of the site resonators due the optical nonlinearity, i.e. we set nNL = 0. In
each realization (i.e. each run of our code) we start from random initial conditions for the field
amplitudes in each resonator, and we look for the long-time stationary states ã(nx,ny)

± (t → ∞)
described by Eq. (5.1).

As we know from Chapter 3, whether a single backscattering-free ring resonator hosts unidirec-
tional lasing depends on the type of gain saturation that the system features, which is accounted
by the value of the ξ parameter. This plays a major role in the mode competition for gain: If ξ ' 1
none of the two pseudospins is able to get the whole gain and the resonator lases simultaneously in
both counterpropagating directions. On the other hand, a saturable gain featuring ξ > 1 reinforces
the imbalance in the mode competition as the gain saturation terms in the coupled-mode equa-
tions (3.1) are different for each pseudospin. Hence, the pseudospin featuring the smaller intensity
experiences a smaller gain. Fluctuations then drive the resonator to a state of unidirectional lasing
in a randomly chosen direction, provided that backscattering is sufficiently small.

In the case of the topolaser different ξ parameters also give rise to different lasing behaviors. In
Fig. 5.4 we compare lasing in two backscattering-free spin-Hall lattices of ring resonators featuring
ξ = 1 and ξ = 2. The ξ = 2 case summarizes the behavior of any ξ > 1 saturable gain. Panels
(a,b,c,d) display the results for a single realization of the ξ = 1 topolaser. We first look at the
average intensity in the edge resonators of the lattice

|ā±|2 =

 Nx∑
nx=1

|ã(nx,1)
± |2 +

Nx∑
nx=1

|ã(nx,Ny)
± |2 +

Ny−1∑
ny=2

|ã(1,ny)
± |2 +

Ny−1∑
ny=2

|ã(Nx,ny)
± |2

 1

2(Nx +Ny − 2)

(5.10)
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as a function of the pump rate P0. This is shown in panel (a). Above the lasing threshold, located
at P0 = 1.09γT, the average intensities in each pseudospin |ā±|2 depart linearly from zero with
different slopes. The slope of the laser emission of each pseudospin is completely random and
depends on the particular initial conditions randomly set for the realization. This behavior is
identical to what was found for a single resonator. The increased lasing threshold with respect
to the single resonator value (in which it is located at a pump rate P0 = γT) is due to a weak
penetration of the helical modes inside the passive bulk resonators. Panels (b,c) show the spatial
distribution of the intensity in the lattice |ã(nx,ny)

± |2 in units of nS at a fixed pump rate P0 = 4.5γT

for the ± pseudospins, respectively. The intensity is not homogeneously distributed along the
boundary resonators and oscillates in time in each of them. In order to calculate the frequency
spectrum of the a±(t) fields in each resonator we then performed a Fourier transform (FT) at a
pump rate P0 = 4.5γT. The transformed signals FT (a±) of all the edge resonators are shown in
panel (d) as a function of the frequency ωFT. The two pseudospins exhibit frequency components
in the two topological gaps, which are the same for all the edge resonators. This indicates that our
lattice is lasing in the four helical modes.

In the ξ = 2 topolaser two different behaviors are found. The first one is exemplified by panels
(e,f,g,h) of Fig. 5.4 and is the analog of the ξ = 2 single resonator. Panel (e) shows the average
intensity as a function of P0. In this case the lasing threshold is located at the same pump rate
P0 = 1.09γT as in the ξ = 1 realization. Above this value, the average intensity in a randomly
chosen pseudospin which depends on the initial conditions of the realization (in this case the − one)
departs linearly with a slope 0.987nS/γT, slightly smaller than the single resonator value nS/γT.
The intensity in the other pseudospin (the + one) remains negligible. Panels (f,g) show the spatial
distribution of the intensity at a pump rate P0 = 4.5γT in the two pseudospins ±, respectively.
Only in the latter one the edge resonators host a finite intensity which is concentrated at the corners
of the lattice, since the corner resonators are not coupled with the lossy bulk. This prevents the
intensity from leaking into the passive resonators. Panel (h) shows the frequency spectrum of the
laser emission in this realization at a pump rate P0 = 4.5γT. Only one peak is observed in the −
pseudospin at a frequency in the upper topological gap, indicating that the system is lasing in the
CCW− mode. Similar realizations in which single-mode lasing is triggered in another helical mode
were also observed. However, no realizations in which the system lases in a single pseudospin at
two distinct frequencies in the two topological gaps were found.

Contrary to what was observed in the single-resonator case, these are not the only possible
outcomes in a ξ = 2 topolaser. Panels (i,j,k,l) show another realization in which the average
intensity of the two pseudospins above threshold (located at a very similar value P0 = 1.10γT

to that of the other realizations shown) takes the same value 1. The slopes in this case are
0.399nS/γT. Such a behavior was found to be unstable for a single resonator, but in the case of
the topolaser it gives rise to a stationary pattern of intensity oscillations in the edge resonators in
which the two pseudospins are in phase opposition. This can be regarded from the spatial intensity
distributions at a pump rate P0 = 4.5γT shown in panels (j,k) in which the resonators emitting the
larger intensity are alternatively distributed in each pseudospin. Panel (l) demonstrates that the
emission spectrum of the two pseudospins at a pump rate P0 = 4.5γT features opposite frequency
components belonging in the two topological gaps with the same spectral power. This implies that
the system is lasing in the four helical modes. Therefore, even in a backscattering-free spin-Hall
topolaser of ring resonators with a ξ = 2 gain saturation it is impossible to assure that the system
will promote single-mode lasing when pumped above threshold.

On the following we will focus on the local saturable gain case (i.e. ξ = 2) which describes the
homogeneously broadened gain medium of quantum spin-Hall topolasers.

5.4.2 Backscattering in a ring resonator topolaser

In order to apply our model to a more realistic system we now include in the ring resonator array
a Hermitian backscattering of amplitude |h| = 0.5γT = 0.04J —as was displayed by the setup
of Ref. [11]— and a random complex phase in each site resonator. We also consider that the
corresponding backscattering coupling rates β(BS)

± feature a random phase in every site resonator
of the 8 × 8 lattice. As we found out in Sec. 5.3, it is important to take the backscattering

1Note that this is different from the behavior obtained for ξ = 1, where the average intensity in each pseudospin
can take different values at fixed P0. In the ξ = 2 case, solutions displaying multimode lasing always imply
|ā+|2 = |ā−|2.
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Figure 5.4: Topological lasing in a backscattering-free 8 × 8 quantum spin-Hall insulator of ring
resonators with flux per plaquette α = 1/4. Gain is only present in the edge resonators. Panels
(a,b,c,d) correspond to a realization featuring a nonlocal saturable gain with ξ = 1. Two different
realizations featuring a local saturable gain with ξ = 2 are shown in panels (e,f,g,h) and (i,j,k,l),
respectively. (a,e,i) Average intensity in the edge resonators of the lattice |ā±|2 as a function of
the pump rate P0. (b,f,j) Spatial distribution of the intensity |ã(nx,ny)

+ |2 in the + pseudospin (in
units of nS) at a pump rate P0 = 4.5γT. (c,g,k) Spatial distribution of the intensity |ã(nx,ny)

− |2
in the − pseudospin (in units of nS) at a pump rate P0 = 4.5γT. (d,h,l) Frequency spectrum for
the two pseudospins as obtained from a Fourier transform (FT) of a(nx,ny)

± in all edge resonators
at a pump rate P0 = 4.5γT. ωFT identifies the frequency of the transformed signal. The vertical
dashed lines indicate the limits of the topological gaps.

rate much smaller than the width of the gap (which we remind the reader amounts for about
18γT ' 1.5J); otherwise the edge modes disappear and light is localized in some resonators of
the lattice boundaries. For the rest of the parameters, we employed the same values as in the
calculations for the passive spin-Hall insulator.

We also investigate the effect of optical nonlinearities in the laser emission. As demonstrated
in [162], when the nonlinear refractive index nNL and the curvature of the helical mode have the
same sign the imaginary part of the dispersion is positive and the system is dynamically unstable.
Remarkably, the helical modes belonging to the same pseudospin but different topological gaps have
opposite curvatures, and therefore for a given value of nNL only one helical mode will be dynamically
stable. We employ Kerr nonlinearities (i.e. featuring g = 2) of strength |nNL|nSω0/nL = 0.1J ; this
value is smaller than the width of the topological gap (' 1.5J) and therefore the nonlinearity does
not alter the topological protection of the helical modes. However, as we know from Chapters 2
and 3, it results in a shift of the resonance frequency of the site resonators proportional to the
intensity circulating inside them. As we will see, this implies that the topological gaps will also be
displaced in frequency with respect to the nonlinearity-free case. For such a small Kerr nonlinearity
the anti-resonant condition for the link resonators remains well satisfied in spite of this shift (i.e.
exp(iω0(1− nNLnS/nL)nLLL/c) ' −1).

Fig. 5.5 shows the average intensity |ā±|2 in the edge resonators for the two pseudospins as a
function of the pump rate P0 for three realizations of the ring resonator topolaser featuring nNL = 0
(panel a), nNL < 0 (panel e), and nNL > 0 (panel i). To facilitate the comparison between the
three cases, we choose all realizations to show lasing in the − pseudospin. However, note that while
in the nNL = 0 case solutions displaying multimode lasing with the same average intensity in each
pseudospin are still possible, for nNL 6= 0 one of the topological gaps is always dynamically unstable
and therefore this kind of solutions cannot exist. The introduction of the Kerr nonlinearity does not
significantly modify the slope and threshold of the lasing emission: in all the three cases it features
a reduced slope of about 0.94nS/γT and an increased lasing threshold P0 = 1.13γT compared with
the backscattering-free case. The average intensity in the + pseudospin cannot be neglected and
at pump rate P0 = 4.5γT it takes the value |ā+|2 = 0.12nS. Contrary to what we had observed
for the single-resonator laser (see Chapter 3), in the quantum spin-Hall topolaser the different
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Figure 5.5: Topological lasing in an 8 × 8 quantum spin-Hall array of ring resonators with flux
per plaquette α = 1/4. Gain is only present in the edge resonators. The lattice hosts a Hermitian
backscattering of strength |h| = 0.04J and a random phase in each resonator. Panels (a,b,c,d)
correspond to nNL = 0. Panels (e,f,g,h) display the results for nNL < 0. Panels (i,j,k,l) are
obtained for nNL > 0. (a,e,i) Average intensity in the edge resonators of the lattice |ā±|2 as
a function of the pump rate P0. (b,f,j) Spatial distribution of the intensity |ã(nx,ny)

+ |2 in the +
pseudospin (in units of nS) at a pump rate P0 = 4.5γT. (c,g,k) Spatial distribution of the intensity
|ã(nx,ny)
− |2 in the − pseudospin (in units of nS) at a pump rate P0 = 4.5γT. (d,h,l) Frequency

spectrum for the two pseudospins over 100 realizations as obtained from a Fourier transform (FT)
of a(nx,ny)

± in all edge resonators at a pump rate P0 = 4.5γT. ωFT identifies the frequency of
the transformed signal. The black dashed lines indicate the limits of the topological gaps in the
nNL = 0 case. The pink dashed-dotted lines indicate the limits of the topological gaps in the
nNL 6= 0 cases.

shift of the resonance frequency for the two pseudospins introduced by the Kerr nonlinearity (see
Eq. (5.1)) does not lead to a suppression of the intensity circulating in the less populated one. This
can be understood in terms of the small nonlinear refractive index nNLnSω0/nL = 0.1J ' 1.2γT

employed in the topolaser. In contrast, the larger values of nNL used in the single resonator laser,
accounting for up to 50 times γT, yielded a larger splitting between the resonance frequencies for
each pseudospin. However, in the topolaser the maximum value of nNL that can be employed is
limited by the frequency width of the gap: when nNLnSω0/nL approaches J the helical modes
disappear. In addition to this, a larger value of nNL would pose the further inconvenient of a
deviation from the anti-resonant condition for the link resonators.

Panels (b,f,j) and (c,g,k) of Fig. 5.5 display the spatial distribution of the intensity |ã(nx,ny)
± |2

in the + and − pseudospins, respectively, for the same three realizations featuring nNL = 0 (panels
b,c), nNL < 0 (panels f,g), and nNL > 0 (panels j,k). The pump rate in all cases was fixed at
P0 = 4.5γT. As can be seen in panels (b,f,j) the intensity in the minority + pseudospin is not
homogeneously distributed across the lattice boundaries. Instead, only a few resonators host the
majority of the intensity. In the case of the majority − pseudospin, panels (c,g,k) show that the
corner resonators feature a larger intensity than those located at the center of the lattice sides, as
was found in the backscattering-free case.

We now analyze the frequency spectrum of the laser emission in all edge resonators of the
quantum spin-Hall ring-resonator laser featuring nNL = 0 (panel d), nNL < 0 (panel h), and
nNL > 0 (panel l). Each spectrum is calculated using 100 realizations, each one featuring different
random initial conditions and different random backscattering phases. In all cases the pump rate
is fixed at P0 = 4.5γT. Panel (d) shows that in the absence of the Kerr nonlinearity the spin-
Hall lattice can lase in the two pseudospins at frequencies in the two topological gaps, whose
limits are indicated by the black dashed lines. In each individual realization, as demonstrated in
Subsection 5.4.1 for a ξ = 2 saturable gain, the system chooses between single-frequency lasing in
one of the helical modes, or lases simultaneously in the four of them with equal average intensity
in each pseudospin. However, when we employ a negative refractive index (panel h) the topolaser
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can only emit in the two helical modes of positive curvature belonging in the lower topological
gap. In each realization, the system displays single-mode lasing in one of them, which is arbitrarily
chosen. Similarly, if the nonlinear refractive index is positive (panel l), lasing is only possible in
the two helical modes of negative curvature in the upper topological gap. In each realization one of
them is randomly chosen. Due to the finite Kerr nonlinearity, in the last two cases the resonance
frequency of the site resonators is displaced a quantity −nNL/nLω0|ã

(nx,ny)
− |2. This also shifts the

frequencies of the topological gaps (although their width remains the same as in the absence of
nonlinearity). Panels (h,l) show that the lasing frequency of all realizations falls into the limits of
the nonlinearity-shifted topological gaps (delimited by the pink dashed-dotted lines) in each case
and not into those of the nNL = 0 topological gaps (i.e. within the black dashed lines).

5.4.3 Backscattering in a TJR topolaser

In order to test the advantages of single-pseudospin lasing and intensity recirculation enabled by
active TJRs we also investigate the analog lattice featuring S couplings of strength kS = 0.31
which couple the + into the − pseudospin 2. The presence of the S waveguides increases the
total loss rate γT; however, the inter-site couplings βw remain the same and therefore the hopping
energy J ' 12γA ' 0.48γT remains unaltered. We consider an array featuring the same Hermitian
backscattering with amplitude |h| = 0.04J and a random complex phase in each site resonator as
we did in the ring resonator topolaser: these parameters lead to a ratio |h|/|β(S)

∓ | ' 0.01. As we
know from Chapter 3, such a strong S coupling will always promote lasing in the − pseudospin
only. However, this system can still host a pair of helical modes propagating in CW and CCW
directions along the lattice boundaries. Since each of these modes belongs in a different topological
gap, they feature opposite curvatures and become dynamically unstable for opposite values of the
optical nonlinearity of the material. Therefore, lasing in a single helical mode can be triggered by
a proper choice of nNL.

In this case we will solely focus on realizations featuring nNL < 0 and nNL > 0. In the first
case lasing will only be possible in the CW− helical mode located in the lower topological gap,
which features a positive curvature, while in the latter one the lattice will only host lasing in the
CCW− mode of the upper gap, of negative curvature (see Fig. 5.1b). Panels (a) and (e) of Fig. 5.6
display the average intensity |ā±|2 in the two pseudospins for two realizations of the TJR topolaser
featuring nNL < 0 and nNL > 0, respectively. In the two cases both the slope (0.998nS/γT)
and lasing threshold (P0 = 1.01γT) display very similar values to the single-resonator ones, and
even outperform those of the backscattering-free ring resonator topolaser. The averaged residual
intensity in the + pseudospin at a pump rate P0 = 4.5γT is |ā+|2 = 3 × 10−3nS, i.e. 40 times
smaller than in the analog ring-resonator topolaser featuring a backscattering of the same strength.
This can be understood by recalling our results for the single TJR laser discussed in Chapter 3: a
sufficiently strong coupling with the embedded S element recirculates the backscattered intensity
populating the unfavored + pseudospin into the preferred − one.

Panels (b,f) and (c,g) of Fig. 5.6 display the spatial distribution of the intensity |ã(nx,ny)
± |2 in

the + and − pseudospins, respectively, for the same two realizations of the TJR topolaser with
nNL < 0 (panels b,c), and nNL > 0 (panels f,g). The pump rate in all cases was fixed at P0 = 4.5γT.
As in the ring resonator topolaser, the intensity in the minority + pseudospin is not homogeneously
distributed across the lattice boundaries. However, for the majority − pseudospin, in contrast to
the light localization in the corner resonators observed in the ring resonator topolasers, panels (c,g)
show that in the TJR topolaser the intensity presents a more homogeneous distribution across the
lattice boundaries. This absence of localization is produced when the coupling rate between a
given site resonator and the S waveguide |β(S)

∓ | overcomes that between adjacent site resonators
|βw|, and it contributes to a slope closer to the single-resonator value nS/γT whenever a larger kS

is considered. The fact that |β(S)
∓ | � |βw| also produces a smaller penetration of the helical modes

into the bulk resonators, therefore bringing the lasing threshold closer to P0/γT = 1.
We finally study the frequency spectrum of the laser emission of the TJR topolaser for nNL < 0

(panel d) and nNL > 0 (panel h) at a fixed pump rate P0 = 4.5γT. Each spectrum is calculated
using 100 realizations, each one starting from different random initial conditions and featuring
different random backscattering phases. As in the ring resonator topolaser, the resonance frequency

2Note that in the experiment of Ref. [13] the loss rate due to the S waveguide amounts to γSnL/c = 10 cm−1,
or equivalently kS = 0.35.
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(c)(a) (d)(b)

(f) (g) (h)(e)

Figure 5.6: Topological lasing in an 8×8 quantum spin-Hall array of TJRs with flux per plaquette
α = 1/4. Gain is only present in the edge resonators. The lattice hosts a Hermitian backscattering
of strength |h| = 0.04J and a random phase in each resonator. Panels (a,b,c,d) correspond to
a nNL < 0. Panels (e,f,g,h) are obtained for nNL > 0. (a,e) Average intensity in the edge
resonators of the lattice |ā±|2 as a function of the pump rate P0. (b,f) Spatial distribution of
the intensity |ã(nx,ny)

+ |2 in the + pseudospin (in units of nS) at a pump rate P0 = 4.5γT. (c,g)
Spatial distribution of the intensity |ã(nx,ny)

− |2 in the − pseudospin (in units of nS) at a pump
rate P0 = 4.5γT. (d,h) Frequency spectrum for the two pseudospins through 100 realizations as
obtained from a Fourier transform (FT) of a(nx,ny)

± in all edge resonators at a pump rate P0 = 4.5γT.
ωFT identifies the frequency of the transformed signal. The black dashed lines indicate the limits
of the topological gaps in the nNL = 0 case. The pink dashed-dotted lines indicate the limits of
the topological gaps in the nNL 6= 0 cases.

ω0 of the site resonators are displaced a quantity −nNLnSω0/nL due to the Kerr nonlinearity.
Whilst this translates in a shift of the frequency at which the topological gaps appear, their
width remains unaltered. Panel (d) shows that when the material features a Kerr nonlinearity
with negative refractive index the system displays single-mode lasing in the CW− mode at some
random frequency whithin the limits of the nonlinearity-shifted lower topological gap. Instead,
when we employ a positive refractive index (panel h) the TJR topolaser can only emit in the
CCW− mode at a frequency in the nonlinearity-shifted upper topological gap.

5.5 Conclusions

In this Chapter we studied lasing in active spin-Hall topological insulators based on arrays of silicon
ring resonators supporting two pseudospin states that experience an opposite synthetic gauge field.
As long as backscattering coupling the two pseudospins can be neglected, such a system hosts four
helical modes topologically protected against local perturbations. Our analysis is based on solving
for the steady state of the temporal coupled-mode equations for the field amplitudes in each
resonator and pseudospin state.

We first investigated the different lasing behaviors arising in a backscattering-free ring resonator
lattice as a consequence of different gain saturation types which can suppress or reinforce the mode
competition between pseudospin states. Even though we always consider a class-A laser featuring
an instantaneous gain, we found that a nonlocal saturation promotes lasing in the four helical
modes at the same time, while for a local gain saturation the two pseudospins experience a different
gain. This latter case leads either to single-mode lasing in a random helical mode or to stationary
intensity oscillations in the boundary resonators involving the four helical modes.

When a realistic backscattering is considered the performance of such a spin-Hall laser de-
creases significantly and the backwards-propagating pseudospin hosts a finite intensity. However,
we demonstrated that the combination of a unidirectional coupling between pseudospins enabled
by TJRs and a non-zero optical Kerr nonlinearity grant single-mode topological lasing with a
threshold and slope efficiency very similar to the backscattering-free single-resonator values, as
well as a negligible backwards-propagating intensity.

