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Summary

Medical imaging (MI) refers to several technologies that provide images of organs
and tissues of human body for diagnosis and scientific purposes. Furthermore, the
technologies that allow us to capture medical images and signals are advancing
rapidly, providing higher quality images of previously unmeasured biological features
at decreasing costs. This has mainly occurred for highly specialized applications,
such as cardiology and neurology.

Artificial Intelligence (AI), which to date has largely focused on non medical ap-
plications, such as computer vision, provides to be an instrumental toolkit that will
help unleash the potential of MI. In fact, the significant variability in anatomy across
individuals, the lack of specificity of the imaging techniques, the unpredictability of
the diseases, the weakness of the biological signals, the presence of noise and artifacts
and the complexities of the underlying biology often make it impossible to derive
deterministic algorithmic solutions for the problems encountered in neurology.

Aim of this thesis was to develop Al models capable of carrying out quantitative,
objective, accurate and reliable analyzes of imaging tools, EEG and MRI, used in
neurology. Beyond the development of Al models, attention was focused on the
quality of data which can be lowered by the "uncertainty" produced by the issues
cited above. Further, the uncertainty affecting data was also described, discussed
and addressed.

Main results have been the proposal of innovative Al-based strategies for signal
and image improvement through artifact reduction and data stabilization both in
EEG and in MRI. This has allowed to apply EEG for weak signals recognition and
interpretation (infant 3M patients), to provide effective strategies for dealing MRI
variability and uncertainty in multiple sclerosis segmentation, both for single source
and multiple-source MRI. According to the used evaluation criteria, the obtained
results are comparable with those obtained by human experts.

Future developments will regard the generalization of the proposed strategies to
cope with different diseases or with different applications of MI. Particular attention
will be paid to the optimization of the models and to understand the processes
underlying their behavior. To this aim, specific strategies for checking the deep

structures of the proposed architectures will be studied. In this way, besides model



optimization, it would be possible to get the functional relationships among the
features generating from the model and use them to improve human knowledge (a

sort of inverse transfer learning).



Sommario

Al MI fanno riferimento diverse tecnologie che forniscono immagini di organi e tessuti
del corpo umano per scopi diagnostici e scientifici. Inoltre, tali tecnologie che ci
consentono di acquisire immagini e segnali medici stanno avanzando rapidamente,
fornendo immagini di qualita superiore di caratteristiche biologiche precedentemente
non misurate e allo stesso tempo a costi ridotti. Cio si ¢ verificato principalmente
per applicazioni altamente specializzate, come la cardiologia e la neurologia.

L’Al che é stata principalmente utilizzata per applicazioni non mediche, come la
visione artificiale, fornisce uno strumento che contribuira allo sviluppo il potenziale
del MI. Infatti, la significativa variabilita anatomica tra gli individui, la mancanza
di specificita delle tecniche di imaging, I'imprevedibilita delle malattie, la debolezza
dei segnali biologici, la presenza di rumore e artefatti e la complessita della biologia
sottostante spesso rendono impossibile sviluppare soluzioni algoritmiche determin-
istiche per i problemi incontrati in neurologia.

Lo scopo di questa tesi é stato quello di sviluppare modelli di TA in grado di
effettuare analisi quantitative, accurate e affidabili dei dati forniti dagli strumenti
di imaging piu utilizzati in neurologia: EEG e MRI.

Al di 1a dello sviluppo di modelli di IA, I'attenzione é stata focalizzata sulla qual-
ita dei dati che puo ridursi per via dell’ "incertezza" prodotta dalle problematiche
sopra citate. Tale incertezza é stata anche descritta, discussa e affrontata.

I risultati ottenuti sono stati la proposta di strategie innovative basate sull’ Al per
il miglioramento del segnale e dell’immagine attraverso la riduzione degli artefatti e
la stabilizzazione dei dati sia nel'lEEG che nella MRI. Cio ha consentito di applicare
I'EEG per il riconoscimento e 'interpretazione dei segnali deboli (pazienti infantili
3M), per fornire strategie efficaci per affrontare la variabilita e 'incertezza della MRI
nella segmentazione della sclerosi multipla, sia per la MRI a sorgente singola che a
sorgente multipla. Secondo i criteri di valutazione utilizzati, i risultati ottenuti sono
confrontabili con quelli ottenuti da esperti umani.

Gli sviluppi futuri riguarderanno la generalizzazione delle strategie proposte per
far fronte a diverse malattie o con diverse applicazioni del MI. Particolare attenzione
sara riservata all’ottimizzazione dei modelli e alla comprensione dei processi alla

base del loro funzionamneto. A tal fine verranno studiate strategie specifiche per il



controllo delle strutture interne delle architetture proposte. In questo modo, oltre
all’ottimizzazione del modello, sara possibile ottenere le relazioni funzionali tra le
caratteristiche generate dal modello e utilizzarle per migliorare la conoscenza umana

(una sorta di transfer learning inverso).
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Medical imaging (MI) refers to the techniques and the processes implemented
to make images of organs and tissues of human body, for clinical and scientific pur-
poses, that formerly was thought as a tool for diagnosis. MI is currently also used
for treating, managing and predicting the progression of diseases, in particular for
applications in oncology, cardiology and neurology [4]. In fact, fast, precise and
minimally invasive imaging tools have been structured to use MI for treating several
diseases. Imaging tools allow to collect multimodal data necessary to make a com-
plete clinical evaluation of the patient. In this sense, MI is playing an increasingly
important role towards personalized therapy. This has mainly occurred for highly
specialized applications, such as cardiology and in particular neurology, MI is pro-
viding a series of precise and minimal invasive tools that are suitable to investigate
the brain anatomy and functions, both in healthy and pathological conditions: Mag-
netic Resonance Imaging (MRI) and electroencephalography (EEG). MRI, thanks
to the richness of imaging parameters and details, is capable to furnish invaluable
contributions to better understand brain and brain functions, when functional MRI
(fMRI) is used. Besides, EEG represents a valid functional support to MRI when
fMRI is not suitable, too invasive or expensive to be used. Moreover, EEG offers its
excellent temporal resolution which could greatly help in functional studies, when
integrated with MRI and fMRI in hybrid systems for simultaneous acquisitions. The
advantage of hybrid architectures is the exploitation of optimal spatial resolution of
MRI and the excellent temporal resolution of EEG [5], though the last just usable to
pick up cortical signals. The mini-invasive nature of MRI and EEG has allowed their
massive usage that, in the downing era of data-drive health sciences, is responsible
of producing huge amount of data.

The obtained data must be deeply analysed, often through comparisons with
previous examinations (temporal follow-up), to establish functional relationships
that often reside in the finest details. For this reason, objective quantification is
a challenge that can only be performed through objective, automatic strategies of
measurement and calculation. Though, in principle, it could be also performed by
radiologists, it is tedious, time-consuming, source of errors and, hence, impractical
for clinical routine.

Artificial Intelligence (AI), which to date has largely focused on non medical ap-
plications, such as computer vision, provides to be an instrumental toolkit that will
help unleash the potential of MI. In fact, the significant variability in anatomy across
individuals, the lack of specificity of the imaging techniques, the unpredictability of
the diseases, the weakness of the biological signals, the presence of noise and ar-
tifacts and the complexities of the underlying biology often make it impossible to
derive deterministic algorithmic solutions for the problems encountered in neurology.

Besides, medical signal/image analysis (MIA) often concerns:
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quantification of specific geometric features of the objects of interest;

e assessment of changes over time;

detection and characterization of morphological variations between subjects;

analysis of shape and shape variability in objects and features;

quantification of local or regional contrast or contrast differences.

The peculiarities of MI and the requirements of MIA are also challenges for Al
that, being often applied for the detection/recognition of an object in an image
whereby the precise geometry of the objects is irrelevant or may be known a-priori,
may encounter difficulties which the scarcity of labeled data can further worsen.

Al is designed to mimic the layers of neurons in the human brain to process and
extract information, allowing computers to learn by data, without being explicitly
programmed.

Therefore learning from data to build models about multivariate and dynamic
relationships among variables and utilizing these models to make inferences is an
indispensable procedure in tackling the challenges of medical image analysis for
neurology. Al provides effective solutions.

Aim of this thesis is to develop AI models capable of carrying out quantitative,
objective, accurate and reliable analyzes of multi-modal medical signals used in neu-
rology. Beyond the development of Al models, we focus the attention on the quality
of data which can be lowered by the "uncertainty" produced by the issues cited
above. In this thesis the uncertainty affecting data will be highlighted, discussed
and addressed. An increasing size approach will be followed: first one-dimensional
signals (EEG), then multidimensional (3D) and multi-modal images (MRI) will be

treated. Following this concept, in the first Section:

e Chapter 1 presents an Al-based framework for automatic artifact removal from
EEG signals;

e Chapter 2 uses the framework presented in Chapter 1 to interpret with weak
and disturbed EEG signals of infants affected by 3M syndrome.

in the second Section:

e Chapter 3 describes the materials and methods used for MRI processing: the
used MRI data set, the way to deal with inter-raters variability in MRI and

the criteria used to evaluate the proposed Al-models (metrics and scores);

e Chapter 4 introduces several guidelines for the effective training of an AI model

for automatic segmentation of MS lesions by MR images;
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e Chapter 5 provides an optimization of the pre-processing pipeline of MRI,

through a local contrast normalization algorithm;

e Chapter 6 presents an Al framework for MS lesion segmentation by single
modal MRI;

e Chapter 7 proposes a novel Al architecture that uses multiple MRI modalities

and evaluates the contribution of each modality to the diagnosis.

A final Section presents the conclusions and the future work.
It is important to clarify that the thesis reports methods and findings published
on international journals and conference proceedings, co-authored by the candidate,

appropriately referenced.
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Chapter 1

A CNN-based Architecture for Automated Artifact
Recognition from EEG Signals Represented in Scalp
Topographies of Independent Components

Electroencephalography (EEG) measures the electrical brain activity in real-time
by using sensors placed on the scalp. Artifacts due to eye movements and blinking,
muscular /cardiac activity and generic electrical disturbances, have to be recognized
and eliminated to allow a correct interpretation of the Useful Brain Signals (UBS).
Independent Component Analysis (ICA) is effective to split the signal into Indepen-
dent Components (IC) whose re-projection on 2D topographies of the scalp (images
also called Topoplots) allows to recognize/separate artifacts and UBS. Topoplot
analysis, a gold standard for EEG, is usually carried out offline either visually by
human experts or through automated strategies, both unenforceable when a fast
response is required as in online Brain-Computer Interfaces (BCI). This chapter
presents a fully automatic, effective, fast, scalable framework for artifacts recogni-
tion from EEG signals represented in IC Topoplots. The framework, composed by
three 2D Convolutional Neural Networks (CNN), divides Topoplots in 4 classes: 3
types of artifacts and UBS.
The content of this chapter appeared in [6].

1.1 Introduction

EEG measures the neuronal activity through electrodes placed on the scalp with
an excellent temporal resolution. Optimal temporal resolution and low invasiveness
make EEG particularly suitable for real-time usage |7, 8, 9]. Extraneous signals pro-
duced by eye movements and blinking, muscular spasms, cardiac activity and generic
interferences [10, 11] can obscure UBS since skull and scalp (including muscles) are
between brain and sensors.

Blinking and eye movements produce electrooculography artifacts (EOG) mainly
recorded by frontal sensors and which propagate across the scalp [12]. Three cate-
gories of EOG exist: eye blinking (BEOG), vertical (VEOG) and horizontal (HEOG)
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EOG. EOG has often much higher amplitude than UBS and frequencies in the range
10-40 Hz where also UBS are present.

Cardiac activity produces electrocardiography artifacts (ECG) [13]. ECG effects
can be reduced by subtracting the signal of a peripheral sensor from those located
on the scalp [11]. Residual ECG effects are lower than brain signals but are still
present.

Cranial muscles produce electromyogram artifacts (EMG). The main feature of
EMG is the wide spectral distribution with maximum power in the range of 15-30
Hz where also UBS insist [14].

Finally, generic discontinuities are generated by impedance fluctuations or elec-
tric/electronic interferences (IF) affecting single sensors with large fluctuations in
amplitude [15].

Artifacts could be much intense than UBS and propagate to large regions [12,
15, 16]. UBS could be completely obscured and signal wrongly interpreted if a
selective preprocessing strategy was not employed. As stated above, artifacts and
UBS share some bands of frequencies and preprocessing alternatives to frequency
analysis are required to separate their respective contribution. Fortunately, EEG
signals can be viewed as a mixture of independent linear source components, some
mainly due to artifacts and others to UBS [17]. In addition to components also
their reprojection on the scalp is important because shape and localization are a
fundamental information to classify sources [18]. An effective method to retrieve
source components from EEG signals is Independent Component Analysis (ICA)
[16] which, from an n channel EEG measurement, allows a calculation of at most n
independent components on a given temporal window of the signal. A component
is defined by an array of weights representing the contributions of the sensors to it.
Weights can be interpolated in 3D by using the spatial map of the sensors on the
scalp and reprojected on a 2D Topoplot [19] to allow shape and spatial localization
analysis (Fig 1.1).

Visual inspection of Topoplots by a human expert allows to produce source
classification [19]. In fact, although additional information such as power spectrum
density (PSD) and autocorrelation can improve classification accuracy, it is rarely
used due to the enormous increase in preprocessing time (visual inspection takes
about 5 -7 sec per Topoplot: additional parsing information could more than double
the time). Visual inspection is effective, widely used for off-line removal of artifacts
and therefore supported by most EEG signal processing tools |20, 21].

Automated strategies, in particular CNN based approaches, have been already
employed with success for EEG signals classification and artifacts removal |22,
23, 24, 25]. However, these strategies are neither optimized for interactive fast

responses nor scalable. Moreover, they are sensitive to dynamic signal modifications
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Figure 1.1: An example of an Independent Component represented in form of
Topoplot. Colours are indicative of the underlying brain activations: blue repre-

sents low activation, yellow corresponds to high activation.

not solvable without re-training. These are the main objectives of the proposed
chapter.

In fact, we propose an effective, fast, scalable, easily trainable, and robust auto-
matic framework for EEG artifacts recognition by scalp topographies of Independent
Components with a CNN-based approach that emulates the human visual interpre-
tation process to be used in interactive EEG. Rapidity, scalability and robustness
are necessary conditions for interactivity. In particular, the system response must
be fast enough to justify interactivity with BCI, compatible with the time required
for stimulus/response. Scalability, both with respect to the number of sensors and
recognizable artifacts, is important for BCI in disabled people: it is very common
that EEG configurations have to be specially designed and new artifacts arise due to
specific muscle spasms and uncontrolled ocular or head movements. Furthermore,
not ideal operating conditions could dynamically change the signal quality which
the system should be robust. In addition to the framework, we also define a pub-
lic dataset of labelled Topoplots on data collected by DEAP, a web-based public
dataset of EEG signals [26].

1.2 Related Works

Several techniques have been designed and used for EEG artifacts detection [27,
28, 10] which can be grouped into the following categories: Regression Methods;
Filtering Algorithms; Wavelet Transform; Empirical Mode Decomposition; Blind
Source Separation.

Regression Methods assume that artifacts are measured through dedicated chan-

nels [29, 28|. Measurements are necessary to estimate the propagation coefficients
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that need to be subtracted by brain signals. Though these strategies have a good
computational performance, they have two major drawbacks: one or more reference
channels are needed, being this a severe limitation for BCI [30]; the reduction of
artifacts also implies the removal of relevant UBS [15].

Filtering includes several approaches, the most widely used being the adaptive
filter [31]. This method assumes that UBS are unrelated to artifacts and requires a
dedicated channel to measure the artifacts to be subtracted from the signal. Filtering
strategies suffer from the same limitations as well as the Regression Methods [32].

Unlike Regression and Filtering, Wavelet Transform (WT') does not require refer-
ence signals. WT transforms the signals from time domain to time-frequency domain
and low amplitude WT coefficients are zeroed before being inversely transformed.
The main limitation is that artifacts which overlap in frequency with UBS, or which
are too specific, are not completely removed [28, 10, 33].

Empirical Mode Decomposition (EMD) [34] and Multivariate EMD (MEMD) [35]
are tools for signal decomposition into amplitude and frequency modulated basis
functions (Intrinsic Mode Functions, IMFs). EMD is specific for single channel data
and MEMD is the extension of EMD to multichannel data. These methods are
robust to noise and suitable for muscle artifacts removing [36] but, being slow, they
are not suitable for BCI [10].

Blind Source Separation (BSS) does not require prior information and/or refer-
ence signals. Over time, two main algorithms have been used: Principal Component
Analysis (PCA) and ICA. The first use of PCA was in 1991 [37| but in 1997 it was
shown that PCA is unable to completely separate artifacts from UBS [38]. In fact
PCA transforms the time-domain observations of correlated variables into a set of
linearly uncorrelated variables using orthogonal transformations: when UBS and ar-
tifacts are not orthogonal, PCA fails to separate the corresponding components [28|.
The ICA defined above overcomes PCA limitations [16, 39].

More recently, other forms of BSS strategies have been proposed. One of these,
Canonical Correlation Analysis (CCA), is more effective than ICA in removing mus-
cle artifacts by EEG signals [40]. CCA assumes a relatively low autocorrelation of
muscle artifacts with respect to brain activity considered to be maximally autocorre-
lated. For this reason, CCA compares the current EEG signals to a delayed version
of the past signals and preserves sources that maximize autocorrelation between the
two datasets. This strategy has been shown to work well for the removal of muscle
artifacts but must be combined with other strategies to cope with other sources of
artifacts or with a few-channel EEG [41].

Another recent method is Independent Vector Analysis (IVA) [42, 43|. It includes
in a single strategy both the need of assuming that some artifacts have different

autocorrelation properties than UBS (muscular activity) and that other artifacts
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Figure 1.2: ICA components related to artifacts. BOEG (a) and VEOG (b) have
similar shapes. The same occurs between HEOG (c) and ECG (d) and between
EMG (e) and IF (f). EOG and ECG have locations well-defined on the head; EMG
and IF are represented by isolated peaks.

are independent of UBS (ocular movements). IVA outperforms ICA and CCA in
isolating muscle and ocular artifacts, especially in low-quality signals, but it does
not handle all types of artifacts.

Despite recent proposals for increasingly effective EEG signal preprocessing strate-
gies, which can also be usable in freely-available tools [44], ICA is still considered the
most general one, thanks to its ability to treat all types of known artifacts [45, 46, 10],
although for some of them showing a sub-optimal performance. In fact, the pos-
sibility of representing Independent Components (IC) calculated by using ICA in
2D scalp topographies allows them to be recognized and classified visually. For
this reason, the framework presented is based on the analysis of the Topoplots of
the IC calculated by using ICA to detect artifacts. Fig 1.2 shows characteristic
topographies of the artifacts presented above [15, 19, 47].

As it can be seen, BEOG is concentrated on the frontal region of the head
(Fig 1.2.a) as well as VEOG (Fig 1.2.b), though VEOG spreads through the head
more than BEOG. For their similarity both in shape and meaning, they can be
grouped into a single class.

In the case of HEOG, two peaks of opposite sign are positioned around the
nose (Fig 1.2.c). Similarly to HEOG, ECG (Fig 1.2.d) is composed of two peaks of
opposite sign localized on the edges of the head, around the ears (ECG differs from
HEOG only for a different orientation). The similarity between HEOG and ECG
suggests their inclusion in the same class (the recognition between them, outside the
scope of this manuscript, could be based on the orientation of the peaks).

EMG and IF are isolated peaks, the former usually found on the border of the
head near the neck and face where muscular activity is pronounced (Fig 1.2.e),
while the latter is often located in the middle of the head (Fig 1.2.f). Due to their
similar shape, EMG and IF are included in the same class, although their nature

is very different (EMG are due to muscle activation while IF are due to electrical
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disturbances). The distinction between a channel failure and a muscle artifact is
difficult even for a human expert: position, power and frequency of occurrence
increase the probability of one over the other but, for our purposes, they must be
both discarded.

As specified above, the role of IC topography is fundamental in the identifica-
tion of artifacts by a human expert. However, EEG measurements often consist of
several time windows (trials) also divided into many sub-windows (sub-trials) and
the amount of IC Topoplots could easily reach several thousands. These numbers
make visual inspection and recognition impossible, especially when a quick response
is required.

In the paper [27|, out of 46 works reviewed, only 3 use IC [48, 49, 50|, all
of these designed to treat specific artifacts and not for removing all of the above
types. Recently, CNN have revolutionized computer vision, particularly for what
concerns automated object recognition [51, 52, 18]. CNN have been successfully
used in several EEG classification studies [8, 53, 54, 25, 55]. A recently proposed
automatic method relies on CNN to classify artifacts by low resolution 1C Topoplots
(32x32), PSD and autocorrelation [25]. In addition to Topoplots, further data is
necessary to support the information loss that occurs when using low resolution
IC Topoplots (low resolution is necessary to gain efficiency). Though effective, the
resulting classification strategy is particularly difficult to train due to the difficulty
of obtaining labelled data from human experts. In fact, a lot of time is required
for manual classification and for the definition of threshold parameters both for
PSD and for autocorrelation. Furthermore, the strategy is poorly adaptable and
generalizable to time-variable signal-to-noise ratio scenarios.

Croce et al. [23]| proposed a CNN-based approach for the automatic classification
of IC from EEG and Magnetoencephalography (MEG) signals. While effective, sim-
ilarly to [25] it uses low-resolution Topoplots and PSD in an off-line mode. In fact,
the architecture has not been designed and optimized for fast-response applications,
although it is particularly suitable for signal interpretation of two electrophysiolog-
ical modalities and it uses multimodality to improve performance.

To the best of our knowledge, none of the state of the art automatic classifi-
cation strategies allows to: recognize all types of actually known artifacts; achieve
high accuracy; use only information coming from IC Topoplots; be easy and easily
trainable; be robust to dynamic changes in the signal quality; be independent of the
number of channels; be scalable with respect to newly discovered sources of artifacts;

be fast enough for BCI. Aim of this chapter is to satisfy all the above requirements.
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Figure 1.3: Pre-processing pipeline: ICA calculation of partially overlapping EEG

3

temporal sub-trials enclosed by curly brackets (left); generation of the resulting
Topoplots; automatic recognition of artifacts from Topoplot images. Artifacts are

discarded and UBS are passed to the processing stage.

1.3 The Overall Architecture

In what follows, we propose to replace the role of a human expert and his visual in-
spection of IC Topoplots with a fully automatic CNN-based analysis of the Topoplots
of EEG signals separated in partially overlapping time windows to account for the
transient nature of the artifacts, as reported in Fig 1.3.

Our objective is to allow the separation of artifacts from UBS and to classify
artifacts into the three classes defined above. This last choice is not justified by a
simple recognition/elimination process: our aim is to separate artifacts into classes
in order to make quick decisions about them. For instance, if an artifact of the class
EMG/IF occurs frequently, it can be argued that this is caused by a sensor failure
(IF) rather than due to muscle spasms (EMG): in which case, definitive exclusion of
the sensor could be more convenient and efficient than continuously discovering/e-
liminating the artifacts it generates. This type of decision could be of paramount
importance in BCI. Other objectives are to: push on generality and scalability by
providing for the treatment of new Topoplots of future artifacts without redefining
the overall structure and, more importantly, without re-training the entire system;
reduce the training dataset and labelled data for training.

