

UNIVERSITÀ DEGLI STUDI DELL'AQUILA
Department of Information Engineering, Computer Science and Mathematics

Ph.D. Program in Information and Communication Technology

Curriculum Emerging computing models, software architectures,

and intelligent systems

XXXV ciclo

Conceptualization and Development of ML-based

Recommender Systems for Software Engineering

SSD INF/01

Candidate

Claudio Di Sipio

Doctoral Program Supervisor Advisor

Prof. Vittorio Cortellessa

Co-Advisors

Dott. Juri Di Rocco
 Dott. Phuong T. Nguyen

a.y. 2021/2022

Prof. Davide Di Ruscio

Acknowledgements

Everything must come to an end, even though it does not mean that we cannot start over by
pursuing our passion. This long journey culminates in this dissertation, and it is time to thank
all the people that contribute to making it possible.

First of all, I would like to express my gratitude to my advisor, Prof. Davide Di Ruscio,
for his invaluable support (and patience) during these years. Since my master’s degree, he
inspired me to follow the academic path by being a real mentor rather than just my supervisor.

Second, I thank my co-advisor Dott. Juri Di Rocco for helping me, especially with the
technical part of this huge work. We worked side by side many times, and he was always
available to solve any doubts.

I would like to thank my co-advisor Dott. Phuong Thanh Nguyen for his hard work in
revising this dissertation and his insightful writing tips.

A heartfelt thank goes to Riccardo Rubei, a friend more than just a colleague. We
went through these years by sharing passions and having engaging discussions beyond the
academic world. Altogether, I really felt part of this great team that works cohesively to
achieve remarkable goals.

A very special thank goes to my friends and colleagues in Coppito, i.e., Roberta, Gianluca,
Luca, Andrea B., and Walter. Despite the pandemic, we enjoyed these years by sharing our
ideas, doubts, and knowledge. Although being a Ph.D. student might be hard sometimes, their
sight helps me a lot during these years. An ad personam consideration is due to Giordano
who has been also my housemate here in L’Aquila. We knew each other for several years
and I wish him all the best for the academic path that he started recently. A shoutout goes
also to the new Ph.D. students in Coppito, i.e., Mashal, Gennaro, Federico, and Andrea D’A.
Even though we met for a short time, I felt their passion and I wish them all the bests.

Above all, I would thank Isabella just for being the person she is. Despite she shares the
last part of this journey, she was by my side, supporting me when needed.

An additional thank goes to my friends in Chieti, including Francesca, Silvia, Valentina,
Stefano and Simone. Despite the distance, we managed to keep in touch during these years.

iv

Last but not least, I feel I owed a debt of gratitude to my father Pantaleone, my mother
Daniela, and my aunt Antonella. They supported me in every decision, pushing me to follow
my desires no matter what ever happens.

Abstract

To perform their daily tasks, developers intensively make use of existing resources by
consulting open-source software (OSS) repositories. Such platforms contain rich data
sources, e.g., code snippets, documentation, and user discussions, that can be useful for
supporting development activities. Over the last decades, several techniques and tools
have been promoted to provide developers with innovative features, aiming to bring in
improvements in terms of development effort, cost savings, and productivity. Recommender
systems (RSs) are complex software systems that suggest relevant items of interest given a
specific application domain to users. The development of RSs encompasses the execution
of different steps, including data preprocessing, choice of appropriate algorithms, and item
delivery, to name a few. Though RSs can alleviate the curse of information overload, existing
approaches resemble black-box systems, where the end-user is not supposed to customize
the overall process.

This dissertation aims to advance the current state-of-the-art by conceptualizing a series
of recommender systems to support software developers. Furthermore, we also investigate
different types of adversarial attacks that these systems may encounter. Finally, we pro-
pose an MDE-based tool that automatizes the design, fine-tuning, and deployment of any
recommender system.

By relying on the experience gained in the CROSSMINER project, we elicit foundational
aspects of RSs that come in handy in defying essential components of a generic RS. We
investigate the feasibility of cutting-edge technologies applied to the RS domain, i.e., machine
learning, stochastic networks, and natural process languages (NLP) strategies, by proposing
recommendation systems to support developers in different SE tasks, including API function
calls, categorization of GitHub projects, and modeling activities.

Afterward, a tailored metamodel has been built to generate the actual system using
MDE-based technology, following the low-code paradigm to democratize the usage of the
RS. The proposed tool called LEV4REC is capable of resembling existing systems in terms
of different metrics.

Altogether, we elicit the fundamental components relying on the prior knowledge matured
in developing actual recommender systems. Such experience has been used to develop an

vi

MDE-based tool specifically conceived to reduce the overall effort for newcomers users who
do not have prior knowledge of such systems. Although there is still room for improvement,
all the proposed approaches in this dissertation succeeded in providing decent recommenda-
tions for the covered application domains, thus facilitating the completion of various software
engineering tasks.

Table of contents

List of figures xi

List of tables xv

1 Introduction 1
1.1 Identified challenges . 2
1.2 Research objectives . 3
1.3 Structure of the dissertation . 6

2 Literature review 7
2.1 Existing recommender systems for SE . 7

2.1.1 Filtering techniques to recommend API 7
2.1.2 Automatic approaches to classify OSS projects 9
2.1.3 Modeling assistant tools . 12

2.2 Democratizing the development of complex systems 15
2.2.1 Model-driven engineering and low-code development platforms . . 15
2.2.2 Supporting the automatic design of recommender system 16
2.2.3 Automatic machine learning . 18

3 A conceptual framework to develop RSSEs 21
3.1 RSSEs bird-eye architecture . 22
3.2 Main RSSE design features . 25
3.3 Evaluation metrics for RSSE . 30

3.3.1 Terminology . 30
3.3.2 Metrics . 31

3.4 Conclusion . 34

4 Recommending API function calls to support developers 35
4.1 FOCUS . 37

viii Table of contents

4.1.1 Motivation and background . 37
4.1.2 FOCUS architecture . 39
4.1.3 Evaluation . 47
4.1.4 Results . 59
4.1.5 Threats to validity . 69

4.2 LUPE . 70
4.2.1 Machine translation with Encoder-Decoder 70
4.2.2 LUPE architecture . 71
4.2.3 Evaluation . 77
4.2.4 Results . 81
4.2.5 Threats to validity . 91

4.3 Conclusion . 92

5 Categorizing GitHub projects 93
5.1 MNBN . 95

5.1.1 Motivation and background . 95
5.1.2 The MNBN approach . 98
5.1.3 Evaluation . 101
5.1.4 Results . 103
5.1.5 Threats to validity . 108

5.2 HybridRec . 109
5.2.1 HybridRec architecture . 109
5.2.2 Evaluation . 116
5.2.3 Evaluation process . 117
5.2.4 Results . 119
5.2.5 Threats to validity . 131

5.3 Conclusion . 131

6 Assisting modelers in specifying models and metamodels 133
6.1 MemoRec . 135

6.1.1 Motivation and background . 135
6.1.2 MemoRec architecture . 138
6.1.3 Evaluation . 146
6.1.4 Results . 149
6.1.5 Threats to validity . 157

6.2 MORGAN . 158
6.2.1 Graph kernel similarity . 158

Table of contents ix

6.2.2 MORGAN architecture . 159
6.2.3 Evaluation . 166
6.2.4 Experimental results . 173
6.2.5 Threats to validity . 186

6.3 Conclusion . 187

7 Challenges and lessons learned from the conceived RSSEs 189
7.1 Challenges and lessons learned related to requirements elicitation 190

7.1.1 Lessons learned . 193
7.2 Challenges and lessons learned related to development 195

7.2.1 Lessons learned . 201
7.3 Challenges and lessons learned related to evaluation 203

7.3.1 Lessons learned . 210
7.4 Conclusion . 212

8 An MDE-based methodology to engineering recommender systems 215
8.1 Supporting technologies . 216
8.2 The LEV4REC environment . 217

8.2.1 RS Feature Selection . 218
8.2.2 RS Feature Configuration . 220
8.2.3 RS Code Generation . 224
8.2.4 Deploying LEV4REC . 225

8.3 Use cases . 230
8.4 Evaluation strategies . 235

8.4.1 Research questions . 236
8.4.2 Datasets . 236
8.4.3 Metrics . 237
8.4.4 Automated evaluation . 237
8.4.5 Focus group evaluation . 238

8.5 Results . 240
8.6 Threats to validity . 247
8.7 Conclusion . 248

9 Adversarial Attacks to Recommender Systems in Software Engineering 249
9.1 Adversarial attacks to TPL RSSEs . 252

9.1.1 Motivation and background . 252
9.1.2 Proof of concept . 254

x Table of contents

9.1.3 Experimental results . 257
9.2 Adversarial attacks to API RSSEs . 259

9.2.1 Push attacks to API and code snippet RSSE 259
9.2.2 Study design and planning . 263
9.2.3 Results . 267
9.2.4 Threats to validity . 274
9.2.5 Discussions . 275

9.3 Conclusion . 278

10 Conclusion 279
10.1 Summary of the contributions . 279
10.2 Publications . 282
10.3 Future work . 287

References 291

List of figures

1.1 Dissertation conceptual map. 4

3.1 Bird-eye architecture of developed RSSEs. 23
3.2 Main design features of recommendation systems in software engineering. . 27

4.1 The FOCUS motivating example. 37
4.2 Overview of the FOCUS architecture. 40
4.3 Rating matrix for a project with 4 declarations and 4 invocations. 42
4.4 FOCUS IDE. 45
4.5 The data extraction process. 48
4.6 The extraction of data for a testing project. 50
4.7 Precision and recall curves obtained for the configurations. 63
4.8 Bivariate analysis of Precision and Cardinality. 64
4.9 Levenshtein distance for the set of 500 apps. 67
4.10 Results for evaluating the usefulness of the recommendations. 68
4.11 LSTM and Encoder-Decoder. 70
4.12 System architecture. 72
4.13 Method declaration–Method invocation pair. 73
4.14 Input and output API sequences for the example in Figure 4.1b and Table 4.7. 74
4.15 Training with reversed input sequence X=“4 21 8 5” and output sequence

Y =“4 15 23 27 55 81 41”. 75
4.16 Data encoding with matrix and tensor. 75
4.17 LUPE Precision with configuration C1. 82
4.18 LUPE Recall with configuration C1. 83
4.19 Combination of the scores from all the folds with configuration C1. 83
4.20 Combination of the scores from all the folds with configuration C2. 83
4.21 LUPE Precision with configuration C3. 84
4.22 LUPE Recall with configuration C3. 84

xii List of figures

4.23 Comparison between GAPI and LUPE. 86
4.24 LUPE Precision recall on D3. 89
4.25 LUPE Precision recall on D3S. 89

5.1 The longclaw repository from GitHub with different topics. 96
5.2 Overview of the proposed approach. 98
5.3 Distribution of the number of topics in the dataset. 103
5.4 The testing phase for a single project. 104
5.5 Success rate for c=2. 106
5.6 Success rate for c=5. 107
5.7 Success rate for c=8. 107
5.8 Overview of the HybridRec approach. 109
5.9 The ST component. 110
5.10 The CF component. 113
5.11 Graph representation for repositories and topics. 115
5.12 Evaluation process. 118
5.13 Success rate for D1 considering N = {1, . . . ,10}. 122
5.14 Success rate values for N = {1,5,10,15,20}. 123
5.15 Precision/recall curves. 124
5.16 Success rate on MVN Repository dataset. 126
5.17 Precision recall curve on the MVN Repository dataset. 127
5.18 Catalog coverage on the MVN Repository dataset. 127
5.19 The distribution of topics in the D1 dataset. 129

6.1 The illustrative UMLDSL metamodel. 136
6.2 The explanatory SPRINGBOOT model. 136
6.3 The explanatory APACHE STREEMS PROVIDER JSON Schema. 137
6.4 Overview of MemoRec’s architecture. 139
6.5 The Web metamodel data extraction. 141
6.6 Matrix representation of metamodels w.r.t. structural features and classes. . 143
6.7 Graph representation of metamodels and structural features. 144
6.8 Evaluation Process. 149
6.9 Dataset D1 . 153
6.10 Dataset D2 . 153
6.11 Average execution time. 153
6.12 The Bibtex metamodel. 154
6.13 The MORGAN architecture. 160

List of figures xiii

6.14 Example of a stemmed graph. 163
6.15 Dα dataset creation and overall evaluation process. 165
6.16 Dα features. 168
6.17 Dβ features. 168
6.18 Dγ features. 169
6.19 Dδ features. 169
6.20 Dε features. 170
6.21 Evaluation scores for recommending model classes. 175
6.22 Evaluation scores for recommending class members. 176
6.23 Evaluation scores for recommending metaclasses. 177
6.24 Evaluation scores for structural features. 178
6.25 Evaluation scores for recommending JSON root properties. 184
6.26 Evaluation scores for recommending JSON nested properties. 185

7.1 Map of challenges and lessons learned. 190
7.2 pom.xml files of a project before (left) and after (right) having adopted third-

party libraries recommended by CrossRec. 191
7.3 Recommended API calls for the getScoresFromLivescore() method in List-

ing 7.1. 193
7.4 Requirement definition process. 194

8.1 Overview of the proposed approach. 218
8.2 Overview of the proposed feature model. 219
8.3 The LEV4REC configuration metamodel. 221
8.4 The LEV4REC Dataset and DataStructure metaclasses. 222
8.5 The LEV4REC RecommenderSystem metaclass. 223
8.6 The LEV4REC ValidationTechnique metaclass. 223
8.7 The LEV4REC PresentationLayer metaclass. 225
8.8 Using LEV4REC RSs from IDEs. 226
8.9 The LEV4REC web-based editor architecture. 227
8.10 A fragment of the RS configuration form. 228
8.11 The DSL web editor. 229
8.12 Small fragment of the KNN specification. 231
8.13 Small fragment of the AURORA specification. 232
8.14 The evaluation process. 238
8.15 Precision of the KNN-based RS developed with LEV4REC. 241
8.16 Recall of the KNN-based RS developed with LEV4REC. 241

xiv List of figures

8.17 F1 score of the KNN-based RS developed with LEV4REC. 242
8.18 Precision of AURORA as developed with LEV4REC. 243
8.19 Recall of AURORA as developed with LEV4REC. 243
8.20 F1 score of AURORA as developed with LEV4REC. 244

9.1 Manipulation of library usages for a fake project. 255
9.2 The process of manipulating GitHub to promote malicious repositories. . . 263
9.3 Frequency of APIs in projects and declarations. 267
9.4 Number of papers for the related topics. 269

List of tables

3.1 The examined use cases. 24

4.1 Experimental configurations. 52
4.2 Task assignments to the evaluator groups. 56
4.3 Success rate of PAM and FOCUS. 59
4.4 Success rate (%) for k = {2,3,4,6,10} and N = {1,5,10,15,20}. 60
4.5 Performance gain (%) among the configurations. 61
4.6 Correlation (ρ) between cardinality and precision, N = {5,10,15,20,25}. . 65
4.7 Input, outputs APIs and their corresponding IDs. 74
4.8 Datasets. 78
4.9 Experimentation settings. 80
4.10 LUPE Success rate. 81
4.11 Percentage of definitions getting 0 as Levenshtein distance (%). 84
4.12 Results obtained by FACER on DS2. 87
4.13 RQ3: Success rate and percentage of recommendations getting 0 as Leven-

shtein distance (ρL) on DS3. 88
4.14 RQ3: Success rate and percentage of recommendations getting 0 as Leven-

shtein distance (ρL) on DS3. 88

5.1 The longclaw repository topics. 96
5.2 Example of repositories, their topics and the recommended topics. 105
5.3 Statistics . 105
5.4 Precision, recall, and top-rank. 108
5.5 The artifact-topic matrix for the example. 114
5.6 Datasets features. 118
5.7 Summary . 120
5.8 Success rate, precision, and recall. 120
5.9 Precision, recall with D1. 122

xvi List of tables

5.10 Catalog coverage. 125
5.11 Metadata used by the ST and CF components. 129
5.12 Configuration parameters of the ST and CF components. 130

6.1 Package-class feature rating matrix combined with SEc for the Web metamodel.142
6.2 Class-structural feature rating matrix combined with IEs for the Web meta-

model. 142
6.3 φ vectors for the metamodels depicted in Fig. 6.7. 145
6.4 sim1 matrix for the metamodels depicted in Fig. 6.7. 145
6.5 Datasets. 148
6.6 Success rate for structural feature recommendations, k = {1,5,10,15,20},

by considering the D1 dataset. 150
6.7 Success rate for class recommendations, k = {1,5,10,15,20}, by consider-

ing the D1 dataset. 151
6.8 Success rate, k = {1,5,10,15,20}, by comparing the adoption of D1 and D2 152
6.9 Precision values . 152
6.10 Recall values . 153
6.11 F-measure values . 154
6.12 Predicted recommendations for the Article metaclass and Bibtex package

of the metamodel in Fig. 6.12. 155
6.13 Success rate, precision and recall for class recommendations 157
6.14 Retrieved items for the UMLDSL metamodel. 165
6.15 Configuration settings. 172
6.16 Average prediction scores, Wilcoxon rank sum test adjusted p-values and

Cliff’s d results. 180
6.17 Timing performance on Dα (seconds). 181
6.18 Timing performance on Dβ (seconds). 181
6.19 Comparison between C1 and C3 considering Dα 182
6.20 Comparison between C1 and C3 considering Dβ 182
6.21 Evaluation scores for Dδ . 185
6.22 Evaluation scores for Dε . 186

7.1 RSSEs evaluation facts. 208

8.1 Statistics . 220
8.2 Overview of the examined datasets. 237
8.3 Participants to the focus group and their expertise. 239
8.4 Comparison with original results. 242

List of tables xvii

8.5 Identified themes and sub-themes using for the TAT methodology. 245

9.1 Notable RSSE for mining libraries and APIs. 253
9.2 Hit ratio @N for LibRec. 256
9.3 Hit ratio @N for CrossRec. 257
9.4 Notable RSSE for mining APIs and/or code snippets (Listed in chronological

order). 268
9.5 Keywords. 269
9.6 Hit ratio for the recommendations by UP-Miner. 273
9.7 Hit ratio for the recommendations by PAM. 273
9.8 Hit ratio for the recommendations by FOCUS. 273

Chapter 1

Introduction

Over the last decades, software developers have made use of reusable components to ease
the burden of reimplementing complex functionalities from scratch. Despite the availability
of a huge amount of data, users have experienced the so-called over-choice problem, thus
getting frustrated by the impressive solution space that is still growing. In this respect, the
proliferation of cutting-edge technologies can reduce the burden of choice by automatiz-
ing the required activities, i.e., requirements gathering, system design, algorithm selection,
and evaluation of the system. In particular, recommender systems in software engineering
(RSSEs) are at the forefront of supporting users in this decision task by retrieving lists of
suitable items starting from an initial context [89, 213, 220]. Though being useful, these
systems necessitate deep knowledge of different technologies as well as extra-development
activities bounded by specific programming languages. Moreover, developers are not al-
lowed to personalize them to address specific SE tasks, possibly uncovered by the existing
techniques. Therefore, frameworks that guide developers in specifying the whole recom-
mender pipeline from scratch are gaining momentum, pushing toward the automation of the
entire design flow that includes the actual development and the assessment of the produced
system [13, 19, 123, 280]. To this end, the majority of them exploits machine-learning (ML),
artificial intelligence (AI), and low-code development platforms (LCDP) to simplify the
development of complex software systems. On the one hand, such frameworks offer a set of
utilities to allow for the customization of every aspect of the process through user-friendly
configuration interfaces. On the other hand, the support for the constraints specification at
design time is not fully covered. More importantly, while effort has been made to make
recommender systems more accurate, the issue of protecting them from adversarial attacks
has been greatly neglected [187, 188].

This dissertation is threefold. First, we conceived a series of RSSEs to assist developers
in their daily tasks, providing them with various artifacts such as code snippets or metamodel

2 Introduction

components. Moreover, we present a generic framework to conceptualize generic RSSEs by
relying on the experience gained under the umbrella of the CROSSMINER [67] concerning
the challenges and lessons learned from the development of these systems. The experiences
gained from the developed RSSEs allow us to elicit components and process that are common
in the recommender system development process. Second, the conducted conceptualization
eventually culminates in the development of an MDE-based tool, named LEV4REC [73],
aiming to facilitate the design and the deployment of such systems. Third, we present an
initial investigation on possible adversarial attempt to harm RSSEs [187, 188], triggering the
need for proper countermeasures.

1.1 Identified challenges

Even though several solutions are in place, supporting the development of RSs poses a set of
challenges and issues that are not covered yet. In the scope of this dissertation, we identified
the following challenges:

• CH1: Analyzing and parsing complex software project. The knowledge needed to
manipulate an API can be extracted from various sources: the API source code itself,
the official website and documentation, Q&A websites such as Stack Overflow, forums
and mailing lists, bug trackers, other projects using the same API, etc. However,
official documentation often merely reports the API description without providing
non-trivial example usages. Besides, querying informal sources such as StackOverflow
might become time-consuming and error-prone [218]. Also, API documentation may
be ambiguous, incomplete, or erroneous [263], while API examples found on Q&A
websites may be of poor quality [173].

• CH2: Mining and preprocessing textual data from GitHub. Over the last decade, open-
source software repositories have gained a prominent role in storing and managing
software projects. Different kinds of artifacts, including source code, mailing lists,
bug tracking systems, and documentation, are stored and managed homogeneously
employing powerful technologies. In such a context, GitHub is playing the role of
forefront platform managing more than 190M repositories, with more than 28M of
them being available to the public. Even though there are dedicated APIs, extracting
the repositories’ data is still challenging due to several issues, e.g., limitations in the
number of the requests, heterogeneous source of information, to name a few.

• CH3: Encoding model and metamodels features. During their daily tasks, modelers
might expect to get recommendations consisting of relevant metaclasses or structural

1.2 Research objectives 3

features that can be further integrated. However, due to a huge amount of available
resources, searching for suitable artifacts is a daunting task. Under the circumstances,
we see an urgent need for suitable machinery to mine and encode data from open
source platforms such as GitHub. Among others, we are interested in finding which
packages and metaclasses can be added to the metamodel under development, given
that other packages and metaclasses are already defined.

• CH4: Understanding how recommender systems can be deceived. While these systems
have proven to be effective in terms of prediction accuracy, there has been less attention
for what concerns such recommenders’ resilience against adversarial attempts. In fact,
by crafting the recommenders’ learning material, e.g., data from large open-source
software (OSS) repositories, hostile users may succeed in injecting malicious data,
putting at risk the software clients adopting API recommender systems.

• CH5: Supporting the design and deployment of generic recommender systems. While
the issue of designing and implementing generic recommender systems has been
carefully addressed by state-of-the-art studies [207, 220], there is a lack of proper
references for the design of generic recommendation systems. Being built on top
of various components, including data preprocessing, choice of suitable algorithms,
item delivery, RSs can ease the curse of information overload, enabling developers
to approach the most relevant artifacts while they are coding. Nevertheless, existing
approaches resemble black-box systems, where the end-user is not allowed to customize
the overall process. In this respect, there is the urgent need for proper tools to help
developers design, build and evaluate their own RSs.

1.2 Research objectives

The conceptual map depicted in Figure 1.1 summarizes the content of this dissertation in
terms of challenges and proposed solutions.

RO1: Supporting developers with API function calls. While implementing software
projects, developers do not reinvent the wheel but try to reuse existing API calls and source
code. In recent years, the problems related to recommending APIs and code snippets have
been intensively investigated. Although current approaches have achieved encouraging
performance, there is still the need to improve the recommendation process’s effectiveness
and efficiency. To this end, we exploit a context-aware collaborative filtering technique to
retrieve relevant API function calls by encoding the mutual relationships among projects using

4 Introduction

CH1 CH2

Modeling API function
call

GitHub
categorization

CH3

RO3

Leads
to

MORGANMemoRec

Achieved
 by

RO1

Leads
to

LUPEFOCUS

Achieved
by

RO2

Leads
to

HybridRecMNBN

Achieved
 by

CROSSMINER
RSSEs

CH5

RO5

Leads
to

Poisoning
API RSs

Poisoning
TPLs RSs

Achieved
 by

CH4

RO4

Leads
to

Achieved
 by

Adversarial
attacks

Automatic
design of RS

Challenge

Research
objective

Tool/Approach

Legend

Topic

LEV4REC

CH1 CH2

Fig. 1.1 Dissertation conceptual map.

a tensor and mined API usage from the most similar projects. Furthermore, we investigated
the usage of sequence-to-sequence neural networks to overcome some well-known issues of
deep learning approaches, i.e., setback in timing efficiency [145], and less efficiency when
dealing with a long list of APIs.

RO2: Categorizing GitHub projects by exploiting textual content. The platform offers
developers the possibility to classify the stored artifacts by means of topics, i.e., it introduced
the possibility of labeling the stored repositories only in 2017 to help developers increase the
reachability of their repositories. The assigned labels allow users to characterize projects, e.g.,
with respect to the provided functionalities and employed technologies. However, assigning
wrong labels to a given repository can compromise its popularity [37], and even worse,
prevent developers from finding projects that they might be willing to contribute. We propose
a multi-label classifier based on Multinomial Naive Bayesian network that is capable of
recommending featured GitHub topics given the README file. Even though it works in
practice, it suffers from some issues, i.e., the approach cannot handle unbalanced data. To
overcome such limit, we combine an enhanced version of the network with a collaborative
filtering technique, thus increasing the coverage of the suggested items.

1.2 Research objectives 5

RO3: Supporting the specification of models and metamodels. Recently, cutting-edge
technologies such as neural networks and NLP techniques have attracted considerable
attention from the modeling community [42, 284] as they promote the usage of the so-
called intelligent modeling assistants (IMAs) [171]. Altogether, this aims to facilitate the
completion of models by providing modelers with insightful artifacts, such as attributes or
relationships. Nevertheless, there is still the need to support the automation of modeling
activities by offering a convenient way to specify metamodels and models, especially for
modelers who are less experienced and need more informative suggestions to complete the
tasks at hand. We support the model completion tasks by conceiving two IMAs based on
different techniques, i.e., graph kernels and context-aware collaborative filtering algorithm.

RO4: Measuring the impact of adversarial attacks in RSs. Research on Adversarial
Machine Learning [114, 262] (AML) studies security issues in Machine Learning systems as
well as general-purpose recommender systems [62]. So far, AML has been investigated in
different domains, e.g., online systems [164], image classification [174], and addresses both
threats and countermeasures [18, 277]. However, to the best of our knowledge, the issue of
AML in recommender systems remains unexplored in software engineering. We provide two
empirical investigations into the relevance and effects of AML in recommender systems for
software engineering (RSSE) by considering two different application domains, i.e., TPL
and API recommender system. In the former study, we measure to what extent existing TPLs
recommenders are prone to malicious attacks. Similarly, in the second study we experiment
with three different API RSSEs by poisoning their training data to measure the impact of the
fake APIs in the recommendation list.

RO5: Simplifying the customization and the deployment of RSs using MDE paradigm.
While RSs are becoming ubiquitous, we believe that it is necessary to ensure that the next
generation of engineers will have a clear understanding of the fundamental techniques and
tools underpinning the development. Such engineering process necessitate deep knowledge
of different technologies as well as extra-development activities bounded by specific pro-
gramming languages. To cope with these limitations, frameworks that drive the developer in
specifying from scratch the whole recommender pipeline are flourishing, pushing toward the
automation of the entire design flow that includes the actual development and the assessment
of the produced system [13, 19, 280, 123]. On one hand, they offer a set of utilities that
allow the customization of every aspect of the process through user-friendly configuration
interfaces. On the other hand, the support for the constraints’ specification at design time
is not fully covered. First, we elicit common features and components by relying on the

6 Introduction

experience gained in the CROSSMINER EU project, in which we developed a set of recom-
mender systems to support several SE tasks. Afterward, we present an automatic approach
to assist the developer during the specification, fine-tuning, and deployment of a custom
recommender system.

1.3 Structure of the dissertation

Chapter 2 overviews notable recommender systems that support different SE tasks and
approaches that simplify the development of complex software systems. In Chapter 3,
we present a conceptual framework for developing RSSEs by eliciting notable challenges.
Furthermore, we report the gained experience in the frame of the CROSSMINER EU in
terms of developed RSSEs. Afterward, we present in Chapter 4 two recommender systems,
i.e., FOCUS and LUPE, that retrieve relevant API function calls given the active context.
Similarly, Chapter 5 and Chapter 6 show our conceived solutions to categorize GitHub
projects and support modeling activities respectively. Chapter 7 discusses challenges and
lessons learned from RSSEs. Chapter 8 describes LEV4REC, an MDE-based tool that
facilitates the design, the fine-tuning, and the deployment of RSs by relying on specifically-
conceived modeling artifacts. We assess both quantitative and qualitative aspects of the tools
by conducting two different evaluations, aims at discussing the strengths and limitations
of the proposed solution. In Chapter 9, we present two initial investigations in the field of
adversarial attacks by considering two types of recommended items, i.e., TPLs and API
function calls. We eventually conclude the dissertation in Section 10 by summarizing the
contributions of this work and envisioning possible future work in the domain.

Chapter 2

Literature review

2.1 Existing recommender systems for SE

2.1.1 Filtering techniques to recommend API

Acharya et al. [10] present a framework to extract API patterns as partial orders from client
code. To this aim, control-flow-sensitive static API traces are extracted from source code
and sequential patterns are computed. Our approach is able to recommend both a list of
API calls and related source code. Zhong et al. implemented MAPO, a tool to retrieve API
usage patterns from client projects [298]. MAPO extracts API usages from source files,
and groups API methods into clusters. Afterwards, it mines API usage patterns from the
clusters, ranks them according to their similarity with the current development context, and
eventually suggests code snippets to developers. Similarly, UP-Miner [276] extracts API
usage patterns by relying on SeqSim, a clustering strategy that reduces patterns redundancy as
well as improves coverage. While these approaches are based on clustering techniques, and
they consider all client projects in the mining regardless of their similarity with the current
project, FOCUS narrows down the search scope by looking into similar projects. PAM
(Probabilistic API Miner) mines API usage patterns based on a parameter-free probabilistic
algorithm [83]. The tool uses the structural Expectation-Maximization (EM) algorithm to
infer the most probable API patterns from client code.

NCBUP-miner (Non Client-based Usage Patterns) [228] is a technique that identifies
unordered API usage patterns from the API source code, based on both structural (methods
that modify the same object) and semantic (methods that have the same vocabulary) relations.
The same authors also propose MLUP [227], which is based on vector representation and
clustering, but in this case client code is also considered.XSnippet [224] suggests relevant
code snippets starting from the developer’s context. The system invokes different queries that

8 Literature review

consider both the parents of the class and the lexical visible type. Then, queries computed
in such a way are passed to a module that mines relevant paths by relying on a graph-based
structure. The ranking module eventually ranks the obtained snippets by employing six
different heuristics.

DeepAPI [101] is a deep-learning method used to generate API usage sequences given a
query in natural language. The learning problem is encoded as a machine translation problem,
where queries are considered the source language and API sequences the target language.
Only commented methods are considered during the search. The same authors [102] present
CODEnn (COde-Description Embedding Neural Network), where, instead of API sequences,
code snippets are retrieved to the developer based on semantic aspects such as API sequences,
comments, method names, and tokens.

Strathcona [111] is an Eclipse plug-in that extracts the structural context of code and uses
it as a query to request API usages from a remote repository. The system performs the match
by employing six heuristics associated to class inheritance, method calls, and field types. In a
similar fashion, the technique proposed by Buse and Weimer [43] synthesizes API examples
for a given data type. An algorithm based on data-flow analysis, k-Medoids clustering and
pattern abstraction is designed. Its outcome is a set of syntactically correct and well-typed
code snippets where example length, exception handling, variables initialization and naming,
abstract uses are considered.

MUSE (Method USage Examples) is an approach proposed by Moreno et al. [167] to
recommending code examples a given API method. MUSE extracts API usages from client
code, simplifies code examples with static slicing, and detects clones to group similar snippets.
It also ranks examples according to certain properties, i.e., reusability, understandability, and
popularity.

SWIM (Synthesizing What I Mean) [208] seeks API structured call sequences (control
and data-flows are considered), and then synthesizes API-related code snippets according
to a query in natural language. The underlying learning model is also built with the EM
algorithm. Similarly, Raychev et al. [211] propose a code completion approach based on
natural language processing, which receives as input a partial program and outputs a set of
API call sequences filling the gaps of the input. Both invocations and invocation arguments
are synthesized considering multiple types of an API.

Thummalapenta and Xie propose SpotWeb [257], an approach that provides starting
points (hotspots) for understanding a framework, and highlights where examples finding
could be more challenging (coldspots). Other tools exploit StackOverflow discussions to
suggest code snippets and documentation [54, 202, 204, 209, 217, 254, 261].

2.1 Existing recommender systems for SE 9

GAPI [145] suggests API usage by relying on a graph neural network with the GRU
attention mechanism. As the first step, GAPI encodes both high-order API call interactions
and software project structural information. Then, GRUs are used to embed the extracted data
in the graph-based format. GAPI recommends a list of API usage ranked by their similarity.

Similarly, FACER [9] has been proposed to support Android developers by retrieving
API usage for opportunistic reuse. Given a set of open source Java projects, FACER builds a
code fact repository that contains the methods’ textual body, call graphs, and API usages.
Afterward, a clustering technique based on Lucene is employed to retrieve the unique features
based on the API similarity. FACER eventually recommends a list of function call usages
using frequent pattern mining strategy.

Even though the aforementioned approaches work in practice, there is still room for
improvement in terms of offering cohesive API function call. In this respect, this dissertation
presents two different API RSSEs i.e., FOCUS and LUPE. In particular, FOCUS exploits a
context-aware collaborative filtering technique to provide relevant API code snippets. The
conducted evaluation shows that our tool outperforms two notable approaches, i.e., UP-Miner
and PAM. We go a step further with LUPE by proposing a sequence-to-sequence neural
network to recommend cohesive API function calls. Similar to FOCUS, LUPE has been
compared with both GAPI and FACER to showcase its contributions.

2.1.2 Automatic approaches to classify OSS projects

Before the introduction of topics, GRETA (Graph-Based Tag Assignment for GitHub Reposi-
tories) was the very first attempt to automatize GitHub tagging [44]. This approach exploited
two concepts, namely ETG (entity-tag graph) and a random walk with a restart algorithm.
The former is a graph that uses StackOverflow and GitHub data. In contrast, the latter is
an algorithm that iteratively explores the global structure of the network to estimate the
proximity (affinity score) between two nodes. This aims to build the graph by linking GitHub
repositories with StackOverflow posts which share user and lexical similarities. Afterwards,
tags are propagated using the walk algorithm.

Repo-Topix [84] was released right after the introduction of GitHub topics as a means to
automatically recommend topics by relying on README files and the textual content of a
given repository. Standard NLP techniques and a regression model have been applied at the
early stage of the process to exclude biased terms from the recommendation process. In addi-
tion, the tool makes use of an adapted version of the Jaccard distance to enhance the quality
of retrieved items further. Repo-Topix has been preliminarily evaluated using the n-gram
ROUGE-1 metrics to count the number of overlapping terms between the recommendation
items and the original repository description.

10 Literature review

Recently, Izadi et al. [120] proposed Repologue, a multi-label classification tool that
combines various state-of-the-art classifiers, i.e., MNB, logistic regression, FastText, and
DistilBERT. The first step involves topic augmentation using hand-written association rules to
derive more information from a given repository and its tags. Then, Repologue compares the
mentioned models employing several word embeddings techniques to discover the best one.
GHTRec [299] exploits the BERT model to recommend personalized trending repositories1

by using GitHub topics. First, the underpinning neural network is fed with preprocessed
README files to predict topics given a repository. Afterwards, the system captures the
user’s topic preferences by relying on its commits. The retrieved list is eventually reranked
by computing two similarity methods on the topic vectors, i.e., cosine similarity and shared
similarity between the developer and a trending repository.

Sally [270] is an automated approach aiming to categorize Maven projects by relying on
bytecode analysis and tags extracted from StackOverflow. Given a JAR file as the input, the
tool obtains relevant data related to the project, i.e., class names, class fields, and method
names. Such results are filtred considering tags excerpted from StackOverflow. In parallel,
a weighted graph is computed to identify and encode project dependencies. Then, primary
tags are computed by considering only the input project. In contrast, the weighted graph is
used to obtain dependencies’ tags. These two kinds of tags are combined to retrieve final
recommendations in a tag cloud format.

Velázquez-Rodríguez and De Roover [272] have recently proposed MUTAMA, an auto-
mated multi-label tagging approach to support Maven projects. Different from our approach,
the project’s tags are extracted from bytecode, employing a well-founded tool. For each
project, the tool takes as the input a pair of groupId-artifactId-version and the corresponding
set of tags. In such a way, MUTAMA learns which projects have been tagged similarly by
considering the Java classes and methods employed. Then, several machine learning algo-
rithms provided by the MEKA tool are fed with the extracted tags and the vectors obtained
from the analyzed source code.

Zhang et al. [294] solved the task of keyword-driven hierarchical classification, proposing
a tool with three main modules as follows: (i) HIN (Heterogeneous Information Network)
construction and embedding; (ii) key-word enrichment; and (iii) topic modeling and pseudo
document generation. During the first step, HIN creates a graph to capture all the interactions
between the core elements of GitHub repositories, like Users, Words, Names, to name a few.
The keyword enrichment step is devised to cope with the problem of scarcity and bias of the
keyword provided by users. The machinery in the last step is employed to feed a classifier
with pre-labeled repositories and the overfitting related to the usages of the keywords only.

1https://github.com/trending

https://github.com/trending

2.1 Existing recommender systems for SE 11

The tool has been tested on two different datasets, a machine learning taxonomy with 1,600
examples and a bioinformatics one with 876 projects.

LabelGit [232] is a dataset for the classification of Java software projects. The authors
proposed an approach to excerpt information directly from source code and dependency
graphs. The former is obtained by a combination of techniques like code2vec and fastText,
while the latter is a graph describing the dependencies between classes. Similarly, Classi-
fyHub [245] is a GitHub projects classification algorithm based on ensemble learning. The
approach has been evaluated on a dataset consisting of 681 projects and obtained a precision
of about 60% and a recall of 58%.

With Lascad (Language-Agnostic Software Categorization and Similar Application
Detection) [16], the authors proposed a tool based on information retrieval techniques,
i.e., LDA (Latent Dirichlet Allocation) and hierarchical clustering. First, the tool extracts
terms from the dataset’s source code, followed by a refining phase where stop words and
similar code-specific terms are removed. The second step is the most important one; LDA
is applied on the terms corpus to get the topics, then these topics are grouped by using
the hierarchical clustering technique. Finally, projects are assigned to each group and then
labeled. Based on this result, during the third step, given an application as input, LASCAD
retrieves corresponding software ranked by similarity.

Five different machine learning algorithms have been used to classify OSS projects [144],
i.e., SVM, Naive Bayesian, Decision Tree, and IBK classifier. The training phase for each
model relies on bytecode analysis performed by JClassInfo, a well-founded tool. Each
model is fed with API methods, classes, and packages excerpted from 3,286 projects labeled
belonging to SourceForge. The results show that SVM outperforms the other models in terms
of precision, recall, and success rate.

Wang et al. [279] propose a tag recommendation based on a semantic graph (TRG) to
classify projects extracted from two OSS communities, i.e., OhLoh and Freecode. The first
step is to analyze semantic correlations between the software description and tags and encode
them in a hierarchical graph. Then, a list of tags is retrieved given an input project by relying
on the constructed graph. TRG eventually ranks the final list of recommendations according
to their probability.

An agglomerative hierarchical clustering for taxonomy construction name AHCTC has
been proposed [143] to categorize software projects stored on the OhLoh platform. To this
end, the approach integrates the technique mentioned above with a topic model based on
the well-established LDA algorithm to identify thematic spaces composed of similar tags.
Finally, the proposed clustering technique can extract the most central tag from the thematic
space to classify the given project properly.

12 Literature review

At the time of development, none of the reviewed approaches offers a comprehensive
replication package, thus preventing us to compare our first contribution in the domain,
i.e., the MNBN approach. Afterward, we enhance the overall performance by developing,
HybridRec, the first hybrid RSSE that combines different algorithms for categorizing OSS
repositories.

2.1.3 Modeling assistant tools

The Extremo Eclipse plugin [166] supports modeling activities by analyzing information
sources obtained from different resources, i.e., Ecore, XMI, RDF, OWL files. Extremo
uses such excerpted data to build a common data model by mapping relevant entities. The
underpinning query mechanism allows users to customize and refine the retrieved entities by
following two styles, i.e., predicate-based or custom.

Dupont et al. [77] propose a domain-specific modeling (DSM) environment to assist the
specification of models in Papyrus. Given a UML profile, the tool exploits the EMF generator
to map each profile metaclass to a concrete Java class. Afterward, the generated Papyrus
plugin is used to define custom DSL using a tooling palette to specify graphic components.
The proposed environment can be further extended by including different features, e.g.,
proactive triggering, fine-grain palette customizations, or suggestions to complete the input
UML profile, to list a few.

AVIDA-MDE [93] supports the generation of behavioral models starting from the re-
quirements specification by using a digital evolution strategy. Given a well-defined set of
parameters and an initial model, the tool elicits instinctual knowledge elements and constructs
new transitions to support scenarios and meet the specified constraints. The resultant model
is eventually evaluated using a robot navigation system as the testing scenario.

With the aim of supporting the definition of Atom3 models, Sen et al. [238] devise a
model assistant based on a constraint logic program (CLP) strategy. The proposed approach
induces the complete model using a set of constraints expressed in Prolog. Afterward, the
user can customize such generated model by relying on a domain-specific editor. The system
eventually solves the specified constraints to produce the final model, which can be decorated
with additional elements manually specified by the designer.

The ASketch tool [278] is capable of completing Alloy partial models using automated
analysis. Given the input model, the interpreter extracts relevant information using a tailored
parser. In such a way, a list of possible abstract candidates is generated and ASketch can find
possible solutions by employing an SAT solver. The system eventually fills the model under
construction with concrete candidate fragments such that predefined tests, i.e., unit testing,
test execution.

2.1 Existing recommender systems for SE 13

Batot and Sahraoui [26] formulate the design of a modeling assistant as a multi-objective
optimization problem (MOOP). The system employs the well-known NSGA-II algorithm to
search for partial metamodels given a predefined initial set by using the Pareto concept. It
helps modelers to complete the delivered models using coverage degrees and pre-defined
minimality criteria. Besides textual format specifications, models can be outlined by means
of graphical tools, e.g., DIA or Visio. An interactive approach to metamodel construction has
been proposed in [152]. Given a model fragment expressed using graphical tools, the system
can suggest relevant elements that can be employed to complete the model-under-construction
by using well-known refactoring strategies, quality issues for the conceptual scheme, model
design patterns, and antipatterns. The system assesses the quality of this initial version
against model examples. The validated model is eventually compiled into a given technology,
ie EMF or METADEPTH. Similarly, Kuschke et al. [137] present a pattern-based approach
to recommend relevant completions for structural UML models. Each user operation triggers
an event in which the detailed information is detected. The tool retrieves a set of ranked
activity candidates (AC) which supports modelers during model editing.

Given an incomplete Simulink model, the SimVMA prototype[249] integrates ML, MDE,
and software cloning to provide (i) a complete model; or (ii) single edit operation on the
incomplete model. To this end, the tool employs code cloning techniques and an ML model
to identify potential similar candidates by examining past usage statistics of existing models.

Recently, an NLP-based architecture for the autocompletion of partial models has been
presented [42]. Given a set of textual documents related to the initial model, relevant terms
are extracted to train a contextual model using the basic NLP pipeline, i.e., tokenization,
splitting, and stop-word removal. Afterward, the system is fed with the model under con-
struction to automatically slice it following a set of predefined patterns used to search for
recommendations. Modelers can give feedback which can be used to update the model
and improve the recommendations. A pre-trained neural network was used to recommend
relevant metamodel elements, i.e., classes, attributes, and associations [284]. Such data is
encoded in tree-based structures that are masked using the well-founded RoBERTa model
language architecture plus an NLP pipeline. This preprocessing is needed to obtain an
obfuscated training set that are used by the network to produce the outcomes. DoMoBOT
[230] combines NLP and a supervised ML model to automatically retrieves domain models
from the textual content using the spaCy tool. After the preprocessing phase, the predictive
component uses the encoded sentences to retrieve similar model entities and generate the
final domain model.

MAR [147] employs a query-by-example approach to search for similar metamodels/-
models. First, model structure is encoded as bags of paths before being indexed and stored

14 Literature review

on Apache HBase. Given a model, MAR uses it as a query to search for similar artifacts
using a similarity score. Though modelers can learn by inspecting similar metamodels, they
have to manually examine the results to extract useful information.

In collaborative modeling, Barriga et al. [24] propose the adoption of an unsupervised and
Reinforcement Learning (RL) approach to repair broken models, which have been corrupted
because of conflicting changes. The main intent is to potentially reach model repairing with
human-quality without requiring supervision.

To allow developers to design solutions that solve machine learning-based problems by
automatically generating code for other technologies as a transparent bridge, a language and
a technology-independent development environment are introduced in [87]. A similar tool
named OptiML has been proposed [252], aiming to bridge the gap between ML algorithms
and heterogeneous hardware to provide a productive programming environment.

Mussbacher et al. [170] conducted an initial investigation on Intelligent Modeling Assis-
tants (IMAs) using a comprehensive assessment grid. To elicit critical IMAs features, the
authors analyzed the well-founded Reference Framework for Intelligent Modeling Assistance
(RF-IMA). The main finding of the work is that existing IMAs obtain low scores in the
extracted features and they can be further enhanced in terms of performance as well as in the
underpinning structure.

Breuker [40] reviews the main modeling languages used in ML as well as inference
algorithms and corresponding software implementations. The aim of this work is to explore
the opportunities of defining a DSML for probabilistic modeling.

To support the completion of UML diagrams, a model assistant based on the Doc2Vec
strategy has been proposed to recommend domain-specific concepts extracted from source
code [45]. First, the approach extracts class diagrams from a curated corpus of Java projects
using the reverse engineering strategy. Then, the relevant features are embedded in the
Doc2Vec model by exploiting the Glove library to retrieve similar documents given the input
context, i.e., a model under construction. The modeler can eventually complete the partial
model by using domain-specific concepts extracted from the list of candidate documents.

With respect to the aforementioned approaches, MemoRec is the first tool that applies
the context-aware collaborative filtering technique to support metamodeling activities. Fur-
thermore, four different encoding schemes were conceived to enhance the recommendations’
capabilities. This dissertation further contributes to the domain by presenting MORGAN,
a recommender system based on graph kernels to support the completion of both models
and metamodels. Even though it suffers from scalability issues as reported in the dedicated
chapter, it was the first approach that employs dedicated parsers to encode three different
types of modeling artifacts, i.e., metamodels, models, and JSON schema.

2.2 Democratizing the development of complex systems 15

2.2 Democratizing the development of complex systems

2.2.1 Model-driven engineering and low-code development platforms

Over the past decades, several strategies have been proposed to automatize the development
of complex systems. Model-driven engineering (MDE) [39] makes use of models as first-
class artifacts to facilitate the overall development lifecycle and increase productivity by
introducing automation [117, 126]. In this context, a model is an abstraction of real world
entities that synthesizes their crucial features. Meanwhile, a metamodel is a further abstraction
that contains statements about the constructs used in models. Roughly speaking, a model
conforms to a metamodel if the former is built on top of the concepts defined by the latter.

MDE practitioners specify different types of models to simulate, maintain, and generate
code for the system. Nonetheless, the application of this paradigm is not limited to code
generation. For instance, a particular application domain can be described by relying on
Domain-Specific Languages (DSLs), specifically conceived to represent domain-specific
entities.

Low-Code Development Platforms (LCDPs) have been recently introduced to simplify
the development of fully functional software systems employing advanced graphical user
interfaces and visual abstractions requiring minimal or no procedural code [214]. The main
goal of LCDPs is to permit users to build their software systems even if they do not have
advanced programming skills [281, 225].

A report provided by the Forrest Industry [215] highlights the main LCPD market
segments and vendors as well as possible future evolution in this field. Besides the afore-
mentioned benefits and advantages, low-code development requires at least medium level
programming skills to properly develop the requested application as well as design process
experiences to integrate the different tasks. Concerning the market segments, they are divided
by considering the type of application and expected goals i.e., general-purpose, process
apps, database, request-handling, and mobile apps. The majority of them cover the general-
purpose applications and supports several types of software systems as well as their life-cycle
management [226]. Platforms for process apps aim to handle collaboration and coordination
among different people in very large companies. LCDPs for the database segment allow us
to handle, manipulate, and retrieve data from relational databases in a user-friendly manner
without handling the entire application workflow. Request-handling low-code platforms are
used to handle custom processes for different departments within a company and to manage
requests for services. Similarly to process app development, these platforms must address
the integration among various entities and provide self-service functionalities. LCDPs for
developing mobile apps include strongly dedicated functionalities i.e., mobile middleware

16 Literature review

and different widget. Concerning future trends, the segment of the mobile app development
will disappear [215]. Recently, LCDPs have been used to support the development of Internet
of Things (IoT) applications. In [119], the authors identify a set of features needed to develop
IoT applications in a low-code way by reviewing 17 different low-code platforms based on
the MDE paradigm. The results show that the examined platforms have some limitations i.e.,
lack of standards and limited support for testing. Pantelimon et al. [198] propose NETIot, a
low-code platform to design, configure, and test heterogeneous IoT devices. Even though
LCDPs and MDE are close conceptually, not all low-code approaches are model-driven [75].

2.2.2 Supporting the automatic design of recommender system

Elliot [19] provides RS designers with a practical means to design, implement, and evaluate a
recommender system. Starting from a configuration file written in YAML, the tool produces
the desired system by supporting all the needed phases, i.e., dataset loading, filtering, splitting,
or retrieving recommendations. To this end, Elliot offers different models that the user can
modify by selecting splitting rules, parameters, and evaluation metrics. The system eventually
retrieves the outcomes for each system.

Almonte et al. [11] present a generic low-code approach to simplify the development
of an RS by employing model-driven engineering. Starting from a predefined metamodel,
the system can generate a model and a DSL that expresses relevant concepts to configure
the building blocks of an RS. To generate the results, the proposed DSL is built on top of
the RankSys external library [265] that provides all the necessary utilities to create, execute
and test collaborative filtering RSs. The same authors propose DROID, a model-based tool
that makes use of a dedicated DSL to configure and deploy different RSs into modeling
frameworks [13]. The first step is the definition of the key operations needed to conceive
the system, i.e., candidate recommender methods, the training dataset, and the evaluation
metrics. Afterward, the system automatically evaluates each recommendation method using
the specified metrics. DROID eventually synthesizes an RS service that can be integrated
into different modeling tools.

Recently, the Lavoisier tool has been conceived to automate the data management pipeline
typically employed in data analysis applications [59]. By relying on a textual DSL specified
through Xtext, the Lavoisier language allows the user to specify the mining algorithm that is
used to extract data in a tabular format. To this end, the proposed approach offers high-level
primitives to select and rearrange any specific-domain data. In such a way, the low-level data
transformation operations are completely handled by Lavoisier that produces tabular datasets
ready to be digested by mining algorithms with less effort.

2.2 Democratizing the development of complex systems 17

RECOLIBRY SUITE [123] drives the user during the design and deployment of a rec-
ommender system from scratch by exploiting a set of existing intelligent tools. The design
phase is supported by the RECOLIBRY-CORE component that offers a catalog of ready-to-use
recommender algorithms, i.e., collaborative filtering, machine learning-based strategy. Once
the user has selected the system architecture, the deployment phase is realized by using
RECOLIBRY-STUDIO application that allows the specification of the desired system in terms
of input and output. Both the aforementioned intelligent components make use of a common
ontology to verify possible constraints on the specified system components. Reco server

component eventually deploys the system as an external web service that can execute the
generated code.

Mettouris et al. [161] proposed UbiCARS, a model-driven framework to support the de-
velopment of Ubiquitous Context-Aware Recommender Systems in the e-commerce domain.
First, the authors defined a custom domain-specific modeling language (DSML) to express
notable concepts in the context-aware recommender system domain, e.g., user feedback,
purchase history, and rating. The system eventually generates seven different datasets for
e-commerce and captures implicit feedback by relying on a web interface. Like DROID,
UbiCARS is limited to a specific class of recommendation system, i.e., context-aware ones.

A recurrent neural network (RNN) based on the Gated Recurrent Unit (GRU) technique
has been used to design a general-purpose recommender system [134]. The approach employs
ontologies to represent users’ profiles by collecting external knowledge. The extracted data
is then used to feed the underpinning model to produce a recommender system that fulfills
the user’s specification.

Recently, the AutoRec platform [280] has been proposed to automatize the deployment
of RSs based on deep neural networks. The system uses TensorFlow to implement a highly
flexible pipeline that allows for model selection and hyperparameter tuning. AutoRec exposes
all the supported utilities using a user-friendly API to build the designed system. Similarly,
Auto-Surprise [17] tool is built on top of the Surprise Python library to automatize the
selection and the evaluation of 11 different algorithms implemented by the library, e.g., SVD,
KNN-means to name a few. The approach employs a sequential model-based optimization
strategy that evaluates the algorithms mentioned above in parallel to select the best one given
the initial configuration.

To properly support the user during the specification of the system, such tools needs to
be integrated in a proper environment, e.g., IDE, web-based services, or tailored frameworks.
Extremo [166] is a recommender system to support modeling activities integrated as an
Eclipse plugin that relies on heterogeneous information obtained from different sources. A
common data model is devoted to displaying this information in a dedicated repository IDE

18 Literature review

view. Users can browse and filter the results employing a search wizard component. Extremo
can eventually be used to create DSLs for tailored domains. Similarly, a Papyrus plugin [77]
aims to assist modelers in designing domain-specific models that conform to the OMG UML
2 standard. By relying on an EMF generator model, and UML profiling, the deployed plugin
can generate the corresponding Java code given the model specification. Furthermore, the
tool supports the creation of viewpoints and CSS-style sheets that could be used to customize
the generated DSL.

The Recombee framework2 offers a recommender system as a service to support several
domains, e.g., multimedia content, job boards, feed aggregators. To enable recommendations,
the system uses a set of item catalogs as well as user attributes and real-time interactions.
Recombee exposes all the supported features as SDKs client libraries for different languages,
i.e., Java, Python, Node.js, to name a few. Challenges in designing and deploying code
completion IDE plugins have been highlighted in a recent work [290]. The authors conducted
an extensive user study and developed a prototype code completion recommender system
named tranX-plugin3 for PyCharm IDE to suggest relevant Python code given a textual query.
The outcomes indicate that the current IDE code assistants have some limitations in terms of
correctness and quality even though developers provide several suggestions for improvement.
Recently, GitHub developed Copilot4 – an AI-based recommender system deployed as a
VS Code extension that analyzes developers’ context to suggest relevant code elements, i.e.,
missing API function calls. To this end, the underpinning AI model has been trained on
publicly available source code and natural language content. However, according to the
current programming task, the retrieved suggestions need to be eventually adapted by the
developer.

Like the approach presented in Chapter 8, namely LEV4REC, the reviewed frameworks
employ high-level concepts to configure the system and evaluate it automatically. However,
the proposed tool offers a dedicated feature model that drives the developer during the
specification of critical phases, i.e., the algorithm selection, producing recommendations,
and automatic evaluations.

2.2.3 Automatic machine learning

Recently, the usage of deep neural networks gains attention in several domains, including
recommender systems. Even though such techniques come in handy to support several tasks,
the overall performance may be hampered by a wrong selection of hyperparameters, which

2https://www.recombee.com/
3https://github.com/neulab/tranX-plugin
4https://copilot.github.com/

https://www.recombee.com/
https://github.com/neulab/tranX-plugin
https://copilot.github.com/

2.2 Democratizing the development of complex systems 19

constitutes a considerable barrier for non-expert users. The automated machine learning
(AutoML) paradigm has been recently proposed to facilitate the design and deployment of
ML-based approaches by driving the user in the model selection [118]. AutoML approaches
aim at finding the best hyperparameter configuration by formulating the problem as a multi-
objective optimization search.

Being built on top of the well-founded Weka ML platform, Auto-Weka [135] exploits
Bayesian optimization to find the best model among the available ones. In particular, the
tool identifies the combination of Weka’s algorithms and their associated parameters that
minimizes the cross-validation loss.

Similarly, Auto-Net [159] has been proposed to support the configuration of four types of
well-founded neural networks, i.e., multi-layer perceptrons, residual neural networks, shaped
multi-layer perceptrons, and shaped residual neural networks. To find the best solution in the
considered solution space, the system combines the traditional Bayesian optimization with
the bandit-based Hyperband strategy. In such a way, the employed optimization model can
find the most promising neural network models by discarding the poor-quality ones in the
early phases.

ktrain [154] is a low-code Python library that supports AutoML by relying on various
Machine Learning frameworks, e.g., TensorFlow, and Keras. Using the proposed system, a
non-expert user can select and customize different models and estimate their learning rate
to fine-tune them. At the time of writing, ktrain covers text and image classification tasks
by including well-known ML datasets and proper preprocessing techniques. Similarly, the
fastai [113] and Ludwig [165] frameworks support various cutting-edge technologies to
speed up the development of an ML application from scratch. fastai focuses on the deep
learning domain by employing a layered structure composed of high, mid, and low-level
Python API. In such a way, end-users with different skill levels can profitably practice
complex deep learning utilities. Meanwhile, Ludwig employs a tailored declarative language
to design a complete ML workflow. The system can create, optimize, and evaluate several
ML off-the-shelf approaches by automatically generating a complete pipeline starting from
an initial user specification.

Chapter 3

A conceptual framework to develop
RSSEs

The issue of designing and implementing generic recommender systems has been carefully
addressed by state-of-the-art studies [207, 220]. Nevertheless, there is a lack of proper
references for the design of a recommendation system in a concrete context, i.e., satisfying
requirements by various industrial partners. By means of a thorough investigation of the
related work, we realized that existing studies tackled the issue of designing and implementing
a recommendation system for software engineering in general. However, conceptualizing a
generic framework for developing RSSEs is still challenging due to the need to address several
issues, e.g., collecting proper training data, or managing the composition of miscellaneous
components.

In this chapter, we present a methodological framework that aims at identifying the critical
features that are required to engineer RSSEs at the design time. In this respect, we discuss a
generic architecture that have been used to develop actual RSSE, including the ones in the
context of the EU CROSSMINER project.1 We exploited cutting-edge information retrieval
techniques to build recommender systems, providing software developers with practical
advice on various tasks through an Eclipse-based IDE and dedicated analytical Web-based
dashboards. Based on the project’s mining tools, developers can select open-source software
and get real-time recommendations while working on their development tasks. Starting
from that, we elicit a feature model that conceptualizes all the features involved in the RSSE
development.

Afterward, we elicit a set of metrics that are commonly used to evaluate RSSEs quantita-
tively. Furthermore, we define a set of concepts that have been used in the evaluation section

1https://www.crossminer.org

https://www.crossminer.org

22 A conceptual framework to develop RSSEs

of each chapter, e.g., the concept of recommended items, true positive and false positive
values.

The content of this chapter has been partially adapted from the published manuscript
in the Empirical Software Engineering journal [67], by including the additional RSSEs
developed during the these three years.

Outline of the chapter: First, Section 3.1 presents a bird-eye architecture that has been
elicited from the development systems by discussing the underpinning strategies and tech-
nologies employed to build them. Then, we discuss a feature model that aims at supporting
the specification of a generic RSSE at the design level in Section 3.2. Afterward, we introduce
the metrics that have been used throughout the dissertation to evaluate the different RSSEs
in Section 3.3. Section 3.4 eventually concludes the chapter by summarizing the solution
architecture and possible application to support additional SE tasks.

3.1 RSSEs bird-eye architecture

Figure 3.1 shows a bird-eye architecture that have been exploited to develop the presented
RSSEs. In particular, such a conceptual framework can be used to identify the essential
components of a generic RSSEs, each designed to implement the four main activities, which
are typically defined for any recommender systems, i.e., data pre-processing, capturing
context, producing recommendations, and presenting recommendations [220] as shown
in the upper side of Fig. 3.1. Accordingly, the architecture solution is made up of four
main modules: the Data Preprocessing module contains tools that extract metadata from
OSS repositories (see the middle part of Fig. 3.1). Data can be of different types, such as
source code, configuration, cross-project relationships, modeling artifacts, or README files.
Natural language processing (NLP) tools are also deployed to analyze developer forums and
discussions. Furthermore, dedicated solution are needed for some specific domains, e.g.,
modeling assistants.

The collected data is used to populate a knowledge base which serves as the core for
the mining functionalities. By capturing developers’ activities (Capturing Context), an
IDE is able to generate and display recommendations (Producing Recommendations and
Presenting Recommendations). In particular, the developer context is used as a query sent to
the knowledge base that answers with recommendations that are relevant to the developer
contexts (see the lower side of Fig. 3.1). Machine learning techniques are used to infer
knowledge underpinning the creation of relevant real-time recommendations.

3.1 RSSEs bird-eye architecture 23

Data Preprocessing Capturing Context Producing
Recommendations

Presenting
Recommendations

Knowledge Base

Source
Code

Natural
language
channels

Configuration
Scripts

Developer
IDE

Knowledge
Base Data

Storage

Modeling
Artifacts

Encoder-Decoder
Architecture

Mining and Analysis Tools

Lookup/Store

Modeling Artifact
Encoder

Source Code
Miner NLP Miner

Cross project
Analysis

Configuration
Miner

Data sources

Mine

query

recommendations

Data Preprocessing

Capturing Context, Producing Recommedations, Presenting Recommendations Phases

Fig. 3.1 Bird-eye architecture of developed RSSEs.

The RSSEs knowledge base allows developers to gain insights into raw data produced
by different mining tools, which are the following ones:

• Source code miners to extract and store actionable knowledge from the source code of
a collection of open-source projects;

• NLP miners to extract quality metrics related to the communication channels, and
bug tracking systems of OSS projects by using Natural Language Processing and text
mining techniques;

• Configuration miners to gather and analyze system configuration artifacts and data to
provide an integrated DevOps-level view of a considered open source project;

• Cross-project miners to infer cross-project relationships and additional knowledge
underpinning the provision of real-time recommendations;

• Modeling Artifact Encoder to infer mutual relationships among the considered model-
ing artifacts, i.e., metamodels, models, and JSON schema;

• Encoder-Decoder Architecture to provide cohesive API function calls considering the
temporal sequences.

24 A conceptual framework to develop RSSEs

Table 3.1 The examined use cases.

No. Artifact Description Developed tool
1 Similar OSS projects We crawl data from OSS platforms to find similar projects to

the system being developed, with respect to different criteria,
e.g., external dependencies, or API usage [183]. This type
of recommendation is beneficial to the development since it
helps developer learn how similar projects are implemented.

CrossSim

2 Additional components During the development phase, programmers search for com-
ponents that projects similar to the one under developed have
also included, for instance, a list of external libraries [157], or
API function calls [167].

CrossRec, FOCUS

3 Code snippets Well-defined snippets showing how an API is used in prac-
tice are extremely useful. These snippets provide developers
with a deeper insight into the usage of the APIs being in-
cluded [181].

FOCUS, LUPE

4 Relevant topics GitHub uses tags as a means to narrow down the search scope.
The goal is to help developers approach repositories, and thus
increasing the possibility of contributing to their development
and widespread their usage [72, 70].

MNBN, HybridRec

5 Relevant modeling ele-
ments

Model-driven engineering (MDE) exploits models as first-
class artifacts to develop a plethora of software application.
In this respect, it is crucial to assist modelers during the
specification phase [69, 76].

MemoRec, MOR-
GAN

Part of the recommender systems have been developed under the umbrella of CROSS-
MINER to satisfy the requirements by six industrial use-case partners of the project working
on different domains including IoT, multi-sector IT services, API co-evolution, software
analytics, software quality assurance, and OSS forges.2. In this respect, we moved a step
forward by covering additional use cases and domain, e.g., modeling assistants. In particular,
Table 3.1 specifies the considered application domain solicited both by CROSSMINER part-
ner and academic community. To satisfy the given requirements the following recommender
systems have been developed:

• CrossSim [175, 183] – It is an approach for recommending similar projects with respect
to the third-party library usage, stargazers and committers, given a specific project;

• CrossRec [182] – It is a framework that makes use of Cross Projects Relationships
among Open Source Software Repositories to build a library Recommendation System
on top of CrossSim;

• FOCUS [181, 177] – The system assists developers by providing them with API
function calls and source code snippets that are relevant for the current development
context;

2https://www.crossminer.org/consortium

https://www.crossminer.org/consortium

3.2 Main RSSE design features 25

• LUPE [190] – Similar to FOCUS, this approach suggests API function calls and code
snippets by considering the active context. Nevertheless, LUPE is able to provide co-
hesive recommendations by exploiting the underpinning encoder-decoder architecture;

• MNBN [72] – It is an approach based on a Multinomial Naive Bayesian network
technique to automatically recommend topics given the README file(s) of an input
repository;

• HybridRec [70] – Build on top of MNBN, this approach combines a refined stochastic
model with collaborative filtering technique to increase the coverage of recommended
GitHub topics;

• MemoRec [69] – Given a partial metamodel, this approach can provide relevant at-
tributes and structural features by relying on dedicated encoding schemes;

• MORGAN [68, 76] – Similar to MemoRec, the tool is capable of supporting model
completion using graph kernel similarity technique. In addition, a set of dedicated
parsers allow MORGAN handling additional model artifacts besides metamodel, i.e.,
class models, and JSON schema.

It is worth noting that two of the presented tools is not part of this dissertation, i.e.,
CrossRec and CrossSim. Nonetheless, we keep them as the purpose of this chapter to present
the general principles that have been used in the CROSSMINER project.

By referring to Fig. 3.1, the developed recommender systems are implemented in the
Knowledge Base component. Moreover, it is important to remark that even though such tools
can be used in an integrated manner directly from the Developer IDE, their combined usage is
not mandatory. They are different services that developers can even use separately according
to their needs.

3.2 Main RSSE design features

Being aware of existing systems is also important to elicit common features at design time.
For studying a recommendation system, besides conventional quantitative and qualitative
evaluations, it is necessary to compare it with state-of-the-art approaches. Such an issue is
also critical in other domains, e.g., Linked Data [194], or music recommendations [178, 236].

To this end, by analyzing the existing literature about recommendation systems and
the developed RSSEs presented in the previous section we identified and modeled their
relevant variabilities and commonalities. Our results are documented using feature diagrams

26 A conceptual framework to develop RSSEs

which are a common notation in domain analysis [56]. Figure 3.2 shows the top-level
features or recommender systems, i.e., Data Preprocessing, Capturing Context, Producing
Recommendations, and Presenting Recommendations in line with the main functionalities
typically implemented by recommender systems. We extracted all the shown components
mainly from existing studies [34, 138, 220] as well as from our development experience
under the needs of the CROSSMINER project. The top-level features shown in Fig. 3.2 are
described below.

Data Preprocessing: In this phase techniques and tools are applied to extract valuable
information from different data sources according to their nature. In particular, structured
data adheres to several rules that organize elements in a well-defined manner. Source code
and XML documents are examples of this category. Contrariwise, unstructured data may
represent different content without defining a methodology to access the data. Documentation,
blog, and plain text fall into this category. Thus, the data preprocessing component must be
carefully chosen considering the features of these miscellaneous sources.

ASTParsing involves the analysis of structured data, typically the source code of a
given software project. Several libraries and tools are available to properly perform op-
erations on ASTs, e.g., fetching function calls, retrieving the employed variables, and
analyzing the source code dependencies. Additionally, snippets of code can be analyzed
using Fingerprints, i.e., a technique that maps every string to a unique sequence of bits.
Such a strategy is useful to uniquely identify the input data and compute several operations
on it, i.e., detect code plagiarism as shown in [297].

Moving to unstructured input, Tensors can encode mutual relationships among data,
typically users’ preferences. Such a feature is commonly exploited by collaborative filtering
approaches as well as by heavy computation on the input data to produce recommendations.
Plain text is the most spread type of unstructured data and it includes heterogeneous content,
i.e., API documentation, repository’s description, Q&A posts, to mention a few. A real
challenge is to extract valuable elements without losing any relevant information. Natural
processing language (NLP) techniques are employed to perform this task by means of both
syntactic and semantic analysis. Stemming, lemmatization, and tokenization are the main
strategies successfully applied in existing recommender systems. Even the MNBN approach
previously presented employs such techniques as preparatory task before the training phase.
Similarly to tensors, GraphRepresentation is useful to model reciprocal associations among
considered elements. Furthermore, graph-based data encodings can be used to find peculiar
patterns considering nodes and edges semantic.

Capturing Context: After the data preprocessing phase, the developer context is excerpted
from the programming environment to enable the underpinning recommendation engine. A

3.2 Main RSSE design features 27

Fig. 3.2 Main design features of recommendation systems in software engineering.

28 A conceptual framework to develop RSSEs

well-founded technique primarily employed in the ML domain is the FeatureExtraction
to concisely represent the developer’s context. Principal Component Analysis (PCA) and
Latent Semantic analysis (LDA) are just two of such techniques employed for such a
purpose. Keyword extraction and APICallExtraction are two techniques mostly used when
the Capturing Context phase has to analyze source code. Capturing context often involves
the search over big software projects. Thus, a way to store and access a large amount of data
is necessary to speed up the recommendation item delivery. Indexing is a technique mainly
used by the code search engines to retrieve relevant elements in a short time.

Producing Recommendations: In this phase, the actual recommendation algorithms are
chosen and executed to produce suggestions that are relevant for the user context, once it
is previously captured. By several variating parameters such as type of the required input
and the underlying structure, we can elicit different features as represented in the diagram
shown in Fig. 3.2. Concerning Data Mining techniques, some of them are based on pattern
detection algorithms, i.e., Clustering, FrequentItemsetMining, and AssociationRuleMining.
Clustering is usually applied to group objects according to some similarity functions. The
most common algorithm is the K-means based on minimizing the distance among the items.
A most representative element called centroid is calculated through a linkage function. After
such a computation, this algorithm can represent a group of elements by referring to the
most representative value. FrequentItemsetMining aims to group items with the same
frequencies, whereas AssociationRuleMining uses a set of rules to discover possible
semantic relationships among the analysed elements. Similarly, the EventStreamMining
technique aims to find recurrent patterns in data streams. A stream is defined as a sequence
of events usually represented by a Markov chain. Through this model, the algorithm can
exploit the probability of each event to establish relationships and predict a specific pattern.
Finally, TextMining techniques often involve information retrieval concepts such as entropy,
latent semantic analysis (LSA), or extended boolean model. In the context of producing
recommendations, such strategies can be used to find similar terms by exploiting different
probabilistic models that analyze the correlation among textual documents.

The availability of users’ preferences can affect the choice of recommendation algorithms.
Filtering strategies dramatically exploit the user data, e.g., their ratings assigned to pur-
chased products. ContentBasedFiltering (CBF) employs historical data referring to items
with positive ratings. It is based on the assumption that items with similar features have
the same score. Enabling this kind of filtering requires the extraction of the item attributes
as the initial step. Then, CBF compares the set of active items, namely the context, with
possible similar items using a similarity function to detect the closer ones to the user’s needs.
DemographicFiltering compares attributes coming from the users themselves instead of the

3.2 Main RSSE design features 29

purchased items. These two techniques can be combined in HybridFiltering techinques to
achieve better results.

So far, we have analyzed filtering techniques that tackle the features of items and users.
CollaborativeFiltering (CF) approaches analyze the user’s behaviour directly through its
interaction with the system, i.e., the rating activity. UserBased CF relies on explicit feedback
coming from the users even though this approach suffers from scalability issues in case of
extensive data. The ItemBased CF technique solves this issue by exploiting users’ ratings to
compute the item similarity. Finally, ContextAwareFiltering involves information coming
from the environment, i.e., temperature, geolocalization, and time, to name a few. Though
this kind of filtering goes beyond the software engineering domain, we list it to complete the
filtering approaches landscape.

The MemoryBased approach acts typically on user-item matrixes to compute their distance
involving two different methodologies, i.e., SimilarityMeasure and AggregatationApproach.
The former involves the evaluation of the matrix similarity using various concepts of similarity.
For instance, JaccardDistance measures the similarity of two sets of items based on common
elements, whereas the LevenshteinDistance is based on the edit distance between two strings.
Similarly, the CosineSimilarity measures the euclidean distance between two elements.
Besides the concept of similarity, techniques based on matrix factorization are employed
to make the recommendation engine more scalable. Singular value decomposition (SVD) is
a technique being able to reduce the dimension of the matrix and summarize its features.
Such a strategy is used to cope with a large amount of data, even though it is computationally
expensive. AggregatationApproaches analyze relevant statistical information of the dataset
such as the variance, mean, and the least square. To mitigate bias lead by the noise in the
data, the computation of such indexes use adjusted weigths as a coefficient to rescale the
results.

To produce the expected outcomes, MemoryBased approaches require the direct usage of the
input data that cannot be available under certain circumstances. Thus, ModelBased strategies
can overcome this limit by generating a model from the data itself. MachineLearning offers
several models that can support the recommendation activity. NeuralNetwork models can
learn a set of features and recognize items after a training phase. By exploiting different
layers of neurons, the input elements are labeled with different weights. Such values are
recomputed during different training rounds in which the model learns how to classify each
element according to a predefined loss function. Depending on the number of layers, the
internal structure of the network, and other parameters, it is possible to use different kinds of
neural networks including Deep Neural Networks (DNN), Recurrent Neural Networks (RNN),
Feed-forward Neural Networks (FNN), or Convolutional Neural Networks (CNN). Besides ML

30 A conceptual framework to develop RSSEs

models, a recommendation system can employ several models to suggest relevant items.
GeneticAlgorithms are based on evolutionary principles that hold in the biology domain,
i.e., natural species selection. FuzzyLogic relies on a logic model that extends classical
boolean operators using continuous variables. In this way, this model can represent the real
situation accurately. Several probabilistic models can be used in a recommendation system.
BayesianNetwork is mostly employed to classify unlabeled data, although it is possible to
employ it in recommendation activities.

Besides all these well-founded techniques, recommended items can be produced by
means of Heuristics techniques to encode the knowhow of domain experts. Heuristics
employ different approaches and techniques together to obtain better results as well as
to overcome the limitations of other techniques. On the one hand, heuristics are easy to
implement as they do not rely on a complex structure. On the other hand, they may produce
results that are sub-optimal compared to more sophisticated techniques.

3.3 Evaluation metrics for RSSE

Once an RSSE has been developed, there is the need to evaluate the overall performance by
adopting a set of standard evaluation strategies. In the following, we will present a set of
definitions and metrics that are widely adopted in the community to evaluate those complex
systems.

3.3.1 Terminology

The recommendation outcome is normally a ranked list of items, e.g., third-party libraries [182,
259], API calls [167, 181], or GitHub topics [72]. Normally, a developer pays attention only
to the top-N items. Thus, by comparing the items in the ranked list with those stored as
ground-truth data, we can examine how well the recommendation system performs. There
are various metrics to analyze the performance of a recommendation system. To our knowl-
edge, several studies in RSSE focus only on accuracy [41, 83, 158, 259]. However, while
developing the abovementioned RSSEs, we realized that while accuracy is a good metric for
evaluating an RS, it is not enough for studying all the performance traits of the outcomes, as it
is the case with conventional recommendation systems [90]. As a result, other metrics should
also be incorporated to analyze various quality aspects as they are presented as follows. To
compute such metrics, the following notations are defined:

• N is the cut-off value for the list of recommended items;

3.3 Evaluation metrics for RSSE 31

• for a testing project p, the ground-truth dataset is named as GT(p);

• REC(p) is the top-N items, it is a ranked list in descending order of real scores, with
RECr(p) being the item in the position r;

• if a recommended item i ∈ REC(p) for a testing project p is found in the ground truth
of p, i.e., GT(p), hereafter we call this as a match or hit.

• True positive (Tp): the items that are correctly recommended;

• False positive (Fp): the recommended items which actually do not belong to the
ground-truth data;

• False negative (Fn): the items that should be present in the recommended ones, but
they are not.

3.3.2 Metrics

The metrics that have been employed for evaluating the recommender systems are explained
below.

Success rate. Given a set of P testing projects, this metric measures the rate at which a system
can return at least a match among top-N recommended items for every project p ∈ P [259].
It is formally defined as follows:

success rate@N =
countp∈P(

∣∣GT (p)
⋂
(∪N

r=1RECr(p))
∣∣> 0)

|P| (3.1)

where the function count() counts the number of times that the boolean expression specified
in its parameter is true.

Accuracy. Given a list of top-N items, precision@N, recall@N, and normalized discounted
cumulative gain (nDCG) are utilized to measure the accuracy of the recommendation results.

Precision@N is the ratio of the top-N recommended items belonging to the ground-truth
dataset:

precision@N(p) =
∑

N
r=1 |GT (p)

⋂
RECr(p)|

N
(3.2)

Recall@N is the ratio of the ground-truth items appearing in the N items [58, 179]:

recall@N(p) =
∑

N
r=1 |GT (p)

⋂
RECr(p)|

|GT (p)| (3.3)

32 A conceptual framework to develop RSSEs

nDCG: Precision and recall reflect well the accuracy, however they neglect ranking
sensitivity [28]. nDCG is an effective way to measure if a system can present highly relevant
items on the top of the list:

nDCG@N(p) =
1

iDCG
·

N

∑
i=1

2rel(p,i)

log2(i+1)
(3.4)

where iDCG is used to normalize the metric to 1 when an ideal ranking is reached.

TopRank. It measures the percentage of the first top elements in the ground-truth data:

Top rank =
T pRank(r)

|R| ×100% (3.5)

where TpRank(r) returns 1 if the first predicted element belongs to UsrTp(r), 0 otherwise.

Sales Diversity. In merchandising systems, sales diversity is the ability to distribute the
products across several customers [179, 269]. In the context of mining software repositories,
sales diversity means the ability of the system to suggest to projects as much items, e.g.,
libraries, code snippets, as possible, as well as to spread the concentration among all the
items, instead of presenting a specific set of them [220].
Catalog coverage measures the percentage of items recommended to projects:

coverage@N =

∣∣∪p∈P ∪N
r=1 RECr(p)

∣∣
|I| (3.6)

where I is the set of all items available for recommendation and P is the set of projects.
Entropy evaluates if the recommendations are concentrated on only a small set or spread
across a wide range of items:

entropy =−∑
i∈I

(
#rec(i)
total

)
ln
(

#rec(i)
total

)
(3.7)

where #rec(i) = countp∈P(
∣∣(∪N

r=1RECr(p)) ∋ i
∣∣), (i ∈ I) is the number of projects getting

i as a recommendation, total denotes the total number of recommended items across all
projects.

Novelty. The metric gauges if a system is able to expose items to projects. Expected popularity
complement (EPC) is utilized to measure novelty and is defined as follows [268, 269]:

EPC@N =
∑p∈P ∑

N
r=1

rel(p,r)∗[1−pop(RECr(p))]
log2(r+1)

∑p∈P ∑
N
r=1

rel(p,r)
log2(r+1)

(3.8)

3.3 Evaluation metrics for RSSE 33

where rel(p,r) = |GT (p)
⋂

RECr(p)| represents the relevance of the item at the r position
of the top-N list to project p; pop(RECr(p)) is the popularity of the item at the position r in
the top-N recommended list. It is computed as the ratio between the number of projects that
receive RECr(p) as recommendation over the number of projects that are recommended items
among the most often recommended ones. Equation 3.8 implies that the more unpopular
items a system recommends, the higher the EPC value it obtains and vice versa.

Confidence. Given a pair of <query, retrieved item> confidence is the score the evaluator
assigns to the similarity between the two items;

Ranking. In a ranked list, it is necessary to have a good correlation with the scores given
by the human evaluation [41]. The Spearman’s rank correlation coefficient rs [247] is
used to measure how well a similarity metric ranks the retrieved projects given a query.
Considering two ranked variables r1 = (ρ1,ρ2, ..,ρn) and r2 = (σ1,σ2, ..,σn), rs is defined

as: rs = 1− 6∑
n
i=1(ρi−σi)

2

n(n2−1) . We also employed Kendall’s tau coefficient [127], which is used
to measure the ordinal association between two considered quantities. Both rs and τ range
from -1 (perfect negative correlation) to +1 (perfect positive correlation); rs = 0 or τ = 0
implies that the two variables are not correlated.

Levenshtein Distance. The aforementioned metrics do not take into account the order of the
recommended items. This is important during the development phase, as developers need to
know the position where they have to insert the software element. Thus, we rely on distance
metrics to measure the similarity that takes into account the order of appearance. Given two
strings s1 and s2, the Levenshtein edit distance between them corresponds to the number of
substitutions performed to transform s1 to s2. The metric is defined as follows.3

Ls1,s2(i, j) =





max(i, j) if min(i,j)=0,

min





Ls1,s2(i−1, j)+1

Ls1,s2(i, j−1)+1

Ls1,s2(i−1, j+1)+1

otherwise.
(3.9)

where i and j are the terminal character position of strings s1 and s2, respectively.

Recommendation time. Being able to provide recommended items in a limited amount of
time is important, especially for applications that require instant recommendations. This
metric evaluates the duration of time, starting from when a user sends the query until the
final recommendations are returned.

3https://dzone.com/articles/the-levenshtein-algorithm-1

https://dzone.com/articles/the-levenshtein-algorithm-1

34 A conceptual framework to develop RSSEs

Depending on the context, we have to choose a suitable set of metrics to evaluate a
recommendation system. For example, with CrossSim we can only make use of Success rate,
Confidence, Precision, Ranking, and Execution time to evaluate the tool, since we relied on
a user study. Meanwhile, with HybridRec or FOCUS, since we can use the ten-fold cross
validation technique (i.e., by exploiting the testing data which was already split into query
and ground-truth data), we evaluated them using Accuracy, Precision, Recall, Diversity, and
Novelty.

3.4 Conclusion

In this chapter, we presented a conceptual framework to support the development of RSSEs
in terms of techniques, strategy, and high-level features. First, we discussed a generic
RSSEs architecture that has been elicited by relying on the gained experience. Such a
framework covers all the phases of specifying an RSSE, spanning from the identification of
critical building blocks to the actual development. We presented a set of RSSEs that support
different SE tasks, i.e., suggesting reusable software artifacts, categorizing OSS projects,
and supporting modeling activities. Even though some of them have been conceived during
the CROSSMINER project, some elicited concepts hold for generic RSSEs. In addition,
we elicited a feature model starting from the developed approaches that can embrace all
the critical components needed to support the specification of this class of systems. We
eventually discussed a set of widely adopted metrics that have been used to evaluate the
CROSSMINER RSSEs quantitatively. It is worth mentioning that all the foundational aspects
presented in this chapter have been used to conceive and evaluate the developed systems in
this dissertation.

Chapter 4

Recommending API function calls to
support developers

When dealing with certain programming tasks, rather than implementing new systems
from scratch, developers often make use of third-party libraries that provide the desired
functionalities. Such libraries expose their functionality through Application Programming
Interfaces (APIs) which govern the interaction between a client project and its incorporated
libraries. To use a library in a proper way, it is necessary to use the correct sequence of
API calls, known as API usage patterns. The knowledge needed to manipulate an API
can be extracted from various sources: the API source code itself, the official website and
documentation, Q&A websites such as StackOverflow, forums and mailing lists, bug trackers,
other projects using the same API, etc. However, official documentation often merely reports
the API description without providing non-trivial example usages. Besides, querying informal
sources such as StackOverflow might become time-consuming and error-prone [218]. Also,
API documentation may be ambiguous, incomplete, or erroneous [263], while API examples
found on Q&A websites may be of poor quality [173]. In this respect, we come across the
following motivating question:

Which API calls should this piece of code invoke, given that it has already
invoked these API calls?

The problem of recommending API function calls and usage patterns has garnered con-
siderable efforts and attention of the research community in recent years [298, 167]. Several
techniques have been developed to automate the extraction of API usage patterns [219] for
reducing developers’ burden when manually searching these sources, and for providing them
with high-quality code examples. However, these techniques, based on clustering [276, 298]

36 Recommending API function calls to support developers

or predictive modeling [83], still suffer from high redundancy and poor run-time perfor-
mance. Moreover, most of the existing approaches are based on clustering on data from code
snippets to recommend API usage, which sustains redundancy. In an attempt to transcend
the limitations, this chapter presents two different approaches, i.e., FOCUS and LUPE, that
rely on context-aware collaborative filtering and deep neural network respectively.

