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Abstract

Assessing the performance of structural materials is imperative to guarantee the in-
tegrity, service continuity, durability and load-bearing capacity of engineered parts.
Amongst numerous failure mechanisms, fatigue is reportedly one of the most detri-
mental and catastrophic since it gradually and relentlessly damages structural com-
ponents until they suddenly collapse. The fatigue performance evaluation is ren-
dered convoluted by numerous concomitant impacting factors. In this respect, the
scientific community has widely recognised the critical role of residual stress (RS)
and manufacturing defects, which alter the local stress state induced by externally
applied cyclic loads and lead to scattered fatigue response. Therefore, the key ob-
jective here is to route the development of a comprehensive fatigue design setting
with the aim of including RS and defects in future engineering practice. Hereby,
diverse supervised Machine Learning (ML) techniques are harnessed while prioritis-
ing probabilistic aspects to enhance the robustness of the proposed approaches. To
incorporate RS, users must ascertain the trustworthiness of their evaluations. How-
ever, this stage is frequently hampered by deterministic and heavily user-dependent
data regularisation protocols applied during the pre-processing of input data. To
address this issue, Gaussian Process Regression is exploited as a stochastic regular-
isation technique. To showcase its potency, this technique is applied to the Contour
Method, whose potential and cost-effectiveness are incredibly attractive. Although
entrenched Continuum Solid Mechanics theories can capture the influence of defects
on fatigue, they often restrict the number of explanatory defect descriptors, usually
to a characteristic length. Moreover, the related models hinder an exhaustive quan-
tification of the involved uncertainties. Therefore, traditional fatigue models are
revisited and opportunely treated through the lens of ML. Specifically, defect-based
approaches to estimating the finite fatigue life and fatigue endurance of metallic ma-
terials are conceived and appropriately addressed through diverse variants of Neural
Networks, and Logistic Regression. The present work, therefore, provides the re-
search & engineering community with systematic ML-supported predictive tools,
thus constituting a step towards an integrated framework for probabilistic design
against fatigue.
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1. Introduction

Modern engineering applications have increasingly demanded lightweight, cost-
effective, sustainable mechanical products while meeting strict performance stan-
dards. Needless to say, this process can become an endeavour as designers are
committed, at the same time, to ensuring structural functionality together with
integrity, which ranges from adequate load-bearing capacity to reliability even in
case of unpredicted off-design conditions. Nonetheless, confidently certifying these
qualities is of capital importance to supply sound and durable mechanical products,
thus preventing unforeseen failures and eventually undesired disruptions [1].

Amongst the well-established failure mechanisms, fatigue is reportedly responsible
for approximately 80% of all structural collapses [2], often leading to catastrophic
accidents [3]. Fatigue refers to the premature damaging of materials due to the action
of cycling mechanical load. Generally, the fatigue failure phenomenon consists of
three principal stages. The first one involves crack nucleation, primarily from the
free-surface of mechanical parts, due to the progressive damage accrual. The applied
cyclic load makes the crack propagate throughout the whole second stage. The third
stage commences when the crack reaches a critical length beyond which unstable
crack propagation occurs [4].

It is well-established how fatigue crack nucleation and incubation range most of
the in-service lifespan of the exerted mechanical components. Furthermore, these
early stages of fatigue life are significantly influenced by the material’s microstruc-
ture [5, 6]. Relatively recently, the so-called Fatigue Indicator Parameters (FIPs)
have been introduced to quantify the driving force for crack formation at the grain
scale. A non-exhaustive list of input features typically incorporated into the FIP is
stress, strain, microstructure, loading mode(s), and failure mechanism(s). The FIP
aims to model the impact of these features on the failure probability of components
subjected to cyclic loads. Additionally, FIPs offer a practical measure whereby mi-
crostructures can be compared in terms of their tendency to form and propagate
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microstructurally short fatigue cracks [7, 8]. Intriguingly, it has been demonstrated
that FIPs can ultimately be correlated with experimental fatigue life upon an ap-
propriate calibration [9].

Although the scientific and engineering community has largely investigated the
nuances of fatigue throughout the last two centuries, a complete comprehension
of the related failure mechanism is yet to be reached. This is, in a word, para-
doxical [10]. Alongside microstructural features, researchers have identified several
factors that influence fatigue performance [2, 11], amongst which the present thesis
deliberately investigates residual stress (RS) and manufacturing defects exploiting
supervised Machine Learning (ML) computational techniques.

Throughout the thesis, much emphasis is devoted to probabilistic aspects, as it is
believed that a superior level of reliability of structures can be attained by quanti-
fying the uncertainties as well as the errors involved in the characterisation of RS
and fatigue behaviour. In fact, deterministic protocols guarantee a certain safety
margin covering uncontrolled load conditions or material inhomogeneities, by intro-
ducing the renowned “safety factor” in the design process, thus eventually resulting
in bulky and expensive components. Unlike deterministic protocols, a thorough
quantification of the uncertainties in the characterisation process shall enable the
probabilistic assessment of structural integrity, thus matching the requirements of
modern engineering while enabling the optimal exploitation of primary resources,
environment, and energy consumption [12, 13].

The forthcoming sections are thus dedicated to introducing essential background
knowledge crucial for the remainder of the dissertation. The introduction initially
focusses on RS and their influence on fatigue. Additionally, an overview of manufac-
turing defects and their impact on fatigue is provided. Following this, a dedicated
section widely reviews the current state-of-the-art of ML with reference to its appli-
cation to RS evaluation and fatigue modelling. The chapter concludes with outlining
the structure and objectives of the dissertation.

1.1. Residual Stress
RS is “locked-in” stress affecting materials and structures irrespective of any ex-

ternally applied load. Specifically, RS is self-equilibrating stress, that is, regions of
tensile and compressive stress coexist as to balance each other, thus nullifying force
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1.1. Residual Stress

and moment resultants. RS ensues from any manufacturing process as an elastic
response to incompatible local strains. The material, however, is meant to ensure
continuity, thus originating RS [14]. This peculiar phenomenon is primarily trig-
gered by non-uniform plastic deformations, surface modifications and treatments,
and severe thermal gradients [15]. Notably, the latter particularly regards welding
and additive manufacturing (AM). Besides fabrication, RS may develop throughout
the whole in-service life of structural components as well [16].

RS is conventionally classified into three classes according to the length scale over
which it equilibrates. Type I refer to RS acting on the macro-scale, Type II pertains
to intergranular RS (meso-scale), and Type III concerns RS at intragranular level
(micron-scale) [17, 18]. Due to its latent, multi-scale, and tensorial nature, evaluat-
ing RS is often rather challenging, particularly for bulky materials. Consequently,
RS is often neglected during the design process of structural components, although
deemed to cause catastrophic in-service disruptions [14, 16]. RS has severe conse-
quences for structural integrity depending upon its sign, location, and magnitude.
The main effect of RS is to alter the local state of stress induced by applied external
loads when components are exerted. This scenario is rendered even more convoluted
as RS impacts structural integrity according to its length scale. Whilst Type I RS
is responsible for the distortion of mechanical components, Type II and III RS gen-
erally condition the fatigue performance [19]. Tensile is thought to be detrimental
in most of the instances, specifically when the applied loads already induce a ten-
sile stress state. Whilst compressive RS is generally considered beneficial [20]. In
regards to fatigue, tensile RS promotes the initiation of cracks and accelerates their
propagation, notably in the neighbouring region of the free-surface of components.
Hence, the load-bearing capacity is considerably reduced, and premature failures
may occur [21]. By contrast, compressive RS can induce crack-closure and stress
shielding phenomena [22, 23].

In order to mitigate RS, particularly when it is predominantly tensile in nature, a
stress-relief annealing treatment is commonly applied [24, 25]. This post-fabrication
operation typically entails subjecting a mechanical part or assembly to a controlled
thermal cycle. The workpiece is gradually heated until it reaches the intended target
temperature, which is then maintained for a calibrated time span. The workpiece
is eventually cooled down to room temperature, and the process ends. It is worth
remarking that during the heating stage the temperature of the workpiece must not
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exceed the material’s recrystallization temperature, as the treatment would alter
the microstructure and condition mechanical properties. Additionally, non-thermal
techniques are also available, as widely reviewed in [21]. As quickly mentioned
earlier, the fatigue response can benefit from the introduction of compressive RS.
For this reason, surface compressive RS is deliberately introduced using, for instance,
shock/shot peening [26–30]. Similarly, other methods exists to produce compressive
RS to balance tensile RS in those part’s region where it is expected to develop, such
as cold-hole expansion [31].

A graphical tool to intuitively capture the influence of RS on the fatigue behaviour
is the Haigh diagram [1, 32, 33], see Figure 1.1. This diagram allows for visualising
the fatigue endurance limit (also known as fatigue limit) as a function of the am-
plitude σa (the ordinate) and the mean stress σm (the abscissa) of the applied cycle
stress. For the sake of the explanation, let us assume that Haigh’s diagram involves
a given material characterised through a uniaxial tensile fatigue test, whereas the
fatigue limit is referred to the prescribed number of cycles to failure N∗

w. Theoret-
ically, the fatigue endurance limit, i.e. the black solid line, would extend from the
alternating fatigue limit σ∗

af (occurring at σm = 0) to the ultimate tensile strength
σu (occurring at σa = 0, i.e. static failure). However, since the applied stress must
not exceed the material’s yield stress, the solid black line must interrupt at the
intersection with the yield line and eventually run along it until σy, i.e. the yield
stress. This eventually gives a piece-wise linear curve representing the fatigue limit,
which encloses the locus of bearable stress combination that the material can with-
stand up to N∗

w cycles to failure, i.e. the admissible region. In this respect, let us
consider a given allowable stress combination in terms of mean stress σ∗

m and stress
amplitude σ∗

a in the absence of RS. The representative state of the load is, there-
fore, (σ∗

m, σ∗
a). Leaving σ∗

a unaltered, if compressive RS σ−
RS < 0 were present, the

mean stress would be shifted toward σ∗
m +σ−

RS. Nonetheless, the representative point
(σ∗

m + σ−
RS, σ∗

a) would still be admissible, and the material’s fatigue life is expected
to be at least N∗

w. By contrast, if the tensile RS stress σ+
RS > 0 affected the material,

the representative load state would turn out to be (σ∗
m + σ+

RS, σ∗
a), thus being no

longer admissible. Hence, the material is anticipated to fail prior to N∗
w.

The length scale over which the RS would be resolved typically suggests the most
suitable method for probing RS. There exists a number of experimental techniques
to probe RS, which, in turn, can be categorised into three broad categories: non-
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1.1. Residual Stress

Figure 1.1. Haigh’s diagram. Herein, the fatigue endurance limit (the black solid line)
is referred to the number of cycles to failure N∗

w. The ordinate and the abscissa denote
the applied stress amplitude σa and mean stress σm, respectively. Furthermore, σaf is
the alternating fatigue limit. Whilst σy and σu denotes are the yield and ultimate tensile
strength, respectively. Alongside, the yield line is depicted in green. Additionally, σ∗

m

and σ∗
a describe the cyclic loading condition. Finally, σ+

RS and σ−
RS represent tensile and

compressive RS.

destructive, semi-destructive and destructive [18, 34, 35]. Non-destructive methods
allow for the evaluation of RS by quantifying small changes of physical quanti-
ties or structural parameters at atomic or molecular length scales, hence Type III.
Laboratory neutron X-ray diffraction (XRD) [36], synchrotron diffraction [19], and
spectroscopy-based [37], is a non-exhaustive list of non-destructives methods. Along-
side, semi-destructive techniques are also available for evaluating Type I, II, and III
RS, such as hole-drilling [38], ring-core milling [39] and FIB-DIC [40]. This family
of techniques relies on the stress relaxation phenomenon occurring when a new free
surface is created within the material containing residual stress. To fully exploit this
effect, either the evolution of displacement (or strain) during the cutting process is
evaluated and used as an input to numerical models for the back-calculation of RS
present before the creation of the new free-surface. In particular, stress-free surfaces
are created by specimen sectioning or by progressive material removal. The last class
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of RS evaluation methods is known as destructive. These methods are based upon
the same working principle of the semi-destructive methods, i.e. stress relaxation,
although in this case its application completely compromises the structural integrity
of the examined material or mechanical part. Destructive methods generally permit
resolving RS at millimetre scale (Type I). The Contour Method (CM), for instance,
belongs to this class [41]. Upon selecting the suitable evaluation method, much at-
tention ought to be devoted to appropriately defining the so-called interrogation (or
sampling) volume, mainly when dealing with inter- and intra-granular RS [16]. The
larger the volume, the more grains are sampled, so RS is smeared over a wider region,
thus making the measurement less sensitive to noisy fluctuations occurring at finer
scales [34]. Nevertheless, larger sampling volumes reduce the spatial resolution of the
measurement. In extreme instances, no RS would be retrieved for excessively larger
volumes with a characteristic size longer than the desired length scale [18, 42]. This
suggests the existence of an optimal size for the interrogation volume across scales,
but its determination is still an open issue. Another issue worth mentioning regards
data regularisation, which affects the RS evaluation techniques, particularly those
involving the back-calculation of RS (e.g., Contour Method, hole-drilling, and FIB-
DIC). Essentially, regularisation involves a thorough smoothing of the experimen-
tally measured input data (displacement/strain) to remove unintended oscillation
and artefacts, thus obtaining meaningful RS distributions and making the assess-
ments robust to noise. Although well-accepted regularisation methods exist [43],
exploiting more advanced data-driven paradigms may represent a viable strategy to
address this issue even in a probabilistic fashion. Additionally, data-driven methods
would allow for including other pertinent features that may play a significant role
in influencing RS, e.g. manufacturing parameters, that traditional computational
protocols would neglect.

1.2. Manufacturing Defects
“Defects” represents a broad term to identify diverse forms of impurities, irreg-

ularities, inhomogeneities that originate from any manufacturing process, ranging
from consolidated ones, e.g. casting, welding and sintering, to those more inno-
vative, e.g. AM [2, 44–46]. Defects of different natures may primarily arise from
uncontrolled manufacturing conditions and intricate thermal histories. For instance,
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the entrapment of gas droplets during casting, welding, and AM can generate gas
porosity [2]. Lack-of-fusion areas are distinctive defects of AM due to the incom-
plete melting of the feed material [46]. Welding and laser-based AM method shares
a common type of defects, i.e. keyholes, which are essentially cavities [45, 47, 48].
On top of that, the presence of defects seems to be unavoidable in most of the cases,
although post-fabrication treatments can attenuate their presence [30, 49, 50].

It is well-established that defects have a modest effect on material’s static mechan-
ical properties while they hugely impact fatigue response [2, 46]. From an experi-
mental standpoint, defects have been identified as the foremost cause of scattered
fatigue data in AM as well as traditional manufacturing processes [2, 11, 51]. Fig-
ure 1.2 schematically portrays a typical dataset conformation encountered in fatigue
characterisation. In particular, the left and right panels show a fictitious experimen-
tal fatigue dataset, i.e. applied cyclic load ∆σ vs number of cycles to failure N , of a
hypothetically defect-free and a defect-laden material, respectively. With particular
regard to AM, for instance, despite judiciously selecting the process parameters to
control defectivity, the experimental evidence demonstrates considerably irregular
fatigue response of the produced materials [52, 53].

(a) (b)

Figure 1.2. Scatter in fatigue data (plots in log-log scale). (a) In the hypothetical
absence of defects. (b) In the presence of defects. Circle markers represent the acquired
fatigue data in both panels.

Regardless of their origin, the reason for this unpredictable fatigue behaviour
stems from defects inducing undesired stress/strain intensification inside the fab-
ricated material. Therefore, defects may trigger fatigue crack initiation and prop-
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agation, thus leading to unforeseen collapses [29, 54, 55]. The severity of this in-
tensification strictly depends upon the defect’s geometry, morphology, and location.
For instance, lack-of-fusion defects generally possess flattened irregularly shaped
and large extension which induces more intense stress concentration than gas pores,
typically sphere-like [56]. Fatigue is also highly sensitive to the location of the de-
fects besides their geometry and morphology. In fact, defects in the vicinity of the
part’s free-surface are more likely to trigger fatigue failure [57]. Thus, a precise cha-
racterisation of defect is of paramount importance to comprehend their impact on
fatigue. Over the last years, the extensive combination of X-ray computed tomog-
raphy (CT) and fractographic investigations permitted the precise characterisation
of defects in numerous manufacturing contexts [58]. More recently, AM has fostered
the post-processing of the information retrieved from CT scans and fractographies to
compute relevant defect descriptors with the aim of attaining superior fatigue cha-
racterisation and predictions [59]. Nonetheless, the current state-of-the-art fatigue
and Fracture Mechanics (FM) models impede their full exploitation.

Semi-empirical models, e.g. S-N curves or Basquin’s, have represented the golden
standard for fatigue characterisation since the dawn of this discipline. Indeed, these
models have demonstrated excellent versatility when applied to engineering design
against fatigue failure [60, 61]. However, S-N data often incorporates scatter due to
crucial microstructural features impacting fatigue – defects above all. Although the
resulting model can still be employed in the context of both traditional and AM ma-
terials, one can take into account such features and compensate for the scatter prior
to fitting the models, thus making the resulting model more robust and reliable. To
do so, it is possible to invoke FM, which already brought substantial progress while
enabling practitioners to garner an insightful understanding of fatigue failure. [2].
As long as defects can be modelled as cracks, there exist many models, yet semi-
empirical that can correlate material defectivity to the fatigue. Upon associating
defects with a representative crack length, the fatigue behaviour can be modelled
via Paris’ law [4], whereas the fatigue endurance limit can be estimated by the
El Haddad (EH) curve [62], which is commonly visualised on the well-established
Kitagawa-Takahashi (KT) diagram [63]. Intriguingly, Sheridan has lately demon-
strated how FM concepts can be exploited to curb the scatter of fatigue data, thus
obtaining more reliable fatigue predictions [64, 65]. Therein, the Stress Intensity
Factor (SIF) ∆K range was adopted to replace ∆σ resulting in reduced scatter.
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This is schematically shown in Figure 1.3 with reference to the synthetic dataset il-
lustrated in Figure 1.2. However, it is important to state that this approach should
be verified for different classes of metals as it intrinsically assumes that the initial
∆K does not change over time, which is a potentially impactful assumption. This
approach proved its effectiveness in the context of AM materials [66, 67]. Despite
this, FM models restricts the number of defects descriptors that can be accounted
for to the aforementioned characteristic length. Since semi-empirical models appear,
once again, limiting, more sophisticated predictive model ought to be conceived to
tackle this caveat.

Figure 1.3. Sheridan’s ∆K −N representation (in log-log scale) of the synthetic fatigue
dataset given in Figure 1.2.

1.3. State-of-the-art of Machine Learning
Applications to Relevant Structural Integrity
Problems

When dealing with RS evaluation and fatigue characterisation, practitioners fun-
nel their effort through collating experimental observations to acquire adequate
knowledge of the examined phenomenon. Regarding RS, the data is processed
complying within standard computational procedures depending upon the selected
evaluation method. As concerns fatigue, the data is generally used to fit a semi-
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empirical model. In both cases, therefore, the data harvesting usually culminates
in a so-called surrogate model that describes – under certain hypotheses – the in-
vestigated phenomenon. In practice, the construction of these models reduces to
determining some unknown parameters upon the acquired data, which are even-
tually linked to the desired output, e.g. RS or fatigue. Once the parameters are
identified, the user is conferred with the ability to forecast the model elsewhere.

Users often wish to augment such consolidated models with additional relevant
input features, e.g. manufacturing parameters or diverse defect’s traits. Although
this approach might deviate from traditional ones, it allows for gaining further in-
sight into RS and fatigue. The augmentation can certainly be conducted within the
old-fashioned setting of regression analysis. Still, the synergic fusion of Computer
Science and Statistics has been offering more efficient ways to do so, i.e. ML [68].
Over the two decades, ML has experienced a sudden outbreak, thanks to the in-
creasing deployment of computational resources [69]. At present, ML has reached a
mature condition so that it can be exploited to easily manage highly non-linear and
complex tasks.

Essentially, ML algorithms attempt to recognise data patterns over the processed
training dataset, e.g. the experimental data. Technically, this operation is called
learning or training, and it aims to identify the unknown parameters of the surrogate
model. The given data can either be “labelled” with real numbers or integers,
depending upon the nature of the examined problem. In this case, the user provides
the algorithms with examples of targets that are expected beforehand. For this
reason, ML is said to be supervised. As opposed, when input data are not labelled,
ML is unsupervised, in the sense that the algorithm autonomously discovers the
data targets [70]. Once this stage is accomplished, the surrogate model is built,
and one can predict unseen data. Supervised ML comprises two popular branches,
i.e. regression and classification. The former addresses modelling and predicting
continuous data, i.e. inputs are labelled with real numbers. Whilst the latter serves
the same purpose, it handles problems where the input data is categorised by discrete
labels, e.g. integers [71].

In numerous research fields involving data analytics, the need for flexible and
interpretable models often calls for probabilistic modelling. For this reason, proba-
bilistic ML has increasingly sparked interest compared to its deterministic counter-
part, offering several advantages. One of the most striking features of probabilistic
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approaches resides in naturally handling noisy data by incorporating measures of un-
certainty, such as those of aleatoric nature. Besides this, epistemic uncertainty is also
automatically taken into account. Importantly, unlike deterministic models, proba-
bilistic ones provide distributions over possible outcomes rather than point-valued
estimates, thus allowing users to rapidly assess the reliability of the predictions.
Furthermore, probabilistic models can deal with data scarcity by returning higher
uncertainty for data predicted in regions with a lower density of training data. On
top of that, Bayesian approaches provide further benefits. For instance, practition-
ers can model their initial belief, usually referred to as prior knowledge, about the
model’s parameters, which is then updated through the training data. This distinc-
tive characteristic makes Bayesian models scalable with the dimensionality of the
dataset and tolerates sparse data [71, 72].

Regarding the exploitation of ML in the context of RS, the literature would seem
to lack applications for data regularisation purposes. Instead, the research commu-
nity primarily focussed on training ML surrogate models with the aim of optimising
manufacturing process parameters to attenuate the unintended presence of RS [35].
For instance, Neural Networks (NNs) and genetic algorithm were utilised to es-
tablish correlations between RS – evaluated via X-ray diffraction – and different
combinations of turning process parameters in regards to Inconel 718 [73, 74]. A
similar methodology has been proposed in [75]. X-ray diffraction data were also
used to instruct an NN to correlate the process parameters of a surface modification
treatment as well as the chemical composition with the induced RS in regards to
Ni-based alloys [76]. A more computational study has been presented in Ref. [77]
with regard to AISI52100. Therein, turning-induced RS were simulated at differ-
ent cutting conditions. The results were then coupled with an NN to connect RS
with the process parameters and find the optimal cutting conditions that mitigate
RS. Analogously, NN and Random Forest (RF) surrogate models were trained upon
numerical simulations to predict RS in wire-arc AM samples. The models allowed
to rank the influence of the process parameters on the resulting RS distribution as
well [78]. Another prominent application concerns the prediction of surface RS in
end milled specimens by Gaussian Process Regression (GPR) [79].

In the context of fatigue, supervised ML approaches have recently gained popular-
ity to overcome the limitations of FM models. Specifically, a wealth of defect-based
surrogate models have been conceived to attain a comprehensive defect-based as-
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sessment of fatigue performance [80–82]. For instance, the finite fatigue life of Laser
Powder Bed Fusion (LPBF) Ti-6Al-4V was assessed through a drop-out NN receiv-
ing defect characteristics and surface roughness details as inputs [83]. RF algorithm
and Support Vector Machine (SVM) were used to devise defect-based models to
predict the finite life of an LPBF AlSi10Mg and Selective Laser Melted (SLM) Ti-
6Al-4V, respectively [84, 85]. SVM constituted a powerful defect-based predictive
model to predict the finite fatigue life of LPBF 17-4 PH stainless steel as well [86].
Therein, a sensitivity analysis was also conducted, whereby the influence of the de-
scriptors on the predicted fatigue life was quantified. Given the versatility of ML
approaches, a few researchers considered several AM process parameters along with
defect descriptors as the inputs of an NN. The NN was then used to forecast the
fatigue life of LPBF AlSi10Mg, SLM AlSi10Mg, and SLM Ti-6Al-4V [87–89]. ML
methods have been applied outside the field of AM as well. In this respect, the
fatigue life of 13Cr-5Ni stainless steel and a KSFA90 were predicted using NN, RF
and SVM trained on defect data [90]. In addition, Kernel Ridge Regression (KRR),
and GPR have been employed to surrogate defect-based model for finite fatigue life
in regards to Ti-based alloys [91, 92]. SVM and KRR were also utilised to inves-
tigate the fatigue performance of a set of Inconel 718 specimens according to their
defectivity [93].

1.4. Objectives and Structure of the Dissertation
This dissertation pursues the ambitious objective of gaping crucial deficits in fa-

tigue modelling, amongst which I decidedly concentrated on those related to defects
and RS. With particular regard to defects, the focus here is on the defect-based ML
prediction of the finite fatigue life and estimation of the fatigue endurance limit of
metallic alloys. As concerns RS, the attention is drawn to the CM, where ML is
applied to enhance the robustness of the RS evaluations.

To address the objectives that this dissertation sets, Chapter 2 elucidates the
necessary experimental and theoretical background. The CM evaluation procedure
is illustrated with particular emphasis on both the practical implementation and
input data processing. Following, current fatigue models based on Linear Elastic FM
(LEFM) are presented. Subsequently, Bayesian Inference (BI) is introduced as the
ground for the ML methods exploited throughout the dissertation. In this respect,
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ML methods focus on GPR, Logistic Regression (LR), NNs, Physics-Informed NNs
(PINNs), Bayesian NNs (BNNs), Bayesian PINNs (B-PINNs).

Chapter 3 introduces an outstanding limitation in the CM evaluation technique
regarding the pre-processing of the input displacement data. This is shown with
reference to a solid-state butt weld considered as a case study. Traditionally, the
input data undergoes spline-fit prior to the back-calculation of the RS. However,
this fitting necessitates the arbitrary selection of a few fitting parameters. Albeit
guidelines have been proposed to this end, there is no general consensus about this
selection, which, in turn, remains left to the user’s experience and confidence.

Chapter 4 is devoted to tackling the limitation of the CM just outlined. This is
motivated by the necessity of both assessing the goodness of the RS assessments
and neatly integrating the appealing potential of CM evaluations within a unified
probabilistic fatigue design framework. Specifically, the traditional spline-fit is re-
placed with GPR, which automatically determines the optimal fitting parameters
and provides the user with a built-in quantification framework.

Chapter 5 addresses a central issue affecting the mere data-driven ML approaches
reviewed at the end of Section 1.3. ML currently seems to be the sole option to
enable the full exploitation of defect descriptors typically retrieved from CT and
fractography that the traditional FM approach would neglect. Nonetheless, it might
happen that ML algorithms capture data patterns that do not obey the physics of
the observed phenomenon when insufficient training data is supplied. Therefore,
Chapter 5 tackles this limitation by utilising the recent PINN paradigm, where
the learning stage on the training data is seamlessly informed by the physical laws
governing the underlying phenomenon. In this context, a defect-based PINN is
developed to predict the fatigue life of metallic alloys, whereby consolidated concepts
of FM are cast into a Basquin-like law to constrain the training of the PINN.

Chapter 6 is dedicated to the development of an ML tool for estimating the
fatigue endurance limit of defective metallic alloys in a probabilistic manner. As
quickly mentioned earlier, under appropriate hypotheses of FM, the EH curve can be
invoked to describe the fatigue endurance limit. Nevertheless, such a curve requires
the knowledge of two distinctive parameters, whose identification is often made
challenging by a number of factors. It is thus demonstrated how these parameters
can indirectly be estimated given an adequate amount of fatigue tests at different
defect sizes and load magnitudes. To do so, the phenomenological behaviour of the
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EH curve is morphed into an ML classification problem through LR. Maximum a
Posteriori estimation (MAP) is then leveraged to obtain the probabilistic appraisals
of the parameters sought. Finally, an appropriate statistical post-processing was
performed to retrieve the EH curve at different failure probabilities.

Chapter 7 complements the work on the MAP identification of the EH curve just
outlined. Therein, the key objective is to devise a Bayesian Physics-guided NN
(B-PGNN) model for predicting whether metallic specimens retaining defects col-
lapses when subjected to cyclic loading. In this case, the EH curve is selected as the
semi-empirical model that informs the training stage. As schematically shown in Fig-
ure 1.2, defects are well-known to generate scatter in fatigue data, which eventually
incorporate aleatory and epistemic uncertainty. Thanks to the Bayesian treatment of
the problem, these uncertainties are intrinsically accounted for. Hence, the B-PGNN
holds the potential to predict the failure probability of defective metallic materials
while forecasting the uncertainty over such prediction. It should be mentioned that
B-PINNs have already been presented elsewhere [94]. Although B-PINNs shares
many aspects with the conceived B-PGNN, their implementations slightly differ –
this shall be clarified later, though.

Finally, Chapter 8 synthesises the conclusions of this dissertation while emphasis-
ing the advancement that this research brought about and the related prospective
future extensions.
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2. Experimental and Theoretical
Background

In order to address the objectives that the present research pursues, it is essential
to introduce sufficient background knowledge. Initially, both the theoretical aspects
and practical implementation of the CM are illustrated. Subsequently, a detailed
overview of fatigue and FM is given, showing how to incorporate defectivity into
fatigue modelling. BI is then presented to guide the reader through the explanation
of probabilistic ML methods, such as GPR and LR. The foundation of NNs and
PINNs are shown. Finally, the notions of BI and PINNs are merged to introduce
B-PINNs.

2.1. Contour Method Evaluation of Residual Stress

2.1.1. Theoretical Preliminaries
The essential background of Continuum Mechanics used in the current section is

briefly condensed herein, which shall help understand the back-calculation of the
RS using the CM.

Let us consider a three-dimensional domain Ω ∈ R3, whose local state of stress
is described through Cauchy’s symmetric second-order tensor T. According to a
generic reference frame S = {O, x1, x2, x3}, T can be represented by a 3 × 3 matrix
as:

T =

⎡⎢⎢⎣
σ11 τ12 τ13

τ12 σ22 τ23

τ13 τ23 σ33

⎤⎥⎥⎦ (2.1)

Let Γ be a plane intersecting Ω, and assume n =
[︂
n1 n2 n3

]︂⊤
as the outward
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normal vector of Γ. One can retrieve the stress acting with respect to n as:

t = T n = Tij nj (2.2)

where the summation over j is implicit. The local state of strain of Ω can be
represented by the second-order strain tensor E whose representation according to
S is:

E =

⎡⎢⎢⎣
ε11 γ12 γ13

γ12 ε22 γ23

γ13 γ23 ε33

⎤⎥⎥⎦ (2.3)

The entries of E can be related to the displacement field u =
[︂
u1 u2 u3

]︂
of Ω

stemming from the application of external loads:

E = ∇u + ∇u⊤

2 (2.4)

where ∇u is the displacement gradient, namely ∇u = ∂ui/∂xj ∀ i, j ∈ {1, 2, 3}
Finally, T and E are linked with each other through a constitutive law, expressed
by the fourth-order tensor C, namely E = CT. As it shall be clearer later, the
constitutive law for linear elastic materials is considered:

E = 1 − ν

E
T − ν

E
tr(T) 1 (2.5)

where ν is Poisson’s ratio, E is Young’s modulus, tr(□) computes the trace of a
tensor, and 1 is the identity tensor.

2.1.2. General Framework
Amongst the family of destructive techniques, an effective and elegant method to

obtain full-field RS maps was developed about twenty years ago at the Los Alamos
National Laboratories, namely the CM. The present section summarises the stages
of the application of the CM, in agreement with [41].

Consider a sample Ω arranged according to the reference frame S = {O, x, y, z},
as shown in Figure 2.1(a). Let us assume that inhomogeneous RS is distributed
over the internal surface Γ predominantly aligned with respect to the z-direction. If
ez =

[︂
0 0 1

]︂⊤
is the outward normal vector of Γ, then such RS turns out to be
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σzz(x, y) = T ez ∀ x, y ∈ Γ (Eq. (2.2)).
Initially, the sample undergoes a precise cut along Γ, thus giving two halves ΩP1

and ΩP2 having cut surface ΓP1 and ΓP2, respectively. The RS normal to the cut sur-
face is relieved, i.e. σP1

zz (x, y) = σP2
zz (x, y) = 0. Consequently, ΓP1 and ΓP2 experience

an out-of-plane relaxation, see Figure 2.1(b). The respective relaxation is then exper-
imentally measured in terms of displacement, thus acquiring the topography of ΓP1

and ΓP2. These topographies are labelled as uP1
z (xi, yi) ∀ xi, yi ∈ ΓP1, i = 1, 2, . . . D1

and uP2
z (xi, yi) ∀ xi, yi ∈ ΓP2, i = 1, 2, . . . D2, where (xi, yi) is the point at which the

surface was probed, and D1 and D2 are the total number of acquired points for ΓP1

and ΓP2, respectively.
The topographies are subjected to a specific pre-processing, which entails aligning

(Figure 2.1(c)) and averaging them over a common grid whose points are denoted
by (xg, yg):

uz(xg, yg) = uP1
z (xg, yg) + uP2

z (xg, yg)
2 (2.6)

The resulting topography, uz(xg, yg), is fitted, thus providing its surrogate version
ũz(x, y) which can be extrapolated at any desired point (x, y).

Figure 2.1(d) shows the Finite Element (FE) stage of the CM. Specifically, an
FE model of half-specimen is designed. In this instance, the nodes (xm, ym) form
the mesh grid over the modelled cut surface Γ. Since the RS is hypothesised to
give rise to negligible plastic deformation, the material is modelled as linear elastic.
Subsequently, the fitted topography (Eq. (2.6)) is changed in sign and applied as a
displacement boundary condition over the modelled cut surface Γ. Computationally,
ũz(xm, ym) is prescribed for uz at each mesh node (xm, ym) of Γ. Additional boundary
conditions are applied to suppress rigid body motions while avoiding a structurally
indeterminate model. In summary, the FE simulation aims to solve the following
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Continuum Mechanics problem numerically:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div T = 0 in Ω
E = 1−ν

E
T − ν

E
tr(T) 1 in Ω

E = ∇u+∇u⊤

2 in Ω
T n = 0 in ∂Ω
uz = ũz over Γ
uy = 0 at P

ux = uy = 0 at Q

(2.7)

where ∂Ω and Ω = Ω ∪ ∂Ω are the boundary and closure of Ω, respectively. Once
the simulation is accomplished the RS present prior to the cut is retrieved over Γ,
namely σzz(x, y), Figure 2.1(e).

2.1.3. Practical Implementation
The protocol of the CM has been progressively honed, thus reaching a well-

established condition. Nevertheless, special care must be taken when setting both
the experimental and numerical steps of its application. In this regard, guidelines
have been laid out to help support users when performing the CM [95, 96].

As concerns the cut, Wire Electrical Discharge Machines (WEDM) are deemed
to be the optimal facilities to carry out this essential stage. WEDM is a non-
contact machining facility which uses an electrically charged moving wire to ablate
the sample’s material. Given their limited intrusiveness, WEDMs possess the nat-
ural tendency to avoid the introduction of additional RS, especially those due to
plasticisation effects [97]. Therefore, the cutting process, in principle, does not
interfere with the RS already present inside the examined specimen. Further atten-
tion ought to be drawn to the selection of the cutting parameters, encompassing the
wire’s material and diameter. Besides, the aforementioned guideline recommend a
low wire speed to avoid excessive roughness over the cut surface. Importantly, the
tension of the wire must be thoroughly adjusted. Insufficient tension might compro-
mise the planarity of the cut surfaces, thus leading to unintended concave or convex
surfaces or cutting artefacts at the entry and exit sites of the wire. Moreover, the

18



2.1. Contour Method Evaluation of Residual Stress

(a) (b)

(c) (d)

(e)

Figure 2.1. Stages of the CM. (a) Specimen preparation and cut. (b) Acquisition of the
topographies. (c) Alignment of the topographies. (d) FE model of half-specimen. (e)
FE back-calculation.

wire may experience uncontrolled vibrations, which, in turn, may cause wavy cut
surfaces.

Despite several techniques available for experimentally acquiring the out-of-plane
displacement of the cut surfaces, Coordinate Measuring Machines (CMMs) are
broadly employed. Upon defining a raster scan pattern over the cut surfaces, CMMs
exploit a contact probing system to measure the topographies. Such a grid must
have an adequate nodal spacing to satisfactorily capture the gradient of the of the
out-of-plane displacement.

The topographies are commonly smoothed via tensor-product surfaces, i.e. bi-
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variate splines [98, 99]. Therefore, uz(xg, yg) (Eq. 2.6) is modelled as follows:

uz(xg, yg) ≃ ũz(x, y) =
m∑︂

i=1

n∑︂
j=1

CijPi,r(x)Pj,s(y) (2.8)

where Pi,r(x) and Pj,s(y) are the spline basis functions – polynomials, essentially
– of degree r and s, respectively, Cij constitutes the grid of the so-called control
points of size m × n. For the specific case of the CM, Cij are identified upon
the values of uz(xi, yi). The number of control points has to be carefully selected.
Far too few points may over-smooth the topography as to remove the displacement
gradients. Conversely, an excessive number of control points may lead to over-fitting,
thus interpolating the noise typically included in the measurements. Therefore, the
number of control points should be a good trade-off between preserving the peculiar
traits of the topography and sufficiently filtering out the measurement noise.

2.1.4. Singular Value Decomposition for Aligning The
Topographies

When experimentally measuring uP1
z (xi, yi) and uP2

z (xi, yi), the user is meant to
specify a certain reference frame whereby the topographies are represented. How-
ever, such reference frame might be misaligned with respect to the preferential direc-
tion along which uh

z (xi, yi) ∀ h = P1, P2 are arranged. Singular Value Decomposition
(SVD) can be leveraged to overcome this issue. In order to lighten the notation, the
superscript h will be omitted in the following.

With reference to Figure 2.2, suppose that uz(xi, yi) is predominantly distributed
according to the reference frame S = {O, x, y, z}. However, the user arbitrarily set
S ′ = {O′, x′, y′, z′} for the acquisition which is not aligned with S. Lastly, assume
O ≡ O′, without loss of generality.

Let D be the number of experimentally measured points of u′
z(x′

i, y′
i) at (x′

i, y′
i)

with respect to S ′, and let us gather the collected points into the following matrix:

W′ =

⎡⎢⎢⎢⎢⎢⎣
x′

1 y′
1 uz(x′

1, y′
1)

x′
2 y′

2 uz(x′
2, y′

2)
... ... ...

x′
D y′

D u′
z(x′

D, y′
D)

⎤⎥⎥⎥⎥⎥⎦ ∈ RD×3 (2.9)
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2.1. Contour Method Evaluation of Residual Stress

Figure 2.2. Schematic of a topography. Its preferential direction are represented by
S = {O, x, y, z}, whilst S ′ = {O′, x′, y′, z′} is the user-defined reference frame for the
acquisition of the points. Lastly, SG = {G, x, y, z} is the reference frame located at the
centroid of the topography aligned with the preferential one.