To pursue these objectives, the architecture in Fig 1.4 is proposed, consisting
of 3 parallel CNN of the type described in [56, 57]. In fact, due to their common
patterns, BEOG and VEOG are grouped into a first CNN (B_V CNN), HEOG
and ECG (H_E CNN) into a second CNN and EMG and IF (E_I CNN) in a
third CNN. The reason of grouping different artifacts in a single CNN is threefold:
1) artifacts grouped in the same CNN are often indistinguishable from each other

even for a trained human expert; 2) grouped artifacts share the same treatment;
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Figure 1.4: Framework architecture. The current Topoplot is passed to three CNN

separately (the number of CNN is the same of the artifact classes). As example, a

BEOG is passed to the framework: the resulting output indicates its recognition by
the first CNN (1) and its refutation by the other two (0). The Input and the Classi-
fication Stages have the same design in all CNN. Regarding the Feature Extraction
stage, B_V CNN contains 2 Inner Blocks, H E CNN 3 Inner Blocks and E 15

Inner Blocks..
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3) computational efficiency improves. Besides the advantages of clustering, the
proposed framework has also some advantages over extreme clustering, that is the
use of a single CNN. In fact, it allows to: accelerate training, reduce datasets for
training, accelerate convergence and increase generality. These advantages can be

explained mainly by the fact that each CNN can be trained separately.

1.3.1 Framework Design

CNN are based on feed-forward Artificial Neural Networks (ANN). A CNN consists
of input and output layers as well as of multiple hidden layers for feature extraction
which include convolutional layers. The main advantages of CNN over classic ANN
is that the neurons in one layer do not connect to all the neurons in the next layer,
but only to a small subset. The three CNN used therein are structured as in Fig
1.4.

Each CNN is organized in 3 stages: an Input Stage, a Classification Stage,
interspersed with a Feature Extraction Stage. The Input Stage consists of only
one Input Layer. The Classification Stage consists of a Fully Connected Layer (of
dimension 2), a Softmax Layer and a Classification Layer. Input and Classification
Stages are the same for all CNN. The Feature Extraction Stage extracts different
features for each class of artifacts (geometrical properties, position and orientation
within the Topoplot, intensity, etc), it is specific for each CNN and is organized in
"Blocks". Each Block contains a Convolutional Layer, a BatchNorm Layer, a Relu
Layer and a MaxPool Layer, except for the last Block where the MaxPool Layer is
absent.

In the B_V CNN, the Feature Extraction Stage consists of a First Block, 2 Inner
Blocks and a Last Block. For each block, the Convolutional Layers use respectively
8, 16, 32 and 64 filters (kernel size 3x3) and the MaxPool Layers have size 2x2,
stride [4,4] and padding 0. H E CNN contains a First Block, 3 Inner Blocks and
a Last Block. In all blocks, the Convolutional Layers use respectively 8, 16, 32, 64
and 128 filters (kernel size 3x3) and the MaxPool Layers have the same size as B_V
CNN. Finally, in E_T CNN, the Feature Extraction Stage consists of a First Block,
5 Inner Blocks and a Last Block. In all blocks, the Convolutional Layers use 8, 16,
32, 64, 128, 256 and 256 filters. In the latter case, the Max-Pool Layers are still 2x2
in size but stride |2, 2] (this because Impedance and EMG artifacts are composed
of a small cluster of pixels). In all CNN, the First Block has the dimensions of an
Inner Block but it has been separated from the Inner Blocks to indicate that the
number of the latter may vary due to the complexity of the class to be recognized.

The Feature Extraction Stage is specific for each class because:

e BV patterns are well defined and localized (low complexity);

27



e H E patterns are less defined than B_V ones (medium complexity);
e E I patterns are neither well localized nor well defined (high complexity).

The number of Inner Blocks, of filters in Convolutional Layers and the stride in
MaxPool Layers are optimized for each CNN. The process starts from a minimal
architecture for all classes (the B_V CNN) by repeating training and Inner Block
increment until the maximum accuracy is achieved. The highest accuracy is achieved
first by B_ V CNN, then by H E CNN and finally by E_I CNN. In our architecture
the number of parameters, 1.1210, is distributed in CNN as follows: 2.5210* in
B _V, 9.52z10" in H_E and 9.5210° in E_I. In terms of number of parameters,
using a single CNN to classify the 4 classes would probably be more demanding
than using three different CNN, as confirmed by the huge increase of the network
parameters when the complexity of the class to be recognized increases. In terms
of number of parameter, our framework is lighter than SqueezeNet [58], one of the

most competitive CNN architectures.

1.4 Experimental evaluation

The framework was implemented in Matlab (The MathWorks Inc., https://mathworks.com/)
on a PC with Intel Core 17-6700, 32GB of RAM and Nvidia GeForce GTX 1080.

1.4.1 Experimental Dataset

The experimental dataset consists of EEG signals collected from the DEAP dataset [26],
a public multicentre database containing a collection of EEG signals of negative and
positive emotional states recorded from 32 participants (16 men and 16 women,
aged between 19 and 37, average: 26.9) while watching 40 music videos (1 minute
each) on different topics. Participants rated each video in terms of arousal, valence,
like /dislike, dominance and familiarity. The EEG signals, sampled at 512 Hz, were
recorded on the following 32 positions of the international 10-20 positioning sys-
tem [59]: Fpl, AF3, F3, F7, FC5, FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1, Oz,
Pz, Fp2, AF4, Fz, F4, F8, FC6, FC2, Cz, C4, T8, CP6, CP2, P4, P8, PO4, and O2.
For more information on DEAP please refer to [26]. For our purposes, the raw data
from DEAP where used after filtering with a notch filter [60] at 50Hz and 60Hz to
suppress power-line interferences. Data were divided into temporal sub-trials, win-
dows of 8 seconds overlapping each other for 4 seconds (4 seconds of "present" signal
joint to 4 seconds of "past" signal) and used to generate IC and the corresponding
Topoplots. The past signal was used to support the current signal to satisfy both

the following seemingly conflicting requirements:
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1. obtain a signal long enough to ensure ICA convergence;
2. shorten the "present" window of the signal for quick EEG applications.

This choice represents also a good compromise to reduce transient artifacts while
preserving UBS (longer time sequences would mean artifacts and UBS).

ICA was calculated on each sub-trial by obtaining a maximum of 32 components,
at most one per channel. The Topoplot corresponding to an IC was generated and
managed as a 134x136 RGB image having a fixed position and orientation. This
resolution represents a good compromise between high spatial precision and reduced
execution time . Another constraint is that Topoplots were represented in the 64
colors Parula palette. This palette is commonly chosen for problems solved with
the use of CNN ([61],]62],|63]). Since our framework has been trained on Topoplots
represented in Parula palette, it only treats images in Parula: transformations are
necessary if other palettes are used. The number of obtained Topoplots was 992800.
From this huge dataset, images were extracted for training/validation/test of CNN.

Data augmentation (changes of orientation, scaling, translation and brightness)

was not used because:

1. the orientation of each Topoplot is fixed and rotations would change its mean-

ing and, therefore, would be unjustified;

2. scaling and translation would create redundancy because the interpretation of

a Topoplot always refers to the external silhouette of the head;

3. modifying brightness would be wrong because Topoplots are generated with

fixed color maps and fixed brightness scale, as discussed above;

4. a huge number of labelled datasets are available.

1.4.2 Training

DEAP data of subjects 1-8 were manually classified and labelled independently by 5
human experts into 4 different categories: BEOG U VEOG (B_V), HEOG U ECG
(H_E), EMG U IF (E_I) and UBS. A consensus dataset was obtained considering
each Topoplot belonging to the most voted class. In case of tie result (the case in
which the most voted classes were 2 with 2 votes each), the resulting Topoplot was
discarded. The consensus dataset agreed 95.7% with all human experts (agreement
between consensus and each of the experts was between 97.2% and 99.1%).

All artifacts were extracted from the labelled consensus and just one subset of
UBS was randomly selected. The composition of the training sets is illustrated in
Table 1.4.2.

29



B_V Accuracy

100
80

w
40
20

0 50 100 150 200 250 300 350 400

—a—Training Accuracy ~ —a—Validation Accuracy

H_E Accuracy

100

80 ‘)fcck—
60
40
20

0 50 100 150 200 250 300 350 400

—a—Training Accuracy ~ —a—Validation Accuracy

E_I Accuracy
100 — et
80 a,;&’)'z"' T
60
40
20

o
«
=]

100 150 200 250 300 350 400

——Training Accuracy ~ —s—Validation Accuracy

B_V Loss
20
15
10
5
0
0 50 100 150 200 250 300 350 400
—e—Training Loss —e—Validation Loss
H_E Loss
20
15
10
2
0
0 50 100 150 200 250 300 350 400
——Training Loss ——Validation Loss
E_| Loss
15
10
5
0
0 50 100 150 200 250 300 350 400

—e—Training Loss —e—Validation Loss

Figure 1.5: Accuracy % (a) and Loss values (b), with respect to the epochs, for the

three CNN. Blue is used for training and red for validation.
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Figure 1.6: Confusion matrices for the fifth iteration of the validation process of:
B V (a); H E (b); E_I(c). The upper left 2x2 sub-matrix contains true positives
(1,1), false positives (1,2), false negatives (2,1) and true negatives (2,2). Each cell
contains the absolute value (bold) and the corresponding % of the total number of
elements (plain text) . The remaining cells always contain two numbers %. The third
column consists of: positive predictive value (green) and false discovery rate (red),
in position (1,3); negative predictive value (green) and false omission rate (red), in
position (2,3). The third row consists of: sensitivity or true positive rate (green) and
false negative rate (red), in position (3,1); specificity or true negative rate (green)

and false positive rate (red), in position (3,2). Cell (3,3) contains accuracy (green)

and misclassification rate (red).
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B_V CNN H _E CNN E_ICNN

1341 398 1592
(B_V) (H_V) (E_I)
5020 4823 6044

(HE+E I+UBS)| (B V+E I+UBS)|(B V+H E-+ UBS)

Table 1.1: Configuration of the datasets used to train the framework.

Classification Results

Others | Artifacts | Double Detections
H E E I
B V| 310720 30120 = —
- 340 4480
B V E I
Framework | H E | 332429 8411 — =
- 340 320
B V H E
E I | 296669 44171 = =
- 4480 320

Table 1.2: Classification of 340890 Topoplots. The "Others" column contains other
artifacts + UBS. The "Artifacts" column contains the number of artifacts recog-
nized as its own by the CNN shown on the left. "Double detections" are artifacts
considered to be their own by two CNN simultaneously and are reported twice. For
instance, the Topoplots belonging to B_V and, at the same time, to H_E (340)
are the same ones that belong to H E and, at the same time, to B_V. "Triple

detections" never occurred and not reported.

In particular, for each CNN the training set was organized by separating the
Topoplots into two classes: the first class containing the artifacts to be recognized
by CNN and the second class containing all the others (other artifacts + UBS). In
this way, each CNN was trained to recognize its own artifacts and separate them from
the others (the cardinality of the three classes roughly reflects the real frequency of
occurrence).

The dataset for each CNN was split 70% for training and 30% for validation.
The optimization algorithm used was the Stocastic Gradient Descendent with mo-
mentum=0.9, with Lo-norm. The max number of epochs was fixed to 400, although
all the CNN converged well below 100 epochs (Fig 1.5). The training process, taking
about 40 min, was repeated 10 times and resulted in the following average accuracy:
99.4+0.4 % for B_V, 99.6+0.3% for H E and 97.9+0.6% for E_ 1. The confusion
matrices of one of the validation processes are shown in Fig 1.6. They confirmed

that the class E I was the most difficult to recognize.
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HEOG

Figure 1.7: First feature extraction step when each CNN acts on Topoplots belonging
to the three classes of artifacts or to UBS (columns) or when different CNN act on

the same Topoplot (rows).

1.4.3 Results

The proposed framework was tested on data from subjects 20-32 of the DEAP
dataset, corresponding to 340890 images. The results of classification, summarized
in Table 1.2, show that, among the Topoplots considered artifacts, a very small
percentage had double membership ("Double Detections"). Upon thorough exami-
nation with human experts, most of them were actually found to be ambiguous. It is
worth noting that the numbers are repeated twice in "Double Detections" columns:
Topoplots shared between classes j and k have been counted by both. No "Triple
Detections" occurred, that is no Topoplot was classified as a member of the 3 classes
at the same time and, for this reason, a "Triple Detections" column is not present
in Table 1.2.

The behaviour of each CNN with respect to the others, when acting on different
types of Topoplots, is shown in Fig. 1.7. In particular, the output of the first feature
extraction step is presented, both when acting on the same Topoplot (rows) and on
different Topoplots (columns). As it can be seen, CNN reacted very differently to
the same Topoplot, thus demonstrating good fixation activity [64]. The Topoplots
shown in Fig. 1.7 are characteristic instances of all classes.

We also performed Gradient-weighted Class Activation Mapping (Grad-Cam) to

produce a coarse localization map showing which regions in the image were used for
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Figure 1.8: Grad-Cams: the Topoplots belonging to the three classes of artifacts or
to UBS are inputs of each CNN (columns); the same Topoplot is the input of different
CNN (rows). The last two columns on the right show "Output" and "Classification

results", respectively.

prediction [65]. Fig. 1.8 shows examples of grad-cams in a table: rows report the 4
different classes of Topoplots (artifacts + UBS) and columns represent the respective
grad-cams of each CNN. In the first row, a B_V artifact is the CNN input. The
BV CNN grad-cam shows that the activations are correctly localized on the frontal
region of the head. In the second row, a H E artifact is the CNN input and the
H E CNN grad-cam shows that the activations are correctly located on the lateral
edges of the head: this confirms that the H E CNN is not biased by the strongest
positive activation (yellow) in the Topoplot. In the third row, an E I artifact is
the CNN input and the E_T CNN grad-cam shows that the positive values are well
located on the artifact while the rest of the map shows negative values. Finally, in
the last row an UBS Topoplot is the CNN input: none CNN recognizes it as its own.

To check in depth the behaviour of the framework, another Topoplot dataset
was generated from subjects 9-19 of the DEAP dataset and 1/10 of them (a total
of 29500), selected at random, was submitted to the 5 human experts for visual
classification and labelling. The consensus contained 22795 UBS, 2190 B_V, 526
H E and 3871 E_ I, respectively. A set of 117 Topoplots was discarded due to

tie. Then, automatic recognition was performed using the proposed framework: the
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AMBIGUOUS TOPOPLOTS
UBS BV H_E E |

FRAMEWORK

Figure 1.9: Examples of ambiguous Topoplots. The meaning is the same as for Table
1.3 with Topoplots instead of numbers and the exclusion of the columns "TOTAL"
and "PERFORMANCE".
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resulting errors, compared to manual consensus, and the performance of each CNN
are reported in Table 1.3.

In particular, for each classifier (rows) the number of Topoplots wrongly classi-
fied as proper but belonging to the other classes, the false positives, are reported
(columns). When the class matches the classifier, the corresponding cell contains
the number of false negatives (FN). For each classifier, the right part of Table 1.3
respectively reports accuracy, sensitivity and specificity.

Performance data show that our framework has very good accuracy, sensitivity
and specificity (>98%). Moreover, we verified that humans experts disagreed on
most Topoplots misclassified by the framework, thus confirming that most of them
exhibited ambiguous patterns. Examples of ambiguous Topoplots are reported in
Fig 1.9.

Although the performance of the proposed method did not differ from that of a
human expert (see above), we also decided to make an indirect comparison between
our framework and the classification strategy proposed by Pion-Tonachini et al. [25].
The comparison was indirect because we did not implement the Pion-Tonachini’s
strategy but we used the online tools of the web-site (https://labeling.ucsd.edu/tutorial)
that the Authors decided to share. To this end, we asked to our 5 human experts
(the same ones who helped us build the labelled dataset) to self-instruct on how to
use PSD and autocorrelation to classify IC in addition to Topoplots.

Then, for a dataset of 1000 artifacts we generated Topoplot, PSD and autocor-
relation and we asked the experts to perform a manual classification both using
only Topoplots and the three types of information with the method learned on the
web-site (two different sortings of dataset were used). In this way, we had the op-
portunity to compare the proposed framework in terms of performance both with
respect to the strategy on which it was trained and to a classification strategy that
involves multiple sources of information. Moreover, we were able to ascertain the
added value of multiple information.

Two consensus were generated from manual classifications: one among Topoplot-
only classifications (MCT') and the other among multimodal classifications (MCTPA).
The two consensus were compared: they agreed at 95.4%, although the time spent
on each classification of MCT was about 1/5 of that required for one of MCTPA.
The strong consensus agreement shows that multiple information could only con-
tribute a small percentage towards improved performance. Indeed, the differences
between the two consensus are in line with disagreement among experts (see above)
and do not change significantly when multiple information are used: the huge in-
crease in classification time is unwarranted, especially where speed is a requirement.
This is confirmed by the performance results summarized in Table 1.4. As can

be noticed, the proposed framework confirms the performance compared to human
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experts on MCT (almost the same as Table 1.3). However, due to differences in
human decisions when including further information, the performance of the pro-
posed framework decreases compared to MCTPA. Although reduced, performance
remains above 96%, thus confirming a behaviour of the framework similar to that of
a human expert even when compared with MCTPA. Therefore, the use of the pro-
posed framework on fast-response EEG is completely justified because the analysis
of the Topoplots alone is sufficiently specific to define the nature of IC, as confirmed
also in [45, 46, 10].
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MCT PERF. (%) MCTPA PERF. (%)
ACC. | SENS. | SPEC. ACC. | SENS. | SPEC.
B V| 985 98.9 98.8 96.8 97.0 96.4
Framework H E | 99.6 98.4 99.6 97.7 97.2 98.1
E I 98.8 98.3 99.1 96.4 97.2 96.8

Table 1.4: Performance of the proposed framework compared with MCT and
MCTPA, respectively.

In terms of computational performance, the proposed framework took 1.4 sec
for 32 Topoplots, of which: 0.3 sec to calculate the IC with fast-ICA [66] ; 0.9 sec
to generate Topoplots; 0.21 sec for classification. As it can be seen, the bottleneck
is represented by the Topoplot generation (necessary both for manual analysis and
for automated strategies). Fortunately, the time for Topoplot generation does not
increase linearly with the number of images because some calculations, such as those
required for channel positioning on the scalp model, are executed only once. Com-
pared to the strategy in [25], which, in addition to Topoplots, has to analyze further
information, the proposed framework is simpler and probably more efficient. Fur-
thermore, although no direct indication of efficiency was given in [25], the number
of network parameters used in [25] is equal to 2.8210°, about 2.5 times higher than
our architecture. The computational results show that our framework is sufficiently
fast to be compatible with fast EEG-applications, being the pre-processing faster
than the time it takes to measure the signal to be analyzed (one sub-trial in Fig 1.3
took 8 sec, 4 of them are of "present" signal), thus making artifacts recognition
effective and timely for interactive BCI |67, 68, 69].

1.5 Discussion

Artifact recognition/classification from IC Topoplots is fundamental and is consid-
ered the gold standard for this purpose. To this end, we demonstrated that a fully
automated framework, based on CNN operating only on IC Topoplots, is effective,
fast enough to be used in interactive EEG, easily scalable and robust, without any
additional information. The proposed framework has high accuracy (~99%), speci-
ficity (~98%) and sensitivity (~99%), is very close to the performance of human
experts and its results are in line with the most advanced methods [25]. Our frame-
work, thanks to its scalable structure, fits perfectly with the present and future
requirements of artifacts recognition because it can be easily adapted and trained to
manage future artifact patterns without re-training the existing architecture (spe-

cific CNN must be added to the framework and trained separately).
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The proposed framework is capable of operating in 1.4 sec for 32 Topoplots
(including the time necessary to generate Topoplots), fast if compared to the time
necessary to collect EEG signals for an EEG-based BCI (usually between 2.5-5
sec). The execution time can be further reduced if fewer sensors are used (as usual

in BCI) without any framework modification.
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Chapter 2
Analysis and Interpretation of Weak EEG Signals of
3M Syndrome Infants

3M syndrome is a rare disorder that involves the gene cullin-7 (CUL7). CUL7
modulates odour detection, conditions the olfactory response (OR) and plays a role
in the development of the olfactory system. Despite this, there are no direct studies
on olfactory functional effects in 3M syndrome. This is because obtaining high-
quality EEG signals from infant recordings, compared to adults, is very difficult.
In fact, EEG signals from newborns are very much noisy and greatly affected by
artifacts mainly caused by uncontrollable movements. Artifact removal is crucial and
preliminary to any form of possible interpretation. In this chapter, a framework for
the interpretation of EEG signals of two twins infants affected by 3M syndrome and
one healthy infant, recorded during olfactory stimuli, is described. The purpose was
to analyse the cortical OR through chemosensory event-related potentials (CSERPs)
and power spectra calculated EEG signals. The resulting analysis has been possible
thanks to the preliminary usage of the artifact removal framework presented in the
Chapter 1.
The content of this chapter appeared in [70)].

2.1 Introduction

3M syndrome is a “rare autosomal recessive dwarf syndrome” [71]. The distinctive
features of this little-known syndrome are limited prenatal growth, facial dysmor-
phism, absence of microcephaly and cognitive impairment. Since 3M syndrome is
autosomal recessive, both inherited copies of the gene have mutations. Mutually
exclusive genetic mutations in cullin-7 (CULTY), obscurin-like 1 (OBSL1) and coiled-
coil domain-containing protein 8 (CCDC8) cause the pathology, as confirmed by
a study conducted by Dan Hanson and collaborators [72]. They noted that, in
terms of the clinical and biochemical 3M syndrome phenotype, children with CUL7
mutations were significantly shorter than those with OBSL1 or CCDCS8 mutations.

However, the aetiological mechanisms that lead to the observed growth disability
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in 3M syndrome remain unclear, but they are probably related to abnormalities in
basic cell growth and changes in cellular responses to growth factor stimulation.

Although 3M syndrome is considered a relatively rare disease, it is probably an
under-recognised condition; its main characteristics, including impaired pre- and
post-natal growth, are shared with all gestational age children with growth failure.
This population includes many children who do not yet have a clear mechanism of
growth impairment [73]|. It is likely that 3M syndrome is often misdiagnosed or
unrecognised due to normal mental development, mild dysmorphic facial features
and good patient health.

Residual clinical features (triangular face, pointed chin, mouth and prominent
lips, fleshy nose with anteverted nostrils, short stature, large skull and prominent
forehead) and clinical history (low birth weight) are typical of 3M syndrome [71].
Epidemiological data about 3M syndrome are not known. Today, approximately

200 cases have been reported worldwide [74].

2.1.1 3M Syndrome and Potential Olfactory Involvement

As mentioned above, genetically confirmed patients with 3M syndrome carry mu-
tations in CCDC8 (5%), OBSL1 (25%) or CULT (70%) [75]. CULTY interacts with
other cellular proteins and contributes to the formation of an E3 ubiquitin ligase
complex that ubiquitinates specific targets. CUL7 mutations may disrupt insulin-
like growth factor 1 (IGF-1) and growth hormone (GH) signalling pathways and
contribute to growth alteration [74]. Insulin receptor substrate 1 (IRS1) is a target
of the CUL7-SCF ubiquitin ligase. IRS1 is a signalling molecule that is a member
of a family of adaptor molecules downstream of GH, IGF-1 and insulin receptors
[75, 76]. Insulin receptors are expressed in olfactory receptor neurones of rat olfac-
tory mucosa, a fact that suggest insulin plays a role in odour detection modulation
at the olfactory mucosa level |77, 78|. CUL7-FBXWS is a component of an E3
ubiquitin ligase that localises to the Golgi apparatus in neurones and is required
for dendrite growth and organisation. Inhibition of this ligase in neurones alters
Golgi morphology, impairs vesicle trafficking and disrupts dendrite morphogenesis
and arborisation [79]. The ubiquitin ligase activity is linked to axon guidance during

pathfinding in the development of the olfactory system.