FOCUS [177] mines open-source software repositories to provide developers with API
FunctiOn Calls and USage patterns. We aim to suggest to developers highly relevant API
usages that ease the development process. Our tool distinguishes itself from other tools that
recommend API usages as it can provide both function calls and real code snippets that
match well with the developer’s context. By considering API methods as products and client
code as customers, we reformulate the problem of usage pattern recommendation in terms of
a collaborative-filtering recommender system. We modeled the mutual relationships among
projects using a tensor and mined API usage from the most similar projects. An empirical
evaluation has been conducted on a large number of Java projects extracted from GitHub and
the Maven Central repository to study FOCUS’s performance, and to compare it with a state-
of-the-art tool for API usage patterns mining, i.e., PAM [83]. We simulated different stages
of a development process, by removing portions of client code and assessing how FOCUS
can recommend snippets with API invocations to complete the code being developed. The
experiments showed that FOCUS outperforms PAM, with regards to success rate, accuracy,
and execution time. Furthermore, we assess the FOCUS’s capability of assisting mobile
developers by means of an Android dataset. In this chapter, we present the extended version
that has been published in IEEE Transactions on Software Engineering [177], that further
advances the original tool presented in a conference paper [181]. The candidate contributes
in (i) developing the data extraction component; and (ii) participating in the user study.

The second part of the chapter is devoted to LUPE [190], a deep Learning seqUence-
to-sequence based system to provide aPi rEcommendations.1 While most of the existing
approaches [83, 167, 177, 192, 276, 298] recommend a ranked list of independent APIs,
LUPE goes one step further to provide a sequence of cohesive API calls, thanks to the
underpinning sequence-to-sequence deep learning algorithms. The proposed system has been
evaluated using two real-world Android datasets collected from Google Play and GitHub.
The experimental results show that LUPE retrieves a perfect match for several testing method
definitions.

Although FOCUS has been conceived to address the same problem, we didn’t compare
it with LUPE since the two approaches are different by construction, thus leading to unfair

1“Lupe” in some languages means magnifying glass, a tool that people normally use when searching for and
fitting tiny puzzles.

4.1 FOCUS 37

comparison. LUPE has been published in the Expert System with Applications journal [190]
and the candidate has contributed to running and devising the comparison study with the two
baselines.

Outline of the chapter: A motivating example and the background technologies related to
FOCUS have been presented in Section 4.1.1. Section 4.1.2 gives an overview of the FOCUS
architecture and Section 4.1.3 presents the evaluation methodology. We discuss the obtained
results and possible issues in Section 4.1.4 and Section 4.1.5 respectively. The second part of
the chapter starts with Section 4.2.1, where the technological background of LUPE has been
presented. The employed encoder-decoder architecture is described in Section 4.2.2. We
summarize the datasets and the adopted evaluation strategies in Section 4.2.3 and assess the
LUPE capabilities in section 4.2.4. We discuss the limitations of our work in Section 4.2.5.
Section 4.3 summarize the contributions of the chapter and discuss possible future work in
the domain.

4.1 FOCUS

4.1.1 Motivation and background

public List <Boekrekening > findBoekrekeningen () {

CriteriaBuilder cb = entityManager.getCriteriaBuilder ();

CriteriaQuery <Boekrekening > criteriaQueryBoekrekening =

cb.createQuery(Boekrekening.class);

??

.

}

(a) Initial version

public List <Boekrekening > findBoekrekeningen () {

CriteriaBuilder cb = entityManager.getCriteriaBuilder ();

CriteriaQuery <Boekrekening > criteriaQueryBoekrekening =

cb.createQuery(Boekrekening.class);

Root <BoekrekeningPO > boekrekeningFrom =

criteriaQueryBoekrekening.from(BoekrekeningPO.class);

criteriaQueryBoekrekening.select(boekrekeningFrom);

criteriaQueryBoekrekening.

orderBy(cb.asc(boekrekeningFrom.get(BoekrekeningPO_.rekeningnr)));

return entityManager.createQuery(criteriaQueryBoekrekening). getResultList ();

}

(b) Final version

Fig. 4.1 The FOCUS motivating example.

In Figure 4.1a, we simulate the behavior of a programmer who is developing a method
definition,2 which is incomplete at the time of consideration. The definition is used to send
files to a dedicated server through TCP connections. There are two frames; while the lower
frame is left blank, representing missing code, the upper one is already filled with written
code. First, a socket is initialized with the Socket() API, and the sock.getInputStream()

method is then used to initialize an input stream. Two variables are instantiated with FileOut

putStream() and BufferedOutputStream(). Afterwards, is.read() gets the next bytes
from the input stream.

2The code example is extracted from the following link: https://bit.ly/2ZrbTaA. We omitted some
variable declarations for clarity.

https://bit.ly/2ZrbTaA

38 Recommending API function calls to support developers

The typical setting considered by FOCUS is shown in Fig. 4.1a: a programmer is
implementing some methods to satisfy the requirements of the system being developed.
The development is at an early stage, and the developer already used some methods of
the chosen API to realize the required functionality. However, she is not sure how to
proceed from this point. Under such circumstances, the programmer may browse different
sources of information, including Stack Overflow, video tutorials, official API documentation,
ifnextchar.etcetc..

Figure 4.1b depicts the final version of the snippet in Fig. 4.1a. In the framed code,
the findBoekrekeningen method queries the available entities and retrieves those of type
Boekrekening. To this end, the Criteria API library3 is used as it provides useful interfaces for
querying system entities according to the defined criteria. FOCUS has been conceptualized
to do the exactly same thing: it is able to suggest to developers recommendations consisting
of a list of API method calls that should be used next. Furthermore, it also recommends real
code snippets that can be used as a reference to support developers in finalizing the method
definition under development.

4.1.1.1 Terminology

“Collaborative Filtering (CF) is the process of filtering or evaluating items through the
opinions of other people” [235]. In a CF system, a user who buys or uses an item attributes a
rating to it based on her experience and perceived value. Therefore, a rating is the association
of a user and an item through a value in a given unit (usually in scalar, binary, or unary form).
The set of all ratings of a given user is also known as a user profile [49]. Moreover, the set of
all ratings given in a system by existing users can be represented in a so-called rating matrix,
where a row represents a user, and a column represents an item.

The expected outcome of a CF system is a set of predicted ratings (aka. recommendations)
for a specific user and a subset of items [235]. The recommender system considers the most
similar users (aka. neighbors) to the active user to suggest new ratings. A similarity function
simusr(ua,u j) computes the weight of the active user profile ua against each of the user profiles
u j in the system. Finally, to suggest a recommendation for an item i based on this subset of
similar profiles, the CF system computes a weighted average r(ua, i) of the existing ratings,
where r(ua, i) varies with the value of simusr(ua,u j) obtained for all neighbors [49, 235].

Context-aware CF systems compute recommendations based not only on neighbors’
profiles but also on the context where the recommendation is demanded. Each rating is
associated with a context [49]. Therefore, for a tuple C modeling different contexts, a

3https://docs.oracle.com/javaee/6/tutorial/doc/gjivm.html

https://docs.oracle.com/javaee/6/tutorial/doc/gjivm.html

4.1 FOCUS 39

context similarity metric simctx(ca,ci), for ca,ci ∈C is computed to identify relevant ratings
according to a given context. Then, the weighted average is reformulated as r(ua, i,ca) [49].

Furthermore, we define the following concepts:

• APIs. In software development, an API represents a code unit offering pieces of
reusable functionality. Developers can use APIs following a precisely defined interface
without understanding the API’s internal design. Therefore, an API works as a black
box, allowing for reuse and modularity [199, 218].

• method definition (or simply definition) consists of a name, a list of parameter
types, a return type, and a body. A definition body may invoke several API function
calls, as for instance in Figure 4.1a, the main(String[] args) definition calls the
Socket.getInputStream() API.

• Each API contains public methods M and fields F available to clients. For instance,
Figure 4.1b shows the invocation of the method getInputStream() defined in the
class java.net.Socket (see Line 13). An API invocation is a call made by a method
definition d ∈ D to another method m ∈ M.

4.1.2 FOCUS architecture

4.1.2.1 Input data

A software project is a standalone source code unit that performs a set of tasks. Furthermore,
an API is like a black-box, i.e., an interface that abstracts the piece of functionality offered
by a project by hiding its implementation details. This interface is meant to support reuse
and modularity [199, 218]. An API X built in an object-oriented programming language,
e.g., the Criteria API in Fig. 4.1a, consists of a set TX of public types, e.g., CriteriaBuilder
and CriteriaQuery. Each type in TX consists of a set of public methods and fields that are
available to client projects, e.g., the method createQuery of the type CriteriaQuery.

A method declaration consists of a name, a (possibly empty) list of parameters, a return
type, and a (possibly empty) body, e.g., the method findBoekrekeningen in Fig. 4.1b. Given
a set of declarations D in a project P, an API method invocation i is a call made from a
declaration d ∈ D to another declaration m. Similarly, an API field access is an access to a
field f ∈ F from a declaration d in P. API method invocations MI and field accesses FA in
P form the set of API usages U = MI ∪FA. Finally, an API usage pattern (or code snippet)
is a sequence (u1,u2, ...,un), ∀uk ∈ U . For the sake of presentation, in the scope of this
chapter the following terms are used interchangeably: method declaration vs. declaration

40 Recommending API function calls to support developers

Ranked
Invocations

Code Parser

2

API Generator

Code Builder

Code Snippets

Recommendation
Engine

Data Encoder

Similarity Calculator

Project Comparator

Declaration
Comparator

3

4

1 5

Developer

Fig. 4.2 Overview of the FOCUS architecture.

and API vs. invocation. For each declaration, we extract its method name, a list of types of
the parameters, and a list of API function calls. In this way, a project is represented as a set
of declarations from its constituent classes.

FOCUS makes use of a context-aware collaborative-filtering technique to search for
invocations from highly relevant projects. This allows us to consider both project and
declaration similarities to recommend APIs and code snippets. Following the terminology of
recommender systems [49], we treat projects as the enclosing contexts, method declarations
as users, and method invocations as items. Intuitively, we recommend a method invocation for
a declaration in a given project, which is analogous to recommending an item to a customer
in a specific context. For instance, the set of method invocations and the usage pattern
(cf. framed code in Fig. 4.1b) recommended for the declaration findBoekrekeningen can be
obtained from a set of similar projects and declarations in a codebase. The collaborative
aspect of the approach enables to extract recommendations from the most similar projects,
while the context-awareness aspect enables to narrow down the search space further to similar
declarations.

4.1.2.2 The FOCUS engine

The architecture of FOCUS is depicted in Fig. 4.2. To provide its recommendations, FOCUS
considers a set of OSS Repositories 1 . The Code Parser 2 component extracts method
declarations and invocations from the source code or bytecode of these projects. Project
Comparator, a subcomponent of Similarity Calculator 3 , measures the similarity between
projects in the repositories and the project under development. Using the set of projects and
the information extracted by Code Parser, the Data Encoder 4 component computes rating
matrices which are introduced later in this section. Afterwards, Declaration Comparator
computes the similarities between declarations. From the similarity scores, Recommendation
Engine 5 generates recommendations, either as a ranked list of API function calls using API
Generator, or as usage patterns using Code Builder, which are presented to the developer. In
the remainder of this section, we present in greater details each of these components.

4.1 FOCUS 41

4.1.2.3 Code Parser

FOCUS is dependent on Rascal M3 [25] to function. Rascal M3 is an intermediate model
that performs static analysis on source code to extract method declarations and invocations
from a set of projects. This model is an extensible and composable algebraic data type that
captures both language-agnostic and Java-specific facts in immutable binary relations. These
relations represent program information such as existing declarations, method invocations,
field accesses, interface implementations, class extensions, among others [25]. To gather
relevant data, Rascal M3 leverages the Eclipse JDT Core Component4 to build and traverse
the abstract syntax trees of the target Java projects.

We consider the data provided by the declarations and methodInvocation relations of
the M3 model [25]. Both of them contain a set of pairs ⟨v1,v2⟩, where v1 and v2 are values
representing locations. These locations are uniform resource identifiers that represent artifact
identities (aka. logical locations) or physical pointers on the file system to the corresponding
artifacts (aka. physical locations). The declarations relation maps the logical location of an
artifact (e.g., a method) to its physical location. The methodInvocation relation maps the
logical location of a caller to that of a callee.

Listing 4.1 depicts an excerpt of the M3 model extracted from the code presented in
Fig. 4.1a. The declarations relation links the logical location of the method findBoekrekeningen,
to its corresponding physical location in the file system. The methodInvocation relation
states that the getCriteriaBuilder method of the EntityManager type is invoked by the
findBoekrekeningen method in the current project.

m3.declarations = {
<|java+method://StandaardBoekrekeningService/findBoekrekeningen|,
|file:// ... /StandaardBoekrekeningService.java(501,531,<17,4>,<33,5>)|>,
%[...]}
m3.methodInvocation = {
<|java+method://StandaardBoekrekeningService/findBoekrekeningen|,
|java+method://EntityManager/getCriteriaBuilder|>, [...]}

Listing 4.1 Excerpt of the M3 model extracted from Fig. 4.1a.

4.1.2.4 Data Encoder

Once all the method declarations and invocations have been parsed with Rascal, FOCUS
represents the relationships among them using a rating matrix. Given a project, each row
in the matrix corresponds to a declaration, and each column corresponds to an API call. A
cell is set to 1 if the declaration in the corresponding row contains the invocation in the

4https://www.eclipse.org/jdt/core/

https://www.eclipse.org/jdt/core/

42 Recommending API function calls to support developers

column, otherwise it is set to 0. In Fig. 4.3, we show an example of the rating matrix for
an explanatory project p1 with four declarations p1 ∋ (d1,d2,d3,d4) and four invocations
(i1, i2, i3, i4). In practice, a matrix is generally big to contain a large number of methods and
invocations.




i 1 i 2 i 3 i 4

d1 1 0 1 1
d2 0 1 1 0
d3 1 0 0 1
d4 0 1 0 0




Fig. 4.3 Rating matrix for a project with 4 declarations and 4 invocations.

We conceptualized a 3D context-based ratings matrix to model the intrinsic relationships
among various projects, declarations, and invocations. The third dimension of this matrix
represents a project, which is analogous to the so-called context in context-aware CF systems.
For example, Fig. 6.6 depicts three projects P = (pa, p1, p2) represented by three slices
with four method declarations and four method invocations. Project p1 has already been
introduced in Fig. 4.3 and, for the sake of readability, the column and row labels are omitted
from all the slices in Fig. 6.6. There, pa is the active project and it has an active declaration
da. Active here means the artifact (project or declaration), being considered or developed.
Both p1 and p2 are complete projects similar to the active project pa. The former projects,
i.e., p1 and p2 are also called background data since they are already available and serve as a
base for the recommendation process. In practice, the more background projects we have,
the better is the chance that we recommend relevant API invocations.

4.1.2.5 Similarity Calculator

By exploiting the context-aware CF technique, the presence of additional invocations is
deduced from similar declarations and projects. Given an active declaration in an active
project, it is essential to find the subset of the most similar projects, and then the most similar
declarations in that set of projects. To compute similarities, we devised a weighted directed
graph that models the relationships among projects and invocations. Each node in the graph
represents either a project or an invocation. If project p contains invocation i, then there is
a directed edge from p to i. The weight of an edge p → i represents the number of times
a project p performs the invocation i. Fig. 6.7 depicts the graph for the set of projects in
Fig. 6.6. For instance, pa has four declarations and all of them invoke i4. As a result, the
edge pa → i4 has a weight of 4. In the graph, a question mark represents missing information.

4.1 FOCUS 43

For the active declaration in pa, it is not known yet whether invocations i1 and i2 should be
included.

Considering (i1, i2, .., il) as a set of neighbor nodes of p, the feature set of p is the vector
−→
φ = (φ1,φ2, ..,φl), with φk being the weight of node ik. Each constituent weight is computed
as the term-frequency inverse document frequency value, i.e., φk = fik ∗ log(|P|aik

), where
fik is the weight of the edge p → ik; |P| is the number of all considered projects; and aik

is the number of projects connected to ik. Eventually, the similarity between p and q is
computed as the cosine between their corresponding feature vectors

−→
φ = {φk}k=1,..,l and

−→
ω = {ω j} j=1,..,m, given below:

simα(p,q) =
∑

n
t=1 φt ×ωt√

∑
n
t=1(φt)2 ×

√
∑

n
t=1(ωt)2

(4.1)

Given that F(d) and F(e) are the sets of invocations for declarations d and e, respectively,
then the similarities between d and e are calculated using the Jaccard similarity index as
follows:

simβ (d,e) =
|F(d)⋂F(e)|
|F(d)⋃F(e)| (4.2)

4.1.2.6 API Generator

This component is a part of Recommendation Engine, and it is used to generate a ranked
list of API function calls. As shown in Fig. 6.6, the active project pa already includes
three declarations, and at the time of consideration, the developer is working on the fourth
declaration, corresponding to the last row of the matrix. pa has only two invocations,
represented in the last two columns of the matrix, i.e., cells marked with 1. The first two
cells are filled with a question mark (?), implying that it is not clear if these two invocations
should also be integrated into pa. API Generator predicts additional invocations for the active
declaration by computing the missing ratings exploiting the following collaborative-filtering
formula [49]:

rd,i,p = rd +
∑e∈topsim(d)(Re,i,p − re) · simβ (d,e)

∑e∈topsim(d) simβ (d,e)
(4.3)

Equation 6.4 is used to compute a score for the cell representing method invocation i,
declaration d of project p, where topsim(d) is the set of top similar declarations of d;
simβ (d,e) is the similarity between d and a declaration e, computed using Eq. (6.3); rd and
re are the mean ratings of d and e, respectively; and Re,i,p is the combined rating of d for i in
all the similar projects, computed as follows [49]:

Re,i,p =
∑q∈topsim(p) re,i,q · simα(p,q)

∑q∈topsim(p) simα(p,q)
(4.4)

44 Recommending API function calls to support developers

where topsim(p) is the set of top similar projects of p, k=|topsim(p)| is the number of
neighbor projects; and simα(p,q) is the similarity between p and a project q, computed using
Eq. 6.2. Equation 6.5 implies that a higher weight is given to projects with higher similarity.
In practice, it is reasonable since, given a project, its similar projects contain more relevant
API calls than less similar projects. Using Eq. 6.4 we compute all the missing ratings in
the active declaration and get a ranked list of invocations with scores in descending order,
which is then suggested to the developer. In Eq. 6.5, a set of k projects is used to compute
the ranking, and no matter how large k is, eventually we obtain a real score for each API.
Therefore, the final list always contains N items, regardless of k.

In the proposed implementation, we employed a sparse matrix to store the 3D tensor.
This allows us to optimize both the storage and computation, and thus increasing the number
of neighbor projects for the recommendation. By the current version, FOCUS is able to
efficiently compute the recommendations, and maintain a trade-off between computational
complexity and effectiveness.

4.1.2.7 Code Builder

This sub-component is responsible for recommending real code snippets to developers. From
the ranked list, top-N invocations are selected as query to search the corpus for relevant
declarations. To limit the search scope, we consider only the most similar projects.

Using the Jaccard index as the similarity metric, for each query, we search for declara-
tions that contain as many invocations of the query as possible. Once the corresponding
declarations are identified, their source code is retrieved using the declarations relation of the
Rascal M3 model. Thanks to its modularity, Rascal is able to decompile and analyze projects
written in different programming languages, e.g., Java [25], C/C++ [8], PHP [108]. Rascal
also allows us to compute M3 model from both source code folders and binaries, e.g., JAR
files independently. Thus we implemented a dedicated function that extracts the real source
code of a method declaration by means of the computed M3 model and the project location.
Finally, the resulting code snippet is suggested to the developer.

4.1.2.8 Code Recommendation

In Fig. 4.1a, given that findBoekrekeningen is the active declaration, the invocations it contains
are used together with the other declarations in the current project as the query to feed the
recommendation engine. The produced outcome is a ranked list of real code snippets, and
we show the top one, named findByIdentifier, in Listing 4.2.

4.1 FOCUS 45

Fig. 4.4 FOCUS IDE.

public List<QuestionsStaged> findByIdentifier (String identifier) {
log . fine (" getting Session instance by identifier : " + identifier) ;
try {

CriteriaBuilder cb = entityManager . getCriteriaBuilder () ;
CriteriaQuery <QuestionsStaged> criteria = cb.createQuery(QuestionsStaged . class) ;
Root<QuestionsStaged> qs = criteria . from(QuestionsStaged. class) ;
criteria . select (qs) .where(cb.equal(qs . get (" identifier ") , identifier)) ;

log . fine ("get identifier successful ") ;
return entityManager . createQuery(criteria) . getResultList () ;

} catch (RuntimeException re) {
log . severe ("get identifier failed " + re) ;
throw re ;

}
}

Listing 4.2 Recommended source code for the snippet in Fig. 4.1a.

By comparing the recommended code and the original one in Fig. 4.1b, we realize that
though they are not the same, they indeed share several method calls and a shared intent: both
snippets exploit a CriteriaBuilder object to build, perform a query, and eventually retrieve
some results. Furthermore, the outcome of both declarations is of the List type. More
importantly, compared to the original code in Fig. 4.1b, the recommended snippet appears to
be of a higher quality and robustness.

We conclude that for the motivating example, FOCUS is helpful since the recommended
code together with the corresponding list of function calls, i.e., get, equal, where, select,

46 Recommending API function calls to support developers

ifnextchar.etcetc., provides the developer with practical instructions on how to use the API at
hand to implement the desired functionality.

4.1.2.9 Using FOCUS in the Eclipse IDE

As shown in Fig. 4.4, FOCUS has been integrated into the Eclipse IDE.5 The figure depicts
a real development scenario where a developer is implementing the SQLDump project6 by
improving the existing code with recommendations provided by FOCUS. SQLDump is a
simple command-line utility that exploits the apache-cli library7 to execute an SQL query
and export results as a CSV file.

The first implementation of the main method prints parameter errors to the console by
using Java I/O facilities, i.e., System.out.println 1 . FOCUS suggests to the developer both
code snippets 2 and 3 , and a ranked list of predicted APIs 4 that are relevant to the code
being developed. Furthermore, it recommends a possible improvement that includes the
usage of the HelperFormatter class 5 : the catch statement block is completely defined and
the System.out.println invocation is replaced by HelperFormatter provided by apache-cli.
Meanwhile printHelp is a method of HelperFormatter that prints both possible parameter
errors as well as an introduction on how to run SQLDump from command line. As a result,
with the help of FOCUS, the developer can learn how to use the method both from the code
snippets 3 and the list of API calls 4 .

The goal of this study is to evaluate FOCUS and compare it with two state-of-the-art
tools, i.e., UP-Miner [276] and PAM [83], with the purpose of determining the extent to
which it can provide a developer with accurate and useful recommendations, featuring code
snippets containing API usage patterns relevant for the developers’ context. The quality focus
relates to the API recommendation accuracy and completeness, the time required to provide
a recommendation, and the extent to which developers perceive the recommendation useful.

PAM has been chosen as baseline for comparison, since it is among the state-of-the-art
tools in API recommendation: it has been shown [83] to outperform other similar tools such
as MAPO [298] and UP-Miner [276]. To conduct the comparison with PAM, we exploited
its original source code which has been made available online by its authors.8 Furthermore,
to facilitate future replications, we published all the artifacts together with the tools used in
the evaluation

5An instruction on how to install the IDE is available at: https://mdegroup.github.io/
FOCUS-Appendix/install.html

6https://github.com/aparsons/SQLDump
7http://commons.apache.org/proper/commons-cli/
8https://github.com/mast-group/api-mining

https://mdegroup.github.io/FOCUS-Appendix/install.html
https://mdegroup.github.io/FOCUS-Appendix/install.html
https://github.com/aparsons/SQLDump
http://commons.apache.org/proper/commons-cli/
https://github.com/mast-group/api-mining

4.1 FOCUS 47

After formulating the research questions in Section 4.1.3, the following subsections
describe datasets, analysis methodology, and the evaluation metrics used to evaluate FOCUS.

4.1.3 Evaluation

4.1.3.1 Research Questions

The conducted study aims to address the following research questions:
▷ RQ1: How does FOCUS compare with UP-Miner and PAM? Both UP-Miner [276]
and PAM [83] are well-founded API recommendation tools. UP-Miner has been shown
to outperform MAPO [298], while PAM gains a superior performance compared to both
UP-Miner and MAPO. In the previous version of the tool [181], the results demonstrates
that FOCUS outperforms PAM on different datasets collected from GitHub and MVN. In
this work, we compare FOCUS with UP-Miner and PAM on an Android dataset to further
study their performance on a new application domain.

▷ RQ2: How successful is FOCUS at providing recommendations at different stages of a
development process? For a recommender system, it is essential to be able to return relevant
recommendations, indicating by a high number of true positives as well as a low number of
both false positives and false negatives. This research question evaluates to which extent the
tool can provide accurate and complete results.

▷ RQ3: Is there a significant correlation between the cardinality of a category and accu-
racy? We examine whether given a testing app, having more apps of the same category is
beneficial to the recommendation outcome.

▷ RQ4: Can FOCUS recommend relevant code snippets? We study if the recommended
code snippets provided by FOCUS are relevant to support developers in fulfilling their tasks.

▷ RQ5: How are FOCUS recommendations perceived by software engineers during a
development task? Finally, we are interested in investigating whether FOCUS is useful from
a developer point of view. To this end, we conducted a user study to evaluate the relevance of
API calls and code snippets provided by FOCUS to support a particular development context.
A group of 16 Master’s students in Computer Engineering has been involved to assess two
real-world development scenarios.

4.1.3.2 First Evaluation: Simulating Developers’ Behavior

In the following, we describe the dataset used to address RQ1-RQ4, as well as the data
extraction method. As it is explained in Section 4.1.3, for RQ5 we rely on different datasets,

48 Recommending API function calls to support developers

APK files

Extractor

AndroidTimeMachine

Apkpure dex2jar

Apps

JAR files

Crawler

Fig. 4.5 The data extraction process.

because the aim is to let developers leverage FOCUS recommendations, and tasks should be
simple enough for an experimental setting.

Evaluation Dataset and Data Extraction - While FOCUS is able to work with different data
sources as well as programs written in various languages, the evaluation context focuses
on the applicability to a specific domain, i.e., Android programming. Although Android
development is per se not very different from the development of other kinds of applications,
after the evaluation reported in the previous paper featuring heterogeneous Java programs
[181], the aim of this evaluation is to show how, by learning from a training set belonging to
applications from the same ecosystem, FOCUS is capable of providing accurate recommen-
dations. We have chosen Android not only because of the large availability of data needed
to perform an empirical evaluation, but also because recommending API calls and usage
patterns is deemed to be important in Android programming [81].

Since FOCUS accepts as input data extracted by Rascal, which in turn requires a specific
format, we devised our own method to acquire an Android dataset eligible for the evaluation.
The extraction process needs to comply with some certain requirements, and it is illustrated
in Fig. 4.5. First, we exploited the AndroidTimeMachine platform [91] to crawl open source
projects. The platform fetches apps from the Google Play store9 and associates them with
the open source counterparts hosted in GitHub. The crawling process resulted in a set of
7,968 open source Android apps. Most of the apps (82%) in the dataset are written in Java;
4% in Kotlin; 4% in JavaScript, 2% in C++, and 1% in C#. The remaining 7% belong to
other languages.

As Rascal can parse certain programming languages, from the initial dataset we filtered
out irrelevant projects to select only the Java and Kotlin ones, which account for the majority
of the apps. Afterwards, we retrieved the corresponding compiled APK files by querying
the Apkpure platform10 using some tailored Python scripts [237]. The process culminated in

9https://play.google.com/
10https://apkpure.com/

https://play.google.com/
https://apkpure.com/

4.1 FOCUS 49

the final corpus consisting of 2,600 APK binary files (mined from Apkpure) together with
additional metadata (mined from Google Play), including authors, categories, star rating,
price, and the number of downloads. By carefully inspecting the data, we realized that most
of the apps are highly rated and they have a high number of downloads.

We decompiled the APKs into the JAR format by means of the dex2jar tool [1]. The
JAR files were then fed as input for Rascal to convert them into the M3 format, which can
eventually be consumed by FOCUS.

In total, there are 26,854 API functions in the whole dataset, and most of them are invoked
by a small number of declarations (and thus projects11): 15,731 APIs are called in only one
project. Only a tiny fraction of the APIs is extremely popular by being included in a large
number of projects: ten APIs are called in more than 1,900 projects and 15,000 declarations.
The most popular API call is java/lang/StringBuilder/append(java.lang.String) and it appears
in 2,512 projects and 54,828 declarations.

Altogether, this reflects the long tail effect which has already been encountered by third-
party libraries recommendation [182]. Such an effect can be expressed as follows: For many
outcomes, about 80% of consequences originate from 20% of the causes [130]. When we
apply this to API recommendation, it is interpreted as: “About 80% of the APIs come from
20% of the apps.” As it has been shown in various studies [182, 266], providing products in
the long tail is beneficial to the final recommendations. In a similar fashion, we suppose that
the ability to suggest APIs rarely included by apps, is of particular importance, as this may
help discover useful APIs that have been normally obscured from search engines.

A summary of the categories and their corresponding number of items in the considered
dataset is also provided. Due to the space limit, we cannot show and discuss all the figures
here. Please refer to the online appendix for more details.12

With this dataset, we aim at evaluating if the proposed approach is able to support mobile
developers in diverse application domains as well as with various levels of apps’ maturity,
thereby attempting to resemble real-world development scenarios. We use the collected
dataset in RQ1, RQ2, RQ3, and RQ4 to evaluate FOCUS as well as to compare it with the
two baselines.

Finally, the following main steps are conducted to create the required metadata, which
can then be used to feed FOCUS.

• the corresponding Rascal M3 model is generated for every project in the dataset;

11For the sake of presentation, from now on the two terms “app” and “project” are used interchangeably.
12https://mdegroup.github.io/FOCUS-Appendix/

https://mdegroup.github.io/FOCUS-Appendix/

50 Recommending API function calls to support developers

Π

Declaration n

P1

P2

P3

. . .

Declaration 1

Declaration 2

Removed declarations

Testing project

Ground-truth
invocations

Query
invocations

Testing declaration

Fig. 4.6 The extraction of data for a testing project.

• the corresponding ARFF representation13 for each M3 model is generated in order
to be used as input for applying FOCUS and PAM during the actual evaluation steps
discussed in the next sections.

How we simulate developers’ behavior - To evaluate FOCUS in RQ1-RQ4, we simulate the
behavior of a developer who is programming a project and needs practical recommendations
to complete it. Figure 4.6 provides an intuition on how the extraction of an active/testing
project pa is done. The project consists of a set of declarations and they are divided into
three parts, namely P1, P2, and P3, which are explained as follows.

• P1: A set of complete declarations, e.g., Declaration 1, Declaration 2, ifnextchar.etcetc..

• P2: A testing declaration, for this declaration, only a portion of code is available to feed
the recommendation engine, while the rest is removed and saved as ground-truth data.
This corresponds to the scenario in Fig. 4.1a, where the developer is implementing the
active declaration da, and she needs recommendations on the next APIs to be added;

• P3: Removed declarations: A certain part consisting of some declarations is removed.
This aims to simulate the scenario when the developer is only at an early stage of the
project.

13https://www.cs.waikato.ac.nz/ml/weka/arff.html

https://www.cs.waikato.ac.nz/ml/weka/arff.html

4.1 FOCUS 51

Correspondingly, there are the following parameters:

• ∆ is the number declarations in pa (∆ > 0);

• Only δ declarations (δ < ∆) are used as input for recommendation and the rest is
discarded;

• In total, da has Π invocations, however only the first π invocations (π < Π) are selected
as testing, and the rest is ground-truth data;

• k is the number of neighbour projects (cf. Section 4.1.2.6);

• Given a ranked list of APIs, the developer typically pays attention to the top-N items
only, i.e., N is the cut-off value for the list.

For da, only a half of the code lines of the method’s body is selected to feed the recommen-
dation engine. In fact, Rascal can parse only compilable code, thus there might be some
compilation errors at some points, where the code is incomplete. As a result, in practice, we
suppose that FOCUS can provide recommendations only when the developer temporarily
stops at a certain point where the whole declaration becomes compilable. Thus, to increase
the applicability of FOCUS, as a developer one should try to make the code compilable
as soon as they can by closing open loops, try/catch blocks, return statements, etc. This is
supported pretty well by IDEs such as Eclipse which automatically recommend and insert
closed loops and try/catch blocks. In this respect, we suppose that in most cases, code is
executable, though it is yet complete.

Table 4.1 shows four configurations, i.e., C1.1, C1.2, C2.1, and C2.2, corresponding to
different combinations of δ and π . Furthermore, C1.1 and C1.2 as well as C2.1 and C2.2
are pairwise relevant. For example, both C1.1 and C1.2 have the same number of method
declarations (δ), they differ in the number of invocations in the testing declaration (π).

For the purpose of validation, the original dataset (cf. Section 4.1.3) was split into
two independent parts, namely a training set and a testing set. In practice, the training
set represents the OSS projects that have been collected ex-ante, and they are available at
the developer’s disposal, ready to be exploited for any mining purposes. The testing set
represents the project being developed, or the active project. We opted for k-fold cross
validation [132] as it has been widely chosen to study machine learning models. Depending
on the availability of input data, the dataset with n elements is divided into f equal parts,
so-called folds. For each validation round, one fold is used as testing data and the remaining
f -1 folds are used as training data. In our evaluation, two values were selected, i.e., f =10
and f =n. The former corresponds to ten-fold cross validation while the latter corresponds

52 Recommending API function calls to support developers

Table 4.1 Experimental configurations.

Conf. δ π Description
C1.1 ∆/2−1 1 Nearly the first half of the declarations is used and the second half is discarded. The last

declaration of the first half is selected as the active declaration da. For da, only the first
invocation is provided as query, and the rest is used as ground-truth data, i.e., GT(p). This
configuration represents an early stage of the development process and, therefore, only
limited context data is available to feed the recommendation engine.

C1.2 ∆/2−1 4 Similarly to C1.1, almost the first half of the declarations is retained and the second half
is removed. da is the last declaration of the first half declarations. For da, the first four
invocations are provided as query, and the rest is GT(p).

C2.1 ∆−1 1 The last method declaration is selected as testing, i.e., da and all the remaining declarations
are used as training data. In da, the first invocation is kept and all the others are taken out
as ground-truth data GT(p). This mimics a scenario where the developer is almost finished
implementing p.

C2.2 ∆−1 4 Similar to C2.1, da is selected as the last method declaration, and all the remaining decla-
rations are used as training data. The only difference with C2.1 is that in da, the first four
invocations are used as query and all the remaining ones are used as GT(p).

to leave-one-out cross validation [287], and they are exploited depending on the purpose
as well as the availability of data. With ten-fold cross validation, we shuffle the list of the
apps considered in the evaluation, and then randomly split them into ten equal parts. In the
evaluation, we attempt to equally distribute the projects into the folds, so as to maintain
a balance among the folds with respect to the projects’ size. For every experiment, the
execution is done ten times: each time one fold is used for testing, and the remaining nine
folds are used as training data. Eventually, we averaged out the metrics obtained from the ten
folds to get the final results.

To assess the FOCUS’s accuracy, we employ a set of metrics defined in Chapter 3.3, i.e.,
success rate, precision, recall, and Levenshtein distance. Furthermore, we evaluate the time
needed for the systems to generate predictions by using a laptop with Intel Core i5-7200U
CPU @ 2.50GHz×4, 8GB RAM, and Ubuntu 16.04.

How we address RQ1-RQ4 - ▷ RQ1. To address RQ1, we compare the performance
of FOCUS with that of UP-Miner and PAM. The experience gained in the previous work
[181] reveals that PAM cannot scale well with large datasets, i.e., it suffers from a high
computational complexity. Meanwhile, FOCUS is more efficient as it is capable of incor-
porating a large number of background projects and swiftly producing recommendations.
In particular, both systems were experimented on a mainstream laptop using a set of 549
training projects with 80MB in size to measure the execution time [181]. On average, PAM
requires 320 seconds to provide a recommendation, while FOCUS needs just 1.80 seconds.
Through a careful observation on the Android dataset (cf. Section 4.1.3), we realized that
many of them are big in size, and a training set of 2,360 apps may add up to more than
2.0GB. This essentially means that it is infeasible to run PAM on the entire dataset, since
the execution time may exponentially soar. Thus, for RQ1 we can leverage only a portion of
the original corpus. To be more precise, we selected 500 apps of average size. There are 39

4.1 FOCUS 53

categories in total and most of them contain a small number of apps, while Tools is still the
biggest category with 151 apps, accounting for 30.20% of the total amount. We opted for
leave-one-out cross-validation [287], aiming to exhaustively exploit the background data.
We study the performance of FOCUS by considering all the four configurations listed in
Table 4.1, i.e., C1.1, C1.2, C2.1, and C2.2. The cut-off value N is used to investigate how
accurately the system is able to provide recommendations with respect to different lengths
of the ranked list. In RQ1, we set N to 30, attempting to study the three systems on a long
list of recommendations. We also consider, as can be seen in Eq. 6.5, different values of the
number of neighbor apps, i.e., k={1,2,3,4}. The evaluation was executed 500 times, by each
validation, one app is used as testing and all the remaining 499 apps are used for training. To
aim for a reliable comparison, we ran UP-Miner and PAM using their original settings in our
evaluation.

▷ RQ2. For this research question, we made use of the whole corpus introduced in Sec-
tion 4.1.3, which contains all the 2,600 collected apps. Moreover, since we have a larger
amount of data compared to RQ1, we employ ten-fold cross-validation in this research ques-
tion. We analyze the performance of FOCUS for combinations of: (i) different configurations,
i.e., C1.1, C1.2, C2.1, and C2.2; (ii) different values of N, i.e., N={1,5,10,15,20}; and
(iii) different values of k, i.e., k={1,2,3,4,6,10}. The rationale behind the selection of such
specific values is as follows. We should incorporate a certain number of neighbor projects
k when computing recommendations, otherwise the matrix will become big (cf. Fig. 6.6),
which possibly induces an expensive computational cost. While such a large number of N
seems to be unrealistic, in the scope of our evaluation, we have to consider it to ensure the
generalizability of our final conclusions. In practice, a small enough number of N items
should be presented to the developers, so as to avoid overwhelming them. We report, for
different configurations and values of N and k, the success rate, and performance gain. Also,
we plot the precision/recall curves for different configurations and values of k.

▷ RQ3. To address RQ3, we perform controlled experiments on the whole dataset described
in Section 4.1.3. Similar to RQ2, we conducted the experiments following the ten-fold cross-
validation methodology. The apps collected in the corpus span over a total of 47 categories,
such as Productivity, Communication, Music & Audio, or Business. The cardinality (i.e.,
the number of apps within a category) of the categories varies considerably: most of them
contain a small number of apps, i.e., ranging from 1 to 20 items for almost half of the topics.
The biggest category with 659 apps is Tools, while there are three categories with only two
apps, i.e., Trivia, Music, and Parenting.

With this research question, we aim at examining if there is a strong positive correlation
between two variables, i.e., the cardinality of a category and the corresponding precision.

54 Recommending API function calls to support developers

In other words, we hypothesize that apps belonging to populous categories might possibly
get a better recommendation since they have more, presumably, relevant background data,
i.e., projects coming from the same domains. This would have an impact in practice as
follows: once the developer specifies one or more domains for her app, we can search for
recommendations just by looking for apps within the same domains, aiming to narrow down
the search scope. This is useful since it contributes to a reduction in the overall execution time.
However, this is a pure assumption, which needs to be carefully studied through concrete
experiments.

For each category, we computed the precision for all of its constituent apps following
Eq. 3.2, and the precision of a category was averaged out over the apps. Eventually, the
correlation between the cardinality and precision is computed using the Spearman’s rank
correlation coefficient and Kendall, i.e., ρ and τ , respectively. The coefficients range from -1
(perfect negative correlation) to +1 (perfect positive correlation), while ρ=0 or τ=0 implies
that the variables are not correlated at all. The reason why we compute both Spearman’s
and Kendall’s correlation is because the number of categories is relatively small, and the
Spearman’s correlation may be more suitable in this case. We do not use the Pearson’s
correlation as we cannot assume the presence of a linear relationship between categories and
precision.

▷ RQ4. In this research question, we study if FOCUS is able to recommend source code
relevant to the method declaration under development, exploiting the ten-fold cross-validation
technique. As an example, we assume that the developer is working on the incomplete code
snippet depicted in Fig. 4.1a, and FOCUS is expected to suggest real code such as the one in
Fig. 4.1b, or the one in Listing 4.2.

To evaluate the similarity between two declarations, we compare their constituent APIs.
This comparison is based on the observation coming from an existing work [158] that if
projects or declarations share API calls implementing the same requirements, then they are
considered to be more similar than those that do not have similar API usage. Following
the same line of reasoning, we evaluate the similarity/relevance between two snippets by
examining if they share common API function calls and have the same sequence of these
calls.

To address this research question, we leverage the dataset of 500 apps also used to address
RQ1. We deliberately make use of such a small dataset due to the following reason: with
this dataset, we analyze the ability of FOCUS to recommend relevant code snippets, given
that there is a fairly small amount of training data. We conjecture that, as confirmed later in
the chapter, if FOCUS works effectively on a small dataset, it will perform well on bigger
ones. To evaluate if a recommended snippet is relevant to the query, we measure the level of

4.1 FOCUS 55

similarity between them using the Levenshtein edit distance [141], which has been used by
prior work for similar purposes, e.g., tracking source code clones [258]. Given the source
code of a declaration d1, we parse it using Rascal to get the API invocations. Afterwards, we
encode each of the invocations using a unique character, resulting in a string s1. Thus, the
evaluation of the similarity between two declarations d1 and d2 boils down to comparing the
corresponding strings s1 and s2, by counting the number of replacements needed to convert
s1 to s2 using Eq. 3.9. Such a metric takes into account not only the common characters
between s1 and s2, but also the order in which they appear. Correspondingly, this means that
two code snippets are similar/relevant if they share common API function calls as well as
have the same sequence of the calls. In this sense, the smaller the distance we get, the more
similar the two snippets are, and vice versa.

To simplify the comparison performed in RQ4, we only used Configuration C1.2 (cf.
Table 4.1). The rationale behind the selection of the configuration is as follows: it represents
a more authentic development scenario, corresponding to the situation where the developer
already finishes a part of the declaration, and she expects to get recommendations. To be
more concrete, given a testing project, we kept the first half of the declarations and removed
the second half; the last declaration of the first half declarations is selected as the testing
one da. For da, the first four invocations are provided as query, and the rest is GT(p). Using
the Code Builder subcomponent (cf. Section 4.1.2), we extracted the real source code of a
declaration by means of the computed M3 model and the project location.

In fact, APK files do not contain source code, thus it is not possible to directly mine real
code snippets from the apps. However, FOCUS allows us to extract the method canonical
name of a recommended code snippet within the project scope. Moreover, since the dataset
is extracted from AndroidTimeMachine, there is a mapping between open-source Google
store apps with their corresponding repositories. To locate the right pair of APK file and
GitHub repository, we check the snapshot date when the mapping was created. In this way,
we are able to trace back to the original source code for those apps that have a counterpart in
GitHub. Eventually, FOCUS is able to recommend source code, as long as the corresponding
app is associated with a source project rooted in GitHub.

4.1.3.3 Second Evaluation: User Study

In this section, we study FOCUS’s usefulness of code and API recommendations by means
of a task-based user study to address RQ5. The goal of this study is to evaluate FOCUS, with
the purpose of understanding whether it could help developers with their implementation
tasks. The quality target of the study is the perceived usefulness that developers have of
recommendations (code snippets and APIs) provided by FOCUS. Therefore, the baselines

56 Recommending API function calls to support developers

Table 4.2 Task assignments to the evaluator groups.

T1 T2
Group I Apache-cli, using FOCUS gson
Group II Apache-cli gson, using FOCUS
Group III gson Apache-cli, using FOCUS
Group IV gson, using FOCUS Apache-cli

presented in the previous section have been not considered since the aim is to assess the
qualitative aspects of FOCUS. The context consists of participants, i.e., 16 Master’s students
in Computer Engineering, and objects, i.e., programs involving command line argument
parsing and HTML download/parsing.

Study Design and Tasks - As shown in Table 4.2, the experimental design is a crossover
design in which participants were split into four groups (each participant worked individually,
but each group received the same treatment). Each participant had to carry out two implemen-
tation exercises, one using FOCUS recommendations and another without the availability
of FOCUS. Different groups featured different ordering of the treatments, to mitigate any
ordering/learning effect.

/**
* Create apache−cli options for the following elements :

* url (Mandatory),

* username (Mandatory): −user <user>

* password (Mandatory): −pass <password>

* query (Mandatory): −sql <query>

* CSV file path : −f − file < filepath >

* includeHeaders : −headers

* All the options contains and argument, with the exception of includeHeaders

* @return Available command line options

*/
public static Options getOptions () {

final Options options = new Options() ;
final Option urlOption = new Option("url " , true , "database url <jdbc: subprotocol :subname>");
final OptionGroup urlGroup = new OptionGroup();
urlGroup. setRequired (true) ;
urlGroup.addOption(urlOption) ;
options .addOptionGroup(urlGroup);

// COMPLETE THE METHOD
return options ;

}

Listing 4.3 The commons-cli getOption() partially implemented method.

The two tasks focus on the usage of different libraries, i.e., commons-cli14 and jsoup,15

and require the completion of three partially implemented methods. commons-cli provides

14https://commons.apache.org/proper/commons-cli/
15https://jsoup.org/

https://commons.apache.org/proper/commons-cli/
https://jsoup.org/

4.1 FOCUS 57

APIs for parsing command-line options passed to programs, while jsoup is a library for
parsing and manipulating HTML pages using the best of DOM, CSS, and jquery-like
methods.

@Test
public void getOptionTest () throws IOException {

Options options = Launcher.getOptions () ;
assertEquals (6, options . getOptions () . size ()) ;

}

@Test
public void parseOKTest() throws Exception {

String [] arguments = new String []{"−url" , "a" ,
"−pass" , "pass" ,
"−user" , "user" ,
"−sql" , "sql"};

assertEquals (4, Launcher.parse (arguments) . size ()) ;
}

@Test
public void printUsageTest () throws IOException {

assertNotEquals ("" , Launcher.printUsage ()) ;
}

Listing 4.4 The unit tests for checking the correctness of the task.

For the tasks with commons-cli, the participants completed three methods by: (i) imple-
menting a method for specifying the command-line options (we provided the evaluator with
the parameter list); (ii) parsing the command line parameters and throwing an exception if
the mandatory ones are missing; (iii) handling parsing exception by printing possible options
to the console. Listing 4.3 shows an example of the partial implementation and the method
requirements for specifying options. For a detailed description of the two performed tasks,
due to space limit, interested readers are kindly referred to our online appendix.16

For each method to be completed, we provided (for treatments having the availability of
FOCUS) each evaluator with the top-5 snippets and top-20 method invocations recommended
by FOCUS by giving the initial and partial method implementation as input.

Study Operation - Under the circumstance in which the experiment was conducted, it
was neither possible to perform the experiment in a laboratory17 nor to ask participants
to return the results immediately. Instead, each participant could perform the tasks offline
and return them to us. Before the study, we performed a laboratory introductory session
in video conference, in which we introduced to participants the laboratory goals and tasks
(without details about our research question, to avoid biasing them), and left them a detailed
instruction documents.

16https://mdegroup.github.io/FOCUS-Appendix/tasks.html
17Due to the COVID-19 emergency in 2020

https://mdegroup.github.io/FOCUS-Appendix/tasks.html

58 Recommending API function calls to support developers

During the tasks, participants could access any resource available on the Internet, besides
FOCUS recommendations when available based on the study design. Once a participant fin-
ished the tasks, s/he had to complete a questionnaire18 consisting of the following questions:
(i) three general questions asking about their experience in programming and code search
engine; (ii) four questions, in a 5-level Likert scale [196], related to the understandability
and complexity of the assigned tasks; and (iii) four questions to evaluate the relevance and
usefulness of the recommendations provided by FOCUS.

Moreover, we asked the participants to submit their implementations. Such implemen-
tations have been used for understanding the correctness of the resulting code. For each
method to be completed, we defined a specific JUnit19 unit test for checking their correctness.
We did not provide the evaluator with the test methods to avoid bias towards the experiment.
Listing 4.4 reports the simple testing methods used to check the correctness of the submitted
task. Although the unit tests are rather simple, they have been able to effectively catch any
possible implementation failures.

Then, we involved a senior developer experienced with Java programming, gsoup and
commons-CLI libraries to further investigate the method implementations where the unit
test fails. The senior developer checked the severity of the identified errors and discarded
those that are not related to the usage of the involved library. For instance, some evaluators
named the parameters differently, e.g., they used password instead of pass or username
instead of user. Consequently, the dedicated parseOKTest test fails because of a wrong
parameter naming. We marked this type of failure as a minor one, and we considered the
implementation as correct for the evaluation scope.

How we address RQ5 - There are the following analyses to address RQ5:

• We perform a Wilcoxon signed rank test [285] to determine whether there is any statis-
tically significant difference between the number of passed tests for tasks implemented
with and without FOCUS (H0: there is no significant difference between the percentage
of tests passed with and without the availability of FOCUS). Also, we compute the
Cliff’s delta effect size [99].

• As for the questionnaire results, we report them using diverging stacked bar charts and
discuss them.

18https://forms.gle/uoqSTaQ94PArdUST6
19http://junit.org/junit4

https://forms.gle/uoqSTaQ94PArdUST6
http://junit.org/junit4

4.1 FOCUS 59

4.1.4 Results

This section analyzes the experimental results obtained through the evaluation by referring to
the four research questions mentioned in Section 4.1.3.

Table 4.3 Success rate of PAM and FOCUS.

UP-Miner PAM FOCUS
— — k=1 k=2 k=3 k=4

C1.1 41.66 49.60 81.20 81.60 82.00 83.80
C1.2 37.33 52.20 89.81 91.10 92.80 93.22
C2.1 44.10 58.22 77.00 78.20 78.60 79.60
C2.2 40.66 58.40 89.60 90.20 91.60 92.10

RQ1: How does FOCUS compare with UP-Miner and PAM? Table 4.3 reports the
success rate for PAM and FOCUS, considering different configurations and values of k
representing the number of neighbor apps. The cut-off value N was set to 30, attempting to
investigate the systems’ performance for a long list of recommendations. The table shows an
evident outcome: FOCUS always achieves a much better success rate than that of PAM and
UP-Miner by all the configurations. For instance, with C1.2, FOCUS gets 89.81%, 91.10%,
92.80%, and 93.22% as success rate by k=1, k=2, k=3, and k=4, respectively, while PAM
and UP-Miner get 52.20% and 37.33%, respectively. With C2.2, FOCUS gets a maximum
success rate of 92.10%, which is superior than 58.40% and 40.66% obtained by PAM and
UP-Miner, respectively. We further confirm the claim by Fowkes and Sutton [83], i.e., PAM
outperforms UP-Miner also in our setting. Concerning the execution time, FOCUS spends
8×10−3 seconds to produce recommendation for one app, while UP-Miner and PAM need
3.8×10−4 and 1.6 seconds, respectively to perform the same task. In other words, on the
given dataset, UP-Miner is the most efficient tool in terms of timing, while FOCUS is much
faster than PAM.

The performance gain obtained by FOCUS is understandable in the light of the following
arguments. UP-Miner works on the basis of clustering techniques and it is dependent on
the similarity among groups of APIs. In other words, UP-Miner computes similarity at
the sequence level, i.e., invocations that are usually found together. PAM is a complex
system, which consists of six building blocks, i.e., probabilistic model, inference, learning,
inferring new patterns, candidate generation, and mining interesting patterns. The system
uses a probability distribution to define a distribution over all possible API patterns present
in client code, based on a set of API patterns. It also employs a generative model to infer the
most probable patterns from ARFF files. Finally, the system generates candidate patterns by
relying on the highest support first rule, i.e., searching for the best candidate earlier. Due
to these technical details, both UP-Miner and PAM can recommend APIs that commonly

60 Recommending API function calls to support developers

Table 4.4 Success rate (%) for k = {2,3,4,6,10} and N = {1,5,10,15,20}.

C1.1 C1.2
N k=2 k=3 k=4 k=6 k=10 k=2 k=3 k=4 k=6 k=10
1 67.46 69.10 71.34 74.00 75.76 85.69 87.53 88.19 89.38 89.96
5 76.84 78.42 80.38 82.53 84.80 91.11 92.42 92.84 93.88 94.53
10 80.46 82.30 83.42 85.38 87.84 92.80 93.92 94.50 94.92 96.03
15 81.76 84.05 84.84 87.15 89.15 93.69 94.61 95.23 95.61 96.50
20 82.80 84.88 86.23 87.88 90.11 94.07 94.96 95.61 96.11 96.92

C2.1 C2.2
1 66.30 68.11 70.50 72.65 75.42 82.84 85.50 86.92 88.15 88.96
5 77.03 78.15 77.80 79.57 82.03 90.07 91.00 91.84 92.11 93.42
10 79.46 80.57 80.26 81.96 84.57 91.65 92.50 93.19 94.00 95.11
15 80.76 82.07 81.57 83.76 86.23 92.11 93.30 93.80 94.73 96.00
20 81.73 84.00 84.92 87.34 89.07 92.65 93.88 94.26 94.92 96.15

appear in different code snippets. In contrast, FOCUS is able to consider similarity both at
the project level and the declaration level. Therefore, given an active project, FOCUS mines
API calls from the most similar declarations in the most similar projects. As a result, this
allows FOCUS to outperform both UP-Miner and PAM in finding invocations that fit well to
a given context.

It is worth noting that FOCUS gets a considerably high performance, given that the
dataset is fairly small. The maximum success rate obtained by C1.2 and C2.2 is 93.22%
and 92.10%, respectively. Compared to the previous work [181], where a set of 200 GitHub
projects was considered to compare FOCUS with PAM, we see that FOCUS substantially
improves its recommendations when more data is incorporated into the training. A feature
of the considered datasets which may affect the results obtained by FOCUS is the level of
dependencies in Android apps compared to that of the GitHub projects. In particular, by
counting the number of unique APIs in each app/project for both the Android dataset and the
GitHub dataset we see that the former contains more APIs compared to the latter. Many apps
have more than 400 unique APIs, meanwhile, most of the GitHub projects have less than 200
unique APIs. This is further supported by previous work [273, 222], which gives evidence
that Android projects make heavy use of third-party libraries as well as native libraries.

Answer to RQ1. Though UP-Miner is the most efficient tool, FOCUS substantially outperforms

both UP-Miner and PAM in terms of prediction performance. Moreover, FOCUS mines better on

Android apps with respect to GitHub projects.

RQ2: How successful is FOCUS at providing recommendations at different stages of a
development process? In this research question, we are interested in understanding the
completeness and accuracy of FOCUS’s recommendations at different project’s development
stages. For the former, we analyze the corresponding success rate and performance gain,

4.1 FOCUS 61

Table 4.5 Performance gain (%) among the configurations.

Gain of C1.2 w.r.t. C1.1
N k=2 k=3 k=4 k=6 k=10
1 27.02 26.67 23.62 20.78 18.74
5 18.57 17.85 15.50 13.75 11.47
10 15.34 14.12 13.28 11.30 9.32
15 14.59 12.56 12.25 9.71 8.24
20 13.61 11.88 10.88 9.37 7.56

Gain of C2.2 w.r.t. C2.1
1 25.14 25.53 23.29 21.34 17.95
5 16.93 16.44 18.05 15.76 13.89
10 15.34 14.81 16.11 14.69 12.46
15 14.05 13.68 14.99 13.10 11.33
20 13.36 11.76 11.00 8.68 7.95

while for the latter, we take into consideration the obtained precision and recall values.
Furthermore, we investigate the system’s ability to recommend APIs in the long tail.

▷ Success rate. Table 4.4 compares the success rates obtained by the considered experi-
mental settings. For the smallest cut-off value N, i.e., N=1, FOCUS is still able to provide
matches. For instance, with C1.1 when k=2, the system gets 67.46% as success rate, and
this score increases linearly along N: FOCUS gets a success rate of 76.84% and 82.80%
when N=5 and N=20, respectively. By Configuration C1.2, compared to C1.1, we see a
sharp increase in performance by all the cut-off values. Take as an example, with k=2, we
get 91.11% as success rate for N=5, and the score goes up to 94.07% when N=20. This
demonstrates that FOCUS is capable of providing good match even when the developer
wants to see a fairly short ranked list. Similarly, by C2.1 and C2.2, FOCUS enhances its
success rate alongside k and N.

Next, we investigate the effect of changing the number of neighbor apps used in comput-
ing recommendations, i.e., k, on the final outcome by comparing the results columnwise. It
is evident that when incorporating more neighbors for computing recommendations, FOCUS
yields a better success rate. For instance, with C1.1, considering the success rate obtained by
k=2 and k=3, we see that there is always a gain in performance: for N=5, FOCUS obtains
76.84% and 78.42%, respectively. This score improves substantially when we use more
neighbor projects to compute recommendations. Take as an example, FOCUS has a success
rate of 71.34% when k=4 and 75.76% when k=10. In summary, FOCUS is more accurate if
additional apps are considered for computing the missing ratings in the 3D matrix.

▷ Performance gain. Referring to Table 4.1, we see that C1.1 and C1.2 as well as C2.1 and
C2.2 are pairwise comparable. For instance, both C1.1 and C1.2 share the same amount of
method declarations (δ), they only differ in the number of invocations used in the testing
declaration (π). Thus, to investigate the effect of changing π on the recommendations, we
consider each pair of related configurations. The results in Table 4.4 indicate a sharp rise

62 Recommending API function calls to support developers

in performance when the configurations change from C1.1 to C1.2. Take as an example,
when k=2 and N=1, that means we consider only the first item in the ranked list, FOCUS
obtains 85.69% as success rate which is much better than 67.46%, the score yielded by C1.1.
When k=10 and N=20, the maximum success rate for C2.1 and C2.2 is 90.11% and 96.92%,
respectively. This suggests that incorporating more invocations, e.g., four instead of one
invocation, helps FOCUS significantly enhance its overall performance. In practice, this
means that given a declaration, the system is able to provide more accurate recommendations
proportionally to the project’s maturity.

Given the results in Table 4.4, we analyze the performance gain in percentage (%) and
report them it in Table 4.5. The green color and various levels of density are employed to
represent the corresponding magnitude. From the table, it is evident that the color gradually
fades when we move from left to right, top to bottom, implying that the enhancement goes
down linearly when we increase k and N. For example, the correlation between C1.1 and
C1.2 is as follows: for N=1 the gain is 27.02% with k=2, and it decreases to 26.67% and
23.62% with k=3 and k=4, respectively; when k=10, the gain boils down to 18.74%. The
same trend can be seen for other values of k and N. Likewise, the improvement obtained by
C2.2 in comparison to C2.1 shares a similar pattern: it is big with low k and N, and small
with higher k and N. For instance, it reaches 25.14% for N=1 and k=2 and shrinks to 7.95%
for N=20 and k=10. Overall, this essentially means that while we get performance gain by
incorporating more neighbors, at a certain point, such the gain becomes saturated and there
will be no further improvement.
▷ Accuracy. We report the accuracy achieved by all configurations using the precision recall
curves (PRCs) depicted in Fig. 4.7a, Fig. 4.7b, Fig. 4.7c, and Fig. 4.7d. The cut-off value N
has been varied from 1 to 30, aiming to study FOCUS’s performance further down in the
ranked list. First, we examine the effect of changing k on the precision recall curves. In fact,
a system gets a good performance if its precision and recall are high at the same time, and
this corresponds to a PRC close to the upper right corner of the diagram. From the figures, it
is clear that incorporating more neighbor apps in computing recommendations results in a
better accuracy by all configurations. For instance, with C1.1, we see a performance gain
when increasing the number of neighbor apps: the best precision and recall are 0.75 and 0.63,
respectively, and they are obtained when k=10; while by other value of k, i.e., k = {2,3,4,6},
the system gets a lower precision and recall. Similarly by other configurations, k=10 is also
the number of neighbor apps used for computing ratings that contributes to the best accuracy:
with C1.2, FOCUS achieves 0.92 as precision and 0.84 as recall. With C2.1 and C2.2, the
gain in performance when using 10 apps for computing recommendations becomes more
evident, in comparison to other values of k, i.e., k = {2,3,4,6}. This is consistent with the

4.1 FOCUS 63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k=2 k=3 k=4 k=6 k=10

Recall

P
re
c
is
io
n

(a) C1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k=2 k=3 k=4 k=6 k=10

Recall

P
re
c
is
io
n

(b) C1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k=2 k=3 k=4 k=6 k=10

Recall

P
re
c
is
io
n

(c) C2.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k=2 k=3 k=4 k=6 k=10

Recall

P
re
c
is
io
n

(d) C2.2

Fig. 4.7 Precision and recall curves obtained for the configurations.

64 Recommending API function calls to support developers

Fig. 4.8 Bivariate analysis of Precision and Cardinality.

outcomes we got by the success rate scores presented in Table 4.4: the system achieves a
better performance if it incorporates more similar apps for computing recommendations.

In conclusion, we see that the performance of FOCUS using C1.2 is superior to that
when using C1.1. Similarly, compared to C2.1, the accuracy obtained by FOCUS using
C2.2 improves substantially, i.e., by equipping the query with more invocations. These
facts further confirm that FOCUS is able to recommend more relevant invocations when the
developer intensifies the declaration by adding more code. As can be seen in Eq. 6.5, when
more invocations are available, the similarity among declarations can be better determined,
resulting in a gain in performance.
▷ The long tail. We counted the APIs that are recommended more often by FOCUS. By
carefully checking the top 20 recommended items, we realized that most of them reside in
the long tail. For example, the java/lang/StringBuilder/toString() API has been provided
190 times by FOCUS, being the top most recommended item. However, this invocation is
only ranked 646 in the list of all the APIs in the dataset. Altogether, this is to show that
while recommending very popular APIs may make sense, FOCUS goes far beyond that by
recommending also items in the long tail. This is achieved since FOCUS mines API from
highly similar projects, given an active project.

Answer to RQ2. FOCUS provides more accurate predictions when more similar projects are
incorporated for recommendation. Moreover, it is capable of suggesting APIs in the long tail.
Given an active declaration, the system improves its accuracy while the developer keeps coding.

4.1 FOCUS 65

RQ3: Is there a significant correlation between the cardinality of a category and accuracy?
Table 4.6 depicts the Spearman coefficients for all configurations, with respect to different
numbers of cut-off values N. The Kendall coefficients (τ) are comparable to the Spearman
ones (ρ), so we omitted them from the table, for the sake of clarity.

By examining the results in Table 4.6 we see that, despite some fluctuations, mainly with
C2.1 and C2.2, ρ is considerably small, i.e., the maximum value is ρ=0.160 for C1.2 and
N=25. More importantly, most of the scores are close to 0, indicating an extremely low (e.g.,
by N = {5,20,25} with C1.1) or almost no correlation (e.g., by N = {15} with C1.1 and
C2.2).

Table 4.6 Correlation (ρ) between cardinality and precision, N = {5,10,15,20,25}.
N C1.1 C1.2 C2.1 C2.2
5 0.059 0.150 0.068 -0.157
10 0.117 0.132 0.086 -0.013
15 0.001 0.115 0.080 0.005
20 0.046 0.150 0.156 0.054

As an example, Fig. 4.8 depicts precision and cardinality as well as their correlation for
N=25. The variables are shown both on the x-axis and y-axis, however at different parts of the
axes. This allows us to comprehensively represent the relationship between the two variables
for all the four configurations. In particular, on the top-left corner, there is the histogram
of precision with respect to cardinality, while the other bar charts at the bottom show the
histogram for each of them individually. The middle frame in the top row specifies the
correlation coefficients between precision and cardinality for all the configurations. Results
show that there is a very weak correlation between the two variables. For instance, the
coefficient is 0.032 for C1.1, or 0.036 for C2.2. As a whole, this unfortunately contradicts
our initial conjecture: apps belonging to major categories do not get a better recommendation,
although they have in principle, more background data. This means that searching for
recommendations just by looking at apps of the same domain(s) does not guarantee that we
will gain benefit. We attempt to ascertain the possible causes in the following.

According to a previous work [158], if projects share API calls implementing the same
requirements, then the projects are considered to be more similar than those that do not have
similar API usage. We computed similarity among apps using the Similarity Calculator
component presented in Section 4.1.2. Such a similarity is measured based on the constituent
API function calls of an app (cf. Fig. 6.7 and Eq. 6.2). By carefully examining the final
results, we realized that generally, similar apps do not originate from the same domain. To be
concrete, considering a ranked list with five items for all 2,600 apps, i.e., N=5, the percentage
of items that have similar apps coming from 1, 2, 3, 4, and 5 categories is 1.14%, 6.6%,
21.42%, 41.8%, and 29.0%, respectively.

66 Recommending API function calls to support developers

For instance, machinekit.appdiscover20 belongs to Libraries & Demo, however its
highly similar apps are from Education, Books & Reference, Health & Fitness, and Tools.
Since FOCUS relies on the similarity function (cf. Section 4.1.2), it may retrieve invocations
from projects in completely different domains to generate recommendations. This explains
why projects of a category with a low number of items still get a good accuracy, resulting in
a weak correlation between the cardinality of a category and accuracy. In a nutshell, there
exists no correlation because even apps belonging to different categories still contain similar
API usage.

Though the experiment suggests that we cannot save time by looking into some certain
categories, on the bright side, it reveals an interesting feature of FOCUS: the tool is able to
discover API calls from a wide range of apps, regardless of their origins.

Answer to RQ3. There is no direct correlation between the cardinality of a category and prediction
accuracy. Moreover, FOCUS is capable of mining API calls from apps belonging to various
application domains.

RQ4: Can FOCUS recommend relevant code snippets? As shown in Section 4.1.1, by
using the incomplete code in Fig. 4.1a together with other testing declarations as query to
feed FOCUS, we obtained a relevant snippet depicted in Listing 4.2, and this is just one of
many good matches we got. To provide a concrete analysis, Fig. 4.9 depicts the distribution
of the 500 apps dataset with respect to the number of projects (x-Axis) and Levenshtein
distance between the testing declaration and the corresponding project (y-Axis).

To facilitate a better view, we mark the apps as four separate clusters. Almost a quarter
of the projects or 24% corresponding to 120 projects get zero as the final result, i.e., the
distance between the recommended snippet and the original one is zero. This means that for
each of these projects, the recommended declaration perfectly matches the original one. By
the remaining ones, 23 projects among them accounting for 4.6%, have a distance of one,
which also indicates a high level of code similarity. Almost a half of the dataset, i.e., 233
apps corresponding to 46.60%, have a distance being larger than nine.

Figure 4.9 shows that, while FOCUS gains a good recommendation performance for
a considerably large number of apps, it fails to retrieve matches for some others, i.e., the
corresponding Levenshtein distance is large, meaning that the recommended snippets are not
relevant to the ground-truth ones. For instance, one project has a distance of 52, or another
has a distance of 43. We attempt to find out the rationale behind this outcome. Our main
intuition is as follows, by those projects with a large Levenshtein distance, there is a lack

20https://bit.ly/3pGKKIL

https://bit.ly/3pGKKIL

4.1 FOCUS 67

0.1 1 10 100
0

10

20

30

40

50

60

01234
5 6 7 8 910 11

12131415
16 171819

202122
2324 2526 27

3132

43

52

Number of apps

D
is

ta
n

c
e

Fig. 4.9 Levenshtein distance for the set of 500 apps.

of relevant training data. In other words, if there are not enough similar projects, FOCUS
cannot discover API invocations which eventually fit to the active declaration.

To validate the hypothesis, the following test was conducted: we computed the preci-
sion scores for all projects, and compared them with the Levenshtein distances using the
Spearman’s rank correlation coefficient (Similar to RQ3). The resulting score is ρ=-0.514,
with p-value < 2.2e-16. This can be interpreted as follows: the obtained precision is dis-
proportionate to the Levenshtein distance, or put another way, the higher the precision we
get, the shorter the distance, and vice versa. The finding consolidates our assumption: if
FOCUS achieves a high precision, it will be able to recommend more relevant code snippets.
Furthermore, as we already proved in RQ3, FOCUS gets a higher precision if we use more
similar apps for computing recommendations. Altogether, we conclude that the proposed
approach is able to return relevant code snippets if it is fed with more training data. From the
set of apps with a Levenshtein distance of 0, we enumerated the APIs and sorted them in
descending order to see which invocations have been recommended most. We got a similar
outcome of RQ2: FOCUS recommends several APIs which appear late in the ranked list of
the most popular invocations.

Answer to RQ4. FOCUS can provide relevant source code snippets to a testing declaration, as
long as we feed it with a rich training dataset, i.e., there are more projects similar to the one being
considered.

68 Recommending API function calls to support developers

(a) Q1: Does FOCUS retrieve code snippets
relevant to the context?

(b) Q2: Do the recommended code snippets
help you complete the lab assignments?

(c) Q3: Does FOCUS retrieve invocations rel-
evant to the context?

(d) Q4:Do the recommended invocations help
you complete the lab assignments?

Fig. 4.10 Results for evaluating the usefulness of the recommendations.

RQ5: How are FOCUS recommendations perceived by software engineers during a
development task? As explained in Section 4.1.3, 16 participants took part in the user
study. Among them, 30% and 50% of them have three years and more than four years of
programming experience, respectively. Most of them use a code search engine in a daily
basis. Moreover, 80% of the participants agree that the tasks are clear and easy.

First, we analyzed whether the use of FOCUS could help participants produce more
correct code. The median number of passed tests was 2 out of 3 both with and without
FOCUS. We compared (pairwise, by participant) the percentage of passed test cases using
a Wilcoxon signed-rank test. The test did not indicate a statistically significant difference
(p-value=0.88), i.e., the correctness of the produced implementations did not change with
and without FOCUS. Also the Cliff’s d effect size is negligible (d=0.01).

We therefore looked at the perceived usefulness of the recommendations, in terms of
API invocations and code snippets. Results of the questionnaire related to task assignments
shown in Table 4.2 are shown in Fig. 4.10a, Fig. 4.10b, Fig. 4.10c, and Fig. 4.10d.

Concerning the first question “Q1: Does FOCUS retrieve code snippets relevant to the
context?” following Fig. 4.10a, 69% of the participants agree and strongly agree with the fact
that the snippets are relevant, while the remaining 31% of them have no concrete judgment
on the results, i.e., neutral. This means that most of the developers find that the recommended
code snippets fit their programming tasks.

By the second question: “Q2: Do the recommended code snippets help you complete
the lab assignments?” as shown in Fig. 4.10b, most of the participants find that the snippets
recommended by FOCUS are helpful to solve the tasks. In particular, 73% of them agree and
strongly agree with the question.

With the third question: “Q3: Does FOCUS retrieve invocations relevant to the context?”
we are interested in understanding whether FOCUS can fetch invocations related to the given

4.1 FOCUS 69

context. The results in Fig. 4.10c suggest that more than a half of the evaluators, i.e., 56%
think that the provided APIs are relevant, while 44% of them have no concrete judgment.

Finally, the results in Fig. 4.10d, corresponding to the last question: “Q4: Do the
recommended invocations help you complete the lab assignments?” show that 7% of the
participants disagree that the APIs are useful, while 27% of them feel neutral about the
results. Still, most of them, i.e., 67%, appreciate the recommended APIs, which are helpful
to solve their tasks.

Altogether, the Likert scores indicate that FOCUS provides decent recommendations:
both the suggested APIs and code snippets are meaningful to the given contexts.

Answer to RQ5. The majority of the study participants positively perceived the context-specific
relevance and the usefulness of the recommendations (APIs and code snippets) provided by
FOCUS.

4.1.5 Threats to validity

The main threat to construct validity concerns the simulated setting used to evaluate the
approaches, as opposed to performing a user study. We mitigated this threat by introducing
four configurations that simulate different stages of the development process. In a real
development setting, however, the order in which one writes statements might not fully
reflect our simulation. Also, in a real setting, there may be cases in which a recommender
is more useful, and cases (obvious code completion) where it is less useful. This makes a
further evaluation involving developers highly desirable.

Threats to internal validity concern factors internal to our study that could have influenced
the results. One possible threat can be seen through the results obtained for the datasets SHL

and SHS. As noted, these datasets exhibit lower precision/recall with respect to MVL and MVS

due to the limited size of the training sets. However, these datasets were needed to compare
FOCUS and PAM due to the limited scalability of PAM.

The main threat to external validity is that FOCUS is currently limited to Java programs.
As stated in Section 4.1.2, however, FOCUS makes few assumptions on the underlying
language and only requires information about method declarations and invocations to build
the 3D rating matrix. This information could be extracted from programs written in any
object-oriented programming language, and we wish to generalize FOCUS to other languages
in the future.

70 Recommending API function calls to support developers

4.2 LUPE

4.2.1 Machine translation with Encoder-Decoder

In the following, we describe the terminology used in the rest of the chapter, provide a
motivating example for LUPE, and then recall the Encoder-Decoder architecture used in the
proposed approach.

σ

ft

bf

σ

ut

bu

tanh

ct

bt

σ

× +

× Wt

×

tanh softmax

ct−1

ht−1

xt

ct

ht

ŷt

(a) An LSTM cell [195]

in
p
u
t
se
q
u
en
ce

(X
)

Encoder z

Intermediate sequence

Decoder

ou
tp
u
t
se
q
u
en
ce

(Y
)

(b) The Encoder-Decoder architecture [51]

Fig. 4.11 LSTM and Encoder-Decoder.

Given an initial sequence of API invocations, we reformulate the problem of recommend-
ing APIs as predicting the sequence of additional invocations to be included. To perform
such a task, we employ an Encoder-Decoder neural network, which has been conceptualized
to solve the problem of machine translation [150, 253]. An Encoder-Decoder neural network
is built on top of an atomic element called Long Short-Term Memory [253] (LSTM) unit.
We briefly recall the LSTM technique before explaining how sequence-to-sequence learning
can be used to deal with the problem of API recommendations.
▷ LSTMs. This supervised learning technique was proposed to learn better long-term
dependencies by memorizing the input sequence of data [110]. Figure 4.11a depicts an
LSTM cell, and described as follows. Given that it=[ht−1,xt] is the concatenation of ht−1

the hidden state vector from the previous time step, and xt is the current input vector, then
cell state ct and hidden state ht are propagated to the next cell. The output of the previous
unit, together with the current input, is fed as the input data for a cell. The sigmoid and tanh
functions defined as σ(x)=(1+ exp(−x))−1 and tanh(x)=2 ·σ(2x)− 1, which are used to
discard useless information and retain useful information. Wt , b f , bt , and bu are the weight
and bias matrices for different network entry, and hidden state matrix.

▷ Sequence-to-Sequence learning. An Encoder-Decoder neural network translates an input
sequence X=(x1,x2, . . . ,xI) into an output sequence Y =(y1,y2, . . . ,yJ), done by computing
the conditional probability Pθ (Y |X) given below:

4.2 LUPE 71

Pθ (Y |X) =
J+1

∏
j=1

Pθ (y j|Y< j,X) (4.5)

where Pθ (y j|Y< j,X) is the probability of creating the jth element of y j, given Y< j and the
input sequence X , where Y< j represents the output sequence consisting of characters from 1
to j−1. A seq2seq process is made of two phases: (i) producing a fixed size vector z from
X , i.e., z = f (X); and (ii) creating Y from z. In particular, z is generated from X using the
following function: z = ∆(X), and then, Y is generated from z with the following function:

Pθ (y j|Y< j,X) = Ψ(h(t)j ,y j) (4.6)

h(t)j = Ω(h(t)j−1,y j−1) (4.7)

Ω is used to generate the hidden vector h j, while Ψ calculates the probability of the one-hot
vector y j. The two functions are both recursive, where h0 corresponds to z, and y0 signals the
beginning of one-hot vectors.

As shown in Figure 4.11b, an Encoder-Decoder LSTM is made of the following modules:

• Encoder is a group of LSTM cells and it gets as input a sequence X to produce the
intermediate sequence z.

• Intermediate sequence is obtained through the encoding of information contained in X
by Encoder.

• Decoder is a group of LSTM cells to generate the output sequence, accepting z as the
input.

In the succeeding section, we will reformulate the API recommendation problem as a
sequence-to-sequence learning one.

4.2.2 LUPE architecture

The LUPE architecture is depicted in Figure 4.12. Data is fetched from various open-source
sources 1 using the DATA CURATOR 2 component. The collected data is then transformed
into a suitable format to be stored in CSV files by the DATA CONVERTER 3 , which then
builds a universal dictionary containing APIs and their corresponding IDs. The SEQUENCE

BUILDER 4 component uses the dictionary to extract APIs from Rascal M3 [25] files. It also
generates input for RECOMMENDER, which learns from data in the training phase to provide
recommendations in the testing/deployment phase. The following subsections explain these
components in detail.

72 Recommending API function calls to support developers

Data
Converter

2

Dictionary

Developer

Recommender
(Deployment)

Rascal
M3 files

Input code

Fitting missing API puzzles

Weights

Sequence
Builder

3

Data Curator

1

Output source code Assembler

5

4

4

Recommender
(Learning)

Sequence
Builder

3

Data Curator

1

Rascal M3 files

IDs sequences

IDs sequences

Fig. 4.12 System architecture.

4.2.2.1 Data Curator

This component crawls data from open-source repositories to build a training corpus for
LUPE. It leverages the Rascal M3 model [25] on source code to retrieve method definitions
and API invocations.

M3 is a relational and tree-based extensible and composable model for source code
artifacts, with immutable value semantics, source location literals, and extensibility with
additional types of binary relations. The model consists of two layers: an abstract syntax
tree (AST) and a relationship layer. The former has a standard interface yet it is expected
to be language dependent. The latter is more abstract, and suitable to be reused. These
relationships represent fundamental aspects of a programming language’s static semantics.
In particular, in the Java extension binary relations take into account extra relations such as
extends, implements, methodInvocation, methodOverrides, and fieldAccess, that are typically
found between Java AST nodes. LUPE makes use of the methodInvocation relation to extract
the relation between method definitions and API invocations. In this respect, the DATA

CURATOR module builds program information including definitions, API invocations, field
accesses (see Section 4.2.1). The relations of the M3 model concerning declarationR and
methodInvocationR contain an ordered list of pairs ⟨v1,v2⟩, with v1 and v2 representing
the declaration and the method invocation locations,21 respectively. Since Rascal includes a
grammar notation with built-in support for precedence and associativity of parse trees, the
relation list of declarationR and methodInvocationR reflects the sequence of method
invocations that occur in a method definition. These locations are uniform resource identifiers
(URI) used to dictate logical locations of definitions and invocations. The URI locations
resemble Java canonical names, where method definitions and invocations are represented
as a compact string. This allows DATA CURATOR to identify the pointed resources without
contextual information. A declarationR relation associates the logical location of a method
with its URI location. Similarly, a methodInvocationR relation maps the artifact identities

21https://tutor.rascal-mpl.org/Rascal/Expressions/Values/Location/Location.html

https://tutor.rascal-mpl.org/Rascal/Expressions/Values/Location/Location.html

4.2 LUPE 73

of a caller to those of its callee(s). Figure 4.13 depicts an instance of the declaration/API
invocation pair extracted from Line 25 of the example in Figure 4.1b.

Fig. 4.13 Method declaration–Method invocation pair.

By analyzing open-source repositories, the DATA CURATOR component produces a set
of Rascal M3 files to feed as input for SEQUENCE BUILDER. In the training phase, it also
submits the resulting M3 files to DATA CONVERTER, which populates a universal dictionary
as explained in the following subsection.

4.2.2.2 Data Converter

For each method definition, a point is set somewhere in the middle to break the definition into
two parts. The first part is used as input API invocations, while the second one is the output
API invocations, and they represent the upper and lower frames in Figure 4.1b, respectively.
Such a point reflects different levels of maturity of a method. To get a well-trained model, it
is necessary to consider all the possible breaking points within a declaration, i.e., we need to
move the breaking point, invocation by invocation, and train the model accordingly.

To feed the sequence-to-sequence network, it is necessary to convert each definition into
a chain of API invocations. First, every API is encoded with a unique number as follows.
Then, given a training set, DATA CONVERTER counts the number of occurrences for each
API to form a list of APIs and their frequency. The list is then sorted in descending order
of frequency. Afterward, it traverses down the list from the top to assign an ID to each API.
The IDs start from 0 and increase by one at every API. In this way, even when different APIs
have the same frequency, they are assigned different IDs. Moreover, a more frequent API
is assigned to a smaller number; altogether, this aims to avoid having long sequences, thus
optimizing the computation.

For example, when analyzing a dataset collected from GitHub and Google Play con-
taining a total of 102,459 API invocations (see Section 4.2.3), java/lang/StringBuilder/
append(java.lang.String) is the most popular API, and thus is it assigned the ID=0.
Meanwhile, net/obry/ti5x/Main/findViewById(int) is the least frequent API as it ap-
pears only once, thus it is assigned the ID=102458.

74 Recommending API function calls to support developers

Table 4.7 Input, outputs APIs and their corresponding IDs.

API ID

In
pu

tA
PI

s java/io/FileOutputStream/FileOutputStream(java.lang.String) 5
java/net/Socket/getInputStream() 8
java/io/BufferedOutputStream/BufferedOutputStream(java.io.OutputStream) 12
java/io/InputStream/read(byte[],int,int) 4

O
ut

pu
tA

PI
s

java/io/InputStream/read(byte[],int,int) 4
java/net/Socket/Socket(java.lang.String,int) 15
java/io/BufferedOutputStream/write(byte[],int,int) 23
java/io/BufferedOutputStream/flush() 27
java/net/Socket/close() 55
java/io/FilterOutputStream/close() 81
java/io/FileOutputStream/close() 41

After this step, a dictionary D to map between IDs and the real APIs is built to be used
for further processing phases. As an example, Table 4.7 depicts the IDs22 of the input and
output API invocations representing the upper and lower frames in Figure 4.1b obtained by
looking up D .

4.2.2.3 Sequence Builder

Starting from Rascal M3 files as input, SEQUENCE BUILDER 4 renders each input definition
di into si – the sequence consisting of only IDs, by looking up the dictionary, i.e., di

D→ si,
i = 1..N, where N is the total number of definitions. Figure 4.14 shows how the input
and output sequences in Table 4.7 are built. The resulting ID sequences are as follows:
X=“5 8 12 4” and Y =“4 15 23 27 55 81 41”, where the “ ” character represents a
space and it is used to distinguish between the IDs within a definition.

5 8 12 4 → 4 15 23 27 55 81 41

Input APIs (length = α) Output APIs (length = β)

Fig. 4.14 Input and output API sequences for the example in Figure 4.1b and Table 4.7.

Since the σ and tanh functions (see Section 4.2.1) accept only binary numbers as input,
the next step is to convert all the IDs to vectors containing 0 and 1. First, Cv — the corpus
of all the possible characters used to form the IDs — is built. It contains 11 letters, i.e.,
Cv = {0,1, . . . ,9,}. Then, each character is encoded using a one-hot vector whose length
corresponds to Π, the corpus’s number of characters, i.e., Π=|Cv|=11. Moreover, we also
compute the length of all sequences to find Θ – the maximum length. Afterward, a sequence

22The IDs are for illustration purposes only. In practice, they might be longer. For the sake of presentation,
we avoid using such numbers throughout the chapter.

4.2 LUPE 75

LSTM

x7

4

(t0)

LSTM

x6

(t1)

LSTM

x1

5

(t7)

. . .

. . .

Encoder

Input IDs sequence

(Encoder’s outputs are neglected)

z

Intermediate sequence

LSTM

y0

BOS

y1

4

LSTM

y1

4

y2

LSTM

y18

4

y19

1

. . .

y2

y18

4

LSTM

y19

1

y20

EOS

Decoder

Output IDs sequence

Fig. 4.15 Training with reversed input sequence X=“4 21 8 5” and output sequence
Y =“4 15 23 27 55 81 41”.







ID
s

Ve
ct
or

0 1 2 3 4 5 6 7 8 9

5 x0 0 0 0 0 0 1 0 0 0 0 0

x1 0 0 0 0 0 0 0 0 0 0 1

8 x2 0 0 0 0 0 0 0 0 1 0 0

x3 0 0 0 0 0 0 0 0 0 0 1

1 x4 0 1 0 0 0 0 0 0 0 0 0

2 x5 0 0 1 0 0 0 0 0 0 0 0

x6 0 0 0 0 0 0 0 0 0 0 1

4 x7 0 0 0 0 1 0 0 0 0 0 0

x8 0 0 0 0 0 0 0 0 0 0 1

x9 0 0 0 0 0 0 0 0 0 0 1

(a) One-hot matrix parsed for the input sequence in
Table 4.7

D
efi

ni
tio

n
(s
iz
e=
N

)

Vocabulary (size=Ω)O
n
e-

h
ot

v
ec

to
r

(s
iz

e=
Θ

)

(b) Tensor to store input data for a complete train-
ing set

Fig. 4.16 Data encoding with matrix and tensor.

is represented as a 2D matrix of size Θ×Π, where each row corresponds to the one-hot
vector of a character within a sequence. A sequence having a length smaller than Θ, is
padded with “ ” to fill the gap.