Our work has established the theoretical foundations behind the use of TJRs to promote single-
mode lasing in active quantum spin-Hall topological insulators featuring a sizable backscattering.
However, further research is needed in order to investigate in detail the role of a reservoir of
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incoherent excitations that accounts for a more realistic gain saturation present in class-B lasers.
In addition to this, the introduction of an asymmetrical four-wave mixing such as the one studied
in Chapter 4 could reinforce the suppression of the backscattered light. This will be the subject of
future work.
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Chapter 6

Review of the fractional quantum Hall
effect

The previous chapters have been devoted to the implementation of realistic non-trivial
topological structures using a silicon photonics platform. Nevertheless, such a system has the
clear disadvantage of providing weak nonlinearities which are only suitable for the study of IQH
physics. In the following chapters we will focus on the fractional quantum Hall (FQH) effect,
which requires strong interactions and hosts even more exotic phenomena. This physics involves
strongly correlated phases of matter known as FQH liquids, which are characterized not by their
symmetries—as in Landau’s theory of phase transitions—but by a new kind of internal order
known as topological order [166]. They display fascinating properties such as the existence of
quasiparticle and quasihole excitations featuring a fraction of the electron charge and statistical
properties different from those of bosons and fermions: the so-called anyons. Depending on the
behavior of two such particles upon an exchange of their positions (a process known as braiding),
which is determined by the topological order of the FQH liquid hosting them, these excitations
can be classified into Abelian or non-Abelian. The latter type adds even more complexity as
they involve a non-local storage of information in the system’s wavefunction which gives rise to
long-range entanglement [167].

One of the most promising paths opened by the study of non-Abelian FQH liquids is the per-
spective of building fault-tolerant topological quantum computers [168]. The topological protection
of such a quantum computer arises from the nonlocal encoding of the qubit states, which makes it
immune to errors caused by local perturbations.

Quantum simulators have also opened new perspectives for the study of FQH phases of matter.
In fact, some of the challenges that electronic solid state setups pose to both experimentalists
and theorists can be circumvented in alternative platforms like cold atomic gases and optical
setups [169], which offer a large degree of experimental control due to the great technological
advances they have experienced in the last decades.

In this Chapter we will first explain the physical origin and the theoretical treatment of the
FQH effect, and we will then present the state-of-the-art implementations of such physics, focusing
on cold atoms and optical systems. We refer the interested reader to [30] for a more comprehensive
review of the topic.

6.1 Introduction

The topological revolution that physics has experienced in the last decades is rooted in the study
of a rather simple setup: a 2D electron gas subjected to a strong perpendicular magnetic field.
The pioneering experiments of [1] in solid state samples determined for the first time that the Hall
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Figure 6.1: The fractional quantum Hall effect. Hall (ρxy) and longitudinal (ρxx) resistivities as a
function of the magnetic field B. The numbers show the values of ν in Eq. (1.12) characterizing
each plateau in ρxy. As can be seen, some of them take fractional values. This image was extracted
from [173].

resistance is a quantized quantity that takes the discrete values

RH =

(
h

e2

)
1

ν
, (6.1)

where, as we know from Chapter 1, ν was initially measured to be an integer number. This is
the so-called integer quantum Hall (IQH) effect, that was successfully described in terms of the
single-particle Landau levels (LLs) arising in the non-interacting picture (see Sec. 1.2).

However, shortly after the discovery of the IQH effect, in 1982 Tsui et al. [170] observed for
the first time plateaux at rational values of ν. The first values discovered were ν = 1/3, 2/3, but
soon after many more followed (and even nowadays new ones continue to be observed! [171]): ν =
1/5, 2/5, 3/7, 4/9, 5/9, 3/5, 5/2, 12/5, 13/5... The most prominent plateaux are shown in Fig. 6.1.
The appearance of these fractional plateaux could be understood by considering gaps inside the
LLs at the particular values of ν where these are measured. A fractional value of ν would imply
a fractional occupation of the LL considered. For instance, ν = 1/3 means that only one third of
the states belonging to the lowest Landau level (LLL) are occupied. This is why ν is known as
filling fraction. Indeed, there is one ingredient that we left behind in our explanation of the IQH
effect and that could account for this complicated gapped structure inside the LLs: the Coulomb
repulsion between electrons. This would lift the degeneracy of each LL and produce a spectrum
of states within the characteristic energy scale of the Coulomb interactions, ECoulomb. On the
other hand, disorder, for example produced by the presence of impurities inside the sample, can be
characterized by a potential Vdisorder. This would lead to localized states around the gap, therefore
explaining the plateaux structure observed in the Hall resistance. In summary, we need the energy
scales of our problem to satisfy

~ωc � ECoulomb � Vdisorder. (6.2)

While in Chapter 1 the theoretical explanation of the IQH effect required only the single-
particle spectrum of 2D charged particles inside a magnetic field, the crucial role of interactions
makes the FQH effect much more difficult to understand. One cannot simply write down the matrix
elements for the interacting Hamiltonian inside each macroscopically degenerate LL and diagonal-
ize it exactly in order to find the spectrum of eigenvalues. This would be too computationally
demanding—and it looked even more difficult forty years ago, when the FQH effect was observed
for the first time. Instead, a much more efficient strategy would be to write down a wise Ansatz
accounting for the relevant physics. Indeed, the first explanation of the origin of the fractional
plateaux was due to Laughlin in 1983 [172], who derived a plausible Ansatz for the ground state
of the FQH liquid at filling fractions ν = 1/m, where m is a positive integer number (which, as we
will see, is odd for a FQH liquid of fermions, and even for one formed by bosons). We will review
his approach as well as its most significant predictions in the following Section.
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6.2 The FQH ground state: Laughlin Ansatz
The so-called Laughlin states describe the ground state of FQH liquids at filling fractions ν = 1/m,
where m is a positive integer. The complexity of the problem due to the macroscopic degeneration
of the Landau levels and the strong Coulomb repulsion between electrons makes very difficult to
solve it exactly, even applying computational brute force. Instead, Laughlin provided an Ansatz
which is actually really close to the exact solution and that captures all the relevant physics. Of
course, his reasoning was motivated by physical insights that we will review on the following.

Consider two particles in the LLL interacting via a central potential

V = V (|r1 − r2|). (6.3)

We can exploit the rotational symmetry of the problem by working in the basis of eigenstates of
the angular momentum operator. As we already saw in Chapter 1, this means that we should
employ the symmetric gauge. The single-particle wavefunctions in the LLL can be written as

ψm ∝ zme−|z|
2/4`2B , (6.4)

where z = x− iy is the complex in-plane coordinate and m labels the angular momentum quantum
number. In fact, as we showed in Sec. 1.2.2, the wavefunctions (6.4) are eigenstates of the z
component of the angular momentum. For clarity, on the following of this Section the wavefunctions
will be presented unnormalized, unless stated otherwise.

We now consider the total system of two interacting particles. If the energy scales deter-
mined by the cyclotron frequency and the central potential are well-separated (i.e. if ~ωc � V ),
mixing between different LLs can be neglected. Therefore, as we saw in the single-particle case
(see Sec. 1.2.2), the two-particles wavefunction must take the form of the usual Gaussian factor
multiplied by a holomorphic function. More precisely, it can be written as

ψ ∝ (z1 + z2)M (z1 − z2)me−(|z1|2+|z2|2)/4`2B , (6.5)

being M and m a couple of non-negative integers, M related to the angular momentum of the
center of mass, and m the relative angular momentum.

In general, as long as LL mixing is not present, any N-particle wavefunction describing a state
in the LLL must take the form

ψ(z1, ..., zN ) = f(z1, ..., zN )e−
∑N
i=1 |zi|

2/4`2B , (6.6)

for some holomorphic function f(z1, ..., zN ). Moreover, the fermionic or bosonic statistics of the
particles imposes that such a function must be antisymmetric or symmetric under any two-particle
exchange zi ⇐⇒ zj , respectively.

Laughlin generalized the two-particle state in Eq. (6.5) in order to account for N particles. His
Ansatz for the ground state of the ν = 1/m FQH liquid reads

ψL =
∏
i<j

(zi − zj)me−
∑N
i=1 |zi|

2/4`2B . (6.7)

It is easy to notice that when m is an odd integer this wavefunction is antisymmetric and therefore
describes a fermionic state. On the other hand, when m is an even integer, the wavefunction is
symmetric and describes a bosonic state. Note that, whatever the statistics of the particles, the
probability of finding two of them close together is zero. This is a reflection of the incompressible
character of FQH liquids. Besides, the Gaussian exponential tends to zero when the particles move
far away from the origin. Altogether, these two facts imply that the spatial probability density
stemming from the Laughlin wavefunction must be flat in the bulk of the FQH droplet, even though
it can be difficult to realize at first sight given the shape of Eq. (6.7). We will justify this in the
following Section.

The first thing we would like to ensure is that the state described by Eq. (6.7) has the correct
filling fraction. In order to do this we focus on a certain particle, let’s say the one located at z1.
The polynomial of the Laughlin wavefunction can then be written as

∏
i<j

(zi − zj)m =

N∏
i=2

(z1 − zi)m, (6.8)
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which implies that there are m(N − 1) powers of z1. What this is really telling us is that the
maximum angular momentum of the particle at z1 is m(N − 1) as well. This determines that
the maximum radius of this particle will be R =

√
2m(N − 1)`B '

√
2mN`B, where we are

considering a large number of particles N � 1. Thus, the area of the FQH droplet will be given
by A = πR2 = 2πmN`2B. As accounted in Eq. (1.55), the degeneracy of a given LL is

N =
A

2π`2B
= mN. (6.9)

We see that this lead to the correct result for the filling fraction, which is given by the number of
particles N divided by the number of states N :

ν =
N

N
=

1

m
. (6.10)

Laughlin demonstrated in [172] that the overlap between the Ansatz in Eq. (6.7) and the true
ground state for N electrons forming a FQH liquid is impressively large for small numbers of
particles, around 99%. Of course, numerically finding the exact ground state of the system is
difficult and can only be done for a couple of dozens of particles. However, when we consider very
large numbers of particles, the overlap between the Laughlin state and the true ground state of
the system is expected to tend to zero. At the end of the day, we should consider the Laughlin
state as a state in the same universality class as the exact ground state of the system, meaning
that both feature the same excitations and topological order.

6.3 The plasma analogy and the density of the Laughlin state
In order to demonstrate that the density of the Laughlin’s state takes a constant value in the
bulk of the FQH droplet, we will make use of Laughlin’s plasma analogy [172, 30]. This is a very
powerful analytical tool that relies on a mathematical analogy between the squared modulus of
the Laughlin state (6.7) and the Boltzmann factor e−βU of a classical 2D Coulomb plasma.

In order to motivate this analogy, we first try to calculate the average density of the FQH
liquid. This is done by taking the expectation value of the density operator

n(z) =

N∑
i=1

δ(z − zi), (6.11)

which is given by

〈ψ|n(z) |ψ〉 =

∫ ∏N
i=1 d

2zin(z)P [zi]∫ ∏N
i=1 d

2ziP [zi]
. (6.12)

In the equation above, P [zi] is the unnormalized probability density of the Laughlin state:

P [zi] =
∏
i<j

|zi − zj |2m

`2mB
e−
∑N
i=1 |zi|

2/2`2B . (6.13)

A closer look at Eq. (6.12) reveals a clear similarity between the denominator on its right-hand
side and the canonical partition function, which can be defined as

Z =

∫ N∏
i=1

d2ziP [zi]. (6.14)

Associating the probability density P [zi] to the Boltzmann distribution function

P [zi] = e−βU(zi), (6.15)

we obtain an effective potential U(zi) of the form

U(zi) =
1

β

−2m
∑
i<j

log

(
|zi − zj |
`B

)
+

1

2

N∑
i=1

|zi|2

`2B

 . (6.16)
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In the expressions above, the factor β = 1/kBT sets a fictitious temperature T for the 2D plasma
(but remember that the FQH droplet is not placed at a finite temperature!). In particular, by
choosing the vale β = 2/m we get

U(zi) = −m2
∑
i<j

log

(
|zi − zj |
`B

)
+

m

4`2B

N∑
i=1

|zi|2, (6.17)

which is the potential energy for a 2D Coulomb plasma of charged particles featuring an electric
charge q = −m each. The first term in Eq. (6.17) is indeed the 2D Coulomb potential between a
pair of particles with charge q = −m. This stems from the 2D Poisson equation:

−∇2φ = 2πqδ2(r) → φ = −q log

(
r

`B

)
. (6.18)

The potential energy will then be given by U = qφ, which coincides with the first term in Eq. (6.17).
On the other hand, the second term in Eq. (6.17) represents the interaction energy between a
particle of charge q = −m and a constant charge background that neutralizes it. For a background
of charge density ρ0 that gives rise to an electrostatic potential φ we can write the Poisson equation
−∇2φ = 2πρ0. Applying this to the second term of Eq. (6.17) we get

−∇2φ = ∇2

(
|z|2

4`2B

)
=

1

`2B
, (6.19)

and therefore the constant density ρ0 must take the value

ρ0 =
1

2π`2B
. (6.20)

Note that this is equal to the flux density in the FQH droplet.
To minimize the energy of the system, the plasma will be arranged in such a way that it

neutralizes the background charge density. Given the fact that each particle carries a charge
q = −m, the compensating density of particles n must satisfy mn = ρ0, giving

n =
1

2π`2Bm
, (6.21)

which corresponds to the expected bulk density for a FQH droplet at filling fraction ν = 1/m [30].
Even though the shape of the Laughlin state in Eq. (6.7) may lead us to think otherwise, our
calculation with the plasma analogy shows that the average density of particles of the FQH droplet
is in fact constant. There is nothing special about the origin.

6.4 Topological order
It is now time to ask where do FQH liquids fit into our description of phases of matter. According
to Landau’s theory of symmetry breaking, different phases of matter are characterized by different
symmetries. For example: Liquids are formed by randomly distributed atoms (or molecules), and
therefore they are disordered states that do not break any symmetry. On the other hand, in
crystals atoms are distributed according to a spatially-periodic geometrical pattern, and thus they
only have a discrete translation symmetry. These two phases are connected via a spontaneous
symmetry breaking.

At first glance it may seem that Landau’s theory provides a satisfactory explanation of the
whole spectrum of phases of matter arising in condensed matter physics. However, FQH liquids
pose a remarkable exception. We have seen that there exist several types of FQH liquids classified
according to their filling fraction ν. As we will see in the following Section, these display different
types of excitations, namely quasiholes and quasiparticles with fractional charge and statistics
determined by the value of ν. But being liquids, these different FQH phases do not feature any
internal order: regardless of their filling fraction they all have the same symmetries and therefore
cannot by distinguished by symmetry breaking. FQH liquids are not the only case of quantum
phases of matter (i.e. phases at zero temperature) in which Landau’s theory breaks down: another
example is provided by the so-called chiral spin liquids [174].
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It turns out that FQH liquids are characterized by a different type of order, named topological
order [166, 175, 176]. This arises as a consequence of long-range entanglement in quantum many-
body systems. Intuitively, we can interpret topological order as a global dancing pattern governing
the motion of particles in the FQH droplet. Such a pattern arises from a set of local dancing rules
aiming at lowering the energy of the local Hamiltonian perceived by each particle. For instance, in
a FQH liquid of electrons these dancing rules are the quantized cyclotron motion determined by ν,
the Fermi quantum statistics, and the repulsion due to the strong Coulomb interactions and the
Pauli exclusion principle. This is different from the situation in a traditional symmetry-breaking
phase, where all particles (or pairs of particles in the case of a superfluid of fermions) dance by
themselves in the same way. The same way of dancing represents the long-range order.

Finally, how can we characterize phases with different topological order? Instead of looking at
order parameters and long-range correlations as we are used to do in Landau symmetry-breaking
theory, we must rely on physical properties such as the ground-state degeneracy [177], the frac-
tional charge and statistics of the charged bulk excitations, and the properties of the gapless edge
modes [178].

6.5 Excitations of the FQH liquid
So far we have only discussed the ground state for a ν = 1/m FQH liquid, being m a positive
integer number. At this point it seems natural to wonder what kind of excitations does such a
state feature. It turns out that the FQH droplet can host gapless edge excitations behaving as a
1D chiral quantum liquid [166, 41, 179] as well as gapped neutral collective excitations in the bulk
somewhat similar to phonons in superfluids [180]. Nevertheless, here we will focus on the charged
excitations of the bulk, which are quasiholes and quasiparticles featuring astonishing properties
like fractional charge (in units of the elementary charge) and intermediate statistics between those
of bosons and fermions.

6.5.1 Quasiholes
We start by writing the wavefunction that describes a quasihole excitation at a complex position
η = ηx − iηy in the x− y plane, namely

ψQH(η, z) =

N∏
i=1

(zi − η)ψL(z) =

N∏
i=1

(zi − η)
∏
i<j

(zi − zj)me−
∑N
i=1 |zi|

2/4`2B . (6.22)

A first inspection of this wavefunction reveals that the particle density vanishes precisely at the
position of the quasihole η. In general, the wavefunction describing a state with M quasiholes
located at positions ηµ, each one labeled by the index µ = 1, ...,M , reads

ψM−QH =

M∏
µ=1

N∏
i=1

(zi − ηµ)
∏
i<j

(zi − zj)me−
∑N
i=1 |zi|

2/4`2B . (6.23)

As mentioned before, the quasihole displays remarkable properties: in particular, it features
fractional charge and statistics. In the following we will explore the origin of these properties.

Fractional charge

We will employ the plasma analogy again to demonstrate that the quasihole excitations carry a
fraction of the charge of the particles forming the FQH liquid. The following calculations are made
with the seminal case of a FQH liquid of electrons with charge q = −e in mind, which is especially
shocking as one would not think that an object carrying a fraction of the elementary charge can
exist. However, the calculations applies as well to FQH liquids formed in synthetic systems like cold
atomic gases or interacting photon systems, replacing the electron charge with the corresponding
synthetic charge. In the case of a FQH liquid of electrons, the quasihole charge will be q = +e/m.

The plasma potential energy for a FQH droplet featuring a quasihole at η reads

U(zi) = −m2
∑
i<j

log

(
|zi − zj |
`B

)
−m

∑
i

log

(
|zi − η|
`B

)
+

m

4`2B

∑
i

|zi|2. (6.24)
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The equation above features an extra term with respect to Eq. (6.17), which can be interpreted as
the interaction energy between the plasma particles and an impurity with unitary charge placed
at a complex position η. Our physical intuition tells us that the particles of the plasma will try to
screen this impurity. We know that each plasma particle carries a charge q = −m, and therefore
only 1/m plasma particles are necessary in order to screen the impurity. Since we know that each
plasma particle is in fact an electron of the FQH liquid, we conclude that the quasihole excitations
must carry a fraction 1/m of the electron charge.

Another heuristic explanation of the fractional charge of the quasihole can be followed by
looking at the Laughlin wavefunction for m quasiholes at a position η:

ψm−QH(η; z) =

N∏
i=1

(zi − η)m
∏
k<l

(zk − zl)me−
∑n
i=1 |zi|

2/4`2B . (6.25)

In this context η plays the role of a fixed parameter. This implies that the wavefunction above
describes the deficit of one electron at η (if it was a dynamical variable, Eq. (6.25) would be
equivalent to the original ground state Laughlin wavefunction (6.7) featuring an extra electron at
position η). Since m quasiholes produce the deficit of a single electron in the wavefunction, a single
quasihole must feature 1/m-th of the electron charge, i.e. it carries q = +e/m.

Fractional statistics

Now we will employ the plasma analogy again in order to demonstrate that quasiholes in the
ν = 1/m Laughlin state are anyons featuring fractional statistics. Let us begin by considering
a state of M quasiholes that we denote as |η1, ..., ηM 〉. The wavefunction of such a state in the
position representation reads

〈z, z̄|η1, ..., ηM 〉 =

M∏
j=1

N∏
i=1

(zi − ηj)
∏
k<l

(zk − zl)me−
∑N
i=1 |zi|

2/4`2B . (6.26)

We now define the normalized |ψ〉 state as

|ψ〉 =
1√
Z
|η1, ..., ηM 〉 , (6.27)

where Z is a normalization factor given by

Z =

∫ N∏
i=1

d2zi exp

∑
i,j

log |zi − ηj |2 +m
∑
k,l

log |zk − zl|2 −
1

2`2B

∑
i

|zi|2
 . (6.28)

Remember that in the plasma analogy the normalization factor Z plays the role of the partition
function, i.e.