2.1.2 Olfactory Perception and Chemosensory Event-Related
Potentials (CSERPs) in Infants

Olfactory perception is highly developed in newborns and infants. Recent research

indicates that olfactory system activity is already present in 1-day-old newborns
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[79, 80]. Furthermore, smells can modulate nociception [81], by inducing greater
stability during painful procedures and lower severity of central apnoea. Moreover,
unpleasant or irritating odours promote disadvantageous evolutionary responses,
such as decreased respiratory rate (up to apnoea) [82]. The sense of smell is also com-
promised in children with cerebral malformations, genetic diseases (e.g., trisomy 13
or 18, Kallmann syndrome or Riley-Day syndrome), endocrine disorders (such as hy-
pothyroidism and gonadal dysgeneses) and in infants borne to diabetic mothers [83].
A recent work showed that it is possible to record olfactory event-related potentials
(OERPs) in infants [84]. OERPs and CSERPs are electrophysiological components
that allow researchers to evaluate chemosensory and chemoperceptual responses to
olfactory stimuli [85]. The main difference between OERP and CSERPs is that the
former is elicited by purely olfactory stimulation, while the latter is elicited by chem-
ical stimulation, which may also include trigeminal activation [86]. Schriever and
colleagues research, however, highlights the difficulty in observing OERPs in infants.
This phenomenon is likely because there are more recording artefacts. OERP com-
ponents in infants are the same as in adults: early components N1 and P2 [16] and
late positive components (LPCs) [87]. N1 and P2 are the early sensorial components
and are modulated by stimulus concentration and typology. LPCs include P3a and
P3b and are modulated by the cognitive aspects of the stimulus (e.g., presentation
frequency or stimulus salience) [87]. Moreover, time-frequency analysis highlights
increased low frequencies (4-7 Hz) in a temporal range that corresponds to LPC
[84] Even though there are no previous ERP (and specifically CSERPs) studies in
3M infants, one could hypothesise that the olfactory system could be dysfunctional
in infants with CUL7 mutations [88]. Based on the integrated CSERPs approach,
the aim of this study was to investigate whether there are implications at the level
of olfactory perception both in OERP components and with regard to the main
rhythms associated with rhinoencephalon [89] and entorhinal cortex [90] activity
in 3M syndrome. Since no study has evaluated the use of CSERPs or OERPs to
investigate olfactory functional responses in 3M infants, olfactory function in this
rare syndrome is poorly characterised. Moreover, to the best of our knowledge, no
study has been conducted using electroencephalogram (EEG) signals from the sub-
jects with 3M syndrome using signal processing and analysis strategies. There are
multiple potential benefits from this study. If the 3M syndrome subjects differ from
the controls with respect to the olfactory response, early OERP screening, which
represents an economic and non-invasive tool compared to genetic screening, could
then lead to a possible subsequent genetic investigation (if it is positive). Further-
more, this research could allow us to deduce functional CUL7 involvement in the

human chemosensory /olfactory response, a prospect that has not yet been studied.
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2.2 Materials and Methods

The research was conducted at the Neurology Unit of the Vito Fazzi Hospital in
Lecce with subjects recruited at the Neonatal Intensive Care Unit (UTIN). Data
collection was performed in compliance with the Code of Ethics of the World Med-
ical Association (Declaration of Helsinki) and authorized by the ASL-Lecce Ethics
Committee (Approval record N°7, Date 19 July 2017). Written informed consent

was obtained from the parents.

2.2.1 Subjects

Three subjects (males) with a diagnosis of 3M syndrome were recruited for the study.
The subjects were siblings, two 5-month-old twins (3M-N) and their 18-month-old
brother (3M-0O). CUL7 genetic analysis (exons 14-23/24) highlighted the presence of
pathogenic variants ¢2781delC (p.Ser928Leufs*5) and ¢.4391 A>C (p.His1464Pro)
in the state of compound heterozygosity. The diagnostic conclusion for all three sib-
lings was 3M syndrome due to familiar mutations. The laboratory data is compatible
with the segregation of the family pathology in the foetus. The 3M syndrome group
presented the following medical history: prematurity, low birth weight (LBW), small
size for gestational age, syndromic facies, triangular face, prominent frontal drafts,
bulbous nose, flat angiomas of the median line, short neck and thorax, hypospadias
and suspected bow curvature, fleshy and prominent heels, prenatal 3M diagnosis
based on amniocentesis karyotype, glandular hypospadias, transient hypocalcaemia
and transient oliguria. Moreover, the subjects with 3M syndrome showed a larger
cranial circumference (75-90°). Our sample size represents about 1.5% of the ap-
proximately 200 cases described worldwide [74]. The control group was recruited
with the criterion of having the same gestational and post-conceptional ages as the
3M subjects, but no apparent clinical abnormalities from anamnestic data. The con-
trols consisted of two healthy 12-month-old male twins (HS-O) and two 4-month-old
male twins (HS-N).

The subjects were compared, separately, according the post conceptional age;
the HS-O twin pair served as controls for the 3M-O and the two HS-N served as
controls for the 3M-N. Independent comparisons were performed, due to different
characteristics from neonatal EEGs and developmental brain behaviour [91]. Addi-
tionally, all infants were examined by the hospital paediatrician to rule out nasal
congestion or other temporary respiratory diseases. Both healthy and subjects with
3M syndrome were subjected to neonatal auditory screening and the auditory brain-
stem response (ABR) and did not show any significant clinical abnormalities. No

other behavioural olfactory or chemosensory assessment was performed.
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2.2.2 OERP Assessment

Subjects performed a CSERPs task that involved the eucalyptus scent (natural euca-
lyptol oil, 1,3,3-Trimethyl-2-oxabicyclo [2.2.2| octane; Sigma-Aldrich, CAS Number
470-82-6). The experimental eucalyptus concentration was 20 L in 10 mL Vaseline
oil. The odorous solutions were prepared in 20 mL transparent glass vials and kept
sealed with plastic film in a darkened cabinet. The scent was administered via an
olfactometer [92]. The OERP presentation paradigm consisted of sequences of ol-
factory stimulations; each stimulation lasted 340 ms, with an inter-stimulus interval
(ISI) of 20 s. In total, the subjects were exposed to 20 stimulations (a sufficient
number of stimulations, because the minimum number to elicit OERP is 8 [84]). In
accordance with recommendations based on previous research, the ISI was greater
than 10 s to avoid habituation [88]. The device used to record the presentation
of odorous stimuli allowed us to measure, in a controlled and automated way, the
CSERPs evoked by olfactory stimuli synchronized to the acquisition of the EEG sig-
nal. The administration of the odorant, which took place through the olfactometer,
was presented through a plexiglass tube that was positioned in the centre of the two
nostrils. The odorant was delivered as binarinal stimuli in front of the nose. During
the electroencephalographic recording, the children were seated in the arms of the
mother, who in turn was sitting in a comfortable armchair placed inside the EEG
recording room. The children were in a relaxed condition, were in a post-prandial
state (i.e., they had eaten about an hour before the EEG recording) [93] and were
in a waking state [94]. The choice of the eucalyptol odorant, which has a mixed
component both olfactory and trigeminal, allowed us to keep the children in arousal
during the CSERPs recordings (95, 96, 97, 98].

2.2.3 EEG Recording

The EEG signals were recorded using a Micromed 19-channel amplifier (Fpl; Fp2;
F7; F3; Fz; F4; F8; T3; C3; Cz; C4; T4; T5; P3; Pz; P4; T6; O1; and O2). The scalp
electrodes were applied according to the International 10-20 system. The EEG signal
processing was performed using a Brain Vision Analyzer (Brain Products GmbH).

The impedance was maintained below 8 k€2, and the sampling rate was 256 Hz.

2.2.4 OERP Pre-Processing

The electrodes were online referenced to FCz, and offline, they were postponed with
a common offline reference [99]. The signal was filtered offline (0.01-50 Hz, 24 dB),
and the artefact rejection threshold was set to > 125 [32]. ERP epochs included

a 100-ms pre-stimulus reference period and a 500-ms post-stimulus segment. The
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peaks were automatically detected for all channels. The OERP components were
labelled as N1 and LPC according to Pause et al. [87]. The latency windows were set
to 100-400 ms for N1 and 350-600 ms for LPC [88, 100]. Main regions of interest
(ROIs) were extracted though the linear derivation process: central left (C3-Al-
T3), central right (C4-A2-T4), temporo-parietal left (P3-T5-O1), temporo-parietal
right, (P4-T6-02), frontal left (Fpl-F3-F7), frontal right (Fp2-F4-F8), central (Cz),
parietal (Pz) and frontal (Fz). This process was defined a priori to reduce the number
of electrode/channel comparisons, according to the definition of the two hemispheres
and the lobes [101]. The linear derivation process allows one to synthetize new

channels from linear combinations of recording existing electrodes/channels [102].

2.2.5 EEG Signal Pre-Processing

We further analysed the original EEG signals with signal processing strategies, since
the sample was necessarily small and the study could be reduced exclusively to a
single case. Thus, we investigated EEG rhythms on pieces (trials) of signal collected
after each olfactory stimulation by searching for the presence of recurrent common
trends in the subjects with 3M syndrome with respect to the controls.

We divided the signals in trials of 10 seconds (to ensure the convergence of the
ICA algorithm)

First, to correct different amplification effects, each trial was normalised with
respect to its baseline level, obtained by calculating the mean value of the power
spectrum in a frequency band (65-75 Hz), which is usually only occupied by noise.
Thus, all the resulting trials showed the same amplification. Then, the signal was
subjected to a band-pass filter (0.01-49 Hz, 24 dB) in the frequency domain in order
to eliminate noise and offset.

Finally, each trial was elaborated for eliminating artifacts. To this end, ICA
was performed and the components were calculated, trasformed in topoplot and
classified with the method presented in Chapter 1.

The residual components were projected back to the signal space to obtain a
filtered version of the signal that composed each trial.

Examples of artifacts removal, for Trial 5, 20 and 26, are reported in Figures 2.1,
2.2 and 2.3.
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2.3 Results

2.3.1 OERP Data Analysis

Due to the sample size, we performed initial explorative and descriptive analyses to
investigate N1 and LPC OERP components (Tables 2.1 and 2.2). The OERP results
revealed that 3M-O showed greater N1 amplitudes and faster latencies on frontal
left (3M-O 17.34 pV vs HS-O 1.42 V), frontal right (3M-O -25.37 uV vs HS-O
-12.55 pV), central left (3M-O -11.17 pV vs HS-O -4.1 V), central right (3M-O
-7.97 uV vs HS-O -2.7 V) and temporal left (3M-O -6.8 ¢V vs HS-O -2.2 uV). Cz
showed faster latency (3M-O 109 ms vs 129 ms) and Pz showed greater amplitude
(3M-O -2.80 1V vs HS-O -1.34 V) in 3M-O. LPC data followed the same pattern
as N1, except for central right (3M-O 9.75 pV vs HS-O 12.23 pV), Fz (3M-O 5.78
1V vs HS-O 9.58 V) and Pz (3M-O 4.26 pV vs HS-O 22.06 1V), where 3M-O had

a decreased amplitude.
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2.3.2 EEG Spectral Analysis

After pre-processing, each trial was analysed 0-1000 ms after onset (since the brain
response signal is zero 1 s after olfactory stimulation). The resulting signals, each
sampled for 1 s at 256 points, were analysed with Fourier transform (FT) in 4 Hz
windows (0.01-4, 4-8, 8-12, 12-16, etc., until 48 Hz), and the power spectrum
was calculated. The analysis was performed for each trial and each channel sepa-
rately, and the results were analysed in the form of a power spectrum represented
graphically and as topoplot images. The obtained results demonstrated that the
frequencies generated by olfactory stimulations mostly occurred in the (0.01,8] Hz
interval in both the subjects with 3M syndrome and healthy subjects. However,
the examined subjects with 3M syndrome had low frequencies ( < 4 Hz) elicited by
olfactory stimulation, while higher frequencies (> 4 Hz) were mostly activated for
healthy subjects. Figure 2.4 highlights these aspects by reporting, for all subjects
and for each channel, the percentage of trials for which 60% of the EEG power
spectrum area was in the (0.01, 4] Hz interval (green) or > 4 Hz (blue). Vertical
red lines indicate the mean percentage (averaged for all ROIs) of 60% of the power
that occurred before 4 Hz. This presentation clearly shows a right displacement for
patients with 3M syndrome with respect to the corresponding controls. These data
confirm, for subjects with 3M syndrome, the increment of trials for which the power
spectrum concentrated in the (0.01, 4) Hz interval.

This effect was most noticeable between 3M-O (row #1, column #1) and HS-
O (row #1, columns #2 and #3) with respect to 3M-N (rows #2 and #3) and
HS-N (row #2, columns #2 and #3). Moreover, some ROIs were more involved
than others in this process, as shown in Figure 2.5, which reports the percentage
difference of the green area in Figure 2.4 between patients with 3M syndrome and
corresponding controls (and separated by ROIs). Table 2.3 describes a ROI analytic
evaluation showing percentage difference between the green regions (area of the
power spectrum < 4 Hz) in Figure 2.4 for subjects with 3M syndrome and control
subjects; Table 2.3 confirms that, for 3M-O, the power spectrum was concentrated
in the (0.01, 4] Hz interval (positive values, highlighted in “orange”) for all ROIs
with respect to both controls. However, for 3M-N, this behaviour was confirmed

just for some specific ROIs (regions with discordant signs were not considered).
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Figure 2.4: Representation of the percentage of trials (horizontal axis) divided by

ROIs (vertical axis), for which 60% of the power spectrum area was < 4 Hz (green)

or > 4 Hz (blue) for each of the treated

infants. A sum less than 100% indicates

that some trials were too corrupted to be treated and, hence, discarded; this phe-

nomenon mainly occurred for subject 3M-O. Data regarding subject 3M-O and the
corresponding controls HS-O1/HS-O2 are reported in a) and 3M-N1/3M-N2 and the

corresponding shared controls are reported in b). Vertical bars indicate the average

threshold; differences are apparent between patients and control
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Figure 2.5: Topoplot images that report the power spectrum distribution of one of

the typical trials for each infant. Each of the three topoplots refers to an analysed
bandwidth: 0.01-4 Hz (left), 4-8 Hz (middle) and 8-12 Hz (right). The scale was
normalized between 0 and 1 (0 = intense blue, 1 = intense yellow) for all subjects
and is not shown for convenience. For patients with 3M syndrome (left column),
the left topoplot (0.01-4 Hz) carried most of the power; for healthy subjects (middle
and right columns), most of the power was concentrated in the middle topoplot (4-8
Hz). For all subjects, the right topoplot (8-12 Hz) contained negligible power with

respect to the lower frequency windows.
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We observed larger differences in EEG spectral power displacement in the sub-
jects with 3M syndrome, although this effect was different between 3M-O and 3M-N.
In particular, 3M-O showed more activation in all the ROIs, but 3M-N showed more
activation in temporo-parietal (right and left), parietal, frontal right and frontal
left, where both clinical samples exhibited intersection. These results highlight that
similar EEG patterns are present in the same clinical categorisation (e.g., 3M). The
signal behaviour between 3M-O and its corresponding control is differentially dis-
tributed with respect to 3M-N and HS-N, although the general effect was the same.
3M-N had very similar responses; the different responses between patients of differ-
ent ages were more pronounced than those between controls of different ages, where
similar patterns, although at different scales, were maintained. Figure 2.5 shows the
screenshots of typical power spectrum topoplots (with normalised scales) in the first
three frequency windows (0.01-4 Hz, 4-8 Hz and 8-12 Hz, respectively) for one trial
for each of the analysed subjects. Notably, Figure 2.5 confirms that patients with
3M syndrome responded more in the 0.01-4 Hz bandwidth, while healthy subjects
were mostly active in the 4-8 Hz bandwidth. Power was negligible in the 8-12 Hz
bandwidth for all subjects.

2.4 Discussion

3M syndrome is extremely rare and difficult to diagnose. Its peculiarity lies in bone
alterations and genetic variations, which, among various aspects that these changes
modulate, also affects the olfactory response. Indeed, CUL7, a gene involved in the
3M syndrome, can modulate odour detection and condition the OR and plays a role
in the development of the olfactory system |78, 79|. Despite this involvement, there
are no direct studies on the functional effects of this syndrome. This paucity of
data is due to the fact that the syndrome is one of the rarest genetic disorders and
evaluation of cortical responses to olfactory stimuli in infants and newborns is one of
the less frequent investigations within psychophysiology and cognitive neuroscience
[84].

The purpose of the present chapter was to analyse the cortical olfactory response,
recorded through CSERPs, in infants with 3M syndrome. We first evaluated the
CSERPs responses with a direct descriptive comparison (since this study was com-
parable to a single case study due to the small sample size) on the trends of the
olfactory stimulus sensory and perceptive components. In particular, we analysed
the sensory components N1 and LPC elicited by the stimulation paradigm [87]|. The
CSERPs results demonstrated that the 3M-O infant exhibited increased N1 ampli-
tudes and faster latencies. Furthermore, we found a faster latency in Cz, which is

positioned on the precentral gyrus, and greater amplitude in Pz, which is located in
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the middle parietal lobe. The precentral gyrus and parietal cortex are considered
sites for olfactory working memory. We interpret these findings as an indication of
greater allocation of attentional resources, enhanced olfactory working memory and
olfactory perception, which is visible in the N1 component, which is involved in the
sensorial detection of olfactory stimulation [87]. We suppose that this enhancement
could be related to the CUL7 alteration. LPC data followed the same results as
N1, except for central right, where we observed a decreased amplitude. The wider
LPC is a consequence of the processing of olfactory information visible through the
N1 component. The 3M-N twins also showed increased amplitude in the precentral
gyrus and faster N1 and LPC latencies, although the results in younger infants were
apparently less defined and exhibited less LPC typing than for the 3M-O and control
groups. This minor typing is evident with the difficulty of identifying the LPC in
frontal right, central right and Cz ROIs [84].

In 3M syndrome, olfactory processing appears to be clearly diversified. Specif-
ically, comparison of the N1 and LPC indicates substantial differences in 3M syn-
drome that may be a consequence of a modified olfactory processing pattern. More-
over, the subjects with 3M syndrome showed different arousal localisations from
olfactory stimulation, data that implicate much larger areas that range from the left
hemisphere to the midline sites (i.e., Fz, Cz and Pz). These differences were more
distributed and evident in the infant rather than younger twins, but in general,
they seemed to be constant with respect to the CSERPs trend. As a further signal
control, we performed a new analysis based on the assumption that the slow and
high CSERPs frequencies are related. Indeed, we considered the rhythms within the
signal and considered the greater cortical response, which in our case coincided, at
a temporal level, with the CSERPs-elicited response. These results demonstrated
that the frequencies generated by olfactory stimulations were mostly present in the
(0.01,8] Hz interval in subjects with 3M syndrome and healthy subjects. However,
the behaviour observed in the examined subjects was that low frequencies, in partic-
ular 0 (< 4 Hz) were elicited by olfactory stimulation in subjects with 3M syndrome,
while higher frequencies (> 4 Hz) were mostly activated for healthy subjects. More-
over, we argue that some ROIs are more involved than others in this process. In
particular, 3M-O showed involvement in all ROIs, although parietal, central left,
central, frontal and frontal left exhibited greater activation; 3M-N showed elevated
activation in temporo-parietal (left and right), parietal, frontal left and frontal right.
Overall, similar EEG patterns were present for the same clinical categorisation (e.g.,
3M-O and 3M-N). The § EEG rhythm appears to be more structured in 3M-0O, al-
though the general effect in 3M-N was the same, but less strong. The different
age-related responses in 3M infants were more pronounced than those between con-

trols, where similar patterns were maintained in CSERPs and EEG spectral analysis.
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Moreover, the presence of § rhythms in patients with 3M syndrome clearly implicates
olfactory response involvement, since this rhythm is closely connected to olfactory
perception [103, 104].

Although we were unable to perform robust statistical analysis due to the lim-
ited number of subjects, our results are the first assessing, in a preliminary way,
CSERPs in 3M subjects, and this could be of interest for basic research and clini-
cians. For basic research, these results highlight, for the first time in human infants,
a functional aspect of the cortical olfactory response linked to the CUL7 gene. From
the clinical point of view, these results suggest that a diagnostic evaluation of the
cortical olfactory response at an early age may provide indications for subsequent
genetic screening, which is more complex and expensive than a CSERPs assess-
ment. The first limitation of this preliminary study comes from the sampling of 3M
subjects. These subjects, in fact, belong to the same family, therefore they could
show similar electrophysiological characteristics due to their familiarity and not due,
exclusively, to the olfactory system, despite the peculiarity of these subjects is pre-
cisely having a variation of the CULT gene, closely connected with olfaction. The
other limitations concern the chemical nature of stimulation and the sample size.
In fact, regarding the first one, we did not use a purely olfactory stimulus (e.g.,
phenethyl alcohol) to prevent the child from relaxing and falling asleep during the
EEG recording [98|. The administration of eucalyptus, in fact, on the one hand
allowed us to keep the children in a state of mood increased vigilance, but on the
other hand has ensured that the elicited component is of a mixed type (both olfac-
tory and trigeminal) 86, 98] The sample size, even if it is a limitation, also partly
represents a strength. The small number of subjects actually represents a larger
percentage of subjects with 3M syndrome than the percentage that would usually
be represented by afflicted individuals in clinical studies. We can conclude, albeit
in a preliminary way, that the chemosensory investigation of this syndrome, could
open new connections between purely clinical aspects, such as the identification of
a potential biomarker, and basic research aspects, to understand how and at what
time a genetic alteration can modify a sensory and subsequently perceptive and /

or cognitive response.

29



Part 111

Artificial Intelligence For MRI
Analysis

60



Chapter 3
Materials And Methods

Preliminary to the design and development of any supervised AI model, at least 3

elements need to be considered:

e Data Set: it should contain the sufficient amount of data to represent all the
potential patterns (and pattern variations) which the Al model must be able

to cope with. Beyond quantity, also the quality of the data is fundamental.

e Data Labels: data annotation is the process of defining labels to the training
data set. In MI, data annotation involves tagging specific biological images
with tags identifying lesions. Data annotation requires a lot of work and is
often done manually by a team of specialists, each one repeating the pro-
cess independently from the others on the same data to cope with inter rater

uncertainty. It provides that initial setup for training Al models.

e Scores and metrics: used to quantify the performance of the model. Many are
necessary in order to evaluate the model under a broad range of characteristic

parameters.

In this Chapter the Data Set used, the proposed Data Labels and the evaluations
criteria are presented. The problem to be solved is the automatic recognition and

segmentation of the lesions produced by multiple sclerosis from MRI.