Writing the i-th row of W′ as w′
i =

[︂
x′

i y′
i u′

z(x′
i, y′

i)
]︂⊤

allows Eq. (2.9) to be
contracted in a block-partitioned fashion:

W′ =
[︂
w′

1 | w′
2 | · · · | w′

D

]︂⊤
(2.10)

Considering the centroid G of u′
z(x′

i, y′
i), let us define a new reference frame S ′

G =
{G, x′

G, y′
G, z′

G} and translate u′
z(x′

i, y′
i) to SG. As a result, Eq. (2.10) transforms as:

WG =
[︂
wG

1 | wG
2 | · · · | wG

D

]︂⊤
(2.11)

The matrix WG can directly be decomposed through SVD:

WG = QΣP (2.12)

where P ∈ RD×D and Q ∈ R3×3 are orthonormal matrices, and Σ ∈ RD×3 is the
Singular Value matrix. The following change of basis is the carried out:

wSVD
i = PwG

i ∀ i ∈ {1, 2, . . . , D} (2.13)

This operation rotates wG
i about the centroid G and automatically arranges the

points according to their preferential directions. Therefore, a new reference frame
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is automatically detected, i.e. SG = {G, x, y, z} (Figure 2.2). Finally, the points
are translated back to O, thus giving W =

[︂
w1 | w2 | · · · | wD

]︂⊤
, where wi =[︂

xi yi uz(xi, yi)
]︂⊤

are expressed with respect to S. Besides minor manual ad-
justments, the resulting W might require a reflection if det P = −1.

2.2. Defect-based Fatigue Life Assessment
Fatigue is such a complex mechanical phenomenon whose systematical study was

originally conducted by Wöhler circa 1850. His pioneering studies regarded the
collection of experimental data to infer the fatigue life of railroad axles, i.e. what we
currently call S-N data. Specifically, S-N data relates the applied stress range to the
cycles to failure. However, a clear interpretation of S-N data was not readily available
back then [11]. Only a few decades later, Basquin proposed a regression model to
interpolate S-N data, thus providing a practical model for designing against fatigue
failure. Upon collating sufficient experimental points, in terms of both applied cyclic
stress ∆σ and the number of cycle to failure, N . Basquin’s law formulates as [100]:

N = A ∆σB (2.14)

where A and B are the fitting parameters.
As experimentally observed, numerous metallic material possess an applied stress

range ∆σw, called fatigue (endurance) limit, below which the material is meant
to (theoretically) withstand N → ∞ cycles. In practice, however, this limit is
usually referred to a prescribed number of cycles to failure Nw. Whether this fatigue
endurance limit exists for every material is still a subject of debate [2]. When the
fatigue endurance limit exists, Basquin’s curve ought to be interrupted at ∆σw

and extended horizontally, thus forming a “knee-point”. A graphical overview of
Basquin’s curve along with its extension, is given in Figure 2.3 with reference to a
synthetic fatigue dataset.

As already mentioned in Section 1.2, the curves shown in Figure 2.3 inherently in-
corporate scatter due to diverse microstructural sources, such as defects. A potential
strategy to mitigate such a scatter before deploying the model is to reframe the fa-
tigue assessment within FM, thus modelling defects as cracks and consequently mak-
ing the predictions more robust. Specifically, assuming Linear Elastic FM (LEFM),
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2.2. Defect-based Fatigue Life Assessment

Figure 2.3. Schematic of the fatigue regimes commonly adopted for metallic materials
exhibiting the knee-point (log-log scale).

i.e. when limited plasticity effects are involved, it is known that the severity of the
stress field around the tip of a crack can quantified via SIF:

K = Y σ
√

π a (2.15)

where Y is a dimensionless factor depending on the crack’s geometry and load type,
σ is the applied load, and a is the characteristic crack length [1]. Eq. (2.15) can
easily be extended to handle cyclic loading:

∆K = Y ∆σ
√

π a (2.16)

where ∆K represent the SIF range corresponding to the applied stress range ∆σ.
As discussed earlier, fatigued materials accumulate local damage leading to nu-

cleation of cracks. Next, the crack experience a stable propagation up to a certain
critical crack length. As experimentally shown by Paris [4], the long-cracks stage of
fatigue life can be modelled through the following power law:

da

dN
= C(∆K)m (2.17)
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which links the fatigue crack driving force, i.e. ∆K, to the fatigue crack growth rate,
i.e. da/dN . Additionally, C and m are the material’s constants. The stage of the
fatigue life when Eq. (2.17) holds is referred to as Paris’ regime. Additionally, there
exists a distinctive value of ∆K below which the fatigue cracks does not necessarily
grow. This value is often called SIF range threshold, labelled as ∆Kth. Accordingly,
one can compute an appraisal of the applied stress required to trigger fatigue crack
growth, namely ∆σw, by rearranging Eq. (2.16):

∆σw = ∆Kth

Y
√

π a
(2.18)

Values such that ∆K < ∆Kth denote the short-crack regime where LEFM cannot
be applied, due to strong plasticity effects and the influence of the microstructure.
At the opposite side of ∆K spectrum, for sufficiently high values of the SIF range,
quasi-static failure occurs. Figure 2.4 shows a schematic of the regimes just described
for a fictitious experimental dataset.

Figure 2.4. Schematic representation of the crack propagation regimes (log-log scale).
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2.2. Defect-based Fatigue Life Assessment

2.2.1. Finite Fatigue Life
As long as defects can be regarded as cracks, one can invoke LEFM to investigate

their impact on fatigue. Thanks to Sheridan’s clue [64, 65], the scatter of fatigue data
is considerably reduced when replacing ∆σ with ∆K (Eq. (2.16)), thus obtaining
a more truthful representation of the fatigue life. Hence, in order to ensure more
robust predictions, Basquin’s law is accordingly restated:

N = A ∆KB (2.19)

where A and B differs from those in Eq. (2.14).
The fitting of Eq. (2.14) to the experimental data is currently regulated by the

E739 ASTM standard [101]. Since Eq. (2.14) and Eq. (2.19) bear a close resem-
blance, the ASTM standard can be adapted to fit Eq. (2.19) as well and readily
compute the confidence intervals for the resulting regression model. According to
the ASTM standard, let us express Eq. (2.19) in logarithmic form, hence:

log10 N = A + B log10 ∆K (2.20)

where A = log10 A with abuse of notation. Upon collecting (Ni, ∆Ki) ∀ i = 1, 2, . . . , M
experimental data, the estimators of A and B are calculated via Ordinary Least
Square method:

Â = log10 N − B̂ log10 ∆K

B̂ =
∑︁M

i=1(log10 ∆Ki − log10 ∆K)(log10 ∆Ni − log10 N)∑︁M
i=1(log10 ∆Ki − log10 ∆K)2

(2.21)

where:

log10 ∆K = 1
M

M∑︂
i=1

log10 ∆Ki (2.22)

log10 N = 1
M

M∑︂
i=1

log10 Ni (2.23)

Additionally, the unbiased estimator of the variance of the population turns out to
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be:
s2 = 1

M − 2

M∑︂
i=1

(log10 ∆Ni − log10 N) (2.24)

Since the ASTM standard assumes Â and B̂ to be normally distributed, their con-
fidence intervals can readily be obtained:

Â ± s tP,α

(︄
1
M + log10 ∆K

2∑︁M
i=1(log10 ∆Ki − log10 ∆K)2

)︄1/2

B̂ ± s tP,α

(︄ M∑︂
i=1

(log10 ∆Ki − log10 ∆K)2
)︄−1/2 (2.25)

where tP,α is the value of Student’s t-distribution having P = M − 2 degrees of
freedom for α confidence level.

The regression model relies on the fundamental assumption that log10 N is nor-
mally distributed at every level of ∆K. This allows one to easily compute the
confidence intervals of the regression model models:

log10 N = Â + B̂ log10 ∆K ±
√︂

2FP1,P2,α s

(︄
1
M + (log10 ∆K − log10 ∆K

2)∑︁M
i=1(log10 ∆Ki − log10 ∆K)2

)︄1/2

(2.26)
where FP1,P2,α is Fisher’s distribution with P1 = M and P2 = M − 2 degrees of
freedom for α confidence level. Figure 2.5 shows an example of the results obtained
from the application of the standard to fit a hypothetical fatigue dataset.

2.2.2. Fatigue Endurance Limit
When crack-like defect approximation holds, LEFM provides practitioners with

two semi-empirical models to estimate and readily visualise the fatigue endurance
limit of metallic alloys, namely the KT diagram and EH curve [63, 62].

Upon referring the fatigue endurance limit to a predefined number of cycles to
failure Nw (typically 2 · 106 or 107) and assuming defects mainly subjected to Mode
I cyclic load with limited plasticisation effects, the KT diagram allows one the
ascertain whether cracks would propagate from pre-existing defects up to Nw. In
the following, Nw will also be denoted as runout threshold. The KT diagram exploits
the combination of two distinctive parameters, namely the SIF range threshold for
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Figure 2.5. Overview of the regression model (log-log scale).

long cracks ∆Kth,lc and the fatigue endurance limit of the defect-free material ∆σw to
outline outline the region of propagating and non-propagating crack. This typically
results in a piece-wise linear curve; see Figure 2.6. From a practical perspective,
if one collates experimental fatigue data and characterises the size a of the defect
that triggered fatigue failure at different load conditions ∆σ, the samples showing
fatigue life N ≥ Nw and N < Nw will predominantly be collocated beneath and
above the curve associated with the KT diagram, respectively. This is shown, again,
in Figure 2.6.

Later on, EH proposed its renowned curve as an alternative formulation for the
fatigue limit aiming to provide a smooth transition over the entire range of a, se
Figure 2.6. EH formulated a continuous curve described by:

∆σ =
√︄

a0

a0 + a
(2.27)

where a0 is the so-called EH critical length:

a0 = 1
π

(︄
∆Kth,lc

Y ∆σw

)︄2

(2.28)
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Figure 2.6. The El Haddad (EH) curve drawn on Kitagawa-Takahashi (KT) diagram in
log-log scale. The figure reports a fictitious dataset for the sake of the illustration, and
the piece-wise linear curve of the fatigue endurance limit having parameters ∆Kth,lc and
∆σw, which is associated with the KT diagram.

Similarly to the aforementioned piece-wise curve depicted on the KT diagram, the
EH curve outlines the fatigue endurance limit referred to a predefined runout thresh-
old Nw. With particular regard to the present thesis, the EH curve can thought of
as the optimal curve that separates the two considered classes, namely runout and
failed. Thus, its phenomenological behaviour can be seen from ML classification
standpoint; this shall be addressed afterwards.

2.3. Bayesian Inference
BI is a powerful technique enabling the construction of probabilistic predictive

models [71]. Let D = {(xi, yi)|i = 1, 2, . . . , N} the collected data whereby one
wishes to fit the model:

y = Gθ(x) (2.29)

which depends on some unknown parameters θ ∈ RP. Whilst the input is assumed to
be vectorial, i.e. xi ∈ RN , the output of the model is scalar to reflect the application
of BI to the ML techniques throughout the next chapters.
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BI commences with prescribing a prior (distribution) over θ, namely P[θ]. Specif-
ically, P[θ] is the prior knowledge of the user about the observed phenomenon.
Therefore, tailoring P[θ] enables one to inject prior information about the parame-
ters sought from a mechanistic model, for instance. The observed data D are used to
construct the related likelihood (function) P[D|θ], which represents the probability
of generating the dataset D given a set of parameters θ. Typically, the likelihood is
assumed as Gaussian for regression problems:

P[D|θ] =
N∏︂

i=1

1√︂
(2π)σn

exp
(︄

− 1
2

(yi − Gθ(xi))2

σ2
n

)︄
(2.30)

where σn is the variance of the random noise affecting the observations yi ∈ R, and
Gθ(xi) is the predicted value. Whilst the Bernoulli likelihood is assumed for binary
classification problems:

P[D|θ] =
N∏︂

i=1
Gθ(xi)yi(1 − Gθ(xi))(1−yi) (2.31)

where yi ∈ {0, 1} and Gθ(xi) are the ground-truth and predicted class, respectively.
Once the likelihood is defined, P[θ] and P[D|θ] are cast into Bayes’ theorem:

P[θ|D] = P[D|θ]P[θ]
P[D] (2.32)

to compute the posterior (distribution) P[θ|D]. Additionally, P[D] is called evidence,
defined as:

P[D] =
∫︂

θ
P[D|θ]P[θ]dθ (2.33)

which represents the marginalisation of the likelihood with respect to θ. Bayes’ the-
orem, therefore, updates the prior knowledge P[θ] to P[θ|D] via after the observation
of the dataset D.

29



2. Experimental and Theoretical Background

2.3.1. Parameter Estimation
Upon assembling the posterior as per Eq. (2.32), the expected value of θ̂ is com-

puted via Maximum a Posteriori Estimation (MAP):

θ̂ = argmax
θ

P[θ|D] (2.34)

To facilitate numerical computations, the monotonicity of the logarithm is usually
exploited, thus restating the last relationship as:

θ̂ = argmax
θ

logP[θ|D] (2.35)

which expands in agreement with Eq. (2.32):

θ̂ = argmax
θ

logP[D|θ] + logP[θ] (2.36)

where the evidence has been neglected since it is constant and so vanishes when
maximising the log-posterior. As a special case, when a uniform distribution is
prescribed over P[θ], the corresponding term in Eq. (2.36) vanishes as well:

θ̂ = argmax
θ

logP[D|θ] (2.37)

which is essentially Maximum Likelihood Estimation (MLE).

2.3.2. Full Computation of the Posterior
Although the estimation of the parameters can be accomplished by numerical

optimisation strategies, the full computation of the posterior deserves further atten-
tion. In fact, the computation of the closed form P[θ|D] is unfeasible in most of
the cases. This section offers a concise overview of three methods frequently utilised
to accomplish this task. Any of these techniques offers significant advantages over
deterministic identification methods, such as Least Square, since they provide the
full probability distribution P[θ|D] of the parameters, instead of a point-valued ap-
praisals.
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Laplace Approximation. This method can be regarded as the simplest one. Al-
though P[θ|D] can assume any arbitrary distribution, this approximation involves a
local Gaussian approximation of the posterior in the neighbourhood of θ̂. Neverthe-
less, it ought to be mentioned that this method is primarily suitable for unimodal
distribution [71, 102]. Practically, P[θ|D] undergoes a local first-order Taylor’s ex-
pansion about θ̂:

logP[θ|D] ≈ logP[θ̂|D] + ∇ logP[θ|D]
⃓⃓⃓⃓
θ=θ̂⏞ ⏟⏟ ⏞

=0

+ 1
2(θ − θ̂)⊤H(logP[θ|D])

⃓⃓⃓⃓
θ=θ̂

(θ − θ̂)

(2.38)
where ∇ logP[θ|D] vanishes as θ̂ is a maximum for P[D|θ]. Whilst H(logP[θ|D])

⃓⃓⃓⃓
θ=θ̂

is the Hessian matrix of the posterior computed at θ̂. This matrix will be denoted
as H(θ̂) for the sake of conciseness. It is interesting to note that Eq. (2.38) tacitly
endows H(θ̂) with role of covariance matrix, hence H(θ̂) must be positive (semi-)
definite. However, since θ̂ is a maximum, H(θ̂) is negative definite. This can be
corrected by changing the sign of the second-order term:

logP[θ|D] ≈ logP[θ̂|D] − 1
2(θ − θ̂)⊤H(θ̂)(θ − θ̂) (2.39)

where, with abuse of notation, H(θ̂) is now positive definite. In addition, after this
change of sign, H(θ̂) represents the Hessian matrix of − logP[θ|x] computed at θ̂.
Exponentiating both sides of Eq. (2.39) leads to:

P[θ|D] ≈ P[θ̂|D] exp
(︄

− 1
2(θ − θ̂)⊤H(θ̂)(θ − θ̂)

)︄
(2.40)

where the first multiplying factor can be set as the traditional normalisation constant
for multivariate Gaussian distributions:

P[θ̂|D] = 1
2π(det H(θ̂)−1)1/2

(2.41)

As a result, this leads to the final expression of the approximated posterior:

P[θ|D] ≈ 1
2π(det H(θ̂)−1)1/2

exp
(︄

− 1
2(θ − θ̂)⊤H(θ̂)(θ − θ̂)

)︄
(2.42)
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Intriguingly, Laplace’s approximation can be thought of as a special case of the
forthcoming method.

Variational Inference (VI). The posterior P[θ|D] can be approximated through
VI as well. VI takes Qλ(θ) from a given family of probability as the desired approx-
imator. This Qλ(θ) includes a number of parameters in λ, which are determined
by minimising a pseudo-distance between the approximator and the true posterior.
For instance, if Qλ(θ) is assumed to be Gaussian, then λ contains the mean vector
and the covariance matrix of the distribution, namely λ =

[︂
µ Σ

]︂
. In this case, VI

reduces to Laplace’ approximation. As concerns the implementation, the identifica-
tion of Qλ(θ) is done by minimising the negative Evidence Lower BOund (ELBO)
defined as [103–107]:

ELBO = EQλ(θ)[logP[D|θ, H] − logQλ[θ]] (2.43)

Nevertheless, it is worth noting that the convergence to the true posterior is not al-
ways guaranteed, but VI generally necessitates limited computational requirements.

Hamiltonian Monte Carlo (HMC). This strategy is often employed to circumvent
the potential lack of convergence of VI, albeit being more computationally demand-
ing. HMC defines a set of Markov chains whose invariant is P[θ|D], thus ergodically
ensuring the convergence of the method. Interestingly, HMC relies on the concept
of Hamiltonian Dynamics to boost the exploration of the parameter space [108]. To
do so, trials of θ are drawn from the so-called Canonical Ensemble:

C(θ, p) = 1
Z

exp [−U(θ)] exp [−K(p)] (2.44)

where U(θ) is the potential energy, K(p) is the kinetic energy function of the vector
of momenta p ∈ RP, and T is the temperature. Without loss of generality, T can
be set to 1. For this specific application, U(θ) equals the negative posterior:

U(θ) = − logP[θ|D] (2.45)
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whilst the kinetic energy is defined as:

K(p) = 1
2p⊤Mp (2.46)

where K is the mass matrix, which actually serves as a covariance matrix, and it is
typically assumed as diagonal, i.e. K = diag(K1, K2, . . . , KP). In agreement with
Hamiltonian Dynamics, (θ, p) are the coordinates of a mechanical system whose
total energy is given by the Hamiltonian:

H(θ, p) = U(θ) + K(p) (2.47)

which is hypothesised to be constant throughout the evolution of the system. The
differentiation of Eq. (2.46)-(2.45) allows introducing the dynamics of sampling:

dθ = M−1p dt (2.48)
dp = −∇U dt (2.49)

where t is a pseudo-time variable. As suggested by Neal [109], discretising Eq. (2.48)-
(2.49) can efficiently be carried out via the leapfrog scheme:

pi(t + ε/2) = pi(t) − (ε/2) ∇θi
U(θ(t))

θi(t + ε) = θi(t) + ε
pi(t + ε/2)

Ki

pi(t + ε) = pi(t + ε/2) − (ε/2) ∇θi
U(θ(t + ε))

(2.50)

which hold for each i = 1, 2, . . . , P, where pi and θi are the i-th elements of p and θ.
The last relationship allows one to define the Markov chains, i.e. trajectories in the
θ − p space. In order to construct the states of such chains, samples of θ(i+1) and
p(i+1) are drawn to explore the parameter’s space. Each new state (θ(i+1), p(i+1))
can be either accepted or rejected with respect to its ancestor (θ(i), p(i)). Whether a
sample is accepted depends upon how much the Hamiltonian H (Eq. (2.47)) changes.
In principle, H must remain constant across the states, but for the sake of the
numerical implementation, H suffices to experience negligible variations. Therefore,
a new state (θ(i+1), p(i+1)) is accepted if |H(θ(i+1), p(i+1)) − H(θ(i), p(i))| ≈ 0. The
sampling proceeds until Markov’s chains converge to P[θ|D]. Once the convergence
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is attained, additional trials are drawn to sample the posterior.

2.3.3. Making Predictions
Upon computing the posterior, or an approximation thereof, one may wish to

forecast unseen data, namely:
y∗ = Gθ̂(x∗) (2.51)

where y∗ is the predicted valued associated with x∗. In BI, the predicted value obeys
the predictive posterior (distribution) defined as:

y∗ ∼ P[x∗|D] =
∫︂

θ
P[x∗|θ]P[θ|D] dθ (2.52)

Mathematically, the predictive posterior weights the value that the model predicts,
P[x∗|θ], through the posterior by integrating over the entire parameter space.

Unfortunately, Eq. (2.52) is, again, analytically intractable, thus approximation
are pursued, for instance:

P[x∗|D] ≈ 1
M

M∑︂
j=1

P[x∗|θ(j)] (2.53)

where θ(j) ∀ j = 1, 2, . . . , M are samples drawn from the posterior P[θ|D]. Once
P[x∗|D] is computed, it is possible to extract pertinent statistical descriptors, such
as quartiles, the expected value (mean) E[y∗], the standard deviation (uncertainty)√︂
V[y∗].

2.4. Gaussian Process Regression
GPR allows for constructing a probabilistic surrogate model of a given function

f . Upon processing a training dataset, GPR assimilates the behaviour of f , con-
ferring the ability to forecast f elsewhere while calculating the uncertainty over the
prediction [102, 110].

Let f : RN → R be a real-valued function one wishes to identify. Suppose
the function was probed at xi ∀ i = 1, 2, . . . , N, thus collecting f1, f2, . . . , fN noisy
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observation of f . The resulting training dataset if given by:

D = {(xi, fi) | fi = f(xi), i = 1, 2, . . . , N} (2.54)

Let us define the regression model for f :

fi = f(xi) + ε; ε ∼ N (0, σ2
n) (2.55)

where ε is Gaussian noise with zero mean and variance σ2
n, whose observations are

independent and identically distributed (IID).
GPR commences with prescribing a Gaussian Process (GP) over f :

f ∼ GP(M(x), K(x, x′)) ∀ x, x′ ∈ D (2.56)

Specifically, a GPR is a collection of random variables such that any subset thereof
is jointly Gaussian [102]. As can be seen in Eq. (4), a GP is fully defined by the
mean M, and the so-called kernel K – also known as covariance function. One of
the most versatile kernels often encountered in the literature is Matérn’s:

K(x, x′) = C
21−ξ

Γ(ξ)

(︄√
2ξ∥x − x′∥

l

)︄ξ

Kξ

(︄√
2ξ∥x − x′∥

l

)︄
(2.57)

where ξ, l are positive constants, Kξ is the modified Bessel function, Γ(ξ) is the
Gamma function, and ∥ · ∥ denotes the Euclidean norm. Additionally, the constant
C is introduced as a scaling factor for the kernel. The kernel K(x, x′) includes a
number of unknown parameters which are meant to be identified upon the training
dataset, i.e. the hyperparameters. Referring to Eq. (2.57), these hyperparameters
will succinctly be gathered into the vector θ =

[︂
C l ξ

]︂⊤
.

GPR proceeds with the identification of the hyperparameters via MLE, see Eq. (2.37).
Since the objective herein is the construction of a regression model, and f was tacitly
modelled as an IID Gaussian random variable, MLE requires building the Gaussian
likelihood (Eq. (2.30)) upon D. With reference to [102], the likelihood is conve-
niently restated as:

logP[D|θ] = −1
2f⊤(V + σ2

nI)−1f − 1
2 log |V + σ2

nI| − n

2 log 2π (2.58)
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where f =
[︂
f1 f2 . . . fN

]︂⊤
and V is the covariance matrix:

V =

⎡⎢⎢⎢⎢⎢⎣
K(x1, x1) K(x1, x2) . . . K(x1, xN)
K(x2, x1) K(x2, x2) . . . K(x2, xN)

... ... . . . ...
K(xN, x1) K(xN, x2) . . . K(xN, xN)

⎤⎥⎥⎥⎥⎥⎦ (2.59)

which depends upon θ through K.
Once Eq. (2.58) is maximised, and the expected value of the parameters are

known, i.e. θ̂, these can be plugged into the kernel (Eq. (2.57)) so the user can
predict f at any given point x∗. Since Gaussian random variables are closed with
respect to the conditional probability, the posterior distribution of θ is still Gaussian
with mean and variance given by:

Mp(x∗) = M(x∗) + V(x∗, x) [V(x, x) + σ2
nI]−1(y − M(x)) (2.60)

Kp(x∗, x∗) = K(x∗, x∗) − V(x∗, x) [V(x, x) − σ2
nI]−1 V(x, x∗) (2.61)

Accordingly, one can express the predicted value f(x∗) in terms of Eq. (2.60)-(2.61)
and readily calculate the related 68% confidence interval:

f(x∗) = Mp(x∗) ±
√︂

Kp(x∗, x∗)

where
√︂

Kp(x∗, x∗) is the uncertainty (standard deviation) of the prediction.
Figure 2.7 shows a schematic outcome of GPR applied to a scalar real-valued

function f : R → R, in solid black. The black dots are the noisy observation of f ,
i.e. fi, whereas the red line is the expected value (Eq. (2.60)) retrieved from GPR.
The shaded blue region is x-wise confidence interval at 68% confidence level whose
width is Mp(x∗) ±

√︂
Kp(x∗, x∗).

2.5. Logistic Regression
LR was conceived in the nineteenth century to model population growth and

epidemic outspread [111]. Only recently, LR has received considerable attention as
a probabilistic supervised ML classification technique [112].
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2.5. Logistic Regression

Figure 2.7. GPR applied to a scalar real-valued function f : R → R. and the shaded
blue region is x-wise confidence interval.

To facilitate the explanation, let us consider the following generic dataset D:

D = {(xi, Fi) | Fi ∈ {0, 1}; i = 1, 2, . . . , N} (2.62)

where each datum xi is labelled through Fi which can either assume 0 or 1. For the
sake of illustrating the background of LR, suppose xi ∈ R2 such that xi =

[︂
xi yi

]︂
.

The resulting (schematic) dataset is portrayed in Figure 2.8. Therein, points with
Fi = 0 and Fi = 1 are represented as blue and red circle markers, respectively. With
reference to the two-dimensional setting just outlined, LR traditionally attempts to
seek the straight line that optimally separates the two classes. Such a line is named
as decision boundary, and it is depicted as the solid black line in Figure 2.8. In this
instance, the decision boundary can be stated in its implicit form as:

H(x, θ) = x θ1 + y θ2 + θ3 (2.63)

where θ concisely indicates the aggregated vector of the parameters, i.e. θ =[︂
θ1 θ2 θ3

]︂
, and x and y are the coordinate of a generic point. Eq. (2.63) can

be demonstrated to be proportional to the signed distance to the decision boundary.
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Figure 2.8. Graphical representation of the dataset D along with the decision boundary.

This signed distance plays a key role in the probabilistic modelling of LR, as it shall
be discussed shortly.

LR entails transforming Fi into a Bernoulli random variable such that:

Fi = P[xi|θ]k (1 − P[xi|θ])1−k k = 0, 1 (2.64)

where P[xi|θ] represents the probability of predicted class. Generally, P[x|θ] is
modelled via the so-called log-odds ratio:

log P[x|θ]
1 − P[x|θ] = H(x, θ) (2.65)

If Eq. (2.65) is solved for P[x|θ], the associated LR equation is promptly retrieved:

P[x|θ] = 1
1 + exp[−H(x, θ)] (2.66)

It is thus evident that LR connects the probability of the predicted class with the
signed distance of x to the decision boundary H(x, θ). In particular, the last rela-
tionship “squashes” the values H(x, θ) into [0, 1] to obey the axiomatic definition of
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probability.
It should be mentioned that the parameters in θ have been considered unknown

thus far. In order to learn θ upon the given dataset D, the MLE of Eq. (2.37) is pur-
sued while employing a Bernoulli likelihood. In this case, the predicted class Gθ(xi)
and yi of Eq. (2.37) are opportunely replaced with P[x|θ] and Fi, thus resulting in:

P[D|θ] =
N∏︂

i=1
P[xi|θ]Fi(1 − P[xi|θ])(1−Fi) (2.67)

It is worth mentioning that MLE succeeds if the likelihood exhibits a maximum.
By contrast, when MLE fails, one can incorporate LR into the MAP framework
(Section 2.3) to learn the parameters. This procedure involves casting Eq. (2.67) and
an appropriate prior P[θ] into Bayes’ theorem (Eq. (2.32)), and solving Eq. (2.34).

2.6. Neural Networks

2.6.1. Traditional Neural Network
NN refers to a broad class of surrogate models for both regression and classification

tasks. NNs consist of a set of elementary units called neurons grouped by layer.
Generally, NNs possess a sequence of layers. The first one is called the input layer,
and it is devoted to receiving the input data. The last one is the output layer
which gives the value of the predictions. When present, hidden layers, located
between input and output ones, are liable for adding increasing non-linear predictive
capabilities to the model [113].

Although there exist NNs of different nature, the focus here is on those fully-
connected, where the neurons belonging to consecutive layers own connection with
one another. Therefore, let us consider a fully-connected NN having an N1-dimensional
input layer, l = 2, . . . , L − 1 hidden layers with N2, . . . , NL−1 each, and an NL-
dimensional output layer. In order to graphically visualise the distinctive NN archi-
tecture, an example is shown in Figure 2.9 where NL = 1.
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...

..
. ... ... ...

Figure 2.9. Schematic of a fully-connected NN having N inputs, L − 1 hidden layers
and a scalar output layer.

The input-output relationship of the l-th layer can recursively be stated as:

y1(x) = W1x + b1

yl(x) = Wl φl(yl−1(x)) + bl l = 2, . . . , L

Gθ(x) = y(x)
(2.68)

where x ∈ RN1 is the input vector, Wl ∈ RNl×Nl−1 and bl ∈ RNl are the weight
matrix and the bias vector of the l-th layer, respectively. Additionally, the last en-
try of Eq. (2.68) describes the global input-output relationship of the NN where θ

stands for the aggregated vector of weights & biases. Therein, the subscript l = L

was omitted for conciseness. Lastly, φl denotes the activation function assigned to
neurons of the l-th layer, which acts on yl in an element-wise fashion. To explain
the role of the activation functions it is worth concentrating on the k-th element of
the vector yl involved in the the l-th, i.e. yl,k. Essentially, φl controls the fraction of
yl,k that is supplied to the subsequent layer before being weighted through Wl. Al-
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Figure 2.10. Schematic illustration of ReLU, sigmoid, and tanh activation functions.

though a number of activation functions are available, a few of the most popular are
shown in Figure. 2.10, i.e. Rectified Linear Unit (ReLU), sigmoid, tanh. ReLUs only
transmit part of yl,k beyond a predefined threshold. This activation function is suit-
able for piecewise linear surrogate models in regression problems. Tanh activation
functions can be adopted for regression as well, with the advantages of continuously
rescaling into [−1, 1] across R and allowing for switching the sign of yl,k. Similarly,
sigmoid rescale yl,k, but into [0, 1], thus making them the preferred choice for binary
classification problems.

Suppose one obtained P samples from an observed phenomenon, thus collating
the following dataset:

D = {(xi, yi | xi ∈ RN1 ; yi ∈ RNl ; i = 1, 2, . . . , P} (2.69)

and they wish to fit the data with a surrogate NN model as per Eq. (2.68), i.e. y =
Gθ(x). Analogously to the ML methods examined thus far, the surrogation implies
learning the parameter θ upon observing D regardless of the problems’ nature. To
accomplish this task, the NN processes D and computes the prediction corresponding
to xi, namely y∗

i = Gθ(xi) ∀ i = 1, 2, . . . , P. Subsequently, the mismatch between
the prediction y∗

i and the ground-truth yi is used to calculate the loss function –
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usually a squared error:

L =
P∑︂

i=1
∥y∗

i − yi∥2 (2.70)

During the training, this loss function is then numerically minimised to seek the
optimal parameters of the NN, i.e. θ̂. This operation is typically done via back-
propagation [114]. The process continues until L attains values below a user-defined
threshold. Once the training is done, it is possible to forecast and prospective data
x∗ using the last relationship of Eq. (2.68), i.e. y∗ = Gθ(x∗).

2.6.2. Physics-Informed Neural Networks
Fundamentally, a PINN couples a traditional NNs (Eq. (2.68)) with a Partial

Differential Equations (PDE) that is supposed to govern the observed phenomenon.
For instance, equilibrium or conservation laws are generally considered in the field
of Solid and Fluid Mechanics. The PDE serves the purpose of guiding the training
stage aiming to ensure the physical consistency of the predictions. In practice,
a bespoke loss term is added to Eq. (2.70), which derives from the discrepancy
between the NN predictions and those the PDE would give [115]. PINNs have
mainly been developed to numerically solve PDE-driven problems [116, 117], and
their application to engineering research is still scarce. Nevertheless, the framework
of PINNs is incredibly versatile so that it can be easily adapted to handle problems
other than PDEs. In this section, the classical settings of PINNs is outlined, whereas
Chapter 5 demonstrates how to tailor this framework to deal with finite fatigue life
modelling. Figure 2.11 is presented to support the following explanation.

Let us consider a NN described by Eq. (2.68). Alongside, let us define a N1-
dimensional domain Ω ⊂ RN1 whose boundary is Γ, and let:⎧⎨⎩P(y(x)) = f(x) x ∈ Ω

B(y(x)) = b(x) x ∈ Γ
(2.71)

be a boundary value PDE problem, where P is a generic differential operator, B is
a generic boundary value operator, y(x) represent the solution of the PDE, f(x) is
the forcing term, and b(x) is the prescribed value of the solution over Γ. Assume

42



2.6. Neural Networks

Figure 2.11. Block diagram of PINNs.

that one probed y ∈ RNL , f ∈ RNf , b ∈ RNb , thus acquiring the training dataset D:

D = Dy ∪ Df ∪ Db

Dy = {(xi, yi) | i = 1, 2, . . . , Py}
Df = {(xi, fi) | i = 1, 2, . . . , Pf}
Db = {(xi, bi) | i = 1, 2, . . . , Pb}

(2.72)

The input data xi is fed into the NN to compute the corresponding prediction y∗
i .

Next, y∗
i is supplied into P(□) and B(□) to calculate the corresponding forcing

term and boundary condition, namely f∗
i and b∗

i . The discrepancy between the
predictions and the probed values originate the following losses:

Ly =
Py∑︂
i=1

∥y∗
i − yi∥2

Lf =
Pf∑︂
i=1

∥f∗
i − fi∥2

Lb =
Pb∑︂

i=1
∥b∗

i − bi∥2

(2.73)

Each contribution is combined through a weighted sum (⊕, in Figure 2.11) to gen-
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erate the total loss L:
L = wyLy + wfLf + wbLb (2.74)

where wy, wf , wb are weights that balance each contribution. Similarly to NNs, L is
backpropagated to compute the optimal parameters θ̂ of the NN. In this instance, a
hypothetical minimiser learns θ̂ while seeking a trade-off between the data, i.e. Ly,
and the physics, i.e. Lf and Lb, which compete against one another. As a special
case, if wf = wb = 0 and wy = 1, the physics constraint is suppressed, then the
PINN reduces to a traditional NN. After accomplishing the training, unseen data
are predicted as per traditional NN.

2.6.3. Bayesian Neural Networks
The potential of BI can be exploited in the context of NNs as well. Specifically,

when the parameters of a NN (Eq. (2.68)), i.e. θ, are turned into random variables
and trained via BI, the NN is said to be a Bayesian NN (BNN) [108, 118–120]. In
this regard, each neuron possesses both biases and weights described by a prob-
ability distribution. A schematic representation is offered by Figure 2.12. Hence,
differently from traditional NN, the output of the BNN turns out to be a probability
distribution, automatically.

Briefly, according to the Bayesian treatment of the training, a prior is initially
prescribed over the parameters, thus defining P[θ]. Upon collating a training dataset
D, the likelihood is constructed, hence P[D|θ]. Finally, both P[θ] and P[D|θ] are
substituted into Bayes’ theorem (Eq. (2.32)) and the parameters posterior P[θ|D]
is computed [121–123], mainly via HMC or VI (see Section 2.3.2). Once P[θ|D] or
its approximation is known, the predictions about prospective data are made using
the predictive posterior shown in Eq. (2.52).

Thanks to BI, BNNs offer diverse advantages over traditional NNs. Users can
develop NN models whose complexity depends upon the problem, not the amount
of data [108]. Thus, small-data regimes can effortlessly be handled [124], especially
when the size of the dataset is lower than the dimensionality of the problem [125].
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... ...

Figure 2.12. The s-th neuron of belonging to the generic l-th layer of a BNN. Herein,
Wi,j and bs are the coefficients of the weight matrix and bias vector pertaining to the
considered neuron and layer. The explict indication of the layer is dropped for brevity.

2.6.4. Bayesian Physics-Informed Neural Networks
Let us consider a BNN whose architecture is given in Eq.(2.68), and the PDE

defined in Eq. (2.71). Analogously to PINNs, B-PINNs are BNNs whose training
is constrained by physical or phenomenological models. Figure 2.13 illustrates a
block diagram of a generic B-PINN where a PDE informs its physical branch, in
agreement with Ref. [94] which addresses a regression problem.

The standard framework of B-PINNs assumes that the observations of the solution
yi, forcing term fi, and boundary condition bi are modelled as:

yi = y(xi) + εy
i

fi = f(xi) + εf
i

bi = b(xi) + εb
i

(2.75)

where each εy
i , εf

i , and εb
i is Gaussian noise with zero mean and covariance matrices

Σy, Σf , Σb, respectively. Consequently, the training dataset D = Dy ∪ Df ∪ Db

is straightforwardly defined in agreement with Eq. (2.72). Since the observations
incorporate Gaussian noise and are independent of each other, the likelihood of D
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Figure 2.13. Schematic of a B-PINN

turns out to be:
P[D|θ] = P[Dy|θ]P[Df |θ]P[Db|θ] (2.76)

where:

P[Dy|θ] =
Py∏︂
i=1

1√︂
(2π)y det Σy

exp
(︄

− 1
2∥y∗

i − yi∥2
Σy

)︄

P[Df |θ] =
Pf∏︂
i=1

1√︂
(2π)f det Σf

exp
(︄

− 1
2∥f∗

i − fi∥2
Σf

)︄

P[Db|θ] =
Pb∏︂

i=1

1√︂
(2π)b det Σb

exp
(︄

− 1
2∥b∗

i − bi∥2
Σb

)︄
(2.77)

In the last relationships, y∗
i are the predictions given by the sole NN, i.e. y∗

i = Gθ(xi).
Furthermore, f∗

i and b∗
i are the values of the forcing term and boundary condition

obtained by supplying y∗
i into P(□) and B(□) (Eq. (2.71)), respectively. Lastly,

∥□∥Σ =
√
□⊤Σ□ denotes the Mahalanobis distance with respect to Σ. Evidently,

the likelihood realises the penalisation between the ground-truth values (yi, fi, and
bi) and the associated predicted values (y∗

i , f∗
i , and b∗

i ) similarly to the PINN’s loss
of Eq. (2.73). As concerns B-PINNs, however, such a penalisation is attained in
terms of probabilities instead of mere mean squared error. Finally, P[D|θ] and an
opportune prior P[θ] is plugged into Bayes’ theorem (Eq. (2.32)) to compute the
posterior of θ. Such computation, which is, in fact, the training stage, is carried out
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by the methods in Section 2.3.2, typically VI and HMC. Differently from NNs and
PINNs, the predictions regarding prospective data are performed via the predictive
posterior in agreement with BI; see Eq. (2.52).