Z =

∫ N∏
i=1

d2zie
−βU(zi,ηj), (6.29)

so we can write the potential energy for the 2D Coulomb plasma as

U(zk; ηi) = −m2
∑
k<l

log

(
|zk − zl|
`B

)
−m

∑
k,i

log

(
|zk − ηi|
`B

)
+

m

4`2B

N∑
k=1

|zk|2. (6.30)

Nevertheless, if we want our description of the plasma to have a physical meaning, two terms are
missing in the equation above: the Coulomb interaction potential between the unitary charged
impurities and between them and the background charge. The total potential energy then reads

U(zk; ηi) = −m2
∑
k<l

log

(
|zk − zl|
`B

)
−m

∑
k,i

log

(
|zk − ηi|
`B

)
−
∑
i<j

log

(
|ηi − ηj |
`B

)

+
m

4`2B

N∑
k=1

|zk|2 +
1

4`2B

M∑
i=1

|ηi|2. (6.31)
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This leads to the corrected plasma partition function

∫ N∏
i=1

d2zie
−βU(zi;ηj) = exp

− 1

m

∑
i<j

log |ηi − ηj |2 +
1

2m`2B

N∑
i=1

|ηi|2
Z, (6.32)

being Z the old partition function given by Eq. (6.29).
At this point we can rely in our physical intuition about the behavior of the 2D Coulomb plasma.

We know that the mobile charges (at positions zi) will rearrange themselves in order to screen the
impurities (at positions ηj) so that the presence of the latter will not be noticed at sufficiently large
distances. In fact, the electric potential due to a single impurity will follow the exponential law
e−r/λ, where r is the distance and λ is a characteristic length called Debye screening length, which
can be shown to be proportional to the square root of the ficticious temperature of the plasma
(see [30]). This means that impurities will be completely screened at distances much larger than
λ. This implies that as long as the distance between any two impurities satisfies |ηi − ηj | � λ
the corrected partition function should not depend on the impurities’ positions ηi. This argument
means that the normalization factor Z must take the value

Z = C exp

 1

m

∑
i<j

log |ηi − ηj |2 −
1

2m`2B

M∑
i=1

|ηi|2
 , (6.33)

where C is a constant (independent on ηi) that will be irrelevant for our calculations. This demon-
strates the power of the plasma analogy: by appealing to our physical intuition about the screening
of charges, we arrived at a much more simplified expression for Z (which is valid as long as the dis-
tance between the quasihole excitations is sufficiently large). The reader can compare Eqs. (6.29)
and (6.33) to get an idea of the level of simplification achieved.

We can now compute the holomorphic and antiholomorphic Berry connections as

Aηi(η, η̄) = −i 〈ψ| ∂ηi |ψ〉 = − i
2

∂ logZ

∂ηi
= − i

2m

∑
j 6=i

1

ηi − ηj
+,

iη̄i
4m`2B

(6.34)

Aη̄i(η, η̄) = −i 〈ψ| ∂η̄i |ψ〉 = +
i

2

∂ logZ

∂η̄i
= +

i

2m

∑
j 6=i

1

η̄i − η̄j
− iηi

4m`2B
. (6.35)

Remember that these expressions hold only as long as quasiholes do not get too close to each other.
We can use the Berry connection to compute both the fractional charge and statistics of the

quasiholes. Let us start with the fractional charge: in order to do it, we shall adiabatically move
one of the quasiholes in a closed path C that does not encircle any other quasiholes. This ensures
that only the second term in the Berry connection gives a finite contribution

Aη =
iη̄

4m`2B
, Aη̄ = − iη

4m`2B
. (6.36)

Once the quasihole completes the roundtrip around the path C the system’s wavefunction picks a
phase shift γ which corresponds to the Berry phase

eiγ = exp

[
−i
∮
C

(Aηdη +Aη̄dη̄)

]
. (6.37)

Using the results from Eqs. (6.36) we get

γ =
eΦ

m~
, (6.38)

where Φ is the total magnetic flux enclosed by the path C. A closer inspection of the equation above
leads to the conclusion that this is the Aharonov-Bohm phase [181] picked up by the quasihole
(which, rememeber, is a charged particle moving inside a magnetic field). By comparing with the
Aharonov-Bohm phase that an electron (of charge q = −e) would acquire, one can conclude that
the charge of the quasihole is indeed

q = +e/m. (6.39)
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We shall now take a look at the fractional statistics of quasiholes. We take again one of the
quasiholes, for instance η1, and move it adiabatically in a closed path C which now encloses another
quasihole located at a position η2. In this case both terms in Eq. (6.36) give a finite contribution
to the Berry phase: The second term corresponds once again to the Aharonov-Bohm phase that
we employed to ascertain the fractional charge. On the other hand, the Berry phase due to the
first term can be expressed as

eiγ = exp

(
− 1

2m

∮
C

dη1

η1 − η2
+ h.c.

)
= e2πi/m, (6.40)

and it represents the phase that the system’s wavefunction picks when one quasihole encircles
another. This implies that the phase that the system picks up upon the exchange of two such
objects (which corresponds to a 180◦ rotation) is

eiπα = eiπ/m → α = ν =
1

m
, (6.41)

where we have defined the statistical parameter α in order to get α = 0 for bosons and α = 1 for
fermions. Surprisingly, the statistical parameter for quasiholes is determined by the filling fraction
ν of the FQH liquid hosting them. This implies that the charged excitations of the FQH bulk
are neither bosonic nor fermionic. Instead, they represent a paradigmatic example of the so-called
anyons. Nevertheless, in the fully-filled LLL case, we have m = 1 and therefore the quasiholes are
as fermions, as the hole excitations of a trivial electron gas.

It is instructive to consider an exchange of n quasiholes around another group of n quasiholes.
Assuming each group can be considered as a single object, the net statistical parameter will be
α = n2/m.

6.5.2 Quasiparticles

Here we briefly comment on the existence of quasiparticles: bulk excitations of the FQH fluid
featuring a charge of the same sign than that of the particles forming the Laughlin state, and
opposite to their quasihole counterparts. In the case of electronic FQH liquids, quasiparticles have
a charge q = −e/m. Quasiparticles are also anyons featuring a statistical parameter α = ν = 1/m,
just as quasiholes. In spite of displaying the same exotic properties quasiholes do, due to the
complexity of their theoretical treatment quasiparticles have not been as profusely studied as the
former. The reader should remember from the previous Subsection that in order to insert quasiholes
into the FQH droplet we reduced the electron density by including zeros in the wavefunction at
the quasiholes’ positions. This is done by multiplying the ground state of the system ψL by a
polynomial prefactor of the form

∏
i(zi−η), being η the quasihole position. As a consequence, the

relative angular momentum of the electron pairs of the system increases. In the case of the the
quasiparticles we need to increase the electron density and reduce the relative angular momentum.

The first idea that can come to our minds is dividing ψL by a similar polynomial
∏
i(zi−η), but

this would introduce singularities and lead to a non-holomorphic wavefunction. It turns out that
the most promising candidate for a quasiparticle wavefunction can be obtained by differentiating
with respect to zi:

ψQP(z, η̄) =

 N∏
i=1

(2∂zi − η̄)
∏
i<j

(zi − zj)M
 e−∑N

i=1 |zi|
2/4`2B . (6.42)

This quasiparticle wavefunction has nevertheless a great downside with respect to the quasihole
one: the derivatives make dealing with it analytically much tougher. For example, one can see that
in this case there is no possible analogy between the squared modulus |ψQP|2 and the Boltzmann
factor of a 2D Coulomb plasma.

6.6 All about anyons

In this Section we would like to take a step back and provide a more in-depth description about
anyons and fractional statistics. We will also justify the huge interest they are attracting among
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researchers of a variety of fields, not only due to their obviously exotic nature, but also because of
their technological applications.

As we found in the previous Section, charged bulk excitations of the FQH droplet, namely
quasiholes and quasiparticles, display a fraction of the electronic charge and intermediate statistics
between bosons and fermions. This is a striking result that shocks our undergraduate textbook
knowledge, where the boson-fermion dicotomy for indistinguishable particles seems to have a funda-
mental origin related to the Pauli exclusion principle and the symmetries of the global wavefunction
of a quantum system ψ. Let us consider a couple of indistinguishable particles located at posi-
tions r1 and r2, respectively. Such a system is described by a wavefunction ψ(r1, r2). If we now
move adiabatically the particles in order to interchange their positions, the wavefunction changes
to ψ(r2, r1), but the indistinguishibility of the particles implies that the physics cannot depend
on the particular position that they take, so at the level of probability densities the wavefunction
must satisfy |ψ(r1, r2)| = |ψ(r2, r1)|. This leads to the conclusion that both wavefunctions can
only differ in a phase, i.e. ψ(r2, r1) = eiπαψ(r1, r2), where α is the statistical parameter introduced
in the previous Section. Upon another adiabatic exchange the system must return to the original
state, so ψ(r1, r2) = ei2παψ(r1, r2). From this last equation it is obvious that we should get the
usual solutions α = 0 for bosons and α = 1 for fermions. For bosons one has that the wavefunction
must be symmetric upong the exchange of two particles, i.e. ψ(r2, r1) = +ψ(r1, r2). On the other
hand, in the case of fermions the wavefunction must be antisymmetric, i.e. ψ(r2, r1) = −ψ(r1, r2).
This result is directly comparable with our calculation of Sec. 6.5.1 in which we took one particle
in a closed path around the other, as exchanging both particles twice is equivalent to encircling
one particle with the other.

So where is the loophole in this argument? Apparently only two solutions α = 0, 1 can satisfy
the requirement that the system must end up in the same state after taking one of the particles
in a round trip around the other. And indeed everything we have considered up to this point is
true in three dimensions, where encircling one particle with another is a topologically equivalent
process to not moving the particles at all (i.e. they are homotopic processes). To see this, imagine
that one takes the closed path and lifts it continuously above the encircled particle by means of
the third dimension, making then the radius of the path tend to zero, as shown in the left panel
of Fig. 6.2. From the point of view of topology both processes can be continuously deformed into
one another, and therefore they are said to be in the same homotopy class. Thus, in 3D we can
equate the initial and final wavefunctions ψ(r1, r2) = ei2παψ(r1, r2).

However, when we restrict ourselves to a two-dimensional plane the situation is different because
we cannot make use of the third dimension any more. This was first realized in the seminal work of
Leinaas and Myrheim [182]. The right panel of Fig. 6.2 shows two closed paths, A and B, performed
by one of the particles of the pair. Path A encircles the other particle, while path B does not. In this
case, both paths are not topologically equivalent because they cannot be smoothly deformed into
one another. Transforming path A into path B, or viceversa, would require us to pierce the second
particle. Therefore, in 2D interchanging twice the two particles is not topologically equivalent to
not moving the particles at all and we cannot write the condition ψ(r1, r2) = ei2παψ(r1, r2) for the
wavefunctions before and after the braiding. The double exchange process now leaves the system in
a wavefunction ei2παψ(r1, r2), where the statistical parameter α ∈ [0, 2π) is a continuous variable
defined modulo 2π. Thus, for a single exchange we get

ψ(r2, r1) = eiπαψ(r1, r2), α ∈ [0, 2π). (6.43)

In the particular case of FQH liquids described by the Laughlin’s wavefunction, as we proved in
Sec. 6.5.1, the statistical parameter of the charged bulk excitations is given by the filling fraction,
i.e.

α = ν =
1

m
. (6.44)

This kind of particles, whose braiding properties can be described by a phase factor, i.e. by
elements of the U(1) group, are labeled as Abelian anyons. Its defining property is that they
commute, implying that the order in which anyons are interchanged is irrelevant. The existence of
particles with intermediate statistics between bosons and fermions is already very exciting.

However, so far we are considering that, for a given spatial distribution of the anyons, only
one non-degenerate ground state is available—and things can get even more alluring if we consider
that the anyons live in an n-fold degenerate state! This possibility was first explored by [183]. In
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that case, it is not sufficient to describe the braiding by an element of the U(1) group, i.e. a phase
factor eiπα. Instead, we need a unitary n × n matrix M belonging to the U(n) group. We can
write the relation between the initial (ψi) and final (ψf ) states of the system upon an exchange of
two particles as

ψf =
∑
i

Mfiψi (6.45)

where the sum
∑
i extends over the whole set of degenerate initial states. Note that there will be a

matrixM describing each pair exchange. If the whole set ofM matrices commute with each other,
then the ground state degeneracy plays a trivial role and such anyons would be Abelian again.
Nevertheless, if some matrices do not commute, anyon braiding can lead to nontrivial rotations
within the degenerate set of ground states. This means that the final state in which the system
ends is determined by the order in which the anyon exchanges are performed. Such fascinating
objects are known as non-Abelian anyons.

But this is not the only exotic property that these particles can exhibit. Let us now consider
what happens when we bring two anyons close together and look at them from far distances, as
if they were a single particle. What kind of statistical properties should such an object exhibit?
This process is known as fusion of anyons (although we warn the reader that it is not related to
nuclear fusion or chemical reactions). The fusion of n Abelian anyons with statistical parameter
α is trivial and, as we commented in the previous Section, it results in an object with statistical
parameter αn = n2α. However, similarly to what happens when one adds up spins of different
particles, there may exist more than a single manner to fuse a pair of non-Abelian anyons. In
order to clarify this point we can introduce the concept of topological charge of the anyon, which
can be thought of as a topological quantum number describing the nature of the considered object.
In the Abelian case, the topological charge is identified with the statistical parameter α. On the
other hand, for non-Abelian anyons one can have different fusion channels, i.e. different fusion
possibilities depending on the topological charge of the considered anyons. This is usually denoted
by

φa × φb =
∑
c

N c
abφc, (6.46)

which represents the fact that whenever N c
ab 6= 0, if a couple of anyons with topological charges a

and b fuse, one of the possible outcoumes is that the resulting object can be treated as a particle
with topological charge c. The matrix N c

ab determines the possible fusion channels. For instance,
in the Abelian case we have that N c

ab = 1 only for the fusion channel leading to a topological
charge c = α2 = 4α.

To add even more complexity to the subject, it can be shown that in FQH phases hosting
non-Abelian anyonic excitations the dimension of the full Hilbert space is not given by the sum
over the local degrees of freedom carried by the anyons, but it is instead a global property of the
FQH liquid [30]. Such a non-local storage of information is a consequence of long-range entangle-
ment [175, 176] arising in the FQH fluid and explains why physicists have a strong motivation to
study non-Abelian anyons as a possible candidate for quantum computation, as we will see in the
following Subsection.

As reviewed in [168, 30] there exist many non-Abelian theories featuring different fusion rules
for the anyons that arise in each of them. For the purpuse of giving a familiar example, here we
will take a look at the so-called Ising anyons that arise in the theory describing the ν = 5/2 FQH
liquid. This implies that the LLL as well as the first LL are fully filled, while the second LL is
half-filled. The ground state of this topological phase cannot be described by the Laughlin Ansatz,
and there is no reason why its quasihole and quasiparticle excitations should follow the Abelian
behavior studied in the previous Section. A promising candidate wavefunction to describe the
ground state of such a system was proposed in 1991 by Moore and Read [184]. This theory leads
to (and experimental observations up to date have been controversial [185, 186]) an anyon model
where the particles can take three different topological charges represented by 1, σ, ψ. The fusion
rules are the following:

σ × σ = 1 + ψ, σ × ψ = σ, ψ × ψ = 1,

1× x = x for x = 1, σ, ψ. (6.47)
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Figure 6.2: Left: Encircling one particle with another in 3D is topologically equivalent to not
moving the particles at all because both paths can be smoothly transformed into one another.
Right: In 2D, the two paths A and B are no longer topologically equivalent as we would have to
pierce one of the particles in order to transform one into the other.

For example, when two σ anyons get close together the output can be either a 1 particle or
a ψ particle. We can establish an analogy between the fusion rules for Ising anyons and the
decomposition rules for tensor products of the SU(2) representations, although taking 1 as the
maximum spin.

The interested reader can check that there are plenty of anyon models describing different
FQH states. However, an exhaustive review of each of them is far beyond the scope of this Thesis.
Among these models, it is worth citing Fibonacci anyons that are supposed to arise in the ν = 12/5
FQH liquid phase and are believed to be described by the Read-Rezayi wavefunction [187, 188]. In
the next Subsection we will learn more about this anyon model and we will visit the most promising
application of these exotic particles: topological quantum computing.

6.6.1 Topological quantum computing
Non-Abelian anyons are undoubtedly one of the most exotic objects that have arised in the last
decades of physics history. At first glance, it may seem that the complexity of their theoreti-
cal treatment cannot lead to straightforward applications. However, this changed in 2003 when
Kitaev [189] proposed to employ them as the building block of a quite ambitious project: a fault-
tolerant topological quantum computer robust under local perturbations. In this Subsection we
will not enter into details but instead try to distill the flavor of such a proposal.

Unfortunately, Ising anyons cannot be used for quantum computing as it has been shown that
not every quantum logic gate can be constructed by braiding of these anyons [168]. This means that
universal quantum computation would be out of reach in such a setup. Nevertheless, the already
mentioned Fibonacci anyons do constitute a viable platform for topological quantum computing.
This anyon model features two types of particles: the topological vacuum 1 and the anyon τ , which
follow the fusion rules

τ × τ = 1 + τ, 1× x = x for x = 1, τ. (6.48)

As shown by [190] each group of three Fibonacci anyons encodes a qubit (i.e. the two-level system
which is the quantum analog of a classical bit). In this case, there is always a braid (i.e. a set of
anyon interchanges) that approximates any single-qubit unitary operation up to arbitrary accuracy.
The closer one wants to approximate a particular unitary operation, the longer the braid typically
needs to be (i.e. the more anyon interchanges it must include). What is even more important is
that also in a two-qubit Hilbert space braids exist that implement any desired two-qubit unitary
operation [191]. Of course, braiding particles from different qubits is a necessary condition in order
to perform operations on entangled states.

The main advantage of this proposal with respect to non-topological quantum computers is the
fault-tolerant character of anyonic qubits and braiding operations. Topological quantum computers
are expected to be immune against decoherence, since the anyon subspace is separated by a gap
from the rest of the spectrum, and against systematic errors, since braiding does not care about
the geometry or dynamics of the particular trajectories followed by the anyon. Because the qubit
is stored non-locally in a group of anyons that are separated in space, the only possible errors that
can occur in this kind of quantum computer are thermal excitations of anyon pairs in which both
of them braid with a pair of qubit anyons. Nevertheless, the probability of this process decreases
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exponentially with the inverse temperature and with the distance separating the qubit anyons.
This weak point could therefore be under control by keeping our anyons well separated and at a
sufficiently low temperature.

Any realistic quantum computer proposal must be able to realize the following three steps:
First, we should be able to initialize the system in an arbitrary multi-qubit state. Second, a
quantum computer must be able to perform an arbitrary sequence of operations (or logic gates)
on the qubits. And finally, we need to measure the output state of the qubits somehow. All these
three steps are expected to be performed using a topological quantum computer. The initialization
step requires the production of quasiholes or quasiparticles in the FQH liquid. As we will see in
Chapter 7, one possibility is to introduce impurities that interact repulsively with the system
and thus are able to bind quasihole excitations from the bulk. The quasihole state has actually
been shown to be the ground state of the system when it is cooled down in the presence of a
repulsive potential [192]. Furthermore, we need to know the kind of particles in our anyon model
these excitations belong to. As stated in [168], we can capitalize on the fact that the energies of
degenerate fusion channels are split when anyons are brought together in order to measure the
initial state of our qubits. Anyons of an unwanted type can then be discarded. Regarding the
operations with the qubits, as we have already seen, any quantum logic gate involving one or two
qubits can be approximated by a particular set of braiding operations, i.e. by swipping the anyons
around each other. Finally, we can employ the same strategy as in the initialization step in order
to measure the output state of the qubits.

6.7 Experiments in electronic FQH liquids

In this Section we would like to point out the most relevant experimental works aimed at demon-
strating the presence of fractionally charged elementary excitations of anyonic nature in electronic
FQH liquids.

Regarding the fractional charge, experiments have conclusively shown evidence of its existence.
For instance, Ref. [193] imaged fractionally-charged states localized in the bulk of a two-dimensional
electron gas forming a FQH liquid using a scanning single electron transistor. In addition to this,
the existence of fractionally charged excitations also on the edges of the FQH droplet was confirmed
by shot-noise measurements [194].

However, in contrast to the fractional charge, a clear signature of fractional statistics has long
remained elusive. The authors of Ref. [195] employed an interferometric device for electric currents
in the quantum Hall regime and observed features consistent with the existence of quasiparticles
featuring anyonic statistics. Very recently, the consequences of fractional statistics were observed in
a mesoscopic electronic device as a generalized exclusion principle in a current-current correlation
measurement at the output of a beamsplitter [196].

As we see, demonstrating the existence of quasiparticles with fractional statistics is still an open
problem. In the following Section we will explore the possibility to employ quantum simulators in
order to obtain a direct evidence of the anyonic statistics.