Figure 4.16a shows how the X=“5 8 12 4” input sequence in Table 4.7 is transformed
into the corresponding one-hot matrix. Each row represents a one-hot vector of a specific
character in the sequence. Let Θ be 10,23 since len(X) = 8 < Θ, then the last two rows x8

and x9 are filled with “ ”.
By transforming all definitions of a collected dataset, we obtain a tensor of size Θ×Π×N

as shown in Figure 4.16b. Each slide corresponds to a definition, the columns are the
vocabularies used to form the IDs, and the rows represent one-hot vectors. The tensor is used
as input for the recommendation engine, which is described in the following subsection.

23Again, such a small number is used to ease the presentation. In general, the maximum sequence length Θ

is large.

76 Recommending API function calls to support developers

4.2.2.4 Recommender

In the training phase, the RECOMMENDER component learns from data by translating an
input sequence into an output sequence, resembling machine translation activities [150, 253].
As in the motivating example of Section 4.2.1, the aim is to learn to generate the output IDs
sequence Y =“4 15 23 27 55 81 41” from the input IDs sequence X=“5 8 12 4”, and
the process is illustrated in Figure 4.15. Following the Encoder-Decoder paradigm described
in Section 4.2.1, ENCODER consists of a stack of LSTM units to encode input sequences.
According to an empirical work [253], training in the reverse order of the input sentence
fosters a better prediction performance. Thus, every input sequence is inverted before being
fed. At each time step, only one one-hot vector representing a character is introduced to
ENCODER. For instance, at time step t1, the one-hot vector of the character “ ” is provided
as input.

Similarly, DECODER is made of LSTMs to decode the input sequence. At each time step,
the label vectors representing output sequences are also introduced singularly. Moreover, the
output of a time step is fed as input to the next one. [BOS] and [EOS] are two special char-
acters being padded to signal the beginning and end of every output sequence, respectively.
Once the training phase is completed, the Encoder-Decoder network returns a set of weights,
which can be used independently from the training data.

In the testing phase (i.e., at deployment time), RECOMMENDER uses the obtained weights
to generate the output sequence, given an input one. Such a phase is much faster compared
to training, as there is no need to iteratively traverse the data, i.e., the inference is done only
once for every input.

4.2.2.5 Assembler

The predicted sequences consisting of characters representing IDs returned by RECOM-
MENDER 4 in the testing phase are fed as input to ASSEMBLER. The latter performs the
inverse mapping to convert the IDs back to the form of APIs using the dictionary, i.e., si

D→ di,
i = 1..N. This mapping results in a sequence of APIs, which is supposed to fit the missing
puzzle as shown in Figures 4.1a and 4.1b. The ASSEMBLER component adopts an existing
technique [177] to retrieve source code as follows. It combines the input code with the
recommended APIs to form a query and searches the whole training corpus for relevant
definitions, which contain as many common APIs of the query as possible. If there are many
retrieved definitions with the same number of common APIs, then it is necessary to choose
the right one. As LUPE considers the order in which the API calls occur, and thus if we
find definitions with the same number of APIs as well as the order in which they appear,

4.2 LUPE 77

then they should implement the same functionality, or in other words, it is assumed that they
are the same definition. Essentially, we can pick one of them as the final recommendation.
Afterward, the real source code of a method definition is extracted by leveraging the com-
puted M3 model and the project location. Finally, the resulting code snippet is returned as
the recommendation.

4.2.3 Evaluation

4.2.3.1 Research questions

The goal of this study is to evaluate the performance of LUPE on real-world datasets and to
compare it with GAPI, a state-of-the-art API recommender. The evaluation is performed
in the context of Android development. In particular, we address the following research
questions:

• RQ1: To what extent is LUPE able to recommend relevant API invocations with
different training configurations? Using an Android dataset, we study how well LUPE
recommends relevant APIs to developers under different configurations, involving
different training sets of different sizes.

• RQ2: How does LUPE compare with GAPI? We evaluate LUPE by considering two
state-of-the-art approaches in API recommendation, i.e., GAPI [145], and FACER [9].
Both the evaluations have been conducted on the DS2 dataset described in Section 4.2.3.

• RQ3: How does LUPE compare with FACER? Using a curated dataset of JAR artifacts,
we study how well LUPE recommends relevant APIs to developers under different
configurations, i.e., if it is able to gain a better performance when being fed with
well-curated input data.

4.2.3.2 Baselines and datasets

The rationale behind the selection of GAPI [145] and FACER [9] as baselines are as follows.
The former has been found to outperform other API recommenders such as FOCUS [177] –
a well-established baseline – with respect to various quality metrics. Meanwhile, the latter is
a recent approach that employs the Lucene indexing engine in combination with a frequent
pattern mining strategy to retrieve relevant API calls. More importantly, FACER has been
thoroughly evaluated by means of well-defined user studies. Altogether, this makes GAPI
and FACER suitable baselines that LUPE should be compared with.

78 Recommending API function calls to support developers

GAPI exploits the high-order relationships between projects and API function calls by
using three different modules, i.e., graph construction, graph embedding, and API usage
prediction. The first module is used to parse the project source code and extract the relevant
information. Then, the Graph embedding module encodes such data in a graph-based
structure by exploiting two different embedding techniques, i.e., Gated Recurrent Units
(GRU) and Stacked Graph Convolution. GAPI eventually retrieves the most similar API
usages compared to the input ones. Therefore, we consider GAPI as the state-of-the-art
approach which LUPE should be compared to.

We evaluate LUPE against GAPI using a real-world dataset to showcase the advan-
tages of our approach. Specifically, we focus on Android-related recommendations, which
may be useful to support mobile developers. To mine data, we made use of an existing
technique [177] as follows. First, we looked for open-source projects with the Android-
TimeMachine platform [91], fetching apps and their source code from Google Play24 and
GitHub. Then, APK files are retrieved from the Apkpure platform,25 using a Python script.
Afterward, APK files are converted into the JAR format utilizing dex2jar [1]. The JAR files
were then fed as input for Rascal, which renders them into the M3 format [25]. We curated
the first dataset of 1,200 apps (DS1), and for the comparison with GAPI, we crawled the
second dataset (DS2), which is smaller than DS1 and contains 200 apps of average size. A
summary of the datasets, reporting the number of method declarations, invocations, as well
as the total size of the datasets in the M3 format, is shown in Table 4.8.

Table 4.8 Datasets.

Name # of artifacts # definitions # invocations Total size
DS1 1,200 447,686 102,459 807 MB
DS2 200 4,346 9,069 132 MB
DS3 4,823 316,138 4,956,290 837 MB
DS3S 3465 170,277 2,618,273 837 MB

Compared to LUPE and GAPI, FACER employs a different recommendation engine. To
retrieve relevant API calls, it uses Lucene together with a frequent pattern mining strategy.
After the indexing phase, it employs the so-called Method Clone Structure (MCS) detection
to find similar invocations in method clone groups. Apart from API calls, FACER can
recommend relevant features for the active context given as the query, i.e., the method’s body.
Since LUPE retrieves API function calls without suggesting the entire snippet, we do not
consider this second type of recommendation to make the comparison as fair as possible.

24https://play.google.com/
25https://apkpure.com/

https://play.google.com/
https://apkpure.com/

4.2 LUPE 79

Similarly, we ran FACER on the same dataset, i.e., DS2, by obtaining the corresponding
GitHub repositories for each .APK file. Afterward, we ran the FACER analyzer component
on them and we obtained 180 projects due to some exceptions in the parsing phase. From
this list, the tool extracts 53,836 methods and 117,046 API function calls. It is worth noting
that FACER retrieves results for 5,549 methods using the MCS detection strategy. Amongst
these, 3,328 produces a list of API function calls that we used in the comparison with LUPE.
Meanwhile, for the left part, i.e., 2,221 queries, FACER recommends just the method features.
Thus, we discarded these contexts from the evaluation since LUPE does not support this kind
of recommendation at its current state of development.

To evaluate the performance of LUPE with a different dataset consisting of Maven
artifacts,26 we curated a dataset from the Maven Dependency Graph (MDG) [29]. MDG is
an open-source dataset that uses a graph database to record Maven artifacts together with all
of their relationships, including upgrades and dependencies. DS3 consists of 4,823 artifacts
mined from MDG by selecting the ones that use at least two dependency relationships to the
ten most popular libraries.27 This constraint allows us to have a dataset where the artifacts
share common API function calls.

In order to understand the impact of infrequent method definitions on LUPE, DS3S is a
dataset extracted from D3 consisting of 3,990 artifacts that contain at least a method definition
that exactly occurs in at least 10 extracted artifacts.

4.2.3.3 Settings

The hardware and software configurations of the platforms used for experimentation are
listed in Table 4.9. We trained LUPE using P1, a powerful platform dedicated to run DL
models. The weights obtained by the training were saved in external files, which are used
independently from the training data. To perform testing, we uploaded the weights to both
Google Colab28 and P2 and ran the inference separately. This simulates a real deployment
scenario, where training and testing might be conducted in different environments. While
training can be done on powerful servers, testing should run on developers’ computers with
limited hardware resources, because it is where the trained tool should run in a real usage
scenario, i.e., when a developer uses it.

To evaluate LUPE, we adopted the ten-fold cross-validation technique [287]. Thus,
within the training data, 80% and 20% are used for training and validation, respectively. The
validation set was used to tune the LUPE hyperparameters, among others, the number of

26https://mvnrepository.com
27https://mvnrepository.com/popular?p=1
28https://colab.research.google.com/

https://mvnrepository.com
https://mvnrepository.com/popular?p=1
https://colab.research.google.com/

80 Recommending API function calls to support developers

Table 4.9 Experimentation settings.

Name Training (P1) Testing (P2)
RAM 96 GB 32 GB
CPU Intel® Xeon CPU E5-2678 V3 @

2.50GHz × 24
AMD@ Ryzen 7

GPU NVIDIA GeForce GTX 1080Ti NVIDIA GeForce GTX 2060
OS Ubuntu 20.04 Windows 10
Python 3.7.5 3.7
TensorFlow 2.6.0 2.6.0
Numpy 1.15.4 1.16.3
Timm 0.3.1 –
Gensim 3.7.1 3.7.1

hidden units used in each LSTM cell.29 By an empirical evaluation, we set the number of
epochs to 100 and batch size to 500. In contrast, the hold-out cross-validation technique was
used to compare LUPE with GAPI, i.e., 80% and 20% of the dataset are for training and
testing, respectively, aiming for a fair comparison with the baseline. We used the hyperpa-
rameters that achieve the performance according to the GAPI original evaluation [145]. In
particular, the dimension of the linear layer was set to 128, and the graph convolution kernel
size to 64. The maximum length of the text attribute and the number of graph convolution
layers were set to 10.2 and 0.5, respectively. Concerning the optimizer, GAPI makes use of
the Adam model to train with the learning rate 5×10−4 and weight decay. The batch size
and negative sample size were set to 2 and 64, respectively. We ran GAPI with 40 epochs, as
the model reaches a stable accuracy after being trained with this number of iterations.

Thanks to its internal design, LUPE is a definition-based, rather than a project-based
approach, i.e., the input data to feed as input to the recommendation engine is a single
definition, not a set of definitions. This is different from most existing approaches [83, 145,
177], where apart from the testing definition, additional definitions must be incorporated as
context information. Thus, to evaluate LUPE for each project, we randomly chose a certain
number of definitions for testing. Every time, only a testing definition is fed as input to
LUPE, and for this testing definition, the first half of invocations is used as a query. The
remaining invocations are removed and saved as ground-truth data, simulating the scenario
in Figures 4.1a and 4.1b, where the developer has finished the first part of the code and
expects to get suggestions for the second part. As shown in Section 4.2.2, the point to break a
definition into two parts can be flexibly configured, reflecting different levels of completeness
of the definition.

29It is worth noting that the number of hidden units is not equal to the number of LSTM cells shown in
Figure 4.15. There are only two LSTM cells in Figure 4.15, one for Encoder and one for Decoder, but they are
shown in different time steps.

4.2 LUPE 81

If the input definition has a small number of invocations, then LUPE is not able to produce
any predictions. As a result, in the evaluation we had to set a threshold for the number of APIs
larger than 10. This led to a decrease in the number of definitions suitable for the evaluation.
Before running the experiments, we read every project in the considered datasets, and saw that
most of the projects have a considerably low number of method definitions. Therefore, upon
addressing RQ1, for each project, we randomly select k=10 method definitions for testing. We
consider the following configurations. For each testing definition dt , given that St=size(dt) is
the total number of API invocations of dt , α=round(St/3) and α=round(St/2) invocations
are used as query, corresponding to Configurations C1 and C2, respectively. The remaining
invocations are saved as ground-truth data. Finally, we consider a further configuration, C3

in which we select, in the testing data, only definitions that appear at least a certain number
of times f in the training data. In practice, this means that LUPE has properly learned these
definitions during the training phase. For C3, we set f =10.

Being a data-driven approach, LUPE heavily relies on the input API calls to function.
Thus, if there is not enough data to feed the prediction engine, LUPE cannot produce any
recommendation. This is the case of method declarations with a few lines of code, or those
without a body. In the evaluation, we avoided considering these definitions by setting a
threshold for the number of API calls. In particular, method definitions are used for testing
only when they contain more than a certain number of API calls, i.e., 10 method invocations.

4.2.4 Results

In this section, we report results by addressing the two research questions formulated in
Section 4.2.3.

RQ1: To what extent is LUPE able to recommend relevant API invocations with different
training configurations? Table 4.10 reports the success rates obtained for all the ten folds
for the three configurations C1, C2, and C3. Overall, it is possible to notice that the scores are
always larger than 0.90 by all the folds, with 1.00 being the maximum value. This suggests
that LUPE retrieves at least a matched invocation for almost all the testing definitions.

Table 4.10 LUPE Success rate.

Conf. F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 Avg.
C1 0.980 0.980 0.970 0.979 0.972 0.972 0.960 0.975 0.972 0.970 0.973
C2 0.900 0.942 0.944 0.940 0.900 1.000 0.955 0.964 0.929 0.951 0.942
C3 0.981 1.000 0.999 0.996 0.995 1.000 1.000 1.000 0.996 1.000 0.997

82 Recommending API function calls to support developers

For C1, we show the precision and recall scores using violin plots, i.e., combining
boxplots and density traces [109], in Figure 4.17 and Figure 4.18, respectively. As it can
be seen, a large part of the scores piles up on the upper part of the diagram, i.e., in the
[0.9, . . . ,1.0] range. This means that most of the testing definitions get well-matched API
invocations.

However, many points are in the whiskers, towards the 0.0 level, which corresponds to
a poor performance. To investigate the distribution of the scores, for each metric, either
precision or recall – being called with a common name m – we combine the scores from all
the folds and display them together in the stacked bar charts in Figure 4.19. There are the
following three levels: Low: m ≤ 0.5, Medium: 0.5 < m ≤ 0.9, and High: 0.9 < m ≤ 1. The
metrics in Figure 4.19 confirm the outcome in Figures 4.17 and 4.18, i.e., by more than 90%
of the definitions, LUPE gets high precision and recall, being greater than 0.9.

Fig. 4.17 LUPE Precision with configuration C1.

We then investigate how the length of the input data impacts the prediction performance by
considering C2, where half of each testing declaration is used as a query, i.e., α=round(St/2),
and the rest is ground-truth data. The final results are shown in Figure 4.20. As the figure
shows, LUPE yields a high prediction accuracy for most of the testing method definitions.
Compared to the results for C1 in Figure 4.19, by C2, LUPE improves its performance,
especially with the precision scores. We conclude that being fed with an increasing number
of API invocations, LUPE returns better predictions.

Finally, we investigate whether a further augmentation of the training data (i.e., Configu-
ration C3) is helpful. Figures 4.21 and 4.22 show the precision and scores obtained for all
the ten folds.

4.2 LUPE 83

Fig. 4.18 LUPE Recall with configuration C1.

Fig. 4.19 Combination of the scores from all the folds with configuration C1.

Fig. 4.20 Combination of the scores from all the folds with configuration C2.

As it can be seen, compared to the scores in Figures 4.17 and 4.18, the results obtained
with C3 are substantially improved. In particular, most of the precision and recall scores
reside on the upper part of the diagrams – starting from the 0.95 level – corresponding
to precise predictions. Moreover, the number of points in the lower parts of the whiskers
decreases, compared to those in Figures 4.17 and 4.18.

This implies that if LUPE is trained with more frequent method definitions, it can
return more correct predictions. In this respect, the augmentation done by cloning method
definitions and planting them in different parts of the training data might help LUPE to
achieve a better prediction performance.

The precision and recall metrics measure how well a set of recommended API invocations
matches the ground truth data. However, they do not reflect if the two sets also match the

84 Recommending API function calls to support developers

Fig. 4.21 LUPE Precision with configuration C3.

Fig. 4.22 LUPE Recall with configuration C3.

Table 4.11 Percentage of definitions getting 0 as Levenshtein distance (%).

F01 F02 F03 F04 F05 F06 F07 F08 F09 F10
75.67 82.00 78.41 75.83 78.33 79.66 81.44 80.00 75.66 75.00

order in which the API invocations occur. To this end, we measure the similarity between two
sequences of API invocations using the Levenshtein distance [140]. Such a metric measures
the similarity between two invocations chains, taking into account the pairwise order of
invocations; a distance of 0 corresponds to a perfect match. For the sake of brevity, we
consider only Configuration C3 and report in Table 4.11 the percentage of method definitions
getting a Levenshtein distance of 0. By all the folds, at least 75% of the definitions get
recommendations that perfectly match the ground-truth data.

4.2 LUPE 85

Answer to RQ1. LUPE achieves high (overall > 0.9) precision and recall, returning at least an
exact match for each test data point. Its performances further improve once it gets more training
data for a given method definition. Finally, LUPE can recommend a perfect match, also concerning
the order of invocations.

RQ2: How does LUPE compare with GAPI? In this research question, we compare
LUPE with the two mentioned approaches, i.e., GAPI and FACER. Concerning the com-
parison with GAPI, we analyze the performance of the two tools with respect to (i) timing
efficiency, i.e., whether they can support a real-world setting, where there is supposedly
limited computational resource; and (ii) effectiveness, i.e., if they can provide accurate rec-
ommendations. For this comparison, we experimented with Configuration C2 for both GAPI
and LUPE, as it reflects a more mature method definition, where the developer has already
finished half of the code and needs recommendations related to the remaining half of the
definition. With respect to the comparison between LUPE with FACER, due to FACER’s
internal design, it is not possible to replicate the traditional ten-fold validation since the API
function calls are stored in a relational database with several integrity references among
projects, methods, and API calls. Aiming for a fair comparison, we opted for a validation
set similar to the experiments conducted in the original paper [9]. As described in Section
4.2.3, we fed FACER with the projects in DS2, obtaining 3,328 suitable testing methods that
have been considered also by LUPE. We eventually compared the two approaches in terms
of effectiveness, avoiding the timing efficiency comparison. The rationale behind this choice
is due to the fact that FACER and LUPE rely on completely different working mechanisms,
thus requiring diverse running platforms that are not comparable.

4.2.4.1 Comparison with GAPI

▷ Timing efficiency. We realized that GAPI suffers from prolonged training, i.e., it takes a
long time to learn, even on a small set of data. In particular, training GAPI with the DS2

dataset (200 projects of average size, see Section 4.2.3) on the P1 computer (see Table 4.9)
requires 62 minutes to reach a stable performance, i.e., after 40 epochs. Training GAPI with
DS1 is almost impossible, even on P1 – a powerful server – since the required time soars. In
contrast, the execution of LUPE is much faster, even for a large dataset, i.e., training LUPE
with DS1 and DS2 on P1 requires 30 and 4 minutes, respectively, to get a stable accuracy.
Thus, to ease the comparison between LUPE and GAPI, we opt for DS2, instead of DS1. We
measure the testing time of both systems, benchmarking with P2. Such a computer is utilized
since it represents a more popular execution environment.

86 Recommending API function calls to support developers

The measurements show that GAPI is very fast, i.e., it needs only 0.02 seconds to produce
a recommendation. Meanwhile, on average LUPE spends 1.2 seconds for the same task. We
conclude that, compared to LUPE, GAPI is much more efficient in testing. Nevertheless,
LUPE is more efficient in training than GAPI, also because LUPE generates a complete
chain of invocations at a time.

SR Precision Recall F1-score

0.65

0.36
0.25 0.30

0.95

0.72 0.72 0.72

GAPI LUPE

Fig. 4.23 Comparison between GAPI and LUPE.

▷ Effectiveness. As done in the original work [145], we use the hold-out validation
method [287] for running both GAPI, and LUPE, i.e., 80% and 20% of the dataset are
used for training and testing, respectively. Since GAPI recommends a ranked list of APIs,
while LUPE provides a complete sequence of APIs, we have to fix the number of items for
GAPI, i.e., N=10. This also means that we cannot represent the results using the widely
adopted precision-recall curves [145, 177], where N needs to be varied. For each testing
project, k=10 method definitions are selected for testing. We compare the two systems
by averaging the best scores obtained in different trials. The final results are reported in
Figure 4.23.

Overall, it is evident that, compared to GAPI, LUPE gets a better prediction performance
for all the considered metrics. In particular, GAPI gets 0.65 as success rate, while the
corresponding value obtained by LUPE is 0.95. More importantly, LUPE gets much better
precision, recall, and F1 scores. The average performance of GAPI is 0.36 for precision,
0.25 for recall, and 0.30 for F1 score. LUPE achieves 0.72 for all three metrics.

4.2.4.2 Comparison with FACER

As discussed in Section 4.2.3, we cannot directly compare LUPE with FACER since
the two approaches rely on completely different techniques, i.e., machine translation and

4.2 LUPE 87

frequent pattern mining, respectively. Hence, this section reports the results obtained by
FACER considering the same dataset used in the former comparison, i.e., DS2. Table 4.12
summarizes the average values for each metric computed on the 3,328 methods that produce
at least a set of recommendations.

Table 4.12 Results obtained by FACER on DS2.

Metric Average value
Success rate 0.11
Precision 0.04
Recall 0.05
F1 score 0.03

It is evident that FACER obtains very low results by all the measured metrics, i.e., all the
average values are below 0.10 apart from success rate. In particular, the success rate is just
0.11, meaning that FACER is not able to support the method extracted from DS2. This is
further confirmed by the precision, recall, and F1 scores that are always smaller than 0.06.
These results can be explained by (i) the composition of the dataset and (ii) the different
evaluation methodology conducted in the original study. Concerning the employed dataset,
FACER is capable of extracting a total number of 53,836 methods but only 3,328 of them
produce a non-empty list of API function calls as discussed in Section 4.2.3 even though we
properly followed all the required steps.30

Concerning the original validation, the approach was assessed by combining an automated
evaluation and a user study [9]. The former has been used to set up the algorithm parameters
that lead to better accuracy, i.e., intra-group method similarity and minimum support, by
running 20 queries manually selected. By the latter, the authors involved a total number of
49 participants with different backgrounds. In the scope of our work, we evaluate FACER
using our dataset and the identified metrics, i.e., success rate, precision, recall, and F1 score.
Altogether, we see that LUPE outperforms FACER in terms of recommended API function
calls on the given dataset, by referring to the results obtained in the previous analysis.

Answer to RQ2. While GAPI is more timing efficient in the testing phase, LUPE is much more
timing efficient in training. More importantly, LUPE outperforms GAPI in success rate, precision,
recall, and F1 score. FACER achieves the worst performance, even though a comprehensive
comparison cannot be conducted due to the different nature of the approaches.

30To avoid any bias in the replication process, we contacted the corresponding author of the original paper
(to whom we would like to express our gratitude), who kindly provided us with the replication package, and
assisted us to run the whole FACER pipeline, thus guaranteeing the correctness of the process.

88 Recommending API function calls to support developers

RQ3: How does LUPE compare with FACER? To evaluate whether LUPE yields a
good performance considering the recommendations in different development domains, we
run the tool on DS3 and DS3S. It is worth noting that a preprocessing step has filtered out
infrequent API function calls from DS3 to obtain DS3S@. The success rate, the ρL, and
training and testing time obtained for DS3 and DS3S@ are reported in Tables 4.13 and 4.14,
respectively. It is evident that the best performance is achieved on a curated dataset where
more similar method definitions are present, i.e., DS3S@. For instance, the best success rate
for DS3 and DS3S@ is 0.545 and 0.992, respectively. The analysis of ρL further supports
this conclusion. For example, the best ρL for DS3 is 2.6, while DS3S@ reaches 88.5. The
violin plots of Figures 4.24 and 4.25 provide a more informative representation of the shape
of the distribution, allowing us to better understand the density’s magnitude. The reported
figures indicate that LUPE achieves high precision and recall scores only on the DS3S@
dataset, while the results are not good enough when DS3, a more heterogeneous dataset, is
considered.

Table 4.13 RQ3: Success rate and percentage of recommendations getting 0 as Levenshtein
distance (ρL) on DS3.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
success rate 0.496 0.510 0.517 0.496 0.496 0.545 0.492 0.538 0.490 0.529
ρL % 0.5 0.4 0.4 0.4 0.7 0.3 0.7 0.4 1.5 2.6
Training time (s) 7,358 5,832 5,917 5,913 5,367 5,911 5,918 8,489 5,909 5,904
Testing time (s)* 21,489 24,531 26,747 26,107 15,367 35,973 17,668 12,089 32,843 25,343

1 *Testing time considering more than 15K queries.

Table 4.14 RQ3: Success rate and percentage of recommendations getting 0 as Levenshtein
distance (ρL) on DS3.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
success rate 0.895 0.916 0.992 0.794 0.960 0.984 0.974 0.981 0.990 0.986
ρL % 66.5 40.9 88.5 43.5 76.6 91.2 83.4 73.9 87.6 79.5
Training time (s) 4,288 2,893 2,885 2,786 5,367 2,885 2,891 8,489 2,888 2,893
Testing time (s)* 11,711 9,652 9,342 9,542 5,367 11,639 7,323 8,489 9,678 12,772

1 *Testing time considering more than 5.7K queries.

Tables 4.13 and 4.14 report, for both DS3 and DS3S@, the training and testing computed
by P1 and P2 respectively. The testing time corresponds to computing 15K and 5.7K
recommendations once the recommendation engine has been trained. For instance, LUPE
needs a maximum of 32,843 and 12,772 seconds to perform inference for all 15K and 5.7K
queries respectively. In particular, with DS3 and DS3S@, given recommendation request
the average time of predicting the next sequence of API function calls is 32,843/15,000 =
2.2 seconds and 12,772/5,000= 2.55 seconds. The preprocessing steps are beneficial to the

4.2 LUPE 89

Fig. 4.24 LUPE Precision recall on D3.

Fig. 4.25 LUPE Precision recall on D3S.

recommendation process as they allow LUPE to retrieve more relevant API function call
sequences, thus improving the recommendation performance.

Answer to RQ3. LUPE can considerably improve its performance on a well-curated dataset, i.e.,
where there are more popular method definitions. Though the training step is time consuming, it
can be carried out on powerful computing platforms that export weights for usage by computers
with lower processing demands. Instead, once the model has been trained, LUPE can provide
recommendations in just few seconds.

90 Recommending API function calls to support developers

4.2.4.3 Discussion

Differently from other recommenders, such as PAM [83] or FOCUS [177], LUPE does not
require the whole training set to generate a recommendation, but only the model and API
dictionary. This is a practical advantage of LUPE when deploying it on developers’ machines,
as the training set can be very large in size (e.g., DS1 with 807 MB as the total size, see
Table 4.8).

To infer recommendations, LUPE only needs a testing definition as the input data,
without considering other remaining definitions, as is the case with many other existing API
recommenders, including UP-Miner [276], PAM [83], FOCUS [177], or even GAPI [145].
In other words, rather than being project-based, LUPE is a definition-based approach. This
is indeed an advantage since, in practice, the tool can provide recommendations, even when
there are no additional method definitions to be used as context.

To the best of our knowledge, LUPE is the only tool that uses the sequence-to-sequence
deep learning mechanism to recommend API usage. This paves the way for further improve-
ment by employing well-founded techniques conceived for the machine translation domain.
We anticipate that the application of transfer learning [283] and attention techniques [271]
might increase efficiency and effectiveness.

A critical issue with GAPI is that it suffers from considerable training time while instantly
providing accurate recommendations. In the evaluation, we used a small dataset to train
GAPI, however it takes very long time to finish the training, even using a powerful computer.
In this respect, we anticipate that it might be impractical to train GAPI with real-world
datasets.

The rationale behind the prolonged execution time is as follows. The underpinning graph
neural network of GAPI relies on the use of nodes and edges to encode the relationship
among API function calls. In particular, there are two main parameters, i.e., the kernel
size and the node embedding size. In the experiment, the node embedding was set to 64,
resulting in 14,366 nodes only for the smallest dataset considered in the evaluation, which
consists of only 200 projects. In this respect, we see that even for a very small amount of
source code, GAPI has to use a large number of parameters to learn from the data. This
causes computational complexity in the whole approach, leading to prolonged execution
time. This is further confirmed by our previous work, i.e., according to our experience gained
from recent studies [68], graph neural networks are computationally expensive, especially
when the representation of the input data in the graph format is not properly optimized.
Our empirical evaluation shows that, by using a suitable data representation scheme, we
dramatically decreased the number of nodes, and thus the execution time, while still obtaining
a high prediction accuracy.

4.2 LUPE 91

The recommendation engine of LUPE is built on top of an Encoder-Decoder neural
network, and thus it is suitable for working with sequential data. To feed LUPE, we
transform each method definition into a sequence of APIs. This encoding scheme allows the
recommendation engine to properly learn the relationship between the APIs in the training
phase. Eventually, this helps LUPE to obtain a good prediction performance in the testing
phase.

Considering a longer list of recommended items, i.e., a large value of N, helps increase
the recall values, but decreases the precision ones. Moreover, in fact a long list may tire
the developers as they have to scan it to select the most suitable ones. Therefore, selecting
a suitable value of N to maintain a trade-off between effectiveness and efficiency is an
important issue, and we will investigate this in our future work.

4.2.5 Threats to validity

Threats to construct validity concern the relationship between theory and observation. In
particular, they are related to how the simulated settings used to evaluate the systems reflect
a real application scenario. Our evaluation approach attempts to simulate the presence of
incomplete code. In a real usage scenario, the order in which one writes code may not
resemble our simulation. Thus, a usage evaluation through controlled experiments with
developers involved in a realistic programming task is planned as a part of our future agenda.

Threats to internal validity are the confounding factors internal to our study that might
have an impact on the results. The comparison with the baselines might be subject to bias.
We mitigate this threat by curating dedicated datasets being eligible as input for LUPE and
the two baselines. The same experiment settings related to k-fold cross validation and have
been imposed on the systems. Moreover, to compare with GAPI, we used the original
implementation made available by its authors,31 and ran the experiments with GAPI and
LUPE using the same experimental settings. To further make sure that the evaluation is fair,
we trained GAPI on the new dataset by tuning its hyperparameters, and selecting the ones
achieving the best prediction performance.

Threats to external validity are the generalizability of our results. Such generalizability
concerns (i) on the one hand, the recommenders on which the evaluation has been carried out
(conclusions may or may not apply to other recommenders); and (ii) on the other hand the
considered datasets.

31https://github.com/laurence-ling/GNNAPIRec

https://github.com/laurence-ling/GNNAPIRec

92 Recommending API function calls to support developers

4.3 Conclusion

Software development activity has reached a high degree of complexity, guided by the hetero-
geneity of the components, data sources, and tasks. The proliferation of open-source software
(OSS) repositories has stressed the need to reuse available software artifacts efficiently. To
this aim, it is necessary to explore approaches to mine data from software repositories and
leverage it to produce helpful recommendations. This chapter presented two approaches that
address notable limitations in the domain by reusing existing techniques from other domains.
FOCUS provide developers with suitable API function calls and code snippets while they
are programming. A thorough evaluation has been conducted (i) on different OSS datasets
to study the approach’s performance, and (ii) in a user study with 16 participants to assess
the perceived usefulness of FOCUS recommendations. We succeeded in integrating FOCUS
into the Eclipse IDE, and we made available online the developed tool together with the
parsed metadata [186]. This aims at providing the research community at large with a
sound replication package, which then allows one to seamlessly reproduce the experiments
presented in the chapter .

In the second part of the chapter, we presented LUPE as a novel approach to API
recommendation, exploiting a machine learning translation technique. Through an empirical
evaluation conducted on data from the Android domain, we showed that the proposed tool
obtains a satisfying prediction performance on real-world datasets, thereby outperforming
state-of-the-art baselines, GAPI [145] and FACER [9].

Chapter 5

Categorizing GitHub projects

Over the last decade, open-source software repositories have gained a prominent role in
storing and managing software projects. Different kinds of artifacts, including source
code, mailing lists, bug tracking systems, and documentation, are stored and managed
homogeneously employing powerful technologies. In such a context, GitHub is playing the
role of forefront platform managing more than 190M repositories, with more than 28M of
them being available to the public.1 The platform offers developers the possibility to classify
the stored artifacts by means of topics, i.e., it introduced the possibility of labeling the stored
repositories only in 2017 to help developers increase the reachability of their repositories.
The assigned labels allow users to characterize projects, e.g., with respect to the provided
functionalities and employed technologies.

However, assigning wrong labels to a given repository can compromise its popularity
[37], and even worse, prevent developers from finding projects that they might be willing to
contribute. In this respect, we come across the following motivating question:

“Which label should I use to annotate this new project managed by means of the
employed OSS repository?”

Repo-topix [84] is a mechanism based on information retrieval techniques, and it has
been developed and integrated into GitHub to recommend topics. Unfortunately, neither the
source code nor the experimental dataset was available at the time of writing, thus preventing
us from reusing Repo-topix as the baseline.

In an attempt to improve this tool, e.g., in terms of the variety of the suggested topics,
this chapter presents two automatic approaches to categorize GitHub repositories given the
README content, i.e., the MNBN and HybridRec.

1The numbers are collected at the time of writing.

94 Categorizing GitHub projects

First, we apply the well-founded Multinomial Naïve Bayesian (MNB) network to extract
README files’ content, source code and eventually to recommend topics. This work has
been published at the Proceedings of the 24th International Conference on Evaluation and
Assessment in Software Engineering [72], and the candidate contributes to the development
and assessment of the whole MNBN approach. It is fed with a TF-IDF vectorization of
README files, which represent the most frequent terms over all documents. As the final
output, the tool retrieves the best-ranked topics according to their probabilities, and suggests
them to developers. Due to the lack of a suitable baseline at the time of writing, we assess
the quality of the results by means of suitable metrics for the examined domain. However,
such a tool can recommend only featured topics, i.e., a set of topics, which are curated by
GitHub. Subsequently, we successfully developed another approach, called TopFilter [66],
that relies on a collaborative filtering technique to extend the recommendation capabilities of
MNBN, taking into consideration non-featured topics.

In this respect, we show that the combined use of MNBN and TopFilter (named Top-
Filter+ hereafter) can improve the results obtained by MNBN. However, according to further
investigations, there is still room for improvement for TopFilter+. In particular, it is necessary
to deal with unbalanced datasets (as typically occur in real contexts) as well as to enhance
the quality of the recommended items.

Therefore, the second part of the chapter is dedicated to HybridRec, a hybrid recom-
mender system which retrieves topics for repositories using a combination of stochastic and
collaborative filtering recommendation strategies (thereby yielding the name hybrid), being
capable of dealing with unbalanced and heterogeneous datasets.

The candidate contributes to the development of the stochastic component, as well as the
corresponding evaluation. HybridRec has been published in the Applied Intelligence journal
[70].

To enable both techniques we select the most used artifacts2 by relying on popular topics.
A crucial step lies in the preprocessing phase of the dataset and topics, which dramatically
differs from the one set in place for the GitHub repositories. In particular, the type of
available metadata for each project can affect the recommendation outcomes as well as the
efficiency of the underpinning techniques. To evaluate HybridRec, we perform a series of
experiments, exploiting real-world datasets collected from GitHub. Moreover, we compare
HybridRec with MNBN [72], TopFilter, and TopFilter+ [66], which can be considered as
among state-of-the-art approaches to the recommendation of topics for GitHub repositories.

2For the sake of the presentation, the terms “project,” “repository,” and “artifact” are used interchangeably
throughout the chapter.

5.1 MNBN 95

Outline of the chapter: The first part of the chapter presents the MNBN approach. First,
Section 5.1.1 shows a motivating example and a set of challenges related to the categorization
of GitHub repositories. The approach is overviewed in Section 5.1.2 and Section 5.1.3
describes the materials used in the evaluation. The outcomes are presented in Section 5.1.4
and we conclude the first part by discussing threats to validity in Section 5.1.5. Afterward,
we introduce HybridRec in the second part of the chapter. The whole approach and its
submodule are presented in Section 5.2.1. Section 5.2.2 reports the datasets and the metrics
employed in the evaluation. The obtained results and the threats to validity are discussed in
Section 5.2.4 and Section 5.2.5 respectively. Finally, we conclude the chapter in Section 5.3.

5.1 MNBN

5.1.1 Motivation and background

Software developers use open-source software (OSS) repositories to publish and disseminate
their work. GitHub is amongst the most popular platforms that offer open environments
where developers can share their code and interact with each other. To assist developers in
approaching projects of their interest, GitHub provides users with tools and techniques that
help narrow down the search scope and increase the visibility of its projects. In particular,
to characterize the stored artifacts, GitHub leverages featured topics,3 i.e., a list of the most
popular and active topics, which are periodically monitored and updated. Such a public
list indicates the community’s trend in terms of the most used topics. Developers have
manually assigned GitHub topics according to their experience as well as to the content of
the repositories at hand. Nevertheless, topics assigned in such a way might be inaccurate or
represent wrong concepts, thus compromising the visibilities of projects.

Fig. 5.1 represents an explanatory example consisting of the longclaw repository,4 which
implements extensions of Wagtail CMS5 to enable the development of typical e-commerce
functionalities. By looking at the list of topics, users can easily understand that the project
employs django, a python web framework. Though the given topics characterize the reposi-
tory’s features, some of them might be considered redundant, e.g., python3, python-2, and
wagtail-cms. Moreover, only three topics are considered to be featured as they are given in
Table 5.1.

The example in Fig. 5.1 shows that on the one hand, user-specified topics are usually
more extensive than the featured ones. On the other hand, two different topics can express

3https://github.com/topics
4https://github.com/JamesRamm/longclaw
5https://github.com/wagtail/wagtail

https://github.com/topics
https://github.com/JamesRamm/longclaw
https://github.com/wagtail/wagtail

96 Categorizing GitHub projects

Fig. 5.1 The longclaw repository from GitHub with different topics.

Table 5.1 The longclaw repository topics.

Topics GitHub featured topics
python, django, e-commerce,
shop, python3, python-2,
wagtail, wagtail-cms

python, django, wagtail

the same concept, and a larger set of topics could affect the prediction accuracy of automatic
approaches that might rely on such data.

Summary. Topics are an effective means of summarizing the main features of a GitHub
repository. Furthermore, the proper use of topics facilitates the searchability and discover-
ability of different items. Thus, there is the need for techniques and tools to automatically
generate topics to prevent them from being misleadingly/wrongly established and not
correctly reflecting the contents of the considered projects.

Challenges in mining the GitHub ecosystem According to existing work [55, 124],
extracting valuable data from GitHub is a daunting task and exhibits several pitfalls. We
identify the following challenges to be undertaken to conceive the desired recommender
system:

C1: Data redundancy. GitHub topics are specified (or even created) by users to classify
their repositories. However, this manual process results in inaccurate labeling in some
situations. For instance, a user can define both python and python-3 as topics for its
repository, which are redundant. Refining the list of topics by removing such kinds of
topics can improve the discoverability of the repository;

C2: Structure of available metadata. Concerning the available sources of knowledge, a
standard GitHub project is described by one or more README file(s), a brief de-

5.1 MNBN 97

scription, and possibly by a Wiki. Furthermore, there are different kinds of accessible
metadata, e.g., commits, issues, forks, and stars. Though GitHub provides publicly
access in most of the cases, extracting valuable information from the data mentioned
above requires a set of tailored preprocessing techniques;

C3: Popularity mechanisms. GitHub provides users with the star and forking mechanisms
to assess the popularity of a given repository [37, 121]. The former is used to improve
the visibility of a project. The latter is typically employed when a developer wants
to “freely experiment with changes without affecting the original project.”6 Moreover,
GitHub groups the most popular projects under a curated list, i.e., featured topics. In
such a way, the popularity of a repository helps the mining process filter out unuseful
artifacts, e.g., toy and dummy projects. Though many software artifact repositories
provide popularity mechanisms, there is no uniform way to define the popularity of an
artifact. For instance, GitHub includes many elements, i.e., star, forking, number of
committers, ifnextchar.etcetc., to assess the repository popularity, while Maven defines
the popularity of an artifact by relying on the number of usages, i.e., when another
project employs the artifact;

C4: Crawling and Data Dump. The availability of input data is a crucial aspect of the
recommendation process. To gather them from a platform that stores OSS projects
we can (i) use a crawler or (ii) rely on a data dump stored in some database format.
Concerning the crawling activity, GitHub exposes its API to obtain all needed data
by exploiting different libraries, e.g., JGit,7 PyGitHub,8 to name a few. Furthermore,
GHTorrent [97] offers a regularly updated data dump of the entire platform in several
formats, e.g., SQL, and MongoDB. It is worth noting that GHTorrent does not include
the actual content of each repository, but only stores metadata;

C5: Configurations of the underpinning recommender systems. Depending on the fea-
tures of the considered OSS ecosystem, the employed recommendation algorithm must
be adapted accordingly by changing its internal configurations. Such a phase can rely
on different parameters that vary according to the nature of the used algorithms.

6https://docs.github.com/en/free-pro-team@latest/github/getting-started-with-github/
fork-a-repo

7https://www.eclipse.org/jgit/
8https://pygithub.readthedocs.io/en/latest/index.html

https://docs.github.com/en/free-pro-team@latest/github/getting-started-with-github/fork-a-repo
https://docs.github.com/en/free-pro-team@latest/github/getting-started-with-github/fork-a-repo
https://www.eclipse.org/jgit/
https://pygithub.readthedocs.io/en/latest/index.html

98 Categorizing GitHub projects

Research objective. Considering the need mentioned above and the corresponding
challenges, we propose a workable solution to the recommendation of topics to GitHub
repositories. We conceptualize a hybrid use of a complement naïve bayesian network and
a collaborative-filtering technique.

5.1.2 The MNBN approach

Given a GitHub repository, our approach aims to suggest a set of relevant featured topics by
analyzing its README file and its source code. A typical scenario involves a developer who
looks for suggestions while she is working with the repository. Our approach helps increase
the visibility of the repository on the platform by suggesting pertinent topics. Different from
other GitHub project classifiers, we turn from a standard classification to a multi-classification
problem by using different modules of the source code classifier (SCC) infrastructure of the
scikit-learn library.9 In particular, the MultinomialNB (MNB)10 and TF-IDF vectorizer11

components are used as follows: (i) we first create a curated dataset by selecting README
files for each selected featured topic; (ii) then, the MNB is trained with vectors computed
by the TF-IDF vectorizer; (iii) once we have the predicted list of topics, we discover the
programming language with the GuessLang tool12; (iv) finally, we combine the results and
deliver the list of recommended topics.

The architecture of the proposed approach is shown in Figure 5.2 and described in greater
detail in the following subsections.

Fig. 5.2 Overview of the proposed approach.

9http://scikit-learn.org
10https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.

html
11https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.

TfidfVectorizer.html
12https://pypi.org/project/guesslang/

http://scikit-learn.org
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://pypi.org/project/guesslang/

5.1 MNBN 99

5.1.2.1 GitHub Crawling

To create a dataset with README files coming from GitHub projects, we used PyGithub [6],
a library that provides a complete set of APIs to interact with GitHub repositories. Using
a project’s name as query, we can retrieve different types of information such as commits,
issues, and name of the repository’s owner. For each repository, we downloaded only its
README file(s) to provide input to the MNB network. The rationale behind the selection is
that README files provide an informative description of the project being developed,13 e.g.,
among others, what the project does, or how developers can start with it [206]. In this sense,
we assume that information coming from README files is suitable for the recommendation
process.

Concerning the topics, we consider only the featured ones for two reasons: (i) it is not
feasible to train a network for all possible topics available on the platform; and (ii) the
featured topics are the most popular according to GitHub’s statistics; this means that they can
offer a pretty good coverage of the community’s interests. Among these topics, we deployed
an additional filter on the query to limit the number of topics considered in the training as
this phase suffers from a decrease in performance with too many categories. By using the
GitHub query language [7], we applied the following query filter:

Q f = ”is : f eatured topic : t stars : 100..80000 topics :>= 2” (5.1)

to consider only GitHub repositories having a number of stars between 100 and 80,000, and
tagged with at least two topics. We set such a filter after several query refinements, as the
chosen featured topics have different degrees of popularity. For instance, the most starred
project of the 3d topic has around 53,000 stars; reversely, some other topics have top rank
projects that do not reach 1,000 stars. Thus, we tried to select the best query filter to include
a sufficient number of repository for each topic. By imposing such a filter, we tried to avoid
skewed repositories that may not have an informative README, or projects that are already
abandoned for a long time.

GitHub developers use stars as a voting mechanism to foster the popularity of a certain
project [35]. Through this system, each user can support her/his favorite projects available
on the platform. Forking is another index related to the quality of the project. This feature is
typically employed as a starting point for a new project [121]. Furthermore, there is a strong
correlation between forks and stars [37]. In this sense, we suppose that a project with a high
number of stars means that it gets attention from the OSS community, and thus being suitable
to identify popular repositories [38, 36].

13https://help.github.com/en/github/creating-cloning-and-archiving-repositories/
about-readmes

https://help.github.com/en/github/creating-cloning-and-archiving-repositories/about-readmes
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/about-readmes

100 Categorizing GitHub projects

5.1.2.2 README encoding

Before the training process, we encode the content of each README using the TF-IDF
vectorizer provided by scikit-learn. The library embeds all the Natural Language Processing
(NLP) techniques to preprocess README files, i.e., stop word removal, stemming and
lemmatization. After the preprocessing phase, the vectorizer computes the TF-IDF weighting
scheme to find the most representative terms over all documents. The TF-IDF computes the
inverse document-frequency using the formula showed in Equation 5.4:

idf(t) = log
1+n

1+df(t)
+1 (5.2)

where n is the total number of documents in the document set; df(t) is the number of
documents in the document set that contain term t. The encoding is applied to the entire
content of each README file to be fed to the MNB network. This is a preparatory phase to
the training and it is conducted only at the beginning of the process.

5.1.2.3 Topic Prediction

Once we encoded the data using the mentioned techniques, we feed the model to perform
the training phase. Naïve Bayesian network is a probabilistic model based on the Bayesian
theorem that expresses the probability of a certain event given a set of preconditions [122].
The terms “Naïve” refers to the assumption that all the features are conditionally independent.
This means that the classifier reaches a higher performance if each class does not have any
relationship with the others. However, this condition does not always hold in practice and the
model is used with relevant results. In our work, we use a Naïve Bayesian network based on
a multinomial distribution, defined as follows:

P(y | x1, . . . ,xn) ∝ P(y)
n

∏
i=1

P(xi | y) (5.3)

where x1, . . . ,xn are the features and y the class to be predicted with a certain probability
P. We decided to employ the technique as it has demonstrated itself to outperform other ML
models in the context of text classification [15]. To improve the performance of the network,
we applied the TF-IDF scheme on the input data (see Section 5.1.2). Such a preprocessing
phase should possibly enhance the quality of predicted items of the Bayesian classifier as
this has been confirmed by an existing work [128].

As previously mentioned, we exploited the MNB implementation provided by scikit-learn.
By default, MNB predicts only one class for each sample, we modified this feature by ranking

5.1 MNBN 101

all the results to include the most probable topics as we aim to recommend more than one
topic.

5.1.2.4 Language Prediction

Among featured topics, 20 of them are related to the main programming languages, e.g.,
Java, Python, C. Detecting them in a GitHub project requires a comprehensive analysis of
the source code. Consequently, the MNB network is not suitable for this type of analysis
due to its internal construction. However, since language is an important tag, we attempted
to recommend it by employing GuessLang, a Python library which was tailored for this
purpose. As it has been claimed in the documentation, GuessLang can predict 20 different
programming languages with satisfying accuracy. This component is executed as stand-
alone instance to predict the language for each analyzed repository. To correctly predict the
programming language, this module analyzes all files within a repository. Due to the timing
and memory constraints in the computation, we limit the number of analyzed files to 1,000
for each repository that does not exceed 10KB in size.

5.1.2.5 Topics Aggregation

The final step consists of combining the predicted topics coming from the MNB network and
the language discovered by the tool. To aim for reliable results, we replace the last element
of the predicted topic list with the programming language delivered by GuessLang. Let
T = t1, t2,, tn be the list discovered by the MNB model, and tl be the topic related to a
programming language, then as the last element of T is the less probable of the retrieved set,
the final output is the list Tf = t1, t2,, tl , where tl becomes the new last element.

5.1.3 Evaluation

This section presents the evaluation conducted to study our proposed approach. In par-
ticular, Section 5.1.3.1 presents the research questions we wanted to answer by means of
the performed experiments and thus, to study the approach’s performance. Section 5.1.3.2
introduces the datasets we populated to serve as input for the experiments.

5.1.3.1 Research questions

By performing the evaluation, we aim at addressing the following research questions:

• RQ1: How does the variation of training data impact on the prediction perfor-
mance? To answer this question, we varied the dimension of the dataset to include

102 Categorizing GitHub projects

more training data. In particular, we assess the quality of three different datasets to
find out the best one in terms of success rate.

• RQ2: Is the approach able to provide consistent recommendations considering featured
topics? We compute the metrics to measure the relevance of our suggested topics
considering the distribution of the considered repositories.

5.1.3.2 Dataset

To build the dataset, the quality filter discussed in Section 5.1.2 was exploited to select 134
different featured topics. The final aim is to build a balanced dataset in which every topic
does not surpass the others in terms of influence, so as to avoid possible negative impacts on
the final results.

The employed MNB network is slightly different from other models because it works
on probability. Thus, we want to measure how the dimension of training data can affect
the accuracy of the model. In this way, we created a global dataset of 13,400 README
files by considering 100 repositories for each topic. Moreover, since we can recommend 20
additional topics related to the programming languages exploiting the GuessLang module,
summing up our approach is able to predict a total number of 154 topics.

The number of topics for each repository has an important impact on the recommendation
quality. As several repositories may have a low number of featured topics, it is necessary to
examine the distribution of number of featured topics over the repositories. If we call c as
the cut-off value for the number of topics, then Figure 5.3 displays such the distribution by
varying c. The y-axis represents the percentage of repositories with respect to the created
golden dataset, while the x-axis corresponds to c. We can see that, if we set the cut-off
value c = 1, then 100% of the repositories have at least 1 featured topic. However, the
percentage of repositories decreases considerably when c increases. For instance, only 40%
of the repositories have c=3 featured topics and only 10% of them have c=5 featured topics.
Given the circumstances, the prediction of more than 5 featured topics becomes a hard task
considering this strict assumption.

5.1.3.3 Experimental settings

We performed ten-fold cross-fold validation [132] on all the datasets. In particular, the
README files used in each dataset are divided into 10 equal parts. To preserve a balanced
training set along with all the training phases, for each topic, we used 90% and 10% of the
files for training and testing, respectively.

5.1 MNBN 103

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100
100

74

41

20

10
5 3 1.9 1 0.8

cut-off value (c)

C
ov

er
ag

e
(%

)

Fig. 5.3 Distribution of the number of topics in the dataset.

Figure 5.4 depicts the testing process for a single test file. In particular, we computed
the TF-IDF vectors for each test README file to get predicted topics. Then, we retrieved
the real topics from GitHub projects. Using the API provided by the PyGithub library, we
mapped each repository to its real topics. From these, we filtered out the ones that are not
featured topics because the network is not able to retrieve hand-made topics out of the train
set. To aim for a better coverage, some lightweight NLP techniques have been applied to
both the predicted topics and user topics, i.e., stemming and dashes removal. This processing
phase has no impacts on the topics semantic, as the employed techniques work on syntactical
aspects. For example, the topics data-structures and datastructures are semantically the
same and we consider them as a true positive during the accuracy measurement. The last
step involves the comparison of real topics and the recommended ones. To have a qualitative
measure of the approach, we computed all the evaluation metrics for each test file and we are
going to report the results in the next section.

5.1.4 Results

5.1.4.1 Explanatory example

Before going into detail, we take a concrete example to illustrate how the system recommends
topics in Table 5.2. In this table, there are 10 repositories and each of them includes a number
of real and featured topics. For each repository, we compare its featured topics with the top-5
results retrieved by our approach.

As it has been mentioned in Section 5.1.2, topics that are out of the training set from the
real topics of a repository are removed. The last proposed topic is discovered by the language
predictor component and the matched topics are printed in bold to distinguish them with the
others. By all repositories, there is at least one matched item, i.e., success rate is equal to
1. Among others, given the testing project fishercoder1534/Leetcode, all the recommended
topics are matched with those from the ground-truth data.

https://github.com/fishercoder1534/Leetcode

104 Categorizing GitHub projects

Fig. 5.4 The testing phase for a single project.

As it can be seen, although the other recommended items do not belong to the ground-
truth data, they are well correlated with the suggested ones. To be concrete, the topic linux is
strongly related to ubuntu in the esell/deb-simple project although it does not appear in the
real topics set. Given the circumstances, we suppose that the application of a lexical database
to map words with similar semantic meaning such as WordNet [163] should possibly increase
the overall prediction performance.

5.1.4.2 Result analysis

RQ1: How does the variation of training data impact on the prediction performance?
Starting from the dataset described in Section 5.1.3 three different datasets have been
populated, i.e., D1, D2, and D3 by incrementally enlarging the considered training files as
described in Table 5.3. We applied the same experimental settings for all the datasets. Dataset
D1 consists of 1,340 README files and 10% of each topic are used as testing. Dataset D2

and D3 follow the same structure in which we increase the number of README files up to
50 and 100, respectively.

By running the tool on the datasets, for each testing item, we obtained a ranked list of
topics that is considered to be relevant. Given the multi-classification problem, the number of
recommended items dramatically affects the final results. As it has been shown in Figure 5.3,
generally the repositories contain a low number of topics. Thus, we varied the number

https://github.com/esell/deb-simple

5.1 MNBN 105

Table 5.2 Example of repositories, their topics and the recommended topics.

Repository Real topics Featured topics Recommended
topics

a1studmuffin/SpaceshipGenerator python,blender-scripts, spaceship,
procedural-generation, game-
development, 3d

python, 3d shell, terminal, 3d,
opengl, python

0xAX/go-algorithms golang, algorithm, data-structures, go,
sort, tree-structure

algorithm, data-
structures, go

data-structures, al-
gorithm, twitter, li-
brary, go

ajenti/ajenti ajenti, python, javascript, administra-
tion, linux, panel, angular

python, javascript,
linux, angular

firefox, webpack,
linux, angular,
python

fishercoder1534/Leetcode leetcode, algorithm, java, in-
terview, mysql, bash, apache,
data-structures, leetcode-solutions,
leetcode-questions, leetcode-java,
leetcoder

algorithm, java,
mysql, bash, data-
structures

algorithm, mysql,
bash, data-
structures, java

cryogen-project/cryogen clojure, cryogen, static-site-generator clojure jekyll, clojure,
atom, gulp, html

alizahid/slinky jquery, navigation, mobile, es6,
javascript, menu, plugin, yarn, babel,
webpack, css, sass

jquery, mobile,
javascript, es6,
css, sass, babel,
webpack

es6, jquery, css,
sass, javascript

esell/deb-simple maintainer-wanted, golang, go, de-
bian, ubuntu

go, ubuntu ubuntu, ansible,
linux, shell, go

JamesRamm/longclaw python, django, e-commerce, shop,
python3, python-2, wagtail, wagtail-
cms

python, django,
wagtail

wagtail, django,
serverless, express,
python

nitin42/terminal-in-react terminal, react, design, javascript, svg,
webpack, webapp, css

terminal, react,
javascript, web-
pack, css

webpack, eslint,
react-native, react ,
javascript

kerl/kerl erlang, otp-release, kerl, homebrew,
shell

erlang, homebrew,
shell

elixir, homebrew,
bash, deployment,
shell

Table 5.3 Datasets.
Dataset # of testing

files
of training
files

Exe. time
(sec)

D1 134 1,206 658
D2 670 6,030 3,782
D3 1,340 12,060 7,823

of retrieved topics for each testing item with a small value, i.e., c = 2, c = 5, and c = 8
recommended topics to find out the best configuration with respect to the returned items.

If N is the number of correctly predicted topics then for each setting, the corresponding
quality metrics are computed with respect to N. The final success rates are depicted in
Figure 5.5, Figure 5.6, and Figure 5.7 for c = 2, c = 5 and c = 8, respectively.

In Figure 5.5, it is evident that a better success rate is obtained when N=1, and this holds
for all the datasets, i.e., D1, D2, and D3. Running the tool on D2 and D3 yields a comparable
success rate, i.e., 75.8% and 75.68%. This implies that at a certain point, increasing the
amount of training data does not bring a radical change in the overall performance. This is
interesting since it suggests that in practice, we just need a certain amount of training data

https://github.com/a1studmuffin/SpaceshipGenerator
https://github.com/0xAX/go-algorithms
https://github.com/ajenti/ajenti
https://github.com/fishercoder1534/Leetcode
https://github.com/cryogen-project/cryogen
https://github.com/alizahid/slinky
https://github.com/esell/deb-simple
https://github.com/JamesRamm/longclaw
https://github.com/nitin42/terminal-in-react
https://github.com/kerl/kerl

106 Categorizing GitHub projects

in order to get a decent accuracy. When N=2, it can be seen that the obtained success rate
improves considerably along the addition of more training data. For example, by D1 we get
23.1% as success rate, however the corresponding value by D3 is 63.14%, which is almost
triple larger than that of D1.

By considering Figure 5.6 and Figure 5.7 together to study the approach’s performance for
the cases c=5 and c=8, we witness the same trend as that by c=2. To be concrete, requesting
more of correctly predicted topics means getting a lower success rate. For example when
c=5, by Dataset D1 the maximum success rate is 80.15% and it is obtained when N=1. This
score decreases dramatically for a larger value of N, i.e., with N=4 corresponding the success
rate is 19.83% which is four times lower than that of the case where N=1. This suggests that
obtaining a higher number of correct topics becomes more difficult. Similarly, by D2 and D3,
success rate deteriorates quickly if we want to see more matched topics. By comparing the
results yielded by all three datasets, we see that running the MNB network on D2 brings a
slightly better prediction performance in terms of success rate, and this is consistent with
what we got for c=2. This is further confirmed in Figure 5.7 as using D2 for training data
yields a better success rate.

These findings should be explained by the internal construction of MNB. As the network
uses probabilities without considering any other type of relationships among the features, it
works well even with a small amount of data. Thus, the addition of further data has a negative
impact on the learning rate of the MNB network. Concerning the number of recommended
topics, our experimental configurations demonstrate that suggesting more topics increase
the success rate. As a large part of the dataset contains repositories with at most 8 featured
topics, those that have more than this number of topics are not statistically significant for
our purposes. Additionally, we normalized success rate measures to be compliant with the
distribution of the dataset.

D1 D2 D3

0

20

40

60

80

100

70.18

75.8 75.68

23.1

53.34

63.14

Dataset

S
u
cc
es
s
ra
te

(%
)

N=1 N=2

Fig. 5.5 Success rate for c=2.

5.1 MNBN 107

D1 D2 D3

0

20

40

60

80

100

80.15

86.52 85.8

53.33

62.95 62.75

31.56

39.95 38.65

19.83

25.4
21.43

7.23
10.26 8.67

Dataset

S
u
cc
es
s
ra
te

(%
)

N=1 N=2 N=3 N=4 N=5

Fig. 5.6 Success rate for c=5.

D1 D2 D3

0

10

20

30

40

50

60

70

80

90

100

83.99

89.29 88.12

63.14

71.03 70.79

39.55

53.7
51.46

31

38.42
35.32

23.22

27.91

22.99

Dataset

S
u
cc
es
s
ra
te

(%
)

N=1 N=2 N=3 N=4 N=5

Fig. 5.7 Success rate for c=8.

Answer to RQ1. Once a certain threshold has been reached, augmenting the training data does
not bring a radical change in performance. In particular, adding more data to Dataset D2 to yield
Dataset D3 has a negligible impact on success rate, precision, and recall.

RQ2: Is the approach able to provide consistent recommendations considering featured
topics? Considering once again the three experimental datasets shown in Section 5.1.3, we
computed precision and recall by varying the two values c and N. The precision, recall, and
top-rank scores for all the test configurations are shown in Table 5.4. As it can be seen there,
precision and recall scores decrease when N increases, which is consistent with success rate.
Again, using D2 as input data helps us achieve a better precision and recall compared to D1

and D3. Using D3 helps obtain a better result with c=2. However, the difference between
the two recall values is negligible. As expected considering the previous results, Dataset D1

contributes to the worst performance along with all the possible configurations of N and c.
These results can be explained by the particular nature of the user’s topics. As shown in

Table 5.2, the featured topics belonging to the real repositories are very few. The side-effect
of this assumption has a particular impact on the precision value, that goes down when we
increase the number of recommended items. Meanwhile, recall does not suffer from the

108 Categorizing GitHub projects

Table 5.4 Precision, recall, and top-rank.

Precision Recall Top rank
N D1 D2 D3 D1 D2 D3 D1 D2 D3
2 43.61 47.98 47.98 38.10 42.62 42.96 60.59 65.19 64.81
5 27.51 31.20 30.70 55.68 63.45 63.06 — — —
8 19.63 22.05 21.57 61.96 69.77 69.04 — — —

dataset composition, as this metric highlights the true positive ratio. We assume that the
obtained results are strongly affected by the distribution of the user topics.

To further study the approach’s performance, we computed Top Rank scores following
Equation 3.5 and the results are depicted in Table 5.4. We considered only the first top rank
items since all repositories belonging to the golden dataset have at least one featured topic.
Thus, we exploit this index to assess the capability of the MNB network in a more reliable
way. Once again, using D2 brings a better top rank compared to using the other datasets. In
particular, the Top Rank index increases to 65.19% from 60.59% when we run the tool on D3

instead of D1. Moreover, running the tool on D3 places a burden on the overall performance.
This confirms the findings of RQ2, in which D2 facilitates a better prediction.

Answer to RQ2. Our approach is able to provide relevant results in terms of Top Rank scores
given a decent amount of training data.

5.1.5 Threats to validity

We identify the threats that may adversely affect the validity of the evaluation, and the
countermeasures taken to minimize them.

Threats to internal validity concern the criteria behind the selection of GitHub topics. As
we already mentioned before, a GitHub’s user can manually insert several numbers of topics.
As this affects the quality of the final results, we considered only a limited set of featured
topics. Another issue is related to the training phase that employs only README files to
discover topics: They contain usually rough data that might not properly represent the entire
repository’s content. We mitigate this threat by obtaining a stable number of README files
for each topic, and adding the GuessLang module to cover programming languages.

Concerning the threats to external validity, there might be issues with the selected dataset.
First, we downloaded the projects directly from GitHub using the Python API. The platform
limits the number of results to 1,000 for each query, so we were not able to access to the
entire knowledge of the platform. Moreover, the query changes the set of the retrieved results
at each run. Thus, the same query could retrieve different records into different runs. To
avoid this situation, we imposed the above mentioned quality filter to cover projects as much
as possible, without needing to execute a query several times.

5.2 HybridRec 109

Probability
based Recommendation

Textual content
Topics obtained

with stochastic learning

GitHub repository

CF based
Recommendation

Preprocessing

Topics Merger

Input topics

Final topics

ST

CF Topics obtained
with collaborative filtering

Fig. 5.8 Overview of the HybridRec approach.

Construct validity pertains to the conducted testing phase. As said, 10% of the README
files for each topic are removed in every testing fold. In this way, we cannot test all possible
permutation that might affect the training phase, as it requires the storage of a huge amount
of data. To the best of our knowledge, the selected testing configuration is suitable to assess
the approach’s accuracy. Another issue concerns the chosen metrics to evaluate the approach:
the overall precision considerably decreases due to the aleatory number of user’s topics. We
tackle this issue by setting the Top rank index to highlight the precision in terms of the first
result.

5.2 HybridRec

5.2.1 HybridRec architecture

In this section, we present in detail HybridRec, the proposed recommender system to provide
topics for GitHub repositories. HybridRec parses textual contents, e.g., README files,
Wiki contents, and commit messages collected from GitHub, and employs a Complement
Naïve Bayesian Network [212], or CNBN for short, to extract preliminary topics. The
predicted topics are then fed as input to retrieve additional relevant topics by means of a
collaborative-filtering technique. The outcome of this phase is combined with the preliminary
topics to yield the final recommendations.

Figure 5.8 illustrates the architecture of HybridRec, which consists of two main compo-
nents, namely (i) ST: Probability based recommendation using a stochastic network [212];
and (ii) CF: Collaborative-filtering based recommendation [182, 235]. The following subsec-
tions describe these components in greater detail.

110 Categorizing GitHub projects

5.2.1.1 ST: Stochastic-based Component

The architecture of the first component is depicted in Fig. 5.9. Data is crawled from GitHub
and then vectorized by the TF-IDF encoding component. The obtained data is used to feed
the CNBN component, which returns a set of most probable topics. By resembling the choice
made in the original work [72], we consider only the featured topics, i.e., the most popular
according to GitHub’s statistics. In such a way, we can train CNBN with the projects labeled
with featured topics that are representative in terms of coverage. Furthermore, various NLP
techniques are applied to both predicted and actual topics to improve the quality of the
outcomes, as we explain as follows.

Post-NLP Predicted labels

CNBN
TF-IDF

encoding Encoded
content

Recommended labels

Github repository

Fig. 5.9 The ST component.

TF-IDF encoding Given a repository, this module vectorizes the textual content of its
artifact descriptions, using the scikit-learn library14 that provides all the functionalities to
encode textual content by finding the most representative terms. Encoder computes the
inverse document-frequency using the following formula:

id f (t) = log
1+n

1+d f (t)
+1 (5.4)

where n is the total number of documents in the document set; df(t) is the number of
documents in the document set that contain term t. A previous study [128] showed that
applying such a weighting scheme should possibly enhance the quality of predicted items
of the Bayesian classifier. Thus, we decide to apply this additional preprocessing step to
improve the quality of the recommended topics.

14https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.
TfidfVectorizer.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

5.2 HybridRec 111

CNBN-based prediction In our previous work [72], a Multinomial Naïve Bayesian net-
work (MNBN) has been used to extract topics, and the results were encouraging. In an
attempt to improve the recommendation capability as well as to deal better with unbalanced
datasets, we adopt an enhanced version of the Multinomial Naïve Bayesian Network called
Complement Naïve Bayesian Network to compute the predictions. The term “naïve” refers
to the assumption that all the features are conditionally independent. In other words, the
network augments its prediction capabilities when each element has weak or no ties with the
others. This model has been successfully employed to classify multinomial distributed data.
Though MNBN and CNBN are similar from the structural point of view, their underpinning
mechanisms used to compute the outcomes are completely different. In particular, MNBN
employs a stochastic model that predicts a certain class c by relying on its training data. In
contrast, CNBN makes use of the training data coming from all classes except c. In such
a way, the performed estimation is more effective as the model uses a more even amount
of training data per class. To be concrete, CNBN computes predictions by means of the
following formula.15

θ̂ci =
αi +∑ j:y j ̸=c di j

α +∑ j:y j ̸=c ∑k dk j

wci = log θ̂ci

wci =
wci

∑ j |wc j|

(5.5)

where the summations are over all documents j not in class c, di j is the tf-idf value of term i
in document j and ai is a smoothing parameter used to compute the final weight wci.

This mechanism impacts positively on the computation of the weights by using the same
input data. In fact, using CNBN instead of MNBN leads to better accuracy considering
unbalanced datasets [212]. After this phase, CNBN produces a list of top-N topics according
to their probability.

Post Natural Language Processing
The following lightweight post-processing steps are performed on the obtained topics,

with the aim of further enhancing the prediction capabilities:

• Dash removal: All the dash occurrences in each topics are removed. For instance, the
build-system topics becomes buildsystem. In this way, we enlarge the possible set of
recommended items;

15We made use of the Python implementation of CNBN embedded in the scikit-learn library (https:
//scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.ComplementNB.html).

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.ComplementNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.ComplementNB.html

112 Categorizing GitHub projects

• Stemming: Using Porter’s stemmer implementation provided by the nltk language
processing library,16 we squeeze each term to its root by cutting the suffix. Thus, terms
such as monitoring or testing collapse to monitor and test, respectively.

5.2.1.2 CF: Collaborative filtering-based component

Though CNBN can recommend relevant topics by using textual contents, it provides only
featured topics, i.e., a set of topics curated by GitHub. Therefore, it is necessary to have
machinery to provide also non-featured topics. Being inspired by the TopFilter system [66],
in this work we further extend the recommendation capabilities of the ST component to
non-featured topics, using a collaborative-filtering recommendation engine.

Figure 5.10 provides an overview of the CF component. The Preprocessing module
is used to obtain a filtered dataset. Given an initial set of topics already assigned to the
repository of interest, Data Encoder encodes it in a graph-based structure to represent the
mutual relationships between repositories and topics. From this, a project-topic matrix is
created by following the typical user-item structure used in existing collaborative filtering
applications [235]. Then, Similarity Calculator computes similarities among all the con-
sidered artifacts. Finally, the Recommendation Engine module retrieves a ranked list of top-N
topics that are suggested by using user-based collaborative filtering technique [296]. The
functionalities and preprocessing techniques implemented in CF are described in detail as
follows.

5.2.1.3 TopFilter preprocessing

We adapt semantic mapping rules proposed in a recent work [120], revise them as well as
propose our own rules, with the aim of enhancing the quality of the retrieved topics. These
rules have been manually defined by building direct relationships among the terms. For
instance, topics firefox and chrome are rooted to a common term, i.e., browser. In particular,
we adopt two types of rules, i.e., Aggregating Rewriting Rules (ARR)s and Extending
Rewriting Rules (ERR)s. The former are used to restrict the dictionary of possible topics
by rewriting the topics in a different manner, e.g., exporter and exporting are aggregated in
export that preserves their semantic. Meanwhile, the latter provide additional information
about the topic, e.g., the repository containing the sysmodule topic are augmented by adding
the system and module topics. Given a repository, ERRs extend the list of topic by adding
new ones. Specifically, we perform the following ordered preprocessing steps:

16https://www.nltk.org/api/nltk.stem.html

https://www.nltk.org/api/nltk.stem.html

5.2 HybridRec 113

TopFilter
preprocessing Filtered

dataset

Graph format
Similarity
calculator

Data
encoder

Similarity matrix

Recommendation
engine Recommended labelsInput labels

Github repository

Fig. 5.10 The CF component.

1. [ARR - version removal] All the substrings referring to versions are removed from the
topics. We use the following regular expression v[\d\.]+ to match versions. Then, the
identified string matches are removed from the topics. For instance, this rule allows us
to aggregate terms like riot-api-v4 and riot-api-v3 to the common term riot-api-;

2. [ARR - extra digits removal] Punctuation digits, non-English and non-ASCII charac-
ters at the end of the topics are filtered out. This rule enables us to match topics that
are very similar apart from non alphabetic chars. For instance, using this rule will boil
python3, python2 and python down to the final term python;

3. [ERR - abbreviation expansion] Popular software engineering and computer science
related abbreviations and acronyms, e.g., lib, config, DB, doc, are rewritten with their
original form, e.g., library, configuration, database, document.

4. [ERR - split frequent topics] By computing the frequency of tokens, we split those
that are made from the most frequent topics. For example, javascript-tutorial is
split into two separate terms, i.e., javascript and tutorial;

5. [ERR - alias substitution] Relying on the topic aliases recently proposed [120],
we transform topics according the identified aliases. As an example, angularjs is
converted to angular following this rule;

114 Categorizing GitHub projects

6. [ERR - split tokens] Tokens are split based on the snake_case (terms separated by
underscores), camelCase (terms separated with a single capitalized letters) or kebab-
case (terms separated by hyphens) naming conventions. For instance, springDemo is
split into spring and demo;

7. [ARR - nlp process] Stop words are removed, then NLP stemming and lemmatization
methods are applied on the topics. For instance, programming-in-haskell becomes
program and haskell topics;

8. [ARR - infrequent topics removal] Finally, topics with a frequency of less than a
given threshold are removed.

5.2.1.4 Data encoder

This component represents the relationships between projects and topics in a matrix, whose
rows and columns represent all the projects and all the corresponding topics. Thus, the cell
(i, j) is set to 1 if the artifact in the ith row is labeled with the topic in the jth column, 0
otherwise. The matrix is eventually constructed by preprocessing raw topics with the same
NLP techniques used in MNBN to filter out possible biased terms (see Section 5.1.2).

To illustrate how Data Encoder works, we consider a set of four GitHub repositories
P = {p1, p2, p3, p4} together with a set of topics T = {t1 = junit; t2 = testing; t3 = specs; t4 =
module; t5 = mocking, t6 = mock}. Moreover, the repositories-topics inclusion relationships
is denoted as ∋. A parsing of the projects reveals the following inclusions: p1 ∋ t1, t2, t6;
p2 ∋ t1, t3; p3 ∋ t1, t3, t4, t5; p4 ∋ t1, t2, t4, t5. After the NLP normalization steps, t5 and t6
collapse on the same term which is named as t6. The final project-topic matrix is shown in
Table 5.5.

Table 5.5 The artifact-topic matrix for the example.

t1 t2 t3 t4 t5
p1 1 1 0 1 1
p2 0 1 0 1 1
p3 0 1 1 0 0
p4 0 1 0 0 1

5.2.1.5 Similarity calculator

Given the encoded data, this module computes the similarity among the projects by consid-
ering the mutual relationships. Two nodes in a graph are considered to be similar if they

5.2 HybridRec 115

share the same neighbours by considering their edges. We represent a set of projects and
their labels in a graph, so as to calculate the similarities among the projects. For instance,
Fig. 5.11 depicts the graph-based representation of the project-topic matrix in Table 5.5.

P1 P2

P3

P4t2

t4

t3

t5

t1

Fig. 5.11 Graph representation for repositories and topics.

Considering a project p that has a set of neighbor nodes (t1, t2,.., tl), the features of p are
represented by a vector φ = (φ1,φ2, ..,φl), with φi being the weight of node ti computed as
the term-frequency inverse document frequency function as follows: φi = fti × log(|P|×a−1

ti),
where fti is the number of occurrences of ti with respect to p, it can be either 0 and 1. |P|
is the total number of considered projects; ati is the number of projects connecting to ti via
corresponding edges.

Intuitively, the similarity between two projects p and q with their corresponding feature
vectors φ = {φi}i=1,..,l and ω = {ω j} j=1,..,m is computed as the cosine of the angle between
the two vectors as given below.

sim(p,q) =
∑

n
t=1 φt ×ωt√

∑
n
t=1(φt)2 ×

√
∑

n
t=1(ωt)2

(5.6)

where n is the cardinality of the union of topics by p and q.

5.2.1.6 Recommendation engine

Given an input project p, and an initial set of related topics decided by the developer, the
inclusion of additional topics can be predicted from the projects that are similar to p. The
collaborative-filtering recommender works based on the assumption that “if projects share
some topics, then they will probably share additional topics.” In other words, it predicts
topics’ presence by means of those collected from the top-k similar projects using the
following formula [182]:

rp,t = rp +
∑q∈topsim(p)(rq,t − rq) · sim(p,q)

∑q∈topsim(p) sim(p,q)
(5.7)

116 Categorizing GitHub projects

where rp and rq are the mean of the ratings of p and q, respectively; q belongs to the set of
top-k most similar projects to p, denoted as topsim(p); sim(p,q) is the similarity between
the active project and a similar project q, and it is computed using Equation 6.2.

The next sections present the experiments performed to evaluate HybridRec as well as to
compare it with MNBN, TopFilter and TopFilter+.

5.2.2 Evaluation

This section describes the process conducted to study the performance of HybridRec. In
particular, three research questions are presented in Section 5.2.2.1 to address different
aspects of the quantitative and qualitative evaluations. Afterward, an informative description
of the datasets exploited in the evaluation is given in Section 5.2.2.2. Section 5.2.3 eventually
describe the evaluation metrics and process.

To facilitate future research, we made available the HybridRec tool together with the
related data in GitHub.17

5.2.2.1 Research questions

We study the performance of our proposed approach by answering the following research
questions:

• RQ1: How does HybridRec perform compared to TopFilter+? In our previous work [66],
TopFilter+ was used to predict topics for GitHub repositories, obtaining promising
results. HybridRec has been conceptualized following the same line of reasoning
and implementing various boosting mechanisms. This research question investigates
the impact of the enhancement on the overall prediction performance by comparing
HybridRec with TopFilter+;

• RQ2: In comparison to MNBN, does CNBN contribute to a better HybridRec perfor-
mance? We compare the recommendation capability of the two considered stochastic
networks, i.e., MNBN and CNBN, using an unbalanced dataset. This aims to find out
the factors that contribute to gain in the prediction performance;

• RQ3: How do the preprocessing steps impact on the HybridRec performance? We in-
vestigate the impact of the preprocessing steps on the collaborative-filtering component
by experimenting with both preprocessed and raw datasets;

17https://github.com/MDEGroup/HybridRec

https://github.com/MDEGroup/HybridRec

5.2 HybridRec 117

• RQ4: What are the key differences between GitHub and MVN Repository, and how
do they impact on the whole HybridRec recommendation process? GitHub projects
available on MVN Repository18 are characterized by different features as well as
metadata; we investigate to which extent such varieties could affect the mining process
and the prediction capabilities of HybridRec.

5.2.2.2 Data extraction

To answer the four research questions, we curate four different datasets, namely D1, D3, D2,
and DM as shown in Table 5.6 and described as follows.

• D1 is the original dataset already used in our previous work [72, 66] consisting of
11,694 GitHub repositories with 19,337 topics;

• D2: As discussed in our previous work [66], infrequent topics negatively affect the
prediction outcomes. In this way, we removed infrequent elements from the dataset
to analyze their impacts on the overall recommendation phase. We firstly filtered
the initial set of topics using their frequencies counted on the entire GitHub dataset.
Afterward, topics that occur in less than 20 repositories were removed, obtaining D2

with 6,253 repositories and 455 topics;

• D3: To evaluate the impact of the preprocessing steps, we created the third dataset by
applying the preprocessing rules presented in Section 5.1.2. The resulting D3 dataset
consists of 5,620 repositories labeled with 6,442 topics.

• DM: To evaluate the performance of HybridRec on a different repository of artifacts,
we collected a set of 2,932 unique projects from MVN Repository Repository using
Beautiful Soup,19 a well-founded Python scraping library. Tags in MVN Repository
are well-maintained as they are not freely assigned by developers but by a central
authority once artifacts have been made available on the platform. The DM dataset
contains the most popular tags belonging to the top categories curated list.

5.2.3 Evaluation process

We use the ten-fold cross-validation technique [132] to analyze the performance of our
proposed approach. Fig. 6.8 depicts the evaluation process consisting of three consecutive

18https://mvnrepository.com/
19https://www.crummy.com/software/BeautifulSoup/

https://mvnrepository.com/
https://www.crummy.com/software/BeautifulSoup/

118 Categorizing GitHub projects

Table 5.6 Datasets features.

D1 D2 D3 DM
of artifacts 11,694 6,253 5,620 2,932
of topics 19,337 455 6,442 489
Avg. number of topics 8.24 6.70 8.60 3.23
Avg. frequency of topics 16.13 42.10 29.90 36.5

Data extraction

Dataset

Split ten-fold

Testing data

Training data

Input data preparation Split labels

GT labels

Query labels

CF

CF labels

ST

ST labels

HybridRec

Comparison

HybridRec labels

Recommendation production

Success rate Precision Recall

Outcome evaluation

Top rank

Fig. 5.12 Evaluation process.

steps, i.e., Data Preparation, Recommendation Production, and Outcome Evaluation, which
are explained as follows.

Data preparation. This phase is conducted to collect repositories from GitHub that match
the requirements defined in previous section during the Data collection step. The dataset
is then split into a training and a testing set using Split ten-fold. Since the recommender
systems are different in terms of input data, i.e., CNBN requires README files as input
and training data, whilst HybridRec uses a set of assigned topics as input and for training,
testing and training sets need to be specifically parsed for each individual approach. The
Split labels activity simulates a real development scenario when a developer has already
assigned some topics to her repository, and waits for recommendations, i.e., Query labels.
For instance, given a GitHub repository and its topics, we fed the CNBN component using
the repository README file annotated with the corresponding topics. Meanwhile, the
testing data represent unlabeled README files that need to be categorized by the network.
Contrariwise, TopFilter requires only training topics and an initial set of labels extracted

5.2 HybridRec 119

from the input repository, namely Query labels since the underpinning engine makes use of
a collaborative filtering technique that suffers from the cold start problem.
Recommendation production. To enable the evaluation of HybridRec, we extracted a part
of the topics for each testing project, resulting in the ground-truth data. The remaining part is
used as a query to produce recommendations. We parsed and encoded text files in vectors
using the TF-IDF weighting scheme to provide input to CNBN.
Outcome Evaluation. We evaluate HybridRec and compare it with MNBN, TopFilter, and
TopFilter+, analyzing the recommendation results by comparing them with those stored as
ground-truth data to compute the quality metrics, i.e., Success rate, Precision, Recall, Top
rank, and Catalog coverage.

5.2.4 Results

In this section, we study the performance of our proposed approach by and compares it
with MNBN by answering the research questions presented Section 5.2.2.1. First, in Sec-
tion 5.2.4.1 takes a concrete example to illustrate how TopFilter+ and HybridRec recommend
topics to a repository. Afterward, Section 5.2.4.1 and Section 5.2.4.1 report and analyze the
experimental results.

5.2.4.1 Explanatory example

Before answering the research questions, we illustrate the recommendations provided by Top-
Filter+ and HybridRec through a running example. As shown in Table 5.7, the maintainers of
the repository markdown-viewer20 labeled it with nine labels as listed on the Original topics
column. The column Processed topics, shows the outcomes obtained from the preprocessing
step on the original topics. The last two columns report the ranked recommendations provided
by TopFilter+ and HybridRec. Moreover, for each topic, Table 5.7 lists the corresponding
frequencies over the D2 and D3 datasets. For instance, the split token rule (see Section
5.2.1) rewrites chrome-extension as chrome and extension, while the alias substitution

rule generates browser from chrome and firefox. In other words, the rewriting rules refine
the mined topics to generate more exhaustive and coherent ones. For instance, it is evident
that firefox-extension, chrome-extension, and browser-extension can be better represented
by their corresponding short forms: browser, firefox, chrome and extension. By looking to
the original topics and the preprocessed ones, we can see that the semantics of the topics are
preserved but their frequencies are increased. TopFilter+ and HybridRec return as output a
ranked list of items, and we take the first top-20 topics, and match them with the ground-truth

20https://github.com/simov/markdown-viewer

https://github.com/simov/markdown-viewer

120 Categorizing GitHub projects

Table 5.7 Recommendation results for the markdown-viewer repository (topics matching
with ground-truth data are reported in bold).

Original topics
(D2)

Freq. (D2) Processed topics
(D3)

Freq. (D3) Rank TopFilter+ HybridRec

javascript 865 javascript 884 1 markdown markdown
chrome-extension 69 chrome 123 2 firefox emoji
markdown 105 markdown 123 3 sass browser
firefox 65 firefox 68 4 vim chrome
chrome 103 extension 38 5 github-api emacs
firefox-addon 29 viewer 34 6 c html
firefox-extension 17 addon 38 7 editor javascript
browser-extension 13 browser 220 8 javascript extension
markdown-viewer 4 9 html firefox

10 vue mozilla
11 document privacy
12 react safari
13 android golang
14 git opera
15 nodejs addon
16 library python
17 emoji editor
18 web react
19 python secure
20 book latex

Table 5.8 Success rate, precision, and recall.