2.6.5. Bayesian Model Selection
Designing the most suitable architecture of NNs, PINNs, BNNs, and B-PINNs is

very often debated. Irrespective of the NN’s nature, one can reframe the problem
selection in a Bayesian fashion. In this way, one can probabilistically select the op-
timal number of hidden layers and neurons, and activation functions. This strategy
is technically called Bayesian model selection [126, 127].

Initially, the designer is committed to considering a finite set of candidate archi-
tectures:

DC = {Gh : h = 1, 2, . . . , H} (2.78)

where the h-th model Gh may possess any number of hidden layers, neurons per
layer, and activation functions. Whilst the size of the input and output layer are
fixed according to the designated task of the NN. In this respect, it is worth recalling
Bayes’ theorem (Eq. (2.32)) while explicitly including model’s conditioning:

P[θ|D, Gh] = P[D|θ, Gh]P[θ|Gh]
P[D|Gh] (2.79)

where D is, again, the training dataset, and the evidence becomes:

P[D|Gh] =
∫︂

θ
P[D|θ, Gh]P[θ|Gh]dθ (2.80)

Notice that while the integral is in general analytically intractable, it can numerically
be approximated [126, 127]:

P[D|Gh] ≈ 1
Q

Q∑︂
j=1

P[D|θ(j), Gh] (2.81)

where the sample θ(j) are drawn from P[θ|Gh], and the likelihood can be computed
according to Eq. (2.30) or (2.31) for regression or classification problems, respec-
tively. The evidence is representative of the accuracy that the NNs attain with a
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prescribed architecture. Therefore, the user intuitively selects the NN architecture
that maximises the evidence:

Ĝ = max
Gh∈DC

P[D|Gh] (2.82)
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3. Contour Method Residual Stress
Evaluation in Solid-state Welded
Joints

The current chapter discloses the limitations of the CM’s state-of-the-art while ad-
dressing a problem of scientific interest. Herein, the CM is applied to investigate RS
in a novel solid-stated welded butt-joint.

3.1. Introduction
Solid-state welding refers to a broad class of welding techniques in which work-

pieces are joined below the melting point of the base material (BM) being welded.
Solid-state welding techniques have been developed to overcome the main limita-
tions affecting the traditional fusion welding. Because there is no material melting
involved in solid-state welding, the thermal input is significantly lower than that
of fusion welding, and the extent of heat-affected zone softening is reduced. Con-
sequently, fewer microstructural changes occur within this softened zone, and the
overall structural performance of the joint is typically improved. Solid-state welding
also allows for joining both similar and dissimilar materials that are often considered
difficult to fusion weld [128].

Amongst the family of solid-state welding, friction stir welding (FSW) has been
particularly attracting attention in the last decades. This solid-state welding method
was developed by The Welding Institute (TWI) of the UK in 1991. Basically, this
technique employs a non-consumable rotating pin to join two facing workpieces
(Figure 3.1(a)), usually plates. Due to the contact of the rotating pin and the sides
of the material undergoing welding, a source of heat is generated by friction. As
a consequence, the BM undergoes local softening and plastic deformations, which
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eventually facilitate the two sides to merge together. As the pin travels along the
weld direction, the material left behind experiences cooling until reaching room
temperature. At this point, the welding process ends [129]. Throughout the years,
FSW has evolved so that it can also handle joints in different configurations such as
butt welds, T-butt and T-lap joints [129–131]. Many works in literature proved the
capability of FSW to weld similar [132, 133], and dissimilar material pairs [134, 135].
Furthermore, FSW provides sound joints with limited defects and porosity [136].
Despite the significant advantages of FSW, it does not involve the use of any filler
material (FIM), which would provide a gradual transition between the BMs being
welded in several aspects.

About ten years ago, the development of the hybrid metal and extrusion bonding
(HYB) enabled to combine the advantages of the FSW with the use of FIM. HYB
relies on the processing principle of FSW, see (Figure 3.1(b)). However, continuous
extrusion and injection of an aluminium FIM into the weld groove is utilised to
consolidate the joint [137]. Further studies showed the great potential of HYB to
weld together up to three dissimilar BMs, plus the FIM, and perform butt, slot
and fillet welds. In addition, a set of equations were derived for tuning the HYB
process parameters, such as FIM feed rate, pin rotation speed and overall energy
consumption [138]. Therefore, HYB has become a mature technique in terms of
process protocol and welding capability.

(a) (b)

Figure 3.1. Schemes of the welding the processes. (a) Friction stir welding. (b) Hybrid
metal and extrusion bonding, which relies on a continuous extrusions and injection of a
filler wire into the open groove to consolidate the weld.

The beneficial effects of the FIM on the bending strength, tensile strength and
fatigue life of a 2 mm thick similar AA6060-T6 HYB butt weld filled with AA6082-
T4 were experimentally investigated [139, 140]. Therein, a minor kissing bond defect
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between base and filler materials was unveiled, which promoted the crack initiation,
especially during the three-point bending test. Nevertheless, the bending response
of the joint approached that of the BM [139]. Furthermore, the yield stress (YS)
evaluated through tensile tests was close to that reported for an equivalent FSW
AA6082-T6 butt weld and superior to that of a FSW AA6061-T6 butt weld. Finally,
the high-cycle fatigue property of this joint was characterised. After the removal
of the kissing bond area, the joint exhibited the highest number of cycles to failure
under constant amplitude loading, with respect to the comparable FSW and fusion
welded joints considered in the literature [141].

Solid-state welding also aims at mitigating the thermal gradient effects involved,
nevertheless it is impossible to completely eliminate them. Consequently, RS arises
in correspondence of the weld heterogeneously distributed [129], giving rise to dif-
ferent RS types according to their length-scales [34, 142]. As a consequence, the
influence of RS on the structural integrity has motivated the need of assessing RS
also in welded structures [143–145]. Particularly for FSW, several studies have
been performed exploiting different experimental methods: XRD [146], synchrotron
XRD [147–149], neutron XRD [150, 151], FIB-DIC [148], and nanoindentation [151].
These techniques aim to investigate RS concerning the longitudinal, transverse
and normal direction of the weld. Unfortunately, they are expensive, demanding
and conditioned by the microstructure and weld material inhomogeneities. De-
spite this, XRD and neutron XRD have been recently used to investigate RS in an
isothermal-FSW stainless steel plate [152]. Given that the dominant component of
RS is that aligned with the weld direction, i.e. the longitudinal one, as investigated
in [146, 147, 150, 152], it is of interest to study only this component.

According to Section 2.1, the CM evidently appears suitable to evaluate the longi-
tudinal component of the RS. If the CM cut is orthogonally performed with respect
to the direction of the of the weld, the longitudinal welding-induced RS is aligned
with the outward normal of the cut surface. For this reason, the CM has been ex-
tensively employed to study RS in thin, thick, similar and dissimilar FSW joints.
For instance, as concerned aluminium joints, the CM was applied to investigate
RS in a 25.4 mm thick dissimilar FSW plate made of AA7050-T7451 and AA2024-
T351 [153] and for the RS assessment of a 4 mm and a 8 mm similar AA6061-T6
FSW butt welds [154]. This experimental technique was also exploited to analyse
the influence of welding process parameters on the arising of RS [155], where a

51



3. Contour Method Residual Stress Evaluation in Solid-state Welded Joints

set of 4 mm thick similar AA2024-T3 butt welds were considered. Dissimilar joints
were also studied using the CM. For instance, the RS assessment was performed
on a 2 mm thick plate made of aluminium 5A06 and T2M pure copper [156]. Re-
cently, the RS has been evaluated in a 5 mm thick plate made of AA7075-T6 and
AA6061-T6 strengthened with SiO2 nanoparticles [74]. With regard to the FSW
manufacturing technology, the CM was employed to investigate the RS induced by
the innovative ultrasonic-assisted FSW. In this respect, 3 and 5 mm thick similar
AA6061-T6 were considered as a case-study [157, 158].

Besides affecting the structural performance, RS induced by manufacturing pro-
cesses is responsible for joint distortion as well [159, 160]. In the context of FSW,
for instance, the joint distortion of a FSW butt weld on a 3 mm thick plate made
of AA6065-T6 was analysed in [161]. This study showed that RS, which peaked at
about 200 MPa at the advancing side, generated the peculiar “V-shaped” angular
distortion along the traverse direction. A recent research attempted to determine
the dependence of the joint distortions upon the FSW welding parameters, i.e. pin
rotation speed and welding feed speed [162]. Therein, a set of three FSW butt
welds were manufactured on 3 mm thick AA6005-T6 plates, and essentially an “A-
like” shape joint distortion was detected. However, earlier findings revealed that
for a particular selection of pin rotation speed and welding feed speed, respectively
1200 rpm and 282 mm/min, the joint distortion turned out to be essentially neg-
ligible [163]. This was observed on a 6.5 mm thick FSW butt welded AA6061-T6
plate.

This Chapter aims to study and compare the RS arising as a consequence of the
two solid-state welding processes just outlined, i.e. FSW and HYB. This aspect is
of fundamental importance in order to establish its structural integrity performance
and to assess how it performs as compared with the more conventional solid-state
weld, i.e. FSW. The full-field RS evaluation of the welds is conducted by employing
the CM. Statistical evaluation of errors, due to the mismatch of the RS evaluated on
two different faces obtained by the linear cut, is performed and presented. Alongside,
a quantitative analysis of the distortion of the FSW and HYB joints is reported. The
results of the experimental analysis and comparison between the two case-studies
are presented and critically discussed, with particular emphasis on the consequence
that RS may have on the integrity properties of the examined welds.
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3.2. Fabrication of the Butt-welds
The FSW and HYB butt-welds considered herein were prepared using extruded

profiles of the commercial aluminium alloy AA6082-T6 as the BM. For the partic-
ular case of HYB, a AA6082-T4 was employed as the FIM. Same materials were
previously used by some of the authors of the present research and reported in the
literature [164]. The nominal compositions of the base and filler materials are sum-
marised in Table 3.1. The geometry of the plates is depicted in Figure 3.2, while
their dimensions are reported in Table 3.2.

Table 3.1. Chemical compositions of the base and filler materials (wt%).
Si Mg Cu Fe Mn Cr Ti Zr B Other Al

AA6082-T6 (BM) 1.00 0.65 0.03 0.20 0.50 - 0.02 - - - Balance
AA6082-T4 (FIM) 1.11 0.61 0.002 0.20 0.51 0.14 0.043 0.13 0.006 0.029 Balance

Figure 3.2. Scheme of the plates geometry. Each plate is characterised by a length a, a
width b and a thickness h. The butt weld position is indicated by d, whereas its width
is denoted by c. According to the CM procedure, the cut line in red, indicates the path
followed to cut the plates in half. The cut provided the half-plates F1 and F2, and H1
and H2, for the case of FSW and HYB, respectively.

The employed process parameters used to fabricate the HYB weld are given in
Table 3.3. Because of confidentiality issues, the authors could not share the FSW
parameters. Nonetheless, the applied welding parameters for HYB and FSW were
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Table 3.2. Plates dimensions (mm) in agreement with Figure 3.2.
a b c d h

HYB 500 170 14 79 4.2
FSW 770 168 18 70 4

deemed to represent best-practice at the time when the butt welds were manufac-
tured. In particular, the welding parameters were tuned to produce the butt welds
meeting all the acceptance criteria for offshore use [164].

Table 3.3. Welding parameters for HYB. Those for FSW are not available due to
confidentiality issues.

Groove
Width

Pin Rotation
Speed

Welding Feed
Speed

Wire Feed
Rate

Gross Heat
Input

[mm] [rpm] [mm/min] [mm/min] [kJ/mm]

HYB 2 350 1080 7500 0.11

The mechanical integrity of two identical HYB and FSW joints were previously
investigated through their longitudinal tensile testing [164], and the related results
are summarised Table 3.4. Besides, the data regarding the yield stress and ultimate
tensile stress can be found in [165–168]. Before being extruded to perform the HYB
weld, the wire FIM underwent drawing that reduced its diameter from 1.6 mm to
1.4 mm. As a consequence, the FIM experienced work hardening. For this reason, at
room temperature, the FIM is characterised by the highest yield stress as compared
with the BM.

With regard to HYB, it should be noted that if the FIM was in the T6 condition,
the high temperatures developed within the process zone of the weld would have
triggered an overaging effect, which is well known to reduce the tensile strength
of the material. Conversely, having the FIM in T4 condition implied that most
of the major alloying elements, such as Mg and Si, were in solid solution prior to
the welding operation. Therefore, the natural ageing was preserved after the whole
process. This ensured superior tensile properties as compared with those that would
have been obtained if the FIM was of the same type of the base material (BM). It
this respect, the yield stress of the consolidated FIM turned out to be about 70 %
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of that of the BM [164, 169].

Table 3.4. Mechanical properties of the joints with respect to the longitudinal direction
of the weld (MPa).

Yield stress Ultimate
tensile stress

HYB 163 254
FSW 175 281

3.3. Application of the Contour Method
The analysed plates were cut in half by means of the CDM Rovella 650© WEDM

following the red line in Figure 3.2 at a cut speed of 5 mm/min. The WEDM was
equipped with a 0.25 mm diameter brass coated wire whose core composition was
CuZn36. The cut of the two plates, respectively HYB and FSW, produced four half-
plates. According to Figure 3.2, H1 and H2 indicate the HYB half-plates, whereas
F1 and F2 indicate the FSW half-plates. The index P is then defined, which can
assume H1, H2, F1 and F2 to refer to a generic half-plate. Accordingly, the cut
generated surface of the half-plate P will be denoted by ΓP .

The measurement of the out-of-plane displacement of ΓP was carried out using the
Hexagon Global S© CMM with a contact probing system. The CMM had a resolution
estimated to be 1 µm, whereas the probe was a 1 mm diameter ruby spherical tip.
A reference frame {O, x, y, z} similar to that in Figure 2.1(a) was defined such that
the out-of-plane displacement of ΓP is oriented with respect to the z-direction, and
it will be denoted by uP

z , according to Section 2.1.
In order to measure uP

z the CMM followed a raster-scan pattern defined over ΓP .
Such a pattern covered a rectangular grid with a regular 0.75×0.25 mm grid-spacing
regarding the x and y-direction, respectively. The grid nodes are identified by the
couple of coordinates (xi, yi). The same grid-spacing was chosen for each pair of
half-plates, given that their dimensions were similar. Thus, a set of four displace-
ment maps was collected: uH1

z (xi, yi), uH2
z (xi, yi), uF1

z (xi, yi), uF2
z (xi, yi). In order to

accurately match the axes of the Cartesian coordinate system for the experimen-
tal measurement and those of the numerical model, the SVD was exploited, see
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Section 2.1.4.
Bivariate splines (Eq. (2.8)) were adopted to interpolate the acquired CMM data

uP
z (xi, yi). These splines were of third- and second-order, and had 27 and 7 nodes

both concerning the x- and y-direction, respectively. Differently from the traditional
application of the CM (Section 2.1), the each pair of half-plates was separately
analysed – this choice shall be clarified later though. Therefore, the interpolation of
uP

z (xi, yi) provided the functions denoted by ũH1
z (x, y), ũH2

z (x, y), ũF1
z (x, y), ũF2

z (x, y).
In order to model the geometrical characteristics of the probed surfaces, the

perimeter of the projection of uP
z (xi, yi) onto the x-y plane was computed, and this

perimeter enclosed the surface ΓP . Such a surface was then extruded to generate
the three-dimensional solid body, with the actual length of the experimentally tested
half-plates 3.2. Subsequently, the generation of the mesh was performed following
two steps using Gmsh [170]. Firstly, a mesh was generated over the enclosed surface,
where 28 and 160 elements were prescribed concerning the thickness and width of ,
respectively. The best-practice guidelines recommend to choose a FE size less than a
quarter of the spline nodal spacing with respect to both x- and y-direction [95]. The
selected number of elements along with the adopted spline nodal spacing complied
with such an empirical rule. In addition, a selective mesh refinement was performed
in the neighbourhood of the weld region, in order to better capture possible sharp
variations of RS. Secondly, the mesh was extruded along the third direction by im-
posing a finer mesh near ΓP and coarser far from ΓP . These steps provided meshes
counting 89600 volume elements.

The linear elastic FE simulation was carried out using code aster [171], a FE open-
source code and set according to Section 2.1. In this specific analysis, eight-node
brick elements with linear shape functions were utilised in the FE analysis. These
elements are called HEXA8 according to code aster nomenclature. Since the CM
allow to probe RS at the macro scale, the studied aluminium alloys were assumed
to be homogeneous and isotropic with Young’s modulus and Poisson’s ratio E =
70000 MPa and ν = 0.3, respectively. The FE simulation was repeated for each
half-plate resulting in the following set of RS maps σH1

zz (x, y), σH2
zz (x, y), σF1

zz (x, y),
σF2

zz (x, y).
Given that prior the WEDM cut, the couples of cut surfaces ΓH1 and ΓH2, and

ΓF1 and ΓF2 shared exactly the same stress state, in correspondence of the discrete
surface the back-evaluated RS values must be coincident with each other. As a
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consequence, it is appropriate to obtain a unique evaluation of RS for each plate.
Thus, the RS estimator for a plate was defined as:

σHYB
zz (x, y) = σH1

zz (x, y) + σH2
zz (x, y)

2 (3.1)

σFSW
zz (x, y) = σF1

zz (x, y) + σF2
zz (x, y)

2 (3.2)

Besides, the standard deviation of the estimators for a generic plate was also com-
puted:

UHYB
zz (x, y) = std(σH1

zz (x, y), σH2
zz (x, y)) (3.3)

UFSW
zz (x, y) = std(σF1

zz (x, y), σF2
zz (x, y)) (3.4)

Much attention was devoted to three critical paths over the surface ΓP : the top
(T), the middle thickness (M) and the bottom (B), see Figure 3.1. According to
Eq. (3.5)-(3.6), an index K is defined, which can assume T , M and B, to refer
to a generic path. Then the RS σP

zz(x, y) was extracted along a line positioned at
each path K. In the following, σP

zz(K) and UP
zz(K), will denote the RS σP

zz and UP
zz

extracted along the path K. Therefore for each path K, the related RS estimator
is:

σHYB
zz (K) ± UHYB

zz (K) (3.5)
σFSW

zz (K) ± UFSW
zz (K) (3.6)

Although the common protocol of the CM requires a single FE simulation is
required, it does not provide a measure of uncertainty on the final result. The
followed procedure slightly differed from such a protocol, given that the cut surfaces
were independently analysed, thus maintaining the displacement maps as separated.
As a consequence, two related FE were required for each pair of half plates. Although
this was a slight, yet elaborated, variation to the common CM procedure, it directly
provided the evaluation of the RS (Eq. (3.1)-(3.2)), along with a practical measure of
uncertainty related to the repeatability (Eq. (3.3)-(3.4)), which, enables accounting
for the RS distribution scatter across the examined samples.
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3.4. Results and Discussion

3.4.1. Weld Distortions
According to the literature, research has been devoted to study the relationship

between FSW-induced RS and the correspondent weld distortion. Identifying such
a relationship, however, was out of the scope of the present research. Nevertheless,
it is useful to report a qualitative analysis of the distortions of the welds and discuss
how they compared with the results from the literature.

The boundary of the x-y plane projection of uP
z (xi, yi) was numerically post-

processed to calculate the joint distortion of the considered samples, in correspon-
dence of the cut surfaces ΓP . Figure 3.3(a) shows the boundaries of ΓH1 and ΓF1,
whereas Figure 3.3(b) shows those of ΓH1 and ΓF1. The HYB distortion was char-
acterised by the deflection angle γ, evaluated with respect to the middle-thickness
line Figure 3.3. The angle γ turned out to be equal to 181.62° for H1 and 181.07°
for H2. The HYB half-plates exhibited a “V-shaped” distortion, which could be
quantified by the peak-to-valley range of the middle-thickness lines. These ranges
are about 1 mm and 0.8 mm for H1 and H2, respectively. Although ΓH1 and ΓH2

were the counterpart of each other, thus the peak-to-valley ranges should be equal,
the authors believe that this discrepancy could be justified by an uneven RS re-
laxation effect. Moreover, the approximately 0.5° of distortion present between the
two cut plates is negligible and can be due to several factors which are not strictly
related to the RS evaluation conducted in this study, i.e. inhomogeneous plastic
deformation in the transverse direction along the welding direction, CMM errors
which become amplified through the calculation process. As far as F1 and F2 are
considered, their joint distortion are so modest that it was not possible to detect
them according to the CMM resolution (Figure 3.3). Therefore, at this qualitative
level of analysis the deflection angle γ and the peak-to-valley range, can be assumed
as 180° and 0 mm for both F1 and F2. This negligible distortion was also observed
in the 306×306×6.5 mm AA6061-T6 FSW butt weld analysed in [163]. Despite the
plate geometry analysed in this work is slightly different to that of [163], the results
are in good agreement with each other. Interestingly, a characteristic “V-shaped”
distortion was also encountered with regard to a 600×315×3 mm AA6065-T6 FSW
butt weld found in the literature [161].

The higher HYB joint distortion may reasonably prompt to think that the HYB
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plate accommodated higher RS than the FSW plate. Nevertheless, the authors
of [162] identified an inverse relationship between joint distortion and RS for a FSW
220 × 110 × 3 mm AA6005-T6 plate. From a practical viewpoint, they showed the
more distortion the less RS. Thus, no qualitative results about RS can be fairly
inferred with regard to the HYB butt weld.

0 40 80 120 160
Width [mm]

0

1

2

3

4

T
h

ic
k
n

es
s

[m
m

]

γ = 181.62

F1 H1 H1 Distortion

(a)

0 40 80 120 160
Width [mm]

0

1

2

3

4

T
h

ic
k
n

es
s

[m
m

]

γ = 181.07

F2 H2 H2 Distortion

(b)

Figure 3.3. Boundaries of the cut surfaces ΓP and characterisation of the transverse
distortion for the HYB half-plates. The blue and the red lines represents the boundaries
of the HYB and FSW half-plates, respectively. The purple dot-dashed line is the middle-
thickness line of the HYB half-plates where the deflection angle γ was evaluated. (a)
Boundaries of ΓF1 (red) and ΓH1 (blue). (b) Boundaries of ΓF2 (red) and ΓH2 (blue). The
cut surfaces ΓH1 and ΓH2 exhibited a more pronounced traverse distortion as compared
with their FSW counterpart ΓF1 and ΓF2.
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3.4.2. Residual Stress
Figure 3.4(a)-(d) show the displacement maps of the elastic relaxation uP

z (xi, yi),
for H1, H2, F1 and F2. Since the z-position of the reference measurement plane x-y
is arbitrary, the data were translated to the mean value of the correspondent [95].
Quantitatively, the relaxation ranged from −0.07 mm to 0.06 mm for H1 and H2,
and from −0.05 mm, 0.04 mm for F1 and F2. In addition, the measured relaxations
uF1

z (xi, yi) and uF2
z (xi, yi) are consistent both in order of magnitude and in shape

with those observed for the 300 × 206 × 4 mm AA6061-T6 FSW butt welds in [154].
Herein, the weld region is enclosed between x = 79 mm and x = 93 mm for H1 and H2
half-plates, while for F1 and F2 this region lies between x = 70 mm and x = 88 mm.
Inside these regions it is possible to recognise uP

z (xi, yi) < 0. This physically means
that the material over each cut surface ΓP relaxed due to the presence of tensile RS
and therefore the cut surface was subjected to out-of-plane displacement pointed in
the inward surface direction. Despite the shape of the relaxation of H1 and H2 is
similar to that of F1 and F2, HYB half-plates show higher magnitudes of relaxation.
Consequently, higher tensile RS was already expected to be present in H1 and H2.
These qualitative observations are further corroborated by the CM evaluations.

The application of the CM provided the contours (Figure 3.5(a)-(d)) of the RS
induced by the two solid-state welding methods employed, namely σP

zz(x, y), for H1,
H2, F1 and F2. All these contours clearly identify a predominant tensile RS in-
side the weld and milder compressive RS in the regions outside the weld. The RS
distributions of F1 and F2 agree both in terms of trend and order of magnitude
with other comparable CM evaluations for 4 mm thick aluminium FSW butt welds,
already present in the literature [154, 155]. In particular, regarding the order of
magnitude, RS over the cut surfaces varying from −150 MPa to 100 MPa were re-
ported in [155], and from −50 MPa to 100 MPa were reported in [154]. Furthermore,
the contour maps highlight higher RS in H1 and H2, thus confirming the initial ob-
servation with regard to the relaxation ranges. Although the contours give a global
picture of the RS over the cut surface, they do not capture the RS distribution
with respect to the plate width. For this reason, the aforementioned three paths,
T , M and B, were drawn onto the cut surfaces ΓP , see Figure 3.5(a)-(d). These
paths were conceived to follow the distortion of the half-plates. Therefore, those
regarding H1 and H2 show the distinctive “V-like” shape, while those for F1 and
F2 are horizontal. The RS extracted along these paths, σP

zz(K), are depicted in the
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Figure 3.4. CMM-measured displacement maps uP
z (xi, yi) of the elastic relaxation of

P-th cut surface. All the half-plates were subjected to a relaxation which forced the
material inward the correspondent cut surface. (a) P=H1 (b) P=H2 (c) P=F1 (d)
P=F2.

61



3. Contour Method Residual Stress Evaluation in Solid-state Welded Joints

upper part of Figure 3.5(a)-(d), as well as the weld position and the indication of
the advancing side (ADVS) and retreating side (RETS). The T and B paths, were
taken slightly offset from the upper and the lower edges of the half-plate, given that
inaccuracies might arise as a consequence of unstable spline interpolation at those
boundaries. Moreover, the higher the spline order, the higher the instability is [172].
On the top of that, the RS evaluation might be less reliable near the perimeter of
the cut surfaces for two main reasons: i) WEDM cutting artefacts; ii) a minor elas-
tic deformation about the y-direction due to the elastic relaxation of the traverse
component of RS.

The outcomes just outlined, however, only represent an intermediate result of the
CM evaluation. In fact, these findings need to be combined using Eq. (3.1)-(3.2)
along with the evaluation of the associated uncertainties given by Eq. (3.3)-(3.4) to
obtain a more accurate evaluation of the RS fields for the two welds.

The evaluated RS, extracted along the K path, σP
zz(K), are depicted in Figure 3.6

and in Figure 3.7, for the FSW and HYB half-plates, respectively. As far as the FSW
butt weld is concerned, the paths revealed the classical “M-shaped” pattern. This
qualitative trend agrees well with earlier experimental studies on aluminium butt
welds, 3 mm thick [147], 4 mm thick [155], 8 mm thick [146], and also with steel butt
welds 3 mm thick [150, 152]. Intriguingly, a similar “M-shaped” pattern was retrieved
for the HYB butt weld. Generally, all the paths show high tensile RS within the
weld and a steep decrease moving towards the BM, reaching a compressive RS state,
similarly to what reported by other researchers [155]. The observed oscillations right
outside the weld could have been arisen for two main reasons: i) the heterogeneous
intrinsic RS present in the BM due to its manufacturing process (extrusion), thus
producing low-frequency oscillations; ii) the interpolation of the CM measurement
noise which generates high-frequency oscillations. The latter class of fluctuations
would have been reduced if the CMM measurements had been smoothed more.
However, this in practice cannot be carried out since it would smear the significant
gradients of RS, particularly those in correspondence of the weld affected zone;
for instance the “M-like” shape inside the weld would have been aliased. For this
reason, it appears to be very important to judiciously choose the most appropriate
interpolation functions. According to Eq. (3.5)-(3.6), the RS estimators and their
associated interval bands are depicted in Figures 3.6-3.7. These bands account for
the CM evaluation repeatability and represent the values in the range σHYB

zz (K) ±
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Figure 3.5. Results of the CM RS evaluation of each of the P -th cut surface. Each
picture shows in its lower part the contour of the RS over the related cut surface ΓP ,
namely σH1

zz (x, y). Three paths were drawn onto ΓP to extract the RS data. With respect
to the thickness of ΓP , these path are located at its top (T ), middle-thickness (M) and
bottom (B). The RS extracted along the three paths are named for K = T, M, B, and
are shown in the upper part of each picture. Black, purple and green were respectively
associated to the T , M and B paths in order to distinguish the extracted RS data. In
addition, the advancing side (ADVS), the retreating side (RETS) and the weld position
are indicated. (a) P = F1. (b) P = F2. (c) P = H1. (d). P = H2.

UHYB
zz (K) (Figure 3.6) and σFSW

zz (K) ± UFSW
zz (K) (Figure 3.7). Therefore, the bands

provide a confidence interval of approximately 68%. Given that narrower bands are
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present on the edge of the ADVS and RETS, in such regions the evaluated σFSW
zz (K)

and σHYB
zz (K) accurately predict the RS. However, wider bands were encountered in

correspondence of the ADVS and RETS peaks. Although a better estimation of the
confidence intervals, may improve the accuracy of the estimated errors, for instance
by performing more WEDM cuts on the same butt weld, the computed confidence
intervals are appropriate to discuss the following result. To date, the user could
refer to [98], in which the uncertainty quantification of the CM was addressed.

With regard to FSW, the combination of the peripheral speed of the pin and
the welding feed speed is generally responsible for asymmetries between the two
observed tensile RS peaks in correspondence of the heat-affected zone, in terms of
magnitude. Physically, the relative speeds between the rotating pin and the BM
is different between the ADVS and RETS sides, respectively. This intrinsic feature
of the FSW process, produces higher frictional heat at the RETS and consequently
more severe temperature gradients at the ADVS. Therefore, higher RS should be
expected at the ADVS [153–156]. Concerning the M and B paths, Figure 3.6(b)-(c),
this behaviour is little intense, leading to comparable magnitudes of the two tensile
peaks. However, the confidence interval of the M path does not preclude a more
accentuated asymmetric behaviour. Conversely, the asymmetry is evident for the T

path. Because of the analogy between HYB and FSW processes, the asymmetric
tangential speed at the ADVS and RETS lead to the same conclusion for the HYB,
conceptually. Nonetheless, such an asymmetry is exacerbated (Figure 3.7(a)-(c)).

A critical comparison between the two analysed welds can underline several simil-
itudes and differences. The M path of the FSW joint is the most critical, followed
by T and B, in terms of highest magnitudes of RS, see Figure 3.6(d). On the other
hand, in the HYB joint the RS intensity within the weld is comparable, see Fig-
ure 3.7(d). Quantitatively, the predicted RS peaked along the path M at the ADVS
and at the RETS at about 165 ± 15 MPa and 155 ± 5 MPa as concerns the FSW
butt weld, whereas at 205 ± 25 MPa and 180 ± 5 MPa for the HYB butt weld. In
order to provide an immediate comparison between these findings and those from
the literature, Table 3.5 was reported to summarise the welding process, the mate-
rial, the welding parameters and the magnitudes of the RS peaks detected along the
middle-thickness path (M). The present findings regarding the FSW sample concur
well with those reported in the literature concerning the butt welds performed on
AA6061-T6 plates 270 × 250 × 8 mm and 300 × 206 × 4 mm plates, even though dif-
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Figure 3.6. RS estimator for the K-path σFSW
zz (K) and associated uncertainty UFSW

zz (K)
computed from σF1

zz (K) and σF2
zz (K). The filled area enclosed between σF1

zz (K) and
σF2

zz (K) graphically represents UFSW
zz (K), thus corresponding to a confidence interval of

about 68% for σFSW
zz (K). (a) K = T . (b) K = M . (c) K = B. (d) Comparison

between the RS estimators σFSW
zz (K) evaluated along the path K = T, M, B. The

ADVS, the RETS and the weld position are also indicated.

ferent aluminium alloys were involved [154]. In [154], although the classical “M-like”
shape pattern was not clearly distinguishable, analogous paths were analysed. In
the totality of RS profiles reported in the literature, the middle-thickness path (M)
turned out to be the most critical, followed by T and B, for both the analysed 4 mm
and 8 mm thick FSW butt welds, which agrees with the results presented herein.
Notwithstanding the different thickness, the RS magnitudes reached at the ADVS
and RETS were respectively 163 MPa and 100 MPa for the 8 mm thick plate, with
a very good agreement with those found in the present study of the FSW. Similar
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Figure 3.7. RS estimator for the K-path σHYB
zz (K) and associated uncertainty UHYB

zz (K)
computed from σH1

zz (K) and σH2
zz (K). The filled area enclosed between σH1

zz (K) and
σH2

zz (K) graphically represents UHYB
zz (K), thus corresponding to a confidence interval of

about 68% for σHYB
zz (K). (a) K = T . (b) K = M . (c) K = B. (d) Comparison

between the RS estimators σHYB
zz (K) evaluated along the path K = T, M, B. The

ADVS, the RETS and the weld position are also indicated.

agreement was also found with regard to the 4 mm thick plate from the literature,
the RS peaked at the ADVS and RETS at 154 MPa and 130 MPa, respectively. Ad-
ditional support to this conclusion is provided by the results reported in [155], in
which a full-factorial sensitivity analysis of FSW was addressed. The aim of the
study was to establish the influence of the welding parameters on the induced RS.
In particular, a set of AA2024-T3 200 × 30 × 4 mm FSW butt welds was analysed.
Peak values of 145 MPa and 125 MPa were observed at the ADVS and RETS, re-
spectively. Such values were retrieved by combining a fixed welding feed speed of
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140 mm/min with different pin rotation speeds from 800 rpm to 1600 rpm. Despite
the different material employed in [155], the reported peak values are remarkably
close to those found in the present study.

Finally, from the cross-comparison between the HYB- and the FSW-induced RS
along the T, M and B paths, it is evident that HYB produced higher RS magnitudes
into the region affected by the joining process.

Apart from the continuous extrusion and injection of the filler material, HYB
and FSW are two similar friction-driven welding methods. With regard to FSW,
earlier studies has demonstrated the dependence of RS upon welding parameters and
materials being welded [153–156, 74]. Although the present research was the first
attempt to characterise RS in HYB, the authors believed that different materials
(BM and FIM) and HYB welding parameters might influence the RS distribution
as well.

It is worth observing that if unprocessed plates were involved, i.e. neither extru-
sion nor solid-state welding, in principle the CM would have provided null residuals
stress over the WEDM cut surface. Nonetheless, measurement noise would have
affected the CM evaluation by generating fluctuations in the final result. On the
other hand, if the plates were extruded but not solid-state welded, only the RS in-
herited from the extrusion process would have been retrieved. Still, measurement
noise might have affected the RS evaluation.
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3.4.3. Origin of Residual Stress
Light onto the origin of longitudinal RS in welding, or more specifically in FSW,

was already shed [173]. To interpret this phenomenon, it is useful to consider small
element volume of the BM AA6082-T6 located at the edge of the weld nugget. As
far as the FSW is concerned, the blue solid line in Figure 3.8 describes a schematic
example of the temperature-stress history experienced by this volume. Figure 3.8
also reports for the BM examples of tensile, σ+

y , and compressive, σ−
y , yield stress

curves as a function of the temperature (black solid line). Besides, Tmax indicates
the maximum temperature which is expected to occur within the weld nugget. In
addition, Tmelt is the melting temperature of the BM. Essentially, the approaching
heat source (rotating pin) ensures that the considered volume of material increases
its temperature (line AB in Figure 3.8) and expands. This thermal expansion is
constrained by the surrounding material and therefore a compressive RS is generated
within the material at the heat source (line AB). Due to the combination of high
temperature and high compressive RS, the material reaches the compressive yield
stress (point B) and deforms plastically (line BC). As the heat source overtakes
the same volume of material (line BC), a cooling process begins (point C) which
makes the material to shrink (line CD). This shrinkage is again constrained by the
surrounding material and therefore tensile stress takes place in the weld (point D).
Given that the contraction occurs in the linear elastic regime of the material, in
this instance, the amount of tensile stress generated is higher than the compressive
stress arose in the expansion stage. For this reason, tensile RS is originated at the
end of the welding (point D). In the particular case of FSW, the heat source is not
uniform within the welding due to the higher friction generated at the material/tool
interface, and for this reason two tensile peaks are generally found (Figure 3.6).

Regarding the HYB technique, same considerations done for the FSW still hold.
Yet, a significant difference is made by the presence of a second material (FIM)
showing different elastoplastic properties (black dashed yield stress curve in Fig-
ure 3.7 when compared with the BM. It is important to remark that the FIM had
undergone a drawing process before being employed in the welding process. Such
a wire-pre-process introduces work hardening that increased its yield stress level.
Nevertheless, the work hardening effect is cancelled as soon as the material enters
the rotating pin, thanks to the dynamic recovery triggered by the temperatures
reaching values as high as 400 °C [174]. Therefore, most of the ductility of the FIM
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is regained and the yield stress becomes lower than that of the BM. Furthermore,
Tmax and Tmelt are supposed to be equal for the FIM. The latter temperature is
generally true, while the former might differ for the two processes. In fact, under
some circumstances HYB might generate slightly lower temperatures than those of
FSW [175]. Therefore, this physical interpretation can be considered valid as long as
the difference between the maximum temperature due to HYB, and FSW, is negligi-
ble – it is the case of the present study. The red dashed line in Figure 3.8) represents
a schematic temperature-stress cycle of a small volume of FIM AA6082-T4, which is
located at the edge of the weld nugget. In this study, the FIM shows a substantially
lower yield stress. This characteristic makes sure that during the material expansion
stage (line A′B), the FIM builds up compressive stresses that are lower than what
the BM would do (line AB). As a consequence, during the cooling stage (line C ′D′),
the constrained material shrinkage allows the RS to reach higher values of tension
(point D′).

Figure 3.8. Temperature-stress cycles experienced by a small volume element of: BM
AA6082-T6 (blue solid line ABCD) and FIM AA6082-T4 (red dashed line A′B′C ′D′).
In both cases, such a volume element is assumed to be located at the edge of the weld
nugget. The yield stress vs. temperature curve of the two materials are reported.
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3.5. Conclusions
This part of the dissertation considered a 4 mm thick AA6082-T6 HYB butt weld

performed using an AA6082-T4 as the FIM, and a 4 mm thick AA6082-T6 FSW butt
weld. Specifically, the full-field longitudinal RS state of these joints was evaluated
employing the CM. In particular, this research has addressed for the first time the
RS evaluation in a HYB butt weld.

The RS analysis unveiled similar RS distributions for both HYB and FSW butt
welds, i.e. tensile RS in the weld region and milder compressive RS within the
neighbouring regions of the weld affected zone. The RS distributions exhibited two
tensile peaks respectively observed at the ADVS and the RETS of the FSW butt
welds, describing the peculiar “M-like” shape RS pattern, also seen in other previous
studies reported in the literature. Additionally, the “M-like” shape RS pattern was
retrieved for the HYB butt weld. A key difference was revealed between the two
welds, that is significantly higher tensile RS magnitudes present in the HYB, both at
the ADVS and RETS. Quantitatively, the RS attained its maximum at the ADVS at
205±25 MPa. By contrast, the FSW joint showed its maximum value of tensile RS at
the ADVS as high as 165 ± 15 MPa. Additionally, this study showed a methodology
to obtain an appraisal of the uncertainty involved in the RS assessment, which is,
however, limitedly focussed on the repeatability of the CM evaluation. Although
the guidelines in Ref. [95, 96] were followed to fit the displacement data, they still
retain much arbitrariness in the selection of the fitting parameters. This, in turn,
hampers the quantification of the uncertainties arising from this crucial stage of the
CM. Therefore, a probabilistic and systematic strategy to address this limitation
must be sought.

