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Abstract 

Variability and uncertainty often strongly affect the industrial environment. When this 

happens, it is impossible to neglect uncertainty, ensuring that this does not lead to incorrect 

decisions and wrong estimation of the inherent technical and economic risk. Although 

variability and uncertainty concepts have often been treated simultaneously with indistinct 

methods, they differ. Indeed, uncertainty may often describe something unknown, like 

unperfect knowledge of a correlation, whereas variability is the behaviour of random 

variables within time and space, like changes in market demand. However, when epistemic 

and aleatory uncertainty are considered, variability is also. 

Industrial equipment, components, and systems often operate under conditions of deep 

uncertainty and variable operating conditions. However, they are usually designed based on 

nominal conditions, neglecting sources of uncertainty. Traditional design methods 

commonly assume constant process conditions and known values of the various design 

factors involved. However, this approach may fail to meet specifications when operational 

conditions change and can lead to inaccurate decisions and underestimation of inherent risk. 

Using safety factors or worst-case design can result in a conservative design, with 

components and equipment being oversized. 

Several papers available in the literature and commercial software attempt to address 

these issues by designing the system for nominal conditions and performing a sensitivity 

analysis, changing one element at a time. However, this approach fails to provide a complete 

picture of uncertainty propagation effects. Some other works involve only a limited number 

of sources of uncertainty, which leads to the neglect of interactions between different sources 

of uncertainty. When easy-to-design elements with known nominal conditions are under 

analysis, another commonly used approach is to design the system assuming nominal 

conditions and evaluate it under off-design cases. However, this is an iterative process that 

is only feasible if the number of off-design cases is tiny, and this approach is practical only 

when random variables do not strongly influence the system under design. Moreover, 

industrial systems may experience changing scenarios and requirements during their life 

cycle and be affected by random events and internal parameter uncertainty. Thus, assessing 

the performance of each design in all possible scenarios is very complex. 
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On the other hand, some authors have proposed frameworks to deal with uncertainty 

propagation and estimate the uncertainty's effect on the output variables, even if they do not 

often include final design optimization or counteractions to mitigate the uncertainty effects. 

Additionally, pieces of commercial software have been introduced, either for general 

purpose or suited for specific applications. Some authors proposed advanced methods to deal 

with uncertainty. However, these methods are often suited for specific applications. This 

work will briefly discuss the advantages and limitations of these approaches and software. 

In past years, the acronym VUCA has been introduced. The acronym VUCA stands for 

Volatility, Uncertainty, Complexity, and Ambiguity. Volatility describes rapid and 

unexpected challenges, uncertainty refers to the difficulty in predicting changes, complexity 

pertains to the number of key factors involved in decision-making, and ambiguity refers to 

a lack of certain information and the difficulty in obtaining it.  

In this VUCA context, starting from a literature analysis of the existing methods and 

framework, this research aims to propose a general framework that extends the existing ones, 

including, incorporating, and systematising already available methods and approaches, 

dealing with two different macro-problems: incorporating uncertainty during the design 

phases and performing accurate risk assessments under uncertainty. Uncertainty can be 

aleatoric if it is characterized by random changes in variables and processes that are not 

theoretically reducible or epistemic if it arises from a lack of knowledge that is theoretically 

reducible. This thesis also introduces a novel classification of uncertainty based on the 

variables’ behaviour. This new clustering technique aims to streamline selecting the proper 

methods to represent the uncertainty sources. 

The framework comprises different blocks, and each block can be activated or switched 

off to achieve different objectives. Although the objectives can be divided into several 

groups, two main clusters of goals are system design optimization and system performance 

evaluation. Firstly, it is necessary to identify the most significant sources of uncertainty in 

the system under analysis and develop models to capture the variability of input factors. 

Next, it is crucial to model the industrial system using analytical methods, surrogate models 

or discrete event simulations. Subsequently, the variable or variables of interest should be 

carefully selected, and their values can be evaluated by propagating the uncertainty through 

the system model. Finally, optimisation methods can be employed to optimise the variables 

of interest by adjusting design parameters, or the values of the variables of interest can be 
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manipulated to assess both technical and economic risks. This process may also involve 

planning and implementing corrective actions to mitigate the effects of uncertainty sources. 

Two case studies have been conducted to demonstrate the capabilities of the proposed 

general framework. The chosen application examples are emblematic for different reasons, 

and the industrial systems involved have never been studied from the uncertainty perspective 

in the proposed way.  

The first study involves the design optimisation of a shell and tube heat exchanger, along 

with a thorough analysis of the selection of the optimisation function. The optimisation 

function represents the variable of interest, and the discussion emphasises the importance of 

selecting the correct variable. Even if heat exchangers experiment changing conditions of 

the inlet fluids, to the best of our knowledge, shell and tube heat exchangers optimisation 

under uncertainty has not been previously proposed. Furthermore, the application of the 

framework allows us to compare the capabilities in dealing with the uncertainty of different 

existing design methods.  

The second case study involves the economic assessment of a wind power system. 

Although the interest in renewable energies and in particular in offshore wind power 

systems, has grown in recent years, and this type of systems is strongly affected by the 

variability of the renewable resources availability, to the best of our knowledge, there were 

no contributions that consider simultaneously several sources of uncertainty in their 

economic evaluation. Only a few papers consider some sources of uncertainty, but their 

strengths and limitations will be discussed in the following pages of this work. In this study, 

the economic evaluation of several sources of uncertainty has been carried out, and 

countermeasures are proposed to cope with uncertainty and mitigate risks. The complexity 

increases compared to the first case study as the application moves from a single piece of 

equipment to a process plant. 

Following the general framework approach in the application examples shows how this 

approach may lead to a more manageable selection of the proper methods to model, 

propagate, and assess the uncertainty effects while implementing optimization and 

counteraction for risk mitigation. 

The results of the general framework’s application to different case studies have shown 

the subsequent fact. The uncertainty should be considered to obtain a more effective design 

and assess the economic and technical risk adequately. Including several sources of 
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uncertainty dramatically increases the dispersion of the industrial system’s output, showing 

the impact of uncertainty sources on the system's performance. A technically and 

economically viable design obtained under deterministic conditions may be ineffective when 

uncertainty is included.  

In other words, this thesis proposes a general framework for designing and evaluating 

industrial systems under uncertainty using a full probabilistic evaluation method. 

Future work will apply this methodology to manufacturing plants and include real-time 

data to adapt mitigation instruments to different cases by selecting the most appropriate ones. 
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Introduction 

Motivation 

Industrial systems are subject to various sources of uncertainty, which can be better 

understood through different clustering techniques. Uncertainty can be divided into two 

groups: epistemic and aleatoric [1]. Epistemic uncertainty arises from imperfect knowledge 

of the relationships used to model the system and is often due to approximations and the 

imperfect capabilities of models to represent reality. Since epistemic uncertainty arises from 

a lack of knowledge, it is theoretically reducible by removing simplifications and 

assumptions of the models. Aleatoric uncertainty describes the inherent behaviour of 

variables and is not theoretically reducible, as it represents the randomness of events and 

system inputs. Another classification of uncertainty sources is the one that divides 

uncertainty sources into endogenous and exogenous [2]. Endogenous uncertainty arises 

within the system, such as failure events, while exogenous uncertainty comes from outside 

the system, such as demand variability. Proper classification of uncertainty sources is crucial 

in selecting the most appropriate method to model the variables that affect the performance 

of industrial systems. Since traditional classification methods often do not provide enough 

information to select the proper modelling method, this thesis proposes a new classification 

of sources of uncertainty. 

Numerous sources of uncertainty and variability significantly impact the design and 

assessment of industrial equipment, components, and systems. While this is widely 

recognized, considering easy-to-design elements with known nominal, traditional design and 

evaluation methods often rely on nominal conditions, thereby overlooking the sources of 

uncertainty. Another commonly used approach is to design the system under nominal 

conditions and evaluate it under off-design cases. This is an iterative process that may work, 

but it is only practical if the number of off-design cases is minimal. Furthermore, industrial 

systems may encounter changing scenarios and requirements during their life cycle and are 

affected by random events, as well as the uncertainty of their internal parameters. It is very 

complex to assess the performance of each design in all these possible scenarios. In several 
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papers, uncertainty is included by conducting a sensitivity analysis that involves changing 

one element at a time. However, this approach may fail to provide a complete understanding 

of the propagation effects of uncertainty. Other design methods incorporate only a few 

sources of uncertainty, neglecting interactions between different sources. 

Despite the considerations mentioned above, the literature still lacks the ability to address 

these problems [3]. To the best of our knowledge, one of the most important works in this 

field was conducted by de Rocquigny et al. [4]. The authors proposed a framework for 

quantitative uncertainty management from a practical perspective without resorting to 

complex formulations that would inhibit their applicability in a real context. Additionally, 

one of the authors attempted to extend the framework to cope with risk assessment problems 

[5]. Some advanced works have been carried out in recent years focused on specific 

engineering fields. For example, Zimmermann et al. [6] studied the solution space on which 

a system is guaranteed to deliver the required performance by analysing the tolerance to 

parameter variations, and Zimmermann et. al [7] proposed a method to design under 

uncertainty in the automotive industry. As reviewed in the next sections, software tools to 

cope with uncertainty have also been proposed in other fields, either for general purpose or 

specific applications. However, none of them consider the effects of epistemic and aleatoric 

uncertainty of several sources simultaneously. 

In the past years, the acronym VUCA (Volatility, Uncertainty, Complexity, Ambiguity) 

was introduced in literature. VUCA denotes an environment influenced by market volatility, 

weather fluctuations, customer behaviour, and other factors. It encompasses the uncertainty 

surrounding inputs, the complexity of multiple processes, variables, and parameters involved 

in designing and evaluating industrial systems, as well as the ambiguity inherent in 

representing reality through models. Nowadays, industrial designers and managers operate 

within a VUCA context, necessitating the proposal of new methods to navigate this dynamic 

environment. Introducing new methods and frameworks entails confronting various 

challenges, and the primary tasks can be summarized as follows. 

•  Identification and modelling of uncertainty sources. The most significant sources 

of uncertainty need to be identified and accurately represented. For instance, the 

uncertainty associated with wind speed can be modelled by employing Monte 

Carlo sampling from a predefined Weibull distribution. However, methods such 
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as Markov Chain or stochastic processes may be more suitable to account for 

state-to-state variations. 

• System modelling. The relationships employed to represent the system should be 

sufficiently solvable to minimise simulation time and detailed enough to mitigate 

the epistemic uncertainty stemming from their formulation. Additionally, certain 

systems may not lend themselves to analytical methods, necessitating the 

implementation of discrete event models. Validating such models can present a 

significant challenge. 

• Selection and modelling of variables of interest. The process of selecting the 

variable of interest is not a straightforward task. The analyst must consider 

whether it should be a technical or economic parameter, adding complexity to the 

decision-making process. Moreover, a single variable may not capture a system's 

complete performance, leading to many variables of interest, often in trade-offs. 

Finally, the chosen variable or variables of interest must be effectively 

represented to aid decision-makers. This can involve presenting them as a single 

value, a probability distribution, a graph, or other appropriate formats. 

• Selection of optimisation problems or risk mitigation tools. Following the 

assessment, the challenge lies in appropriately designing the optimisation 

problem, considering the necessary level of detail and computational cost. 

Alternatively, the challenge lies in determining the most appropriate risk 

mitigation tools to address the specific system being analysed. 

Starting from existing frameworks available in the literature, this thesis aims to provide a 

comprehensive framework for designing and evaluating industrial systems under 

uncertainty. Numerous existing methods available in literature often overlook uncertainty, 

but given the significance that it can have in certain cases, this thesis aims to suggest the 

inclusion of uncertainty by proposing tools for its more agile management. The proposed 

framework tackles the aforementioned issues by propagating uncertainty within a model of 

the industrial system and assessing its impact on the variable of interest. 

The specific objectives are: 

1. Introduce a novel classification of uncertainty that facilitates the selection of 

appropriate modelling methods for representing variable and process uncertainty. 
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2. Develop a general framework for incorporating uncertainty into the design and 

evaluation phases, extending the existing ones, including and systematising 

already proposed approaches and methods. 

3. Use the framework to investigate the need to incorporate uncertainty in the design 

and evaluation of industrial systems in order to avoid erroneous decisions. 

4. Implement the framework for equipment design optimisation under uncertainty 

to assess its effectiveness in optimisation problems. The selected equipment is a 

shell and tube heat exchanger. This way, the existing research gap in the design 

under uncertainty of shell and tube heat exchangers is addressed. 

5. Apply the framework to the performance evaluation under uncertainty of an 

industrial system. This application allows the author to evaluate the framework’s 

ability to assess an industrial plant's technical and economic performance. The 

selected case study is the uncertain assessment of investment in wind power 

plants. This way, the existing research gap in the economic evaluation of 

renewable energy systems is addressed. This is a more complex case study, 

wherein the number of uncertainty sources is increased.  

In summary, this thesis presents a comprehensive framework for designing and evaluating 

industrial systems under uncertainty, adopting a full probabilistic evaluation approach. 

Research questions 

Based on the problem outlined above, there are several research questions being 

investigated. Firstly, it is crucial to determine whether the additional modelling efforts 

required by the proposed general framework are justified in terms of improving the technical 

performance of a design or enabling a more accurate evaluation of economic investments. 

Specifically, the following research question is addressed: 

• Is there an economic and technical benefit in considering uncertainty during the 

design and evaluation of equipment and industrial plants? 

Next, the focus is on understanding which sources of uncertainty have a tangible impact 

on the performance of the system and the evaluation of economic performance. The 

following research question is addressed: 

• To what extent does incorporating uncertainty related to correlations, component 

failures, disruptive events, and similar elements in a probabilistic evaluation 
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method impact the performance of the system or the economic evaluation of the 

project? 

Lastly, the objective is to determine whether employing a probabilistic evaluation method 

is essential to avoid making incorrect decisions resulting from oversimplified evaluation 

processes and erroneous assumptions. The following research question is addressed: 

• In various case studies, if a project is deemed cost-effective when evaluated using 

a deterministic scenario, does it still maintain cost-effectiveness when assessed 

using fully probabilistic evaluation methods?

Outline of the Thesis 

The outline can be divided into three parts. 

1. This thesis focuses on the several aspects of designing and evaluating an industrial 

system under uncertainty. For that reason, the first part involves a literature review 

of the methods, approaches and works that address the different elements of the 

procedure. Three chapters are provided to describe these items. 

a. Chapter 1 analyses the literature on the uncertainty classification and the 

uncertainty modelling methods. Indeed, in the first part of the chapter, a 

brief description of the commonly adopted clustering methods of 

uncertainty sources is provided. In particular, epistemic and aleatory, 

appearance and effect, endogenous and exogenous, and controllable and 

uncontrollable clustering approaches are given. The second part of the 

chapter is focused on the uncertainty modelling methods. The following 

approaches are summarised: probability theory, Bayesian theory, 

Dempster-Shafer theory, possibility theory, interval analysis, stochastic 

processes, approaches for continuous variables, autoregressive models, 

scenario building and planning, and info-gap decision theory. Finally, 

some suggestions on the use of methods in practice are provided. 

b. Chapter 2 focuses on the system modelling and uncertainty propagation 

methods. There are mainly three different approaches for representing 

industrial systems: analytical, simulation, and surrogate models. Each 

approach has its limitations and advantages, and a discussion of them is 

used to highlight when one method is preferred over another. Therefore, 
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some widely adopted uncertainty propagation methods are introduced. 

They are crucial to link the input of the industrial system, also the 

uncertain ones, to the output. Deterministic, analytical, sampling-based 

and sensitivity analysis approaches are described in brief to underline that 

some methods cannot be used with some uncertainty modelling 

approaches or some system models because of the incompatibility of the 

algebras involved. 

c. Chapter 3 discusses the problems of designing and evaluating under 

uncertainty. Some common issues are pointed out to share the similarities 

across different problems. Furthermore, some common methods to design 

under uncertainty are briefly exposed, i.e., robust design, reliability-based 

design, flexibility-based design, reconfigurability-based design, 

resilience-based design, and the real option theory. Some strategies for 

design optimisation and some design-based risk mitigation strategies are 

discussed. Subsequently, the risk assessment problem is introduced, and 

the literature-available uncertainty quantification frameworks, 

commercial software for uncertainty quantification, and risk mitigation 

strategies are analysed. Although some approaches to deal with 

uncertainty exist, the analysis of the literature allows the author to 

understand that a comprehensive general framework for optimising and 

evaluating under uncertainty is not already available. Moreover, the 

available approaches often focus on some specific sources of uncertainty, 

some specific methods for modelling the several items involved or suited 

for specific problems. This chapter poses the basis to fill the found 

literature gaps. 

2. The second part of this thesis is composed of Chapter 4. This chapter proposes a 

general framework for designing and evaluating industrial systems under 

uncertainty. The framework comes from the systematisation of the reviewed 

literature. It aims to include as many as possible uncertainty and system modelling 

approaches, uncertainty propagation methods, risk assessment methods, 

optimisation methods, and risk mitigation strategies to extend its applicability 

fields. Additionally, the chapter proposes a new uncertainty classification method 
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based on the variables' behaviour over time, aiming to simplify the selection 

process of the methods to model and propagate the uncertainty. This new method 

comprises four clusters of uncertainty: Type I, II, III, and IV. Type I represents 

random variation over time, Type II refers to uncertainty around a constant value, 

Type III depicts random events, and Type IV represents random discontinuities. 

Since the framework's structure is modular, and different goals can be achieved, 

the single items composing the framework are described. At the end of the chapter, 

some considerations are provided. 

3. The third part of the thesis is focused on the case studies. These case studies are 

used to demonstrate the capability of the proposed general framework and answer 

the above research questions. Additionally, the complexity of the modelled 

industrial system, in terms of parameters and variables involved, increases as it 

passes from the first to the second case study. Furthermore, since there is a 

substantial difference between the two considered industrial systems, the 

generality of the framework is shown. Two chapters involve the case studies' 

presentation and discussion. 

a. Chapter 5 focuses on shell and tube heat exchanger design optimisation. 

This case study analyses the framework behaviour when the optimisation 

goal is performed. The literature review highlights the absence of works 

focused on optimising heat exchangers under uncertainty, and this gap is 

addressed in this thesis. The chapter is divided into two parts. The first one 

discusses the importance of selecting the proper variables of interest to 

perform a useful risk assessment procedure. The role of the objective 

functions for optimisation purposes has been analysed. The results 

highlighted that economic functions are preferrable. The second part 

adapts the general framework to the shell and tube heat exchanger case 

and analyses the design procedure under uncertainty of this type of 

equipment. Both the epistemic uncertainty of involved design formulas 

and parameters and the aleatory uncertainty of fluids mass flow rates and 

temperature are included. Several approaches are analysed, and the 

relevance of considering the uncertainty and the variability of the 

operating conditions during the design phase is demonstrated. Indeed, the 
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traditional design approaches seemed incapable of coping with 

uncertainty. Additionally, the above research questions are addressed from 

the perspective of this industrial field. 

b. Chapter 6 focuses on the evaluation of the technical and economic 

performance of offshore wind power plants. This case study analyses the 

framework behaviour when the evaluation goal is performed. 

Additionally, it assesses the relevance of scenario analysis during the 

economic evaluation under uncertainty. The literature review underlines 

the lack of contributions for this specific type of industrial system. 

Moreover, the uncertainty of the availability of renewable resources is 

crucial for determining the vital role of including uncertainty in the 

analysis of renewable energy systems. For that reason, in this chapter, the 

general framework is adapted to evaluate the performance of offshore 

wind power plants, considering several sources of uncertainty, including 

scenarios’ variables. This way, the impact of wind farms is assessed. Both 

the modelling of the system and the market environment are performed. 

Furthermore, financial derivatives are included to mitigate the market risk 

of this industrial initiative. This case study demonstrates that uncertainty 

plays a crucial role in evaluating the considered industrial systems and 

helps address the above research questions from the perspective of this 

industrial field. 

Eventually, the conclusion of this thesis is provided. This conclusion pertains to the main 

contribution of the proposed approach, the limitations of the conducted study, and the future 

development of the work. The future works section points out the research question that 

should be investigated. 

Parts of this thesis have been developed starting from the ideas and with the support and 

advice of Professor Antonio Casimiro Caputo [8]. 

List of the papers 

The studies conducted for this thesis produced six papers. Three of them have been 

published in peer-reviewed international journals, one has been published in the proceedings 

of a conference, and two of them are currently under review. The papers are listed below. 
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Uncertainty classification and modelling 

Uncertainty and variability are often used as synonymous. However, although variability 

and uncertainty concepts have often been treated simultaneously with indistinct methods, 

they differ. Indeed, uncertainty may often describe something unknown, like imperfect 

knowledge of a correlation or predictability about an outcome. On the contrary, variability 

is related to the differences, fluctuations and variations within a system or dataset and refers 

to the spread or diversity of possible outcomes. Indeed, the variability can represent the 

behaviour of random variables within time and space, like changes in market demand. 

However, when epistemic and aleatory uncertainty are considered, variability is also because 

aleatory uncertainty and variability are both about a variable's randomness. For these 

reasons, variability is considered and treated like aleatory uncertainty in this thesis.  

This chapter will provide an overview of uncertainty classification and modelling. 

Understanding the type of uncertainty and adopting the proper classification approach is 

crucial to selecting the most appropriate model for the uncertainty sources representation. 

Three different classifications will be discussed. The most widely used is the division into 

epistemic and aleatoric. However, the analysis of the effects and probability and the grouping 

within endogenous and exogenous, with a focus on controllable and uncontrollable sources 

of uncertainty, will be analysed. 

After the classification, a review of the methods and approaches that can be used to model 

the uncertainty sources will be provided, and the uncertainty effects on the evaluation and 

design of the system will be examined. 

1.1 Uncertainty classification 

Industrial systems are affected by several sources of uncertainty. The uncertainty can 

arise from numerous factors, such as material properties, manufacturing tolerances, applied 

loads, market conditions, technological advancements, customer requirements, correlation 

used to represent the system, failures events, availability of the resources, disruptive events, 

and so on [9, 10]. 
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1.1.1 Epistemic and aleatory uncertainty 

Uncertainty is often divided into aleatoric uncertainty and epistemic uncertainty [11]. 

• Epistemic uncertainty. It is the uncertainty theoretically reducible, arising from 

the lack of information and knowledge [12, 13]. For example, it can result from 

the small size of a sample used to estimate a probability distribution or from 

imperfect knowledge of the mathematical relationships employed to construct a 

model. Consequently, this uncertainty arises from the combination of 

uncertainties in the data and uncertainties in the model description. This 

uncertainty is the inadequate understanding of the underlying processes, 

incomplete knowledge of the phenomena, or imprecise evaluation of the related 

characteristics [14]. 

• Aleatoric uncertainty. Under this category, we have the non-theoretically 

reducible uncertainty, which is characteristic of phenomena and processes. For 

instance, it encompasses uncertainties such as the variability in product demand 

over time, the seasonal temperature trends, or the electricity consumption of a tool 

within a fixed time interval [15]. 

These two groups of uncertainty have a tendency to overlap and blend together, resulting 

in effects that a single model cannot adequately represent. Therefore, to address this issue, 

only when these two types of uncertainty overlap each other uncertainty analysis can be 

divided into two levels  [4]. 

1. I level: aleatory uncertainty. 

2. II level: epistemic uncertainty. 

To provide further clarification, let us consider a hypothetical aleatoric variable, denoted 

as x, which is dependent on an array X consisting of all the input variables of a selected 

system model. The variable x is described by a probability density function (pdf(x)), which 

represents the aleatory uncertainty. The pdf is assumed to follow a normal distribution 

characterized by its mean and standard deviation. However, these two parameters are not 

known a priori and need to be estimated through the analysis conducted by an analyst. 

Therefore, even these two elements (mean and standard deviation) are subject to uncertainty, 

but of the II level (1.1). 
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 𝑝𝑑𝑓(𝑥) = 𝑁𝑂𝑅𝑀(𝑈𝑁𝐼𝐹(𝑎, 𝑏), 𝑁𝑂𝑅𝑀(𝑐, 𝑑)) (1.1) 

 

Where a and b are the boundary of the uniform distribution respectively, representing the 

mean of pdf(x), while c and d represent the mean and the standard deviation of the normal 

distribution, which describes the standard deviation of pdf(x). 

The aleatoric, or aleatory, uncertainty cannot be reduced in any case. Indeed, increasing 

the number of experiments does not shrink because it is attributed to the inherent randomness 

of real processes, parameters, and the physical world. The division of uncertainty into 

epistemic and aleatory resides mainly in the way that they can be treated. While the latter 

has often been modelled like the quantity's actual value is within an interval, the former has 

often been described using classical probabilistic frameworks [16]. 

1.1.2 Appearance and effect of the uncertainty 

In the same way, it is possible to analyse the appearance and effect of the uncertainty. 

From this perspective, uncertainty is divided into stochastic uncertainty, incertitude, and 

ignorance [10]. Starting from the analysis of process property or the structure’s function and 

state of the system, the first question to answer is whether the effects of this uncertainty are 

known or not. If they are quantifiable, a classical probabilistic framework is established, and 

if the probability density function is certain, we can talk of stochastic uncertainty, otherwise 

about incertitude (e.g., tolerances). When stochastic uncertainty is on the table, the analysts 

often resort to known probability distributions, whereas when incertitude is identified, they 

often resort to known intervals. Instead, when the effects of uncertainty are not known, one 

can talk about ignorance and assume a fixed value in some way. 

Another adopted approach that follows the division by effect and quantification to 

uncertainty clustering is the grouping by considering the elements with which the uncertainty 

is associated. With this approach, the uncertainty is classified by data, component, and 

structure, and it is motivated by system design [10].  Data uncertainty can be, as previously 

said, modelled with a known distribution, unknown distribution, and ignored data 

uncertainty if it is stochastic, incertitude or ignorance, respectively. Model uncertainty can 

be represented by resorting to joint probability distributions, unknown distribution and 

interval analysis, or ignored model confidence and prediction interval if it is stochastic, 

incertitude or ignorance. Finally, if the uncertainty is related to the system's structure under 

analysis, only ignorance can be modelled using unexplored design space [10]. 
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1.1.3 Endogenous and exogenous uncertainty 

It can also be useful to understand from where the uncertainty comes.  Two clusters can 

be identified [2, 17] (Figure 1.1). 

• Endogenous uncertainty. This type of uncertainty pertains to the inherent 

variability within the product or system. While it is possible to reduce this 

uncertainty during the design phase, there is still a plausible possibility that not 

all relationships and relevant interactions have been accurately modelled. 

• Exogenous uncertainty. This type of uncertainty originates from the external 

environment outside the plant or product. For example, an item may be designed 

for a specific application under predetermined conditions of use. However, it may 

end up being utilized in a different environment altogether, leading to different 

outcomes. Other sources of similar uncertainties include market uncertainties, 

demand uncertainties, and so on. 

 

 

Figure 1.1 Endogenous and exogenous uncertainty 
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Endogenous uncertainty is often related to the product or corporate contexts. The 

development process of a product should always be considered a component of technical 

risk due to the novelty of the design or at least the design process itself in the firm context. 

Even if the potential sources of uncertainty are assessed at the beginning of the design 

process, they are usually solved during the design process. In any case, companies very often 

use the collected best practices they have already used for other products, but all products 

are different; thus, a solution that works for one element could not work for another. 

Moreover, the uncertain interactions between the components of a product can propagate 

failures, affecting the product's reliability over its life cycle. Instead, the corporate context 

refers to the plant and the firm's environment. The supply chain and firm’s assets issues can 

strongly influence the product's financial viability, and so can the company's economic 

sustainability. 

Exogenous uncertainty is related to the use context, the markets, and the political and 

cultural context. The sources of uncertainty grouped in this cluster are not in the company's 

control. The use context is linked to the different ways and environments in which the 

product can be used. For instance, the same tool can be used on a mountain and at sea, so it 

may be able to operate in several conditions. Additionally, the uncertainty arises also from 

the end users, which are different. The market uncertainty is due to the enormous geographic 

areas in which the products are sold. These geographic areas have several differences and 

currencies with no constant exchange rates. Finally,  the political and cultural context 

influences the market as well as the consumer or more. Changing regulatory policies, e.g., 

subsidies, taxation, or economic legislation, can determine the non-economic viability of a 

product in a country. Moreover, changes in the product design can be required. Additionally, 

introducing score indexes that classify an item's safety or healthiness can strongly reduce or 

increase its penetration in the local market.   

1.1.4 Controllable and uncontrollable uncertainty 

Since endogenous and exogenous uncertainty sources could overlap, losing their 

independence, the uncertainty can be classified according to [18]. As depicted in Figure 1.2, 

the engineering activity can directly influence some sources and none others. 
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Figure 1.2 Layered uncertainty representation [2] 
 

However, when the design process cannot influence them, counteract actions against the 

effects of uncertainty can be done. 

Technical and project uncertainty corresponds to construction, operations, partner ally, 

technical, and project management risks. The industry and competition are related to the 

industry evolution, the demand, the supply conditions, and the infrastructure risk. The 

country and fiscal uncertainty introduce the risk of political stability, terrorism, financial and 

economic stability and inflation, regulatory stability or intervention, contract enforcement, 

and legal stability. The market uncertainty represents the commodity prices, exchange rates, 

interest rates, and risk premiums. Finally, natural uncertainty is related to disruptive events 

that can damage industrial systems. 

The layers of uncertainty model present the capabilities of designers and management in 

mitigating risk or exploiting opportunities that uncertainty sources point out. The inner layers 

are highly influenceable, whereas the outer ones are uncontrollable. Indeed, a company can 

act directly on the products, equipment, and assets but cannot on the regulatory policy or 

natural events. Still, the management can consider insurance and financial products to 

mitigate the risk of the noncontrollable sources of uncertainty.  

As a result of the aforementioned considerations, the sources of uncertainty can be 

classified as controllable or uncontrollable. When the sources of uncertainty are controllable, 

it is possible to design systems that perform optimally across various scenarios. One 
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common approach to achieving this goal is to reduce tolerance intervals, thereby minimising 

the range of variability within which the system operates. 

1.2 Uncertainty modelling 

Numerous authors have proposed many methods to cope with the uncertainty modelling 

problem in the literature. In this section, with the aim to give a representative picture of the 

available techniques for modelling uncertainty, the main ones are described. 

Several approaches are suitable depending on the type of uncertainty and the level of 

adherence to reality required. Generally, methods for uncertainty modelling can be divided 

into two groups: formal approaches and practical approaches.  

Formal approaches, while capable of describing the behaviour of generic uncertain input 

variables, are challenging to use and implement and are mathematical or theoretical. On the 

one hand, they offer a comprehensive understanding of uncertainty; however, their high 

complexity in terms of theories and the time required for formulation and simulation 

significantly limit their adoption in productive firms. Moreover, in a probabilistic approach, 

uncertainty is characterized using probability distributions. However, in some instances, 

such as when limited data is available, it may be difficult to specify precise values for input 

distribution parameters, precise probability distributions, and dependencies between input 

parameters. In such situations, the probabilistic approach may not be effective, and 

alternative uncertainty handling theories have been developed to address these limitations. 

The formal approaches considered in this work are probability theory, Bayesian theory, 

Dempster-Shafer theory, possibility theory, interval analysis, and stochastic processes. 

Practical approaches are heuristic or empirical and primarily rely on data available in 

databases and expert judgments. They are relatively easy to implement but can be far from 

reality in certain cases. The practical approaches included in this work are methods for 

continuous variables, autoregressive models, scenario building and planning, and info-gap 

decision theory [2]. Although autoregressive models are formal with respect to their 

statistical foundation, they are often considered practical because of their application in real-

world scenarios for forecasting and understanding temporal data patterns. 

In the following, these methods will be reviewed without providing a detailed description 

or step-by-step instructions for the sake of brevity. 
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1.2.1 Probability theory 

From a traditional perspective, probability is the widely adopted tool to represent 

uncertainty in risk assessment and design under uncertainty [19]. This method's versatility 

resides in dealing with random aleatory uncertainty using experiments and subjective 

aleatory uncertainty by statistical analysis of surveys. 

From a frequentist perspective, probability is defined as “the fraction of times an event A 

occurs if the situation considered were repeated an infinite number of times. Taking a sample 

of repetitions of the situation, randomness causes the event A to occur a number of times 

and to not occur the rest of the times. Asymptotically, this process generates a fraction of 

successes, the “true” probability P(A). This uncertainty (i.e., variation) is sometimes 

referred to as aleatory uncertainty” [19]. 

Traditional probability theory is focused on assessing the belief that an event will occur 

by analysing random phenomena, resorting to experiments founded on trials and analysis to 

estimate the probability of an event starting from a statistical analysis [15]. Considering a 

discrete case and assuming that Ω is a sample space of the events Ai, which are subsets of Ω, 

the probability P must satisfy three properties: Normality (1.2), Nonnegativity (1.3), 

Additivity (1.4), and Self-duality (1.5). 