6.8 Quantum simulators for the FQH effect

As we have seen in the previous Sections, although FQH liquids are expected to host an extraordi-
nary amount of exotic physics, some of these features still lack a conclusive experimental demon-
stration. However, in Sec. 6.7 we only discussed experiments in electron gases. Therefore, at this
point it is worth asking ourselves whether we can employ more experimentally-friendly platforms
in order to access the FQH regime. In Sec. 1.5 we learned that the possibility to employ synthetic
systems such as cold atomic gases and quantum fluids of light as quantum simulators is one of
the main assets of modern physics, mainly because of the high degree of control one has over such
platforms, even allowing to simulate specific Hamiltonians, and the well-established experimental
techniques to address the system’s properties. This of course poses a complicated challenge. The
reader should keep in mind that the exotic physics arising in the FQH effect is a consequence of
two ingredients: a magnetic field orthogonal to the plane of motion of the charged particles, and
the strong Coulomb interactions between electrons. As we saw in Sec. 1.5, it is possible to design
artificial gauge fields for neutral particles such as atoms and photons. Regarding the necessity
for strong interactions, photons do not interact between each other in vacuum, and neutral atoms
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alone can only display weak van der Waals forces. Nevertheless, as we will see in this Section,
several schemes have been proposed to circumvent these apparent barriers and access FQH phases
with synthetic platforms. In particular, we will focus on cold atomic gases and photonic systems.

6.8.1 Cold atoms

One of the more powerful tools available for cold atomic gases is the possibility to tune at will the
strength of the effective interatomic interactions via the so-called Feshbach resonances [197]. These
occur when the energy of a bound molecular state which is not accessible to the atoms approaches
that of the accessible scattering state. The magnetic tuning of the energy difference between both
states is the most common method in order to achieve a resonant coupling [198].

Although cold atomic gases represent one of the most promising platforms for the study of FQH
physics, a convincing experimental realization of such a phase of matter in this system remains
elusive to date. In the continuum (i.e. without a periodic potential), the authors of [199] tried for
the first time to reach the FQH regime using small clusters of up to ten atoms set into rotation.
Nevertheless, the small sample size limited the accuracy of the measurements, arising concerns
about the actual Laughlin character of the droplet’s ground state.

Regarding optical lattices, the recent work of [200] represents the first step towards the com-
bination of strong interatomic interactions and synthetic magnetic fields in a spatially-periodic
potential. The authors realized the interacting version of the Harper-Hofstadter model, in which
they were able to demonstrate the chiral motion of pairs of atoms in a ladder-like lattice.

Overall, at the theoretical level different protocols to access the FQH regime are being proposed
for both bosonic and fermionic cold atomic gases, both in lattices and continuum geometries [201,
202, 203, 204, 205, 206].

6.8.2 Photonic systems

In the case of photons, the absence of strong interactions is the most difficult challenge we must
overcome if we want to access the FQH regime. In material media optical nonlinearities provide
the necessary ingredient in order to bring photon-photon interactions to the table. However, we
know that disorder in the samples imposes a lower limit in the interaction strength, and this can
be a problem if we plan to use a typical Kerr nonlinearity. In order to enhance photon-photon
interactions we can instead rely on polaritons, i.e. quasiparticles resulting from the strong coupling
between electromagnetic waves and matter excitations which inherit their interaction properties
from their matter part [53]. There exist many types of such quasiparticles, from exciton polaritons
in semiconductor quantum wells to cavity polaritons formed by confined light coupled to atomic
excitations.

This latter type is particularly interesting in order to study the FQH effect with photons in a
continuum geometry. In fact, highly-excited Rydberg atoms employed as the matter constituent of
cavity polaritons have been shown to provide ultra-strong dipolar interactions due to the blockade
effect [207]. The groundbreaking idea of [16] was to combine these Rydberg polaritons with a
twisted multimode cavity which induces a photon rotation in each round-trip [84]. Due to the
previously explained analogy between rotating reference frames and magnetic fields, this design
gives rise to photonic Landau levels. By putting together these two ingredients, Ref. [16] was able
to experimentally demonstrate for the first time the formation of a two-photons Laughlin state.

Finally, we will briefly mention that strong photon-photon interactions can also be achieved in
the microwave regime using superconducting qubits. Actually, the first experimental study of the
interplay between strong photon-photon interactions and a synthetic magnetic field was reported
for the three-sites system of [208], which can be thought of as a Bose-Hubbard model [209] where
each qubit effectively behaves as a hard-core boson.

6.9 Concluding remarks

In this Chapter we have reviewed the most fundamental properties of fractional quantum Hall
(FQH) liquids. Such topological phases of matter appear in two-dimensional systems with bro-
ken time-reversal symmetry and strong interactions. Remarkably, they cannot be described by
Landau’s theory of symmetry breaking, but rather by a global pattern of motion governing the
dynamics of the constituent particles known as topological order. The ground state of a FQH

Non-Hermitian and Topological Features of Photonic Systems Alberto Muñoz de las Heras



Concluding remarks 101

liquid featuring a filling fraction ν = 1/m —where m is a positive even (odd) integer in the case
of bosonic (fermionic) particles— is described by the so-called Laughlin wavefunction. Strangely
enough, such systems support bulk excitations featuring fractional charge and statistics. The exis-
tence of such objects —known as anyons— is only possible in two dimensions. Remarkably, other
FQH liquids whose ground states cannot be described by the Laughlin wavefunction host even
more exotic excitations known as non-Abelian anyons, which feature non-commutative braiding
relations. These objects have arised a great expectation due to their possible application as qubits
in a fault-tolerant topological quantum computer.

In spite of the exciting avenues opened up by the theory of FQH liquids, experiments in 2D
electron gases are struggling to reach conclusive evidence of the existence of anyons. However,
quantum simulators like cold atomic gases and quantum fluids of light are expected to host analog
physics and offer a larger degree of experimental control and highly-developed measurement tech-
niques which are not available for electron gases. Simultaneously to these exciting experimental
advances, theorists have started investigating new strategies that harness the advantages of cold
atomic gases and photonic systems to probe in an unambiguous way the anyonic nature of the
excitations of FQH fluids. On the following we would like to point out some of these schemes
(without the purpose of giving an exhaustive list).

A Ramsey-like interferometry scheme to detect the many-body braiding phase arising upon
exchange of two anyons was proposed for a cold atom cloud in [210]. A related proposal exploiting
the peculiarities of driven-dissipative photonic systems was presented in [211]. Spectroscopical
consequences of the Haldane exclusion statistics were pointed out in [212] and soon translated to
the photonic context in [213]. A subtle quantitative relation between the density profile of quasi-
holes (QHs) and their anyonic statistics was theoretically put forward in [214, 215] and numerically
confirmed for discrete lattice geometries in [216]. Also, random unitary techniques to measure the
many-body Chern number were investigated in [217].

To conclude, motivated by the possibility of exploring FQH liquids in synthetic systems, in
Chapter 7 we will propose our own experimental strategy to measure the fractional charge and
anyonic statistics in atomic and polaritonic FQH liquids. We expect that repulsively-interacting
atomic impurities will bind the quasihole excitations of the FQH droplet, forming composite states
that we label anyonic molecules. We anticipate that the quantum dynamics of such objects will
reveal clear signatures of the fractional charge and statistics. Even though for the sake of con-
creteness we mainly focus on cold atomic gases, our scheme can be directly translated to quantum
fluids of light such as Rydberg polaritons in a twisted optical cavity [16].
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Chapter 7

Anyonic molecules in atomic fractional
quantum Hall liquids

In this Chapter we study the quantum dynamics of heavy impurities embedded in a
strongly interacting two-dimensional gas of lighter particles driven into the fractional quantum
Hall (FQH) regime under the effect of a synthetic magnetic field. For suitable values of the
impurity-light particle interaction strength, each impurity can capture one or more quasi-hole
excitations of the FQH liquid, forming a bound molecular state with novel physical properties.
An effective Hamiltonian for such anyonic molecules is derived within the Born-Oppenheimer
approximation, which provides renormalized values for their effective mass, charge and statistics
by combining the finite mass of the impurity with the fractional charge and statistics of the quasi-
holes. The renormalized mass and charge of a single molecule can be extracted from the cyclotron
orbit that it describes as a free particle in a magnetic field. The anyonic statistics introduces a
statistical phase between the direct and exchange scattering channels of a pair of indistinguishable
colliding molecules, and can be measured from the angular position of the interference fringes in
the differential scattering cross section. Realistic implementations of such schemes for cold atomic
gases are discussed, as well as for photonic systems.

7.1 Introduction

As reviewed in Chapter 6, the discovery of the fractional quantum Hall (FQH) effect in two-
dimensional (2D) electron gases under a strong transverse magnetic field [170, 30, 218] changed
the paradigm of the boson-fermion dicotomy when the possibility of observing quasi-particles with
fractional statistics (and fractional charge) in 2D systems was proposed, the so-called anyons [182,
219, 220, 221, 222, 223]. Such exotic quasi-particles have been predicted to arise as emergent
excitations of FQH fluids with different properties depending on the fluid density and the applied
magnetic field [30]. Although the existence of fractionally charged excitations was experimentally
confirmed in two-dimensional electron gases [194, 193], a clear evidence of fractional statistics has
long remained elusive [195, 224, 196].

In parallel to these studies in the electronic context of solid-state physics, impressive develop-
ments in the experimental study of ultracold atomic gases [57] and quantum fluids of light [53, 225]
opened the door to the exploration of strongly interacting topological phases of matter using these
highly controllable quantum systems introduced in Chapter 1.

On the one hand, several protocols are available to generate synthetic gauge fields for a 2D
gas of ultracold atoms. Conceptually, the most straightforward one relies on the Coriolis force
experienced by neutral atoms set into rotation, which formally recovers the Lorentz force felt by
charged particles in a magnetic field. Alternative strategies to induce effective Lorentz forces on
neutral atoms involve the application of suitable optical and magnetic fields in order to associate a
non-trivial Berry phase to the atomic motion and generate a synthetic magnetic field [67, 226]. At
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sufficiently low temperatures and for sufficiently strong interactions, the atoms are then expected to
turn into a sequence of strongly-correlated FQH liquid states for growing values of the angular speed
or of the synthetic magnetic field strength [30, 218, 227]. Pioneering experimental investigations
in this direction were reported in [199].

On the other hand, assemblies of photons in nonlinear optical devices are another promising
platform to observe FQH physics. In addition to the effective mass (typically induced by the spatial
confinement) and the synthetic gauge field, the interactions are provided by the nonlinearity of
the medium. As we reviewed in Chapter 6, the realization of a two-particle Laughlin state was
presented in [16] using the giant nonlinearity of Rydberg polaritons and the synthetic magnetic
field of a twisted optical cavity [84].

Overall, these two platforms have raised great expectations due to the possibility to capitalize
on the well-established experimental techniques avaliable in order to conclusively measure the
anyonic statistics of the elementary excitations.

In particular, in analogy with polarons arising from the many-body dressing of an impurity
immersed in a cloud of quantum degenerate atoms [228, 229, 230], a series of works [231, 232, 233]
have anticipated the possibility of using impurity particles immersed in a FQH liquid to capture
quasi-hole excitations (that is, flux tubes) and thus generate new anyonic molecules that inherit
the fractional statistics of the quasi-hole. Observable consequences of the fractional statistics
were pointed out in the fractional angular momentum of the impurities and, correspondingly, in
their correlation functions and density profiles [231, 234]. An interferometric scheme to measure
fractional charges by binding a mobile impurity to quasi-particles was proposed in [235]. Alternative
models where heavy particles may acquire fractional statistics by interacting with phonons in the
presence of strong magnetic fields and/or fast rotation were proposed in [236, 237]. The transport
properties of impurities embedded in a Fermi gas in a (integer) Chern-insulating state were recently
studied in [238]. Spectroscopic signatures of the fractional statistics were also anticipated for the
threshold behaviour of the neutron scattering and particle tunneling cross sections of gapped
quantum spin liquids and fractional Chern insulators [239].

In the present Chapter, we take inspiration from the aforementioned theoretical works and
from the highly developed experimental techniques that are available to address and manipulate
single atoms in large atomic gases to theoretically illustrate how such anyonic molecules are a very
promising tool to observe fractional statistics and shine new light on the microscopic physics of
FQH fluids. On the following we will focus on cold atoms implementations due to the conceptually
straightforward experimental techniques available to generate synthetic magnetic fields and strong
interactions, as well as the conservative nature of the system. However, all our conclusions directly
extend to any other platform where quantum particles are made to experience a synthetic gauge
field and strong interparticle interactions, for instance photons in twisted cavity set-ups where
Landau levels [84] and Laughlin states [16] have been recently observed.

In particular, we investigate the quantum mechanical motion of a few anyonic molecules. Cap-
italizing on previous works, we provide a rigorous derivation of the effective Hamiltonian starting
from a controlled Born-Oppenheimer (BO) approximation [240, 241] where the positions of the
impurities play the role of the slow degrees of freedom and the surrounding FQH fluid provides the
fast ones. Whereas bare quasi-holes typically do not support motional degrees of freedom 1, the
anyonic molecule is found to display a fully fledged spatial dynamics, with a mass determined by
the impurity mass supplemented by a non-trivial correction due to the quasi-hole inertia. Binding
to the QH also modifies the effective charge of the impurity by including the Berry phase [243] that
the QH accumulates during its motion in space. All together, an anyonic molecule then behaves
as a free charged particle in a magnetic field, whose cyclotron radius provides detailed information
on the renormalized mass and on the fractional charge.

In the presence of two anyonic molecules, the fractional statistics of the QHs results in a
long-range Aharonov-Bohm-like interaction between them. We illustrate the consequences of this
long-range topological interaction in the simplest scattering process where two such objects are
made to collide. For both hard-disk and dipolar interaction potentials, we calculate the differential
scattering cross section for indistinguishable impurities, finding that for large relative momenta it
features alternate maxima and minima due to the interference of direct and exchange scattering

1In the simplest example of a Laughlin state, quasi-holes have a vanishing energy that does not depend on position
and do not possess any intrinsic kinetic energy. In a trapped configuration, the position of a quasi-hole evolves in
response to the trapping potential according to a first-order differential equation. This dynamics is analogous to
the one of vortices in superfluids [242].
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channels: analogously to textbook two-slit experiments, the interference pattern rigidly shifts when
the statistical phase that the anyonic molecules acquire upon exchange is varied. This interference
effect is instead suppressed when distinguishable impurities are considered. Experiments along
these lines would therefore allow to confirm the existence of particles beyond the traditional boson-
fermion classification and to quantitatively measure the statistics of the QHs in a direct way.

The structure of the Chapter is the following. In Sec. 7.2 we review the system Hamiltonian
and in Sec. 7.3 we develop the rigorous Born-Oppenheimer framework that we employ to study
the quantum dynamics of the anyonic molecules: In Subsec. 7.3.2 we establish the single particle
parameters of the anyonic molecule and in Subsec. 7.3.3 we recover the interaction Hamiltonian
between molecules. The theory of two-body scattering is presented in Sec. 7.4, where we sum-
marize our predictions for the angular dependence of the differential scattering cross-section and
we highlight the qualitative impact of the fractional statistics. Conclusions are finally drawn in
Sec. 7.5.

7.2 The physical system and the model

We consider a system of quantum particles confined to the two-dimensional x-y plane and formed
by a small number N of mobile impurities of mass M immersed in a large bath of n� N particles
of massm in a FQH state. For simplicity, in what follows the former will be indicated as impurities,
while the latter will be indicated as atoms. A transverse and spatially uniform synthetic magnetic
field B = B uz is applied to the whole system (where uz is the unit vector in the z direction),
and we consider that the impurities and the atoms possess effective (synthetic) charges Q and q,
respectively.

In the particular case in which the magnetic field is generated by rotating the trap around
the z axis, the value of these quantities is set by the atomic masses and the rotation frequency
of the trap ωrot via qB = 2mωrot and QB = 2Mωrot [66, 226]. In the spirit of Ref. [199], the
corresponding centrifugal force can be compensated by harmonic trap potentials acting on each
atomic species. Their strength has to be adjusted to give the same trapping frequency ωhc = ωrot
for the two species.

The proposed implementation can be straightforwardly generalized to quantum fluids of light
by means of the twisted optical cavity setup of Refs. [84, 16]. In this case Rydberg atoms of
two different species giving rise to strongly interacting Rydberg polaritons will play the role of
the atoms and the impurities. Keeping this correspondence in mind, the model presented in this
Section, as well as the experiments proposed in Secs. 7.3.2 and 7.4, can be directly translated to
the optical platform.

In ~ = 1 units, the system Hamiltonian then reads

H = Ta + Ti + Vaa + Via + Vii , (7.1)

where

Ta({rj}) =

n∑
j=1

1

2m

[
−i∇rj − qA(rj)

]2
, (7.2)

Ti({Rj}) =

N∑
j=1

1

2M

[
−i∇Rj

−QA(Rj)
]2

, (7.3)

Vaa({rj}) = gaa

n∑
i<j

δ(ri − rj) , (7.4)

Via({rj}, {Rj}) =

n∑
i=1

N∑
j=1

via(ri −Rj) , (7.5)

Vii({Rj}) =

N∑
i<j

vii(Ri −Rj) . (7.6)

We denote by rj and −i∇rj the position and canonical momentum of the j-th atom, while
Rj and −i∇Rj represent those of the j-th impurity. A(rj) = B(−yj/2, xj/2, 0) and A(Rj) =
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B(−Yj/2, Xj/2, 0) are the vector potentials corresponding to the synthetic magnetic field (B =
∇× A) at the positions of atoms and impurities, respectively.

The strength of the contact binary interaction between atoms is quantified by the gaa parame-
ter 2, whereas via and vii denote the impurity-atom and impurity-impurity interaction potentials,
respectively. When the synthetic magnetic field is large enough, the number of vortices nv in the
atomic fluid becomes comparable with the number n of atoms. At low enough temperatures and
for sufficiently strong repulsive atom-atom interactions gaa, the atomic gas enters the so-called
FQH regime described by a rational value of the filling fraction ν = n/nv [30, 218, 66]. This in-
compressible state is characterized by excitations with fractional charge and statistics (quasi-holes
and quasi-particles).

As it was first anticipated in [231, 232, 233] a repulsive interaction potential via between the
impurities and the atoms leads to the pinning of quasi-hole excitations at the impurities’ positions.
As a result, quasi-holes adiabatically follow the motion of the impurity forming composite objects
that can be regarded as anyonic molecules. By looking at the density pattern of quasi-hole exci-
tations shown in [244, 192], we anticipate that the number of quasi-holes pinned by each impurity
can be controlled via the strength of via: a stronger and/or longer-ranged interaction will provide
space for more quasi-holes bound to each impurity. For the sake of simplicity, in this Chapter we
will focus on the case of a single quasi-hole per impurity but generalization to the many quasi-holes
case is straightforward.

As a final assumption, we will focus on impurity-impurity potentials vii of a far larger range than
both the atom-atom and impurity-atom interactions and the QH extension. This will allow us to
work with impurities that are separated enough in space to give independent and non-overlapping
anyonic molecules that interact via the vii potential with no correction due to the microscopic
structure of the quasi-holes. In particular we will focus on interaction potentials with hard-disk or
dipolar spatial shapes.

7.3 The Born-Oppenheimer approximation

Several authors have theoretically addressed the quantum mechanics of mobile impurities immersed
in FQH fluids and have written effective Hamiltonians for the motion of the resulting charge–flux-
tube complexes [231, 232, 233, 235, 238, 236, 237]. Most such treatments were however based on
heuristic models of the binding mechanism: while this was sufficient to get an accurate answer
for the synthetic charge and the fractional statistics, it did not provide a quantitative prediction
for the mass of the anyonic molecule: this is in fact determined by the bare mass of the impurity,
supplemented by a correction due to the inertia of the FQH quasi-holes.

To fill this gap, in this Section we will summarize a rigorous approach to this problem. The
reader that is already familiar with such effective Hamiltonians and is not interested in the technical
details and in the quantitative value of the parameters can jump to the experimental remarks in
the final Subsec. 7.3.2 and then move on to the scattering theory in Sec. 7.4.

7.3.1 General framework

Our theoretical description is based on a Born-Oppenheimer formalism in which we treat the
impurities’ positions as the slowly-varying degrees of freedom, while those of the surrounding
atoms play the role of the fast ones [240, 245, 243]. For each position of the impurities, the atoms
are assumed to be in their many-body ground state, which contains quasi-holes at the impurities’
positions to minimize the repulsive interaction energy. Given the spatial coincidence of the impurity
and the quasi-hole, in the following the positions of the resulting molecules will be indicated with
the same variables Ri. While our approach is known to be exact for fixed impurities, it extends
to moving impurities as long as their kinetic energy is smaller than the energy gap between the
quasi-hole state and its first excited state.

Under this approximation, the total wave function can be factorized as

ψ({ri}, {Ri}, t) = ϕ
(0)
{Ri}({ri})χ({Ri}, t) , (7.7)

2Choosing a contact interaction potential, we are implicitly focusing on bosonic atomic fluids. Extension to
fermionic fluids is straightforward and just requires using a finite-range form of the interaction potential vaa to
stabilize the FQH state. All our conclusions hold in this case as well.
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where the wave function χ({Ri}, t) describes the quantum motion of the impurities and the atomic
wave function ϕ(0)

{Ri}({ri}) is the ground state of the Born-Oppenheimer atomic Hamiltonian

HBO = Ta + Vaa + Via (7.8)

that includes the kinetic and interaction energy of the atoms and the interaction potential between
atoms and impurities. In what follows, we will use the shorthands r and R to denote the sets of
atom coordinates {ri} and of impurity coordinates {Ri}.