A physical interpretation has been proposed to explain the discrepancy in terms
of RS magnitude between the analysed welds. In this respect, the higher RS in the
HYB butt weld stemmed from the presence of the softer FIM, which is exclusively
employed in HYB. In fact, the lower yield stress threshold of the AA6082-T4, as
compared with the AA6082-T6, was responsible for a lower compressive RS when
the material reached the maximum temperature during the process. Such a lower
value then induced a higher tensile RS when the material cooled down and the
constrained shrinkage process occurred.

Alongside, a qualitative analysis of the weld inherent transverse distortion was
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performed, even though it was ancillary to the present RS investigation. Despite
this, a distinctive “V-like” distortion for the HYB weld of approximately 1.4°was
detected. On the other hand no significant joint distortion was observed for the
FSW.

The results presented herein will definitively be helpful to develop new strategies to
mitigate the presence of RS and thus improving the structural integrity performance
of HYB welded structures.
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4. Gaussian Process Regression
Uncertainty Quantification for the
Contour Method

The present chapter addresses the issues of quantifying the uncertainty arising from
the fitting stage of the CM. In particular, GPR is harnessed to replace traditional
splines. Since the uncertainty quantification reduces to a FE Monte Carlo simula-
tion, which may be relatively computationally demanding, an optimisation strategy
is presented to accelerate its accomplishment.

4.1. Introduction
Besides the numerous RS assessments for FSW joints and HYB butt-welds re-

viewed in the previous chapter, the CM has found a number of applications into
a variety of problems where the evaluation of RS was sought. For instance, the
CM was applied to investigate RS: due to different manufacturing processes [176–
178]; due to surface treatments [179, 172]; in axisymmetrical components [180–182];
in fusion-welded materials [183–187]. Due to the relatively young age of the CM,
however, little research has been devoted to the problem of uncertainties arising
throughout the RS evaluation process.

Although and rough appraisal of the repeatably for the CM can be attained using
the strategy presented in Section 3.3, the problem of uncertainty related to the nu-
merical manipulation of the experimentally measured displacement data has been
only preliminary addressed by Olson et. al [98]. The authors of [98] accounted
for two crucial sources of error: (i) the uncertainty in the experimentally acquired
displacement data; (ii) the uncertainty arising as a result of the displacement data
interpolation and smoothing. These uncertainties propagate throughout the opera-
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tional steps of the CM and eventually influence the results in terms of RS. Specifi-
cally, the source of error (i) can be separated as the sum of two contributions: the
material surface roughness and the intrinsic measurement error of the used mea-
suring machine (usually CMM), and thus being of stochastic nature. As such, this
error can be quantified using a Monte Carlo approach, for a certain number of tri-
als (numerical calculations), by adding a normally distributed random noise to the
measured data. The error induced by (i) is then given by the standard deviation
of RS from the Monte Carlo simulations. The source of error labelled as (ii) derive
from the arbitrariness in selecting the bivariate spline parameters (nodes & degree,
see Eq. (2.8)) to interpolate the out-of-plane displacement data [95, 96, 98]. Some
identification strategies of the bivariate splines are proposed by the literature, based
upon a trade-off between appropriately capturing the gradients of the measured
out-of-plane deformation and filtering out the noise already expected in the exper-
imental measurement. It is evident how the process is massively influenced by the
operator’s experience when selecting the fitting parameters involved, i.e. the degree
of the tensor product surface and the number of nodes of the interpolation grid, see
Eq. (2.8).

For this reason, a robust evaluation of the error due to the interpolation process
becomes unrealistic in the present state-of-the-art. Assuming that the interpolation
process was sufficiently accurate, possibly owing to the user’s experience in the
use of the CM, Olson et al. proposed to assess the model error by retrieving the
standard deviation of the RS computed by the CM for different values of the spline
fitting parameters [98]. Finally, the total error due to the contribution of error (i)
& (ii) was essentially computed by taking their quadrature. Indeed, the method
was applied on a set of five Al alloy samples. More recently, this approach has
been successfully applied also to an aluminium T-section, a stainless steel dissimilar
plate, a titanium electron beam welded plate, stainless steel and a nickel based alloy
forged specimen [188].

As outlined before, the Olson et al. state-of-the-art approach to uncertainty
quantification may be effective in some cases. Nevertheless, it would seem to lack
robustness, thus highly affected by user’s experience and confidence. Earlier research
proposed a more sophisticated identification strategy of the fitting parameters [99].
Still, it appeared deterministic and influenced by user’s experience and ability.

An advanced and powerful solution to tackle the central issue of the uncertainty
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quantification involved in the CM is through GPR [102, 110] whose details are
illustrated in Section 2.4. Additionally, this GPR can automatically account for
the inherent uncertainty of the input dataset. Only in recent years, GPR has been
applied to tackle engineering problems, demonstrating its effectiveness to model
random phenomena pertinent to this field. For instance, the engineering research
community applied GPR to predict the water inflow into tunnels [189], the maximum
vertical displacement of a bridge subjected to uncertain load conditions [190], the
mechanical response of marine structures [191], pile load bearing capacity [192],
blast-induced ground vibration [193], and in control theory [194]. The application
of GPR in solid mechanics is still extremely scarce, but its potential is incredibly
attractive, particularly if applied to uncertainty determination problems or material
response behaviour.

A GPR-based approach is developed herein to address the outstanding issue re-
lated to the uncertainty quantification of RS when employing the CM. Dedicated
optimisation tools are used to minimise the influence of user’s confidence on the
numerical processing of the input displacement data [195], and to devise a robust
and accurate calculation framework. Firstly, GPR is applied to fit the out-of-plane
displacement of each half-plate obtained from the CMM measurement after the ma-
terial cut, and to quantify the uncertainty of the fitting predictions. Following, each
half-plate is independently analysed, thus deliberately differing from the traditional
CM procedure; effects of this choice will be discussed. In this respect, each fitted
displacement is used as a boundary condition in a separate numerical simulation
to carry out the RS evaluation of the correspondent half-plate. In particular, a
Monte Carlo approach is pursued to numerically perturb the boundary condition
(prescribed displacement) according to the GPR-estimated uncertainty. This al-
lowed for the appraisal of the uncertainty associated with the local perturbation.
Eventually, the results of the Monte Carlo trials are statistically post-processed to
obtain both the expected value of RS and its associated uncertainty. Alongside, an
optimised open-source computational framework is set up to reduce the computa-
tion effort required to run the Monte Carlo simulations. In order to demonstrate
the effectiveness of the presented methodology, a friction stir welded (FSW) alu-
minium plate is considered as a case study. Eventually, the performance of the
proposed method is critically discussed, and the major improvements with respect
to the previously used evaluation framework are highlighted.
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4.2. Case Study: Friction Stir Welded Al Butt Joint
An AA6082-T6 FSW butt-welded plate was used to developed the present GPR-

based uncertainty quantification framework for the CM. This plate was similar to
that previously analysed in Chapter 3. Figure 4.1 shows the characteristics of the
FSW butt-welded joint studied here such as, the dimensions of the analysed plate,
the position of the ADVS & RETS, and the welding direction. Whilst Table 4.1
gives the chemical composition of the parent Al alloy.

Figure 4.1. The FSW plate analysed to develop the GPR-supported uncertainty quan-
tification approach (dimensions in mm). According to the CM procedure the plate was
cut in half in correspondence of the WEDM cut surface Γ, which is indicated in blue.

Table 4.1. Chemical composition of the commercial AA6082-T6 (wt%).
Si Mg Mn Fe Cu Ti Al

AA6082-T6 1.00 0.65 0.50 0.20 0.03 0.02 Balance

A CDM Rovella 650© WEDM was used to section the FSW plate along its cross
section. The reference position of the cut surface is shown in Figure 4.1. The cut
was performed using a wire of 0.25 mm diameter. The core of the WEDM wire
was composed of CuZn36, whereas its external surface was brass-coated. The cut
provided two half-plates, namely F1 and F2 (Figure 4.1) of equal length and two
correspondent cut surfaces, ΓF1 and ΓF2. Low-roughness of the cut surfaces was
ensured by selecting a WEDM cutting speed of 5 mm/min.

The obtained surfaces ΓF1 and ΓF2, exhibited the expected out-of-plane deforma-
tion promoted by this stress relaxation, and its measurement was carried out by
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means of a Hexagon Global S© CMM equipped with a 1 mm diameter ruby spheri-
cal probe. Two identical raster-scan patterns were defined both ΓF1 and ΓF2, which
consisted of a regular grid whose nodal spacing was 0.75 × 0.25 mm. Following the
defined raster-scan pattern, the CMM probed the cut surfaces ΓF1 and ΓF2 giving
the displacement maps shown in Figure 4.2(a) and Figure 4.2(b). In Figure 4.2,
the couple (xi, yi) refers to the coordinates of the grid node where the displacement
value of uF1

z (xi, yi) and uF2
z (xi, yi) were sampled. The index h assumes either F1 or

F2 to refer to the out-of-plane displacement of ΓF1 and ΓF2, respectively.

(a) (b)

Figure 4.2. Maps zh of the out-of-plane displacement elastic relaxation of the FSW
half-plates. (a) h = F1 (2) h = F2.

4.3. Computational Procedure

4.3.1. Finite Element Model
Aiming at performing the CM evaluation of RS in the FSW plate, a three-

dimensional FE model was realised, Figure 4.3. The dimensions and geometry of
the model were chosen to comply with those of the obtained half-plates (Figure 4.1).
The 3D domain was then discretised with 70200 tetrahedral elements opportunely
distributed over the domain, using Gmsh [170]. In this instance, xm indicates the
mesh node lying on Γh, whose coordinates are (xm, ym). The simulation was set ac-
cording to Section 2.1. Additionally, since a purely elastic relaxation is hypothesised,
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the material was assumed as homogeneous and linear elastic. Therefore, E = 70000
MPa and ν = 0.3 were adopted respectively as Young’s modulus and Poisson’s ratio.

Figure 4.3. Exemplification of the FE model used for both the half-plates F1 and
F2. The discretisation was performed using tetrahedral elements. The interpolated
displacement (not to scale) is indicated in purple and it was applied on the cut surface Γ
as a boundary condition. The additional boundary conditions prescribed on the corners
of the cut surface are used to suppress rigid body motions. Note that the mesh is not
representative of that employed in the present analysis.

Similarly to Chapter 3, the current application of the CM differed from its stan-
dard protocol [41] as the half-plates F1 and F2 were independently analysed. The
method devised herein may overcome the possible arbitrariness of the averaging op-
eration, provided that the presence of shear residual stress is negligible. Indeed, the
method would compensate for the mismatch in terms of stress that the cut could
have been induced since, in principle, each half-plate had shared the same RS state
before the cut occurred.

4.3.2. Application of Gaussian Process Regression
The present section illustrates the application of GPR to interpolate the out-of-

plane displacement maps obtained from the CMM measurements. For the sake of
clarity, the following explanation will refer to a single half-plate. Nevertheless, in
this case study the procedure was replicated identically to the counterpart.

Let us assume that the point of this topography form the dataset as indicated in
Eq. (2.54). As shown in Section 2.4, the topography uh

z (xi, yi) is modelled according

78



4.3. Computational Procedure

to Eq. (2.55), hence:

uh
z (xi) = fh(xi) + ε; ε ∼ N (0, σ2

n) (4.1)

where xi =
[︂
xi yi

]︂
, and σ2

n is the variance of the zero-mean noise ε. A GP was
placed over fh, see Eq. (2.56). Since no prior is available for the present model,
the mean was assumed as M = 0. This assumption is not limiting as most of the
kernels used in practice are universal approximators: the space of functions that
can be represented with a GP with a universal kernel is dense with respect to the
space of continuous functions. Therefore, GPR holds the ability to approximate
arbitrarily well any continuous function over a compact set [196]. Although various
kernels are available in the literature [102], because of its universality and wide use
[196], the squared exponential kernel was considered. This kernel is obtained from
Matern’s (Eq. (2.57)) upon setting ξ → ∞, thus resulting in:

K(xi, xj) = C exp
[︄

− (xi − xj)⊤(xi − xj)
l2

]︄
. (4.2)

where C and l are the hyperparameters. In this case, the hyperparameters has a
physical interpretations. Particularly, C represents how much the function fh can
span. By contrast, given two generic samples uz(xi) and uz(xj), l is the length scale
that quantifies how much the correlation between these samples decreases as their
relative distance

√︂
(xi − xj)⊤(xi − xj) increases. For the sake of convenience, these

are collected in the vector θ =
[︂
C l

]︂⊤
. Essentially, the application of GPR replaces

the splines of Eq. (2.8) in the fitting stage of the CM.
The computational implementation of GPR was performed using the Python mod-

ule scikit-learn [195]. Upon incorporating the additive noise σn = 1 µm for the input
dataset, the optimised hyperparameters for f1 and f2 were identified by maximising
the log-likelihood of the given dataset Eq. (2.58). Alongside, the identified hyper-
parameters for both f1 and f2 are given in Table 4.2.

It should be noted that σn quantifies the noise embedded in the experimental mea-
surements. This assumption aimed to estimate the uncertainty due to the CMM
resolution and the surface roughness of the cut surface. A potential strategy to esti-
mate this value more accurately would be the roughness measurements of a WEDM
cut on a stress-free component, which is directly linked with the WEDM process
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Table 4.2. Hyperparameters for f1 and f2.
C∗ l∗

[mm2] [mm]
f1 0.0134 8.07
f2 0.0193 8.68

parameters. Conversely, the CMM uncertainty is provided by the manufacturer.
Through the newly proposed approach the user has the capability to promptly set
different values of σn when this parameter in not known to evaluate its impact of
the evaluated RS field.

Once the hyperparameters were computed, the prior mean and the kernel function
were determined. Therefore, it was possible to make predictions at a new input xm,
in terms of mean Mp(xm) and variance Kp(xm, xm) given by Eq. (2.60)-(2.61).

4.3.3. Computation of Residual Stress
Exploiting the hyperparameters in Table 4.2, the displacement map was forecast

at every mesh node xm belonging to the cut surface of the related half-plate. The
predicted value of the z-displacement at xm will be denoted by um – the super-
script z of the out-of-plane displacement is implicitly assumed. This prediction
is characterised by its expected value E[um] and its uncertainty

√︂
V[um], i.e. the

standard deviation. According to Eq. (2.60))-(2.61), these quantities are given by
E[um] = Mp(xm) and

√︂
V[um] =

√︂
Kp(xm, xm). Hence, the displacement boundary

condition of the FE model shown in Figure 4.3 was prescribed by imposing E[um]
at the related mesh node xm along the z-direction.

The FE simulation was conducted exploiting the open source FE platform FEniCS
[197, 198]. The distinctive code structure of the FEniCS solver allowed for the access
and manipulation of the linear FE system of equations, according to the Direct
Stiffness Method (or displacement based method):

Ku = b (4.3)

where K is the model stiffness matrix, u is the unknown nodal displacement vector
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and b is the known force vector. The expansion of Eq. (4.3) leads to:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 k12 k13 k14 . . . k1s k1r . . . k1N

k21 k22 k23 k24 . . . k2s k2r . . . k2N

k31 k32 k33 k34 . . . k3s k3r . . . k3N

k41 k42 k43 k44 . . . k4s k4r . . . k4N

... ... ... ... . . . ... ... ... ...
ks1 ks2 ks3 ks4 . . . kss ksr . . . ksN

kr1 kr2 kr3 kr4 . . . krs krr . . . krN

... ... ... ... ... ... ... . . . ...
kN1 kN2 kN3 kN4 . . . kNs kNr . . . kNN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4
...

us

ur

...
uN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4
...
bs

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.4)

where the i-th row of the system is associated with a specific degree of freedom (DOF)
of each node of the model, in total N . Note that the following explanation still holds
regardless of the order of the rows in Eq. (4.4). For the sake of clarity, the DOFs
of the problem are sorted as shown in Eq. (4.4), i.e. the non-zero bi ∀ i = 1, 2, . . . , s

at those DOFs where a displacement boundary condition was imposed. Conversely,
the null entries bi ∀ i = r, . . . , N correspond to the unconstrained DOFs. After the
application of the boundary conditions, i.e. the displacement boundary condition
and the additional boundary conditions to prevent rigid body motions (Figure 4.3),
Eq. (4.4) is conveniently transformed as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 . . . 0 0 . . . 0
0 1 0 0 . . . 0 0 . . . 0
0 0 1 0 . . . 0 0 . . . 0
0 0 0 1 . . . 0 0 . . . 0
... ... ... ... . . . ... ... ... ...
0 0 0 0 . . . 1 0 . . . 0

kr1 kr2 kr3 kr4 . . . krs krr . . . krN

... ... ... ... ... ... ... . . . ...
kN1 kN2 kN3 kN4 . . . kNs kNr . . . kNN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4
...

us

ur

...
uN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

E[u4]
...

E[us]
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.5)

The N ×N matrix on the left-hand side of Eq. (4.5) is the modified stiffness matrix,
and it is named as K′. The right-hand side of this equation consists of the modified
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load vector, which is labelled as b′. Herein, load is intended in its broad sense
as it embodies the knowledge of the imposed nodal displacements E[um]. For the
particular problem presented here, the first three rows of Eq. (4.5) are associated to
the constrained DOFs by the nodal boundary conditions employed to cancel rigid
body motions, i.e. ui = 0 ∀ i = 1, 2, 3. The rows from 4 to s are related to the
z-DOFs of the mesh nodes xm belonging to the cut surface Γh. Therefore, the
corresponding equations give ui = E[ui] ∀ i = 4, . . . , s.

The numerical rearrangement just outlined enabled all the known quantities in-
volved in the model to be gathered in a single vector, i.e. that on the right-hand
side of Eq. (4.5). Such a unique characteristic of the system in Eq. (4.5) permitted
a random disturbance vector to be introduced on the right-hand side of Eq. (4.5),
thus perturbing the imposed boundary conditions:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 . . . 0 0 . . . 0
0 1 0 0 . . . 0 0 . . . 0
0 0 1 0 . . . 0 0 . . . 0
0 0 0 1 . . . 0 0 . . . 0
... ... ... ... . . . ... ... ... ...
0 0 0 0 . . . 1 0 . . . 0

kr1 kr2 kr3 kr4 . . . krs krr . . . krN

... ... ... ... ... ... ... . . . ...
kN1 kN2 kN3 kN4 . . . kNs kNr . . . kNN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4
...

us

ur

...
uN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

E[u4]
...

E[us]
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

N(0,V[u4])
...

N(0,V[us])
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.6)

The non-zero entries of the disturbance vector are given by a Gaussian random
noise having variance equal to V[um], over the prediction E[um]. By defining bp as
the disturbance vector, Eq. (4.6) is contracted as follows:

K′u = b′ + bp (4.7)

The system in Eq. (4.7) was repeatedly solved for both the half-plates F1 and
F2 as in a standard Monte Carlo simulation. Aiming at optimising the overall
computational process of the simulation, the LU-factorisation of K′ was computed
only once and then employed for the computation of the nodal displacements in each
simulation of the Monte Carlo approach. Subsequently, through Eq. (4.3) the nodal
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reaction were computed. Lastly, the RS was evaluated.
The total number of simulations M was arbitrarily set to 1000. Each i-th sim-

ulation provided the full-field RS over the correspondent cut surface ΓF1 and ΓF2,
namely σ

(i)
zz,1(x, y) and σ

(i)
zz,2(x, y). Following, σ

(i)
zz,1(x, y) and σ

(i)
zz,2(x, y) were collated

in the set R(i)(x, y) (the dependence on the coordinates is omitted for each σ
(i)
zz,k

to lighten the notation, whereas it is kept for R(i)(x, y) to explicitly indicate the
dependence of R(i) on the spatial coordinates):

R(i)(x, y) = {σ
(1)
zz,1, σ

(1)
zz,2, σ

(2)
zz,1, σ

(2)
zz,2, . . . , σ

(i)
zz,1, σ

(i)
zz,2} (4.8)

As mentioned in Chapter 3, before the WEDM cut occurred, the cut surfaces ΓF1 and
ΓF2 had been the counterpart of each other and, in principle, had shared exactly
the same RS state. Hereafter, the cut surface will univocally be indicated as Γ.
Furthermore, the related RS state of Γ at the i-th iteration will be denoted by
σ(i)

zz (x, y) and its associated uncertainty by U (i)
zz (x, y). According to the set of results

R(i)(x, y) (Eq. (4.8)), the expected RS stress (mean) σ(i)
zz (x, y) and U (i)

zz (x, y) were
computed by means of:

σ(i)
zz (x, y) = E[R(i)(x, y)] (4.9)

U (i)
zz (x, y) =

√︂
V[R(i)(x, y)] (4.10)

where the operators E[□] and V[□] act as pointwise with respect to each mesh node
(xm, ym) ∈ Γ. As common in the FE post-processing, σ(i)

zz and U (i)
zz were interpolated

among the mesh nodes to obtain their full-field maps over Γ. Such an interpolation,
was performed after the application of E[□] and V[□] (Eq. (4.9)-(4.10)). These
computations, led to the final result:

σ(i)
zz (x, y) ± U (i)

zz (x, y) (4.11)

Given that U (i)
zz (x, y) is the standard deviation of the expected value of RS, it rep-

resents a confidence interval of approximately 68%.
The number of trials for the Monte Carlo simulation was set to 1000. However,

the convergence of the simulation was periodically monitored through the following

83



4. GPR Uncertainty Quantification for the Contour Method

residual indicator:
γi = ∥σ(i−1)

zz (x, y) − σ(i)
zz (x, y)∥1

∥σ
(i−1)
zz (x, y)∥1

(4.12)

where σ(j)
zz (x, y) is the expected value in Eq. (4.9) calculated at the j-th iteration,

and ∥ · ∥1 is the 1-norm pointwisely computed with respect to each mesh node
(xm, ym) ∈ Γ:

∥σ(j)
zz (x, y)∥1 =

∑︂
m∈S

|σ(j)
zz (xm, ym)| (4.13)

Therefore, Eq. 4.12 gives:

γi =
∑︁

m∈Γ |σ(i−1)
zz (xm, ym) − σ(i)

zz (xm, ym)|∑︁
m∈Γ |σ(i−1)

zz (xm, ym)|
(4.14)

In this regard, the convergence could be considered as reached when γi is less than
a threshold value γth opportunely selected.

The developed computational framework is briefly illustrated in Algorithm 1.
Additionally, Algorithm 1 allows for certain flexibility in computing RS. In this in-
stance, if the uncertainty quantification were of marginal interest for the users, they
would perform the GPR on the input displacement data, impose bp = 0 and run
Algorithm 1 once. In this case, the convergence check would not be required. Al-
ternatively, the user would perform GPR only to smooth the experimental dataset
disregarding the uncertainty quantification and pursue the traditional CM proce-
dure.

It is important to mention that the computation of the standard deviation as in
Eq. (4.10) may overestimate the uncertainty compared to the standard CM proce-
dure, in particular instances. Moreover, probed samples containing relevant amount
of shear residual stress may induce an out-of-plane displacements mismatch between
the two cut surfaces. In the present case-study, the residual shear stress is thought to
play a negligible role, although not fully confirmed, so a first estimate of the sample
repeatability error was sought. As introduced in Section 3.3, this error allows tak-
ing into account potential RS distribution scatter across the probed samples. This
uncertainty could be reduced if more samples of the same plate were available. Un-
fortunately, this aspect could not be verified, given the limited number of data (only
two cut surfaces). Therefore, a reliable estimate of the error due to the analysis of
multiple samples, i.e. the repeatability error [199, 188] could not be accomplished.
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In this instance, the overestimation of the uncertainty provided by Eq. (4.10) could
be seen as a means to compensate for: i) the averaging uncertainty that is often
underestimated or neglected when pursuing the standard CM procedure; ii) the
mismatch in terms of RS that may arise over the cut surface of each half-plate as a
result of the WEDM cut. Nevertheless, the authors’ aim is to propose an alternative
approach that is sufficiently flexible to be applied under different circumstances.

Algorithm 1 Monte Carlo Finite Element Simulation.
Require: Hyperparameters for both f1 and f2
Require: Suppress rigid body motions
1: Assemble Stiffness Matrix K
2: Stiffness Matrix modification: K → K′

3: LU factorisation of K′

4: for i ∈ {1, 2, . . . , M} do
5: for k ∈ {1, 2} do
6: — i-th iteration, k-th half plate —
7: GPR prediction of fh

8: Impose E[um] ∀ DOF ∈ Γ
9: Assemble load vector b ▷ Eq. (4.4)

10: Modify load vector b → b′ ▷ Eq. (4.5)
11: Perturb b′ by adding N(0,V[um]) ∀ DOF ∈ Γ ▷ Eq. (4.6)
12: Solve linear system K′u = b′ + bp ▷ Eq. (4.7)
13: Compute nodal reactions through Ku = b ▷ Eq. (4.3)
14: Compute stress σ

(i)
zz,k(x, y)

15: Gather data in R(i)(x, y) ▷ Eq. (4.8)
16: end for
17: Calculate the expected RS σ

(i)
zz (x, y) ▷ Eq. (4.9)

18: Calculate the uncertainty U
(i)
zz (x, y) ▷ Eq. (4.10)

19: Calculate the residual indicator γi ▷ Eq. (4.12)
20: — Check convergence —
21: if γ ≤ γth then
22: Stop the simulation
23: else
24: Continue the simulation
25: end if
26: end for
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4.4. Results and Discussion
Figure 4.4 shows the GPR prediction used to process the measured out-of-plane

displacement, f1 and f2 (Figure 4.2). In this figure, the z-axis reports the predicted
value of the displacement, namely E[um], in correspondence of each mesh node
(xm, ym) belonging to the cut surface Γh. The colour bar indicates the uncertainty
of the prediction E[um], namely

√︂
V[um]. Globally, the GPR-estimated uncertainty

reaches values around 1.30 µm. However, at x = 0 and x = 168 mm for both ΓF1 and
ΓF2, higher values of uncertainty can be noticed. This deviation from the general
trend of

√︂
V[um] could be attributed to a lack of data at the surface perimeter. Thus,

the GPR was able to fit the edge-data but resulting in a higher level of uncertainty,
as high as 2.2 µm.
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Figure 4.4. GPR prediction of the measured out-of-plane measurement fh over the mesh
nodes of Γh. (a) h = F1, half-plate F1. (b) h = F2, Half-plate F2. The colour bar
displays the values of the uncertainty of the interpolation over the predicted values.

Referring to a plane section of the data set shown in Figure 4.4(a), taken at
ym = 2, Figure 4.5 aims to show more exactly the effectiveness of the GPR. In par-
ticular, the red dots refer to the measured experimental data of f1 (Figure 4.2(a)),
while the black dots represent the predicted value E[um]. The error bars are the
correspondent standard deviations of each mesh point, i.e. ±

√︂
V[um]. From the

comparison reported in Figure 4.5 it is evident that the GPR successfully fitted the
data on the mesh nodes. Besides, the GPR thoroughly reproduced the data trend
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and filtered out the high frequency noise that affected the experimental measure-
ment, while at the same time accounting for such a noise through the point-by-point
estimate. Furthermore, it is interesting to note that the prescription of σn = 1 µm
as the noise level allowed for the automatic detection of the outliers, i.e. the points
resulted in being outside the error bars. These points were not meaningful for the
regression task, and without GPR they should have been manually removed before
the CM evaluation process.
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z (Samples)
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Figure 4.5. Plane section of the 3D map of E[um] (Figure 4.4(a)) taken at ym = 2 and
experimental data extracted at y = 2. The black dots represent the GPR prediction

The FE Monte Carlo simulation provided the set of results R(M)(x, y) (Eq. (4.8)).
The expected value of the RS estimator σ(M)

zz (x, y) and its associated uncertainty
U (M)

zz (x, y) were given by Eq. (4.9) and Eq. (4.10), respectively. Hereafter, the su-
perscripted (M) will be dropped to lighten the notation. The contour of σzz(x, y)
and Uzz(x, y) are depicted in Figure 4.6(a)-(b).

To help visualise the stress distribution within the plate cross-section and appre-
ciate the relevant gradients, three horizontal lines scans (L) were defined over the
cut surface Γ (Figure 4.6(a)). Specifically, L = T , L = M and L = B refer to the
top, middle-thickness and bottom line, located at y = 4 mm, y = 2 mm, y = 0 mm,
respectively. Accordingly, σzz(L) indicates the expected value of the RS extracted
along the path L. These paths allowed the “M-like” shape RS distribution to be
unveiled, see Figure 4.6(c). The figure illustrates the comparison between σzz(L).
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Such a characteristic distribution of RS is aligned with earlier findings [154, 155],
despite the different interpolation methodology adopted.

As far as the propagated uncertainty is concerned, Figure 4.6(b) shows that
Uzz(x, y) is less than 16 MPa over most of the cut surface, apart from localised
areas near the perimeter of Γ. Most likely, these exceptions are due to edge cutting
artefacts which are known to considerably affect measurements in thin parts [172].
Lastly, a considerably high uncertainty was encountered at the top-left corner of Γ.
Within this restricted area, Uzz(x, y) is about 47 MPa. This could be interpreted
as being a result of a lack of data within this localised area. In particular, GPR
extrapolates the displacement data at the perimeter of the cut surface, especially
at corners, more than it would do over its interior, where a large amount of data is
present. Consequently, GPR predicts displacements with higher uncertainty in such
regions, giving rise to higher uncertainty in terms of stress as well. Despite this, the
presented approach provided reliable results.

The uncertainty data were also extracted along the same line scans L and displayed
in Figure 4.7(a)-(c) along with the expected value of the RS. In this figure the colour-
filled bands stand for the interval σzz(L) ± Uzz(L), thus representing a confidence
interval of about 68%.

From a structural integrity viewpoint, much attention should be devoted to the
weld region. In particular, the line scan σzz(M) revealed that σzz(x, y) is charac-
terised by comparable peak values at the ADVS and RETS; around 110 MPa. The
developed strategy enabled the RS evaluation, i.e. σzz(x, y), to be strengthened
with a measure of uncertainty. Specifically, Uzz(x, y) was estimated to be 20 MPa
at both ADVS and RETS. Thus, at such regions it is possible to assert that the RS
is 110 ± 20 MPa, with a confidence level of 68%.

From a computational perspective, the proposed evaluation approach appears to
outperform spline interpolation commonly adopted in the CM. In particular, the
GPR allows the optimal fitting parameters to be automatically identified. Fur-
thermore, the GPR enables the user to effectively take into account measurement
uncertainties and the influence of the roughness due to the WEDM cut. These
features makes the devised GPR-supported approach way faster and less unwieldy
in comparison with the consolidated spline-based one. With particular regard to
the CM uncertainty quantification, the GPR-supported approach presented herein
seems to introduce several advantages over that discussed in [98]. For instance, the
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Figure 4.6. Result of the RS evaluation. (a) Contour of the residual stress estimator
σzz(x, y). (b) Contour of the uncertainty Uzz(x, y) of the residual stress estimator. (c)
RS extracted along the line scans in (a), respectively located at the top (L = T ), middle
(L = M) and bottom (L = B) of the cut surface. The shaded gray region indicates
the position of the weld. The locations of the ADVS and RETS are also specified.

uncertainty due to the CMM measurement and interpolation were assumed as sepa-
rated contributions in [98]. Therefore, the assessment of their correspondent errors
required two independent sets of simulations which were eventually combined after.
By contrast, the GPR combined both these uncertainties before the FE simulation,
and therefore a single set of Monte Carlo FE simulation was necessary to quantify
the uncertainties, allowing for a considerable reduction of the computational cost.

Moreover, the definition of the model error in [98] implies that several combina-
tions of fitting parameters need to be surveyed to find those more suitable for the
specific case study. Specifically, the users should choose, based upon their experi-
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Figure 4.7. RS, σzz(L) and uncertainty distribution Uzz(L) extracted along the L line
scan. (a) L = T (b) L = M (c) L = B. With regard to the line scan L, the colour-filled
bands graphically represent σzz(L) ± Uzz(L), i.e. a confidence interval of 68%. The
shaded gray region represents the position of the weld. Additionally, the locations of the
ADVS and RETS are indicated.

ence, the most appropriate degree of the spline as well as the most suitable number
of spline nodes (four parameters in total) to perform the interpolation of the mea-
sured data. Conversely, the GPR overcomes this main limitation by reducing the
number of parameters involved in the fitting process (C and l, see Table 4.2) and
determining them optimally and automatically via probabilistic modelling (see Sec-
tion 2.4). Therefore, the probabilistic nature of the GPR makes the entire evaluation
more robust against the user’s experience and confidence as far as the data analysis
is concerned.

An additional shortcoming, linked with the use of spline-interpolation, is the nu-

90



4.4. Results and Discussion

merical instability produced when attempting to fit the data in the proximity of the
contour of the surface [172]. This instability is dramatically reduced when the GPR
is employed since it is less prone to overfitting and numerical instabilities due to its
probabilistic nature [102]. For this reason, it was possible to extract the data very
close to the upper and lower edge of Γ (line scans in Figure 4.6(a)). Although the
interpolation near the surface contour is always affected by the scarce experimental
data available in these regions, the GPR approach can effectively quantify its uncer-
tainty, given that GPR provides the uncertainty of the interpolation, i.e.

√︂
V[um]

differently from spline fitting.
The entire simulation was carried out on a PC equipped with an Intel® Core™ i7-

7500U CPU (@ 2.70 GHz) and 8 GB RAM. The simulation lasted approximately 2
and a half hours for 1000 iterations, whereas each of them took about 8 seconds. The
aforementioned LU-factorisation (Section 4.3) of the modified FE stiffness matrix
K′ (Eq. (4.7)) led to a substantial reduction of the computational time for each
Monte Carlo trial. Preparatory tests showed that if the LU-factorisation had not
been adopted, the solution of each trial would have lasted 50 times longer.

Although the total number of simulations was set to 1000, the convergence in-
dicator γi (Eq. (4.12)) suggests that the simulation could have been interrupted
approximately after 100 trials, i.e. after about 15 minutes. In this instance, γi

exhibited a drop of two orders of magnitude from the first trial to the hundredth,
whereas γi decreased only about one order of magnitude until the thousandth trial
(Figure 4.8(a)). Practically, this denotes a rapid convergence of the RS estimator
σ(i)

zz (x, y). In order to further optimise the computational cost, a convergence control
can be easily implemented on-line, i.e. during the Monte Carlo simulation. To this
end, it suffices to define a convergence criterion for γi, such as γi ≤ γth, where γth is a
threshold. For instance, the convergence can be rationally considered to be achieved
when γi has decreased by two orders of magnitude. Therefore, for the particular case
of the present study, γth can be reasonably fixed to 0.1 (the red horizontal line in
Figure 4.8(a)).

Aiming to display the rapid convergence of the RS estimator of (Eq. (4.9)),
σ(i)

zz (x, y) extracted at L = M , i.e. σ(i)
zz (M), was stored at the iterations i =

1, 10, 50, 100, 500, 1000 and eventually plotted on the same graph, (Figure 4.8(b)).
As it can be seen, after the hundredth simulation the fluctuations become negli-
gible, making the RS profiles overlapping. Henceforth, the convergence of the RS
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Figure 4.8. (a) Convergence indicator, γi, against the Monte Carlo trials, i. The red
line indicates the convergence threshold γth = 0.1. (b) Qualitative Convergence graph.
The RS σ(i)

zz (M) was stored at the following iterations i = 1, 10, 50, 100, 500, 1000.

4.5. Conclusions
The exploitation of GPR allowed for developing a comprehensive methodology

to tackle the uncertainty quantification of RS when utilising the CM. Using Gaus-
sian Process Regression (GPR), it was possible to circumvent the lack of robustness
implied by the well-established spline-based interpolation and smoothing strategy
of the experimental data of the CMM out-of-plane displacements. Specifically, the
GPR was adopted given that the optimal fitting parameters can be stochastically
and automatically determined. Therefore, this approach allowed for the minimisa-
tion of user’s intervention which is inevitably reflected in the lack of uniqueness of
the fitting process. Besides providing the data fitting, the GPR estimated the un-
certainty that arose as a consequence of this procedure. Furthermore, the resulting
uncertainty also embedded the sources of uncertainties associated with the intrinsic
CMM measurement error, and the cut surface roughness inherited from the WEDM
cut.

Given that the GPR condensed these sources of uncertainty along with the smoothed
dataset, the latter was appropriately perturbed and fed into a single Monte Carlo
FE simulation to estimate the associated uncertainty as concerned the RS. An effi-

92



4.5. Conclusions

cient strategy to compute the Monte Carlo simulation was developed by exploiting
the LU-factorisation of the modified FE stiffness matrix. In particular, this matrix
was computed only once and then employed for the solution of each Monte Carlo it-
eration. Finally, a convergence criterion was developed to stop the simulation when
a satisfactory result was achieved. If this criterion is implemented on-line, then
the evaluation of uncertainties becomes rapid and accurate, sufficiently rapid to be
routinely employed.

Aiming to assess the performance and the effectiveness of this method, a 4 mm
thick AA6082-T6 FSW was considered as a case study. The simulation provided
the RS field along with the associated uncertainty quantification, thus providing
additional information and also giving and appraisal of the reliability of the results.
For this particular case study the method revealed, with a confidence level of 68%,
that the RS in the FSW joint reached magnitudes as high as 110±20 MPa. The entire
simulation can be performed, by implementing the proposed convergence criterion,
within approximately 15 minutes with a standard low-budget personal computer.

Finally, it is important to note that the developed method has deviated from
the standard CM procedure. In particular, the displacement input data from two
surfaces from the same cut were not averaged before performing the Monte Carlo
FE simulation. Therefore, two full-field RS maps were provided and eventually
post-processed at the end of each trial. Additional errors could affect this strategy
due to possible shear stress present over the cut surface, usually reduced by the
averaging process. However, this effect was thought to be negligible in the analysed
case-study. Without averaging the input data, the presented post-processing may,
in turn, lead to an overestimation of the uncertainty. Nonetheless, the arbitrariness
of the averaging operation envisaged by the standard protocol induces errors as well
that are not accounted for.

The proposed strategy may represent a practical methodology that can help CM-
users to routinely evaluate RS along with its associated uncertainty.
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5. A Defect-based Physics-Informed
Neural Network for Finite Fatigue
Life Prediction in Additive
Manufacturing

The present chapter adapts the PINN framework to devise an extremely flexible and
accurate predictive tool to forecast the finite fatigue life of metallic materials plagued
by defects. Concepts of FM are cast into a Basquin-like law to obtain a regression
model for fatigue data that intrinsically account for the presence of defect. This
model is then used to inform the physical side of the PINN, whilst its NN branch
processes a predefined set of defect descriptors.

5.1. Introduction
The development of AM techniques has brought an unprecedented degree of geom-

etry flexibility during the design process of mechanical components, which has been
enabling the full exploitation of topology optimisation processes [200]. Nevertheless,
structural performance – particularly fatigue – of AM materials is still an open issue
that needs to be addressed in order to produce reliable engineering components [46].
Besides surface roughness finish, several interplaying microstructural factors rule
the fatigue behaviour of these materials, distinctively from those produced by tra-
ditional manufacturing processes. Such influencing factors are largely caused by the
nature of the process, which consists of a fast-moving heat source that inevitably
produces high and inhomogeneous localised cooling speeds. Therefore, the result-
ing material is greatly influenced by the thermal history and heat fluxes, which are
then reflected in the resulting inhomogeneous microstructure. Indeed, AM materi-
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als usually show a textured microstructure linked to the heat flux directions, and
even crystallographic phase gradients may be present in some cases [201]. Another
important consequence of the poorly controlled thermal history across the length
scales is the origin of RS [34]. When superior fatigue performance of AM products
was sought, RS was mitigated via stress relief treatment [202]. Additionally, shock
and shot peening has been applied in the context of AM, thus enhancing the fatigue
load-bearing capacity of the manufactured parts [88, 203, 204].