3.1 Data Set

The Medical Image Computing and Computer Assisted Society (MICCAI) is a non-
profit corporation founded on the 29 July 2004. The society mission is promote the
research and the expertise in the field of medical image computing and computer
assisted medical interventions including biomedical imaging. In order to do that,
among all the activities, the MICCAI organization has created and maintained some
of well know useful data set, such as the one used in this thesis for experimentation:
the Multiple Sclerosis SEGmentation data set (MSSEG) [1].
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Center Scanner Modality Matrix Slices Voxel resolution (mm)
Sagittal 3D FLAIR 512x512 144 0.5x0.5x1.1
1 Siemens Verio 3T Sagittal 3D T1 256x256 176 1x1x1
Axial 2D PD-T2 240x320 44 0.69x0.69x3
General Electrics Sagittal 3D FLAIR | 512x512 224 0.47x0.47x0.9
3 Discovery 3T Sagittal 3D T1 512x512 248 0.47x0.47x0.6
Axial 2D DP-T2 512x512 | From 28 to 44 0.43x0.43x3 Gap: 0.5
Sagittal 3D FLAIR | 256x224 128 1.03x1.03x1.25
7 Siemens Aera 1.5T Sagittal 3D T1 256 %256 176 1.08%x1.08x0.9
Axial 2D PD-T2 320x320 25 0.72x0.72x4 Gap: 1.2
Sagittal 3D FLAIR | 336x336 261 0.47x0.47x0.9
8 Philips Ingenia 3T Sagittal 3D T1 336x336 200 0.47x0.47x0.6
Axial 2D PD-T2 512x512 46 0.43x0.43x3 Gap: 0.5

Table 3.1: Acquisition details for center. Table is from [1].

The MSSEG is composed by MR images collected from the following centers:
University Hospital of Rennes (Center 1), University Hospital of Bordeaux (Center
3) and University Hospital of Lyon with 2 different scanners (Center 7 and Center
8). All the centers provided 4 acquisition modality: 3D fluid-attenuated inversion
recovery (Flair), 3D T1 weighted pre and post-Gadolinium injection and axial dual
proton density (PD) and T2 weighted.

The equipment used for each center is summarized in Table 3.1

Data were furnished both in unpreprocessed and in preprocessed form. Prepro-
cessing refers to a series of mathematical adjustments to MR images before segmen-
tation [105] for reducing the effects of noise and imaging artifacts, equalizing space,
eliminating outliers and stabilizing the contrast. As previously stated, the segmen-
tation from MRI is difficult due to the variability of imaging parameters, overlapping
intensities, noise, gradients, motion, blurred edges, anatomical variations and sus-
ceptibility artifacts [106, 107]. For this reason, images undergo pre-processing to
make classification robust with respect to imaging and scanners.

For the MSSEG data set, the preprocessed data consisted in performing the

following steps:

e Denoising of each modality;
e Rigid registration of each modality on the FLAIR image;

e Brain extraction (skull stripping) from T1-w image and applied to other modal-

ities;
e Bias field correction of each modality.

For each patient, The MSSEG data set includes 7 different manual delimitation

(segmentation) of the lesions (each voxel was identified as lesion/not lesion) made
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by 7 different expert radiologist. All the segmentation are merged into a consensus
through a statistical fusion (Lop-STAPLE) [108, 109].

The Lop-STAPLE is an iterative algorithm, that fuse the input segmentations us-
ing the Expectation-Maximization approach. The peculiarities of Lop-Staple is that
during the merging, it penalize the individual deviations from agreement between
manual experts segmentations. Moreover, the algorithm is robust to differences be-
tween manual expert segmentations, and it allows the computation of agreement
scores with respect to the consensus segmentation considered then as ground truth
[1].

The MSSEG collects 53 MS patients MRI examinations divided in two groups:
those from 15 patients were furnished to the research community for research purpose
and the remaining 38 patients were maintained secret and used by the society to
evaluate the performance of the methods participating to the challenge organized
by them.

MS is a degenerative disease of the brain and spinal cord which can vary greatly
between patients in severity and symptoms [110]. The majority of patients transit
into a progressive phase consisting in an unremitting and progressive accumulation
of disability. MS origins are not well understood but characteristic signs of tis-
sue damages are recognizable, such as white matter lesions and brain atrophy or
shrinkage due to degeneration. These signs can be observed by MRI which is a
special tool to follow-up MS patients with reduced invasiveness due to the usage of
specific contrast agents. In fact, focal lesions in the brain and spinal cord are pri-
marily visible in the white matter on structural MRI observable as hyperintensities
on T2-weighted, PD, and Flair images and as hypointensities, or “black holes”, on
T1-wheighted images [111].

Multiple sclerosis (MS) is a degenerative disease of the brain and spinal cord
which can vary greatly between patients in severity and symptoms [110]. The ma-
jority of patients transit into a progressive phase consisting in an unremitting and
progressive accumulation of disability. Actually there is no cure for MS and exist-
ing therapies focus on symptomatic management and prevention of further damage,
with variable effectiveness, though recent advancements are promising. MS origins
are not well understood but characteristic signs of tissue damages are recognizable,
such as white matter lesions and brain atrophy or shrinkage due to degeneration.
These signs can be observed by MRI which is a special tool to follow-up MS patients
with reduced invasiveness due to the usage of specific contrast agents. In fact, fo-
cal lesions in the brain and spinal cord are primarily visible in the white matter on
structural MRI observable as hyperintensities on T2-weighted images, PD or FLAIR
images and as hypointensities, or “black holes”, on T1-wheighted images [111].

Physicians often use FLAIR images for WM lesion detection and other modalities
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mostly to ascertain the lesion stage. Complementary information is collected to
visualize cortical lesions by means of MPRAGE and MP2RAGE imaging sequences
[112, 113, 114].

An examination consists in thousands of images mostly collected pre and post
contrast agent administration. MRI is used routinely in clinical practice but it
is unspecific for MS and not well correlated to the clinical disability progression
(physical and cognitive), to the neuro-plasticity and to the effects of demyelinization
of nerves, the last being a critical effect which is invisible to MRI. Indeed, WM
could appear normal though it has reduced myelin: for a MS patient, the "healthy"
brain tissue is usually referred as "apparently healthy" [115]. Healthy anatomical
structures similar to lesions and close to lesions could contribute to create further
ambiguity

The MSSEG data set perfectly fits with the scope of this thesis because it con-
tains images from different scanner, different modalities for each scanner and the
original manual delimitation of each expert radiologist. For this reasons, the MSSEG
data contains all the data necessary to investigate all the aspects discussed in the

Introduction section.

3.2 Ternary ground-truth

In [1], the following sentence perfectly summarize the difficulties related to the de-
velopment of the consensus from multiple individual manual segmentations: "MS
lesions segmentation is known to be expert and center-dependent, which can lead to
relatively large discrepancies between individual manual segmentations".

In fact, in medical imaging it is often made the simplifying assumption that there
is a single, unknown, true segmentation map of the underlying anatomy, and each
human rater produces an approximation with variations reflecting individual experi-
ence. The concept of a single-truth assumption may be correct when assuming that
there exists only one (true) boundary of the physical objects captured in an image
and the ambiguities in interpretation are due to human mistakes and disagreements.
In the opposite case, it can be assumed that the variable annotations from experts
are all realistic and acceptable instances of the true segmentation.

As it often occurs, the truth is in the middle: some ambiguities are indeed
specific to human subjectivity or imperfections (extrinsic), while some others are
due to the problem itself (intrinsic). Actually, both are important, but intrinsic
ambiguities have the highest role, being due both to MS presentation and to MRI
non specificity: lesions are not well separated from healthy tissue in MS (PVE) and
MRI is neither sufficiently specific for MS nor sufficiently precise. Regarding human

subjectivity, this produces differences that are due to a mix of prior assumptions, like
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experience in the field, greater or lesser exploitation of additional meta-information
(such as anatomical /radiological/clinical knowledge), mistakes or oversights which
often are concentrated on small and/or low intensity lesions and lesion borders.

When raters are forced to provide a binary segmentation, as in MSSEG, they
cannot express any doubt, whatsoever is the cause. The binary segmentation does
not allow the representation of the intrinsic uncertainty and, furthermore, induces
a human rater to assume polarized decisions which, from one side, could not corre-
spond to what the rater really believes in and, from the other side, could be confusing
and misleading for an automated strategy. In fact, ambiguous decisions might have
been assumed by the rater in similar situations (an uncertain region could be con-
sidered healthy tissue in one case and lesion in another) which could influence the
automated strategy [116].

For this reason, in order to train an automated method to recognize the intrinsic
uncertainty of the problem, it is necessary to integrate the binary ground-truth with
human uncertainty (doubts), making it robust to out-of-training-set examples and

adversarial examples [117, 118|.

3.2.1 Ternary ground-truth with Staple

Though we have used an implementation which is very similar to the original [108]
we have redefined it and introduced little but significant variations to completely fit
our scopes: in fact, we do not use the binary maps of the segmentation as input of
STAPLE but the probability mass functions of the identifications. In fact, in each
pixel there is not the final decision (1 for a lesion and 0 for a healthy tissue) but
the probability that the pixel could allow to a lesion: this number could assume
any number between 0 and 1 and, obviously, when the extremes occur it means
that a net decision has been assumed. The output are the joint mass probability
function derived from those of the two raters and the performance measure of both
raters. In order to show that STAPLE can deal with the case we propose, we give
an essential redefinition of the method by using notation necessary to the dimension
of our problem, that is the presence of R raters (for specific details on STAPLE,
please, refer to [108]). Consider an image of N voxels, and the task of classifying
a structure in that image by indicating the probability of presence or absence of
the structure at each voxel (that we also call fuzzy presence, where 0 indicates
surely absence, 1 indicates surely presence and any other intermediate value indicate
uncertain presence with that probability). In this way we could also model the
human uncertainty with respect to some lesion candidates (doubtful region d). Let
f be an 3x3xR matrix where §; indicate, for the rater j, a 3x3 matrix (one entry

for each class, 1, 0 and d) where each entry 6’( ) indicates the probability that

./
2,8 s
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rater j will decide the label s° when the true label is s. While the true label s is
indicated by a single value (1 for lesion, 0 for no lesion and d for doubt), s  is not
represented by a single value but by one of the following three continuous intervals:,
[1—0, 1] for lesion, [0, 0] for no lesion and (9, 1 —4) for doubt. The perfect rater would
be characterized by having 1 in the diagonal and 0 elsewhere, that is an identity
matrix. Let D be an NxR matrix describing probabilistic decisions (fuzzy) made
at each voxel of the image by each rater. Let T be an indicator vector of elements
representing the hidden binary true segmentation, where for each voxel the lesion is
recorded as present (1) or absent (0) or doubt (d). Let the complete data be (D,T)
and let the probability mass function of the complete data be f(D,T|#). Our goal
is to estimate the performance level parameters of the R raters characterized by 6

which maximize the complete data log likelihood function

0 = arg maxyln f (D, T|0) (3.1)

Being Di, j the value of the measured voxel ¢ by the rater j, then

9j711 = pj = Pr (Di,j Z 1— 5|T’z = 1) (32)

represents the “lesion fuzzy fraction” (relative frequency of lesion outcome by

rater j when the true outcome is lesion),

0]'722 = Qj = PT’ (Di,j S 0 -+ 5|T‘z == 0) (33)

represents the “negative fuzzy fraction” (relative frequency of not-lesion outcome

by rater j when the true outcome is not-lesion) and

ijgngj:PT(0+5<Di7j<1—5|’I;=d) (34)

represents the doubtful fuzzy fraction (relative frequency of doubt outcome by
rater j when the true outcome is doubt). These three parameters define the principal
diagonal of ;.

Obviously the parameters of 6; € [0, 1], are characteristics of the raters and are
different for each rater and can be easily calculated when T is known, which is not
the real situation. A reasonable assumption is that the segmentations performed by
the R raters are conditionally independent each other, given the true segmentation

T and the performance 6 that is
(Di|T5,95) L (Digi| T3, 95) , ¥V i # (3.5)

This assumption is justified by the fact that the R raters derive the segmentation

of the same image independently each another and that the quality of segmentation
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is captured by 6. Morevoer, raters are trained in a similar way and the decision
about segmentation may differ mainly due to systematic differences between raters,
the first having more to do with experience on lesions and the second most with
information gained by the surrounding tissues. A probabilistic estimate of the true
segmentation can be derived as a constructive combination of the probabilistic de-
cisions assumed by the two raters. The expectation-maximization problem in Eq.1
can be solved iteratively by considering that some maximum likelihood problems
would be simplified if some missing data are available, as in the case we are dealing
with. The observable data, the segmentation decisions at each voxel, are incomplete
because true segmentation is unknown and are regarded as an observable function
of the complete data where also true segmentation is known. Here, the complete
data is the segmentation probabilities D augmented with the true segmentation of
each voxel T. T is called the missing or hidden data, and is unobservable. 6 are the
unknown parameters characterizing the performance of the two raters. According
to the above definition of probability mass function of complete data, we write the

complete data log likelihood function as
InL.{9} =In f (D, T|9) (3.6)

The process to identify the expert quality parameters and ground truth consists
of iterating between 1) estimation of the hidden ground truth given a previous
estimate of the expert quality parameters, and 2) estimation of the expert quality
parameters based on how they performed given the new estimate of the ground truth.
This algorithm can be recognized as an expectation maximization (EM) algorithm,
in which the parameters that maximize the log likelihood function are estimated
based upon the expected value of the hidden ground truth. The EM algorithm

approaches the problem of maximizing the incomplete data log likelihood equation
InL.{9} =1n f (DI|9) (3.7)

Since the complete data log likelihood function is not observable, it is replaced by
its conditional expectation given the observable data D using the current estimate
of 8. Computing the conditional expectation of the complete data log likelihood
function is referred to as the E-step, and identifying the parameters that maximize
this function is referred to as the M-step. The algorithm initialization can start by
assuming that the experts are each equally good and have high values for p, q and r,
though not infallible. This is equivalent to initializing the algorithm by estimating
an initial ground truth as an equal weight combination of each of the expert seg-
mentations. Another assumption is the voxelwise independence (the classification
of each voxel is independent of the classification of close voxels). The requirements

necessary to carry out the EM algorithm are to have a specification of the complete
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data and to have the conditional probability density of the complete data given the

observed data. At the iteration k, the problem in Eq. 3.1 can be rewritten as:

9™ = argmaxy E [In f (D, T|9)|D, 9" V]

— argmaxy F _1n“];’(—;’79)|[),19<k—1>]

= argmaxy F _ln (D(T, 0;;519)’19)@ 9 1} (3.8)
— argmaxy B _lnf (D}T(’Tﬁ)g ﬁg)f G )\D,ﬁ‘(kl)}

= argmaxy F |In / (DJLT(‘{[‘Q%) (T >]D,19(’f1)}

with the assumption that T is independent of the performance parameters, that is
F(T,9) = £ (T) £ ().

The estimator of the unobserved true segmentation is derived by first deriving an
expression for the conditional probability density function of the true segmentation

given the expert decision and the previous estimate of the performance parameters:

f (D|T,9*=D) £ (T)
> f (D|T7, 96=0) £ (T7)

LI (Pl ) £ (1) (3.9
ZT{ o ZTJ’V IL [H] f (Di7j|Ti/, 19j(l<:—1)> 7 (TZI)}

and for each voxel i, we have

£ (TD,v®) =

I f (Di,jmaﬁj(k*l)) ()

(T, %) =
S I,/ (DT 0,479 £ (7))

(3.10)

where f (T;) is the prior probability of T; and the conditional independence of clas-
sifications allows to write the joint probability as a product of rater-specific prob-
abilities. Again, a voxel-wise independence is used. The previous equation can be
made explicit for T; = 0, T; = 1 and T; = d. By using the definition of p;, ¢; and r;
and by considering that the sum of each column of ¥J;, 1 — p; is the probability of
# 1 outcome by rater j when the true outcome is 1, that 1 — g; is the probability of
# 0 outcome by rater j when the true outcome is 0 and that 1 —r; is the probability

of # d outcome by rater 7 when the true outcome is d, we can write

o) = Hf<m|T 9,0
—rm=n I #" II (-#")

j:D¢7j21—5 j:Di7j<1—5

(3.11)
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bgk E Hf( %J|Ti:0719j(k)>

H q§k) H (1 _ qj(k)) (3.12)
5D ;<6 jiDi ;>0
and
Cz(k Hf< i s = J(k)>
g (3.13)

—rm=a I I (1)

j:6<Dij<1-6  jiD;;<6VD; ;>1-5
where the notation j : D;; > 1 — ¢ denotes the set of indices j (raters) that at
voxel i gave a decision value D;; > 1 — ¢ (the presence of a lesion). With these
expressions, we can define a compact description for the conditional probability of

the true segmentation at each voxel:

a(k)

(k) — i
Wiy = f (T = 1Dy, 9W) = PCECING (3.14)

for the class s = 1 and with an equivalent for s = 0 and s = d (in those cases, on

the numerator we substitute az(»k) with bgk) and cz(k), respectively). In general:
J (T = ) T1, 1 (DiglTs = 5.9,) (3.15)
S (T = )T f (DiglTs = ,0;,0)

The weight Wl(kl indicates the conditional probability that the true label at voxel

1 is s, given the set of segmentations and the estimate of the performance values.

With these values, we can now calculate the values of the rater performance that

maximize the conditional expectation of the complete data log likelihood:
k) — arg maxy F [lnf (D, T|9)|D, ﬂ(k—l)]
= argmaxy 33 L [In f (DiglTi, ;) D, 0] (3.16)

and for each rater j

19§k) = arg maxy, ZE [lnf (D ;|T;,9,)|D, 19(’“*1)]
= arg maxy, Z Z [Wl(ki In f (D ;|T; = s, 193')}
= arg maxy, Z Z Z[ k)lnf (Dij € $'|T; = ﬁj)}

s’ dr D;jes’ s

= arg maxy, Z Z ZVV;Q Ind; g,

s’ ir D;jes’ s

(3.17)
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The set of parameters that maximizes the above expression can be found by solving

the following constrained optimization problem [rif. a STAPLE 2004]:

879]7171 Z Z ZWk)lnﬁ]SS—f_)\Zﬁjss

s’ [I,JGS/ s (318)
S/
. ’ ﬁjn’n
i Dy jen’ ’
that is ®
ZZ .o Sl W’[/ s
19]'75’8 = . DZ,]E)\ ’ (319)
and, by using the fact that > 9, y, = 1, we have
Zi' i, ;€S M/Z(k()s
gy = —EDwE T (3.20)

W
As can be seen, the class s’ is represented as a set (an interval). The previous
equation also includes the case in which no doubt region is used (binary case).
It is worth noting that when the input images are absolutely polarized (binary
maps are used), the proposed variation falls in the method proposed in [rif staple
2004]. We use the ternary consensus as a ground truth for our framework to obtain

ternary classification from each of the CNN proposed.

3.2.2 "Safe" Ternary ground-truth

At the same time, to maintain the possibility of comparing different strategies on the
same ground-truth, it is not recommended to completely redefine it [119, 120, 121],
but just to consider as uncertainty what at least two of the seven human raters
of MSSEG have considered as lesions, while the binary consensus has not. In this
way, the original Lesion of the binary consensus is not altered but the space for the
Uncertainty is gnawed from the Background.

This method is quite different from other strategies used to define the Uncertainty

[119, 121] and it has the following motivations:

1. to maintain the original structure of the lesion ground-truth calculated in
MSSEG with STAPLE and its derivations [109, 119, 120];

2. to account for the Uncertainty affecting both the problem and the raters;

3. to avoid the new class (Uncertainty) could change the original MSSEG con-

sensus which could prevent a direct comparison with other methods;
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Figure 3.1: A sample FLAIR image from the 2016 MICCAI data set (a), the binary
classifications from the 7 human raters (b-h), the binary consensus (i) and the
ternary consensus (1). The Lesion is annotated in red. In the ternary consensus, the

Uncertainty is indicated in yellow.

4. to quantify the gain the proposed framework could effectively get when the

Uncertainty is introduced with respect to its absence;

5. to allow the learning strategy to consider as uncertain not only lesion borders,
as other Authors do [119], but also whole regions not necessarily connected
to lesions. In fact, the Uncertainty could regard both the lesion borders,
where damaged tissues could coexist with healthy tissues (PVE), and whole

structures, where doubts are due to MRI unspecific nature for MS.

Fig.3.1 reports a FLAIR image example with the seven human binary classifica-
tions, the binary consensus and the proposed ternary consensus.

The Uncertainty, in yellow in the ternary consensus (Figure 3.1 1), indicates
doubtful regions where discordant decisions are assumed by raters but on which at

least two raters agree.

3.3 Evaluation Criteria

As far as we need an exhaustive comparison between all the raters involved therein
(artificial, single humans and ground truth), and being a unique performance pa-
rameter unavailable, we define and calculate all the mostly known metrics. In what
follows, we define all the used metrics by separating those oscillating in the interval

[0, 1], whose ideal value is 1, from those oscillating in the interval [0, 00), whose
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best value is 0. The two groups are distinguished for graphical purposes. For more
details about the reported metrics, please refer to [122, 123, 124, 2, 125].

3.3.1 Scores

Sensitivity (also called recall or true positive rate) is defined as:

TP
ENS = — 21
SENS = Tp PN (3:21)

SENS measures the portion of positive voxels that are correctly identified, that
is the capability of a method to correctly classify the voxels, without underestima-
tion. In fact, sensitivity ranges between 0 (TP = 0) and 1 (when F'N = 0). We also
distinguish an object sensitivity, OSEN S, defined as:

TP,
TP, + FN,

in which the prefix O and the subscript o indicate we are referring to whole objects

OSENS = (3.22)

and not to single voxels. An object is considered as TP if the intersection with the
corresponding object in the ground-truth is not empty.
Specificity (SPEC) is defined as:
TN

SPEC = TN + FP (3.23)

SPEC represents the portion of negative voxels N that have been correctly
identified. For the treated case, since classes are strongly unbalanced, SPEC' is
biased by the fact that most of the image surface is covered by background: for this
reason the high specificity does not guarantee a good performance (we have reported
it for completeness).

Accuracy (ACC) is defined as:

TP+TN
ACC =~ (3.24)

but, due to unbalancing, we use the following normalized (ACCN) definition:

TP TN
ACCN = 2
ce (TP+FN * TN+FP>/ (3:25)
to make it more representative.
Positive Predicted Value (PPV), also called Precision, is defined as:
TP

PPV = —— 3.26
TP+ FP (3:26)

PPV represents the portion of voxels identified as positives which are really

positives (T'P). PPV measures how the method correctly classifies voxels in the
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correct class without overestimating the class itself. In fact, PPV ranges between
0 (I'P=0) and 1 (F'P=0).
As for OSENS, we have defined an object-based PPV, OPPV , as follows:

TP,

PPV = ———
PPV TP, + FP,

(3.27)

in which the prefix O and the subscript o indicate we are referring to whole
objects, as above. OPPV represents the portion of objects identified as positives
which are really positives (T'P,). OPPV has the same meaning of PPV but for
whole objects, not for single voxels.
Dice score, also called Sorensen—Dice coefficient, is defined as:
2x TP

Dice = 2
T X TP L FP+ FN (3.28)

Dice score measures the similarity between two data sets. This index is widely

used in Al for the validation of image segmentation algorithms. We refer to Dice
score as Global Dice score to distinguish it from Image Dice score.

Image Dice score uses the same equation of Global Dice score but, while Global
Dice score is calculated on the whole data set, Image Dice score is applied on each
single image and finally averaged on the number of images. Image Dice score allows
to the so called per-image metrics [123]. Per-image metrics are important because
they tend to highlight the local behaviour.