In our specific FQH case with ν = 1/w with positive and integer-valued w, the atomic wave
function can be written in terms of the magnetic length `B = 1/

√
qB and the complex in-plane

coordinates z = x− iy of the atoms as a many-quasi-hole wave function of the Laughlin form

ϕ
(0)
R (r) =

1√
N

n∏
i=1

N∏
j=1

(zi − Zj)φL({zi}). (7.9)

The positions of the quasi-holes are parameterically fixed by the (complex) positions Z = X − iY
of the impurities, while the last factor φL is the well-known Laughlin wave function of the FQH
state [172],

φL({zi}) =

n∏
i<j

(zi − zj)1/νe−
∑n
i=1 |zi|

2/4`2B . (7.10)

In Eq. (7.9), the normalization constant N is chosen to ensure the partial normalization condition∫
d2nr |ϕ(0)

R (r)|2 = 1 . (7.11)

Provided that the impurities live in the bulk of the atomic cloud far from its edges and from each
other, the energy ε

(0)
BO of the Born-Oppenheimer ground state is independent of the impurities’

positions R and can be safely neglected.
The dynamics of the anyonic molecules will be governed by an effective Hamiltonian acting on

the molecule wave function χ(R),

Heff =
〈
ϕ

(0)
R

∣∣∣H ∣∣∣ϕ(0)
R

〉
, (7.12)

which, as we will discuss in full detail in the following subsections, takes a form

Heff =

N∑
j=1

[
−i∇Rj

−QA(Rj) +Astat,j(R)
]2

2M
+ Vii(R) (7.13)

that combines the properties of impurities and quasi-holes.
Within this picture, each molecule then features a mass M –only approximately equal to the

one of the impurities, see Sec. 7.3.2– and a total charge Q = Q− νq resulting from the sum of the
bare charge Q of the impurity and the one −νq of the quasi-hole – see Sec. 7.3.2. These values
are of course only accurate as long as the impurities are located in a region of constant density
of the atomic cloud, that is, apart from each other in the bulk of an incompressible FQH phase.
Under this condition, both the BO energy resulting from the interaction with the atoms ε(0)

BO and
the scalar potential arising in the BO approximation give spatially constant energy shifts that can
be safely neglected.

In addition to these single-particle properties, the molecules inherit the interaction potential
Vii(R) between the impurities and experience a Berry connection Astat,j(R) that now depends on
the position of all molecules and encodes their quantum statistics. For the Abelian FQH states
under investigation here, we will see in Sec. 7.3.3 that the effect of the Berry connection Astat,j
can be summarized by a single statistical parameter determined by the filling ν of the FQH atomic
fluid, which indicates that the statistical phase picked upon exchange of two molecules is exp(iπν).
If more Nqh > 1 quasi-holes were pinned to the same impurity, the statistical phase would grow
quadratically as N2

qhν [30].
Finally, note that we are restricting our attention to anyonic molecules that are separated

enough in space for their internal structure not to be distorted by the interactions with the neigh-
boring molecules. This is expected to be an accurate approximation if the inter-impurity distance
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is much larger than the range of the atom-impurity potential and the internal size of the quasi-hole
–typically of the order of the magnetic length `B [30]. Under this approximation, the values of the
renormalized mass and of the synthetic charge that we obtain for single molecules directly translate
to the many-molecule case, and the interaction potential reduces to the inter-impurity one vii with
no corrections from the microscopic structure of the molecules.

7.3.2 Effective Hamiltonian for a single anyonic molecule
In this subsection we will investigate the parameters in the effective Hamiltonian (7.13) that control
the single-particle physics of the molecules, namely the renormalized mass M and charge Q. A
simple experimental configuration to extract these values will also be proposed at the end of the
subsection.

Mass renormalization

A crucial, yet often disregarded feature of the BO approximation is the renormalization of the
effective mass of the slow degrees of freedom. In molecular physics such a renormalization affects
the effective mass of the nuclei dressed by the electrons and is essential to guarantee consistency of
the description [241, 243]. In our case it concerns the change of the effective mass of the impurity
when this is dressed by the quasi-hole excitation in the surrounding FQH fluid. As far as we know,
this feature was always overlooked in previous literature, even though it may give a quantitatively
significant bias to observable quantities such as the effective magnetic length considered in [231].

In order to obtain a quantitative estimate for the effective massM, we generalize the molecular
physics approach of Ref. [241] by including the synthetic magnetic field in the formalism (see
Appendix D). As it is discussed in detail in Ref. [241], one needs to include the first perturbative
correction to the BO adiabatic approximation, which amounts to taking into account the distortion
of the quasi-hole profile due to the motion of the impurity. To this purpose we expand ϕR(r, t) '
ϕ

(0)
R (r) + ϕ

(1)
R (r, t), where the BO wave function ϕ

(0)
R (r) is obtained as the ground state of the

Hamiltonian (7.8) in the presence of a single impurity at R and has the quasi-hole form (7.9) with
N = 1. While ϕ(0)

R (r) only depends on the coordinate difference r−R, the first order perturbative
correction ϕ(1)

R (r, t) depends on the impurity speed.
Following the theory of Ref. [241], the mass tensor of the molecule is then given at first order

by

M = M + ∆M , (7.14)

where M is the 2×2 unity matrix multiplied by the bare impurity mass and the correction is such
that the corresponding kinetic energy

1

2
∆Mαβvαvβ =

∫
drϕ

(1)∗
R (r, t)

[
HBO − ε(0)

BO(R)
]
ϕ

(1)
R (r, t) (7.15)

recovers the increase in the BO energy due to the motion of the impurity.
The correction ϕ

(1)
R (r, t) to the atomic wave function is obtained at the lowest perturbative

level in the impurity speed v = (vX, vY) by applying the inverse of the fast Hamiltonian[
HBO − ε(0)

BO

]
ϕ

(1)
R (r, t) = vα∇αϕ(0)

R (r) (7.16)

to the gradient of the atomic wave function with respect to the in-plane coordinates of the impurity
α = {X,Y }. In physical terms, this correction is such that the action of the fast BO Hamilto-
nian HBO recovers the temporal evolution of the BO wave function ϕR(t)(r) due to the spatial
displacement of the impurity.

In our Laughlin case, it is easy to show that the gradient of the atomic wave function with
respect to R is proportional to the wavefunction of the lowest excited state of HBO,

∇Rϕ
(0)
R (r) =

τ

`B
ϕ

(e)
R (r) . (7.17)

This excited state corresponds to a chiral ∆L = −1 oscillation of the quasi-hole around the
impurity 3 and, for the simplest case of a single impurity located at Z = 0, its wavefunction

3In the case of many quasi-holes bound to a strong impurity potential, such an excitation mode can be viewed
as the ∆L = −1 chiral mode of the inner edge of the ring-shaped FQH fluid surrounding the impurity [192].
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(normalized as in (7.11)) has the form

ϕ
(e)
R (r) =

1√
N (e)

n∑
io=1

n∏
i=1
i6=io

zi φL({zi}) . (7.18)

While these results are enough to establish that the correction to the mass tensor is diagonal
in the X,Y coordinates, a quantitative estimation of its magnitude needs microscopic insight on
the overlap numerical factor τ and on the energy ∆ω−1 of the excited state under consideration.
This requires a few technical steps that are summarized on the following.

• τ factor. We start by denoting
∣∣∣ϕ(0)
Z

〉
the quantum state of the atomic fluid with one quasi-

hole at the position R corresponding to the complex variable Z = X − iY . We then expand
the Z-dependent state vector around Z = 0 as∣∣∣ϕ(0)

Z

〉
=
∣∣∣ϕ(0)
Z=0

〉
+Z

(
∂Z

∣∣∣ϕ(0)
Z

〉)
+Z∗

(
∂Z∗

∣∣∣ϕ(0)
Z

〉)
+
Z2

2

(
∂2
Z

∣∣∣ϕ(0)
Z

〉)
+
Z∗2

2

(
∂2
Z∗

∣∣∣ϕ(0)
Z

〉)
+ |Z|2

(
∂Z∂Z∗

∣∣∣ϕ(0)
Z

〉)
+O(Z3) .

where all derivatives are evaluated at Z = 0.

We consider the atomic density operator n̂(r) evaluated at position r, indicated by the
complex variable z. Taking advantage of the fact that

n̂(z = Z)
∣∣∣ϕ(0)
Z

〉
= 0 , (7.19)(

∂Z∗
∣∣∣ϕ(0)
Z

〉)
Z=0

= 0 , (7.20)

∂Z

∣∣∣ϕ(0)
Z

〉
=

τ

`B

∣∣∣ϕ(e)
Z

〉
, (7.21)

we get that〈
ϕ

(0)
Z

∣∣∣ n̂(z = 0)
∣∣∣ϕ(0)
Z

〉
' |Z|2

(
∂Z∗

〈
ϕ

(0)
Z

∣∣∣) n̂(z = 0)
(
∂Z

∣∣∣ϕ(0)
Z

〉)
=

= |Z|2 τ
2

`2B

〈
ϕ

(e)
Z

∣∣∣ n̂(z = 0)
∣∣∣(ϕ(e)

Z

〉
. (7.22)

For a quasi-hole living in the bulk of the FQH droplet we can take advantage of the local
homogeneity of the atomic fluid to write〈

ϕ
(0)
Z=0

∣∣∣ n̂(z)
∣∣∣ϕ(0)
Z=0

〉
=
〈
ϕ

(0)
Z=z

∣∣∣ n̂(z = 0)
∣∣∣ϕ(0)
Z=z

〉
' |z|2 τ

2

`2B

〈
ϕ

(e)
Z

∣∣∣ n̂(z = 0)
∣∣∣ϕ(e)
Z

〉
=

= |z|2 τ
2

`2B

〈
ϕ

(e)
Z=0

∣∣∣ n̂(z)
∣∣∣ϕ(e)
Z=0

〉
. (7.23)

This expression relates the value of τ to the (normalized) radial density distribution n0(r)

of the ground state ϕ(0)
R and the distribution ne(r) in the first excited ϕ(e)

R state. These two
distributions can be numerically calculated using the expansion of ϕ(0)

R and ϕ
(e)
R in terms

of Jack polynomials developed in Ref. [192]. The results for a mesoscopic cloud of n = 10
particles are displayed in Fig. 7.1 and we have made sure that our results for the inner part
of the profile are converged with respect to the number of particles n. In particular, we see
in the figure that n0(`B/2) ' 0.028/`2B, while ne(0) ' 0.245/`2B. Substituting these values
into Eq. (7.25) one obtains τ ' 0.7.

•Excitation energy ∆ω−1 and impurity-atom interaction. We now offer quanti-
tative evidence of the binding of impurities to FQH quasi-holes in the presence of a repulsive
interaction between the impurity and the atoms, and its relation with the energy gap ∆ω−1

between the ground state and the first excited state.

To this purpose, we calculate the dependence of the energy difference between the ground
state ϕ(0) displaying a quasi-hole located at the impurity’s position (taken as the origin, i.e.
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Figure 7.1: Density of the ground state ϕ(0) and the first excited state ϕ(e) as function of the
distance to the quasi-hole located at R = 0 in the ϕ(0) case. Both curves were calculated for
n = 10 particles in the FQH bath and are converged with respect to n.

R = 0) and the lowest excited state ϕ(e) with the quasi-hole orbiting around the impurity
with ∆L = −1 with respect to the impurity-atom interaction. For simplicity, we employ a
step-like interaction potential between the impurity and the atoms of the FQH fluid of the
form

Via = v̄ia

n∑
i=1

Θ(a− |ri|) , (7.24)

where n is the number of atoms, v̄ia > 0 and a is the step radius.

We first compute the states of interest using a Jack polynomials expansion [192] and then
calculate the expectation values of the atom-impurity potentials in the ground and lowest
excited states for different values of the step radius a. We have checked that the density
profiles of the relevant many-body states in the vicinity of the impurity (i.e. for distances
≤ a) do not depend on the total number n of atoms in the FQH state.

The expectation values in the ground state and in the lowest excited state for several values
of a are shown in Fig. 7.2 as blue squares and red circles, respectively. While the ground state
is almost insensitive to the presence of the impurity as long as the radius a of the interaction
potential is much smaller than the spatial extension of the density depletion of the quasi-hole
(on the order of the magnetic length `B, as shown by the blue curve in Fig. 7.1), the density
in the excited state always has a significant overlap with the impurity (as shown in the red
curve in Fig. 7.1), which gives a sizable energy shift of this state that grows quadratically
with a and has a finite limit in the contact limit a→ 0 at a constant v̄iaa

2.

The significant resulting energy gap ∆ω−1 between the two states leads then to an efficient
binding of the QH to the impurity. As the step radius or the potential strength are increased,
its magnitude increases, thus reinforcing the rigidity of the impurity-quasihole molecule and,
as we will see in the following lines, reducing the importance of the Born-Oppenheimer mass
correction ∆M .

Quantitatively, the excitation energy ∆ω−1 is at most on the order of a fraction of the bulk
many-body gap above the fractional quantum Hall state, namely a fraction of the atom-atom
interaction energy scale V0 = gaa/2`

2
B [192]. Note also that the many-body gap can not

exceed the cyclotron energy associated to the synthetic magnetic field acting on the atoms,
ωcycl = 1/m`2B = qB/m.

The previous results can be plugged into Eq. (7.15), giving a mass correction

∆M =
2τ2

∆ω−1`2B
, (7.25)
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Figure 7.2: Expectation value of the step-like interaction between impurities and atoms Via in the
ground state ϕ(0) (blue squares) and in the lowest excited state ϕ(e) (red circles) in units of v̄ia as
a function of its step radius a (in units of `B).

which, since 2τ2 ' 1, provides the figure of merit

∆M

M
' m

M

ωcycl
∆ω−1

(7.26)

that can be used to quantify its relative importance.
For instance, a small m/M ratio can be obtained in a cold atoms experiment embedding

heavy atoms like Erbium as impurities in a gas of light atoms such as Lithium. This already
gives m/M ' 0.04 and can be further decreased replacing the heavy atom with a multi-atom
molecule [246]. On the other hand, the ∆ω−1/ωcycl factor is typically bound to values below unity,
but can be maximized using strong (perhaps Feshbach-enhanced [197]) interactions among atoms
and between atoms and impurities, so to push the many-body gap towards the cyclotron energy.
All together, it is natural to expect that the correction to the effective impurity mass may be
sizable and important to interpret the experimental observations.

Synthetic charge

As in the previous subsection, we consider the simplest situation in which a single quasi-hole is
bound to a single impurity located at position R. In this case the effective Hamiltonian (7.12)
takes the form

Heff =
[−i∇R −QA(R) +A(R)]

2

2M
+ Φ(R) + ε

(0)
BO(R) , (7.27)

where
A(R) = −i

〈
ϕ

(0)
R (r)

∣∣∣∇R

∣∣∣ϕ(0)
R (r)

〉
(7.28)

is the Berry connection related to the quasi-hole motion across the FQH fluid, which enters the
equation above in the form of an effective vector potential [245, 243].

For the Laughlin states under consideration here, the Berry connection A(R) can be calculated
making use of the plasma analogy [30] as reviewed in Chapter 6. This gives

A(R) =
qν

2`2B
uz ×R = −νqA(R) , (7.29)

which means that the QH feels the synthetic magnetic field as a fractional charge−νq corresponding
to the atomic density that has been displaced away from its surroundings. As a result, the effective
single-molecule Hamiltonian can be recast in a compact form

Heff =
[−i∇R − (Q− νq) A(R)]

2

2M
(7.30)
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in terms of an effective charge
Q = Q− νq (7.31)

resulting from the sum of the bare charge Q of the impurity and the fractional charge −νq of the
quasi-hole that is bound to it.

The effective scalar potential is instead equal to

Φ(R) =
−1

2M

[〈
ϕ

(0)
R (r)

∣∣∣∇2
R

∣∣∣ϕ(0)
R (r)

〉
+A2(R)

]
: (7.32)

as long as the impurity lives in the bulk of the (incompressible) FQH fluid where the fluid density
is –to a high precision– constant, both the BO energy ε(0)

B0 and the scalar potential are constant
and can be safely neglected.

In order to facilitate the description of the two-body scattering process and isolate the features
of interest, it will be beneficial to design an experiment where the effective charge Q of the anyonic
molecules vanishes. From Eq. (7.31) one sees that if the gauge field is generated by rotation the
Q = 0 condition translates in a ratio M/m = ν between the masses of both atomic species, which
is not straightforwardly compatible with the assumptions underlying the BO approximation. On
the other hand, a careful design of the optical and magnetic fields applied to the atoms allows to
tune the strength of the synthetic magnetic field acting on each of them, so to satisfy the required
Q = 0 condition.

As an alternative strategy, even though the Q = 0 condition is not naturally fulfilled in the
laboratory reference frame, the effect of the finite Q can be removed by looking at the system from
a reference frame that rotates around the z axis at an angular frequency Ω̃ such that

Ω̃ = −QB

2M
. (7.33)

Under this condition, the Coriolis force associated to the rotation is equal and opposite to the
effective synthetic Lorentz force acting on the anyonic molecule. Inserting a value of the impurity
mass on the order of the one of a heavy (e.g. Erbium) atom and a synthetic magnetic field on the
order of QB ∼ 1/λ2 with λ in the optical range λ ∼ 1µm, one finds a value for Ω̃ in an accessible
100Hz range.

But one must not forget that moving to the rotating frame not only introduces a Coriolis force,
but also transforms the velocity appearing in the synthetic magnetic Lorentz force, which results
in an additional force to be added to usual centrifugal force of rotating reference frames. In the
system under consideration here, all such centrifugal/centripetal forces can be compensated in the
rotating frame by introducing an additional anti-harmonic trapping potential Vi(R) = − 1

2MΩ̃2R2

acting on each impurity. Combining all different terms, the dynamics of isolated anyonic molecules
in the rotating reference frame is then the desired one of free particles moving along straight lines 4

for which the scattering process will be the simplest.
Before concluding, it is worth stressing that the rotation at Ω̃ considered here is just a way

of looking at the effective dynamics of the anyonic molecules, and does not affect the underlying
atoms that form a FQH state in the laboratory frame in the presence of the synthetic magnetic
field 5.

Experimental remarks

Since the Hamiltonian (7.30) describes a free particle in a magnetic field, we can envisage a simple
experiment to measure the fractional charge and the renormalized mass of the molecule from the
radius of its cyclotron orbit, as sketched in Fig. 7.3. Once the molecule receives a momentum kick
p (e.g. by applying a time-dependent force to the impurity), it starts describing a cyclotron orbit.
For a given value of the momentum kick, the molecule massM can be directly obtained from the

4The need for an unusual anti-trapping potential can be physically understood since we wish to transform
localized cyclotron orbits into open straight lines going to infinity.

5The situation is of course slightly more complex if a rotating atomic gas is used to generate the FQH state. In
this case the two rotations and the two contributions to the centrifugal potential must be carefully combined. Note
also that, thanks to the R−2

rel dependence of the two-body term in the Berry connection (7.39), the rotation at Ω̃
has no effect on this latter term. Writing the Lagrangian associated to the Hamiltonian (7.38), transformation of
the two-body term to the rotating frame only provides an additional constant term.
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Figure 7.3: Proposed experiment to measure the renormalized mass and the fractional charge of an
anyonic molecule. An impurity atom (green circle) is located in the bulk of a fractional quantum
Hall fluid of atoms (blue region). Its repulsive interactions with the atoms make it bind one or more
FQH quasi-holes, forming a composite anyonic molecule with renormalized mass M, fractional
(synthetic) charge Q, and anyonic fractional statistics. To measure the renormalized mass and
charge, one can impart a momentum kick p to a single such molecule initially at rest and follow
the ensuing cyclotron motion.

actual speed via p =Mv. The charge is then extracted from the cyclotron radius via the textbook
formula

rcycl =
Mv

QB
. (7.34)

In order to determine the fractional charge, it is useful to consider the ratio Q/Q which is obtained
by comparing the cyclotron radius for a molecule immersed in the FQH fluid with the one of the
bare impurity in the absence of the surrounding FQH fluid. The relation (7.31) allows then to
relate the observed charge Q to the fractional charge of the quasi-holes in the FQH fluid. If the
synthetic magnetic field is generated by rotating the system, its calibration is made even simpler
by the fact that the product qB (QB) is determined by the rotation speed ωrot via qB = 2mωrot
(QB = 2Mωrot) [226, 227].

Taking advantage of the different nature of the impurity particle as compared to the atoms
forming the FQH fluid, reconstruction of the trajectory of the anyonic molecule can be done by
imaging the position of the impurity at different evolution times after its deterministic preparation
at a given location with a known momentum imparted, e.g. by an external potential. In this
respect, we can expect that using impurities with a large mass offers the further advantage of a
more accurate definition of the initial position and velocity against Heisenberg indetermination
principle.