Success rate Precision Recall
N TopFilter+ HybridRec TopFilter+ HybridRec TopFilter+ HybridRec
1 0.171 0.153 0.113 0.212 0.014 0.034
2 0.223 0.236 0.077 0.179 0.018 0.056
3 0.258 0.291 0.060 0.153 0.021 0.070
4 0.276 0.317 0.052 0.133 0.024 0.082
5 0.290 0.335 0.044 0.117 0.025 0.090
6 0.382 0.504 0.084 0.133 0.058 0.122
7 0.417 0.549 0.099 0.137 0.079 0.145
8 0.449 0.579 0.101 0.136 0.091 0.164
9 0.465 0.598 0.099 0.132 0.100 0.179
10 0.479 0.614 0.095 0.127 0.108 0.191

data. It is evident that HybridRec provides more matched items compared to TopFilter+. In
the following experiments we show that the preprocessing steps reduce the usage of different
terms that have a very close semantics and increase the topic frequency.

The values of the considered quality metrics, i.e., success rate, precision, recall, top
rank, and catalog coverage, reported in the next subsections are obtained by calculating their
average values on all the folds from the cross-validation process.

RQ1: How does HybridRec perform compared to TopFilter+? We compare HybridRec
with TopFilter+ on all the considered datasets, i.e., D1, D2, and D3. Given a testing project p,
a certain number of topics τ is used as input, and the remaining ones are saved as ground truth

5.2 HybridRec 121

data GT(p). In our experiments, τ is always considered half of the number of topics already
assigned to the project under analysis, and the number of neighbor projects k is set to 20.
This was identified as the configuration that brings the best performance to TopFilter+ [66].
Moreover, we try with different values of N to find out how the size of recommended items
impacts the prediction performance.

The average success rate, precision, and recall scores obtained by running the ten-fold
cross-validation technique with HybridRec and TopFilter+ on D1, D2 and D3 are reported
in Table 5.8, considering consecutive cut-off values, i.e., N = {1, . . . ,10}. In the table, a
better performance – corresponding to higher scores – is printed in bold. Altogether, it is
evident that HybridRec outperforms TopFilter+ for any value of N except the success rate
for N = 1. For instance, the best success rate obtained by TopFilter+ is 0.479 when N = 10,
while the corresponding score by HybridRec is 0.614. Moreover, the maximum precision
score is 0.212 for HybridRec, which is much better than 0.112, the maximum precision
achieved with TopFilter+. Concerning recall, though both approaches yield a considerably
low performance, HybridRec still always outperforms TopFilter+ by all the cut-off values N.
We find out in RQ4 when HybridRec can improve its prediction performance.

Answer to RQ1. In comparison to the baseline TopFilter+, HybridRec yields a substantial
performance improvement in terms of success rate, precision, and recall.

RQ2: In comparison to MNBN, does CNBN contribute to a better HybridRec perfor-
mance? In our previous work [66], we utilized a balanced dataset manually curated from
GitHub to improve MNBN’s performance as the network is not able to handle unbalanced
datasets. Nevertheless, this does not essentially resemble a real-world situation in the context
of OSS platforms, where the distribution of topics and repositories is usually not balanced.
Thus, we employ an enhanced version of MNBN, namely CNBN, to deal with realistic
settings. This research question aims to validate such a hypothesis. To compare with MNBN,
we run HybridRec using only the ST component (see Section 5.2.1), without triggering the
subsequent collaborative filtering phase.

Figure 5.13 shows the success rate considering different cut-off values, i.e., N = {1, . . . ,10}.
It is evident that using CNBN obtains a better success rate with compared to using MNBN,
given that an unbalanced dataset is considered. For instance, the improvement is around 10%
with N = 2, i.e., MNBN and CNBN achieve 0.50 and 0.67 respectively in recommending at
least one correct topic. As expected, increasing the number of recommended items leads to
a better performance, i.e., CNBN’s success rate reaches 0.90 with N = 9 and N = 10. This

122 Categorizing GitHub projects

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of recommended items

MNBN CNBN

Fig. 5.13 Success rate for D1 considering N = {1, . . . ,10}.

holds also for the MNBN, which however achieves worst performance since its success rate
is always lower than 0.65.

Table 5.9 Precision, recall with D1.

Precision Recall
N MNBN CNBN MNBN CNBN
1 0.582 0.663 0.323 0.374
2 0.266 0.350 0.298 0.401
3 0.231 0.333 0.362 0.529
4 0.194 0.292 0.392 0.597
5 0.164 0.257 0.408 0.641
6 0.143 0.227 0.422 0.673
7 0.126 0.203 0.431 0.694
8 0.112 0.184 0.437 0.714
9 0.102 0.168 0.447 0.728
10 0.941 0.154 0.454 0.741

To better study the performance of both techniques, i.e., MNBN and CNBN, we compute
the precision and recall scores and show them in Table 5.9. Overall, CNBN improves
the results obtained by MNBN for all the considered metrics. By considering all the cut-
off values, the precision scores are increased by 10% on average. In particular, precision
reaches its maximum at N=2, i.e., 26.57 and 35.00 for MNBN and CNBN, respectively; The
minimum value obtained by MNBN is 9.41, while the corresponding score by CNBN is
15.44. Concerning recall, we observe a remarkable improvement when CNBN is adopted,
i.e., it increases MNBN’s results 30% of the time with N = 10. As expected, increasing
the number of the returned items positively affects the performance of both networks. Still,
CNBN improves recall from 40.14 to 74.07, while MNBN gains 45.38 as its maximum
value. In other words, the usage of CNBN reduces the impact of false negatives during the
prediction phase. Finally, the advantage of CNBN is eventually confirmed by the Top-rank
metric, which measures the accuracy of the two networks in recommending the first item,

5.2 HybridRec 123

i.e., the most probable one. In particular, the computation shows that CNBN obtains a better
performance also in this case by increasing the top rank prediction up to 65.85 while MNBN
gets only 49.55.

Answer to RQ2. On an unbalanced dataset, compared to MNBN, CNBN improves the prediction
performance. As data sources are unbalanced by their nature, adopting CNBN helps obtain a more
precise prediction in the field.

RQ3: How do the preprocessing steps impact on the HybridRec performance? We
measure the impact of the preprocessing steps on the collaborative filtering recommendation
engine on the three datasets collected from GitHub, i.e., D1, D2 and D3. As described
in Section 5.2.2, D2 is obtained from D1 by filtering out topics that occur in less than 20
repositories, while D3 is extracted from D1 by applying the preprocessing rules defined in
Section 5.2.1. To compare with the original TopFilter approach [66], we run HybridRec
using only the CF component (see Section 5.2.1).

Given a testing project p, a certain number of topics is used as input, i.e., τ = 5, and the
remaining ones are saved as ground truth data, i.e., GT(p) (cf. Section 5.2.2). Moreover, we
investigate various number of recommended items N = {5,10,15,20} to understand how the
size of recommended items impacts the prediction performance of TopFilter. The average
success rates obtained by running the ten-fold cross-validation technique with HybridRec on
D2 and D3 are depicted in Fig. 5.14.

1 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of recommended topics

S
u
cc
es
s
R
at
e

D1 D2 D3

Fig. 5.14 Success rate values for N = {1,5,10,15,20}.

It is evident that HybridRec yields a better success rate when preprocessed datasets, i.e.,
D2 and D3, are considered. For instance, it gets SR@1 of 0.715 for D3, while for other
datasets, the corresponding value is always lower than 0.42. Moreover, by comparing the
result given by considering different cut-off values N, we realize that there is no significant

124 Categorizing GitHub projects

difference between the results for N = 10 to N = 20. This means that most of the matched
items concentrate on the top-5 ranked list, and considering a longer list of items does not
bring any positive matches.

Fig. 5.15 Precision/recall curves.

To further study the performance of HybridRec, we depict in Fig. 5.15 the precision/recall
curves (PRCs). For this setting, we varied the recommended items N from 1 to 20, aiming
to study the performance for a more detailed recommendation list. Each dot in a curve
represents the precision and recall scores obtained for a specific value of N. Furthermore,
we fixed k = 20 since this number of neighbors brings the best prediction outcomes among
others, while it allows HybridRec to maintain a reasonable execution time. As a PRC close
to the upper right corner corresponds to a higher precision and recall, suggesting a better
performance [182], Fig. 5.15 shows that by considering a preprocessed dataset, HybridRec
gains a better prediction. In particular, the worst precision-recall relationship is seen by the
raw dataset D1, while DGP obtains the best one. Overall, these results are consistent with
those presented in Fig. 5.14, i.e., using the preprocessing steps given in Section 5.2.1 enables
HybridRec to enhance its performance substantially.

Finally, we investigate if HybridRec can provide a wide range of topics to repositories,
taking into consideration catalog coverage. This metric measures the percentage of the
recommended topics in the training data that the model recommends to a test set, and a higher
value corresponds to better coverage. Table 5.10 reports the average coverage values got
from running HybridRec on the datasets, i.e., D1, D2, and D3. The table suggests an evident
outcome: we get better coverage by considering longer lists of items. We also studied the

5.2 HybridRec 125

Table 5.10 Catalog coverage.

N D1 D2 D3
1 0.013 0.202 0.006
2 0.022 0.321 0.017
3 0.030 0.411 0.026
4 0.038 0.483 0.033
5 0.045 0.551 0.041
6 0.053 0.604 0.049
7 0.060 0.647 0.056
8 0.068 0.694 0.063
9 0.076 0.732 0.070
10 0.084 0.765 0.077

impact of the preprocessing step on the coverage results. The catalog values range from
0.013 (obtained for D1 with N = 1) to 0.765 (obtained for D2 with N = 20). It is important
to recall that D2 and D3 are very different with respect to the number of topics, i.e., 455
compared to 6,442. At the same time, the sets of considered repositories are very similar
(only 239 projects are discarded in D2) (see Section 5.2.1). Altogether, we see that using
a denser dataset for training, i.e., projects with more topics is beneficial to success rate,
accuracy but not to catalog coverage.

Answer to RQ3. The preprocessing steps are beneficial to the recommendation process as
they allow HybridRec to retrieve more relevant topics, thus improving the recommendation
performance.

RQ4: What are the key differences between GitHub and MVN Repository, and how do they
impact on the whole HybridRec recommendation process? To investigate HybridRec’s
performance in a different type of repositories, we run it on a different dataset, namely DM

collected from MVN Repository (see Section 5.2.2). The artifacts available in MVN Reposi-
tory are labeled with tags, which express similar concepts to GitHub topics, i.e., summarizing
their key functionalities. Moreover, each artifact comes with a textual description that can be
used as a README file.

There are differences in the nature of topics in GitHub with respect to tags in MVN
Repository. In particular, topics for a GitHub repositories are manually assigned by the
owner(s). Thus, the resulting set of the given topics might include issues, e.g., duplicate drop,
and word spelling, which necessarily require some pre-processing steps. In our proposed
approach, we refined the mined GitHub topics by means of the rewriting rules defined in
Section 5.2.1. In contrast, MVN Repository tags are well-maintained as they are not freely
assigned by developers but presumably audited by a watchdog. This implies that MVN

126 Categorizing GitHub projects

repositories are more curated than those hosted in GitHub, thus limiting errors that might
happen due to the manual activities performed by developers. Altogether, this helps enhance
the list of possible tags by automatically suggesting new tags, thus improving the reachability
of the artifacts.

We conduct experiments for the DM dataset using the same settings applied on the GitHub
datasets and compute the quality metrics accordingly. Figure 5.16 represents the success
rate scores obtained by running HybridRec on the Maven dataset, using different values of k,
the number of neighbour projects (see Section 5.2.1). As we can see, the usage of a more
curated dataset to make predictions contributes to improving the overall performance, i.e.,
the maximum success rate obtained by HybridRec reaches almost 0.90 by most of the cut-off
values, and eventually, it goes beyond the 0.90 threshold with N = 10.

2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of recommended topics

S
u
cc
es
s
R
at
e

k=5 k=10 k=15 k=20

Fig. 5.16 Success rate on MVN Repository dataset.

Concerning the neighborhood parameter, the results show that the best success rate is
achieved with k = 15. This means that starting from k = 15, adding more neighbour projects
to compute recommendations does not bring any matched tags. Overall, running HybridRec
on DM yields a better prediction performance than the results obtained with the D1 dataset. It
is worth noting that no preprocessing has been applied on Maven tags since the hand-written
rules are tailored for GitHub topics that need some cleaning due to duplicates or incorrect
terms. In contrast, DM does not require such a process since tags are already fine-tuned, and
their constituent terms are concretely defined. For instance, there is no need to predict the
language programming tag since all projects are written in Java.

We compute precision and recall scores and show them in Fig. 5.17. Similar to the
previous results, running HybridRec on DM contributes to a better performance since the
precision and recall are higher, compared to those obtained with the D1 dataset in Table 5.8.
The precision scores increase by 10% on average with the best configuration, i.e., k = 5.

5.2 HybridRec 127

Fig. 5.17 Precision recall curve on the MVN Repository dataset.

Similarly, the recall scores improve from 0.191 to 0.70 when more recommended items are
considered in the ranked list.

2 4 6 8 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of recommended topics

C
at
al
og

C
ov
er
ag
e

k=5 k=10 k=15 k=20

Fig. 5.18 Catalog coverage on the MVN Repository dataset.

The gain in performance is further confirmed with the catalog coverage scores in Fig. 5.18.
HybridRec achieves a maximum catalog coverage of 0.47 with N = 10. This means that
the probability that HybridRec recommends correct items is higher if DM is considered.
Referring to Table 5.6, we see that the number of topics in DM is much smaller than that of

128 Categorizing GitHub projects

D1, i.e., 489 compared to 19,337. Similarly, DM contains less projects than D1, i.e., 2,932
compared to 11,694. Altogether, this demonstrates that even on a small Maven dataset,
HybridRec can still obtain a good performance.

Answer to RQ4. Compared to topics in GitHub, tags in MVN Repository are more well-defined
as they are audited by a central authority. Due to this reason, running HybridRec on input data
curated from Maven repositories brings in a better prediction performance.

5.2.4.2 Discussion

HybridRec has been developed by combining a complement naïve bayesian network with
a collaborative-filtering technique. Moreover, we employed a tailored preprocessing phase
on the considered topics to clean and refine the input data before feeding it to the recom-
mendation engine. Altogether, the boosting mechanisms help HybridRec retrieve more
relevant topics. The empirical evaluation has shown that HybridRec is able to improve the
recommendation results compared to the baselines.

In this section, by relying on the previously performed experiments, we analyze the five
challenges highlighted in Section 5.1.1.

Concerning Challenge C1 (data redundancy), we have the following investigations.
Topics for a GitHub project are manually assigned by the owner(s). Thus, the resulting set of
given topics might include issues (e.g., duplicate drop, and word spelling) that necessarily
require some pre-processing steps. In the proposed approaches, we refined the mined GitHub
topics by means of NLP techniques and word embeddings, e.g., GloVe [200], word2vec [162],
and FastText [98]. Furthermore, we adopt a well-structured set of rules to consider frequent
patterns as well as to refine them. We have proven that such pre-processing steps improve
the overall HybridRec’s prediction capabilities.

Another aspect that may impact the outcomes is the topic’s distribution. To analyze to
what extent this can affect the recommendation items, we make use of a GitHub dataset
employed in our previous work [66]. Fig. 5.19 gives an overview on the distribution of topics
among repositories for the raw D1 dataset. From this picture, we can observe that many
topics are infrequent, i.e., 14,175 among 15,743 topics are used in less than 11 projects, and
just a few topics are widely adopted by more than 200 projects. In other words, the long tail
effect has a profound impact on the GitHub datasets.

Challenge C2 involves the structure of available metadata that an OSS ecosystem can
provide to perform the recommendation activities. A GitHub repository offers a lot of
metadata about the activities of developers as well as their interactions. For instance, the
platform keeps track of any user who makes a pull request or modifies the project by adding

5.2 HybridRec 129

Fig. 5.19 The distribution of topics in the D1 dataset.

files through commits.21 Furthermore, each repository is characterized by textual information,
e.g., README files, or Wiki content. In other words, OSS mining tasks can be characterized
by two dimensions: the employed recommendation technique and the proper metadata that
can be extracted from the input data.

Table 5.11 Metadata used by the ST and CF components.

GitHub
Component Topics Featured Topics README files

ST ✓ ✓ ✓

CF ✓ ✗ ✗

Table 5.11 describes these two dimensions in terms of the techniques and datasets
presented in this work. As shown in the table, the collaborative-filtering component relies
solely on the list of initial terms to perform the recommendations considering GitHub
platform since all needed relations concerning projects are encoded in the matrix used to
fed the recommendation engine. Furthermore, it employs the initial list of terms to enable
the recommendation engine. As stated in Section 5.2.2, using a larger number of inputs
definitively improves the tool’s performance. In contrast, the ST component needs textual
files to predict GitHub topics, namely README files.

In the context of collaborative development, the availability of popularity mechanisms
play an important role to foster the project’s visibility. As we mentioned in the description
of C3, GitHub is reliant on a well-defined popularity mechanism that considers stars, forks,
and featured topics. Both the ST and CF components benefit from using popular projects as
the initial dataset, i.e., we observed the best results with respect to various quality metrics.

21https://docs.github.com/en/free-pro-team@latest/github/collaborating-with-issues-and-pull-requests/
about-pull-requests

https://docs.github.com/en/free-pro-team@latest/github/collaborating-with-issues-and-pull-requests/about-pull-requests
https://docs.github.com/en/free-pro-team@latest/github/collaborating-with-issues-and-pull-requests/about-pull-requests

130 Categorizing GitHub projects

Another important factor to consider is the fact the GitHub exposes the selected featured
topics in a dedicated repository22 and web pages.23 Despite this, the crawling phase requires
a well-structured process to extract the needed information properly.

Concerning C4 (Crawling and Data Dump), we see that even when the required data
is available, the gathering process could be a daunting task. Data dumps can simplify this
activity by offering all the information in a structured way, for instance with a database.
As we mentioned before, data dumps for GitHub have been provided by an external tool,
i.e., GHTorrent [97]. Nevertheless, data contained in these collections is not suitable for
supporting automatic tagging activities. Therefore, we made use of a crawler that can
download the data belonging to the repositories. In our previous studies, we exploited the
PyGitHub library since GitHub offers all the required APIs.

Table 5.12 Configuration parameters of the ST and CF components.

Parameters ST CF
Number of considered labels 134 6,422
Number of projects 6,700 5,859
TF-IDF vectorizer ✓ -
Topic preprocessing ✓ ✓

GuessLang module ✓ -
Cutoff - 20
Neighborhood - 25

With respect to Challenge C5 (Configurations of the underpinning recommendation sys-
tems), besides the chosen OSS platform, the capabilities of the underpinning recommendation
system are affected by the internal parameter configurations. The possible tuning parameters
depend on the algorithm employed to perform the recommendation as well as the metadata
offered by the platform. Table 5.12 describes the parameters employed by the two considered
components, i.e., ST and CF, to bring the best prediction performance.

As described in Section 5.2.4.1, we have these values to reach a balanced dataset which
is crucial to earn a better performance. This process has been conducted manually for
the GitHub datasets as they exhibit heterogeneous support for each featured topic in terms
of projects. Concerning the collaborative-filtering component, this consideration mainly
impacts the selection of the cut-off values t. In particular, to cope with different impacts of
the long-tail effect, we varied t, for example, to evaluate the CF component with the GitHub
dataset we changed t from 5 to 20 with 5 as the step, while t has been shifted from 1 to 5 with
1 as the step. Moreover, because of the different levels of similarities between the projects

22https://github.com/github/explore
23https://github.com/topics

https://github.com/github/explore
https://github.com/topics

5.3 Conclusion 131

of GitHub we used a different number of neighbors k when TopFilter recommends suitable
labels.

5.2.5 Threats to validity

In this section, we highlight possible threats that may have an impact on the outcomes of the
conducted experiments. We also list the countermeasures adopted to mitigate these issues.

Internal validity The overall recommendation capabilities of the presented approaches
could be compromised by the dataset features, i.e., the number of unique tags, lack of
support for each category. To cope with these risks, we analyzed several configurations
obtained by means of a well-defined data preprocessing phase. These settings allow
for a more comprehensive evaluation of the two approaches.

External validity As specified in Section 5.2.2, the data extraction phase has been conducted
by relying on the GitHub API. This could compromise the quality of the obtained
information as we cannot access the entire knowledge due to the rate limits. Such a
threat has been mitigated by considering popular repositories. In this way, we chose
the most representative projects that help minimize any potential bias.

Construction validity The comparison of TopFilter+ with HybridRec might be susceptible
to bias. We carefully examined existing work in the domain, but no comparable tool
is available with an available sound replication package. Thus, we used the same
evaluation conducted to evaluate MNBN in the original work, bringing the best results.
We adapted the structure of the two techniques to mitigate any possible pitfalls in the
overall evaluation process.

5.3 Conclusion

OSS platforms play an important role in aggregating and handling projects developed by a
prolific community. Automatic tagging is one of the most valuable techniques to improve
their discoverability, even though it requires a lot of effort to produce useful outcomes.

In this chapter, we have presented first an approach to recommend a set of featured topics
given a software project endowed with a corresponding README file. The tool is based
on a probabilistic machine learning network, the Naïve Bayesian classifier. We encode the
relevant information about repositories using the TF-IDF weight scheme. After the training
phase, the approach provides the user with a list of featured topics related to its project. We
evaluated the approach using cross-fold validation.

132 Categorizing GitHub projects

To address the MNBN limitations, we conceived HybridRec, a hybrid recommender
system working on top of an enhanced version of the stochastic network and a collaborative-
filtering technique to recommend topics. We performed an empirical evaluation on real-world
datasets to study HybridRec by comparing it with state-of-the-art toots. The results showed
that the newly conceived approach improves our former recommender systems substantially.
More importantly, we demonstrated that HybridRec can increase its prediction performance
on well-curated data sources.

Chapter 6

Assisting modelers in specifying models
and metamodels

The deployment of model-driven engineering (MDE) techniques necessitates advanced tools
to facilitate various modeling activities [176, 185]. Among others, there is the need to specify
metamodels, models and the development of model analysis and management operations.
Nevertheless, existing tools such as those that are based on Eclipse EMF1 normally offer
only canonical functionalities, i.e., drag-and-drop, specification of graphical components,
auto-completion, and they do not support context-related recommendations, which may come
in handy for modelers to complete their tasks.

In this respect, intelligent modeling assistants (IMAs) [171] have been recently proposed
to support modelers during their daily activities. Most of the existing tools employ technolo-
gies such as neural networks and NLP techniques to automatize the whole design process
[42, 284]. Altogether, this aims to facilitate the completion of metamodels by providing
modelers with insightful artifacts, such as attributes or relationships. Nonetheless, there are
still open challenges to be tackled, e.g., offering a convenient way to specify metamodels
and models, covering different application domains.

This chapter presents two different approaches conceived to support model and meta-
model specification that relies on two completely different techniques. First, we present
MemoRec [69], a recommender system that exploits a context-aware collaborative filtering
technique [49] to recommend relevant artifacts related to the modeling domain. MemoRec
exploits four different encoding techniques (i.e., different selections of what information
has to be kept from a metamodel) to preprocess the input data. More importantly, we tailor
the internal design to compute similarity among metamodels in an efficient way. Given a

1https://www.eclipse.org/modeling/emf/

https://www.eclipse.org/modeling/emf/

134 Assisting modelers in specifying models and metamodels

metamodel partially specified by the modeler, MemoRec is able to suggest two types of
artifacts, namely (i) metaclasses at the level of package; and (ii) structural features for a given
metaclass. This work has been published in the Software and System journal [69] and the
candidate contributes mostly in conceiving the encoding schemes.

Afterward, we present MORGAN, a MOdeling Recommender system based on GrAph
Kernels to support the completion of both models and metamodels. As for MemoRec,
this work has been published in the Software and Systems Modeling journal [76]. The
candidate curates the design, implementation, and evaluation of MORGAN. As the first step,
MORGAN produces a textual representation of the considered (meta)model by employing
tailored model parsers. Then, relevant features are encoded in a graph-based representation
that preserves the internal structure of the represented model, i.e., relationships among defined
entities. Such an encoding process is model-agnostic since we produce textual files from
different formats commonly used to represent (meta)models, i.e., ecore, xmi. Afterward, the
underpinning GNN model computes a graph kernel function used to assess the similarity
among nodes by relying on the extracted graphs.

Furthermore, MORGAN supports the completion of models expressed in Javascript
Object Notation2 (JSON). Such a format is used to represent data in a structured way,
fostering the interchangeability of valuable information. Even with the introduction of JSON
schema meta-language [5], it is still essential to assist developers during their specification. In
this respect, a recent work presents a bridge between the JSON schema and MDE metamodels,
suggesting that MDE techniques can come in handy in designing such models [53]. Thus,
we introduce the support for JSON schema completion by relying on a tailored parser
to encode these specifications in a graph-based structure. Furthermore, we overhaul the
underlying recommendation engine by introducing (i) a lemmatization preprocessing step to
improve MORGAN’s encoding; and (ii) an enhanced graph kernel function by relying on a
modified version of the Vertex Histogram technique [251] that exploits a frequency matrix.
To enable the recommendation on the new dataset, we mined JSON schema from GitHub
repositories by using a well-defined crawler. Afterward, the relevant features are represented
in a graph-based structure to encode information represented by the model, e.g., relationships
among defined entities, the name of the attributes, to list a few. Such an encoding process
is model-agnostic since we produce textual files from different formats commonly used to
represent. MORGAN eventually suggests relevant artifacts including the JSON schema
elements, demonstrating the generalizability of the system.

2https://www.w3.org/TR/json-ld11/

https://www.w3.org/TR/json-ld11/

6.1 MemoRec 135

Outline of the chapter: The first part of the chapter introduce the problem of model
assistance by describing three different motivating examples in Section 6.1.1. Section 6.1.2
overviews the MemoRec architecture and the tool is evaluated in Section 6.1.3. We report the
obtained results in Section 6.1.4 while possible threats to validity are discussed in Section
6.1.5. The second part of the chapter is dedicated to MORGAN. Section 6.2.1 discusses
the underpinning techniques employed by MORGAN, i.e., the graph kernel similarity. The
approach is presented in Section 6.2.2. Section 6.2.3 and Section 6.2.4 report the evaluation
settings and the obtained results respectively. We eventually highlight the limitations of
the tool and possible mitigation actions in Section 6.2.5. The conclusion of the chapter are
presented in Section 6.3.

6.1 MemoRec

6.1.1 Motivation and background

We simulate a modeler who is specifying a metamodel/model, and at certain point in time,
due to either the complexity of the required task or the lack of experience, he/she does not
know how to proceed. In this respect, a model assistant is expected to help enhance the
specification of a partial model by recommending new elements as illustrated below.
▷ Metamodeling assistant. Figure 6.1 represents the explanatory UMLDSL metamodel.
At the time of consideration, the modeler has defined only basic attributes and one relation
between the Step and Flow entities. In particular, the initial metamodel specified in Fig. 6.1a
defines the key concepts to represent a UML UseCase, i.e., Actor, Step, and Flow. Figure 6.1b
represents the final version of the corresponding metamodel, where the PackageDeclaration
entity is completed with use cases and actors references, and each use case can have several
flows composed of a sequence of steps. By comparing the two sub-figures, we see that some
assistances are needed to enrich the partial metamodel shown in Fig.6.1a, e.g., by adding
new classes, attributes or relations. Moreover, it is also necessary to suggest new metaclasses
including structural features, i.e., attributes and references. For instance, as seen in Fig. 6.1b,
the final LocalAlternative metaclass includes the description and includedUseCase structural
features, and this makes the original metaclass more informative/complete. In this way, the
assistant should be able to provide the modeler with useful recommendations to help in
finalizing the metamodeling activities.

In fact, metamodels are used to represent concepts at a high level of abstraction. To
design real systems, MDE makes use of models that usually conform to a corresponding

136 Assisting modelers in specifying models and metamodels

(a) Partial metamodel (b) Complete metamodel

Fig. 6.1 The illustrative UMLDSL metamodel.

(a) Partial Java model (b) The complete Media JSON schema

Fig. 6.2 The explanatory SPRINGBOOT model.

metamodel. As a result, recommending additional elements to be incorporated in modeling
activities is also meaningful.

▷ Modeling assistant. We make use of the MoDisco framework3 to extract models from
compilable Eclipse projects. As an example, we show in Fig. 6.2a an excerpt of the Java
model of the Spring bootproject4 parsed by MoDisco. The model conforms to the MoDisco
Java metamodel, covering the full Java language and constructs, i.e., packages, classes,
methods, and fields. In this way, existing Java programs can be represented as MoDisco Java
models. In particular, Fig. 6.2a depicts a partial Java model with the following five classes:

1. LateBinding;

2. FunctionalBindingRegistrar;

3. StreamListenerHandlerMethodMapping;

3https://www.eclipse.org/MoDisco/
4https://spring.io/projects/spring-boot

https://www.eclipse.org/MoDisco/
https://spring.io/projects/spring-boot

6.1 MemoRec 137

(a) The initial Media JSON schema (b) The complete Media JSON schema

Fig. 6.3 The explanatory APACHE STREEMS PROVIDER JSON Schema.

4. PolledComsumerResources; and

5. ConditionalStramListenerMessageHandlerWrapper.

All these classes are incomplete at the time of consideration, and the modeler is supposed
to add the missing items. For the sake of presentation, we show the general structure of
the Spring boot Java model in terms of classes, methods, and fields. As it can be seen,
similar to the above mentioned UMLDSL metamodel, an incomplete Java model can be
enriched with new classes, methods, and fields. In Fig. 6.2b, we represent a set of possible
model elements to complete the partial model. In particular, the model elements tagged by
suggested are the ones that should be recommended for completing the model. For instance,
two classes including their methods and fields are recommended, i.e., ConditionAndOutcomes
and DefaultAsyncResult. Moreover, the model assistant is expected to recommend missing
class elements, e.g., the error field and the getError method for the LateBinding class.
▷ JSON schema assistant. Similarly, modeling assistants can be employed to complete a
partial JSON schema with relevant properties. Although they are artifacts of different nature,
Colantoni et al. [53] investigate the potential benefits of mapping JSONware technical space
to Modelware one, with the aim of making use of languages and documents exchangeable.

138 Assisting modelers in specifying models and metamodels

Their approach supports language engineers, domain experts, and tool providers in editing,
validating, and generating tool support with enhanced capabilities for JSON schemas and
their documents. The results show that it is possible to derive editing and validation support
based on model-driven technologies for JSON Schema-based languages. Therefore, modeling
assistants could be employed to support the completion of such kinds of artifacts. Fig. 6.3
shows an explanatory example with the Apache stream provider5 JSON schema to describe a
Media entity. Given the partial schema depicted in Fig. 6.3a, we mimic the situation where
the modeler has specified a set of initial 11 properties, e.g., tags, copyright, url, author to
name a few. At this point, an automated system might be used to fill the partial JSON
schema with additional items, such as new properties at schema level or nested ones. In
Fig. 6.3b, we devise a possible set of recommendations that includes additional properties,
e.g., dataFormat, language, adultLanguage. Furthermore, the locations structural property
can be enriched with concepts that can increase the expressiveness of the whole schema, i.e.,
country, region, subregion, and state.

The presented use cases raise the need for a model assistant to support the completion
of partially defined metamodels, models, and JSON schema. Since modeling activities are
strongly bounded by the domain, a modeler who has limited knowledge of it may encounter
some difficulties.

In particular, MemoRec has been specifically conceived to support the completion of
metamodels while MORGAN is capable of covering the specification of all types of cosidered
modeling artifacts, including models and JSON schema.

6.1.2 MemoRec architecture

6.1.2.1 Context-aware collaborative filtering technique

A context-aware collaborative filtering recommender system provides recommendations to
users items that have been bought by similar users in similar contexts [231, 235]. Based on
this premise, we successfully developed a recommender system named FOCUS to provide
developers with API function calls and usage patterns [181]. We modeled the mutual
relationships among projects using a tensor and mined API usage from the most similar
projects.

The successful deployment of different variants of collaborative filtering techniques
allows us to transfer the acquired knowledge into the MDE domain. We build MemoRec by
redesigning and customizing FOCUS to support the completion of metamodels. Mining from
similar objects is a building block of collaborative filtering techniques, and we exploit this to

5https://streams.apache.org/

https://streams.apache.org/

6.1 MemoRec 139

17

Fig. 6.4 Overview of MemoRec’s architecture.

provide recommendations for metamodels under development. In particular, our approach
works based on the assumption that: “if metamodels share some common artifacts, then they
should probably have other common artifacts.” In this respect, MemoRec mines meta-classes
and structural features from similar metamodels, given an input metamodel. The following
section presents our conceived approach to recommend useful elements for a metamodel
being under development.

MemoRec provides modelers with recommendations, can be helpful while defining a
metamodel, by considering the existing portion of the metamodel as active context. The
system makes use of a graph representation to encode the relationships among various meta-
models artifacts, and generates recommendations employing a context-aware collaborative
filtering technique [235]. In addition, we exploit a tailored textual representation of meta-
models, which are encoded to enable the extraction of the containing knowledge to feed as
input for the recommendation engine.

The architecture of MemoRec is depicted in Fig. 6.4. To provide recommendations,
MemoRec accepts as input a set of Metamodel Repositories 1 . Afterwards, the Metamodel
Encoder component 2 extracts packages and classes pairs as well as class and structural
feature pairs from the metamodel being developed. Metamodel Comparator, a subcomponent
of Similarity Calculator 3 , measures the similarity between the metamodels stored in the
repositories and the metamodel under specification. Using the set of metamodels and the
information extracted by Metamodel Encoder, the Data Encoder component 4 computes
rating matrices. Given an active context of a metamodel, i.e., package or class, Item Com-
parator computes the similarities between packages and classes. From the similarity scores,
Recommendation Engine 5 generates recommendations, either as a ranked list of classes if
the active context is a packages, or a ranked list of structural features if the active context is a
class. In the remainder of this section, we present in greater details each of these components.

140 Assisting modelers in specifying models and metamodels

6.1.2.2 Metamodel Encoder

A metamodel defines the abstract concepts of a domain where concepts, as well as the
relationships among them, are expressed by the used modeling infrastructure. In particular,
a metamodel consists of Packages that aggregate similar concepts expressed by Classes.
Classes consist of structural features, i.e., attributes and references. Moreover, Classes can
inherit structural features from other classes.

Being inspired by our recent work [176], we employ four encoding schemes to represent
different views concerning the terms extracted from packages, classes, and structural features
named instance. Each scheme has been used to elicit relevant information from the input
metamodels according to different granularity levels. In particular, we make use of two
standard encoding (SE) scheme for recommending structural features within a context class
and two other improved encoding (IE) scheme for supporting classes within a package
context. In particular, we consider the following definitions:

• SEs: it includes pairs in the form of <class_name>#<structural_feature_name> for
each structural feature contained within a class. This encoding scheme is used to
suggest additional structural features within a given class context;

• IEs: it consists of pairs <class_name>#<structural_feature_name> for each struc-
tural feature contained within a class. Moreover, it includes structural features inherited
from the super classes. In our previous work [65], we studied how structural features
are used with hierarchies. On one hand, we found out that increasing the number
of metaclasses with super-types decreases the average number of structural features
directly specified in a metaclass, since structural features are spread through the class
hierarchies. On the other hand, the average number of structural features including the
inherited ones is uncorrelated with the number of metaclasses with super-types. We
anticipate that, by including the inherited structural features in IEs, we will be able to
increase the informative part of the encoding. We use this scheme to suggest additional
structural features within a given class context;

• SEc: it includes pairs <package_name>#<class_name> for each class contained
within a package. This encoding scheme is utilized in providing additional classes
within a given package context;

• IEc: it flattens packages and classes and encodes classes within a default artificial
package. We use this encoding scheme to suggest additional classes within a given
package context. Since metamodels consist of few ePackages [65], we envision that a
flatten representation of classes, i.e., by bypassing the Package/Class containment can

6.1 MemoRec 141

help MemoRec to consider more metamodels and to extract classes from different top
similar metamodels.

An encoding scheme depends on two main factors:

– the purpose of the recommendation; depending on the type of the recommended
items (e.g., structural features, classes, specialization/generalization of a metaclass,
ifnextchar.etcetc.) the encoding scheme should be tailored to support the identified
recommendation goal;

– the prediction performance; the encoding scheme strongly impacts on the prediction
performance. For this reason, the identification of suitable encoding scheme is an
iterative process where the encodings are incrementally improved to maximize the
prediction performance for a specific purpose.

As future work, further encoding schemes could be provided to target different kinds of
recommendations. For instance, an encoding scheme representing the inheritance relations
between classes could suggest a possible set of generalizations or specializations for a given
metaclass in the active context. In addition, a different encoding scheme could be used to
include types for the recommended structural features.

(a) SEs encoding (b) IEs encoding

(c) SEc encoding (d) IEc encoding

Fig. 6.5 The Web metamodel data extraction.

Fig. 6.5 depicts an extract of the four encoding schemes. In the following subsection, we
show how the pairs package/class and class/structural feature relationships are encoded. In
Section 6.1.3, we evaluated MemoRec by considering the four encoding schemes described
in this section, i.e., SEs, IEs, SEc, and IEs.

142 Assisting modelers in specifying models and metamodels

Table 6.1 Package-class feature rating matrix combined with SEc for the Web metamodel.

Page Static Dynamic Entity Field
Web 1 1 1 0 0
Data 0 0 0 1 1

Table 6.2 Class-structural feature rating matrix combined with IEs for the Web metamodel.

tit
le

m
et

a

co
nt

en
t

pi
ct

ur
e

lis
t

en
tit

y

na
m

e

fie
ld

s

is
PK

Page 1 1 0 0 0 0 0 0 0
Static 1 1 1 1 0 0 0 0 0
Dynamic 1 1 0 0 1 1 0 0 0
Entity 0 0 0 0 0 0 1 1 0
Field 0 0 0 0 0 0 1 0 1

6.1.2.3 Data Encoder

Once package and class pairs as well as class and structural features have been extracted,
MemoRec represents the relationships among them using two rating matrices to support
class and structural feature recommendations. Given a metamodel, each row in the matrix
corresponds to a package (class), and each column represents a class (structural feature). A
cell is set to 1 if the package (class) in the corresponding row contains the class (structural
feature) in the column, otherwise it is set to 0.

Table 6.1 and Table 6.2 illustrate how metamodel features are encoded into corresponding
rating matrices. In particular, Table 6.1 shows the rating matrix combined with SEc, whereas
Table 6.2 reports the rating matrix combined with IEs.

A 3D context-based ratings matrix is introduced to model the intrinsic relationships
among various metamodels, package (classes) and class (structural feature). The third
dimension of this matrix represents a metamodel, which is analogous to the so-called
context in context-aware collaborative filtering systems. For example, Fig. 6.6 depicts three
metamodels M = (ma,m1,m2) represented by three slices with four classes and five structural
features: ma is the active metamodel and it has an active context highlighted in dark gray.
Both m1 and m2 are complete metamodels similar to ma, and they are called background data,
as they serve as a base for the recommendation process. On one hand, the more background
metamodel we have, the better is the chance that we recommend relevant structural features.
On the other hand, increasing the number of top similar metamodels will enlarge the ratings
matrix, and thus will add more computational complexity.

6.1 MemoRec 143

Fig. 6.6 Matrix representation of metamodels w.r.t. structural features and classes.

6.1.2.4 Similarity Calculator

The recommendation of suitable metamodel items, i.e., classes or structural features, is
derived from similar metamodels and the active context, i.e., packages or classes. Similarity
Calculator is a generic component, it can be used to compute similarity for both classes and
structural features. Given an active context of a metamodel under development, it is essential
to find the subset of the most similar ones, and then the most similar contexts in that set
of metamodels. Based on the active context type, we create a weighted directed graph that
models the relationships among metamodels and structural features to compute similarities.
Moreover, we implemented a graph-based similarity function [66, 181] to calculate the
similarities among metamodels.

In particular, we used two graph representations to support both class and structural
feature recommendations. Each node in the graph represents either a metamodel or a
structural feature. If metamodel m contains structural feature f , then there is a directed edge
from m to f . The weight of the edge m → f corresponds to the number of times m includes f .
Figure 6.7 depicts the graph for the set of projects in Fig. 6.6: white nodes represent structural
features, blue nodes represent most similar metamodels to the input ones depicted in green.
For instance, the Web metamodel has five classes and two of them define the attribute name.
As a result, the edge Web → name contains a weight of 2. In the graph, a question mark

144 Assisting modelers in specifying models and metamodels

Fig. 6.7 Graph representation of metamodels and structural features.

represents missing information, i.e., for the active declaration in Web, we need to find out if
invocations links and css shall be included or not.

Given the node representing a metamodel m, there are nodes connected to m via different
edges, and they are called neighbor nodes. Considering (n1,n2, ..,nl) as a set of neighbor
nodes of m, the feature set of m is the vector φ = (φ1,φ2, ..,φl), where φk is the weight
of node nk, and computed using the term-frequency inverse document frequency function
computed by the following formula:

φk = fnk ∗ log(
|M|
ank

) (6.1)

where fnk is the weight of the edge m → nk; |M| is the number of all considered metamodels;
and ank is the number of metamodels connected to nk.

The similarity between two metamodels m and n is comprehended as the cosine between
their feature vectors φ = {φk}k=1,..,l and ω = {ω j} j=1,..,z, computed below:

sim1(m,n) =
∑

π
t=1 φt ×ωt√

∑
π
t=1(φt)2 ×

√
∑

π
t=1(ωt)2

(6.2)

where π is the cardinality of the union of the sets of nodes by m and n.

6.1 MemoRec 145

Table 6.3 φ vectors for the metamodels depicted in Fig. 6.7.

links css media title content picture name fields entities list index type
Web 0 0 0.528 0.528 0 0 0 -0.301 -0.301 -0.301 0 0
M1 0 0 0 0.528 0.528 0 0 0 0 0 0 0
M2 0 0 0 0 0 0 1.204 0.528 0 0.528 0.602 0.602

Table 6.4 sim1 matrix for the metamodels depicted in Fig. 6.7.

Web M1 M2
Web 1 0.41 -0.21
M1 0.41 1 0
M2 -0.21 0 1

Finally, the similarity between classes c and d is calculated with the Jaccard index given
below:

sim2(c,d) =
|F(c)⋂F(d)|
|F(c)⋃F(d)| (6.3)

where F(c) and F(d) are the sets of structural features for c and d, respectively.
By referring to the motivation example proposed in Section 6.1.1 and depicted in Fig. 6.7,

we present a concrete application of the proposed formalisms. Table 6.3 reports the φ

vectors for the Web, M1, and M2 metamodels. Then, Table 6.4 lists the cosine similarity
among vectors. Each cell reports the sim1 score between the metamodels represented in
the corresponding column and row. According to the results reported in Table 6.4, the Web
metamodel is more similar to M1 than to M2.

6.1.2.5 Recommendation Engine

This component is used to generate a ranked list of relevant items, i.e., classes and structural
features that depend on the metamodel context, i.e., package and class. In the rest of
this section, we present structural feature recommendations based on the class context.
Analogously, we apply the same approach for recommending classes within packages.

Figure 6.6 depicts an instance of structural features rating matrices. In particular, the
active metamodel ma already includes three classes, and the modeler is working on the fourth
class, corresponding to the last row of the matrix. The active class ca contains two structural
features, represented in the last two columns of the matrix, i.e., cells marked with 1. The first
two cells are filled with a question mark (?), implying that at the time of consideration, it is
not clear whether these two structural features should also be added into ca. Recommendation
Engine computes the missing ratings to predict additional structural features for the active
class by exploiting the following collaborative filtering formula [49, 181]:

146 Assisting modelers in specifying models and metamodels

rc, f ,m = rc +
∑d∈topsim(c)(Rd, f ,m − rd) · sim2(c,d)

∑d∈topsim(c) sim2(c,d)
(6.4)

Equation 6.4 is used to compute a score for the cell representing structural feature f , class
c of metamodel m, where topsim(c) is the set of top-N similar classes of c, sim2(c,d) is the
similarity between two classes c and d, computed by Equation 6.3; rc and rd are calculated
by averaging out all the ratings of c and d, respectively; Rd, f ,m is the combined rating of d
for f in all the similar metamodels, computed in Equation 6.5 [49].

Rd, f ,m =
∑n∈topsim(m) rd, f ,n · sim1(m,n)

∑n∈topsim(m) sim1(m,n)
(6.5)

where topsim(m) is the set of top similar metamodels of m; and sim1(m,n) is the similarity
between metamodels m and n, calculated by means of Equation 6.2. Equation 6.5 suggests
that given the active metamodel, a more similar metamodel is assigned a higher weight. This
makes sense in practice, since similar metamodels contain more relevant structural features
than less similar metamodels. Using Equation 6.4 we compute all the missing ratings in the
active class and get a ranked list of structural features with real scores in descending order.
The list is then provided to modelers as recommendations.

6.1.3 Evaluation

This section describes the datasets and the process we conceived to evaluate the prediction
performance of MemoRec. In particular, Section 6.1.3.1 presents the research questions
to study the performance of our proposed approach. Section 6.1.3.2 gives an overview of
the datasets used in the evaluation. Finally, the evaluation methodology is described in
Section 6.1.3.3.

6.1.3.1 Research Questions

The following research questions are considered to investigate MemoRec’s recommendation
performance:

• RQ1: How well can MemoRec provide recommendations with different configura-
tions? We examine different configurations of MemoRec, i.e., the number of recom-
mended items as well as the number of neighbor metamodels, to find the settings that
bring the best performance.

6.1 MemoRec 147

• RQ2: How does the training data affect the performance of MemoRec? We study the
outputs of MemoRec by considering two different datasets to assess to what extent
their quality can have ripple effects on the prediction accuracy of MemoRec;

• RQ3: How do the encoding schemes affect the performance of MemoRec? Since the
definition of a suitable encoding scheme is an iterative process, we compared refined
versions of the encodings, i.e., IEc and IEs, with the initial ones, i.e., SEc and SEs to
pin down which of them facilitates the best recommendation outcome for MemoRec.

6.1.3.2 Data Extraction

To evaluate the proposed approach, we exploited two independent datasets namely D1 and
D2 as shown in Table 6.5, and they are described below.

• D1 is a curated dataset [300], which consists of 555 metamodels mined from GitHub
and already labeled by humans. In particular, its metamodels have been already
classified into nine categories, i.e., Bibliography, Issue tracker, Project build, Review
system, Database, Office tools, Petrinet, State machine, and Requirements specification.
Though MemoRec does not require the input data to be labeled, such predefined
categories are beneficial to the recommendation as there is a high similarity among
the metamodels within a category. This is important since MemoRec heavily relies
on similarity to function (see Section 6.1.2), i.e., given a metamodel, it searches for
relevant items from similar metamodels;

• D2 is a raw and randomly collected dataset using the GitHub API [4]. To aim for a
reliable evaluation of MemoRec, we identified and filtered out from the dataset all the
duplicated metamodels, resulting in a final set with 2,151 metamodels. By means of
the GitHub API [4] we searched for files with the .ecore extension, which corresponds
to Ecore metamodels. Due to the restrictions imposed by GitHub, e.g., it returns a
maximum of 1,000 elements per query, we had to perform the searches by iteratively
varying the query keywords. In particular, we used the extension qualifier as a base to
search for ecore files. Then, we refined the query by adding typical ecore keywords,
i.e., ePackage, xml, eClass, to name a few. Afterward, all the discovered metamodels
were downloaded and collected in a dedicated folder. We removed all the files that
we cannot directly parse with the EMF facilities [248] from the corpus of collected
artifacts. Finally, we removed the duplicated metamodels by the following process: (i)
a hash is computed for every collected ecore file based on its content; (ii) the obtained
hashes are used to build a hashmap where the key is the hash itself, and the value is

148 Assisting modelers in specifying models and metamodels

Table 6.5 Datasets.

Number of Artifacts D1 D2
Packages 669 3,140
Metaclasses 17,840 62,214
Structural features 31,688 159,323
Attributes 14,436 86,273
References 17,252 73,050

the corresponding file; (iii) if a duplicated key occurs in the map, we assume that the
corresponding ecore is a duplicate and it is discarded.

6.1.3.3 Methodology

As described in Section 6.1.2, MemoRec can recommend classes or structural features, i.e.,
attributes and references, depending on the recommendation context, i.e., packages or classes.
For this reason, we perform the experiments by exploiting both classes and structural feature
recommendations. In the rest of this section, we use classes within packages and structural
features within classes as the recommendation objective.

To study if MemoRec is applicable in real-world settings, we perform an offline evaluation
by simulating the behavior of a modeler who partially defines a metamodel and needs
pratical recommendations on how to do next. Figure 6.8 depicts the evaluation process with
three consecutive steps, i.e., Data Preparation, Recommendation Production, and Outcome
Evaluation explained as follows.

• Data Preparation. As seen in Fig. 6.8, starting from an input Dataset, we split it
into two independent parts, i.e., Training data and Testing data (Split ten-fold). The
former corresponds to the metamodels collected ex-ante, whereas the latter represents
the metamodel being modeled, or the active metamodel. The ten-fold cross validation
technique is used to conduct the evaluation as follows. The dataset is split into ten equal
parts, one part represents the testing set and the remaining nine parts are combined to
create a training set. We consider a modeler who is defining a metamodel m, so some
parts of m are removed to mimic an actual metamodeling task: some packages/classes
are already available in the active metamodel and the system should recommend
additional packages/classes to be incorporated. For each metamodel in the Testing
data, by the Split input data phase, a random package (class) that, together with the
remaining packages/classes, is selected to be used as Query data. In the considered
context, the first class/structural feature is kept as query data and all the others are

6.1 MemoRec 149

Dataset

Split
ten-fold Training

data

Testing
data

Split input
data

GT data

Query
data

MemoRec Recommendations

Data preparation Recommendation production Outcome evaluation

Comparison

Success
rate

Precision

Recall

F-measure

Fig. 6.8 Evaluation Process.

taken out to be used as ground-truth (GT) data. In other words, by the Split input
data phase, package (class) is selected as the active context c. For c, only the selected
classes are provided as query, while the rest is removed and saved as ground-truth data.

• Recommendation production. In this phase, the extracted Query data and Training
data are fed as input for MemoRec, which in turn computes the final Recommendations.
It is important to remark that the current version of MemoRec can recommend classes
and structural features. The types of the recommended attributes and relationships
are not supported yet. This represents our next step to further develop the proposed
approach.

• Outcome evaluation. The performance of MemoRec is measured by comparing the
recommendation outcomes with the ground-truth data (GT data), exploiting the quality
metrics, i.e., Success rate, Precision, and Recall. Furthermore, we measure the time
needed to perform a prediction, by using a laptop with 2,7 GHz Intel Core i7 quad-core
16GB RAM, and macOS Catalina 10.15.5.

6.1.4 Results

RQ1: How well can MemoRec provide recommendations with different configurations?
We conducted experiments on the curated dataset (i.e., D1) by varying the number of neigh-
bour nodes k of the input metamodel, i.e., k = {1,5,10,15,20}, and the value of N, i.e.,
N = {1,10,20}. The rationale behind the selection of those values is as follows. First, we
should not present a long list of recommended items since it may confuse the modeler, thus
we select N = 20 as the maximum value. Second, since the number of neighborhood items
impacts on the computational complexity (cf. Equation (6.5)), it is impractical to use a
large number of metamodels as neighbors. Therefore, we consider the following values
k = {1,5,10,15,20}. In the experiments, we use SEc and SEs as encoding schemes to

150 Assisting modelers in specifying models and metamodels

compute recommendations for classes and structural features, respectively (the results related
to the adoption of the other encoding schemes are presented in the discussion of RQ3).

Table 6.6 and Table 6.7 show the average success rates obtained by running the ten-fold
cross-validation technique to recommend structural features and classes, respectively by
using different cut-off values N. In particular, Table 6.6 depicts the success rate obtained for
recommending structural features classes. According to Table 6.6, we can observe that using
more neighbour metamodels to compute recommendations brings a better success rate when
the first recommendation item is considered. For instance, MemoRec gets a success rate@1
of 0.153 and 0.202 when k=1 and k=20, respectively. This is not confirmed when a longer
list of recommendation items is considered, i.e., N = {10,20}. Moreover, MemoRec yields
a better performance when we increase the cut-off value N. Take as an example, for k=20,
N=1, the obtained success rate is 0.202 which is less than a half of 0.479, the corresponding
value when N=20. A longer list of recommended items means an increase in the match rate,
however the modeler may tire of skimming through it. Thus, in practice, we should choose a
suitable cut-off value N.

Table 6.6 Success rate for structural feature recommendations, k = {1,5,10,15,20}, by
considering the D1 dataset.

k SR@1 SR@10 SR@20
1 0.152 0.394 0.501
5 0.181 0.406 0.488
10 0.202 0.419 0.502
15 0.200 0.392 0.494
20 0.202 0.362 0.479

Table 6.7 report the success rate obtained with class recommendations. Partly similar
to the results presented for recommending structural features classes in Table 6.6, we see
that incorporating more neighbors to compute recommendations is useful for a small k, i.e.,
k = {1,5,10}. However, starting from k=15, there is a decrease in success rate by all the
cut-off values N. We suppose that this happens due to the adoption of new neighbors that
introduces only noise.

Answer to RQ1. Considering a certain number of similar metamodels contributes to more relevant
recommendations. Using data encoded with the SEc and SEs encoding schemes allows MemoRec
to predict better classes within a package than structural features within a class. Moreover, by
considering a longer list of recommended items, MemoRec obtains an increase in success rate.

6.1 MemoRec 151

Table 6.7 Success rate for class recommendations, k = {1,5,10,15,20}, by considering the
D1 dataset.

k SR@1 SR@10 SR@20
1 0.285 0.468 0.487
5 0.204 0.617 0.690
10 0.191 0.613 0.702
15 0.215 0.583 0.694
20 0.187 0.539 0.661

RQ2: How does the training data affect the performance of MemoRec? We conducted
similar experiments previously presented by measuring also the performance induced by the
adoption of the dataset D2. As previously described in Section 6.1.3, D1 and D2 are different
in terms of size and quality. In particular, D1 contains different groups of similar metamodels.
Each group is labeled to refer the application domain that the metamodels in the considered
group are intended to describe. Thus, as done for answering RQ1, we performed experiments
by varying the number of neighbour nodes of the input metamodel and the value of N.

Table 6.8a and Table 6.8b show the average success rates obtained by running the ten-fold
cross-validation technique to recommend structural features and classes, respectively by
using different cut-off values N.

According to Table 6.8a, it is evident that using more neighbour metamodels to compute
recommendations brings a better success rate for both datasets when the first recommended
item is considered. An increasing number of neighbor k does not improve the success
rate values when a longer list of recommendations is considered, i.e., SR@10 and SR@20.
However, by using the randomly created dataset D2 success rate is lower than that of D1.
For instance, with D1, MemoRec gets a success rate@1 of 0.159 and 0.202 when k=1 and
k=20, respectively, whereas with D2 the corresponding values are 0.114 and 0.161. The same
trend can also be seen with other cut-off values. As in the case of D2, MemoRec yields a
better performance when we increase the cut-off value N. Take as an example, with D2 and
k=20, N=1, the corresponding success rate is 0.178 which is less than a half of 0.373, the
corresponding value when N=20. In any case, the success rate related to the adoption of D2

is always lower than that of D1.
Table 6.8b report the success rate obtained with class recommendations by comparing

the adoption of D1 and D2. The decrease in accuracy related to the adoption of D2 as shown
in Table 6.8a is confirmed also in Table 6.8b. To further study MemoRec’s performance,
we compute and report in Table. 6.9, Table 6.10, and Table 6.11 the precision, recall, and
f-measure D1 and D2. For this setting, the number of recommended items N was varied from

152 Assisting modelers in specifying models and metamodels

Table 6.8 Success rate, k = {1,5,10,15,20}, by comparing the adoption of D1 and D2

k SR@1 SR@10 SR@20
D1 D2 D1 D2 D1 D2

1 0.153 0.114 0.394 0.328 0.502 0.397
5 0.181 0.150 0.406 0.363 0.489 0.452
10 0.202 0.161 0.419 0.340 0.501 0.413
15 0.200 0.170 0.392 0.327 0.494 0.395
20 0.202 0.178 0.362 0.320 0.479 0.373

(a) for structural feature recommendations

k SR@1 SR@10 SR@20
D1 D2 D1 D2 D1 D2

1 0.285 0.147 0.468 0.307 0.487 0.331
5 0.204 0.173 0.617 0.493 0.691 0.589
10 0.191 0.150 0.613 0.445 0.702 0.571
15 0.215 0.147 0.583 0.397 0.694 0.521
20 0.187 0.141 0.539 0.362 0.661 0.478

(b) for class recommendations

Table 6.9 Precision values

N K = 1 K = 5 K = 10 K = 15 K = 20
1 0.155 0.187 0.202 0.208 0.208
2 0.157 0.186 0.191 0.193 0.192
3 0.139 0.160 0.172 0.170 0.167
4 0.125 0.142 0.146 0.148 0.144
5 0.116 0.126 0.126 0.129 0.126
6 0.106 0.115 0.114 0.116 0.114
7 0.097 0.105 0.105 0.106 0.102
8 0.089 0.093 0.095 0.096 0.094
9 0.084 0.085 0.086 0.087 0.084
10 0.079 0.080 0.081 0.083 0.077

(a) for structural feature recommenda-
tions using D1

N K = 1 K = 5 K = 10 K = 15 K = 20
1 0.114 0.150 0.161 0.170 0.178
2 0.107 0.139 0.147 0.146 0.152
3 0.096 0.117 0.120 0.118 0.121
4 0.087 0.103 0.104 0.101 0.102
5 0.078 0.092 0.092 0.089 0.091
6 0.074 0.085 0.083 0.081 0.081
7 0.069 0.078 0.076 0.074 0.074
8 0.064 0.072 0.070 0.068 0.069
9 0.060 0.068 0.066 0.064 0.063
10 0.057 0.063 0.061 0.059 0.059

(b) for structural feature recommendations using
D2

N K = 1 K = 5 K = 10 K = 15 K = 20
1 0.236 0.193 0.204 0.198 0.180
2 0.235 0.213 0.179 0.182 0.164
3 0.218 0.198 0.162 0.159 0.142
4 0.209 0.181 0.156 0.149 0.138
5 0.196 0.175 0.151 0.144 0.124
6 0.185 0.168 0.150 0.134 0.114
7 0.177 0.160 0.147 0.131 0.112
8 0.166 0.148 0.142 0.130 0.114
9 0.163 0.151 0.144 0.127 0.110
10 0.156 0.158 0.146 0.125 0.105

(c) for class recommendations using D1

N K = 1 K = 5 K = 10 K = 15 K = 20
1 0.148 0.173 0.147 0.144 0.136
2 0.138 0.165 0.152 0.142 0.132
3 0.132 0.154 0.139 0.129 0.119
4 0.123 0.144 0.127 0.118 0.107
5 0.116 0.135 0.116 0.107 0.096
6 0.111 0.128 0.110 0.101 0.090
7 0.107 0.122 0.107 0.096 0.085
8 0.103 0.117 0.102 0.093 0.081
9 0.099 0.113 0.099 0.090 0.079
10 0.096 0.112 0.096 0.087 0.076

(d) for class recommendations using D2

1 to 10, attempting to examine the performance for a considerably long list of items. The
value of k was varied of 1 to 20 with 5 as the step, considering a large number of neighbors.

Table. 6.9 and Table. 6.10 confirm that by considering a curated dataset with more similar
metamodels, MemoRec has better prediction performance than using a raw dataset. Moreover,
MemoRec reaches better prediction performance in recommending structural features classes
than classes packages.

Answer to RQ2. The quality of the input data plays a key role in MemoRec’s performance. Curated
datasets with more similar metamodels allow MemoRec to improve its prediction performance,
even if the size of such datasets is smaller than that of those randomly collected.

6.1 MemoRec 153

Table 6.10 Recall values

N K = 1 K = 5 K = 10 K = 15 K = 20
1 0.054 0.063 0.070 0.070 0.071
2 0.108 0.128 0.128 0.128 0.128
3 0.142 0.161 0.174 0.168 0.163
4 0.163 0.188 0.192 0.191 0.184
5 0.182 0.203 0.202 0.204 0.195
6 0.195 0.216 0.214 0.217 0.209
7 0.205 0.227 0.225 0.225 0.214
8 0.214 0.228 0.235 0.233 0.224
9 0.228 0.233 0.239 0.239 0.226
10 0.237 0.242 0.248 0.250 0.228

(a) for structural feature recommenda-
tions using D1

N K = 1 K = 5 K = 10 K = 15 K = 20
1 0.037 0.051 0.057 0.060 0.063
2 0.070 0.095 0.103 0.102 0.107
3 0.092 0.115 0.123 0.120 0.124
4 0.108 0.133 0.139 0.134 0.136
5 0.121 0.145 0.150 0.145 0.148
6 0.135 0.159 0.160 0.154 0.155
7 0.146 0.169 0.168 0.165 0.164
8 0.153 0.177 0.177 0.171 0.172
9 0.162 0.188 0.185 0.178 0.177
10 0.169 0.194 0.190 0.183 0.182

(b) for structural feature recommendations using
D2

N K = 1 K = 5 K = 10 K = 15 K = 20
1 0.032 0.039 0.048 0.049 0.048
2 0.056 0.074 0.084 0.088 0.088
3 0.067 0.091 0.102 0.111 0.109
4 0.077 0.099 0.112 0.119 0.118
5 0.083 0.109 0.120 0.132 0.127
6 0.090 0.118 0.132 0.138 0.134
7 0.099 0.124 0.143 0.149 0.144
8 0.103 0.127 0.152 0.157 0.152
9 0.109 0.137 0.162 0.163 0.158
10 0.114 0.149 0.172 0.169 0.162

(c) for class recommendations using D1

N K = 1 K = 5 K = 10 K = 15 K = 20
1 0.018 0.030 0.030 0.032 0.032
2 0.034 0.058 0.062 0.063 0.061
3 0.044 0.075 0.078 0.078 0.077
4 0.050 0.085 0.087 0.085 0.083
5 0.054 0.092 0.092 0.090 0.087
6 0.058 0.099 0.098 0.096 0.092
7 0.062 0.105 0.106 0.101 0.095
8 0.065 0.110 0.111 0.106 0.099
9 0.069 0.116 0.116 0.112 0.105
10 0.072 0.123 0.121 0.116 0.109

(d) for class recommendations using D2

Fig. 6.9 Dataset D1 Fig. 6.10 Dataset D2

Fig. 6.11 Average execution time.

RQ3: How do the encoding schemes affect the performance of MemoRec? Before
addressing this research question, we discuss the recommendations produced by MemoRec
on the example shown in Fig. 6.12. More specifically, MemoRec has been applied on the
Bibtex metamodel where the modeler is asking for the recommendation for two different
contexts, i.e., the Article class (rounded in red) and the Bibtex package (rounded in blue).
Because of the different context’s nature, we show the recommendations to Article class by
considering the IEs and SEs encodings. In contrast, the IEc and SEc encodings are discussed
by considering the Bibtex package as the active context. We briefly summarize the four

154 Assisting modelers in specifying models and metamodels

Table 6.11 F-measure values

N K = 1 K = 5 K = 10 K = 15 K = 20
1 0.080 0.094 0.104 0.105 0.106
2 0.128 0.152 0.153 0.154 0.154
3 0.140 0.160 0.173 0.169 0.165
4 0.141 0.162 0.166 0.167 0.162
5 0.142 0.155 0.155 0.158 0.153
6 0.137 0.150 0.149 0.151 0.148
7 0.132 0.144 0.143 0.144 0.138
8 0.126 0.132 0.135 0.136 0.132
9 0.123 0.125 0.126 0.128 0.122
10 0.119 0.120 0.122 0.125 0.115

(a) for structural feature recommenda-
tions using D1

N K = 1 K = 5 K = 10 K = 15 K = 20
1 0.056 0.076 0.084 0.089 0.093
2 0.085 0.113 0.121 0.120 0.126
3 0.094 0.116 0.121 0.119 0.122
4 0.096 0.116 0.119 0.115 0.117
5 0.095 0.113 0.114 0.110 0.113
6 0.096 0.111 0.109 0.106 0.106
7 0.094 0.107 0.105 0.102 0.102
8 0.090 0.102 0.100 0.097 0.098
9 0.088 0.100 0.097 0.094 0.093
10 0.085 0.095 0.092 0.089 0.089

(b) for structural feature recommendations using
D2

N K = 1 K = 5 K = 10 K = 15 K = 20
1 0.056 0.065 0.078 0.079 0.076
2 0.090 0.110 0.114 0.119 0.115
3 0.102 0.125 0.125 0.131 0.123
4 0.113 0.128 0.130 0.132 0.127
5 0.117 0.134 0.134 0.138 0.125
6 0.121 0.139 0.140 0.136 0.123
7 0.127 0.140 0.145 0.139 0.126
8 0.127 0.137 0.147 0.142 0.130
9 0.131 0.144 0.152 0.143 0.130
10 0.132 0.153 0.158 0.144 0.127

(c) for class recommendations using D1

N K = 1 K = 5 K = 10 K = 15 K = 20
1 0.032 0.051 0.050 0.052 0.052
2 0.055 0.086 0.088 0.087 0.083
3 0.066 0.101 0.100 0.097 0.094
4 0.071 0.107 0.103 0.099 0.093
5 0.074 0.109 0.103 0.098 0.091
6 0.076 0.112 0.104 0.098 0.091
7 0.079 0.113 0.106 0.098 0.090
8 0.080 0.113 0.106 0.099 0.089
9 0.081 0.114 0.107 0.100 0.090
10 0.082 0.117 0.107 0.099 0.090

(d) for class recommendations using D2

Fig. 6.12 The Bibtex metamodel.

proposed schemes in Section 6.1.2 as follows. SEs consists of class-structural feature pairs
for each structural feature directly defined within a class while IEs also includes structural
feature inherited from the superclasses; IEc consists of package-class pairs while SEc flattens
packages within a default artificial package.

Table 6.12 shows the list of top-10 recommended items for each encoding scheme,
i.e., SEc, IEc, SEs, and SEc. As described in Section 6.1.2, the type of the active context
discriminates which encoding MemoRec needs to adopt. By observing the outcomes of
Table 6.12, it can be seen that using IEs and SEs produces diverse recommended items.

6.1 MemoRec 155

Table 6.12 Predicted recommendations for the Article metaclass and Bibtex package of the
metamodel in Fig. 6.12.

IEs SEs

A
r
t
i
c
l
e

m
et

ac
la

ss
containerPage address
id edition
toolspecifics journal
abstractPrefix month
abstractText note
acceptDirty number
actor pages
address publisher
attachment series
authorName volume
IEc SEc

B
i
b
t
e
x

pa
ck

ag
e

AbstractCondition Abstract
Assign CommitteeMember
AssignExtra AcademiaOrganization
AttributeCondition AcademicEvent
Book Academic_Institution
ConditionalState AcceptRating
ConditionalTransition Acceptance
Editor AcceptedPaper
EmphasisValue AccommodationPlace
Event Account

The result provided by IEs seems to contain more generic recommendations, e.g., id, actor,
attachment, to name a few, while SEs provides more focused recommended structural
features. This intuition is confirmed by manually analyzing significant recommendation
examples. Though both IEs and SEs provide useful suggestions to the modeler, the augmented
information of SEc allows MemoRec to predict more specific structural features. Referring to
the scores obtained with IEc and SEc, we conclude that the results depend on the similarities
among the training metamodels. By flattening package structure, SEc mainly uses class
names to compute similarities, while IEc includes also package structure. So, when a similar
metamodel is identified, SEc can recommend classes that belong to any package.

To answer RQ3, we conducted experiments on D1 by comparing pairwise the encoding
schemes, i.e., SEs versus IEs and SEc versus IEc. As we mentioned before, we should
select a suitable number of neighbor metamodels to compute recommendations to maintain a
trade-off between efficiency and effectiveness. Thus, to simplify the evaluation, we set the

156 Assisting modelers in specifying models and metamodels

number of neighbors k to 5.6 The evaluation metrics computed by the encoding schemes for
structural features and classes are reported in Table 6.13a and Table 6.13b, respectively.

Table 6.13a demonstrates an evident outcome: by using IEs as the encoding scheme, we
obtain a better prediction performance than that when using SEs. For instance, given N = 1,
we get a success rate of 0.241 and 0.181 for IEs and SEs encodings, respectively. Similarly by
other evaluation metrics, i.e., precision and recall, IEs helps achieve a superior performance.
When we consider larger cut-off values, i.e., N = {5,10,15,20}, IEs is always beneficial to
the recommendation outcomes, as it brings in higher quality indicators. Take as an example,
with N=20, using IEs yields a success rate of 0.604, which is much higher than 0.489, the
corresponding value for SEs.

Next, we analyze the recommendations by using SEc and IEc as shown in Table 6.13b.
For success rate and precision, using IEc help MemoRec perform better than using SEc.
However, IEc negatively impacts on the recall values. In our opinion, it is due to the flattening
operation which affects the similarity function, making metamodels too similar. In this
case, the recommender engine is limited to suggests the most common classes. For instance,
because of metamodelling best-practice, NamedElement is commonly used in a metamodel.
This impacts on success rate and precision, but recall goes down because the recommended
items do not depend on the metamodel context.

Through the experiment, we see that a suitable encoding scheme fosters better prediction
performance. In this respect, we believe that the introduction of Natural Language Processing
(NLP) steps, i.e., stemming, lemmatization, and stop words removal, can boost up the accu-
racy of MemoRec. In particular, preprocessing steps can be employed to reduce the usage of
different terms with very close semantics and, thus, to increase the corresponding term usages.
For instance, the word “reference” and its plural form “references” are two conjugations of
the same noun. Even though the two words have the same semantics, currently, MemoRec
does not match those two terms and considers them different by negatively affecting the
resulting MemoRec performance. We consider the integration of NLP techniques as our
future work.

The average execution time among ten folds on various values of k for both datasets is
depicted in Fig. 6.9 and Fig. 6.10. It can be seen that while IEs helps MemoRec achieve
a good prediction performance, it sustains a high computational complexity, resulting in
prolonged execution time. This is understandable since compared to other techniques, the
encoding scheme incorporates more information from metamodels for its computation.

6For each dataset and N value, the average success rate is higher with k= 5 than that of other values of k.

6.1 MemoRec 157

Table 6.13 Success rate, precision and recall for class recommendations

N SR@N Precision@N Recall@N
IEs SEs IEs SEs IEs SEs

1 24.074 18.113 0.241 0.181 0.078 0.061
5 39.074 33.207 0.119 0.121 0.169 0.196
10 48.333 40.566 0.084 0.078 0.241 0.245
15 55.926 46.603 0.068 0.059 0.291 0.271
20 60.370 48.867 0.058 0.047 0.331 0.284

(a) using SEs and IEs encodings.

N SR@N Precision@N Recall@N
IEc SEc IEc SEc IEc SEc

1 22.593 20.370 0.226 0.204 0.014 0.037
5 56.296 53.333 0.220 0.196 0.061 0.117
10 65.926 61.667 0.194 0.163 0.100 0.152
15 70.370 66.667 0.186 0.158 0.139 0.189
20 73.333 69.074 0.167 0.140 0.159 0.210

(b) using SEc and IEc encodings.

Answer to RQ3. Inherited structural features (IEs) enable MemoRec to achieve a superior
performance compared to using SEs, despite a higher computational complexity. With IEs,
MemoRec predicts better structural features within a class than classes within a package.

6.1.5 Threats to validity

In this section we give a discussion of threats, which might harm the validity of the performed
experiments. In particular, we discuss threats with respect to internal and external validity as
follows.
Internal validity. Such threats refer to internal factors that might affect the outcomes of the
performed experiments. A possible threat is represented by the datasets that have been used
for the experiments. We mitigated such a threat by using two completely different datasets,
and one of them has been randomly created without performing any data curation activities.
Another internal threat to validity factor is represented by the adopted encoding schemes. Also
in this case, we mitigated the issue by employing different encoding schemes. However, by
considering data and encoding dimensions, we managed to identify distinctive characteristics
of the approach that resulted to be valid independently from the adopted encoding schemes
and input data sets, i.e., graph builder, similarity calculator, and recommendation engine.
External validity. It is related to factors that can affect the generalizability of our findings, by
possibly making the obtained results not valid outside the scope of this study. We mitigated
the issue by evaluating MemoRec in different scenarios, with the aim of simulating several
usages of the systems, e.g., by varying the number of neighbour metamodels, and the size of
the list of recommended items. Another threat to validity can be the fact that currently, we
do not consider the sequences of actions that are operated to lead to a given metamodel. We
believe that alternative approaches like LSTM (Long Short-Term Memory) [110] can be a
possible candidate to produce recommendations that rely on creation sequences. Moreover, it
is crucial to investigate how modelers perceive MemoRec. In this respect, we plan to conduct
a user study where human evaluators are asked to give their assessment for recommendations
provided by MemoRec.

158 Assisting modelers in specifying models and metamodels

6.2 MORGAN

6.2.1 Graph kernel similarity

A graph is often represented as an adjacency matrix A of size N×N, where N is the number
of nodes. If each node is characterized by a set of M features, then a dimension of feature
matrix X is N×M. Graph-structured data is complex, and thus it brings a lot of challenges for
existing machine learning algorithms.

Given a graph, the prediction phase can be realized by following two different strategies,
i.e., link-level prediction or node-level classification. The former requires to represent the
relationship among nodes in graph and predict if there is a connection between two entities.
In latter, the task is to understand node embedding for every node in a graph by looking at
the labels of their neighbours. With graph-level classification, the entire graph needs to be
classified into suitable categories.

Different kinds of algorithms can be used to produce recommendations, i.e., vector-space
embedding [216] and graph kernel [274]. The former involves the annotation of nodes and
edges with vectors that describe a set of features. Thus, the prediction capabilities of the
model strongly depend on encoding salient characteristics into numerical vectors. The main
limitation is that the vectors must be of a fixed size, which negatively impacts the handling
of more complex data. In contrast, the latter works mostly on graph structure by considering
three main concepts, i.e., paths, subgraphs, and subtrees. Such techniques support feature
embeddings with mutable sizes, which eventually may lead to interesting results in the
modeling domain [52].

Formally, a graph kernel is a symmetric positive semidefinite function k defined for a pair
Gi and G j such that the following equation is satisfied:

k(Gi,G j) = ⟨φ(Gi),φ(G j)⟩H (6.6)

where ⟨·, ·⟩H is the inner product defined into a Hilbert Space H.
A graph kernel computes the similarity between two graphs by adopting several different

strategies. Among these, the Weisfeiler-Lehman optimal assignment algorithm (WLOA
kernel hereafter) [136] is built on top of existing graph kernels and it is inspired by the
Weisfeiler-Lehman test of graph isomorphism [282].

In the previous version of MORGAN [68], we opted for the WLOA technique to measure
the similarity as it offers a linear complexity. The algorithm replaces each vertex with a
multiset representation consisting of the original one plus neighbors’ features. Given two

6.2 MORGAN 159

graphs G and G’, the WLOA kernel is defined as follows:

k(G,G′) = Kk
B(V,V

′) (6.7)

where k is the employed base kernel, defined below:

k(v,v′) =
h

∑
i=0

δ (τi(v),τi(v′)) (6.8)

where τi(v) is the label of node v at the end of ith iteration of the Weisfeiler-Lehman algorithm.
However, for this kernel recommendation time is strongly bounded by the nature of the input
data.

In this extension, we consider a different class of kernel function, namely the Vertex
Histogram [251], to analyze to what extent the adoption of a different technique can reduce
the whole prediction time.

In practice, given a pair of graphs G and G′, let f , f ′ be the vertex histograms of the two
graphs. The Vertex Histogram kernel is computed according to the following formula:

k(G,G′) = ⟨f, f′⟩ (6.9)

where f, f′ are the vertex label histograms obtained by applying the mapping function ℓ : V →
L that assigns labels to the vertices of the graphs.7

Even though the underlying structure is not considered by the employed kernel, our
empirical results demonstrate that MORGAN achieves better performances in terms of
accuracy and time computation compared to the WeisfeilerLehman for this specific task.
Therefore, we employ such a strategy to compute the similarity among the considered models
and metamodels, which are encoded as graphs as described in the next section.

6.2.2 MORGAN architecture

This section describes in detail the proposed approach, whose architecture is depicted in
Fig. 6.13. Starting from a partial model, MORGAN uses tailored model parsers to extract
relevant information in textual data format. Alongside the two independent parsers developed
in the original work, i.e., one for metamodels and the other for models, we conceive an addi-
tional parser tailored for JSON schema. The NLP module executes the encoding to generate
graphs that can be used by the underlying graph kernel engine. In this work, we enrich this
component with a lemmatization strategy to increase the amount of valuable information.

7This process is internally performed by the Python implementation offered by Grakel.

160 Assisting modelers in specifying models and metamodels

Graph

encoder

Vertex Histogram
kernel

Missing

elements

Ecore parser

Term-frequency

matrix

Ecore metamodel

JSON Schema

Java model Modisco parser

JSON parser

Textual data Graphs

Matrix

encoder

Modeler

Fig. 6.13 The MORGAN architecture.

Furthermore, we adopted the Vertex Histogram kernel as the underpinning recommendation
engine which is based on item frequency. As the final recommendations, MORGAN returns
the missing elements of the artifact under development, i.e., either a metamodel or a model.8

We describe the constituent components in the succeeding subsections.

6.2.2.1 Parsers

This component extracts relevant information from the input artifact by using four different
parsers, i.e., Ecore parser for metamodels, MoDisco parser for MoDisco models, UML parser
for UML models, and a standard JSON parser9 for JSON schema. Because metamodels
and models are expressed in the XMI or Ecore format, the first three parsers rely on EMF
utilities10 to extract their information. In contrast, the JSON schema parsers rely on utilities
that embody the standard reference schema.

It is worth noting that this component is compliant with a well-structured encoding
scheme. In such a way, the proposed tailored parsers follow the same structure during the
data gathering phase, i.e., they are agnostic from the underlying model artifact. The generic
encoding scheme is defined as follows:

instance id,(⟨relationship tuple⟩)∗ (6.10)

8To facilitate the presentation, the common name artifact refers to all kinds of considered items, namely
metamodel, model, and JSON schema, unless otherwise explicitly stated.

9https://github.com/google/gson
10https://www.eclipse.org/modeling/emf/

https://github.com/google/gson
https://www.eclipse.org/modeling/emf/

6.2 MORGAN 161

where the instances are represented by their identifier (e.g., name) and the relationships are
tuples that encode related concepts depending on the notation. It is worth noting that a tuple
can be composed of two or three elements, according to the considered modeling artifact.

▷ Metamodel parsing. Starting from a metamodel, Ecore parser excerpts the list of
metaclasses and their structural features, i.e., attributes and references. In particular, the
metaclass name identifies the corresponding metaclass instance while each relationship is
represented as a triple defined as follows:

metaclass-name (⟨Name,Type, [reference | attribute]⟩)∗ (6.11)

where Name is the name of the structural feature, Type characterizes the type element,
e.g., ESTRING or EINT, and Relation identifies the type of relation between the element
and the class, i.e., attribute or reference. Following the aforementioned scheme, the Actor
metaclass described in Fig. 6.1a is encoded as Actor (name, EString, attribute).
These elements improve MORGAN’s recommendation capabilities as they enable the modeler
to add further information to the partial model.

▷ MoDisco model parsing. MoDisco parser is used to extract valuable data from models.
In particular, similar to Ecore parser, MoDisco parser explores xmi trees to elicit valuable
elements, i.e., each MoDisco model is represented as a list of Java classes followed by
method definitions and field declarations. The class name represents the instance identifier
while each relationship is represented as a triple defined as follows:

class-name (⟨Name,Return type, [method | f ield]⟩)∗ (6.12)

where Name is the method or field name, ReturnType is the method or field type, and Relation
identifies the type of relation between the class members, i.e., method or field, and the class.
For instance, the signature of the getError method belonging to LateBinding class depicted in
Figure 6.2a is translated as LateBinding (getError, EString, method).

▷ UML model parsing. To extract the same type of information from models belonging
to ModelSet, a UML parser has been conceived by exploiting EMF utilities. It is worth
noting that the structure of the parser is similar to the previous ones, i.e., it navigates the tree
structure of the UML models given as input. To be consistent with the parser requirements,
we elicit properties and operations for each UML class. The encoding scheme for a single
UML class is the following:

class-name (⟨Name,Type⟩)∗ (6.13)

162 Assisting modelers in specifying models and metamodels

where Name is the name of the property or operation of the class while Type can be operation
or property. For instance, a UML class named Teacher with the property name and the
operation setMark is translated into Teacher (name, property) (setMark,operation).

▷ JSON schema parsing. Similarly to the metamodels that provide the notation to express
models, JSON schema [5] is a dedicated language to define and validate JSON documents.
A JSON schema document consists of two main types of schemas, i.e., BooleanSchema and
ObjectSchema. In the scope of this paper, we focus on the latter that defines the hierarchical
structure of the schema, including (i) the Type that could be a SimpleType or object, and (ii) a
list of Keyword elements that defines the properties of the object. Each element of this list
contains a KeySchemaPair that explicitly defines the structural features of an object or the
primitive type. In this case, we opt for ObjectSchema name as the instance identifier, whereas
the list of properties identified by KeywordsPair is used to identify the relationship tuples.
We encoded such data as following:

ObjectSchema-name (⟨name, [ob ject | int | string |...]⟩)∗ (6.14)

If Type is a primitive type, e.g., string or boolean, Keywords are mapped to attributes,
otherwise they are contained objects. In such a way, the JSON schema parser is used to
extract pairs consisting of ObjectSchema and contained properties. This parser is capable of
extracting the same type of information compared to the aforementioned ones. An excerpt of
the encoding of locations highlighted in Fig. 6.3a can be represented as Locations (name,

string)(longitude, int)(mentions, object).

6.2.2.2 Graph Encoder

The next step is to build graphs from textual files produced by the parsing phase. In the former
version of the tool [68], the artifact Encoder component applied a standard NLP pipeline
composed of three main steps, i.e., stop-words removal, string cleaning, and stemming.
We employ the lemmatization strategy instead of stemming by adopting the well-founded
algorithm based on WordNet11 The rationale behind this choice is that the former strategy is
a process for removing the commoner morphological and inflexional endings from English
words [205]. However, this could lead to incorrect meaning and spelling since the semantic is
not considered at all. Meanwhile, lemmatization considers the context and extracts the lemma
of each word, i.e., its base form. To enable this process, a large thesaurus of English terms is
needed since the lemmatizer component involves the morphological analysis of each word. In
the scope of the presented work, we make use of the WordNet Lemmatizer utility provided by

11https://wordnet.princeton.edu/

https://wordnet.princeton.edu/

6.2 MORGAN 163

the nltk Python library12 to extract the lemma from each analyzed term. Afterward, a corpus
of words is created from scratch by inserting the preprocessed model elements iteratively. It
is worth noting that a single element is not inserted if it is already included in the dictionary.
In such a way, MORGAN encodes relevant information related to the application domain by
embedding key features extracted from actual models. Furthermore, this component employs
NetworkX,13 a Python library that creates nodes and edges considering the structure of the
parsed model. According to the format shown in Equation 6.10, each model is represented
by a list of connected graphs in which each class is linked with corresponding elements.

Fig. 6.14 Example of a stemmed graph.

An explanatory graph obtained by the Encoder component is depicted in Fig. 6.14. It is
an encoding fragment of the metaclass Actor shown in Fig. 6.1b. In particular, the structure
of the model is encoded by adding edges among the class Actor and the stemmed version of
its attributes and references namely Name, Description, Type, and Extends, though such type
of graph does not resemble the semantic relationships occurring in the actual model, i.e., an
attribute can refer to a missing metaclass. Nonetheless, analyzing the structure of the model
is enough to create the vocabulary that represents the knowledge base of the underpinning
model. It is worth noting that the same format is kept to perform the final recommendations,
thus delivering additional information about the type of the model element to the user.

6.2.2.3 Matrix Encoder

At this point, the Matrix Encoder component counts the occurrences of the items belong-
ing to the obtained graphs. Each item has three required features, i.e., adjacency_matrix,

12https://www.nltk.org/_modules/nltk/stem/wordnet.html
13https://networkx.org/

https://www.nltk.org/_modules/nltk/stem/wordnet.html
https://networkx.org/

164 Assisting modelers in specifying models and metamodels

node_labels, and edge_labels. The first feature is required to ensure that the graph is valid
from the structural point of view. The second and third features are not mandatory in some
certain contexts. For instance, e.g., edge_labels is not required in case the kernel algorithm
does not employ them in the recommendation phase.14 To feed the graph kernel, Matrix
Encoder assigns a unique ID to each node of the graph to build a term-frequency matrix. In
such a way, the most frequent items are considered at recommendation time. This component
eventually calculates the sum of products between frequencies of common occurrences by
employing the diagonal method to perform the dot product operation. It is worth mentioning
that this strategy speeds up the diagonal calculation to reduce the computation time.