 

 P(Ω) = 1  (1.2) 

 P(𝐴) ≥ 0 (1.3) 

 
P(⋃𝐴𝑖

∞

𝑖=1

) =∑𝑃(𝐴𝑖)

∞

𝑖=1

 (1.4) 

 P(𝐴) = 1 − P(Ā) (1.5) 

 

In other words, the probability of the sample space is almost surely. The probability of a 

single event ranges between 0 and 1. If the events of the sample space are mutually exclusive, 

so if an event of the sample space occurs none of the others can, the union of the probability 

of the occurrence of all the events is equal to the sum of the single probability of occurrence 

of the single events. Finally, the probability of an event occurring and the probability of the 

same event not occurring must sum to one. 

In the continuous case, it is possible to define the Cumulative Distribution Function (F, 

1.6) of the random variable Y such as: 
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𝐹(𝑦) = 𝑃((−∞, 𝑦]) = 𝑃(𝑌 ≤ 𝑦) = ∫ 𝑝𝑦(𝑡)𝑑𝑡, ∀𝑦 ∈ Ω

𝑦

−∞

 (1.6) 

 

Figure 1.3 shows an example of a probability density function and its cumulative 

distribution. 

 

 

Figure 1.3 Probability density function and its cumulative distribution function 
 

The versatility of this method allows us to represent both aleatory and epistemic 

uncertainty. The assessment of the probability of occurrence of an event usually requires 

random experiments to deal with the natural variability. As a matter of fact, repeated 

experiments permit the computation of the frequency of a specific event, reaching an 

estimation of the actual probability. The higher the number of repetitions, the more accurate 

the probability estimation. 

Since it is not possible to perform an infinite number of experiments, the value of P(A) 

needs to be estimated by the relative frequency of occurrence of the event in the finite sample 

considered. The lack of knowledge about the actual probability is related to the epistemic 

uncertainty, as already specified in section 1.1.1.  

These techniques can accurately model potential events and the mechanics of complex 

systems in a highly realistic manner. However, utilizing these techniques often incurs a high 

computational cost for the model. In probability theory, uncertain variables are described by 

known probability density functions or cumulative distribution functions. 
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In the end, a possible procedure to model uncertainty sources with probability theory 

follows the subsequent steps. 

1. Identify uncertainty sources by determining the variables and factors that 

contribute to uncertainty. 

2. Associate a random variable to each uncertainty source. 

3. Define a probability distribution for each random variable by selecting the one 

that best represents the uncertainty characteristics. This step involves available 

data or assumptions based on the nature of the source to define the distribution’s 

parameters. 

4. Understand if there are relationships between different variables. Use correlations, 

conditional probabilities, and joint distributions if they have dependencies. 

The accuracy of the representation is related to the quality of data and the goodness of 

selected distributions. Moreover, using probability theory some uncertainties might not be 

fully captured. 

1.2.2 Bayesian theory  

The Bayesian theory gives a subjective interpretation of the probability that arises from 

an epistemic expression of uncertainty based on the knowledge of the assigner. In this view, 

the probability of an event is “the degree of belief of the assigner with regard to the 

occurrence of A. The probability can be assigned with reference to either betting or some 

standard event” [19]. 

Bayesian theory, rooted in probability theory, expresses probability as a measure of belief 

in an event. The fundamental tool of this theory is Bayes' theorem (1.6), initially introduced 

by Bayes [20], which establishes a connection between multiple events through conditional 

probabilities to draw inferences. To derive these estimations, it is crucial to possess prior 

knowledge or conduct experiments. Indeed, Bayesian theory is particularly suitable in 

scenarios where direct information about an event is lacking. It enables the description of 

the probability of an event based on prior knowledge and offers a framework for updating 

the probability of that event when new or additional evidence becomes available. 

 

 
𝑃(𝐴|𝐵) =

𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (1.6) 
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Where P(A|B) is the probability of event A if B is true, P(B|A) is the probability of event B 

if A occurred, and P(A) and P(B) are the probability of A and B to occur without any 

conditions, respectively. 

The relative frequency begot by randomness is considered as a chance to differentiate that 

from probability, which is linked to the epistemic uncertainty based on belief. Indeed, 

probability refers to the unknown value of a chance. This epistemic-based probability is 

often used to describe the uncertainty about the actual value of a relative frequency 

probability. In such a way, combining this approach with the frequentist approach, the 

epistemic and aleatory probability are simultaneously considered. 

This theory involves reasoning rather than random sampling, and it can be used to 

generate a probabilistic graphical model called Bayesian network. Using a directed acyclic 

graph, this graphical model depicts a group of random variables and their dependencies. For 

instance, the interdependencies of four events named A1, A2, A3, and A4 can be represented 

as shown in Figure 1.4. In such a network, the events A1 and A2 are independent, while A3 

is related to A1 and A2, and A4 is linked only to A2. 

 

 

Figure 1.4 Bayesian network example 
 

In the end, a possible procedure to model uncertainty sources with Bayesian theory 

follows the subsequent steps. 

1. Identify uncertainty sources by determining the variables and factors that 

contribute to uncertainty. 
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2. Assign an uncertain variable to each source of uncertainty and use assumptions, 

historical data, and available knowledge to define prior probability distribution 

for each uncertain variable. Then, associate beliefs on the possible values of 

variables. 

3. Collect evidence and observations about the uncertain variables. 

4. Use Bayes’ theorem to achieve posterior distribution using the evidence collected 

in step 3. 

5. Iterate the process if new evidence arises and update the beliefs to refine the 

uncertainty model. 

The model's goodness is related to priors, and their selection process is crucial and 

arduous, especially when poor data is available. 

1.2.3 Dempster-Shafer theory 

 Dempster-Shafer theory (DST) considers different sources’ evidence and combines them 

to achieve a degree of belief in an event occurrence by considering all the available evidence 

[15]. It is also known as evidence theory and encompasses the integration of diverse pieces 

of evidence from various sources to establish a degree of belief in an event. It is characterized 

by two fundamental concepts: belief and plausibility, which represent the lower and upper 

bounds, respectively, of a set of belief and plausibility distribution functions utilized to 

describe input uncertainty. In contrast to Bayesian theory, evidence theory does not 

necessitate the same assumptions or requirements [21, 22]. 

DST introduces a space of mass (m), another name for the degree of belief, which is 

represented by a belief function (1.7).  

 

 𝑚: 2𝑋 → [0,1] (1.7) 

 

X is the set of all possible states, and 2X is the set of all subsets of X, including the empty 

set. For a generic subset S that belongs to 2X, the mass of S (1.8) comes from all the evidence 

that supports S. 

 

 ∑ 𝑚(𝑆) = 1

𝑆∈2𝑋

 (1.8) 
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The Belief function (1.9) is the sum of all the masses of S, i.e. the evidence that supports 

S. In this sense, this is the lower bound of the set. 

 

 𝑏𝑒𝑙𝑖𝑒𝑓(𝑆) = ∑ 𝑚(𝑇)

𝑇|𝑇⊆𝑆

 (1.9) 

 

On the other hand, the Plausibility function (1.10) is the sum of all the masses of sets that 

intersect S, so all the evidence that partly or fully supports S. In this sense, this is the upper 

bound of the set. 

 𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑆) = ∑ 𝑚(𝑇)

𝑇|𝑇∩𝑆≠∅

 (1.10) 

 

Additionally, the two measures, i.e. the plausibility and belief functions, are related to 

each other according to (1.11). 

 

 𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑆) = 1 − 𝑏𝑒𝑙𝑖𝑒𝑓(𝑆) (1.11) 

 

As per the remark, the probability of a set S ϵ 2X is in the range between the value of belief 

and plausibility. 

Considering the mutually exclusive events A1, A2, and A3 for which a collection of 

evidence was made from experts and one of these events must happen, Table 1.1 is an 

example of how data can be presented. 

Table 1.1 Example of table that resumes data about a set of events according to Dempster-

Schafer theory 

Event Mass Belief Plausibility Range 

∅ 0 0 0 [0,0] 

A1 x1 x1 x2 [x1,x2] 

A2 y1 y1 y2 [y1,y2] 

A3 z1 z1 z2 [z1,z2] 

 

This theory plays a crucial role in combining different information to estimate the 

probability of an event. 
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In the end, a possible procedure to model uncertainty sources with Dempster-Shafer 

theory follows the subsequent steps. 

1. Identify the uncertainty sources and the related possible hypotheses and outcomes. 

2. Assign the belief level in each hypothesis using expert judgments, data, or 

statistical analysis. 

3. Use Dempster’s rule to combine the belief levels and/or mass function, 

considering the dependence or independence of the hypotheses. 

4. Use the mass functions obtained in step 3 to derive the belief and plausibility 

functions. 

This theory provides a more flexible representation of uncertainty than probability theory 

but can be complex and computationally expensive when numerous hypotheses are involved. 

1.2.4 Possibility theory 

 Fuzzy sets extend the concept of crisp sets expressing classes with no well-defined 

boundaries. Indeed, the transition between set members and non-members is gradual [15]. It 

can be defined as the degree of membership of every member in the universal set X with a 

value in the range [0,1]. 

Considering the fuzzy set A, its membership function (μA) is defined in (1.12). At the 

same time, in Figure 1.5, there is a graphical representation of a generic trapezoidal 

membership degree function of the think “abc” to the universal set X. 

 

 𝜇𝐴: 𝑋 → [0,1] (1.12) 

 

Resorting to fuzzy logic, fuzzy sets are handy for reducing the differences between human 

thinking about a set of data and their representation for including them in the decision 

process. 

Possibility theory is based on the notion of fuzzy sets. It is an alternative to probability 

theory and differs from the former by using a couple of set functions to describe a measure: 

the possibility and the necessity measures [23]. The probability is a measure of the frequency 

of event occurrence. On the other hand, the possibility is employed to quantify the 

significance or meaning of an event [24]. Probability distribution functions must sum up to 

1, whereas for possibility distributions, the highest values are set to 1. Consequently, the  
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Figure 1.5 Example of trapezoidal fuzzy set 

 

possibility can be considered as an upper bound on probability. The possibility distribution 

must satisfy three properties: normality (1.13), nonnegativity (1.14), and if the considered 

events Ai, which are a subset of the universe Ω are disjoint, the property of maximality (1.15).  

 

 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(Ω) = 1 (1.13) 

 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(∅) = 0 (1.14) 

 
𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (⋃𝐴𝑖

∞ 

𝑖=1

) =  max
1<𝑖<∞

𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝐴𝑖) (1.15) 

In the end, a possible procedure to model uncertainty sources with possibility theory 

follows the subsequent steps. 

1. Identify uncertainty sources by determining the variables and factors that 

contribute to uncertainty. 

2. Associate a possibility distribution to each variable. 

3. Define the possibility distribution for each variable to represent the possibility that 

the variable assumes a value of is within a range. 

4. Define the membership functions that refers about the degree of membership of 

elements in the fuzzy set. 

5. If multiple variables are involved combine the possibility measures. 

 a b c    

 x x x x 
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6. Use inference mechanisms to reason under uncertainty and apply operations. If 

possible, quantify the possibility measures numerically. Otherwise use qualitative 

values. 

1.2.5 Interval analysis  

Prosaically, the main difference between this approach and the probability approach is 

that the interval analysis works with ranges that define the values the variable can assume 

instead of working with random and uncertain variables. In this way, it is possible to 

calculate straightforwardly the upper and lower bound of the range of a function.  

An interval is defined as in 1.16. 

 

 [𝑎, 𝑏] = {𝑥 ∈ ℝ|𝑎 ≤ 𝑥 ≤ 𝑏} (1.16) 

 

It is widespread to use interval when it is needed to represent a quantity like a measure. 

For the sake of example, if the sensitivity of a measurement instrument is the nearest whole 

number. As a matter of fact, the interval that describes the quantity value will be xϵ[a,b], 

where a is equal to (x1-0.5) and b is equal to (x1+0.5). In Figure 1.6, the example interval is 

shown. The light red area is outside the interval, while the light blue area is inside the 

interval. 

 

 

Figure 1.6 Example of an interval 
 

     

 x 
y 

x   . x x x   . 

y 
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Intervals can be added, subtracted, multiplied, and divided [25]. Furthermore, generic 

functions can be applied to intervals, but some limitations appear for the dependency 

problem, which may lead to overestimating the resulting intervals. 

In the end, it is a branch of numerical analysis that enables us to calculate closed intervals 

for the precise values of integrals [26]. In interval analysis, the uncertain parameter is 

represented by a simple range, and a preference function is used to describe the desirability 

of utilizing different values within this range. 

Eventually, a possible procedure to model uncertainty sources with interval analysis 

follows the subsequent steps. 

1. Identify uncertainty sources by determining the variables and factors that 

contribute to uncertainty. 

2. Associate an interval to each variable to represent the range in which it may lie by 

defining the lower and upper bound of the range. 

3. Define and conduct arithmetic and logical operations on intervals, maintaining 

their uncertainty properties. 

4. Use the intervals to assess potential outcomes, accounting for dependencies 

between variables. 

Interval analysis is practical when dealing with uncertainty with bounded information and 

simplifies complex calculations, allowing the assessment of ranges of potential values for 

uncertain variables. 

1.2.6 Stochastic processes 

Stochastic processes are the probabilistic version of a dynamic system. As a matter of 

fact, without rigorous definitions, a stochastic process is a set of stochastic variables which 

represents the evolution of a random variable over time. In other words, they could be 

considered random variables which consider the time dimension. Each random variable of 

the stochastic process is associated with an element in the set called index set. The index set 

is the interpretation of time. 

From a practical perspective, this family of processes gives a picture of the time evolution 

of a random variable, and by reiterating the same process several times, we will obtain 

different time evolution. In fact, considering a generic time instant t, we can observe a 

probability density function of the values that the variable can assume. A single outcome of 
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a stochastic process is called sample function, thus a realization of the process. In other 

words, a sample function represents the process's trajectory or path. Additionally, the 

mathematical space of a stochastic process is called state space. The elements that reflect the 

several values that the process can take define this state space. Finally, the increment is the 

difference between two random variables that pertain to the same stochastic process. 

Stochastic processes are divided into discrete time and continuous time stochastic 

processes. The former has an index set comprising a finite number of elements, whereas the 

latter is characterised by an index set defined in an interval of the real line. If the index set 

is composed of integers, the random process can be called a random sequence. 

Stochastic processes encompass a considerable number of processes. Below is provided 

a non-exhaustive list of processes that belong to this family. 

• Bernoulli process. 

• Wiener process. 

• Poisson process. 

• Markov process and chains. 

The Bernoulli process is one of the most straightforward stochastic processes [27]. It is a 

discrete-time process, and the random variables that describe this process are independent 

and identically distributed and can assume either the value of 0 or 1. Additionally, it is a 

memoryless process. Therefore, the past outcomes provide no information about the future 

outcomes. Actually, a generalization of the Bernoulli process, called the Bernoulli scheme, 

admits more than a binary configuration, and the outcomes can assume more than only two 

values. 

The Wiener process is a continuous-time stochastic process, and the unconditional 

probability of the increments is normally distributed linked to the size of the increments [28]. 

There are several Weiner-related processes, such as the Levy processes, Markov process, 

and geometric Brownian motion. 

The Poisson process is pervasive in modelling random events, like in queuing theory, 

when defined on the real line. It is a collection of wholly independent and random subregions 

[29]. 

The Markov process is a stochastic model that can be either discrete or continuous time. 

It has a memoryless property, so only the current state influences the following state [30]. 

The changes in the system's state are called transitions, and each transition has an associated 
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transition probability. Nevertheless, some authors have partially modified the Markov chain 

to allow a few states behind the current state to influence the subsequent state [31]. 

In the end, a possible procedure to model uncertainty sources with stochastic processes 

follows the subsequent steps. 

1. Identify uncertainty sources by determining the variables and factors that 

contribute to uncertainty. 

2. Understand the stochastic process that suits the identified uncertainty sources and 

the possible states that it can assume. 

3. Define the time and/or spatial domain over which the process evolves. 

4. Identify the transition probabilities between the admittable states, and if possible, 

estimate parameters of the process using observed data. 

Stochastic processes are helpful when uncertain variables evolve over time and/or space. 

However, the understating of the dynamics of the process may be a complex task, depending 

on the nature of the considered system. 

1.2.7 Continuous variables 

They can be employed to model continuous processes, such as time-dependent demand 

or price. The most commonly used methods are diffusion models and lattice models. 

Diffusion models assume that the variable's initial value is known, and from this initial value, 

there is a random diffusion process. 

The most commonly used diffusion model is Geometric Brownian Motion (GBM) [2]. 

GBM is a continuous-time stochastic process in which the logarithm of the random variable 

follows a Wiener process. If there is a trend, it can be estimated from the past time history. 

The variability of the expectation (1.16) of the relative change in quantity over one time 

period is represented by the square of the standard deviation multiplied by the time period 

(1.17). 

 

 𝐸[∆𝑥/𝑥] = 𝜇∆𝑡 (1.16) 

  var[∆𝑥/𝑥] = 𝜎^2 ∆𝑡 (1.17) 

 

E represents the expected value of the change Δx in the value of the variable x, while σ is the 

standard deviation, and Δt is the time period. Equation (1.18) describes the GBM and 

specifies that uncertainty grows linearly with the square root of the reference time period.  
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 ∆𝑥

𝑥
= 𝜇∆𝑡 + 𝜎𝜀√∆𝑡 (1.18) 

 

ε is a uniformly distributed random variable between 0 and 1. 

While diffusion models can produce an infinite number of scenarios that require the use 

of statistical sampling methods, lattice models [2], considering a more significant time span 

for each prediction, can obtain a finite number of future stories. The initial state is known, 

and the number of dimensions of the model determines how to go on. For instance, in the 

binomial lattice, the uncertain variable can increase (u) or decrease (d) of a quantity with a 

probability of p and (1-p), respectively. The subsequent equations (1.19, 1.20, and 1.21) 

clarify these notions. 

 

 𝑢 = 𝑒𝜎√∆𝑡 (1.19) 

 
 p =

𝑒𝜎∆𝑡−𝑑

𝑢−𝑑
 (1.20) 

 
𝑑 =

1

𝑢
 (1.21) 

 

The size of the movement depends on the volatility and length of the time period. Suppose 

one wants to determine the probability of occurrence of a specific scenario in the path of the 

lattice. In that case, he can use the 1.22, where k is the number of the time periods, and n is 

the time period of the scenario of interest. 

 

 𝑃(𝑖) = 𝑝𝑘(1 − 𝑝)𝑛−𝑘 (1.22) 

 

Figure 1.7 shows a generic binomial lattice model, the unit of measurement of the variable 

values and of the time interval there is not only for this generic schematization. 

 

 

In the end, a possible procedure to model uncertainty sources with diffusion models 

follows the subsequent steps. 
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Figure 1.7 Schematization of the binomial lattice method 

 

1. Identify uncertainty sources by determining the variables and factors that 

contribute to uncertainty. 

2. Understand the diffusion model that suits the identified uncertainty sources, the 

states variables and define its parameters, like drift and volatility. 

3. Define the initial conditions for the state variables, using available data or 

assuming them. 

4. If the model includes stochastic differential equations, define them. 

Diffusion processes are continuous-time models and the accuracy of selected parameters 

significantly impact their performance. 

1.2.8 Autoregressive models 

The autoregressive models are a representation of a specific type of stochastic process. 

Indeed, they represent the variations of a quantity over time. They can be written with 

stochastic difference equations or recurrence relations [32]. 

Autoregressive models are often combined with moving average models that are 

stationary. Furthermore, they can be merged with an integration component, giving the 

autoregressive integrated moving average models of time series (ARIMA), commonly used 

in economics. 

The order of the polynomial that describes the model is one of the main characteristics to 

classify the model. An autoregressive model (AR) of order p is shown in equation 1.23. Xt 

is the value of the variable at time t, φi is the parameters of the model of the member i of the 

polynomial, and ϵt is the white noise at time t. 
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𝑋𝑡 =∑𝜑𝑖𝑋𝑡−𝑖 + 𝜖𝑡

𝑝

𝑖=1

   (1.23) 

 

The autocorrelation function of an autoregressive model is a sum of decaying exponential 

in which the roots of the polynomial contribute to the autocorrelation function. 

After the regression and the estimation of the parameters for building the model, this 

approach is helpful in forecasting the values of quantity in the future. The combination of 

Monte Carlo methods and the autoregressive model is ubiquitous in a vast number of fields. 

For instance, a  possible realization of the process is shown in Figure 1.8. 

 

 

Figure 1.8 A possible realisation of a process simulated combining Monte Carlo sampling 

and ARIMA model 
 

Eventually, a possible procedure to model uncertainty sources with autoregressive models 

follows the subsequent steps. 

1. Identify uncertainty sources by determining the variables and factors that 

contribute to uncertainty. 

2. Identify the time series representing the variables and understand their 

characteristics by analysing statistics, trends, seasonality, and stationarity. 

3. Define the autoregressive order by analysing autocorrelation functions. 
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4. Define the autoregressive model using the selected order and estimate the model's 

coefficients. 

5. Evaluate the performance of the model by analysing its residual errors. 

This approach helps cope with time-dependent data. However, the selection of the order 

and the model diagnostic strongly influences its accuracy. 

1.2.9 Scenario building and planning 

During system design or evaluation, a typical case is the presence of scenario variables 

that can assume different values in the future. A set of scenarios can represent them to depict 

potential future outcomes. Scenario building and planning [33, 34] are challenging and often 

rely on expert judgments rather than the mathematical formulation of possible outcomes. 

Generally, the analysts resort to games, round tables, reports information, and key driving 

factors to depict future trends. A key driving factor is a variable that strongly influences the 

variables for which the scenarios are built, i.e. the variables which are affected by 

uncertainty. The scenarios include plausible situations that may happen in the future due to 

something that is happening nowadays, but also unexpected situations that could happen. 

Several qualitative techniques are aimed to help analysts in scenario generation, such as 

alternative e alternative futures analysis, cone of plausibility, morphological analysis, 

multiple scenarios generation, outside-in-thinking, simple scenarios, and brainstorming [35]. 

One possible approach to the scenario formulation can be resumed with the following steps: 

• Identify the driving factors. 

• Combine the drivers in a viable way, understanding their relationship, such as 

mutual exclusivity, interdependence, independence, and so on. 

• Draft a consistent number of possible scenarios. 

• Streamline the scenarios to achieve an adequate number of plausible and probable 

scenarios. 

• Hypothesise the possible implications for the future. 

The driving factors are often selected by resorting to the Pareto principle [36], therefore 

identifying only the most influential. Analysing the relationship between the factors helps 

the analyst understand the possible scenarios, leading to eliminating a consistent number of 

unfeasible combinations. The evolution of the scenarios is defined, and streamlined 

techniques are used to shrink the number of plausible narrations. One of the most used 

techniques is the plausibility cone [37] and its extensions [38]. The cone of plausibility 
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(Figure 1.9) helps cluster the generated scenarios into different groups and identify the most 

probable, best case, worst case and least probable scenario [39]. Finally, some hypotheses 

about the further implications and outcomes of the scenarios, identifying the most critical. 

 

 

Figure 1.9 Plausibility cone representation 

 

In conclusion, the systematic analysis of experts’ judgments can be done using the Delphi 

method. The Delphi method and scenario planning are two prominent tools within this 

family commonly used for addressing such uncertainties. The Delphi Method formalize a 

methodology to generate discrete future histories resorting to experts’ judges and opinions 

[40]. Scenario planning models uncertainty by defining a finite set of future scenarios that 

aim to encompass all possible evolutions of a given phenomenon. These scenarios 

incorporate future events and associated probabilities, which can be challenging to estimate 

accurately. Moreover, it is common for scenario planning to overlook particular possibilities, 

potentially neglecting crucial evolutions that may occur. Additionally, the just-described 

procedures are often utilized standalone in evaluating systems instead of including them in 

a more complex framework considering simultaneously different methods. 

More details about this family of methods are provided in section 6.2 and in the case study 

of Chapter 6, in which it is applied. 
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1.2.10 Info-gap decision theory 

Information-gap theory is widely used in decision-making under uncertainty [41]. It is 

one of the most suitable tools to model epistemic uncertainty or uncalculated probability. 

The primary assumption of this approach is that there is something unknown about the 

system under analysis, and this uncertainty can be managed as proposed by this theory [15]. 

Info-gap is a non-probabilistic decision theory that can prioritize options and make 

decisions in the face of deep uncertainty. An "info gap" is the discrepancy between what is 

known and what is necessary to know to make a correct decision. Info-gap models represent 

uncertainty in parameters and the forms of functional relationships. Robustness and 

opportuneness are two decision notions offered by info-gap decision theory. The 

robustness strategy, which differs from result optimisation, maximises immunity to error 

while satisfying the outcome. On the other hand, the opportuneness strategy looks for 

opportunities with the least amount of uncertainty [42, 43]. 

The info-gap theory requires three items: performance requirement, uncertainty model 

and system model. The system model contains all the factors and requirements of the actual 

system. The performance requirements are the duty, thus what the decision-makers want to 

achieve, like the minimum economic loss and similar stuff. 

The uncertainty is modelled by resorting to subsets. These subsets are described by 

estimating the uncertainty parameter with a point value (ũ) and its deviation around its value 

(α). Equation 1.24 defines the subset. 

 

 𝑈(𝑎, �̃�) = {𝑢 ∶ |𝑢 − �̃�| ≤ 𝛼�̃�} (1.24) 

 

The robustness and opportuneness functions refer to how the deviation is set. The former 

represents the highest level of uncertainty, at which the performance is still satisfied. The 

latter is the favourable uncertainty that leads to better outcomes.  

A possible procedure to model uncertainty sources with info-gap decision theory follows 

the subsequent steps. 

1. Identify uncertainty sources by determining the variables and factors that 

contribute to uncertainty. 

2. Define the range of possible values for each variable. These ranges are the 

uncertainty space that represents the gap in information. 
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3. Define the robustness function to describe the performance of a decision against 

variations for different points in the uncertainty space. 

4. Define the maximum allowable level of uncertainty in the uncertainty space and 

select the robustness or opportuneness strategy. 

Then, the performance of the decision will be evaluated by analysing them within the 

uncertainty space. 

Ultimately, this theory is used when poor information is available or other probability 

theories are not viable or give imprecise information. 

1.3 Use of uncertainty modelling methods 

The methods mentioned above need to be configured before they can be used. For 

example, when probability theory and epistemic and aleatory uncertainty overlap, the values 

of the array X (Level I) that describe the parameters of the distributions need to be estimated. 

However, this estimation process may be subject to epistemic uncertainty, represented by 

the values in the array θ (Level II), which must also be calculated. 

The problem can be divided into two subproblems: the estimation of X and the estimation 

of θ. However, this division is necessary only when considering the inclusion of epistemic 

uncertainty. The uncertainty can be modelled in a deterministic manner, in which the 

uncertain variables are represented by a fixed number of values or by an interval, or in a 

probabilistic/possibilistic/evidence approach, in which the probability density function, the 

probability and possibility values, or the plausibility/belief function must be estimated. The 

analyst can choose to consider only the I level of uncertainty or the II level as well. Table 

1.2 shows the suggested methods according to the number of levels selected and the 

estimation steps required to achieve a robust model for the uncertainty sources, according to 

the considerations made by the authors of reference [4]. 

Suppose the analyst wants to represent only the I level of uncertainty and decides to model 

it deterministically. In that case, he starts from the available data and determines the 

appropriate range of variation for each variable, denoted as x, within the array X. 

If the analyst wants to represent only the I level in a probabilistic way, it is necessary to 

estimate the probability density functions that describe the behaviour of the variables. 

Estimating probability density functions is a crucial step for obtaining a detailed description 

of the uncertain variable. 
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Suppose the analyst wants to represent both the I and II levels of uncertainty in addition 

to estimating the probability density function pdf(X) for the array X. In that case, the analyst 

is also required to estimate θ, which describes the epistemic uncertainty associated with the 

estimation of the array X. The estimation of θ involves utilizing statistical data and expert 

judgment from engineering sources. θ can be determined in a deterministic, probabilistic, or 

non-probabilistic manner, similar to the array of aleatory uncertainty. 

 

Table 1.2 Suggested method to model uncertainty according to the number of levels of 

uncertainty considered and estimation steps [4] 

Levels of uncertainty Suggested method Estimation steps 

I level: Deterministic 

II level: Not considered 

Scenario planning 

combined with Delphi 

Method 

• Analyse theoretical 

constraints and expertise  

• Select the boundaries 

I level: Probabilistic 

II level: Not considered 

Probability theory • Observe and collect 

data, expertise, and 

theoretical properties 

• Estimate pdf shapes and 

parameters. 

I level: Probabilistic 

II level: Deterministic 

Joint probability density 

function and scenario 

planning. 

• Observe and collect 

data, expertise, and 

theoretical properties 

• Estimate pdf shapes and 

parameters 

I level: Probabilistic 

II level: Probabilistic 

Joint probability density 

function and joint 

probability density 

function 

• Observe and collect 

data, expertise, and 

theoretical properties 

• Estimate pdf shapes and 

parameters 
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I level: Probabilistic 

II level: Evidence theory 

Joint probability density 

function and 

plausibility/belief 

distribution 

• Observe and collect 

data, expertise, and 

theoretical properties 

• Estimate pdf shapes and 

parameters 

 

Table 1.3 shows some relevant strengths and weaknesses of the above-discussed 

uncertainty modelling methods. The suitability of each method is strictly related to context 

and the uncertainty source’s nature. 

 

Table 1.3 Strengths and weaknesses of uncertainty modelling methods 

Approach Strengths Weaknesses  

Probability Theory 

• Rigorous framework for 

representing uncertain 

variables with known 

probabilities 

• Precise numerical 

measures and clear 

uncertainties 

representation 

• Supposes deep 

knowledge of 

probability 

• Difficulties in 

managing deep 

uncertainty 

• Loss of some aspects of 

uncertainty sources 

• Requires good enough 

data 

Bayesian Theory 

• Uses prior knowledge 

combined with new 

evidence using Bayes’ 

theorem 

• Formal approach for 

quantifying uncertainty 

• Requires small data and 

admits subjective belief 

• Prior distributions 

strongly affect the 

performance 

• Computationally 

intensive 

• Loss of some aspects of 

uncertainty sources 
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• Not fit all situations of 

uncertainty 

Dempster-Shafer Theory 

• Uses evidence from 

multiple sources 

• Establishes a formal 

framework for 

reasoning under 

uncertainty 

• Belief definition might 

be subjective 

• Computationally 

intensive 

• Not fit all situations of 

uncertainty 

Possibility Theory 

• Uses imprecise or 

qualitative information 

• Not require precise 

probabilities 

• Performs less than 

probability theory in 

quantifying uncertainty 

• Not provide numerical 

measures 

• Uses subjective 

assessments 

Interval Analysis 

• Copes with bounded 

uncertainty 

• Simplifies complex 

calculation 

• Uses imprecise 

information 

• Might provide 

conservative results 

• Not handle complex 

forms of uncertainty 

• Not fit all situations of 

uncertainty 

Stochastic Processes 

• Model variables 

evolving over time 

and/or space 

• Simulate complex 

evolving uncertainties 

• Computationally 

intensive 

• Require numerous 

pieces of data 

• Parameters choice 

strongly influences 

performance 

• Not fit all situations of 

uncertainty 
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Autoregressive Models 

• Model time-dependent 

and sequential data 

• Provide a systematic 

approach for handling 

historical data 

• Might assume linearity 

and stationarity in data 

• Order choice strongly 

influences performance 

• Require numerous 

pieces of data 

Scenario planning 

• Provides multiple 

potential futures 

• Enhances resilience and 

flexibility 

• Provides a proactive and 

adaptive approach for 

uncertainty handling 

• Computationally 

intensive 

• Might not cover all 

possible scenarios 

• Uses subjective 

opinions 

• Might neglect critical 

factors 

Info-Gap Decision Theory 

• Handles severe 

uncertainty and limited 

information 

• Provides robust 

decisions against lack of 

information 

• Allowable uncertainty 

level choice and gap 

definition strongly 

influence performance 

• Might provide 

conservative or risky 

results 

 

 

Another issue that arises during uncertainty modelling is that some sources require 

different methods to be used simultaneously. Let us consider an uncertainty source that 

introduces point events in the future, which can happen with a specific probability and 

magnitude. This type of uncertainty source is discrete, and it is necessary to estimate the 

likelihood, time of occurrence, and magnitude of events to describe it. One viable solution 

is to combine discrete stochastic processes to model the probability of the date of occurrence 

of an event with other probability modelling techniques to represent the effect of that event. 

An example is the case of natural events like earthquakes. Indeed, to model this uncertainty, 
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an analyst may combine the Poisson process to estimate the date of the event and probability 

density functions with probability theory to model the damage that the event causes on the 

system under analysis. However, beyond the example, as we will see in the following 

sections, this event is often modelled using fragility curves when these curves are available.  
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System modelling and uncertainty propagation 

In this chapter, an overview of the main existing system modelling methods will be 

provided. As a matter of fact, three different approaches will be described: analytical model, 

simulation model, and meta-model or surrogate model. Analytical models go deeper into the 

system, trying to model the relationships that lead the processes. Even if the analytical 

models are the most accurate and descriptive methods to represent the system under analysis, 

they can be highly costly from a computational point of view and modelling efforts. 