A score similar to Dice is the Intersection Over Union (IoU):

B TP
- TP+ FP+FN

IoU (3.29)

where the difference is in the weight of T'P.
The F'1 Score (calculated for whole objects and not for single voxels) is defined
as:
OSENS « OPPV

Fl=2*5sENs T opPPV (3:30)

where OSENS and OPPV are defined above.
BF score is a per-image version of F'1 score.
Pearson Correlation Coefficient (PCC'), between two data sets A and B, is de-

fined as:

cov(A, B)

oA *0OB

PCC(A, B) = (3.31)

where cov(A, B) is the covariance of A and B and o4 and op are the standard
deviation of A and B, respectively. PC'C ranges in the interval [—1, 1] and a negative
value of PC'C' indicates a similarity of the object A with the negative version of the
object B.
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3.3.2 Metrics

The following metrics are those used in the present manuscript in which the ideal

value is 0.
Extra Fraction (E'F), is defined as:

FP
EFF = ———— 32
TP+ FN (3:32)
Detection error rate (DER) is defined as:
DE
DER = —— .
R= T (3.33)

where DFE is the detection error calculated as the sum of the voxels of a connected
region marked as positive by the rater and the mean total area (MT A) is defined as
the average between the number of positive voxels from the rater and the ground-
truth. DE R measures the disagreement in detecting the same regions between the
rater under evaluation and the ground-truth.

Outline Error Rate (OER) is defined as

OF

OBR =177

(3.34)

where OF is the outline error calculated as the difference between the number of

voxels of the union and that of the intersection between the positive connected

regions of both the rater and the ground-truth. OFE R measures the disagreement in

outlining the same object between the rater under evaluation and the ground truth.
False Detection Ratio (FDE) is defined as:

FP

Relative Area Error (RAE) is defined as:

TP+ FP—-P
RAE = —— > (3.36)

Hausdorff Distance (H D) between two objects A and B is defined as:

HD(A, B) = maz(h(A, B), h(B, A)) (3.37)

where h(A, B) is:
h(A, B) = mazeeamingeg || a — b || (3.38)
H D measures how far two subsets are from each other. In other words, two sets are

close with respect to HD if every point of one set is close to a certain point of the

other set.
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Euclidean Distance (ED) between two objects A and B is defined as:
ED(A, B) = maxz(d(A, B),d(B, A)) (3.39)

where d(A, B) is defined as:

1 4
d(A,B) = + > minyep |[a—b | (3.40)

a€A

Surface Distance (SD) is defined as:

ZieAS d<xi7 GS) + ZjeGs d(xﬁ AS)
N4+ Ng

SD =

(3.41)

where Ag and Gg are two segmentations (one is the rater segmentation and
the other is the ground truth), d denotes the minimal ED between voxels on both

surfaces, while N4 and Ng denote the number of points of each surface.
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Chapter 4
Automatic Multiple Sclerosis Lesion Segmentation

from MRI: Guidelines for Effective Outcomes.

The richness of parameters of MRI makes it possible, for radiologists, to identify
some characteristic signs of tissue damages, such as white matter lesions and brain
atrophy or shrinkage. Besides the undoubted advantages, the MRI variability MRI
makes the design of an efficient AI model a real challenge because images and, hence,
their corresponding features, continuously change with imaging parameters. More-
over, scanners from different manufacturers produce images with slightly different
contrast. A trained human eye could adapt to MRI variability with difficulty: the
task is greatly challenging for Al models.

In this chapter, the general constraints for automatic identification /segmentation
related to the MS lesions by MRI are discussed and guidelines are presented for the
effective training of a AT model. A convolutional neural network (CNN) based model
is trained and preliminary results, demonstrating the improvements, are reported.

The content of this chapter appeared in [126].

4.1 Introduction

MS origins are not well understood but characteristic signs of tissue damages are
recognizable, such as white matter lesions and brain atrophy or shrinkage due to
degeneration. These signs can be observed by MRI which is a special tool to follow-
up MS patients with reduced invasiveness due to the usage of specific contrast agents.
In fact, focal lesions in the brain and spinal cord are primarily visible in the white
matter on structural MRI observable as hyperintensities [111].

These imaging procedures are all performed in a single MRI examination and
the corresponding slices (hundreds) are all used for MS monitoring and follow-up
(also comparisons with previous examinations are necessary). Identification of the
lesions affecting the white matter and their count and volume calculation by MRI
have become well established protocols for assessing the disease progression and

pharmacological efficacy. For this reason, MRI is currently used routinely in clinical
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practice: imaging markers are capable to capture volumetric changes but need to
be assisted by an expert, either human or automatic. However, the richness of
MRI parameters/imaging modalities if, by one side, constitutes an advantage for
gathering fundamental information about MS lesions, by the other it makes the
design of efficient automatic experts a real challenge because images and, hence, the
corresponding features, change with magnetic field strength, imaging parameters,
sequences and scanners from different manufacturers (Siemens, Philips, GE, etc.).
To these modifications, a trained human eye suddenly adapts but an automatic
expert has to be deeply trained before its adaptation. But, is this really necessary?

In what follows we describe some guidelines for automatic segmentation of MS
lesions identification /segmentation by MRI and discuss how to allow an automatic
system to perform at best. Moreover, we present a strategy to improve lesion identi-
fication and segmentation. To the best of our knowledge, the proposal of preliminary
conditions for correct MS lesion identification/segmentation by MRI is new and nec-

essary to obtain better performance from automatic methods.

4.2 Related Work

Several attempts have been proposed for automatic segmentation of MS lesions
by MRI, though the variability of MS lesions in size, shape, intensity and local-
ization make automatic and accurate identification and segmentation really chal-
lenging [127, 128, 129]. Even if, classical techniques such as for example based on
shapes [130, 131] could be effective, deep neural networks seem to be more promising
also because require low manual intervention with respect to other approaches. In
fact, the great advantage of deep learning is that the relevant feature set is no longer
defined by the user but learned directly by the system from the training images. This
is a crucial aspect because it is not trivial for people to characterize features that
best serve to separate healthy tissue from MS lesions. From the perspective of deep
learning application, the high dimensionality of the MR images, the difficulty of ob-
taining reliable ground truth and the high accuracy required for clinical practice, all
contribute to make MS lesion identification /segmentation a worthy test application.
CNN have demonstrated breaking performance also in brain imaging segmentation
[132, 133, 134]. In particular in [132] is presented one of the first attempt of an au-
tomated learning approach for MS lesion segmentation. Besides the architecture of
the used system, the method analyzes 3D patches of the MRI volume instead of the
entire volume or single slices. In 2015, [133] proposed a method that used 3D CNNs
to learn features by different datasets of the same patient: T1-w, T2-w, PD and
FLAIR MRIs. The method proposed in [134] has proven to use efficiently the infor-

mation carried on by different MRI imaging modalities by reducing the number of
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parameters (and hence the training set) through the usage of two CNNs in cascade,
trained separately. To date, the method presented in [134] represents for MS lesion
segmentation one of the benchmark architectures. In fact, in the comparative study
of algorithms for MS lesion segmentation for MICCAI 2016 international challenge,
presented in [129], demonstrated that the method in [134] was established as one
of the most effective for MS lesion segmentation, though the best method was that
obtained by creating a consensus between the results of all the compared methods.

However, though advanced computer vision techniques have been compared
in [129], the results were not brilliant with respect to other field of applications.
For this reason, In what follows we discuss the reasons of poor results and suggest

guidelines to allow better efficacy for automatic strategies.

4.3 General considerations and guidelines definition

Though MRI is considered a gold standard, the correct interpretation of MS lesions
through MRI is a not trivial operation and it is a subject of debate [111] due to the
fact that MS lesions can be easily misdiagnosed or erroneously interpreted (confused
with other diseases and/or artifacts and/or tissue modifications with age) also by
expert, trained radiologists and guidelines for radiologists are continuously updated
to overcome misdiagnosis [111, 135]. Moreover, in [111] it is also affirmed that
misdiagnosis also depends on the used MRI scanner. As a consequence, expert
radiologists often disagree when performing independent diagnosis of the same data,
both due to the ambiguity between MS lesions and other diseases and because they
could have gathered their experience on different scanners.

Besides the considerations in [129], some important aspects have to be under-

lined [136]:

1. MS lesion identification/segmentation depends mostly on imaging scanners
due to differences in imaging parameters, temporization, features, magnetic
field values and homogeneity, etc.. These differences could bad influence auto-
matic methods more than on human experts. In fact, humans use also other
implicit information, such as clinical or anatomical concepts, to evaluate the
image content. a huge increment of data for training should be necessary to

include differences between scanners into an automatic system;

2. MS lesion identification /segmentation depends on the used data pre-processing
strategy which should be part of the method itself: the indistinct free usage
of data (preprocessed or unpreprocessed) could greatly affect the convergence

of the method and the training dataset dimension;
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3. An MS lesion identification/segmentation strategy depends on the imaging
modalities it uses (FLAIR and T2-w images are more informative than PD or
T1-w [111]: the indistinct usage of all the modalities to train an automatic
strategy probably results in a decrement of convergence speed and has to imply

an increment of the dataset used for training.

The previous considerations found their confirmation in the contrasting results
reported in [129]: the methods performance decreased when used on data from a
previously unseen scanner; methods which used preprocessed data were not all better
than those using unpreprocessed data; methods using all the imaging modalities were
not always better than those using just some imaging modalities.

To better explain these apparently strange behaviours, please consider data pre-
sented in Figures 4.1 and 4.2, where some images, from the MICCAI2016 dataset,
collected by different scanners are reported for all the imaging modalities, both be-
fore (Figure 4.1) and after preprocessing (Figure 4.2). For the same images, an
horizontal line of data (red line) is also plotted below (Figure 1b and Figure 2b).
As can be noted, unpreprocessed data show relevant differences between scanners
(though data allowed to different patients, it is clearly visible the ratio between the
amplitude of different tissues in the same image are different for the two scanners,
as it is also confirmed by comparing the image corresponding to the same imaging
sequences): these differences, which distinguish MRI from CT (where images from
different scanners are scalable in amplitude and easily compared), are due to differ-
ent imaging parameters optimization by different manufacturers, though using the
same imaging sequences.

In Figure 4.2, the situation after preprocessing, an amplitude normalization be-
tween different images has occurred. In fact, the images of different scanners are
more similar than those before preprocessing. However, from Figure 2b it can be
observed that the preprocessing step produced a variation on the baseline of some
of the images (the signal outside the brain, which should be zero, has a level well
above zero). Moreover, each image was normalized independently from the other:
this implied a modification which has been different from one image to the other,
thus introducing substantial differences also on data from the same scanner. Finally,
the amplitude ratio between different tissues in the same image has not been rightly
corrected and, in some cases, differences between data coming from different scan-
ners were increased. This is probably the reason why some automatic strategies,
though using preproessed data, performed worse than those using original, unpre-
processed, data. Finally, from both Figure 4.1 and 4.2, it can be noted that the
information carried on by different imaging modalities regarding MS lesions is com-

pletely different: iperintense regions on FLAIR images which are also iperintense on
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Figure 4.1: Raw, unprocessed, data from different scanners (rows) and from different
imaging modalities (columns). Images are reported in (a) and plots of a single
row of the images (along the red line) are shown in (b). The position of a lesion
along the red line is indicated by an arrow. The shrinkage of the FLAIR image
from Siemens scanner is due to a different (greater) dimension of the voxel in the

horizontal direction.
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Figure 4.2: Data of Figure 1 after preprocessing. Images are reported in (a) and

plots of a single row of the images (along the red line) are shown in (b).

The

position of a lesion along the red line is indicated by an arrow. Images have been

also reshaped after their co-registration.
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the corresponding T2-w images surely indicate MS lesions [111]. The other imaging
modalities (T1-w and PD) do not add anything more and, often, their content is
confusing and not clearly interpretable (as in the MS lesions indicated by the green
arrows, both in Figure 4.1 and Figure 4.2).

Form the above considerations, the following guidelines could be derived:

1. The training of the method should be done on data from a single scanner (also
humans adapt to the scanner they normally use): when data from different
scanners need to be interpreted and, may be, compared, the system has to
be trained separately to each scanner (in this way, the training set can be

reduced, the procedure shortened and the performance increased);

2. A preprocessing strategy, consisting in the rigid registration of each modality
on the FLAIR image, is necessary to obtain images of different modalities
which are spatially correspondent. Other forms of preprocessing, especially
those consisting in amplitude corrections, have to be performed on the whole
volume and not differently on each single slice. Moreover, preprocessing has

to become part of the automatic segmentation method;

3. The image modalities to be used in the identification/segmentation process
have to be chosen in advance to avoid useless/confusing information, unjus-
tified increment of the training dataset, convergence deceleration and perfor-

mance reduction (FLAIR and T2-w images are sufficient).

In what follows, we show how, by applying the previously defined guidelines, it

is possible to improve the performance of a lesion segmentation method.

4.4 MBS lesion identification/segmentation

Being a benchmark method, we have used the supervised CNN-based paradigm pre-
sented in [134] that has also been used, in a modified version, in [137|. In particular,

by following the previously defined guidelines, we operated the following choices:

1. the dataset used for training, validation and test was the MICCAI2016 dataset

but just using data from a single 3T scanner (Philips manufacturer);

2. raw, unpreprocessed, data were preprocessed by performing rigid registration
of each modality on the FLAIR image followed by brain extraction (skull

stripping) from T'1-w image and applied to other modalities;

3. only FLAIR and T2-w imaging modalities were used for identification /segmen-

tation. In this way, we provided a simpler task to the system, thus reducing
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Figure 4.3: Two stage CNNs architecture used for identification/segmentation of
MS lesions. Input of the system are the registered volumes by FLAIR and T2-w

images. Training of CNN2 is made with a separated dataset.

the dimension of the training, labelled, dataset. The images selected from the
dataset were distributed in three subsets: 800 for training, 200 for validation
and 100 for test. A scheme of the assembly used for MS lesion identifica-

tion/segmentation is reported in Figure 4.3.

The method is based on a cascade of two CNNs. The low variation in contrast of
MRI images, the use of images from just one scanner and the reduction of imaging
modalities, allow simple network architectures and a reduction of the training set
dimension. The system consists of a 7-layers architecture for each of the two CNNs.
Each network is composed by two stacks of convolution and max-pooling layers with
32 and 64 filters, respectively. Convolutional layers are followed by a fully-connected
layer of size 256 and a soft-max fully connected layer of size 2 whose output is the
probability of each voxel to belong to a lesion. For a complete settlement of the used
parameters, please refer to [134]. MS lesions are calculated using 3D neighboring
patch features. The used 3D patches are cubic, 11x11x11 voxels. The splitting in
two different CNNs allows to separate the training procedure in two and this allows
a reduction of the number of parameters without reducing accuracy. To reorder data
balance for training, that is to equilibrate the number of “positive” patches (contain-
ing lesions) with “negative” patches (containing no lesions, much greater than the
other), the dataset used for training consists of the whole dataset of positive patches

and of an equal number of randomly selected negative, healthy patches. In this way,
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Figure 4.4: MS lesion identification/segmentation on one of the images (FLAIR) by
MICCAI2016 used for test. In (a), the ground-truth identification/segmentation is
reported in green; in (b), the same image is reported with indicated, in colors, the
voxels identified /segmented by the method: the voxels rightly identified /segmented
are indicated in green; in red are those wrongly identified as lesions (false positive);

in blue those are those wrongly recognized as healthy tissue (false negative).
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the first network (CNN1) is trained by using the resulting balanced dataset and
then tested on the whole dataset, thus obtaining a list of probabilities for each voxel
of each patch to be “positive” (part of a lesion). After that, a balanced dataset is
created by using the previous test results and by considering as positive all patches
containing voxels whose probability is greater than 0.5. As for the previous balanced
training dataset, negative patches (those in which all voxels had probability <0.5),
are randomly selected to be the same number of “positive” patches. The second net-
work (CNN2) is trained from scratch with the dataset resulting from CNN1. Once
the whole pipeline is trained, new unseen MRI volumes can be processed using the
same, two stage, architecture. The dataset is first decomposed in patches and, then,
all volume patches are evaluated using CNN1. CNNI1 discards all voxels with low
probability (< 0.5). The rest of the voxels, included into corresponding patches, are
re-evaluated by CNN2 to obtain the final probabilistic lesion mask. Resulting binary
masks (ones where lesion are present, zeros elsewhere) are computed by thresholding
the probability lesion masks (prob > 0.5 are considered lesions). Finally, an addi-
tional false positive reduction is performed by discarding binary connected regions
with very low number of positive voxels (this number is calculated with respect to
the minimal volume of the lesions used for testing). The method had an average F1
score of 0.68 and an average Dice score of 0.71 (about 25% better than the original
method [134] and 15% better than the modified method in [137] without using any
artificial strategy for increasing the training dataset of patches. The improvement
with respect to [137|, relevant if we consider that it has been obtained with half
of the imaging modalities, is mainly due to the fact that it has been obtained by
training the method on data from a single scanner and just from the most signif-
icant imaging modalities, which simplifies the identification/segmentation process.
Moreover, these results are significant because they allow to overcome the score of
the automatic "Team fusion" and also of the worst human expert [129], thus mak-
ing automatic identification /segmentation acceptable for MS diagnosis/analysis. In
order to show the results on the images, Figure 4.4 reports the worst-case automatic
identification /segmentation: the method allows a discrete identification of the le-
sions (false positives are in red) and a good segmentation (false negatives are in
blue).

4.5 Discussion

We have discussed some limitations that occur when using automatic identifica-
tion/segmentation of MS lesions by MRI data: the richness of imaging parameters
and internal variability of MRI scanners make the problem ambiguous and difficult.

By considering these limitations we have extracted a set of basic guidelines that
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the training dataset should have in order to avoid confusion when training a su-
pervised automatic identification/segmentation strategy. Finally, we have applied
these guidelines and used them while performed training of a CNN-based strategy
used as a benchmark. The results are better than those obtained without using the
constraints on the training dataset, thus making the automatic method similar, in
performance, to a human expert. Moreover, we have obtained a faster convergence
of the method with respect to use it with data from multiple scanners and/or when

using data from indistinct imaging modalities.

86



Chapter 5
MRI Stabilization through Local Contrast Normal-

1zation

As discussed in the previous chapter, MRI images can have different contrast though
collected with the same imaging sequence. Furthermore, images contrast varies
also due to the internal properties of the scanned body. This makes MRI very
different from other imaging techniques, such as Computed Tomography (CT) where
images can be easily normalized for different tissues, both in healthy and pathological
conditions, by using Hounsfield’s units. Since MR images do not have standardized
amplitudes, an Al model trained by using images from one scanner could completely
fail to analyse images made with another scanner. For this reason, MRI images
should be pre-processed in order to normalize them and thus reduce their contrast
variability. This chapter presents a local contrast normalization algorithm for a
specific MRI imaging sequence, the Flair, because this sequence is used to study
inflammatory processes of the brain. The application of the proposed strategy on
the images from different MRI scanners are reported and compared. Results are
reported and discussed.

The content of this chapter appeared in [138|.

5.1 Introduction

The richness of parameters makes MRI so special but, at the same time, it results
in a huge variability in image contrast, also collected with the same instrument and
with the same imaging sequence, due to the fact that variability is also implicit on
the imaged sample, on how it interacts with the MRI system and its chemical intrin-
sic properties. Contrast variability is greatly enhanced in images from scanners of
different manufacturers, magnetic field strength, electromagnetic field homogeneity;,
etc. [139]. This make MRI very different from other imaging techniques, such as
CT where images, depending just on one parameter (X-ray attenuation), can be
easily normalized for different tissues and organs, both in healthy and pathologi-

cal conditions, in Hounsfield units. Contrast instability in MRI makes identifica-
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tion/segmentation task very difficult also for expert radiologists but, in particular,
for automated strategies. Indeed, automated strategies which are trained to cope
very well with data from one scanner, could completely fail with data from another.
To make automated segmentation strategies robust to contrast variability, a lot of
images from different scanners have to be used for training thus making this process
very long, and the segmentation results are suboptimal. For this reason, images
are preprocessed before they are passed to automatic segmentation. Though several
strategies have been proposed to standardize MRI similarly to CT [140, 141, 142|,
results are not enough accurate because a general MRI normalization, feasible both
for each imaging sequence and for each anatomical district, was attempted while
preprocessing, due to huge MRI variability, has to be specific for each imaging se-
quence and for each imaged anatomical region. In what follows we present a local
contrast normalization strategy for MRI of the brain, related to a specific MRI
imaging sequence, the FLAIR, one of the imaging sequences used for inflammatory

diseases.

5.2 MRI Preprocessing

Preprocessing refers to a series of mathematical adjustments to MR images before
segmentation [105] for reducing the effects of noise and imaging artifacts, equaliz-
ing space, eliminating outliers and stabilizing contrast. Though it is well known
[124] how important is to match image contrast before segmentation, due to vari-
able sequences, overlapping intensities, noise, field inhomogeneity, partial volume,
gradients, motion, echoes, blurred edges, anatomical variations and susceptibility
artifacts [106][107]. Some of this variability can be reduced with specific hard-
ware [143][144][145][146][147] but most has to be correctly with appropriate software
[148][149][150][151][106][152]{107]. For this reason, MRI has to undergo preprocess-
ing to stabilize and make effective segmentation.

Preprocessing for MRI (Figure 5.1) consists of: registration and alignment of
images, noise reduction, skull stripping, bias field correction and contrast normal-
ization.

Step 6 in Figure 5.1 represents the proposed technique for local contrast normal-
ization.

Rigid registration and alignment are necessary because images obtained by dif-
ferent imaging modalities are not registered and might have different spacing and
thickness. Robust methods are used for this scope [153, 154] to obtain images in
axial orientation, the orientation used therein, with the same resolution along the
three spatial axes and we used MRITOTAL [155] whose source code is available at
https://github.com /bic-mni.
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Figure 5.1: MRI preprocessing pipeline: the first 5 steps are usually applied to
MRI; the last step (n.6) is the contrast normalization that we improve with a local

contrast matching to reduce residual contrast mismatch.

Experimental noise affects MRI [156, 107|, whose power is inversely proportional
to the magnetic field strength: noise reduction would serve to make images more
robust to MRI equipment at different magnetic field strength and to reduce seg-
mentation outliers. Anisotropic diffusion noise reduction filtering to preserve edges
is routinely applied in MRI and we merged the strategies in [157, 151, 158| to keep
advantage from each one. Noise reduction is the first step to prepare data at best
for the following steps.

Skull stripping is another important preprocessing step since fat, skull, skin
and other non-brain tissues may cause misclassifications and problems to amplitude
normalization. Skull stripping is performed via the FMRIB Software Library (FSL)
[159].

Bias field correction is necessary to reduce the non-uniform intensity effects in
MRI due to magnetic fields inhomogeneity or applied radio-frequency fields within
the scanner: it is very important to reduce them to make segmentation robust
sample positioning inside the scanner and to homogenize amplitude for the same
grain tissue. In-homogeneity effects are corrected therein by using the N4 algorithm
[160].

Finally, MR images undergo contrast normalization and all the intensity levels
of the various scans are rearranged and normalized in the same interval through the
z-score [142], that is by subtracting the mean value of the image to the image itself
and by dividing the result for its standard deviation.

Due to the extreme variability in parameters settings, MR images collected with
the same sequence could have variable contrast in equipment from different manufac-

turers or when the same system is used for different patients (reciprocal amplitudes

89



are not standardized in MRI) and residual contrast difference often remain after z-
score. Residual amplitude variations between different brain tissues could negatively
influence the following image analysis. To this aim, Figure 5.2 shows a comparison
between FLAIR images collected by different systems on different patients before
(A) and after their preprocessing with z-score (B). The other preprocessing steps
have yet been applied to all the proposed images. In particular, the first column
shows the images and the second column shows the corresponding histograms. As
can be noticed, contrast differences are high in original images. Moreover, though
attenuated, these differences remain after z-score calculation, as confirmed by his-
tograms. In fact, z-score eliminates scaling between images but internal reciprocal
contrast differences between soft brain tissues are almost unaltered. This is ex-
plainable because z-score normalization acts on the whole image by displacing and
stretching (or enlarging) its histogram, but it leaves unchanged reciprocal amplitude
displacement between different soft brain tissues, as can be noticed from the recip-
rocal peaks positions on the histograms both before and after z-score. However,
a whole image histogram equalization would not be feasible since it would tend to

eliminate the contrast gained by the imaging sequence.