6.2.2.4 Vertex Histogram kernel

At this point, the underpinning engine can be fed with the computed graphs to retrieve the
missing artifacts. To this end, MORGAN relies on the Grakel Python library that provides
several graph kernel implementations [242]. We compute graph similarity by comparing
the input model with all the elements in the training set. As discussed in Section 6.2.1, we
replace the Weisfeiler-Lehman algorithm [239] employed in our previous work with the
Vertex Histogram kernel strategy since the latter has been designed to handle the halting
issue, even though the topological structure of the graph is not considered while performing
the similarity measure. To mitigate this, we add the Matrix encoder component that produces
an adjacency matrix given the produced graphs. In such a way, the structure of the graphs is
preserved, thus enabling the computation of the kernel similarity.

In practice, given a pair of graphs G and G′, let f , f ′ be the vertex histograms of the two
graphs. The Vertex Histogram kernel is computed according to the following formula:

k(G,G′) = ⟨f, f′⟩ (6.15)

where f, f′ are the vertex label histograms obtained by applying the mapping function
ℓ : V → L that assigns labels to the vertices of the graphs.15

The rationale behind the selection of Vertex Histogram is as follows. The implemented
version of the algorithm is linear in the number of vertices of the graph.16 Moreover, through
an empirical evaluation, we realized that it is much more timing efficient than the graph
kernel adopted in the former version of MORGAN, i.e., Weisfeiler-Lehman strategies. Thus,
Vertex Histogram has been chosen to compute the similarities among the nodes in graphs.

14In the scope of the presented work, we do not employ the edge_labels feature since homogeneous graphs
are considered.

15This process is internally performed by the Python implementation offered by Grakel.
16https://ysig.github.io/GraKeL/0.1a8/kernels/vertex_histogram.html?highlight=vertex%

20histogram

https://ysig.github.io/GraKeL/0.1a8/kernels/vertex_histogram.html?highlight=vertex%20histogram
https://ysig.github.io/GraKeL/0.1a8/kernels/vertex_histogram.html?highlight=vertex%20histogram

6.2 MORGAN 165

Corpus of jar
files

MoDisco
model injector

Corpus of
Java model

Term extractorModel
representation

(a) Data gathering

Initial dataset

Training models

Testing models

Splitting data

Training graphs

Testing graphs Splitting graphs

MoRGaN

GT graphs

Query graphs

Compute metrics

Recommended elements

(b) Overall evaluation process.

Fig. 6.15 Dα dataset creation and overall evaluation process.

The employed kernel eventually retrieves an ordered list of modeling artifacts stored in
the training set ranked by similarity scores. These values are computed by exploiting the
Vertex histogram algorithm as described in Equation 6.15. In practice, given the context of
the modeler encoded as a graph, MORGAN compares it with the graphs extracted from the
training set. At the end of the process, a similarity score is assigned for each comparison and
a ranked list of graphs is produced. The top-5 similar elements are extracted from this set to
support two kinds of recommendation: (i) specification of missing structural features; and
(ii) generation of (meta)classes that can be used to enhance the artifact under specification
with further concepts. It is worth noting that the whole process is adopted for each type of
model artifact, i.e., metamodels, Java models, and JSON schema. This means that there are
three different training processes in which MORGAN learns a specific set of features needed
to recommend the proper items.

Being built on these components, MORGAN provides recommendations including both
metamodels, models, and JSON schema. The succeeding subsection introduces an explana-
tory example to show to which extent MORGAN is useful for a metamodeling task.

6.2.2.5 Explanatory example

Table 6.14 Retrieved items for the UMLDSL metamodel.

Context Recommended item
Step attribute finalState:EString reference continuation:Step ref-

erence initialState:initState reference finalStates:FinalState
Flow attribute finalizeFlow:EBoolean attribute eventPat-

ternId:EString reference initialState:initState reference
finalStates:FinalState

Step metaclass StepAlternative:EClass metaclass Automaton
metaclass FSM metaclass mFSM

166 Assisting modelers in specifying models and metamodels

Table 6.14 shows the suggested structural features for the UMLDSL metamodel depicted
in Fig. 6.1a. We consider two different metaclasses extracted from the artifacts under
construction, i.e., Flow and Step. From the ranked list of structural features, we elicit the
most relevant ones given the recommendation context, i.e., the bold items in Table 6.14. In
particular, the reference continuation is the recommended item that the modeler can use to
complete the partial metaclass Step. Similarly, the metaclass Flow could be enhanced with
the finalizeFlow attribute. Concerning the recommendation of new classes, we consider again
the class Step as testing. In this case, the retrieved item is the StepAlternative metaclass that
can enrich the metamodel, even though it is not included in the complete one. We see that
MORGAN produces items pertinent to the modeler’s context.

Altogether, it is evident that the recommended items are helpful as they are relevant to
the given artifact. In this respect, we conclude that for the explanatory example, MORGAN
is able to provide the modeler with useful recommendations to complete the given metamod-
eling activities. In the next sections, we present the experimental methodologies as well as an
empirical evaluation of the tool using real-world datasets to study its feasibility in practice.

6.2.3 Evaluation

We describe in detail the research objectives and the experimental configurations used to
study MORGAN’s performance. First, the research questions that we address in this paper
are presented in Section 6.2.3.1. Afterward, in Section 6.2.3.2 we describe the datasets used
in the evaluation. Finally, the validation methodology and evaluation metrics are detailed in
Section 6.2.3.3 and Section 6.2.3.4, respectively.

6.2.3.1 Research questions

The following research questions are addressed to study the new version of MORGAN,
comparing it with the previous one [68].

• RQ1: Does the preprocessing step contribute to a performance gain of MORGAN? We
investigate whether the introduced preprocessing augmentation improves the overall
performances in terms of identified metrics, i.e., success rate, precision, recall, and
F-measure.

• RQ2: How does the vertex histogram kernel function impact on the computational
efficiency? In an attempt to extend the MORGAN tool, we employed a tailored graph
kernel based on the term-frequency matrix as the underlying recommendation engine.

6.2 MORGAN 167

This research question aims to validate if the proposed mechanism helps MORGAN
reduce the time required to perform the recommendations.

• RQ3: How effective is MORGAN at recommending JSON schema elements? To assess
if the tool is able to support different application domains, we evaluate by considering
a curated dataset composed of JSON schema models. Such type of data is widely
used in MDE, and thus we suppose that the capability to work with JSON will allow
MORGAN to gain popularity in real-world scenarios.

• RQ4: How is MORGAN’s performance changed when working on ModelSet, a bench-
marking dataset of metamodels and UML models? To further study MORGAN’s
capabilities in recommending modeling artifacts, we considered two additional datasets
extracted from ModelSet [149], a recently collected set of metamodels and models.
In such a way, we can measure how the size of the data affects the tool’s overall
performance.

6.2.3.2 Datasets extraction

Recent studies in the domain provide large, curated collections of models and metamodels,
leveraging to support ML-based tasks, e.g., classification of models and prediction of relevant
modeling artifacts. In this extension, we consider five different datasets, which are named Dα ,
Dβ , Dγ , Dδ , and Dε . The first two datasets, i.e., Dα , and Dβ were already used to evaluate
the former version of MORGAN [68], and we re-used them to evaluate the fine-tuned version
of MORGAN proposed in this extension. Furthermore, with the aim of showcasing the
extensibility of our approach, we make use of three additional datasets, namely Dγ , Dδ , and
Dε . The first one is composed of JSON schema crawled from GitHub. Meanwhile, Dδ and
Dε have been extracted from ModelSet [149], a curated collection of models and metamodels.
The selected datasets are explained in detail as follows.
✧ Concerning Dα , we extracted model representations of popular Java projects stored in the
Maven repository17 to build the Dα dataset. The whole process to obtain the required data is
depicted in Fig. 6.15a. First, we selected the top eight popular categories, including Apache,
Build, Parser, SDK, Spring, SQL, Testing, and Web server, among the most popular ones
according to the Maven Tag Cloud.18 Then, for each category, we crawled around the top
100 popular Java artifacts.

The whole process aims to create a balanced dataset composed of good-quality models.
In such a way, we aim to build a curated collection of models that share common features as

17https://mvnrepository.com/
18https://mvnrepository.com/tags

https://mvnrepository.com/
https://mvnrepository.com/tags

168 Assisting modelers in specifying models and metamodels

Fig. 6.16 Dα features.

Fig. 6.17 Dβ features.

much as possible. Having such similarities could improve the overall accuracy even though
this cannot be granted at the beginning of the process. Figure 6.16 shows the statistics for
the extracted models in Dα . In particular, the x, y, and z axes correspond to the number of
classes, the number of methods, and the number of fields of the mined artifacts, respectively.
Moreover, the colors of dots are used to represent the categories. It is evident that most of
the models contain a small number of methods and classes, i.e., lower than 300 and 200,
respectively. There is only one model with more than 1,000 fields, 390 classes, and 690
methods. The corpus of JAR files has been collected by employing Beautiful Soup,19 a
Python scraping library. Then, Java models have been generated from the collected corpus
using MoDisco, an extensible framework that allows us to convert JAR files back to models.

19https://www.crummy.com/software/BeautifulSoup/bs4/doc/

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

6.2 MORGAN 169

Fig. 6.18 Dγ features.

Fig. 6.19 Dδ features.

Since they are Java models, we extracted three different model elements from the MoDisco
models, i.e., classes, methods, and fields. Finally, a model parser is used to represent the
model as defined in Section 6.2.2. In the end, we collected a set of 581 unique model
representations from the MVN Repository belonging to the top categories.
✧ To generate Dβ , starting from an original set consisting of 555 labeled metamodels with
nine different categories [300], we extracted metaclasses, attributes, and references from
each ecore file using the Eclipse EMF utilities. Moreover, different quality filters have been
also applied on the data, attempting to improve MORGAN’s performance. In particular, we
removed metaclasses having less than two elements, either attributes or references. Since

170 Assisting modelers in specifying models and metamodels

Fig. 6.20 Dε features.

each metamodel is encoded as a set of graphs, having small ones may harm the overall
performance. Thus, we eliminated metamodels belonging to the Bug category, which has
only eight metamodels. Possible duplicate classes are also excluded to avoid any bias. The
final dataset consists of the following eight categories: Build, Conference, Office, PetriNets,
Request, SQL, BibTex, and UML. Figure 6.17 reports a summary related to the characteristics
of Dβ including the number of metaclasses (the x axis), the number of references (the y
axis), and the number of attributes (the z axis). Like in Fig. 6.16, the category of metamodels
is represented using colors. Though we do not directly employ the category to produce
recommendations, it includes similar metamodels which help to represent the application
domain.
✧ As discussed in Section 6.2.1, the definition of a JSON schema falls under the umbrella
of modeling activity. In the light of such rationale, we introduced an additional dataset,
i.e., Dγ , consisting of JSON schema mined from GitHub. Due to limitations imposed by
the GitHub REST API [2], we mined a publicly-available GitHub archive dataset freely
accessible in Google BigQuery [3]. First, we query metadata searching for files with .json
extension across the repositories in [3], restricting the search to .json files whose pathname
contains the string schem. The rationale behind it is twofold: (i) it limits the amount of data
processed by the query on the GitHub archive dataset to avoid exceeding the free monthly
per user quota (1TB) [3]; (ii) we aim to infer insights on .json files by its pathname. We then
filtered out dangling entries, i.e., pairs where pathnames point to .json files that no longer
exist, and existing .json files that do not contain the $schema keyword. Then, duplicates
removal, parsing, and conformance check are performed.

6.2 MORGAN 171

The duplicates removal step computes a hash value for every mined file based on its
content. The obtained hashes are used to build a hashmap where the key is the hash itself, and
the value is the corresponding file. If a duplicated key occurs in the map, we assume that the
corresponding .json file is a duplicate and we drop it. We distinguish between parsing and
conformance check steps. The former checks if the JSON file is correctly serialized, while
the latter validates the conformance of a schema considering its meta-schema definition.20

Finally, we collected 2,872 distinct and valid JSON scheme and we summarize their features
in Figure 6.18.
✧ ModelSet is a collection of 5,466 Ecore metamodels and 5,120 UML models manually
labeled by the authors. This curated collection has been used in practice to enhance the
performance of an existing search engine for models, namely MAR [148]. As we have shown
in our previous work [69], the quality of the input data plays a key role in the performance
of many model assistants. In particular, curated datasets with more similar metamodels
allow recommender systems to improve their prediction performance, even if the size of
such datasets is smaller than that of those randomly collected. In fact, ModelSet contains
several low-quality models, i.e., 14% of metamodels and 13% of models are marked as
dummy. Such artifacts are noisy, and they cause misprediction when being used as training
data. More importantly, in ModelSet the models and metamodels are distributed among 50
and 80 categories, respectively. In other words, models and metamodels belonging to each
category are not balanced, e.g., many categories include less than 3 models or metamodels.
For instance, 61, 35, and 17 categories count 1, 2 and 3 metamodels, respectively; or 25,
9, and 3 categories count 1, 2, and 3 models, respectively. This means that the similarities
between metamodels are not guaranteed in the dataset. Altogether, having such dissimilarities
could negatively affect the overall recommendations. Therefore, we make use of the provided
Python API to filter the initial list of artifacts according to a well-defined quality filter.
Eventually, we extract Dδ and Dε and describe their features in Figure 6.19 and Figure 6.20
respectively. For all considered datasets we get rid of small (meta)models and keep only the
larger ones since MORGAN is a data-driven approach that heavily relies on the quality of
training data.

For all considered datasets we get rid of small (meta)models and keep only the larger
ones since MORGAN is a data-driven approach that heavily relies on the quality of training
data.

20https://json-schema.org/specification.html

https://json-schema.org/specification.html

172 Assisting modelers in specifying models and metamodels

6.2.3.3 Settings

In the original study [68], we assessed the prediction performance of MORGAN by resem-
bling the behaviors of a modeler21 working at different stages of a modeling project m, by
involving different configurations during the experiments [181]. To this end, we split m
and use the rest as the modeler’s context by varying two parameters, i.e., the number of
considered classes and the number of the corresponding structural features. Starting from
these definitions, we create four configurations to simulate different stages of modeling,
i.e., from an initial specification to a mature one. We realized that MORGAN is capable
of assisting the modeler in all considered scenarios, and the best accuracy scores were
obtained when a mature context is considered [68]. In this work, we focus on assessing the
contributions of the novelties introduced at the level of the recommendation engine, i.e., the
additional preprocessing step and the vertex histogram kernel function. In particular, we
are interested in measuring the contribution of each component separately and comparing
the achieved results with the former version of MORGAN.22 Table 6.15 summarizes the
identified configuration by considering the aforementioned components.

Table 6.15 Configuration settings.

Configuration Lemmatizer Vertex Histogram
C1 ✗ ✗

C2 ✓ ✗

C3 ✗ ✓

C4 ✓ ✓

Configuration C1 represents the MORGAN’s original setting, equipped with a standard
NLP pipeline and the WeisfeilerLehman kernel. Starting from this, we derive other configu-
rations, i.e., C2 and C3 by introducing the lemmatization step and a novel kernel similarity
respectively. Finally, by C4 we combine all the newly introduced mechanisms to assess how
the new tool advances compared to its preceding version by analyzing two different dimen-
sions, i.e., the accuracy in terms of relevant results, and the delivery time. The former might
benefit from the improvement of preprocessing phase as the data-driven tools strongly rely
on input data to compute the outcomes. In contrast, the latter is affected by the complexity
of the employed kernel function; thus, improving this component could speed up both the
training and the query phases. In this respect, we expect that the Lemmatizer component
increases the quality of the recommended items while the computation time might be reduced

21For the sake of presentation, the two terms “modeler” and “developer” are used interchangeably in the
scope of this chapter.

22Replicating the experiments with all the configurations is out of the scope of the presented work. Thus,
we selected the one that leads to a better accuracy, and used it to evaluate the novel aspect introduced in this
extension.

6.2 MORGAN 173

by exploiting the Vertex Histogram kernel. To conduct the experiments, we split a dataset
into two independent parts, namely a training set and a testing set. In practice, the training set
represents the (meta)models that have been collected ex ante, they are available at developers’
disposal. The testing set represents the metamodel being developed, or the active project. In
this way, our evaluation simulates a real-world scenario: the system is supposed to generate
recommendations for the active metamodel based on the data mined from a set of existing
metamodels. In the evaluation, we adopted the k-fold cross-validation technique widely used
in evaluating ML-based applications [210]. The overall process is described in Fig. 8.14 and
it is applied on both the metamodel dataset and the model one presented in Section 6.2.3.
Given the initial datasets, the splitting data operation is performed to obtain training and
testing sets. In practice, the former represents the models that have been collected a priori to
build the vocabulary (see Section 6.2.2), while the latter has been split into GT graphs and
query graphs. In our previous work [68], we already evaluated the performance MORGAN
with different GT and query sizes to mimic the behaviors of a modeler working at different
stages of a modeling project. In the presented work, we resemble the situation where the
metamodel under construction is almost complete, i.e., the modeler already defined the two
third of classes and structural features. In particular, a single query graph represents the
active context of the modeler who is defying classes and structural features for a specific
model. Meanwhile, the GT graph is the elicited part extracted from the original model that
should be defined by the modeler to complete the partial model. Even though this splitting
strategy could lead to possible inconsistencies, we carefully encode the original models to
avoid any broken references.

6.2.3.4 Metrics

6.2.4 Experimental results

To investigate the potential contributions of the conceived extension, we replicate the study
conducted in the original MORGAN paper [68] by analyzing the performances obtained with
the abovementioned enhancements, i.e., lemmatization preprocessing and the Vertex Kernel
strategy. The evaluation adheres to the configuration settings discussed in Section 6.2.3 to
avoid any bias in the comparison. We investigate if the mechanisms presented in Section
6.2.2 contribute to an increase in the overall accuracy in terms of the selected metrics, i.e.,
success rate, precision, recall, and F-measure, as well as in a gain considering the delivery
time. The experimental results are reported using violin boxplots, representing both boxplot
and density traces. This aims to bring a more informative indication of the distribution’s
shape [109], enabling us to comprehend better the magnitude of the density. To this end,

174 Assisting modelers in specifying models and metamodels

we report and analyze the experimental results by answering the three research questions
introduced in Section 6.2.3.

RQ1: Does the preprocessing step contribute to a performance gain of MORGAN? To
assess the contribution of the lemmatizer component, we compare the former version of the
tool with MORGAN equipped with the new NLP module, namely configurations C1 and C2

respectively, considering the two recommendation tasks related to the modeling activity, i.e.,
providing model classes and class members.
▷ Recommending model classes. The comparison between the two identified configurations
of MORGAN employed to support model classes recommendation are depicted in Fig. 6.21. It
is evident that by Configuration C2, MORGAN increases the overall accuracy even though the
measured improvement is negligible in terms of the considered metrics, i.e., the distribution
of the relevant items are similar to the preceding version of MORGAN. For instance, the
violin boxplots representing the success rate values shown in Fig. 6.21a span from 0.10
to 0.60 for both the considered configurations. Despite this, by C2, MORGAN slightly
improves the relevance of the delivered items since they are more uniformly distributed than
the ones retrieved by C1. This finding is confirmed by analyzing the values obtained by the
other metrics, i.e., precision, recall, and F-measure. While MORGAN suffers from some
degradation of performance in terms of precision with C2, we measure higher values for
recall, meaning that the new version of the tool reduces the number of false negatives. On the
one hand, the violin boxplot for C1 shown in Fig. 6.21b spans from 0.0 to 0.20 while the one
representing results for C2 reaches 0.10 as a maximum value. On the other hand, Fig. 6.21c
shows that MORGAN obtains a better recall by C2 compared to C1, i.e., the variance of the
results is reduced by adopting the lemmatizer component. The F-measure values depicted in
Fig. 6.21d confirm that the recommendation of model classes benefits from the introduced
enhancements, i.e., recall mitigates the lower results obtained by the precision.
▷ Recommending class members. The improvement is more evident by analyzing the
results obtained in the second modeling task, i.e., the recommendation of class members, as
depicted in Fig. 6.22. Take as an example, the obtained success rate depicted in Fig. 6.22a
ranges from 0.30 to 0.80 and from 0.40 to 1.00 by using C1 and C2, respectively. This
demonstrates that the lemmatizer component is capable of increasing the relevance of the
returned items as the success rate is increased by 10% on average. Such an improvement is
confirmed by analyzing the results obtained for precision, recall, and F-measure showed in
Fig. 6.22b, Fig. 6.22c, and Fig. 6.22d, respectively.

More specifically, the precision reaches the maximum value of 0.60 when C2 is considered.
Meanwhile, the former version of MORGAN represented by C1 earns a maximum precision

6.2 MORGAN 175

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(a) Success rate

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(b) Precision

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(c) Recall

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(d) F-Measure

Fig. 6.21 Evaluation scores for recommending model classes.

of 0.50 even though the distribution of the items is similar in terms of variance. Similarly,
the new NLP component is capable of increasing the recall by 10% on average with respect
to the former version of the tool represented by C1’s violin boxplot. Overall, adopting C2

facilitates a better performance although the delta is minimal. This issue has been already
threatened in the original work by analyzing the similarity among the models belonging to
Dα .23 We realized that the similarity of the considered models is very low, thus undermining
the capability of the approach to be more effective. This is quite expected as MORGAN is a
data-driven tool that strongly relies on the quality of the input data. Therefore, introducing an

23In the scope of the presented work, we do not report the similarity values among the considered models.
The interested readers are kindly referred to the previous version of MORGAN [68] for more detail

176 Assisting modelers in specifying models and metamodels

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(a) Success rate

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(b) Precision

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(c) Recall

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(d) F-Measure

Fig. 6.22 Evaluation scores for recommending class members.

additional preprocessing step contributes to lead better performance even with not remarkable
results.
▷ Recommending metaclasses. Similar to the previous analysis, Fig. 6.23 shows the com-
parison of the old MORGAN, i.e., C1 and the new one, i.e., C2 in recommending metaclasses.
It is clear that the proposed approach performs better in both recommendation contexts, i.e.,
all the metrics are improved by 10% on average. By considering the recommendation of
metaclasses, the boxplots show that MORGAN delivers more relevant items compared to the
former version, i.e., the overall variance is reduced by adopting the enhanced approach. Such
an improvement becomes evident by analyzing the success rate metric shown in Fig. 6.23a.
While using the original approach the corresponding violin plot spans from 0.20 to 0.80, the
recommended metaclasses are concentrated in the upper part of the diagram by adopting

6.2 MORGAN 177

the extended version of MORGAN. This means that the variance of the elements is reduced
since they are distributed from 0.30 to 0.90.

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(a) Success rate

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(b) Precision

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(c) Recall

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(d) F-Measure

Fig. 6.23 Evaluation scores for recommending metaclasses.

Similarly, the precision, recall, and F1-measure values computed with C2 are more
equally distributed with respect to the results obtained in the previous work, represented by
C1. For instance, the distribution of the precision values presented in Fig. 6.23b is centered
around 0.20 using C1, implying that most of the metaclasses are not suitable for a given
context. In contrast, adopting C2 improves the quality of the retrieved artifacts, i.e., the
corresponding violin span homogeneously. The same trend can be observed for the other
metrics, i.e., recall and F-measure shown in Fig. 6.23c and Fig. 6.23d. Altogether, this means
the new preprocessing component contributes to increasing the overall quality of the retrieved
artifacts.

178 Assisting modelers in specifying models and metamodels

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(a) Success rate

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(b) Precision

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(c) Recall

C1 C2
0.0

0.2

0.4

0.6

0.8

1.0

(d) F-Measure

Fig. 6.24 Evaluation scores for structural features.

▷ Recommending structural features. Similar to Dα , the contribution of the advanced
preprocessing step is more evident when structural features are considered. In particular,
the success rate values obtained by MORGAN equipped with the lemmatizer component
strongly confirm our findings, since the scores are concentrated on the [0.60; 1.00] range.
Meanwhile, adopting C1, i.e., the former version of MORGAN, produces less relevant
artifacts as the corresponding boxplot is scattered from 0.0 to 1.00 as shown in Fig. 6.24a.
Roughly speaking, this means that the extended version of MORGAN comes in handy
for a larger set of testing contexts, improving the overall quality of suggested structural
features. The other considered metrics remark this improvement, i.e., the distribution of
values obtained with MORGAN are greater than the ones of the original work, though the
delta is less noticeable compared to the success rate metric. As shown in Fig. 6.24b, the

6.2 MORGAN 179

precision values obtained by using C2 are very similar to those computed by using C1, i.e., the
former version of MORGAN. Nonetheless, we observe that most of the values are centered
around 0.50 and 0.60 considering C1 and C2 respectively, meaning that the lemmatizer
component improves the quality of the retrieved items even in a small percentage of cases.
This finding is confirmed by the recall values as the violin plot depicted in Fig. 6.24c have
almost a similar shape. Figure 6.24d eventually summarizes the obtained enhancements by
showing the F-measure results for the two examined configurations. It is worth noting that
C2’s violin plot reaches 0.85 as a maximum while C1 distribution stops at 0.80. This can be
explained by observing the recall boxplot since the one representing precision has the same
shape. Thus, the decrease of the variance in the recommended items distribution is almost led
by recall, as the F-measure score represents the harmonic mean of the two aforementioned
metrics.

To better understand the contribution of the new configuration, we compute two widely
used statistical tests on the two populations, i.e., Wilcoxon rank sum test adjusted p-values
and Cliff’s d. Table 6.16 summarizes the obtained results considering the average values
of the metrics for both Dα and Dβ datasets. Concerning the former, we observe that the
introduction of the new kernel has a negligible effect on the results as confirmed by the
two statistical tests. Furthermore, the aggregated precision, recall, and F1 values are almost
the same in both cases, meaning that adopting Configuration C2 does not lead to a better
performance. Such a negative result can be explained by the heterogeneity of the Java models
belonging to Dα . Essentially, the introduction of the new kernel is not enough to obtain better
results when Dα is considered. In contrast, we observe an improvement when MORGAN is
equipped with the Vertex Histogram kernel on Dβ , i.e., MORGAN achieves better average
success rate, precision, and recall scores than the ones achieved from the previous version for
both metaclasses and structural features recommendations. Though the improvement is not
statistically significant, the aggregate values show that MORGAN equipped with C2 leads to
better results by considering a more curated dataset.

Answer to RQ1. Compared to the former version, MORGAN improves its performance by
adopting refined preprocessing strategies, i.e., lemmatization instead of stemming. Though such
improvements impact mostly on success rate, the enhanced preprocessing increases the probability
of retrieving valuable artifacts.

RQ2: How does the vertex histogram kernel function impact on the computational effi-
ciency? With the aim of assessing to what extent the time of recommendations can be
improved, we compared the former version of the system with the one that exploits the Vertex
Histogram kernel as a recommendation engine, i.e., considering C1 and C3. To this end,

180 Assisting modelers in specifying models and metamodels

Table 6.16 Average prediction scores, Wilcoxon rank sum test adjusted p-values and Cliff’s d
results.

Dα Dβ

Class members Classes Structural features Metaclasses
C1 C2 C1 C2 C1 C2 C1 C2

Avg. Success rate 0.36±0.48 0.36±0.47 0.22±0.41 0.21±0.41 0.97±0.15 0.99±0.09 0.66±0.47 0.73±0.44
Avg. Precision 0.05±0.13 0.06±0.13 0.04±0.11 0.04±0.09 0.48±0.30 0.70±0.28 0.50±0.43 0.56±0.41
Avg. Recall 0.03±0.12 0.03±0.08 0.08±0.20 0.07±0.20 0.40±0.26 0.74±0.25 0.41±0.38 0.51±0.38
Avg. F-Measure 0.03±0.10 0.03±0.07 0.04±0.10 0.04±0.09 0.57±0.23 0.86±0.22 0.39±0.40 0.54±0.42
Wilcoxon p-value2 0.6486 0.2149 0.0856 0.6812
Cliff’s d results 2 -0.01295 (n)1 -0.0122 (n)1 -0.0142 (n)1 -0.0877 (n)1

1 magnitude values l:large, s:small, n:negligible.
2 Both Wilcoxon rank sum test adjusted p-values and Cliff’s d results are computed on the success rate scores.

we analyze the computational efficiency in terms of (i) training time needed to learn the
encoded features in the models and (ii) testing time, namely the time needed to get a set of
recommendations given the modeler’s context. Similar to the previous research question, we
conducted such an evaluation by considering the two datasets of the original work, i.e., Dα

and Dβ . Furthermore, we investigate how the type of recommended item could affect the
system from the computational point of view, i.e., if recommending metamodel classes or
their structural features can lead to a different execution time. Table 6.17 summarizes the
results of the comparison between the two aforementioned configurations when models are
considered.

The measured time shows that augmenting MORGAN with Vertex Histogram results in
better computational efficiency. Considering the training phase, the benefit of adopting the
novel kernel is more evident for the recommendation of class members, i.e., the required time
decreases from 7,815 to 923 seconds on average. Furthermore, this operation takes 7,570
and 1,242 seconds for model classes when C1 and C3 are enabled respectively. The Vertex
Histogram contributes also to reducing the whole testing time, i.e., Configuration C3 takes
101 and 166 seconds for classes and their members respectively. Meanwhile, the former
version of MORGAN that adopts C1 requires 689 seconds to recommend model classes
and 868 seconds for the considered members. Furthermore, we measure the time required
to produce the recommendations for a single model. It is evident that Vertex Histogram
performs better compared to the Weisfeiler-Lehman kernel, i.e., the needed time decreases
from 4 to 0.6 and from 5 to 1 seconds for classes and members recommendations respectively.

Concerning Dβ , the results confirm that equipping MORGAN with Vertex Histogram
helps speed up the overall recommendation process, i.e., MORGAN gets a better prediction
when running with C3 instead of C1 by both considered metrics. In particular, the time
required using C1 for the training phase is 120 seconds on average for the metaclasses while
adopting C3 needs 17 seconds considering the same amount of data. Similarly, the same

6.2 MORGAN 181

Table 6.17 Timing performance on Dα (seconds).

Classes Class members
Operation C1 C3 C1 C3
Preprocessing 7,570 1,242 7,815 923
Testing 689 101 868 166
Single rec. 4.0 0.6 5.0 1.0

trend can also be seen for structural features since MORGAN equipped with the new kernel
module reduces the whole training time from 153 to 51 seconds.

Table 6.18 Timing performance on Dβ (seconds).

Metaclasses Structural features
Operation C1 C3 C1 C3
Preprocessing 120 17 153 51
Testing 14 9 14 9
Single rec. 1.0 0.2 1.5 0.3

By the testing operation, the tool requires 14 and 9 seconds when C1 and C3 are adopted,
respectively. It is worth mentioning that the computed time is the same for both metaclasses
and structural features. This finding can be explained by considering the average dimension
of the metamodels belonging to the Dβ dataset, i.e., they include a small number of structural
features of each metaclass. Therefore, the recommendation phase takes almost the same time
for the two aforementioned metamodel artifacts.

This claim is confirmed by analyzing the time needed for a single recommendation, i.e.,
it is almost the same for a single model considering both kernels. It is evident that C3 leads
to better performances compared to the results obtained by running MORGAN with C1. In
particular, recommending a set of classes and structural features requires 0.2 and 0.3 seconds
respectively by adopting C3. Meanwhile, MORGAN equipped with the Weisfeiler-Lehman
kernel takes 1.0 and 1.5 seconds on average for the two recommendation tasks.

Altogether, Vertex Histogram improves the computation efficiency in all the considered
scenarios, i.e., the recommendation of models and metamodels artifacts. However, MOR-
GAN’s overall accuracy may decrease as we are employing a different technique. Therefore,
we replicate the analysis conducted in the previous research question by comparing C1 and
C3 in terms of the considered metrics, i.e., success rate, precision, recall, and F-measure.

182 Assisting modelers in specifying models and metamodels

Table 6.19 shows the comparison by considering the average values of the mentioned metrics
considering models, i.e., Dα .

Table 6.19 Comparison between C1 and C3 considering Dα .

Classes Class members
Metrics C1 C3 C1 C3
Success rate 0.21 0.23 0.63 0.64
Precision 0.03 0.05 0.27 0.29
Recall 0.08 0.09 0.10 0.11
F-measure 0.04 0.06 0.11 0.12

It is evident that the novel graph kernel preserves the overall accuracy of the original
work, i.e., all the metrics are improved on average. In particular, the introduction of Vertex
Histogram leads to better results in recommending the two types of model artifacts, i.e.,
classes and their corresponding members. For instance, the success rate measured for model
classes passes from 0.21 to 0.23 when C3 is considered. Similarly, the other metrics are
improved by 1% on average with respect to C1. Similarly, MORGAN equipped with the
new kernel strategy achieves better performance when class members are considered even
though the delta is negligible. Nonetheless, Vertex Histogram aims to improve computational
efficiency in the first place since better performance in terms of observed metrics is obtained
by means of the new preprocessing component.

Table 6.20 Comparison between C1 and C3 considering Dβ .

Metaclasses Structural features
Metrics C1 C3 C1 C3
Success rate 0.60 0.62 0.72 0.78
Precision 0.30 0.33 0.46 0.49
Recall 0.44 0.45 0.31 0.32
F-measure 0.33 0.35 0.34 0.36

Table 6.20 confirms that MORGAN’s prediction scores are not hampered by the intro-
duction of the new graph kernel. The table shows that the examined metrics are improved
up to 2% apart from the success rate measured for structural features, i.e., its score reaches
0.78 using C3 while using C1 yields 0.72 as the maximum. Such an improvement can be
explained by considering the strong similarity among the considered metamodels. Altogether,

6.2 MORGAN 183

the observed results demonstrate that the contribution of the Vertex Histogram nurtures better
results with respect to accuracy alongside the time required for the whole recommendation
process.

Answer to RQ2. Equipping MORGAN with the Vertex Histogram kernel helps improve the
computation efficiency. Moreover, the overall prediction accuracy has also been slightly enhanced,
meaning that the kernel strategy contributes to a performance gain, albeit marginal.

RQ3: How effective is MORGAN at recommending JSON schema elements? To examine
the generalizability of the tool, we assess MORGAN’s capability of supporting the two
modeling completion tasks over the Dγ dataset composed of JSON schema, namely root
properties and the nested ones that can be mapped to metaclasses and structural features
respectively as discussed in Section 6.2.1. Thus, we conduct the same evaluation presented
in the previous subsections by using the configuration that embodies the novel components
presented in this extension, i.e., Configuration C4, that includes the lemmatizer component
and the Vertex Histogram kernel.
▷ Recommending JSON root properties.
Figure 6.25 shows the results obtained when MORGAN is employed to recommend JSON
schema properties given an incomplete model. It is worth mentioning that the success rate
score span from 0.2 to 1.00. This means that MORGAN recommends at least one correct
property in almost all of the examined contexts. In contrast, we experience some performance
degradation when the other metrics are considered. For instance, the precision boxplot ranges
from 0.0 to 0.40, i.e., relevant properties are recommended with a low probability on average.
In this respect, these results are similar to the ones obtained for the models belonging to
Dα . This finding is confirmed by the recall values as the number of items properly delivered
is higher, i.e., the maximum value reaches 0.60. The distribution of the F-measure values
resembles the precision ones, suggesting that false positives have a negative effect on the
overall performances. By carefully inspecting the results, we observe that the Dγ dataset is
very heterogeneous since all the schema have been extracted from GitHub repositories. Thus,
such degradation of performance is due to the nature of the considered data even though the
novelties introduced in the approach mitigates this issue.
▷ Recommending JSON nested properties. Figure 6.26 summarizes the results obtained
by MORGAN in recommending nested JSON properties. Similar to the two examined
datasets in Section 6.1.4, the tool obtains better results compared to the root properties
recommendations. For instance, the success rate achieves 0.70 on average as we can observe
from the corresponding boxplot. Furthermore, the majority of the values span from 0.60 to
0.90, meaning that nested properties have been recommended in most of the cases. A similar

184 Assisting modelers in specifying models and metamodels

Success rate Precision Recall F-Measure
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6.25 Evaluation scores for recommending JSON root properties.

trend can be observed by analyzing the precision violin plot even though the average value is
around 0.60. However, MORGAN suffers from some degradation in performance in terms
of recall, i.e., the corresponding violin plot spans from 0 to 0.80, with an average value of
0.30. In other words, the system fails to detect false negatives when JSON nested properties
are considered. This impacts negatively on the F-measure metric as the corresponding violin
plot has a similar shape compared to the recall one. Despite this, the conducted study aims to
demonstrate the capability of MORGAN in recommending different modeling artifacts other
than Ecore models and class diagrams. It is our firm belief that improving the quality of the
considered JSON schema will lead to a better accuracy. For instance, we can enhance the
feature extraction process to include more relevant data embedded in a JSON schema, e.g.,
the type of the properties.

At the current stage of development, the system can provide (i) attributes and relationships
to enrich a class or (ii) a list of similar classes considering the corresponding structural
features. In principle, we could adapt the conceived parser module to extract relevant
features from any kind of modeling artifacts. Therefore, MORGAN can possibly support
the completion of a state machine model under construction if being properly trained with
models, i.e., a dataset composed of state machine models with a decent number of transitions.
However, the final accuracy depends a lot on the quality of training data. Altogether,
completion of state machine models is possible under certain conditions, i.e., the availability
of a proper dataset, and the refactoring of the parser component. This, however, needs to be
validated with real-world datasets, and we consider it as our future work.

Answer to RQ3. MORGAN succeeds in supporting JSON schema completion even though we
experienced some degradation in performance for some metrics, i.e., the recall scores are very low.
Such negative results might be mitigated by improving the quality of the input schemas.

6.2 MORGAN 185

Success rate Precision Recall F-Measure
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6.26 Evaluation scores for recommending JSON nested properties.

To further study the tool’s performance on a recent data, we extract two different datasets
from ModelSet, namely Dδ and Dε , by using the provided API. Table 6.21 summarize the
results obtained by MORGAN on Dδ . Similar to RQ3, we employ Configuration C4 to
conduct the experiment for this research question. It is worth noting that the results are similar
to the ones obtained FOR Dα , meaning that the degree of similarity among the artifacts is
almost the same. Concerning Dδ , MORGAN obtains better performances in recommending
metaclasses, i.e., all the scores are higher compared to the ones obtained for the structural
features. In particular, the recall achieves 0.45 in recommending metaclasses while it stops at
0.28 for structural features. In other words, the number of false negatives is fewer when the
metaclasses are considered. Concerning the time for a single recommendation, MORGAN
is very fast, i.e., retrieving the suggested item requires only 0.04 and 0.03 seconds for
metaclasses and structural features respectively. Nevertheless, the required time strongly
depends on the size of the considered artifacts, thus leading to some scalability issues if a
larger dataset is considered. In fact, MORGAN is faster on Dδ compared to Dα because the
considered metamodels are smaller in terms of the number of attributes and relationships.

Table 6.21 Evaluation scores for Dδ .

Metric Metaclasses Structural features
Success rate 0.62 0.59
Precision 0.34 0.15
Recall 0.45 0.28
F-Measure 0.31 0.15
Single rec. 0.04 0.03

A similar trend can be observed for Dε , i.e., recommending UML classes leads to
better performances as shown in Table 6.22. Even though the success rate is slightly lower,
i.e., 0.58 and 0.62 for classes and class members respectively, the other metrics confirm
that MORGAN obtains better results in recommending the class entities compared to the
former model dataset, i.e., Dα . This is quite expected since we extracted those models

186 Assisting modelers in specifying models and metamodels

by using MoDisco from Java projects while Dε is composed of a curated list of UML
models. Despite this, the scalability issue is confirmed by observing the required time for
a single recommendation, i.e., MORGAN takes 0.20 seconds to suggest a list of relevant
UML classes. Though the time required for the class attributes is slightly lower, i.e., 0.13
seconds, it is evident that augmenting the complexity of the graphs can hamper the timing
performance of the tool. Altogether, the conducted analysis suggests that the dataset curation
process contributes to achieving better results even though the scalability of the approach is
compromised.

Table 6.22 Evaluation scores for Dε .

Metric Classes Class members
Success rate 0.56 0.61
Precision 0.24 0.15
Recall 0.33 0.19
F-Measure 0.20 0.13
Single rec. 0.21 0.13

Answer to RQ4. The obtained results obtained by considering ModelSet are comparable with
the ones reported in the previous analysis, though MORGAN suffers from the scalability issue if
complex graphs are considered.

6.2.5 Threats to validity

We discuss the threats that could impact on the validity of the study’s outcomes. Moreover,
we also identify possible countermeasures to mitigate them.

Threats that arose in the former work internal validity were related to two aspects, i.e.,
the graph kernel similarity and the employed encoding scheme, including the preprocessing
of the input models. Concerning the former, we enhance the underpinning kernel similarity
by adopting the Vertex Histogram technique. In such a way, we increase the computational
efficiency by reducing the whole recommendation time even for large graphs. Concerning
the latter, the preprocessing phase might miss relevant data, i.e., stemming does not consider
the semantics of the examined terms, leading to possible loss of features during the encoding
phase. To minimize the threat, we employed lemmatization in the preprocessing pipeline
to augment the overall accuracy of the tool. Moreover, the conducted evaluation on the
ModelSet datasets reveals that MORGAN suffers from scalability issues if the size of the
training data is increased. To mitigate this threat, further study on the underpinning algorithm
is needed, and we leave this as a possible future work. The selection of JSON schema as
modeling activity may hamper the external validity of our findings. Though they conform

6.3 Conclusion 187

to a well-defined metamodel, the internal structure is completely different from that of the
artifacts examined in the original work. To tackle this issue, we adapted MORGAN’s encoder
component by introducing a tailored parser for JSON schema to obtain the same format used
for the other artifacts, i.e., models and metamodels. Furthermore, the results in terms of
accuracy might be undermined by the quality of the considered schemas, i.e., the similarity
among the JSON belonging to the dataset. We mitigate this threat by applying a set of quality
filters on the JSON schemas crawled from GitHub i.e., duplicates removal, parsing, and
conformance check

6.3 Conclusion

Modelers are facing an overload of information in their daily tasks, and this triggers the need
for decent machinery to assist them in choosing suitable sources of information. Though
various modeling frameworks are in place, there is still a lack of automated assistance which
can help modelers ease the burden of the modeling activities.

In this chapter, we present two recommender systems that exploits two different automatic
techniques to assist modelers, i.e., collaborative filtering and graph kernels. MemoRec covers
the specification of metamodels by encoding their contents in four different schemes. After-
ward, the tool built rating matrices and applied a syntactic-based similarity function to predict
missing items, i.e., classes and structural features. An evaluation on two independent datasets,
i.e., D1 and D2, and four encoding schemes, i.e., SEs, IEs, SEc, and IEc, exploiting ten-fold
cross-validation demonstrates that MemoRec is able to provide decent recommendations.

We made a step further by proposing MORGAN, a modeler assistant that supports the
specification of both metamodels and models by relying on graph kernels. The first version
of the tool employs the Weisfeiler-Lehman kernel to support the completion of metamodels
and class diagram extracted from Java projects by using Modisco tool. In this dissertation,we
present an extended version that introduces the lemmatization step in the preprocessing phase.
Furthermore, we equipped the recommendation engine with a more efficient kernel similarity
function, helping the system to obtain more relevant results in less time. An empirical
evaluation of five real-world datasets demonstrated that MORGAN is applicable in different
application domains, even though we experiment the scalability issue when a larger training
set is considered.

Chapter 7

Challenges and lessons learned from the
conceived RSSEs

So far, we have presented a series of RSSEs that support different applications domain.
Besides the ones that are part of CROSSMINER architecture, a set of additional software as-
sistants have been developed and evaluated following the methodology framework presented
in Chapter 3. Although the presented approaches obtained good performances, we experi-
enced various issues during the actual development phase of such new additional systems.
For instance, the lack of proper training data to support modeling activity is an open challenge
that we didn’t address in the CROSSMINER project. Therefore, this chapter discusses the
challenges and lessons learned elicited from the developed RSSEs. We present the takeaways
of the CROSSMINER by reporting part of the content published in [67], including the main
design features elicited from the existing literature. In particular, development challenges
(DC) have been grouped

In the following sections, such steps are described in detail. For each of them, we discuss
the challenges we had to overcome and the difficulties we had while conceiving the tools
as asked by the projects’ use-case partners. The methods we employed to address such
challenges are presented together with the corresponding lessons learned.

An overview of all the challenges and lessons learned are shown in the map depicted in
Fig. 7.1. For the sake of readability, challenges related to the requirement, development, and
evaluation phases are identified with the three strings RC, DC, and EC, respectively, followed
by a cardinal number. Similarly, the lessons learned are organized by distinguishing them
with respect to the requirement (RLL), development (DLL), and evaluation (ELL) phases.

Outline of the chapter: In Section 7.1, we review the challenges and lessons learned
related to requirements elicitation. Afterward, Section 7.2 presents how the identified

190 Challenges and lessons learned from the conceived RSSEs

Requirement Challenges

Development Challenges

Challenges Lessons learned

Recommedation Systems
in Software Engineering

Evaluation Challenges

DC1 - Measuring similarities among software systems
DC2 - Curating a dataset for training and testing API
recommenders requires significant effort

DC8 - Encoding modeling artifacts requires extra effort with
respect to traditional SE ones

EC1 - Identification of the suitable evaluation methodology
EC2 - Identification of the datasets that are eligible and
available for evaluation
EC3 - Identification of the baseline(s) to compare with
EC4 - Quantitative evaluation could be not suitable
 for modeling assistant

RLL1 - Importance of a clear requirement definition process
RLL2 - Users skepticism
RLL3 - Importance of pilot applications

Related to the Development phase

DLL1 - Selecting the right representation can be of paramount importance

DLL6 - The encoding for the modeling artifact can be generalized

DLL5 - Applying the reduction rule helps multilabel classifiers in gaining
higher accuracy

DLL4 - LSTMs can be used to recommend cohesive API function calls

DLL3 - Start first with the techniques you already know
and move on from there

DLL2 - Do not pretend to immediately find the optimal solution
 (move on iteratively)

ELL5 - Novelty and diversity are good indicators that are worth
considering

ELL4 - Candidate baselines might not be reusable

ELL3 - The quality of data depends on the particular
application domain of interest

DC3 - Capturing temporal relation between API calls requires a
dedicated data structure
DC4 - Selection of the right ML algorithms
DC5 - Standard NLP pipeline is not enough
to preprocess GitHub topics

DC7 - Usage of reusable heterogeneous components
to develop new recommendation systems

RC1 - Clear understanding of the recommendation
systems that are needed by the end users

ELL1 - User studies are cumbersome, and they can take a long time
 to be conducted and completed
ELL2 - In certain contexts, the k-fold cross-validation technique is a good
alternative to user studies

Related to the Evaluation phase

Related to the Requirement phase

DC6 - Creation of training datasets for Bayesian
networks

Fig. 7.1 Map of challenges and lessons learned.

challenges have been addressed in CROSSMINER and the lessons learned are discussed
in Section 7.3. Finally, we conclude the chapter in Section 7.4 by summarizing the gained
experience in recommending heterogeneous software components.

7.1 Challenges and lessons learned related to requirements
elicitation

RC1 - Clear understanding of the recommender systems that are needed by the end
users: Getting familiar with the functionalities that are expected from the final users of
the envisioned recommender systems is a daunting task. We might risk spending time on
developing systems that are able to provide recommendations, which instead might not be
relevant and in line with the actual user needs.

To deal with such a challenge and thus mitigate the risks of developing systems that might
not be in line with the user requirements, we developed proof-of-concept recommender

7.1 Challenges and lessons learned related to requirements elicitation 191

Fig. 7.2 pom.xml files of a project before (left) and after (right) having adopted third-party
libraries recommended by CrossRec.

systems. In particular, we implemented demo projects that reflected real-world scenarios
in terms of explanatory context inputs and corresponding recommendation items that the
envisioned recommender systems should have produced. For instance, concerning CrossRec,
we experimented on the jsoup-example1 explanatory Java project for scraping HTML pages.
This project consists of source code and few related third-party libraries already included,
i.e., json-soup2 and junit3 as shown in the left-hand side of Fig. 7.2.

By considering such project as input, CrossRec provides a list of additional libraries as
a suggestion that the project under development should also include. For instance, some
beneficial libraries to be recommended are as follows:

(i) gson4 for manipulating JSON resources; (ii) httpclient5 for client-side authentication,
HTTP state management, and HTTP connection management; and (iii) log4j6 to enable
logging at runtime. By carefully examining the recommended libraries, we see that they
have a positive impact on the project. To be concrete, the usage of the httpcomponent library
allows the developer to access HTML resources by unloading the result state management
and client-server authorization implementation on the library; meanwhile gson could provide

1https://github.com/MDEGroup/FOCUS-user-evaluation
2https://jsoup.org/
3https://junit.org/
4https://github.com/google/gson
5https://hc.apache.org/
6https://logging.apache.org/

https://github.com/MDEGroup/FOCUS-user-evaluation
https://jsoup.org/
https://junit.org/
https://github.com/google/gson
https://hc.apache.org/
https://logging.apache.org/

192 Challenges and lessons learned from the conceived RSSEs

a parallel way to crawl public Web data; finally introducing a logging library, i.e., log4j, can
improve the project’s maintainability.

Concerning FOCUS, the process was a bit different, i.e., use-case partners were providing
us with incomplete source code implementation and their expectations regarding useful
recommendations. Such artifacts were used as part of the requirements to implement the
system able to resemble them. The use-case partner expects to get code snippets that include
suggestions to improve the code, and predictions on next API function calls.

To agree with the use-case partners on the recommendations that were expected from
FOCUS, we experimented on a partially implemented method of the jsoup-example project
named getScoresFromLivescore shown in Listing 7.1. The method should be designed so as
being able to collect the football scores listed in the livescore.com home page. To this end, a
JSON document is initialized with a connection to the site URL in the first line. By using the
JSOUP facilities, the list of HTML element of the class sco is stored in the variable score in
the second line. Finally, the third line updates the scores with all of the parents and ancestors
of the selected scores elements.

Listing 7.1 Partial implementation of the explanatory getScoresFromLivescore() method.

public static void getScoresFromLivescore()

throws IOException {

Document document =

Jsoup.connect("https://www.livescore.com/").get();

Elements scores =

document.getElementsByClass("sco");

scores = scores.parents();

...

}

Figure 7.3 depicts few recommendations that our use-case partners expected when we
presented the example shown in Listing 7.1. The blue box contains the recommendation
for improving the code, i.e., the userAgent method is to prevent sites from blocking HTTP
requests, and to predict the next jsoup invocation. Furthermore, some recommendations could
be related to API function calls of a competitor library or extension. For this reason, the green
and red boxes contain invocations of HTMLUnit,7 a direct competitor of jsoup that includes
different browser user agent implementations, and jsoupcrawler a custom extension of jsoup.
FOCUS has been conceptualized to suggest to developers recommendations consisting of
a list of API method calls that should be used next. Furthermore, it also recommends real
code snippets that can be used as a reference to support developers in finalizing the method

7http://htmlunit.sourceforge.net/

livescore.com
http://htmlunit.sourceforge.net/

7.1 Challenges and lessons learned related to requirements elicitation 193

Fig. 7.3 Recommended API calls for the getScoresFromLivescore() method in Listing 7.1.

definition under development. More code examples provided by FOCUS are available in an
online appendix.8

7.1.1 Lessons learned

RLL1 – Importance of a clear requirement definition process: To address Challenge
RC1, we applied the requirement definition process shown in Fig. 7.4, which consists of the
following steps and that in our opinion can be applied even in contexts that are different from
the CROSSMINER one:

– Requirement elicitation: The final user identifies use cases that are representative
and that identify the functionalities that the wanted recommender systems should
implement. By considering such use cases, a list of requirements is produced;

– Requirement prioritization: The list of requirements produced in the previous step can
be very long, because users tend to add all the wanted and ideal functionalities even
those that might be less crucial and important for them. For this reason, it can be useful
to give a priority to each requirement in terms of the modalities shall, should, and
may. Shall is used to denote essential requirements, which are of highest priority for
validation of the wanted recommender systems. Should is used to denote a requirement
that would be not essential even though would make the wanted recommender systems
working better. May is used to denote requirements that would be interesting to satisfy
and explore even though irrelevant for validating the wanted technologies;

8https://github.com/crossminer/FOCUS

https://github.com/crossminer/FOCUS

194 Challenges and lessons learned from the conceived RSSEs

Fig. 7.4 Requirement definition process.

– Requirement analysis from the existing literature: The prioritized list of requirements
has been extracted from the current literature with the aim of identifying the major
components that need to be developed. Possible technological challenges that might
compromise the satisfaction of some requirements are identified in this step and
considered in the next step of the process;

– Requirement consolidation and final agreement: By considering the results of the
analysis, the list of requirements is further refined and consolidated. After this step,
user case partners have ensured highest priority requirements, which will ended up
with the development of the actual RSSEs.

We have applied such a process in different projects and we successfully applied it also for
developing the recommender systems that we identified in the context of the CROSSMINER
project.

RLL2 – Users skepticism: Especially at the early stages of the wanted recommender
systems development, target users might be skeptical about the relevance of the potential
items that can be recommended.

We believe that defining the requirements of the desired recommender systems in tight
collaboration with the final users is the right way to go. Even when the proposed approach
has been evaluated employing adequate metrics, final users still might not be convinced about
the retrievable recommendations’ relevance. User studies can be one of the possible options
to increase the final users’ trust, even though a certain level of skepticism might remain when
the intended final users have not been involved in the related user studies.

RLL3 – Importance of pilot applications: Using a pilot application can be beneficial
to support the interactions between the final users and the developers of the wanted
recommender systems.

The application can allow the involved parties to tailor the desired functionalities utilizing
explanatory inputs and corresponding recommendations that the envisioned system should
produce.

7.2 Challenges and lessons learned related to development 195

7.2 Challenges and lessons learned related to development

Once each RSSE has been developed, we conduct a careful analysis to identify the most chal-
lenging aspect in each phase of the process, i.e., requirement elicitation, actual development,
and the outcomes evaluation.

Presenting Recommendations: As the last phase, the produced recommendation items need
to be properly presented to the developer. To this end, several strategies involve potentially
different technologies, including the development of extensions for IDEs and dedicated Web-
based interfaces. IDEIntegration offers several advantages, i.e., auto-complete shortcuts
and dedicated views showing the recommended items. The integration is usually performed
by the development of a plug-in, as shown in existing recommender systems [151, 203].
Nevertheless, developing such an artifact requires much effort, and the integration must take
into account possible incompatibilities among all deployed components. A more flexible
solution is represented by WebInterfaces in which the recommendation system can be
used as a stand-alone platform. Even though the setup phase is more accessible rather
than the IDE solution, presenting recommendations through a web service must handle
some issues, including server connections, and suitable response times. For presentation
purposes, interactive data structures might be useful in navigating the recommended items.
TraversableGraph is just one successful example of this category. Strathcona [112] makes
use of this technique to show the snippets of code rather than simply retrieving them as
ranked lists. In this way, final users can figure out additional details about the recommended
items.

Development challenges for CrossSim and CrossRec In OSS forges like GitHub, there
are several connections and interactions, such as development commit to repositories, user
star repositories, or projects contain source code files, to mention a few.

DC1 – Measuring similarities among software systems Considering the miscellaneous-
ness of artifacts in open source software repositories, similarity computation becomes
more complicated as many artifacts and several cross relationships prevail.

To conceptualize CrossSim [184], we came up with the application of a graph-based repre-
sentation to capture the semantic features among various actors, and consider their intrinsic
connections. We modeled the community of developers together with OSS projects, libraries,
source code, and their mutual interactions as an ecosystem. In this system, either humans or
non-human factors have mutual dependencies and implications on the others. Graphs allow
for flexible data integration and facilitates numerous similarity metrics [32].

196 Challenges and lessons learned from the conceived RSSEs

We decided to adopt a graph-based representation to deal with the project similarity issue
because some of the co-authors already addressed a similar problem in the context of Linked
Data. The analogy of the two problems inspired us to apply the similarity technique already
developed [178] to calculate the similarity of representative software projects. The initial
evaluations were encouraging and consequently, we moved on by refining the approach and
improving its accuracy.

Despite the need to better support software developers while they are programming,
very few works have been conducted concerning the techniques that facilitate the search for
suitable third-party libraries from OSS repositories. We designed and implemented CrossRec
on top of CrossSim: the graph representation was exploited again to compute similarity
among software projects, and to provide inputs for the recommendation engine.

Understanding the features that are relevant for the similarity calculation was a critical
task, which required many iterations and evaluations. For instance, at the beginning of the
work we were including in the graph encoding information about developers, source code,
GitHub star events when available, etc. However, by means of the performed experiments,
we discovered that encoding only dependencies and star events is enough to get the best
performance of the similarity approach [184].

To sum up, concerning the features shown in Fig. 3.2, both CrossSim and CrossRec make
use of a graph-based representation for supporting the Data Preprocessing activity. Con-
cerning the Producing Recommendation phase, item-based collaborative filtering techniques
have been exploited. For the Capturing Context phase, the project being developed is en-
coded in terms of different features, including used third-party libraries, and README files.
Recommendations are presented to the user directly in the used Eclipse-based development
environment.

Development challenges for FOCUS and LUPE During the development process, rather
than programming from scratch, developers look for libraries that implement the desired
functionalities and integrate them into their existing projects [180]. For such libraries, API
function calls are the entry point which allows one to invoke the offered functionalities.
However, in order to exploit a library to implement the required feature, programmers need to
consult various sources, e.g., API documentation to see how a specific API instance is utilized
in the field. Nevertheless, from these external sources, there are only texts providing generic
syntax or simple usage of the API, which may be less relevant to the current development
context. In this sense, concrete examples of source code snippets that indicate how specific
API function calls are deployed in actual usage, are of great use [167].

7.2 Challenges and lessons learned related to development 197

Several techniques have been developed to automate the extraction of API usage pat-
terns [219] in order to reduce developers’ burden when manually searching these sources
and to provide them with high-quality code examples. However, these techniques, based on
clustering [193, 276, 298] or predictive modeling [83], still suffer from high redundancy and
poor run-time performance.

By referring to the features shown in Fig. 3.2, differently from other existing approaches
which normally rely on clustering to find API calls, FOCUS implements a context-aware
collaborative-filtering system that exploits the cross relationships among different artifacts in
OSS projects to represent them in a graph and eventually to predict the inclusion of additional
API invocations. Given an active declaration representing the user context, we search for
prospective invocations from those in similar declarations belonging to comparable projects.
Such a phase is made possible by a proper data preprocessing technique, which encodes the
input data by means of a tensor. The main advantage of our tool is that it can recommend
real code snippets that match well with the development context. In contrast with several
existing approaches, FOCUS does not depend on any specific set of libraries and just needs
OSS projects as background data to generate API function calls. More importantly, the
system scales well with large datasets using the collaborative-filtering technique that filters
out irrelevant items, thus improving efficiency. The produced recommendations are shown to
the users directly in the Eclipse-based IDE.

DC2 - Curating a dataset for training and testing API recommenders requires
significant effort: To provide input data in the form of a tensor, it is necessary to parse
projects for extracting their constituent declarations and invocations.

A major obstacle that we needed to overcome when implementing FOCUS is as follows.
To provide input data in the form of a tensor, it was necessary to parse projects to extract
their constituent declarations and invocations. However, FOCUS relies on Rascal [25] to
function, which in turn works only with compilable Java source code. To this end, we
populated training data for the system from two independent sources. First, we curated a set
of Maven jar files which were compilable by their nature. Second, we crawled and filtered
out to select only GitHub projects that contain informative .classpath, which is an essential
requirement for running Rascal. Once the tensor has been properly formulated, FOCUS
can work on the collected background data, being independent of its origin. One of the
considered datasets was initially consisting of 5,147 Java projects retrieved from the Software
Heritage archive [64]. To satisfy the baseline constraints, we first restricted the dataset to the
list of projects that use at least one of the considered third-party libraries. Then, to comply
with the requirements of FOCUS, we restricted the dataset to those projects containing at
least one pom.xml file. Because of such constraints, we ended up with a dataset consisting of

198 Challenges and lessons learned from the conceived RSSEs

610 Java projects. Thus, we had to create a dataset ten times bigger than the used one for
the evaluation. Concerning LUPE, we feed the system with two different types of software
artifacts, i.e., Android and Maven projects. The former has been extracted by mining Android
Time machine repositories to collect .apk files. The latter has been extracted by relying on
a curated version of Maven dependency graph dataset. Starting from the mined data, we
excerpt four different datasets reported in Table 7.1. In particular, we obtain DS2 and DS3S by
eliciting a subset of projects and invocations from DS1 and DS3 respectively. The rationale
is two-fold. On one hand, we are interested in analyzing the variation of performance when a
smaller amount of data is considered. On the other hand, larger datasets are not suitable to
compare LUPE with the considered baselines, i.e., GAPI and FACER.

DC3 - Capturing temporal relation between API calls requires a dedicated data
structure : To give cohesive recommendations in terms of API, we need to identify the
cause-and-effect relationship in the considered API sequences.

The main development challenges concern the encoding of the API sequence to feed
the encoder-decoder architecture. In this respect, we mined the Android projects to extract
the API function calls and declarations. Afterward, we use a dedicated component to build
sequences that preserve the structure of the source code, i.e., Sequence encoder. In particular,
we create a vocabulary where each API has a unique numeric ID. In such a way, LUPE
creates one-hot vectors that have been used to build matrices that preserves the semantic
among the considered API calls.

Development challenges of MNBN and HybridRec In recent years, GitHub has been
at the forefront of platforms for storing, analyzing and maintaining the community of OSS
projects. To foster the popularity and reachability of their repositories, GitHub users make
daily usage of the star voting system as well as forking [35, 121]. These features allow for
increasing the popularity of a certain project, even though the search phase has to cope with
a huge number of items. To simplify this task, GitHub has introduced in 2017 the concept
of topics, a list of tags aiming to describe a project in a succinct way. Immediately after
the availability of the topics concept, the platform introduced Repo-Topix [84] to assist
developers when creating new projects and thus, they have to identify representative topics.
Though Repo-Topix is already in place, there are rooms for improvements, e.g., in terms of
the coverage of the recommended topics, and of the underpinning analysis techniques. To
this end, we proposed MNBN [72], an approach based on a Multinomial Naive Bayesian
network technique to automatically recommend topics given the README file(s) of an input
repository.

7.2 Challenges and lessons learned related to development 199

The main challenges related to the development of MNBN concern three main dimensions
as follows: (i) identification of the underpinning algorithm, (ii) creation of the training
dataset, and (iii) usage of heterogeneous reusable complements, and they are described
below.

DC4 – Selection of the right ML algorithms: Due to the well-known no-free lunch
theorem that holds for any Machine Learning (ML) approach [286], selecting the suitable
model for the problem at hand is one of the possible pitfalls.

Concerning the Machine Learning domain, all relevant results have been obtained through
empirical observations undertaken on different assessments. Thus, to better understand the
context of the addressed problem we analyzed existing approaches that deal with the issue of
text classification using ML models. Among the analyzed tools, the Source Code Classifier
(SCC) tool [14] can classify code snippets using the MNB network as the underlying model.
In particular, this tool discovers the programming language of each snippet coming from
StackOverflow posts. The results show that Bayesian networks outperform other models in
the textual analysis task by obtaining 75% of accuracy and success rate. Furthermore, there is
a subtle correlation between the Bayesian classifier and the TF-IDF weighting scheme [128].
A comprehensive study has been conducted by comparing TF-IDF with the Supporting
Vector Machine (SVM) using different datasets. The study varies the MNB parameters to
investigate the impacts of the two mentioned preprocessing techniques for each of them.
The evaluation demonstrates that the TF-IDF scheme leads to better prediction performance
than the SVM technique. Thus, we decided to adopt the mentioned MNBN configuration
considering these two findings (i) this model can adequately classify text content and (ii) the
TF-IDF encoding leads benefits in terms of overall accuracy.

DC5 – Standard NLP pipeline is not enough to preprocess GitHub topics: To increase
the accuracy of the examined classifiers, a set of advanced rewriting rules needs to be
defined, thus capturing semantic relationships among GitHub topics.

When developing MNBN, we limited ourselves to applying standard NLP pipeline by
considering just the stemmed version of featured topics. Nevertheless, this process may
produce inaccurate results since the semantics have not been considered. Therefore, we
defined a set of rewriting rules built on top of an existing work [120] to increase HybridRec’s
accuracy. Those rules go a step further with respect to the original work since we considered
a different dataset to perform the evaluation. For instance, we expand abbreviations and
acronyms that are widely spread in the SE community to make them more consistent. To
sum up, the proposed rewriting rules succeeded in increasing the overall performance of
HybridRec as reported in the dedicated chapter.

200 Challenges and lessons learned from the conceived RSSEs

DC6 – Creation of training datasets for Bayesian networks:To make the employed
Bayesian network accurate, each topic must be provided with a similar number of training
projects; otherwise, the obtained results can be strongly affected by the unbalanced
distribution of the considered topics.

To mitigate such issues, we decided to train and evaluate the approach by considering 134
GitHub featured topics. In this respect, we analyzed 13,400 README files by considering
100 repositories for each topic. To collect such artifacts, we needed to be aware of the
constraints imposed by the GitHub API, which limit the total number of requests per hour to
5,000 for authenticated users and 60 for unauthorized requests.

DC7 – Usage of reusable heterogeneous components to develop new recommendation
systems: The orchestration of heterogeneous components was another challenge related
to the development of MNBN.

Though the employed Python libraries are flexible, they involve managing different technical
aspects, i.e., handling access to Web resources, textual engineering, and language prediction.
Moreover, each component has a well-defined set of input elements that dramatically impact
on the outcomes. For instance, the README encoding phase cannot occur without the data
provided by the crawler component, which gets data from GitHub. In the same way, the
topic prediction component strongly relies on the feature extraction performed by the TF-IDF
weighting scheme. Thus, we succeeded in developing MNBN by putting significant efforts
in composing all the mentioned components coherently.

To summarize, concerning Fig. 3.2, NLP techniques have been applied to support the data
preprocessing phase of MNBN. A model-based approach consisting of a Bayesian network
underpins the overall technique to produce recommendations. The user context consists of an
input README file, which is mined employing a keyword extraction phase. The produced
recommendations are shown to the user directly in the employed Eclipse-based IDE.

Development challenges for MemoRec and MORGAN

DC8 – Encoding modeling artifacts requires extra effort with respect to traditional
SE ones: Due to their peculiar nature, modeling artifacts require tailored encoding
techniques to extract relevant information.

Since modeling activities involve abstractions of real-world systems, the extraction of relevant
information to feed ML-based assistants requires custom techniques that go beyond the ones
commonly used in other SE tasks. To address this, MemoRec adopts four encoding schemes
to represent different views concerning the terms extracted from packages, classes, and

7.2 Challenges and lessons learned related to development 201

structural features, thus improving the quality of suggested modeling elements. Furthermore,
we developed dedicated parsers to support different modeling artifacts with MORGAN
recommendations. In such a way, we are able to encode the underpinning relationships of the
considered artifacts, i.e., metamodels, models, and JSON schema.

7.2.1 Lessons learned

This section presents the different lessons learned that have been elicited from the actual
development of the presented RSSEs. In particular, we focus on the experiences that are
valuable and could be reused in the future whenever we are supposed to run similar projects.

DLL1 – Selecting the right representation can be of paramount importance: A
suitable encoding helps capture the intrinsic features of the OSS ecosystem to facilitate
the computation of similarities among software projects, moreover it paves the way for
various recommendations.

With respect to the features shown in Fig. 3.2, the used graph representation facilitates
different recommendations, e.g., FOCUS, MemoRec, and MORGAN making use of a
graph-based representation for supporting the Data Preprocessing activity. We selected
such a representation since some of the co-authors have gained similar experiences in the
past and consequently, we followed the intuition to try with the adoption of graphs, and
graph-similarity algorithms also in the mining OSS repositories. We started with CrossSim,
and subsequently we found that the graph-based representation is also suitable to develop
CrossRec and FOCUS. In contrast, GitHub topics preprocessing involved the definition of
additional steps, namely the definition of rewriting rules employed by HybridRec. Finally,
modeling artifacts required a dedicated process based on well-curated encoding schemes and
tailored parsers to properly capture relevant information to feed the corresponding systems.

DLL2 – Do not pretend to immediately find the optimal solution (move on iteratively):
Conceiving the right techniques and configurations to satisfy user needs can be a long and
iterative process.

For conceiving all the presented recommender systems, we followed an iterative process
aiming to find the right underpinning algorithms and configurations to address the considered
problems with the expected accuracy. It can be a very strenuous and Carthusian process that
might require some stepping back if the used technique gives evidence of inadequacy for the
particular problem at hand, fine-tune the used methods, and collect more data both for training
and testing. For instance, in the case of CrossSim we had to make four main iterations to
identify the features of open source projects relevant for solving the problem of computing

202 Challenges and lessons learned from the conceived RSSEs

similarities among software projects. During the initial iterations, we encoded more than
the necessary metadata. For instance, we empirically noticed that encoding information
about developers contributing to projects might reduce the accuracy of the proposed project
similarity technique. Similarly, we improved the MNBN overall performance by i) adopting
a well-curated preprocessing on the GitHub topics and ii) considering an enhanced version
of the Bayesian model that copes with unbalanced datasets.

DLL3 – Start first with the techniques you already know and move on from there:
Starting with low-hang fruits allowed us to gain experience of the domain of interest and
to quickly produce even sub-optimal results that can still be encouraging while finding
better solutions.

During the development of the proposed RSSEs, we started first with approaching problems
that were similar to those we had already in the past. In other words, we first got low-hang
fruits and then moved on from them. In this respect, we began early with CrossSim since we
noticed some similarities with the problem that one of the co-authors previously addressed
[178]. We managed to gain additional expertise and knowledge in the domain of recommender
systems, while still satisfying essential requirements elicited from the partners. Afterward,
we succeeded in addressing more complicated issues, i.e., recommending third-party libraries
with CrossRec [182], API function calls and code snippets with FOCUS [181, 177] and
LUPE [], automatic tagging of OSS repositories with MNBN and HybridRec, and supporting
the model completion with MemoRec and MORGAN.

DLL4 – LSTMs can be used to recommend cohesive API function calls: Among the
examined cutting-edge technologies, LSTMs is capable of preserving the cause-effective
relationship that occurs while the APIs have been defined.

By experimenting with different configurations of LUPE, we demonstrate the encoder-
decoder architecture is particularly well-suited for recommending API function calls, i.e.,
this encoding scheme enables the recommendation engine to effectively learn relationships
extracted from the source code. Therefore, LUPE is fed with a sequential representation
of APIs, thus exhibiting superior prediction performance compared to traditional API rec-
ommender systems, e.g., FOCUS. However, the employed LSTM network suffers from
performance issues during the training phase. To overcome this, we employed a powerful
computation platform that allows us to compute and export the weights that can be used by
standard machines.

DLL5 – Applying the reduction rule helps multilabel classifiers in gaining higher
accuracy: The rewriting rules employed by HybridRec increase the overall performances,
especially in terms of coverage.

7.3 Challenges and lessons learned related to evaluation 203

The conceived rewriting rules have been carefully crafted and tailored by considering the
underlying semantic relationships among GitHub topics. By improving existing work, the
application of these customized rewriting rules results in a significant improvement in terms
of catalog coverage, meaning that HybridRec is capable of retrieving more diverse recom-
mendations compared to our previous approaches, i.e., MNBN and TopFilter. Therefore, it is
our strong belief that embodying semantics in a proper structure can improve the automatic
OSS classification.

DLL6 – The encoding for the modeling artifact can be generalized: Although modeling
are heterogeneous in most of the cases, adopting dedicated parsers can be used to extract
the needed information.

While developing MORGAN, we implemented three different parsers specifically con-
ceived for each type of artifact. Even though the kind of information is strictly bounded
by the application domain, we preserve the same structure to preserve the same structure,
with the aim of enabling the graph kernel similarity adopted by the approach. While this is
not enough to claim the generalizability of the approach, this is an initial step towards the
integration of modeling assistants that can handle heterogeneous modeling artifacts.

7.3 Challenges and lessons learned related to evaluation

Once the recommender systems had been realized, it was necessary to compare them with
existing state-of-the-art techniques. Evaluating a recommendation system is a challenging
task since it involves identifying different factors. In particular, there is no golden rule
for evaluating all possible recommender systems due to their intrinsic features as well as
heterogeneity. To evaluate a new system, various questions need to be answered, as they are
listed as follows:

– Which evaluation methodology is suitable? Assessing RSSE can be done in different
ways. Conducting a user study has been accepted as the de facto method to analyze
the outcome of a recommendation process by several studies [158, 167, 203, 295,
298]. However, user studies are cumbersome, and they may take a long time to
finish. Furthermore, the quality of a user study’s outcome depends very much on
the participants’ expertise and willingness to participate. In this sense, setting up an
automated evaluation, in which the manual intervention is not required (or preferably
limited), is greatly helpful.

– Which metric(s) can be used? Choosing suitable metrics accounts for an important
part of the whole evaluation process. While accuracy metrics, such as success rate,

204 Challenges and lessons learned from the conceived RSSEs

precision and recall have been widely used to measure the prediction performance, we
suppose that additional metrics should be incorporated into the evaluation [90, 182],
aiming to study RSSE better. In the scope of this dissertation, we refer to the set of
metrics discussed in Chapter 3.

– How to prepare/identify datasets for the evaluation? One needs to take into account
different parameters when it comes to choosing a dataset for evaluation. Moreover,
the data used to evaluate a system depends very much on the underpinning algorithms.
In this sense, advanced techniques and methods for curating suitable data are highly
desirable.

– What could be a representative baseline for comparison? To show the features of a
new conceived tool and give evidence of its novelty and advantages, it is necessary to
compare it with existing approaches with similar characteristics. Since the solution
space is vast, comparing and evaluating candidate approaches can be a daunting task.

EC1 – Identification of the suitable evaluation methodolgy: Deciding the evaluation
methodolgy to be applied has to take into account several aspects including the time and
efforts that have been allocated for such a phase in the project the work is contextualized.

User studies can be done as field studies or as controlled experiments. By the former, the
participants with different programming experience levels have to complete a list of tasks
using the proposed recommendation system without any intervention. The latter is conducted
in a monitored environment, and the assigned tasks are carefully tailored for specific purposes.
Although these strategies produce remarkable results in various work, there are some issues
to be tackled. Among others, the selection of the participants has a crucial role to play.

It is worth noting that the selection of ground-truth data from an active project impacts
the evaluation, and it might jeopardize the integrity of the evaluation process. Different
aspects, i.e., the scope of the recommendation, the recommendation input, the size of the
ground truth, and the characteristics of the selected objects, should be carefully considered
to mimic a real usage scenario when it comes to an automatized evaluation. For instance,
randomly choosing the ground truth size and objects does not guarantee that the evaluation
mimics a real usage scenario. The ground truth extraction strategies that have been employed
for evaluating the developed recommender systems are explained below.

CrossRec: Given a set of libraries that an active project uses, CrossRec returns a set of
additional libraries that similar projects to the active project have also included. For this
reason, in the CrossRec evaluation process, given an active project, a half of its libraries
are used as the ground-truth, and the remaining are used as the query. In this case, we split
randomly into such sets the libraries that an active project includes.

7.3 Challenges and lessons learned related to evaluation 205

FOCUS and LUPE: Given a list of method declaration and method invocations pairs,
and an active method context, FOCUS predicts the next method invocations that can be
added to the active declaration. To simulate a developer’s behaviour at different stages of a
development project, we performed various evaluation experiments by varying the size of
the recommendation query and the size of the ground-truth data. In particular, four different
configurations have been considered in the evaluation to mimic the following scenarios:

• the developer is at an early stage of the development process, and the active method is
almost empty;

• the developer is at an early stage of the development process, and the active method
implementation is well defined;

• the developer is near to the end of the development process, and the active method is
almost empty;

• the project is in an advanced development phase, and the active method implementation
is well defined.

The ground truth data is extracted accordingly to the scenario that the evaluation mimics.
A similar process has been conducted to evaluate LUPE by splitting the developer’s

context according to different threshold. Furthermore, we consider a further configuration
where only definitions that rarely appear have been considered for the testing phase.

MNBN and HybridRec: Given an active project, the two recommendation system uses the
content of README file(s) to recommend relevant GitHub topics. Since the recommendation
input does not coincide with the object of the recommendation, we used the whole list of
topics that an active project uses as ground-truth. It is worth noting that for the MNBN
we consider just the featured topics while HybridRec has been assessed by considering the
whole set of tags filtered by using the mining rules.

MemoRec and MORGAN: Due to the lack of proper integration with a modeling environment,
we adopt the same strategy to evaluate MemoRec and MORGAN. The former has been
evaluated on a curated dataset composed of metamodels by adopting the ten-fold cross-
validation. Similarly, the performance of the latter has been assessed by enlarging the
application domain, by considering five different datasets.

It is our firm belief that user studies are inevitable in many contexts. For the evaluation of
CrossSim [183], a user study is a must, since there are no other ways to evaluate the similarity
between two OSS repositories, rather than the manual scoring done by humans. We may
avoid user studies in some specific cases. For instance, when evaluating CrossRec [182],

206 Challenges and lessons learned from the conceived RSSEs

we realized that with the application of the ten-fold cross-validation technique, we can
rely on the available data to perform the evaluation, without resorting to a user study. For
FOCUS [181, 177], while we can use data to evaluate its performance, we assume that its
usability and usefulness can be properly studied only with a user study, where developers are
asked to give their opinion on a specific API call recommended by the system.

EC2 – Identification of the datasets eligible and available for evaluation: The datasets
used for evaluation depend very much on the recommendation algorithms being used.

For each developed tool, we had to go through the following dimensions related to datasets:

• Which format? Depending on the employed recommendation techniques (e.g., collab-
orative filtering, LSTMs, graph kernels etc.) we had to identify the proper ways to
encode the created datasets. For instance, to enable the application of a graph-based
similarity algorithm underpinning CrossSim, we had to encode the different features
of OSS projects in a graph-based representation. The same datasets needed to be
represented in a TF-IDF format to enable the application of FOCUS;

• Which preprocessing process should be applied to create the dataset? To minimize
the size of the input datasets and thus to make their manipulation efficient, we had to
perform different data filtering tasks. For instance, in the case of CrossSim, to enable
the application of the employed graph-similarity algorithm, we identified the features
that are relevant for the task. For example, information about software developers,
source code, and GitHub topics was filtered out from the available datasets even though
it was easy to encode all of them as elements in the input graphs. Similar data filtering
phases were also performed in CrossRec to enable the recommendation of third-party
libraries that might be added in the project under development. Indeed, such data
filtering phases have to be performed without compromising the performance (in terms
of accuracy, precision, recall, etc.) of the approach under evaluation;

• Which limitations should we tackle when collecting the dataset? The primary lim-
itations we experienced when evaluating recommender systems were related to the
GitHub APIs restrictions. Unfortunately, the adoption of alternative sources like
GHTorrent [96] was not enough due to the lack of needed artifacts such as source
code. Knowing such limitations in advance, when collecting projects from GitHub,
we decided to save as much data as possible for every single project. The goal was to
enable the reuse of the collected data even for perspective evaluations to be done for
future recommender systems to be developed in the SE domain.

7.3 Challenges and lessons learned related to evaluation 207

EC3 – Identification of the baseline(s) to compare with: To showcase the features of
a new conceived tool as well as to demonstrate its novelty, it is necessary to compare it
with existing approaches with similar features. In fact, choosing the correct baseline is a
challenging activity, as to ensure a fair comparison, the baselines to be considered must
be endowed with reusable tools and datasets.

While in general, authors of the selected baselines published their tools and dataset online, it
is the case that many of them are faulty, or not well maintained, or even worse: no longer
available. In particular, while developing the presented RSSEs we always tried our best
to identify the baselines to be used for the evaluations. Unfortunately, often they were not
available, which indeed led to difficulties in the evaluation. For instance, for evaluating
CrossSim, since the implementations of the baselines were no longer available for public
use, we had to re-implement them by strictly following the descriptions in the original
papers [88, 158, 295]. That was not possible for evaluating MNBN due to the lack of
details in the publicly available documents describing the corresponding baseline. In general,
whenever a baseline is selected, and it is not available online, we contacted its authors for
the original implementation. It was rare that we got a response from the authors with the
tool and/or data. Thus, for the particular cases of the developed recommender systems,
either we re-implemented the tool, as it is the case with CrossSim, or we compared by
performing experiments on the datasets that have been used in the original papers, as we did
for CrossRec.

Table 7.1 RSSEs evaluation facts.
CrossSim [175] CrossRec [182] FOCUS [181, 177] LUPE [190] MNBN[72] HybridRec [70] MemoRec [69] MORGAN [76]

Methodology
Cross-Val. ✓ ✓ ✓ ✓ ✓ ✓ ✓
User study ✓ ✓

Metric

Success rate ✓ ✓ ✓ ✓ ✓
Precision ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Recall ✓ ✓ ✓ ✓ ✓ ✓ ✓
F-score ✓ ✓ ✓ ✓ ✓ ✓ ✓
nDCG ✓
TopRank ✓ ✓
Levenshtein ✓ ✓
Coverage ✓ ✓
Entropy ✓
Novelty ✓
Confidence ✓
Ranking ✓
Time ✓ ✓ ✓ ✓ ✓

Dataset
Source GitHub GitHub GitHub, Maven cen-

tral repository
Maven central
reposiotry,Android
Time Machine

GitHub GitHub, Maven cen-
tral repository

Babur [300] Babur [300], Mod-
elSet [149], mined
Java models, mined
JSON schema

Size 580 projects 1,200 projects 3,600 projects 9,688 projects 13,400 projects 26,499 projects 555 metamodels 6,604 modeling arti-
facts

Artifact Metadata Metadata Source code Source code README files README files Metamodels Metamodels, Mod-
els, and JSON
schema

Baseline MUDABlue [88],
CLAN [158],
RepoPal [295]

LibRec [259],
LibFinder [197],
LibCUP [229]

UP-Miner [276],
PAM [83]

GAPI [145],
FACER [9]

None None None None

7.3 Challenges and lessons learned related to evaluation 209

Table 7.1 summarizes the main factors related to the evaluation of our proposed rec-
ommendation systems. Depending on the intrinsic characteristics of each tool, different
metrics and methodologies were employed to evaluate them. For example, to study Cross-
Sim [175, 183], a user study with several developers’ involvement was the only option
since there is no automated method to evaluate the similarity between two OSS projects.
Meanwhile, with CrossRec [182], FOCUS [181], and MNBN [72], we relied only on data to
investigate their performance. Moreover, depending on the availability of baselines and qual-
ity requirements, we used different evaluation metrics, such as Accuracy (Precision, Recall,
TopRank) or Sales Diversity (Coverage, Entropy). Choosing suitable data plays an important
role in the evaluations, and it depends on various factors, such as systems’ characteristics,
baselines, evaluation purposes, or even constraints imposed by OSS platforms, e.g., GitHub
and the Maven central repository. The selection of baselines was also a significant issue,
considering their complexity and relevance with our tools. For evaluating CrossRec, we were
able to consider three different tools for comparison, i.e., LibRec [259], LibFinder [197],
and LibCUP [229]. While with FOCUS, only PAM [83] was selected to benchmark since
other relevant tools such as MAPO [298] and UP-Miner [276] were no longer available. In
summary, we believe that there are many factors when it comes to designing and evaluating a
recommendation system, and we should carefully investigate the most probable scenarios to
select the optimal one.

EC4 – Quantitative evaluation could be not suitable for modeling assistant: To
evaluate modeling assistants, the widely adopted process involves mimicking the modelers’
behavior by using automatic techniques. Even though we can measure the overall accuracy,
such strategies cannot be used to evaluate the system qualitatively.

Different from other tasks that can be automated using algorithms or machine learning
techniques, modeling requires the expertise and understanding of domain knowledge by
modelers. Therefore, automating assessment, even if it is well-conducted, could lead to
erroneous claims on the accuracy of the system. Concerning the developed systems, namely
MemoRec and MORGAN, we did not have the possibility of including a user study since the
first objective is to support model completion rather than the full integration in a modeling
environment. On one hand, the two approaches achieve low accuracy in terms of the
examined metric. On the other hand, designing proper user studies for modeling assistants is
still an open challenge due to the development effort required to integrate those systems in a
stand-alone environment.