Although thermal effects can also cause the nucleation of thermal cracks, the
predominant presence of crack-like features in AM materials is due to the interplay
of localised thermal gradients and dynamics of the material’s melt pool producing
gas/vapour jets [205] that can promote spatter effects, which are then the principal
cause of pore gas formation [206]. Besides gas porosity, where insufficient localised
heat is provided to the material to be melted, lack-of-fusion defects may arise [207].

Despite some specific post-processing thermo-mechanical treatments have been
developed over the recent years to mitigate issues related to the presence of defects in
AM materials (e.g. Hot Isostatic Pressing) [208], in some cases, these methods either
cannot be employed practically or do not produce the expected effectiveness. In the
last decade, FM concepts have been widely used to assess the fatigue endurance
of AM parts considering material defects [52, 209–211], even in the elastoplastic
regime [212], thanks also to the original idea of Murakami and his definition of
the characteristic size of a defect [2]. Nevertheless, other approaches have also
been used [213]. By means of extreme value statistics [214], Romano et. al lately
employed the statistical distribution of porosity to infer the probability of failure
invoking the KT diagram with the EH model cast within a Finite Element Methods
framework [62, 215].

As mentioned in Chapter 1, the detection of defects characteristics in materials
can be done through destructive and non-destructive methods. The former refers to
material sectioning and optical metallurgical observations, while the latter appeals
to non-invasive technique CT scan and fractography [53, 216]. In agreement with
Section 1.2, it is worth emphasising that in the specific case of CT, such a tech-
nique enables fine morphology details to be captured for a large number of pores.
Nonetheless, these details are not fully exploited when semi-empirical models are
employed. Therein, the numerous reviewed applications of ML methods to defect-
based fatigue evaluation demonstrates that these methods can potentially substitute
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semi-empirical modelling for fatigue prediction when the available data is sufficiently
high. On the other hand, semi-empirical models are the only possible choice if a pre-
diction is sought while having only a limited dataset. Thus, in some cases, relevant
influencing factors are either partially or completely neglected. The fundamental
challenge is, therefore, the fusion of the two approaches with the aim to reinforce
the prediction. Still, one method generally excludes the intervention of the other.

The recent advent of PINNs (Section 2.6.2), together with its incredible potential
and features, seems to constitute a neat solution to this problem. In fact, such
an approach appeared to be effective for the prediction of AM material porosity
during manufacturing [217]. Another example is an application of NN to a Ti-6Al-
4V AM alloy for the prediction of fatigue life, also considering probability, without
considering any material microstructural characteristics such as defects [218]; in this
case, the physics-informed approach was referred to as physics-guided. In the field
of solid mechanics, these methods were also proposed to identify inhomogeneous
elastic properties [219].

A novel ML approach – based on PINNs – is developed to forecast the finite
fatigue life additively manufactured metallic materials. This approach enables for
taking into account those morphological characteristics of the porosity present in the
material that are not contemplated when using classic LEFM. By proposing and ex-
ploiting the capability of a novel semi-empirical modelling approach to fatigue life
based on LEFM, the physics-informed section of the PINN model was employed to
reinforce the training process of a properly structured NN. A case-study is even-
tually shown by analysing a relatively small dataset obtained from the literature
regarding an AlSi10Mg alloy produced by selective laser melting, specifically con-
taining material fatigue experimental data and morphological characteristics of the
porosity present in the material. Importantly, the analysed samples did not undergo
any thermal treatment after fabrication, so the effect of RS may be significant. The
validation of the devised PINN model is then performed through the so-called K-fold
cross validation, i.e. permutations of the samples excluded in the training process
of the PINN. To this end, the predicted and actual results in terms of fatigue finite
life of independent experimental test samples are compared for each generated fold.
In order to prove the benefits offered by the PINN, the training and the validation
is replicated using an equivalent NN, i.e. the same PINN where the LEFM physical
constraint is deactivated. To this end, both qualitative and quantitative compari-
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son are widely discussed along with a discussion on the implications and potential
limitations of the proposed model.

5.2. Materials and Methods

5.2.1. Experimental Dataset
This investigation considers an experimental literature dataset kindly provided by

Romano et. al. [52], particularly regarding those which underwent CT analysis. Ac-
cording to the authors, several cylindrical aluminium alloy (AlSi10Mg) samples were
additively manufactured by means of an EOS M400® powder-bed machine, which
relies on the selective laser melting (SLM) technology. The surface of the samples
was turned to remove the intrinsic roughness of the SLM machining process. These
samples were fabricated over a period of three years (2015 to 2017) employing the
same process parameters, and the diameter of the gauge volume was not the same
for all the tested samples: from 4 mm to 6 mm. Additionally, all the samples were
fabricated using a layer thickness of 60 µm and a pre-heating of the platform of
200°C. Throughout the fabrication period, however, the machine’s built-in system
that recirculates the inert gas and removes the particles was upgraded to improve
the quality of the material. Therefore, two different batches of samples were distin-
guished, namely P1 and P2. Specifically, the samples belonging to P1 and P2 were
produced using the original and the upgraded recirculating system, respectively.
Furthermore, regardless of the batch involved, two different built orientations were
considered, namely vertical (V) and horizontal (H). It is important to highlight that
none of the samples was heat treated after the manufacturing process.

Prior to fatigue testing, the samples underwent CT scans in order to reconstruct
the accurate morphology and location of hidden, or partially hidden, defects. In
this respect, details of the adopted gauge volume can be found elsewhere [52].

In order to characterise the fatigue behaviour of the material, the specimens were
subjected to a cyclic load of constant stress amplitude ∆σ at a load ratio of R =
−1. In this instance, ∆σ is the nominal externally applied load, whereas N is the
corresponding number of cycles to failure N . Table 5.1 provides the outcomes of
the fatigue experimental characterisation. After the fatigue testing, the samples
were observed through fractography in post-mortem conditions to detect, where
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identifiable, killer pores, i.e. the pores where the fatigue cracking was triggered.
Table 5.1 reports in which samples this operation turned out to be successful.

Table 5.1. List of tested samples and fatigue details [52]. As concerns the built orien-
tation, H and V stand for horizontal and vertical, respectively.

Sample Batch
P#

Built
orientation

∆σ N Killer defect
detectable?

1 1 H 400.0 474 YES
2 1 H 360.0 3432 YES
3 1 V 378.3 11465 NO
4 1 H 298.5 19806 NO
5 2 H 374.4 28201 NO
6 1 V 301.6 39538 NO
7 1 V 295.0 46255 YES
8 1 V 180.0 237485 NO
9 1 H 220.0 2622640 YES
10 1 V 156.0 3795336 NO
11 1 V 180.0 11352768 YES
12 1 V 200.0 15242310 YES

The morphology features that are considered pertinent to the present work are:
the volume of the defects V , the external surface of the defects A, and the projection
of A onto the plane normal to the direction of the applied load. The square root of
this projection will be identified as

√
area in the following sections concerning the

LEFM model. According to the features A and V , the sphericity of the defects is
computed as:

S = π1/3 (6V )2/3

A
(5.1)

whereas the equivalent three-dimensional diameter of the defects is given by:

d = 3

√︄
6V

π
(5.2)

Regarding the location of the defects, the CT scans permitted the distance between
the defects and the free surface of the specimen to be assessed. Hereafter, such
quantity will be denoted by h.
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5.3. Development of a Fracture Mechanics-based
Model

5.3.1. Stress Intensity Factor Evaluation
Due to the relatively small size of the defects generally found in AM materials,

a LEFM approach is often used to assess the severity of the applied cyclic load
concerning the fatigue life. The SIF K of Eq. (2.15), is widely employed to evaluate
the crack driving force in LEFM. With particular regard to fatigue problems the
SIF range presented in Eq. (2.16) is adopted accordingly.

When dealing with small cracks (up to ∼ 1000 µm), compared with the character-
istic cross section dimension of the probed material, Murakami demonstrated how
even three-dimensional defects can be characterised by simply evaluating the square
root of the projected area of the defect over a plane normal to the principal load-
ing direction,

√
area; this characteristic is then considered as the equivalent crack

length [2], i.e. a ↦→
√

area. Therefore, for small defects, the SIF range (Eq. (2.16))
becomes:

∆K = Y ∆σ
√︂

π
√

area (5.3)

As widely reported by Murakami [2], Y turns out to be predominantly dependent
on the distance between the centre of the defect and the sample free surface – for
short cracks. In particular, Murakami proposed the following empirical condition to
discriminate (sub-)surface defects and embedded cracks:

h

r
< 1.25 (5.4)

where h is the distance from the sample free surface of the defect centre, and r is
the radius of the equivalent circular planar defect defined as:

r =
√︃area

π
(5.5)

Therefore, according to LEFM, the crack coefficient turns out to be: Y = 0.65 for
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(sub-)surface defects and Y = 0.5 for embedded (or bulk) cracks:

Y =
⎧⎨⎩0.65 if h

r
< 1.25

0.5 if h
r

≥ 1.25
(5.6)

Particular Case of Sub-surface Defects. For a more precise evaluation of the ∆K,
the equivalent crack length for sub-surface defects should be corrected to account
for the fraction of material laying between the defect and the free surface that does
sufficiently restrain the defect to open when the load is applied [2, 220]. To this
end, an effective area (areaeff) is generally employed. The concept of the effective
area stems from the relatively fast propagation of sub-surface cracks, preferentially
towards the sample free surface, along with those directions where the crack driving
force is predominant. In this scenario, fatigue crack growth occurs rapidly to form a
secondary defect geometrical configuration (areaeff) and these fatigue cycles allowing
for a crack to grow from area to areaeff are neglected; this is a generally accepted
assumption [220].

Given the difficulty in achieving an accurate estimate of areaeff – especially when
dealing with three-dimensional defects – the exact shape of the defect can be con-
veniently and efficiently replaced by accounting for the distance of the sample free
surface h to the centre of the equivalent circular defect again by a planar circular
crack with the equivalent radius, r, according to Figure 5.1. It is important to report
that the centre of the equivalent circular defect is coincident with the centroid of
the defect itself. By using these dimensions, an approximate value of the areaeff can
be defined through the following equation:

areaeff = πr2

2 + 2 h r = area
(︄

1
2 + 2h

πr

)︄
(5.7)

In this way, the projected defect area is increased by maximum 1.3 times at the
boundary between bulk and sub-surface defects (h/r = 1.25), and this multiplying
factor turns out to be 1 when h/r = π/4 (limit of applicability of the present sub-
surface defect). By substituting areaeff in Eq. (5.3), and assuming Y = 0.65 as per
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Figure 5.1. Graphical illustration of equivalent planar circular crack and its surface
increment for sub-surface defects. The projected defect area is highlighted in red, and
the radius of its area equivalent circular domain is r. The distance of the equivalent
domain to the free surface is h. The effective area of the defect is approximatively given
by the sum of half of the equivalent circular defect (in grey) and the portion of material
connecting to the free surface (in green).

surface defects, the following expression can be written:

∆Ksub-surf = 0.65
(︄

1
2 + 2h

πr

)︄1/4

∆σ
√︂

π
√

area (5.8)

As can be seen, the last relationship maintains the same structure of Eq. (5.3).
Therefore, a modified version of Y can be straightforwardly defined as:

Y sub-surf = 0.65
(︄

1
2 + 2h

πr

)︄1/4

(5.9)

which accounts for the aforementioned defect surface increment. It is worth outlining
that this handy estimation procedure might lead to either an overestimation or
underestimation of the effective area depending upon the shape of the defect. In
any case, this effect is deemed to be negligible herein.

Surface Cracks and Generalised Correction in SIF Calculation. The correction
on the effective area decays when the boundaries of internal defects meet the material
sample free surface. In this scenario, there is no need to consider an effective area
of the defect, but the actual projected area can be used. As quickly mentioned

102



5.3. Development of a Fracture Mechanics-based Model

earlier, as it can be seen in Eq. (5.7), a further criterion must be implemented to
discriminate this class of cracks, thus:

h

r
≤ π

4 (5.10)

In summary, a modified version of Y , namely Yeff is readily defined:

Yeff =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.65 if h

r
≤ π

4

0.65
(︂

1
2 + 2h

πr

)︂1/4
if π

4 < h
r

< 1.25
0.5 if h

r
≥ 1.25

(5.11)

Hence, ∆K can promptly be evaluated through equation Eq. (5.3), where Y is now
replaced by Yeff:

∆K = Yeff∆σ
√︂

π
√

area (5.12)

5.3.2. Normalised Fatigue Driving Force
As discussed in Section 2.2, ∆K − N curve can be exploited to model the finite

fatigue life. Nevertheless, additional assumptions are required to refine such model
for the present investigation.

In a recent publication, Murakami showed how the normalisation of S-N curves
using the fatigue limit ∆σ/∆σw can be effective to describe the finite fatigue life be-
haviour of different batches of samples belonging to the same parent material; differ-
ent batches were referred to different sizes of defects [11, 221]. Herein, an analogous
normalisation is proposed to deal with short cracks, with the goal of further reducing
the scatter band of the master fatigue life curve. To this end, the normalisation is
done by using the fatigue SIF threshold, ∆Kth. Therefore, ∆K/∆Kth becomes the
normalised fatigue driving force. However, such normalisation is not straightforward
given that in the short crack region, ∆Kth is strongly affected by the initial crack
size as widely reported by Murakami and Ritchie [2, 222]. Specifically, this result is
attributed to plastic deformations and crack closure effects [19, 223, 224]. Hence, the
normalisation is alternatively done by evaluating ∆Kth according to the empirical
law proposed by Murakami and Endo [225]. Therein, it was showed that ∆Kth can
easily be found with remarkable accuracy for many metallic materials, and defect
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sizes ranging from 10 µm to 1000 µm, through the following equation in which only
the material Vickers hardness (HV) is used as the intrinsic material property:

∆Kth = C × 10−3(HV + 120)
√

area1/3 (5.13)

where C is a constant that depends on the defect position, i.e. 2.77 for bulk cracks
and 3.30 for sub-surface or surface cracks [2], following the same distinction discussed
earlier. It is noteworthy that the units of ∆Kth and

√
area are MPa

√
m and µm,

respectively.
At this point, in order to fully exploit Murakami’s relation, it is useful to normalise

∆K in the ∆K − N curve also with respect to the material intrinsic mechanical
property HV and other remaining constants, therefore Eq. (5.13) can be rearranged
as:

∆Kth

C × 10−3(HV + 120) =
√

area1/3 (5.14)

Thus, the normalisation is done by dividing Eq. (5.12) as follows:

∆K

∆Kth

C(HV + 120) =
Yeff∆σ

√︂
π

√
area

√
area1/3 (5.15)

It is worth noting that the constant 10−3 in the last equation vanishes, if it is decided
to express

√
area in µm. Given that the coefficient C varies according to the same

rule of Yeff (Eq. 5.11), it is possible to include the functional relationship of both C

and Yeff into a single function Y ∗:

Y ∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.1970 if h

r
≤ π

4

0.1970
(︂

1
2 + 2h

πr

)︂1/4
if π

4 < h
r

< 1.25
0.1805 if h

r
≥ 1.25

(5.16)

Eventually, the driving force of the fatigue life can be expressed as:

∆K

∆Kth

(HV + 120) =
Y ∗∆σ

√︂
π

√
area

√
area1/3

△= δK (5.17)

Hereafter, this parameter will be often recalled as the normalised SIF range: δK.
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5.3.3. Fatigue Curve Regression and Prediction Band
As mentioned in Section 2.2.1, Sheridan showed that traditional S-N curves can

be restated in terms of with ∆K −N to reduce the scatter that fatigue data typically
incorporates. Although this rationale is exploited herein as well, the normalised SIF
range of Eq. (5.17) is employed instead. Therefore, Sheridan’s model (Eq. (2.19)) is
reformulated as:

N = A δKB (5.18)

Since the last relationship still retains the functional form of ∆K − N curves, the
ASTM standard is, again, adapted to fit Eq. (5.18) to the data [101]. Therefore, the
logarithm of both sides of Eq. (5.18) is firstly taken:

log10 N = Â + B̂ log10 δK (5.19)

and expected value of the fitting coefficients, namely Â and B̂ is obtained by or-
dinary least squares method. Differently from the ASTM standard, which allows
for evaluating the simultaneous confidence intervals for the sole regression line, the
introduction of the empirical formulation of fatigue life is aimed at providing an
interval in which the fatigue failure is expected to lay in – this shall be discussed in
greater details in regards to the PINN calculation scheme. Such an interval is called
a non-simultaneous two-sided prediction interval approach is fully exploited [226].
The calculation of the prediction interval is particularly useful since it provides a
band which includes, with a given confidence, a single future observation. This
distinctive interval takes into account both the random variability of a future ob-
servation and the epistemic variability of the regression estimates. As a particular
case, if the sample size tends to infinity, the prediction interval converges to the
scatter band of the sole regression. Accordingly, the model presented in Eq. (2.26)
is modified to replace the confidence band with the prediction one, hence:

log10 N = Â + B̂ log10 δK ± s ∆P (5.20)

in which s is, again, the square root of unbiased estimator of the variance (as per
Eq. (2.24)), and ∆P is the semi-amplitude of the prediction interval, which is com-
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puted through:

∆P = tn−2,α/2

⌜⃓⃓⎷1 + 1
P + (log10 δK − log10 δK)2∑︁P

i=1(log10 δKi − log10 δK)2 (5.21)

where tn−2,α/2 is the α/2-quantile of Student’s t-distribution having n − 2 degrees of
freedom, P is the sample size, and log10 δK is the sample mean which is computed
analogously to Eq. (2.22).

5.4. Application of PINNs

5.4.1. PINN for Predicting the Finite Fatigue Life
The present section outlines how to adapt the traditional setting of PINNs to deal

with the semi-empirical model shown in Eq. (5.20), referred to as LEFM fatigue
model in the following. In particular, the physical constraint of Eq. (5.20) shall
enforces the training of a NN whose architecture is defined in Eq. (2.68). The
objective is therefore to surrogate the model:

N = Gθ(x) (5.22)

using a PINN, where x gathers any relevant defect descriptor. Figure 5.2 synthesises
the block diagram of the devised approach. Conceptually, the NN branch elaborates
the training data xi and generates the loss LNN,i. Following, the related fatigue
prediction N∗

i is fed into the LEFM model, thus originating the additional loss LM,i.
These losses are combined (through ⊕) and backpropagated.

Before explaining the details of the implementation, it is worth describing how
the dataset was structured to be appropriately employed across the branches of the
B-PINN. Overall, the dataset comprises all the experimental information obtained
from fatigue tests, CT analysis, and – if available – fractography measurements of
the killer defect.

In regards to the outcomes of the fatigue tests, this part of the dataset is simply
given by the collection of the applied stress range and the corresponding recorded
fatigue life, i.e. (∆σi, Ni) ∀ i = 1, 2, . . . , P samples.

As far as the NN branch is concerned, the sole feature information obtained from
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Figure 5.2. Conceptual representation of PINN. The input xi is elaborated by the
NN which estimates the output N∗

i . Then LNN,i is computed according to N∗
i and

the expected output Ni. Simultaneously, N∗
i is processed through the LEFM model,

thus giving rise to an additional loss LM,i. Finally, LNN,i and LM,i are combined and
backpropagated.

CT scans of each tested sample was used since the prediction is meant to be done
before the sample is experimentally tested and thus the actual killer defect cannot
be known beforehand. Therefore, a filtering operation is executed to prepare the
relevant data which will be used as inputs to the NN. Such a filter relies on the
identification of a number of defects l that gives rise to the largest magnitudes of
δK and following sorting in ascending order, i.e. δK1, δK2, . . . , δKl. The size of l

(also referred to as the number of potential killer defects) is chosen by the user – the
case study reported in the next section will show how an appropriate value of l can
judiciously be selected. Therefore, the i-th sample is associated with by l instances
of each selected defect descriptor, i.e.

√
area, h, S, and d. Accordingly, the whole
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set of inputs can be summarised as:
√

areai =
[︂√

area1,i

√
area2,i . . .

√
areal,i

]︂
hi =

[︂
h1,i h2,i . . . hl,i

]︂
Si =

[︂
S1,i S2,i . . . Sl,i

]︂
di =

[︂
d1,i d2,i . . . dl,i

]︂
(5.23)

In order to fully define the input vector that the NN branch is meant to process,
Eq. (5.23) is merged with the fatigue test data. Hence, the input vector of the i-th
sample is readily defined as:

xi =
[︂√

areai hi Si di ∆σi

]︂
∀ i = 1, 2, . . . , P (5.24)

Thereby, the dimension of the input layer of the NN (n. of input neurons) is u×l+1,
where u is the number of defect characteristics (or features) used herein (u = 4 in
this instance:

√
areai, hi, Si, and di) and 1 refers to the applied load ∆σi. Besides,

Ni is the expected experimental output associated with xi.
As concerns the physical side of the PINN, by construction, the LEFM model, i.e.

δk −N diagram and its associated regression and prediction band, is identified upon
h, and

√
area along with fatigue test data, i.e. N , δσ. In this case, the retrieval of

pertinent data prioritises actual killer defect information obtained from fractography.
Thus, the dataset would ideally be formed as (

√
areai, hi, ∆σi, Ni) ∀ i = 1, 2, . . . , P.

However, if the information about the killer defect is missing for a certain i-th
sample, then a number of l potential killer defects are exploited for this sample,
whose data are retrieved from CT measurements. Upon collating this data, the
LEFM model (Eq. (5.20)) is identified and can readily be used to inform the PINN,
as it will be shown shortly.

Initially, the PINN processes xi (Eq. (5.24)), thus computing the associated pre-
diction N∗

i for each. The loss for the i-th sample is computed as a mean squared
error between the predictions and the ground-truth value:

LNN,i = (log10 N∗
i − log10 Ni)2 (5.25)

The N∗
i are then fed into the LEFM model to compute the additional loss owing to
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the physics. Given the logarithm of the first n.l normalised SIFs of the i-th sample,
namely log10 δk1,i, log10 δk2,i, . . . , log10 δkl,i, Eq. (5.20) can be used to predict the
logarithm of the associated potential killers expected finite fatigue lives, namely
log10 N∗

1,i, log10 N∗
2,i, . . . , log10 N∗

l,i. Reasonably, a loss function that penalises the
difference between each log10 N∗

j,i (from the LEFM model) and log10 N∗
i (from the

NN) should be sought. The definition of such a loss function exploits an important
assumption of the model, i.e. log10 N for a fixed level of log10 δK follows a Gaussian
distribution [101]:

log10 N ∼ N (log10 N̂ , s) (5.26)

where log10 N̂ is given by Eq. (5.20) evaluated at log10 δK, and s is the aforemen-
tioned square root of the unbiased estimator of the variance. Upon normalising the
random variable log10 N , Eq. (5.26) provides:

log10 N ∼ 1√
2πs

exp
⎡⎣− 1

2

(︄
log10 N − log10 N̂

s

)︄2
⎤⎦ (5.27)

In view of defining a suitable loss function it is useful to normalise the values provided
by Eq. (5.27) so that this function lays in [0, 1]. Hence the previous equation can
be restated as:

log10 N ∼ exp
⎡⎣− 1

2

(︄
log10 N − log10 N̂

s

)︄2
⎤⎦ (5.28)

Given that such a normal distribution describes what probability of occurrence of
N is expected at a given δK, the aim is to exploit this phenomenological condition
into the definition of the loss function for the physics constrains of the PINN.

Considering Eq. (5.28), one could recognise the squared difference between the
expected fatigue life log10 N̂ and its potential prediction log10 N , in the argument of
the exponential function. This squared difference resembles a loss function, similar
to what is implemented in NN back propagation process. Nevertheless, this form
cannot be used as a loss function to enforce the physics constrains since the pres-
ence of the exponential penalises the predictions of log10 Ni when approaching the
expected value log10 N̂ . Consequently, it is proposed to revert the behaviour of the
function displayed in Eq. (5.28) such that it can be effectively used as a loss func-
tion. The fundamental idea is to have a function that provides a null loss function
at the mean value of the normal distribution and a loss function approaching a uni-
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tary value far away from the mean value. To this end, the general form of the loss
function driving the physics branch of the PINN framework is devised as follows:

LM = 1 − exp
⎡⎣− 1

2

(︄
log10 N − log10 N̂

s

)︄2
⎤⎦ (5.29)

This equation can be readily adapted to handle the prediction given by the NN,
log10 N∗

i , and the expected value log10 N∗
j,i provided by the δK−N model. Therefore,

upon setting log10 N ↦→ log10 N∗
i , and log10 N̂ ↦→ log10 N∗

j,i in Eq. (5.29) the loss
function pertaining to the LEFM model for the i-th sample can readily be stated:

LM,i =
l∑︂

j=1

⎡⎣1 − exp
⎡⎣− 1

2

(︄
log10 Ni − log10 N∗

j,i

s

)︄2
⎤⎦⎤⎦ (5.30)

and the weighted sum of Eq. (5.25) and Eq. (5.30) is taken to define the loss for the
i-th sample:

Li = wNNLNN,i + wMLM,i (5.31)

where wNN ∈ [0, 1] and wM ∈ [0, 1] are the weights, which are meant to sum to 1,
hence:

wNN = 1 − wM (5.32)

The loss Li related to each i-th sample is accumulated (as per Eq. (2.73)) and
backpropagated. Clearly, Eq. (5.31) retains the same structure of Eq. (2.74).

Considering Eq. (5.30), it is worth emphasising that the loss provided from the
physics side of the PINN, LM,i, is originated from the mismatch between the predic-
tions given by the NN, log10 N∗

i , and the expected value obtained from the regression
line of the LEFM, log10 Nj,i. From a practical standpoint, the additional contribu-
tion provided by LM,i progressively instruct the PINN to make predictions closer to
the regression line, until reaching a trade-off with the experimental input. At the
end of the training process, the peculiar structure of LM,i automatically ensures the
predictions to lay inside the prediction band, upon rational choice of the weight wM ,
thus complying with the semi-empirical law of the LEFM model, Eq. (5.20).

Aiming at evaluating the benefits and the accuracy of the PINN as compared
with those of an equivalent fully NN one, two indicators were employed, namely the
Root Mean Squared Error (RMSE) and the Coefficient of Determination (R2). The
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RMSE was defined as:

RMSE =
√︄∑︁P

i=1(log10 Ni − log10 N∗
i )2

P (5.33)

where Ni is the experimental fatigue life, whereas N∗
i is the associate prediction,

and P is the sample size. Whilst R2 was defined as:

R2 = 1 −
∑︁P

i=1(log10 Ni − log10 N∗
i )2∑︁P

i=1(log10 Ni − log10 N)2 (5.34)

where log10 N is the mean of the population, according to Eq. (2.23).
Algorithm 2 is presented to show the summary of the calculation scheme illus-

trated thus far.

5.4.2. Application to a Case-study
To showcase the capabilities of the present PINN-based method, a case-study is

presented. In order to pursue a more conservative approach, it was decided to pick
the first three defects showing the highest SIF range, with the difference that the
normalised SIF range (δK) was employed herein, therefore, l = 3 was assumed.
This assumption is justified by the observations reported by Romano et al. [52],
who systematically identified the two defects showing the highest SIF as the killer
defects. It is fundamental to highlight that the selection of l is highly dependent on
the distribution of defects giving rise to close SIF range values. For instance, if a
certain batch of material shows two predominant defects, having much larger SIF
ranges as compared with the remaining ones, then the use of l > 2 would not be the
most appropriate choice.

The architecture of the NN consists of a 13-element input layer (according to
the dimension of the input vector), a 16-neuron hidden layer, an 8-neuron hidden
layer and a single-neuron output layer. Sigmoid activation functions were adopted
regarding the neurons of both the first and second hidden layers. Additionally,
at each neuron the bias parameter was trained according to the considered data
fold. The architecture of the NN was accurately designed to provide predictions
complying with the LEFM model, while at the same time keeping its complexity
as low as possible and avoiding overfitting the training dataset. It should be noted,
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Algorithm 2 Developed fatigue finite life PINN algorithm.
Require: CT-scan dataset:

√
areai, hi, Si, di ∀ i = 1, 2, . . . , P

Require: Fatigue dataset: ∆σi, Ni ∀ i = 1, 2, . . . , P
Require: Fractography dataset:

√
areai, hi

Require: l, i.e. the maximum number of potential killer defects
1: — NN data preparation —
2: for i = 1, 2, . . . , P do
3: Gather the l-th entries of

√
areai, hi, Si, di ▷ Eq. (5.23)

4: Assemble NN input vector xi =
[︂√

areai hi Si di ∆σi

]︂
▷ Eq. (5.24)

5: end for
6: — LEFM model preparation —
7: for i = 1, 2, . . . , P do
8: if Killer detectable then
9: Compute δK from fractography data

10: Expand δK l times δKi = [δK δK . . . δK]⏞ ⏟⏟ ⏞
l−times

11: Retrieve Ni

12: else
13: Compute δK1, δK2, . . . , δKl from CT data
14: Select the first l occurrences such that δK1 < δK2 < · · · < δKl

15: Collate δKi = [δK1 δK2 . . . δKl]
16: Retrieve Ni

17: end if
18: Collate (δKi, Ni) ∀ i = 1, 2, . . . , P
19: Do regression of log10 N = Â + B̂ log10 δK ± s ∆P ▷ Eq. (5.20)
20: end for
21: — Training —
22: Accumulate & backpropagate Li = LNN,i + LM,i ▷ Eq. (5.31)
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however, that no rigorous procedures exist to design the architecture of the NN
and thus the necessary number of layers and neurons. Some criteria were considered
while structuring the present NN architecture. The fundamental idea is to gradually
increase the complexness of the NN structure, Therefore, preliminary a structure
without any hidden layers was tested to check whether the system could be predicted
by a simple model. This operation was done by considering R2, and it was decided
to increase the complexity of the NN architecture (by adding more hidden layers)
such that the R2 turned out to be around 0.9 when considering both training and
test datasets in the PINN framework; higher values were not considered to avoid
overfitting. In the same way, also the number of neurons in the hidden layers were
carefully chosen.

The numerical implementation of the PINN was carried out by using PyTorch [227].
After preliminary tests, n.2000 epochs was identified as the most suitable value for
the present work. During the training process the loss function in Eq. (5.30), was
optimised by means of Adam, a popular and broadly employed Gradient Descent
optimiser [228].

It is worth noting that in small data regime, L2-regularisation and adaptive Learn-
ing Rate (LR) might be considered to avoid overfitting effects [229, 230]. The LR is
a specific parameter of the NN which establishes the step size of a Gradient Descent
optimiser when exploring the domain of the loss function to be minimised [229]. On
one hand, higher LR can accelerate the training process, but on the other, it could
trap the optimiser at a local minimum, thus preventing the model from refining the
predictions of the unseen data. Furthermore, the training of the NN could benefit
from a limited LR, particularly in the small dataset regime; this would make the
training process computationally more expensive, though. The choice of the LR
should also be determined in agreement with the number of training epochs, so a
trade-off between all the listed competing factors should be sought.

According to the adopted number of epochs, an adaptive LR was defined by
leveraging the best of both sides of the LR spectrum while maintaining an LR
globally small to comply with the small dataset regime. Specifically, the initial LR
was fixed to 0.001 and held constant until the 1500th epoch. Following, the LR is
reduced by 25% every 25 epochs until the 1600th epoch and finally reduced by 75%
every 15 epochs. Alongside, L2 regularization with a weight decay as high as 10−5

was adopted to further prevent overfitting.
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5.5. Results and Discussion

5.5.1. Applicability of SIF Range as a Fatigue Driving Force
Before showing the key results, it is important to assess the suitability of the

proposed fatigue driving force parameter, i.e. the normalised SIF range δK. In
order to do so, the whole set of fatigue life experimental results were considered and
fitted using the power law early referred to as the δK −N trend (i.e. Eq. (5.22)), not
only for that specific purpose, but also to estimate the S-N and ∆K − N regression
curves, see Figure 5.3. In this particular case study, a few samples were analysed
through microscopy to identify the actual defect that triggered the fatigue failure.
In those cases, it is unnecessary to consider the first l defects for the regression of
the δK − N curve and its prediction band. Therefore, in the regression process, a
single value of δK − N was employed for those samples and expanded l times to
give the same weight of the samples in which the killer defect was not identified.

The square root of the estimator for the variance (s) associated with log10 N , con-
cerning the prediction band, was evaluated to quantify the scatter of each dataset
and assess the buoyancy of the regression. As shown in Figure 5.3, when consider-
ing the applied stress range ∆σ as a driving force, the regression provides a good
representation of the fatigue behaviour and a prediction band width s = 0.7. In-
stead, this scatter turned out to be significantly higher if the sole ∆K is considered
(s = 1.079), in contrast with what was reported by Sheridan in his results [65, 64],
see Figure 5.3(b). This contrasting result can be due to the dimension of defects that
lay within a region where the role of the non-constant ∆Kth is relevant. Nonetheless,
if the normalised SIF (δK) is deemed to be a representative driving force, the scatter
becomes significantly smaller Figure 5.3(c) – although, again, not strikingly evident
as Sheridan showed. Therefore, it can be confidently stated that the normalisation
approach implemented herein for the first time can provide a more truthful fatigue
finite life representation.

5.5.2. PINN Predictions and K-Fold Cross Validation
As mentioned earlier, a K-fold validation test was performed to check the robust-

ness of the presented approach. This test was successfully carried out for 6 different
permutations of the training and test datasets (see Figure 5.4(a)-(f)).
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Figure 5.3. Regression curves of fatigue life, prediction bands and square root of the
estimator for the variance (s) at 95% confidence level. (a) S-N. (b) ∆K − N . (c) δK.

As far as the training set is concerned, the blue circles in Figure 5.4 are the exper-
imental data, whereas the blue crosses markers are the corresponding predictions.
Whilst the test set is labelled using red circles and crosses, respectively for the ex-
perimental and associated predictions. The grey-filled region is the prediction band
(Eq. (5.20)) enclosed between the associated upper (dot-dashed line) and lower lim-
its (dashed line), respectively. The black solid line is the regression curve obtained
from the training dataset through OLS. Additionally, each figure reports the square
root of the estimator for the variance computed from the portion of data of the
training dataset used to build the regression model (Eq. (5.21). It is very important
to mention again that both the prediction band and the regression line are defined
using the known experimental data of the fatigued samples employed as training
samples, with δK calculated from fractography if present, otherwise from CT scans
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as schematically illustrated in Algorithm 2; priority must be given to the fractogra-
phy data since this information provides a precise identification of the killer defect’s
traits. On the other hand, the PINN is employed to make predictions exclusively
using the data obtained from CT.

Figure 5.4 illustrates the results of the PINN obtained by setting wM = 0.015
and wNN = 0.985, which sums to 1 in agreement with Eq. (5.32). These weight
values turned out to be appropriate since they equate the contribution of LM,i and
LNN,i. As concerns the early stages of the training a small value of wM could be
particularly suitable. In this instance, the predictions given by the PINN could be
forecast far away from the prediction band thus leading excessive values of LM,i as
compared with those of LNN,i.

Although the formulation of the loss function is arbitrary, its peculiar structure
defined in Eq. (5.32) allows the user to promptly tune the importance of the physics
with respect to the pure NN prediction and vice versa. Extreme instances may be
seen if wM = 0, then wNN = 1, meaning that the PINN reduces to a standard NN,
since the physical constraint is deactivated. Conversely, if wM = 1/l, then wNN = 0,
therefore the predictive frameworks rely exclusively on the physical constraints.

Another important strength that is worth highlighting is that, in principle, when
the PINN is used for prediction purposes, the outcome can be promptly checked with
the physics constraints to verify if it complies with the expected range of fatigue
life. To this end, it suffices to ascertain whether the predicted point lays inside
the prediction band. If so, this point should be accepted. Conversely, it should be
rejected.

5.5.3. Assessing the Performance of the PINN
As shown in Figure 5.4, the predictions of the PINN framework and their com-

pliance with phenomenological laws are verified. In fact, the markers indicating
the predicted life (i.e. evaluation) lay within the prediction band in all the stud-
ied cases. Special attention must be paid to those predictions associated with the
“test” samples – those not involved while conducting the PINN training process –
which again showed a good prediction. This means that the PINN is capable of
satisfactorily estimating the fatigue performance based on the morphological traits
and distribution of “killer” defects in the material. Minor mismatches in terms of
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the number of cycles (actual vs. predicted) are certainly attributed to those mech-
anisms involved that are completely neglected in the present study, RS above all.
And it is actually for this reason that the employment of semi-empirical law can
ensure realistic predictions, rather than seeking the perfect match in terms of the
number of cycles which would be impractical if no prior information regarding RS
(for example) is known.

It is important to observe that the predictions of the training dataset appear to be
located at an intermediate position between the corresponding experimental point
and the expected value on the regression line. This could be attributed to the PINN
achieving an appropriate trade-off between the model loss LM,i and the numerical
loss LNN,i during the training process.

For the sake of comparison, the NN counterpart of the PINN is tested. This
configuration is obtained by setting wM = 0 and wNN = 1 while retaining the same
architecture – neurons, layers, and activation functions. The corresponding results
are shown in Figure 5.5. In these results it can be seen that some points actually
lay outside the prediction band, and the estimate valued of the test samples was less
effective; this will be shown shortly.

Besides the qualitative analysis just discussed, it essential to discuss the advan-
tages offered by the PINN over the classic NN in a quantitative manner as well, al-
though one method does not exclude the other. To this end, the results of Figure 5.4
are conveyed into the equivalent, yet concise representation of Figure 5.6, which
shows the predicted fatigue life vs the experimental fatigue life exclusively for the
test data since these are the independent predictions. Specifically, Figure 5.6(a) re-
ports the results concerning the dataset given by the sole NN, whereas Figure 5.6(b)
illustrates those given by the PINN counterpart. Additionally, each figure reports
the RMSE (Eq. (5.33) and R2 (Eq. (5.34)), along with its associated dispersion band
for each dataset. The physics-informed side of the PINN provided fundamental and
undoubtedly positive support to the NN learning process and avoided overfitting. A
remarkable evidence, showing the superior predictive capabilities of the PINN over
the NN, can be seen by comparing the values of RMSE and R2, and obviously the
narrower scatter band at the same confidence level (68%).

It worth remarking that in case of even smaller data regime, additional support
might be introduced by increasing L2-regularisation or decreasing the LR, limit
overfitting.
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Figure 5.4. Predicted fatigue life overlapped onto the prediction band associated with
the considered test samples. Different permutations between test and validations samples
are shown (K-fold) (a-f).
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Figure 5.5. Fatigue Life predictions obtained through the NN counterpart of the PINN.
Different permutations between test and validations samples are shown (K-fold) (a-f).
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Figure 5.6. Accuracy of the PINN and NN frameworks evaluated through RMSE and
R2. Predicted vs. actual number of cycles for (a) NN and (b) PINN. Dispersion band
evaluated at 68% confidence level.
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5.6. Conclusions
The present chapter has illustrated the development and implementation of a ML-

based prediction tool, constrained by the underlying semi-empirical laws of fatigue
finite life, has demonstrated to be highly effective for the accurate prediction of finite
fatigue life performance in materials containing flaws.