Moreover, analytical equations to represent the system are sometimes unavailable or cannot 

be validated for some reason. When these issues occur, other solutions are viable. These 

other methods comprise, e.g., simulation models. In the industrial plants sector, discrete 

events simulation models are widespread since they can be beneficial in modelling systems 

for which the equations that depict the processes are unknown. Additionally, since they are 

often equipped with an animation and visualization part, they are effortless to be understood 

also by practitioners and managers. 

The system model is often designed with meta-models and surrogate models when the 

main issue is the computational power required. Several solutions rely, e.g., on response 

surfaces, machine learning, and artificial intelligence. With the meta-model approach, the 

system is treated like a black box. 

On the other hand, in the second part of this chapter, some uncertainty propagation 

methods are discussed. They are introduced in the same chapter of the system model because 

how the model is represented strongly affects the applicable propagation methods. Actually, 

the propagation methods that can be used are also influenced by how the uncertainty sources 

are modelled. In particular, deterministic methods, analytical approaches, and sample-based 

approaches for uncertainty propagation will be reviewed. 

2.1 System modelling approaches 

Let us define a system as a group of components, or elements and entities, interdependent, 

that act together to achieve a prefixed objective. Instead, a model is a system representation 

that includes only the relevant aspects for the system’s analysis or design. Therefore, the 



42 
 

system will be described with a prefixed level of detail, including only the components and 

relationships that are considered relevant.  

One of the most challenging tasks is building an accurate model of the system under 

analysis. For the sake of brevity, three different strategies will be considered. 

• Analytical model. 

• Simulation model. 

• Meta-model. 

2.1.1 Analytical model 

The system model can take the form of either an analytical model, a simulation model, or 

a surrogate model. An analytical model is characterized by a set of equations that describe 

the system's behaviour and enable the output calculation based on the given input. 

Generally, an analytical model comprises a set of equations that carefully explain the 

relationship between the variables that characterize the system under modelling. They are 

based on a mathematical solution of governing equations, including empirical and 

deterministic models [44]. They are primarily quantitative or computational in nature and 

represent the system in terms of a set of mathematical equations that specify parametric 

relationships and their associated parameter values as a function of time, space, and other 

system parameters [45]. Such models play a crucial role in answering certain questions or 

designing the system. Different models consider different system characteristics, such as 

performance, reliability, or mass properties. Additionally, an analytical model should be 

expressed with sufficient precision to analyse them formally [44]. 

The most straightforward approach is utilising an already validated system model. Several 

analytical systems design and evaluation models have been developed in the literature. These 

analytical formulations often rely on the equation taken from physics theory. It is common 

to find analytical models describing the system's thermodynamics, the loads, or fluid-

dynamics interactions. Furthermore, some designing procedures are based on these physics 

equations. For instance, as we will see in Chapter 5, if the problem involves designing a shell 

and tube heat exchanger under uncertainty, the system can be effectively modelled using the 

Kern or the Bell-Delaware methods. By utilizing well-known and validated system models 

or design methods, it is possible to avoid the need for extensive model validation 

calculations. These methods have already been thoroughly studied and validated in the 

literature. However, there may be instances where the problem at hand requires considering 
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specific characteristics that existing models do not fully address. In such cases, it becomes 

necessary to develop a new system model and subsequently validate it. An additional 

example of an analytical model will be provided in Chapter 6, where the analytical model 

for assessing the produced power of a wind turbine is briefly presented. 

Another example of an analytical model of the system can be found in the queuing theory. 

These analytical models are often based on stochastic process theory, like birth-death 

processes, which are continuous-time Markov processes. The queueing theory is often used 

to evaluate the industrial system already designed in a deterministic manner to include 

variability. 

Since analytical models deeply depict the interactions between the several variables that 

describe the system, they can determine the optimal solution for optimisation problems. In 

fact, the mathematical model provides a numerical solution to a problem. 

However, in many cases, the actual systems are too complex to achieve a proper 

description of all the issues that characterise them. Indeed, developing an analytical model 

for an actual system can be critical, and the computational efforts to solve it may be very 

high.  

2.1.2 Simulation model 

On the other hand, a simulation model is constructed using techniques like Finite Element 

Method, Computational Fluid Dynamics, System Dynamics, Agent-based model, Discrete 

Event Simulation or similar approaches. Regardless of the chosen modelling approach, the 

ultimate goal is to assess the quantity of interest, representing the specific aspect or 

parameter being evaluated within the system. 

Simulation models can be divided into static simulation models and dynamic simulation 

models. The former represents the system in a particular state or time, whereas the latter 

pertains to a system in evolution over time. Another classification distinguishes the 

simulation model into deterministic and stochastic. The first does not contain uncertainty 

and variability and gives a specific output for a given input. The second includes 

probabilistic elements; thus, both inputs and outputs are characterised by randomness. 

Additionally, another clustering method groups the simulation models into continuous 

and discrete models. Continuous models are depicted by quantities that change continuously 

instead of discrete, in which the changes are not continuous. Generally, discrete simulation 

models are independent of time, and the system's status is associated with a simulation clock, 
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a fictitious clock that advances when something happens. The latter are event-driven models. 

One of the main drawbacks of continuous simulation models is that they require differential 

equations to define the rates of change of the variables that describe the system. This implies 

that the computational and modelling complexity increases dramatically. 

Finite Element Method 

The Finite Element Method represents a general tool to find approximated numerical 

solutions of partial differential equations. Some of this method's most interesting areas of 

applicability are structural analysis, heat transfer, and mass transport. The basis of the 

approach to solving a problem is the discretization of a macroscopical continuous object into 

smaller, simple parts. The discretization of the space gives the mesh of the object 

representing the solution's space. Figure 2.1 [46] shows a mesh for a cylindrical cavity for 

nonlinear numerical simulation. Defining the problem's boundary and the expected loads, a 

system of equations will be obtained. Finally, the solution is found by minimising an 

associate error function. 

 

 

Figure 2.1 Scheme of the finite element mesh in a cavity for nonlinear numerical 

simulation [46] 
 

The single element of the mesh must be small enough to accurately represent the 

geometry without neglecting local characteristics and dissimilar properties of materials that 

constitute the object under analysis [47]. 
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Computational Fluid Dynamics 

The Computational Fluid Dynamics method often resorts to Navier-Stokes equations 

since they define the single-phase fluid flows. Indeed, this approach is part of fluid 

mechanics, and like the Finite Element Method, it approximates reality to find a numerical 

solution to some problems. In this case, the problems of interest inquire about the interaction 

of the fluids with surfaces defined by boundary conditions. Figure 2.2  [48]  shows the fluid 

flow simulation results for a shell and tube heat exchanger. 

 

 

Figure 2.2 Fluid flow simulation for a shell and tube heat exchanger [48] 
 

 The first step of the analysis is the definition of the geometry of the problem. After that, 

the fluid volume is computed, and the Finite Element Method, or similar approaches, is used 

to obtain the mesh of the fluids. Then, resorting to the physical equations that describe the 

system's thermodynamics and dynamics, and with the definition of boundary conditions, the 

simulation is launched, and the equations are solved by discretizing the continuous time and 

space into steady states or transients. Finally, the results are post-processed to be analysed 

in a simple-to-read form [49, 50]. 

System Dynamics 

This approach is aimed at modelling the dynamics of complex systems, resorting to 

feedback structures such as stock, flow diagrams, loops, and array variables, 

As reviewed elsewhere [51, 52], system dynamics has been applied to several scientific 

fields, from water management to healthcare. Basically, this approach is suitable for all 
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complex systems because it is based on the systems theory and is used to understand the 

behaviour of systems under analysis. 

The system is represented as a causal loop diagram, a map linking the system components 

using arcs representing their interactions. Figure 2.3 [53] gives an example of a diagram and 

explains the different roles of the symbols. The structure of changing the system is captured 

by drawing the interactions between the elements. 

 

 

Figure 2.3 General casual loop diagram for system dynamics representation [53] 

 

Additionally, quantitative analysis can be performed using stock and flow diagrams. The 

former represents something like a buffer, in which the entities are stocked, while the latter 

is the rate of change of the stock. 

Finally, these diagrams can be transformed into equations. Once the equations are 

defined, it is possible to perform the simulation. Basically, the following steps are comprised. 

Firstly, the boundary, the stock and flows, the information affecting the flow behaviour, and 

the feedback loops are identified. Then, the diagram of the whole system is built, and the 



47 
 

equations that describe the flows are written. Finally, the initial conditions defining the 

system's initial state are set, and the model is launched. After the simulation, the results can 

be analysed. For completeness, the equation can be written both in continuous and discrete 

time [54]. 

Agent-based model 

The Agent-based models represent the interactions between autonomous agents. This 

modelling is necessary to understand the effects of the agents and their interaction on the 

whole system. 

An agent is an entity that can make autonomous decisions based on predetermined rules. 

Some researchers affirm that this modelling technique is an alternative to traditional 

differential modelling. The point of view on the system is focused on the single elements 

that constitute it, and the single element can determine radical changes in the system itself. 

The main advantages of this approach reside in the capability to observe emergent 

phenomena, to obtain a realistic description of the system, and its intrinsic flexibility. Since 

the primary assumption of the methods is that the whole is more than the sum of its parts, 

the interaction between the parts is the critical factor for capturing the unexpected and 

critical-to-predict phenomena. The realistic description of the system is due to each agent's 

decision-making capability. In this way, the model is closer to reality and represents the 

actual nature of the system under analysis. Instead, intrinsic flexibility resides in the 

simplicity of introducing new agents or rules of decisions without modifying the whole 

system. 

Since the modularity and scalability of the approach, the most advanced models include 

Monte Carlo simulation for considering uncertainty, but also artificial neural networks, 

evolutionary algorithms, and other learning techniques. It is handy for modelling human 

systems [55]. 

Discrete-event simulation 

The most exciting simulation approach from the perspective of this thesis is the Discrete-

Event Simulation. 

Discrete-event simulation models are dynamic and discrete-time simulation models in 

which the system is represented as a sequence of events over time [56]. These types of 

models can be divided into:  

• Activity-oriented. 
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• Event-oriented. 

• Process-oriented. 

In the activity-oriented approach, the time is discretised into tiny incremental intervals, 

and the clock advances with each activity occurrence. To be sure that the increment does not 

neglect some events, it should be less than the minimum possible time of occurrence of an 

event that may change the system status. For instance, if the mean time between the 

occurrence of an event is 10 seconds, a plausible proper incremental time should be around 

0.01 seconds. This way, the simulations have a substantial computational time because the 

code is scanned several times until the sequence’s conditions are satisfied. The sequence’s 

conditions are some conditions that need to be satisfied before moving from one activity to 

another. Therefore, most of the time, increments will not produce changes in the system's 

state, but the activity check is done every time [57]. The activity cycle diagram is a graphical 

modelling tool suited for activity-oriented discrete event simulation modelling. 

The event-oriented approach is aimed at shortcutting the time of simulation, shifting the 

simulation clock of an interval equal to the time between now and the next event. For 

generalization, this way creates an event list in which the events are stored in the set of 

pending events. Each simulation iteration updates the simulation time to the minimum time 

among the subsequent scheduled events. The main advantages of this approach reside in the 

simplicity of implementation, the execution speed, and the flexibility of the model [57]. 

Figure 2.4 shows an event graph diagram for a system in which the entities enter the system, 

are loaded on a machining station, are processed, and finally unloaded from the machining 

station. 

 

 

The process-oriented approach models the activity as a process. It is considered more 

elegant and easier to read. However, in the absence of available packages, it could be 

challenging to write and slow in the execution [57].  

The functioning of discrete event simulation models is based on pseudorandom number 

generators. These tools are used to sample the values of the variables that describe the 

system. The state of the system is the picture of the values of the variables that describe the 

system at a specific time. The system's state does not change until something happens, so 

until an event occurs. The system's clock jumps from the time of the current event to the  
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Figure 2.4 Event graph diagram for a generic process of loading, machining, and unloading 

of entities 

 

time of the subsequent event.  This operation mode is called incremental time progression. 

An event is everything that can happen that causes a change in the system status. It is 

described by a date and the changes it causes in the system. The events are stocked in the 

future event list, a buffer of events with a queue sorted by the event date. Since the structure 

of the model, they are often used to collect statistics to make decisions and understand the 

system's performances under analysis. The logic that stands under the conceptual design of 

a Discrete-event simulation model can be represented with easy-to-read flowcharts. As a 

matter of fact, some simulation software resorts to flowcharts to write the model's code. With 

these flowcharts, the logic behind a simulation model can be understood immediately. 

Discrete-event simulation modelling is often used to include uncertainty in evaluating 

industrial systems or processes which have already been designed with deterministic 

methods. However, it is unsuitable for systems or processes in which the interest is the 

understanding of their behaviour over continuous time. Moreover, simulation models 

increase in complexity with the complexity of the system under-representation. Even if the 

computing power of computers is growing, a complex simulation model may require an 

enormous amount of time to perform a complete simulation. 

2.1.3 Meta-model 

Surrogate models and meta-models are viable solutions to replace the expensive system 

models. Indeed, simulation models have been widely used to understand systems' behaviour 
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and analyse real-world systems. However, the model calibration and model parameters 

sensitivity analysis still remain a complex task [58]. In addition, computer code complexity 

grows with the complexity of the system. Therefore, surrogate models are mainly used to 

reduce the computational expenditure and to perform iterative simulations of the system 

model in a shorter time. They are known as approximation models now that they 

approximate the system's outputs with several approaches. For example, some of the leading 

tools used are polynomial response surface models, kriging models, neural network models, 

and radial basis function models [59]. 

One of the most challenging issues with surrogate models is their accuracy. In fact, the 

commonly adopted approach consists of drawing several meta-models based on input and 

output data from the simulation to evaluate the accuracy of these models and select the most 

proper for the problem under analysis. In literature, some authors have found that with 

slightly nonlinear responses in high dimensions, the kriging models are the proper 

instruments [60]. At the same time, radial basis functions perform better when highly 

nonlinear responses exist [61]. 

The testing of several methods in order to select the proper one for the system under 

analysis is a common approach but has established a substantial resource-consuming 

problem. Combining individual surrogate models is an alternative to reduce the error and 

save time. This combination can be done with a linear combination of the single surrogate 

models. Indeed, with this approach, the errors are reduced by their compensations. However, 

the selection of the weights of each model in the linear combination is an arduous task. As a 

matter of fact, literature has explored this issue. For example, the weights can be determined 

using a matrix method [62] or resorting to error minimisation [63]. Finally, a recursive 

algorithm has been proposed to minimise the assessed root mean square error by changing 

the weights [64]. 

Before reviewing some more common surrogate models, it can be interesting to 

understand the general modelling process [65], which differs enormously from the other two 

families of modelling methods we have seen in the previous paragraphs. Indeed, the 

objective is to find a function y=f(x) that represents the system using data about the inputs x 

and the outputs y. 

The first step of the modelling process is to collect data from the actual system and select 

a modelling approach between the set of existing surrogate models. One of the main 
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challenging tasks in this part is understanding the inputs influencing the outputs of interest. 

The challenge of this step resides in the fact that the inputs can have interdependences, and 

the value of an input may change dramatically the effect of another input on the output. Once 

the relevant inputs are assessed, the fundamental goal is to build a comprehensive 

combination of input values to depict the design space but small enough to reduce the 

computational time. In this phase, we need to know the information about the output that the 

actual system gives when the selected inputs enter the system. Indeed, the outputs related to 

the selected inputs must be known to build pairs of known inputs-outputs. Basically, we 

know that our desired model will provide the output y1 when the input x1 is given. At this 

stage, a problem that often comes out is the overfitting. Prosaically, an overfitted model is a 

model that is too flexible and fits not only the data but also the noise related to these data. 

The second step is to estimate the parameters and train the model. The parameters of the 

model (a) represent the way in which it is possible to obtain the function f(x, a) that fits well 

with the results that the function f(x), which is the system,  would provide. Several estimation 

criteria are available in the literature, such as Maximum Likelihood Estimation [66] or 

Cross-Validation [67]. 

Finally, the model is tested using the actual output of the system and comparing it with 

the output the built model gives when the input related to the known output is provided. 

Generally, the indexes of the model's goodness of fit are the root mean square error (RMSE, 

2.1) and the correlation coefficient (r2, 2.2).  

 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂�𝑖)2
𝑛𝑡
𝑖=0

𝑛𝑡
 

(2.1) 

 

𝑟2 =

(

 
𝑐𝑜𝑣(𝑦 − �̂�)

√𝑣𝑎𝑟(𝑦)𝑣𝑎𝑟(�̂�))

 

2

 (2.2) 

 

Where nt represents the size of the test data set, y is the real output of the system, and �̂� 

is the output of the model. The lesser the RMSE and the higher the r2, the better the fitting 

of the model of the actual system. A model with an r2 of about 0.8 can be considered to have 

good predictive capabilities [65]. These quantitative measures of the model's goodness allow 

us to compare different models to select the best one. However, it may be helpful to obtain 
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a visual understanding of the fitness properties of the model by contrasting the actual data 

and the curves or surfaces that the model draws. 

Polynomial Response Surface Models [59] 

This methodology uses regression and variance analysis to estimate the input and output 

relationship. Generally, experimental campaigns are conducted to estimate the coefficients 

of the model. 

Let us define ϵ as the statistical error, xi like one component of the predictor set with a 

size equal to m, and β0, βi, and βij are the parameters which are being estimated. In addition, 

the magnitude of the components’ coefficient is used to judge the level of influence of each 

parameter on the response of the whole system. A general formulation of the model is 

equation 2.3. 
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The most widely adopted polynomial response models have a low grade of the 

polynomial. Indeed, the surfaces most commonly used are of the second order due to their 

flexibility. The estimation is done by substituting the sample points at the relative 

components of the predictor. The fitting model for these second-order surfaces is shown in 

equation 2.4, where the symbol ^ represents an estimated value. 
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Even if this approach reduces the noise effect and is suitable for numerous cases, the 

fittings are not so accurate when nonlinear high-dimensional problems are considered. 

Indeed, an overfitting issue can occur because of the high order of the polynomials. 

However, a possible solution is to resort to a generalized polynomial response surface, which 

substitutes the polynomials with suitable functions applied to the predictor components.  

 

 

 



53 
 

Kriging Models 

Especially for optimisation purposes, Kriging models are one of the best approaches. 

Basically, this approach is very similar to the Gaussian Process model [65]. The basis 

equation of the model is provided in 2.5. 
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In equation 2.5, θ is the vector that allows the basis function's width to vary from variable 

to variable, but often, it is constant for all dimensions, k is the size of the array, whereas xj
(i) 

are the training points. The Kriging exponent p typically is in the range [1,2]. For further 

detail on the mathematical formulation that goes beyond the scope of this work, the reader 

can refer to the reference [65]. 

This type of model can represent its own uncertainty [58]. This means that each prediction 

obtained by this type of surrogate model has an associated uncertainty, typically in the form 

of variance. The variance of predictions is strictly related to the accuracy of the prediction 

in front of training data but also to the shape of the approximation function. A set of 

multivariate random variables represents the output variables, whereas a parametric 

covariance function is built on the inputs. The closer the input, the higher the correlation 

between the outputs. Thus, the uncertainty associated with the model predictions is low if 

the estimations are close to the training points.  

Neural Network Models [59] 

The backpropagation neural networks are networks with several feedforward layers. Each 

layer is composed of nodes, and each node has an input.  

The nodes of the first layer receive the input of the actual system, the hidden layers 

manipulate the data, and the output layer theoretically should give an output array close to 

the expected output, i.e., the output of the real system. The nodes, also called neurons, are 

fully connected to each other, and each node's output enters all the other nodes after it is 

changed with the effect of a weight. 

The weights must be trained to allow the network to emulate the system behaviour in 

terms of given results given an input. To do so, the gradient descent method is used via 
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backpropagation. The propagation of errors is performed, and the error feedback 

continuously suggests how to adjust the layers' weights in the reverse direction. 

The training process ends when the network error is in the acceptable range, and other 

criteria are satisfied, e.g. the number of iterations is exceeded. 

Even though each neuron of each layer is linked to each neuron of the subsequent layer, 

there is no connection between the nodes of the same layer. Figure 2.5 shows an example of 

a neural network with three layers. 

 

 

Figure 2.5 Example of a three layers artificial neural network 
 

The neurons themselves process the input of the neurons with their activation function, 

which produces the output. Generally, each node of the same layer has the same activation 

function but differs from one layer to another. 

Although this approach is used for high nonlinear and high-dimensional problems, one of 

the main issues is selecting the training set and test size because neural networks often suffer 

from overfitting. 
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Radial Basis Function Models [59] 

The independent variable of a radial function is the distance between the point to be 

measured and the sample point. These models are widespread; for instance, discrete data 

interpolation and image processing extensively use them. 

In most straightforward cases, this approach represents the estimating function as a linear 

combination of basis functions, representing the magnitude of the influence of the 

parameters on the output. The basis functions are one for each training point and depend 

only on the distance from the point being estimated to the training point for the model. 

After selecting some sample points with experimental design, each sample is considered 

the centre, and its radial function is used as a basis function. These functions are then fitted 

to obtain the response value of the output to be measured.  

Finally, the Euclidean distances between the sample point and the corresponding to be 

measured are combined as independent variables to transform the multidimensional problem 

into a simple one-dimensional one. 

 

In conclusion, another approach to system modelling is to develop a meta-model. A meta-

model is a mathematical function less computationally intensive than a full system model 

yet still provides similar results regarding the quantity of interest. The system is seen as a 

black box represented by a function or set of functions. The meta-model is constructed using 

an experimental design that approximates the training set consisting of real data and predicts 

the actual system's output. However, it is essential to note that the meta-model must also 

undergo validation, and it generally exhibits a more significant residual error than a 

traditional system model. Moreover, the meta-model may overestimate or underestimate the 

system output within some domain regions. Nevertheless, considering many problems, 

minimising variability to the minimum extent may not be necessary, and using a meta-model 

can still be a viable solution. 

2.1.4 Use of system modelling methods 

Regardless of the system being modelled, the system model itself introduces a new source 

of uncertainty related to epistemic uncertainty. Reducing this type of uncertainty can be 

highly challenging as the equations within the model serve as a representation of reality and 

may not capture all the intricacies of the actual system. When the system is modelled with a 

simulation model, assumptions and simplifications are needed to reduce the computational 
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expenditure. Furthermore, if we consider surrogate models, they introduce estimation errors 

that must be addressed. Consequently, when propagating uncertainty, it is crucial to consider 

the epistemic uncertainty arising from the system modelling process. To address this 

uncertainty, a combination of approaches can be employed, including utilizing literature 

data, incorporating the calculated residual error, and relying on expertise in the field. 

Additionally, whether the quantity of interest is purely technical is enough to model the 

system. When the quantity of interest pertains to economic aspects, developing an economic 

model in addition to the system model becomes necessary. For example, as demonstrated in 

Chapter 6, when assessing the net present value of a wind power system, the energy market 

is modelled to incorporate economic considerations. The economic model is often analytical 

in nature. 

In any case, the requirement for model validation is crucial. The validation of a model 

can be achieved by establishing an acceptable level of confidence through a comparison 

between the model's results, generated when specific inputs are provided, and the real output 

data collected from the actual system under the same inputs. In other words, model validation 

involves comparing the system model to relevant information, data, or another validated 

model under specific experimental conditions. This comparison allows us to infer the 

validity of the system model within the given conditions. However, it is essential to note that 

a model cannot be fully validated but can be corroborated by available information or 

experts’ judgments. The system model may still have residual errors when compared to the 

actual system. These residual errors are challenging to eliminate and persist even in validated 

or corroborated models. 

Table 2.1 shows some relevant strengths and weaknesses of the above-discussed 

approaches. 

 

Table 2.1 Strengths and weaknesses of system modelling approaches 

Approach Strengths Weaknesses  

Analytical models 

• Quantitative and 

computational models 

• Deeply depiction of the 

interactions between 

several variables 

• Hard to draw 

• Computational efforts 

may be very high 

• With complex systems, 

they may not be used 
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• Capability to be 

optimised to find the 

optimum and 

suboptimum solutions 

• Require a deep 

knowledge of the 

mechanics and 

dynamics laws that 

govern the actual 

system 

Simulation models 

• Easiness in reading and 

interpretation 

• Easiness in including 

uncertainty 

• Capability to model the 

system over time 

• Increase in complexity 

dramatically with the 

complexity of the actual 

system 

• Complex simulations 

may require an 

enormous amount of 

time to be simulated 

Surrogate models 

• Easiness in developing 

• Less computational 

expenditure compared 

with other approaches 

• A practical approach to 

modelling 

• Overfitting 

• Difficulty in deciding 

the proper number of 

training set 

• Hardness in selecting 

the proper surrogate 

model for the actual 

system 

• Higher residual errors 

than other approaches 

 

2.2 Uncertainty propagation 

Uncertainty propagation pertains to estimating the effects of the inputs’ uncertainties on 

the outputs of the system model. The proper uncertainty propagation method selection 

depends on the uncertainty type, i.e. if it is epistemic, aleatory or both, and on the system 

model formulation [16]. 
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Several methods can be employed to propagate uncertainty, and selecting a specific 

method depends on the characteristics of the uncertain variables, such as whether they are 

continuous or discontinuous. Additionally, the choice is influenced by the characteristics of 

the model, particularly the computational time required for simulation, as well as the type of 

variable of interest, whether the entire probability distribution or only specific parameters 

are required. Obviously, this thesis does not aim to review all uncertainty propagation 

methods comprehensively. However, the following methods will be briefly described as they 

will be utilized in the case studies presented in the subsequent chapters. 

• Deterministic methods. Such as Design Of Experiments (DOE), worst/best case 

and scenario analysis [68, 69]. 

• Analytical approaches. For instance, Taylor approximation and First/Second 

order reliability method. 

• Sampling-based approaches. Such as Monte Carlo sampling methods and 

adaptive sampling techniques.  

The above three families of methods can be clustered into two different groups: 

deterministic setting, which includes deterministic methods, and probabilistic setting, which 

pertains to analytical and sampling-based approaches [4]. 

The output of the propagation in the model serves various objectives. For instance, it can 

be employed to assess risk by manipulating either the probability density function or the 

variable of interest, thereby assisting decision-makers (Chapter 6). Additionally, it can be 

used to provide optimisation algorithms with the variables to be optimised (Chapter 5). 

Further clarification regarding these applications will be provided in the case studies. 

2.2.1 Deterministic methods 

Deterministic methods for uncertainty propagation involve computing the performance 

of a system by analysing it for fixed values of the uncertain variables. After identifying the 

most influential variables, scenarios are selected, and the system is evaluated accordingly. 

The most straightforward approach is to rely solely on worst-case analysis. In worst-case 

analysis, the assumption is that if the system performs well under the worst possible 

conditions in which it can operate, it will perform even better in all other scenarios. This 

assumption holds true in most cases; however, two distinct problems arise. Firstly, suppose 

the worst-case scenario selected is not truly the most severe condition the system can 

encounter. In that case, it may result in dangerous failures or failure to meet the specified 
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requirements.  Secondly, even if the worst case is accurately identified, designing the system 

to meet the specification under such extreme conditions may lead to oversizing or over-

engineering. Indeed, if the worst-case scenario were probable, it would essentially become 

the nominal case. However, suppose the failure to meet specifications for a brief period in 

the lifespan of an industrial system is not dangerous or prohibitively expensive. In that case, 

the additional costs associated with oversizing the system may not be justified. 

Scenario analysis is a highly intricate approach. The selection of the number of scenarios 

and their descriptions typically relies on expert judgments and opinions, which can vary 

significantly from one expert to another. Moreover, the critical issue lies in determining an 

adequate number of scenarios that accurately depict the most critical and probable conditions 

under which the system will operate.  In any case, even if experts could determine the 

appropriate number of scenarios with great accuracy, estimating the probability of these 

scenarios remains a challenging and heuristic-driven task. Additionally, it becomes 

necessary to combine different scenarios in order to obtain a reliable estimation of the 

variables of interest. 

The challenging task of assessing the probability of scenarios has been extensively 

explored in the literature. To aid decision-makers in clustering scenarios and identifying the 

most probable set, the concept of the plausibility cone has been developed [37, 70-72]. 

From an engineering perspective, one of the most interesting methods is the Design Of 

Experiments (DOE), a widely adopted approach in literature. This is a method used to 

understand which variables mainly affect the response and what the desired input values are 

to achieve prefixed outputs. The DOE is used to characterize or optimise a process 

propagating the uncertainty in a system model. The procedure involves the following steps 

[73]. 

• Problem definition. 

• Factors, levels, and ranges selection. 

• Variable of interest selection. 

• Problem design selection. 

• Performing the experiments. 

• Statistical analysis of the data. 

• Conclusions and recommendations. 
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The problem definition phase requires a critical analysis of the problem and 

understanding the inputs involved to address clearly the questions the experiments and 

simulations aim to answer. 

The choice of factors, levels and ranges step concerns classifying the inputs into design 

and nuisance factors. Once the inputs are clustered, the analyst must select the levels at which 

the runs will be performed. In order to select the levels, it is necessary to identify the region 

of interest of each variable and then the number of levels that should be used. 

The variable of interest selection phase is related to the output of the analysis and the 

performance of the system which wants to be assessed. 

Several types of experimental designs are available in the literature. Each type of 

experimental design is related to the scope of the analysis, particularly to the questions 

defined at the initial stage. More details about this topic can be found in [73]. 

Suppose that a full factorial experimental design was selected. In the performing the 

experiment phase, the analyst will perform all the runs or experiments by permutating all the 

inputs' levels. 

Finally, the results are statistically analysed to assess the uncertainty of the outputs and 

final remarks are drawn. 

In conclusion, the Design Of Experiments is a preferred method when randomizing 

factors is impossible or costly and for the first screening of the most influential inputs. 

2.2.2 Analytical approaches 

Analytical approaches are rigorous and generally already validated. Additionally, they 

often yield transparent and easily interpretable results. The Taylor expansion formula for the 

moments of functions of random variables is a widely used tool for evaluating the moments 

of a function. It only requires partial characteristics of the inputs. For instance, when 

considering the second moment, the standard deviation of the output σy is estimated by 

combining the standard deviation σxi of the N inputs xi (2.6).  

 

 

𝜎𝑦 = √∑(
𝑑𝑦

𝑑𝑥𝑖
𝜎𝑥𝑖)

2𝑁

𝑖=1

 (2.6) 
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One of Taylor’s approximation assumptions is that the uncertainty levels are small. For 

that reason, it is widespread in the metrological field [5]. 

In system models which suffer from uncertainty, there are known stochastic inputs. As 

the previous chapter shows, these inputs can be represented by a probability density function. 

Since the primary goal of the uncertainty propagation is to understand the effect of the 

uncertainty of the inputs on the output, it may be enough to compute low-order statistics, 

such as the mean (2.7), the covariance matrix, that are composed by the covariances values 

(2.8), and the variance of each component (2.9). 

 

 
𝐸[𝑥] = ∫ 𝑝𝑑𝑓(𝑥)𝑑𝑥

𝑢𝑝

𝑙𝑜𝑤

 (2.7) 

 𝑐𝑜𝑣(𝑥, 𝑦) = 𝐸[(𝑥 − 𝐸[𝑥])(𝑦 − 𝐸[𝑦])] (2.8) 

 
𝜎2 = ∫ (𝑥 − 𝐸[𝑥])2𝑝𝑑𝑓(𝑥)𝑑𝑥

𝑢𝑝

𝑙𝑜𝑤

 (2.9) 

 

Where E[x] is the expected value of the probability density function (pdf(x)) of the 

random variable x, σ is the standard deviation, and up and low are the upper and lower bound 

of the probability density function, respectively, and identify the probability space in which 

the pdf is defined. 

Analytical methods are often based on moments. Indeed, methods for numerical 

integration, Taylor approximation, and methods based on stochastic development are 

focused on these uncertainty measures. However, deterministic methods and some analytical 

methods may be inappropriate if the interest is to obtain a specific confidence interval [4]. 

In contrast, stochastic development methods may give a variance matrix of the results [74]. 

The limitation of the analytical approach lies in the requirement to have knowledge of the 

output function and its derivatives. Consequently, this method can only be applied if the 

system model is provided in an analytical form or a validated meta-model is available. 

Furthermore, the output function must be sufficiently differentiable, and the moments of X 

must be finite. It is important to note that while this method allows for the estimation of the 

mean, standard deviation, and other characteristics of the output probability distribution, it 

does not provide the whole probability density function. Moreover, methods like numerical 
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integration often require a considerable number of runs; thus, if the simulation time is ample, 

namely when the uncertain model inputs are more than six, they may not be viable [4]. 

The First-order reliability method (FORM) and Second-order reliability method (SORM) 

are analytical techniques used for estimating reliability and performing uncertainty analysis. 