210 Challenges and lessons learned from the conceived RSSEs

7.3.1 Lessons learned

ELL1 – User studies are cumbersome, and they can take a long time to be conducted
and completed: The quality of a user study’s outcome depends very much on the
participants’ expertise and willingness to participate.

People are often not very keen on the experiments, since there is no incentive/reward
for performing the required tasks. Moreover, there is a trade-off between domain-expert
developers, who may not need a recommendation system to develop, and students who
have never used this type of system. As a result, we evaluated CrossSim by involving 15
developers of different background of knowledge. Aiming at a reliable evaluation, for each
query we mixed and shuffled the top-5 results generated from the computation by each
similarity metric in a single Google form and presented them to the evaluators who then
inspected and given a score to every pair. Thus, we managed to mimic a taste test where users
are asked to judge a product, e.g., food or drink, without having a priori knowledge about
what is being evaluated [92, 201]. In this way, we removed any bias or prejudice against
a specific similarity metric. The participants were asked to label the similarity for each
pair of query and retrieved project regarding their application domains and functionalities.
Furthermore, we also allowed for cross-checking, i.e., the results of one developer were
validated by the others. To perform such evaluation for CrossSim and compare it with the
baselines, it has been crucial to design the experimental settings properly and clearly define
the manual evaluation tasks by adhering to the taste-test methodology.

ELL2 – In some certain contexts, the k-fold cross-validation technique is a good
alternative to user studies: We realized that user studies are cumbersome, and they can
take a long time to conduct and complete. However, we experienced that the assessment
can also be automatized by means of case studies or data itself.

By the former, use cases are pre-selected for the recommendation. By the latter, we set
up an automated evaluation, in which the manual intervention is not required, or preferably
limited. Depending on the availability of data, we managed to avoid performing user studies
by employing the k-fold cross validation technique [287], which has been popularly chosen
as the evaluation method for a model in Machine Learning. By this method, a dataset is
divided into k equal parts (folds). For each validation round, one fold is used as a testing
and the remaining k-1 folds are used as training data. Such an evaluation attempts to
mimic a real scenario: the system should produce recommendations for a project based
on the data available from a set of existing projects. The artifact being considered as
the recommendation target is called object. For instance, regarding third-party libraries
recommendation [182, 259], objects are libraries that a system provides as its outcome. It

7.3 Challenges and lessons learned related to evaluation 211

is essential to study if the recommendation system is useful by providing the active project
with relevant libraries, exploiting the training data. To this end, we keep a certain amount of
objects for each active project and use them as input for the recommendation engine, which
can be understood as the query. The rest is taken out and used as ground-truth data. The
ground-truth data is compared with the recommendation outcomes to validate the system’s
performance. It is expected that the recommendation system can retrieve objects that match
up the ones stored as ground-truth data.

ELL3 – The quality of data depends on the particular application domain of interest:
While developing the different systems, we further confirmed the importance of having
the availability of big data and high-quality data for training and evaluation activities.

The definition of data quality cannot be given in general, and it very much depends on
the particular application of interest. According to our experience, creating a dataset, which
can be rightly used for both training and evaluating the developed recommender systems, can
require significant effort, which can be comparable to that needed to realize the conceived
approach. For instance, to implement MNBN, we devoted a huge effort to create the dataset
that was supposed to be balanced with respect to the considered GitHub featured topics.
Moreover, it can be challenging to collect big datasets, especially when there are several
constraints to be satisfied. For instance, in the case of the FOCUS evaluation, one of the
considered datasets was initially consisting of 5,147 Java projects retrieved from the Software
Heritage archive [64]. To comply with the requirements of the baseline, we first restricted
the dataset to the list of projects that use at least one of the considered third-party libraries.
Then, to comply with the requirements of FOCUS, we restricted the dataset to those projects
containing at least one pom.xml file. Because of such constraints, we ended up with a dataset
consisting of 610 Java projects. Thus, we had to create a dataset ten times bigger than the
used one for the evaluation.

ELL4 – Candidate baselines might not be reusable: When conceiving new recom-
mender systems there can be no baselines to compare with.

There are at least two motivations: (i) the proposed approach is the first attempt dealing
with the considered problem; (ii) the tools and datasets of existing baselines are no longer
available or reusable. In such cases, according to the facts shown in Table 7.1, the k-fold
cross-evaluation has been a valuable technique that allowed us to evaluate most of the
proposed recommender systems even when the baselines were not available. Concerning
CrossSim, we decided to perform a user study, to mitigate any bias related to the fact that we
re-implemented all the baselines.

212 Challenges and lessons learned from the conceived RSSEs

ELL5: Novelty and diversity are good indicators that are worth considering: Besides
the accuracy, an RSSE should provide relevant items for the active context rather than the
most popular.

Many existing approaches just choose to recommend popular items, e.g., MUSE [167],
PROMPTER [203], LibRec [259]. Through the evaluation of CrossRec, we showed that
further than popularity, novelty and diversity are good indicators for assessing if the rec-
ommendation outcomes are meaningful. Among others, the ability to recommend items
in the long tail is essential: we can suggest things even when extremely unpopular since
a small number of projects use each. However, they turn out to be useful as all of them
match those stored as ground-truth. This implies that the novelty of a ranked list is important:
a system should recommend libraries that are novel [48], i.e., those that have been rarely
seen. In this sense, we see that CrossRec can produce good outcomes, not only in terms of
success rate and accuracy but also sales diversity and novelty. Moreover, serendipity has been
widely exploited to evaluate recommender systems in other domains. Serendipity means that
items are obtained by chance but turn out to be useful. However, it seems that the metric
has been neglected in evaluating RSSEs. Investigating the importance of serendipity in the
context of source code/library recommendation can be an interesting topic. For example, a
recommendation engine provides an artifact, e.g., a third-party library or an API function
call, which does not belong to the ground-truth data at all; however, it is indeed useful for the
current project.

7.4 Conclusion

This chapter presented the challenges and lessons learned on various aspects investigated
during the development of the presented recommender systems. We attempt to share with
the community the main challenges we had to overcome as well as the corresponding
lessons during the three different phases to build and evaluate recommender systems, i.e.,
requirement, development, and evaluation.

Being focused on heterogeneous recommender systems allowed us to garner many useful
experiences and learn important lessons. In the first place, the process yields up a list of
actionable items when designing and implementing recommender systems, namely: (i)
the skepticism that final users can have especially at the early stages of the development
and usage of the proposed recommender systems; (ii) difficulties in retrieving and creating
datasets to be used both for training and evaluation purposes; (iii) criticalities related to the
selection of baselines for evaluation especially when the related tools are no longer available;

7.4 Conclusion 213

(iv) the variety of evaluation approaches and metrics that can be employed to assess the
strengths and limitations of the conceived recommender systems.

Chapter 8

An MDE-based methodology to
engineering recommender systems

So far, we presented a set of RSSEs that succeeded in supporting various SE tasks. Despite
this, their development is a daunting task that solicits a deep knowledge of various technolo-
gies and tools, such as the algorithms to be deployed, the evaluation protocols to be adopted,
and the metrics to be considered to assess recommendation accuracies. In recent years,
several approaches have been conceived by academia, and industry [79, 85, 30] to facilitate
the selection of suitable techniques, aiming to decrease the burden related to the development
and evaluation of RSs. However, though the existing tools represent relevant facilitators for
the reproducibility of experiments, they still involve performing development activities with
the programming languages that were used to build the selected frameworks. Therefore,
despite the availability of many algorithms and evaluation techniques, their adoption remains
an issue for those who do not have enough expertise or programming skills to develop their
own RSs.

To cope with the aforementioned issues, this chapter present LEV4REC, an MDE-based
tool to assist developers in designing, configuring, and delivering recommender systems by
taking inspiration from the low-code paradigm [73]. Given an initial configuration specified
by the user, the system can realize the designed components by generating the corresponding
source code implementation. LEV4REC provides users with an environment (i) to select the
components that need to be used for the wanted recommendation system; (ii) to configure
the chosen modules through a dedicated modeling environment. The two specifications
conform to a dedicated metamodel defined using the Eclipse Modeling Framework (EMF)
[100]. In addition, a generator module built on top of Acceleo1 can generate Python source

1https://www.eclipse.org/acceleo/

https://www.eclipse.org/acceleo/

216 An MDE-based methodology to engineering recommender systems

code implementing the specified RS automatically. In such a way, LEV4REC allows RS
developers to define, fine-tune, and test their recommender systems. To validate our approach,
we deployed LEV4REC to build two real-world RSs. From an empirical evaluation of
various datasets, we see that our conceived environment can adequately define and implement
the critical components of the considered systems, allowing them to follow their original
design and implementation.

Furthermore, we deploy LEV4REC as i) a web-based Xtext editor and ii) a plug-in
for two different IDEs, i.e., VS code2 and Eclipse.3 This aims to demonstrate the tool’s
capability of generating different systems using the elicited concepts even though the case
study evaluation suffer from some limitation, i.e., automated evaluations are not suitable
to investigate qualitative aspects such as usability or extensibility. Therefore, we carried
out the well-founded focus group methodology4 to collect feedback from five experts in
various domains, including model-driven engineering, recommender systems, and low-code
engineering.

The candidate fully contributes to this chapter, from the design to the actual development
of the tool. The foundational aspects and the first tool prototype of this work have been
published as a workshop paper [71] and a tool demonstration [73] respectively.

Outline of the chapter: Section 8.1 presents the supporting technologies that have been
used to develop LEV4REC. The tool is described in Section 8.2, including the two dedicated
RS model artifacts, and the integration within IDEs. Two different use case and the evaluation
strategies adopted to assess the tool are shown in Section 8.3 and Section 8.4 respectively.
We report the obtained results in Section 8.5 and the tool’s limitations in Section 8.6. Section
8.7 concludes the chapter by envisioning possible future works in the domain.

8.1 Supporting technologies

Feature-Oriented Software Development (FOSD) [256] is a design paradigm for imple-
menting software systems based on a predefined set of features, e.g., characteristics or
requirements. In particular, FOSD aims to modularize a software system by identifying and
combining feature modules. Feature model [255] is a core concept in FOSD consisting of a
set of organized features and constraints between them, e.g., if a specific feature is selected
while some others cannot be. Such a model is defined by a feature tree that is a hierarchical

2https://code.visualstudio.com/
3https://www.eclipse.org/
4https://psd.ca.uky.edu/files/focus.pdf

https://code.visualstudio.com/
https://www.eclipse.org/
https://psd.ca.uky.edu/files/focus.pdf

8.2 The LEV4REC environment 217

representation of features. These features are composed in different ways, e.g., they may be
mandatory, optional, or mutually exclusive depending on the ones already selected. Several
valid feature configurations can be chosen to satisfy the constraints defined at the level of the
feature model, depending on the input features.

Possible applications of feature models to configure recommender systems and machine
learning applications have been analyzed in [82]. The study evaluates the feasibility of
feature models under three dimensions, i.e., interactive configuration, reconfiguration, and
modeling processes. Besides the analyzed applications, this study highlights other scenarios,
e.g., modeling user interactions, intelligent grouping features, and constraints, to name a few.
In recent work, a dedicated feature model has been used to elicit essential components for
recommender systems in MDE [12]. To understand which modeling tasks are susceptible to
recommendations, the authors conduct a systematic mapping study by analyzing 66 papers
to foster future research in this domain.

Concerning the development of recommender systems, several frameworks and libraries
have been released in recent years. The RankSys tool [267] supports the rapid prototyping
and testing of RSs based on the collaborative-filtering technique. Similarly, the Surprise
library [116] offers a collection of algorithms specifically designed for rating prediction.
Furthermore, it also provides utilities to evaluate the performance of each implemented
algorithm. Besides traditional techniques, Machine Learning (ML) models have been widely
used to build recommender systems [246]. Among others, ML frameworks such as Scikit-
learn,5 PyTorch,6 TensorFlow,7 or Keras8 provide a rich set of functionalities, which enables
developers to flexibly customize their implementation by fine-tuning hyperparameters.

8.2 The LEV4REC environment

This section presents LEV4REC, an extensible environment for supporting the development
of recommender systems. The proposed approach relies on the assumption that it is possible
to identify typical components building up RSs and recurrent stages underpinning their
evaluation [19]. In this respect, by adhering to the principles and methods supporting the
development of recommender systems [33, 71], we identified a set of features characterizing
any RS, and proposed the tool-supported process shown in Fig. 8.1.

According to the proposed methodology, an RS developer (RSD) starts with the RS
Feature Selection phase to select the features of the RS under development, e.g., the rec-

5https://scikit-learn.org/
6https://pytorch.org/
7https://www.tensorflow.org/
8https://keras.io/

https://scikit-learn.org/
https://pytorch.org/
https://www.tensorflow.org/
https://keras.io/

218 An MDE-based methodology to engineering recommender systems

RS Feature
Selection

RS Feature
Configuration

RS Code
Generation

Pr
oc

es
s f

lo
w

Da
ta

 fl
ow Feature

model
Selected
Features

RS
Configuration

RS Source
Code

Fig. 8.1 Overview of the proposed approach.

ommendation algorithm to be employed, the preprocessing phases to be operated on the
selected dataset, and the evaluation procedure to be performed. A dedicated set of constraints
supports such a selection. For instance, if the designer decides to use a supervised dataset, the
environment automatically disables the possibility of selecting algorithms for unsupervised
learning. After the selection of the wanted features, the environment supports the subsequent
RS Configuration phase. For instance, if in RS Feature Selection the user has selected cross-
validation as an evaluation technique to be employed, during the RS Feature Configuration
phase, the wanted number of folds needs to be specified. The final step of the process consists
of the RS Code Generation activity. It takes as input the complete RS Configuration and
generates the source code of the specified RS. Python, Flask,9 and Jupyter10 are the target
technologies that are currently supported. The proposed approach facilitates the possibility
of testing different features and configurations as shown in Fig. 8.1 by the arrows from RS
Code Generation back to RS Feature Selection and RS Feature Configuration. We detail each
phase of the proposed process in the following subsections.

8.2.1 RS Feature Selection

By carefully review existing technologies, we defined an agnostic feature model to specify
different types of recommender systems according to the developer’s needs. As shown in
Fig. 8.2, the specified model has two main elements defined as follows.11

• Recommender component: This feature includes all the necessary building blocks to
construct an RS, e.g., preprocessing techniques, datasets, algorithms, and evaluation
utilities, to name a few. Different subfeatures for each principal component have

9https://flask.palletsprojects.com/
10https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
11For the sake of clarity, only some of the features are shown. Folded features are annotated in Fig. 8.2 with

an integer representing the number of the sub-features that are hidden. The interested reader can refer to the
complete feature model, which is available at https://tinyurl.com/5yxawyfe.

https://flask.palletsprojects.com/
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://tinyurl.com/5yxawyfe

8.2 The LEV4REC environment 219

Fig. 8.2 Overview of the proposed feature model.

been defined to cover the desired RS functionalities. For instance, depending on the
initial requirements considered during the recommendation process, it is possible to
select a collaborative-filtering algorithm on top of either the user-based or item-based
technique [125].

• Supporting library: Alongside the system design, the developer needs to specify the
software libraries that can be adopted to support the specified recommender compo-
nents. For instance, if the user selects the ContentBased algorithm component, the
libraries that do not support this algorithm are disabled by leaving only Surprise as
a possible selection. The feature sub-trees also deal with potential incompatibilities
among different libraries, for instance, when the developer cannot apply a data splitting
technique provided by the Scikit-learn library on a Surprise algorithm.

As previously mentioned, the whole feature selection phase is restricted through a set
of defined constraints that can either include or exclude certain features depending on the
current selection. Table 8.1 reports and explains the set of the constraints embedded in the
LEV4REC feature model. For instance, a Supervised algorithm cannot be selected if the
approach relies on a Unsupervised Dataset to produce recommendations. Similarly, we
impose constraints that act on the software libraries employed to generate the actual RS code.
In particular, the Surprise feature dictates that the Surprise preprocessing and Surprise Split
features must be adopted to work appropriately by excluding other libraries, e.g., Scikit-learn.

220 An MDE-based methodology to engineering recommender systems

Table 8.1 Constraint-supported RS specification.

Constraint Description
¬ Scikit-learn =⇒ ¬ Seaborn The Scikit-learn library is required to run the Seaborn graph-

ical utilities
¬ TextualData=⇒ ¬ NLP As the NLP pipeline acts on textual data, it requires such a

format to be enabled
CollaborativeFiltering =⇒ ¬
Scikit-learn ∧ ¬ PyTorch ∧ ¬
TensorFlow

Selecting Collaborative filtering technique automatically
excludes software libraries that do not support it, e.g., Scikit-
learn, TensorFlow, or PyTorch

IDEPlugin =⇒ IDELibrary If the IDEPlugin feature is selected then IDELibrary must
be set as the presentation layer generator

RandomSplitting =⇒
SKRandomSplit ∨ SurpriseRan-
domSplit

If CrossFold uses a random splitting rule, RSD can select
one of the supported libraries, i.e., SKRandomSplit or Sur-
priseRandomSplit

Sklearn =⇒
SklearnPreprocessing ∧
SklearnSplit

To preserve consistency, the system automatically selects
SklearnPreprocessing and SklearnSplit for the correspond-
ing library

SplittingKfold =⇒
SurpriseCrossFold ∨ SKCross-
Fold

Similar to the RandomSplitting feature, RSD can select
two different CrossFold implementations depending on the
chosen library

SupervisedDataset =⇒ ¬
UnsupervisedAlgorithm

The system selects automatically an UnsupervisedAlgo-
rithm if RSD specifies a SupervisedDataset

Surprise =⇒ SurpriseSplit ∧
SurprisePreprocessing

If Surprise is selected as AlgorithmLibrary, then the
preprocessing and splitting policies must belong to this
library

UnsupervisedDataset =⇒ ¬
SupervisedAlgorithm

If Unsupervised Dataset is selected then the developer can-
not select supervised algorithms

WebInterface =⇒ WebLibrary WebLibrary must be used as the presentation layer if the
feature WebInterface is set

8.2.2 RS Feature Configuration

Once the feature model has been defined, the next step is the generation of an initial RS
configuration conforming to the metamodel shown in Fig. 8.3. The metamodel defines all
the constructs that can be used to define a complete RS configuration, which is then used to
generate the source code of the designed RS. The root element named RSModel is composed
of several abstract components depicted in light grey, i.e., Dataset, Recommender system,
Validation Technique, and PresentationLayer. Each entity can be specialized with
concrete elements needed to implement different functionalities. The metaclasses extending
such abtract elements are described in the following.

At the beginning of the design process, the user must specify the type of data that will be
used to feed the recommender system. Figure 8.4 depicts Dataset specializations which
come in handy by providing the information needed to represent a dataset, i.e., independent
variables, preprocessing techniques, e.g., Natural Language Preprocessing, normal-
ization, ifnextchar.etcetc.., and the corresponding datasetManipulationLibrary that is

8.2 The LEV4REC environment 221

Fig. 8.3 The LEV4REC configuration metamodel.

used to manipulate the datasets at hand, e.g., pandas [156] and numpy [264]. Since recom-
mender systems rely on heterogenous data, LEV4REC provides Data Source concepts
designed to collect and organize information coming from differerent sources, i.e., Code
repository, Communication Channel, and Bug Tracking. Furthermore, the Data-
Structure metaclass is used to dictate the dataset features, e.g., the format, the size, to
name a few. For instance, data extracted from a given GitHub repository could be organized
in a Graph as well as a Matrix depending on the nature of the recommender system. In
other words, the system is capable of generating a tailored preprocessing module by relying
on the meta-concepts expressed in the Dataset metaclass.

Once the dataset has been specified, the user can configure the underpinning recommenda-
tion algorithm and its internal parameters by using the RecommendationSystem concepts
shown in Fig. 8.5. Depending on the RecommendationContext, several algorithms can
be chosen, e.g., MachineLearningBasedRS, FilteringRS, to name a few. The user can
also implement a CustomRecommender if none of the implemented systems can offer the
desired functionalities. Afterward, the elicited algorithm can be decorated with different
parameters using RecommendationSetting and several enumerations entities represented
by the green boxes. For instance, if a filtering algorithm is selected, it is possible to specify
the similarity function and the type of the algorithm among the available ones.

The designed algorithm eventually produces a list of RecommendedItem that can be
used by the next components, i.e., ValidationTechnique and PresenationLayer, to
evaluate the system and deliver the outcomes to the user, respectively. The former specifies

222 An MDE-based methodology to engineering recommender systems

Fig. 8.4 The LEV4REC Dataset and DataStructure metaclasses.

two main types of ValidationTechnique that could be used to assess the selected rec-
ommender system, i.e., AutomatedValidation and UserStudy. Figure 8.6 depicts the
key concepts related to the ValidationTechnique metaclass. Similar to the algorithm’s
configuration, the user can set different parameters such as metrics, the type of analysis to be
conducted, and the programming library to generate the corresponding code. At its current
status, LEV4REC supports the generation of automatic techniques, while user studies are
not yet implemented. Nevertheless, we can rely on existing works that come in handy to
specify such kind of evaluation [244, 27].

Figure 8.7 depicts the PresentationLayer metaclass that is devoted to retrieving pro-
duced recommendations from the used IDE e.g., VSCode and Eclipse. PresentationLayer
relies on a WebService that allows two main user interactions, i.e., proactive and reactive.
The former continuously monitors the user’s context and performs some actions according
to certain conditions. Contrariwise, the latter reacts to a specific UserEvent that directly
triggers the action. Both interactions are managed by RecommendationHandler that also
rules RecommendationUsage, i.e., how the user makes use of the returned items. In this
respect, transformative usage acts directly on the retrieved recommendations by modifying
them. For instance, if the system suggests code snippets, they can be adapted according to the

8.2 The LEV4REC environment 223

Fig. 8.5 The LEV4REC RecommenderSystem metaclass.

Fig. 8.6 The LEV4REC ValidationTechnique metaclass.

actual context. Meanwhile, the user can visualize the delivered items without the possibility
of modifying them when the RecommendationUsageType instance is set to visualiza-
tion. According to the type of the selected interaction, the system provides GUIElement
components capable of handling different behaviors in a specific graphical interface.

224 An MDE-based methodology to engineering recommender systems

8.2.3 RS Code Generation

The final step of the process shown in Fig. 8.1 is the generation of the actual source code
for the selected and configured RS components. Starting from an input RS Configuration,
LEV4REC produces the corresponding source code implementing the designed RS by
relying on template engines that have been successfully employed to support this task [20].

The code generation phase has been developed by using Acceleo.12 It is a well-known
technology in model-driven engineering, and it supports the development of code generators
in terms of dedicated templates.13 Acceleo templates identify repetitive and static parts of
the system being generated and embody specific queries on the source models to fill the
dynamic elements.The rationale behind the selection of Acceleo is twofold: (i) it provides a
well-defined syntax to specify the templates, and (ii) such a generation technique can deliver
output in different programming languages apart from Python.

Listing 8.1 An explanatory Acceleo template.
[template public generateFilteringRS (algo : FilteringRS)]
[if (algo . filteringRSAlgorithm = FilteringRSAlgorithm :: USER_BASED)]
is_user_based=True
[/ if]
[if (algo . filteringRSAlgorithm = FilteringRSAlgorithm :: ITEM_BASED)]
is_user_based=False
[/ if]
neighborhood=[algo.neighborhood/]
[if (algo . similarityCalculator = SimilarityFunction ::
COSINE_SIMILARITY)]
sim_funct=’cosine ’
[/ if]
[if (algo . similarityCalculator = SimilarityFunction :: MSD)]
sim_funct=’msd’
[/ if]
sim_settings = {’name’: sim_funct , ’user_based’ : is_user_based }
algo = KNNWithMeans(k=neighborhood, sim_options=sim_settings)
[/ template]

To support the generation of a recommender system, we devise a hierarchical structure
in which we provide different templates for each metaclass described in Section 8.2.2. In
such a way, the system can generate a custom instance of each component that can be even
fine-tuned to experiment with different configurations. As an example, Listing 8.1 depicts the
Acceleo template to generate the source code to adopt a recommendation algorithm based on
the collaborative filtering technique. The template uses the key element specified in the model
to generate source code. In particular, this component automates the setting of parameters
and the evaluation of results. In particular, the algo entity represents an instance of the

12https://www.eclipse.org/acceleo/
13https://wiki.eclipse.org/Acceleo/User_Guide#Templates

https://www.eclipse.org/acceleo/
https://wiki.eclipse.org/Acceleo/User_Guide#Templates

8.2 The LEV4REC environment 225

FilteringRS metaclass in Fig.8.5. According to the features selected by the RS developer,
this component automates the setting of the parameters to produce the corresponding source
code. For instance, the is_user_based variable can be True or False depending on the chosen
filtering technique, i.e., either user-based or item-based. Similarly, the RS developer can
choose a different similarity function by setting the corresponding attribute in the LEV4REC
model.

8.2.4 Deploying LEV4REC

8.2.4.1 IDE Integration

As depicted in Fig. 8.3, the PresentationLayer concept is specialized in different sub-
concepts that define the way where the recommendations are provided to the users. For
example, by using WebServices instances, developers dictate that the recommender system
should be deployed as a Web service providing recommendations by means of a REST API.14

In our implementation, we generate Web services in Flask, a popular Python framework used
for developing Web applications.

Fig. 8.7 The LEV4REC PresentationLayer metaclass.

An example of how generated services can be used to integrate the recommender system
into different IDEs is shown in Fig. 8.8. In particular, the left part shows the Swagger UI
interface generated from the OpenAPI specification15 of the developed and deployed RS,
while the right part of Fig. 8.8 depicts two IDE integrations, i.e., Eclipse and VS Code, that
query the services to provide recommendations to the users.

14https://datatracker.ietf.org/doc/html/rfc7231
15https://swagger.io/specification/

https://datatracker.ietf.org/doc/html/rfc7231
https://swagger.io/specification/

226
A

n
M

D
E

-based
m

ethodology
to

engineering
recom

m
endersystem

s

Fig. 8.8 Using LEV4REC RSs from IDEs.

8.2 The LEV4REC environment 227

8.2.4.2 Web-based editor

The architecture of the web-based editor of LEV4REC is represented in Figure 8.9. The
whole infrastructure is composed of a REST controller 1 developed using Spring boot
framework equipped with a gateway to handle the different requests and a domain-specific
editor 2 supporting the fine-tuning of the system exploiting Eclipse modeling framework
(EMF) utilities. The user can eventually generate either the system specification 3 in Python
plain text or deploy a web API written using the Flask framework. We detail each phase of
the proposed tool in the following subsections.

RS Configuration form Gateway
RsDSL web

editor
Code generation

engine

Generated artifacts

Jupyter notebookPython scriptsFlask service

Fig. 8.9 The LEV4REC web-based editor architecture.

Spring REST controller To enable the selection of the needed features, we implement a
configuration form that allows the user to choose the high-level components of the wanted
RS, e.g., the dataset type, the recommendation algorithm, to list a few. In our previous work,
we employ the FeatureIDE plugin [256], an Eclipse-based technology to define a feature
model [255, 82] enabling in such a way the selection of crucial components of the system.
Furthermore, this kind of model is equipped with several constraints among the different
components to drive the user at the design time. Even though the FeatureIDE tool supports
the activity properly, we cannot integrate it into a web-based platform. Therefore, we develop
a Spring boot project using the Spring initializer API16 by selecting the standard Maven
libraries to build a REST controller. The rationale behind this choice is that i) Spring speeds
up the development of a web application written in Java by offering several functionalities
and ii) it is capable of handling a data model object that allows the manipulation of real-
world entities. In the scope of our work, we rely on the Spring data model to resemble the
functionalities of the FeatureIDE plugin by developing a dynamic web form filled with the

16https://start.spring.io/

https://start.spring.io/

228 An MDE-based methodology to engineering recommender systems

elicited RS features depicted in Figure 8.10. Using the RS configuration form, the user can
easily set up a valid configuration that is sent to the next component, i.e., the DSL web editor.
To fill dynamically the form, we employ the Thymeleaf template engine,17 a well-founded
technology that supports the integration with the Spring framework.

Fig. 8.10 A fragment of the RS configuration form.

Since the data model is a static object, the constraints among the features have been
implemented by using a Javascript validator automatically generated using the LEV4REC
code generator component. The implemented constraints act on the high-level components
as well as on their subcomponents. For instance, if a Supervised Dataset feature is selected,
it is not possible to choose any Unsupervised Algorithm. Meanwhile, some features can
be selected independently from the others, e.g., standard preprocessing techniques that
can be applied to any dataset. In the original implementation, the validation of such rules
is handled by the FeatureIDE Ecplise plugin using a dedicated configuration XML file.
Replicating all FeatureIDE functionalities goes beyond the scope of the presented work and
we see a complete implementation as possible future work. Once the form has passed the
abovementioned formal check, the system sends the data selected to the DSL editor. To
this end, we equip the developed Spring architecture with a gateway developed with Spring

17https://www.thymeleaf.org/

https://www.thymeleaf.org/

8.2 The LEV4REC environment 229

Cloud component18 that is able to remap each request to a different path. Due to the nature
of the developed editor, requests from external sources are not allowed. Thus, LEV4REC
makes use of the gateway to overcome this issue by remapping each component to a proper
request.

EMF editor and generation Once the component configuration has been defined, the
user can enrich the elicited components with the DSL editor deployed by using the Xtext
framework. As discussed in our prior work [71], LEV4REC relies on a metamodel composed
of different abstract concepts needed to generalize any recommender systems. Moving
towards a more user-friendly platform, a custom grammar has been generated starting from
the original metamodel using Xtext utilities. In such a way, users who are not familiar
with meta-modeling can directly employ the web editor equipped with all needed features.
In particular, the system makes use of RsDsl.xtext file to generate the whole grammar by
exploiting EMF utilities, i.e., ecore concepts and commons terminal. Afterward, the user can
enrich all these elements by selecting additional attributes, e.g., the data source file, algorithm
parameters, the number of evaluation steps, to name a few. The generated DSL web editor is
depicted in Figure 8.11.

Fig. 8.11 The DSL web editor.

To facilitate a proper specification, the user can exploit the editor features, i.e., syntax
highlighting and autocompletion. In such a way, LEV4REC drives the user during the whole
design process by providing insightful hints. For instance, if a FilteringRs algorithm has
been specified, the editor can suggest additional parameters specifically designed for this
type of strategy, e.g., neighborhood size or the similarity function, by simply selecting them.
Furthermore, we equipped LEV4REC with a tailored Xtend formatter19 to assist the user

18https://spring.io/projects/spring-cloud
19https://www.eclipse.org/Xtext/documentation/303_runtime_concepts.html

https://spring.io/projects/spring-cloud
https://www.eclipse.org/Xtext/documentation/303_runtime_concepts.html

230 An MDE-based methodology to engineering recommender systems

during the editing operations, thus improving the readability of the written specification.
Concerning the interal web-based architecture, the internal Xtext engine generates all the
needed components to run the web application, i.e., the webserver and the servlets with the
deployed services. In particular, Xtext makes use of Jetty,20 a well-founded web container
that is easily embeddable in several frameworks. The next step involves the generation of
the actual code using the abovementioned specification using the Acceleo framework that
offers a set of dedicated templates 21. Such modules identify repetitive and static parts of the
system being generated and embody specific queries on the source models to fill dynamic
elements. As stated in Section 8.2, an Acceleo generator needs a template and a model
that conforms to a metamodel. Since the web editor is built on top of a derived DSL that
avoids the usage of an EMF model, LEV4REC has a dedicated component in the Spring
architecture that serializes the content edited by the user in a suitable model, thus enabling
the generation phase. Listing 8.1 the main Acceleo template employed to generate all the
specified components. It is worth noting that a hierarchical structure has been devised to
cover the generation of all elicited components, including both the configuration form and
DSL editor entities. In other words, the LEV4REC code generator embodies the user design
choices from the initial specification to the fine-tuning phase.

8.3 Use cases

By following the process presented in the previous section, we make use of LEV4REC to
design, tune, and deploy two existing recommender systems, i.e., a k-nearest neighbour-based
algorithm (named KNN hereafter) [250], and AURORA [176]. KNN aims to address the
scalability problem in personalized recommendations; it combines an adaptive version of
the KNN (AKNN) and ontologies to recommend relevant items for any user. In the scope
of the work, we elicit this approach since it provides movie recommendations, which is
a well-known application domain [74]. Furthermore, we implement KNN by relying on
the Surprise library.22 Meanwhile, AURORA classifies metamodels using a feed-forward
neural network model trained with a curated labeled dataset. To feed the underpinning model,
feature vectors are extracted using three encodings, i.e., uni-grams, bi-grams, and n-grams.
Like the KNN methods, we resemble the AURORA key functionalities by relying on an
external Python library, namely Scikit-learn,23 which provides all the needed building blocks.

20https://www.eclipse.org/jetty/
21https://wiki.eclipse.org/Acceleo/User_Guide#Templates
22http://surpriselib.com/
23https://scikit-learn.org/

https://www.eclipse.org/jetty/
https://wiki.eclipse.org/Acceleo/User_Guide#Templates
http://surpriselib.com/
https://scikit-learn.org/

8.3 Use cases 231

We discuss the development of KNN and AURORA in the following subsections. How-
ever, as we mentioned in Section 1.1, the proposed platform does not support the generation
of a dataset at the current stage of development. Thus, in the scope of this evaluation, we
focus on the specification, configuration, and generation of the two RSs.

8.3.0.1 RS Feature Selections

The first step involves the feature selections of the two systems by employing the devised
feature model. Figure 8.12 shows a fragment of the KNN and AURORA specifications,
which have been done utilizing LEV4REC. To resemble the KNN peculiarities, a Supervised
dataset and user-based collaborative filtering algorithm are needed. To this end, the fragment
of the selected features depicted in Fig. 8.12a shows that the UserBased feature has been
selected accordingly.

It is worth noting that defining a partial set of features is sufficient to resemble the
proposed environment, which relies on well-defined constraints to obtain a valid configuration.
For instance, as shown in the lower side of Fig. 8.12a, the user manually selected eight
features, and the environment automatically disabled 47 features and selected the remaining
24 ones.

(a) KNN Selected Features (b) KNN Configuration

Fig. 8.12 Small fragment of the KNN specification.

Similarly, feature selections for AURORA can be easily specified as in Fig. 8.13a. Since
the tool exploits a supervised classifier, the RS developer is forced to use once again a
supervised dataset. It is worth noting that such a constraint is automatically set using the
feature model. Thus, the RS developer can elicit the wanted component without taking care
of possible violations. Concerning the underpinning algorithm, we defined a FeedForward
NN concept to resemble the original behaviour of AURORA.

232 An MDE-based methodology to engineering recommender systems

(a) AURORA Selected Features (b) AURORA Configuration

Fig. 8.13 Small fragment of the AURORA specification.

8.3.0.2 RS configurations

Once the features of KNN and AURORA have been selected, as shown in the previous section,
an initial version of their configuration models is automatically generated by LEV4REC.
We refined such models to provide missing parameters. Concerning the KNN configuration,
it includes the specification of a Variable element that represents the data sources exploited
to perform the recommendations, i.e., the users and the rated movies.

After the dataset definition, the developer can configure the collaborative filtering algo-
rithm by setting different parameters. The user can eventually set an Evaluation Strategy to
assess the resulting system in terms of available Metrics. Moreover, as shown in the model
fragment depicted in Fig. 8.12b, we have specified the number of folds and number of wanted
recommendations for the selected cross-validation method.

Concerning AURORA, the employed configuration is shown in Fig. 8.13b. As we
can see, the Variable concept has been used to describe Metamodels since AURORA was
originally conceived to categorize them given an initial Label. In such a way, we can reuse the
same notation to describe different algorithms and input data. Afterwards, according to the
available hyperparameters, the RSD can customize the feed-forward neural network selected
in the previous phase, i.e., the RS feature selection. For instance, a possible fine-tuning is
depicted in the lower part of Fig. 8.13b where the learning rate has been set to 2 and mini
batch size to 1. Furthermore, since LEV4REC targets the Sklearn library when generating
the actual code, the user can also set an activation function chosen among the available ones,
i.e., identity, logistic, tanh, and relu.

8.3 Use cases 233

Listing 8.2 Excerpt of the generated code for KNN.
DATASET

import pandas as pd

from surprise import Dataset

data = Dataset.load_builtin(’ml-100k’)

ALGORITHM SETTINGS

is_user_based=False

neighborhood=40

cutoff=5

sim_funct=’cosine’

sim_settings = {’name’: sim_funct,

’user_based’: is_user_based}

from surprise import KNNWithMeans

algo = KNNWithMeans(k=neighborhood, sim_options=sim_settings)

EVALUATION SETTINGS

from surprise.model_selection import KFold

from collections import defaultdict

threshold = 3.5

k=10

n_splits=10

kf = KFold(n_splits=n_splits)

for trainset, testset in kf.split(data):

algo.fit(trainset)

predictions = algo.test(testset)

user_est_true = defaultdict(list)

for uid, _, true_r, est, _ in predictions:

user_est_true[uid].append((est, true_r))

precisions = dict()

precisions[uid] = n_rel_and_rec_k / n_rec_k if n_rec_k != 0 else 0

recalls[uid] = n_rel_and_rec_k / n_rel if n_rel != 0 else 0

precision= sum(prec for prec in precisions.values()) / len(precisions)

recall =sum(rec for rec in recalls.values()) / len(recalls)

f1_measure=(2*precision* recall) / (recall + precision)

234 An MDE-based methodology to engineering recommender systems

Listing 8.3 Excerpt of the generated code for AURORA.
DATASET

dataset=pd.read_csv(’AURORA_train.csv’)

X = dataset.iloc[:,:-1].values

y = dataset.iloc[:, -1].values

#PREPROCESSING

from sklearn.feature_extraction.text import CountVectorizer

sc = CountVectorizer(ngram_range=(1,1))

ALGORITHM SETTINGS

from sklearn.neural_network import MLPClassifier

solver=’adam’

alpha=1e-5

hidden_layers=(5, 2)

random_state=1

clf = MLPClassifier(solver=solver, alpha=alpha,hidden_layer_sizes=

hidden_layers, random_state=random_state)

EVALUATION SETTINGS

n_splits=10

...

from sklearn.model_selection import KFold

kf = KFold(n_splits = n_splits)

for train, test in kf.split(X):

X_split, X_test, y_split, y_test = X[train],X[test], y[train], y[test]

...

X_train = sc.fit_transform(list_train)

X_test = sc.transform(list_test)

clf.fit(X_train, y_split)

y_pred = clf.predict(X_test)

from sklearn.metrics import precision_score

precision = precision_score(y_pred, y_test, average=None)

prec_all = prec_all + sum(precision)/len(precision)

from sklearn.metrics import f1_score

f1 = f1_score(y_pred, y_test, average=None)

f1_all = f1_all + sum(f1)/len(f1)

8.3.0.3 Generation of RS source code

Once the configuration model has been finalized, LEV4REC can generate the source code
of the modeled RS. The platform exploits Acceleo templates to produce the Python code
as described in Section 8.2.3. This section explains how LEV4REC generates code for
the two considered systems. As previously mentioned, currently, we support two different
libraries to cover the two use cases, i.e., Scikit-Learn and Surprise. Furthermore, our tool

8.4 Evaluation strategies 235

can be conveniently extended to work with other Machine Learning frameworks, such as
TensorFlow or Keras.

The LEV4REC code generator produces the needed Python scripts by adhering to a
predefined structure. First, the dataset loading relies on the pandas library. Then, LEV4REC
configures the algorithm parameters according to specified values in the design phase. Finally,
the generated RS evaluates the algorithm by computing the metrics previously selected by
the designer.

Listing 8.2 and Listing 8.3 represent fragments of the generated code for KNN and
AURORA, respectively. Concerning the former, we exploit the Surprise library as it supports
a set of well-defined collaborative algorithms. We choose the K-NN mean algorithm that
resembles the original CrossRec settings. The resulting source code is then used to run
experiments on a real-world dataset. Afterwards, the evaluation phase is conducted to study
the results using common quality metrics in Information Retrieval [155], i.e., precision, recall,
and F1 score.24 Similar to KNN, in the generated code for AURORA in Listing 8.3, we load
a predefined dataset to test the capability to resemble the system’s structure. The underlying
feed-forward neural network is implemented by exploiting the Scikit-learn MLP class that
provides similar features. Finally, the performance is assessed using the cross-validation
technique to compute the abovementioned metrics.

The presented code is inserted in a Jupyter Notebook, a well-known open-source format
that can be executed directly on several platforms, e.g., JupyterLab,25 or Google Colab-
oratory.26 In such a way, LEV4REC provides an agnostic representation that allows for
flexibility in choosing the executing environment.

8.4 Evaluation strategies

To demonstrate the applicability of our approach, this section presents an empirical evaluation
consisting of the reimplementation of different recommender systems employing LEV4REC
and comparing the obtained results with their original implementations.

We define the research question in Section 8.4.1 while Section 8.4.2 presents the datasets
employed in the evaluation. The metrics computed are presented in Section 8.4.3, and the
automated evaluation process is presented in Section 8.4.4. By employing the focus group
methodology, we assessed the qualitative aspects of the LEV4REC as discussed in Section
8.4.5.

24For the sake of presentation, we omitted mathematical details in the metrics computation.
25https://jupyterlab.readthedocs.io/en/stable/
26https://colab.research.google.com/notebooks/intro.ipynb

https://jupyterlab.readthedocs.io/en/stable/
https://colab.research.google.com/notebooks/intro.ipynb

236 An MDE-based methodology to engineering recommender systems

8.4.1 Research questions

We study the performance of LEV4REC by answering the following research questions:

RQ1: Is LEV4REC capable of resembling the key functionalities of existing
recommender systems? In this research question, we assess the capability of
LEV4REC in resembling the key functionalities of two existing recommender
systems that support software development, i.e., KNN and AURORA. To this
end, we employ LEV4REC to generate these systems from the design to the
actual deployment. Afterward, we validate the obtained results by using a set of
well-known metrics.

RQ2: Is LEV4REC useful to support the development of recommender sys-
tems? LEV4REC has been conceived as an agnostic and extensible framework
to support different types of RSs. This research question aims to demonstrate
to what extend the tool is useful to support the development of recommender
systems.

8.4.2 Datasets

To evaluate each system, we elicit two different datasets belonging to two different domains,
i.e., movies, and MDE. The KNN algorithm has been validated on MovieLens dataset [105],
a well-known supervised dataset widely used in the recommendation system domain to test
collaborative filtering approaches. The data was collected through the MovieLens website27

and included 100,000 ratings from 943 users on 1,682 movies plus several demographic user
information, e.g., age, gender, and occupation. To feed the underpinning KNN algorithm, the
data is encoded as a user-item matrix where each row is represented as follows:

user id | item id | rating

where the user id represents the user, the item id the rated movie, and the rating is the
corresponding vote expressed from 1 to 5. We used the same dataset [300] that has been
considered to evaluate AURORA while testing the LEV4REC’s performance. The dataset
comprises 555 metamodels with 9 different application domains, i.e., Bibliography, Confer-
ence management, Bug/issue tracker, Build systems, MS Office products, Requirement/use
case, Database, State machines, and Petri nets.

Table 8.2 summarizes the features of the examined dataset as well as the corresponding
tools. As we can notice, the input data has different dimensions and format, i.e., AURORA

27https://grouplens.org/datasets/movielens/100k/

https://grouplens.org/datasets/movielens/100k/

8.4 Evaluation strategies 237

Table 8.2 Overview of the examined datasets.

System Dataset Data type Features
KNN Movielens-100k Matrix 1,682 movies rated by 943 users
AURORA Ecore dataset Textual Data 555 metamodels labeled with 9 categories

has to be fed with textual data while a matrix format is enough for the KNN-based approach.
Such a heterogeneous knowledge can be handled by LEV4REC by using the feature model
and the high-level concepts as discussed in Section 8.2.

8.4.3 Metrics

To evaluate the generated systems, we consider precision, recall, and F1 score that are widely
used in the information retrieval domain [107]. First, we define the following notations:28

• True positive (TP): is the outcome where the system recommends the proper item;

• False Positive (FP): is the outcome where the system has suggested the wrong item;

• False Negative (FN): is the outcome where the system doesn’t recommend an item that
should be included in the delivered list.

Precision: This metric evaluates the ratio of number of correctly predicted items to the total
number of retrieved items

P =
T P

T P+FP
(8.1)

Recall: It measures the impact of the false positive on the recommended items.

R =
T P

T P+FN
(8.2)

F1 score: It represents the harmonic mean of the two previous metrics.

F1 score =
2×P×R

P+R
(8.3)

8.4.4 Automated evaluation

The evaluation process conducted for the considered systems is depicted in Fig. 8.14. We
adopt the ten-fold cross-validation technique consisting of splitting the Initial data of each
tool into two different dataset, i.e., train and test data. The former is used to feed the examined

28This notation holds for all the considered systems in the evaluation. Thus, the term item refers to a movie
or a predicted label if KNN or AURORA is considered, respectively

238 An MDE-based methodology to engineering recommender systems

recommender system implemented using LEV4REC. It is worth mentioning that each tool
has been trained with data of different natures. For instance, the KNN algorithm needs a
matrix composed of users, movies, and the corresponding rate. Meanwhile, AURORA is fed
with a set of labeled metamodels employing NLP encoding.

Input data
Recommeder

system

Splitting data

Train data

Test data

Suggested

 items

Metrics

computation

Fig. 8.14 The evaluation process.

The test data is used to validate the two systems. In particular, we used 80% of the initial
data as training in the conducted study and the left part as testing. Afterwards, the Metrics
computation process evaluates the performances of the considered recommender system by
computing the metrics described in Section 8.4, i.e., precision, recall, and F1 score. To this
end, the suggested item returned by the system are compared with the elicited test data. It is
worth noting that this process takes place for each evaluation round.

8.4.5 Focus group evaluation

To assess the qualitative aspects of LEV4REC, we conducted a focus group study, a well-
founded methodology in software engineering [133]. This technique is described as a
carefully planned discussion designed to obtain feedback from a group of experts in a specific
domain. Though the method is not suitable for quantitatively evaluating a given approach
[78], it can provide a fast and cost-effective means to obtain qualitative feedback on the
proposed methodology. Furthermore, this methodology has been recently adopted to evaluate
a tool that supports the modeling of complex software systems [146]. In the scope of this
work, we organized a focus group to assess the capability of LEV4REC by discussing the
provided critical features, i.e., the level of automation, the usability of the user interface, the
completeness, and extensibility.

Concerning the participants, the focus group involved four academic experts recruited
from different universities plus one participant from the industry. The selection process
considered their expertise in the relevant fields of study, i.e., recommender systems, low-code

8.4 Evaluation strategies 239

engineering, software product lines, and model-driven engineering. One of the academic
participants devises several algorithms in the recommender system domain, while the indus-
trial participant is involved in developing low-code platforms. The rest of the members come
from the modeling area. Finally, one author of the paper took the moderator role to drive the
discussion.

Table 8.3 Participants to the focus group and their expertise.

Participant Recommender
Systems

Low-code
Engineering

Software
Product Lines

Model-driven
Engineering

P1 Expert Outsider Outsider Outsider
P2 Good Knowledge Good Knowledge Good Knowledge Good Knowledge
P3 Expert Expert Expert Expert
P4 Familiar Good Knowledge Familiar Expert
P5 Expert Expert Expert Expert

Table 8.3 summarizes the level of expertise self-declared from the anonymized partici-
pants for each research subject, using the following taxonomy:

• Outsider: the participant declares that s/he is not an expert on the specific research
subject;

• Familiar: the participant knows the fundamental aspect of the topic even though s/he
misses the relevant expertise;

• Good knowledge: the participant works actively in the field but s/he may not be
updated on the latest literature;

• Expert: the participant possesses a deep knowledge of the subject and s/he substan-
tially contributes to the state-of-the-art research.

The discussion has been divided into two parts. In the first part, we introduced principles
and notions of recommender systems and model-driven engineering to give a common back-
ground. Notable approaches and open challenges related to developing new recommender
systems have also been discussed. In the second part, we present LEV4REC and its main
features using a pre-recorded demo in which the tool’s capabilities were shown. The partic-
ipants eventually discuss the strengths and limitations of our approach by relying on their
perceptions. To conduct the focus group, we identified a list of discussion questions (DQs) to
highlight better the contribution of our approach related to specific aspects. Concerning the
first part, we investigated the following DQs:

• DQ1.1: What is your experience with recommender systems in general?

240 An MDE-based methodology to engineering recommender systems

• DQ1.2: What is your experience with tools that support the design of recommender
systems?

• DQ1.3: What is your experience in modeling complex software systems?

Meanwhile, the DQs presented in the second part are the following ones:

• DQ2.1: Please comment on the usefulness of LEV4REC in guiding the design of a
custom recommender system.

• DQ2.2: Please comment on how LEV4REC satisfies the following aspects:

– DQ2.2.1: Automation level in specifying the whole system.

– DQ2.2.2: Usability of the LEV4REC interface.

– DQ2.2.3: Capability of resembling the two presented scenarios.

– DQ2.2.4: Extensibility of the whole tool.

• DQ2.3 How could the approach be improved or extended?

• DQ2.4 How difficult would it be for a newcomer to use LEV4REC for specifying a
recommender system?

8.5 Results

RQ1: Is LEV4REC capable of resembling the key functionalities of existing recom-
mender systems? To answer the research question, we run the two recommender systems
implemented using LEV4REC on the datasets presented in Section 8.2. Figure8.15 reports
the experimental results by running KNN on the MovieLens dataset. It is worth mentioning
that the KNN performance resembles the results obtained with the standard version of the
algorithm, i.e., precision, recall, and F1 scores are ≈0.60 with the better configuration. How-
ever, it is important to remark that our approach cannot resemble the augmented version of
the KNN since it relies on a tailored algorithm at the current state of development. Thus, we
focus on deploying the standard version of the KNN, which was considered as the baseline
in the mentioned work [250].

To highlight the LEV4REC’s capabilities in fine-tuning the chosen algorithms, we
compare the results obtained with user-based and item-based collaborative filtering. The
item-based collaborative filtering technique can improve prediction than the user-based one
for all considered metrics. For example, as depicted in Fig. 8.15, the precision distribution is

8.5 Results 241

P_USER_BASED P_ITEM_BASED

0.58

0.60

0.62

0.64

0.66

Fig. 8.15 Precision of the KNN-based RS developed with LEV4REC.

R_USER_BASED R_ITEM_BASED

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

Fig. 8.16 Recall of the KNN-based RS developed with LEV4REC.

centered on 0.64 with the item-based algorithm while the user-based median is 0.59, meaning
that it obtains the worst results on average. A similar trend can be observed for the recall
and F1 metrics which achieve 0.56 and 0.59 using the item-based technique, as depicted in
Fig. 8.16 and Fig. 8.17, respectively. Meanwhile, the user-based median values for the recall
and F1 are lower, i.e., 0.52 and 0.56. Altogether, the item-based strategy achieves better
results, and this is consistent with the findings of existing work [125, 63]. Thus, we conclude
that the produced implementation for KNN can provide recommendations as expected.

The results achieved by the reimplementation of AURORA done with the proposed
LEV4REC approach are shown in Fig. 8.18, Fig. 8.19, and Fig. 8.20. It is worth noting

242 An MDE-based methodology to engineering recommender systems

F1_USER_BASED F1_ITEM_BASED

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

Fig. 8.17 F1 score of the KNN-based RS developed with LEV4REC.

that LEV4REC succeeded in resembling the AURORA underpinning algorithm used in the
classification task: the values of precision, recall, and F1 score are similar to those reported in
the original work [176]. Furthermore, according to the work presenting AURORA, the best
configuration is reached using uni-gram encoding, which has been resembled by LEV4REC
by using the Count Vectorizer class provided by Sklearn. In particular, our findings
confirm that the proposed environment can mimic AURORA’s functionalities, i.e., the
original tool achieves better performance when the uni-gram encoding is used. Furthermore,
concerning the examined metrics, the results are very high since we are considering a well-
curated dataset composed of metamodels that are very similar. Nevertheless, the conducted
study aims to evaluate to what extend LEV4REC can conceive the original design of the
examined tools rather than improving their performances.

Table 8.4 compares the results obtained by the original tools, i.e., KNN and AURORA,
and the corresponding ones that have been developed with LEV4REC. It is worth noting
that the proposed approach achieves almost the same values for all the examined metrics on
average.

Table 8.4 Comparison with original results.

Collaborative filtering Classification
Avg. metrics KNN LEV4REC AURORA LEV4REC
Precision 0.623 0.634 0.945 0.950
Recall 0.622 0.552 0.938 0.949
F1 0.623 0.590 0.942 0.949

8.5 Results 243

P_UNI_GRAMS P_BI_GRAMS
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8.18 Precision of AURORA as developed with LEV4REC.

R_UNI_GRAMS R_BI_GRAMS
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8.19 Recall of AURORA as developed with LEV4REC.

Answer to RQ1. The conducted evaluation suggests that LEV4REC can resemble
existing recommender systems geared by different algorithms. Furthermore, the obtained
results are comparable to those presented in the original studies.

RQ2: Is LEV4REC useful to support the development of recommender systems? To
answer the research question, we conducted a qualitative evaluation following the focus group
methodology described in Section 8.4. To facilitate the participation of the heterogeneous
group described in Table 8.3, the focus group session was conducted remotely and recorded
(with the participants’ consent). The session required almost two hours and we transcripted

244 An MDE-based methodology to engineering recommender systems

F1_UNI_GRAMS F1_BI_GRAMS
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8.20 F1 score of AURORA as developed with LEV4REC.

the participants’ answers by anonymizing them.29 Afterward, we employed the Thematic
Analysis Template (TAT) method [47] to examine the results of the focus group session.
The rationale behind this choice is two-fold (i) the approach is very flexible in analyzing
qualitative data; and (ii) existing studies in software engineering already make use of it to
evaluate focus group results [234, 146]. The definition of the TAT begins by identifying an
initial set of themes relevant to the considered context. Alternatively, a priori themes can
be set according to the author’s experience. Then, these elicited concepts can be refined
according to further data analysis.

In the scope of our work, we define the themes by relying on the LEV4REC’s features
that have been investigated using the discussion questions (DQs). Table 8.5 summarize the
initial themes, their description, the derived sub-themes, and the final template. Each theme
and the corresponding sub-themes are discussed hereafter.

(1) Managing heterogeneity

(1.1) Composition of miscellaneous components

Even though the participants agreed that the design of the recommender systems is ruled by
common principles, deploying the actual system could be challenging to the heterogeneity
of the data. In this respect, creating a dedicated ontology can facilitate the reuse of existing
knowledge. Furthermore, generating a synthetic dataset resembling the users’ behaviour can

29The anonymized transcription of the meeting is available online: https://github.com/MDEGroup/
LEV4REC-Tool/blob/main/focus_group/

https://github.com/MDEGroup/LEV4REC-Tool/blob/main/focus_group/
https://github.com/MDEGroup/LEV4REC-Tool/blob/main/focus_group/

8.5 Results 245

Table 8.5 Identified themes and sub-themes using for the TAT methodology.

Nr. Theme Discussion Sub-theme
1 Managing hetero-

geneity
Each module requires a
specific input format to
produce intermediary out-
comes which are used by
the subsequent components

1.1 Composition of miscel-
laneous components
1.2 Development of source
code components

2 Pursuing generaliz-
ability

There is the need to gen-
eralize the whole design
pipeline to support differ-
ent type of strategies in one
platform

2.1 Design and specifica-
tion of the recommenda-
tion process
2.2 Awareness of existing
solutions

3 LEV4REC ap-
proach

Presenting strengths and
weaknesses of LEV4REC
in support the design of a
generic RSs

3.1 Strengths
3.2 Weaknesses

4 LEV4REC evalua-
tion

Possible evaluation
methodology for
LEV4REC

4.1 Suitability of the pre-
defined use cases
4.2 Extending the con-
ducted assessment

mitigate the lack of data. Finally, the industrial participant mentioned that the development
of recommender systems in industry is tailored to the users’ needs, thus involving effort in
collecting explicit feedback on each component of the system, e.g., expected outcomes or
active context.

(1.2) Development of source code components

According to their experience, the participants claimed that developing source code from
scratch requires deep domain knowledge. Therefore, Python is the most used language
as a proof of concept to test the feasibility of the system since (i) it is easy to learn; and
(ii) it offers a plethora of external modules that can come in handy in the development
of recommender systems. The industrial participant confirmed that Python is adopted in
her company to have an initial application prototype. Afterwards, they use this initial
specification to implement the final system in different languages, e.g., Java, C++, and C#.
Furthermore, all the participants recognized that LEV4REC offers the needed degree of
automation to generate the Python scripts, thus simplifying the whole process.

(2) Pursuing generalizability

(2.1) Design and specification of the recommendation process

246 An MDE-based methodology to engineering recommender systems

The industrial participant acknowledged the potential benefits of using the modeling concepts
to develop complex systems even though they are currently not used during daily activities.
The rest of the academic participants agreed that using the feature modeling combined with
the dedicated metamodel is helpful while the user specifies the system.

(2.2) Awareness of existing solutions

Three participants worked actively in developing and evaluating recommender systems by
considering different domains, from modeling assistants to multimedia recommenders. In
particular, the existing modeling assistant relies on a query mechanism to retrieve valuable
modeling artifacts. Concerning the multimedia recommendation, a generic framework that
relies on a collaborative filtering technique has been developed by one of the participants.
Furthermore, they highlighted that gathering user ratings needed to feed the underpinning
techniques was the most difficult part. Finally, the participant with deep knowledge of
recommender systems developed a framework to automatically evaluate and test several state-
of-the-art recommendation engines, e.g., deep neural networks and collaborative filtering
strategies. Altogether, all the participants involved in the actual development agreed that
writing the needed code from scratch is daunting and time-consuming. Moreover, the quality
of the results is not granted apriori, thus requiring extra time to assess the developed system
properly.

(3) LEV4REC approach

(3.1) Strengths

Overall, the participants found that LEV4REC achieves several critical objectives, from
the automation of the overall process to the generation of the actual code. Furthermore, the
usage of the FOSD methodology in combination with the standard metaprogramming was
appreciated by the experts in MDE. Moreover, the participant involved in testing recom-
mender systems remarked that LEV4REC could be used to lower the barriers between the
developers and the stakeholders, thus allowing small companies to exploit these complex
systems in their daily activities. In this respect, the industrial participant recognized that our
tool could support the proof of concept strategy that is currently employed in the company.

(3.2) Weaknesses

During the discussion, some participants expressed some concerns related to two aspects,
i.e., the usability of the LEV4REC interface and the extensibility mechanism. Concerning
the former, two of the participants suggest providing some default configurations for the
state-of-the-art approach. In such a way, newcomers unfamiliar with the Eclipse environment

8.6 Threats to validity 247

can easily understand the main capabilities of the modeling environment. On the other hand,
concerning the latter, the participant who worked in the modeling assistant domain advised us
to introduce well-documented guidelines to describe how to extend LEV4REC. In particular,
providing endpoints could allow for integration with external tools and frameworks.

(4) LEV4REC evaluation

(4.1) Suitability of the pre-defined use cases

Although the conducted evaluation included only two use cases, it is suitable to show the
generalizability of LEV4REC in supporting the design of a custom recommender system,
as almost all participants claimed. Furthermore, one participant mentioned the possibility
of generating different variants of the same system to select the best configuration given a
set of predefined requirements. In this respect, we see evaluating the results in terms of the
identified metrics as possible future work.

(4.2) Extending the conducted assessment

To better discuss the qualitative aspects of the tool, one participant suggested employing the
system and study skill methodology to collect feedback from the non-expert user. Another
proposed methodology is to define a set of Key Performance Indicators (KPI) that can
investigate several aspects of the system, for instance, how the usage of LEV4REC can
impact design time. Nonetheless, the definition of KPIs requires a more structured user
interface and the implementation of a DevOps architecture where the system is deployed as a
stand-alone prototype.

Answer to RQ2. The focus group participants highlighted the benefits of LEV4REC
in terms of automation and generalizability, even though the user interface and the
extensibility can be enhanced by introducing default configurations and documented
endpoints, respectively.

8.6 Threats to validity

This section discusses some threats that may affect the validity of our findings and identifies
possible countermeasures to minimize the potential issues.

Threats to internal validity concern the selected methodology to generate the RS, i.e., the
devised low-code environment. An RS developer who is not familiar with modeling concepts
and the Eclipse environment could have some difficulties in using LEV4REC. We provide a
constraint-based mechanism to support users while selecting the RS features to mitigate such

248 An MDE-based methodology to engineering recommender systems

an issue. Also, the RS configuration phase is supported by a metamodel, which enforces a
well-defined structure to the specifications being defined.

External validity is related to the generalizability of the approach. This work integrated the
Surprise and Scikit-learn utilities even though many libraries might be alternatively used.
However, LEV4REC can be extended to support different algorithms and programming
languages. Finally, selecting just two approaches for the evaluation could be seen as a threat
to the generalizability of LEV4REC. However, the two systems correspond to two main
algorithms in the recommender system domain, i.e., collaborative filtering technique and
feed-forward neural network. Furthermore, we mitigate this threat by conducting a focus
group discussion where the five domain experts analyzed the benefits and issues of the
approach. Although it is a lightweight evaluation compared to a user study, we followed a
rigorous process that has been used in recent works to evaluate software engineering tools.

8.7 Conclusion

Due to the urgent need to support the development of recommender systems, LEV4REC
has been proposed as a workable solution to assist developers that do not have strong
experience in designing and programming recommender systems. Our approach is a low-
code environment to foster an RS’s design, configuration, and deployment from scratch using
such a cutting-edge paradigm. LEV4REC is flexible and extensible as it relies on three
core techniques, i.e., feature model, metamodel, and Acceleo templates. Starting from a
feature model, RS designers can specify the system’s features and then progressively enrich
a configuration model automatically generated out of the selected features. Once the RS
configuration has been refined, the system employs a model-driven code generator to produce
the actual code of the specified RS. LEV4REC allows developers to refine the produced
system by experimenting with different algorithms, experimental settings, and evaluation
metrics.

We evaluated the approach empirically by reimplementing two existing RSs that rely on
different algorithms, i.e., collaborative filtering technique and feed-forward neural network.
To discuss qualitative aspects of the proposed approach, we interviewed five domain experts
by employing the focus group methodology, widely used in software engineering, to gather
feedback on the benefits and limitations of the proposed approach.

Chapter 9

Adversarial Attacks to Recommender
Systems in Software Engineering

To cope with their everyday programming tasks, developers access and browse various
information sources [57]. Given the abundance of sources of formal and informal docu-
mentation, the problem is not the lack of information, but, instead, its overload [168, 169].
Recently, many studies have been conducted to develop methods and tools–recommender
systems for software engineering (RSSE)–to provide developers with automated assis-
tance [101, 203, 182]

The development of RSSE encompasses several phases including the design of the
underpinning algorithms or the reuse of existing ones. Machine Learning (ML) techniques
are amongst the natural choices that developers take when new recommender systems have
to be conceived [220]. This means, for example, that the recommendation of code elements
(snippets or APIs) is learned from existing code bases or informal documentation. As a result,
the quality of the recommendation depends on the quality of the underlying data, whose
noisiness has been previously reported [124].

Even worse, online data used to train recommenders can be exploited for malicious
purposes. Adversarial Machine Learning [262, 114] (AML) is a field of study that focuses on
security issues in ML systems and, specifically, in recommender systems too [61]. Research
has been done to identify probable threats and seek out adequate countermeasures [18, 277].
For example, Anelli et al. [18] use shilling attack [241] to manipulate a collaborative-filtering
recommender system operated with Linked Data. Also, Wang and Han [277] propose an
improvement of the Bayesian personalized ranking technique by exploiting the adversarial
training-based mean strategy in collaborative filtering-based recommender systems.

To protect a system against threats, in the first place, it is necessary to be knowledgeable
of various types of adversary activities [164]. Such activities generate perturbations to

250 Adversarial Attacks to Recommender Systems in Software Engineering

deceive and disrupt systems by causing a malfunction, compromising their recommendation
capabilities.

The ultimate aim of these attacks is to manipulate target items, thus creating either a
negative or positive influence on the final recommendations [104], depending on the attacker’s
intention. For instance, in image classification, an attacker crafts an input image by adding
non-random noise in a way that it will be falsely classified by ML models, whilst still
being properly recognized by humans [174]. As an example, a panda was recognized as a
ribbon by cutting-edge deep neural networks once the input image had been padded with
noise, meanwhile humans still correctly perceived the panda from the forged image [95].
AML has been studied in a wide range of domains, e.g., online shopping systems [164] or
image classification [174], and addresses both risks and countermeasures. To the best of our
knowledge, even though AML is gaining much attention in the software engineering domain,
e.g., in testing and applications of DNNs [240], AML has not been investigated in the context
of RSSE yet.

This chapter reports two initial investigations that consider two types of RSSEs, i.e.,
systems to provide third-party libraries (TPLs) and API function calls.

A promising field is enhancing the robustness of ML-based systems. Differently from the
profile classification strategy, those approaches aim at improving the underlying algorithm
by exploiting feature-space attack models [291]. Even though several approaches propose
robust models to support different tasks [260, 115], there is still room for improvements, e.g.,
handling realizable attacks or moving to generalized robustness.

The first part of the chapter presents an initial study on threats that cause harm or danger
to RSSE suggesting third-party libraries and API function calls. The work has been published
in the Vision and Emerging results track of the International conference on Evaluation and
Assessment in Software Engineering [187]. The candidate contributes to develop the scripts
used to simulate the adversarial attacks.

We select these two types of recommendations as they are representative of scenarios in
which (i) the recommendation is learned from OSS repositories; and (ii) the outcome of a
malicious recommendation, e.g., the usage of a library or an API, can result in severe security
holes [22].

Based on thorough observations and on the analysis of the existing literature, we realized
that most of the efforts to improve RSSE have been made to enhance their accuracy. As far
as we can see, no work has investigated the problem of using intentionally falsified data to
compromise recommender systems’ capabilities, as well as conceptualizing countermeasures.
In this respect, our work is the first one that brings in the issue of AML in RSSE.

251

Most RSSE heavily rely on open data sources, such as GitHub, the Maven Central
Repository, or Stack Overflow, which can be steered by adversaries [293]. In other words,
these systems are vulnerable to attacks equipped with forged input data. Therefore, there is the
need for comprehending the likely threats, with the ultimate aim of conceiving counteractions
to increase the resilience of RSSE.

We first provide an overview of state-of-the-art API and third-party library recommenders,
discussing how they could be potentially affected by AML. Through a literature search from
premier venues in Software Engineering for adversarial techniques, we show that there
are considerably evident threats to RSSE. Then, we perform a preliminary examination
of two existing systems for recommending third-party libraries. The experimental results
reveal a worrying outcome: by a simple manipulation, we can seamlessly spoil the final
recommendations, putting software clients at risk.

In the second part of the chapter, we present an extended version of our initial investigation
which has been thoroughly extended under different dimensions including the analysis of
code snippet seeding scenario. This work has been published in the ASE conference [188]
and the candidate contributes to the evaluation part by developing the API injector used in
the experiments.

First, through a literature analysis on 14 premier venues in software engineering, we
show that there has been no work to study the issue of AML in RSSE. Afterwards, we present
a qualitative analysis of state-of-the-art API recommenders, underlining their risk of being
manipulated by adversarial techniques. Then, we perform an empirical evaluation on three
API recommenders using data seeded in real OSS projects. The results reveal a worrisome
outcome: by crafting input data to feed the systems, we can manipulate the recommendations,
successfully promoting fake/toxic API calls. Last but not least, we devise some possible
countermeasures to cope with this type of manipulations.

It is worth noting that the discussed methodologies are limited to these two application
domains, thus not considering other types of RSSEs presented in this dissertation, i.e.,
modeling assistants and OSS tagging systems. While the overall process could be applied
also in these domains, it would require a deeper investigation that can be seen as future work.

Outline of the chapter: Section 9.1.1 presents a taxonomy of the attacks and a list of
notable RSSEs. The inital investigation on the topic is described in Section 9.1.2 and the
preliminary results are discussed in Section 9.1.3. Section 9.2.1 introduces the same issues for
API RSSEs. Then, the extended study is presented together with the new research questions
in Section 9.2.2 and the corresponding results are reported in Section 9.2.3. We discuss

252 Adversarial Attacks to Recommender Systems in Software Engineering

limitations and possible countermeasures in Section 9.2.4 and Section 9.2.5 respectively. We
conclude the chapter by envisioning possible future work in Section 9.3.

9.1 Adversarial attacks to TPL RSSEs

9.1.1 Motivation and background

Classification of attacks Attacks to recommender systems are classified into two main
categories as follows [61]:

• Poisoning attacks spoil an ML model by falsifying the input data;

• Evasion attacks attempt to avoid being detected by hiding malicious contents, which
then will be classified as legitimate by ML models.

With poisoning attacks, there are two possible interventions:

• Push attacks favor the targeted items, thus increasing the possibility of being recom-
mended;

• In contrast, nuke attacks try to downgrade/defame the targeted items [18, 164], com-
pelling them to disappear from the recommendation list.

In the scope of the presented study, we focus on poisoning attacks as they are easy to
conduct, yet effective. The remaining attacks are left to our future work.

Potential risks to RSSE for mining libraries and API calls We review notable RSSE that
support the development of software projects by delivering third-party libraries and API calls.
Table 9.1 lists the systems according to their functionality in chronological order. By studying
their internal design, we discuss possible vulnerabilities according to the previously-given
categorization of attacks.

▷ Library recommendation. LibRec [259] recommends libraries using a combination of
rule mining and a collaborative-filtering technique to mine libraries from projects similar
to the one being developed. LibCUP [229] suggests libraries that have strong ties by using
a clustering approach to identify and recommend co-usage patterns. LibD [142] provides
libraries to Android apps using a clustering technique. First, it decompiles applications to
build a control flow graph composed of packages, classes, and methods belonging to the
projects. Then, the graph is used to extract features, and grouped by a similarity function.

9.1 Adversarial attacks to TPL RSSEs 253

Table 9.1 Notable RSSE for mining libraries and APIs.

System Venue Year Data source
L

ib
ra

ry
re

c.
LibRec [259] WCRE 2013 GitHub
LibCUP [229] JSS 2017 GitHub
LibD [142] ICSE 2017 Android markets
LibFinder [197] IST 2018 GitHub
CrossRec [182] JSS 2020 GitHub
LibSeek [106] TSE 2020 Google Play, GitHub, MVN

A
PI

re
c.

MAPO [298] ECOOP 2009 SourceForge
UP-Miner [276] MSR 2013 Microsoft Codebase
DeepAPI [101] ESEC/FSE 2016 GitHub
PAM [83] ESEC/FSE 2016 GitHub
FINE-GRAPE [233] EMSE 2017 GitHub
FOCUS [181, 177] ICSE 2019 GitHub, MVN

Ouni et al. propose LibFinder [197], providing libraries based on a multi-objective search-
based algorithm. Being built with a collaborative-filtering technique, CrossRec extracts
libraries from similar projects [182]. LibSeek [106] relies on a matrix factorization technique
to deliver relevant libraries for mobile apps, obtained by collecting neighborhood information,
i.e., characteristics of similar libraries.

As it can be seen, all the considered systems leverage open sources, e.g., GitHub or
Android markets, for training. Moreover, they mine libraries using similarity-based mea-
sures, either a similarity function, or a clustering technique. Thus, they are exposed to
perturbations with malicious content hidden in OSS projects. We therefore conjecture that,
by fabricating projects with bogus data, attackers can favor (push attack) or defame (nuke
attack) a library [18, 241, 61]. In other words, they can make a good/useful library out of
being recommended, or even worse, promote a bad/malicious library to a higher rank in the
recommendation list, so that users of the recommender system would unintendedly adopt it.

▷ API recommendation. MAPO [298] recommends API patterns by extracting API related
information from the developer’s context. The resulting data is clustered and ranked according
to their similarity with the client code. In this respect, the system can be fooled with malicious
code intentionally inserted into similar projects. Wang et al. propose UP-Miner [276]
exploiting SeqSim and BIDE to mine from source code. Since UP-Miner relies on a similarity
measure, it may recommend to developers malicious code embedded in projects disguised as
similar. DeepAPI [101] generates relevant API sequences starting from a natural language
query. It employs an RNN Encoder-Decoder to encode words in context vectors used to
train the model. As the corpus is collected from GitHub projects, a hostile user can easily
inject perturbations during the data gathering phase, i.e., feeding the system with interfered
projects. PAM [83] has been proposed to extract relevant API patterns from client code by
using the structural Expectation-Maximization (EM) algorithm to infer the most probable

254 Adversarial Attacks to Recommender Systems in Software Engineering

items. The mined API patterns are then ranked according to their probability. Push and nuke
attacks could easily modify the final ranking obtained by the tool, i.e., operating on terms’
occurrences to favor or defame a certain pattern. FINE-GRAPE [233] delivers relevant APIs
by relying on the history of the related files. It parses GitHub projects, discovers, and ranks
the relevant API calls according to their history, i.e., methods, annotations, and classes from
every API version. FINE-GRAPE is prone to manipulations which forge an artificial history
of API calls in GitHub projects. FOCUS [181] suggests APIs by encoding projects in a tensor
and using a collaborative-filtering technique. Since it works on data mined from similar
projects, FOCUS is not immune from poisoning attacks, i.e., an adversary can create fake
projects with toxic APIs and pose them as legitimate to trick FOCUS into recommending
these calls.

9.1.2 Proof of concept

We report a preliminary investigation into the implication of AML on two existing RSSE.
The study has been conducted on two library recommenders, i.e., LibRec [259] and Cross-
Rec [182] (cf. Table 9.1). Such tools are chosen due to the following reasons. LibRec is a
well-established tool, considered to be the first library recommender system. CrossRec is
a more recent approach, which has been shown to outperform LibRec. Both tools have the
replication package available,12 allowing us to fully make use of the available source code
and tailor it to the study needs.

9.1.2.1 Problem statement

We consider a scenario in which, when developing new software, programmers rely on a
recommender system to find and use in their code third-party libraries that offer the desired
features. For instance, the developer is searching for libraries for parsing JSON documents
and the system should be able to suggest those that are used by similar projects. We simulate
an attacker attempting to inject a phoney library with malicious code (e.g., by referring to the
previous example, a malicious JSON parser), let it be lib∗, into the active projects. Given
that, under normal circumstances, the systems would never recommend lib∗, since the library
has not been invoked anywhere. To this end, we forcefully favor lib∗ using push attacks (cf.
Section 9.1.1), so that, in the end, the library will be suggested to projects.

While in many cases experienced developers would simply rely on well-known libraries,
sometimes a malicious library, which is properly documented (i.e., providing useful features),

1We gratefully thank the authors of LibRec for providing us with the source code of the tool (through private
communications).

2https://github.com/crossminer/CrossRec

https://github.com/crossminer/CrossRec

9.1 Adversarial attacks to TPL RSSEs 255

lib1 lib2 · · · · · · · · · libF lib∗

Filler libraries (F)

Fig. 9.1 Manipulation of library usages for a fake project.

and (artificially) upvoted, may still be adopted by some. Moreover, while our evaluation is
limited to library recommendation, a similar attack scenario could happen for recommenders
that suggest code snippets, e.g., MUSE [167], PAM [83], or FOCUS [181, 177].

The name lib∗ has been chosen for illustration purposes only, so as to facilitate the
reading. In practice, to avoid being detected, an attacker probably gives the library a copycat
name, i.e., one that closely resembles a popular library, aiming to disguise it better. In fact,
typosquatting has been reported in recent work [60], and this indeed suggests an evident
threat to the adoption of libraries. For instance, a malicious library has been named as
“jeIlyfish” to deceive developers into believing it “jellyfish,” the authentic library.3 In this way,
developers would adopt the disguised library without hesitation, once it has been suggested
by recommenders.

Summary. Altogether, this is to stress that the risk of being fooled by malicious libraries in
practice is present. As such, software developers who use recommender systems may suffer if the
issue of dealing with this type of attack is not adequately studied.

9.1.2.2 Study design and dataset

Both LibRec and CrossRec suggest to active projects, i.e., the ones under development, by
searching for libraries from the most similar projects in the training data [182].

When LibRec and CrossRec learn from existing projects to provide recommendations,
they treat a project’s library usage as a vector, whose each entry corresponds to a library:
1 means that the library is included in the project, 0 otherwise [259, 182]. To attack a
recommender, there are various approaches to populate ratings for fake user profiles [31, 164].
Unfortunately, they cannot be directly applied to forge projects, since they deal with multi-
level ratings, while in library recommendation there are only two ratings (0 and 1). Thus, to
create a training set for the LibRec and CrossRec tools, we have to devise a new method to
produce fake projects as follows. A project’s vector is divided into two independent parts,
namely filler libraries and target library (cf. Fig. 9.1). We fill in the former with a set of

3https://bit.ly/394uETI

https://bit.ly/394uETI

256 Adversarial Attacks to Recommender Systems in Software Engineering

libraries from training data; while the latter is set to lib∗. This aims to achieve two goals: (i)
making the fake project be similar to active projects; and (ii) boosting the presence of lib∗.

Table 9.2 Hit ratio @N for LibRec.

HR@10 HR@15
γ=3 γ=4 γ=6 γ=8 γ=10 γ=3 γ=4 γ=6 γ=8 γ=10

α
=

5%

k=5 — 0.154 0.177 0.242 0.219 — 0.154 0.189 0.252 0.237
k=10 — 0.198 0.273 0.428 0.410 — 0.198 0.317 0.455 0.442
k=15 — 0.199 0.307 0.541 0.546 — 0.199 0.368 0.580 0.580
k=20 — 0.177 0.316 0.608 0.637 — 0.177 0.388 0.658 0.670

α
=

10
% k=5 — 0.247 0.240 0.242 0.210 — 0.247 0.256 0.251 0.237

k=10 — 0.380 0.418 0.428 0.320 — 0.380 0.449 0.455 0.442
k=15 — 0.439 0.505 0.541 0.390 — 0.439 0.554 0.580 0.580
k=20 — 0.443 0.547 0.608 0.431 — 0.443 0.605 0.657 0.670

We come across the following question: “Which libraries should be chosen as fillers, so
that the fake project will be incorporated into the recommendation?” In fact, recommenders
heavily rely on similarity [235], thus we come up with the selection of popular libraries as
fillers. Our intuition is that, a fake project with libraries widely used by projects is likely
to get attention from the recommendation engine. A list of libraries in the training data is
selected and sorted in descending order of the number of caller projects. A certain number of
the top popular libraries is then randomly selected.

On the attacker’s side, α is the ratio of fake projects to the total number of projects (in
%); γ is the number of fillers. For LibRec and CrossRec, k is the number of similar projects
and N is the cut-off value for the ranked list of recommendations [259, 182]. We conducted
experiments using ten-fold cross-validation on a dataset used in our previous work [182]
with 1,200 projects and 13,497 libraries. For a testing project, we randomly split its libraries
into two equal parts, the first part is used as a query, while the second one is ground-truth
data. To measure the effectiveness of the push attacks, we use Hit ratio HR@N, defined as
the ratio of projects being recommended with lib∗ to the total number of testing projects [18].
To measure the accuracy, we use success rate SR@N, i.e., the ratio of projects getting at least
a matched library (the size of the intersection of the recommended list with the ground-truth
data is larger than 0) to the number of testing projects. We experimented with α={5%,10%}
as attack size; k={5,10,15,20}; γ={3,4,6,8,10} as fillers’ size. The calibration of these
parameters allows us to simulate stress tests, aiming to investigate the systems’ resilience
under different working conditions.

We address research questions to study the performance:

• RQ1: Are LibRec and CrossRec prone to push attacks? By experimenting the two
systems on a real dataset collected from GitHub, we are interested in understanding if
the push attacks pose a threat to them.

9.1 Adversarial attacks to TPL RSSEs 257

Table 9.3 Hit ratio @N for CrossRec.
HR@10 HR@15

γ=3 γ=4 γ=6 γ=8 γ=10 γ=3 γ=4 γ=6 γ=8 γ=10

α
=

5%

k=5 0.159 0.158 0.145 0.113 0.103 0.178 0.177 0.163 0.138 0.120
k=10 0.140 0.141 0.165 0.149 0.140 0.184 0.190 0.201 0.185 0.174
k=15 0.154 0.163 0.188 0.198 0.189 0.200 0.227 0.235 0.250 0.229
k=20 0.112 0.135 0.207 0.188 0.194 0.168 0.191 0.268 0.235 0.250

α
=

10
% k=5 0.356 0.346 0.267 0.235 0.210 0.386 0.373 0.291 0.265 0.248

k=10 0.440 0.430 0.348 0.347 0.320 0.496 0.478 0.388 0.393 0.357
k=15 0.427 0.445 0.427 0.407 0.390 0.487 0.497 0.488 0.475 0.438
k=20 0.455 0.424 0.457 0.454 0.431 0.515 0.525 0.530 0.514 0.486

• RQ2: How do α and γ affect the attacks’ effectiveness? Both parameters can be
tuned by attackers. Thus, it is also important to see how the parameters impact on
the efficacy of the attacks. By varying the parameters, we study the influence on the
recommendation outcomes of both systems.

9.1.3 Experimental results

We answer the research questions by referring to Table 9.2 and Table 9.3. LibRec does not
work on projects with a small number of libraries, this is why there are no results for γ=3.
Instead, we can run CrossRec with any γ > 0.

RQ1: Are LibRec and CrossRec prone to push attacks? According to Table 9.2, we see
that regardless of the internal configuration of both systems (i.e., k and N), the push attacks
always succeed in injecting lib∗ to projects. In general, an attack becomes more effective
when a larger value of k is used. We analyze the results obtained by running the tools as
follows.

With α=5%, for LibRec, we can see that the system recommends the malicious library at
different hit ratios. For instance, with γ=4, k=5 we get HR@10 of 0.154, and the hit ratio
gradually increases when we use a larger number of libraries. Given that 10 libraries are
used, HR@10 reaches 0.219. Moreover, the hit ratio also increases alongside k, i.e., the
number of neighbor projects used for recommendations. Remarkably, when k=20, we get a
hit ratio HR@10 of 0.637. Similarly, CrossRec also recommends the malicious library by all
the experimental settings.

As we have shown in Section 9.1.1, developers would voluntarily adopt the recommended
libraries, especially when the fake library is disguised with a typosquatting name, and the
ranked list is short, e.g., N=10 or N=15. The adoption of a phoney library indeed poses a
threat to the system under development. Altogether, we conclude that adversarial attacks to

258 Adversarial Attacks to Recommender Systems in Software Engineering

library recommender systems are highly probable, and we should neither underestimate nor
neglect them.

Answer to RQ1. Even with a simple fabrication, the resilience of LibRec and CrossRec is
considerably compromised. Both systems recommend to developers the malicious library, which
can put software clients at risk once being invoked.

RQ2: How do α and γ affect the attacks’ effectiveness? Adversaries pay attention to α

and γ , which are under their control and can be tuned to make attacks more effective. The
results in Table 9.2 and Table 9.3 show that by adding more fake projects, one can increase
the hit ratio by both systems.

For example, with LibRec, for (α=5%, k=10, γ=6) HR@10 is 0.273; and for (α=10%,
k=10, γ=6) the corresponding hit ratio HR@10 is 0.418. Similarly, with CrossRec (cf.
Table 9.3), for (α=5%, k=20, γ=6), HR@10 is 0.207, while the hit ratio HR@10 for α=10%
reaches a value of 0.457. The maximum hit ratio is obtained, i.e., HR@15 = 0.530 when
γ=6 and k=20. For CrossRec, the hit ratio decreases when γ > 6, this means that an attacker
should use a small γ to get a higher hit ratio. For LibRec, the maximum HR@15 is 0.670
and obtained when γ=10.

We ran LibRec and CrossRec in two modes, i.e., with and without fake projects, and
realized that there is almost no difference in their success rate. Due to space limit, we report
only the differences as average SR@N in two modes, which is 2.6% and 2% for LibRec and
CrossRec, respectively.

This implies that the inadvertent inclusion of fake projects in the recommendation is
difficult to notice, and cannot be detected by simply looking at variations in the accuracy
values.

Answer to RQ2. By adding more fake projects (α), attackers can increase the number of infected
clients in both systems. A small γ is more dangerous to CrossRec, while a large γ causes
more harm to LibRec. The introduction of the malicious library does not greatly impact on the
recommendation accuracy, thus being an imperceptible incident.

9.1.3.1 Discussions

This subsection discusses the perspective of an attacker who wants to compromise the security
of a system (marked with ✗), and that of an administrator who defends the system against
hostile attempts (marked with ✔).