The validation executed by exploiting experimental results (AlSi10Mg) showed
how this approach can account for defect features that could not be taken into
account otherwise: defect sphericity and three-dimensional equivalent diameter. The
predictions as compared with a purely NN-based predictive tool are improved as
demonstrated by the R2 index that increased by around 83%.

The fundamental idea of using the prediction band, instead of relying upon a
deterministic reference curve, allows the model to intrinsically account for other
sources of uncertainties that cannot be evaluated, e.g. RS which is certainly present
in the analysed samples and may play a significant role.

The PINN framework has proven to be particularly suited for those problems
where the dataset is not sufficiently large for reliable prediction using a pure ML
technique. Indeed, the lack of data is overcome by introducing phenomenological
constraints, i.e. the LEFM model, capable of guaranteeing the physical soundness
of predicted outcomes.

By design, the proposed PINN-based approach holds significant versatility as it
permits extending the set of defect’s characteristics besides those already accounted
for, e.g. eccentricity, angularity, solidity [86] if they are thought to play a role in
fatigue. Therefore, the accuracy of the method can be further increased, provided
that large datasets are available.

In conclusion, the PINN framework has demonstrated an extraordinary capability
to make the best out of the two key approaches in fatigue life assessment, namely
semi-empirical laws and ML methodologies. This work will pave the way for a new
class of predictive tools with unprecedented accuracy and great potential for future
developments.
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6. Bayesian Evaluation of the
Fatigue Endurance Limit of
Metallic Alloys

In this chapter, a handy ML probabilistic model is developed to estimate the EH
curve of flawed metallic material exclusively using fatigue characterisation and post-
mortem fractography as the sole input data. Herein, LR is exploited to turn the
phenomenological behaviour of the EH into an ML classification problem, where the
likelihood is determined upon the given input data. BI is then seamlessly merged with
LR to appropriately inject prior knowledge about the EH curve when insufficient data
is provided.

6.1. Introduction
As presented in Section 2.2.2, upon providing defects with a representative crack

length, the EH curve is a semi-empirical model that allows practitioners to charac-
terise and visualise the fatigue endurance limit of metallic material. Additionally, it
was shown that the EH curve is fully determined by two essential parameters ∆Kth,lc

and ∆σw. This model can be deemed as entrenched across the fatigue & FM com-
munity, and, interestingly, it has seen several developments focussed on its extension
to the finite fatigue life regime in commercial Inconel 718 [65, 64], and its generalisa-
tion to account for propagation and non-propagation crack regimes [231]. It is worth
mentioning that a variant of the EH has been proposed by Chapetti to account for
closure phenomena and short crack growth [223]. Nevertheless, very little has been
done to exploit these models in a probabilistic framework for defect-tolerant design
purposes. For instance, a recent study considered a batch of AlSi8Cu3 specimens
as a case study, to conceive and apply a probabilistic approach to determining the
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EH’s model parameters [232]. The experimental campaign of this work permitted
∆Kth,lc and ∆σw to be modelled in terms of the survival probability – referred to as
Weibull’s – of the examined specimens. Another probabilistic method for identify-
ing the EH curve of AM50hp and AZ91hp was developed in [233]. In this instance,
a bivariate Weibull distribution embedding the EH model was used to outline the
crack propagation region of the examined specimens.

As concerns the inputs required to calibrate the outlined models, the knowledge
of ∆Kth,lc, ∆σw is sometimes difficult to be determined experimentally, especially
regarding the latter due to the intrinsic presence of defects in the probed material.
Nevertheless, these parameters can be estimated indirectly if a sufficient number of
fatigue experimental tests are available at different defect sizes and loading magni-
tudes – which is one of the key problem addressed herein through the exploitation
of ML.

Section 1.2 showed that ML approaches has been extensively employed to forecast
the finite fatigue life of metallic alloys upon characterising material’s defectivity. De-
spite this, ML has never been applied to problems dealing with fatigue endurance
limit. ML can address these outstanding issues and provide a probabilistic assess-
ment as well. In this respect, datasets similar to that in Figure 2.6 are expected to
be available either when experimentally searching for the fatigue endurance limit of
a material or in the scientific literature where specimens are labelled as either runout
or failed. Since two distinct classes are present, it is thus evident that a dichotomous
classification of the dataset can naturally be introduced. As such, this categorisa-
tion can be automatically tackled through supervised ML classification methods,
amongst which LR as the most suitable, given its probabilistic nature [111].

The present chapter proposes an LR-based probabilistic framework to estimate
the EH curve at a given probability of failure. Specifically, the functional form of
the EH curve (Eq. (2.27)) is exploited to craft an appropriate decision boundary
whose trainable parameters are ∆Kth,lc and ∆σw. The traditional framework of
LR (Section 2.5) requires the unknown parameters of such decision boundary to
be trained via ML. Nevertheless, since MLE only provides point estimates of these
parameters, MAP is pursued to carry out the training of ∆Kth,lc and ∆σw while pro-
viding their resulting probability distribution. A Monte Carlo approach is followed
by sampling the previously evaluated distributions of ∆Kth,lc and ∆σw and comput-
ing the associated EH curves accordingly. Finally, a probabilistic post-processing
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of the whole set of EH curves is carried out, thus providing the probabilistic EH
curve at a given failure probability. The developed LR-MAP method is validated
by pursuing a common 80/20 random split of the input dataset. This permit gener-
ating the training and test dataset having 80% and 20% the dimension of the input
dataset, respectively. LR-MAP is therefore trained on the sole training set and used
to predict data belonging to the test set, i.e. the unseen data. To enforce the MAP
approach when dealing with lack of information from the available experimental
results, numerous datasets that include estimates of ∆Kth,lc and ∆σw are gathered
herein, or where the identification of the EH curve or KT diagrams was performed,
with special attention on those including complete datasets. A few of these datasets
were then considered to develop and assess the effectiveness of the proposes method.
Finally, the advantages, implications and limitations of the proposed ML approach
are widely vetted.

6.2. Machine Learning Probabilistic Design Curves
Evaluation

6.2.1. Formulation of the El Haddad Curve
The exploitation of the EH curve necessitates defects to be associated with a rep-

resentative crack length. To this end, Murakami’s approach is followed in agreement
with [234]. Specifically, defects are regarded as cracks with a length equal to the
renowned

√
area [2]. In this instance, it is worth remarking again that

√
area is the

square root of the projected area of the defect on the plane normal to the loading
direction. Additionally, if defects are predominantly loaded under mode I, and lim-
ited plasticity effect are involved, LEFM can be invoked, and ∆K (Eq. (5.3)) can be
adopted again as the fatigue crack driving force [235, 57]. Accordingly, the related
EH curve can be stated by substituting a with

√
area in Eq. (2.27):

∆σ = ∆σw

⌜⃓⃓⎷ √area0√area0 +
√

area (6.1)
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where √area0 represents the EH critical defect’s length, according to Eq. (2.28):

√area0 = 1
π

(︄
∆Kth,lc

Y ∆σw

)︄2

(6.2)

6.2.2. Logistics Regression Modelling
Before illustrating the theoretical framework of the devised approach it is worth

formalising the mathematical structure of the datasets (an example is shown in
Figure 2.6). In order to reframe the parameter estimation of the EH curve in terms
of ∆Kth,lc and ∆σw, the dataset of Eq. (2.62) is conveniently adapted as:

D =
{︃(︂

(∆Ki, ∆σi), Fi

)︂
| Fi ∈ {runout, failed}

}︃
i = 1, 2, ..., N

(6.3)

where N denotes the size of D, ∆Ki was computed using Eq. (5.3) given
√

areai, ∆σi,
Yi. Although Fi labels the i-th point of the dataset in a descriptive manner, runout
and failed are associated with 0 and 1 for the sake of the numerical implementation.

In case of datasets showing defects at different positions with respect to the sam-
ple’s free surface, multiple values of Yi must be used for the calculation of the SIF
range. So, with the purpose of representing all the samples on a unique diagram, a
single Yi,eq is set for the whole dataset while rescaling

√
areai accordingly:

√
areai,eq = Y 2

i

Y 2
i,eq

√
areai (6.4)

which assumes the same SIF for both the equivalent and the original defect. To prove
the last relationship, let us write the SIF for the resulting rescaled area

√
areai:

∆Ki,eq = Yi,eq∆σ
√

areai,eq (6.5)

Equalling the last relationship to Eq. (5.3), i.e. ∆Ki,eq = ∆Ki, leads to:

Yi,eq∆σ
√

areai,eq = Yi∆σ
√

areai (6.6)

which leads to Eq. (6.4) when solved for Yi,eq.
Let θ be the vector of the trainable EH parameters, i.e. θ =

[︂
∆Kth,lc ∆σw

]︂
. Ad-
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ditionally, let us gather the input features into x =
[︂
∆K ∆σ

]︂
. These definitions

allow one to model Fi as a Bernoulli random variable according to Eq. (2.64), and
immediately define the decision boundary. Differently from the traditional LR set-
ting, the decision boundary, named as H(x, θ) in Section 2.5, is tailored to include
the functional form of the EH. Hence, in this case, the decision boundary turns out
to be:

H(x, θ) = χ(x, θ)

⌜⃓⃓⃓
⎷argmin

t

⎡⎣(t −
√

area)2 +
⎛⎝∆σ − ∆σw

⌜⃓⃓⎷ √area0√area0 + t

⎞⎠2⎤⎦ (6.7)

where t is a dummy variable that is sought to find the minimum distance between
x and the EH curve described by θ. Whilst the critical defect dimension (√area0)
can be evaluated through Eq. (6.2), and χ(x, θ) determines the sign of the distance:

χ(x, θ) =
⎧⎨⎩1 if x above EH curve

−1 if x beneath EH curve
(6.8)

Finally, Eq. (6.7) is plugged into the LR equation Eq. (2.66), thus obtaining the
probability of failure for x, i.e. P[x|θ]. Examining Eq. (2.66) and Eq. (6.7) jointly,
it is thus evident that, the higher the H(x, θ), the higher the value of P[x|θ]. By
contrast, the lower the H(x, θ), the less the value of P[x|θ] so that the tested point is
likely to be runout. Consequently, Fi is modelled via the following surrogate model
which encapsulates the EH curve:

Fi = Gθ(xi) = 1
1 + exp [−H(xi, θ)] (6.9)

according to Eq. (2.29).

6.2.3. Bayesian Parameter Estimation
With reference to Section 2.5, the trainable parameters of the decision boundary

are commonly identified utilising MLE (Eq. (2.37)), while employing the Bernoulli
likelihood (Eq. (2.67)) as LR handles a classification problem.

Although MLE is a probabilistic strategy to train the parameters, it only provides
point estimates. Thus, it cannot ascertain whether potential sources of uncertainty
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affect the datasets and it does not accept prior knowledge into the learning pro-
cess. To overcome this limitation, MAP is used to accomplish the training task.
Initially, the likelihood P[θ|D] derived from the given dataset is set. The prior P[θ]
is prescribed over of the trainable, yet unknown parameters sought to encode prior
knowledge while training LR predictor [71]. In this regard, ∆Kth,lc and ∆σw are
initially hypothesised as independent, hence P[θ] = P[∆Kth,lc]P[∆σw]. Following,
P[θ|D] and P[θ] are plugged into Bayes’ theorem (Eq. (2.32)), and MAP is applied,
i.e. Eq. (2.35). In the present case, the evidence is, again, dropped as it is a con-
stant. It is worth mentioning that the term Eq. (2.35) corresponding to the prior
becomes:

logP[θ] = logP[∆Kth,lc] + logP[∆σw] (6.10)

Whilst any distribution can be prescribed over θ, Gaussian (N ) and Uniform (U)
priors were considered herein.

Gaussian priors can be used to introduce strongly informative prior knowledge
during the training phase, and at the same time, it acts as a L2-regulariser for
logP[x|θ], thus facilitating the training process and avoiding possible local maxima
of the log-likelihood. In this case, let us assume:

∆Kth,lc ∼ N (µ∆K , S∆K) ⇒ P[∆Kth,lc] = 1√︂
2πS2

∆K

exp
⎡⎣− 1

2

(︄
∆Kth,lc − µ∆K

S∆K

)︄2
⎤⎦

(6.11)

∆σw ∼ N (µ∆σ, S∆σ) ⇒ P[∆σw] = 1√︂
2πS2

∆σ

exp
⎡⎣− 1

2

(︄
∆σw − µ∆σ

S∆σ

)︄2
⎤⎦ (6.12)

where µ∆K , µ∆σ, S∆K , and S∆σ are the known mean and the variance of each random
variable. Therefore, MAP equation (Eq. (2.36)) turns out to be:

θ̂ = argmax
θ

⎡⎣ logP[D|θ] − 1
2

(︄
∆Kth,lc − µ∆K

S∆K

)︄2

− 1
2

(︄
∆σw − µ∆σ

S∆σ

)︄2

+ C

⎤⎦ (6.13)

where C is the constant:

C = log 1√︂
2πS2

∆K

+ log 1√︂
2πS2

∆σ

(6.14)
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and it can be neglected during the maximisation. Eq. (6.13) can be rewritten as
follows:

θ̂ = argmax
θ

[︄
logP[D|θ] + λ∆K∥∆Kth,lc − µ∆K∥2

2 + λ∆σ∥∆σw − µ∆σ∥2
2

]︄
(6.15)

which represents the L2-regularised log-likelihood, where λ∆K , λ∆σ are two indepen-
dent regularising weights λ∆K = −1/2S2

∆K and λ∆σ = −1/2S2
∆σ, and ∥ · ∥2 denotes

the L2-norm.
On the other hand, when none or limited prior knowledge is available, U priors

are preferred. These U priors do not affect the likelihood, since the corresponding
constant term vanishes while maximising Eq. (2.36). For this reason, U is called a
non-informative prior. For instance, if a U prior is prescribed over ∆σw, whilst a N
prior is prescribed over ∆Kth,lc, Eq. (6.15) transforms into:

θ̂ = argmax
θ

[︄
logP[D|θ] + λ∆K∥∆Kth,lc − µ∆K∥2

2

]︄
(6.16)

where L2-regularisation acts over the sole random variable ∆Kth,lc. Obviously, the
same concept applies when a U prior is imposed on ∆Kth,lc:

θ̂ = argmax
θ

[︄
logP[D|θ] + λ∆σ∥∆σw − µ∆σ∥2

2

]︄
(6.17)

Finally, if U priors are prescribed over both variables, the log-likelihood is not reg-
ularised, and MAP reduces to the mere MLE.

It should be emphasised that the distribution of prior knowledge is generally un-
known. Nevertheless, a rational approximation that can be made is the assumption
of Gaussian distribution. It is important to state that if a sufficiently large dataset is
available, this assumption can be readily checked. The user can actually choose the
most appropriate prior to model the distribution of the concerned parameters. In the
present work, however, Gaussian priors were adopted to make the calculation more
tractable, while easily introducing the most common L2-regularisation for the log-
likelihood. Furthermore, hypothesising independent distributions for each element
of the prior is typically not restrictive. In fact, this practice is generally advisable
rather than erroneously speculating about the underlying relationship amongst the
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parameters, thus injecting biased information into the learning stage.
The maximisation of the logP[θ|x] (Eq. (2.36)) provides the expected value of the

parameters, namely θ̂ = [∆Kth,lc
ˆ ∆σw

ˆ ] whereby √area0ˆ was evaluated according to
Eq. (6.2). Correspondingly, the expected EH curve is determined through Eq. (6.1):

∆σ = ∆σw
ˆ

⌜⃓⃓⃓
⎷ √area0ˆ

√area0ˆ +
√

area
(6.18)

Further operations are required to fully characterise the posterior P[θ|D]. Ac-
cording to Bayes’ theorem, albeit P[D|θ] and P[θ] can promptly be evaluated, the
integral of P[D] (Eq. (2.33)) is generally intractable, thus P[θ|D] does not possess a
closed-form expression. As commonly performed in other contexts of ML methods,
Laplace’s approximation for the posterior is invoked, see Section 2.3.2. Accordingly,
the posterior P[θ|D] turns out to be:

P[θ|D] ∼ N (θ̂, H−1) (6.19)

where H−1 is the inverse of the Hessian matrix of − logP[θ|D] evaluated at θ̂.
Finally, the marginalisation of Eq. (6.19) allows the distribution of each parameter

in θ̂ to be automatically evaluated:

∆Kth,lc ∼ N (∆Kth,lc
ˆ ,V[∆Kth,lc

ˆ ]) (6.20)
∆σw ∼ N (∆σw

ˆ ,V[∆σw
ˆ ]) (6.21)

where V[∆Kth,lc
ˆ ] = [H−1]11 and V[∆σw

ˆ ] = [H−1]22 correspond to the diagonal terms
of H−1(θ̂), which are in fact the associated variance of each parameter.

6.2.4. Probabilistic Crack Propagation Region
A Monte Carlo simulation exploited the marginal posterior distributions of the pa-

rameters to built a probabilistic fatigue endurance limit curve. This approach com-
mences with sampling N (∆Kth,lc

ˆ ,V[∆Kth,lc
ˆ ]) and N (∆σw

ˆ ,V[∆σw
ˆ ]) using Sobol’s

low-discrepancy sequences via SALib - Sensitivity Analysis Library in Python [236–
238]. The sampling, therefore, generates M Monte Carlo trials whose j-th element
is θ(j) = [∆K

(j)
th,lc ∆σ(j)

w ]⊤. Upon computing √area0
(j) by Eq. (6.2), the j-th EH
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curve turns out to be:

E (j) : ∆σ(j) = ∆σ(j)
w

⌜⃓⃓⎷ √area0
(j)

√area0
(j) +

√
area

∀ j = 1, 2, . . . , M (6.22)

Let E (m) = E[{E (1), E (2), . . . , E (m)}] be the
√

area-wise expected value of the
history of EH curves up to the m-th trial. If M is sufficiently large, the Central
Limit Theorem allows one to readily compute the

√
area-wise prediction intervals

[239]:
P
[︃
E (M) − P(M) ≤ E (M+1) ≤ E (M) + P(M)

]︃
= β (6.23)

where β is confidence level and P(M) is the semi-amplitude of the interval defined
as:

P(M) = tβS(M)
√︂

1 + 1/M (6.24)

In Eq. (6.24), S(M) =
√︂
V[{E (1), E (2), . . . , E (M)}] is the

√
area-wise standard devi-

ation of the whole history of EH curves, and tβ is the 1 − β/2 percentile of Stu-
dent’s t-distribution with M − 1 degrees of freedom. From a mathematical per-
spective, Eq. (6.23) is naturally interpreted as the interval, namely E (M)) ± P(M),
where the (M + 1)-th EH curve is expected to belong, given the collection of trials
E (1), E (2), . . . , E (M), for a confidence level β. Such a confidence level is of utmost im-
portance during the structural design process of a mechanical component to define
the acceptable level of risk for a specific engineering problem.

In order to monitor the convergence of the Monte Carlo simulation, the following
indicator was adopted:

ρ(j) =

⌜⃓⃓⎷(E (j) − E (j−1))2

(E (j))2 (6.25)

Essentially, this indicator evaluates the relative residual between two consecutive
EH curves E (j) and E (j−1).

6.2.5. Computational Algorithm
Algorithm 3 is finally presented to offer a succinct overview of the computational

setting illustrated thus far.
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Algorithm 3 Computational algorithm for LR in the present study.
— Logistic Regression —

Require: Preparation of dataset D ▷ Eq. (6.3)
Transform data points – if necessary – by SIF equivalence ▷ Eq. (6.4)

Require: Functional form of the decision boundary H(x, θ) ▷ Eq. (6.7)
— Maximum a Posteriori —

Require: Log-Prior logP[θ] = logP[∆Kth,lc] + logP[∆σw] ▷ Eq. (6.10)
Require: Log-likelihood P[D|θ]

Build Log-Posterior logP[θ|D] = logP[D|θ] + logP[θ]
Maximise log-posterior ▷ Eq. (2.36)

Ensure: Optimal parameters θ̂ = [∆Kth,lc
ˆ ∆σw

ˆ ]
Compute optimal EH curve ▷ Eq. (6.18)
— Probabilistic Crack Propagation Region —

Require: Approximated Posterior P[θ|D] ∼ N (θ̂, H−1)
Require: Marginal Posterior ∆Kth,lc ∼ N (∆Kth,lc

ˆ ,V[∆Kth,lc
ˆ ]) ▷ Eq. (6.20)

Require: Marginal Posterior ∆σw ∼ N (∆σw
ˆ ,V[∆σw

ˆ ]) ▷ Eq. (6.21)
— Monte Carlo Simulation —
for i ∈ {1, 2, . . . , M} do

Draw sample from ∆Kth,lc ∼ N (∆Kth,lc
ˆ ,V[∆Kth,lc

ˆ ]) ▷ Eq. (6.20)
Draw sample from ∆σw ∼ N (∆σw

ˆ ,V[∆σw
ˆ ]) ▷ Eq. (6.21)

Compute & collect the j-th EH curve E(j) ▷ Eq. (6.22)
— Check convergence —
if ρ(j) sufficiently small then ▷ Eq. (6.25)

Terminate simulation
else

Continue simulation
end if

end for
— Prediction Intervals —

Require: Confidence level β
Compute prediction intervals of the collected m EH curves ▷ Eq. (6.23)
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6.3. Material Datasets

6.3. Material Datasets
This section attempts summarising experimental datasets available in the current

literature devoted to fatigue tests, on metallic materials containing defects, for the
characterisation of fatigue endurance limits. Alongside, this literature survey in-
tends to provide potential practitioners with additional inputs to both support the
application of the presented method and achieve more accurate estimates of ∆Kth,lc

and ∆σw. The collected data can refer to the SIF threshold for long cracks ∆Kth,lc

and the fatigue limit of a defect-free specimen ∆σw when available. In case of tested
materials, for instance, using multiple batches or by introducing artificial defects
of different nature, Tables 6.1-6.5 indicate ranges for ∆Kth,lc and ∆σw using the
symbol “−”. In a few cases, multiple references are specified for a single dataset,
meaning that complementary information for the same material can be retrieved
from different sources.

The key purpose of this task is the retrieval of relevant information regarding
some of most commonly used metallic materials to enforce the lack of necessary
information for a univocal evaluation of the EH curve given a certain incomplete ex-
perimental dataset. In particular, the present section summarises the data regarding
Fe-, Al-, Ti-, Ni-, Mg-based alloys. The results obtained in such a literature survey
are summarised in Tables 6.1-6.5, in which all the relevant characteristic conditions
are reported alongside, such as the manufacturing conditions, further treatments,
type of loading, and stress ratio R. It is worth remarking that a comprehensive
review on the fatigue strength characterisation for AMed AlSi10Mg and Ti-6Al-4V
can be found in [209]. Alongside, a systematic survey of fatigue properties for many
metals, spanning AMed and cast Fe- and Ti-based alloys both, is presented in [240].
While, an exhaustive literature review on the fatigue properties of Mg alloys is given
in [241].
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6.3. Material Datasets

Amongst the considerable collection of references presented herein, two metallic
alloys were selected to develop and assess the effectiveness of the conceived approach,
namely AlSi8Cu3 [232] and AISI316L [243], both tested at R = −1 through alter-
nating tensile fatigue tests. Regarding the size of the datasets, i.e. the amount of
point data thereof, it is possible to observe that the dataset of the former alloy is
about six times smaller than that of the latter; see Figures 6.1(a)-(b). This allowed
the proposed method to be tested for two different scenarios, namely small- and
large-data regimes. As far as AlSi8Cu3 is concerned, the specimens were cast and
underwent T6 heat treatment and machining. The authors of Ref. [232] stated that
the defects that supposedly initiate cracks were regraded as surface defects, thus
prompting to adopt Y = 0.65 for the calculation of the SIF range. Nonetheless,
upon machining such surface defects, these turned out to be most akin to opened
cracks, thus substantially changing the scenario. For this reason, the authors of the
work decided to adopt Y = 0.73 for the evaluation of the SIF range [232], and so was
adopted herein as well. On the other hand, the AISI316L samples were built using
L-PBF along the vertical direction, then machined and polished. The authors of
Ref. [243] aimed to assess whether the fatigue response had been sensitive to defects
of different nature. To this end, apart from few specimens which did not undergo any
further operations, the remaining ones were alternatively subjected to machining &
polishing, or pre-corrosion via anodic polarisation, or electrical discharge machining
to produce hemispherical defects. Additional analyses revealed that the defects were
primarily located near the surface, whereas only a small fraction were classified as
internal. In this regard, the SIF range for surface defects was calculated adopting
Y = 0.65 as per semi-circular cracks, while Y = 0.5 was used for internal defects, in
agreement to [2]. Given the negligible number of internal defects, in this case these
were converted by setting Yeq = 0.65 and rescaling the respective

√
area to

√
areaeq

using Eq. (6.4).
Figure 6.1(a)-(b) shows the datasets of the chosen metallic alloys. The i-th speci-

men of each dataset were characterised by √areai and ∆σi. Different markers were
used to distinguish failed specimens from those that run out. Additionally, the
markers were coloured according to ∆K computed through Eq. (5.3), whose value
can be read on the rightmost colour bar.

In agreement with the stages of the LR-MAP approach and the structure of
the datasets outlined in Eq. (6.3), the algorithm does not necessitate specific pre-
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Figure 6.1. Datasets examined for the development of the LR method. (a) AlSi8Cu3
[232]. (b) AISI316L [243]. The specimens of both datasets were subjected to alternating
tensile fatigue test at R = −1.

processing of the data. Nonetheless, the user is committed to consider transforming√
areai when defects are characterised by different Yi. Additionally, the approach

handles specimens probed at unique fatigue testing conditions, i.e. same mode and
stress ratio.

It is worth pointing out that this probabilistic assessment of the fatigue endurance
curve is independent on the distribution of the defect size. In fact, the essential infor-
mation about the size of the defects observed in the probed material is encoded into
the likelihood function whereby the failure probability is modelled (see Eq. (2.65)).

6.4. Application of the Method and Discussion

6.4.1. Small dataset Case-study (AlSi8Cu3)
The first case study presented herein regards an AlSi8Cu3 taken from [232], whose

associated dataset is shown in Figure 6.1(a).
Figures 6.2(a)-(c) summarises the contour plots of the log-likelihood, log-prior and

log-posterior. Thanks to the opportune parametrisation of
√

area (see Section 6.2.2)
each contour is a function of ∆Kth,lc and ∆σw.

The log-likelihood logP[D|θ] built upon the considered dataset is displayed in
Figure 6.2(a). The visual inspection of logP[D|θ] disclosed the absence of maximum
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Figure 6.2. The elements of the MAP regarding the AlSi8Cu3 dataset. (a) Log-likelihood
(b) Log-prior (c) Log-posterior.

points. As a result, the sole maximisation of the log-likelihood would not have
estimated any of the parameters sought. In particular, the optimiser would have
moved toward ∆σw ≃ 180 MPa and ∆Kth,lc → +∞ indefinitely while seeking the
maximum.

Although this preliminary assessment seems to hinder the parameter estimation,
it concurs with the conformation of the dataset. A close examination of Figure 6.1(a)
revealed that failed and runout specimens can be – almost exactly – separated by
a horizontal having intercept ∆σw ≃ 180 MPa. Despite matching the experimental
evidence, these results would be unacceptable from an engineering design perspective
as they would consider also unrealistic values of ∆Kth,lc. A specific choice of priors
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allowed for circumventing this issue. Since no information about ∆Kth,lc could be
essentially inferred from the dataset, ∆Kth,lc ∼ N (3.3, 1.42) MPa

√
m was prescribed

as a prior, whose parameters are the mean and the variance of the set of ∆Kth,lc

obtained by gathering data of similar materials from [266–268]. On the other hand,
∆σw was already expected to be around 180 MPa. Therefore, it was sufficient to
rely upon the experimental evidence and prescribe a non-informative U prior for
this parameter, hence ∆σw ∼ U . The resulting log-prior logP[θ] = logP[∆Kth,lc] +
logP[∆σw] is shown in Figure 6.2(b).

Figure 6.2(c) shows the log-posterior logP[θ|D] given by the sum of the log-
likelihood (Figure 6.2(a)) and the log-prior (Figure 6.2(b)). Herein, it is possible to
recognise that logP[θ|D] peaked at θ̂ = [∆Kth,lc

ˆ ∆σw
ˆ ] = [5.4 187.1], thus provid-

ing the expected values of the parameters. Following, these values were exploited to
apply Laplace’s approximation to logP[θ|D] and compute the posterior P[θ|D]. The
subsequent marginalisation of P[θ|D] provided the distributions of the estimated pa-
rameter, i.e. ∆Kth,lc ∼ N (5.4, 1.32) MPa

√
m and ∆σw ∼ N (187.1, 20.42) MPa. Fig-

ure 6.3(a) shows the contour plot of P[θ|D], whereas Figure 6.3(b) offers a graphical
representation of the marginal distributions of ∆Kth,lc and ∆σw.

2 4 6 8 10

∆Kth,lc [MPa
√

m]

100

150

200

250

300

350

∆
σ
w

[M
P

a]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

P[
θ|D

]

(a)

0 2 4 6 8 10

∆Kth,lc [MPa
√

m]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P[
∆
K
th
,l
c
]

∆Kth,lc

∆σw

100 120 140 160 180 200 220 240 260
∆σw [MPa]

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

P[
∆
σ
w

]

(b)

Figure 6.3. Results of the MAP and marginalisation of the posterior (a) Contour plots
of the posterior of AlSi8Cu3 dataset. (b) Marginal distributions of ∆Kth,lc and ∆σw in
black and grey, respectively.
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6.4.2. Large dataset Case-study (AISI316L)
It is interesting to note that, even in this case, the log-likelihood did not reveal

any maximum point, see Fig 6.4(a). As a consequence, ∆Kth,lc and ∆σw would
have been, again, unidentifiable unless specific priors had been defined. Moreover,
the datasets shown in Figure 6.1(b) did not exhibit any distinctive characteristic,
such as preferred values of the parameters whereby the dataset could have been
split – similarly to the former case. In order to accomplish the training stage, the
following priors ∆Kth,lc ∼ N (6.8, 0.282) MPa

√
m and ∆σw ∼ N (864.0, 136.82) MPa

were prescribed, again, by gathering data of similar materials from [248–253]. The
combinations of these priors computed through Eq. (6.10) is portrayed in Fig-
ure 6.4(b). Upon injecting these priors into the learning stage and computing the
log-posterior (Figure 6.4(c)), the MAP successfully estimated the expected param-
eters, ∆Kth,lc

ˆ = 7.5 MPa
√

m and ∆σw
ˆ = 1003 MPa. Next, Laplace’s approximation

permitted the posterior to be evaluated, which is displayed in Figure 6.5(a). Finally,
the marginal posterior distribution of each parameter was calculated, resulting in
∆Kth,lc ∼ N (7.5, 0.32) MPa

√
m and ∆σw ∼ N (1003, 1462) MPa. Such marginal

distribution are displayed in Figure 6.5(b).

6.4.3. Results and Discussion
Table 6.6 succinctly gathers the MAP estimates of ∆Kth,lc and ∆σw in terms of

99.7% confidence intervals and the reference values from the literature. Regarding
AlSi8Cu3, the reported intervals satisfactorily match the data from the literature
for both ∆Kth,lc and ∆σw and corroborate the thorough choice of the prior adopted.
Nonetheless, the agreement with the literature was only partially achieved as con-
cerns AISI316L. Whilst the interval estimates of ∆σw includes its reference counter-
part, the analogous estimate for ∆Kth,lc revealed the corresponding reference value
to be unlikely. This could be interpreted as being a consequence of the selected prior
for ∆Kth,lc. In this regard, the data borrowed from the literature appears tightly
centred around 6.8 MPa

√
m, thus resulting in a limited standard deviation as high

as 0.28 MPa
√

m. These features biased the posterior by concentrating its distribu-
tion around 7.5 MPa

√
m with a relatively small standard deviation of 0.3 MPa

√
m,

thus reflecting the traits of the prior. Moreover, the ∆Kth,lc value provided by the
literature is certainly affected by both epistemic and aleatoric errors that undoubt-
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Figure 6.4. The elements of the MAP regarding the AISI316L dataset. (a) Log-likelihood
(b) Log-prior (c) Log-posterior.

edly affect its reliability. However, this results and the choice of the priors are not
limiting as one can leverage the excellent flexibility of the conceived methodology.
Specifically, should further data regarding the characterisation of AISI316L be avail-
able, the prior can be readily updated to obtain more and more truthful appraisals
of the parameters. Despite this, the estimates are conservative as compared with
the reference values so that they can be deemed as acceptable given the restrictive
data availability.

It should be mentioned that the microstructure of the material under examination
may affect fatigue performance and, consequently, have implications on the evalu-
ated EH parameters. Nevertheless, the results obtained through this method can be
compared to other similar materials having the same microstructural characteristics,
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Figure 6.5. Results of the MAP and marginalisation of the posterior (a) Contour plots
of the posterior distribution of AISI316L dataset. (b) Marginal distributions of ∆Kth,lc

and ∆σw in black and grey, respectively.

Table 6.6. 99.7% probabilistic intervals of the estimated parameters and comparison
with the literature.

Material ∆Kth,lc
ˆ ± 3

√︂
V[∆Kth,lc

ˆ ] ∆σw
ˆ ± 3

√︂
V[∆σw

ˆ ] ∆Kth,lc ∆σw Ref.
Ref. Ref.

[MPa
√

m] [MPa] [MPa
√

m] [MPa]

AlSi8Cu3 5.4 ± 3 · 1.3 187.1 ± 3 · 20.4 3.54 212.8 [232]
AISI316L 7.5 ± 3 · 0.3 1003 ± 3 · 146 9.04 900 [243]

i.e. fabricated employing the same manufacturing conditions. Hence, the retrieved
EH parameters are exclusively valid for the specific analysed material. In this in-
stance, the sole feature that is meant to vary is the size of the defect where the fatal
fatigue crack originated from. On the other hand, it is not possible to characterise
the long crack fatigue behaviour unless bespoke experimental would be deployed.
In this regard, the intrinsic material defects span (approximately) from 10 µm to
103 µm in terms of the defect representative size. To overcome this limitation the
proposed methodology exploits literature data to estimated rational interval which
the EH parameters should belong to.

The obtained marginal posterior distributions of ∆Kth,lc and ∆σw were utilised to
conduct a Monte Carlo simulation to determine the probabilistic fatigue endurance
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limit curve, following the procedure laid out in Section 6.2.4. The outcomes of the
statistical post-processing (see Section 6.2.4) are graphically summarised in Fig-
ure 6.6(a) and Figure 6.6(b) for AlSi8Cu3 and AISI316L, respectively. The black
solid line indicated in these figures is the evaluated EH curve, i.e. the EH curve given
by the expected estimated parameters, whereas the grey solid line is the reference
EH curve retrieved from the literature. Additionally, the dot-dashed and dashed
lines are the lower (E (M) − P(M)) and upper (E (M) + P(M)) bound of the prediction
interval computed through Eq.(6.24). For the sake of convenience, each figure re-
ports the related experimental dataset. Besides the mathematical interpretation of
the prediction intervals given in Section 6.2.4, E (M) ± P(M) defines the probabilistic
crack propagation region. In particular, its lower and upper bounds are regarded as
the failure probability thresholds at 2.5% and 97.5% respectively, for the adopted
confidence level β = 95% (Eq. (6.24)).

The evaluated EH curves shown in Figure 6.6 concurs well with the corresponding
reference ones. This could be attributed the distinctive marginal posterior of each
identified parameter. In this respect, the reference values of ∆Kth,lc and ∆σw are
included within the 99.7% probabilistic interval in Table 6.6, thus resulting likely
values with respect to the relative marginal posterior. This however is not fully
confirmed when considering ∆Kth,lc of AISI316. Specifically, its reference value falls
outside the probability interval so that it appears unlikely. Despite this, the evalu-
ated EH curves can be considered as acceptable, since the scope of this method is
estimating the fatigue endurance limit by the sole exploitation of fatigue characte-
risation and literature data, rather than seeking a perfect match with the reference
curves.

The peculiar characteristics of the marginal posterior are reflected on the pre-
diction intervals as well. During the Monte Carlo simulation, samples are drawn
from the marginal posterior distributions of ∆Kth,lc and ∆σw. Consequently, if the
reference values belongs to the 99.7% probabilistic interval, these values are likely
to be drawn from the marginal posteriors. Also, the closer are the reference values
to the mode of the respective marginal posterior the higher the probability of being
drawn is. Therefore, the associated EH curve trials are supposed to increasingly
approach the corresponding reference EH curve to a certain extent. In particular, if
the reference values of ∆Kth,lc and ∆σw lays in a sufficiently narrow neighbourhood
of the mode, the prediction interval will enclose the reference EH curve with the
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confidence level β. This could evidently be seen for AlSi8Cu3 by comparing the
values in Table 6.6 and Figure 6.6(a). By contrast, since the evaluated ∆Kth,lc of
AISI316 falls outside the probabilistic interval and far away from the mode of the
posterior, this property does not hold, see Figure 6.6(b). Further, Figure 6.6(b) also
highlight the implication of the chosen prior. In this respect, the limited scatter
of the literature values of ∆Kth,lc drastically narrowed the prediction band across
the long cracks regime. As briefly mentioned earlier this phenomenon can be miti-
gated by enriching the prior with data from the literature spanning a wider range
of ∆Kth,lc.

Furthermore, a rapid critical inspection of the results shown in Figure 6.6 enables
one to assess the buoyancy of the EH curves evaluated at different failure probability
levels. Particularly, apart from the regions of the diagram where failed and runout
specimens coexist, each curve reasonably leaves failed and runout specimens above
and beneath the EH curves, according to their respective level of failure probability.
As a result, each probabilistic EH curve accommodates the natural conformation of
the dataset.
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Figure 6.6. Probabilistic fatigue endurance limit at 2.5% and 97.5% failure probability
along with the examined datasets (a) AlSi8Cu3 (b) AISI316L.

It is also useful to briefly comment on the behaviour of the convergence indicator
ρi defined in Eq. (6.25). Except for a few initial fluctuations, ρi converged rapidly
toward zero. Although the total number of Monte Carlo samples was set to M =
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12288, Figure 6.7 suggests that 1000 samples would have sufficed. In fact, after
this number of samples, ρi stabilised and exhibited negligible oscillation so that the
convergence could have been considered as achieved.
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Figure 6.7. Convergence indicator throughout the Monte Carlo simulation.

Figure 6.6 which shows the probabilistic endurance limit curves evaluated using
the entire dataset. For the sake of validating the developed LR-MAP framework, the
same curves are retrieved splitting the full dataset into the training set Dtr, which
LR is trained on, and test set Dts, which was held out, such that Dtr ∪ Dts = D,
Dtr ∩ Dts = ∅, and Ntr + Nts = N. Since a typical 80/20 random split was adopted,
the training and test dataset were proportionally partitioned as Ntr = 0.8 N, and
Nts = 0.2 N. Importantly, the training stage exploited the same priors used earlier.

Table 6.7 reports the identified parameters which approaches those in Table 6.6,
thus proving the robustness of the LR-MAP approach.

Figure 6.8 shows the evaluated EH curves at different levels of failure probability
obtained by partitioning the dataset. The points belonging to Dtr are indicated
in agreement with the markers of Figure 6.6. Whilst, failed and runout specimens
belonging to Dts are denoted by “plus” and triangle markers. It can be noticed once
again that each curve divides failed specimens from runout specimens, according to
their respective level of failure probability – except for the region were failed and
runout may overlap.