5.3 The Proposed Strategy

We introduce a specific reinforcement for the standard preprocessing (the first 5
steps in Figure 5.1), summarized by Step 6 of Figure 5.1: a local histogram matching
strategy for FLAIR images which differentiates between white matter (WM), grey
matter (GM) and cerebrospinal fluid (CSF). Images (sub-images) corresponding to
WM, GM and CSF segmentation, respectively, are treated separately (due to MRI
variability, in one the amplitude shift could be in one direction and in another could
follow the opposite direction) and then recombined to obtain the whole contrast
normalized image.

The technique we propose aims at comparing the grey levels of WM, GM and
CSF of an axial FLAIR image of the current patient examination, central in the brain
where all the three classes are well recognizable, with the corresponding classes of a
reference central image r, whose values, once calculated, are fixed, stored in memory
and used as a ground truth, being the reference image selected between those of an
examination collected with a MRI system used for reference (it is important to note
that the choice of the reference scanner is irrelevant). To calculate the reference
values, first the z-score is applied to r, then the soft brain tissues are segmented
and separated in three complementary classes, corresponding to three images (WM,
GM, and CSF), and the peak positions in the histograms are calculated of the

three resulting sub-images and stored in memory. The Flow-chart of the method is
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Figure 5.2: (A) Brain FLAIR images from different MRI scanners (Philips 3T and
Siemens 3T, respectively) and related histograms. (B) z-score results of the images
in (A) and related histograms. Relevant intensity mismatch remains after z-score.

In the histograms, vertical axis was cut at 10.000 to better highlight lower details.
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reported in Figure 5.3, where the operations performed on r are not shown because
it undergoes steps 1 and 2 of the same Flow-chart. The method collects the central
image k of the FLAIR data set to be treated and does the same as in the reference
image r (steps 1 and 2). Then, for each class H € {WM,GM,CSF}, the shift of the
maximum in k with respect to r, DH, and the gray-scale band, BH, are calculated
(steps 3 and 4). The band BH is necessary to collect the gray scale range allowing
to each class H without repeating classification. DH and BH are calculated just
once, for K and then applied to all the image of the current examination. In fact,
for each image i, the sub-image allowing to each histogram range BH is realigned in
amplitude for compensating the shift (step 5). Finally (step 6), the realigned sub-
images are summed together to recreate the final image. Note that the segmentation
is necessary just for image k and not for the other images it because the selection
of the three classes is made by choosing the respective ranges of amplitudes, BH,
which are complementary each other. Some points are important: 1) We need to
use segmentation to separate different brain tissues from the histogram of the whole
image both to find the position of local maximum amplitude and to calculate the
range of amplitudes allowing to each class. The segmentation strategy we used
therein is that proposed in [161] which has been proven to be one of the best.
2) For each image of the current examination, we divide the three sub images by
using BH and apply DH to each of them (the correction could be different for
each range) and then we recombine the three corrected images into the whole image
(images in which one of the three classes is absent would not be corrected, having
it no pixels for the corresponding amplitude range). In this way, all the images of
the current examination undergo to the same process. 3) The calculation of the
maximum in the histograms is performed on a filtered version of the histogram
plot (3 points CAR filter [162] is used) to force stability and reducing unjustified
over or under corrections. 4) The ground truth image and its respective histogram
ranges and amplitude peaks for the three classes are selected from a central image
of an examination collected with the reference scanner and saved. 5) Data from all
patients, including those collected with the reference scanner, are processed by the
proposed histogram correction algorithm to stabilize amplitude also coming from the
reference equipment: this could help to reduce patient and scanner dependencies.
The fact that contrast normalization is applied for last is to avoid that noise, bias
field, skull presence, differences in dynamic range and other disturbing effects could

negatively influence normalization.
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Figure 5.3: Amplitude realignment procedure. DH, for H € {WM,GM,CSF}, are
the amplitude displacements calculated on the sub-images WM, GM and CSF of
the image k, respectively. BH, for H € {WM,GM,CSF'}, are the histogram band
sub-images WM, GM and CSF of the image k, respectively. BWM(i), BGM(i) and
BCSF (i) are the histogram ranges of sub-images WM, GM and CSF of the image 1,

respectively.
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5.4 Experimental Evaluation

To test the effectiveness of the proposed strategy in the context of preprocessing
pipeline, we applied both the traditional MRI preprocessing pipeline (steps 1-5 in
Figure 5.1) and that integrated with the local contrast normalization (steps 1-6 in
Figure 5.1) on 1500 FLAIR brain images from a public dataset of data coming from
patients affected by MS. In what follows, the used dataset is described and the

results presented and discussed.

5.4.1 Results and Discussion

The 1500 images from MSSEG dataset all undergo standard preprocessing. Of the
original images, 256 grey-level images, histograms were calculated in single ampli-
tude values, but graphically represented in 64 bins (4 intensity levels for each bin)
to improve readability. The data of a patient, selected randomly among the patients
whose data were collected with the Philips 3T scanner, were used for reference. To
this aim, from a central image 7 of the chosen examination, points 1 and 2 of the pro-
posed algorithm were applied to calculate the histogram peak position of WM, GM
and CSF and stored to be used for the correction of data from the other patients
and scanners. At the end of the process all images must have the same internal
contrast between the three segmented tissues.

The final results, showing the average peak shift and the corresponding standard
deviation, in amplitude units, affecting original data (before preprocessing), after
standard preprocessing (steps 1-5 of Figure 5.1) and after final preprocessing (steps
1-6 of Figure 5.1), are reported in Table 5.1. Amplitude displacements could be, for
each class, positive, negative or null. What is reported in Table 5.1 is the average
of the histogram peak position of the final image, after it has been recombined
from the sub-images of the three classes, once they have been separately realigned.
This is the reason why residual histogram mismatch also occur after correction.
As it can be observed, also the reference scanner Philips 3T expressed a non zero
displacement due to patient/scanner dependencies. Note that we are interested to
the histogram stabilization, the local contrast equalization, not to the amount of
the shift (a scanner is not better than another when the shift is lower: shift just
depends on the scanner used for reference and it is not a quality parameter).

Results in Table 5.1 demonstrates that the amplitude shift has been almost com-
pletely corrected (residual final displacement remains inside a single bin, consisting
of 4 intensity values, for all the considered scanners): obviously, the amplitude shift
starting differences were so huge, also after the application of the z-score, that im-

ages appeared too different (see Figure 5.2) and needed to be corrected.
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Scanner Type | No Prep. | Prep. | Prep. + C. Norm.
Siemens 1.5T 15+ 3 12 + 2 2+1
Siemens 3T 18 +4 14 + 3 2+ 1
Philips 3T 4+ 2 3+1 1+1

Table 5.1: Average displacement and standard deviation, in intensity units, without
preprocessing (second column), after standard preprocessing (third column) and

after final preprocessing (fourth column), separately for each scanner (rows).

As an example, Figure 5.4 shows the images of Figure 5.2, with the application of
the method to the image of second row in order to make it normalized to that in the
first row. The histograms of the resulting images are also reported for comparison
(right column). As can be noticed, images have very similar contrast and the original
differences, clearly visible in Figure 5.2 also after the application of z-score, is greatly
reduced as confirmed by the histogram. Note that the proposed strategy has been
applied to translate a higher contrast image to a lower contrast one: the opposite
could have been done without any limitation.

The effect of preprocessing on segmentation is important because it stabilizes
data and, pushing toward generalization, simplifies the role of the following segmen-
tation /interpretation process. The proposed local contrast normalization method,
as an integration to the general preprocessing strategy, greatly contribute to ho-
mogenize FLAIR images from different scanners. In this way, a relevant gain is
furnished to radiologists, who are not forced to retrain themselves when using data
from different scanners, but, more important, to automatic segmentation/interpre-
tation strategies which could be trained by using lower data sets (being data yet
equalized to different scanners, the automatic strategies would not need to be trained
with data from several scanners) and, hence, the training process could be faster.
Finally, as a really good consequence, the automatic strategies could result more
general (data coming from a scanner which is completely new to the automatic
systems would be effectively treated) and final accuracy would improve.

It is important to note that, with the exception of FLAIR in which the three
above classes show well separated intensities, as shown in Figure 5.2, the proposed
strategy has not been tested on other imaging modalities and it does not necessarily
performs well in all of them, for example when the contrast among classes in the
original image is very low, though a similar strategy could be also attempted to
translate images from one imaging modality to the others. This could be very helpful
in reducing acquisition time while maintaining the advantage of using information by

different modalities (some modality could be calculated from others and not directly

95



9000
8000
7000
6000
5000
4000
3000

2000

[[l—

o 50 wol 150 200

Figure 5.4: Local contrast normalization. The image in the third row represents the
local amplitude realignment of the image in the second row to the image in the first
row. Lines connecting histograms (right column) serve to evaluate the respective
positions of the peak, before and after correction, with respect to the reference

image. Vertical axis of the histogram was cut to zoom low values.
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acquired).

5.5 Discussion

A new local contrast normalization strategy has been proposed for MRI FLAIR
images of the brain. It is based on the preliminary segmentation of a reference image
in WM, GM and CSF and on the calculation of the peak positions of the histograms
of these segmented images. These values are used as reference amplitude positions.
When using a new examination, its central image undergoes the same procedure as
the reference image and the displacements from the reference images are calculated
for the classes WM, GM and CSF. Finally, for each image, corrections are applied to
the histogram of each class separately and then recombined in a single image. The
proposed histogram normalization strategy has been experimentally tested on 1500
images from 3 different MRI scanners: its good performance has been numerically
demonstrated and graphically illustrated.

The proposed strategy could be very effective to generalize and improve the
training process and the final accuracy of automated segmentation/identification
strategies due to its good property of reducing scanner and patient specific mis-
matches.

However, the proposed method is sequence (FLAIR) and organ (brain) specific:
its application to other imaging sequences has not been attempted and, as it is, we
think it could be easily extended to those imaging sequences whose original contrast
between WM ,GM and CSF is well defined; ts application to different body districts
is out the scope of the research, being it included in a project for the study of the

inflammatory processes of the brain [163].
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Chapter 6
Multiple Sclerosis Lesions Identification/Segmenta-
tion in MRI using an Ensemble of CNN

Beyond the different images contrast produced by different MRI scanners (presented
in the previous Chapter), inappropriate image interpretation and wrong application
of MRI diagnostic criteria contribute to misdiagnosis. For example, it is difficult to
distinguish pathologies such as neuromyelitis optica spectrum disorders, Susac syn-
drome and MS using MR images since some MRI diagnostic criteria are common.
Even for the same disease, distinguishing healthy tissue from diseased tissue is not
trivial. Regarding MS, white matter of the brain could appear normal despite the
lack of myelin in it. Therefore, the "healthy" brain tissue is usually referred as "ap-
parently healthy" [115]. Healthy anatomical structures similar to lesions and close to
them could create further ambiguity. Moreover, partial volume effect (PVE) occurs
when lesions and healthy tissue are present in the same place. These ambiguities
originated by the unspecific nature of MRI with respect to a particular disease often
create ambiguities and disagreement among radiologists (inter-raters variability) as
well as uncertainty in a same radiologist (intra-rater variability) mainly in defin-
ing the borders of the lesions, but also in labeling whole regions. This could make
the manual segmentation inaccurate and usually to avoid errors multiple manual
segmentations are taken into consideration. Moreover, physicians partially manage
the uncertainty generated by ambiguity relying on their personal radiological/clin-
ical /anatomical background and experience but this information are not available
during the training phase of AI Models. This chapter presents an automated frame-

work based on three pivotal concepts to better emulate human reasoning:
1. the handling of the uncertainty (defined in Chapter 3) class;

2. the proposal of two, separately trained, CNN, one optimized with respect
to lesions themselves and the other to the environment surrounding lesions,

respectively repeated for axial, coronal and sagittal directions;

3. the definition of an ensemble classifier to merge the information collected by
all CNN.
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Compared to the framework proposed in Chapter 4, that analyzes patches of the
images, this one analyze the whole image for training the method also regarding the
position of the lesions inside the image (white matter) and to reduce outliers.

The comparison, made with the consensus (the ground-truth) between 7 human
raters and with each of the 7 human raters, proves that there is no significant differ-
ence between the automated and the human raters. The results of our framework
concerning the uncertainty are also reported, even if a comparison with the raters
is impossible because they don’t recognize this class.

The content of this chapter appeared in [3].

6.1 Introduction

Several automatic frameworks have been recently proposed for MS lesions segmenta-
tion [2, 124, 164, 165, 166, 167, 121] and also for evaluating MS temporal progression
[168, 169, 170].

However, to date the results are still far from those of human experts, despite
the efforts have been huge. Actually, this has led to an increase in the model
complexity not corresponding to the expected improvement. Indeed, often state of
the art methods have failed when tested on data from a different data set [171]|. This
mainly occurs because automated strategies are not robust to MRI variability, not
even sufficiently able to model medical knowledge, human operational capacity and
flexibility.

Regarding implicit medical knowledge and experience, they mostly remain un-
expressed and are not reported on the labelled data sets used to train the automatic
strategies.

The same regards the reasoning methodology used by radiologists during 3D data
analysis: data are mostly analyzed in 2D axial slices with a continuous view of coro-
nal and sagittal slices to confirm an hypothesis, to give spatial continuity to a lesion
or to check the environment in which the hypothetical lesion is localized [172, 115].
A recent paper [173] highlights the usage of 3D CNN in the pipelines for MS lesion
segmentation strategies, but this is quite different by another recent strategy [174]
in which 2D U-net ensemble models are preferred for automated strategies for WM
hyper-intensities evaluation in a way which is similar to the human methodology.

Further, the uncertainty affecting expert radiologists when classifying some re-
gions is not reported in the public data sets used for training: a binary choice is
often insufficient to represent the evaluation of an expert. If represented, the uncer-
tainty could greatly help an automatic strategy to better segment also undoubted
lesions. This pushed several scientists to investigate on uncertainty in medical data

[175, 176] and to the effect that the rater style could transfer in terms of uncertainty
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to an automated strategy [116].

Implicit information in automated methods is difficult to be modelled and more,
if introduced with external supports (dictionary, anatomical atlases, etc.) [177], is
insufficient to fill the gap with human experts.

We aim at filling this gap, both in performance and in reasoning, by proposing

a framework which includes:

1. the classification of uncertainty as an intermediate class between the back-

ground and lesions;

2. the optimization of two CNN (2D U-net models), one for the class lesion and
one for the class background to contextualize lesions with respect to the sur-
rounding anatomical structures for the three spatial directions (axial, coronal

and sagittal);

3. the definition of an ensemble classifier to merge the information collected by

all CNN.

just on FLAIR images.

In this chapter is presented:

1. the usage of uncertainty to emulate uncertain reasoning for improving lesion

identification /segmentation;

2. the contemporary exploitation of lesions and lesions in the context of the

surrounding environment, for all the spatial directions;

3. the definition of the ensemble of CNN-based automated raters approaching
the problem from different points of view; the demonstration that just a single
MRI modality, FLAIR, is sufficient to classify /segment MS lesions in WM;

4. the demonstration that an automatic strategy behaves and performs like a

human expert.

6.2 Related work

Medical image analysis is greatly performed with automated methods, mostly in-
volving deep learning [178]. Automated MS lesion identification/segmentation is
still an active field of research and several methods have been provided in the last
decade and well reviewed along time [179, 180, 181, 2, 124, 164, 165] and the role
of Al-based methods is emerging [182]. Automated strategies can be classified into
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three main groups: methods using pre-selected features modelling (PSFM), meth-
ods using a-priori information modelling (APIM) and methods using deep learning
modelling (DLM).

PSFM calculate pre-selected features and learn from previously segmented train-
ing images to separate lesions from healthy tissue [183]. Some PSFM use a large
set of features and select the more discriminant ones through labelled training. One
of them is an atlas-based technique, employing topological and statistical atlases
for WM lesion segmentation [184]. Another includes the usage of Decision Random
Forests [185]. Similarly, a framework for segmentation of contrast-agent enhanced
lesions using conditional random fields is defined in [186]. [187] propose a set of fea-
tures, including contextual features, registered atlas probability maps and an outlier
map, to automatically segment MS lesions through a voxel by voxel approach. A
rotation-invariant multi-contrast non-local means segmentation is proposed in [188§]
for the identification and segmentation of lesions from 3D MRI images. Supervised
learning by PSFM has been widely employed in tasks where the training database
and the pre-selected feature set cover all possible cases [189]. Nevertheless, when
the heterogeneity of the disease and the potential variability of imaging are large,
as it occurs for MS and MRI, the dimension of the training database and, mostly,
the choice of the pre-selected features are critical.

APIM does not require labelled training data to perform segmentation, but usu-
ally exploit some a-priori information, such as the intensity clustering, to model
tissue distribution [190]. In [191], a likelihood estimator to model the distribu-
tion of intensities in healthy brain MR images is presented. Other methods use
threshold with post processing refinement [192, 193] or are based on probabilistic
models [194, 195]. A big challenge for APIM is that the outliers are not specific for
lesions because they could be due to artifacts, intensity inhomogeneity and small
anatomical structures like blood vessels: this often produces false positives [196].
Moreover, APIM is strongly based on the information extracted and simplified by
the knowledge of specific experts.

Though the dimension of the training database is also crucial in DLM, this has
no concern regarding the pre-selection of features as in PSFM or regarding a-priori
information modelling as in APIM.

In fact, during the last years DLM has gained popularity in medical imag-
ing especially with CNN [197] and, in particular, with U-nets ad their variants
[198, 199, 200, 201]. CNN, compared to machine learning approaches, has achieved
remarkable success in biomedical image analysis [196, 202, 203]. DLM trains and
learns to design features directly from data [204] and provides best results in MS
lesion identification /segmentation [164, 205, 206, 207, 121, 167|. This has also been

confirmed in recent reviews |2, 124, 164, 165].
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CNN applied to MS often use 2D spatial convolutional layers [208, 204]|, others
use 3D convolutional layers to incorporate 3D spatial information simultaneously
[209, 210, 211, 212] or merge spatial with temporal information [168, 170]. All these

methods perform segmentation with a minimum lesion volume threshold to avoid

the inclusion of small outliers.

However, CNN performance is still far from that obtained by human experts or

its performance dramatically drops with other data sets [171]. In what follows, we

present a robust framework based on CNN that can reach human performance if

some human methodological insights are modelled in it.

6.3 The proposed framework

The framework we propose, sketched in Figure 6.1, consists of the following steps:

1.

deep learning automatic classification, of the images (2D) composing the MRI
model, in three classes: Background, Uncertainty and Lesion (capital letter
to imply the concept ’class’), optimized for Lesion (lesions from inside) and
for Background (lesions seen in the context of the surrounding environment),

separately for axial, coronal and sagittal directions (resulting in 6 classifiers);

. class fusion (separately for Lesion and Uncertainty, starting from Lesion) by

performing the Union of the 2 axial segmentation (step 2a in Figure 6.1),
followed by a majority vote taken from the remaining segmentations and used
for confirmation of the class (if the class is not confirmed, this is downgraded
(step 2b in Figure 6.1);

. final output.

For the framework we propose, the following three hypotheses hold:

1.

the MSSEG pre-processed data from just one single MRI modality, FLAIR,

are the input of the framework;

. the binary labelled ground-truth is revised to contain, besides Lesion and Back-

ground, also the Uncertainty class which is created from part of the original

Background, and leaving Lesion unchanged (see Chapter 3);

. the three considered classes are supposed to be ordered, Background < Un-

certainty < Lesion: as far as just Lesion and Uncertainty are the subjects of
fusion, their downgrading consists in the passage from Lesion to Uncertainty
and from Uncertainty to Background, respectively: the process starts from

Lesion to allow Uncertainty fusion on the upgraded data set.
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Step 2a of Figure 6.1 serves to include, besides common information, also comple-
mentary information coming from the specificity of each of the two axial CNN and,
at the same time, to model the reasoning of radiologists who use axial orientation
to make the first hypotheses. Step 2b is used to vote for each object resulting from
the axial processing (Lesion or Uncertainty), its permanence in the assigned class,
or its downgrading. Objects are confirmed when at least two of the other four raters
(two coronal and two sagittal) agree with the axial classification. This ensures that
false positives are greatly reduced and that 3D contextualization with the environ-
ment is maintained. In this way, the model agrees with the radiologist’s reasoning
regarding the usage of coronal and sagittal orientations, so to have a confirmation
of the hypothesis and to better define 3D object continuity.

The choices regarding the usage of one single imaging modality, the classification
in three classes and the use of an ensemble framework are clarified below.

Being supervised, each classifier needs training, validation and test carried on
by using data from a public data set. In what follows we first describe the used
data set, the ternary ground truth, the CNN architecture, the used loss function,
the hyper-parameters optimization and the ensemble, final, classification of Figure
6.1.

6.3.1 CNN architecture

The task we are facing with is the classification of a FLAIR volume, separated into
slices, in one of the three classes: Background, Uncertainty and Lesion. Since U-
nets [198] are specifically designed for these tasks, we use the U-Net 2D architecture
depicted in Figure 6.2 to classify the images composing a volume.

The U-Net is a fully convolutional neural network composed by 2 main sections,
Contraction and Expansion, connected by a Bottleneck section. The corresponding
Contraction and Expansion modules are also connected through skip connections.

Compared to the traditional U-net architecture, we insert a batch normalization
layer in each block to mitigate the effects of the gradient amplification [213] in the re-
gions surrounding the lesions, though this with a relevant increase of computational
costs (about 30%).

An important parameter for a U-net is the number of blocks in the Contraction
and Expansion sections. If the number of blocks is too low, the network could
not have enough features for learning complex structures. On the other hand, if
the number of the blocks is too high, the network memorizes complex structures
(overfitting).

To optimize the number of blocks, n, we have performed preliminary training,
with n € {3,4,5}. We have not gone outside this set because for n = 5 the U-
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Figure 6.1: The proposed identification/segmentation pipeline which divides the
brain tissue in three classes: healthy tissue (Background), tissue that has uncertain
nature (Uncertainty), and MS lesions (Lesion). The strategy operates independently
on axial, coronal and sagittal images, each processed by two separately trained U-
nets, one optimized for Lesion, to directly focus on lesions, and the other optimized
for Background, for contextualizing lesions with respect to the environment. After
that, it recombines the results by using the Union of axial volumes followed by a
majority vote strategy on the coronal and sagittal volumes, for confirmation. Voxels
whose classification is not confirmed are downgraded (Lesion becomes Uncertainty
and Uncertainty becomes Background). The framework operates separately for Le-
sion and Uncertainty, starting from Lesion. In step 2b, the procedure is applied voxel

by voxel: L is referred to each single voxel of the class ¢ € {Lesion, Uncertainty}.

Net started to overfit, even when using high values of Ly-Regularization, and for

n = 2 a dramatic drop of performance occurred. With n = 4, the problems related
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Figure 6.2: The used U-net "D architecture. The architecture is the same for 6

classifiers, though they have been trained separately.

to overfitting have disappeared and the performance was good. However, we have
noticed from the feature maps that some redundancy is present. For this reason, we
have trained the CNN with n = 3 and verified that redundancy is greatly reduced
and training converges faster than for n = 4: hence, n = 3 is the number of blocks

used thereinafter.