These methods utilize the Taylor expansion of the output function and rely on the definition 

of the limit state of the functions and the distribution parameters. When estimating a low 

probability, the FORM-SORM methods are highly efficient compared to simulation 

methods. However, a limitation of these methods is that it is not possible to quantify their 

accuracy, as their approximations are based on deterministic calculations [4, 75]. 

2.2.3 Sampling-based approaches 

Sampling-based approaches are the most prevalent family of probabilistic methods for 

propagating uncertainty. Nevertheless, they are mainly employed in three sectors: 

optimisation, numerical integration, and generating probability distributions [76]. Monte 

Carlo Sampling (MCS) techniques and all their variants undoubtedly dominate the stage of 

uncertainty propagation. These methods employ repeated pseudo-random sampling to 

estimate unknown parameters numerically [77]. In this thesis, one can find MCS in all the 

investigated case studies applied to various uncertainty sources modelled in different ways. 

For instance, in this work, MCS has been applied to joint probability distributions, 

probability boxes, numerical intervals, Autoregressive Integrated Moving Average 

(ARIMA), Markov Chain Monte Carlo, and so on. The capability of MCS methods to model 

complexity and assess the impact of risk is well-known, and they are widely used in 

approximating solutions to mathematical problems [78]. When a problem is not analytically 

solvable, numerical simulation aids in this task. The aforementioned references may assist 

the reader in delving deeper into the methodology. 

Despite the high computational time required for the simulation, the Monte Carlo 

Sampling (MSC) method is one of the most popular methods for uncertainty propagation. 

This family of methods resorts to repeated random sampling from predefined probability 

distribution on the input to obtain several values of a model's outputs by simulating the 

system model multiple times. Therefore, the uncertainty of the outputs is estimated by 

statistically analysing the obtained results. 

Basically, the Monte Carlo Sampling is based on four steps. 

1. The domain of the possible inputs is defined, resorting to available data. 
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2. The inputs are sampled several times over the domain. 

3. The computation of the outputs is performed for each sample. 

4. The results are aggregated and statistically analysed to assess the related 

uncertainty. 

The sampling procedure resorts to normalized uniform random variables distributed 

uniformly between 0 and 1. Actually, the procedure resorts to pseudo-random number 

generators that are aimed to define a series of numbers included in the range [0,1]. One of 

the simplest adopted pseudorandom number generators is the linear congruential generator. 

Its recurrent relation is expressed in equation (2.10). 

 

 𝑋𝑛+1 = (𝑎𝑋𝑛 + 𝑐) 𝑚𝑜𝑑 (𝑚 + 1) (2.10) 

 

Xn+1 is the pseudorandom computed number, Xn is the number calculated at the previous 

recursion, a is the multiplier, c represents the increment, m is the modulus, and X0 is the seed, 

i.e. the starting value. It is necessary to divide Xn+1 by the modulus to obtain the number in 

the range [0,1]. Between the elements of equation 2.10 are the relationships expressed in 

2.11, 1.12, 2.13, 2.14. 

 

 𝑚 > 0 (2.11) 

 0 < 𝑎 < 𝑚 (2.12) 

 0 < 𝑐 < 𝑚 (2.13) 

 0 < 𝑋0 < 𝑚 (2.14) 

 

Since the sampling procedure may involve probability distributions which differ from the 

uniform one, the procedure requires computing the cumulative distribution of the probability 

density function under-sampling and then inverting the cumulative distribution to transform 

the uniformly distributed random variables along the cumulative distribution. 

The Monte Carlo methods go almost surely to convergence for the strong law of large 

numbers, and its results are asymptotically Gaussian distributed. However, to increase the 

confidence level of results, the number of samples N of step two, which allows us to 

determine N values of the outputs to assess the uncertainty, must be carefully selected. Since 
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the MCS provides the error associated with assessing the propagated uncertainty, it is 

possible to know the minimum number of runs necessary to get accurate results. 

A possible approach to choosing the number of runs for a Monte Carlo simulation is to 

apply the formula proposed by Fenton and Griffiths (2.15) [79]. First, it is necessary to set 

the confidence level of the estimation error. Without loss of generality, the confidence level 

can be considered (1-α).  

 
𝑁 = (

𝑍𝛼/2𝜎

𝑒
)
2

  (2.15) 

 

Where Zα/2 is the value of the standard normal variable with a cumulative probability 

equal to (1-α/2), σ is the standard deviation of the mode output for uncertainty analysis, and 

e is the desired estimation error. 

Another approach is based on the weak law of large numbers. The central assumption is 

that the larger the sample size, the lower the difference between the sample and population 

statistics. The practicability of this approach is that the minimum number of required 

simulations is chosen by observing the variation of model output statistics. Different 

simulations are carried out, with an increasing number of runs respectively. Once the 

differences between the output statistics are in a predefined acceptable range, i.e. when the 

statistics become stationary, the minimum number of runs is obtained [80].  

Another issue concerning Monte Carlo sampling methods is the strategy of domain 

sampling. The most general approach has already been discussed, but when the domain 

increases in dimension, the required number of runs to cover all the solution space may be 

enormous. For that reason, different strategies for space sampling have been developed.  

The variance reduction or accelerated sampling methods aim to reduce the number of 

simulations for a given accuracy or the variance for a given number of simulations. They are 

based on reducing the sampling domain by decomposing it into subregions. This 

decomposition helps achieve a more accurate space sampling than the simple sampling 

technique described above. 

Latin Hypercube Sampling (LHS) splits the domain into disjoint subspaces of equal 

probability. Then, a simple sampling is performed in each subset [81]. In this way, it covers 

the whole area of definition. The LHS may perform several useless simulations if the goal 
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is to estimate a rare probability because most samples will be outside the interesting region 

[5]. 

The stratified sampling technique divides the sample space into a collection of disjoint 

subsets. This means that the subsets are collectively exhaustive and mutually exclusive. 

Then, simple random sampling is performed simultaneously for each subregion [81]. Since 

the regions' importance can be decided by resorting to different weights from the original 

density, forcing the sampling procedure, applying these weights is possible to avoid useless 

simulations in the case of rare probability estimation. 

Importance Sampling (IS), like stratified sampling, involves biased input distribution to 

intensify the sampling procedure in the region of interest. The weights of the estimator are 

changed each run to adjust the region of interest. It is often employed around the design point 

to deal with the time-consuming nature of modelling. 

In conclusion, the primary drawback of MCS is the high computational time required for 

simulations. The use of meta-models has been widely adopted to reduce the implementation 

time. 

2.2.4 Sensitivity analysis 

So far, the presented methods are focused on the uncertainty propagation for the 

uncertainty analysis. The objective of the uncertainty analysis is to give a precise picture of 

the set of possible output outcomes and the associated probability distribution, moments, or 

indexes [82]. It focuses on uncertainty quantification and propagation. On the other hand, 

sensitivity analysis is a method for understanding the changes in the model output values 

that result from changes in the inputs [82]. 

Sensitivity analysis can be grouped into local or global sensitivity analysis. The former is 

often used to change the input value by small quantities around the selected design point to 

observe the changes in the output values, often with linear methods. Instead, the global one 

is focused on the model output variance related to the whole input space. Additionally, the 

global sensitivity analysis determines which parts of the output variance are related to 

different inputs [83]. 

Several methods are available for performing sensitivity analysis, and a non-exhaustive 

list is provided below: 

• One-factor-at-time method. 

• Derivate-based local methods. 
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• Regression analysis. 

• Variance-based methods. 

The above-listed methods work more or less in the same manner. Firstly, the input 

uncertainties must be quantified using one of the theories for uncertainty modelling 

according to the type of available data. Then, the model output of interest must be chosen. 

Subsequently, the system model is simulated or calculated several times, resorting to some 

sampling techniques or Design Of Experiments. Finally, the set model outputs are 

manipulated to obtain the desired measures of uncertainty.   

Before reviewing the methods mentioned above by giving only some references and 

comments, it can be useful to understand how the sensitivity analysis results are presented. 

They can be provided either in graphical form, for instance, using a scatter plot or using 

different indexes expressing the output's dependence on several inputs. Some sensitivity 

indexes are cited below. 

The Taylor-based linear sensitivity indices assume that the system response is acceptable 

linear; thus, the Taylor quadratic approximation generates the following elementary index 

(2.16). 

 

 

𝑠𝑖
2 𝑇𝑎𝑦𝑙𝑜𝑟

=
(
𝛿𝐺
𝛿𝑥𝑖

)
2

𝑣𝑎𝑟(𝑋𝑖)

∑ (
𝛿𝐺
𝛿𝑥𝑗

)
2

𝑣𝑎𝑟(𝑋𝑗)𝑗

 (2.16) 

 

Where si is the sensitivity index corresponding to component xi, i and j identify different 

inputs, G(x,d) is the deterministic function that represents the model, Xi is the random 

variable associated with the i-input,  xi is the component i of the vector of the uncertain model 

inputs, and d is the vector of fixed input [5]. 

The Monte-Carlo sensitivity indices are defined as the normalised ratio of input-output 

Pearson (2.17) or Spearman (2.18) coefficients. 

 

 
𝑠𝑖
2 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 =

𝐶𝑜𝑟𝑟(𝑋𝑖 , 𝑍)
2

∑ 𝐶𝑜𝑟𝑟(𝑋𝑘, 𝑍)2𝑘=1,..,𝑝
 (2.17) 

 
𝑠𝑖
2 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 =

𝐶𝑜𝑟𝑟(𝑟𝑋𝑖 , 𝑟𝑍)
2

∑ 𝐶𝑜𝑟𝑟(𝑟𝑋𝑘 , 𝑟𝑍)
2

𝑘=1,..,𝑝
 (2.18) 
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Where Z is the output array, Corr identifies the ratio between the covariance of the i-input 

and the output and the i-input variance multiplied by the output variance [5]. 

The three indexes exposed so far are viable under the hypothesis of linearity, 

monotonicity, and additivity of the model under analysis. Moreover, the input-output 

relation can be investigated only pairwisely, neglecting the interactions between inputs. The 

Sobol indices resolve these limitations. In the case of non-linearity, it is often solved using 

Monte-Carlo sampling instead of closed-form. The first-order indices (Si) (2.19) investigate 

the relationship between a single input and the output without looking at the interactions. 

  

 
𝑆𝑖 =

𝑣𝑎𝑟[𝐸(𝐺(𝑋, 𝑑)|𝑋𝑖)]

𝑣𝑎𝑟 𝐺(𝑋, 𝑑)
 (2.19) 

 

For each value of the i-th uncertain input, E(G(X,d)|xi) is the expected value for the 

uncertain output without other information about the system. Si represents the proportion of 

output variance related to the i-th input output variance [5]. 

Finally, the second-order Sobol index (2.20, Sij) pertains to the contribution to the output 

variance of the combined variation of the two inputs i and j [5]. 

 

 
𝑆𝑖𝑗 =

𝑣𝑎𝑟[𝐸(𝐺(𝑋, 𝑑)|𝑋𝑖𝑋𝑗)]

𝑣𝑎𝑟 𝐺(𝑋, 𝑑)
− 𝑆𝑖 − 𝑆𝑗 

(2.20) 

 

One-factor-at-time method [84, 85] 

This method relies on defining the nominal value of each input and then moving one input 

at a time to upper and lower levels. In this way, the system's response to the change can be 

observed. 

The sensitivity can be estimated by using partial derivatives or linear regression. 

However, the whole input space is not analysed, and the interactions between the inputs are 

neglected. This approach is similar to DOE, and it is also easy to understand by practitioners. 

Furthermore, it should be a viable solution when numerous inputs are involved. On the other 

hand, when there are critical problems under investigation, it may neglect important 

implications, thus leading to missing the optimal design factors. Another weakness is the 
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high time required for performing the analysis due to the high number of runs required, 

especially when several inputs should be considered. 

Derivate-based local method [86] 

This approach is linked to the computation of the partial derivative of the model response 

to an input factor. Despite the possibility of building a matrix to show transparently all the 

sensitivity in a model, the derivate-base local method explores only tiny portions of the input 

space and often only small permutations, one input at a time. 

Regression analysis [87, 88] 

Regression analysis can be used only when the system response is linear. In fact, the 

coefficients of the regression, which measure the sensitivity of the system, are often linear 

due to difficulty in interpreting standardised coefficients with a grade higher than one. 

Nevertheless, this approach is transparent and requires a low computational expenditure.  

Variance-based methods [89-91] 

This is the family of Sobol’s methods and indices, and it performs a global sensitivity 

analysis of the model under investigation. The inputs are considered independent of each 

other. As previously said, it is possible to estimate the effect of the single input on the output 

and the effect of the interactions.  

2.2.5 Use of uncertainty propagation methods 

With the assistance of references [4, 75], for the sake of clarity and completeness, Table 

2.2 presents the prominent family of methods for uncertainty propagation and the variables 

of interest for which their use is suggested. 

 

Table 2.2 Family of methods and measure of uncertainty 

Family of methods Measure of uncertainty Source 

Deterministic method Range [75] 

Numerical integration Moments of pdf [92] 

Taylor approximation Variance of pdf [93] 

Monte Carlo Simulation All probabilistic criteria [76-78] 

Variance reduction techniques Exceedance probability [94] 
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Stochastic development Moments of pdf [95, 96] 

FORM/SORM Exceedance probability [94, 97] 

 

Considering one as the maximum level and three as the lowest level of model complexity 

and computational time for the mainly used methods in uncertainty propagation, Figure 2.6 

summarizes these two characteristics of the methods [75]. The axis ticks’ labels represent 

the score of the method in the labelled feature. Although it has the maximum computational 

time, MCS is the most suitable family of methods to cope with highly complex models 

because of its low modelling complexity.  

The worst-case scenario approach is risky if the selected scenario is not truly the most 

severe condition the system can encounter. Moreover, even if the worst case is accurately 

identified, designing the system to meet the specification under such extreme conditions may 

lead to oversizing or over-engineering. 

Scenario analysis is a viable approach to exploit different futures. Nevertheless, the 

selection of the number of scenarios typically relies on subjectivity. Moreover, it is difficult 

to determine the appropriate number of scenarios to accurately depict the most critical 

conditions under which the system will operate.  Finally, estimating the probability scenarios 

is a challenging and heuristic-driven task. 

The Design Of Experiments is a practical solution when randomizing factors is 

impossible and for the first screening of the most influential inputs. However, the DOE 

standalone remains a deterministic method for uncertainty propagation. 

Deterministic methods may not be practical when the objective is to achieve a certain 

confidence interval. In contrast, stochastic development methods may provide a variance 

matrix of the results. 

Analytical approaches require to know the output function and its derivatives. Therefore, 

this method is viable when the system model is given in an analytical form or like a meta-

model. Moreover, the output function must be sufficiently differentiable, and the random 

variable’s moments must be finite. Additionally, it does not provide the whole probability 

density function.  

Methods like numerical integration often need a consistent number of repetitions; 

therefore, if the simulation time is extensive, they may not be practical. 
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The main drawback of FORM/SORM methods is the inability to determine the accuracy 

of the results. However, when estimating a low probability, they are highly efficient 

compared to simulation methods. 

Monte Carlo methods are very flexible, and empirical distributions can be handled. 

Furthermore, it can be easily extended and modified. Since the approach is often not 

provided like rigorous formulas, it can be helpfully understood by practitioners. However, 

the calculations can be larger than analytical models, and solutions are not exact. Indeed, the 

confidence level depends on the number of runs. 

Commonly, sensitivity analysis is performed by resorting to sampling-based approaches 

or defining different levels of the inputs in which the system is tested. When the sample 

space is ample, the time required for the simulation can be extensive. The most adopted 

approaches suppose that the inputs are independent, but new methods for correlated input 

are under development in the literature. When the system model has a nonlinear response, it 

is common to use variance-based measures to avoid the sensitivity analysis approaches based 

on linear regression. Another issue related to sensitivity analysis methods is that they 

suppose a single univariate model output. Therefore, when the analyst is interested in 

understanding different outputs, he must perform several sensitivity analyses, one for each 

output. Despite this viable solution, the analysis results may be very complicated to 

understand when the model outputs are correlated.   

 

 

Figure 2.6 Modelling complexity score versus computational time score of the mainly 

used methods for the uncertainty propagation 
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Table 2.3 shows some relevant strengths and weaknesses of the above-discussed 

approaches. 

 

Table 2.3 Strengths and weaknesses of uncertainty propagation methods 

Approach Strengths Weaknesses  

Deterministic Methods 

• Provide precise 

solutions 

• Computationally 

efficient with simple 

problems 

• Trace the uncertainty 

influence on the output 

• Assume known values 

and fixed parameters 

• Might neglect the 

variables’ interactions 

• Suitable for low 

complex system and 

variability 

• Might provide overly 

optimistic or 

pessimistic results 

Analytical Approaches 

• Use analytical 

formulations of 

uncertainty propagation 

• Allow for precise 

mathematical 

formulations of 

uncertainties 

• Might use simplifying 

assumptions or linear 

models 

• Might not be suitable 

for highly complex or 

non-linear systems 

• Might underestimate 

the uncertainty 

Sampling-Based 

Approaches 

• Cope with complex 

systems 

• Handle probabilistic 

uncertainties 

• Explore numerous 

outcomes using 

numerous samples 

• Might be 

computationally 

intensive with complex 

problems and models 

• The number of samples 

strongly affects the 
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• Do not use strong 

assumptions 

• Might be used with a 

large range of models 

accuracy of the 

performance 

• Might not provide exact 

solutions, obtaining 

variable results 

Sensitivity Analysis 

• Assesses the impact of 

the uncertainty on the 

output 

• Identifies critical factors 

• Ranks variables by their 

influence 

• Helps in understanding 

models’ behaviour 

• Might assume that 

variables are 

independent 

• Might neglect potential 

interactions 

• Might not capture non-

linear behaviour and 

higher-order 

interactions between 

variables 

• The selected method 

strongly influences the 

performance 

 

Ultimately, deterministic and analytical methods might provide precise solutions but 

oversimplify uncertainty. Sampling-based approaches are computationally efficient when 

dealing with the same problems of deterministic and analytical methods but become 

computationally demanding when dealing with complex problems. Finally, sensitivity 

analysis captures the influences of different factors on the output but might neglect some 

interactions and dependencies. 
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Industrial systems design and evaluation under 

uncertainty  

Design and evaluation of industrial systems under uncertainty and variable operating 

conditions is a well-known problem in the literature. The main difference between the 

uncertainty and the variable operating conditions is that the former refers to the aleatory and 

epistemic uncertainty of the system input, the relationships used to model the system, and 

the uncertain parameters. In contrast, the latter pertains to the desired or undesired change 

in the operating condition. Indeed, e.g., a system can be designed to accomplish a specific 

objective with certain nominal conditions. However, in a further time, the desired 

specifications or nominal conditions can be changed for some causes. Moreover, the 

operating conditions may change for other reasons, e.g., changes in demand values, changes 

in uncontrollable inputs or similar issues. This change can be performed if the designers have 

considered this possibility, e.g., resorting to a flexible design or similar approaches. 

Several contributions are available in the literature to cope with uncertainty during the 

design phase or to assess the systems' performances under variability. However, most works 

often include few sources of uncertainty or few methods to include them. Even though the 

proposed methods are frequently very advanced and complex and cover an extensive range 

of causes of uncertainty, they are often suited for specific applications instead of being 

general for a vast range of applicability fields because of the specific characteristics of 

different problems, which may require detailed and extensive frameworks to cover all of 

them. 

This chapter describes the primary methodologies available in the literature for designing 

and assessing industrial systems under uncertainty. Furthermore, pieces of commercial 

software aimed at the same scopes are described. The first part of this chapter focuses on the 

existing methods for the designing phase and the different aspects that must be considered 

to achieve a well-performing design. Although there are several works which are suited for 

the design under uncertainty of specific families of products, processes, and systems, since 

the aim of this thesis is to provide a general framework to deal with uncertainty, only the 



74 
 

contributions that propose general approaches are included in the analysis of the existing 

methods. The second part analyses existing methods for evaluation under uncertainty of 

completed designs.  

3.1 Design under uncertainty 

The effects of uncertainty influence the system throughout its entire life cycle. From the 

initial stages of the design phase, uncertainty plays a significant role in shaping the design 

decisions. Despite the well-established importance of this aspect, novel methods to address 

this challenge have not yet gained widespread adoption in the industrial sector. 

Consequently, developing strategies that can efficiently manage design problems under 

uncertainty is crucial. 

Numerous fields have encountered the impact of uncertainty on industrial systems, yet 

researchers and practitioners frequently address specific sources of uncertainty while 

completely overlooking others. One of the crucial steps taken was to incorporate production 

scheduling under uncertainty during the design stage [98]. The authors aimed to discuss the 

challenges presented by multiproduct batch and continuous processes in chemical plants. 

Production planning is one of the fields where the significance of uncertainty becomes 

evident, as it directly impacts system performance. It is crucial to explicitly consider 

uncertainty to generate efficient and effective planning decisions [99], and incorporating 

such decisions at the design stage makes industrial systems more capable of coping with 

these uncertainty sources. Non-probabilistic decision theory has been developed in past 

years to prioritize alternatives and facilitate decision-making under uncertainty [42], with 

more recent updates [43]. Furthermore, planning and scheduling under uncertainty pose 

practical challenges in various sectors. A literature review on applying multiple uncertainty 

approaches has highlighted the need for further research in this area [100]. One key factor 

in addressing uncertainty in engineering design problems is the incorporation of operational 

tolerances to account for deviations, which significantly impact resource planning and 

management [101]. 

In recent times, the vulnerability of supply chains has been extensively illustrated by 

various disruptive events, such as earthquakes, the COVID-19 pandemic, and emerging 

conflicts. Examining inventory and design decisions for highly perishable products assumes 

a crucial role in enhancing supply chain efficiency [102]. Indeed, the significance of 
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incorporating uncertain events, including the impact of financial issues, in supply chain 

design under conditions of uncertainty has been widely acknowledged in the literature. 

A sound industrial system and product design represent the most effective solution for 

mitigating the impact of uncertainty. This includes addressing technical aspects of the 

product, such as stress-based topology optimisation under uncertainty, which considers 

uncertainties in applied loads and material properties [103]. Additionally, it extends to 

functional aspects, such as characterizing input uncertainties in strategic energy planning 

models [104]. The significance of statistical theory in identifying sources of uncertainty 

during the design phase has been well-established in the literature. 

The need to avoid rigid specifications and narrow forecasts has been recognized in the 

past year. Indeed, the trend towards designing flexible industrial systems has gained 

considerable credibility in engineering. The inability of a system to adapt to changing 

circumstances is one of the significant weaknesses of an industrial plant. Designing for 

flexibility significantly enhances the likelihood of success for industrial initiatives. Tools for 

reality analysis and modelling have been collected in [105]. 

On the other hand, robust design has also gained credibility in reducing the impacts of 

uncertainty. In fact, a robust system can maintain the desired specifications even when 

environmental conditions change [106]. A robust system minimises the variability of the 

response as input variability increases. The most widely adopted approach by practitioners 

to achieve robustness in design is to employ the design of experiments [107]. Indeed, 

uncertainty modelling is often neglected, resorting to linear and non-linear programming to 

obtain uncertainty-unsensible components [7]. The crucial problem is to find the region of 

admittable solution for the optimisation problem. Someone used the Monte Carlo simulation 

to identify the region's boundary [6]. However, identifying the non-admittable solution 

remains a critical issue that, in another work, was tried to be addressed [108]. This approach 

is viable for all problems with linearizable functions for performance evaluation [109]. The 

top-down approach, V-shape approach, and target cascading are the most used in the 

literature. In addition to robust design, resilient design aims to mitigate the effects of 

uncertainty resulting from disruptive events by minimising the recovery time required for 

the system to regain its total capacity after the event [110]. Additionally, the system can 

quickly adapt to different emerging contingent conditions. 
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Whatever strategy is adopted to design the system, optimisation problems arise. Robust 

optimisation emerges as a powerful approach to address optimisation problems that involve 

uncertainty. One of the pioneering works that thoroughly analyses this issue is [111]. Indeed, 

the proposed approach aimed to operate under information scarcity and formulate the 

problem in a solvable manner. The authors explored the potential use of worst-case analysis 

and uncertain linear programming to tackle design parameter uncertainty while 

probabilistically modelling the constraints. Furthermore, they developed a theory for 

resolving dynamic multistage problems. 

The Integrated Design Automation Laboratory (IDEAL) of Northwestern University has 

investigated the design under uncertainty problem from the perspective of meta-model 

building, its validation and related uncertainty quantification, and the multidisciplinary 

design optimisation problem. Some of the most recent publications by the researchers of 

IDEAL are on the Bayesian optimisation for multiple models [112], adaptive batch sampling 

[113], stochastic non-linear analysis of fibre composites [114], and the reduction of 

optimisation time using adaptive sampling and heuristic-based strategies [115].  

In any case, during the design phase, different strategies can be carried out to improve the 

ability of the system to operate under uncertainty, namely, simplify the tasks, reduce the 

uncertainty, and protect the system. 

Simplifying the tasks means reducing the admissible product tolerances or extending the 

operations time to consider a time buffer to deal with unexpected events. 

Reducing uncertainty stands for the mitigation strategies that can be adopted to reduce 

the probability of events or investigate the sources of epistemic uncertainty to reduce them. 

Protecting the system pertains to the actions to do or elements to include in the design to 

reduce the system's sensitivity to uncertainty sources. The protection can be active or 

passive. The former refers to the design of a system that can change its configuration or way 

of working to adapt to changes, thus obtaining a flexible or reconfigurable system. On the 

other hand, the latter concerns the capability of the system to be insensitive to uncertainty 

without the need to change its configuration, therefore creating a robust system [116]. 

In the literature, there are reviews specifically focused on modelling, analysis, and 

optimisation under uncertainty. In a comprehensive review [75], design optimization 

methods under uncertainty have been deeply analysed, and a survey on the other issues 

pertaining to uncertainty modelling and propagation has been provided. However, it should 
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be noted that design optimisation problems are frequently addressed using various methods 

depending on the system being optimised. Since in the previous chapters the uncertainty 

types, uncertainty modelling techniques and uncertainty propagation methods have been 

discussed, the following paragraphs will give more detailed information regarding the 

literature on design optimisation problems. 

3.1.1 Common elements of designing under uncertainty methods 

Design under uncertainty is not a straightforward task. Indeed, the literature has explored 

this field from several perspectives and faced the problem with several strategies. However, 

some general common elements can be identified as follows. 

• Inputs and outputs definition. 

• Constraints definition. 

• Uncertainty modelling. 

• System model definition. 

• Uncertainty propagation. 

• Risk assessment. 

• Optimisation or risk mitigation strategy. 

First of all, the inputs and outputs must be carefully identified. Indeed, as extensively 

discussed in the previous chapters, the designer should identify the system's inputs and select 

the outputs of interest. Inputs are independent design variables and uncontrollable 

parameters. The designer can govern the independent design variables, whereas the 

uncontrollable parameters are not under its control. Moreover, both the design variables and 

parameters can be uncertain or deterministic. The admittable values of the input array should 

be defined to avoid unfeasible solutions. When uncertainty is included, the outputs of interest 

suffer from uncertainty, too. Therefore, the designer has to decide how to represent the 

outputs. For instance, he can be interested in the outputs' whole distribution or only in some 

characteristics, like quantiles, exceedance probabilities, and similar indexes. 

Then, the uncertain variables must be modelled. At this stage, the crucial task is to select 

the most appropriate theory to depict the random variable's behaviour and the parameters' 

epistemic uncertainty. 

Subsequently, the designer should model the system. The system model types have 

already been discussed, and the designer should select the model type that accurately 

represents the actual system, saving computational time. 
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The uncertainty moves from the input to the output. The selection of the proper method 

for uncertainty propagation relies on the selected uncertain variables, the selected variable 

of interest, and how the system has been modelled. 

Once the uncertainty is propagated and the variables of interest are modelled uncertainly, 

the risk is assessed. For instance, obtaining a probability density function or an exceedance 

probability after all the previously cited steps can be considered a risk assessment procedure. 

Finally, the design can be optimised, resorting to the optimisation strategy suited for the 

application, or choices about risk mitigation strategies can be implemented. 

One of the challenges is the consistency of the uncertainty model, system model, 

uncertainty propagation method, output representation and optimisation algorithm. Indeed, 

when the aforementioned decisions were taken, the decision-maker should carefully select 

all the models to avoid incompatible algebras. 

3.1.2 Robust design 

The main aim of robust design is to find the proper configurations of the design 

parameters for which the system response has the minimum dispersion around the desired 

output value, i.e. the specification.  

In industrial practice, the statistical control of the production process is made online 

during the production phase. However, designing a process, a product or a system with high 

sensitivity to changing inputs may be a costly error. At the design stage of any process, 

several decisions must be made in the presence of uncertainty and imperfect knowledge. 

Taguchi’s system design method has been proposed to address the abovementioned problem 

in the past century. 

The traditional Taguchi’s approach [117] is based on performing experiments on a system 

model or prototype to exploit the interaction between controllable and uncontrollable input 

variables which affect the model outputs to minimise the response variation of the system 

by selecting the proper design input. The method proposed by Taguchi can be summarized 

in the following steps. More details about each step can be found elsewhere [118]. 

1. Defining the problem. 

2. Identifying the system and output of interest. 

3. Identifying the most influential variables on the output. 

4. Identifying the controllable variables, e.g. design variables and the admissible 

values levels. 
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5. Identifying the uncontrollable variables, e.g. noise factors, and their possible value 

levels. 

6. Defining the conditions to perform the experiments and measurement methods. 

7. Defining the experimental plan. 

8. Doing the experiments and collecting the data. 

9. Analysing the collected data, e.g. using the ANalysis Of VAariance (ANOVA) 

techniques. 

10.  Identifying the variables that lead the uncertainty propagation to the output. 

11. Determining the best level conditions for the controllable variables, i.e., the values 

of design variables. 

12. Forecasting the results with estimation models. 

13. Verifying the estimations with control experiments. 

As can be seen, the Taguchi method can be considered an extension of the DOE approach. 

In addition, Taguchi introduced the loss function (L(y), Figure 3.1). At least three lost 

functions can be defined in the function of the objective of the design: nominal is better (3.1), 

lower is better (3.2), and higher is better (3.3). 

 

 𝐿(𝑦) = 𝐾(𝑦 − 𝑦0)
2 (3.1) 

 𝐿(𝑦) = 𝐾𝑦2 (3.2) 

 
𝐿(𝑦) = 𝐾

1

𝑦2
 (3.3) 

 

Where y  is the random variable representing the system's output, in the Nominal better 

case, the loss function measures the distances between the actual value of the output and the 

specification y0. K is a factor that converts the lower technical performance than the 

specification into a cost. This factor is often set to 0 before overcoming the maximum 

admittable displacement between the specification of the measured value of the output. 
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Figure 3.1 Taguchi loss function for Nominal better case 

 

In any case, the concept of Robust Design has multiple interpretations in the literature 

due to the ample number of engineering fields in which it is applied. Indeed, as reviewed in 

[116], robustness can be considered like: 

• A measure of performance variations [119]. 

• Insensitivity to known risks [120]. 

• Insensitivity to changes in the operating environment [121]. 

• Insensitivity to expected and unexpected variations [122]. 

• The ability of the system to operate appropriately across several operational 

conditions [123]. 

• The system’s ability to maintain its performance level in the presence of 

fluctuations in the input or the environment [124]. 

• The system’s ability to absorb change [125]. 

• Insensitivity to varying future scenarios [126]. 

 Generally, two different criteria for judging a robust design can be derived: the decrease 

in performance variation and the handling of noise. In an available review [127], the authors 

analysed the existing approaches to determine the suitability for robust design, clustering 

them regarding transfer function and noise-behaviour model. The former shows the 
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relationships between the inputs and outputs, whereas the latter shows the influence of the 

noise on the product behaviour. The results of their analysis are presented in Table 3.1. 

 

Table 3.1 Transfer function and noise-behaviour models for determining the suitability of 

robust design [127] 

Model Characteristic Use 

Transfer 

Function 

Exploiting flat sections of the function 

by shifting the working point 

Optimise parameters 

Reducing/ eliminating variation in 

positioning 

Use self-positioning; 

provide stop dogs 

Increasing product quality/ decrease in 

variation of product characteristics 

With cast components, 

avoid vertical sections 

Exploiting elasticity Apply the principle of 

elasticity 

Achieving independence of functions Decouple functions 

Increasing predictability Seek exactly constrained 

systems 

Increasing range of tolerance for 

performance variation 

Change requirements 

Facilitating quality control Change requirements 

Standardising of products and processes Reuse models; use standard 

parts 

Reducing the potential for the 

occurrence of failures 

Simplify the geometry; 

Reduce the number of parts 

Noise-behaviour 

model 

Reducing/ eliminating noise Isolate heat source 

Reducing/ eliminating the influence of 

noise 

Isolate component/product 
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Reducing/ eliminating the impact of 

noise 

Use symmetric structure; 

apply the principle of self-

help 

Increasing future robustness Increase modularisation 

 

Robust design can operate on the output performances in three ways: reducing the 

reducible uncertainty (Figure 3.2), changing the slope of the transfer function that determines 

uncertainty propagation from the input to the output (Figure 3.3), i.e., changing the design 

architecture, and when the transfer function is non-linear, moving the design variables on a 

flatter portion of the curve (Figure 3.4). 