While in the evaluation we performed only push attacks, the same methodology can be
applied to conduct nuke attacks, i.e., removing a useful library from the recommendations

9.2 Adversarial attacks to API RSSEs 259

(✗). Moreover, we tried with only one malicious library, however the evaluation can easily
be extended to a set of libraries.

We considered different settings for LibRec and CrossRec, and this aims at studying the
systems’ capability in various conditions. In practice, an attacker may not be aware of such
design, what matters is how she populates fake projects so that the malicious library will be
recommended (✗), regardless of the systems’ configurations.

To simplify the evaluation, we generated fake projects at the metadata level, i.e., we
assume that all projects have been successfully fetched from GitHub.4 In practice, it is
necessary to plant these projects in GitHub to make them appear as legitimate (✗). In
fact, such an incident has been recently reported, where hundreds of GitHub repositories
promoting malware apps have been discovered.5 To our knowledge, research conducted to
combat this type of abuse is still in its infancy [221].

Aiming for credible sources, a recommender usually chooses to crawl only from repos-
itories with a considerably large number of stars and/or forks, or whatever criterion a
recommender uses for selecting its training set (✔) [182]. In this case, an attacker may need
to disguise a planted project by falsifying this information, e.g., by starring and forking with
forged accounts (✗). Thus, there is a need for mechanisms to detect this type of fabrication
(✔).

To penetrate a system, the introduction of a library is just the first step. The second step is
to trick developers into invoking the library by calling its functions. Thus, an adversary needs
also to steer API or code recommenders (✗), e.g., the ones recently published [83, 181, 233].
We conjecture that a technique similar to what described in Section 9.1.2 can be used for
injecting toxic APIs.

9.2 Adversarial attacks to API RSSEs

9.2.1 Push attacks to API and code snippet RSSE

During the development process, programmers may look for and embed relevant APIs or
code snippets useful for their tasks [181]. While this is a common practice as it helps increase
productivity [160], it also poses security concerns.

Let us consider a developer who is using a tailored tool to search for snippets relevant
to her context. Such a type of system has been chosen as it represents a typical scenario in
software development where the recommendation needs to be learned from public reposito-

4We mined library usage directly from pom.xml files.
5https://zd.net/3bg3CK9

https://zd.net/3bg3CK9

260 Adversarial Attacks to Recommender Systems in Software Engineering

ries, and the adoption of a malicious API or code snippet may put the software system under
development at risk [22]. In this respect, we anticipate two scenarios in which the developer
is trapped by hostile attempts as follows: She is provided with either (i) APIs coming from
legitimate libraries, which may trigger disruptions/fatal errors if being executed in certain
contexts/under some usage scenarios; or (ii) intentionally harmful APIs embedded in a fake
library.

To illustrate the first scenario, i.e., normal APIs causing fatal errors, we refer to the
example6 in Listing 9.1.

Listing 9.1 A snippet seen as harmless, but actually harmful.

1 import java . io .OutputStream;
2 import java . net .Socket;
3
4 public class Test {
5 public static void main(String [] args) throws Exception {
6 Test test = new Test () ;
7 test .debug("hello ") ;
8 }
9 public void debug(String msg) throws Exception {

10 String s = "/ usr /bin / logger " ;
11 Runtime r = Runtime.getRuntime();
12 if (System.getProperty ("os .name").equals (" linux")) {
13 r .exec(s + msg);
14 } else {
15 Socket socket = new Socket(" loghost " , 514);
16 OutputStream out = socket .getOutputStream() ;
17 out . write (new byte[] {0x2A, 0x2F, 0x72, 0x2E, 0x65, 0x78, 0x65, 0x22, 0x72, 0x6D, 0x22, 0x3B, 0x2F,

0x2A });
18 out . write (msg.getBytes()) ;
19 }
20 }
21 }

The Java-written snippet looks harmless as first sight, however, once being executed
it has a severe consequence on the hosting client. To be concrete, the bytecode 0x2A,

0x2F,..., 0x2F, 0x2A (Line 17) corresponds to the following string: */r.exe"rm";/*.
The implication of the out.write() method with the string as parameter in the Windows
operating system is the deletion of random files.7 In this case, while out.write() is a native
method which comes from java.io.OutputStream – a mainstream library – it still induces
a detrimental effect in the hosting platform.

The second scenario is when the developer is provided with intentionally harmful APIs
embedded in a fake third-party library. As an example, Listing 9.2 depicts a third-party

6This code originates from the following blog post: https://bit.ly/31R760l
7The snippet is dangerous, and thus we advise against running it. Detailed explanations can be found in the

original blog post.

https://bit.ly/31R760l

9.2 Adversarial attacks to API RSSEs 261

library with the FileManager class, which wraps the malicious code in Listing 9.1 using the
writeLog() declaration. Though the name has nothing to do with the code, it makes the
declaration appear more legitimate, helping disguise the intent better [187]. Eventually, the
library is compiled and published as a JAR file.

Listing 9.2 A third-party library to wrap malicious code.

1 package tools ;
2 import java . io . IOException;
3 import java . io .OutputStream;
4 import java . net .Socket;
5 public class FileManager {
6 public void writeLog(String msg) throws Exception {
7 String s = "/ usr /bin / logger " ;
8 Runtime r = Runtime.getRuntime();
9 if (System.getProperty ("os .name").equals (" linux")) {

10 r .exec(s + msg);
11 } else {
12 Socket socket = new Socket(" loghost " , 514);
13 OutputStream out = socket .getOutputStream() ;
14 out . write (new byte[] { 0x2A, 0x2F, 0x72, 0x2E, 0x65, 0x78, 0x65,
15 0x22, 0x72, 0x6D, 0x22, 0x3B, 0x2F, 0x2A });
16 out . write (msg.getBytes()) ;
17 }
18 }
19 }

Listing 9.3 is the new version of the project in Listing 9.1, however it is rewritten by
means of the library, which is embedded through the import tools.FileManager directive
(Line 3). The resulting snippet in Listing 9.3 is more compact, and it offers the same
functionality as the project in Listing 9.1; however, all the intent is hidden in the library. The
final usage pattern consists of only two API calls, i.e., FileManager fm = new FileMan

ager() and fm.writeLog(). In this way, attackers render their attempt more practical by
exposing the code in Listing 9.3 to the public, waiting for the developer to take the bait.

Listing 9.3 The new snippet using the third-party library.

1 import java . io .OutputStream;
2 import java . net .Socket;
3 import tools .FileManager;
4
5 public class Test {
6 public static void main(String [] args) throws Exception{
7 FileManager fm = new FileManager();
8 fm.writeLog("Kernel − Starting service ") ;
9 }

10 }

262 Adversarial Attacks to Recommender Systems in Software Engineering

Such a type of attack is effective, as it can be tailored for any specific purpose, e.g.,
creating a backdoor to render unauthorized access [288] once being successfully invoked.
However, it also requires additional effort to plant the malicious library in OSS platforms
and to trick the developer into calling it.

At the same time, both scenarios may appear to be unrealistic, as the possibility of
encountering such snippets/APIs under normal circumstances is low, i.e., the developer would
never come across the code when using recommender systems. However, by manipulating
the training data in OSS platforms, e.g., GitHub, adversaries can boost up the snippets’
visibility/popularity so that API recommenders will adopt and provide it to the developer. As
such, the suggested snippet poses a potential danger to the software systems embedding it.

To reveal potential risks that maliciously handled training data might cause, we start
from the assumption that some users have already adversarially-manipulated training sets.
It is out of our scope to develop mechanisms to inject malicious snippets on crowdsourced
repositories (e.g., on Stack Overflow) or make fake APIs become popular, e.g., by boosting
their stars/forks and adding pages on Q&A forums. For the sake of presentation, in the rest of
this chapter, we call an API causing negative effects or errors as a malicious API, regardless
of its origin, i.e., whether it comes from a legitimate or from a fake library.
As mentioned before, although the code in Listing 9.1 is dangerous, it is unlikely that
developers encounter something similar under normal circumstances. To expose the code to
recommenders, attackers need to manipulate the training data by performing a push attack.
In such a misdeed, they forcefully favor the targeted items by boosting their popularity. This
increases the possibility of being discovered and thus, recommended by search engines.

We encounter the following challenge: “How should a fake API be planted, so that it will
be incorporated by recommendation engines?” In fact, recommender systems rely heavily
on similarity measures, i.e., they employ algorithms to search for similar artifacts, which
are used to deduce recommendations [187]. This is the case not only for general-purpose
recommender systems [213], but also for several RSSE [112, 167, 181, 223, 276, 298].
For instance, library recommenders search for libraries from the most similar projects in
the training data [182, 183, 259]. Similarly, various systems for providing APIs and code
also exploit a similarity measure [83, 177], or a kernel [103] to retrieve similar projects
and snippets. More importantly, to produce recommendations, RSSE need to rely on OSS
repositories, such as GitHub, or Maven, which are subject to changes from the public.

Let us imagine a scenario in which one increases the popularity of malicious APIs8

by planting them to OSS projects, as many as possible. Fig. 9.2 illustrates the process in

8As stated in Section 9.2.1, we consider an API malicious if it causes fatal errors, no matter where it comes
from, i.e., either a legitimate or a fake library.

9.2 Adversarial attacks to API RSSEs 263

boost

inject APIs

attackerwell-maintained
GitHub repositories

pushing infected
repositories

fork

fake
accounts

createusing fake accounts to fork, star, and
watch the infected repositories

push

select

Fig. 9.2 The process of manipulating GitHub to promote malicious repositories.

which attackers may exploit to plant malicious data. First, well-maintained repositories
are forked from GitHub, e.g., those that have good indicators in terms of stars, forks, or
watchers. Afterward, the projects are injected with fake APIs, and then uploaded back to
GitHub. Malicious repositories in GitHub are not scarce, but dime a dozen [221]. To boost
up the popularity of an API pattern, the APIs can be seeded into a significant number of
declarations, for each training project. Attackers may create fake accounts to star, fork, and
watch malicious repositories to increase their credibility/visibility, thus exposing them better
to search engines.9

9.2.2 Study design and planning

The goal of this study is to investigate the relevance of AML attacks for RSSE, and in
particular of API and code snippet recommenders. The quality focus is the resilience of
RSSE to AML attacks. The perspective is of researchers interested to improve the RSSE they
develop. The context consists of state-of-the-art API and code snippet recommenders.

We aim to address the following research questions:

• RQ1: How well has the issue of AML in RSSE been addressed by the existing litera-
ture? We perform a literature analysis to investigate whether there is already any effort
devoted to study and deal with threats to RSSE originating from malicious data. Al-
though our purpose is not to perform a complete, detailed systematic literature review,
we followed consolidated guidelines for this kind of study in software engineering
[129, 153].

9Such manipulation has been recently revealed https://zd.net/3bg3CK9.

https://zd.net/3bg3CK9

264 Adversarial Attacks to Recommender Systems in Software Engineering

• RQ2: To what extent are state-of-the-art API and code snippet recommender systems
susceptible to malicious data? First, we perform a qualitative analysis of the likely
attack threats that could affect state-of-the-art API and code snippet recommenders.
Then, based on their availability, we select three systems for our empirical evaluation,
i.e., UP-Miner [276], PAM [83], and FOCUS [177, 181]. These are among the state-
of-the-art approaches for API recommendations as they emerge from premier software
engineering venues. We conjecture that an evaluation on these systems will help to
shed light on the resilience of the majority of existing API recommenders.

9.2.2.1 Addressing RQ1: Literature analysis

To achieve a good trade-off between the coverage of existing studies on AML in RSSE and
efficiency, we defined the search strategy by answering the following four W-questions [292]
(“W” stands for Which?, Where?, What?, and When?).

• Which? Both automatic and manual searches were performed to look for relevant
papers from conferences and journals.

• Where? We conducted a literature analysis on premier venues in software engineering.
In particular, there are nine conferences as follows: ICSE, ESEC/FSE, ASE, ICSME,
ICST, ISSTA, ESEM, MSR, and SANER. Meanwhile, the following five journals
were considered: TSE, TOSEM, EMSE, JSS, and IST.10 The selection of conferences
and journals was performed so to include mainstream venues, as well as specialized
ones for which RSSE are relevant. The automatic search was done on the SCOPUS
database.11 We fetched all the papers published by a given edition (year) of a given
venue (journal/conference) using the advanced search and export features.

• What? For each paper collected, its title and abstract were extracted using a set of
predefined keywords. To cover more possible results, we used regular expressions for
searching, e.g., depending on the terms we may use case sensitive queries.

• When? Since Adversarial Machine Learning is a recent research topic, we limit the
search to the most five recent years, i.e., from 2016 to 2020.

The extraction process produced a corpus of 7,076 articles. Then, we performed various
filtering steps to narrow down the search and look for those that meet our requirements. In

10We report the full name of all the venues as well as their corresponding acronyms in an online appendix
https://bit.ly/3jUey4K.

11https://www.scopus.com/

https://bit.ly/3jUey4K
https://www.scopus.com/

9.2 Adversarial attacks to API RSSEs 265

particular, we are interested in studies dealing with recommender systems together with the
relevant topics, i.e., Adversarial Machine Learning, API mining, and malicious attempts.
Intermediate results, e.g., number of downloaded papers per venue, number of candidate
papers per venue, are available in our online appendix [189].

9.2.2.2 Addressing RQ2: Qualitative analysis and experiment on three RSSE

To address RQ2, we looked at the same venues considered in RQ1 to identify, over the period
2010–2020, API recommender systems as well as RSSE suggesting API code example
snippets. We then qualitatively discuss, for each recommender, the working mechanism, and
its potential risks.

Then, based on the tool availability as well as the characteristics of the tools, we select
three of them, i.e., UP-Miner [276], PAM [83], and FOCUS [181]. To evaluate the resilience
of UP-Miner, PAM, and FOCUS, we use a dataset containing Android apps’ source code.
We focused on Android apps because they entail a typical scenario in which an infection can
cause unwanted consequences such as data leaks.

We made use of a dataset which was curated through our recent work [177], and the
collection process is summarized as follows. First, we searched for open source projects using
the AndroidTimeMachine platform [91], which retrieves apps and their source code from
Google Play12 and GitHub. Second, APK files are fetched from the Apkpure platform,13

using a Python script. Third, the dex2jar tool [1] is used to convert the APK files into
the JAR format. The JAR files were then fed as input for Rascal to convert them into the
M3 format [25]. We obtained a set of 2,600 apps with full source code. To simplify the
evaluation, we inject APIs at the metadata level, i.e., after the data that has been parsed to a
processable format. This is for experimental purposes only since, in reality, attackers need to
seed data directly to projects and upload them to GitHub as shown in Fig. 9.2. However, in
our evaluation we refrained from doing this to carefully follow ethical boundaries, as well as
to avoid adversely impacting real-world systems.

We then inserted fake APIs into random projects and declarations, attempting to simulate
real-world scenarios where APIs are dispersed across several declarations. Finally, the
resulting data is parsed in two formats, i.e., ARFF files to be fed to UP-Miner and PAM,
and a special file format for providing input to FOCUS. By an empirical evaluation, we
realized that UP-Miner and PAM suffer from scalability issues, i.e., they cannot work on
large datasets. Thus for evaluating them, we could only consider a subset consisting of 500

12https://play.google.com/
13https://apkpure.com/

https://play.google.com/
https://apkpure.com/

266 Adversarial Attacks to Recommender Systems in Software Engineering

apps. For FOCUS, the whole 2,600 apps are used since the system is capable of handling
well a large amount of data.

There are the following parameters to consider when it comes to populating artificial
projects.

• α is the ratio of projects injected with fake APIs (in percent, %).

• β is the ratio of methods in a project getting fake APIs (in percent, %).

• Ω is the number of fake APIs injected to each declaration.

• N is cut-off value for the ranked list of recommended items returned by a recommender
system.

We experiment with the following sets of parameters: α={5%,10%,15%,20%}, β={40%,-
50%,60%}, Ω={1,2}. The rationale behind the selection of these values is as follows. Con-
cerning α , though having popular APIs is commonplace, it is difficult to rack up projects with
malicious APIs, thus α is set a small percentage, i.e., α={5%,10%,15%,20%}. In contrast,
within a project, attackers have more freedom to embed APIs to declarations, therefore β is
varied from 40%, 50%, to 60%. Finally, as explained in Section 9.2.1, the number of fake
APIs should be kept low to make attacks more feasible, i.e., Ω={1,2}. We study how the
calibration of the parameters affects the final efficiency, aiming to anticipate the extent to
which the attacks are successful in the field.

We inspected the dataset produced as explained above, and counted 26,852 unique APIs in
all the apps. Fig. 9.3 depicts the distribution of APIs in projects and declarations. The x-Axis
and the y-Axis specify the number of projects and the number of declarations in which an
invocation is seen, respectively. The dense cluster of points on the lower-left corner suggests
that most of the APIs appear in less than 250 projects and 200 declarations. Meanwhile,
a small fraction of them are invoked by a large number of projects and declarations, i.e.,
more than 2,000 and 10,000, respectively. Such a distribution has an impact on the α and β

parameters.
The figure indicates that some APIs are extremely frequent. By looking inside the dataset,

we see that java/lang/StringBuilder/append(java.lang.String) is the most popular
API as it appears in 96.61% of the projects. Other invocations specific to Android apps, such
as android/view/View/getRight(), are also very common in the dataset. The presence
of very popular APIs gives us some hints on how to inject malicious APIs having the same
names. We conjecture that, even if we embed an artificial API on a large number of projects,
this can be seen as normal and thus, does not arouse developers’ suspicion.

9.2 Adversarial attacks to API RSSEs 267

Fig. 9.3 Frequency of APIs in projects and declarations.

We conducted experiments using the ten-fold cross-validation methodology, i.e., the
dataset with |P| projects is divided into ten equal parts, and each experiment composed of
ten train/test tasks. For each round of execution, one part is used for testing, while the other
nine remaining parts are fed as training.

To measure the effectiveness of push attacks, we employ Hit ratio HR@N [18, 164],
which is defined as the ratio of projects being provided with a fake API |T | to the total
number of testing projects |P|, i.e., HR@N = |T |/ |P|, with N being the cut-off value for the
ranked list. The metric is computed over the results of all the ten folds.

9.2.3 Results

This section reports the study results, addressing the research questions formulated in Sec-
tion 9.2.2.

RQ1: How well has the issue of AML in RSSE been addressed by the existing literature?
Following the process in Section 9.2.2, we collected a corpus consisting of 7,076 documents
coming from the considered conferences and journals in the five most recent years, i.e., from
2016 to 2020. By inspecting the corpus, we see that the number of papers varies among
different venues, ranging from less than 20 to around 250 papers.

We are interested in studies about recommender systems and the related topics, i.e.,
Adversarial Machine Learning, API mining, and malicious attempts. From the collected
corpus we narrowed down the scope by using five sets of keywords as shown in Table 9.5.
For instance, for the REC set, there are the following keywords: “recommendation,” “recom-

268 Adversarial Attacks to Recommender Systems in Software Engineering

Table 9.4 Notable RSSE for mining APIs and/or code snippets (Listed in chronological
order).

System Venue Year Data
source

Working mechanism Potential risks Avail.

UP-Miner [276] MSR 2013 Microsoft
Codebase

UP-Miner works on the basis of clus-
tering, computing similarity at the se-
quence level, i.e., APIs that are usu-
ally found together using BIDE [275].
Finally, it clusters to group frequent
sequences into patterns. S C

Similar to MAPO, as UP-Miner de-
pends on BIDE, an attacker can in-
ject malicious code in the training in
projects disguised as similar to trick
UP-Miner. In this way, it may recom-
mend to developers harmful snippets.

✔

MUSE [167] ICSE 2015 Java
projects

MUSE automatically retrieves rele-
vant API usages using static analysis
techniques. It then ranks the resulting
snippets employing code cloning de-
tection as the similarity measure. S

As it works by means of similarity
among snippets, MUSE can be af-
fected by malicious code embedded
in similar projects planted in public
platforms, e.g., GitHub.

✗

SALAD [191] ICSE 2016 Google
Play

SALAD learns API usages directly
from bytecode extracted from An-
droid apps. It relies on a hidden
Markov model that predicts relevant
API patterns according to their proba-
bilities. S

Since the most probable usages are re-
trieved as recommendations, a hostile
user may plant malicious bytecode in
Google Play to trick SALAD into rec-
ommending to developers.

✗

DeepAPI [101] ESEC/
FSE

2016 GitHub DeepAPI generates relevant API se-
quences starting from a natural lan-
guage query. It employs an Encoder-
Decoder RNN to encode words in con-
text vectors. DeepAPI trains a model
that encodes natural language annota-
tions and API sequences. Afterwards,
it uses the model to compute a list of
API sequences. S

An RNN bases also upon the notation
of similarity, thus a malicious user can
forge API sequence and textual anno-
tation pairs to spoil the recommenda-
tions. First, she can remove or change
part of the textual annotation or even
worst, mix annotations and API se-
quences. Second, she may inject mali-
cious APIs into sequences.

✗

PAM [83] ESEC/
FSE

2016 GitHub PAM defines a distribution over all
possible API patterns in client code,
based on a set of patterns. It uses
a generative model to infer the most
probable patterns. The system gener-
ates candidates by relying on the high-
est support first rule. S

PAM recommends API calls that com-
monly appear in different code snip-
pets. Thus, push and nuke attacks
could modify the final ranking ob-
tained by the tool, i.e., operating on
terms’ occurrences to favor or defame
a certain API pattern.

✔

FINE-GRAPE
[233]

EMSE 2017 GitHub Relying on the history of the related
files, FINE-GRAPE parses GitHub
projects, discovers, and ranks the rel-
evant API calls according to their his-
tory from every API version. S

Manipulations that forge history of
API calls in projects can pose a threat
to the system. Another pitfall can be
represented by the Java code that the
tool parses to get relevant API pat-
terns.

✗

FOCUS
[177, 181]

ICSE 2019 GitHub,
Maven,
Google
Play

FOCUS suggests APIs by encod-
ing projects in a tensor and using a
collaborative-filtering technique to de-
liver the list of APIs. Eventually, it
mines APIs and snippets from similar
projects with a graph representation.
S

The system is susceptible to poisoning
attacks, i.e., an adversary can create
fake similar projects containing toxic
APIs and pose them as legitimate to
deceiving FOCUS into recommending
these calls/snippets.

✔

CodeKernel
[103]

ASE 2019 Java
projects

A graph-based representation is used
to cluster similar API calls. Then, the
system computes graph similarity by
means of kernel functions. Code is se-
lected according to designed ranking
metrics, i.e., specificity and centrality.
S

Since its kernel functions work on
graph structure, CodeKernel can be
fooled by copycat Java APIs that
closely resemble normal ones. Attack-
ers can insert fake code in the graph
embedding process to disguise them
as similar.

✗

AuSearch [21] SANER 2020 GitHub,
Maven

AuSearch discovers API usages from
GitHub by converting the input query
into a GitHub query and searches for
types of parameters that match with
the ones contained in the query. It also
relies on the Maven Package Search
API algorithm to look for similar pack-
ages. S

The tool is prone to poisoning at-
tack with project containing malicious
packages. Furthermore, an attacker
can use JAR files obtained from fake
projects to spoil the package ana-
lyzer module which works on top of
the Maven Package Search API algo-
rithm.

✗

9.2 Adversarial attacks to API RSSEs 269

Table 9.5 Keywords.

Acronym Set of terms Case-sensitive
REC recommendation, recommender, recommendation systems ✗

API API ✔

ADV adversarial ✗
AML ✔

ML machine learning, machine-learning ✗
ML ✔

MAL malicious ✗

mender,” or “recommender systems,” which are popular terms used to refer to a system for
providing recommendations.







R
E
C

A
D
V

M
L

A
P
I

M
A
L

REC 506

ADV 0 49

ML 33 6 385

API 51 3 29 370

MAL 0 2 8 9 82

Fig. 9.4 Number of papers for the related topics.

Fig. 9.4 depicts a matrix whose each cell reports the number of papers that contain both
the keywords in the corresponding column and row. Since it is a symmetric matrix, we list
the numbers on the lower left part and leave the upper right part blank, for the sake of clarity.

Our search targets papers containing one of the following five combinations: either (i)
REC and ADV; or (ii) ADV and ML; or (iii) ADV and API; or (iv) REC and MAL; or (v) API
and MAL. We mark the associated cells using the green color, and carefully examine these
papers. None of them matches with both sets of keywords REC and ADV, or REC and MAL.
For the combinations REC and ML, ADV and API, API and MAL, we found six, three, and
nine articles, respectively. By reading the abstract, we filtered out the ones being completely
out of our interest. We ended up with only seven papers [23, 86, 131, 139, 172, 243, 289],
discussed as follows.

Most of the resulting studies investigate API-based malware detection in the context
of Android applications. For instance, Wu et al. [289] proposed an approach that relies on
dataflow-related API-level features to detect malicious samples. Similarly, REVEALDROID

[86] exploits a scalable, light-weight classification and regression tree classifiers (CART)
to discover Android malware. API features are extracted directly from source code, i.e.,

270 Adversarial Attacks to Recommender Systems in Software Engineering

by mining security-sensitive API calls. MKLDROID [172] is a framework for detecting
malware and malicious code localization, and it integrates different semantic perspectives of
apps, e.g., security-sensitive APIs, system calls, control-flow structures, information flows,
in conjunction with ML classifiers. A recent work [139] analyzes vulnerabilities caused by
the usage of advertising platform SDKs. Moreover, a static analysis tool named ADLIB has
been developed to analyze advertising platform SDKs and detect vulnerable patterns that
can be abused by advertisements. Bao et al. [23] proposed a study for detecting malicious
behavior of malware that infects benign apps by mining sandboxes.

Singh et al. [243] proposed an approach to detection of behavior-based malware. Cuckoo
sandboxes are inspected to extract three different primary features. After dedicated prepro-
cessing steps, e.g., NLP, or decomposition, all the resulting features are integrated in the
training set to develop malware classifiers using different machine learning algorithms, e.g.,
Random Forest, Decision Tree, or Support Vector Machines. Being conceived to automati-
cally identify Server-based InFormation OvershariNg (SIFON) vulnerabilities, the Hush tool
[131] employs a heuristic to analyze sensitive information excerpted from server-side mobile
APIs. As a preliminary study, the system makes use of static program analysis to discover
potential software vulnerabilities in the analyzed applications.

In summary, by thoroughly investigating the papers that match the keywords used to filter
out irrelevant studies, we realize that all of them deal with malware detection in Android apps.
Instead, we did not find any work related to potential threats and implications of adversarial
attacks to API RSSE.

Answer to RQ1. So far, the issue of adversarial attacks to APIs and code snippet
recommenders has not been adequately studied in major software engineering venues.

RQ2: To what extent are state-of-the-art API and code snippet recommender systems
susceptible to malicious data? We answer RQ2 by discussing a qualitative analysis of
existing API recommender systems, and by presenting the results of the empirical evaluation,
which has been performed by analyzing notable RSSE for mining APIs and code snippets.

9.2.3.1 Qualitative analysis

From the premier software engineering venues considered in RQ1 we selected work pre-
senting techniques and tools recommending APIs and code snippets. Table 9.4 lists in
chronological order the set of analyzed approaches.

For each system, by studying the used approach (Working mechanism column), we
discuss its possible vulnerabilities (Potential risks column). The last column, namely Avail.,

9.2 Adversarial attacks to API RSSEs 271

specifies the availability of the replication package by each tool, i.e., either available (✔) or
not available (✗).

Besides what is reported in the Potential risks column of Table 9.4, this section sum-
marizes their main characteristics to highlight the risk of being exploited. Two features that
make a system vulnerable to malicious attempts are namely (i) relying on data from the open-
source for training, e.g., GitHub or Android markets; and (ii) the application of a similarity
measure (marked with S) or a clustering technique (marked with C) to recommend APIs or
code, as we detail below.

• All the systems leverage public data sources to function. While in principle RSSE
can also be trained on closed-source, trusted repositories, in all those cases a realistic,
broad learning makes it unavoidable to leverage large, open-source forges. Most
of the considered RSSE are trained with repositories from GitHub, Maven, or the
Microsoft Code Base, including UP-Miner [276], DeepAPI [101], PAM [83], FINE-
GRAPE [233], AuSearch [21]. Since these sources are freely open for changes by the
crowd, they are also exposed to malicious purposes. Other systems supporting Android
apps, such as SALAD [191] or FOCUS [177] normally obtain data from Google Play,
which enforces mechanisms to control submissions. Nevertheless, such a platform is
not immune from manipulation, as this has been previously reported [46].

• Most of the approaches are based on a similarity measure/kernel to mine APIs and/or
code snippets. In this way, an adversary can insert malicious APIs into similar projects,
and pose them as legitimate to trick the systems into using the disguised project and
eventually recommending API calls. In particular, the following systems work on the
basis of a similarity algorithm: MUSE [167], FINE-GRAPE [233], FOCUS [177, 181],
and CodeKernel [103]. UP-Miner [276] is not directly based on similarity, however, it
relies on the BIDE algorithm [275], which works by mining from common patterns.
Thus, it is prone to malicious code concealed in popular sequences.

• Similarly, the other systems that work on clustering techniques are also susceptible to
adversarial attacks. In fact, besides the BIDE algorithm [275], MAPO and UP-Miner
additionally employ clustering to group similar code sequences. In this way, attackers
may populate fake projects to favor a particular code pattern containing malicious
APIs. Lastly, approaches like FINE-GRAPE are prone to manipulations forging an
artificial history of API calls in GitHub projects.

Altogether, it is evident that all the systems in Table 9.4 are potentially exposed to push
attacks. They can be manipulated to favor a malicious API or snippet, so that it will be

272 Adversarial Attacks to Recommender Systems in Software Engineering

suggested by the recommendation engine. As such, the systems in which the recommended
code is embedded will suffer.

9.2.3.2 Empirical evaluation

To quantitatively investigate the extent to which the threats outlined in the previous qualitative
analysis can actually occur, we perform an empirical evaluation on three among the systems
in Table 9.4, i.e., UP-Miner [276], PAM [83], and FOCUS [181] using the collected dataset
(see Section 9.2.2).

We selected these tools due to the following reasons. First, UP-Miner is a well-established
recommender system, which has shown to outperform MAPO [298], one of the first systems
for suggesting APIs. PAM has been proven to be more effective compared to MAPO and UP-
Miner [83]. Meanwhile, FOCUS is the most recent approach and it obtains the best prediction
performance if compared to both UP-Miner and PAM [177]. Second, the considered systems
are also representative in terms of working mechanism (see Table 9.4). UP-Miner works
based on clustering, while PAM mines API patterns that commonly appear in different
snippets, and finally FOCUS exploits a collaborative-filtering technique, i.e., also based on a
similarity algorithm, to retrieve APIs from similar projects. In this respect, we conjecture
that an evaluation on the three systems could be generalizable to the remaining ones in
Table 9.4. Third, the three tools have evaluation replication package available, i.e., being
specified with (✔) in the Avail. column of Table 9.4. Such implementations enable us to run
the experiments according to our needs.

The number of ranked items N is internal, i.e., it can be customized by developers. In
contrast, α , β , and Ω are external since they can be tuned by adversaries to make their attacks
more effective. The increase of α , β , and Ω is related to the extent to which attackers add
fake APIs to more projects. In the evaluation, we experiment with different configurations by
varying these parameters to analyze which settings bring more perturbed outcomes.

Table 9.6 shows the hit ratio HR@N obtained by the recommendation results of UP-
Miner. It is evident that the system is considerably affected by the crafted training data, i.e.,
it recommends the fake APIs to several projects, depending on the input parameters α , β ,
and Ω. Even with a small ratio of infected projects e.g., α=5%, UP-Miner recommends
the artificial APIs to hundreds of projects. For instance, considering Ω=1, the hit ratio
HR@5 is 0.078 and it increases to 0.119 when N=20. When the fake API is injected to more
declarations (increasing β), the hit ratio gradually improves: given that α=20%, β=40%,
we get HR@5=0.262, while with β=60% HR@5 is 0.295. The same trend can be seen
with other values of α and β . The hit ratio is proportional to α – the ratio of infected
projects. In particular, the attacks become most successful when α=20% and β=60%, i.e.,

9.2 Adversarial attacks to API RSSEs 273

Table 9.6 Hit ratio for the recommendations by UP-Miner.

Ω=1 Ω=2
α 5% 10% 15% 20% 5% 10% 15% 20%

β
=

40
% HR@5 0.078 0.141 0.200 0.262 0.005 0.094 0.021 0.032

HR@10 0.088 0.179 0.252 0.336 0.031 0.518 0.073 0.110
HR@15 0.119 0.221 0.313 0.397 0.072 0.990 0.139 0.192
HR@20 0.119 0.226 0.317 0.401 0.104 0.169 0.247 0.327

β
=

50
% HR@5 0.098 0.169 0.213 0.266 0.000 0.047 0.017 0.032

HR@10 0.114 0.188 0.256 0.331 0.031 0.424 0.065 0.106
HR@15 0.130 0.235 0.326 0.409 0.083 0.115 0.156 0.209
HR@20 0.130 0.235 0.326 0.409 0.109 0.193 0.273 0.336

β
=

60
% HR@5 0.093 0.174 0.239 0.295 0.015 0.014 0.021 0.028

HR@10 0.193 0.356 0.282 0.356 0.041 0.056 0.065 0.102
HR@15 0.231 0.401 0.321 0.401 0.078 0.127 0.147 0.196
HR@20 0.235 0.409 0.326 0.409 0.098 0.193 0.265 0.331

Table 9.7 Hit ratio for the recommendations by PAM.

Ω=1 Ω=2
α 5% 10% 15% 20% 5% 10% 15% 20%

β
=

40
% HR@5 0.048 0.098 0.148 0.198 0.044 0.090 0.140 0.198

HR@10 0.050 0.100 0.150 0.200 0.048 0.098 0.148 0.198
HR@15 0.050 0.100 0.150 0.200 0.050 0.100 0.150 0.200
HR@20 0.050 0.100 0.150 0.200 0.050 0.100 0.150 0.200

β
=

50
% HR@5 0.048 0.098 0.148 0.198 0.048 0.098 0.148 0.198

HR@10 0.500 0.100 0.150 0.200 0.048 0.098 0.148 0.198
HR@15 0.500 0.100 0.150 0.200 0.050 0.100 0.150 0.200
HR@20 0.050 0.100 0.150 0.200 0.050 0.100 0.150 0.200

β
=

60
% HR@5 0.048 0.098 0.148 0.198 0.048 0.096 0.146 0.196

HR@10 0.050 0.100 0.150 0.200 0.048 0.098 0.148 0.198
HR@15 0.050 0.100 0.150 0.200 0.050 0.100 0.150 0.200
HR@20 0.050 0.100 0.150 0.200 0.050 0.100 0.150 0.200

Table 9.8 Hit ratio for the recommendations by FOCUS.

Ω=1 Ω=2
α 5% 10% 15% 20% 5% 10% 15% 20%

β
=

40
% HR@5 0.012 0.021 0.028 0.039 0.009 0.025 0.034 0.034

HR@10 0.029 0.053 0.078 0.115 0.026 0.055 0.087 0.106
HR@15 0.032 0.068 0.101 0.145 0.031 0.070 0.106 0.141
HR@20 0.038 0.081 0.119 0.173 0.037 0.083 0.119 0.168

β
=

50
% HR@5 0.014 0.036 0.050 0.067 0.017 0.036 0.048 0.063

HR@10 0.033 0.073 0.105 0.140 0.033 0.073 0.105 0.139
HR@15 0.040 0.081 0.126 0.164 0.038 0.083 0.123 0.164
HR@20 0.046 0.089 0.138 0.192 0.044 0.090 0.136 0.181

β
=

60
% HR@5 0.023 0.051 0.072 0.028 0.094 0.047 0.070 0.097

HR@10 0.040 0.083 0.123 0.171 0.038 0.080 0.120 0.160
HR@15 0.045 0.093 0.138 0.190 0.041 0.088 0.131 0.173
HR@20 0.048 0.099 0.149 0.203 0.047 0.096 0.139 0.185

HR@20=0.409. Given that Ω=2, we obtain a comparable outcome to that with Ω=1. To
summarize, we conclude that UP-Miner is prone to adversarial attacks since it suggests
malicious APIs to developers.

Results for PAM are reported in Table 9.7. Similar to UP-Miner, PAM is also not immune
from attacks as it recommends to developers the fake APIs. However, PAM is less susceptible
to manipulations compared to UP-Miner since we get lower hit ratios. The maximum HR@N
is 0.200, obtained when α=20% and β=60%. Varying N as well as Ω seems to have a

274 Adversarial Attacks to Recommender Systems in Software Engineering

negligible impact on the final results. This can be explained by considering the underlying
algorithm of PAM, which retrieves APIs that appear more frequently. As the two APIs are
planted together, they will be recommended commonly as a pattern. Therefore, adding one
API does not significantly affect the final hit ratio. Overall, the results in Table 9.7 suggest
that the use of PAM may be threatened by malicious attempts concealed in training data.

Finally, we investigate how negative the effect might be for developers using FOCUS as
their recommender, given that the training data has been manipulated. Note that for evaluating
the system, we use the whole dataset with 2,600 Android apps. The maximum hit ratio is
0.203 and obtained when α=20%, β=60%. In other words, users of the system are likely to
be recommended with the manipulated code. The hit ratios for FOCUS recommendations are
comparable to PAM, although (i) in this case the training set is larger, and hence comparable
values of α and β mean a larger effort by the attacker; (ii) since FOCUS provides to
developers both APIs and snippets, the recommendation of a malicious API pattern may
induce a serious consequence on the receiving client. In summary, also for FOCUS the
seeded data has an adverse effect, i.e., the tool is tricked into providing developers with the
fake/toxic APIs, as well as code snippets.

Overall, RSSE could recommend malicious APIs or code snippets if being trained with
malicious data. All three API RSSE are affected by adversarial attacks. Understanding
the technical motivations behind such results is not in the scope of this chapter. However,
according to the performed analysis, UP-Miner and PAM provide fake APIs for a considerably
large number of projects, even when only 10% of the training is manipulated. Though
FOCUS is less prone than UP-Miner, the consequences caused by its recommendations can
be devastating as the tool supplies also code snippets.

Answer to RQ2. Toxic training data can pose a prominent threat to the resilience of
state-of-the-art RSSE, including UP-Miner, PAM, and FOCUS.

9.2.4 Threats to validity

Threats to construct validity concern the relationship between theory and observation. In
particular, they are related to the extent to which the simulated feeding of fake APIs or
malicious snippets reflects a realistic AML attack scenario. We simply wanted to experiment
with how a given percentage of projects with malicious snippets or APIs would affect the
recommender’s result. Evaluating the feasibility of a real attack is beyond the scope of the
presented work.

Threats to internal validity are the confounding factors internal to our study that might
have an impact on the results. One possible threat is the choice of venues, i.e., there may be

9.2 Adversarial attacks to API RSSEs 275

AML-related research, as well as relevant RSSE to study, published in venues that we did
not consider, for instance, security conferences such as the USENIX Security Symposium.14

Nevertheless, as shown in Section 9.2.2, we selected all major and topic-relevant software
engineering journals and conferences, where RSSE are more likely to be found.

To evaluate the three API recommender systems, we used the original implementations
of PAM15 and FOCUS16 made available by their authors. Since the original replication
package of UP-Miner is no longer in use, we exploited the remake done by the authors of
PAM. To minimize the threats that may affect the internal validity, we adopted the same
experimental settings used in the original papers [83, 181, 276]. Also, we ran our experiments
with different systems configurations to evaluate their impact on the effects of AML attacks.

Threats to external validity are related to the generalizability of our results. Such general-
izability concerns (i) on the one hand the recommenders on which the experimentation has
been carried out (conclusions may or may not apply to other recommenders); and (ii) on the
other hand the considered dataset. For the former, in principle at least all the recommenders
in Table 9.4 are likely to treat legitimate and malicious APIs and snippets similarly. For the
latter, both the push attacks and our evaluation are generalizable also to other languages, such
as Python.

In the following, we first discuss the feasibility of the RSSE attacks. Afterward, we
overview possible defense mechanisms based on existing techniques, which are expected to
be applicable for protecting RSSE against AML attacks.

9.2.5 Discussions

9.2.5.1 Feasibility of the attacks

RSSE rely on third-party data sources, i.e., they are usually fed with data from OSS repos-
itories, which are open for changes including the phony ones. The probability that RSSE
come across toxic sources cannot be ruled out. There are precedents where thousands of
repositories with malware apps have been unearthed in GitHub [221], and they might be only
the tip of the iceberg.

Though RSSE attempt to crawl training data from repositories considered to be credi-
ble [182], e.g., having a significant number of stars, forks, or watchers, unfortunately, this
cannot help them completely evade toxic repositories. These metrics, however, can be falsi-
fied as attackers use fake accounts to star, fork, and watch the malicious repositories, making

14https://www.usenix.org/conference/usenixsecurity20
15https://github.com/mast-group/api-mining
16https://github.com/crossminer/FOCUS

https://www.usenix.org/conference/usenixsecurity20
https://github.com/mast-group/api-mining
https://github.com/crossminer/FOCUS

276 Adversarial Attacks to Recommender Systems in Software Engineering

them appear more legitimate. Such a trick has been recently revealed, where several fake
accounts are used to reciprocally endow their malicious repositories.17 To our knowledge,
research conducted to fight this type of abuse is still in its initial phase [94]. Thus, techniques
to conduct attacks are known, and there are at least examples of fake repositories, albeit
being created for other purposes rather than for attacking RSSE.

Adversaries may also have different ways to camouflage their hostile intent. Apart from
wrapping malicious code in a single API call (see Section 9.2.1), they might disguise it
with a typosquatting name [187], i.e., one that closely resembles a popular API. In this case,
developers would adopt the disguised API/snippet without the least delay, once it is provided
by the recommendation engine.

Finally, the results obtained in RQ2 suggest that even with a small amount of artificial
training data, hit ratios are always larger than 0, implying that clients are being provided with
the fake APIs. Altogether, we see that API recommender systems are likely to be exploited,
and in this way they inadvertently become a trojan horse, causing havoc to software systems.

9.2.5.2 On the quest for potential countermeasures

While the topic of AML has been studied in different domains, there is no work dealing with
adversarial attacks to RSSE (see Section 9.2.3). Also, there exist no concrete countermeasures
that can be instantly applied to protect RSSE against attacks.

In the following, we discuss possible defense mechanisms from two perspectives, namely
(i) internal view, i.e., design of recommender systems; and (ii) external view, i.e., techniques to
detect and protect against hostile attempts. Concerning the former, we study counteractions
proposed for generic recommender systems in the hope of customizing them for RSSE.
Concerning the latter, we look for feasible ways to recognize and seize malicious APIs.

To minimize the effect of manipulated profiles, model-based algorithms are of great use
as they can be applied to cluster similar profiles (OSS projects) into aggregate segments [164].
Though these techniques cannot entirely isolate malicious projects, this aims to lessen the
prevalence of projects with abnormal behaviors, i.e., they will not be seen as similar to
any active projects, i.e., the ones under development. In this way, such a method reduces
the possibility that RSSE select and incorporate bogus data, thereby avoiding attacks. The
method can be applied to defend RSSE that work based on a similarity or collaborative-
filtering technique, such as UP-Miner [276], MUSE [167], FOCUS [177], or CodeKernel
[103]. Nevertheless, it requires the redesign of the whole systems’ underpinning building
blocks, and thus, it is not easy to conduct.

17https://zd.net/3bg3CK9

https://zd.net/3bg3CK9

9.2 Adversarial attacks to API RSSEs 277

Adversarial attacks can be counteracted using anomaly detection techniques, i.e.,
recognizing malicious API patterns before they are recommended to developers. For instance,
a statistical process control strategy [164] has been used to identify suspicious items by
examining two parameters, namely items’ distribution density and average ratings. By
referring to RSSE, we can think of detecting anomalies from the distributions of APIs in
projects and declarations. This, however, necessitates careful analyses to avoid false positives
and false negatives. As shown in Section 9.2.2, the distributions of APIs may span in a wide
range, i.e., there are not only extremely popular APIs but also rare ones. Thus, being based on
a radical pattern, e.g., a too popular or too rare one, the detection of malicious APIs may not
succeed in every case. A more tailored approach is to tell malicious/benign API sequences
apart by monitoring a certain set of third-party libraries using supervised classifiers [80].
Such an approach, however, has its limitation as follows. Though it can detect malicious
sequences consisting of APIs from a specific set of libraries, it may not be applicable to
patterns with a few APIs coming from a less popular library.

Profile classification can also help increase the resilience of RSSE against malicious
attacks [50]. First, it is necessary to build a training set consisting of both authentic projects
and fake projects that are generated following an attack model. Attribute-reduction techniques
may be used to reduce the number of features needed to represent the dataset. Afterward,
supervised classifiers are trained on the resulting dataset to classify real and fake projects,
aiming to detect the injection of malicious data. This technique works more effectively when
we have enough training data by taking into consideration different ways of populating fake
projects.

A promising field is enhancing the robustness of ML-based systems. Unless profile
classification strategy, those approaches aim at improving the underlying algorithm by
exploiting feature-space attack models [291]. Even though several approaches propose
robust models to support different tasks [260, 115], there is still room for improvements, e.g.,
handling realizable attacks or moving to generalized robustness.

In conclusion, we believe that a hybrid security model, consisting of countermeasures per-
taining to both an internal (design) and external view, is likely to contribute to the robustness
and resilience of RSSE towards adversarial attacks. While internal countermeasures allow
RSSE to avoid falsified or suspicious data sources, defense mechanisms based on external
view help RSSE detect malicious intent hidden in API patterns before recommending them
to developers.

278 Adversarial Attacks to Recommender Systems in Software Engineering

9.3 Conclusion

In recent years, we have witnessed a dramatic increase in the application of Machine Learning
algorithms in several domains, including the development of recommender systems for
software engineering (RSSE). While researchers focused on the underpinning ML techniques
to improve recommendation accuracy, little attention has been paid to make such systems
robust and resilient to malicious data. By manipulating the algorithms’ training set, i.e., large
open-source software (OSS) repositories, it would be possible to make recommender systems
vulnerable to adversarial attacks. To rise the attention of the community on this topic, This
chapter present two initial investigations that spot several vulnerabilities of two main RSSEs,
i.e., TPLs and API recommenders.

First, we presented an initial investigation of the topic of AML in RSSE. While RSSE
suggesting libraries and API calls have gained momentum, we showed how they can be sus-
ceptible to adversarial attacks with bogus input data. By spoiling the tools’ recommendation
list, the attack paves the way for unauthorized access to software clients.

In the second part of the chapter, we show that while API recommender systems become
more effective at providing relevant recommendations, little attention has been paid to make
them robust and resilient to adversarial attempts concealed in training data. First, through
literature analysis, we realized that no studies have been conducted to investigate the abuse
of deliberately forged data to spoil API recommenders’ outcomes and conceive suitable
counteractions.

An investigation into the working mechanism of existing API/code snippet recommender
systems reveals their vulnerability to hostile attempts. Then, an empirical evaluation on three
state-of-the-art API/code snippet recommenders further confirms our conjecture: all of them
are exposed to malicious data, paving the way for unscrupulous exploitation.

Chapter 10

Conclusion

To face the abundance of miscellaneous sources of information, RSs are becoming widespread
in different application domains to provide personalized items given the active context. In
the software engineering domain, we witness the proliferation of automated approaches
to support the development of complex software projects. Although RSs facilitate the
developers’ daily activities, there is an urgent need to simplify their development and
customization by defining a precisely curated and organized core set of concepts and practices.
In such a way, non-expert users can make use of complex models and algorithms that usually
require a deep knowledge of the application domain. This dissertation presents a series of RSs
specifically designed to recommend API function calls, categorize software repositories, and
assist users during the specification of various modeling artifacts. As a further step, we elicit
common components and processes to create a dedicated feature model and domain-syntax
language, aiming at covering the specification of any class of RSs. Being built on top of
such concepts, we propose an MDE-based tool to design and deploy custom RSs based on
different strategies. We summarize the contributions in the RS domain in Section 10.1. All
the publications are listed in Section 10.2, including the work published and under review
not directly discussed in this dissertation. Eventually, Section 10.3 describes ongoing works
and possible future work in the domain.

10.1 Summary of the contributions

This section summarizes the contributions of this dissertation in the RS domain by considering
the challenges and the research objective presented in Section 1.1 and Section 1.2 respectively.
The main contributions of this work are summarized as follows:

280 Conclusion

Recommending relevant API function calls. In Chapter 4, we presented two approaches
to provide the developers with relevant API function calls given the active context, i.e.,
FOCUS and LUPE. FOCUS exploits a context-aware collaborative-filtering system to
assist developers in selecting suitable API function calls and usage patterns. A thorough
evaluation has been conducted (i) on an Android dataset to study the approach’s performance,
and (ii) in a user study with 16 participants to assess the perceived usefulness of FOCUS
recommendations.

LUPE recommends cohesive APIs by relying on a sequence-to-sequence ML translation
technique. Through an empirical evaluation conducted on data from the Android domain,
we showed that the proposed tool obtains a satisfying prediction performance on real-world
datasets, thereby outperforming two state-of-the-art baselines, GAPI [145] and FACER [9].

Recommending GitHub topics. Chapter 5 presented MNBN, an initial approach to rec-
ommend a set of featured topics given a software project endowed with a corresponding
README file. The tool is based on a probabilistic machine learning network, the Naïve
Bayesian classifier. We encode the relevant information about repositories using the TF-IDF
weight scheme. After the training phase, the approach provides the user with a list of featured
topics related to the project. Even though the conducted evaluation showed that MNBN is
capable of providing decent topics, it suffers from some degradations of performances in
terms of accuracy when an unbalanced dataset is considered. To overcome this limitation, we
conceived HybridRec, a hybrid recommender system working on top of a stochastic network
and a collaborative-filtering technique to recommend topics. We performed an empirical eval-
uation on real-world datasets to study HybridRec by comparing it with state-of-the-art toots.
The results showed that the newly conceived approach improves our former recommender
systems substantially. More importantly, we demonstrated that HybridRec can increase its
prediction performance on well-curated data sources.

Assisting modelers during the specifications of modeling artifacts. In Chapter 6, we
first introduced MemoRec, a novel approach that uses a context-aware collaborative filtering
technique to support the modeler in completing the specification of a metamodel. By encoding
metamodels and their contents in four different schemes, we built rating matrices and applied
a syntactic-based similarity function to predict missing items, i.e., classes and structural
features. An evaluation on two independent datasets, i.e., D1 and D2, and four encoding
schemes, i.e., SEs, IEs, SEc, and IEc, exploiting ten-fold cross-validation demonstrates
that the tool is able to provide decent recommendations. The second part of the chapter
discussed MORGAN, a model recommender system that has been built on top of a graph

10.1 Summary of the contributions 281

kernel similarity, with the ultimate aim of supporting modelers in specifying three different
modeling artifacts, i.e., Ecore metamodels, XMI models, and JSON schema. An empirical
evaluation of five real-world datasets demonstrated that MORGAN is applicable in different
application domains, even though we experiment the scalability issue when a larger training
set is considered.

Engineering the design, customization, and deployment of RSs. With the aim of sim-
plifying the development of RSs from scratch, we first report the experience gained in the
CROSSMINER EU project in Chapter 7, where a set of recommender systems has been
conceived to assist software programmers in different phases of the development process.
The systems provide developers with various artifacts, such as third-party libraries, doc-
umentation about how to use the APIs being adopted, or relevant API function calls. To
develop such recommendations, various technical choices have been made to overcome
issues related to several aspects including the lack of baselines, limited data availability,
decisions about the performance measures, and evaluation approaches. Based on a set of
lessons learned, we elicited recurrent patterns and concepts that occurs while specifying
these systems. Afterward, Chapter 8 presented LEV4REC as a workable solution to assist
developers that do not have strong experience in designing and programming recommender
systems. Our approach is a MDE environment to foster an RS’s design, configuration, and
deployment from scratch using such a cutting-edge paradigm. LEV4REC is flexible and
extensible as it relies on three core techniques, i.e., feature model, metamodel, and Acceleo
templates. Starting from a feature model, RS designers can specify the system’s features and
then progressively enrich a configuration model automatically generated out of the selected
features. Once the RS configuration has been refined, the system employs a model-driven
code generator to produce the actual code of the specified RS. LEV4REC allows developers
to refine the produced system by experimenting with different algorithms, experimental
settings, and evaluation metrics. We evaluated the approach empirically by reimplementing
two existing RSs that rely on different algorithms, i.e., collaborative filtering technique and
feed-forward neural network. To discuss qualitative aspects of the proposed approach, we
interviewed five domain experts by employing the focus group methodology, widely used
in software engineering, to gather feedback on the benefits and limitations of the proposed
approach.

Investigating adversarial attacks to RSSEs. In Chapter 9, we presented two empirical
studies, aiming to investigate how existing RSSEs are prone to poisoning attacks. In the first
study we showed how TPL RSSEs can be susceptible to adversarial attacks with bogus input

282 Conclusion

data. By spoiling the tools’ recommendation list, the attack paves the way for unauthorized
access to software clients. Our findings have been confirmed by analyzing another class
of RSSEs, i.e., approaches that recommends API function calls. The conducted study on
three different systems revealed that (i) the SE community underestimates the issues and (ii)
notable state-of-the-art approaches can be fooled by injecting fake data.

10.2 Publications

This section lists all the papers that have been published during my three years as a Ph.D.
student at the University of L’Aquila. The publications appear in workshop and conference
proceedings, as well as journals. Besides these papers, I also present additional work that
addresses various challenges using similar strategies but in different domains. For those
that are not directly discussed in the dissertation, a disclaimer is added to highlight my
contribution. The publications are listed in reverse chronological order.

Journals

J11 - Sas, C., Capiluppi, A., Di Sipio, C., Di Rocco, J., and Di Ruscio, D. (2023). GitRank-
ing: A Ranking of GitHub Topics for Software Classification using Active Sampling,
Software: Practice and Experience, 2023. In this work, we present a semi-automatic
approach to produce a GitHub taxonomy. However, it is not introduced in any
chapter of this dissertation.

J10 - Di Sipio, C., Di Rocco, J., Di Ruscio, D., Nguyen, P. T., MORGAN: An intelligent
modeling assistant based on kernel similarity and graph neural networks, Journal
of Software and Systems Modeling, 2023, DOI: 10.1007/s10270-023-01102-8. This
work was presented in Chapter 6.

J9 - Nguyen, P. T., Di Sipio, C., Di Rocco, J., Di Penta, M., and Di Ruscio, D., Fitting
Missing API Puzzles with Machine Translation Techniques, Journal of Expert Systems
With Applications, 2022, DOI: 10.1016/j.eswa.2022.119477 This work was presented
in Chapter 4.

J8 - Nguyen, P.T., Di Rocco, J., Rubei, R., Di Sipio C., and Di Ruscio, D., DeepLib: Ma-
chine translation techniques to recommend upgrades for third-party libraries, Ex-
pert Systems with Applications, Volume 202, 2022, 117267, ISSN 0957-4174, DOI:
10.1016/j.eswa.2022.117267. This work employs a similar neural network proposed
in Chapter 4 to recommend libraries migration. However, it is not presented in any
chapter of this dissertation.

https://doi.org/10.1007/s10270-023-01102-8
https://doi.org/10.1016/j.eswa.2022.119477
https://doi.org/10.1016/j.eswa.2022.117267

10.2 Publications 283

J7 - Rubei, R., Di Ruscio, D., Di Sipio, C, Di Rocco J., and Nguyen, P.T., Providing upgrade
plans for third-party libraries: a recommender system using migration graphs. Applied
Intelligence, 12000–12015 (2022). DOI: 10.1007/s10489-021-02911-4. This work
proposed a recommender systems for upgrading third-party libraries. However, it is
not presented in any chapter of this dissertation.

J6 - Di Rocco, J., Di Ruscio, D., Di Sipio, C. Nguyen, P.T., and Pierantonio, A., MemoRec:
a recommender system for assisting modelers in specifying metamodels. Software
and Systems Modeling (2022). DOI: 10.1007/s10270-022-00994-2. This work was
presented in Chapter 6.

J5 - Di Rocco, J., Di Ruscio, D., Di Sipio, C., Nguyen, P.T., and Rubei, R., HybridRec: A
recommender system for tagging GitHub repositories. Applied Intelligence (2022).
DOI: 10.1007/s10489-022-03864-y. This work was presented in Chapter 5.

J4 - Di Rocco, J., Di Ruscio, D., Di Sipio, C., Nguyen, P.T., and Rubei, R., Development
of recommendation systems for software engineering: the CROSSMINER experience.
Empirical Software Engineering, 26(4):1–40, 2021. DOI: 10.1007/s10664-021-09963-
7. This work was presented in Chapter 7.

J3 - Nguyen, P.T., Di Rocco, J., Di Sipio, C., Di Ruscio, D., and Di Penta, M., Recommend-
ing api function calls and code snippets to support software development. IEEE Trans-
actions on Software Engineering, pages 1–1, 2021, DOI: 10.1109/TSE.2021.3059907.
This work was presented in Chapter 4.

J2 - Duong, L. T., Nguyen, P. T., Di Sipio, C., and Di Ruscio, D., Automated fruit recognition
using EfficientNet and MixNet, Computers and Electronics in Agriculture, Volume 171,
2020, 105326, ISSN 0168-1699, DOI: 10.1016/j.compag.2020.105326. This work
exploits benchmarking models for the classification task.

J1 - Rubei, R., Di Sipio, C., Nguyen, P.T., Di Rocco, J., and Di Ruscio, D., PostFinder:
Mining Stack Overflow posts to support software developers, Information and Software
Technology, Volume 127, 2020,106367, ISSN 0950-5849, DOI: 10.1016/j.infsof.2020.106367.
This work is recommender systems for retrieving Stack Overflow posts. I contributed
in this work by tuning the underpinning engine.

Conferences

C10 - Nguyen P.T., Rubei R., Di Rocco J, Di Sipio C., Di Ruscio D., Di Penta M, Dealing
with Popularity Bias in Recommender Systems for Third-party Libraries: How far Are

https://doi.org/10.1007/s10489-021-02911-4
https://doi.org/10.1007/s10270-022-00994-2
https://doi.org/10.1007/s10489-022-03864-y
https://doi.org/10.1007/s10664-021-09963-7
https://doi.org/10.1007/s10664-021-09963-7
https://doi.org/10.1109/TSE.2021.3059907
https://doi.org/10.1016/j.compag.2020.105326
https://doi.org/10.1016/j.infsof.2020.106367

284 Conclusion

We? In proceedings of the 20th International Conference on Mining Software Reposi-
tories (MSR 2023), DOI: 10.1109/MSR59073.2023.00016. This work presented an
initial investigation on popularity bias in RSSEs. However, it is not presented in any
chapter of this dissertation.

C9 - Di Rocco J., Di Sipio, C, Nguyen, P.T., Di Ruscio, D, and Pierantonio, A. 2022.
Finding with NEMO: a recommender system to forecast the next modeling operations.
In Proceedings of the 25th International Conference on Model Driven Engineering
Languages and Systems (MODELS ’22), DOI: 10.1145/3550355.3552459. This
work exploits a similar neural network presented in Chapter 4 to forecast the next
modeling operations. However, it is not presented in any chapter of this dissertation.

C8 - Di Sipio C. 2022. Automating the design of recommender systems: from foundational
aspects to actual development. In Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems: Companion Proceedings
(MODELS ’22). DOI: 10.1145/3550356.3552376 This work has been published as a
part of ACM student research competition at MODELS2022. Part of the content was
presented in Chapter 8.

C7 - Rubei, R., Di Sipio, C., Di Rocco, J., Di Ruscio, D., and Nguyen, P.T., Endowing third-
party libraries recommender systems with explicit user feedback mechanisms, 2022
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER), 2022, pp. 817-821, DOI: 10.1109/SANER53432.2022.00099. This work
presents an initial investgation on integrating user feedback in RSSE. However, it is
not presented in any chapter of this dissertation.

C6 - Nguyen, P.T., Di Sipio, C, Di Rocco, J., Di Penta, M., and Di Ruscio, D., Adversarial
Attacks to API Recommender Systems: Time to Wake Up and Smell the Coffee?, 2021
36th IEEE/ACM International Conference on Automated Software Engineering (ASE),
2021, pp. 253-265, DOI: 10.1109/ASE51524.2021.9678946. This work was presented
in Chapter 9.

C5 - Di Sipio, C., Di Rocco, J., Di Ruscio, D. and, Nguyen, P.T., 2021. A Low-Code Tool
Supporting the Development of Recommender Systems. In Fifteenth ACM Conference
on Recommender Systems (RecSys ’21). Association for Computing Machinery,
New York, NY, USA, 741–744. DOI: 10.1145/3460231.3478885. In this work, we
proposed the first version of LEV4REC. The extended version of the tool is presented
in Chapter 8.

https://doi.org/10.1109/MSR59073.2023.00016
https://doi.org/10.1145/3550355.3552459
https://doi.org/10.1145/3550356.3552376
https://doi.org/10.1109/SANER53432.2022.00099
https://doi.org/10.1109/ASE51524.2021.9678946
https://doi.org/10.1145/3460231.3478885

10.2 Publications 285

C4 - Di Rocco, J., Di Sipio, C., Di Ruscio, D., and Nguyen, P.T., A GNN-based Recom-
mender System to Assist the Specification of Metamodels and Models, 2021 ACM/IEEE
24th International Conference on Model Driven Engineering Languages and Systems
(MODELS), 2021, pp. 70-81, DOI: 10.1109/MODELS50736.2021.00016. In this
work, we proposed the first version of MORGAN. The extended version of the tool is
presented in Chapter 6.

C3 - Nguyen, P.T., Di Ruscio, D., Di Rocco, J., Di Sipio, C., and Di Penta, M., Adversarial
machine learning: On the resilience of third-party library recommender systems. In
Evaluation and Assessment in Software Engineering, EASE 2021, page 247–253, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450390538.
DOI: 10.1145/3463274.3463809. This work was presented in Chapter 9.

C2 - Di Sipio, C., Rubei, R., Di Ruscio, D., and Nguyen, P.T., A multinomial naïve bayesian
(MNB) network to automatically recommend topics for github repositories. In Pro-
ceedings of the Evaluation and Assessment in Software Engineering, EASE ’20, page
71–80, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450377317. DOI: 10.1145/3383219.3383227. This work was presented in
Chapter 5.

C1 - Di Rocco, J., Di Ruscio, D., Di Sipio, C., Nguyen, P.T., and Rubei, R.. TopFilter: An
approach to recommend relevant GitHub topics. In Proceedings of the 14th ACM /
IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), ESEM ’20, New York, NY, USA, 2020. Association for Computing Ma-
chinery. ISBN 9781450375801. DOI: 10.1145/3382494.3410690. This work makes
use of the same strategies presented in Chapter 5 to categorize GitHub repositories.
However, it is not presented in any chapter of this dissertation.

Workshops

W4 - Nguyen, P. T., Di Rocco, J., Rubei, R., Di Sipio, C., and Di Ruscio, D. (2021). Recom-
mending Third-party Library Updates with LSTM Neural Networks. The 11th Italian
Information Retrieval Workshop, 2021. URL https://ceur-ws.org/Vol-2947/paper7.pdf.
This work presented a first version of DeepLib, an LSTM-based recommender system
for migrating third-party libraries.

W3 - Rubei, R., and Di Sipio, C. (2021). AURYGA: A Recommender System for Game
Tagging. The 11th Italian Information Retrieval Workshop, 2021. URL: https://ceur-
ws.org/Vol-2947/paper10.pdf. This work proposed an automatic approach to classify

https://doi.org/10.1145/10.1109/MODELS50736.2021.00016
https://doi.org/10.1145/3463274.3463809
https://doi.org/10.1145/3383219.3383227
https://doi.org/10.1145/3382494.3410690
https://ceur-ws.org/Vol-2947/paper7.pdf
https://ceur-ws.org/Vol-2947/paper10.pdf
https://ceur-ws.org/Vol-2947/paper10.pdf

286 Conclusion

videogames using the same technique presented in Chapter 5. However, it is not
presented in any chapter of this dissertation.

W2 - Di Rocco, J., Di Ruscio, D., Di Sipio, C., Nguyen, P. T., and Pomo, C. (2021). On the
need for a body of knowledge on recommender systems. In Proceedings of the Joint
KaRS and ComplexRec Workshop. URL: https://ceur-ws.org/Vol-2960/paper5.pdf.
This work proposed a body of knowledge for RSSE. However, it is not presented in
any chapter of this dissertation.

W1 - Di Sipio, C., Di Ruscio, D., and Nguyen, P.T. Democratizing the development of
recommender systems by means of low-code platforms, In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings, MODELS ’20, New York, NY, USA, 2020. Associ-
ation for Computing Machinery. ISBN 9781450381352. DOI: 10.1145/3417990.3420202.
This work proposed the foundational aspects of LEV4REC. Therefore, part of the
content was presented in Chapter 8.

Manuscripts under review/revision

M1 - Nguyen, P.T., Di Rocco J., Di Sipio, C., Rubei R., Di Ruscio D. Di Penta M. (2023).
Is this Snippet Written by ChatGPT? An Empirical Study with a CodeBERT-Based
Classifier, submitted to the 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2023). This empirical work proposes an automated
approach to detect if a code snippet is written by ChatGPT. However, it is not
presented in any chapter of this dissertation and it is currently under review

M2 - d’Aloisio, G., Di Sipio C., Di Marco A., Di Ruscio (2023), How fair are we? From
conceptualization to automated assessment of fairness definitions, submitted to the
38th IEEE/ACM International Conference on Automated Software Engineering (ASE
2023). This work proposed an MDE-based approach to design and test fairness
assessment workflow. However, it is not presented in any chapter of this dissertation
and it is currently under review

M3 - Bergelin, J., Berardinelli, L, Bilic, D., Bruneliere, H., Cicchetti, A, Dehghani, M.,
Di Sipio, C, Miranda J., Rahimi, A., and Rubei, R., Towards Automating the Design of
Cyber-Physical Systems: The Experience of Volvo Construction Equipment, Journal
of Systems and Software This work has been developed in the frame of the Aidoart
EU project and propose the application of MORGAN in an industrial context. It is
currently under review.

https://ceur-ws.org/Vol-2960/paper5.pdf
https://doi.org/10.1145/3417990.3420202

10.3 Future work 287

10.3 Future work

Analyzing source code to recommend API. Future research in this area includes (i)
replicating the empirical evaluation on further projects, by also, possibly, supporting further
programming languages, and (ii) updating the code base of the Eclipse Scava project1 (which
embraces all the development outcomes produced in the context of the EU CROSSMINER
project) with the FOCUS tool as presented in the corresponding chapter. Furthermore, we
plan to extend the user study by comparing additional approaches with FOCUS to evaluate
further qualitative aspects.

Concerning LUPE, our plan is to improve the underpinning by employing additional
cutting-edge techniques, such as transfer learning or attention, and by better evaluating it
through user studies. Furthermore, we can make use of notable pre-trained network, i.e.,
CodeBERT, to improve the timing of the training phase.

Creating a taxonomy for OSS projects. We plan to improve the proposed framework
further by analyzing the source code of OSS projects to compute similarity for HybridRec.
Furthermore, we plan to conduct a well-structured user study by involving developers to
evaluate HybridRec’s outcomes. Last but not least, we will create a taxonomy of GitHub
topics by grouping tags with a pairwise ranking algorithm. As a short-term plan, we plan to
propose an integrated approach to generate a taxonomy of software domains by inspecting
GitHub topics. In such an approach, GitHub repositories are fetched to collect different
topics. Then, various filtering steps will be used to reduce the number of topics. Afterward, a
reconciliation step is applied, where the selected topics are linked to Wikidata in order to
help with the disambiguation of these terms. The final step is to create a discrete rank of the
selected application domains by clustering algorithms. This work is currently under review.

Investigating semantic similarity to assist modelers. We plan to extend MemoRec by
adding other similarity functions, e.g., structural and semantic based methods. Moreover,
we can improve the encoding schemes by introducing Natural Language Pre-processing
(NLP) techniques. We will augment additional information to the recommendation outcomes,
e.g., type, cardinality. Afterward, we are going to conduct a proper user study with the
involvement of modelers to evaluate the usability of MemoRec. Last but not least, now that
we have validated the algorithmic accuracy of the proposed technique, we will integrate the
conceived tool into the Eclipse IDE, providing modelers with supports embedded in their
development environment.

1https://www.eclipse.org/scava/

https://www.eclipse.org/scava/

288 Conclusion

We plan to further improve MORGAN by adopting different graph structures, e.g., hetero-
geneous or weighted graphs. Furthermore, we suppose that link prediction or generative
graphs techniques can be applied as an alternative strategy to complete models represented in
a graph-based format. In addition, MORGAN can be compared with existing approaches that
exploit deep learning technique. Concerning the recommendation of JSON schema elements,
it is our strong belief that a curated dataset with similar elements brings better results in
terms of accuracy. Last but not least, we will investigate the applicability of ontologies
to increase the number of relevant artifacts, moving forward a domain-aware intelligent
modeling assistant capable of embedding the semantics in the retrieved recommendations.

Consolidating the gained experience in CROSSMINER. For future work, we plan to
consolidate the lessons learned by applying the developed techniques and tools in other SE
domains, e.g., Model-driven engineering(MDE), software testing, or Internet of Things (IoT).
In particular, we already propose two different recommender system for modeling activities,
i.e., MemoRec and MORGAN, that have been developed following the identified empirical
guidelines. Furthermore, we will investigate the usage of cutting-edge ML-based techniques,
e.g., pre-trained models, encode-decoder transformers, or large language models (LLMs).

Improving the usability of LEV4REC. At its current implementation, the platform
supports the specification of configurations and the evaluation exploiting two different
Python libraries. We plan to improve our conceived tool for future work by equipping it with
the ability to generate code in other languages, e.g., Java, and C++. Furthermore, we will
also perform more evaluations by incorporating other recommender systems and variating
their initial configuration as suggested by participants of the focus group. In addition, we
plan to cover the missing components, e.g., dataset generation. Moreover, we will develop a
set of proper endpoints to allow RS designers to specify new features, e.g., by means of new
Eclipse plugins. Last but not least, LEV4REC can be enhanced to cover features identified
in the solution phase alongside the ones at the system level.

Investigating further quality aspects in RSSEs. As future work, we plan to devise and
evaluate effective countermeasures that can ward off attacks tailored to RSSE. This will be
done by studying learning algorithms being aware of adversarial attacks and seize them.
Moreover, adversarial attempts should be turned into features for the training process, i.e.,
RSSE should not only learn from useful patterns, but also be able to learn how to avoid
hostile patterns. Besides recommenders leveraging GitHub, we plan also to investigate to

10.3 Future work 289

what extent RSSE leveraging discussions from Q&A forums such as Stack Overflow (SO)
are susceptible to adversarial attacks.

Our studies suggest that while the research community either underestimates or ignores it,
the possibility of using falsified data to trick RSSE is always present, leaving a potential
danger to software systems. In this respect, we see an urgent need to thoroughly perceive the
likely threats to conceptualize effective defense mechanisms, thus increasing the resilience
and robustness of RSSE. We consider this as part of our future research agenda. Another line
of research we plan to investigate is related to fairness of RSSEs, understating to what kind
of bias they are exposed. We already contributed in this direction by measuring the effect of
popularity bias in TPL RSSEs. Nonetheless, there are still open challenges that needs to be
addressed, e.g., evaluating additional systems or considering different types of bias.

References

[1] dex2jar. URL https://tools.kali.org/reverse-engineering/dex2jar. Library Catalog:
tools.kali.org.

[2] GitHub. https://docs.github.com/en/rest/overview/resources-in-the-rest-api#
rate-limiting, . Accessed: 2021-01-29.

[3] GitHub Archive Dataset. https://console.cloud.google.com/marketplace/product/
github/github-repos, . Accessed: 2021-01-29.

[4] GitHub REST API v3. https://developer.github.com/v3/, . last accessed 01.12.2022.

[5] JSON schema. http://json-schema.org/. Accessed: 2022-02-29.

[6] PyGithub/PyGithub, December 2019. URL https://github.com/PyGithub/PyGithub.
original-date: 2012-02-25T12:53:47Z.

[7] Understanding the search syntax - GitHub Help, 2019. URL https://help.github.com/
en/github/searching-for-information-on-github/understanding-the-search-syntax.

[8] Rodin Aarssen. cwi-swat/clair: v0.1.0, September 2017. URL https://doi.org/10.5281/
zenodo.891122.

[9] Shamsa Abid, Shafay Shamail, Hamid Abdul Basit, and Sarah Nadi. FACER: An API
usage-based code-example recommender for opportunistic reuse. Empirical Software
Engineering, 26(6):110, November 2021. ISSN 1382-3256, 1573-7616. doi: 10.1007/
s10664-021-10000-w. URL https://link.springer.com/10.1007/s10664-021-10000-w.

[10] Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. Mining API Patterns As Partial
Orders from Source Code: From Usage Scenarios to Specifications. In 6th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, pages 25–34, New York,
2007. ACM. ISBN 978-1-59593-811-4. doi: 10.1145/1287624.1287630.

[11] Lissette Almonte, Iván Cantador, Esther Guerra, and Juan de Lara. Towards au-
tomating the construction of recommender systems for low-code development plat-
forms. In Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings, MODELS
’20, pages 1–10, New York, NY, USA, October 2020. Association for Comput-
ing Machinery. ISBN 978-1-4503-8135-2. doi: 10.1145/3417990.3420200. URL
http://doi.org/10.1145/3417990.3420200.

https://tools.kali.org/reverse-engineering/dex2jar
https://docs.github.com/en/rest/overview/resources-in-the-rest-api#rate-limiting
https://docs.github.com/en/rest/overview/resources-in-the-rest-api#rate-limiting
https://console.cloud.google.com/marketplace/product/github/github-repos
https://console.cloud.google.com/marketplace/product/github/github-repos
https://developer.github.com/v3/
http://json-schema.org/
https://github.com/PyGithub/PyGithub
https://help.github.com/en/github/searching-for-information-on-github/understanding-the-search-syntax
https://help.github.com/en/github/searching-for-information-on-github/understanding-the-search-syntax
https://doi.org/10.5281/zenodo.891122
https://doi.org/10.5281/zenodo.891122
https://link.springer.com/10.1007/s10664-021-10000-w
http://doi.org/10.1145/3417990.3420200

292 References

[12] Lissette Almonte, Esther Guerra, Iván Cantador, and Juan de Lara. Recommender
systems in model-driven engineering. Software and Systems Modeling, July 2021.
ISSN 1619-1374. doi: 10.1007/s10270-021-00905-x. URL https://doi.org/10.1007/
s10270-021-00905-x.

[13] Lissette Almonte, Sara Pérez-Soler, Esther Guerra, Iván Cantador, and Juan de Lara.
Automating the Synthesis of Recommender Systems for Modelling Languages.
page 14, 2021.

[14] Kamel Alreshedy, Dhanush Dharmaretnam, Daniel M. German, Venkatesh Srinivasan,
and T. Aaron Gulliver. SCC: Automatic classification of code snippets. CoRR,
abs/1809.07945, 2018.

[15] Kamel Alreshedy, Dhanush Dharmaretnam, Daniel M. German, Venkatesh Srini-
vasan, and T. Aaron Gulliver. SCC: Automatic Classification of Code Snippets.
arXiv:1809.07945 [cs, stat], September 2018. URL http://arxiv.org/abs/1809.07945.
arXiv: 1809.07945.

[16] Doaa Altarawy, Hossameldin Shahin, Ayat Mohammed, and Na Meng. Lascad :
Language-agnostic software categorization and similar application detection. Journal
of Systems and Software, 142, 04 2018. doi: 10.1016/j.jss.2018.04.018.

[17] Rohan Anand and Joeran Beel. Auto-surprise: An automated recommender-system
(autorecsys) library with tree of parzens estimator (tpe) optimization. In Fourteenth
ACM Conference on Recommender Systems, RecSys ’20, page 585–587, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450375832. doi:
10.1145/3383313.3411467. URL https://doi.org/10.1145/3383313.3411467.

[18] Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio, and
Felice Antonio Merra. Sasha: Semantic-aware shilling attacks on recommender
systems exploiting knowledge graphs. In The Semantic Web, pages 307–323, Cham,
2020. Springer International Publishing. ISBN 978-3-030-49461-2.

[19] Vito Walter Anelli, Alejandro Bellogin, Antonio Ferrara, Daniele Malitesta, Felice An-
tonio Merra, Claudio Pomo, Francesco Maria Donini, and Tommaso Di Noia. Elliot:
A comprehensive and rigorous framework for reproducible recommender systems
evaluation. In Proceedings of the 44th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SIGIR ’21, page 2405–2414, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450380379.
doi: 10.1145/3404835.3463245. URL https://doi.org/10.1145/3404835.3463245.

[20] B.J. Arnoldus, M.G.J. Brand, van den, A. Serebrenik, and J.J. Brunekreef. Code
generation with templates. Atlantis studies in computing. Atlantis Press, Netherlands,
2012. ISBN 978-94-91216-55-8. doi: 10.2991/978-94-91216-56-5.

[21] Muhammad Hilmi Asyrofi, Ferdian Thung, David Lo, and Lingxiao Jiang. Ausearch:
Accurate API usage search in github repositories with type resolution. In 27th IEEE
International Conference on Software Analysis, Evolution and Reengineering, SANER
2020, London, ON, Canada, February 18-21, 2020, pages 637–641, 2020. doi:
10.1109/SANER48275.2020.9054809. URL https://doi.org/10.1109/SANER48275.
2020.9054809.

https://doi.org/10.1007/s10270-021-00905-x
https://doi.org/10.1007/s10270-021-00905-x
http://arxiv.org/abs/1809.07945
https://doi.org/10.1145/3383313.3411467
https://doi.org/10.1145/3404835.3463245
https://doi.org/10.1109/SANER48275.2020.9054809
https://doi.org/10.1109/SANER48275.2020.9054809

References 293

[22] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library detection
in android and its security applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, page 356–367, New
York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450341394.
doi: 10.1145/2976749.2978333. URL https://doi.org/10.1145/2976749.2978333.

[23] L. Bao, T. B. Le, and D. Lo. Mining sandboxes: Are we there yet? In 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 445–455, March 2018. doi: 10.1109/SANER.2018.8330231.

[24] Angela Barriga, Adrian Rutle, and Rogardt Heldal. Automatic model repair using
reinforcement learning. In Regina Hebig and Thorsten Berger, editors, Proceedings of
MODELS 2018 Workshops co-located with ACM/IEEE 21st International Conference
on Model Driven Engineering Languages and Systems (MODELS 2018), Copenhagen,
Denmark, October, 14, 2018, volume 2245 of CEUR Workshop Proceedings, pages
781–786. CEUR-WS.org, 2018. URL http://ceur-ws.org/Vol-2245/ammore_paper_1.
pdf.

[25] B. Basten, M. Hills, P. Klint, D. Landman, A. Shahi, M. J. Steindorfer, and J. J. Vinju.
M3: A General Model for Code Analytics in Rascal. In 1st International Workshop
on Software Analytics, pages 25–28, Piscataway, 2015. IEEE. doi: 10.1109/SWAN.
2015.7070485.

[26] Edouard Batot and Houari Sahraoui. A generic framework for model-set selection for
the unification of testing and learning MDE tasks. In Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Systems,
pages 374–384, Saint-malo France, October 2016. ACM. ISBN 978-1-4503-4321-
3. doi: 10.1145/2976767.2976785. URL https://dl.acm.org/doi/10.1145/2976767.
2976785.

[27] Pamela Baxter and Susan M. Jack. Qualitative case study methodology: Study design
and implementation for novice researchers. The Qualitative Report, 13:544–559,
2008.

[28] Alejandro Bellogín, IváN Cantador, and Pablo Castells. A comparative study of
heterogeneous item recommendations in social systems. Inf. Sci., 221:142–169,
February 2013. ISSN 0020-0255.

[29] Amine Benelallam, Nicolas Harrand, César Soto-Valero, Benoit Baudry, and Olivier
Barais. The maven dependency graph: a temporal graph-based representation of
maven central. In 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), pages 344–348. IEEE, 2019.

[30] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hy-
perparameter optimization in hundreds of dimensions for vision architectures. In
Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML’13, page I–115–I–123. JMLR.org, 2013.

[31] Runa Bhaumik, Chad Williams, Bamshad Mobasher, and Robin Burke. Securing
collaborative filtering against malicious attacks through anomaly detection. In Pro-
ceedings of ITWP’06, Held at AAAI 2006, Boston, Massachusetts, July 2006. URL
http://www.aaai.org/Press/Reports/Workshops/ws-06-10.php.

https://doi.org/10.1145/2976749.2978333
http://ceur-ws.org/Vol-2245/ammore_paper_1.pdf
http://ceur-ws.org/Vol-2245/ammore_paper_1.pdf
https://dl.acm.org/doi/10.1145/2976767.2976785
https://dl.acm.org/doi/10.1145/2976767.2976785
http://www.aaai.org/Press/Reports/Workshops/ws-06-10.php

294 References

[32] Vincent D. Blondel, Anahí Gajardo, Maureen Heymans, Pierre Senellart, and Paul Van
Dooren. A measure of similarity between graph vertices: Applications to synonym
extraction and web searching. SIAM Review, 46(4):647–666, April 2004. ISSN
0036-1445.

[33] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems
survey. Knowledge-Based Systems, 46:109–132, July 2013. ISSN 09507051. doi:
10.1016/j.knosys.2013.03.012.

[34] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems survey.
Knowledge-Based Systems, 46:109 – 132, 2013. ISSN 0950-7051.

[35] Hudson Borges and Marco Tulio Valente. What’s in a GitHub Star? Understanding
Repository Starring Practices in a Social Coding Platform. Journal of Systems and
Software, 146:112–129, December 2018. ISSN 01641212. doi: 10.1016/j.jss.2018.09.
016. URL http://arxiv.org/abs/1811.07643. arXiv: 1811.07643.

[36] Hudson Borges, Andre Hora, and Marco Tulio Valente. Predicting the Popularity
of GitHub Repositories. Proceedings of the The 12th International Conference on
Predictive Models and Data Analytics in Software Engineering - PROMISE 2016,
pages 1–10, 2016. doi: 10.1145/2972958.2972966. URL http://arxiv.org/abs/1607.
04342. arXiv: 1607.04342.

[37] Hudson Borges, André C. Hora, and Marco Tulio Valente. Understanding the Factors
That Impact the Popularity of GitHub Repositories. In 2016 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2016, Raleigh, NC, USA,
October 2-7, 2016, pages 334–344. IEEE Computer Society, 2016. ISBN 978-1-5090-
3806-0. doi: 10.1109/ICSME.2016.31. URL https://doi.org/10.1109/ICSME.2016.31.

[38] Hudson Borges, Marco Tulio Valente, Andre Hora, and Jailton Coelho. On the
Popularity of GitHub Applications: A Preliminary Note. arXiv:1507.00604 [cs],
March 2017. URL http://arxiv.org/abs/1507.00604. arXiv: 1507.00604.

[39] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software engineer-
ing in practice. Synthesis lectures on software engineering, 3(1):1–207, 2017.

[40] D. Breuker. Towards model-driven engineering for big data analytics – an exploratory
analysis of domain-specific languages for machine learning. In 2014 47th Hawaii
International Conference on System Sciences, pages 758–767, Jan 2014. doi: 10.1109/
HICSS.2014.101.

[41] Marcel Bruch, Thorsten Schäfer, and Mira Mezini. On evaluating recommender
systems for API usages. In Proceedings of the 2008 international workshop on
recommendation systems for software engineering, RSSE ’08, pages 16–20, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-228-3.

[42] Loli Burgueño, Robert Clarisó, Sébastien Gérard, Shuai Li, and Jordi Cabot. An
nlp-based architecture for the autocompletion of partial domain models. In Marcello
La Rosa, Shazia Sadiq, and Ernest Teniente, editors, Advanced Information Systems
Engineering, pages 91–106, Cham, 2021. Springer International Publishing. ISBN
978-3-030-79382-1.

http://arxiv.org/abs/1811.07643
http://arxiv.org/abs/1607.04342
http://arxiv.org/abs/1607.04342
https://doi.org/10.1109/ICSME.2016.31
http://arxiv.org/abs/1507.00604

References 295

[43] Raymond P. L. Buse and Westley Weimer. Synthesizing API Usage Examples. In
34th International Conference on Software Engineering, pages 782–792, Piscataway,
2012. IEEE. ISBN 978-1-4673-1067-3. doi: 10.1109/ICSE.2012.6227140.

[44] X. Cai, J. Zhu, B. Shen, and Y. Chen. Greta: Graph-based tag assignment for
github repositories. In 2016 IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC), volume 1, pages 63–72, 2016. doi: 10.1109/COMPSAC.
2016.124.