148



6.5. Conclusions

Table 6.7. 99.7% probabilistic intervals of the estimated parameters and comparison
with the literature. This intervals were retrieved conducting the training stage on the
sole Dtr.

Material ∆Kth,lc
ˆ ± 3

√︂
V[∆Kth,lc

ˆ ] ∆σw
ˆ ± 3

√︂
V[∆σw

ˆ ] ∆Kth,lc ∆σw Ref.
Ref. Ref.

[MPa
√

m] [MPa] [MPa
√

m] [MPa]

AlSi8Cu3 5.2 ± 3 · 1.3 188.6 ± 3 · 22.3 3.54 212.8 [232]
AISI316L 7.3 ± 3 · 0.26 1003 ± 3 · 107 9.04 900 [243]
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Figure 6.8. Probabilistic fatigue endurance limit at 2.5% and 97.5% failure probability
along with the examined datasets. This curves were retrieved conducting the training
stage on the sole Dtr (a) AlSi8Cu3 (b) AISI316L.

6.5. Conclusions
The computational framework proposed herein allows for an accurate probabilistic

evaluation of the fatigue endurance limit in metallic materials containing defects.
The underlying method relies on the elegant combination of LR and MAP which
enables for probabilistically evaluating the EH’s parameters (∆Kth,lc and ∆σw). This
methodology seamlessly merges partial fatigue results of a probed material and the
available results taken from the literature that help enforce the physical soundness
of the evaluated parameters. Consequently, a relatively limited number of fatigue
tests is sufficient to attain a comprehensive fatigue characterisation and curb the
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onerousness of its protocol.
The LR-MAP strategy outputs the probability distributions of ∆Kth,lc and ∆σw.

Subsequently, these distribution can be supplied to a Monte Carlo simulation to
evaluate the fatigue endurance limit curve for a specified level of failure probability,
e.g. 2.5%. This outcome can directly be used when designing engineering structures
or components following a probabilistic framework.

Two different metallic alloys, i.e. AlSi8Cu3 and AISI316L, were considered to
demonstrate the effectiveness of the LR-MAP appoach. In both examples, the in-
tervention of MAP showed its excellent inclination at incorporating prior knowledge
from the literature, thus leading to univocal estimates of the EH parameters. Ad-
ditionally, a 80/20 random split of the dataset enabled for validating the LR-MAP,
while demonstrating its robustness and predictive capabilities.

The LR-MAP method will bring extremely relevant implications in many fatigue
design contexts, especially those dealing with defective materials, such as AM. Ac-
curate fatigue endurance curves will increasingly empower the implementation of
emerging techniques in numerous advanced engineering applications.
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7. Defect-based Prediction of
Fatigue Endurance Limit for
Metallic Alloys via Bayesian
Physics-Guided Neural Networks

This chapter showcases a B-PINN-inspired predictive model to forecast the fatigue
endurance limit of metallic materials in the presence of defects. Particularly, an
NN is rigorously endowed with BI where the EH is used to infer a prior for NN’s
parameters, thereby allowing the NN to reproduce the phenomenological behaviour of
the EH. Pertinent defect descriptors are collated into a dataset whereby the likelihood
is constructed. In agreement with BI, the prior and the likelihood are then cast into
Bayes’ theorem to compute the posterior of the NN’s parameters.

7.1. Introduction
Section 1.2 and Chapter 5 widely discussed how defects massively cause scattered

fatigue data, which consequently retain both epistemic and aleatory uncertainty,
thus invariably compromising a reliable assessment of fatigue performance [11, 308–
310]. Therefore, deterministic data-driven and physics-informed ML models cannot
adequately capture this aspect that is of great importance when designing engineer-
ing components against fatigue failure. Moreover, these approaches may suffer from
small-data regimes. For this reason, the employment of probabilistic approaches is
gaining more interest. In fact, another variant of PINNs, referred to as Probabilistic
Physics-guided (PPgNN), has emerged alongside to address this drawback [218, 311].
The PPgNN was instructed by fatigue data while reinforcing the training using S-N
curves – not strictly defect-based, though. A similar strategy was pursued to pre-
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7. Defect-based Prediction of Fatigue Endurance Limit B-PGNNs

dict the fatigue life of diverse Fe-based materials [312]. Despite being probabilistic,
PPgNN are merely frequentist, so they cannot guarantee optimal performance in
small-data regimes as well.

Given its potential, BI represents a viable solution to circumvent the limitations of
the current deterministic and frequentist ML techniques. Additionally, BI automat-
ically provides a formal probabilistic modelling setting with a built-in uncertainty
quantification framework, provided adequate prior domain knowledge [313–315].
Nonetheless, relatively little research has been devoted to applying BI-based meth-
ods to problems related to fatigue, e.g. experimental S-N curve fitting [308, 316, 317],
ML evaluation of the fatigue endurance limit of metallic alloys [90], prediction of
crack nucleation and growth in Ni-based and Ti-based superalloys [318–321].

A potential strategy for predicting the fatigue endurance limit of defect-laden
metallic materials while quantifying the associated uncertainty would be the ex-
ploitation of B-PINNs, see Section 2.6.2. Nevertheless, the classical B-PINNs pri-
marily focus on PDE-governed problems, as seen in recent engineering application
as well [322–324]. Moreover, in this B-PINN framework, the physics governing
the problem is injected to modify the likelihood, instead of the prior distribution –
which is not formally correct as compared with the Bayesian setting. However, while
the likelihood modification approach is more akin to the training for deterministic
PINNs, designing priors tailored for a particular application is the natural channel
for embedding expert knowledge in BNNs [108, 325, 326]. Crucially, crafting pri-
ors resembling the problem’s formulation is an essential requirement to obtain good
quality uncertainty estimation and a well-calibrated posterior [327]. Thus, further
effort must concentrate on synergically merging the settings of PINNs with BI to
deal with the present problem while adhering to a rigorous Bayesian treatment.
However, it is important to remark that one approach does not exclude the other.

The present chapter borrows the implementation of semi-empirical laws for PINNs
from Chapter 5, and complements it with formal BI. Specifically, a standard BNN is
initially considered. In agreement with the Bayesian setting, the prior of the BNN
is inferred from the selected semi-empirical law. After this stage, the BNN holds the
ability to reproduce the phenomenological behaviour of the semi-empirical law, so
the BNN morphs into a B-PGNN. Since this particular procedure is not envisaged
by the consolidated B-PINNs, the nomenclature “B-PGNN” (where “G” stands for
guided) is decidedly employed to make this distinction clearer. However, “informed”
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and “guided” seem to be interchangeable in the context of these peculiar NN [328].
Following this preliminary stage, the likelihood is built upon the training dataset,
and the posterior is then given by Bayes’ theorem (Eq (2.32)). Finally, the posterior
is numerically approximated (Section 2.3.2). An overview of the B-PGNN’s struc-
ture is depicted in Figure 7.1 to clearly emphasise the differences with Figure 2.13.

Figure 7.1. Block diagram of the training the B-PGNNs. Herein, G succinctly denotes
the B-PGNN architecture defined according to Eq. (2.68). The prior of the parameters θ,
i.e. P[θ|G], is inferred from a “physical” law. Given a training dataset D the likelihood
P[D|θ, G] is built, which is plugged along with the prior into Bayes’s theorem. As a
result the posterior P[θ|D, G] is computed, alternatively through VI or HMC, allowing
for subsequent predictions.

The key objective of the B-PGNN is to predict whether a specimen retaining cer-
tain defectivity traits attains a given fatigue life, i.e. the number of cycles, when
subjected to a prescribed fatigue load; sometimes referred to as material fatigue
limit. The present investigation focusses on the SLM AlSi10Mg literature dataset
exploited in Section 5. It is worth recalling that the specimens were tested via
alternate tensile fatigue tests, and comprehensive defect descriptors are available
from both ante- and post-mortem analysis via CT scan and fractography, respec-
tively. Initially, the fractographic data and further literature information are used
to determine the semi-empirical reinforcement of the B-PGNN, i.e. the EH curve
of the dataset, following Chapter 6. The retrieved EH curve is then opportunely
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generalised to handle the descriptors contained in the CT dataset. The generalised
EH curve is then transferred to the parameters (weights & biases) of the B-PGNN
as a prior to inform its physical side. Whilst the data-driven side of the B-PGNN is
ruled by the likelihood built upon the available experimental CT dataset. Thus, BI
is pursued to compute the posterior of the parameters. Consequently, the B-PGNN
learns how to predict the failure probability of the samples while providing the un-
certainty of such predictions. Furthermore, a K-fold cross-validation is performed to
assess the robustness of the B-PGNN and its performance over the BNN counterpart
is examined. Alongside, a Bayesian model selection method is presented to identify
the optimal B-PGNN architecture amongst many candidate configurations. As an
ancillary result, the B-PGNN is exploited to shed light on the correlations between
the predictions and descriptors from CT scans, which would not be disclosed if the
classic EH model were adopted.

7.2. Materials and Methods

7.2.1. Overview of the Dataset
The present study considers as a case study the literature dataset used in Chap-

ter 5, which was borrowed from [52]. In this instance, the fatigue endurance limit of
the dataset was referred to the runout threshold Nw = 2 · 106. In order to obtain a
satisfactory characterisation of the fatigue endurance limit, particular attention was
devoted to filtering a sufficient number of runout and failed samples. According to
the prescribed runout threshold, the runout and failed specimens are distinguished
by N ≥ Nw and N < Nw, respectively. Table 7.1 summarises the outcomes and the
related classification of the samples considered for the development of the B-PGNN
approach.

As already described in Chapter 5, each specimen was examined through CT
to characterise its defectivity prior to fatigue testing. Herein, a few descriptors
employed for the development of the PINN are considered again, for instance,

√
area,

sphericity S (Eq. (5.1)), and equivalent diameter d (Eq. (5.2)). In the present
investigation, LEFM is still assumed to hold, and defects are modelled as cracks
with length equal to

√
area. This hypothesis allows ∆K to be adopted as the

fatigue crack driving force. Differently from Chapter 5, Y is evaluated through

154



7.2. Materials and Methods

Table 7.1. Summary of the fatigue test campaign. Samples marked with ∗ underwent
prior testing at a lower ∆σ.

Sample ∆σ N Outcome
[MPa] [-]

1 295.4 46255 Failed
2 400.0 474 Failed
3 220.0 8889311 Runout
3∗ 360.0 3432 Failed
4 156.0 3795336 Runout
5 301.6 39538 Failed
6 378.3 11465 Failed
7 298.5 19806 Failed
8 156.0 20000000 Runout
9 180.0 11352768 Runout
10 220.0 2622640 Runout
11 180.0 237485 Failed
12 200.0 15242310 Runout

pure Murakami’s criterion [2], i.e. Eq. (5.6). Amongst numerous acquired defects
for each sample, the present research prioritises those yielding the maximum ∆K.
These defects are listed in Table 7.2 which indicates the values of the descriptors
alongside.

The post-mortem fractography characterised, where detectable, the defects that
actually triggered fatigue failure in terms of

√
area and, again, the distance h be-

tween the defect’s centroid and the free-surface of the specimen. Additionally, Mu-
rakami’s criterion (Eq. (5.6)) was applied to compute Y and the corresponding ∆K.
Table 7.3 reports the outcomes of this investigation. The defect pertaining to the
twelfth sample of Table 7.3 was originally categorised as sub-surface defect, i.e.
Y = 0.5. However, EH curve should be referred to a unique class of defect [62].
Eq. (6.4), i.e. the SIF equivalence, was used to convert the original

√
area into the

equivalent
√

areaeq = 440.0µm while assigning Y = 0.65 to this defect.
Figure 7.2(a) shows the CT dataset given in Table 7.2, where purple circles and

yellow cross markers indicates runout and failed samples, respectively. Similarly,
Figure 7.2(b) portrays

√
area and ∆σ acquired by fractography. Therein, markers
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Table 7.2. Defect descriptors acquired via CT-scan yielding the maximum ∆K.
Sample

√
area h d S Y ∆K

[µm] [µm] [–] [–] [–] [MPa
√

m]
1 214.2 110.9 186.7 0.35 0.65 5.0
2 275.0 308.8 256.5 0.27 0.65 7.6
3 283.4 134.3 253.0 0.25 0.65 4.3
4 334.5 233.8 227.6 0.32 0.65 3.3
5 379.1 269.5 260.9 0.29 0.65 6.8
6 429.2 222.8 340.6 0.23 0.65 9.0
7 443.3 207.6 401.8 0.21 0.65 7.2
8 458.2 214.2 341.4 0.24 0.65 3.8
9 470.0 222.3 342.6 0.25 0.65 4.5
10 497.8 310.1 418.3 0.17 0.65 5.7
11 568.8 332.0 398.6 0.20 0.65 4.9
12 572.0 373.7 410.2 0.21 0.65 5.5

Table 7.3. Available defect descriptors acquired via fractography.
Sample

√
area Y ∆K

[µm] [-] [MPa
√

m]
1 128.8 0.65 3.9
2 378.2 0.65 9.0
3 168.8 0.65 5.4
8 500.0 0.65 2.6
9 437.4 0.65 4.3
10 271.5 0.65 4.2
12 440.0 0.65 4.2

are coloured according to the associated ∆K whose value can be read from the
rightmost colour bar.

7.2.2. El Haddad’s Curve of the Fractography Dataset
The EH curve illustrated in Section 2.2.2 is considered to build the physical con-

straint of the B-PGNN. In this instance, the EH is referred to the aforementioned
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Figure 7.2. (a) CT dataset (b) Fractography dataset.

runout threshold Nw to outline the fatigue endurance limit of the examined mate-
rial. Furthermore, the EH is restated in terms of

√
area. Consequently, the for-

mulation shown in Eq. (6.1) is assumed herein as well as the EH critical length of
Eq. (6.2) [62, 234]. In the following, the generic EH curve will concisely be denoted
as E .

The identification of the EH parameters, i.e. ∆Kth,lc and ∆σw, is carried out
using the MAP approach comprehensively described in Chapter 6. In this instance,
it is worth structuring the fractographic dataset:

DH = {(xi, Fi) : xi =
[︂√

areai ∆σi

]︂
, i = 1, 2, 3, 8, 9, 10, 12} (7.1)

where Fi is determined according to:

Fi =
⎧⎨⎩0 if N ≥ Nw

1 if N < Nw

(7.2)

where 0 and 1 stand for runout and failed, respectively. For the sake of the
identification, the input vector was equivalently restated as xi =

[︂
∆Ki, ∆σi

]︂
us-

ing Eq. (2.16). Whilst for the remainder of the implementation, the input vec-
tor is assumed as xi =

[︂√
areai ∆σi

]︂
as per Eq. (7.1). Results from the liter-

ature were used to inform independent priors P[∆Kth,lc] = N (4.9, 1.62) MPa
√

m
and P[∆σw] = N (330.7, 10.42) MPa for the EH parameters [212, 260–263]. MAP
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was then pursued to compute the corresponding marginal posterior distributions
P[∆Kth,lc|DH ], and P[∆σw|DH ], whose expected values ∆Kth,lc

ˆ and ∆σw
ˆ are the EH

parameters sought. The EH curve referred to these values will be denoted as Ê .

7.2.3. Learning El Haddad’s Curve
The primary objective of this framework is to surrogate the following model:

Fi = Gθ(x′
i) (7.3)

by a B-PGNN whose architecture is defined in Eq. (2.68), where θ are the B-PGNN’s
parameters, which obey BI. Whilst x′

i is a generic vector gathering all the relevant
defect’s descriptors as shown shortly. The first step necessary for the application of
the B-PGNN framework to the present problem aims to encode the EH curve into the
prior of the BNN. Although BNNs are flexible models that can tightly approximate
any smooth function, they are characterised by a non-linear relationship between
the distribution placed on the weights and the resulting functional form of their
output. Therefore, the EH curve cannot be analytically encoded. Nevertheless,
as highlighted in the following, a method for accurate encoding of the prior can be
designed through a combination of synthetic data generation, learning, and posterior
tempering by relying on the concept of catalytic priors [326, 329].

In the specific problem analysed herein, the set of problem descriptors considered
thus far is initially extended. In fact, the application of ML allows for considering
features whose relationships with the predictor are already well-understood physi-
cally, but also descriptors that potentially hold complementary information. Specif-
ically, beside

√
area and already considered in the EH curve, the vector representing

the BNN input, xi, is expanded as:

x′
i =

[︂√
areai di Si ∆σi

]︂
(7.4)

Intuitively, the feature
√

area allows the B-PGNN to account for the extension of
the defects, whereas the combination of

√
area and d (Eq. (5.2)) indirectly encode

the influence of the defect’s thickness. Additionally, S (Eq. (5.1)) was selected as a
shape parameter since it introduces the functional dependence on three-dimensional
morphological traits. Specifically, S can allow for spheroidal defects (e.g. gas pores)
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to be distinguished from those being more crack-like (e.g. lack-of-fusion) when S → 1
and S → 0, respectively. As opposed to the set of inputs used in Chapter 5, h was
not included in the model since Murakami’s criterion (Eq. (5.6)) categorises all
the instances of Table 7.2 as surface defects. Thanks to the flexibility of the present
framework, any other available descriptors relevant to the problem can be potentially
included in x′

i.
To encode the EH curve in the BNN, the catalytic prior framework [326, 329] is

pursued. A synthetic dataset is generated such that it encapsulates the behaviour
of the EH curve in a discretised fashion. In order to do so, a uniform grid over the
entries of xi is defined – this step only affects √areai and ∆σi. Whilst the additional
descriptors specific to the BNN are sampled from a Gaussian distribution with mean
and variance set according to the experimental data listed in Table 7.2:[︂

di Si

]︂
∼ N (µ =

[︂
320 0.25

]︂
, Σ = diag = (802, 0.052)) (7.5)

With the resulting samples a synthetic dataset is built as follows:

DS = {(x′
i, Fi) : x′

i =
[︂√

areai di Si ∆σi

]︂
, i = 1, 2, . . . , M} (7.6)

where Fi depends only on the EH input descriptors.
In short, the catalytic prior is learnt through the BNN from the synthetic dataset

DS. Formally, a standard Gaussian distribution is initially placed over the weight,
P[θ|G] so that the catalytic prior is retrieved from a straightforward application of
the Bayesian formula:

P[θ|DS, G] = P[DS|θ, G]τ P[θ|G]
P[DS|G] (7.7)

which is approximated using VI and the implementation is carried out through
Pyro [330]. Differently from the standard Bayes’ theorem (Eq. (2.32)), Eq. (7.7)
implements an additional parameter τ , called temperature [327]. In the current
application, τ balances the relative weight between the importance given to the
physics and that given to the observed dataset. Specifically, τ is chosen as suggested
in Ref. [326, 329] such that τ = p/M; where M = max{400, 4p} (Eq. (7.6)) and p

is the number of B-PGNN’s parameters. The influence of τ shall be clarified later
in regard to the present problem. Furthermore, Eq. (7.7) is not yet the learning
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stage of the final B-PGNN, but only its first step encoding the physics information
into the BNN model. Before discussing this aspect, however, a Bayesian method to
identify a suitable architecture of G is illustrated.

7.2.4. Model Selection
The design of the BNN prior to reproduce the EH curve has been discussed without

referring to any specific architecture G. The present section addresses the issue of
selecting the optimal architecture from a given set of configurations by exploiting
Bayesian model selection presented in Section 2.6.5.

Consider the CT dataset given in Table 7.2, formally:

DN = {(x′
i, Fi) : x′

i =
[︂√

areai di Si ∆σi

]︂
, i = 1, 2, . . . , 12}. (7.8)

where Fi refers to the ground-truth label obtained by combining the data in Table 7.1
and Eq. (7.2). The first step consists in dividing the dataset into a training set, DT ,
and a validation one, DV , which reserves one-third of the data for the latter. In
addition, a train-test K-fold split is performed thrice so that each data point is
included in the validation set once. This results in the definition of three K-fold
pairs which are denoted by D(K)

T and D(K)
V for K = 1, 2, 3. The resulting folds are

graphically depicted in Figure 7.3.
In order to perform model selection, one is meant to consider a finite dataset of

possible configurations. In this instance, fully-connected NN architectures with tanh
activation functions are considered [81, 312]:

DC = {Gm,n : m ∈ {1, 2}, n ∈ {16, 32, 64}}, (7.9)

where m is the number of hidden layers L, whereas n denotes the neurons belonging
to the first hidden layer N1. If m = 2, then N2 = N1/2 neurons are assigned to the
second hidden layer. In any case, the dimension of the input vector x′

i automatically
determines the size of the input layer.

In agreement with Section 2.6.5, model selection is performed by selecting the
specific architecture that maximises the model evidence for each specific fold K:

P[D(K)
T |Gm,n] =

∫︂
θ
P[D(K)

T |θ, Gm,n]P[θ|Gm,n]dθ (7.10)
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Figure 7.3. K-folds adopted to conduct model selection.

Since the above integral is in general analytically intractable, it can be numerically
approximated, by Eq. (2.81). Finally, the optimal architecture for each K-fold is
selected as:

G∗ = max
Gm,n∈DC ; K∈{1,2,3}

P[D(K)
T |Gm,n] (7.11)

analogously to Eq. (2.82).

7.2.5. Training on CT data
The final stage of the learning entails the computation of the posterior of the

B-PGNN for each optimal architecture and prior designed over the EH curve. In
particular, given the catalytic prior P[θ|DS, G] of Eq. (7.7), the optimal model archi-
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tecture G∗ is selected as explained in the previous section. The likelihood over the
fold training set, D(K)

T , is then computed and used to evaluate the posterior of the
B-PGNN according to Equation (2.32). The resulting posterior is approximated us-
ing HMC. In this instance, n.8 Markov chains having n.100 samples of θ randomly
explore the parameter space, whereas n.200 samples are dedicated to sample the
posterior once the Markov’s chains converge. The implementation of HMC was con-
ducted utilising, again, Pyro [330]. The resulting posterior distribution P[θ|D(K)

T , G∗]
is finally employed to make predictions as per Eq. (2.52).

7.2.6. Computational Algorithm
Algorithm 4 is presented herein concisely outlines the steps of the application of

the conceived B-PGNN framework.
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Algorithm 4 Computational algorithm of the B-PGNN.
— EH curve —

Require: Fractography dataset DH ▷ Eq. (7.1)
Require: Priors for EH parameters P[∆Kth,lc] and P[∆σw]

Perform MAP ▷ Chapter 6
Compute P[∆Kth,lc|DH ] and P[∆σw|DH ]
Compute EH curve of DH

— EH Catalytic Prior & Model Selection —
Require: EH curve of DH

Require: Dataset DN ▷ Eq.(7.8)
Require: K-fold split of DN , i.e. D(K)

T and D(K)
V

Require: NN architectures Gm,n ▷ Eq. (7.9)
for m ∈ {1, 2} do

for n ∈ {16, 32, 64} do
Generate synthetic Dataset DS ▷ Eq. (7.6)
Learn the Catalytic prior through VI
for K ∈ {1, 2, 3} do

Compute the evidence of Gm,n on D(K)
T ▷ Eq.(7.10)

end for
end for

end for
Select the optimal architectures G∗ for each K-fold
— Training on CT data —

Require: K-folds of DN , i.e. D(K)
T and D(K)

V

Require: Optimal architectures G∗

for Each optimal architecture do
Prescribe the catalytic prior over θ

Train B-PGNN through HMC on D(K)
T

Make predictions ▷ Eq. (2.52)
end for
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7.3. Result and Discussion

7.3.1. Identified EH Curve
The application of MAP provided the expected values of the EH parameters

∆Kth,lc
ˆ = 6.6 MPa

√
m and ∆σw

ˆ = 349.2 MPa, which univocally identify the EH
curve through Eq. (6.1)-(6.2). Figure 7.4 displays ∆σ alongside

√
area, and the

identified EH curve Ê . A visual examination indicates Ê to be correctly located at
an intermediate position between failed and runout specimens, thus partitioning the
dataset DH , precisely. This result, therefore, substantiates the judicious selection of
the adopted prior distributions, i.e. P[∆Kth,lc] and P[∆σw].
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Figure 7.4. Graphical representation of the dataset DH (Table 7.3) along with the
identified EH curve Ê .

7.3.2. Functional Prior of the Selected Architectures
The implementation of model selection and the guidelines in Ref. [326, 329] ap-

pointed G1,16 as the optimal architecture for each K-fold D(K)
T . Specifically, G1,16

possess n.1 hidden layer with n.16 neurons totalising p = 114 parameters. Corre-
spondingly, this strategy automatically determined the number of training points,
i.e. M = 484, required to form the synthetic dataset D(K)

S (Eq. (7.6)). Alongside,
the value of the temperature parameter turned out be τ = 0.236. The section of
D(K)

S ∀ K = 1, 2, 3 – which is identical for each K-fold – taken on
√

area − ∆σ plane
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is portrayed in Figure 7.5. Therein, runout and failed samples of D(K)
S are denoted

by blue and red circle dots, respectively, whereas the solid black line is Ê . It is
worth remarking that the descriptors not shown in Figure 7.5 follow the normal
distribution defined in Eq. (7.5).
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Figure 7.5. Section of D(K)
S taken on

√
area − ∆σ plane. This section is identical for

each K-fold, whereas the hidden descriptors obey to the distribution of Eq. (7.5).

VI was applied on three distinct instances of G1,16 to compute the related the
variational approximation of the catalytic prior P[θ|D(K)

S |G1,16] ∀ K = 1, 2, 3. To
qualitatively assess the buoyancy of this stage, Figure 7.6 presents the contours
of the predictive posterior in terms of the expected value E[Fi] and uncertainty√︂
V[Fi] of the forecast class Fi. Each figure also depicts failed and runout speci-

mens belonging to the training and test set, i.e. D(K)
T and D(K)

V ∀ K = 1, 2, 3, for
the sake of convenience. The combination of these contours can be interpreted as
the probabilistic fatigue endurance limit of the examined batch of samples. Apart
from modest oscillations ensuing from the random hidden descriptors, the contours
bear a close resemblance to one another. A graphical inspection reveals that G1,16

satisfactorily surrogates the EH curve as the contour lines of the predictive posterior
globally track the functional form of Ê . Nevertheless, a substantial broadening of
the contour lines of E[Fi] and a general increase of

√︂
V[Fi] can be observed along
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Ê for approximately
√

area < 150 MPa and
√

area > 600 MPa. Therein, G1,16

supposedly extrapolates more than it would do across the sub-domain of the plane
where the synthetic training points are concentrated, i.e. [150, 600] × [100, 500]. In
contrast, G1,16 achieve greater performance across the interior of this region as the
contour lines of E[Fi] tightly surround Ê while showing relatively lower levels of
uncertainty.
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Figure 7.6. Contours of the catalytic prior for D(K)
S ∀ K = 1, 2, 3 obtained through VI

(a)-(c)-(e) Expected value E[Fi]. (b)-(d)-(f) Uncertainty
√︂
V[Fi]. The contours are

grouped row-wise with respect to the K-folds. (a)-(b) K = 1. (c)-(d) K = 2. (e)-(f)
K = 3.
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7.3.3. Assessing B-PGNN Predictions
Each G1,16 was subsequently trained on D(K)

T through HMC upon prescribing the
functional prior P[θ|D(K)

S |G1,16] ∀ K = 1, 2, 3. As a result of the training, the fi-
nal posterior distribution P[θ|D(K)

T , H1,16] was computed. Figure 7.7 illustrates the
contours of E[Fi] and

√︂
V[Fi] of the predictive posterior of each G1,16. For each exam-

ined K-fold, the contours ostensibly retain the trend seen in Figure 7.6. This finding
demonstrates that each B-PGNN preserved the physical knowledge assimilated dur-
ing VI. Interestingly, the contours attempt to accommodate the conformation of
the training datasets. As concerns K-folds n.1, this effect is barely perceptible in
Figure 7.6(a) since the arrangement of the training points already seem to concur
well with the underlying phenomenological law. Nonetheless, the B-PGNN becomes
more confident about its predictions in the neighbouring regions of the CT training
data. Therein the uncertainty is reduced thanks to the additional training informa-
tion ensued from CT data, as it can be noticed in Figure 7.7(b). The adaptation of
the contours to the CT training data is more evident in regards to K-folds n.2. The
group five of runouts in D(2)

T appears as prevailing so that the contours of E[Fi] and√︂
V[Fi] are shifted downwards on the rightmost portion of the plot (Figure 7.7(c)-

(d)). Similarly to K-fold n.1, the uncertainty diminishes around the CT training
data, see Figure 7.7(d). With particular regard to K-fold n.3, the predominant
presence of four failed training specimens above Ê drastically pushes the contours
upwards, see Figure 7.7(d). Intriguingly, the peculiar collocation of the CT training
points suffices to reduce the uncertainty over the entire failed side of the contours.
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Figure 7.7. Contours of the predictive posterior obtained by training G1,16 on D(K)
T ∀ K =

1, 2, 3 through HMC (a)-(c)-(e) Expected value E[Fi]. (b)-(d)-(f) Uncertainty
√︂
V[Fi].

The contours are grouped row-wise with respect to the K-folds. (a)-(b) K = 1. (c)-(d)
K = 2. (e)-(f) K = 3.
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Box & whisker plots are presented in Figure 7.8 to quantitatively assess the ob-
tained predictions. The box spans the interquartile ranges, whereas the whiskers
decidedly cover 95% confidence interval. Besides training and test points, the figure
reports the median as a short black horizontal line, whilst the expected value of
the predictions are denoted as blue triangle markers. The samples are sorted as
per Table 7.2. Except for limited variations, the B-PGNNs achieve similar predic-
tions for samples 1-9. Indeed, this predictions satisfactorily match the experimental
expectation for both the training and test datasets. By contrast, little inconsis-
tency is observed with regard to specimens 10-12. These are closely located to Ê
where E[Fi] attains values about 0.5 and

√︂
V[Fi] is relatively high. Therefore, the

B-PGNNs cannot exactly distinguish which class the samples belong to. Much at-
tention should be devoted to the eleventh sample of the third K-fold (Figure 7.7(c)).
In this instance, let x′

11 its representative point. Contrary to expectations, the B-
PGNN probabilistically classify x′

11 as a runout. The apparent lack of matching can
attributed to the pathological location of this sample. Focusing on the sole prior
knowledge (Figure 7.6(e)), x′

11 is positioned beneath Ê , where runouts are supposed
to lay in. Further, the sample is surrounded by runouts training points which not
only prompt the B-PGNN to classify x′

11 as runout, but also make the B-PGNN
more confident. Certainly, further experimental data surrounding x′

11 can compen-
sate for this little inaccuracy. In conclusion, x′

11 should essentially be treated as
an outlier. Conversely, regarding K-fold n.1 and n.2, x′

11 acts as a training point,
and it allows one to highlight an interesting property of the B-PGNN. Specifically,
the B-PGNN recognise x′

11 not complying with the EH semi-empirical law. Con-
sequently, since the B-PGNN becomes unsure about handling this exception, it
increases the uncertainty around x′

11 to compensate for this apparent mismatch.
Therefore, the B-PGNN classifies x′

11 with higher uncertainty, and this valuable in-
formation would not have been appreciated with frequentist training, or by training
without a physics-guided prior. Although this performance is not ideal, overall, the
robustness of the B-PGNNs across the examined K-fold is verified, given the limited
number of processed samples.
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Figure 7.8. Box-plots for each K-Fold. The predictions are provided by the B-PGNN
after HMC training which exploited the functional prior (a) K = 1 (b) K = 2. (c)
K = 3.
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7.3.4. Performance of the B-PGNN for Engineering Practice
It is worth emphasising that the examined sample are positioned nearby the Ê ,

where considerable uncertainty is present. Nevertheless, in order to ensure suffi-
ciently reliable parts, engineering design against fatigue failure requires samples to
be located sufficiently distant from Ê . To this end, the performance of the B-PGNNs
is probed in such regions upon generating an additional synthetic dataset DP which
is shown in Figure 7.9. The dataset is characterised by points remotely located
with respect to Ê . Each point belonging to DP is assumed to possess d = 320 µm
and S = 0.25, in agreement with the mean values of the distribution in Eq. (7.5).
Accordingly, the box & whisker plot in Figure 7.10 gives the associated predictions.
Therein, the samples are sorted by

√
area as in Figure 7.9. The box-plot clearly

demonstrates that the B-PGNN attains accurate predictions on DP and proves the
suitability of the conceived approach to designing against fatigue failure.

101 102 103
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Runout Failed EH Curve

Figure 7.9. Synthetic dataset generated to probe the predictions of the B-PGNN far
away from Ê .
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Figure 7.10. Box-plot for the predictions of DP (a) K = 1 (b) K = 2. (c) K = 3.
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7.3.5. Influence of the temperature
In this context, it is worth commenting on the function of τ (Eq. (7.7)) across

the different stages of the training. Specifically, τ intervenes as factor weighting the
influence of the functional prior, i.e. P[θ|D(K)

S , Gm,n], and the likelihood ensued from
D(K)

T involved in HMC, i.e. P[D(K)
T |θ, Gm,n]. Hence, τ balances the contribution of

the physical model and the training data from the CT dataset. As far as the extreme
instances of τ are concerned, if τ conceptually approaches zero, the physical side of
the B-PGNN dominates the posterior. In contrast, if τ becomes increasingly larger,
the contribution of the functional prior is progressively purged. Lastly, if τ = 1 the
prior and the likelihood are equally balanced.

Additionally, to assess the sensitivity of the temperature parameter on the final
predictions, τ is drastically amplified, thus giving τmin = 0.2 τ and τmax = 5 τ . Fig-
ure 7.11 summarises the results obtained through VI upon training on the synthetic
dataset in terms of the predictive posterior. As concern the former case, the con-
tours seems to approach those pertaining to the mere data-driven strategy as τmin

weakens the prior knowledge inherited from the Ê . Conversely, in the latter instance
the physical branch of the B-PGNN is strengthened, thus tightening the contours
along Ê .

The choice of τ has direct implication for the final predictions, as shown in Fig-
ure 7.12. Specifically, the lack of physical knowledge ensuing from τmin broadened
both the interquartile ranges and the confidence intervals. Hence, an overall increase
of uncertainty is observed. The opposite behaviour is obtained for τmax, which con-
siderably enhances the confidence of the B-PGNN. As concerns Figure 7.12, x′

11
seems to be, again, probabilistically classified as a runout, notwithstanding the re-
duced value of τ . Therefore, in order to include the possibility for x′

11 to be a
failed samples, one ought to decrease τ further. Nevertheless, this would lead to
an unjustified broadening of the interquartile ranges and confidence intervals of the
remaining samples. By contrast, the adoption of τmax confirms x′

11 to be a runout.
This is mathematically reasonable as x′

11 would initially belong to the region where
the expected value ranges from 0.3 to 0.4. As previously mentioned, x′

11 ought to
be treated as an outlier so that its predictions needs to be interpreted with caution.

Additionally, it is expected that finely tuning τ ∈ [τmin, τmax] would partly address
this issue, but not completely solve it. Furthermore, it is worth noting that the
limitations in identifying potential outliers, such as x11 ∈ D(3)

T , may also stem from
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Figure 7.11. Contours of the predictive posterior obtained by training G1,16 on D(3)
S

through VI. (a)-(c) Expected value E[Fi]. (b)-(d) Uncertainty
√︂
V[Fi]. The contours

are grouped row-wise with respect to τ . (a)-(b) τmin. (c)-(d) τmax.

the retrieved Ê and the insufficient corresponding training points, see Figure 7.4.
With a more comprehensive training dataset it would have been possible to establish
a more suitable curve for the subsequent training stages, potentially assisting with
the detection of outliers. However, the constraints on data availability restricted the
possibility of fully addressing this concern.
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Figure 7.12. The predictions provided by the B-PGNN after HMC (a) τmin (b) τmax.
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7.3.6. Predictive posterior of the non-guided B-PGNN
In order to demonstrate the capabilities of the B-PGNN over the BNN counterpart

having the same architecture, HMC was repeated without prescribing the catalytic
prior. As concerns the implementation, VI was foregone, and HMC pursued with
τ = 1 and a non-informative prior over the parameters. Therefore, this configuration
completely neglects the physical knowledge that the catalytic prior brought about
earlier. The related results are reported in Figure 7.13. In this case, the contours of
E[Fi] qualitatively capture the configuration of each dataset, but they do not follow
the functional shape of the EH curve. Examining Figure 7.13(a), however, one can
claim little similarity the contour in Figure 7.7(a) and Figure 7.7(c). Again, this
is fortuitously due to the intrinsic distribution of the training points. Nevertheless,
the quantitative predictions are far from being adequate.

Further evidence is provided by the box-plots in Figure 7.14 whose box and
whiskers span, again, the interquartile range and the 95% confidence interval, re-
spectively. A graphical inspection reveals that the B-PGNN yields more consistent
predictions except for the specimens located in the vicinity of the EH which may
inherit higher uncertainty from the catalytic prior (see Figure 7.6). Apart from these
peculiar specimens, the B-PGNN’s predictions considerably approach the ground-
truth more than the BNN does. In fact, BNN’s E[Fi] appears to oscillate just
within [0.3, 0.6] – considerably deviating from the ground truth value. Moreover,
the larger interaquartile range and confidence intervals prevent one from inferring
precise information about the predicted class. Since the BNN may provide predic-
tions significantly differing from the actual value, a prospective practitioner would
pursue more conservative approaches to tolerate this higher uncertainty in the pre-
dictions. Whilst, a more performance-oriented can be adopted by exploiting the
superior accuracy of the B-PGNN.
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Figure 7.13. Contours of the predictive posterior obtained by training G1,16 on
D(K)

T ∀ K = 1, 2, 3 without prescribing the functional prior. (a)-(c)-(e) Expected value
E[Fi]. (b)-(d)-(f) Uncertainty

√︂
V[Fi]. The contours are grouped row-wise with respect

to the K-folds. (a)-(b) K = 1. (c)-(d) K = 2. (e)-(f) K = 3.
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Figure 7.14. The predictions provided by the BNN after HMC training without prescrib-
ing the functional prior (a) K = 1 (b) K = 2. (c) K = 3.
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7.3.7. Investigation of Latent Relationships
Unlike the classical EH model which exclusively concentrates on

√
area and ∆σ,

the obtained B-PGNNs allow for unveiling potential latent correlations between Fi

and the additional defect descriptors. This can provide insights into phenomena
governing fatigue failures. The features were considered in pairs and permuted
to study all the possible planes of the input domain, other than ∆σ −

√
area al-

ready discussed. This investigation was carried out with regard to the third K-fold
(D(3)

T ) only, for the sake of brevity. Figure 7.15 visually summarises the outcomes
of this analysis. Particularly, Figure 7.15(a) discloses a positive correlation between√

area and d, i.e. if these features jointly increase the failure probability increases
as well. This appears reasonable since large defects are more likely to trigger fatigue
collapse. Unexpectedly, Figure 7.15(b) suggest that

√
area and S are positively cor-

related, which seems, in a word, counterintuitive. In fact, one would suppose that
spheroidal defects, i.e. S → 1, yield a minor influence on fatigue failure. Nonethe-
less, Figure 7.15(b) recalls some of the traits of the EH curve. Presumably, this can
be ascribed to the presence of

√
area whose behaviour was previously informed by

the EH model. However, as concerns Figure 7.15(c), a neat correlation is scarcely
distinguishable. Figure 7.15(g) indicates that ∆σ generally controls the predictions,
although a mild positive correlation can be recognised. In other words, for increasing
d, E[Fi] increases, which is in line with theoretical expectations. Still, an arguable
negative correlation can be noticed in Figure 7.15(i) with regard to S, similarly to
that observed in Figure 7.15(c). Therefore, defects having S → 0 ought to possess
a crack-like shape, thus more detrimental to fatigue. In any case, the information
contained in D(3)

T allowed the B-PGNN to enhance its predictions. The rightmost
panels of Figure 7.15 witnesses diminished uncertainty in the neighbouring region
of the training points. It should be mentioned that these sections are partly, or
even completely (Figure 7.15(e)-(f)), non-informed by the physical branch. As a
result, the patterns that the B-PGNN acquired were inferred from mere data, which
corroborates the arrangement of the contours. Potentially, the existing observed
discrepancies might be mitigated should further data is provided.
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Figure 7.15. Contours of the predictive posterior obtained by training G1,16 on D(3)
T (the

third K-fold) through HMC. Other sections.
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7. Defect-based Prediction of Fatigue Endurance Limit B-PGNNs

7.4. Conclusions
B-PGNN framework to probabilistically forecast whether metallic defect-laden

materials experience fatigue failure when subjected to uniaxial fatigue loads has
been presented herein. A rigorous Bayesian framework was developed to train the
B-PGNNs by inferring a prior knowledge incoming from the data-associated semi-
empirical El Haddad curve following a previously proposed procedure. The training
culminates with the introduction of experimental evidence from CT data to account
for a set of defect descriptors. A selection technique based on model evidence was
illustrated to effectively select the most appropriate NN architecture. This approach
ensures a full Bayesian treatment of the problem and eliminates the user’s arbitrari-
ness on choice NN structure, i.e. layers and neurons.