6.3.2 Loss function and process optimization

The architecture we use has to solve a three class automatic annotation, for which

a Multi-label Cross Entropy Loss Function is necessary, defined as follows:

loss — % S S (ulog(¥ue) + (1 = Tuollog(1 = Vi) (6.1)

where N and K are the numbers of observations and classes, respectively.

The use of three classes, besides the problem stabilization (the presence of the
Uncertainty class gives better confidence in defining both lesions and background),
allows also to consider another important aspect. Indeed, we can optimize two
CNN,; sharing the same architecture and the same loss function (Eq.6.1), but with
a different learning process deriving from different focuses: one optimized on the
Lesion and the other on the Background (the environment in which lesions are
immersed). The Uncertainty, is used as a sort of "buffer class". In the case of a

binary classification problem this would not have been possible: the optimization of

105



one would automatically lead to the optimization of the other (what is not Lesion
is Background and vice-versa). The usage of the Uncertainty gave to both CNN a
new choice to break that constraint.

The training process of a neural network can be controlled through hyperpa-
rameters. Different hyperparameters lead to a different learning path and, finally,
to a different performance of the neural network. In literature, it is well known
that the hyperparameter optimization serves to achieve faster training and better
performance [214, 215, 216|. In this study, the hyperparameter optimization is also
used to train the two CNN separately, which leads to different paths discovered by
the Gradient Descent.

The hyperparameter setting is driven by automatic optimization through a Bayesian

approach [217|. Besides, the hyperparameters to be optimized are:

1. Starting Learning Rate: it is related to the data set and to the type of

neural network.
2. L2-Regularization: it prevents overfitting.

3. Class balancing: it optimizes the amplification factor for the represented
classes and improves training. Here we have three classes, hence two weights

are sufficient (Lesion Weight and Background Weight.

Of the above, the first two are standard for CNN, while Class balancing is spe-
cific for our CNN because it helps to differentiate the path of optimization between
the CNN optimized with respect to Lesion and that optimized with respect to Back-
ground.

The resulting optimization problem is the following:

= argmingex f(x) (6.2)

where X is the domain of x, f(x) represents an objective function to be minimized
and z* is the hyperparameter setting that yields the optimal value of f(z).
In this study f(x) is defined as

f(z)=1-=TIoU(x) (6.3)

where IoU is the Intersection over Union score [2] defined in Chapter 3.

Regarding the two CNN used therein, for that optimized for the Lesion, the
IoU is calculated with respect to the Lesion class and, for that optimized for the
Background, the IoU is calculated with respect to the Background class.

Table 6.1 reports the hyperparameter setting for both the optimized CNN ('In’

and ’Out’ indicate Lesion optimization and Background optimization, respectively)
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CNN Learning L2-Reg. Lesion | Background
Rate Weight Weight
Axial In | 5,32E-04 | 3,66E-10 | 7,98E-02 8,91E-01
Axial Out | 4,54E-04 | 1,14E-10 | 2,99E-02 9,00E-01
Cor. In 6,50E-04 | 3,66E-10 | 7,98E-02 8,71E-01
Cor. Out | 3,18E-04 | 7,92E-09 | 6,59E-02 8,58E-01
Sag. In 1,01E-04 | 5,53E-09 | 7,01E-02 8,74E-01

Sag. Out | 1,08E-04 | 3,41E-09 | 6,02E-02 8,50E-01

Table 6.1: The hyperparameter values for the CNN, each trained with the corre-
sponding oriented images. The suffixes In and Out are used to indicate whether

Lesion or Background is optimized, respectively.

in each direction (axial, coronal and sagittal). As it can bee observed, the overall
change of the hyperparameter setting justifies different training paths for the CNN
and different points of convergence for each of them. Figure 6.3 shows the different
behaviour of the two CNN highlighted in the segmentation grad-cams of a sample
image, for the axial direction. The CNN optimized for Lesion, tends to enlarge
Lesion and Uncertainty with respect to the CNN optimized for Background, which

surrounds lesions from outside.

6.3.3 Ensemble Classification

It is well known that ensemble classifiers often perform better and more robustly
than their single components [218, 219, 220, 174]. For the classification of lesions we
use 2D slices (axial, coronal and sagittal) of the whole volume, with specific CNN
trained separately with axial, radial and sagittal slices, respectively. In this way, we
can avoid that a particular orientation could be favourable to lesions (the classifier is
deceived) or to the classifier (the good classification of some lesions could be a lucky
outcome). Further, it serves to ensure 3D continuity to the classification. Moreover,
as explained above, we look at lesions both as they are and with respect to the
surrounding environment.

We obtain a set of 6 classifiers, two for each of the three orientations, axial,
coronal and sagittal, whose classification has to be merged to produce a single output
resembling the reasoning of the radiologists: though 3D FLAIR data are collected
following sagittal planes to account for clinical /physical issues, radiologists often use
axial images for data interpretation and use the other orientations for confirmation
[172, 115]. Accordingly, we prefer axial classifications and use coronal and sagittal

output for confirmation.

107



‘Out’

Seg. Grad. Cams
Uncertainty Lesion

Seg. Grad. Cams

Seg. Grad. Cams
Background

Segmentation

Figure 6.3: Grad-cam representation for an axial sample image for both CNN, Le-
sions from inside (left) and from outside (right), respectively. Grad-cams are shown
for the three classes, Lesion (first row), Uncertainty (second row) and Background
(third row). The fourth row shows the classification of each of the CNN.

Regarding axial classifications, since each of the two CNN referring to the same

direction operates in the same scenario but with different approaches, they collect
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specific information in those regions where reasoning is specific. Since both specific
contributions are important, besides common findings, a Union operation between
the two classifications is required. This is in accordance with the procedure which
expert radiologists would ideally follow [221]. Other forms of fusion, for example
statistical fusion through STAPLE [108, 119, 120], are inappropriate because in
our case we are combining classifications obtained by different approaches and not
classifications from similarly reasoning raters (where it is supposed the use of almost
the same approach). Regarding this last point, it is important to notice that also
human experts with different experience could assume different decisions [175].

However, being the classified volume a three values data set, the Union does not
correspond to the classic binary union operation. In our case, the Lesion is privi-
leged, then comes the Uncertainty and, finally, the Background. In fact, a voxel is
classified in a lesion if at least one of the two classifications considers it as a lesion;
elsewhere, if at least one of the two classifications considers it as uncertain, it is clas-
sified as Uncertainty, elsewhere, it is considered as Background (both classifications
affirm the voxel is Background).

After the Union application, false positives are more present than in each single
classifier: their number is reduced by using the majority vote between the other 4
classifications (two coronal and 2 sagittal, being the comparison performed along
axial planes). In fact, for each voxel the class is maintained if at least two of the
other classifiers confirm it, elsewhere it is downgraded by one (a potential Lesion
becomes Uncertainty, a potential Uncertainty becomes Background): a double step
is not allowed. There is always at most 1-step downgrading simultaneously. This
means that first a decision is made on the Lesion and, then, on the Uncertainty by
using the data set resulting from the application of the process to the Lesion.

The ensemble of different classifiers is justified both by the fact that the Union
has to join common information, as well as specific information from each of the
two axial classifiers, and because each potentially positive voxel needs confirmation
from the coronal and sagittal classifiers (in this case, also 3D spatial information is
considered). Though we don’t have measured the diversity degree between classifiers
[218] we have preferred to resemble the usual procedure used by radiologists and to
rely on the usual benefits of using an ensemble classifier [219].

In the proposed automatic pipeline, we have copied the human behavior by
privileging axial sections with respect to the others, but we have also performed
trials regarding the preference of the other orientations in the fusion process and the
results, not shown, confirm that the axial preference gives the best results, closely
followed by the coronal and, at a great distance, by the sagittal, though this is the
direction used for 3D FLAIR data collection. The thing could be explained, at least

partially, by the fact that axial and coronal slices show highly symmetrical shape
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both regarding brain anatomy and lesion shapes, also across different subjects, thus
making the learning process easier than for sagittal slices. For sagittal directions, in
fact, symmetry is absent and a huge variation of the image content could correspond
to a little rotation of the head.

6.4 Results

The proposed framework has been trained, validated and tested on the ternary con-
sensus defined above. As far as the ternary consensus maintains unaltered all the
lesion voxels of the original MSSEG binary consensus, we can guarantee a direct
comparison with human raters and, at the same time, with already existing auto-
mated methods tested on the same data set. Regarding the segmented Uncertainty,
a comparison is possible just with respect to the ternary ground-truth, since for
the human raters Uncertainty is unavailable. In principle, we could define the Un-
certainty for each rater by considering as uncertain the voxels that the rater has
considered Lesion while the binary ground-truth has not. Though we have made
some experiments in this direction, we believe this comparison should deserve a spe-
cific and deep discussion, being it based on approximated hypotheses (the intention
of each rater would be guessed, not real), which is out the scope of this manuscript.

The evaluation of all the raters, of the proposed framework and of the human
radiologists, with respect both to the ground-truth and to each-other, is performed
by applying the cross-validation approach defined in Subsection 3.1. Average and
standard deviation values are calculated for the metrics defined in Chapter 3 and
divided in two groups: those whose ideal value is 1 and those whose ideal value is 0.

The first results, reported in Fig 6.4, are those between the raters and the ground-
truth performed on the Lesion class. This is also an indirect comparison, through the
ground-truth, between the proposed framework and the human raters. For a better
overview, the mean values are also shown in Fig. 6.5 by using a radar visualization:
they confirm that the behaviour of the proposed method is inside the inter-rater
variability.

As it can be observed, our framework is never the best or the worst, for at least
one of the metrics, as instead occurs for human raters. This can be explained, at
least partially, by the fact that it has been trained with the consensus that, for its
nature, tends to average pros and cons of the raters from which it has been derived.

A Wilcoxon signed-rank test of the vectors of metric values confirms, with a
significance level of 0.01, that there is no significant difference between the behaviour
of our method and that of the 7 human raters, with respect to the ground-truth,
on the Lesion class. This means that, if data are shown without labels, it would be

impossible to recognize the automated rater from humans.
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Figure 6.4: Comparison between the raters and the ground truth, performed on the
Lesion class. The reported metrics are separated in those whose ideal value is 1 (a)
and those whose ideal value is 0 (b). Average and standard deviation are reported.

Euclidean, Hausdorff and Surface distances are shown in c¢m units.
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Figure 6.5: Comparison between raters in the same conditions of Fig. 6.4. For
graphic purposes, only the average values are reported and the line of the proposed

framework (red) is highlighted with respect to the others.
As far as the lesion size could greatly affect the performance of the classification

[124] and the previously reported results are averaged with respect to the lesion

volume, we repeat the comparison by changing the lesion volume. To this aim, we
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consider all the lesions separately and the calculations are performed lesion by lesion,
by maintaining separated also the lesions of the same volume. In this way we can:
1) visualize potential outliers; 2) represent lesion density; 3) avoid local averaging
that could mask specific contributions to the metrics. The results, reported just for
the most commonly used metrics [124], are shown in Fig. 6.6.

Results again confirm the analogy of behavior between the proposed framework
and the 7 human raters, though for some volumes our framework has exhibited re-
sults close to the borders of oscillation of the 7 human raters. Indeed, a greater
dispersion can be observed for Fl-score and a relatively high average value is ob-
servable for SD, though in line with that of some human raters.

The above good results are not sufficient alone to affirm that our framework be-
haves like human raters because the comparison is mediated through the consensus.
In other words, our framework could be at the same 'distance’ as the human raters
are from the ground-truth, but from opposite sides. For this reason, a direct compar-
ison is necessary to finally confirm the similarity between the proposed framework
and the human raters. To this aim, we perform the experiment of comparing all the
raters to each other by considering ground-truth all of them, including our frame-
work, in rotation. Results, for the most frequently used metrics, are reported in Fig.
6.7. In this representation, placing together metrics converging to 1 and to 0, the
angular position indicates the metric value: clock wise versus for metrics converging
to 1, anti-clock wise versus for metrics converging to 0. Radial information is only
used to separate the current ground-truth raters. Ground-truth raters have colored
bullets placed on the vertical line.

These results unequivocally confirm that the proposed framework behaviour does
not differ from that of the other human raters and that it is not polarized toward a
specific rater or toward the consensus. Moreover, as other Authors have highlighted
[121], results show similarities among some human raters (R4 with R5 and R6 with
R7). Fortunately, results also confirm that the MSSEG consensus is not biased by
the similarity between some couples of raters, and that it maintains a "human"
behaviour, being it very close to the raters R1 and R2. This is a fundamental
aspect because it means that all the people who are attempting to train automated
systems with respect to the MSSEG consensus, including ourselves, are not following
a "chimera" to which, paradoxically, the closer we get, the more we move away from
the proper objective.

After discussing the behaviour of the proposed framework regarding the Lesion,
we also have to look at the classification regarding the Uncertainty class. To this aim,
Fig. 6.8 reports average and standard deviation values for the metrics calculated
with respect to the corresponding class of the ternary ground truth. If compared

with the values obtained for Lesion, results are very poor, especially for metrics
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Figure 6.6: Dice score (a), Fl-score (b) and Surface Distance (c), calculated for each
lesion and shown with respect to the lesion volume for the human raters and the
proposed framework. To improve readability, the logarithmic scale is used for the

lesion volume and framework’s values (red) are highlighted.
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Figure 6.7: Comparison between all the raters with respect to each other, including

our framework and consensus, each alternately considered as the ground-truth.
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Figure 6.8: Average and standard deviation values of the metrics calculated for
Uncertainty with respect to the same class in the ternary ground-truth. Values are

represented as those converging to 1 (a) and those converging to 0 (b).

whose ideal value is 1. However, the 3D annular shape exhibited by Uncertainty
around lesions, which includes two borders (external and internal) often discon-
tinuous, greatly contributes to lower the results. Moreover, we don’t have human
references for Uncertainty and, for this reason, a comparison is impossible. Hence
the results for Uncertainty are just reported for completeness and future comparison.

A visual overview of the behaviour of the proposed framework in the whole
process of identification/segmentation, both for Lesion and for Uncertainty, with
respect to the ternary ground truth, is shown in Fig. 6.9. The ternary ground-
truth is reported on the left side, the corresponding segmentation obtained with
the proposed framework is presented on the right side, for the same subject and
slices. Both for Lesion and Uncertainty, the proposed framework selects more than
necessary (F'P are evident). Interestingly, F'N are almost absent from the segmented
volume. The other interesting property shown by the proposed framework is the
good spatial continuity of the lesion structures in the 3D model of Lesion (upper

right panel, where Lesion is red colored while Uncertainty is yellow colored).
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Figure 6.9: Comparison between the ternary ground truth (left) and the proposed

automated framework (right). Lesion is red and Uncertainty is yellow. For read-
ability purposes, the upper right panel of each side shows just the healthy brain and

Lesion in 3D.

To complete our discussion, it remains to compare the proposed framework with
recently proposed automated strategies. To this aim, Table 6.2 contains this indirect
comparison on the metrics calculated for at least one of the other methods. The
necessary condition for a method to be considered in Table 6.2 is to have been
trained, validated and tested on the 2016 MSSEG data set. In this way, we can
ensure that the comparison is homogeneous and performed on the same conditions
of that obtained with respect to the 7 human raters.

Though a global ranking is difficult, data reported in Table 6.2 are clear: the
proposed framework is the most stable with respect to different metrics and it gen-
erally outperforms the other methods, including those methods which use multiple
imaging modality. This could have an interesting implication: as the automated
framework performs like human raters just using FLAIR, it means that FLAIR
would contain sufficient information, not only the one necessary, to identify and
segment all MS lesions occurring in the WM, independently of their stage. Poten-
tially positive consequences are: a) due to the huge variability of MRI and of each
single modality, described above, the usage of a single modality could increase the
performance above the use of multiple modalities because it could greatly contribute
to stabilize automatic identification/classification; b) the acquisition time and stress
for the patient can be reduced.

An important aspect that has determined the outstanding performance of the
proposed framework is the use of the ternary ground-truth. Indeed, Fig. 6.10 shows

the average performance results when the proposed framework is trained without the
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Table 6.2: Comparison between the proposed framework and the state of the art
methods. Average data are reported for each metric and the symbol -’ is used when
data are unavailable. The reported metrics are those on which at least one method

different from the proposed framework has been evaluated.

Method MRI mod. Sens OSens TPR Acc PPV OPPV Dice F1 SD
Team Fusion in FLAIR, PD, T2
0.71 0,60 0.99 - 0.65 0.53 0.64 0.50 0.91
[124] T1, G-E T1
FLAIR, PD, T2
[166] 0.65 - 0.86 0.97 - - 0.76 - -
T1, G-E T1
[212] FLAIR, T1 0.55 - - - - 0.79 0.63 - -
FLAIR, PD
[167] 0.76 - - - - - 0.82 - -
T1, G-E T1
[171] FLAIR, T1, T2 - - - - - - 0.76 059 -
Our Framework FLAIR 0.88 0.77 098 0.88 0.81 0.81 0.77 0.72 0.27
a) 1 OOSenS b)
— 1 pcc ' OSens

BF Spec

F1 Acc ED OER
loU PPV
HD FDE
Image Dice OPPV
Dice RAE
—Our Method without Uncertainty =~ —Our Method —Our Method without Uncertainty —Our Method

Figure 6.10: The proposed method when trained without and with Uncertainty;,
compared both on metrics whose ideal value is 1 (a) and for metrics whose ideal
value is 0 (b).

Uncertainty (on the binary consensus) as compared to those obtained when trained
on the ternary consensus. The ensemble method trained without the Uncertainty
outperforms similar automated strategies (team fusion in [124]), though it is still far
from humans: the step which places the proposed framework among humans is the
inclusion in the pipeline of the class Uncertainty.

This is in line with what reported in [119, 120, 121]: the framework learns better
what is surely Lesion, what is surely Background and uses Uncertainty for doubts,
as a buffer class. Indeed, the polarized and ambiguous classification of doubtful

voxels, sometimes as Lesion and others as Background, disorients any automated
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strategy and deviates it from the correct reasoning.

6.4.1 Performances gain through Uncertainty

In Chapter 3 we explained how we constructed the class Uncertainty, in Section
7.3.2 how we used it for the hyper-parameters tuning and how we use it during the
training phase. In this section we want to discuss the impact of the Uncertainty on
the performances of each CNN and how it influence the different path followed by
the Gradient Descent Algorithm.

Figure 6.11 and figure 6.12 show the comparison between each CNN without
Uncertainty and the respective CNN with Uncertainty using radar plots in order to
better visualize the differences between the metrics values. The figures are organized
as follow: 3 rows in which each one shows the plot from the same point of view (Axial,
Coronal and Saggital, respectively) and 2 columns that divide the analysis between
Lesion and Background, respectively.

The most affected CNN from the introduction of the Uncertainty is the CNN
Lesion of the Axial point of view (figure 6.11.a and 6.12.a): Sens, PPV, OPPV,
Image Dice, F1, BF, PCC, SD and ED are greatly improved respect to the same
CNN without Uncertainty. On the contrary, Acc is worsen respect to the CNN
without Uncertainty. The remain metrics are almost the same. From the same Axial
view, the CNN Background (figure 6.11.b and figure 6.12.b) gains less advantages
from the Uncertainty Class except for the PPV and Sens (that improves). Notable
the gain respect to the HD (figure 6.12.b). From a qualitative analysis, both the
CNNs with Uncertainty find more true lesions and, as a consequence, also more false
lesions. Regarding the latter, the major vote of the method will almost remove all
of them.

The same situation occurs in the Coronal View but this time is the CNN Back-
ground that gains more advantages from the Uncertainty. Also in this case Sens,
OSens, PPV, Image Dice, F1 and BF improve respect to the CNN without the
Uncertainty (figure 6.11.d). Also the ED is much better (figure 6.12.d)

The Pixel Sensitivity, the Accuracy and this time also the Lesion Sensitivity show
some performance deterioration 6.11.d) (same phenomenon occurs in the Axial view)
but in this case the difference are quite small (as shown in figure 6.11.c).

Regarding the Sagittal point of view, the Uncertainty class is not introducing
relevant benefits. In fact, the CNN Lesion with Uncertain have little improvements
regarding F1 score, BF score and Image Dice score (figure 6.11.e). The others
metrics are almost the same, with the exception of the Euclidean Distance that is
worse (figure 6.12.e).

To summarize the discussion we can assert that the Axial Lesion CNN and the
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Coronal Brain CNN have gained more benefits from the introduction of the class
Uncertainty compared to the others CNNs in which the gain is less accentuate.
The Sagittal Background CNN is the only CNN in which the performance gain is
negligible.

Further analysis, show another interesting phenomena that is closely related to
the performances gain just discussed: from the hyper-parameters values of each
CNN it is possible to understand which CNN gained more performances from the
introduction of the Uncertainty. Table 6.1 shows all the hyper-parameters of each
CNN and for the CNNs with Uncertainty also the percentage difference of each
hyper-parameter compared with the respective CNN without Uncertainty. It is
remarkable that both the CNNs with the best performances gain (Axial Lesion
CNN and Coronal Brain CNN both with Uncertainty) have also a gain of Learning
Rate of +415,62% and +114,67%, respectively. And it is also remarkable that for all
the CNNs with Uncertainty the learning rate increase except for the CNNs for the
Saggital view which are the ones with less performances gain. Moreover, the Saggital
Brain CNN, that has the worst performance gain, has also the major Learning Rate
decrease (-14,92%). This results show that Uncertainty is very effective because
increase the learning rate especially for the Axial and Coronal view.

Also the L2 Regularization decreases for all the CNNs with Uncertainty and that
means that the model is better capable to generalize and less overfitting.

Finally we analyzed the Lesion Weight and the Background Weight for balancing
the cross entropy loss. The Uncertainty class decreases the Lesion Weight and leaves
the Background Weight as it is (the differences are quite small).

From these results we can assert that the introduction of the Uncertainty is very

effective because in almost all point of view the performances gain are evident.

6.5 Discussion

An automated framework for the identification/segmentation of MS lesions from
FLAIR MRI images has been presented. We have demonstrated that traditional
CNN architectures, if placed in a context emulating the procedures of human spe-
cialists, could effectively behave like a human expert. The strength points of the

proposed framework are the following:

1. to train the system both to recognize the lesions as they are and with respect
to the environment they are immersed in, thus allowing to incorporate also a
sort of meta-information regarding the environment where MS lesions mostly

occur;

2. to resemble radiologists in consulting axial slices to discover potential lesions
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Figure 6.11: Comparison between each CNN with and without the class Uncertainty
(blue and orange respectively) for each point of view (Axial, Coronal and Saggital).

Higher values of the scores represent best performances.

and to check radial and sagittal slices for confirmation, as well as to maintain

3D continuity to their findings;

3. to use an ensemble classification that usually performs better than its compo-

nents

4. to use an artificially generated Uncertainty class to improve the performance

of an automated strategy and to make it more similar to the human reasoning;

5. to operate just on FLAIR images.

Results have shown that the proposed framework resembles human raters both

in behaviour and in performance, when compared with the MSSEG consensus on
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Figure 6.12: Comparison between each CNN with and without the class Uncertainty
(blue and orange respectively) for each point of view (Axial, Coronal and Saggital).

Lower values of the scores represent best performances

Lesion. Indeed, Wilcoxon statistical test has assessed the framework ability to ex-
hibit a behaviour that is equivalent to, or indistinguishable from, that of a human
rater.