[45] Thibaut Capuano, Houari Sahraoui, Benoit Frenay, and Benoit Vanderose. Learning
from Code Repositories to Recommend Model Classes. The Journal of Object
Technology, 21(3):3:1, 2022. ISSN 1660-1769. doi: 10.5381/jot.2022.21.3.a4. URL
http://www.jot.fm/contents/issue_2022_03/article4.html.

[46] B. Carbunar and R. Potharaju. A longitudinal study of the google app market. In 2015
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM), pages 242–249, 2015. doi: 10.1145/2808797.2808823.

[47] Catherine Cassell and Gillian Symon. Essential Guide to Qualitative Methods in
Organizational Research. London, November 2022. doi: 10.4135/9781446280119.

[48] P. Castells, S. Vargas, and J. Wang. Novelty and diversity metrics for recommender
systems: Choice, discovery and relevance. In International Workshop on Diversity in
Document Retrieval (DDR 2011) at the 33rd European Conference on Information
Retrieval (ECIR 2011), Dublin, Ireland, April 2011. URL http://ir.ii.uam.es/rim3/
publications/ddr11.pdf.

[49] Annie Chen. Context-Aware Collaborative Filtering System: Predicting the User’s
Preference in the Ubiquitous Computing Environment. In First International Confer-
ence on Location- and Context-Awareness, pages 244–253, Berlin, Heidelberg, 2005.
Springer. ISBN 3-540-25896-5, 978-3-540-25896-4. doi: 10.1007/11426646_23.

[50] Paul-Alexandru Chirita, Wolfgang Nejdl, and Cristian Zamfir. Preventing shilling
attacks in online recommender systems. In Proceedings of the 7th Annual ACM
International Workshop on Web Information and Data Management, WIDM ’05, page
67–74, New York, NY, USA, 2005. Association for Computing Machinery. ISBN
1595931945. doi: 10.1145/1097047.1097061. URL https://doi.org/10.1145/1097047.
1097061.

[51] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder–decoder approaches. In
Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in
Statistical Translation, pages 103–111, Doha, Qatar, October 2014. Association for
Computational Linguistics. doi: 10.3115/v1/W14-4012. URL https://www.aclweb.
org/anthology/W14-4012.

[52] Robert Clarisó and Jordi Cabot. Applying graph kernels to model-driven engineering
problems. In Proceedings of the 1st International Workshop on Machine Learning
and Software Engineering in Symbiosis, MASES 2018, page 1–5, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN 9781450359726. doi: 10.

http://www.jot.fm/contents/issue_2022_03/article4.html
http://ir.ii.uam.es/rim3/publications/ddr11.pdf
http://ir.ii.uam.es/rim3/publications/ddr11.pdf
https://doi.org/10.1145/1097047.1097061
https://doi.org/10.1145/1097047.1097061
https://www.aclweb.org/anthology/W14-4012
https://www.aclweb.org/anthology/W14-4012

296 References

1145/3243127.3243128. URL https://doi-org.univaq.clas.cineca.it/10.1145/3243127.
3243128.

[53] Alessandro Colantoni, Antonio Garmendia, Luca Berardinelli, Manuel Wimmer, and
Johannes Bräuer. Leveraging model-driven technologies for json artefacts: The
shipyard case study. In 2021 ACM/IEEE 24th International Conference on Model
Driven Engineering Languages and Systems (MODELS), pages 250–260, 2021. doi:
10.1109/MODELS50736.2021.00033.

[54] Joel Cordeiro, Bruno Antunes, and Paulo Gomes. Context-Based Recommendation to
Support Problem Solving in Software Development. In Third International Workshop
on Recommendation Systems for Software Engineering, pages 85–89, Piscataway,
2012. IEEE. doi: 10.1109/RSSE.2012.6233418.

[55] Valerio Cosentino, Javier Luis, and Jordi Cabot. Findings from github: Methods,
datasets and limitations. In Proceedings of the 13th International Conference on
Mining Software Repositories, MSR ’16, page 137–141, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN 9781450341868. doi: 10.1145/2901739.
2901776.

[56] Krzysztof Czarnecki. Domain Engineering, pages 433–444. American Cancer Society,
2002. ISBN 9780471028956. doi: 10.1002/0471028959.sof095. URL https://
onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof095.

[57] Barthélémy Dagenais, Harold Ossher, Rachel K. E. Bellamy, Martin P. Robillard, and
Jacqueline P. de Vries. Moving into a new software project landscape. In Proceedings
of the 32Nd ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE ’10, pages 275–284, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-
719-6. doi: 10.1145/1806799.1806842. URL http://doi.acm.org/10.1145/1806799.
1806842.

[58] Jesse Davis and Mark Goadrich. The Relationship Between Precision-Recall and ROC
Curves. In Proceedings of the 23rd International Conference on Machine Learning,
ICML ’06, pages 233–240, New York, NY, USA, 2006. ACM. ISBN 1-59593-383-2.
doi: 10.1145/1143844.1143874. URL http://doi.acm.org/10.1145/1143844.1143874.

[59] Alfonso de la Vega, Diego García-Saiz, Marta Zorrilla, and Pablo Sánchez. Lavoisier:
A dsl for increasing the level of abstraction of data selection and formatting in data
mining. Journal of Computer Languages, 60:100987, 2020. ISSN 2590-1184. doi:
https://doi.org/10.1016/j.cola.2020.100987. URL https://www.sciencedirect.com/
science/article/pii/S2590118420300472.

[60] Alexandre Decan, Tom Mens, and Eleni Constantinou. On the impact of security
vulnerabilities in the npm package dependency network. In Proceedings of the
15th International Conference on Mining Software Repositories, MSR ’18, page
181–191, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450357166. doi: 10.1145/3196398.3196401. URL https://doi.org/10.1145/
3196398.3196401.

[61] Yashar Deldjoo, Tommaso Di Noia, and Felice Antonio Merra. Adversarial machine
learning in recommender systems: State of the art and challenges. ArXiv e-prints,

https://doi-org.univaq.clas.cineca.it/10.1145/3243127.3243128
https://doi-org.univaq.clas.cineca.it/10.1145/3243127.3243128
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof095
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471028959.sof095
http://doi.acm.org/10.1145/1806799.1806842
http://doi.acm.org/10.1145/1806799.1806842
http://doi.acm.org/10.1145/1143844.1143874
https://www.sciencedirect.com/science/article/pii/S2590118420300472
https://www.sciencedirect.com/science/article/pii/S2590118420300472
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1145/3196398.3196401

References 297

May 2020. URL http://www-ictserv.poliba.it/publications/2020/DDM20a/Survey_
AML_RecSys.pdf. Under Review.

[62] Yashar Deldjoo, Tommaso Di Noia, and Felice Antonio Merra. A survey on ad-
versarial recommender systems: From attack/defense strategies to generative adver-
sarial networks. ACM Comput. Surv., 54(2), March 2021. ISSN 0360-0300. doi:
10.1145/3439729. URL https://doi.org/10.1145/3439729.

[63] Mukund Deshpande and George Karypis. Item-based top-<i>n</i> recommendation
algorithms. ACM Trans. Inf. Syst., 22(1):143–177, January 2004. ISSN 1046-8188.
doi: 10.1145/963770.963776. URL https://doi.org/10.1145/963770.963776.

[64] Roberto Di Cosmo and Stefano Zacchiroli. Software Heritage: Why and How to Pre-
serve Software Source Code. In 14th International Conference on Digital Preservation,
pages 1–10, Kyoto, 2017.

[65] Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. Mining
metrics for understanding metamodel characteristics. In Proceedings of the 6th
International Workshop on Modeling in Software Engineering, MiSE 2014, page
55–60, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450328494. doi: 10.1145/2593770.2593774. URL https://doi-org.univaq.clas.
cineca.it/10.1145/2593770.2593774.

[66] Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong Nguyen, and Riccardo
Rubei. Topfilter: An approach to recommend relevant github topics. In Proceedings
of the 14th ACM / IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), ESEM ’20, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450375801. doi: 10.1145/3382494.3410690. URL
https://doi.org/10.1145/3382494.3410690.

[67] Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong T Nguyen, and Riccardo
Rubei. Development of recommendation systems for software engineering: the
crossminer experience. Empirical Software Engineering, 26(4):1–40, 2021. URL
https://doi.org/10.1007/s10664-021-09963-7.

[68] Juri Di Rocco, Claudio Di Sipio, Davide Di Ruscio, and Phuong T. Nguyen. A
gnn-based recommender system to assist the specification of metamodels and models.
In 2021 ACM/IEEE 24th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS), pages 70–81, 2021. doi: 10.1109/MODELS50736.
2021.00016.

[69] Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong T Nguyen, and Alfonso
Pierantonio. Memorec: a recommender system for assisting modelers in specifying
metamodels. Software and Systems Modeling, pages 1–21, 2022.

[70] Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong T. Nguyen, and Riccardo
Rubei. HybridRec: A recommender system for tagging GitHub repositories. Applied
Intelligence, August 2022. ISSN 1573-7497. doi: 10.1007/s10489-022-03864-y.
URL https://doi.org/10.1007/s10489-022-03864-y.

http://www-ictserv.poliba.it/publications/2020/DDM20a/Survey_AML_RecSys.pdf
http://www-ictserv.poliba.it/publications/2020/DDM20a/Survey_AML_RecSys.pdf
https://doi.org/10.1145/3439729
https://doi.org/10.1145/963770.963776
https://doi-org.univaq.clas.cineca.it/10.1145/2593770.2593774
https://doi-org.univaq.clas.cineca.it/10.1145/2593770.2593774
https://doi.org/10.1145/3382494.3410690
https://doi.org/10.1007/s10664-021-09963-7
https://doi.org/10.1007/s10489-022-03864-y

298 References

[71] Claudio Di Sipio, Davide Di Ruscio, and Phuong T. Nguyen. Democratizing the
development of recommender systems by means of low-code platforms. In Proceed-
ings of the 23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, MODELS ’20, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450381352. doi:
10.1145/3417990.3420202. URL https://doi.org/10.1145/3417990.3420202.

[72] Claudio Di Sipio, Riccardo Rubei, Davide Di Ruscio, and Phuong T. Nguyen. A
multinomial naïve bayesian (mnb) network to automatically recommend topics for
github repositories. In Proceedings of the Evaluation and Assessment in Software
Engineering, EASE ’20, page 71–80, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450377317. doi: 10.1145/3383219.3383227. URL
https://doi.org/10.1145/3383219.3383227.

[73] Claudio Di Sipio, Juri Di Rocco, Davide Di Ruscio, and Phuong Thanh Nguyen. A
low-code tool supporting the development of recommender systems. In Fifteenth
ACM Conference on Recommender Systems, RecSys ’21, page 741–744, New York,
NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384582. doi:
10.1145/3460231.3478885. URL https://doi.org/10.1145/3460231.3478885.

[74] Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexander J. Smola, Jing Jiang, and
Chong Wang. Jointly modeling aspects, ratings and sentiments for movie recommen-
dation (jmars). In Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’14, page 193–202, New York,
NY, USA, 2014. Association for Computing Machinery. ISBN 9781450329569. doi:
10.1145/2623330.2623758. URL https://doi.org/10.1145/2623330.2623758.

[75] Davide Di Ruscio, Dimitris Kolovos, Juan de Lara, Alfonso Pierantonio, Massimo
Tisi, and Manuel Wimmer. Low-code development and model-driven engineering:
Two sides of the same coin? Software and Systems Modeling, 21(2):437–446, April
2022. ISSN 1619-1374. doi: 10.1007/s10270-021-00970-2. URL https://doi.org/10.
1007/s10270-021-00970-2.

[76] Claudio Di Sipio, Juri Di Rocco, Davide Di Ruscio, and Phuong T. Nguyen. MOR-
GAN: a modeling recommender system based on graph kernel. Software and Systems
Modeling, April 2023. ISSN 1619-1374. doi: 10.1007/s10270-023-01102-8. URL
https://doi.org/10.1007/s10270-023-01102-8.

[77] G. Dupont, S. Mustafiz, F. Khendek, and M. Toeroe. Building Domain-Specific
Modelling Environments with Papyrus: An Experience Report. In 2018 IEEE/ACM
10th International Workshop on Modelling in Software Engineering (MiSE), pages
49–56, May 2018. ISSN: 2575-4475.

[78] Holly Edmunds. The Focus Group Research Handbook. The Bottom Line, 12(3):
46–46, January 1999. ISSN 0888-045X. doi: 10.1108/bl.1999.12.3.46.1. URL
https://doi.org/10.1108/bl.1999.12.3.46.1. Publisher: Emerald Group Publishing
Limited.

[79] Michael D. Ekstrand. LensKit for Python: Next-Generation Software for Recom-
mender Systems Experiments. In Proceedings of the 29th ACM International Confer-

https://doi.org/10.1145/3417990.3420202
https://doi.org/10.1145/3383219.3383227
https://doi.org/10.1145/3460231.3478885
https://doi.org/10.1145/2623330.2623758
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1007/s10270-023-01102-8
https://doi.org/10.1108/bl.1999.12.3.46.1

References 299

ence on Information & Knowledge Management, pages 2999–3006, Virtual Event Ire-
land, October 2020. ACM. ISBN 978-1-4503-6859-9. doi: 10.1145/3340531.3412778.

[80] Chun-I Fan, Han-Wei Hsiao, Chun-Han Chou, and Yi-Fan Tseng. Malware detection
systems based on api log data mining. In Proceedings of the 2015 IEEE 39th Annual
Computer Software and Applications Conference - Volume 03, COMPSAC ’15, page
255–260, USA, 2015. IEEE Computer Society. ISBN 9781467365642. doi: 10.1109/
COMPSAC.2015.241. URL https://doi.org/10.1109/COMPSAC.2015.241.

[81] Mattia Fazzini, Qi Xin, and Alessandro Orso. Automated api-usage update for android
apps. In Proceedings of the 28th ISSTA, ISSTA 2019, page 204–215, New York,
NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362245. doi:
10.1145/3293882.3330571.

[82] Alexander Felfernig, Viet-Man Le, Andrei Popescu, Mathias Uta, Thi Ngoc Trang
Tran, and Müslüm Atas. An overview of recommender systems and machine learning
in feature modeling and configuration. In 15th International Working Conference
on Variability Modelling of Software-Intensive Systems, VaMoS’21, New York, NY,
USA, 2021. Association for Computing Machinery. ISBN 9781450388245. doi: 10.
1145/3442391.3442408. URL https://doi-org.univaq.clas.cineca.it/10.1145/3442391.
3442408.

[83] Jaroslav Fowkes and Charles Sutton. Parameter-free Probabilistic API Mining Across
GitHub. In 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 254–265, New York, 2016. ACM. ISBN 978-1-4503-4218-6. doi:
10.1145/2950290.2950319.

[84] Kavita Ganesan. Topic Suggestions for Millions of Repositories - The GitHub Blog,
2017. URL https://github.blog/2017-07-31-topics/.

[85] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme.
Mymedialite: A free recommender system library. In Proceedings of the Fifth ACM
Conference on Recommender Systems, RecSys ’11, page 305–308, New York, NY,
USA, 2011. Association for Computing Machinery. ISBN 9781450306836. doi: 10.
1145/2043932.2043989. URL https://doi-org.univaq.clas.cineca.it/10.1145/2043932.
2043989.

[86] Joshua Garcia, Mahmoud Hammad, and Sam Malek. Lightweight, Obfuscation-
Resilient Detection and Family Identification of Android Malware. ACM Transactions
on Software Engineering and Methodology, 26(3):11:1–11:29, January 2018. ISSN
1049-331X. doi: 10.1145/3162625. URL http://doi.org/10.1145/3162625.

[87] Vicente García-Díaz, Jordán Pascual Espada, Begoña Cristina Pelayo García Bustelo,
and Juan Manuel Cueva Lovelle. Towards a standard-based domain-specific platform
to solve machine learning-based problems. IJIMAI, 3(5):6–12, 2015.

[88] Pankaj K. Garg, Shinji Kawaguchi, Makoto Matsushita, and Katsuro Inoue. MUD-
ABlue: An automatic categorization system for open source repositories. 2013 20th
Asia-Pacific Software Engineering Conference (APSEC), pages 184–193, 2004. ISSN
1530-1362.

https://doi.org/10.1109/COMPSAC.2015.241
https://doi-org.univaq.clas.cineca.it/10.1145/3442391.3442408
https://doi-org.univaq.clas.cineca.it/10.1145/3442391.3442408
https://github.blog/2017-07-31-topics/
https://doi-org.univaq.clas.cineca.it/10.1145/2043932.2043989
https://doi-org.univaq.clas.cineca.it/10.1145/2043932.2043989
http://doi.org/10.1145/3162625

300 References

[89] Marko Gasparic, Andrea Janes, Francesco Ricci, Gail C. Murphy, and Tural Gur-
banov. A graphical user interface for presenting integrated development environ-
ment command recommendations: Design, evaluation, and implementation. In-
formation and Software Technology, 92:236–255, 2017. ISSN 0950-5849. doi:
https://doi.org/10.1016/j.infsof.2017.08.006. URL https://www.sciencedirect.com/
science/article/pii/S0950584916303524.

[90] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. Beyond accuracy:
Evaluating recommender systems by coverage and serendipity. In Proceedings of the
Fourth ACM Conference on Recommender Systems, RecSys ’10, page 257–260, New
York, NY, USA, 2010. Association for Computing Machinery. ISBN 9781605589060.
doi: 10.1145/1864708.1864761. URL https://doi.org/10.1145/1864708.1864761.

[91] F. Geiger, I. Malavolta, L. Pascarella, F. Palomba, D. Di Nucci, and A. Bacchelli. A
graph-based dataset of commit history of real-world android apps. In 2018 IEEE/ACM
15th International Conference on Mining Software Repositories (MSR), pages 30–33,
2018.

[92] Sanjoy Ghose and Oded Lowengart. Taste tests: Impacts of consumer perceptions and
preferences on brand positioning strategies. Journal of Targeting, Measurement and
Analysis for Marketing, 10(1):26–41, August 2001. ISSN 1479-1862.

[93] Heather J. Goldsby and Betty H.C. Cheng. Avida-MDE: a digital evolution approach
to generating models of adaptive software behavior. In Proceedings of the 10th
annual conference on Genetic and evolutionary computation - GECCO ’08, page
1751, Atlanta, GA, USA, 2008. ACM Press. ISBN 978-1-60558-130-9. doi: 10.1145/
1389095.1389434. URL http://portal.acm.org/citation.cfm?doid=1389095.1389434.

[94] Qingyuan Gong, Jiayun Zhang, Yang Chen, Qi Li, Yu Xiao, Xin Wang, and Pan Hui.
Detecting malicious accounts in online developer communities using deep learning. In
Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, CIKM ’19, page 1251–1260, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450369763. doi: 10.1145/3357384.3357971.
URL https://doi.org/10.1145/3357384.3357971.

[95] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In Yoshua Bengio and Yann LeCun, editors, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6572.

[96] Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of the
10th Working Conference on Mining Software Repositories, MSR ’13, pages 233–
236, Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-2936-1. URL
http://dl.acm.org/citation.cfm?id=2487085.2487132.

[97] Georgios Gousios and Diomidis Spinellis. Ghtorrent: Github’s data from a firehose.
In 2012 9th IEEE Working Conference on Mining Software Repositories (MSR), pages
12–21. IEEE, 2012.

[98] Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov.
Learning word vectors for 157 languages. In Proceedings of the Eleventh International

https://www.sciencedirect.com/science/article/pii/S0950584916303524
https://www.sciencedirect.com/science/article/pii/S0950584916303524
https://doi.org/10.1145/1864708.1864761
http://portal.acm.org/citation.cfm?doid=1389095.1389434
https://doi.org/10.1145/3357384.3357971
http://arxiv.org/abs/1412.6572
http://dl.acm.org/citation.cfm?id=2487085.2487132

References 301

Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan,
May 2018. European Language Resources Association (ELRA). URL https://www.
aclweb.org/anthology/L18-1550.

[99] Robert J. Grissom and John J. Kim. Effect sizes for research: A broad practical
approach. Lawrence Earlbaum Associates, 2nd edition edition, 2005.

[100] Richard Gronback. Eclipse Modeling Project | The Eclipse Foundation, March 2021.
URL https://www.eclipse.org/modeling/emf/.

[101] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. Deep API Learn-
ing. In 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 631–642, New York, 2016. ACM. ISBN 978-1-4503-4218-6. doi:
10.1145/2950290.2950334.

[102] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep Code Search. In 40th
International Conference on Software Engineering, pages 933–944, New York, 2018.
ACM. ISBN 978-1-4503-5638-1. doi: 10.1145/3180155.3180167.

[103] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Codekernel: A graph kernel based
approach to the selection of API usage examples. In 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA,
November 11-15, 2019, pages 590–601, 2019. doi: 10.1109/ASE.2019.00061. URL
https://doi.org/10.1109/ASE.2019.00061.

[104] Ihsan Gunes, Cihan Kaleli, Alper Bilge, and Huseyin Polat. Shilling attacks against
recommender systems: A comprehensive survey. Artif. Intell. Rev., 42(4):767–799,
December 2014. ISSN 0269-2821. doi: 10.1007/s10462-012-9364-9. URL https:
//doi.org/10.1007/s10462-012-9364-9.

[105] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and
context. ACM Trans. Interact. Intell. Syst., 5(4), December 2015. ISSN 2160-6455.
doi: 10.1145/2827872. URL https://doi.org/10.1145/2827872.

[106] Q. He, B. Li, F. Chen, J. Grundy, X. Xia, and Y. Yang. Diversified third-party library
prediction for mobile app development. IEEE Transactions on Software Engineering,
pages 1–1, 2020.

[107] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.
Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22
(1):5–53, jan 2004. ISSN 1046-8188. doi: 10.1145/963770.963772. URL https:
//doi.org/10.1145/963770.963772.

[108] Mark Hills and Paul Klint. Php air: Analyzing php systems with rascal. In 2014
Software Evolution Week-IEEE Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE), pages 454–457. IEEE, 2014.

[109] Jerry L. Hintze and Ray D. Nelson. Violin plots: A box plot-density trace syner-
gism. The American Statistician, 52(2):181–184, 1998. doi: 10.1080/00031305.
1998.10480559. URL https://amstat.tandfonline.com/doi/abs/10.1080/00031305.1998.
10480559.

https://www.aclweb.org/anthology/L18-1550
https://www.aclweb.org/anthology/L18-1550
https://www.eclipse.org/modeling/emf/
https://doi.org/10.1109/ASE.2019.00061
https://doi.org/10.1007/s10462-012-9364-9
https://doi.org/10.1007/s10462-012-9364-9
https://doi.org/10.1145/2827872
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/963770.963772
https://amstat.tandfonline.com/doi/abs/10.1080/00031305.1998.10480559
https://amstat.tandfonline.com/doi/abs/10.1080/00031305.1998.10480559

302 References

[110] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.
URL https://doi.org/10.1162/neco.1997.9.8.1735.

[111] Reid Holmes and Gail C. Murphy. Using Structural Context to Recommend Source
Code Examples. In 27th International Conference on Software Engineering, pages 117–
125, New York, 2005. ACM. ISBN 1-58113-963-2. doi: 10.1145/1062455.1062491.

[112] Reid Holmes, Robert J. Walker, and Gail C. Murphy. Strathcona example recommenda-
tion tool. In Michel Wermelinger and Harald C. Gall, editors, Proceedings of the 10th
European Software Engineering Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2005, Lisbon,
Portugal, September 5-9, 2005, pages 237–240. ACM, 2005. ISBN 1-59593-014-0.
doi: 10.1145/1081706.1081744. URL https://doi.org/10.1145/1081706.1081744.

[113] Jeremy Howard and Sylvain Gugger. fastai: A Layered API for Deep Learning.
Information, 11(2):108, February 2020. ISSN 2078-2489. doi: 10.3390/info11020108.
URL http://arxiv.org/abs/2002.04688. arXiv: 2002.04688.

[114] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, and J. D.
Tygar. Adversarial machine learning. In Proceedings of the 4th ACM Workshop on
Security and Artificial Intelligence, AISec ’11, page 43–58, New York, NY, USA,
2011. Association for Computing Machinery. ISBN 9781450310031. doi: 10.1145/
2046684.2046692. URL https://doi.org/10.1145/2046684.2046692.

[115] Yujin Huang, Han Hu, and Chunyang Chen. Robustness of on-device models:
Adversarial attack to deep learning models on android apps. In Proceedings
of the 43rd International Conference on Software Engineering: Software Engi-
neering in Practice, ICSE-SEIP ’21, page 101–110. IEEE Press, 2021. ISBN
9780738146690. doi: 10.1109/ICSE-SEIP52600.2021.00019. URL https://doi.org/10.
1109/ICSE-SEIP52600.2021.00019.

[116] Nicolas Hug. Surprise: A Python library for recommender systems. Journal of Open
Source Software, 5(52):2174, August 2020. ISSN 2475-9066. doi: 10.21105/joss.
02174. URL https://joss.theoj.org/papers/10.21105/joss.02174.

[117] John Hutchinson, Jon Whittle, and Mark Rouncefield. Model-driven engineering
practices in industry. Sci. Comput. Program., 89(PB):144–161, sep 2014. ISSN
0167-6423. doi: 10.1016/j.scico.2013.03.017. URL https://doi.org/10.1016/j.scico.
2013.03.017.

[118] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automated Machine
Learning: Methods, Systems, Challenges. The Springer Series on Challenges in
Machine Learning. Springer International Publishing, Cham, 2019. ISBN 978-3-
030-05317-8 978-3-030-05318-5. doi: 10.1007/978-3-030-05318-5. URL http:
//link.springer.com/10.1007/978-3-030-05318-5.

[119] Felicien Ihirwe, Davide Di Ruscio, Silvia Mazzini, Pierluigi Pierini, and Alfonso
Pierantonio. Low-code engineering for internet of things: A state of research. In
Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems: Companion Proceedings, MODELS ’20, New York,

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/1081706.1081744
http://arxiv.org/abs/2002.04688
https://doi.org/10.1145/2046684.2046692
https://doi.org/10.1109/ICSE-SEIP52600.2021.00019
https://doi.org/10.1109/ICSE-SEIP52600.2021.00019
https://joss.theoj.org/papers/10.21105/joss.02174
https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/10.1016/j.scico.2013.03.017
http://link.springer.com/10.1007/978-3-030-05318-5
http://link.springer.com/10.1007/978-3-030-05318-5

References 303

NY, USA, 2020. Association for Computing Machinery. ISBN 9781450381352. doi:
10.1145/3417990.3420208. URL https://doi.org/10.1145/3417990.3420208.

[120] Maliheh Izadi, Abbas Heydarnoori, and Georgios Gousios. Topic recommenda-
tion for software repositories using multi-label classification algorithms. Empiri-
cal Software Engineering, 26(5):93, July 2021. ISSN 1573-7616. doi: 10.1007/
s10664-021-09976-2. URL https://doi.org/10.1007/s10664-021-09976-2.

[121] Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh Kochhar, and Li Zhang.
Why and How Developers Fork What from Whom in GitHub. Empirical Soft-
ware Engineering, 22(1):547–578, February 2017. ISSN 1382-3256. doi: 10.1007/
s10664-016-9436-6. URL https://doi.org/10.1007/s10664-016-9436-6.

[122] Liangxiao Jiang, Dianhong Wang, Zhihua Cai, and Xuesong Yan. Survey of improving
naive bayes for classification. In Reda Alhajj, Hong Gao, Jianzhong Li, Xue Li, and
Osmar R. Zaïane, editors, Advanced Data Mining and Applications, pages 134–145,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-73871-8.

[123] Jose Luis Jorro-Aragoneses, Belén Díaz-Agudo, Juan A. Recio-García, and Guillermo
Jimenez-Díaz. RecoLibry Suite: a set of intelligent tools for the development of
recommender systems. Automated Software Engineering, 27(1-2):63–89, June 2020.
ISSN 0928-8910, 1573-7535. doi: 10.1007/s10515-020-00269-4. URL http://link.
springer.com/10.1007/s10515-020-00269-4.

[124] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. Ger-
mán, and Daniela E. Damian. The promises and perils of mining github. In 11th
Working Conference on Mining Software Repositories, MSR 2014, Proceedings, May
31 - June 1, 2014, Hyderabad, India, pages 92–101, 2014.

[125] George Karypis. Evaluation of item-based top-n recommendation algorithms. In
Procs. of the tenth international conf. on information and knowledge management,
CIKM ’01, pages 247–254, New York, NY, USA, 2001. ACM. ISBN 1-58113-436-3.

[126] Steven Kelly and Juha-Pekka Tolvanen. Domain-specific modeling - enabling full
code generation. 2008.

[127] M. G. Kendall. A New Measure of Rank Correlation. Biometrika, 30(1/2):81–93,
1938. ISSN 00063444. URL http://www.jstor.org/stable/2332226.

[128] Ashraf M. Kibriya, Eibe Frank, Bernhard Pfahringer, and Geoffrey Holmes. Multino-
mial naive bayes for text categorization revisited. In Geoffrey I. Webb and Xinghuo
Yu, editors, AI 2004: Advances in Artificial Intelligence, pages 488–499, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-30549-1.

[129] Barbara A. Kitchenham, Pearl Brereton, Zhi Li, David Budgen, and Andrew James
Burn. Repeatability of systematic literature reviews. In 15th International Conference
on Evaluation & Assessment in Software Engineering, EASE 2011, Durham, UK,
11-12 April 2011, Proceedings, pages 46–55, 2011. doi: 10.1049/ic.2011.0006. URL
https://doi.org/10.1049/ic.2011.0006.

[130] R. Koch. The 80/20 Principle: The Secret of Achieving More with Less. A Currency
book. Doubleday, 1999. ISBN 9780385491747.

https://doi.org/10.1145/3417990.3420208
https://doi.org/10.1007/s10664-021-09976-2
https://doi.org/10.1007/s10664-016-9436-6
http://link.springer.com/10.1007/s10515-020-00269-4
http://link.springer.com/10.1007/s10515-020-00269-4
http://www.jstor.org/stable/2332226
https://doi.org/10.1049/ic.2011.0006

304 References

[131] William Koch, Abdelberi Chaabane, Manuel Egele, William Robertson, and Engin
Kirda. Semi-automated discovery of server-based information oversharing vulnerabili-
ties in Android applications. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2017, pages 147–157, New York,
NY, USA, July 2017. Association for Computing Machinery. ISBN 978-1-4503-5076-
1. doi: 10.1145/3092703.3092708. URL http://doi.org/10.1145/3092703.3092708.

[132] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Proceedings of the 14th International Joint Conference
on Artificial Intelligence - Volume 2, IJCAI’95, pages 1137–1143, San Francisco,
CA, USA, 1995. Morgan Kaufmann Publishers Inc. ISBN 1-55860-363-8. URL
http://dl.acm.org/citation.cfm?id=1643031.1643047.

[133] J. Kontio, L. Lehtola, and J. Bragge. Using the focus group method in software
engineering: obtaining practitioner and user experiences. In Proceedings. 2004
International Symposium on Empirical Software Engineering, 2004. ISESE ’04., pages
271–280, 2004. doi: 10.1109/ISESE.2004.1334914.

[134] Arseny Korotaev and Lyudmila Lyadova. Method for the Development of Recommen-
dation Systems, Customizable to Domains, with Deep GRU Network:. In Proceedings
of the 10th International Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management, pages 231–236, Seville, Spain, 2018.
SCITEPRESS - Science and Technology Publications. ISBN 978-989-758-330-8.
doi: 10.5220/0006933302310236. URL http://www.scitepress.org/DigitalLibrary/
Link.aspx?doi=10.5220/0006933302310236.

[135] Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-
Brown. Auto-weka 2.0: Automatic model selection and hyperparameter optimization
in weka. Journal of Machine Learning Research, 18(25):1–5, 2017. URL http:
//jmlr.org/papers/v18/16-261.html.

[136] Nils M. Kriege, Pierre-Louis Giscard, and Richard Wilson. On Valid Op-
timal Assignment Kernels and Applications to Graph Classification. In Ad-
vances in Neural Information Processing Systems, volume 29. Curran As-
sociates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
0efe32849d230d7f53049ddc4a4b0c60-Abstract.html.

[137] Tobias Kuschke, Patrick Mäder, and Patrick Rempel. Recommending Auto-
completions for Software Modeling Activities. In Ana Moreira, Bernhard Schätz, Jeff
Gray, Antonio Vallecillo, and Peter Clarke, editors, Model-Driven Engineering Lan-
guages and Systems, Lecture Notes in Computer Science, pages 170–186, Berlin, Hei-
delberg, 2013. Springer. ISBN 978-3-642-41533-3. doi: 10.1007/978-3-642-41533-3_
11. 00015.

[138] LASER and LASER. Software engineering: international summer schools, LASER
2013-2014, Elba, Italy: revised tutorial lectures. Number 8987 in Lecture notes in
computer science Programming and software engineering. Springer, [Cham] Heidel-
berg, 2015. ISBN 978-3-319-28405-7 978-3-319-28406-4.

[139] Sungho Lee and Sukyoung Ryu. Adlib: analyzer for mobile ad platform libraries.
In Proceedings of the 28th ACM SIGSOFT International Symposium on Software

http://doi.org/10.1145/3092703.3092708
http://dl.acm.org/citation.cfm?id=1643031.1643047
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006933302310236
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006933302310236
http://jmlr.org/papers/v18/16-261.html
http://jmlr.org/papers/v18/16-261.html
https://proceedings.neurips.cc/paper/2016/hash/0efe32849d230d7f53049ddc4a4b0c60-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/0efe32849d230d7f53049ddc4a4b0c60-Abstract.html

References 305

Testing and Analysis, ISSTA 2019, pages 262–272, New York, NY, USA, July 2019.
Association for Computing Machinery. ISBN 978-1-4503-6224-5. doi: 10.1145/
3293882.3330562. URL http://doi.org/10.1145/3293882.3330562.

[140] VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707, 1966.

[141] VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707, 1966.

[142] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and W. Huo. Libd: Scalable
and precise third-party library detection in android markets. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE), pages 335–346, 2017.

[143] Xiang Li, Huaimin Wang, Gang Yin, Tao Wang, Cheng Yang, Yue Yu, and Dengqing
Tang. Inducing Taxonomy from Tags: An Agglomerative Hierarchical Clustering
Framework. In Shuigeng Zhou, Songmao Zhang, and George Karypis, editors,
Advanced Data Mining and Applications, pages 64–77, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg. ISBN 978-3-642-35527-1.

[144] Mario Linares-Vásquez, Collin Mcmillan, Denys Poshyvanyk, and Mark Grechanik.
On using machine learning to automatically classify software applications into domain
categories. Empirical Softw. Engg., 19(3):582–618, June 2014. ISSN 1382-3256. doi:
10.1007/s10664-012-9230-z.

[145] Chunyang Ling, Yanzhen Zou, and Bing Xie. Graph neural network based collabora-
tive filtering for api usage recommendation. In 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 36–47, 2021. doi:
10.1109/SANER50967.2021.00013.

[146] Francesca Lonetti, Vânia de Oliveira Neves, and Antonia Bertolino. Designing and
testing systems of systems: From variability models to test cases passing through
desirability assessment. Journal of Software: Evolution and Process, 34(10), October
2022. ISSN 2047-7473, 2047-7481. doi: 10.1002/smr.2427. URL https://onlinelibrary.
wiley.com/doi/10.1002/smr.2427.

[147] José Antonio Hernández López and Jesús Sánchez Cuadrado. Mar: A structure-
based search engine for models. In Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MODELS ’20,
page 57–67, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450370196. doi: 10.1145/3365438.3410947. URL https://doi.org/10.1145/
3365438.3410947.

[148] José Antonio Hernández López and Jesús Sánchez Cuadrado. Mar: a structure-
based search engine for models. In Proceedings of the 23rd ACM/IEEE international
conference on model driven engineering languages and systems, pages 57–67, 2020.

[149] José Antonio Hernández López, Javier Luis Cánovas Izquierdo, and Jesús Sánchez
Cuadrado. Modelset: a dataset for machine learning in model-driven engineering.
Software and Systems Modeling, 21(3):967–986, 2022.

http://doi.org/10.1145/3293882.3330562
https://onlinelibrary.wiley.com/doi/10.1002/smr.2427
https://onlinelibrary.wiley.com/doi/10.1002/smr.2427
https://doi.org/10.1145/3365438.3410947
https://doi.org/10.1145/3365438.3410947

306 References

[150] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches
to attention-based neural machine translation. In Lluís Màrquez, Chris Callison-
Burch, Jian Su, Daniele Pighin, and Yuval Marton, editors, Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, EMNLP
2015, Lisbon, Portugal, September 17-21, 2015, pages 1412–1421. The Associ-
ation for Computational Linguistics, 2015. doi: 10.18653/v1/d15-1166. URL
https://doi.org/10.18653/v1/d15-1166.

[151] Fei Lv, Hongyu Zhang, Jian-Guang Lou, Shaowei Wang, Dongmei Zhang, and Jianjun
Zhao. CodeHow: Effective code search based on API understanding and extended
boolean model (E). In 30th IEEE/ACM international conference on automated soft-
ware engineering, ASE 2015, lincoln, NE, USA, november 9-13, 2015, pages 260–270,
2015.

[152] Jesús J. López-Fernández, Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara.
Example-driven meta-model development. Software & Systems Modeling, 14(4):1323–
1347, October 2015. ISSN 1619-1366, 1619-1374. doi: 10.1007/s10270-013-0392-y.
URL http://link.springer.com/10.1007/s10270-013-0392-y.

[153] Stephen G. MacDonell, Martin J. Shepperd, Barbara A. Kitchenham, and Emilia
Mendes. How reliable are systematic reviews in empirical software engineering?
IEEE Trans. Software Eng., 36(5):676–687, 2010. doi: 10.1109/TSE.2010.28. URL
https://doi.org/10.1109/TSE.2010.28.

[154] Arun S. Maiya. ktrain: A Low-Code Library for Augmented Machine Learning.
arXiv:2004.10703 [cs], July 2020. URL http://arxiv.org/abs/2004.10703. arXiv:
2004.10703.

[155] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
Information Retrieval. Cambridge University Press, USA, 2008. ISBN 0521865719.

[156] Wes McKinney et al. pandas: a foundational python library for data analysis and
statistics. Python for High Performance and Scientific Computing, 14(9):1–9, 2011.

[157] Collin McMillan, Denys Poshyvanyk, and Mark Grechanik. Recommending source
code examples via API call usages and documentation. In Proceedings of the 2Nd
international workshop on recommendation systems for software engineering, RSSE
’10, pages 21–25, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-974-9.

[158] Collin McMillan, Mark Grechanik, and Denys Poshyvanyk. Detecting similar soft-
ware applications. In Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12, pages 364–374, Piscataway, NJ, USA, 2012. IEEE Press.
ISBN 978-1-4673-1067-3.

[159] Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, Matthias
Urban, Michael Burkart, Maximilian Dippel, Marius Lindauer, and Frank Hutter.
Towards Automatically-Tuned Deep Neural Networks, pages 135–149. Springer
International Publishing, Cham, 2019. ISBN 978-3-030-05318-5. doi: 10.1007/
978-3-030-05318-5_7. URL https://doi.org/10.1007/978-3-030-05318-5_7.

https://doi.org/10.18653/v1/d15-1166
http://link.springer.com/10.1007/s10270-013-0392-y
https://doi.org/10.1109/TSE.2010.28
http://arxiv.org/abs/2004.10703
https://doi.org/10.1007/978-3-030-05318-5_7

References 307

[160] Kim Mens and Angela Lozano. Source code-based recommendation systems. In Mar-
tin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas Zimmermann, editors,
Recommendation Systems in Software Engineering, pages 93–130. Springer, 2014. doi:
10.1007/978-3-642-45135-5_5. URL https://doi.org/10.1007/978-3-642-45135-5_5.

[161] Christos Mettouris, Achilleas Achilleos, Georgia Kapitsaki, and George A. Pa-
padopoulos. The UbiCARS Model-Driven Framework: Automating Development
of Recommender Systems for Commerce. In Achilles Kameas and Kostas Stathis,
editors, Ambient Intelligence, Lecture Notes in Computer Science, pages 37–53,
Cham, 2018. Springer International Publishing. ISBN 978-3-030-03062-9. doi:
10.1007/978-3-030-03062-9_3.

[162] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In Proceedings of the
26th International Conference on Neural Information Processing Systems - Volume 2,
NIPS’13, page 3111–3119, Red Hook, NY, USA, 2013. Curran Associates Inc.

[163] George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38
(11):39–41, November 1995. ISSN 0001-0782. doi: 10.1145/219717.219748. URL
http://doi.acm.org/10.1145/219717.219748.

[164] B. Mobasher, R. Burke, R. Bhaumik, and J. J. Sandvig. Attacks and remedies in
collaborative recommendation. IEEE Intelligent Systems, 22(3):56–63, 2007.

[165] Piero Molino, Yaroslav Dudin, and Sai Sumanth Miryala. Ludwig: a type-based
declarative deep learning toolbox. arXiv:1909.07930 [cs, stat], September 2019. URL
http://arxiv.org/abs/1909.07930. arXiv: 1909.07930.

[166] Àngel Mora Segura and Juan de Lara. Extremo: An Eclipse plugin for modelling
and meta-modelling assistance. Science of Computer Programming, 180:71–80, 2019.
ISSN 0167-6423. doi: 10.1016/j.scico.2019.05.003. URL https://www.sciencedirect.
com/science/article/pii/S0167642319300644.

[167] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Andrian
Marcus. How can I use this method? In 37th IEEE/ACM International Conference on
Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, pages
880–890, 2015.

[168] Gail C. Murphy. Attacking information overload in software development. In IEEE
Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2009,
Corvallis, OR, USA, 20-24 September 2009, Proceedings, page 4, 2009.

[169] Emerson R. Murphy-Hill, Gail C. Murphy, and William G. Griswold. Understanding
context: creating a lasting impact in experimental software engineering research. In
Proceedings of FoSER 2010, at FSE 2010, Santa Fe, NM, USA, November 7-11, 2010,
pages 255–258, 2010.

[170] Gunter Mussbacher, Benoit Combemale, Silvia Abrahão, Nelly Bencomo, Loli
Burgueño, Gregor Engels, Jörg Kienzle, Thomas Kühn, Sébastien Mosser, Houari

https://doi.org/10.1007/978-3-642-45135-5_5
http://doi.acm.org/10.1145/219717.219748
http://arxiv.org/abs/1909.07930
https://www.sciencedirect.com/science/article/pii/S0167642319300644
https://www.sciencedirect.com/science/article/pii/S0167642319300644

308 References

Sahraoui, and Martin Weyssow. Towards an assessment grid for intelligent mod-
eling assistance. In Proceedings of the 23rd ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems: Companion Pro-
ceedings, MODELS ’20, New York, NY, USA, 2020. Association for Comput-
ing Machinery. ISBN 9781450381352. doi: 10.1145/3417990.3421396. URL
https://doi-org.univaq.clas.cineca.it/10.1145/3417990.3421396.

[171] Gunter Mussbacher, Benoit Combemale, Jörg Kienzle, Silvia Abrahão, Hyacinth Ali,
Nelly Bencomo, Márton Búr, Loli Burgueño, Gregor Engels, Pierre Jeanjean, Jean-
Marc Jézéquel, Thomas Kühn, Sébastien Mosser, Houari Sahraoui, Eugene Syriani,
Dániel Varró, and Martin Weyssow. Opportunities in intelligent modeling assistance.
Software and Systems Modeling, 19(5):1045–1053, September 2020. ISSN 1619-1366,
1619-1374. doi: 10.1007/s10270-020-00814-5. URL http://link.springer.com/10.
1007/s10270-020-00814-5.

[172] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, and Yang Liu. A
multi-view context-aware approach to Android malware detection and malicious
code localization. Empirical Software Engineering, 23(3):1222–1274, June 2018.
ISSN 1573-7616. doi: 10.1007/s10664-017-9539-8. URL https://doi.org/10.1007/
s10664-017-9539-8.

[173] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. What Makes
a Good Code Example?: A Study of Programming Q&A in StackOverflow. In 28th
IEEE International Conference on Software Maintenance, pages 25–34, Piscataway,
2012. IEEE. doi: 10.1109/ICSM.2012.6405249.

[174] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In CVPR, pages
427–436. IEEE Computer Society, 2015. ISBN 978-1-4673-6964-0. URL http:
//dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#NguyenYC15.

[175] P. T. Nguyen, J. Di Rocco, R. Rubei, and D. Di Ruscio. CrossSim: Exploiting mutual
relationships to detect similar OSS projects. In 2018 44th euromicro conference on
software engineering and advanced applications (SEAA), pages 388–395, August
2018.

[176] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, A. Pierantonio, and L. Iovino. Automated
classification of metamodel repositories: A machine learning approach. In 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering Languages
and Systems (MODELS), pages 272–282, Sep. 2019. doi: 10.1109/MODELS.2019.
00011.

[177] P. T. Nguyen, J. Di Rocco, C. Di Sipio, D. Di Ruscio, and M. Di Penta. Recommending
api function calls and code snippets to support software development. IEEE Transac-
tions on Software Engineering, pages 1–1, 2021. doi: 10.1109/TSE.2021.3059907.

[178] Phuong Nguyen, Paolo Tomeo, Tommaso Di Noia, and Eugenio Di Sciascio. An
evaluation of simrank and personalized pagerank to build a recommender system
for the web of data. In Proceedings of the 24th International Conference on World
Wide Web, WWW ’15 Companion, page 1477–1482, New York, NY, USA, 2015.

https://doi-org.univaq.clas.cineca.it/10.1145/3417990.3421396
http://link.springer.com/10.1007/s10270-020-00814-5
http://link.springer.com/10.1007/s10270-020-00814-5
https://doi.org/10.1007/s10664-017-9539-8
https://doi.org/10.1007/s10664-017-9539-8
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#NguyenYC15
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#NguyenYC15

References 309

Association for Computing Machinery. ISBN 9781450334730. doi: 10.1145/2740908.
2742141. URL https://doi.org/10.1145/2740908.2742141.

[179] Phuong T. Nguyen, Paolo Tomeo, Tommaso Di Noia, and Eugenio Di Sciascio.
Content-based recommendations via DBpedia and freebase: A case study in the music
domain. In Proceedings of the 14th international conference on the semantic web
- ISWC 2015 - volume 9366, pages 605–621, New York, NY, USA, 2015. Springer-
Verlag New York, Inc. ISBN 978-3-319-25006-9.

[180] Phuong T. Nguyen, Juri Di Rocco, and Davide Di Ruscio. Mining software repositories
to support OSS developers: A recommender systems approach. In Proceedings of the
9th italian information retrieval workshop, rome, italy, may, 28-30, 2018., 2018.

[181] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa, Thomas
Degueule, and Massimiliano Di Penta. FOCUS: A Recommender System for
Mining API Function Calls and Usage Patterns. In Proceedings of the 41st Inter-
national Conference on Software Engineering, ICSE ’19, pages 1050–1060, Pis-
cataway, NJ, USA, 2019. IEEE Press. doi: 10.1109/ICSE.2019.00109. URL
https://doi.org/10.1109/ICSE.2019.00109.

[182] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta.
Crossrec: Supporting software developers by recommending third-party libraries.
Journal of Systems and Software, 161:110460, 2020. ISSN 0164-1212. doi: https:
//doi.org/10.1016/j.jss.2019.110460. URL https://www.sciencedirect.com/science/
article/pii/S0164121219302341.

[183] Phuong T. Nguyen, Juri Di Rocco, Riccardo Rubei, and Davide Di Ruscio. An
automated approach to assess the similarity of GitHub repositories. Softw. Qual. J., 28
(2):595–631, 2020. doi: 10.1007/s11219-019-09483-0. URL https://doi.org/10.1007/
s11219-019-09483-0.

[184] Phuong T. Nguyen, Juri Di Rocco, Riccardo Rubei, and Davide Di Ruscio. An
automated approach to assess the similarity of GitHub repositories. Software Quality
Journal, feb 2020. doi: 10.1007/s11219-019-09483-0. URL https://doi.org/10.1007%
2Fs11219-019-09483-0.

[185] Phuong T. Nguyen, Davide Di Ruscio, Alfonso Pierantonio, Juri Di Rocco, and Lu-
dovico Iovino. Convolutional neural networks for enhanced classification mechanisms
of metamodels. Journal of Systems and Software, page 110860, 2020. ISSN 0164-
1212. doi: https://doi.org/10.1016/j.jss.2020.110860. URL http://www.sciencedirect.
com/science/article/pii/S0164121220302508.

[186] Phuong T. Nguyen, Juri Di Rocco, Claudio Di Sipio, Davide Di Ruscio, and
Massimiliano Di Penta. TSE FOCUS replication package, January 2021. URL
https://doi.org/10.5281/zenodo.4415618.

[187] Phuong T. Nguyen, Davide Di Ruscio, Juri Di Rocco, Claudio Di Sipio, and Mas-
similiano Di Penta. Adversarial machine learning: On the resilience of third-party
library recommender systems. In Evaluation and Assessment in Software Engineering,

https://doi.org/10.1145/2740908.2742141
https://doi.org/10.1109/ICSE.2019.00109
https://www.sciencedirect.com/science/article/pii/S0164121219302341
https://www.sciencedirect.com/science/article/pii/S0164121219302341
https://doi.org/10.1007/s11219-019-09483-0
https://doi.org/10.1007/s11219-019-09483-0
https://doi.org/10.1007%2Fs11219-019-09483-0
https://doi.org/10.1007%2Fs11219-019-09483-0
http://www.sciencedirect.com/science/article/pii/S0164121220302508
http://www.sciencedirect.com/science/article/pii/S0164121220302508
https://doi.org/10.5281/zenodo.4415618

310 References

EASE 2021, page 247–253, New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450390538. doi: 10.1145/3463274.3463809. URL
https://doi.org/10.1145/3463274.3463809.

[188] Phuong T. Nguyen, Claudio Di Sipio, Juri Di Rocco, Massimiliano Di Penta, and
Davide Di Ruscio. Adversarial attacks to api recommender systems: Time to wake up
and smell the coffee? In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 253–265, 2021. doi: 10.1109/ASE51524.2021.
9678946.

[189] Phuong T. Nguyen, Claudio Di Sipio, Juri Di Rocco, Davide Di Ruscio, and Mas-
similiano Di Penta. APIRecSys-AML: Artifact Evaluation, 2021. URL https:
//doi.org/10.5281/zenodo.5105955.

[190] Phuong T. Nguyen, Claudio Di Sipio, Juri Di Rocco, Davide Di Ruscio, and Mas-
similiano Di Penta. Fitting missing api puzzles with machine translation tech-
niques. Expert Systems with Applications, 216:119477, 2023. ISSN 0957-4174.
doi: https://doi.org/10.1016/j.eswa.2022.119477. URL https://www.sciencedirect.
com/science/article/pii/S0957417422024964.

[191] Tam The Nguyen, Hung Viet Pham, Phong Minh Vu, and Tung Thanh Nguyen.
Learning API usages from bytecode: a statistical approach. In Proceedings of the
38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016, pages 416–427, 2016. doi: 10.1145/2884781.2884873. URL
https://doi.org/10.1145/2884781.2884873.

[192] Haoran Niu, Iman Keivanloo, and Ying Zou. API Usage Pattern Recommendation
for Software Development. Journal of Systems and Software, 129(C):127–139, 2017.
ISSN 0164-1212. doi: 10.1016/j.jss.2016.07.026.

[193] Haoran Niu, Iman Keivanloo, and Ying Zou. API usage pattern recommendation for
software development. Journal of Systems and Software, 129:127–139, July 2017.
ISSN 01641212.

[194] Tommaso Di Noia and Vito Claudio Ostuni. Recommender systems and linked
open data. In Wolfgang Faber and Adrian Paschke, editors, Reasoning Web. Web
Logic Rules - 11th International Summer School 2015, Berlin, Germany, July 31
- August 4, 2015, Tutorial Lectures, volume 9203 of Lecture Notes in Computer
Science, pages 88–113. Springer, 2015. doi: 10.1007/978-3-319-21768-0_4. URL
https://doi.org/10.1007/978-3-319-21768-0_4.

[195] Christopher Olah. Understanding LSTM Networks, May 2020. URL https://colah.
github.io/posts/2015-08-Understanding-LSTMs/.

[196] A. N. Oppenheim. Questionnaire Design, Interviewing and Attitude Measurement.
Pinter Publishers, 1992.

[197] Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, Takashi Ishio, Daniel M.
German, and Katsuro Inoue. Search-based software library recommendation using
multi-objective optimization. Inf. Softw. Technol., 83(C):55–75, March 2017. ISSN
0950-5849. doi: 10.1016/j.infsof.2016.11.007. URL https://doi.org/10.1016/j.infsof.
2016.11.007.

https://doi.org/10.1145/3463274.3463809
https://doi.org/10.5281/zenodo.5105955
https://doi.org/10.5281/zenodo.5105955
https://www.sciencedirect.com/science/article/pii/S0957417422024964
https://www.sciencedirect.com/science/article/pii/S0957417422024964
https://doi.org/10.1145/2884781.2884873
https://doi.org/10.1007/978-3-319-21768-0_4
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1016/j.infsof.2016.11.007
https://doi.org/10.1016/j.infsof.2016.11.007

References 311

[198] S. Pantelimon, T. Rogojanu, A. Braileanu, V. Stanciu, and C. Dobre. Towards a
seamless integration of iot devices with iot platforms using a low-code approach. In
2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pages 566–571, 2019.
doi: 10.1109/WF-IoT.2019.8767313.

[199] David L. Parnas. Information Distribution Aspects of Design Methodology. Technical
report, Departement of Computer Science, Carnegie Mellon University, Pittsburgh,
1971.

[200] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors
for word representation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, October
2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1162. URL
https://www.aclweb.org/anthology/D14-1162.

[201] Simone Pettigrew and Stephen Charters. Tasting as a projective technique. Qualitative
Market Research: An International Journal, 11(3):331–343, 2008.

[202] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele
Lanza. Mining StackOverflow to Turn the IDE into a Self-confident Programming
Prompter. In 11th Working Conference on Mining Software Repositories, pages
102–111, New York, 2014. ACM. ISBN 978-1-4503-2863-0. doi: 10.1145/2597073.
2597077.

[203] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele
Lanza. Prompter - turning the IDE into a self-confident programming assistant. Empir-
ical Software Engineering, 21(5):2190–2231, 2016. doi: 10.1007/s10664-015-9397-1.
URL https://doi.org/10.1007/s10664-015-9397-1.

[204] Luca Ponzanelli, Simone Scalabrino, Gabriele Bavota, Andrea Mocci, Rocco Oliveto,
Massimiliano Di Penta, and Michele Lanza. Supporting Software Developers with
a Holistic Recommender System. In 39th International Conference on Software
Engineering, pages 94–105, Piscataway, 2017. IEEE. ISBN 978-1-5386-3868-2. doi:
10.1109/ICSE.2017.17.

[205] M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, January 1980.
ISSN 0033-0337. doi: 10.1108/eb046814. URL https://doi.org/10.1108/eb046814.
Publisher: MCB UP Ltd.

[206] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung, Thushari Atapattu, and
David Lo. Categorizing the content of github README files. Empirical Software
Engineering, 24(3):1296–1327, 2019. doi: 10.1007/s10664-018-9660-3. URL https:
//doi.org/10.1007/s10664-018-9660-3.

[207] Sebastian Proksch, Veronika Bauer, and Gail C. Murphy. How to build a rec-
ommendation system for software engineering. In Bertrand Meyer and Martin
Nordio, editors, Advances in the theory and practice of software engineering -
LASER 2013-2014, volume 8987 of LNCS, pages 1–42. Springer, 2015. URL
http://tubiblio.ulb.tu-darmstadt.de/77729/.

https://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1007/s10664-015-9397-1
https://doi.org/10.1108/eb046814
https://doi.org/10.1007/s10664-018-9660-3
https://doi.org/10.1007/s10664-018-9660-3
http://tubiblio.ulb.tu-darmstadt.de/77729/

312 References

[208] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. SWIM: Synthesizing What I
Mean: Code Search and Idiomatic Snippet Synthesis. In 38th International Conference
on Software Engineering, pages 357–367, New York, 2016. ACM. ISBN 978-1-4503-
3900-1. doi: 10.1145/2884781.2884808.

[209] Mohammad Rahman, Shamima Yeasmin, and Chanchal Roy. Towards a Context-
Aware IDE-Based Meta Search Engine for Recommendation about Programming
Errors and Exceptions. In Conference on Software Maintenance, Reengineering,
and Reverse Engineering, pages 194–203, Piscataway, 2014. IEEE. doi: 10.1109/
CSMR-WCRE.2014.6747170.

[210] Sebastian Raschka. Model evaluation, model selection, and algorithm selection in
machine learning. CoRR, abs/1811.12808, 2018. URL http://arxiv.org/abs/1811.12808.

[211] Veselin Raychev, Martin Vechev, and Eran Yahav. Code Completion with Statistical
Language Models. In 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 419–428, New York, 2014. ACM. ISBN 978-1-
4503-2784-8. doi: 10.1145/2594291.2594321.

[212] Jason D. M. Rennie, Lawrence Shih, Jaime Teevan, and David R. Karger. Tackling the
poor assumptions of naive bayes text classifiers. In Proceedings of the Twentieth Inter-
national Conference on International Conference on Machine Learning, ICML’03,
page 616–623. AAAI Press, 2003. ISBN 1577351894.

[213] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to Recommender
Systems Handbook, pages 1–35. Springer US, Boston, MA, 2011. ISBN 978-0-
387-85820-3. doi: 10.1007/978-0-387-85820-3_1. URL https://doi.org/10.1007/
978-0-387-85820-3_1.

[214] C. Richardson and J. R. Rymer. The forrester wave: Low-code development platforms,
q2 2016, April 2016. Technical report, Forrester Research.

[215] C. Richardson and J. R. Rymer. Vendor Landscape: The Fractured, Fertile Terrain Of
Low-Code Application Platforms. page 23, 2016.

[216] Kaspar Riesen and Horst Bunke. Graph Classification and Clustering Based on
Vector Space Embedding. World Scientific Publishing Co., Inc., USA, 2010. ISBN
9789814304719.

[217] Peter C. Rigby and Martin P. Robillard. Discovering Essential Code Elements in
Informal Documentation. In 35th International Conference on Software Engineering,
pages 832–841, Piscataway, 2013. IEEE. ISBN 978-1-4673-3076-3.

[218] Martin P Robillard. What Makes APIs Hard to Learn? Answers from Developers.
IEEE software, 26(6):27–34, 2009.

[219] Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan Ratch-
ford. Automated API property inference techniques. IEEE Transactions on Software
Engineering, 39(5):613–637, May 2013. ISSN 0098-5589.

http://arxiv.org/abs/1811.12808
https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1007/978-0-387-85820-3_1

References 313

[220] Martin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas Zimmermann, edi-
tors. Recommendation Systems in Software Engineering. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014. ISBN 978-3-642-45134-8 978-3-642-45135-5. doi: 10.
1007/978-3-642-45135-5. URL http://link.springer.com/10.1007/978-3-642-45135-5.

[221] Md Omar Faruk Rokon, Risul Islam, Ahmad Darki, Evangelos E. Papalexakis, and
M. Faloutsos. Sourcefinder: Finding malware source-code from publicly available
repositories. ArXiv, abs/2005.14311, 2020.

[222] Israel J. Mojica Ruiz, Meiyappan Nagappan, Bram Adams, and Ahmed E. Hassan.
Understanding reuse in the Android Market. In 2012 20th IEEE International Con-
ference on Program Comprehension (ICPC), pages 113–122, Passau, Germany, June
2012. IEEE. ISBN 978-1-4673-1216-5 978-1-4673-1213-4 978-1-4673-1215-8. doi:
10.1109/ICPC.2012.6240477.

[223] Naiyana Sahavechaphan and Kajal Claypool. Xsnippet: Mining for sample code.
In Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications, OOPSLA ’06, page 413–430,
New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595933484.
doi: 10.1145/1167473.1167508.

[224] Naiyana Sahavechaphan and Kajal Claypool. Xsnippet: Mining for sample code.
SIGPLAN Not., 41(10):413–430, October 2006. ISSN 0362-1340. doi: 10.1145/
1167515.1167508.

[225] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pierantonio.
Supporting the understanding and comparison of low-code development platforms. In
2020 46th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pages 171–178, Portoroz, Slovenia, August 2020. IEEE. ISBN 978-1-72819-
532-2. doi: 10.1109/SEAA51224.2020.00036.

[226] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pierantonio.
Supporting the understanding and comparison of low-code development platforms.
In 46th Euromicro Conference on Software Engineering and Advanced Applications,
SEAA 2020 - to appear, 2020.

[227] M. A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui. Mining Multi-level API
Usage Patterns. In 22nd International Conference on Software Analysis, Evolution,
and Reengineering, pages 23–32, Piscataway, 2015. IEEE. doi: 10.1109/SANER.
2015.7081812.

[228] Mohamed Aymen Saied, Hani Abdeen, Omar Benomar, and Houari Sahraoui. Could
We Infer Unordered API Usage Patterns Only Using the Library Source Code? In
23rd International Conference on Program Comprehension, pages 71–81, Piscataway,
2015. IEEE. doi: 10.1109/ICPC.2015.16.

[229] Mohamed Aymen Saied, Ali Ouni, Houari Sahraoui, Raula Gaikovina Kula, Katsuro
Inoue, and David Lo. Improving reusability of software libraries through usage pattern
mining. Journal of Systems and Software, 145:164 – 179, 2018. ISSN 0164-1212.
doi: https://doi.org/10.1016/j.jss.2018.08.032. URL http://www.sciencedirect.com/
science/article/pii/S0164121218301699.

http://link.springer.com/10.1007/978-3-642-45135-5
http://www.sciencedirect.com/science/article/pii/S0164121218301699
http://www.sciencedirect.com/science/article/pii/S0164121218301699

314 References

[230] Rijul Saini, Gunter Mussbacher, Jin L. C. Guo, and Jörg Kienzle. Domobot: A bot for
automated and interactive domain modelling. In Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, MODELS ’20, New York, NY, USA, 2020. Association for
Computing Machinery. ISBN 9781450381352. doi: 10.1145/3417990.3421385. URL
https://doi-org.univaq.clas.cineca.it/10.1145/3417990.3421385.

[231] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based col-
laborative filtering recommendation algorithms. In Proceedings of the 10th Inter-
national Conference on World Wide Web, WWW ’01, pages 285–295, New York,
NY, USA, 2001. ACM. ISBN 1-58113-348-0. doi: 10.1145/371920.372071. URL
http://doi.acm.org/10.1145/371920.372071.

[232] Cezar Sas and Andrea Capiluppi. Labelgit: A dataset for software repositories
classification using attributed dependency graphs, 03 2021.

[233] Anand Ashok Sawant and Alberto Bacchelli. fine-GRAPE: fine-grained APi usage
extractor – an approach and dataset to investigate API usage. Empirical Software
Engineering, 22(3):1348–1371, June 2017. ISSN 1382-3256, 1573-7616. doi: 10.
1007/s10664-016-9444-6. URL http://link.springer.com/10.1007/s10664-016-9444-6.

[234] Giuseppe Scanniello, Simone Romano, Davide Fucci, Burak Turhan, and Natalia
Juristo. Students’ and professionals’ perceptions of test-driven development: A
focus group study. In Proceedings of the 31st Annual ACM Symposium on Applied
Computing, SAC ’16, page 1422–1427, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450337397. doi: 10.1145/2851613.2851778. URL
https://doi.org/10.1145/2851613.2851778.

[235] J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collaborative
Filtering Recommender Systems, pages 291–324. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007. ISBN 978-3-540-72079-9. doi: 10.1007/978-3-540-72079-9_9.
URL https://doi.org/10.1007/978-3-540-72079-9_9.

[236] Markus Schedl, Hamed Zamani, Ching-Wei Chen, Yashar Deldjoo, and Mehdi Elahi.
Current challenges and visions in music recommender systems research. Int. J.
Multim. Inf. Retr., 7(2):95–116, 2018. doi: 10.1007/s13735-018-0154-2. URL
https://doi.org/10.1007/s13735-018-0154-2.

[237] G. L. Scoccia, S. Ruberto, I. Malavolta, M. Autili, and P. Inverardi. An investi-
gation into android run-time permissions from the end users’ perspective. In 2018
IEEE/ACM 5th International Conference on Mobile Software Engineering and Systems
(MOBILESoft), pages 45–55, 2018.

[238] Sagar Sen, Benoit Baudry, and Hans Vangheluwe. Towards domain-specific model
editors with automatic model completion. SIMULATION, 86(2):109–126, 2010. doi:
10.1177/0037549709340530. URL https://doi.org/10.1177/0037549709340530.

[239] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and
Karsten M. Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12
(null):2539–2561, November 2011. ISSN 1532-4435.

https://doi-org.univaq.clas.cineca.it/10.1145/3417990.3421385
http://doi.acm.org/10.1145/371920.372071
http://link.springer.com/10.1007/s10664-016-9444-6
https://doi.org/10.1145/2851613.2851778
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1007/s13735-018-0154-2
https://doi.org/10.1177/0037549709340530

References 315

[240] David Shriver, Sebastian Elbaum, and Matthew B. Dwyer. Reducing DNN Properties
to Enable Falsification with Adversarial Attacks. In 43rd International Conference on
Software Engineering. IEEE, 2021.

[241] Mingdan Si and Qingshan Li. Shilling attacks against collaborative recommender
systems: a review. Artif. Intell. Rev., 53(1):291–319, 2020. doi: 10.1007/
s10462-018-9655-x. URL https://doi.org/10.1007/s10462-018-9655-x.

[242] Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstanti-
nos Skianis, and Michalis Vazirgiannis. GraKeL: A Graph Kernel Library in Python.
arXiv:1806.02193 [cs, stat], March 2020. URL http://arxiv.org/abs/1806.02193. arXiv:
1806.02193.

[243] Jagsir Singh and Jaswinder Singh. Detection of malicious software by analyzing the
behavioral artifacts using machine learning algorithms. Information and Software
Technology, 121:106273, May 2020. ISSN 0950-5849. doi: 10.1016/j.infsof.2020.
106273. URL https://www.sciencedirect.com/science/article/pii/S0950584920300239.

[244] D.I.K. Sjoeberg, J.E. Hannay, O. Hansen, V.B. Kampenes, A. Karahasanovic, N.-K.
Liborg, and A.C. Rekdal. A survey of controlled experiments in software engineering.
IEEE Transactions on Software Engineering, 31(9):733–753, 2005. doi: 10.1109/TSE.
2005.97.

[245] Marcus Soll and Malte Vosgerau. Classifyhub: An algorithm to classify github
repositories. pages 373–379, 09 2017. ISBN 978-3-319-67189-5. doi: 10.1007/
978-3-319-67190-1_34.

[246] Qinbao Song, Xiaoyan Zhu, Guangtao Wang, Heli Sun, He Jiang, Chenhao Xue,
Baowen Xu, and Wei Song. A machine learning based software process model
recommendation method. Journal of Systems and Software, 118:85–100, 2016.

[247] Charles Spearman. The proof and measurement of association between two things.
The American journal of psychology, 15(1):72–101, 1904.

[248] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse
modeling framework. Pearson Education, 2008.

[249] M. Stephan. Towards a Cognizant Virtual Software Modeling Assistant using Model
Clones. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
New Ideas and Emerging Results (ICSE-NIER), pages 21–24, May 2019. doi: 10.
1109/ICSE-NIER.2019.00014.

[250] V. Subramaniyaswamy and R. Logesh. Adaptive KNN based Recommender Sys-
tem through Mining of User Preferences. Wireless Personal Communications, 97
(2):2229–2247, November 2017. ISSN 0929-6212, 1572-834X. doi: 10.1007/
s11277-017-4605-5. URL http://link.springer.com/10.1007/s11277-017-4605-5.

[251] Mahito Sugiyama and Karsten M. Borgwardt. Halting in random walk kernels. In
Proceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’15, page 1639–1647, Cambridge, MA, USA, 2015. MIT
Press.

https://doi.org/10.1007/s10462-018-9655-x
http://arxiv.org/abs/1806.02193
https://www.sciencedirect.com/science/article/pii/S0950584920300239
http://link.springer.com/10.1007/s11277-017-4605-5

316 References

[252] Arvind Sujeeth, HyoukJoong Lee, Kevin Brown, Tiark Rompf, Hassan Chafi, Michael
Wu, Anand Atreya, Martin Odersky, and Kunle Olukotun. OptiML: an implicitly
parallel domain-specific language for machine learning. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pages 609–616, 2011.

[253] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’14, page 3104–3112, Cambridge,
MA, USA, 2014. MIT Press.

[254] Watanabe Takuya and Hidehiko Masuhara. A Spontaneous Code Recommendation
Tool Based on Associative Search. In 3rd International Workshop on Search-Driven
Development: Users, Infrastructure, Tools, and Evaluation, pages 17–20, New York,
2011. ACM. ISBN 978-1-4503-0597-6. doi: 10.1145/1985429.1985434.

[255] Thomas Thum, Christian Kastner, Sebastian Erdweg, and Norbert Siegmund. Abstract
features in feature modeling. In 2011 15th International Software Product Line
Conference, pages 191–200, 2011. doi: 10.1109/SPLC.2011.53.

[256] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake, and
Thomas Leich. Featureide: An extensible framework for feature-oriented software
development. Science of Computer Programming, 79:70–85, 2014.

[257] S. Thummalapenta and Tao Xie. SpotWeb: Detecting Framework Hotspots and
Coldspots via Mining Open Source Code on the Web. In 23rd IEEE/ACM International
Conference on Automated Software Engineering, pages 327–336, Washington, 2008.
IEEE. ISBN 978-1-4244-2187-9.

[258] Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, and Massimiliano Di Penta.
An empirical study on the maintenance of source code clones. Empirical Softw. Engg.,
15(1):1–34, February 2010. ISSN 1382-3256. doi: 10.1007/s10664-009-9108-x.

[259] Ferdian Thung, David Lo, and Julia Lawall. Automated library recommendation. In
2013 20th Working Conference on Reverse Engineering (WCRE), pages 182–191, Oct
2013. doi: 10.1109/WCRE.2013.6671293.

[260] Liang Tong, Bo Li, Chen Hajaj, Chaowei Xiao, Ning Zhang, and Yevgeniy Vorobey-
chik. Improving robustness of ml classifiers against realizable evasion attacks using
conserved features. In USENIX Security Symposium, pages 285–302, 2019.

[261] Christoph Treude and Martin P. Robillard. Augmenting API Documentation with
Insights from Stack Overflow. In 38th International Conference on Software Engi-
neering, pages 392–403, New York, 2016. ACM. ISBN 978-1-4503-3900-1. doi:
10.1145/2884781.2884800.

[262] J. D. Tygar. Adversarial machine learning. IEEE Internet Computing, 15(5):4–6,
2011.

[263] Gias Uddin and Martin P Robillard. How API Documentation Fails. IEEE Software,
32(4):68–75, 2015. ISSN 0740-7459. doi: 10.1109/MS.2014.80.

References 317

[264] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a
structure for efficient numerical computation. Computing in science & engineering,
13(2):22–30, 2011.

[265] Saúl Vargas and Pablo Castells. Rank and relevance in novelty and diversity metrics for
recommender systems. In Proceedings of the Fifth ACM Conference on Recommender
Systems, RecSys ’11, page 109–116, New York, NY, USA, 2011. Association for
Computing Machinery. ISBN 9781450306836. doi: 10.1145/2043932.2043955. URL
https://doi.org/10.1145/2043932.2043955.

[266] Saúl Vargas and Pablo Castells. Improving sales diversity by recommending users to
items. In Proceedings of the 8th ACM Conference on Recommender Systems, RecSys
’14, page 145–152, New York, NY, USA, 2014. Association for Computing Machinery.
ISBN 9781450326681. doi: 10.1145/2645710.2645744.

[267] Saúl Vargas. Novelty and diversity enhancement and evaluation in recommender
systems and information retrieval. In Proceedings of the 37th international ACM
SIGIR conference on Research & development in information retrieval, SIGIR ’14,
page 1281, New York, NY, USA, July 2014. Association for Computing Machinery.
ISBN 978-1-4503-2257-7. doi: 10.1145/2600428.2610382. URL https://doi.org/10.
1145/2600428.2610382.

[268] Saúl Vargas and Pablo Castells. Rank and relevance in novelty and diversity metrics for
recommender systems. In Proceedings of the fifth ACM conference on recommender
systems, RecSys ’11, pages 109–116, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0683-6.

[269] Saúl Vargas and Pablo Castells. Improving sales diversity by recommending users to
items. In Eighth ACM conference on recommender systems, RecSys ’14, foster city,
silicon valley, CA, USA - october 06 - 10, 2014, pages 145–152, 2014.

[270] S. Vargas-Baldrich, M. Linares-Vásquez, and D. Poshyvanyk. Automated Tagging
of Software Projects Using Bytecode and Dependencies. In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 289–294,
November 2015. doi: 10.1109/ASE.2015.38.

[271] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[272] C. Velázquez-Rodríguez and C. De Roover. MUTAMA: An Automated Multi-label
Tagging Approach for Software Libraries on Maven. In 2020 IEEE 20th International
Working Conference on Source Code Analysis and Manipulation (SCAM), pages 254–
258, September 2020. doi: 10.1109/SCAM51674.2020.00034. ISSN: 2470-6892.

[273] Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study of google
play. In The 2014 ACM international conference on Measurement and modeling of

https://doi.org/10.1145/2043932.2043955
https://doi.org/10.1145/2600428.2610382
https://doi.org/10.1145/2600428.2610382
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

318 References

computer systems - SIGMETRICS ’14, pages 221–233, Austin, Texas, USA, 2014.
ACM Press. ISBN 978-1-4503-2789-3.

[274] S.V.N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borgwardt.
Graph kernels. Journal of Machine Learning Research, 11(40):1201–1242, 2010.
URL http://jmlr.org/papers/v11/vishwanathan10a.html.

[275] J. Wang and J. Han. Bide: efficient mining of frequent closed sequences. In Proceed-
ings. 20th International Conference on Data Engineering, pages 79–90, 2004. doi:
10.1109/ICDE.2004.1319986.

[276] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining Succinct and
High-coverage API Usage Patterns from Source Code. In 10th MSR, pages 319–328,
Piscataway, 2013. IEEE. doi: 10.1109/MSR.2013.6624045.

[277] Jianfang Wang and Pengfei Han. Adversarial Training-Based Mean Bayesian Person-
alized Ranking for Recommender System. IEEE Access, 8:7958–7968, 2020. ISSN
2169-3536. doi: 10.1109/ACCESS.2019.2963316. Conference Name: IEEE Access.

[278] Kaiyuan Wang, Allison Sullivan, D. Marinov, and S. Khurshid. Asketch: a sketching
framework for alloy. Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018.

[279] Tao Wang, Huaimin Wang, Gang Yin, Charles X. Ling, Xiao Li, and Peng Zou. Tag
recommendation for open source software. Frontiers of Computer Science, 8(1):69–82,
February 2014. ISSN 2095-2228, 2095-2236. doi: 10.1007/s11704-013-2394-x. URL
http://link.springer.com/10.1007/s11704-013-2394-x.

[280] Ting-Hsiang Wang, Xia Hu, Haifeng Jin, Qingquan Song, Xiaotian Han, and Zirui
Liu. Autorec: An automated recommender system. In Fourteenth ACM Conference
on Recommender Systems, RecSys ’20, page 582–584, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450375832. doi: 10.1145/3383313.
3411529.

[281] Robert Waszkowski. Low-code platform for automating business processes in man-
ufacturing. IFAC-PapersOnLine, 52(10):376–381, 2019. ISSN 24058963. doi:
10.1016/j.ifacol.2019.10.060.

[282] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and
the algebra which appears therein. NTI, Series, 2(9):12–16, 1968.

[283] Karl Weiss, Taghi Khoshgoftaar, and DingDing Wang. A survey of transfer learning.
Journal of Big Data, 3, 12 2016. doi: 10.1186/s40537-016-0043-6.

[284] Martin Weyssow, Houari A. Sahraoui, and Eugene Syriani. Recommending metamodel
concepts during modeling activities with pre-trained language models. Softw. Syst.
Model., 21(3):1071–1089, 2022. doi: 10.1007/s10270-022-00975-5. URL https:
//doi.org/10.1007/s10270-022-00975-5.

[285] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1
(6):80–83, 1945. ISSN 00994987.

http://jmlr.org/papers/v11/vishwanathan10a.html
http://link.springer.com/10.1007/s11704-013-2394-x
https://doi.org/10.1007/s10270-022-00975-5
https://doi.org/10.1007/s10270-022-00975-5

References 319

[286] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, April 1997. ISSN 1089778X.
doi: 10.1109/4235.585893. URL http://ieeexplore.ieee.org/document/585893/.

[287] Tzu-Tsung Wong. Performance Evaluation of Classification Algorithms by K-fold
and Leave-one-out Cross Validation. Pattern Recognition, 48(9):2839–2846, 2015.
ISSN 0031-3203. doi: 10.1016/j.patcog.2015.03.009.

[288] Daoyuan Wu, Debin Gao, Rocky K. C. Chang, En He, Eric K. T. Cheng, and Robert H.
Deng. Understanding open ports in android applications: Discovery, diagnosis,
and security assessment. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The
Internet Society, 2019. URL https://bit.ly/3e3enkJ.

[289] Songyang Wu, Pan Wang, Xun Li, and Yong Zhang. Effective detection of android
malware based on the usage of data flow APIs and machine learning. Information and
Software Technology, 75:17–25, July 2016. ISSN 09505849. doi: 10.1016/j.infsof.
2016.03.004. URL https://linkinghub.elsevier.com/retrieve/pii/S0950584916300386.

[290] Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. In-ide code generation from
natural language: Promise and challenges. CoRR, abs/2101.11149, 2021. URL
https://arxiv.org/abs/2101.11149.

[291] Qiuling Xu, Guanhong Tao, Siyuan Cheng, and Xiangyu Zhang. Towards feature
space adversarial attack by style perturbation. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(12):10523–10531, May 2021. doi: 10.1609/aaai.v35i12.
17259. URL https://ojs.aaai.org/index.php/AAAI/article/view/17259.

[292] He Zhang, Muhammad Ali Babar, and Paolo Tell. Identifying relevant studies in
software engineering. Information and Software Technology, 53(6):625–637, 2011.

[293] Yiming Zhang, Yujie Fan, Shifu Hou, Yanfang Ye, Xusheng Xiao, Pan Li, Chuan Shi,
Liang Zhao, and Shouhuai Xu. Cyber-guided Deep Neural Network for Malicious
Repository Detection in GitHub. In 2020 IEEE International Conference on Knowl-
edge Graph (ICKG), pages 458–465, August 2020. doi: 10.1109/ICBK50248.2020.
00071.

[294] Yu Zhang, Frank Xu, Sha Li, Yu Meng, Xuan Wang, Qi Li, and Jiawei Han. Higitclass:
Keyword-driven hierarchical classification of github repositories, 10 2019.

[295] Yun Zhang, David Lo, Pavneet Singh Kochhar, Xin Xia, Quanlai Li, and Jianling Sun.
Detecting similar repositories on GitHub. 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER), 00:13–23, 2017.

[296] Zhi-Dan Zhao and Ming-sheng Shang. User-based collaborative-filtering recom-
mendation algorithms on hadoop. In Proceedings of the 2010 Third International
Conference on Knowledge Discovery and Data Mining, WKDD ’10, pages 478–481,
Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-0-7695-3923-2.
doi: 10.1109/WKDD.2010.54. URL https://doi.org/10.1109/WKDD.2010.54.

http://ieeexplore.ieee.org/document/585893/
https://bit.ly/3e3enkJ
https://linkinghub.elsevier.com/retrieve/pii/S0950584916300386
https://arxiv.org/abs/2101.11149
https://ojs.aaai.org/index.php/AAAI/article/view/17259
https://doi.org/10.1109/WKDD.2010.54

320 References

[297] Mengya Zheng, Xingyu Pan, and David Lillis. CodEX: Source code plagiarism
detection based on abstract syntax tree. In Proceedings for the 26th AIAI irish
conference on artificial intelligence and cognitive science trinity college dublin, dublin,
ireland, december 6-7th, 2018., pages 362–373, 2018.

[298] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. MAPO: Mining and
Recommending API Usage Patterns. In 23rd European Conference on Object-Oriented
Programming, pages 318–343, Berlin, Heidelberg, 2009. Springer. ISBN 978-3-642-
03012-3. doi: 10.1007/978-3-642-03013-0_15.

[299] Yuqi Zhou, Jiawei Wu, and Yanchun Sun. Ghtrec: A personalized service to rec-
ommend github trending repositories for developers. In 2021 IEEE International
Conference on Web Services (ICWS), pages 314–323, 2021. doi: 10.1109/ICWS53863.
2021.00049.

[300] Önder Babur. A labeled Ecore metamodel dataset for domain clustering, March 2019.
URL https://doi.org/10.5281/zenodo.2585456.

https://doi.org/10.5281/zenodo.2585456

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Identified challenges
	1.2 Research objectives
	1.3 Structure of the dissertation

	2 Literature review
	2.1 Existing recommender systems for SE
	2.1.1 Filtering techniques to recommend API
	2.1.2 Automatic approaches to classify OSS projects
	2.1.3 Modeling assistant tools

	2.2 Democratizing the development of complex systems
	2.2.1 Model-driven engineering and low-code development platforms
	2.2.2 Supporting the automatic design of recommender system
	2.2.3 Automatic machine learning

	3 A conceptual framework to develop RSSEs
	3.1 RSSEs bird-eye architecture
	3.2 Main RSSE design features
	3.3 Evaluation metrics for RSSE
	3.3.1 Terminology
	3.3.2 Metrics

	3.4 Conclusion

	4 Recommending API function calls to support developers
	4.1 FOCUS
	4.1.1 Motivation and background
	4.1.2 FOCUS architecture
	4.1.3 Evaluation
	4.1.4 Results
	4.1.5 Threats to validity

	4.2 LUPE
	4.2.1 Machine translation with Encoder-Decoder
	4.2.2 LUPE architecture
	4.2.3 Evaluation
	4.2.4 Results
	4.2.5 Threats to validity

	4.3 Conclusion

	5 Categorizing GitHub projects
	5.1 MNBN
	5.1.1 Motivation and background
	5.1.2 The MNBN approach
	5.1.3 Evaluation
	5.1.4 Results
	5.1.5 Threats to validity

	5.2 HybridRec
	5.2.1 HybridRec architecture
	5.2.2 Evaluation
	5.2.3 Evaluation process
	5.2.4 Results
	5.2.5 Threats to validity

	5.3 Conclusion

	6 Assisting modelers in specifying models and metamodels
	6.1 MemoRec
	6.1.1 Motivation and background
	6.1.2 MemoRec architecture
	6.1.3 Evaluation
	6.1.4 Results
	6.1.5 Threats to validity

	6.2 MORGAN
	6.2.1 Graph kernel similarity
	6.2.2 MORGAN architecture
	6.2.3 Evaluation
	6.2.4 Experimental results
	6.2.5 Threats to validity

	6.3 Conclusion

	7 Challenges and lessons learned from the conceived RSSEs
	7.1 Challenges and lessons learned related to requirements elicitation
	7.1.1 Lessons learned

	7.2 Challenges and lessons learned related to development
	7.2.1 Lessons learned

	7.3 Challenges and lessons learned related to evaluation
	7.3.1 Lessons learned

	7.4 Conclusion

	8 An MDE-based methodology to engineering recommender systems
	8.1 Supporting technologies
	8.2 The LEV4REC environment
	8.2.1 RS Feature Selection
	8.2.2 RS Feature Configuration
	8.2.3 RS Code Generation
	8.2.4 Deploying LEV4REC

	8.3 Use cases
	8.4 Evaluation strategies
	8.4.1 Research questions
	8.4.2 Datasets
	8.4.3 Metrics
	8.4.4 Automated evaluation
	8.4.5 Focus group evaluation

	8.5 Results
	8.6 Threats to validity
	8.7 Conclusion

	9 Adversarial Attacks to Recommender Systems in Software Engineering
	9.1 Adversarial attacks to TPL RSSEs
	9.1.1 Motivation and background
	9.1.2 Proof of concept
	9.1.3 Experimental results

	9.2 Adversarial attacks to API RSSEs
	9.2.1 Push attacks to API and code snippet RSSE
	9.2.2 Study design and planning
	9.2.3 Results
	9.2.4 Threats to validity
	9.2.5 Discussions

	9.3 Conclusion

	10 Conclusion
	10.1 Summary of the contributions
	10.2 Publications
	10.3 Future work

	References