This issue can be put in quantitative terms by comparing the maximum kinetic energy of the
molecule compatible with the BO approximation, with the cyclotron energy of the molecule in the
synthetic magnetic field which quantifies its zero-point motion: in order for the cyclotron motion
to be visible, several Landau levels must in fact be populated. The maximum kinetic energy can
be estimated from Kmax =Mv2

max/2 using the velocity vmax at which the norm of the first-order
correction ϕ(1)

R in (7.16) becomes of order one, namely

vmax =
∆ω−1 `B

τ
. (7.35)

The cyclotron energy is given by the usual formula using the effective charge Q of the molecule,
namely Ωcycl = QB/M. Imposing Kmax � Ωcycl then requires√

2τ2Q
q

m

M
ωcycl

∆ω−1
� 1 (7.36)

which, recalling that 2τ2 ' 1, is related to the condition (7.26) for a small mass correction and is
well satisfied if the impurity mass is large enough.
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In order for the anyonic molecule to behave as a rigid object and avoid its internal excitation
and its dissociation, one must impose that the cyclotron frequency Ωcycl is smaller than its lowest
excitation mode at ∆ω−1. This imposes a similar condition

Q
q

m

M
ωcycl

∆ω−1
� 1 (7.37)

that, again, is well satisfied in the heavy impurity limit. But it is also important to note that
forming the bound impurity–quasi-hole state may be itself a non-trivial task since quasi-holes are
associated to a global rotation of the FQH fluid. In [192, 216], it was shown that the quasi-hole
state naturally forms when the atomic fluid is cooled to its ground state in the presence of the
impurity provided that the atoms are able to exchange angular momentum with the external world.
Alternatively, a quasi-hole can be created by inserting a localized flux through the cloud, and then
introducing the impurity particle at its location [247, 248]. Finally, a speculative strategy yet to be
fully explored may consist of inserting the impurity into the FQH fluid through its edge: provided
the impurity’s motion is slow enough, one can reasonably expect that it will be energetically
favourable for the impurity to capture a quasi-hole from the edge and bring it along into the bulk
of the FQH cloud.

Besides these technical difficulties, we anticipate that our proposed experiment for the measure-
ment of the fractional charge will have great conceptual advantages over the shot noise measure-
ments of electronic currents that were first used to detect charge fractionalization [194]. These ex-
periments involve in fact complex mechanisms for charge transport and charge injection/extraction
into/from the edge of the electron gas. On the other hand, we foresee that our proposed experiment
has the potential to provide a direct and unambiguous characterization of the fractional charge of
the quasi-hole excitations in the bulk of a fractional quantum Hall fluid.

7.3.3 Effective Hamiltonian for two anyonic molecules

After completing the calculation of the single-particle parametersM and Q, we can now move on
to the many-particle case. The two molecule case is already of particular interest as it allows to
obtain information about the fractional statistics of the anyonic molecules. In the following we will
focus on this case and we will leave the complexities of the three- and more-particle cases [223] to
future investigations.

As already stated, we assume that the two impurities are located in the bulk of the FQH cloud,
far apart from the edges and they are well separated by a distance much larger than the magnetic
length. The effective molecule Hamiltonian is now given by

Heff =

2∑
j=1

[−i∇Rj
−QA(Rj) +Aj(R)]2

2M

+ Φ(R) + ε
(0)
BO(R) + Vii(R) ,

(7.38)

where R is again a shorthand for the whole set of impurity positions, {Rk}. The Berry connection
experienced by the j-th particle now contains two terms,

Aj(R) = Aq(Rj) +Astat,j(R)

=
Bq
2

uz ×Rj + (−1)j
ν

R2
rel

uz ×Rrel .
(7.39)

The former term Aq is of single-particle nature and only depends on the position of the specific
particle. Its Berry curvature Bq = ν/`2B accounts for the synthetic magnetic field felt by each
quasi-hole via their fractional charge −νq, as discussed in the previous section. The latter term
Astat has a two-body nature and depends on the relative position of the two impurities, Rrel =
(Xrel, Yrel) = R1 −R2: each impurity experiences the vector potential corresponding to ν quanta
of magnetic flux spatially localized on the other impurity. Since ∇×Astat,j = 0, there is no Berry
curvature involved in the interaction between spatially separated impurities and the effect can be
viewed as an Aharonov-Bohm-like interaction [181].

Since the impurities are assumed to be located in the bulk of the FQH cloud and to be spa-
tially separated to avoid any overlap, the Born-Oppenheimer energy ε(0)

BO does not depend on the
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positions and can be neglected 6. The two-body generalization of the scalar potential Φ in (7.32)
involves derivatives of the Laughlin wavefunction with respect to the impurity positions 7. As it
was discussed around (7.16), such derivatives only involve localized excitations in the atomic fluid
around the quasi-hole. On this basis, for sufficiently separated impurities, we can safely approx-
imate the two-body scalar potential with a relative-coordinate-independent energy shift that can
be safely neglected in what follows.

Grouping the single-particle Berry connection due to the effective charge of each quasi-hole
with the synthetic magnetic field directly felt by each impurity as done in the previous section, we
can write the Hamiltonian in the compact form

Heff =

2∑
j=1

[−i∇Rj
−QA(Rj) +Astat,j(R)]2

2M

+ Vii(R) ,

(7.40)

in terms of the effective charge Q = Q − νq of each molecule. According to this Hamiltonian,
the molecules interact via the interaction potential Vii between the bare impurities and via the
Aharonov-Bohm interaction encoded by the two-body vector potential Astat,j that depends on the
relative position R1 −R2 between the two molecules.

Given the translational invariance of the configuration, we can separate the center of mass
and the relative motion of the two molecules. Assuming a central impurity-impurity interaction
Vii(Ri −Rj) = Vii(Rrel), we define the reduced and the total mass as usual as

Mrel =M/2 , MCM = 2M , (7.41)

the relative and center of mass position

Rrel = R1 −R2 , (7.42)

RCM =
R1 + R2

2
, (7.43)

the corresponding momenta

Prel =
P1 −P2

2
, (7.44)

PCM = P1 + P2 , (7.45)

and vector potentials

Arel(Rrel) =
Q
2

A(Rrel) +
Astat,1(R1)−Astat,2(R2)

2
=

=
Q
2

A(Rrel) +
ν

R2
rel

(−Yrel, Xrel) , (7.46)

ACM(RCM) = 2QA(RCM) , (7.47)

to be included in the center of mass and relative Hamiltonians

HCM =
[PCM −ACM(RCM)]

2

2MCM
, (7.48)

Hrel =
[Prel + Arel(Rrel)]

2

2Mrel
+ Vii(Rrel) . (7.49)

The center of mass Hamiltonian (7.48) describes a free particle motion of total mass 2M and
charge 2Q. On the other hand, the relative Hamiltonian (7.49) contains the uniform magnetic
field experienced by the reduced charge Q/2 plus a non-trivial vector potential corresponding to ν
quanta of magnetic flux localized at Rrel = 0.

6In the plasma analogy [30], this is easily understood in terms of the screening of the impurities by the charges
which leads to a free energy independent of the impurity’s positions.

7The analytic form (7.32) of the scalar potential only involves the projection of the derivative on orthogonal
excited states. As required by gauge invariance, the contribution along the ground state cancels with the vector
potential term.
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Direct

Exchange

Figure 7.4: Scattering of two anyonic molecules. Similarly to Fig. 7.3, two indistinguishable any-
onic molecules (green circles) formed by the binding of the same number of quasi-holes to a pair of
identical impurities in the bulk of a FQH fluid (blue region) are considered. The two molecules are
given momentum kicks against each other (P1 and P2, respectively). Due to their indistinguisha-
bility, two scattering channels contribute to the differential scattering cross section at an angle
φ, see Eq. (7.68): the two channels are labelled as direct (red, solid trajectories) and exchange
(yellow, dashed ones) and involve a relative phase determined by the anyonic statistics. As one
can guess from textbook two-slit interference, information about the statistics can be extracted
from the global position of the interference fringe pattern. This is illustrated in the next figures.

As it was discussed in the seminal works [182, 219, 220, 221, 222, 223], the presence of this latter
vector potential is the key feature that encodes the fractional statistics of the anyonic molecules.
In the following of this Chapter, we will study the effect of this vector potential onto the scattering
cross section of two molecules. This is a measurable quantity that can serve as a probe of the
statistical parameter of the molecules.

Depending on the bosonic vs. fermionic nature of the impurities, the effective Hamiltonian
(7.40) will act on the Hilbert space of symmetric or anti-symmetric wavefunctions under the ex-
change of the two molecules, that is R1 ↔ R2 (or Rrel ↔ −Rrel). The combination of the intrinsic
statistics of the impurities and the one inherited by the quasi holes can be encoded in the single
statistical parameter α = αi + ν, where the intrinsic contribution is αi = 0 (αi = 1) for bosonic
(fermionic) impurities. In the next section, we will see how the scattering properties only depend
on α and not on αi and ν separately.

7.4 Scattering of anyonic molecules and fractional statistics

In the previous Section, we have summarized the conceptual framework to study the quantum
mechanical motion and the interactions of anyonic molecules. Based on this complete and flexible
framework, we can now attack the core subject of this Chapter, namely the observable consequences
of the fractional statistics. As a simplest and most exciting example, we consider the differential
cross section for the scattering of two anyonic molecules and, in particular, we will highlight a simple
relation between the angular position of its maxima and minima and the fractional statistics.

To simplify our discussion, from now on we assume that the process underlying the synthetic
magnetic field is designed in a way to have a vanishing effective charge Q = 0 of the molecule.
This condition is beneficial to have rectilinear trajectories in the asymptotic states of the scattering
molecules. The only vector potential remaining in Eq. (7.40) will then be the Aharonov-Bohm
interaction Arel, which simplifies enormously the study of the scattering process.

A scheme of the proposed experimental strategy can be found in Fig. 7.4. If one prepares a
pair of identical molecules inside the bulk of the FQH droplet, each one composed of the same kind
of impurity and a bound quasi-hole excitation, and then makes them to collide, e.g. by pushing
them against each other via a suitable external potential, the angular dependence of the differential
scattering cross section will show a pattern of maxima and minima whose angular position can be
directly related to the fractional statistics of the molecules, as we will show in Sec. 7.4.4.
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7.4.1 General scattering theory

In order to study the two-molecule scattering we focus on the relative Hamiltonian (7.49) in 2D
cylindrical coordinates and we consider the time-independent Schrödinger equation[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(
∂

∂φ
− iν

)2

− 2µVii(r) + k2

]
ψ(r, φ)

= 0 ,

(7.50)

where k2 = 2µE is related to the energy E of the scattering process. For the sake of notational
simplicity we use the shorthand r, µ in place of Rrel,Mrel. Eq. (7.50) represents the scattering of
a particle of mass µ by a flux tube of radius r0 → 0 giving a vector potential Arel = νuφ/r that
incorporates the fractional statistics (uφ is a unit vector in the φ coordinate). For a short-range
potential (i.e. such that rVii(r)→ 0 when r →∞) the solution far from the origin can be written
as the sum of an incoming plane wave 8 and an outgoing cylindrical wave [251, 252]

ψ(r) = eik·r + f(k, φ)
eikr√
r
, (7.51)

where f(k, φ) is the scattering amplitude.
We will solve Eq. (7.50) using the method of partial waves. Given the cylindrical symmetry of

the problem, we can look for factorized solutions ψ(r, φ) = eimφ um,ν(r)/
√
r of angular momentum

m with a radial function satisfying

d2um,ν
dr2

+
um,ν(r)

4r2
− (m− ν)

2

r2
um,ν(r)

− 2µVii(r)um,ν(r) + k2um,ν(r) = 0 .

(7.52)

In contrast to usual scattering problems, for any non-integer value of ν the centrifugal barrier is
present here for all values of m. This guarantees that the wave function vanishes for r = 0 when
the two particles overlap [223].

The general solution of Eq. (7.52) in the free case Vii = 0 with ν = 0 has the form

um(r) ∝
√
r Jm(kr) , (7.53)

in terms of the cylindrical Bessel function Jm(kr). In the r →∞ limit the expression above tends
to

um(r) =

√
2

πk
cos
(
kr −mπ

2
− π

4

)
. (7.54)

For any short-range potential Vii the solution of Eq. (7.52) in the r →∞ limit can be written with
respect to the asymptotic form of the free solution (7.54) as

um,ν(r) = Am,ν(k) cos
[
kr + δm,ν(k)−mπ

2
− π

4

]
, (7.55)

where δm,ν are the phase shifts.
As usual, the scattering amplitude in Eq. (7.51) can be related to the phase shifts δm,ν(k) of

this asymptotic expansion: using the fact that the cylindrical harmonics are a complete basis and
replacing all cylindrical Bessel functions with their asymptotic form at r → ∞, we can write the

8It has been argued that in order to have a constant incoming current density one should have an incoming plane
wave of the form eik·reiνφ with a non-trivial angular dependence of the phase. Nevertheless, the only consequence of
the absence of the phase factor is the appearance in f(k, φ) of a δ-function addend in the forward direction, namely
around φ = 0 [249]. Moreover, as r →∞ the incorrect incoming current density calculated with the plane wave in
Eq. (7.51) tends to the correct, constant value that one would obtain if the factor eiνφ was correctly included [250].
On this basis, in what follows we will for simplicity ignore both the correction to the incoming plane wave and the
forward δ-function whose absence leads to.
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wavefunction in Eq. (7.51) as:

ψ(r) =

[
+∞∑

m=−∞
im
√

2

πkr
cos
(
kr −mπ

2
− π

4

)
eimφ

]

+

[ ∞∑
m=−∞

am,ν(k)eimφ

]
eikr√
r

=

+∞∑
m=−∞

Am,ν(k) cos
[
kr + δm,ν(k)−mπ

2
− π

4

] eimφ√
r
,

(7.56)

with

Am,ν(k) =

√
2

πk
imeiδm,ν(k) , (7.57)

from which it is easy to obtain an expression of the scattering amplitude in terms of the phase
shifts

f(k, φ) =

∞∑
m=−∞

am,ν(k)eimφ , (7.58)

with

am,ν(k) =

√
2i

πk
eiδm,ν(k) sin δm,ν(k) . (7.59)

7.4.2 A general result for short-range potentials

For a non-vanishing and non-integer ν the free solution of Eq. (7.52) changes to

um,ν(r) ∝
√
r J|m−ν|(kr) , (7.60)

which approaches

um,ν(r) = C

√
2

πk
cos
[
kr − |m− ν|π

2
− π

4

]
(7.61)

in the r →∞ limit.
For any short-range potential Vii, the total phase shift in the cosine cos(kr + ∆) in the asymp-

totic limit r →∞ can be referred to the fully free case with Vii = 0 and ν = 0 [as done for δm,ν(k)
in Eq. (7.55)] or to the non-interacting case Vii = 0 with ν 6= 0 considered in (7.61). These two
choices give

∆ = δm,ν(k)−mπ

2
− π

4
, (7.62)

∆ = ∆V
m,ν − |m− ν|

π

2
− π

4
, (7.63)

respectively, where ∆V
m,ν is the phase shift exclusively due to the intermolecular potential Vii.

Combining these equations we obtain

δm,ν(k) = m
π

2
− |m− ν|π

2
+ ∆V

m,ν(k) , (7.64)

where the total phase shift δm,ν(k) is decomposed as the sum of the phase shift due to the topo-
logical flux attached to the impurities plus the one ∆V

m,ν(k) due to the interaction potential. In
the non-interacting Vii = 0 case, this yields the same result as calculated in the original work by
Aharonov and Bohm [181].

In the general case, assuming 0 < ν < 1, we can combine Eqs. (7.59) and (7.64) and decompose
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the scattering amplitude as

f(k, φ) = fAB(k, φ) + fV(k, φ) =

=
1√

2πik

{[ ∞∑
m=1

eimφ
(
eiπν − 1

)
+

0∑
m=−∞

eimφ
(
e−iπν − 1

) ]
+

+

[
eiπν

∞∑
m=1

eimφ
(
e2i∆V

m,ν − 1
)

+

+ e−iπν
0∑

m=−∞
eimφ

(
e2i∆V

m,ν − 1
)]}

. (7.65)

The terms on the first two lines are geometric series that can be analytically summed up tom =∞.
They give the Aharonov-Bohm contribution to the scattering amplitude [181]

fAB(k, φ) =

+∞∑
m=−∞

a(AB)m,ν (k)eimφ = − sin (πν)√
2πik

eiφ/2

sin φ
2

, (7.66)

and carry all information on the particle statistics. The terms on the third and fourth line summa-
rize instead the contribution fV(k, φ) of the interaction potential Vii to the scattering amplitude.
These terms must be evaluated by numerically summing the series.

This decomposition is of crucial technical importance as it enables to isolate the Aharonov-
Bohm contribution fAB that can be analytically computed, and restrict the numerical calculation
to the potential contribution fV only, for which convergence on the high angular-momentum side is
straightforward. This is however much more than just a mathematical trick, since it tells us about
the different physical nature of the two contributions to the scattering amplitude. The statistical
part of the scattering amplitude fAB originates from a vector potential Arel that extends to infinity.
As a result, it affects all angular momentum components. Its divergent behaviour for φ→ 0 can be
physically related to the step-like jump of the geometric phase that is accumulated when passing
in the close vicinity of r = 0 on opposite sides. On the other hand, for a short-range interaction
potential, the particles only see each other up to a certain distance, and therefore one only needs
to sum up to a finite number of partial waves to achieve convergence in fV.

7.4.3 Distinguishable and indistinguishable impurities

For distinguishable impurities, the differential scattering cross section is calculated directly from
the scattering amplitude as

dσD
dφ

= |f(k, φ)|2 . (7.67)

Nevertheless, the scattering process is most interesting when the impurities are indistinguishable
particles. In this case, the differential scattering cross section involves a sum over exchange pro-
cesses according to

dσB,F
dφ

= |f(k, φ)± f(k, φ+ π)|2 , (7.68)

and may thus allow for interesting interference features in the angular dependence. As usual,
the ± signs here correspond to bosonic and fermionic impurities, respectively. Indistinguishability
guarantees that the cross section has the same value for φ and φ+ π.

Repeating the same calculation leading to (7.65) in the 1 < ν < 2 case and noting that ∆V
m,ν

is a function of m− ν only, one can show that

f1+ν(k, φ) = −eiφ fν(k, φ) (7.69)
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holds for any 0 < ν < 1. It is then immediate to deduce that the scattering cross sections in the
bosonic and fermionic cases are related by 9

dσB,1+ν

dφ
(φ) =

dσF,ν
dφ

(φ) . (7.70)

Noting the scattering cross sections are periodic of period 2 in ν, one can thus summarize the
statistics into a single statistical parameter α, defined as α = αi + ν with αi = 0 (αi = 1)
for bosonic (fermionic) impurities, which fully determines the scattering properties as a general
scattering cross section dσα/dφ.

A similar reasoning leads to the interesting relation

f1−ν(k, φ) = −eiφfν(k,−φ) , (7.71)

from which one extracts the symmetry relation

dσB,ν
dφ

(π − φ) =
dσF,1−ν
dφ

(φ) , (7.72)

that translates into the compact form

dσα
dφ

(π − φ) =
dσ2−α

dφ
(φ) . (7.73)

7.4.4 Numerical results for the differential scattering cross section
The key feature of the Aharonov-Bohm contribution (7.66) to the scattering amplitude in the
absence of interaction potential Vii is a divergent behaviour in the forward direction for any non-
integer ν. This was traced back by Ref. [253] to the infinite-range nature of the Aharonov-Bohm
interaction and is known to pose mathematical difficulties related to the optical theorem. In the
following of this Chapter, we are going to focus on the scattering at finite angles φ where such
problems do not arise.

The situation gets much more interesting when the interaction potential Vii is included. This
introduces a more complex angular dependence of the scattering amplitude fV (k, φ) and clear
features in the differential scattering cross section. Keeping an eye on possible experimental real-
izations of this work we choose a dipolar form of the repulsive interaction potential [254], Vii = b/r3,
for which a dipolar length can be defined as aD = µb. As we shall see better in Sec. 7.4.5, this spe-
cific choice of the interaction potential is motivated by the extremely strong dipolar potentials that
can be obtained using heteronuclear molecules. As an additional check, we have also calculated
the differential scattering cross section for the case of a hard-wall potential of radius aHD,

V (r) =

 ∞ if r ≤ aHD

0 if r > aHD

, (7.74)

for which we can benchmark our predictions against the semi-analytical results available in Ref. [255].
In order to calculate the differential cross section dσ/dφ in the different cases, we have to

first calculate the phase shift δm,ν(k) by solving the radial Schrödinger equation Eq. (7.52) in the
presence of the interaction potential Vii and the vector potential Arel. This was done numerically,
employing Numerov’s method [256], which gives a global error of order O(h4), being h = ri+1 −
ri the numerical step size in the r coordinate. Identifying the interaction contribution ∆V

m,ν

to the phase shift, one can separate the different terms in Eq. (7.65): the first two lines are
analytically computed giving fAB of Eq. (7.66). The interaction-induced amplitude fV is evaluated
by numerically performing the sum in the last two lines up to large values of m until convergence is
reached. The desired differential cross section dσ/dφ is finally obtained by summing the resulting
fV to the analytically computed fAB and plugging the outcome into Eq. (7.68).