Results have also confirmed that the proposed framework outperforms the state
of the art strategies which have been trained, validated and tested on the MSSEG
data set. Regarding the Uncertainty class, a comparison has been impossible be-
cause the human segmentation of Uncertainty is unavailable. However, results have
demonstrated that the usage of the Uncertainty during training greatly helps to
improve the performance of the framework with respect to not using it. In a recent

report [222], the JASON Advisory Group has identified several key recommendations
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for advancing computation technology into routine clinical practice. One of them
is that new technologies should address a significant clinical need, be practical in
use and reduce medical system costs. The demonstration that a better performance
is possible by including some concepts (Uncertainty and Ensemble) to enrich tra-
ditional CNN architectures, more than continuing to search for even more complex
single CNN architectures, goes in the direction of the previous Jason’s recommen-

dation.
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Chapter 7
Star-Net: a Multi-Branch Convolutional Network for
Multiple Source Imaging

In the previous chapter, a framework of CNNs for MS lesions segmentation on a
single MRI modality has been presented. Nevertheless, MRI allows to acquire several
image modalities in order to extract and combine relevant details from different
sources and gather more information. However, the combination of multiple sources
of information could not imply an effective gain in the interpretation process either
because some sources could contain redundant information (no relevant information
is added by some sources) or, worse, could negatively influence the others. In other
words, choose which modalities feed into an Al model is not trivial. This chapter
presents Star-Net, a multi-branch convolutional network architecture.

It evaluates the contribution of multiple imaging sources in the corresponding
layers of different networks, one for each source, weighted according to their contri-
bution. The weights are different in each layer of the network, are case-specific, and
are dynamically calculated for each layer.

With this architecture, we reward the active sources while penalizing the inactive
ones. This prevents that the irrelevance of the last could dilute the contribution of
the former. Star-Net considers the non-linear behaviour of image interpretation,
for which the active role of one source in a layer can be reduced/absent in another
and can grow-up again in a following layer. When used in the field of multi-modal
MRI segmentation, we found that Star-Net can reduce the training convergence
with respect to traditional CNN architectures and, more important, it allows to
perform case-specific analysis of network activation, to evaluate the effectiveness of
each imaging source in the whole interpretation process and, finally, it increases

network transparency.

7.1 Introduction

Multiple source imaging is fundamental in several computer vision applications of

medical imaging (multimodal imaging and sequences), etc.. The goal of multiple
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source imaging is to extract and combine relevant details from different sources to
gather more information than from each single source.

However, this is not always trival. There are, in fact, cases in which the com-
bination of multiple sources of information does not imply an effective gain in the
interpretation process either because some sources could contain redundant informa-
tion (no relevant information is added by some sources) or, worse, could negatively
influence the others [223].

CNN allow to collect and combine information from multiple source images at
any level, at the beginning (early fusion), inside (intermediate fusion) or at the end
(late fusion) and the strategy used for fusion is strongly task dependent [224].

However, as it has recently been shown that a CNN ensemble works better than
just a single one [225, 137|, it seems reasonable to assume that late fusion, being
implementable as an ensemble of CNN (one per source), is more effective than early
or intermediate fusion, where just one CNN remains after fusion.

Moreover, early fusion can only learn complementary information between modal-
ities leaving out highly non-linear relationships that can be learned only at the
higher-level layers [226, 227|. Finally, early fusion is neither optimized with respect
to single source contributions nor useful when the contribution of single sources has
to be ascertain.

Indeed, many applications would benefit from source contribution separation to:

1. understand what components better contribute to the process and to discover

eventual irrelevant sources (simplify the problem);

2. drive the operation process of the CNN and to understand better its internal

behaviour (improve transparency);
3. improve simplification by reducing/eliminating irrelevant features;
4. reduce the training set dimension and speed up convergence;
5. improve performance.

In this chapter presents a multi-branch CNN architecture (Fig.7.1), composed
by several CNN, one for each imaging source, connected each other through a cen-
tral weighting normalizer unit whose role is to calculate and redistribute relative
activation among the branches. This architecture is designed for explicitly reward
the active sources while penalizing the inactive ones.

While the various CNN, that we also call "satellite" for their position, have
their feature maps normalized according to reciprocal activation, it is allowed that
each progresses separately until the end, when the output are fused before the final

output.
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Figure 7.1: Star-Net paradigm: S satellite networks, one for each imaging source,
are connected through a central normalizing unit which calculates the activation
contribution of each network to the imaging process and applies it to perform a

re-balance among networks.

7.2 Related Work

Network architecture has been part of neural network research since their discovery
and the recent popularity of neural networks has also revived this research domain.
The increasing number of layers in modern architectures amplifies the differences
between networks and motivates the exploration of different connectivity patterns.

The new concepts about dense nets [228, 229, 227| open the way to new deep
"longitudinal" CNN architectures. A different approach for making networks denser,
is to increase the network width. In [230, 231] an inception module is used to
concatenate feature-maps produced by filters of different sizes. In [232], a variant of
ResNets with wide generalized residual blocks is proposed to improve performance.

However, though the trend to make networks even more connected is strong,
strategies for reducing redundancy and to optimize the number of parameters are
also very actual, being them finalized at reducing network complexity, power con-
sumption and increasing transparency. Highway networks [233], for example, employ
gating mechanisms to regulate shortcut connections. Moreover, dropping modalities
[234] and dropping layers [235] have demonstrated the possibility of reducing layers
during training while improving also performance. This demonstrates that not all
layers (and relative feature maps) may be necessary, that redundancy is frequently
present and that, sometimes, redundancy could also be an obstacle for performance.

A lot of work has been conducted on feature reduction through fusion [236|. For

example, in [237] similar imaging sources are fused using a heuristic method. In
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Figure 7.2: Star-Net architecture: in a central unit, the S CNN, are connected
through "weighted normalizers" (Wy) at the end of each layers. In each of these Wy
modules, the contribution of each modality is upgraded before the process continues
in the following layer. The final "Weighted Average" calculate the weights as in Wy
but it also merges them in a single feature map, weighted average of the feature
maps from the final decoders of the S CNN.

[238], fusion utilizes correlations across representations to combine multiple layers
over all modalities in a single one. In [239, 240, 241], multilayer cross connection
are proposed aimed at sharing information between modalities of different dimen-
sions. With these approaches, imaging sources are all projected into the same mul-
timodal space, e.g. using concatenation, element-wise products, etc, where a joint
learning representation is obtained. In [242] joint representations are opposed to co-
ordinated representations where some constraints between the modalities force the
representations to be more complementary. These constraints aim at maximizing

the correlation between the multimodal representations, as in [243] and [244].
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In an interesting paper, [224], joint representations and coordinated representa-
tions are held together by presenting a network architecture, the CentralNet, con-
sisting of a series of satellite deep CNN, to process each modality independently,
connected by an additional central network dedicated to the projection of the fea-
tures coming from different modalities into the same common space. While each
satellite network proceeds independently each other, for each layer, the feature maps
of the satellite networks are weighted and used as input for the corresponding layer
of the central CNN. The central CNN automatically identifies the best levels for
fusing information from satellite networks and how these levels should be combined.
The output of the central network is used as the output of the process. The weights
used in each layer are optimized during trained and fixed.

Though the idea of fusing the contribution of single modalities, layer by layer, is
of great inspiration, the previous architecture has some limitations: 1) the weighting
parameters, being trainable, are not representative of case-specific details; 2) as a
consequence of point 1, the contribution of each modality in each layer remains fixed;
3) the specificity of the output of satellite CNN are excluded from the final decision;
4) as a consequence of point 3, satellite CNN are not influenced by the contribution
of the others; 5) it is impossible to evaluate, in a case-specific way, the contribution
of each modality to the whole decision process. If solved, this last point would be
particularly interesting for two reasons: a) to improve network transparency; b)
to ascertain the real contribution of a given modality to the process. Regarding
the last point b), in fact, it is important to remark that in many multiple imaging
source problems, for example medical imaging [245], the potential contribution of
each imaging source to the interpretation process is not always well understood and
it is itself a subject of study [115]. Recently proposed methods [246, 247| have
been presented to balance inter-modal fusion and intra-modal processing either by
dynamically exchanging channels between sub-networks of different modalities [246]
or by introducing asymmetric multi-layer fusion. These methods have contributed
to improve performance, but the above limitations remain.

Our paper is inspired by the, apparently contrasting, situations of maintaining
dense the network and, in the same time, tend to reduce the effects of redundancy, if
not necessary. In fact, if from one side, it is necessary to push toward dense structures
for transferring information from surface layers to deep ones, from the other side,
a smart way is required to reward "active" feature maps and, proportionally, to
attenuate the "inactive" ones.

We propose a network architecture whose aim is to enlarge the number of features
from multiple-source imaging by stratifying copies of the network (branches), one
for each source, in the orthogonal direction with respect to the network depth. In

the same time, we create bridges across branches, in the corresponding layers, to re-
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Figure 7.3: Sketch of a Wy calculation/application to the S feature maps of a given
layer [ of Star-Net. The feature map values of a given branch k are first summed
together (circle), then the resulting value is divided by the sum of the sum of the
feature map values of all the S feature maps (red triangle) and, finally, the resulting

value is used as a multiplier for the current feature map k.

distribute the weights of the feature maps, by increasing those of active feature maps
while reducing those of inactive ones, in run time. In this way, dynamic weights are

obtained which are case and source specific.
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Figure 7.4: Star-Net scores (red line) compared an early fusion U-Net, EF-U-Net, for
the same scores (gray line). Score labels indicate (in a clock-wise order from the top):
Sensitivity (Sens), Objective Sensitivity (OSens), True Positive Rate (TPR), Accu-
racy (ACC), Positive Predicted Value (PPV), Objective Positive Predicted Value
(OPPV), Correct Detection Ratio (CD), global Dice (Dice), Image-specific Dice
(Image Dice), Intersection Over Union (IoU), F1, Boundary F1 (BF) and Pearson
Correlation Coefficient (PCC). The scores are defined elsewhere [1, 2, 3|
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Image #20 Image #100 Image #180

Star-Net T2 T1 PD Flair

Ground Truth

Figure 7.6: Images corresponding to the points indicated with red crosses in Fig.7.5
(in columns). Rows indicate the imaging modalities (rows 1-4), Star-Net segmen-
tation (row 5) and the Ground truth (row 6). In the last two rows, red patches
corresponds to MS lesions, yellow patches corresponds to 'uncertain’ lesions and the

background has no color associated.
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7.3 Proposed Architecture

Star-Net, whose longitudinal architecture is shown in Fig.7.2; uses a link of several
parallel CNN (branches or paths), one for each source, in which the connecting part
is constituted by weighting normalizers (Wy), located at the end of each layer, in
which balancing weights are calculated and used to reward the active branches and
to penalize, proportionally, inactive ones (the global weight to be distributed is 1).
The normalized output of a layer is passed to the following layer and connected to
the corresponding decoder through a skip connection. The process of feature maps
re-balance, at a given layer [, is sketched in Fig.7.3. In details, let x; be the output
of the I'" layer. Typically, in CNN x; is obtained from the output of the previous
layer x;_; through a mapping operator H; consisting in a convolution followed by

regularization and non-linear activation:
X = Hl(Xl—l)‘ (71)

In Star-Net, the feature map of the branch k™ of the I*" layer, x;;, is multiplied
by a normalizing weight (W, ,), specific for the branch k in the layer [, before it is
passed to the (I 4+ 1)™ layer, as follows:

Xk = WNM * Xkl (7-2)

where

Zi Tl
S

The " index extends to all the features composing the current feature map xj;

Wy, = (7.3)

(Fig.7.3). The final step in Star-Net is used to fuse the final feature maps of all

satellite networks though the following additional weighing average operator:

S
Xfin = Y (Wi i * Xk fin) (7.4)

k=1
where Wy, ... are defined as in Eq.7.3 for the final layer fin and xy;, represents the
weighted average of the feature maps allowing to all the S branches and, for this
reason, is no more dependent on a specific branch k.

The coefficients Wy, , and Wy, .. are dynamically defined and are not subject
to training. For our purposes, this is desirable because, by performing a case-specific
weight re-balance, it allows a case-specific optimization of the contributions of each
source. In Fig.7.2, U-Net [248] are used as satellite networks, the same necessary

for the segmentation experiments described in Section 7.4.
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Layer | Flair Branch | PD Branch | T1 Branch | T2 Branch
L1 28% + 4% 25% + 2% 27% £ 8% | 20% + 2%
L2 18% + 2% 26% + 2% 26% £+ 5% | 30% + 5%
L3 34% + 4% 17% + 2% 25% £ 2% | 24% + 2%
WA 20% + 2% 9% + 3% 38% £ 9% | 33% + 5%

Average 25% 19% 29% 27%

Table 7.1: Relative activation presented in Fig.7.5, averaged along the horizontal
directions (images) and represented in percentage (mean and standard deviation are
shown). The last row represents the average of the columns (standard deviation is

not considered).

7.4 Experiments

Since we were interested in solving a segmentation problem, the CNN used for
the branches of Star-Net were 4 U-Net (one for each imaging modality). The En-
coder/Decoder depth of the U-Net was 3. The Encoders were composed by a series
of Convolutional Layers (filters size 3*3, stride [1, 1|), Batch-Normalization Lay-
ers and ReLU Layers (the term H; in Eq.7.1). The Decoders consisted of a series
of Convolutional Layers (filters size 3*3, stride [1, 1|), Transposed Convolutional
Layers (filters size 2*2, stride |2, 2]) Batch-Normalization Layers and ReLU Layers.
The size of the data structure representing a single instance was 256*256*4 (256*256
were the dimensions of each image and 4 was the number of modalities). Since each
satellite network had 7.7 millions of parameters, Star-Net resulted in 30.8 millions
of parameters. Adam Optimizer and mini batch size of 4 were used for training,
with the Cross Entropy as loss function.

The experiments were performed with the Deep Learning Toolbox of Matlab
2021a on a computer with the following characteristics: 1 CPU AMD Ryzen 5
3600x, 2 GPUs Nvidia 2080 Super, RAM 32 GB, 1 TB of SSD and 2 TB of HDD.

A Bayesian approach was used to optimize the hyper-parameter setting (Starting
Learning Rate, L2-Regularization and Class Balancing) [217]. Before final train-
ing, 30 small training attempts (10 epochs each) were executed using the hyper-
parameters suggested by the Bayesian function. Then, the best hyper-parameter
configuration was chosen and used for the final training (50 epochs).

With the proposed architecture, our principal focus is not to obtain the best
performance but to demonstrate its feasibility to exploit the case-dependent rela-
tionships between sources in different layers and to gather information regarding
how and how much each source contributes to the process. As far as the previous

characteristics are really innovative and peculiar of Star-Net, the comparison with
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other existing architectures was impossible on these. However, to give an idea of
Star-Net performance and to demonstrate it is trainable and suitable for the pro-
posed segmentation task, we show a comparison, both in terms of training speed
and performance, with an U-Net in which early fusion was adopted between the four
imaging modalities (we call it EF-U-Net to distinguish it from the U-Net used in
Star-Net but it has the same structure except the input).

Regarding training, Star-Net converged faster than EF-U-Net. In fact, the
Bayesian method found the best hyper-parameter configuration after 15 attempts
while EF-U-Net found its best after 27" attempts. Further, in the final training,
Star-Net reached the maximum accuracy after 34 epochs while EF-U-Net after 42
epochs. This confirms the hypothesis that Star-Net, bein structured to maintain
the specificity of the modalities while re-defining their weight according to a global
vision, allows to converge faster than EF-U-Net.

After training, Star-Net and EF-U-net were tested on the final data set and
results were compared with the ground-truth through a set of metric scores [3] whose
values, averaged for the whole test data set, are summarized in Fig. 7.4. Though the
essence of these results was to demonstrate that Star-Net is trainable and coherent
with the assigned task, they also demonstrate that Star-Net is effective.

In order to evaluate the image-specific contribution of each modality to the task,
we calculated the activation contribution of each modality in each layer of the satel-
lite networks and also in the weighted averaging layer: the values for 195 images of
a complete 3D MRI examination are shown in Fig.7.5. Results are very interesting:
the contribution of each modality is strongly image-dependent and layer-dependent.
In particular: for the extreme images (close to the neck and to the top of the head),
T1-w is stronger than the others in layer 1 and in the weighted average layer, T2-w
outperforms the others in Layer 2, and FLAIR is the best in layer 3; for the central
images (the middle of the brain), FLAIR is the best in layers 1 and 3, in layer 2 the
main contribution is shared among T1-w, T2-w and PD, and T2-w overcomes the
others in the weighted average layer. This confirms that the run-time calculation of
the weighting parameters is important, being the role of different modalities greatly
dependent on the images. By using the proposed run time strategy, case-specific
variations can be captured and exploited and, most important, it allows to "read"
inside the network and to better understand what is occurring in its stages (network
transparency).

To give a visual idea of Star-Net behavior, Fig.7.6 reports three sample images of
the data set in Fig.7.5: the 20", the 100" and the 180™ of the series. The Star-Net
segmentation is in good agreement with the ground truth, except some false positive
in the yellow class ("uncertainty").

Data of Fig. 7.5 have been also averaged along the image direction and reported,
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in percentage, in Table 7.1. These results confirm that the effects of each modality
is layer-dependent and that a given modality can be very active in one layer, turned
off in another and active again in a following. A further interesting aspect is that
some modalities (FLAIR, T1-w and T2-w) are in general more active than PD.
This information is important to ascertain the effectiveness of the contribution of a
modality with respect to the others. In particular for medical imaging, the possibility
of eliminating some modality could greatly contribute to reduce the duration of the
examination, to improve patient comfort and to optimize the usage of the imaging

equipment [115].

7.5 Discussion

Among the proposed CNN architectures for dealing the problem of multiple-source
computer vision, Star-Net represents an innovative evolution because it allows to
modulate the single contributions of a series of satellite networks, each associated
to a specific source, through a central unit composed by layer-dependent weighted
normalizers. The contributions of the satellite CNN are weighted averaged, in a late
fusion modality, before an unique and final response is collected.

Star-Net peculiarities are that: its central unit is not a CNN, it has not trainable
parameters and it is light (the number of weights used inside it are S - L, where S
is the number of imaging sources and L is the number of layers composing each
branch); the parameters are calculated run-time and they are case-specific; it al-
lows to evaluate the contribution of each source in each layer and to study how and
how much the values of the central weights change as a function of the analyzed
images. This last aspect, in particular, could be used both to evaluate the contri-
bution of each single source to the process and to improve network readability and
transparency.

The reported experiments confirm that the performance are in line with classical
architectures used for early fusion multiple-source imaging, or slightly better, with
a good improvement in training speed. This improvement is mostly due to the fact
that Star-Net maintains separated the specific contributions of all modalities, while

re-modulating their weights according to the case-specific inter-modality interaction.
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Nowadays, Al is being demonstrated as one of the most promising solutions to
many real-life problems, including some important regarding medicine, and for this
reason many efforts are made to use it as much as possible.

Nonetheless, the trend is to use Al as a "black boz" because the word intelligence
mislead the developers making them thinking that with the minimum effort Al can
be capable to do everything.

We can put a lot of efforts to develop even more complex Al models, containing
more and more parameters, but this does not ensure a gain and, more important, it
does not prevent against failures.

To achieve the objective of being able to use Al extensively and safely for routine
activities, including clinical ones, it is necessary to take into account several aspects:
the quality and the numerosity of the data sets used for training the models, the
procedures for data labelling, the creation of consistent ground truths, noise removal,
data normalization, the treatment of uncertainty and the procedures and metrics to
evaluate the quality of the results.

In this thesis, we strongly highlighted these concepts and we discussed them
regarding to neurological MI, one of the most important fields in medicine. In
particular, we focused on the development of Al-based computer-aided analysis and
interpretation of EEG signals and MRI since we were interested to investigate the
brain functioning and diseases.

Our approach consisted to firstly look at the data and then think about Al model
design. Moreover, we studied the workflow of physicians and we tried to mimic it
through AI. Where it was needed, we extended this workflow to make it compatible
with AT models.

Regarding EEG signal, the first step before the analysis was artifact removal.
The proposed AI method presented in Chapter 1 is based on what physicians do:
convert the EEG signal in a more representative form (in this case the Topoplots)
and analyze it. The obtained results with the proposed Al-based model reached an
accuracy of about 98%. This made it possible to apply the method in a challenging
scenario: the analysis of weak and noisy EEG signals of infants affected by 3M
syndrome, presented in Chapter 2. Physicians who supervised the Al-based analysis
discovered, from the artificial model, new ways to read the obtained results and they
were capable to transfer these findings to clinical practice.

Regarding MR images, the development of Al models was even more challeng-
ing. We focused on MR images of patients affected by multiple sclerosis and this
allowed us to deeply investigate the behavior of radiologists and consequentially to
understand several barriers that limit the performance of Al models. Firstly, in
Chapter 3 we discussed the challenge issue regarding the ground truth generation,

being radiologists often at odds on how to segment the data (inter-raters variabil-
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ity). To mitigate this problem, we proposed a method for modeling the uncertainty.
Afterwards, in Chapter 4 we studied the effects of MRI variability on the training
process of Al models. Physicians, even with a lot of effort and by recurring to their
long experience, can adapt themselves to this variability but for AI models it could
be impractical. For this reason, we proposed some guidelines and we applied them
for the training of a benchmark framework of AI models for the segmentation of MS
lesions. The results showed a consistent performance improvement of 15%.

To further mitigate the variability of the amplitude of MRI, in Chapter 5 we
proposed a Local Contrast Normalization algorithm. Results showed that the am-
plitude shift was almost completely corrected. In this way we reached to make Al
models independent of MRI scanners and imaging variability.

In Chapter 6 we designed our own framework for MS lesions segmentation. Com-
pared to the one used in Chapter 4, which analyzed patches of the images, our frame-
work analyzed the whole image in order to include into the model the information
regarding the position of the lesions with respect to the other brain structures and,
hence, to reduce outliers. To this aim, we also introduced the information regarding
the three views of the 3D MRI model: axial, coronal and sagittal views. In this way,
our model was capable to mimic the radiologist behaviour. Moreover, we made the
proposed Al model capable to deal with uncertainty. The obtained results showed
that our method overcame several state of art methods and, to a deep comparison
of the proposed framework with the MRI labelled by 7 radiologists, they proved
that our framework was indistinguishable from human raters (it passed the Touring
test). The other important implicit result we obtained was the demonstration that
just a single imaging modality was sufficient to perform identification/segmentation
of MS lesions from MRI. In order to check this results, in Chapter 7 we proposed
a new CNN architecture capable to contain the whole set of imaging modalities
and to study the effects that each one has on the MS lesion segmentation. The
results conformed that the combination of multiple MRI modalities could not imply
an effective gain in the interpretation process either because some modalities could
contain redundant information or, worse, could negatively influence the others. The
information we gathered from the proposed Al-based model could be extremely use-
ful to radiologists for redefining the MRI acquisition protocols used for MS and,
more important, to reduce the stress for the patients, by lowering the acquisition
time.

Another aspect that we want to underline is that all the proposed architectures
had one common design strategy: the use of an ensemble of Al models.

This approach has demonstrated several technical advantages:

e it makes easy to deal with small models
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e it makes the proposed frameworks easy to be scaled.

In conclusion, the results demonstrated that it is possible to develop high per-
formances Al frameworks for supporting doctors and researchers with augmented
information. This thesis underlined the importance of understanding the context of
the problem first, in order to simplify the design of robust AI models that fit it well.

Future developments will regard the generalization of the proposed strategies to
cope with different diseases or with different applications of MI. Particular attention
will be paid to the optimization of the models and to understand the processes
underlying their behaviour. To this aim, specific strategies for checking the deep
structures of the proposed architectures will be studied. In this way, besides model
optimization, it would be possible to get the functional relationships among the
features generating from the model and use them to improve human knowledge (a

sort of inverse transfer learning).
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