 

 

Figure 3.2 Robust design uncertainty mitigation: reducible uncertainty reduction [128] 

 

The reducible uncertainty can arise from different sources, and specific sources require 

specific actions to be reduced. For instance, if the uncertainty is related to the sample size 

used to determine the value of a measure, increasing the number of experiments may shrink 

it. On the other hand, if the uncertainty pertains to the relationships used to model the system, 

a more detailed model may be a viable solution. In any case, these are only two examples to 

show that different sources require different actions. However, these approaches are still 

found on the assumption that the less variability enters the system, the less uncertainty will 

be in the outputs. 
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Figure 3.3 Robust design uncertainty mitigation: slope changing [128] 

 

Since the uncertainty is propagated from the inputs to the outputs using a transfer 

function, an increase in robustness can be achieved by changing, for example, the 

architecture of the industrial equipment or system, as shown in Chapter 5. The slope change 

can influence the dispersion of the output around the mean value, as shown in Figure 3.3. 

 

 

Figure 3.4 Robust design uncertainty mitigation: moving on a flatter portion of the curve 

[128] 

 

Finally, when the transfer function is non-linear, the designer can select the independent 

design variables to operate in a flatter portion of the curve. However, this approach is 
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constrained by the admittable region of the independent design variables and, therefore, is 

not always a viable solution. 

Robust design optimisation 

Let us define the function of the output y of the model that represents the system as y=f(x, 

d), where x is the array of the independent design variables, and d is the array of other fixed 

and known parameters. The model f(x, d) is obtained by resorting to some design procedure 

that, starting from the independent design variables and other parameters which are known 

and influence the design, allows the designer to compute the dependent design variables and 

the design architecture. 

The general approach to robust design optimisation relies upon minimising the expected 

value of the loss function (E(L)). The expected value of the loss is expressed in equation 3.4. 

 

 𝐸(𝐿) = 𝐾[(�̅� − 𝑦0)
2 + 𝜎𝑦

2] (3.4) 

 

Where �̅� is the average value of the actual model outputs, σy is their standard deviation, 

and y0 is the specification. Reducing E(L) by changing the design variables can 

simultaneously reduce the distance of the expected value of the output from the specification 

and the dispersion around the average value. The change of design variables can be done 

with different approaches, starting from the design of experiments to meta-heuristic 

algorithms. Whatever the selected method to pursue the design procedure, the result is an 

optimum or suboptimum design in which the probability density function of the output 

values is close to the specification and as narrow as possible. 

The optimisation function can be applied to different performance measures and 

formulated differently. Whatever the formulation of the function under optimisation, if the 

goal is the robustness of the design, the function should consider both the expected value 

and some measure of the dispersion of the possible outcomes. 

The general formulation of the robust design optimisation problem when uncertain 

variables are included can be expressed as follows (3.5) [129]: 

 

 

{

𝑀𝑖𝑛 𝑓(𝑥, 𝑑, 𝑝)
𝑆. 𝑡. ∶ 𝑔𝑗(𝑥, 𝑑, 𝑝)

𝑑𝑙 ≤ 𝑑 ≤ 𝑑𝑢

  𝑗 = 1,… , 𝐽 (3.5) 
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The objective is to minimise the performance function f(x, d, p), where x is the vector of 

the random design variable, d is the vector of the deterministic design variable, and p is the 

vector of the random uncontrollable design parameters. The design variables x and d are 

changeable and controllable during the design process, whereas an uncontrollable design 

parameter is not. The vectors dl and du are the vectors of the upper and lower bounds of 

deterministic design variables. Supposing that there are J constraints, gj is the function of the 

j-th constraint. Often, in this type of problem, the decision variables are the mean of the 

random design variables and the actual values of the deterministic ones. 

In the literature, robust design optimisation problems are solved by resorting to numerical 

integration, analytical methods, and simulation methods in function of the probability 

moment the designer is interested. Generally, multiobjective methods are involved in the 

optimisation to include the mean and dispersion of the random output simultaneously. Three 

of the most used are the weighted sum method, compromise decision support problem, and 

physical programming [130]. 

The weighted sum method defines a single objective function starting from multiple 

objectives. A possible formulation for the optimisation function is expressed in equation 3.6 

[131-133]. 

 

 
𝑓(𝑥, 𝑑, 𝑝) = 𝛼 [

𝐸[𝑓(𝑥, 𝑑, 𝑝)]

𝜇∗
] + (1 − 𝛼) [

𝜎(𝑥, 𝑝, 𝑑)

𝜎∗
] (3.6) 

 

Where μ* and σ* are normalisation's mean and standard deviation base values. Although 

some authors define this approach as inefficient [130], it is widely adopted due to its simple 

and easy application. 

The compromise decision support problem is a type of hybrid optimisation problem. 

Indeed, the designer formulates the optimisation problem, including both mathematical and 

goal programming [134, 135]. 

Physical programming classifies and includes the objectives in the constraints set. The 

objective function can be easy, like the one in equation 3.6. However, whatever the objective 

function is, it must represent a preference function between the objectives. 

More details about the Robust Design can be found in the reference [130]. 
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3.1.3 Reliability-based design 

Reliability-based design is focused on the integration of the concept of reliability during 

the design phase. This approach aims to maintain the reliability of the design during the 

operation, maintenance and decommission phases. Prosaically, one basic example of the 

reliability-based design is the attempt to ensure the system’s reliability using safety factors 

for uncertainty accounting. Indeed, the safety factors method oversize, overengineer, or 

overdesign a system to ensure it almost surely meets the specifications. 

The reliability analysis analyses the ability of the system to maintain its capability in 

achieving the tasks for which it was thought under certain conditions and over a fixed time. 

Basically, a state function of the system is defined (g(x)). This function considers the input 

variables (x) and informs about the system's success or failure to achieve its specifications 

or goals. The most straightforward criterion to understand whether a system is reliable is the 

Boolean one. If the system cannot meet the specifications, the state function gives a value 

above or below a specific threshold. The limit state of the function identifies the threshold. 

Commonly, the distinguishing between reliable and unreliable systems is made according to 

the zero point of g(x) (3.7). The judgment function I(g(x)) gives the information in Boolean 

algebra [136]. 

 

 
𝐼(𝑔(𝑥)) = {

1     𝑔(𝑥) < 0     

0      𝑔(𝑥) ≥ 0     

𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒       

𝑢𝑛𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 
 (3.7) 

 

Since the reliability analysis is strictly related to the uncertainty modelling methods of 

the inputs, it can be clustered into two groups: the probabilistic reliability analysis method 

and the fuzzy reliability analysis method. The former occurs when the random variables are 

modelled as a probability density function. Instead, the latter is carried out when fuzzy 

membership functions or fuzzy theory are used to describe the random variables [136]. 

The probabilistic reliability analysis can be grouped according to the used method in 

FORM and SORM, MC-based methods, performance measure approach, i.e. mean value, 

hybrid mean value, etc., and approximation model methods, like artificial neural networks 

and response surface methods. These methods approximate the computation of the failure 

probability Pf, which can be formulated as in equation 3.8. 
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𝑃𝑓 = ∫…∫𝐼(𝑔(𝑥)𝑝𝑑𝑓(𝑥)𝑑𝑥1…𝑑𝑥𝑛 (3.8) 

  

Where n is the number of the inputs involved and pdf(x) is the joint probability density 

function of the array of random variables x. 

The fuzzy reliability analysis is divided into based on fuzzy logic and based on fuzzy 

variables. However, this approach has already been not mature and thus is not used in 

engineering applications [136]. 

Design for Reliability (DfR) is a method rooted in reliability analysis that proposes an 

alternative approach to the test-analyze-and-fix philosophy [137]. The DfR procedure can 

be summarised as follows. 

• Identify. 

• Design. 

• Analyse. 

• Verify. 

• Validate. 

• Monitor and control. 

The first stage is to represent quantitatively the reliability requirements of the system 

which is being designed. Several strategies can be used to carefully describe the 

requirements, such as developing metrics, benchmarking, and reliability program plan 

methods. 

The design phase concerns the design of the system. Failure Modes and Effects Analysis 

(FMEA) is a common approach used in this phase. 

In the analysis phase, the reliability analysis is performed. The identification of the most 

common failure modes is done, and their probability must be calculated. Some instruments, 

like the reliability block diagram, give an instantaneous idea about the reliability of a system. 

The verify phase pertains to the iterative process in which the system is tested to check 

the compliance of the first estimation to the results obtained by experimentations or 

simulations. Then, the design or process is validated and, in some cases, starts the control 

phase, in which the system's performance is monitored over time. 

The FMEA is a qualitative process in which the system is deeply studied to understand 

and classify the failure modes and their impact on the system. During the process, each 
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subsystem in the whole system is investigated to list all possible failure modes, their causes, 

the possible defects, and the procedure for preventing or detecting the failures. The main 

goal of the process is to define three indices for each combination of failure modes: their 

probability of occurrence, the magnitude of the event, and their detection possibility. These 

indices are substantially rating scores which can assume a value on a prefixed scale, typically 

from one to ten. Their values are then multiplied to compute the risk priority index. The risk 

associated with the event is the product between the event’s magnitude and the probability. 

The higher the index, the higher the priority of taking actions to mitigate the probability or 

the magnitude or to implement items to increase the possibility of detecting them. More 

details about FMEA theory and implementation have been reviewed elsewhere [138, 139]. 

The Failure Mode, Effects, and Criticality Analysis (FMECA) is an extension of the 

FMEA method. The main difference resides in the criticality analysis used to determine the 

magnitude of a failure and its probability of occurrence from a quantitative perspective. 

Indeed, the FMEA indices give only qualitative information, whereas FMECA indices are 

quantitative [140]. 

Reliability-Based Design Optimisation 

Reliability-Based Design Optimisation (RBDO) is an optimisation approach in which 

uncertain factors are included, resorting to the probability theory. The factors’ uncertainty 

impacts the functions of constraints, whereas the factors’ mean values are included in the 

optimisation function. Since, in most engineering problems, the optimal solution is near the 

boundary, the uncertainty effect can cause the falling out of the design point from the 

feasibility region. Generally, the RBDO can consider the aleatory uncertainty or both 

aleatory and epistemic uncertainty. The optimisation problem is formulated as follows (3.9, 

3.10) [75, 129, 136]. 

 

 

{
 
 

 
 
Min 𝑓(𝑑, 𝐸[𝑥], 𝐸[𝑝])                  

𝑆. 𝑡.  𝑃(𝑔𝑢(𝑑, 𝑥, 𝑝) < 0) ≥ 𝑅𝑡   

𝑔𝑑(𝑑) < 0                  
   𝑑𝑙 ≤ 𝑑 ≤ 𝑑𝑢                 

𝑥𝑙 ≤ 𝐸[𝑥] ≤ 𝑥𝑢        

 (3.9) 

 
𝑃(𝑔𝑢(𝑑, 𝑥, 𝑝) < 0) = ∫ 𝑝𝑑𝑓(𝑥, 𝑝)𝑑𝑥𝑑𝑝

𝑔(𝑑,𝑥,𝑝)≤0

 (3.10) 
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Where d and x are the vectors of deterministic and random design variables, respectively, 

pdf(x, p) is their joint probability density function, dl, du, xl, and xu are their lower and upper 

bounds, E[.] identifies the expected value of a random variable,  p is the vector of uncertain 

parameters, that includes the epistemic uncertainty, gu(.) and gd(.) are the deterministic and 

random constraints functions respectively, and Rt is the minimum allowable value of 

reliability. In this way, e.g., one can perform a cost minimisation considering the effects of 

the uncertainty on the system’s reliability. The probabilistic constraint is the item that 

differentiates this type of optimisation problem from the deterministic one. 

The optimisation process is often carried out by resorting to sampling techniques because 

of the difficulty or impossibility of solving in closed form equation 3.10. 

In the end, a possible approach to the optimisation combines robust optimisation and 

reliability optimisation by utilizing as a performance function an objective function which 

simultaneously considers the mean and the standard deviation of the selected performance 

[129]. An example of this type of performance functions can be found in equation 3.6. 

More details about more advanced models and methods for reliability-based design 

optimisation, like double loop reliability-based design optimisation, sequential optimisation 

and reliability assessment, and safety factor-based sequential optimisation and reliability 

assessment, can be found elsewhere [75, 129, 136]. 

3.1.4 Flexibility-based, reconfigurability-based, and resilience-based 

design 

Resilience is the system’s ability to recover its capacity or to return to its desired state 

after an expected event occurrence [141]. Resilience is often measured as the ratio between 

the area subtended by the capacity curve over time after a disruptive event and the time 

interval to reach the system's capacity before the event [142]. In any case, the strategies for 

increasing resilience are focused on redundancy, flexibility, and recoverability [143]. Design 

for Resilience has been intensely discussed elsewhere [144, 145]. Finally, a recent paper has 

defined resilience-based design starting from the reliability-based design theory [146]. 

Flexibility is commonly defined in literature as the ability of a system to respond to 

change [147]. Thus, this property of systems is another tool to cope with the uncertainty in 

industrial systems.  

Even though the flexibility concept has been widely explored in the literature, several 

interpretations of the implications of this system’s ability exist. Some authors tried to clarify 
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the concept of flexibility with a deep literature review [148]. Their work identifies three 

ample application fields: decision theory, real options theory, and design flexibility. An 

emerging issue is the confusion that may occur when analysing the concept of robustness 

and flexibility. Robustness guarantees the satisfaction of specifications despite 

environmental, inputs and other changes. In contrast, flexibility is related to the will to satisfy 

changing requirements and adapt the system’s way of working for this purpose once it has 

been fielded. 

Since Real Option theory has its own paragraph, some comments on the flexibility of a 

design are briefly given in this part. 

In the production system field, flexibility refers to the ability to change production volume 

to satisfy an uncertain demand for an item; the ability to process an item on different 

machines, therefore, to have general purpose resources; the possibility of a system to extend 

its productivity capacity; the ability to process several different products on the same system 

without major setup. For clarity, the main difference between volume and capacity flexibility 

resides in the fact that the former refers to a change in the scheduled volume. In contrast, the 

latter refers to the cap of the capacity level. 

Whatever increases the above-cited abilities increases the flexibility of the industrial 

system. This means that, for example, a system designed with general-purpose machines, 

redundancy, speedy setup, and mixed model production line, similar to the Flexible 

Manufacturing System (FMS) [149], is designed according to the flexibility-based design 

approach. 

More details about the flexible manufacturing system can be found elsewhere [149]. 

A reconfigurable manufacturing system has an open architecture that enables the adoption 

of new resources and layout changes very quickly to respond rapidly and economically to 

emergent increases in market demand [150]. Basically, the reconfigurability-based design 

can change both its hardware and software resources to adjust its structure to larger 

production capacity or new products in response to new market or regulatory requirements. 

The main characteristics of a reconfigurable system can be resumed as follows [151]. 

• Scalability. The capacity of cost-effective adaptation to market demand changes. 

• Convertibility. The capability of adaptation to new products. 

• Diagnosability. The possibility to monitor the real-time product quality and 

defects. This leads to increased system reliability. 
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• Customization. The system’s adaptability around a family of products. 

• Modularity. The compartmentalization of systems to reconfigure and reallocate 

tasks to machines. 

• Integrability. The possibility to include new modules effectively. 

Further details on reconfigurable manufacturing systems can be found elsewhere [152]. 

For completeness, some authors proposed a decision support methodology to minimise the 

expected total cost of assembly systems with modular resources, including reconfiguration 

costs [153]. 

In the end, while flexibility pertains to changing and assuming different states to cope 

with changing requirements with short time, effort, cost, or performance degradation,  

reconfigurability regards adjusting the functionality and capacity at low cost and time [154]. 

3.1.5 Real options theory 

The Real Options theory is widely used for economic evaluation [155]. This approach 

can enhance the flexibility of a system during the design phase [156], and, from the author's 

perspective, its most significant contribution lies in providing a new methodology for the 

economic evaluation of an investment. This theory enables estimation of the net present 

value of an economic initiative without resorting to the traditional approach while also 

allowing for increased resilience and mitigation of uncertainty effects during the design 

phase. This theory is based on financial derivatives known as options, which are utilized to 

mitigate the risk associated with fluctuations in the price of an underlying asset by paying a 

premium. In the case of a call option, the owner possesses the right, but not the obligation, 

to purchase an asset at a predetermined price on a fixed future date. 

Conversely, a put option grants the owner the same right to sell an asset. The hedging 

strategy involves setting a lower or upper price limit the option owner establishes with their 

purchase. The types of real options are listed below. 

• Option to expand. This refers to the opportunity to invest in the future to expand 

the current operational system, such as entering new markets or increasing market 

presence. 

• Option to learn. This pertains to the possibility of increasing knowledge or 

understanding about a particular subject or area. 

• Option to wait. This denotes the option to postpone a decision to a future time, 

such as delaying an investment or increasing production capacity at a later date. 
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• Option to contract. This represents the possibility of reducing the scale or scope 

of an investment, often in response to changing circumstances or market 

conditions. 

• Option to abandon. This signifies the ability to terminate or shut down a project 

to minimise or mitigate economic losses. 

• Option to switch. This refers to the capability of shutting down a project to 

minimise economic losses and subsequently restarting it when favourable 

conditions arise. 

This theory can effectively address both epistemic and aleatory uncertainty, although 

pricing the option is not a straightforward process. Furthermore, the actions taken to mitigate 

uncertainty specifically focus on enhancing the system's flexibility [157]. Nevertheless, the 

approach generally involves four steps: problem description, data collection to implement 

the option evaluation model, reviewing the results, and making design changes as necessary. 

It is an iterative process that proves highly valuable in making strategic decisions within 

uncertain stochastic processes. Furthermore, it can be employed to simplify certain problems 

and reduce the computational power needed by combining it with uncertainty propagation 

techniques. As mentioned earlier, the most significant advancement of this theory lies in the 

assessment of the economic performance of a system. Real Options, in fact, can determine 

the risk-adjusted strategic value, providing a realistic estimation of the value of an 

investment or an organization, taking into account their guard against adverse events [158]. 

On the other hand, estimating the value of a real option is a highly complex task, and ongoing 

research is dedicated to addressing this challenge. For example, the author of [159] recently 

examined the valuation of mergers and acquisitions within the framework of Real Option 

theory. 

3.1.6 Design optimisation and design-based risk mitigation strategies 

After modelling the uncertainty sources and the system, propagating uncertainty through 

the system model, and assessing the risk, one has a complete picture of the system under 

analysis. At this point, the selected objective drives the subsequent steps. Theoretically, the 

decision maker has all the information required to make a conscious choice, but several 

things can be done.  

One can perform different actions to act on the design of the system or on the system 

itself. In the first case, the system design can be optimised using various methods or 
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algorithms to enhance the system's robustness, resilience, flexibility, or other characteristics, 

which aid in dealing with uncertainty. On the other hand, one can act on the system with 

risk-hedging actions to mitigate technical or economic risks. 

Stochastic optimisation is a branch of optimisation methods. This approach uses random 

variables in formulating the objective function and constraints and can be divided into two 

groups: methods for stochastic functions and metaheuristic algorithms. 

Methods for stochastic functions include stochastic approximation methods and scenario 

optimisation. The former is a group of iterative methods which resort to recursive update 

rules for solving linear systems or approximating extreme values [160, 161]. The latter 

investigates solutions for robust optimisation and constraints-based optimisation problems 

resorting to scenarios combination [162]. 

Metaheuristic algorithms are randomized search methods which use probabilistic 

techniques to approximate global optimisation. Indeed, this type of algorithm finds a sub-

optimum solution, not the actual one. They can be used with analytical, surrogate, and 

simulation models. Several algorithms exist, and most of them are listed in Chapter 5. Since 

the functioning of these search methods is related to the one used, additional information 

about these issues can be found in the reference [163]. Additionally, a classification of more 

than eighty algorithms is provided in the review in reference [164]. 

The existing literature has extensively explored design optimisation under aleatory and 

epistemic uncertainty. As mentioned above, some authors have focused on optimising 

systems under aleatory uncertainty, while others have considered epistemic uncertainty. 

Only a limited number of contributions have tackled both types of uncertainty 

simultaneously. Furthermore, in many cases, only a few uncertainty sources are taken into 

account, resulting in designs that may not be as accurate. Nevertheless, in recent years, there 

has been a growing interest in optimisation under uncertainty, and knowledge in stochastic 

programming has been expanded [165]. This increasing interest suggests that researchers 

and practitioners recognise the importance of incorporating uncertainty into design 

optimisation to create more robust and reliable systems. 

 Analytical approaches to optimisation are suitable when the number of optimisation 

variables is small, and the involved function can be formulated analytically, particularly for 

non-linear optimisation problems. However, in cases where the optimisation problem is 

linear, analytical approaches can still be utilized. Nevertheless, in real-world scenarios, 
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numerical optimisation methods are often more appropriate. In fact, they are preferred when 

dealing with problems involving many dimensions or when constraints cannot be easily 

formulated in closed form. 

Simulation-based optimisation is widely utilised in the practical world when dealing with 

complex problems and real-world systems. Metaheuristic algorithms for global optimisation 

have been extensively investigated and classified, demonstrating their ability to solve a wide 

range of problems [166]. On the contrary to optimisation algorithms and iterative methods, 

metaheuristic algorithms do not guarantee the finding of the optimal solution. Nevertheless, 

some studies on the convergence and the possibility of finding the global optimum are 

underway. Despite the aforementioned drawbacks, metaheuristics may offer effective 

solutions to optimisation problems, particularly when there is incomplete information and 

the required computational time for optimisation tasks is substantial. The goal of this family 

of algorithms is to find a near-optimal solution. Due to their widespread use in the literature 

and their high capabilities in solving design optimisation problems under uncertainty, 

Chapter 5 will provide further information about the research on this topic. Additionally, the 

practical example in the case study will demonstrate the effectiveness of metaheuristic 

algorithms. 

Beyond design optimisation, some actions can be taken by decision-makers and designers 

on both the design and the system itself. Design for X policies is widely implemented in the 

risk mitigation field. For instance, design for flexibility [149], resilience [144], modularity, 

and reconfigurability [152] are just a few examples of the strategies that can be implemented 

in the design. All these strategies share some aspects in common, such as equipment 

redundancy. Redundancy involves including multiple machines for each type to shift 

production if required. The machines must have relatively low utilization. Another vital 

element is the use of general-purpose machines. General-purpose machines can handle 

different products and perform various operations. Nowadays, the enhancement of the 

previously introduced system characteristics is influenced by the Industry 4.0 paradigm. The 

integration between cyber and physical systems using the Internet of Things enables the 

enhancement of flexibility, resilience, and reconfigurability of industrial systems. 

When economic risk is involved, the most widely used practices are resorting to insurance 

and financial products like derivatives. More details on this topic will be provided in the 

literature review of Chapter 6. 
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To reduce the gap between scientific research and industrial application, some authors 

have proposed frameworks for categorizing the effects of uncertainty on the various aspects 

of decision-making, optimisation, and related topics. For instance, in an original work [17], 

a framework with three goals has been developed: assessment, adjustment, and abatement 

of uncertainty. Uncertainty assessment pertains to the effects on the feasibility, analysing the 

range of parameters, the constraints and the uncertainty effects on the objective functions. 

The uncertainty adjustment attempts to minimise the effect on feasibility and the objective 

functions, using the already introduced recursive algorithms and robust optimisation. 

Instead, uncertainty abatement refers to reducing the uncertainties and increasing the 

accuracy of the parameters and input data. The cited paper finds in the already explained 

approaches of continuous description of sampling space and discrete sampling two different 

strategies to reduce the optimisation problem complexity. 

In conclusion, all the works and theories mentioned above have been considered to extend 

their applicability fields and to integrate the different approaches and methods in a single 

framework for uncertainty coping. 

3.2 Industrial systems evaluation under uncertainty 

Although most industrial systems are still designed neglecting uncertainty and resorting 

to nominal conditions or, in the best case, using discrete event simulation tools, after the 

design phase, the project is often evaluated using sensitivity analysis to understand which 

variables strongly influence its performance [167]. Additionally, one can usually evaluate 

the system under likely scenarios to observe the behaviour of the system in off-design 

conditions [168, 169]. 

Understanding the economic and technical performance of an industrial system under 

uncertainty is crucial for decision-makers, designers, managers, and practitioners. The 

literature has generally focused on a single or a few sources of uncertainty rather than 

simultaneously considering as many sources as possible. Nonetheless, there is significant 

attention given to this issue. For several years, researchers have been attentive to economic 

performance evaluation, adopting approaches that model uncertain discount rates in future 

scenarios and determine appropriate forward rates of discount [170, 171]. They have also 

taken into account the effect of climate change on discount rates. At the same time, other 
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authors have considered the implications of high-impact catastrophes associated with 

climate change on the uncertainty of the economic environment [172]. 

Cost-benefit analysis is an established methodology used in various sectors, from the 

private to the public. In order to obtain credible results, it is crucial to take uncertainty into 

account. However, analysts often rely on heuristic rules and simple probabilities to deal with 

the uncertainty of cost-benefit estimations and derive a probability distribution of the 

outcomes, representing the associated risk [173]. Alternatively, analysts may employ Monte 

Carlo simulation and other types of sensitivity analysis to consider parameter uncertainties 

[174]. Nevertheless, a few structured approaches currently consider multiple sources of 

uncertainty simultaneously. 

Decision-making becomes challenging when dealing with complex problems, 

particularly when multiple objectives are involved and trade-offs are necessary. A common 

approach is simplifying the problem into a single objective, such as maximising monetary 

return [175]. However, decision-makers often rely on rules of thumb to handle uncertainty 

[176]. In recent years, more structured approaches have been proposed. For example, the 

Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) can 

assist decision-makers in prioritising the best choices, even in the presence of a multi-

objective optimisation problem [177]. 

To the best of our knowledge and based on the literature analysis, it is apparent that 

scientific research has predominantly focused on specific sources of uncertainty rather than 

considering multiple sources simultaneously. There is a notable lack of research that 

addresses several sources of uncertainty in decision-making, design, and evaluation under 

uncertainty. Additionally, the existing works often focus on specific problems instead of 

frameworks of general applicability. 

The following paragraphs review some of the available contributions in literature and 

commercial tools for evaluating different types of industrial systems under uncertainty.  

3.2.1 Risk assessment 

A potential source of damage or loss is known as a hazard. When this hazard is likely to 

have some effects on the system or the environment, the risk arises. Therefore, risk is the 

combination of an event that can occur and its probability of occurrence. This probability is 

strictly related to the uncertainty about translating the possible damage linked to the hazard 
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to actual damage. When uncertainty may affect a system with undesired effects, evaluating 

risks and assessing is crucial to avoid incorrect or uninformed decisions. 

A general approach to define safety barriers against possible consequences which may 

arise from the hazard is to identify the possible accident scenarios and to predict their 

consequences. Although a straightforward and common approach is to define the worst-case 

scenarios and protect the system against these events, this can lead to underestimating the 

risk associated with other events. Moreover, defining the worst-case scenarios is not 

straightforward and can lead to neglecting other relevant cases. 

The Probabilistic Risk Assessment (PRA), or Quantitative Risk Assessment (QRA), is a 

framework that comprises the uncertainties about the events that can affect the system by 

considering three issues: the events that translate the hazard into actual damage, the 

probability of these events, and the consequences of them. Very often, the output of the 

process is the individual risk, which can be seen as the number of fatalities after an event, 

but also as the expected economic losses after it, or frequency-consequence curves, i.e. the 

expected number of accidents with at least a number of fatalities, which can be seen like a 

probability density function of expected loss. 

The two predominant strategies of PRA are the frequentist and the Bayesian approach. 

The former is usually the first choice when ample data is available and uses statistical 

inference and probability models to estimate risk probability and effects. The latter resides 

in subjective probabilities and is often used when poor data is available. Basically, with the 

Bayesian approach, the analyst establishes the models to represent epistemic and aleatory 

uncertainty and then applies the law of total probability to assess the predictive distributions 

of the quantities of interest. Whatever the chosen approach, the risk analysis process starts 

with selecting the relevant hazards and scenarios, representing their uncertainty, assessing 

the risk, supposing action to mitigate the risk and finally assessing the residual risk. The 

procedure output is a series of events, associated probabilities, and expected consequences 

[178]. 

The main steps of risk assessment can be summarised as follows. 

• System modelling. 

• Uncertainty sources and hazards identification. 

• Initiator events indentification. 

• Events probabilities and consequences assessment. 
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• Risk assessment and decision-making process. 

The system modelling and calibration pertains to the concepts expressed in section 2.1, 

as well as the sources of uncertainty identification and modelling of the issues described in 

section 1.2. 

The selection of initiating events is made by analysing the data about hazards. The events 

which come out from the hazards, i.e. the event that starts the translation from the plausible 

to the actual event, should be classified using a risk matrix according to their criticality as 

acceptable, As Low As Reasonably Practicable (ALARP), and unacceptable. 

The sequences of events which lead to the damage or loss have specific probabilities. 

These probabilities are estimated by combining each event's probabilities that belong to the 

specific sequence. Therefore, in the fourth step, the probability of sequences is assessed, e.g., 

by using the event tree method or fault tree analysis. The event tree method uses inductive 

logic by discretising the real accident evolution to individuate the accident sequence 

resulting from an initiating event. For further details, see reference [179]. On the other hand, 

fault tree analysis is a deductive technique to understand the causal relations which lead to 

an event. Further clarification about this method and its applications can be found elsewhere 

[180]. 

Finally, the risk assessment and decision-making process step estimate the possible 

outcomes and probabilities. Then, possible solutions to mitigate the effects of the events on 

the outcomes or their occurrence probabilities are drawn and eventually put into practice. 

Even though the above discussion is mainly focused on failure and system damage, it can 

be extended to other variables of interest, as remarked when the concept of loss has been 

introduced. Indeed, the risk assessment is considered from various contributions in the 

literature similar to the uncertainty quantification process. An exhaustive contribution 

focused on uncertainty quantification and risk assessment can be found in the reference 

[181]. 

In conclusion, the risk assessment process passes by identifying the variable or variables 

of interest. As already said, the variable can be purely technical, economic, or a combination 

of these two distinct aspects. Additionally, the variable can be only one, like the outlet 

temperature of one fluid in a shell and tube heat exchanger (Chapter 5), or more than one, 

like the Net Present Value (NPV) distribution, the Value at Risk (VAR), and the probability 

of obtaining a NPV less than zero in an economic evaluation of an industrial initiative 
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(Chapter 6). Identifying the variable of interest is crucial in the risk assessment process. It 

plays a significant role in determining the most appropriate uncertainty propagation method 

(as shown in Table 2.2) and, eventually, the most suitable optimisation algorithm after its 

estimation. 

Once the variable of interest has been selected, the focus must shift to the measure of 

uncertainty associated with that variable. Understanding the uncertainty is essential for 

making informed decisions or optimising the system. Some possible measures of uncertainty 

of the variable of interest are listed below. 

• Wost-case scenario. 

• Expected value of the variable of interest. 

• Standard deviation of the variable of interest. 

• Coefficient of variation of the variable of interest. 

• High-level moments of the probability distribution. 

• Confidence intervals of the variable of interest. 

• Quantiles of the variable of interest. 

• Probabilities of exceeding a threshold. 

• Failure frequency. 

• Ranges or maximal and minimal values of the variable of interest. 

• Probability density function of the variable of interest. 

• Cumulative belief in not having exceeded a threshold. 

• Plausibility/belief functions of the variable of interest. 

• Value At Risk (VAR). 

• Risk-Adjusted Return on Capital (RAROC). 

The aim of this thesis is not to review the risk assessment procedures. For that reason, 

further clarification is provided in references in the literature review section of case studies. 

Additionally, the application of this methodology can be seen in the subsequent chapter. 

3.2.1 Literature-available uncertainty quantification frameworks 

From the previous review, it emerges that the literature is often focused on specific topics, 

such as some uncertainty sources, methods, models, or systems, instead of addressing from 

a general perspective the problem of assessing industrial systems performance under 

uncertainty. Despite this fact being generally true, some works in the previous pages 
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generalised the existing theories and systematised the existing approaches to face the 

uncertainty propagation problem or design under uncertainty from a general perspective. As 

a matter of fact, for instance, the reference  [4] contributes significantly to conceptualising a 

framework for quantitative uncertainty assessment by addressing multiple sources 

simultaneously without focusing on a specific system. This paragraph summarises the work 

just mentioned to give a more comprehensive picture of state-of-the-art. 

Even though the authors’ proposal is suited explicitly for practitioners, they incorporated 

several concepts. Firstly, they employed an analytical model (paragraph 2.1.1) or adopted a 

surrogate model (paragraph 2.1.3) of the system to minimise complexity. Next, they 

characterised the uncertain inputs by employing probabilistic (paragraph 1.2.1) or 

possibilistic approaches (paragraph 1.2.4) to measure their associated uncertainty. 