Figs. 7.5 and 7.6 show the differential scattering cross section as function of the scattering angle
φ for a hard-disk and a dipolar interaction between bosonic impurities, respectively. The filling

9Extending our theory to the ν = 1 integer quantum Hall (IQH) regime, the relation (7.70) has the direct physical
interpretation that a boson immersed in the IQH transmutes into a fermion upon binding a quasi-hole, which in
this case corresponds to one missing particle in the underlying IQH fluid.
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fraction of the FQH bath is fixed in both cases to ν = 0.5, while the different solid curves represent
different values of the relative incident momentum kaHD,D for indistinguishable impurities. The
qualitative behavior of dσ/dφ is identical for the two potentials: for small momenta (kaHD,D � 1)
the only effect of the fractional statistics beyond the divergences in φ = 0, π is the slight breaking
of the φ↔ π − φ symmetry (or, equivalently, of the φ↔ −φ symmetry), so that the minimum of
the curve is displaced to angles larger than φ = π/2, as was first found in Ref. [255]. For larger
momenta kaHD,D & 1, the peaks around φ = 0, π persist, and marked oscillations appear in the
angular dependence because of interference effects, with a strong suppression of the differential
scattering cross section occurring at some particular angles φmin.

This oscillating behavior is reached for smaller kaHD,D in the case of hard-disk interactions.
For kaHD = 5 (the largest value of the momentum considered here) four periods of oscillations are
clearly visible. For dipolar interactions, a larger value of kaD is required to develop a comparable
oscillating pattern. For instance for kaD = 5, the curve only shows a single oscillation period
between φ = 0 and π An oscillating behaviour is however recovered for far larger momenta, for
instance the curve for kaD = 50 features four well-developed minima.

This seeming difference can be reconciled by drawing a qualitative analogy with the textbook
double slit experiment where, for a fixed incident wavevector, the larger the separation between
the slits, the smaller the angular separation between the fringes observed in the screen. In our
case, the role of the slit separation is played by the effective radius of the repulsive potential: in
the hard-disk case the wavefunction is restricted to the outer r > aHD region, setting the effective
radius to r̄HD = aHD. For the smoother dipolar potential the wavefunction has a finite tail in the
inner region, but we can estimate the radius as the inversion point r̄D at which the kinetic energy
equals the the dipolar potential, i.e. the distance at which

k2

2m
=

aD

mr̄3
D

. (7.75)

One can expect that the differential cross section for the two potentials should display oscillations
of comparable period if the two effective radii are equal r̄D = r̄HD. This implies that the incident
momenta are related by

2kaD = (kaHD)3 : (7.76)

the different powers appearing on either side of this equation explain why a much larger kaD is
needed to recover a kaHD > 1 oscillatory pattern. Quite remarkably, this relation is approximately
satisfied by the pair kaD = 50 and kaHD = 5: by comparing the solid cyan lines in Figs. 7.5
and 7.6, one sees that the oscillations of these curves indeed have a very similar angular period.
The same reasoning on the effective radii r̄HD,D suggests that the angular period of the oscillations
should scale as (kaHD)−1 and (kaD)−1/3, respectively. We can hint at such a dependence in the
plots of Figs. 7.5 and 7.6.

A quantitative confirmation of this scaling law is provided in Fig. 7.7. Here we compare
the angular dependence of the differential scattering cross section for the hard-disk (left panel)
and dipolar (central panel) cases for several parameter choices that pairwise satisfy the relation
Eq. (7.76) between the incident wavevectors. As expected, the oscillation periods are almost
identical within each pair (represented by the same color in Fig. 7.7). As a further illustration,
panel c) demonstrates the linear dependence of the oscillation period with respect to (kaHD)−1

and (2kaD)−1/3 in each case, which confirms our intuitive interpretation in terms of the textbook
double slit experiment.

To better highlight the role of indistinguishability in determining the differential cross section,
Figs. 7.5 and 7.6 also show, as dashed curves, the angular dependence of the differential scattering
cross section for distinguishable impurities. In this case, a single scattering channel contributes
to the scattering cross section in each direction so the oscillating behaviour is absent and the
differential cross section has a rather flat and featureless angular dependence.

The small oscillations that are visible in the vicinity of the forward scattering direction φ = 0, 2π
for the hard-disk case are due to diffraction effects from the sharp edges of the potential and do
not have a statistical origin, as they are visible also for α = 0, as we explicitly demonstrate in
Fig. 7.8. This Figure shows the angular dependence of the differential scattering cross section
for distinguishable bosons (α = 0; black curve) and for distinguishable anyonic molecules with
α = 0.1 (dark blue curve) and α = 0.5 (cyan curve) interacting via a hard-disk potential for a
fixed relative incident momentum kaHD = 5. The latter case was previously displayed as the
dashed line in Fig. 7.5. The three curves present a very similar and featureless behavior for angles
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Figure 7.5: Differential scattering cross section dσ/dφ in units of the hard-core radius aHD as
function of the scattering angle φ for a hard-disk interaction potential Vii between bosonic impu-
rities immersed in a ν = 0.5 FQH fluid. The different solid curves correspond to indistinguishable
impurities with different values of the relative incident momentum kaHD. The larger kaHD, the
more visible is the fringe pattern resulting from the interference of direct and exchange scattering
channels. For comparison, the dashed curve is for distinguishable impurities at kaHD = 5: in this
case, no interference fringe is visible.
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Figure 7.6: Differential scattering cross section dσ/dφ in units of the dipolar length aD as function
of the scattering angle φ for a dipole interaction potential Vii between bosonic impurities immersed
in a ν = 0.5 FQH fluid. The different solid curves correspond to indistinguishable impurities
with different values of the relative incident momentum kaD. The larger kaD, the more visible
is the fringe pattern resulting from the interference of direct and exchange scattering channels.
For comparison, the dashed curve is for distinguishable impurities at kaD = 50: in this case, no
interference fringe is visible.
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Figure 7.7: Differential scattering cross section dσ/dφ as function of the scattering angle φ for
indistinguishable molecules with statistical parameter α = 0.5 and several values of the relative
incident momentum kaHD,D in the hard-disk a) and dipolar b) interaction cases. The curves plotted
with the same color in these two panels satisfy the relation Eq. (7.76) and are thus expected to have
the same angular oscillation period. Panel c) shows the oscillation period δφ (calculated as the
difference between the angular position of the two central minima) as a function of (kaHD)−1 for
hard-disk impurities (red circles) and as a function of (2kaD)−1/3 for dipolar ones (blue squares).
The dashed black lines are the respectives linear fits.
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Figure 7.8: Differential scattering cross section dσ/dφ in units of the hard-core radius aHD as
function of the scattering angle φ for a hard-disk interaction potential Vii between distinguishable
impurities with a relative incident momentum kaHD = 5, and for three values of the statistical
parameter α.
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Figure 7.9: Differential scattering cross section dσ/dφ in units of the hard-core radius aHD as
function of the scattering angle φ for a hard-disk interaction potential Vii between indistinguishable
impurities, a relative incident momentum kaHD = 1 and different values of the statistical parameter
α, defined as α = ν for bosons and α = 1 + ν for fermions. Solid (dashed) lines correspond to
bosonic (fermionic) impurites inside a FQH bath of filling fraction 0 < ν < 1.

0.5π < φ < 1.5π, confirming the crucial role of indistinguishability and of interference between the
direct and exchange scattering channels. The oscillations around φ = 0, 2π are in fact present in
the three curves with a comparable angular period. However, a finite α introduces a phase shift of
the diffraction pattern and, for values α 6= 0.5, an asymmetry between the oscillations to the left
and to the right of the forward direction (see the dark blue curve).

For curves displaying the same angular period in the indistinguishable case (e.g. the cyan lines in
Figs. 7.5 and 7.6), the larger contrast of the fringes observed for a hard-disk potential with respect
to the dipolar potential can be related to the flatter angular dependence of the distinguishable
differential scattering cross section in the first case, which enhances the destructive interference.

As a next step, it is interesting to compare the two cases of bosonic and fermionic impurities
(from now on, we will always consider the indistinguishable case). Fig. 7.9 displays dσ/dφ for
hard-disk bosonic and fermionic impurities with the same value kaHD = 1 of the relative incident
momentum and a range of values of ν. The most visible feature is a drift of the minimum towards
small angles as ν is increased, with a smooth connection of the bosonic case for ν → 1 and the
fermionic case for ν → 0. The Bose-Fermi symmetry relations Eqs. (7.72)-(7.73) also manifest in
this plot.

Fig. 7.10 gives more details on the dependence of the differential scattering cross section on the
statistical parameter ν. The different panels correspond to dipolar [in a) and b)] and hard-disk [in
c) and d)] interactions and to different (fixed) values of kaHD,D = 0.1 [in a) and c)] and kaHD,D = 5
[in b) and d)]. For standard bosons and fermions at ν = 0, we recover a symmetric and smooth
cross section with no peaks at φ = 0, π. For bosons at intermediate values of 0 < ν < 1, the
peaks at φ→ 0, π appear and, more interestingly, the oscillation pattern at large kaHD,D features
a global shift towards smaller angles for growing ν, with again a smooth recovery to the fermionic
case when ν → 1.

The linearity of this shift as a function of ν is illustrated in Fig. 7.11 for both choices of
interaction potential. In order to have a good contrast in the oscillations, a relatively large kaHD,D

is chosen. The deviations that are visible for the dipolar case disappear when even larger values
of kaD are chosen. For α = 1, the minimum recovers the usual location at φmin = π/2 of standard
ν = 0 fermions. The smaller slope of the hard-disk case is a consequence of the faster angular
periodicity of the oscillations that is visible when comparing the panels in Figs. 7.10 b) and d),
both plotted for kaD,HD = 5.

This simple dependence on ν of the angular interference pattern shown in Fig. 7.11 is a key
conclusion of our study. From an experimental perspective, it provides a quantitatively accurate
way to extract the fractional statistics of the quasi-holes in the FQH cloud just by detecting the
oscillations in the angular dependence of the differential cross section and measuring the position
of the minimum (φmin) in different conditions. For instance, a quantitative value of ν for a given
FQH liquid can be interpolated by repeating the measurement of φmin with bosonic impurities in
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Figure 7.10: Differential scattering cross section dσ/dφ as function of the scattering angle φ for
several values of the statistical parameter ν. The different panels refer to different values of the
relative incident momentum k and different forms of the interaction potential Vii between the
impurities. In particular: a) Dipolar interactions and kaD = 0.1. b) Dipolar interactions and
kaD = 5 c) Hard-disk interactions and kaHD = 0.1 d) Hard-disk interactions and kaHD = 5. The
different curves refer to different values of the statistical parameter as indicated in the legend in
a): α = 0, 0.25, 0.5, 0.75 correspond to bosonic impurities at growing values of ν, while α = 1 is
the fermionic case with ν = 0. To avoid overcrowding the figure, no other curve for fermionic
impurities is displayed. As it was shown in Fig. 7.9, such curves are immediately obtained from
the bosonic ones via the symmetry relations in Eqs. (7.72)-(7.73).
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Figure 7.11: Angular position φmin of the minimum of the differential scattering cross section
extracted from Fig. 7.10b),d) for a dipolar and a hard-disk interaction potential, respectively, as
a function of the statistical parameter α = ν of anyonic molecules formed by bosonic impurities
bound to a single quasi-hole in a FQH fluid at filling ν. The dashed lines are linear fits.

the presence and in the absence (i.e. ν = 0) of the FQH liquid, keeping in mind that for ν = 1
the minimum is at an angle φmin = π/2, and assuming the linear dependence on ν = α shown in
Fig. 7.11. Perhaps less challenging, a qualitative signature of the fractional statistics for 0 < ν < 1
is already offered by the asymmetry of the differential cross section for φ↔ π−φ (or, equivalently,
for φ↔ −φ or φ↔ 2π − φ), that indicates a preferential chirality in the scattering process.

From a conceptual viewpoint, the linear dependence of the fringe position on ν suggests an
intuitive understanding of the underlying physical mechanism: the oscillations can be interpreted
as an interference pattern for the two scattering channels contributing to the scattering in a given
direction, say at an angle φ. In one channel, each particle is deflected by an angle φ during
the scattering process. In the other channel, each particle is deflected by π + φ. Because of
indistinguishability, the two processes have to be summed up with a relative phase α resulting
from the sum of the intrinsic statistics αi = 0, 1 of the bosonic/fermionic impurities and of the
fractional statistics ν of the attached quasi-holes. As it happens in generic interference experiments,
e.g. two-slit interference, a phase-shift on one of the two arms results in a rigid shift of the whole
fringe pattern. This intuitive interpretation is further confirmed by the complete disappearance of
the fringe pattern when distinguishable impurities are considered.

7.4.5 Experimental remarks

In practice, a scattering experiment will begin with the simultaneous generation of a pair of anyonic
molecules at different and controlled spatial locations. The two molecules will then have to be
pushed against each other at a controlled speed with suitable potentials. This can be done following
one of the schemes discussed in Sec. 7.3.2.

The angular dependence of their differential scattering cross section will be finally extracted by
repeating the experiment many times and collecting the statistical distribution of the trajectories of
the scattering products. For instance, the position of the impurities after the scattering event can
be measured using absorption imaging as in Ref. [257]. In order to directly access the differential
scattering cross section in a single shot, one may follow the route of [258] and consider the collision
between two clouds of independent impurities embedded in the FQH droplet. A possible alternative
is to follow a similar strategy to that of neutron scattering in liquid helium [259] and make use
of a detector placed at several angular positions outside the FQH droplet. This of course has the
inconvenient that the impurities may excite undesired edge modes on their way out and get their
energy and momentum modified. In all cases, as we have mentioned at the beginning of Sec. 7.4,
the analysis of the scattering experiment could be made simpler if the system parameters were
chosen in such a way to give a vanishing effective charge Q for the anyonic molecules.

To check the actual feasibility of our proposal, it is important to estimate the maximum value
of kaD that one can realistically obtain in experiments. Combining the definition of aD with the
results of Sec. 7.3.2 for the maximum momentum kmax = Mvmax that is compatible with the
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Born-Oppenheimer approach, one gets

kmaxaD =
M
mτ

∆ω−1

ωcycl

aD

`B
. (7.77)

As we have seen in the previous subsection, a large value of this quantity is needed to see a well
developed system of fringes in the differential scattering cross section.

As a first concrete example, we can consider the case of the magnetic interaction between two
magnetic atoms, e.g. 166Er atoms with a relatively large magnetic dipole of 7µB [260]. Estimating
M/m ' 25, `B ' 1µm, ∆ω−1/ωcycl = 0.1, we obtain a not-so-optimistic value kmaxaD ' 0.02.
However, a huge enhancement of the dipolar interaction is found if electric rather than magnetic
interactions are used, e.g. between ground state heteronuclear diatomic molecules [246]. For a
typical dipole moment dE ∼ 1 Debye, an enhancement on the order of ≈ 200’s can be obtained,
leading to a promising kmaxaD ≈ 5. Thanks to the quadratic dependence of the dipolar force on
the dipole moment dE , a sizable further increase is achievable with specific choices of molecules
which display larger dipole moments of several Debye [261], e.g. 1.25 Debye for RbCs, 2.4 Debye
for NaK, up to 5.5 Debye for LiCs, and are presently under active experimental investigation in
the ultracold quantum gases community [262, 263, 264, 265, 266, 267]. Note that a large value of
aD is also essential to fulfill (for a given kaD) the condition

∆ω−1

ωcycl

M
m

(
aD

`B

)2

� (kaD)2 (7.78)

that guarantees, according to our discussion in Sec. 7.3.2, that the kinetic energy is low enough for
the anyonic molecule to behave as a rigid object during the collision process.

7.5 Conclusions
In this Chapter we have shown how the quantum dynamics of heavy impurity particles immersed
in a two-dimensional fractional quantum Hall (FQH) fluid of lighter particles may reveal crucial
information about the fractional charge and statistics of the FQH quasi-hole excitations. Even
though the discussion was carried out with a special attention to realizations in ultracold atomic gas
platforms, equally promising candidates for experimental observation of the fractional charge and
statistics are offered by FQH fluids of photons [7, 16] or hybrid electronic-optical systems [268, 269].

In full generality, we considered impurities that repulsively interact with the atoms of the FQH
fluid. In this case, for suitable parameters the impurities can form bound states with quasi-hole
excitations, the so-called anyonic molecules. A rigorous Born-Oppenheimer [240, 241] framework
was set up to derive the effective charge and statistics of the anyonic molecules. Quite remarkably,
this same formalism provides a quantitative prediction for the effective mass of the molecules,
which combines the bare impurity mass with a correction due to the quasi-hole inertia.

As a main result of our work we proposed and characterized specific configurations where the
fractional charge and statistics can be experimentally highlighted with state-of-the-art technology.
If a single anyonic molecule is prepared inside the FQH fluid with some initial momentum, the values
of the renormalized mass and of the fractional charge can be extracted from the experimentally
accessible cyclotron orbit that it describes as a free charged particle in a magnetic field. This
provides direct and unambiguous information on the fractional charge of FQH quasi-holes.

In the case of two anyonic molecules, the fractional statistics of the quasi-holes provides a
long-range Aharonov-Bohm-like interaction between the molecules with dramatic consequences on
two-body scattering processes. For sufficiently large values of the relative incident momentum,
the differential cross section displays a clear oscillatory pattern due to the interference of direct
and exchange processes and the non-trivial fractional statistical phase that the quasi-holes acquire
upon exchange is directly observable as a rigid shift of the angular interference pattern.

As future perspectives, we envision to extend our approach to the case of impurities binding
with different numbers of quasi-holes, leading to molecules with different anyonic statistics, and
to the case of a larger number of molecules forming few-body complexes with a richer structure
of eigenstates determined by the interplay of the inter-impurity interaction and the fractional
statistics [223]. An even more intriguing development will be to extend our treatment to more
subtle FQH fluids supporting non-Abelian excitations [30] and explore the consequences of the
topological degeneracy on the quantum dynamics of the non-Abelian anyonic molecules [270, 232].
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Finally, we would like to generalize our approach in order to account for driven-dissipative
systems. This will allow us to implement the proposed strategy to quantum fluids of light, in
particular the cavity Rydberg polaritons of Ref. [16]. We anticipate that such a setup will require
the use of two different Rydberg excitations: one will give rise to the FQH fluid and the other will
be associated to the impurities. The polariton dynamics will be determined by the cavity modes
accesible to their photonic part. In order to give a momentum kick to the impurity polaritons
one could employ a digital micromirror device allowing to inject photons with different angular
momenta. Experimental insight can be obtained by looking at the spatial correlations of the
emerging output photons as a function of the angle between them. All these technical details need
to be accounted for in an explicit calculation for such a platform.
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This Thesis is devoted to the study of topological phases of matter in optical platforms,
focusing on non-Hermitian systems with gain and losses involving nonreciprocal elements, and
fractional quantum Hall liquids where strong interactions play a central role.

In the first part we investigated nonlinear Taiji micro-ring resonators in passive and active
silicon photonics setups. Such resonators establish a unidirectional coupling between the two
whispering-gallery modes circulating in their perimeter, and have raised a great expectation due
to their promising role in preserving quantum spin-Hall topological insulator lasers even in the
presence of a time-reversal symmetry breaking backscattering.

We started by demonstrating that a single nonlinear Taiji resonator coupled to a bus waveguide
breaks Lorentz reciprocity. The space-reversal symmetry breaking geometry of the Taiji resonator
produces an enhancement of the intensity when the resonator is pumped in a certain direction.
This fact, combined with the optical nonlinearity of the material, leads to a different shift of the
resonance frequency of the resonator that results in a different transmittance when light is injected
from opposite sides of the waveguide.

When a saturable gain is added to a single Taiji resonator, a sufficiently strong unidirectional
coupling rules out the possibility of lasing in one of the whispering-gallery modes with indepen-
dence of the type of optical nonlinearity and gain saturation displayed by the material. This can
be regarded as a dynamical time-reversal symmetry breaking. As long as the unidirectional cou-
pling is larger than the amount of backscattering present into the sample, Taiji resonators grant
unidirectional lasing and recirculate backscattered light into the lasing direction. This effect is
further enhanced by an optical Kerr nonlinearity.

We showed that both ring and Taiji resonators can work as optical isolators over a broad
frequency band in realistic operating conditions. Our proposal relies on the presence of a strong
pump in a single direction: as a consequence four-wave mixing can only couple the pump with small
intensity signals propagating in the same direction. The resulting nonreciprocal devices circumvent
the restrictions imposed by dynamic reciprocity.

We then studied two-dimensional arrays of ring and Taiji resonators realizing quantum spin-
Hall topological insulator lasers. In ring resonator lattices it is impossible to impose a definite
chirality to the laser emission. Furthermore, when backscattering is present in such a system the
lasing properties significantly deteriorate. However, the strong unidirectional coupling present in
Taiji resonator lattices promotes lasing with a well-defined chirality while considerably improving
the slope efficiency and reducing the lasing threshold. Finally, we demonstrated that lasing in a
single helical mode can be obtained in quantum spin-Hall lasers of Taiji resonators by exploiting
the optical nonlinearity of the material.