To test this approach, a literature dataset of SLM AlSi10Mg specimens was con-
sidered as a case study. A K-fold split was employed to assess the robustness of
the predictions offered by the developed method. Additionally, it was seen that
the B-PGNN outperformed the non-informed BNN counterpart whose training did
not involve the prescription of the prior. The tested case-study confirmed that
out-of-distribution experimental data might affect the accuracy of the predictions
– in extremely small datasets – however the results shown herein are more than
satisfactory.

Based on the considered case-study, the developed B-PGNN model allowed for
the exploration of potential latent correlations between the prediction and the input
descriptors.

The proposed B-PGNN framework makes the most of advanced computational
tools and fracture mechanics concepts to establish an unprecedentedly accurate
probabilistic predictive model – even for scarce experimental datasets – to efficiently
support the design against fatigue failure of defect-laden materials.
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8.1. Synopsis
In this final chapter, I condense the conclusions of the dissertation with particular

attention to the objectives, key findings, implications, and future directions. The
research elucidated the effect of two critical features influencing fatigue, namely
RS and manufacturing defects, and examined their impact on structural integrity.
Accordingly, several outstanding issues were addressed, encompassing RS evaluation
and fatigue characterisation & modelling, with the unique aim of establishing an
all-round probabilistic framework for designing against fatigue failure. To fulfil the
objectives set, several advanced ML techniques were exploited while prioritising
probabilistic aspects to build extremely robust predictive tools and ascertain their
accuracy. I feel this work will hold the promise of a comprehensive setting for the
probabilistic design against fatigue failure with highly relevant implications from
both research and industrial perspectives.

8.2. Residual Stress Evaluation
As concerns RS, the focus was drawn on a relatively recent evaluation technique,

namely the CM. This choice was motivated by the CM’s potential and its cost-
effectiveness, making it particularly appealing to effectively integrate RS evaluations
into fatigue assessments. Nevertheless, the original formulation of the CM unveiled
a few weak points worth investigating. In particular, the spline-fitting involved in
the CM renders the pre-processing of the input displacement data rather cumber-
some. This crucial limitation became overwhelming when the RS was assessed in
the FSW and HYB joints (Chapter 3). In doing so, the optimal spline parameters
were selected upon the existing guidelines, thus eventually attaining a satisfactory
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interpolation. Nonetheless, finer parameter adjustments were required to adequately
capture the gradients of the input data without smoothing it excessively.

This experience showed how users are generally committed to surveying a consid-
erable number of splines, which can be extremely time-consuming. Consequently,
this downside underscored the need for more systematic data-fitting strategies and
pointed out the arbitrariness of this stage. Moreover, quantifying the uncertainty
stemming from the selection of the spline parameters was recognised as crucial to
the soundness of the entire CM evaluation. Besides, attention was paid to mod-
elling the uncertainty due to the measurement noise embedded into the input data.
The literature, however, offered a potential uncertainty quantification framework to
tackle this caveat. Although such a framework might be practical to some extent,
it lacks robustness, and its application is highly dependent on the user’s experience
and confidence.

Chapter 4 showed how this framework was elegantly redefined by implementing
GPR, which replaced the splines during the fitting stage. The striking capabilities
of GPR enabled the optimal fitting parameters to be stochastically identified, thus
minimising the user’s intervention. Notably, the GPR automatically condensed the
uncertainty due to the interpolation per se and measurement noise into a single
indicator. As an additional benefit, since these uncertainties were no longer treated
as separated, a single Monte Carlo simulation was required to propagate them in
terms of RS. Consequently, the overall computational requirements were drastically
reduced.

8.3. Defect-based Fatigue Modelling
Regarding fatigue, the research addressed two categories of problems related to

defect-laden metallic alloys, i.e. the prediction of the finite fatigue life and the
estimation of the fatigue endurance limit. It was extensively vetted that the state-
of-the-art models revealed their inadequacy in the context of today’s manufactu-
ring scenario. In particular, traditional LEFM-based fatigue models hinder the full
exploitation of the numerous defect features obtained by CT and fractographic in-
vestigations. Although ML paradigms have been applied to address this limitation,
they did not leverage the knowledge offered by traditional fatigue models. There-
fore, guaranteeing the robustness of such ML models for a wide range of conditions
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seemed hardly attainable.
With particular regard to finite fatigue life, Chapter 5 harnessed the PINN set-

ting to significantly ameliorate the accuracy of the current defect-based finite fa-
tigue models by accounting for additional geometric & morphological features. The
PINN resorted to prior information from a semi-empirical Basquin-like generalised
by concepts from FM to account for defectivity. Whilst the PINN received defect
descriptors retrieved from CT. The semi-empirical model permitted constraining the
training stage to ensure the physical consistency of the predictions, thus resulting
in remarkable robustness. The PINN inherited from this add-on feature the nat-
ural inclination to handle the provided small dataset. This was demonstrated by
benchmarking against the mere NN, which showed peculiar symptoms of overfitting
and prediction deviating from the semi-empirical law. It is worth emphasising that
the Basquin-like law was complemented with prediction intervals, which enabled
tailoring a particular physics loss function while intrinsically accounting for latent
sources of uncertainty – RS, for instance, which was neglected in the analysis.

Although ML has widely tackled the prediction of finite fatigue life, a crucial
deficit was recognised regarding the evaluation of the fatigue endurance limit of
flawed metallic material. Amongst many available semi-empirical models, the re-
search focussed on the EH curve given its extensive use across the literature, as
Chapter 6 witnessed. The chapter proposed a probabilistic MAP-supported frame-
work to indirectly estimate the peculiar parameters of the EH curve from fatigue
and post-mortem fractographic data. The key point of this approach was to inject
prior information from the literature when handling small or incomplete datasets.
This feature makes the method appealing since it allows for reducing the required
test and, consequently, the related onerousness. Furthermore, MAP automatically
provides practitioners with a probabilistic appraisal of the parameters rather than
their point-valued estimation. This renders the methodology incredibly attractive
in order to engineer mechanical parts against fatigue failure within a probabilistic
setting.

In Chapter 7, a B-PGNN framework was developed to predict the fatigue en-
durance limit of defective metallic alloys. Specifically, the B-PGNN predicts the
failure probability of fatigued samples upon the characterisation of relevant defect
descriptors. BI was strictly followed to pursue the training. This B-PGNN method
is particularly attractive since it made the most out of the physical consistency
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of PINN and BI, which, in turn, minimises the dependency on the data regime
and provides a built-in uncertainty quantification framework. Although a few ob-
tained results might have contradicted the experimental evidence at first glance, it
is worth noting the B-PGNN allowed this little inconsistency to be detected. Whilst
a deterministic or frequentist approach would not have captured it. The work also
addressed a major concern often encountered amongst the ML community, that is,
selecting the architecture of the NN. Therein, by exploiting BI, a selection crite-
rion was devised, thus circumventing user arbitrariness and ensuring a full Bayesian
treatment of the problem.

8.4. Future Perspectives
The presented findings and proposed methods contribute to advancing the current

state-of-the-art of the Contour Method and predictive models for the design against
fatigue failure and indeed foreshadow further developments for future work.

Although RS and fatigue were considered independent problems, the scientific
literature actually proves the opposite. Thus, future efforts must be devoted to in-
cluding RS evaluation data into the devised ML fatigue models to account for the
influence of RS along with that due to defects. Since residual stress (RS) locally
modifies the stress state, deviations from the expected stress due to fatigue loading
may occur, leading to alterations in the average stress and stress ratio surround-
ing defects. Therefore, future developments should strive to incorporate simulated
or experimentally evaluated residual stress descriptors, or leverage prior knowledge
from mechanistic models, in surrogate ML models. In this way, it would possible to
enhance the predictive accuracy and reliability of fatigue predictions. Furthermore,
the research conducted on the CM by utilising GPR has apparently broader im-
plications for other RS evaluation methods. GPR performs the data regularisation
required in those RS assessment techniques that entail back-calculations or integral
methods [16, 331]. Interestingly, the GPR has recently shown its capabilities in the
context of hole drilling [332]. This encouraging result hints that GPR appears suit-
able for the regularisation for other RS evaluation methods – for instance, FIB-DIC
would be a potential candidate.

The logical extension of the two defect-based predictive models would be their
seamless fusion to constitute an all-round setting to both estimate the fatigue en-
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durance limit as well as the finite fatigue life of defective metallic material. In this
way, one can initially evaluate the fatigue endurance limit of a given material using
the EH model via the MAP-based method upon fractographic data. Next, the sam-
ples can be processed using the B-PGNN to ascertain whether they collapse based
on CT investigations. If a sample collapses, it will be possible to estimate its finite
fatigue life using the PINN approach. Additionally, it will be worth investigating
how to enrich the proposed PINN framework by incorporating BI analogously to the
proposed B-PGNN. In this case, the objective would be different, since the aim is to
establish a formal probabilistic regression model for finite fatigue life. Presently, this
work has preliminary been addressed in a recently published paper [333], albeit from
a frequentist perspective. The published work focussed on the uncertainty quantifi-
cation and sensitivity analysis of the PINN (formerly developed in Chapter 5) by
utilising Monte Carlo simulations to characterise the fatigue output distributions
under various input distribution scenarios. Although this approach is well suited for
analysing the uncertainty owing to defect’s descriptors, its applications requires spec-
ulating about the input distributions. Conversely, BI would automatically capture
the sources of uncertainty affecting such descriptors as well as those not explicitly
accounted for, such as the influence of RS.

Another point that merits attention is the generalised version of the EH curve for
targeted fatigue life applications, whereby iso-fatigue life EH curves can be mod-
elled. In this regard, the scientific literature has already proposed diverse strate-
gies [64, 231]. It is essential to recognise that these generalised models embed fatigue
crack propagation laws, posing significant ML implementation challenges. However,
they offer inherited physical consistency for prospective physics-informed ML ap-
proaches. Therefore, their integration into the probabilistic ML-based framework
thus far would be highly advantageous and undoubtedly impactful.
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Hongjia Zhang, Annette K Kleppe, Jiri Dluhoš, and Alexander M Korsunsky. A state-of-the-
art review of micron-scale spatially resolved residual stress analysis by FIB-DIC ring-core
milling and other techniques. The Journal of Strain Analysis for Engineering Design, 50(7):
426–444, October 2015. doi: 10.1177/0309324715596700.

[43] Gary S. Schajer and Clayton O. Ruud. Overview of Residual Stresses and Their Measure-
ment. In Practical Residual Stress Measurement Methods, pages 1–27. John Wiley & Sons,
Ltd, 2013. doi: 10.1002/9781118402832.ch1.

[44] G. F. Bocchini. The Influences of Porosity on the Characteristics of Sintered Materials. SAE
Transactions, 95:790–805, 1986.

[45] Anirudh Sampath Madhvacharyula, Araveeti V. Sai Pavan, Subrahmanyam Gorthi, Srihari
Chitral, N. Venkaiah, and Degala Venkata Kiran. In situ detection of welding defects: a
review. Welding in the World, 66(4):611–628, April 2022. doi: 10.1007/s40194-021-01229-6.

[46] Niloofar Sanaei and Ali Fatemi. Defects in additive manufactured metals and their effect on
fatigue performance: A state-of-the-art review. Progress in Materials Science, 117:100724,
April 2021. doi: 10.1016/j.pmatsci.2020.100724.

[47] Wayne E. King, Holly D. Barth, Victor M. Castillo, Gilbert F. Gallegos, John W. Gibbs,
Douglas E. Hahn, Chandrika Kamath, and Alexander M. Rubenchik. Observation of keyhole-
mode laser melting in laser powder-bed fusion additive manufacturing. Journal of Materials
Processing Technology, 214(12):2915–2925, December 2014. doi: 10.1016/j.jmatprotec.2014.
06.005.

[48] Ross Cunningham, Cang Zhao, Niranjan Parab, Christopher Kantzos, Joseph Pauza, Kamel
Fezzaa, Tao Sun, and Anthony D. Rollett. Keyhole threshold and morphology in laser melting
revealed by ultrahigh-speed x-ray imaging. Science, 363(6429):849–852, February 2019. doi:

192



References

10.1126/science.aav4687.
[49] Stephen J. Mashl. Hot Isostatic Pressing of Castings. In Srinath Viswanathan, Diran Apelian,

Raymond J. Donahue, Babu DasGupta, Michael Gywn, John L. Jorstad, Raymond W.
Monroe, Mahi Sahoo, Thomas E. Prucha, and Daniel Twarog, editors, Casting, volume 15,
page 0. ASM International, December 2008. doi: 10.31399/asm.hb.v15.a0005293.

[50] William E. Frazier. Metal Additive Manufacturing: A Review. Journal of Materials Engi-
neering and Performance, 23(6):1917–1928, June 2014. doi: 10.1007/s11665-014-0958-z.

[51] Xiaopeng Niu, Shun-Peng Zhu, Jin-Chao He, Ding Liao, José A. F. O. Correia, Filippo
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[133] Lucjan Śnieżek, Robert Kosturek, Marcin Wachowski, and Bogusz Kania. Microstructure
and Residual Stresses of AA2519 Friction Stir Welded Joints under Different Heat Treatment
Conditions. Materials, 13(4):834, February 2020. doi: 10.3390/ma13040834.

[134] Huseyin Uzun, Claudio Dalle Donne, Alberto Argagnotto, Tommas Ghidini, and Carla Gam-
baro. Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel. Materials
& Design, 26(1):41–46, February 2005. doi: 10.1016/j.matdes.2004.04.002.

[135] A. Yazdipour and A. Heidarzadeh. Effect of friction stir welding on microstructure and
mechanical properties of dissimilar Al 5083-H321 and 316L stainless steel alloy joints. Journal
of Alloys and Compounds, 680:595–603, September 2016. doi: 10.1016/j.jallcom.2016.03.307.

[136] P L Threadgill, A J Leonard, H R Shercliff, and P J Withers. Friction stir welding of
aluminium alloys. International Materials Reviews, 54(2):49–93, March 2009. doi: 10.1179/
174328009X411136.

[137] Ø. Grong. Recent advances in solid-state joining of aluminum. Welding Journal, 91(1):26–33,
2012.

[138] Øystein Grong, Lise Sandnes, and Filippo Berto. A Status Report on the Hybrid Metal
Extrusion & Bonding (HYB) Process and Its Applications. Material Design & Processing
Communications, 1:e41, February 2019. doi: 10.1002/mdp2.41.

199



References

[139] Lise Sandnes, Luca Romere, Øystein Grong, Filippo Berto, and Torgeir Welo. Assessment of
the Mechanical Integrity of a 2 mm AA6060-T6 Butt Weld Produced Using the Hybrid Metal
Extrusion & Bonding (HYB) Process – Part II: Tensile Test Results. Procedia Structural
Integrity, 17:632–642, 2019. doi: 10.1016/j.prostr.2019.08.085.

[140] Lise Sandnes, Luca Romere, Filippo Berto, Torgeir Welo, and Øystein Grong. Assessment of
the Mechanical Integrity of a 2 mm AA6060-T6 Butt Weld Produced Using the Hybrid Metal
Extrusion & Bonding (HYB) Process – Part I: Bend Test Results. Procedia Manufacturing,
34:147–153, 2019. doi: 10.1016/j.promfg.2019.06.132.

[141] Lise Sandnes, Øystein Grong, Torgeir Welo, and Filippo Berto. Fatigue properties of AA6060-
T6 butt welds made by hybrid metal extrusion & bonding. Fatigue & Fracture of Engineering
Materials & Structures, 43(10):2349–2358, October 2020. doi: 10.1111/ffe.13302.

[142] Alessia Greco, Emanuele Sgambitterra, and Franco Furgiuele. A new methodology for mea-
suring residual stress using a modified Berkovich nano-indenter. International Journal of
Mechanical Sciences, 207:106662, October 2021. doi: 10.1016/j.ijmecsci.2021.106662.

[143] Fatih Uzun and Alexander M Korsunsky. On the identification of eigenstrain sources of
welding residual stress in bead-on-plate inconel 740H specimens. International Journal of
Mechanical Sciences, 145:231–245, September 2018. doi: 10.1016/j.ijmecsci.2018.07.007.

[144] A. Kouadri-Henni, C. Seang, B. Malard, and V. Klosek. Residual stresses induced by laser
welding process in the case of a dual-phase steel DP600: Simulation and experimental ap-
proaches. Materials & Design, 123:89–102, June 2017. doi: 10.1016/j.matdes.2017.03.022.

[145] Jazeel Rahman Chukkan, Guiyi Wu, Michael E. Fitzpatrick, Steve Jones, and Joe Kelle-
her. An iterative technique for the reconstruction of residual stress fields in a butt-
welded plate from experimental measurement, and comparison with welding process sim-
ulation. International Journal of Mechanical Sciences, 160:421–428, September 2019. doi:
10.1016/j.ijmecsci.2019.07.001.

[146] Hamed Jamshidi Aval. Microstructure and residual stress distributions in friction stir welding
of dissimilar aluminium alloys. Materials & Design, 87:405–413, December 2015. doi: 10.
1016/j.matdes.2015.08.050.

[147] M. Peel, A. Steuwer, M. Preuss, and P.J. Withers. Microstructure, mechanical properties
and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds.
Acta Materialia, 51(16):4791–4801, September 2003. doi: 10.1016/S1359-6454(03)00319-7.

[148] Enrico Salvati, Joris Everaerts, Koji Kageyama, and Alexander M. Korsunsky. Transverse
fatigue behaviour and residual stress analyses of double sided FSW aluminium alloy joints.
Fatigue & Fracture of Engineering Materials & Structures, 42(9):1980–1990, September 2019.
doi: 10.1111/ffe.13068.

[149] T-S. Jun, K. Dragnevski, and A.M. Korsunsky. Microstructure, residual strain, and eigen-
strain analysis of dissimilar friction stir welds. Materials & Design, 31:S121–S125, June 2010.
doi: 10.1016/j.matdes.2009.11.042.

[150] A.P Reynolds, Wei Tang, T Gnaupel-Herold, and H Prask. Structure, properties, and resid-

200



References

ual stress of 304L stainless steel friction stir welds. Scripta Materialia, 48(9):1289–1294, May
2003. doi: 10.1016/S1359-6462(03)00024-1.

[151] Meysam Haghshenas, M. A. Gharghouri, V. Bhakhri, R. J. Klassen, and A. P. Gerlich.
Assessing residual stresses in friction stir welding: neutron diffraction and nanoindentation
methods. The International Journal of Advanced Manufacturing Technology, 93(9-12):3733–
3747, December 2017. doi: 10.1007/s00170-017-0759-2.

[152] Madhumanti Bhattacharyya. Evaluation of residual stresses in isothermal friction stir welded
304L stainless steel plates. Materials Science and Engineering: A, page 39, 2021.

[153] M Prime, T Gnaupelherold, J Baumann, R Lederich, D Bowden, and R Sebring. Residual
stress measurements in a thick, dissimilar aluminum alloy friction stir weld. Acta Materialia,
54(15):4013–4021, September 2006. doi: 10.1016/j.actamat.2006.04.034.

[154] Chuan Liu and Xiang Yi. Residual stress measurement on AA6061-T6 aluminum alloy
friction stir butt welds using contour method. Materials & Design, 46:366–371, April 2013.
doi: 10.1016/j.matdes.2012.10.030.

[155] Pierpaolo Carlone and Gaetano S. Palazzo. Longitudinal Residual Stress Analysis in AA2024-
T3 Friction Stir Welding. The Open Mechanical Engineering Journal, 7(1):18–26, August
2013. doi: 10.2174/1874155X01307010018.

[156] Chengcong Zhang and Amir A. Shirzadi. Measurement of residual stresses in dissimilar
friction stir-welded aluminium and copper plates using the contour method. Science and
Technology of Welding and Joining, 23(5):394–399, July 2018. doi: 10.1080/13621718.2017.
1402846.

[157] I. Alinaghian, M. Honarpisheh, and S. Amini. The influence of bending mode ultrasonic-
assisted friction stir welding of Al-6061-T6 alloy on residual stress, welding force and
macrostructure. The International Journal of Advanced Manufacturing Technology, 95(5-
8):2757–2766, March 2018. doi: 10.1007/s00170-017-1431-6.

[158] Iman Alinaghian, Saeid Amini, and Mohammad Honarpisheh. Residual stress, tensile
strength, and macrostructure investigations on ultrasonic assisted friction stir welding of
AA 6061-T6. The Journal of Strain Analysis for Engineering Design, 53(7):494–503, Octo-
ber 2018. doi: 10.1177/0309324718789768.

[159] Sumair Sunny, Ritin Mathews, Glenn Gleason, Arif Malik, and Jeremiah Halley. Effect of
metal additive manufacturing residual stress on post-process machining-induced stress and
distortion. International Journal of Mechanical Sciences, 202-203:106534, July 2021. doi:
10.1016/j.ijmecsci.2021.106534.

[160] Ritin Mathews, Sumair Sunny, Arif Malik, and Jeremiah Halley. Coupling between inherent
and machining-induced residual stresses in aluminum components. International Journal of
Mechanical Sciences, page 106865, October 2021. doi: 10.1016/j.ijmecsci.2021.106865.

[161] Dong-yang Yan, Ai-ping Wu, Juergen Silvanus, and Qing-yu Shi. Predicting residual dis-
tortion of aluminum alloy stiffened sheet after friction stir welding by numerical simulation.
Materials & Design, 32(4):2284–2291, April 2011. doi: 10.1016/j.matdes.2010.11.032.

201



References

[162] Weiliang He, Jinglin Liu, Wei Hu, Gongdong Wang, and Wenjing Chen. Controlling
residual stress and distortion of friction stir welding joint by external stationary shoul-
der. High Temperature Materials and Processes, 38(2019):662–671, February 2019. doi:
10.1515/htmp-2019-0005.

[163] Wanchuck Woo, Hahn Choo, Donald W. Brown, Zhili Feng, and Peter K. Liaw. Angular
distortion and through-thickness residual stress distribution in the friction-stir processed
6061-T6 aluminum alloy. Materials Science and Engineering: A, 437(1):64–69, November
2006. doi: 10.1016/j.msea.2006.04.066.

[164] Lise Sandnes, Gisle Rørvik, Inge Kulbotten, Øystein Grong, and Filippo Berto. Qualification
of the Hybrid Metal Extrusion & Bonding (HYB) Process for Welding of Aluminium Offshore
Structures. Material Design & Processing Communications, June 2020. doi: 10.1002/mdp2.
194.

[165] Francesco Leoni, Øystein Grong, Lise Sandnes, and Filippo Berto. High temperature tensile
properties of AA6082 filler wire used for solid-state joining. Procedia Structural Integrity,
25:348–354, 2020. doi: 10.1016/j.prostr.2020.04.039.

[166] HuiHuan Ma, Quanchao Hou, Zhiwei Yu, and Pengpeng Ni. Stability of 6082-T6 aluminum
alloy columns under axial forces at high temperatures. Thin-Walled Structures, 157:107083,
December 2020. doi: 10.1016/j.tws.2020.107083.

[167] Xiaonong Guo, Lei Tao, Shaojun Zhu, and Shaohan Zong. Experimental Investigation of Me-
chanical Properties of Aluminum Alloy at High and Low Temperatures. Journal of Materials
in Civil Engineering, 32(2):06019016, February 2020. doi: 10.1061/(ASCE)MT.1943-5533.
0003002.

[168] Nina Kristin Langhelle and Jørgen Amdahl. Experimental and Numerical Analysis of Alu-
minium Columns Subjected to Fire. The International Society of Offshore and Polar Engi-
neers, 2001.

[169] Ole Runar Myhr, Øystein Grong, and Carmen Schäfer. An Extended Age-Hardening Model
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Measurements of Cold-Forged Ball Studs by the Contour Method. Experimental Techniques,
November 2021. doi: 10.1007/s40799-021-00521-w.

[179] A. Evans, G. Johnson, A. King, and P. J. Withers. Characterization of laser peening residual
stresses in Al 7075 by synchrotron diffraction and the contour method. Journal of Neutron
Research, 15(2):147–154, June 2007. doi: 10.1080/10238160701372653.

[180] Michael B. Prime. Contour Method Advanced Applications: Hoop Stresses in Cylinders and
Discontinuities. In Tom Proulx, editor, Engineering Applications of Residual Stress, Volume
8, Conference Proceedings of the Society for Experimental Mechanics Series, pages 13–28.
Springer, 2011. doi: 10.1007/978-1-4614-0225-1 2.

[181] Daulton D. Isaac, Michael B. Prime, and Nagaraj Arakere. Residual Stress Measurement
of Full-Scale Jet-Engine Bearing Elements Using the Contour Method. In Simon Quinn
and Xavier Balandraud, editors, Residual Stress, Thermomechanics & Infrared Imaging,
Hybrid Techniques and Inverse Problems, Volume 9, Conference Proceedings of the Society
for Experimental Mechanics Series, pages 69–81. Springer International Publishing, 2017.
doi: 10.1007/978-3-319-42255-8 10.

[182] F. Hosseinzadeh and P. J. Bouchard. Mapping Multiple Components of the Residual Stress
Tensor in a Large P91 Steel Pipe Girth Weld Using a Single Contour Cut. Experimental
Mechanics, 53(2):171–181, February 2013. doi: 10.1007/s11340-012-9627-z.

[183] Y. Zhang, S. Ganguly, V. Stelmukh, M.E. Fitzpatrick, and L. Edwards. Validation of the
Contour Method of Residual Stress Measurement in a MIG 2024 Weld by Neutron and
Synchrotron X-ray Diffraction. Journal of Neutron Research, 11(4):181–185, December 2003.
doi: 10.1080/10238160410001726594.

203



References

[184] Daniel F. O. Braga, Harry E. Coules, Thilo Pirling, Valentin Richter-Trummer, Paul Cole-
grove, and Paulo M. S. T. de Castro. Assessment of residual stress of welded structural
steel plates with or without post weld rolling using the contour method and neutron diffrac-
tion. Journal of Materials Processing Technology, 213(12):2323–2328, December 2013. doi:
10.1016/j.jmatprotec.2013.07.004.

[185] Fatih Uzun, Joris Everaerts, León Romano Brandt, Mehmet Kartal, Enrico Salvati, and
Alexander M. Korsunsky. The inclusion of short-transverse displacements in the eigenstrain
reconstruction of residual stress and distortion in in740h weldments. Journal of Manufactu-
ring Processes, 36:601–612, December 2018. doi: 10.1016/j.jmapro.2018.10.047.

[186] Qiang Wang, Yue Zhao, Tianyi Zhao, Dongyang Yan, Guoqing Wang, and Aiping Wu.
Influence of restraint conditions on residual stress and distortion of 2219-T8 aluminum alloy
TIG welded joints based on contour method. Journal of Manufacturing Processes, 68:796–
806, August 2021. doi: 10.1016/j.jmapro.2021.05.065.

[187] Hao Jiang, Junjun Liu, Zhenkun Lei, Ruixiang Bai, Zhenfei Guo, Jianchao Zou, Honggang
Dong, and Wenwen Feng. Noise-insensitive contour method for residual stress measurement
in laser butt welding. Thin-Walled Structures, 165:107861, August 2021. doi: 10.1016/j.tws.
2021.107861.

[188] M. D. Olson, A. T. DeWald, and M. R. Hill. Validation of a Contour Method Single-
Measurement Uncertainty Estimator. Experimental Mechanics, 58(5):767–781, June 2018.
doi: 10.1007/s11340-018-0385-4.

[189] Shu-cai Li, Peng He, Li-ping Li, Shao-shuai Shi, Qian-qing Zhang, Jian Zhang, and Jie Hu.
Gaussian process model of water inflow prediction in tunnel construction and its engineering
applications. Tunnelling and Underground Space Technology, 69:155–161, October 2017. doi:
10.1016/j.tust.2017.06.018.

[190] Guoshao Su, Lifeng Peng, and Lihua Hu. A Gaussian process-based dynamic surrogate
model for complex engineering structural reliability analysis. Structural Safety, 68:97–109,
September 2017. doi: 10.1016/j.strusafe.2017.06.003.

[191] Odin Gramstad, Christian Agrell, Elzbieta Bitner-Gregersen, Bingjie Guo, Eivind Ruth, and
Erik Vanem. Sequential sampling method using Gaussian process regression for estimating
extreme structural response. Marine Structures, 72:102780, July 2020. doi: 10.1016/j.
marstruc.2020.102780.

[192] Ehsan Momeni, Mohammad Bagher Dowlatshahi, Fereydoon Omidinasab, Harnedi Maizir,
and Danial Jahed Armaghani. Gaussian Process Regression Technique to Estimate the Pile
Bearing Capacity. Arabian Journal for Science and Engineering, 45(10):8255–8267, October
2020. doi: 10.1007/s13369-020-04683-4.

[193] Clement Kweku Arthur, Victor Amoako Temeng, and Yao Yevenyo Ziggah. Novel approach
to predicting blast-induced ground vibration using Gaussian process regression. Engineering
with Computers, 36(1):29–42, January 2020. doi: 10.1007/s00366-018-0686-3.

[194] John Jackson, Luca Laurenti, Eric Frew, and Morteza Lahijanian. Synergistic Offline-Online

204



References

Control Synthesis via Local Gaussian Process Regression. In 2021 60th IEEE Conference on
Decision and Control (CDC), pages 2232–2239, December 2021. doi: 10.1109/CDC45484.
2021.9683557.

[195] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake
Vanderplas, Alexandre Passos, and David Cournapeau. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, page 6, 2011.

[196] Charles A. Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal Kernels. Journal of
Machine Learning Research, 7(95):2651–2667, 2006.

[197] Anders Logg, Kent-Andre Mardal, and Garth Wells, editors. Automated Solution of Differ-
ential Equations by the Finite Element Method, volume 84 of Lecture Notes in Computational
Science and Engineering. Springer Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-23099-8.

[198] Martin Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg,
Chris Richardson, Johannes Ring, Marie E. Rognes, and Garth N. Wells. The FEniCS
Project Version 1.5. Archive of Numerical Software, 3(100), December 2015. doi: 10.11588/
ans.2015.100.20553.

[199] M. R. Hill and M. D. Olson. Repeatability of the Contour Method for Residual Stress
Measurement. Experimental Mechanics, 54(7):1269–1277, September 2014. doi: 10.1007/
s11340-014-9867-1.

[200] Jikai Liu, Andrew T. Gaynor, Shikui Chen, Zhan Kang, Krishnan Suresh, Akihiro Takezawa,
Lei Li, Junji Kato, Jinyuan Tang, Charlie C. L. Wang, Lin Cheng, Xuan Liang, and Al-
bert. C. To. Current and future trends in topology optimization for additive manufac-
turing. Structural and Multidisciplinary Optimization, 57(6):2457–2483, June 2018. doi:
10.1007/s00158-018-1994-3.

[201] J. P. Oliveira, T. G. Santos, and R. M. Miranda. Revisiting fundamental welding concepts
to improve additive manufacturing: From theory to practice. Progress in Materials Science,
107:100590, January 2020. doi: 10.1016/j.pmatsci.2019.100590.

[202] X. Cui, S. Zhang, C. Wang, C. H. Zhang, J. Chen, and J. B. Zhang. Effects of stress-relief
heat treatment on the microstructure and fatigue property of a laser additive manufactured
12CrNi2 low alloy steel. Materials Science and Engineering: A, 791:139738, July 2020. doi:
10.1016/j.msea.2020.139738.

[203] E. Salvati, A. J. G. Lunt, S. Ying, T. Sui, H. J. Zhang, C. Heason, G. Baxter, and A. M.
Korsunsky. Eigenstrain reconstruction of residual strains in an additively manufactured and
shot peened nickel superalloy compressor blade. Computer Methods in Applied Mechanics
and Engineering, 320:335–351, June 2017. doi: 10.1016/j.cma.2017.03.005.

[204] Erfan Maleki, Sara Bagherifard, Michele Bandini, and Mario Guagliano. Surface post-
treatments for metal additive manufacturing: Progress, challenges, and opportunities. Ad-
ditive Manufacturing, 37:101619, January 2021. doi: 10.1016/j.addma.2020.101619.

[205] Yunhui Chen, Samuel J. Clark, Chu Lun Alex Leung, Lorna Sinclair, Sebastian Marussi,

205



References

Margie P. Olbinado, Elodie Boller, Alexander Rack, Iain Todd, and Peter D. Lee. In-situ Syn-
chrotron imaging of keyhole mode multi-layer laser powder bed fusion additive manufactu-
ring. Applied Materials Today, 20:100650, September 2020. doi: 10.1016/j.apmt.2020.100650.

[206] Chu Lun Alex Leung, Sebastian Marussi, Robert C. Atwood, Michael Towrie, Philip J.
Withers, and Peter D. Lee. In situ X-ray imaging of defect and molten pool dynamics in
laser additive manufacturing. Nature Communications, 9(1):1355, April 2018. doi: 10.1038/
s41467-018-03734-7.

[207] Majid Laleh, Anthony E. Hughes, Sam Yang, Jiangting Wang, Jianli Li, A. Matt Glenn,
Wei Xu, and Mike Y. Tan. A critical insight into lack-of-fusion pore structures in additively
manufactured stainless steel. Additive Manufacturing, 38:101762, February 2021. doi: 10.
1016/j.addma.2020.101762.

[208] Hiroshige Masuo, Yuzo Tanaka, Shotaro Morokoshi, Hajime Yagura, Tetsuya Uchida, Ya-
suhiro Yamamoto, and Yukitaka Murakami. Influence of defects, surface roughness and HIP
on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing. International
Journal of Fatigue, 117:163–179, December 2018. doi: 10.1016/j.ijfatigue.2018.07.020.

[209] S. Beretta and S. Romano. A comparison of fatigue strength sensitivity to defects for ma-
terials manufactured by AM or traditional processes. International Journal of Fatigue, 94:
178–191, January 2017. doi: 10.1016/j.ijfatigue.2016.06.020.

[210] Y.N. Hu, S.C. Wu, P.J. Withers, J. Zhang, H.Y.X. Bao, Y.N. Fu, and G.Z. Kang. The effect
of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures.
Materials & Design, 192:108708, July 2020. doi: 10.1016/j.matdes.2020.108708.

[211] G. Meneghetti, D. Rigon, and C. Gennari. An analysis of defects influence on axial fatigue
strength of maraging steel specimens produced by additive manufacturing. International
Journal of Fatigue, 118:54–64, January 2019. doi: 10.1016/j.ijfatigue.2018.08.034.

[212] S. Romano, L. Patriarca, S. Foletti, and S. Beretta. LCF behaviour and a comprehensive
life prediction model for AlSi10Mg obtained by SLM. International Journal of Fatigue, 117:
47–62, December 2018. doi: 10.1016/j.ijfatigue.2018.07.030.

[213] S. Tammas-Williams, P. J. Withers, I. Todd, and P. B. Prangnell. The Influence of Porosity
on Fatigue Crack Initiation in Additively Manufactured Titanium Components. Scientific
Reports, 7(1):7308, August 2017. doi: 10.1038/s41598-017-06504-5.

[214] S. Beretta. More than 25 years of extreme value statistics for defects: Fundamentals, histori-
cal developments, recent applications. International Journal of Fatigue, 151:106407, October
2021. doi: 10.1016/j.ijfatigue.2021.106407.

[215] S. Romano, S. Miccoli, and S. Beretta. A new FE post-processor for probabilistic fatigue
assessment in the presence of defects and its application to AM parts. International Journal
of Fatigue, 125:324–341, August 2019. doi: 10.1016/j.ijfatigue.2019.04.008.

[216] Anton du Plessis, Ina Yadroitsava, and Igor Yadroitsev. Effects of defects on mechanical
properties in metal additive manufacturing: A review focusing on X-ray tomography insights.
Materials & Design, 187:108385, February 2020. doi: 10.1016/j.matdes.2019.108385.

206



References

[217] Rui Liu, Sen Liu, and Xiaoli Zhang. A physics-informed machine learning model for
porosity analysis in laser powder bed fusion additive manufacturing. The International
Journal of Advanced Manufacturing Technology, 113(7-8):1943–1958, April 2021. doi:
10.1007/s00170-021-06640-3.

[218] Jie Chen and Yongming Liu. Probabilistic physics-guided machine learning for fatigue data
analysis. Expert Systems with Applications, 168:114316, April 2021. doi: 10.1016/j.eswa.
2020.114316.

[219] Chun-Teh Chen and Grace X. Gu. Learning hidden elasticity with deep neural networks.
Proceedings of the National Academy of Sciences, 118(31):e2102721118, August 2021. doi:
10.1073/pnas.2102721118.

[220] Hiroshige Masuo, Yuzo Tanaka, Shotaro Morokoshi, Hajime Yagura, Tetsuya Uchida, Ya-
suhiro Yamamoto, and Yukitaka Murakami. Effects of Defects, Surface Roughness and HIP
on Fatigue Strength of Ti-6Al-4V manufactured by Additive Manufacturing. Procedia Struc-
tural Integrity, 7:19–26, January 2017. doi: 10.1016/j.prostr.2017.11.055.

[221] Yoichi Yamashita and Yukitaka Murakami. Small crack growth model from low to very high
cycle fatigue regime for internal fatigue failure of high strength steel. International Journal
of Fatigue, 93:406–414, December 2016. doi: 10.1016/j.ijfatigue.2016.04.016.

[222] S. Suresh and R. O. Ritchie. Propagation of short fatigue cracks. International Metals
Reviews, 29(1):445–475, January 1984. doi: 10.1179/imtr.1984.29.1.445.

[223] M Chapetti. Fatigue propagation threshold of short cracks under constant amplitude load-
ing. International Journal of Fatigue, 25(12):1319–1326, December 2003. doi: 10.1016/
S0142-1123(03)00065-3.
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