Subsequently, they utilised the technical system model by considering fixed parameters and 

uncertain variables to evaluate the output uncertainty of the variable of interest. Finally, a 

sensitivity analysis (paragraph 2.2.4) was conducted to ascertain whether the decision 

criteria, which rely on the analysis objective, satisfy the specified requirements. If not, the 

authors recommended that decision-makers take action to mitigate uncertainty through 

system design modifications. A notable aspect is that the authors present the analysis results 

deterministically, ensuring practitioners can comprehend them. 

The framework can achieve the following four distinct objectives.  

• Understanding the impact of variability on the output. 

• Validating a measurement or model. 

• Selecting among various models or choices. 

• Meeting prescribed standards and thresholds. 

The approach is based on the forward process and the feedback process.  

The forward process propagates the uncertainty from the input to the output and 

eventually assesses the risk. 

On the other hand, the feedback process has different objectives in the function of the 

goal for which the framework is used. For the first two goals, it is used to improve the system 

or uncertainty model accuracy or reduce the models' complexity by changing their 

representation or introducing assumptions or simplifications. For the third objective, it is 

used to change the scenario in which the forward process is performed. Finally, when the 
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fourth goal is ongoing, it is used to adjust the controlled variables or to improve the 

measurement to achieve the thresholds or criteria satisfaction. 

Additionally, the authors deeply discussed the existing uncertainty models, deterministic 

and meta-models, several uncertainty propagation models, and the well-known problem of 

properly selecting the variables of interest. Furthermore, they discussed the applicability of 

methods in different cases and provided suggestions about the preferred method at given 

conditions. Figure 3.5 shows the cited uncertainty quantification framework. 

 

 

Figure 3.5 Literature-available framework for uncertainty quantification proposed by de 

Rocquigny et. al [4] 

 

One of the authors of the aforementioned work also expanded the theoretical foundations 

of the framework by proposing additional mathematical and statistical tools to incorporate 

risk assessment and some economic items into the final evaluation [5]. 

3.2.2 Commercial software for uncertainty quantification 

Several commercial tools for uncertainty quantification are available on the market. 

Despite most of them being specialised software, some others are general purpose. Some of 

these general-purpose pieces of software are briefly reviewed in the following to show their 

relevant features and capabilities. The information reported below is based on deep reviews 

available in the literature [16, 74].  
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• Dakota. 

• PSUADE. 

• OpenTURNS. 

• Chaospy. 

• QUESO. 

• PyMC and PyMC3. 

• Stan. 

• UQ Tools. 

• UQTk. 

• OpenCOSSAN and COSSAN-X. 

Dakota is an open-source software made by Sandia National Laboratories. It was born in 

1994 as an optimisation tool but extended to include uncertainty quantification. Basically, it 

can automate variables and parameters changes to assess the risk. This allows the analyst to 

calibrate, optimise, and do sensitive analysis or uncertainty quantification, giving the 

software the response of a computational model. Then, it provides the new input to the 

model, and the process goes ahead iteratively. 

The system model can be emulated resorting to surrogate models. Therefore, analytical 

and simulation models are not includible. 

Dakota is focused on forward uncertainty propagation, and the aleatory uncertainty of 

inputs can be represented with eleven standard distribution types and five standard discrete 

distribution types. Although it also admits the correlation between the variables, the 

computation of partial correlation coefficients supposes the linear relationship between input 

and output. In contrast, the assessment of partial rank correlation coefficients assumes that 

the relationship between input and output is monotonic. On the other hand, epistemic 

uncertainty can be represented by continuous or discrete intervals, integers, strings, and real 

values. 

The uncertainty propagation can be performed with sampling, stochastic expansion, and 

reliability methods. Additionally, it includes the theory of evidence and the interval methods 

for propagating epistemic uncertainty. A feedback process can be used to perform 

optimisation under uncertainty, mainly to achieve robust or reliable design. 
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PSUADE is a collection of mathematical techniques for uncertainty quantification and 

means Problem Solving Environment for Uncertainty Analysis and Design Exploration, and 

it was developed by Lawrence Livermore National Laboratory.  

PSUADE encompasses several sampling approaches to perform uncertainty propagation, 

including aleatory and mixed aleatory-epistemic uncertainty propagation. Instead, purely 

epistemic uncertainty propagation techniques, such as Dempster-Shafer's theory, seem to be 

not currently included. The main features are uncertain parameter screening and dimension 

reduction, response surface analysis, quantitative uncertainty analysis, reverse uncertainty 

quantification with Bayesian theory,  and optimisation under uncertainty. 

PSUADE builds an internal surrogate model using Kriging methods, polynomial fits, and 

radial basis function expansions. Thus, system models built by the user are not admitted. 

Moreover, only basic probability distributions such as uniform, normal, lognormal, and 

triangular are available. 

 

OpenTURNS is a Python module was made by a collaboration between academic 

institutions and Airbus Group, Électricité de France Research and Development, Phimeca 

Engineering, and Ingénierie Mathématique et Calcul Scientifique. 

The uncertainty can be represented using more than forty parametric distributions, 

stochastic processes, and multivariate distributions. 

Sampling methods, polynomial chaos and reliability methods perform the aleatory 

uncertainty propagation, while epistemic uncertainty seems not currently included. Bayesian 

model calibration allows the tool to address reverse uncertainty quantification problems. 

The system model can be represented by polynomial chaos, Kriging methods or by an 

approximation of the computational model as an expansion on an orthogonal basis. 

Beyond the absence of epistemic uncertainty, another limitation resides in that 

optimisation procedures cannot be performed. 

 

Chaospy is a Python module that includes two uncertainty propagation methods: non-

intrusive polynomial chaos and Monte Carlo sampling. 

Some information about propagation outputs can be calculated, such as the moments of 

the outputs’ probability density functions.  
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The main goal of this tool is to generate a list of model inputs with random samples or 

quadrature points. 

 

QUESO, PyMC, PyMC3, and Stan focus on Bayesian model calibration via Markov 

Chain Monte Carlo. 

The Parallel C++ Statistical Library for Bayesian Inference (QUESO) is a collection of 

algorithms and tools to assist the research into uncertainty quantification and model 

prediction.  

The primary objective of the QUESO library is to address the inverse uncertainty 

quantification problems using the Bayesian approach combined with Markov Chain Monte 

Carlo. 

PyMC3 extends PyMC by including Hamiltonian Monte Carlo and determines the 

gradients needed for the Markov Chain Monte Carlo method. Furthermore, it also includes 

interfacing with external software. 

Stan is very similar to the other two tools cited above and is a valid alternative to them. 

 

UQTools is a MATLAB toolbox developed by NASA and suited for reliability methods. 

It supports model emulation using polynomials and radial basis functions and has limited 

support for local sensitivity analysis. 

 

UQ Toolkit (UQTk) is a collection of methods for uncertainty quantification. It was made 

by Sandia National Laboratories, and even though it is focused on polynomial chaos 

expansion, it can construct model emulators using Gaussian process regression, another 

approach that uses Bayesian model calibration with Markov Chain Monte Carlo Method. 

Finally, it can perform global sensitivity analysis, and the capabilities of this tool are 

surrogate construction, sensitivity analysis and reverse problem. 

 

OpenCOSSAN is an open-source MATLAB toolbox, and it is the computational part of 

the COSSAN-X software. COSSAN-X is an uncertainty quantification tool with a graphical 

user interface. It was developed by the Institute for Risk and Uncertainty at the University 

of Liverpool. 
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Rather than for industrial systems, COSSAN-X is designed for mechanical components 

and products. Indeed, it can interface with finite element solvers and other external 

simulation and designing tools to extend the range of applications. The software has several 

toolboxes, including aleatory uncertainty propagation, reliability approaches, robust and 

reliability-base optimisation, meta-modelling methods, stochastic finite elements methods, 

and local and global sensitivity analysis approaches. 

It is a very comprehensive software. However, it is mainly focused on mechanical design, 

and the epistemic uncertainty can be modelled using intervals of fixed but unknown 

constants. Moreover, the model emulation uses either artificial neural network or polynomial 

fitting and the optimisation is mainly centred on structural and reliability-based optimisation. 

3.2.3 Risk mitigation strategies 

Risk mitigation strategies concern the impact of the specific event on the system and the 

expectation about its occurrence. Indeed, the risk can be defined as in equation 3.11. 

 

 𝑅 = 𝑃 ∙ 𝑀 (3.11) 

 

R is the risk associated with the actual event arising from a hazard. This event may happen 

with a probability P and with an impact on the system equal to the magnitude M. Therefore, 

the risk mitigation strategies concern both the reduction of the probability and the impact on 

the system. The actions which can be done can affect either the probability or the magnitude. 

However, in some cases, they can affect both quantities. Figure 3.6 classifies each risk with 

respect to the yet-cited characteristics. 

The matrix of risk mitigation strategies suggests when doing what. Indeed, when the 

impact on the system is low, and the probability of occurrence of the hazard is low, the risk 

is neglectable, and the suggested strategy is to accept the risk as is. When the likelihood and 

impact on the system are high, it suggests doing something to reduce the probability of 

occurring or the potential damage to the system. Despite the utility of classifying the risk in 

that way, the matrix does not suggest anything if one between the likelihood and the impact 

is high and the other low. Indeed, only the result of quantitative risk assessment can provide 

transparent data which can be used to perform a decision-making process. 

Additionally, each risk can be classified according to the knowledge that the analyst has 

on it. The matrix of identification and certainty can be defined. The identification pertains  
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Figure 3.6 Matrix of risk mitigation strategies classified in respect of their likelihood and 

impact on the system 

 

to the understanding of the event and its consequences. In contrast, certainty refers to the 

impact of the risk on the system and its occurrence. Both certainty and identification can be 

known or unknown. Therefore, four types of risk can be identified: 

1. Identification: known; Certainty: known. 

2. Identification: unknown; Certainty: known. 

3. Identification: known; Certainty: unknown. 

4. Identification: unknown; Certainty: unknown. 

The type 1 is called identified knowledge. It is theoretically known risk because the events 

that may happen are, and also practically because the impacts and risk exposure can be 

described using evidence. 

The type 2 is called untapped knowledge. The risk is less known abstractly, but the firm's 

experience suggests accepting the risk without managing it. 

The risks of type 3 are the identified risk. Now that the analysts are not sure there is a 

concrete risk exposure, these risks should be addressed. 

Finally, the type 4 are the unidentified risks. This group refers to possible risks which are 

not yet conceptualised and without knowledge about their possible impacts on the firm. 

Despite the fact that numerous actions exist for each specific case, this work aims to 

provide a general-purpose approach. Therefore, the plausible actions will be clustered in 
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general strategies. Although there are several strategies which decision-makers can adopt, 

four families of strategies can be defined: avoid, transfer, shrink, and accept. 

Risk avoidance is an approach that tries to reduce the exposure to risk by reducing the 

magnitude of the impact on the system. This reduction is made using passive or active 

protections against the risks. 

Transferring the risk means shifting the impact to a third party. Examples include 

financial products, such as insurance and derivatives. 

Risk shrinking involves action to reduce the probability of hazard occurrence related to 

the risk being mitigated. Some possible actions are reducing the process complexity, 

selecting more stable suppliers, etc. 

Accepting the risk is a passive strategy in which the decision-maker chooses to face the 

risk when the event occurs. Budgets’ reserve and response activities to the event should be 

defined. 

In conclusion, even if it is possible to make the aforementioned classification, the 

strategies tend to overlap. Indeed, taking out insurance or buying derivatives can be 

considered both a risk transfer and risk avoidance strategy since the impact on the firm is 

reduced and moved to a third party. 

3.3 Final remarks 

The previously exposed methods and approaches are advanced and sophisticated and 

underline several aspects of the criticalities which arise when uncertainty is considered 

during the design phase or in the evaluation of industrial systems.  

Considering the design phase, with few exceptions, the available methods are focused on 

single aspects of the problem. For instance, there are methods for optimising the design 

under aleatory uncertainty and others under epistemic uncertainty. When both are 

considered, the problem is seen from a specific perspective, such as robustness or reliability 

optimisation. To the best of our knowledge, available literature contributions do not analyse 

the problem since the uncertainty modelling to the system optimisation but focus on a single 

step of the whole procedure. 

Considering the uncertainty quantification, a very advanced contribution has been 

presented in the previous pages. However, even if not solely, the work mainly focuses on 

technical performances and the uncertainty propagation phase. Moreover, analytical and 
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surrogate system models have been considered, but not often the simulation ones. In 

addition, optimisation and mitigation strategies have not been fully explored. 

Some of the general-purpose available commercial tools include several methods for 

uncertainty modelling and propagation but often include only a surrogate model of the 

system instead of an analytical or simulation one. Therefore, this leads to the difficulty of 

including both technical and economic models of the system simultaneously. Some tools 

include only aleatory uncertainty and a small number of probability distributions. In 

addition,  some pieces of software are suited for reverse uncertainty propagation problems. 

Moreover, only a few can perform optimisation under uncertainty, and it is mainly focused 

on robust or reliable optimisation. None of them includes risk mitigation strategies. Finally, 

the most advanced tools are focused on mechanical components and products rather than 

industrial systems. 

This thesis aims to fix this literature gap by proposing a comprehensive approach that 

systematises and integrates the existing approaches for uncertainty modelling, system 

modelling, uncertainty propagation, risk assessment and quantification, design optimisation, 

and risk mitigation in a single framework. Furthermore, it includes modelling the technical 

system and the economic environment in which it operates simultaneously. The 

comprehensive framework is presented in Chapter 4. This way, it is possible to extend the 

applicability fields and to apply the existing methodology to address issues in systems which 

have never been studied from this perspective, as will be shown in Chapter 5 and Chapter 6. 

Furthermore,  this work introduces a new uncertainty classification method. It combines 

scenario analysis with other uncertainty propagation methods to simultaneously consider the 

financial, political, market, and regulatory risks, randomness of input variables, and 

epistemic uncertainty of parameters and system models. Finally, it explicitly includes 

optimisation algorithms and risk mitigation strategies in the framework, such as financial 

instruments or redundancy. Framework’s capabilities in assessing, risk-mitigating, and 

optimising are demonstrated with two case studies.
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General framework 

This section presents the general framework for designing and evaluating industrial 

equipment, components, and systems under uncertainty and variable operating conditions 

[8]. This framework systematises the existing literature approaches and attempts to extend 

their fields of applicability. Indeed, the general idea is to integrate into a single framework 

the phases of understanding the uncertainty sources, classifying them, modelling these 

sources and the system, propagating the uncertainty, assessing the risk, optimising the design 

or taking risk mitigation actions. Additionally, when it is needed, the framework aims to 

consider both the system and the economic environment in which it operates. In this way, it 

is possible to extend the applicability fields and to apply the existing methodology to systems 

which have never been studied from the uncertainty perspective. 

Furthermore,  this framework introduces a new uncertainty classification method to help 

the analyst select the most proper method to represent different uncertainty sources 

according to their behaviour over time. The proposed approach combines scenario analysis 

with other uncertainty propagation methods to simultaneously consider the financial, 

political, market, and regulatory risks, randomness of input variables, and epistemic 

uncertainty of parameters and system models. 

Finally, it explicitly includes optimisation methods for optimising under uncertainty and 

risk mitigation strategies, such as financial instruments or redundancy. 

The literature about design and evaluation under uncertainty highlights the importance of 

considering uncertainty in several aspects of design and assessment processes. Nowadays, it 

is well known that moving under uncertainty is challenging in numerous fields, such as 

engineering, economics, and decision-making. The approach proposed in this study aims to 

fill the gaps discussed in the previous chapters,  and the main advantage that it introduces is 

that several sources of uncertainty are simultaneously included in the design and evaluation 

process to help decision-makers achieve more conscious and aware choices. 

The most relevant addressed gap falls in enhancing decision support systems for 

uncertainty management and design support systems for designing under uncertainty and 

extending the fields of applicability of existing methodologies. Indeed, two new applications 
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will be presented in the following chapters. The former is focused on the design under 

uncertainty of shell and tube heat exchangers, which are widespread in industrial systems. 

The latter is the evaluation of renewable energy systems under uncertainty, and the results 

show the importance of considering uncertainty to avoid wrong investment decisions. 

As explained subsequently, the general framework can include several types of 

uncertainty. 

• Aleatory uncertainty. 

• Epistemic uncertainty. 

• Model uncertainty. 

• Parameter uncertainty. 

• Processes uncertainty. 

• Boundary uncertainty in optimisation problems. 

Additionally, to model these different clusters of uncertainty, the approach can adopt 

several methods to represent and propagate the uncertainty. The uncertainty propagation 

approach should be selected according to the adopted uncertainty representation method to 

avoid incompatible algebras. 

• Probabilistic and possibilistic approaches. 

• Bayesian methods. 

• Stochastic processes. 

• Interval analysis. 

• Probability boxes. 

• Fuzzy sets. 

• Autoregressive models. 

• Scenario building and planning. 

• Info-gap decision theory. 

• Sampling-based approaches for uncertainty propagation. 

• Deterministic approaches for uncertainty propagation. 

• Analytical approaches for uncertainty propagation. 

• Sensitivity analysis. 

Furthermore, when the objective is to optimise the design, it is possible to resort to several 

optimisation methods. 
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• Robust optimisation. 

• Stochastic optimisation. 

• Reliability-based optimisation. 

• Lattice methods. 

• Multi-objective optimisation. 

• Heuristic optimisation. 

Finally, the following methods can be used to help decision-makers take actions to 

mitigate the risk. 

• Decision trees. 

• Multi-criteria decision-making. 

• Real option analysis. 

4.1 General framework description 

In order to address the research questions mentioned in the Introduction and driven by the 

motivation of this thesis, a comprehensive framework for design optimisation and project 

evaluation under uncertainty that systematises and integrates existing approaches is 

presented. Figure 4.1 schematically illustrates the overall framework. 

The proposed framework consists of multiple blocks, each of which can be activated or 

deactivated to achieve different objectives. Different goals require different paths across the 

framework, as subsequently explained. However, it is essential to have at least one block to 

model uncertainty, as well as the blocks for system modelling and risk assessment, which 

must always be activated. The two main objectives that can be achieved are the optimisation 

of the design before its conclusion and the evaluation after its conclusion. 

The framework is horizontally divided into two groups. The blue bracelet represents the 

design feedback actions, while the red represents the space for the analysis and design 

forward actions. 

The following four different paths can be identified in the framework. 

• The black path or uncertainty propagation path. 

• The green path or designing path. 

• The red path or design optimisation path. 

• The olive path or risk mitigation strategies path. 
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Figure 4.1 General Framework schematization 
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The black path is common to all the others, and it is necessary to include the uncertainty 

propagation method. Thus, to link the inputs to the outputs. 

Once the black path is activated, the green path, which is the design one, can be switched 

on. Whether the green path works, it allows the red and olive paths. These last two can be 

used simultaneously or stand-alone.  

Only the uncertainty propagation path works if the goal is to assess the risk. On the 

contrary, if the objective is to design the system, the green path is activated, and the design 

obtained with the proposed variables’ value can be evaluated. This evaluation permits the 

decision-maker to accept the design solution or repeat the design procedure. In addition, 

decision-makers can activate the risk mitigation strategies path to include risk hedging 

actions. 

Finally, suppose the designer wants to optimise its design. In that case, he can resort to 

the red path, selecting the type of optimisation, the objective functions, the constraints, and 

the optimisation method or algorithm, which autonomously acts on the design variables. 

The grey lines are shared between the red and the olive paths. Additionally, the red and 

olive paths can be activated simultaneously to include both design optimisation and risk 

mitigation strategies. 

The single design evaluation, that is, without the red path, can be considered as an 

evaluation of a design after its conclusion with a design routine that substitutes the completed 

system model. This way, one can also operate risk-hedging actions on a completed design. 

However, only actions which do not influence the system configuration. 

The green bracelet symbolizes the space in which uncertainty is modelled and propagated. 

The types of uncertainty considered are categorized as depicted in the four images above the 

green bracelet. These categories include random variation during time (e.g., the electricity 

price), uncertainty around a constant value (e.g., the actual value of the power coefficient), 

random events (e.g., components failures), and random discontinuity (e.g., changes in 

regulatory prescriptions). 

The green blocks represent the sources of uncertainty, which can be modelled as 

explained in the following subsections. The red blocks represent the models or surrogate 

models that need to be developed to describe the behaviour and characteristics of the 

industrial system, the economic environment, and the risk assessment procedure. The blue 
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blocks represent the fixed inputs, the risk mitigation strategy, the design optimisation 

processes, and all the decisions made by the designers and decision-makers in general. 

The red line around the industrial system represents the uncertainties and elements within 

the system. It encompasses the endogenous uncertainties, as well as the resources and 

relationships that characterize the system under analysis. 

In the next subsections, the elementary blocks that comprise the framework will be 

thoroughly described, emphasizing the strong correlation between different blocks and the 

potential for establishing an automated iterative loop process for designing and 

implementing strategies for risk mitigation based on its estimation. 

4.1.1 Proposed uncertainty classification 

Although in section 1.1, it is shown that there are numerous classifications of uncertainty, 

this thesis introduces a novel categorization of uncertainty [8]. These newly identified 

clusters aim to assist designers and analysts in selecting the appropriate method for 

modelling uncertainty sources by examining their temporal and spatial behaviour. Uncertain 

variables can be categorized based on their inherent characteristics, as depicted in Figure 

4.2, where the following classifications are identified: 

• Type I variability is characteristic of variables that randomly change their value 

over time. This behaviour can be represented using models such as time series and 

random processes. For example, in the case of wind power systems, Type I 

variability can be observed in the fluctuation of wind speed and direction over 

time, as well as in the variation of electricity sales price. 

• Type II variability is characteristic of variables that assume an unknown value, 

which can be described using a predefined probability density function. Examples 

of Type II variability include the uncertainty associated with interest rates or the 

efficiency value in a conversion system. 

• Type III variability is characterized by the random occurrence of point events with 

either known or unknown intensity. Examples of Type III variability include 

internal equipment failures or external natural events that have the potential to 

cause significant disruptions to system operations. Random processes can also be 

employed for modelling purposes in such cases. 

• Type IV variability is characterized by random discontinuities, where one or more 

variables experience a random step change in value at an unpredictable time. This 
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type of variability is often observed in economic, political, and regulatory 

scenarios throughout the lifespan of a system. 

 

 

 

Figure 4.2 Proposed uncertainty classification 
 

This classification assists in the identification of suitable tools for modelling uncertainty, 

considering the various theories available in the literature (section 1.2). Table 4.1 suggests 

uncertainty modelling methods according to the uncertainty type. For the sake of remark, the 

table contains only suggestions, and other techniques can be selected. 

 

Table 4.1 Suggested uncertainty modelling methods according to the uncertainty 

classification 

Type of uncertainty Description 
Suggested modelling 

methods 

Type I Random variation during time 

• Stochastic processes 

• Autoregressive models 

• Probabilistic 

approaches 

• Scenario planning 

Type II Uncertainty around a constant value 

• Possibilistic approaches 

• Interval analysis 

• Fuzzy sets 

• Probability box 
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• Scenario planning 

• Info-gap decision 

theory 

Type III Random events 

• Probabilistic and 

possibilistic approaches 

• Stochastic processes 

• Fuzzy sets 

• Scenario planning 

• Bayesian methods 

Type IV Random discontinuity 

• Scenario planning 

• Stochastic processes 

• Probabilistic and 

possibilistic approaches 

 

4.1.2 Uncertainty blocks 

After selecting the objective, which includes both the level of detail of the modelling and 

the blocks of the framework to be utilized, it is crucial to identify the most influential 

uncertain variables affecting the output of interest. Each uncertain variable describes at least 

one aspect of uncertainty sources (Figure 4.3). To appropriately represent the variability and 

uncertainty of the inputs, one can refer to the uncertainty description provided in previous 

subsections [2, 4, 75]. 

Identifying the uncertainty sources strongly affecting the system is one of the most 

challenging tasks. Indeed, the number of sources is generally enormous and modelling them 

all can be very time-consuming and computationally expensive. Moreover, the output of 

interest may not suffer an ample range of sources of uncertainty which can be identified 

within and without the system. 

The green blocks in Figure 4.3 represent only some families of uncertainty sources which 

affect industrial and economic systems. 

Input uncertain variables from outside the system comprise the variables under the 

designer's control and the uncontrollable ones. Some authors refer to the uncontrollable 

variables by calling them parameters. In any case, the input uncertain variables are the  
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Figure 4.3 Uncertainty blocks schematization 

 

elements of the environment that, for some reason, enter the technical system. If they are 

controllable, such as the natural variability of products from another system or epistemic 

uncertain variables, their variability can be reduced before entering the system. 

External random events pertain to the perturbations which can hit the system. For 

instance, disruptive natural events represent this group of uncertainty sources. 

On the other hand, uncertainty sources also arise within the system. Internal random 

events are mainly components’ failures, whereas the internal parameters' epistemic 

uncertainty comes from the mathematical formulas or the data used to build the system 

model. The disturbing effect model mainly depicts the noises affecting the system and the 

data used. It can be interesting to underline that several uncertainty modelling approaches 

coexist in this framework. For instance, we can represent the failures with fuzzy theory, 

internal parameters epistemic uncertainty with probability boxes, and stochastic processes 

for the disturbing effects model. These different methodologies can be integrated by 

selecting the proper uncertainty propagation method, typically sampling-based approaches. 

Financial, tax, social, regulatory, market and economy effects uncertainty are all 

uncertain sources affecting the economic model. Therefore, the investment cost model, the 

revenues model or both. 

These sources of uncertainty can be modelled by using all the theories collected in section 

1.2. 
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4.1.3 System models 

Another challenging task is the building of an accurate model of the system (Figure 4.4) 

under analysis. These models can be the technical and reliability model of the system and 

the economic model. The economic model can be present or not, in function of the goals of 

the analysis and the variables of interest. 

 

 

Figure 4.4 System model schematization 
 

The technical model can be a design routine that calculates the system's theoretical 

configuration or a model of an already existing system. The design routines are often 

analytical. They allow the designer to obtain one possible architecture of the system. On the 

contrary, when the system already exists, the model is often a simulation or surrogate model. 

In some cases, when the system under analysis is easy enough to model with analytical 

formulas, the suggestion is to use this depiction to reduce the effects of epistemic 

uncertainty. Indeed, since the model only represents the system and is not the actual one, 

another source of uncertainty is introduced. The more detailed the system, the less the 

introduced epistemic uncertainty. However, the more complex the relations between the 

variables and the computational expenditure for propagating the uncertainty and simulating 

the model. 

The economic model is often the investment cost model and uses information about the 

technical system model. This way, the data of the technical model are used in the cost 

computation routine with the information and formulas about the unitary cost of materials, 

works, engineering activities, and similar elements. The revenues and net present value 

models are often near the cost model. Indeed, including data about the market in which the 

system operates makes it possible to combine several pieces of information to estimate the 

profitability of the investment. Also, the economic model introduces epistemic uncertainty 
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because the prices and demands are volatile. In addition, the formulation of the economic 

model introduced epistemic uncertainty due to the relations used to model the economy 

effects and link the unitary costs to the design architecture. Actually, several pieces of 

information will be estimated, for example, the time to manufacture or assemble some 

components or the efficiencies of some processes. 

As already mentioned, the system can be modelled with different mythologies (section 

2.1). However, the most straightforward approach is utilising an already validated system 

model. Indeed, to validate a new design routine or a new system model involves a 

considerable quantity of data, information, and time. Moreover, expert judgments and 

numerous experiments are needed to assess the epistemic uncertainty, requiring many 

modelling efforts. 

4.1.4 Uncertainty propagation process and risk estimation 

This subsection aims to elucidate the interaction between the uncertainty blocks and the 

system model. The uncertainty, modelled to depict the various sources of uncertainty and 

variability, is propagated throughout the system model (red arcs in Figure 4.4). As can be 

seen, the designer’s input and risk assessment output also concern the uncertainty 

propagation process. 

 

 

Figure 4.5 Uncertainty propagation schematization (red arcs) 

 

Although all the methods mentioned in section 2.2 can be adopted to assure the 

propagation of the input uncertainty to the outputs of interest, since the uncertainty can be 

modelled with different approaches, the selection of the uncertainty propagation method is 

crucial to allow the input uncertainties enter the models and describe the variable of interest. 
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When different algebras are employed to represent the uncertainty sources, one 

commonly adopted approach is to recur to sampling-based methods. Indeed, this way, it is 

often possible to obtain real numbers which enter the various models to obtain the desired 

results. 

In any case, because the uncertainty propagation methods can be considered as the 

language with which the various blocks communicate, the experience and knowledge of the 

analyst are essential to avoid modelling errors, which can lead to the inoperability of the 

framework. 

In addition, the analyst will select the uncertainty propagation model according to the 

available computational power, time, and the searched characteristics which describe the 

uncertainty of the variables of interest. 

The risk estimation is strictly linked to the variables of interest. This is another crucial 

block of the framework because it provides information about the quantities of interest, i.e. 

the uncertainty measures. Firstly, the analyst or decision-maker fixed a variable or some 

variables of interest. Subsequently, he should decide the quantity or quantities of interest in 

which he is interested. These quantities are used in the decision-making process. Therefore, 

they should give enough knowledge about the variables which lead to the decision. 

Unfortunately, the more the pieces of information and the detail level required about a 

variable,  the fewer the suitable uncertainty propagation methods that can be used. This issue 

entails the mandatory selection of modelling approaches for the system, uncertainty sources, 

and uncertainty propagation methods. Further details about this problem have already been 

discussed in section 2.2.5.  

4.1.5 Feedback actions arcs 

The feedback arcs identify the optimisation process and the risk mitigation 

counteractions. Whether the goal is risk assessing, they are switched off. Whether the goal 

is to design a system, only the green and the black paths work. On the contrary, the 

optimisation path, that is, the red one, can be used by the designer to establish an iterative 

process to search for optimal or sub-optimal solutions to accomplish some optimisation 

objectives. On the other hand, the risk mitigation strategies path, that is, the olive one, can 

be used by designers and decision-makers to include designing strategies which change 

something within the industrial system or financial instruments to translate the risk. As 

mentioned, the red and the olive paths can be used stand-alone or simultaneously. Indeed, 
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one can want to optimise the design, include risk mitigation counteraction, or both 

simultaneously. 

 

 

Figure 4.6 Design optimisation and risk mitigation schematization 
 

Once a design procedure is started, the olive and red paths can work. The grey line that 

links the concept of risk hedging actions, robust design and flexibility, reconfigurability and 

resilience improvement actions are shared between the risk mitigation and optimisation 

paths.  

The risk mitigation counteractions can be used to change the system's architecture to 

pursue the strategies described in section 3.1. Furthermore, other common strategies which 

do not act directly on the design configuration but transfer or mitigate the risk can be 

adopted, as described in paragraph 3.2.3. 

The optimisation path can be used to achieve an optimal or sub-optimal array of the input 

controllable parameters’ values. The optimum can be obtained according to robust, reliable, 

reconfigurable, flexible, and resilient design concepts, as discussed in sections 3.1.2, 3.1.3, 

3.1.4, and 3.1.6. The designer should select the objective or performance function and 

constraints by including uncertainty measures in one or both. The performance function 

should consider the design’s evaluation criteria chosen by the decision-maker. The 

constraints must be carefully defined to avoid all the inadmissible solutions. Finally, the 

selection of the proper optimisation method is crucial. Indeed, the optimisation method 

should be chosen according to the methods used to represent the system and to perform the 
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uncertainty propagation. Even though iterative methods and algorithms are suitable for the 

purpose, the first can operate with specific classes of problems. For that reason, very often, 

the adopted methods are metaheuristic optimisation algorithms. 

4.2 Methodologies developed and adopted for the framework 

application 

The previous section described the general framework. This one provides how the blocks 

are specifically modelled in this thesis. Although the application to the specific system is in 

the subsequent chapters, the general methods adopted and developed in this thesis may 

deserve a description.  

The economic and technical models are built by adopting already validated analytical 

formulations and surrogate models available in the literature. At the same time, the design 

procedures are also built by retrieving available models and relationships from the literature. 

The risk assessment procedure was conducted in two ways depending on the uncertainty 

propagation methods used.  

• Assessing a probability density function based on the frequency of occurrence of 

the output values obtained by combining the results of different runs performed 

with Monte Carlo simulation.  

• Combining the results obtained from the experiments, defined as explained below, 

using their associated probability. Thus, the combination of the results allows the 

author of this thesis to assess the probability density function of the variable of 

interest. 

Therefore, resorting to those distributions, coefficients of variation, quantiles and 

thresholds were computed and used as risk indexes. 

Given the several methods used to model the uncertainty and the adopted uncertainty 

propagation methods, the meta-heuristic algorithm seemed to be the most suited approach 

for optimisation purposes. Therefore, the genetic algorithm provided by MATLAB has been 

used.  