As future work, we will explicitly include in our calculations for the quantum spin-Hall lasers
the dynamics of a reservoir providing the saturable gain. Such kind of models are known as class-B
lasers and they are more suitable to describe the physics of topological lasers. We will also capitalize
on our proposal for optical isolators in order to exploit the effect of asymmetrical four-wave mixing
to further suppress the effect of backscattering in the quantum spin-Hall array. Furthermore,
the interplay between topological photonics and nonlinear optics deserves much more attention
and leads to interesting phenomena like topological bulk and edge solitons protected against local
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disorder [271, 21, 272]. Finally, the use of Taiji resonators opens up exciting perspectives in relation
with exceptional points and parity-symmetry breaking [149, 273, 274].

In the second part of this Thesis we dived into more speculative waters and explored fractional
quantum Hall liquids of cold atoms and photons. We proposed strategies to experimentally access
the fractional charge and anyonic statistics of the quasihole excitations arising in the bulk of
such systems. Heavy impurities introduced inside a fractional quantum Hall droplet will bind
quasiholes, forming composite objects that we label as anyonic molecules. Restricting ourselves to
molecules formed by one quasihole and a single impurity, we find that the bound quasihole gives a
finite contribution to the impurity mass, that we are able to ascertain by considering the first-order
correction to the Born-Oppenheimer approximation. The effective charge and statistical parameter
of the molecule are given by the sum of those of the impurity and the quasihole, respectively.
While the mass and charge of such objects can be directly assessed by imaging the cyclotron orbit
described by a single molecule, the anyonic statistics manifest as a rigid shift of the interference
fringes in the differential scattering cross section describing a collision between two molecules.

An exciting outlook for this work would be to use the impurities in order to explore the physics
of non-Abelian quasihole excitations which are expected to arise in higher-order fractional quantum
Hall liquids. Moreover, an extension of our theory is necessary in order to describe molecules bind-
ing with several quasiholes, and therefore displaying different anyonic statistics. Future research
will address the interaction between several such objects.

To conclude, topological photonics has grown far beyond its initial purpose of being a platform
for quantum simulation. It constitutes a field in its own right, leading to the observation of
completely new physics with no analog in other systems. In particular, the interplay between optical
nonlinearities, nonreciprocity, and non-Hermitian systems featuring topological band structures
opens up exciting perspectives for both theorists and experimentalists. The call to adventure is
right in front of us, and we will respond.
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Appendix A

Coupled-mode theory for the single Taiji
resonator

In this Appendix we derive the coupled-mode theory (2.15-2.16) employed in Chapter 2 to
study the passive nonlinear Taiji resonator (TJR). We also calculate the most general expressions
for the nonlinear refractive index nNL and the g parameter.

We will first compute the coupled-mode equations in the linear regime (nNL = 0) and then
include the effect of a finite optical nonlinearity, which is a shift of the resonance frequency. Fig. A.1
shows a sketch of the TJR coupled to a bus waveguide. The bus waveguide-ring resonator and
S waveguide-ring resonator directional couplers are described by transmission tw,S and coupling
ikw,S amplitudes satisfying

√
t2w,S + k2

w,S = 1, being tw,S and kw,S real numbers. The perimeter
of the external ring resonator is L, and the length of the S waveguide between the two points at
which it is coupled with the ring is LS. The equations relating the field amplitudes E(1,2)

± in each
mode (labelled CW + and CCW −) at the bus waveguide-ring resonator directional coupler read

E
(1)
− = t2Se

iωc nLLE
(2)
− − 2k2

StSe
iωc nLLei

ω
c nLLSE

(1)
+ , (A.1)

E
(1)
+ = twE

(2)
+ + ikwE

(in)
R , (A.2)

E
(2)
− = twE

(1)
− + ikwE

(in)
L , (A.3)

E
(2)
+ = t2Se

iωc nLLE
(1)
+ , (A.4)

where E(in)
L,R are the external driving fields injected in the bus waveguide from its left and right

side, respectively. The superindices (1, 2) refer to the relative position of the fields with respect to
the directional coupler: (1) to its left and (2) to its right.

We now combine Eqs. (A.1-A.3) to get an expression relating E(1)
− and E(2)

+ only:

E
(1)
− e−i

ω
c nLL =

(
1− k2

S −
k2

w

2

)
E

(1)
− + ikwE

(in)
L − 2k2

Se
iωc nLLSE

(2)
+ , (A.5)

where we have assumed kw,S � 1 and therefore dropped terms of higher order than O(k2
w,S). We

will also be working in the vicinity of the resonance frequency of the resonator ω0. Therefore we
have that

e−i
ω
c nLL = e−i

ω−ω0
c nLL '

(
1− iω

c
nLL+ i

ω0

c
nLL

)
. (A.6)

After making this substitution in Eq. (A.5) we can use a Fourier transform to go from the frequency
to the real-time space, i.e.

−iωE(1)
− (ω)→ d

dt
E

(1)
− (t). (A.7)
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Figure A.1: Sketch of the Taiji resonator (TJR) coupled to a bus waveguide. The electric field
amplitudes E(1,2)

± in the ± modes are measured immediately to the left (1) and right (2) of the bus
waveguide-ring resonator coupling. E(in)

L,R are the driving signals entering the bus waveguide from
its left and right side, respectively. tw,S and ikw,S are the transmission and coupling amplitudes at
the directional couplers.

This leads to the temporal coupled-mode equation for the CCW (−) mode:

iĖ
(1)
− = ω0E

(1)
− − i

c

nLL
k2

SE
(1)
− − i

c

nLL

k2
w

2
E

(1)
− −

c

nLL
kwE

(in)
L − i c

nLL
ei
ω
c nLLS2k2

SE
(2)
+ . (A.8)

Similarly, we can employ Eqs. (A.2) and (A.4) to derive the analog expression for the CW (+)
mode:

iĖ
(2)
+ = ω0E

(2)
+ − i c

nLL
k2

SE
(2)
+ − i c

nLL

k2
w

2
E

(2)
+ − c

nLL
kwE

(in)
R . (A.9)

From these expressions we can ascertain the value of the radiative losses due to the coupling of the
ring with the bus (γw) and S (γS) waveguides:

γS =
c

nLL
k2

S, (A.10)

γw =
c

nLL

k2
w

2
. (A.11)

Finally, we can complete our description of the TJR by including in the coupled-mode equa-
tions (A.8-A.9) terms accounting for the shift of the linear resonance frequency ω0 due to the
optical nonlinearity of the material. Consider the spatial and temporal dependence of the electric
field amplitudes in the two directions

E+(z, t) = Ẽ+e
i(kz−ωt), (A.12)

E−(z, t) = Ẽ−e
−i(kz+ωt), (A.13)

where k is the wavenumber, z is a spatial coordinate, ω is the frequency, and t is time. On the
following we drop the (1, 2) superindices on the field amplitudes.

In the case of a local Kerr nonlinearity (g = 2) with nonlinear refractive index nK, the resonance
frequency shift at some location z will be proportional to the intensity at that particular point,
i.e. Eqs. (A.8-A.9) will feature terms proportional to

|E+ + E−|2(E+ + E−). (A.14)

By expanding the squared modulus above, we obtain

|E+ + E−|2(E+ + E−) = (|E+|2 + 2|E−|2)E+ + (|E−|2 + 2|E+|2)E− + E2
+E
∗
− + E2

−E
∗
+

' (|E+|2 + 2|E−|2)E+ + (|E−|2 + 2|E+|2)E−. (A.15)

The last two terms in the second step oscillate fast and average to zero in the context of the
rotating-wave approximation; therefore they can be safely neglected. As we see, we have obtained
the g = 2 factor for the Kerr shift due to counterpropagating waves in each case.
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On the other hand, for a nonlocal thermo-optic nonlinearity (g = 1) with nonlinear refractive
index nT the resonance frequency shift at z will be proportional to the intensity circulating in the
whole ring, i.e.[∫

z

|E+ + E−|2dz
]

(E+ + E−) =

[∫
z

(|E+|2 + |E−|2 + E∗+E− + E+E
∗
−)dz

]
(E+ + E−)

= (|E+|2 + |E−|2)(E+ + E−). (A.16)

In the passage from the second to the third step we took into account that the first and second
terms in the integral do not depend on z, while the third and fourth terms average to zero when
we integrate the whole perimeter of the ring resonator. This leads to the same shift for waves
propagating in the two directions, summarized by the g = 1 factor.

Altogether, we can include these terms into Eqs. (A.8-A.9), giving the steady-state equations
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Se
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By properly grouping both nonlinear terms it is easy to show that

ωE+ = ω0E+ −
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2k2

Se
iωc nLLSE+, (A.20)

and therefore

nNL = nK + nT, g =
2nK + nT

nK + nT
. (A.21)

Upon replacing ω → i∂t, these equations can be used to describe the evolution of the system
in time under the assumption of a temporally local nonlinearity. While this is usually a good
approximation for Kerr media, one must keep in mind that thermal nonlinearities are typically
slow so this approximation must be explicitly verified on a case-by-case basis.
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Appendix B

Finite-element model

Here we derive the finite-element equations to be employed in the fits of the experimental
results for the single nonlinear Taiji resonator studied in Chapter 2. We start by dividing each
waveguide in the sample into segments of equal length ∆zr,S,w = Lr,S,w/Nr,S,w = zj − zj−1, being
Lr,S,w

1 the total length of each component (ring, S, and bus waveguides), Nr,S,w the number of
segments in which it is divided, and zj the spatial coordinate of each segment j = 1, ..., Nr,S,w.
The segment length in each case is assumed to be much longer than the light wavelength, i.e.
∆zr,S,w � λ. The aim of the finite-element model is to relate the amplitude of the electric field
E at a position zj+1 to the amplitude in the precedent segment zj . To simplify the notation,
on the following we will drop the subindices referring to the sample components as the equations
are valid regardless of which waveguide is considered. We started from a modified Helmholtz’s
equation including a local Kerr nonlinearity with refractive index nK, and a nonlocal thermo-
optical nonlinearity with refractive index nT. It reads

∂2E

∂z2
= −

(ω
c

)2
[(

nL + iα
c

ω

)
+ nK|E(z)|2

+ nT
∆z

L

N∑
j=1

|E(zj)|2
]2

E(z), (B.1)

where ω and c correspond to the angular frequency and speed of light in free space, respectively, nL

is the linear refractive index, and α is the absorption coefficient. Note that the thermal nonlinearity
shifts the refractive index at each sample component proportionally to the average intensity inside
it. In our case we have that nL � nK,T|E(z)|2 ∀z, which implies that the field oscillation due
to the linear part of the material’s response will be much faster than that of the nonlinear part.
Therefore one can employ the Ansatz

E(z) = E+(z) + E−(z)

= ξ+(z)ei
ω
c (nL+iαc/ω)z + ξ−(z)e−i

ω
c (nL+iαc/ω)z, (B.2)

where E± are the electric field amplitudes and ξ± are the slowly-evolving parts of the field propa-
gating in the clockwise (+) and counterclockwise (−) directions.

After inserting Eq. (B.2) into Eq. (B.1) we use the rotating wave approximation to neglect
those terms oscillating with spatial frequency on the order of ω/c or faster, which average to zero
in a segment much longer than the optical wavevelength, as well as the smaller terms proportional

1Note that here and in the following we use the compact notation of repeated indices for different quantities, i.e.
Lr,S,w corresponds to Lr, LS and Lw.
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to ∂2ξ+,−/∂z
2 and those of order O(n2

K,T). Identifying the energy-conserving processes we obtain

∂ξ±
∂z

= ±iω
c

[
nK

(
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)
+ nT
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) ]
ξ±(z). (B.3)

By integrating these differential equations along a single segment where the slowly-evolving in-
tensities |ξ±|2 can be considered as constant in our weak absorption regime and employing the
Ansatz (B.2) one finally arrives to

E±(z ±∆z) = exp
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) ]ω
c

∆z

}
E±(z). (B.4)

which generalizes Eq. (2.17) to generic nonlinearities. Actually, this result also provides a rigorous
mathematical explanation of the different character of the g = 1, 2 parameters describing the
thermo-optic and Kerr optical nonlinearities.

The fields in the different components of the sample are coupled in reciprocal and lossless
directional couplers in which the output and input field amplitudes are related by a scattering
matrix (

Eout,1

Eout,2

)
=

(
tw,S,m ikw,S,m

ikw,S,m tw,S,m

)(
Ein,1

Ein,2

)
, (B.5)

where tw,S and ikw,S represent the transmission and coupling amplitudes in the ring-bus and ring-S
couplers, respectively. On the other hand, tm and ikm correspond to the transmission and reflection
amplitudes at the facets of the bus waveguide, which give rise to Fabry-Pérot oscillations. Note
that tw,S,m and kw,S,m are taken as real numbers satisfying t2w,S,m + k2

w,S,m = 1.
Altogether, the set of Eqs. (B.4-B.5) for all elements of our set-up represent the electric field

propagation throughout the sample and can be solved with standard numerical techniques provid-
ing a complete and quantitative description of the nonlinear light propagation at the steady-state.
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Appendix C

Coupled-mode theory for the spin-Hall
topolaser

In this Appendix we explicitly derive the coupled-mode theory equations (5.1) for the
quantum spin-Hall insulator studied in Chapter 5.

A diagram of the top-left 1 × 2 plaquette of the lattice is shown in Fig. C.1. The two site
resonators of circumference perimeter L◦ are coupled via a racetrack ring resonator of perimeter
LL. The left site resonator is also coupled to a bus waveguide. For the moment we do not consider
neither the tilted S elements inside the site ring resonators, nor the saturable gain. We also assume
that the position of the link resonator is not shifted with respect to the central horizontal axis of
the plaquette, and that nonlinear effects are negligible. For further simplicity, we will not consider
absorption losses.

When the plaquette is probed by means of signal with field amplitude E(in), the − pseudospin
(corresponding with the CCW whispering-gallery modes of the site resonators) is excited. We
label by a(1)

1,2 the field amplitudes in the − pseudospin in the left site resonator before and after
the coupling with the bus waveguide. In a similar manner, b1,2 are the field amplitudes in the
link resonator before and after the coupling with the left site resonator. Finally, a(2) is the field
amplitude in the right site resonator at an opposite position in the circumference to the coupling
with the link resonator. The output amplitude through the bus waveguide is labelled E(out).

We now write down the system of six equations relating our six unknowns and the inhomoge-
neous term given by the input field:
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E(out) = twE
(in) + ikwa

(1)
1 . (C.6)

The objective is to end with a couple of equations describing a(1)
1 and a(2) (which we want to

promote to dynamical variables) as a function of all the other field amplitudes. We first combine
Eqs. (C.2-C.5) in order to integrate out the fields in the link resonator. After a bit of manipulation,
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Figure C.1: Sketch of a couple of site resonators (of circumference length L◦) of the quantum
spin-Hall insulator connected by means of a link resonator (of length LL). The left site resonator
is coupled to a bus waveguide. The arrows indicate the propagation direction of the fields.

we arrive to the equation for a(2):
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Since we know that at the resonance frequency of the site resonators ω0 we have that

ei
ω0
c nLL◦ = 1, (C.8)

it is legitimate to introduce the complex phase above in the right-hand side of Eq. (C.7). Assuming
that ω is always in the vicinity of the resonance frequency, we can Taylor expand the right-hand
side, giving
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c
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c
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)
. (C.9)

At this point we can change from reciprocal to real space by employing the Fourier relation

−iωa(2)(ω)→ d

dt
a(2)(t). (C.10)

By keeping terms up to quadratic order in the coupling kw we finally arrive to the temporal
coupled-mode equation for the right site resonator:
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where we can identify the second and third terms in the right-hand side of the equation with
the losses and incoming light due to the coupling with the left site resonator enabled by the link
resonator, respectively. The great advantage of this equation is that we have got rid of the field
amplitudes in the link resonators. The role of the link resonators is in fact implicitly accounted by
the losses and couplings terms.

Following a similar procedure, we employ Eqs. (C.1-C.4) to derive an expression for the field
amplitude in the left site resonator a(1)

1 , i.e.
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LL
2

1− t2wei
ω
c nLLL

a
(2)
1 . (C.12)

By changing to real space and keeping terms up to second order in the couplings kw, as we did for
the right site resonator, we finally arrive to the temporal coupled-mode equation

iȧ
(1)
1 = ω0a

(1)
1 − i

c

n◦LL
k2

w

1

2

1 + ei
ω
c nLLL

1− eiωc nLLL
a

(1)
1 − i

c

nLL◦

k2
w

2
a

(1)
1 − i

c

nLL◦
k2

w

ei
ω
c nL

LL
2

1− eiωc nLLL
a

(2)
1

− c

nLL◦
kwE

(in). (C.13)

On the right-hand side of this equation, the second and third terms represent the radiative losses
into the link resonator and bus waveguide, respectively. On the other hand, light coupled into the
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left site resonator from the right site resonator and the bus waveguide is accounted by means of
the third and fourth terms, respectively.

In the notation employed in Chapter 5, the field amplitudes a(1)
1 and a(2) would be labelled

a
(1,1)
− and a(1,2)

− , respectivelly. Similar equations can be obtained for the amplitudes belonging to
the + pseudospin. It is straightforward to generalize these equations to account for the position
shift of the link resonators, and to include the couplings with resonators located on top and on
the bottom of the considered plaquette, which give rise to analogous coupling and losses terms as
those appearing in Eqs. (C.11) and (C.13).

The 45◦-tilted S element of length LS embedded by the site ring resonators adds a term in the
− pseudospin equations of the form

−i c

nLL◦
2k2

Se
iωc nL

L◦
4 ei

ω
c nLLSa+, (C.14)

which can be understood by considering the length of the optical path connecting the points of the
resonator in which the a± amplitudes are measured, and the fact that light can couple into the S
waveguide at two different positions.

Non-Hermitian and Topological Features of Photonic Systems Alberto Muñoz de las Heras





Appendix D

Mass renormalization for anyonic molecules

In this Appendix, we show how the Born-Oppenheimer (BO) approach of Ref. [241] can be
straightforwardly extended to include synthetic magnetic fields. Such a step is necessary in order
to correctly account for the mass renormalization of the anyonic molecules studied in Chapter 7.

We start by writing the full action functional

S[ϕ∗R, ϕR, χ
∗, χ] = 〈ψ|H−i∂t |ψ〉 =

∫ tf

ti

dt

∫
dR

∫
dr

[
|χ|2ϕ∗R

HBO +

N∑
j=1

(−i∇Rj )
2

2M
− i∂t

ϕR

+|ϕR|2χ∗
 N∑
j=1

(−i∇Rj
−QA(Rj))

2

2M
− i∂t

χ+|χ|2ϕ∗R
N∑
j=1

1

M

(−i∇Rj
−QA(Rj))χ

χ
·(−i∇j)ϕR

]
,

(D.1)

in terms of the atoms and impurities wavefunctions ϕR(t) and χ(t). The time dependence of the
former is a finite order contribution and it is dropped when one refers to the zeroth order ground
state ϕ(0)

R . As in the main text, the shorthands R and r refer to the set of impurity and atom
positions {Ri} and {ri}, respectively. A(Rj) is the vector potential (not present in the original
formulation of Ref. [241]) evaluated at the position of the impurity j. Requiring

δS[ϕ∗R, ϕR, χ
∗, χ]

δϕ∗R
= 0 ,

δS[ϕ∗R, ϕR, χ
∗, χ]

δχ∗
= 0 , (D.2)

and using Eqs. (7.7) and (7.11) we obtain the expressions to be satisfied by the factorized wave
functions

[HBO + Uia[ϕR, χ]− ε(R, t)]ϕR = i∂tϕR , (D.3)[
(−i∇Rj

−QA(Rj) +Aj(R, t))2

2M
+ ε(R, t)

]
χ = i∂tχ , (D.4)

where

Uia[ϕR, χ] =

N∑
j=1

1

M

[
(−i∇Rj −Aj(R, t))2

2
+

(
(−i∇Rj

−QA(Rj))χ

χ
+Aj(R, t)

)
· (−i∇Rj

−Aj(R, t))

]
(D.5)

is the impurity-bath coupling operator,

Aj(R, t) = −i 〈ϕR(t)| ∇Rj
|ϕR(t)〉 (D.6)
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is the Berry connection arising from the parametric dependence of the bath wave function on the
position of the impurities and

ε(R, t) = 〈ϕR(t)|HBO + Uia − i∂t |ϕR(t)〉 (D.7)

is the BO potential energy surface experienced by the moving impurities, which mediates the exact
coupling between fast and slow degrees of freedom.

We see that the complete expressions in Eqs. (D.3)-(D.7) do not include any additional first
order modification beyond those calculated in Ref. [241]. Therefore, the renormalized mass of the
molecule keeps the same form as in the case without vector potential A(Rj), which we show in
Eqs. (7.14)-(7.16).
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