The adopted hedging techniques rely mainly on financial instruments. In particular, 

financial derivatives were used to mitigate the economic risk that arises from market 

uncertainty. The relationships for forward contract pricing were retrieved from the literature.  
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The following pages describe the approaches to the scenario analysis and combination, 

the uncertainty modelling and propagation, the external random events modelling, the 

internal random events modelling, and the failures calendar and availability array. 

4.2.1 Scenario analysis and combination  

In the literature, scenario planning (section 1.2.9) is a widely adopted approach to explore 

the possible evolutions of macroscopic variables over medium and long time horizons. 

Below, the methodology adopted is described. 

First of all, the study's object and the analysis's time horizon must be defined. This initial 

step is critical and encompasses both defining the system and the environment. Then, given 

the environment, one must state the changes in the environmental conditions the analyst 

intends to describe. For instance, for the sake of clarity, the author will consider an analysis 

of possible changes in climatic conditions. Additionally, the time horizon must be set to 

define the time boundary of changes. In the example, the analyst declares the year 2050 as 

the time limit.  

The adopted method follows the subsequent steps. 

• Selecting scenario variables. 

• Identifying the driving forces. 

• Defining the possible events. 

• Defining the variables’ values. 

• Conducting a cause-effect analysis. 

• Conducting a cross-impact analysis. 

• Combining the variables’ values to obtain the scenarios. 

The first step concerns the scenario’s variables selection. Identifying the influential 

scenario variables is strictly related to the changes that the scenario analysis would depict. 

Indeed, the analyst must identify which variables influence the changes it wants to study. In 

the example, suppose they identify the green gas emission and the deforestation level. Then, 

in step 2, the driving forces must be identified. Each driving factor affects the relative 

variable in function of the event that will happen in the future. Each variable can assume 

different values according to the event which will happen. Therefore, in the example, 

suppose that the main driving factor for the green gas emission variable is the green 

technology adoption level, and for the deforestation level variable, the regulatory policies. 
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Steps 3 and 4 aim to identify the possible events and the relative variables’ values. Firstly, 

the analyst identifies the possible events which can happen. Subsequently, they will estimate 

the effects of the events on the scenario variables. In the example, they indicate three possible 

events for the green gas emission variable: high adoption, medium adoption, and low 

adoption. This means that three different levels of emissions might happen in the future: x, 

y, and z. Similarly, they indicate two events for the deforestation level, namely increasing 

and decreasing, declaring two levels of deforestation that may happen in the future: k, j. 

Step 5 concerns performing the cross-impact analysis. This step is crucial to understand 

whether and how a variable affects another. This way, one can suppose a correlation matrix, 

which transparently defines the probability of an event or a value once another happens. In 

the example, there are no relationships between the two variables. 

After this procedure, the scenarios are obtained by permutating the level of each variable. 

In the example, six scenarios will be identified. 

In order to select the more plausible scenario, the author integrates the plausibility cone 

concept into the method [37, 70]. 

Since the framework aims to include the higher number of uncertainty sources necessary 

to depict the uncertain behaviour of systems in a sufficiently accurate manner, another new 

feature has been introduced. In the literature, as explained in the previous chapters, scenario 

analysis is often performed stand-alone. Adopting sampling-based approaches for 

uncertainty propagation makes it possible to perform scenario analysis, including the 

variability inside the scenarios. Indeed, at the beginning of the propagation, a scenario can 

be sampled from a set of predefined scenarios. These scenarios can have an associated 

probability of occurring. Whether they do not have an associated probability, the uncertainty 

is propagated in each scenario by considering one at a time. Instead, when they have an 

associated probability, the analyst can do two things alternatively to combine the results. The 

first follows the subsequent steps. 

1. Select the number of runs. 

2. Sample from the discrete distribution one scenario according to their probability 

of occurring. 

3. Propagate the uncertainty of the sources with the condition of the sampled 

scenario. 
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4. Store the value of outputs of interest in an array or matrix and repeat step 2 many 

times equal to the runs’ number. 

5. Analyse statistically the array or matrix of the outputs. 

Alternatively, the analyst can perform the analysis with the following step. 

a. Propagate the uncertainty with the condition of one scenario. 

b. Store the value of the outputs of interest and repeat step a for each scenario. 

c. Combine the outputs of interest obtained in different scenarios. 

d. Analyse statistically the combined results. 

Therefore, the sampling-based approaches are used in this framework to establish a series 

of nested sampling-based approaches to combine scenario analysis with the uncertainty 

sources modelled with different methods. 

More details about scenarios combination are provided in section 6.2 and in the case study 

of Chapter 6, in which it is applied. 

4.2.2 Uncertainty modelling and propagation 

Although all the methods described above can be used to depict uncertainty sources, in 

this work, some of them have been selected to be used practically. 

Since each uncertainty source claims for best-suited methods in function of its nature and 

of the goal of the analysis, the aleatory uncertainty of input uncertain variables has been 

modelled with the following methods. 

• Probability theory. 

• Markov chain. 

• ARIMA time series. 

The probability density functions of the variables have been obtained in two ways: by 

retrieving them from the literature and estimating them from the available data sets. The 

estimation has been done using available tools, mainly the distribution fitter of MATLAB. 

Markov chains, particularly the birth-and-death Markov process, have been constructed 

by resorting to literature-available historical time series. The historical time series needs to 

calculate the number of possible states and the transition rates of the Markov process. The 

maximum and minimum values of the time series define the range of admittable values. On 

the other hand, the permanence time in a specific state is helpful to assess the probability of 

that particular state and compute the transition rates. 
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ARIMA time series also uses historical time series data to perform regression analysis 

and obtain coefficients for the model. The regression was performed using the available 

routines provided by MATLAB. 

The epistemic uncertainty of the economic model and parameters, internal parameters, 

and relationships to represent the technical model has been modelled using the probability 

theory. When no information about the uncertainty distribution has been known, uniform 

distribution is used. On the contrary, triangular distribution centred in the computed value 

has been used when the uncertain parameters have been estimated using relationships. 

However, the ranges of uncertain parameters have been retrieved from the literature. 

The uncertainty has been propagated by adopting the following three approaches. 

• Design of Experiments. 

• Taylor expansion formula for the moments of functions of random variables. 

• Monte Carlo methods. 

Design of Experiments has been used to conduct full factorial experiments for combining 

the possible levels of factors. The levels represent the possible values that a random variable 

can assume, and they have been determined by following the subsequent steps. 

1. Retrieve the probability density function of the random variable. 

2. Set the sample size. 

3. Discretise the probability density function into a number of intervals equal to the 

sample size and equally spaced. 

4. Associate the centre of each interval to a possible level. 

5. Calculate the probability of that level by integrating the probability density 

function in the interval. 

In function of the number of factors, i.e., the random variables, the above procedure is 

repeated for each variable, and the full factorial experiment is written. Then, the probability 

of each experiment, i.e., a combination of factors, is calculated. Using the probability 

associated with each factor, each combination of factors has an associated probability equal 

to the product of the probability associated with each factor. Finally, the system is simulated 

in each experiment, and the results have their probability of occurring. 

The Taylor expansion formula for the moments of functions of random variables is used 

by applying it to the relationship that links the standard deviation of the output of interest to 

the uncertain variables that contribute to the output uncertainty. 
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Finally, Monte Carlo methods have been used to sample the probability density function 

of uncertain variables, simulate the ARIMA process, and obtain possible evolutions of the 

Markov Chain. The number of runs has been selected to obtain the statistical significance of 

the estimation. Monte Carlo simulation has been performed using the available routine 

provided by MATLAB. 

4.2.3 External random events modelling 

This thesis with external random events mainly refers to disruptive events which may 

impact the system. With the term “disruptive events”, the author refers to external natural 

events (i.e. earthquakes, storms, rogue waves, impact with icebergs, etc.) or even man-made 

events, such as terrorism acts or collisions with ships, which could impact the system 

structure and causing a damage. Different types of systems have different plausible 

disruptive events. 

Generally, a library of disruptive events should be built and included in the simulation 

according to the location and the type of system.  

The adopted procedure is described in the following, considering a generic external 

random event. The approach resorts to hazard curves or the probability of occurrence of the 

event. A hazard curve (e.g., Figure 6.3) describes the annual probability of an event 

occurring at a specific location in relation to its magnitude.  

The procedure is developed by generalizing an approach proposed in the literature for 

seismic events, as cited below (6.3.5). In order to calculate the date of the event and its 

magnitude, the hazard curve is discretized into a user-defined number of magnitude classes. 

For each magnitude value, the annual probability of occurrence is thus obtained. These data 

pieces can also be provided in terms of event magnitude and probability without recurring 

to the discretization of the hazard curve. Since each different magnitude class occurs at a 

fixed constant rate, the distribution of the time between events is considered exponentially 

distributed. The procedure to obtain a list of events’ dates and their magnitude, given pairs 

of magnitude and probability of each magnitude class, follows the subsequent steps. 

1. The plant life is defined. 

2. The event date is set to zero. 

3. Following the descending level of magnitude classes, the next magnitude class is 

selected by considering its annual probability of occurrence. 
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4. Using the exponential distribution of the time between events, the time to the next 

event is obtained by resorting to Monte Carlo sampling. 

5. The event date is stored in the events list, paired to the magnitude level, and added 

to the current event date.  

6. Steps 4 and 5 are repeated until the end of plant life.  

7. Return to step 2 until all the magnitude classes have been selected. 

8. The list of events' dates and magnitudes is stored, and the procedure stops. 

After the above-mentioned procedure, the events calendar is known, but none of their 

effects on the system. Fragility curves are used to estimate the damage the system suffers 

after each event. Given the event's magnitude, the fragility curve provides the probability of 

exceeding a predetermined damage state, i.e., failure modes. The limit load the system can 

support before failure occurs is considered to be a random variable log-normally distributed, 

and the system will fail if its supporting capacity is less than or equal to the magnitude level 

corresponding to the chosen intensity measure. The cumulative distribution function of the 

probability of exceeding a fixed damage state (cdff) conditional on a magnitude level (ML) 

is given by (4.1). 

 

 
𝑐𝑑𝑓𝑓(𝑀𝐿) = 𝛷 (

1

𝛽
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𝑀𝐿

µ
) (4.1) 

 

Where Φ is the standard normal cumulative distribution, µ the mean of the distribution 

and equal to a·ML·b, a and b being experimentally derived constants, and β the standard 

deviation of the distribution. 

Fragility curves can be retrieved from the literature for many sets of events, damage 

states’ components, systems and plants. However, they can also be constructed using 

simulation procedures (e.g. Finite Elements Simulation).  

Several damage levels can be selected. The more levels there are, the more accurate the 

description of possible damage will be. Each damage level is associated with a specific time 

to repair and cost, which is considered as a percentage of the investment. The highest damage 

level is associated with destructive damage, i.e. the interruption of system life and the 

impossibility of restoring it. If the probability distributions of repair time and cost are known, 

it is possible to consider their uncertainty using Monte Carlo sampling. 

For the determination of the damage level, the procedure follows the subsequent steps. 
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1. The event list is retrieved. 

2. Following the chronological order of events, the next event is selected. 

3. Following the descending order of severity of damage levels, the next damage 

level is selected. 

4. A random number between 0 and 1 is sampled. 

5. The random number is compared with the cdff value associated with the event's 

magnitude. 

6. If the random number is less or equal to that value and the highest damage level 

is being analysed, the system life is interrupted at the date associated with that 

event, and jump to step 10. Otherwise, go to step 7. 

7. If the random number is less or equal to that value, damage occurs, the event is 

included in the list of failures with their date, time to repair, and cost, and return 

to step 2. Otherwise, go to step 8. 

8. If the random number is greater than the cdff value, return to step 3 until all 

occurrences of damage states are verified. If the random number is greater than 

all cdff values, the event does not lead to a fault. 

9. Return to step 2 until all the events on the events list are considered. 

10. The list of failures is stored, and the procedure stops. 

At the end of this procedure, the output is a list containing the occurrence date, downtime 

and expected cost of all disruptive events that will occur. 

4.2.4 Internal random events modelling 

This work considers internal random events as components’ failures. Generally, a system 

can be decomposed into several components or subassemblies. Each component or 

subassembly has several failure modes, which can determine different types of intervention. 

This thesis considers three types of interventions: minor repair, major repair, or replacement. 

The components can be in series, so when a single element fails, the whole system fails and 

production stops, or in parallel, in this case, the system can operate while the fault component 

is under restoring. This work considers that all components are in series. For each failure 

mode of each component, a specific mean failure rate, time to repair, and expected 

restoration cost (i.e., material replacement cost, subsequently utilized to compute the repair 

cost) must be defined.  
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For each j-th component, an overall constant failure rate λj and the frequency distribution 

fi of the three i-th failure modes are known. 

The procedure follows the subsequent steps.  

1. The actual failure rate of each component failure mode is computed as k = j fi. As 

failures occur at a constant rate, the distribution of their time to failure (TTF) will be 

exponential. All subsequent failures of the same type will occur after a certain 

random TTF, calculated from the last time the same type of failure occurred. The 

TTF is to be considered as a net time, i.e. excluding plant shutdowns due to further 

failure types occurring in the meantime. The different failure types, being 

conceptually independent of each other, will not affect the timing of the failure 

sequence of the other categories. 

2. For each fault type, generate a TTF sequence by repeatedly randomly sampling its 

distribution. In practice, having extracted a random number R ϵ [0,1], the m-th TTF 

of the k-th fault type will be TTFkm = - λk ln (R). 

3. Repeat the procedure until the sum of the TTFkm generated for the fault type 

considered is at least equal to the nominal life of the installation, so as to generate a 

random sequence of faults of the same type covering the entire life of the installation. 

4. For each k-th fault type, the theoretical date of occurrence of the m-th fault (assuming 

a zero time to repair, TTR) will be equal to the sum of all previous TTFs (TTFkm) 

times m, ranging from 1 to m-1. 

5. Repeat steps 2 to 4 for each type of failure, obtaining as many independent sequences 

of timed failures. 

6. Combine the obtained sequences into a single sequence by sorting the faults by 

increasing dates. This would be the timetable in which the various faults would 

hypothetically occur if repairs were instantaneous or occurred in negligible time. 

7. Starting with the first fault in the sequence, add the random TTR generated for the 

repair of the fault under consideration to the current dates of all subsequent faults. 

The number of required technicians for the repair is sampled from a standard 

distribution centred on the mean number of required technicians and with a user-

given standard deviation. The restoration cost is sampled from a triangular 

distribution centred on the mean value of the restoration cost and with minimum and 

maximum values a percentage of the mean value. The repair cost is calculated by 
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multiplying the hourly cost of the technicians, the number of required technicians, 

and restoring time and adding the cost of materials. 

8. Repeat step 7 sequentially for all scheduled faults, updating the attempted occurrence 

date of all subsequent faults each time. This gradual shift allows the net TTF value 

of each fault to be maintained with respect to the previous occurrence of the same 

type of fault, net of interruptions for the repair of other faults occurring in the 

meantime. When the date of failures following the current one, as a result of this 

forward shift sequence, becomes greater than the nominal life of the system, these 

failures will be ignored because they will not occur. 

9. When the TTR has also been added for the penultimate fault in the sequence (and 

thus the date of the next fault has slipped), the actual occurrence date of all faults is 

obtained. 

10. The list containing all events and occurrence dates, ordered over time, their time to 

repair, the required number of technicians for the repair and their restoration cost is 

stored and the procedure is stopped. 

4.2.5 Failures calendar and availability array 

One of the goals of the events list generation is to assess the availability of the system. 

This thesis resorts to the so-called availability array to represent the amount of time in which 

the system operates. In order to obtain the availability array, the failures calendar must be 

produced following the subsequent steps. 

1. Retrieve the internal random events list and the failures list due to external random 

events that have been developed using the procedure described above. 

2. Add all the internal random events to the failures calendar. 

3. Add to the failures calendar the next external event that leads to a failure, starting 

from the nearest event date and arriving at the farthest. 

4. If the event is of the type which destroys the system without the possibility of 

restoring it, the procedure stops. Otherwise, go to step 5. 

5. If the event date falls in a downtime period, the fault restoration process is 

interrupted, and the system restoration from the disruptive event starts. Therefore, 

the TTR of the internal event is shortened to the event date of the considered 

external event, and its restoration cost is proportionally shrunk, net of materials 

cost. Otherwise, go to step 6.  
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6. Shift all the events with an occurrence date greater than the one of the considered 

event of a quantity equal to its time to repair. 

7. Delete from the list all the events with an updated occurrence date greater than the 

plant life. 

8. Return to step 3 until all the events have been considered. 

9. Store the failures calendar, which is a time phase list containing all events and 

occurrence dates, ordered over time, their time to repair, the required number of 

technicians for the repair, their restoration cost over the entire plant life, and the 

procedure stops. 

After obtaining the failure calendar, the availability array can be built following the 

subsequent procedure. 

1. Select a value for the unit time intervals. 

2. Subdivide the whole system life into unit time intervals. 

3. Associate a Boolean state variable at each unit time interval. 

4. Set the state variable’s values to 1, meaning the system is up. 

5. Following the chronological order of events, select the next event. 

6. Starting from the event date, set the value of the state variable associated with the 

unit time intervals related to the repair time of that event to 0. This means that the 

system is down. 

7. Return to step 5 until all the events have been considered. 

8. Store the availability array, and the procedure stops. 

The availability array is a practical tool to depict the time in which the system produces 

and when it is under maintenance. 

4.3 Final remarks 

In this chapter, the systematic General Framework developed to design and manage 

industrial equipment, components, and systems under uncertainty has been presented. 

Additionally, a new classification of the types of uncertainty has been provided to define a 

novel clustering method based on the behaviour of the variables over time and space. Thanks 

to this classification, selecting the appropriate method to model the uncertainty of variables 

becomes more straightforward. The literature review in the field of design and management 

under uncertainty has revealed the necessity to develop new strategies to cope with the 



133 
 

growing number of uncertainty sources that affect an industrial system. This General 

Framework is designed to be as comprehensive as possible, aiming to cater to a wide range 

of systems. In order to maintain its generality, the framework has been composed of several 

modular blocks and paths that can be activated or deactivated based on specific objectives. 

This approach allows for flexibility in tailoring the framework to meet different objectives 

without sacrificing its overall applicability. Although there may be several types of goals, 

the primary ones are design optimisation and system performance assessment. The 

evaluation process is a forward process, whereas the design optimisation and action for 

mitigating the risk have a forward and feedback process. In order to address this distinction, 

the framework environment has been divided into two distinct parts, each associated with 

the direction of the process. For the sake of clarity, different paths have been identified, one 

for each macroscopic task. Subsequently, the blocks are clustered and briefly described by 

introducing the most relevant issues for modelling them or accomplishing specific tasks. 

This allows for a clear delineation of functionalities and facilitates the utilisation of 

appropriate tools by the analysts and designer. Furthermore, when feasible, specific 

instructions and suggestions regarding the most suitable methods to use under given 

conditions have been provided. The objective of this thesis is not to exhaustively review all 

the methods to model the blocks. However, the literature focusing on the cited 

methodologies and tools has been referenced to guide the reader to explore the topics more 

comprehensively. 

In conclusion, the first objective of this Doctoral Project, which is the literature focus on 

dealing with uncertainty systematisation and the conceptualization of the systematic general 

framework, has been carried out. Now, in order to address the research questions mentioned 

earlier, it is essential to employ this common general framework. The subsequent chapters 

will present two distinct case studies, each corresponding to one of the two goals, and will 

showcase an escalating level of system complexity. 

 

 



134 
 

  

Framework application to equipment design 

optimisation 

In the previous chapter, the General Framework for designing and evaluating industrial 

components, equipment, and systems under uncertainty has been presented. This section 

adapts the framework to address the optimisation objective under uncertainty. 

To address the three research questions from an optimisation perspective, the selected 

case study is the shell and tube heat exchanger (STHE) design. Shell and tube heat 

exchangers are the most common type of heat transfer equipment used in process plants. 

HEs play a key role in feedstock transformation, efficient energy utilisation, and economic 

savings. These goals are achieved by providing and removing heat to and from process 

streams and allowing heat recovery and energy integration. However, several sources of 

uncertainty and the variability of the fluids’ characteristics affect HEs in actual plants, 

making the design of this type of equipment rather complex despite their apparent structural 

simplicity. 

From the relevant literature on the design and optimisation of STHE, a lack of papers 

assessing the capability of objective functions (OF) to obtain realistic and practicable heat 

exchangers (HE) is clear. Indeed, most of the contributions in this field focus on the 

capabilities of the algorithms to optimise the HEs, but none on the OF. This issue causes a 

lack of consistent basis to compare different algorithms. Also, it leads to a poor 

comprehension of the implications of optimising an OF on the other relevant elements that 

characterise the STHE. For example, some authors optimise the effectiveness of the STHE, 

neglecting the HE’s surface, thus not considering the required pumping power and total 

costs. 

First, an analysis of the capabilities of different OFs to obtain a practicable STHE with 

good performance is conducted. This analysis allows us to clarify the considerations made 

in section 3.1.1 from a practical perspective. Subsequently, the problem of heat exchanger 

design under uncertainty is presented by using a literature review. Then, the framework 
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application for optimising STHE’s design under uncertainty is presented. The literature 

about optimal heat exchanger design is reviewed first, including the case of uncertainty 

quantification and equipment design under uncertainty. Subsequently, the design problem 

under uncertainty of heat exchangers is stated, identifying five possible alternative 

approaches, including robust design. Afterwards, a numerical experiment is carried out to 

consistently compare the five methods and analyse their performances, applicability 

domains and limitations. This is the first time alternative methods for heat exchanger design 

under uncertainty are compared, and another novelty is to examine the possibility of 

designing robust shell and tube heat exchangers adopting a metaheuristic optimisation 

method based on a Genetic Algorithm (GA). In this case, the GA is used to determine the 

required equipment configuration to minimise the distance of output stream temperature 

from the specification. Guidelines are derived to help designers select the best approach 

according to the specific problem instances. The section is concluded by discussing its 

limitations and planning future research work. 

 The framework application allows us to address the research questions in the 

Introduction. Indeed, this approach is used to compare several designs obtained with 

different methods; to do this,  they are evaluated under uncertainty conditions. Furthermore, 

the framework is used to propose a new method for STHE optimisation. Finally, final 

remarks are provided to underline the most important findings. 

Two publications have been developed from the studies conducted to produce this chapter 

[128, 182]. 

5.1 The problem of selecting the proper performance measure: 

the case of shell and tube heat exchangers 

STHEs are widespread in industrial systems and are critical equipment in many 

production processes. Furthermore, their use in heat recovery applications contributes to 

resource conservation. While the traditional STHE design procedure is well established, its 

non-automated application is time-consuming owing to its iterative nature, and it is strongly 

affected by the designer’s subjective choice of controllable parameters’ values. Numerical 

optimisation approaches have been applied to STHE design to automate and improve the 

design process. 
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Although some researchers are sceptical about the possibility of adopting precise 

optimisation methods in heat exchanger design [183], a vast number of optimisation 

algorithms has been applied in the literature, as reviewed elsewhere [184-186], and an 

extensive range of objective functions (OF) have been suggested. 

The optimisation algorithm selection is a relevant problem since it mainly influences the 

efficiency and effectiveness of the search procedure within the design space. However, the 

choice of the OF is crucial, as it leads to the architecture of the HE and the quality of the 

resulting “optimal” design. In this regard, the care to objective function selection has been 

relatively scarcer, establishing confusion in the designer, who has no guidelines when 

choosing this. Therefore, many different OFs are used in the literature despite the lack of 

studies comparing the performances of OFs.  

The literature is unclear about the reasons for choosing a particular function, and the 

authors often do not provide an explanation for their choice and refrain from discussing the 

impact of their choice on the resulting equipment configuration. Moreover, an ambiguous 

similarity among several OFs also boosts uncertainty. Generally, OFs are connected either 

to a cost minimisation or some technical performance measure to be optimised. 

Nevertheless, when resorting to a cost OF, the capital investment is often computed in a 

trivial way using simple parametric functions related to the overall heat exchange surface. 

This approximation causes the incapability of these OFs to obtain detailed design. In fact, 

the total exchange area is not linked to changes in the equipment architecture. The 

architecture of the equipment strongly impacts the manufacturing cost, as discussed by 

Caputo et al. [187]. On the other hand, OF based on thermos-physical performances may 

lead to equipment configurations that are apparently optimised but not practicable because 

of their numerous drawbacks or unfeasibility. Therefore, many authors do not show nor 

explain the actual architecture of the equipment obtained by their selected OF.  

As previously said, selecting the variable of interest plays a significant role in applying 

the proposed general framework. In this section, a critical comparison of objective functions 

is carried out to show the effect of the variable of interest on the optimised design.  

The contents presented in this section allow practitioners and researchers to select the OF 

to be used with any optimisation approach consciously. A critical literature review was 

carried out to show the most common OFs for optimising HE, and eight OFs were used to 

assess their impact on the geometric, thermal, and economic performances of STHE. A 
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numerical application was made to compare the optimised designs obtained with different 

objective functions in a realistic case under consistent assumptions. The comparison was 

made both using single and multi-objective OFs, highlighting their merits, drawbacks, and 

limitations.  

5.1.1 Literature review 

About 120 research papers on STHE optimisation are available in the literature from 2005 

to 2021. Additionally, the number of yearly new papers has increased until 2021. From the 

analysis of these contributions, the most adopted design procedures are Kern and Bell-

Delaware methods, and most works focus on mathematical optimisation techniques. The 

main difference between these documents resides in the selected numerical method [185]. 

Table 5.1 collects a non-exhaustive list of the algorithms used to optimise the STHEs. Note 

that the most used are at the top of the list. 

 

Table 5.1 Optimisation algorithm used in STHE optimisation 

Algorithm References 

Genetic Algorithm [186-218] 

Non-dominated Sorting Genetic Algorithm-II [219-231] 

Particle Swarm Optimization [198, 206, 229, 232-237] 

Multi-Objective Genitic Algorithm [238-242] 

Firefly Algorithm [201, 204, 243, 244] 

Cuckoo Search [204, 245-247] 

Monte Carlo Simulation [210, 229, 248] 

Elitist Jaya Algorithm [249-251] 

Differential Evolution Algorithm [252, 253] 

Heat Transfer Search Algorithm [254, 255] 

Modified Teaching Learning-Based Optimization [256, 257] 

Grey Wolf Optimizer [254, 258] 

Symbiotic Organism Search [254, 259] 

Multi-Objective Particle Swarm Optimization [260, 261] 

Passing Veichle Search [254] 
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Artificial Forage Optimization  [254] 

Salp Swarm Algorithm [254] 

Electro-Search Algorithm [254] 

Grasshopper Optimization Algorithm [254] 

Ant Lion Optimizer [254] 

Alfa Tuning Elephant Herding Optimization [262] 

Differential Evolution Based ABC [263] 

Branch-And-Reduce Optimization Navigator  [264] 

DIscrete and Continuous OPTimizer [264] 

Exhaustive Search [229] 

Crow Search algorithm [229] 

Bacteria Foraging Algorithm [265] 

Multi-Objective Self-Adaptive Multi-Population-Jaya 

algorithm [266] 

Adaptive Range Genetic Algorithm [267] 

Simulated Annealing Algorithm [215] 

Falcon Optimization Algorithm [268] 

Brute Force Algorithm [210] 

Cohort Intelligence  [269] 

Delayed Rejection Adaptive Metropolis hasting [270] 

Multi-Objective Heat Transfer Search [271] 

Tsallis Differential Evolution [272] 

Bat Algorithm [273] 

Predator-Prey Algorithm [228] 

Electromagnetism-like Algorithm [274] 

Gravitational Search Algorithm [275] 

Hybrid Particle Swarm Optimization and Ant Colony 

Optimization [205] 

Distributed Multistart Ant Colony Optimization [276] 
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Particle Swarm Local Optimization [276] 

Improved Intelligent Tuned Harmony Search algorithm [277] 

Hybrid Differential Evolution and Ant Colony Optimization [278] 

Biogeography-Based Optimization [279] 

Imperialist Competitive Algorithm [280] 

Quantum Particle Swarm Optimization and Zas Lavskii 

Chaotic Map Sequences [281] 

Algorithm Of Changes [282] 

Artificial Bee Colony [283] 

Harmony Search Algorithm [284] 

Others [285-300] 

Reviews [184, 185] 

 

In several instances, authors claim superior performances for their algorithm. However, 

this superiority is doubtful because results are often neither fully comparable nor discussed. 

This issue appears from the non-declaration of some problems and the non-consistency of 

problem formulation or materials and methods involved [184]. Moreover, some used 

optimisation algorithms are designed to search efficiently over large design spaces, whereas 

in HE designs, the feasibility region is not too large. Indeed, the multiple interdependencies 

between variables and the fact that they can often assume only a small set of discrete values 

shrinks the solution space. Thus, while the computational advantage in using advanced 

search algorithms may often be slight with STHE design optimisation, the OF selection plays 

a key role in the implication of the technical and economic viability of the equipment. 

From the aforementioned literature, cost optimisation, in a broad sense, is the most often 

set goal. However, heat transfer area, pressure drop, energy disruption, exergy, entropy, 

ensergy and heat transfer rate have been used as objective functions. Recently, multi-

objective optimisation has increased its diffusion in this field, and it is used to combine 

thermal and economic performance. In particular, cost and effectiveness are frequently 

simultaneously optimised. In recent years, the minimisation of pressure drop has become 

increasingly important to implement novel geometric baffle configurations that increase the 

overall heat transfer rate. However, these new baffle layouts raise the necessary pumping 
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power. Although minimisation of energy dissipation has also been used, some papers have 

shown that its mathematical formulation cannot achieve viable architectures.  

Researchers have attempted to build a consistent basis to compare different algorithms 

by adopting cost-oriented objective functions. This cluster of OFs has a traditional 

formulation based on the heat exchange surface to estimate the capital cost and pressure drop 

to assess the operational cost. Indeed, not-so-more detailed models have often been 

introduced to evaluate investment and operating costs.  

Table 5.2 shows a non-exhaustive list reporting several OFs and the relative number of 

occurrences in single and multi-objective problems available in the literature. 

 

Table 5.2 Number of occurrences of different OFs in literature in single and multi-

objective optimisation 

 
Number of occurrences 

OF Single-OF Multi-OF TOT 

Total cost 52 15 67 

Total annual cost 10 7 17 

Investment cost 1 1 2 

Operating cost 0 1 1 

Area 6 5 11 

Weight 1 0 1 

Effectiveness 2 10 12 

Heat Transfer rate 1 11 12 

Pressure drop 1 15 16 

Exergy disruption 1 5 6 

Entropy generation unit 2 2 4 

Fouling resistance 1 1 2 

Entransy 2 2 4 

Global heat transfer coefficient 0 1 1 
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The OFs division into single and multiple objective optimisations is crucial to 

understanding which specific performances can be used stand-alone and which should be 

used only in multi-objective optimisation problems, in conjunction with other OFs that lead 

the optimised design to viable architecture. Indeed, only some OFs directly or indirectly 

consider design issues that lead to a useful, practical, and realistic solution. For that reason, 

a pervasive multi-objective function combines costs and thermal effectiveness. 

 Regarding single-objective optimisation of STHE, the objective functions can be 

clustered into four groups: 

• Geometric functions.  

• Fluid-dynamic and energy-related functions.  

• Weighted average of different performance measures. 

• Cost functions.  

Single objective optimisation 

The crucial role of geometric functions in cost reduction, agile transportation, and 

straightforward arrangement of equipment within densely packed plants is demonstrated by 

the high level of attention that the literature gives to the optimisation of geometric equipment 

dimensions [186, 212, 253, 264, 285, 286, 288, 300]. However, looking for compact 

equipment is often an indirect cost-reducing procedure. Indeed, even though the weight was 

considered in a paper [186], the widely adopted geometric measure to be minimised is the 

overall heat transfer area. The use of different meta-heuristic algorithms [253, 286], Taguchi 

design approach [212], and Mixed Integer Linear Programming (MILP) [288] have been 

explored to achieve the minimisation of the heat transfer surface constrained to a heat 

transfer rate. Yang et al. examined different strategies for heat transfer enhancement with 

the aim of reducing equipment surface area and Investment Cost (IC) [264, 300]. Even 

though a smaller surface area usually means lower IC, it also means smaller tube diameter 

and shorter length. Therefore, it means a more significant pressure drop, which increases 

Operating Costs (OC). The reduction of the Total Cost (TC) is strictly related to the trade-

off between IC and OC. This fact is shown in the literature [285] using the comparison of 

surface area and Total Annual Cost (TAC) as OFs of a MILP. 

Fluis-dynamic and energy-related functions are linked to input and output temperatures, 

that is, the process parameters’ values, rather than the actual equipment’s geometry. Several 

thermal-performance measures, such as exergy, efficiency, entropy generation, entransy 
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dissipation and effectiveness, have been considered. Even though many references have 

adopted this type of functions [193, 195, 201, 204, 208, 211, 217, 243, 289, 292, 301, 302], 

since their non-direct relations with the equipment architecture, they do not help in 

equipment design. Indeed, several designs with non-equivalent relevant characteristics may 

share the same level of thermal performance. Thus, if they are used as single OF, their 

optimisation may lead to unfeasible or economically viable geometrical configurations. 

Beyan [301] has introduced the entropy generation number that seemed suitable as OF 

for optimising STHE since it also accounts for pumping power. However, the “entropy 

generation paradox” implies that economic savings from irreversibility reduction are 

compensated by higher costs caused by lower thermal efficiency. Indeed, several authors 

underlined that minimising entropy generation may not lead to thermal efficiency 

maximisation. Some have introduced a different formulation of the entropy generation 

number to deal with the entropy generation paradox [195]. Moreover, a recently published 

work demonstrated that the main effect of entropy generation minimisation is on pressure 

drop rather than on heat loss [243]. 

The relationship between thermo-economical performances and shell-side field synergy 

number were explored [193], as well as the integration between exergy destruction cost and 

TC by presenting the exergetic cost minimisation [217, 289]. In past years, the concept of 

entransy has been introduced [302]. It is a new thermodynamic function that represents the 

ability to transfer heat while reducing its dissipation, thus preserving the reversibility of the 

transformation, and that can be used for optimising HE. For HE optimisation purposes, it 

was used resorting to the number of entransy dissipation [211] and the entransy dissipation 

resistance [208] minimisation. 

On the other hand, Effectiveness optimisation maximises the exploitation of all thermal 

energy of both fluids [201, 204]. However, it may lead to non-viable final equipment 

configuration from the perspectives of surface requirements and economic performances. 

Indeed, effectiveness maximisation brings the exchanged heat as close as possible to the 

maximum exchangeable heat quantity, which is not always advisable of feasible from a 

practical perspective. For example, in considering counter-current design, this can imply that 

the hot fluid outlet temperature is lower than the cold stream’s outlet temperature. Therefore, 

it requires an unacceptable value of heat transfer area and related pressure losses. 
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One of the main issues of STHE is the fouling resistance, which is highly impacted by 

the fouling film. This latter is significantly affected by the geometry of the equipment. Since 

this problem is well-known, a MILP for fouling resistance minimisation constrained to heat 

duty and pressure drop was proposed. This approach allows the authors to reduce the shell-

side fouling resistance by 17% and the tube-side by 48% compared to literature-available 

designs [292]. 

The weighted average of multiple performance measures (WAMPM) concerns 

combining different objectives in a single function using their weighted sum [210, 229, 248]. 

The substantial difference between this approach and the usage of multiple objective 

functions pertains to the fact that multiple-objective methods usually lead to a Pareto 

optimality frontier and require specific solution algorithms. Applying WAMPM requires the 

adimensionalisation of each considered performance measure and allows us to optimise a 

single compound performance index. However, this performance index has no physical 

meaning and does not give information about equipment configuration or functionality. 

There is no link between the OF and physical HE characteristics. On the other hand, the 

advantage of combining different performances entails the possibility to optimise several 

characteristics. For instance, it was recently applied to optimise equipment sustainability 

[248]. Additionally, it was used to consider the impact on the labour force, carbon plant, 

costs and several other KPIs with different meta-heuristic algorithms to optimise social, 

environmental, and economic sustainability [210]. Other authors used WAMPM for 

achieving a better management of project sustainability [229]. Nevertheless, the impact 

evaluation of each performance measure and the weights selection are not straightforward 

problems and are still under investigation. 

Cost functions are the most used in STHEs optimisation problems statement [187, 188, 

190, 192, 194, 196-198, 200, 203, 205-207, 232, 234-236, 244-247, 249, 251, 252, 254, 255, 

258-260, 262, 263, 265, 267-270, 272, 274-284, 287, 290, 296, 298, 299]. They can be 

clustered into Total Cost and Total Annual Cost functions, and both sets simultaneously 

include capital investment and operating costs. The former minimisation is usually pursued 

by minimising the surface area, whereas the latter minimising the pumping costs. Their 

coexistence in a single OF requires methods for discounting or levelising cash flows. 

In one of the first contributions [298], authors resort to a TAC formulation including 

pumping power and thermal loss for accounting of OC for STHE optimisation. On the other 
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hand, the IC was assessed using Hall’s method, thus expressing the investment cost as 

IC=a1+a2A
a
3. This equation includes the heat transfer area A and the coefficients a1, a2, and 

a3, allowing them to consider surface range, the HE construction material and type, and the 

scale economy, respectively. This IC estimation overlooks the geometrical configuration of 

the equipment. Indeed, the same transfer area can be obtained with several architectures, 

leading to different manufacturing cost values. For that reason, a more recent work [187] 

detailed the cost estimation of STHEs analytically, explicitly considering the manufacturing 

processes and geometrical parameters’ values. Since the size of pumps strictly depends on 

the HE’s pressure losses, and they contribute to the total investment cost, some authors 

include both the capital cost of HE and pumps [249, 278]. 

Additionally, other authors integrated operating costs by including indirect manufacturing 

costs [270]. Instead, in other papers, the problem of operating costs was addressed. Indeed, 

Selbaş et al. [188] modelled the maintenance cost considering an annual percentage 

increment of OC. In contrast, others explored different HE surfaces to reduce fouling factors’ 

effect and model IC with the Purohit expression [190]. Since the performance functions are 

closely linked to design variables values, the Global Sensitivity Analysis (GSA) was used to 

identify the most influential variables on costs. Their optimisation procedure was attempted 

to reduce computational complexity [284]. Finally, different optimisation algorithms were 

compared consistently in the literature, assuming a total cost-based objective function [254, 

296]. 

As previously mentioned, one of the problems in comparing papers focused on OFs is 

that there are often inconsistent bases. Even though authors generally used the Kern or Bell-

Delaware methods as STHEs design procedure, others used constructal theory [196, 200, 

203] or modified-existing methods for using a non-traditional optimisation approach [290]. 

Although maintenance and reliability considerations were often made [251], e.g. 

restraining a coefficient of increase of surface into a given interval [255], an analytical 

formulation for optimising the maintenance schedule was proposed only in an article [197]. 

Since someone affirmed the importance of including thermal performances, in reference 

[246], the TC was constrained to an effectiveness level. Other authors [247] consider some 

penalties associated with TC optimisation by defining some threshold performance values, 

such as a minimum effectiveness value, which affect the performance when not met. This 
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approach does not merely discard solutions that do not meet some constraints but penalises 

them by linearly increasing the TC with the level of constraint violation.  

For compact STHEs, a new TC mathematical formulation was proposed, including the 

uncertainty of correlations and inlet quantities: the best HE was chosen, resorting to multi-

criteria decision-making under uncertainty [260].  

Beyond the issue of OF selection stands the problem of constraints formulation. Design 

correlations have validity ranges, which are not always accurately respected [184]. 

Additionally, constraints can be used to achieve a reasonably feasible equipment 

architecture. Even though some constraints can pertain to design formulas, parameters, and 

system type, each objective function requires specific constraints. For instance, an explicit 

constraint on maximum allowable pressure drop may be needed if they are not yet in the OF, 

e.g. considering IC or heat transfer area instead of TC. The analytical formulation of 

constraints may not be easy and may influence the selection of the optimisation algorithm or 

vice versa. This issue is sometimes addressed by forcing the optimisation algorithm to 

accomplish some constraints or not directly including them but resorting to a post-processing 

procedure after solving the optimisation problem. Indeed, in some cases, tuning the 

theoretical optimum solution into a more feasible sub-optimal solution is possible. 

Using multi-objective optimisation formulations may address the problem of constraints’ 

selection by providing a set of equipment performances and obtaining a non-dominated 

solution. The problem here is choosing one solution within the set of non-dominated ones. 

Multi-objective optimisation 

Multi-objective optimisation (MOO) is extensively studied in the STHEs area, despite 

many studies being more concerned with the performance of MOO algorithms than with the 

choice and justification of OFs. Although a performance used as a single OF can be deceptive 

or unhelpful for equipment design, its combination with others may be helpful. Indeed, this 

approach is essential for simultaneous optimisation of the trade-off suggested by economic 

and thermal performances [220, 225, 250, 256, 261, 273]. Decision-makers now have the 

option of choosing the preferable configuration on the Pareto efficient frontier, which 

represents the set of non-dominated options, without having to settle for sub-optimal designs. 

For instance, as was already mentioned, thermal effectiveness maximisation results in a 

rapid rise in TC due to increased surface area. This is due to the simultaneous reduction of 

the Logarithmic Mean Temperature Difference (LMTD), as fluids’ outlet temperatures 
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should be roughly the same, and of the LMTD correction factor, which, below the 0.8 

threshold, rapidly declines and becomes uncertain.  

Effectiveness is sometimes substituted with exergy efficiency to achieve comparable 

effects [221]. Ozcelik [191] made one of the first MOO attempts with a formulation of 

exergetic cost. Exergy disruption [224], entransy dissipation theory, and TAC were applied 

in the double OFs optimisation of exergy efficiency [230]. To comprehend the significance 

of minimising the influence of the irreversible transformation from friction and heat transfer 

points of view, effectiveness, TC, pressure drop, and entropy generation units were 

simultaneously optimised [271]. 

It was frequently thought to maximise heat transfer rate (Q) while minimising total cost 

(TC) [199, 237, 240]. For various STHEs in terms of baffle types, such as segmental, helical, 

disc, and doughnut [223], Q and pressure drop were also correlated using Computational 

Fluid Dynamics simulation with Taguchi experimental design [291] and Artificial Neural 

Network (ANN) [209, 213, 218]. Helical baffle and coiled wire insert technology [214], the 

addition of nanofluid [238] and segmental porous baffles were also explored with GA-ANN 

[216] and Multi-Objective Genetic Algorithm (MOGA) [239] for Q enhancement. 

Since fluids’ velocities affect the overall heat transfer rate and pressure drop, establishing 

a trade-off, the Pareto frontier, is very useful in selecting the best solution [241]. Applying 

the response surface method and MOGA was found helpful for increasing thermal 

performance, i.e., shell-side Nusselt number, and reducing friction loss in STHEs with fold 

baffles [242].  

TC can be optimised using the MOO problem by including both IC and OC as OFs [227]. 

However, the widespread use of Hall’s correlation has limited the accuracy of estimating IC 

in calculating the equipment area and OC in pressure drop evaluation. For this reason, 

another formulation can be optimised to manage the uncertainty of cost coefficients’ 

selection by simultaneously minimising the exchange surface and pressure loss [222, 228, 

295]. Further considerations about equipment surface and TAC can be found in Elsays et al. 

[233]. 

Optimisation of ecological impact was also considered for MOO with the minimisation 

of TC and the entransy dissipation, aiming to exploit the whole thermal energy of the fluids 

and reduce pumping energy consumption [231]. From a similar perspective, but allowing for 
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maintenance consideration, energy efficiency and fouling rate support were studied with 

ANN [293].  

Agarwal and Gupta [219] optimised the TAC and mass flow rate of service fluid, 

considering a case where, after passing through the STHE, the outlet cooling water was 

recycled into a cooling tower. Reducing water consumption is crucial not only for its 

economic value but also because of availability concerns. 

In the end, Lambert and Gosselin [202] considered epistemic uncertainty and minimised 

at the same time the TAC and its standard deviation. This approach is critical to get the 

impact of uncertainty on the equipment design, and it is not entirely investigated on STHEs 

design. 

In general, multi-criteria decision-making methods can assist in choosing the weights 

within the OF for selecting the preferred equipment configuration agreeing to user 

preferences. A MOO computer tool for STHEs was also developed in [257].  

The above-presented discussion leads to the following considerations. 

The scientific community has not already achieved a standardisation of OFs. Indeed, a 

large number of optimisation problem formulations have been proposed. However, most 

authors do not motivate the OF selection. 

Even though a consensus around cost-related OFs seems to be established, energy-related 

OFs also occur, especially in MOO problems. 

Since, in some papers, the proposed optimal solution may be unfeasible or non-realistic 

(e.g., HE with colossal surface area or high total cost), some authors are sceptical of the 

literature results [183]. 

The main difference between cost or geometry OFs and energy-related ones is that the 

former has a straightforward meaning because architecture or operational aspects are 

concerned. In contrast, the latter does not define transparently an equipment configuration 

and may be unhelpful if the goal is to produce a piece of “well-designed” equipment. Indeed, 

energy-related functions lead to several HEs with the same energy performance. Moreover, 

good thermal performance does not necessarily imply good performance in other crucial 

aspects. Since the thermal performance measures optimise mainly the process parameters 

and, in some cases, may be assessed neglecting the equipment’s geometric configuration, 

they should not be used as single OF but paired to other OFs in multiple objectives design 

optimisation.  
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On the other hand, cost performance measures have practical implications for geometric 

or thermal performances. For example, a piece of low total-cost equipment has a geometry 

reducing the surface area while preserving the heat transfer efficiency (transferred heat per 

unit area) and pressure losses. Thus, it simultaneously considers several categories of design 

goals. Multiple-objective OFs address two necessities, i.e. the true blue need of optimising 

simultaneously two or more performance characteristics and the ought to get an effective 

and viable geometrical design when considering non-geometry-related performance 

measures such as the energy-related ones, which would be steady with an uncertain set of 

alternative geometrical designs. 

5.1.2 Research methodology 

Although often neglected, the literature review underlines that the performance measure’s 

choice for heat exchanger design optimisation is a sensitive matter. STHEs optimisation can 

be aimed at different goals, but it should always be considered that the ultimate scope of HE 

is heat transfer to be obtained with a “well-designed” piece of equipment.  

This section aims to assess the design implications of the OF choice. The following will 

consistently compare optimal designs achieved by adopting different OFs. Firstly, single-

objective optimisation is carried on, and MOO is subsequently considered. For optimisation 

purposes, the Matlab library of GA and MOGA algorithms is used to perform computations, 

together with the design procedure described in [192]. The description of the selected OFs, 

the comparison methodology and the reference case study, are also available in the already 

published author’s work [182]. 

Single-objective functions selection for STHEs design comparison 

Eight OFs were selected to provide an extensive comparison of optimised designs. Four 

geometric objective functions were chosen for achieving equipment compactness. Three OFs 

were used to optimise energy-related performances, and a single objective function was used 

to consider the TC. 

OF1: Heat transfer area A 

 

 min (𝐴) = 𝑁𝑡𝜋𝑑𝑜𝐿 (5.1) 

 

A minimisation aims to reach a compact heat exchanger. Compactness is a required 

characteristic, and it leads to lower IC. 
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OF2: Area Footprint  AFP 

 

 min (𝐴𝐹𝑃) = 𝐿𝐷𝑠 (5.2) 

  

The rectangular ground footprint of the equipment measures the land occupation in an 

industrial plant. The occupied area is considered as the tubes’ length L times the shell 

diameter Ds and could represent an opportunity cost. 

 

OF3: Tubes length L 

 

This is merely an OF trying to reduce the equipment size by shortening the length of its 

tubes (min(L)).  

 

OF4: Volume Footprint VFP 

 

 
min (𝑉𝐹𝑃) =

𝜋𝐷𝑠
2

4
𝐿 

(5.3) 

 

This is the same as AFP but extended to the equipment volume, to be used when available 

volumetric space represents, at the same time, a constraint and an opportunity cost. 

OF5: Pumping power P 

 

 min (𝑃) = (
1

𝜂
) ∙ [(

𝑚𝑡

𝜌𝑡
) ∙ Δ𝑃𝑡 + (

𝑚𝑠

𝜌𝑠
) ∙ Δ𝑃𝑠] (5.4) 

 

Where η is the pump efficiency and ρT and ρS are the density of tube and shell side fluids, 

respectively. 

This is an OF related to a fluid dynamics perspective. Its minimisation's importance 

resides in its effect on pressure drop on both the shell side (ΔPs) and tube side (ΔPt). Pressure 

drop minimisation also influences pump sizing and operating costs from a practical point of 

view. 
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From a thermal perspective, instead, effectiveness (ε, equation 5.5 [303]) and number of 

entransy dissipation units (g, equation 5.6 [211]) are used. The literature shows that g could 

be optimised in two different ways, with constant Q and so optimising the mass flow rate or 

outlet temperature of service fluid and computing the other from the energy balance or 

resorting to ε-NTU method [304] for sizing the STHE, whereas ε with only the latter. The 

first manner for g optimisation is not a real optimisation because when Q is constant, the 

thermal performance of the HE remains the same and only pressure drops are optimised. In 

this case, the optimisation algorithm merely makes the outlet service fluid temperature equal 

to the outlet process fluid temperature, reaching a value of g near 0.5. In addition, the 

pressure drop contribution to g is about three orders of magnitude less than the thermal 

contribution, so the OF is not too sensitive to frictional loss.  

 

OF6: Heat exchanger effectiveness ε 

 

 max (𝜀) =
2

(1 + 𝐶∗) + (1 + 𝐶∗2)1/2coth (
𝑁𝑇𝑈
2 (1 + 𝐶∗2)1/2)

 (5.5) 

 

Where Number of Thermal Units (NTU) is the product of the HE surface and global heat 

transfer coefficient divided by the smallest of the two fluids stream heat capacity rates, while 

C* is simply the ratio of the smaller to larger heat capacity rate. 

 

OF7: Number of entransy dissipation unit g 

 

 

min (g) = gΔT + gΔP = 

=

1

2
(𝑚𝑐𝑝)ℎ

(𝑡ℎ,𝑖
2−𝑡ℎ,𝑜

2)+
1

2
(𝑚𝑐𝑝)𝑐

(𝑡𝑐,𝑖
2−𝑡𝑐,𝑜

2)+𝑚ℎ
∆𝑃ℎ
𝜌ℎ

(𝑡ℎ,𝑜−𝑡ℎ,𝑖)

ln (
𝑡ℎ,𝑜
𝑡ℎ,𝑖

)
+𝑚𝑐

∆𝑃𝑐
𝜌𝑐

(𝑡𝑐,𝑜−𝑡𝑐,𝑖)

ln (
𝑡𝑐,𝑜
𝑡𝑐,𝑖

)

𝑄(𝑡ℎ,𝑖−𝑡𝑐,𝑖)
  

(5.6) 

 

Where gΔT is the thermal dissipation contribution and gΔP the fluid-dynamic dissipation 

contribution. m and cp are mass flow rate and specific heat, respectively, of hot fluid (h) and 
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cold fluid (c). Q is the heat transfer rate, whereas t represents temperatures: subscript i 

identifies inlet, o outlet, c and h cold and hot fluids. 

From an economic point of view, the selected objective function is TC (equation 5.7). 

The total discounted HE cost is computed as the sum of investment cost (equation 5.8), 

resorting to Hall correlation, and the present worth of pumping cost (DOC, equation 5.9).  

 

OF8: Total cost TC 

 

 min (𝑇𝐶)  =  𝐼𝐶 +  𝐷𝑂𝐶 (5.7) 

 𝐼𝐶 = 𝑎1 + 𝑎2𝑆
𝑎3 (5.8) 

 𝐷𝑂𝐶 = ∑
𝑃

(1 + 𝑖)𝑛
∙ 𝐶𝑒𝑛 ∙ 𝐻

𝑁𝑦

𝑁=1

 (5.9) 

 

Economic values and parameters for cost evaluation are shown in Table 5.3. Please refer 

to the nomenclature of this section in the List of Symbols section for the meaning of symbols. 

 

Table 5.3 Parameters used to assess the investment and operating costs 

a1 a2 a3  H (h/y) i (%/yr) Ny (yr) Cen (€/kWh) 

8000 259.2 0.91 0.7 7000 10 10 0.12 

Multi-objective functions selection for STHEs design comparison 

In the case of MOO, the following OFs are used. 

 

OF1 = Heat transfer area A and Total Cost TC 

OF2 = Area footprint AFP and Total Cost TC 

OF3 = Thermal effectiveness e and Total Cost TC 

 

The analysis of multi-objective optimisation is not carried out to introduce a new 

optimisation method or new objective functions but to consistently compare different 

combinations of objective functions and emphasise the effect of combining several objective 

functions in comparison with using them stand-alone. Whereas OF1 may be found in [233] 

and OF3 is widely used in the literature ([220, 225, 226, 256, 257, 261, 273]), AFP, namely 
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OF2, is a new objective function introduced by the authors, the combination with total cost 

should be considered as a new formulation. 

Reference case 

In order to compare in a consistent manner the equipment configurations resulting from 

the above objective functions, the Kern method [305] for HE sizing is used in a reference 

application case. An exception is made for OF7 and OF8, where the ε-NTU design method 

is utilized. 

In this manner, the outlet temperatures of fluids are computed, and only inlet temperatures 

and mass flow rates are assigned. Moreover, we assume that heat exchanger must be 

designed to cool a process fluid, and both fluids' nominal flow rates, temperatures and 

thermophysical properties are available in Table 5.4. Obviously, outlet temperatures must 

not be considered when using the ε-NTU method. 

 

Table 5.4 Nominal conditions and thermophysical properties of the two fluids. 
Fluid m (kg/s) ti (°C) to (°C) ρ (kg/m3) cp (kJ/kg K) μ (Pa s) λ (W/m K) Rf (m2K/W) 

methanol 27.8 95 40 750 2.84 0.00034 0.19 0.0002 

seawater 68.9 27.5 40 995 4.2 0.0008 0.59 0.00033 

 

Considered design and optimisation variables are shell diameter (Ds), baffles spacing (B), 

tubes’ diameter (do), number of tube-side passages (n), tube-side fluid and tubes’ pattern for 

the Kern method. At the same time, the tubes’ length (L) is also included for the ε-NTU 

method. Problem constraints include a maximum allowable pressure drop of 70 kPa, length-

to-shell diameter ratio in the range of 3-15, and tube-side and shell-side fluid velocity in the 

range of 0.6-2.5 m/s and 0.4-1.5 m/s, respectively. The latter two lower bounds are 

introduced to reduce the fouling effect. 

Comparison methodology 

In order to compare different optimal designs obtained by the optimisation of previous 

OFs, each STHE will be optimised by referring to a j-th OF (j=1…8) and evaluated 

concerning eight performances p - namely A, AFP, L, VFP, P, ε, g, TC - identified by 

subscript i=1…8. 

Then, a relative performance index Iij (equation 5.18) is introduced, measuring the relative 

difference between the value of p assumed from the j-th design and its optimum value. 
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𝑰𝒊𝒋 =

𝒑
𝒊𝒋
− 𝒑

𝒊𝒊

𝒑
𝒊𝒊

 
(5.10) 

 

pij is the i-th performance value in the case of optimisation with respect to j-th OF. In 

contrast, pii is the performance value of equipment optimised precisely for that performance.  

5.1.3 Results discussion 

Single-objective optimisation results 

At first, single-objective optimisation results are considered. The resulting optimal 

equipment configurations are shown in Table 5.5, while Table 5.6 shows the corresponding 

equipment performances, and Table 5.7 shows the value of the index Iij. In the Tables, each 

column is associated with a distinct j-th OF, namely A, AFP, L, VFP, P, ε, g, TC. 

 

Table 5.5 Optimised shell and tube heat exchanger configuration 
OF A AFP L VFP P ε g TC 

Ds 0.7 0.8 0.8 0.8 1.0 1.2 1.4 0.9 

L 4.3 2.4 2.4 2.6 4.3 10.0 9.1 2.7 

B 0.5 0.5 0.5 0.5 0.4 0.7 0.5 0.9 

n 4 6 6 6 2 8 8 4 

do 0.012 0.012 0.012 0.012 0.02 0.012 0.022 0.012 

Pattern Square Triang Triang Triang Square Triang Triang Square 

Tube side Methanol Methanol Methanol Methanol Water Methanol Methanol Methanol 

Pt 0.015 0.015 0.015 0.015 0.025 0.015 0.0275 0.015 

Cl 0.003 0.003 0.003 0.003 0.005 0.003 0.006 0.003 

Nt 1116 2085 2086 1873 1148 6828 2032 2311 

vt 1.84 1.47 1.47 1.64 0.60 0.60 0.60 0.89 

Ret 38871 31202 31187 3474 11941 12706 23294 18772 

Prt 5.1 5.1 5.1 5.1 5.7 5.1 5.1 5.1 

ht 4314 3619 3617 3944 3248 1764 1562 2410 

ΔPt 69996 47656 47619 61046 4302 37427 18381 13503 

De 0.012 0.009 0.009 0.009 0.020 0.009 0.016 0.012 

vs 0.96 0.93 0.92 0.93 0.40 0.42 0.50 0.43 

Res 14249 10004 9932 10006 17461 4493 9795 6331 

Prs 5.7 5.7 5.7 5.7 5.1 5.7 5.7 5.7 

hs 6152 6931 6904 6932 1280 4463 3737 3937 
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ΔPs 69999 69990 68604 69998 10209 70000 70000 8044 

U 969 935 934 960 562 661 607 739 

S 179 186 186 181 309 2574 1280 235 

IC 37130 38089 38107 37359 55797 337078 182300 45253 

OC 8932 7937 7820 8534 811 7479 6632 1269 

DOC 54885 48774 48056 52438 4987 45960 40754 7799 

TC 92015 86863 86163 89797 60784 383038 223054 53052 

ε 0.79 0.79 0.79 0.79 0.79 0.87 0.87 0.79 

th,o 40.0 40.0 40.0 40.0 40.0 34.4 34.4 40.0 

tc,o 40.0 40.0 40.0 40.0 40.0 41.5 41.5 40.0 

g 0.5011 0.5007 0.5007 0.5009 0.5001 0.4493 0.4491 0.5002 

gΔP 0.0011 0.0007 0.0007 0.0009 0.0001 0.0005 0.0002 0.0002 

gΔT 0.5000 0.5000 0.5000 0.5000 0.5000 0.4488 0.4489 0.5000 

AFP 2.83 1.86 1.86 1.94 4.48 11.98 12.66 2.42 

VFP 1.47 1.15 1.15 1.15 3.68 11.26 13.80 1.71 

P 10.6 9.4 9.3 10.2 1.0 8.9 7.9 1.5 

 

 

Table 5.6 Performance values for each optimised design 

  Objective function (j) 

  A AFP L VFP P ε g TC 

P
er

fo
rm

a
n

ce
 (

i)
 

A 179 186 186 181 309 2574 1280 235 

AFP 2.83 1.86 1.86 1.94 4.48 11.98 12.66 2.42 

L 4.3 2.4 2.4 2.6 4.3 10.0 9.1 2.7 

VFP 1.47 1.15 1.15 1.15 3.68 11.26 13.80 1.71 

P 10.6 9.4 9.3 10.2 1.0 8.9 7.9 1.5 

ε 0.79 0.79 0.79 0.79 0.79 0.87 0.87 0.79 

g 0.5011 0.5007 0.5007 0.5009 0.5001 0.4493 0.4491 0.5002 

TC 92015 86863 86163 89797 60784 383038 223054 53052 

 

Table 5.7 Indexes Iij values for different OF and performance measure 

  Objective function (j) 

 
 

A AFP L VFP P ε g TC 

P
er

fo
rm

a
n

ce
 (

i)
 

A 0.00 0.04 0.04 0.01 0.72 13.36 6.14 0.31 

AFP 0.52 0.00 0.00 0.04 1.41 5.44 5.80 0.30 

L 0.80 0.00 0.00 0.08 0.81 3.23 2.86 0.14 

VFP 0.28 0.00 0.00 0.00 2.20 8.79 11.00 0.49 

P 10.00 8.78 8.63 9.51 0.00 8.22 7.18 0.56 

ε 0.09 0.09 0.09 0.09 0.09 0.00 0.00 0.09 
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g 0.12 0.11 0.11 0.12 0.11 0.00 0.00 0.11 

TC 0.73 0.64 0.62 0.69 0.15 6.22 3.20 0.00 

 

 

The substantial differences in optimal configurations prove the importance of OF 

selection. 

Looking at Table 5.5, it is straightforward that each adopted OF minimises (or maximises, 

if it is the case) the performance included in OF formulation. For example, using A as OF, it 

is possible to find that the heat exchange surface reaches the minimum value, but such 

objective function (like AFP, L and VFP) neglects operating cost. For this reason, the 

pressure drop on the tube and/or shell side is close to the maximum allowable value of 70 

kPa.  

Using P as OF, the other heat exchanger performances are neglected, giving minimum 

values for pumping power on both sides. However, at the same time, values of surface A, 

equipment footprint AFP, equipment length L and volume footprint VFP are more significant 

than the minimum values. 

OFs ε and g lead to equipment having heat exchange surface and investment cost an order 

of magnitude bigger than other OFs and, at the same time, high values of pressure drop. 

Figure 5.1 summarizes Iij values resorting to spider plots, highlighting the relative 

performances of optimal design configurations with respect to all selected performance 

measures. In particular, each graphic of Figure 5.1 refers to a specific j-th OF, and the plotted 

points depict the corresponding Iij index values showing the relative performance of that 

optimal exchanger as compared to the corresponding performance of an HE optimised for 

each i-th performance measure. Obviously, a hypothetical HE having the best performance 

in all the considered performance measures would have a spider plot where all points would 

collapse at the origin of the graph.  
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Figure 5.1 STHE design performance comparison 
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Graphs 3a to 3d show very well that geometric optimisation, being not sensitive to 

pressure drop, leads to a consistent increase in pumping power. P increases by about ten 

times in comparison to P-optimised design. Passing to this latter case (Fig. 3e), as P directly 

influences OC and the geometry of HE, TC is “only” about two times bigger than TC-

optimised one, and in general, P-optimised configurations are pretty good overall 

performance measures.  

Effectiveness maximisation leads to a configuration affected by noticeable degradation 

in all other performance measures (Fig. 3f). STHE surface increases fourteen times if 

compared to A-optimised HE, and even pumping power and TC grow up. The heat exchange 

area increases because the hot fluid outlet temperature is kept lower than the cold fluid outlet 

temperature to exploit the whole thermal power of fluids. Hence, the corrective factor of 

LMTD falls under the 0.8 threshold.  

In the case of the Number of entransy dissipation units (Fig 3g), the above considerations 

are confirmed by experimental results. Outlet temperatures are the same as the ε-optimised 

design, so effectiveness was maximised from the thermal point of view. Pressure drop is 

contained by gΔP, but it is three orders of magnitude minor than gΔT, and the final effect is 

that g is not too sensitive to its contribution. 

Researchers have often exempted themselves from showing the final HE configuration 

obtained with their optimisation, and in their works, only optimum values of optimisation 

variables are shown. Using these values, in some cases, final configurations do not have a 

practical use for their dimensions or cost, which could be much lower, giving up little 

percentage of thermal performance.  

The design that performs better in all indices, obviously the second in every pij only after 

the pii, is obtained with TC minimisation. This is easy to understand because geometric 

indexes are small thanks to the IC minimisation, which drives towards small exchange areas, 

and OC minimisation, which acts directly on pumping power. Effectiveness and g, even 

show good values. In fact, ε and gΔT are small because outlet temperatures of fluids are equal 

in specifications, and gΔP is reduced by OC. However, TC-minimisation performed by 

adopting a simplified cost correlation has two critical problems. Firstly, cost is estimated 

using the overall surface area only, neglecting manufacturing processes, and geometrical 

allocation of the area is also neglected, as the same A could be obtained with different L, do, 

B, Ds, n and tubes’ patterns. 
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Overall, in single-objective optimisation, economic functions demonstrate their 

superiority in optimising STHE in terms of realisable architecture and general performances. 

Considering thermal performances could be necessary for some problems, but an economic 

quantification of them leads to good results. Anyway, even though monetary analysis is easy 

to understand, the challenge is to formulate OFs which include all important costs directly 

dependent on HE geometric configuration and which could include other performances that 

could be of interest in different cases. 

Multi-objective optimisation results 

Using the same case study above and considering the OFs declared in paragraph 5.1.2, a 

MOO is performed using the MOGA of Matlab, obtaining a Pareto efficient frontier. In 

Figure 5.2, the results of A - TC (a) and AFP - TC (b) optimisations are depicted. In Figure 

5.3, the Pareto front for effectiveness maximisation and total cost minimisation is instead 

shown. Decision-making techniques or weighted sum of two OFs allows decision-makers to 

select the preferred trade-off point on the frontier. 

 

 

Figure 5.2 Pareto front of optimised heat transfer area and total cost (a) and optimised area 

footprint and total cost (b) 
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Figure 5.3 Pareto efficient frontier for effectiveness and TC optimisation 

 

In  Figure 5.2, it can be noticed that when the HE area decreases, the total cost increases 

owing to higher fluid velocity and pressure drop. The same occurs in area footprint 

minimisation.  

Even if the only interest of the designer is HE area minimisation, the use of MOGA allows 

the designer to include TC as well in the configuration decision so that a good solution is 

always obtained. In fact, the minimum heat transfer surface found on the frontier is at least 

one of the least expensive. Including TC also allows for suitable configurations when a 

thermal performance measure is optimised (Figure 5.3) without incurring the unfeasible 

configuration typical of stand-alone thermal OF optimisation. 

As noticeable from the above results, the same maximum effectiveness of single 

optimisation is obtained ( = 0.87), although TC values are quite different. In fact, in the 

single OF optimisation, TC is 383038 €, whereas in MOO, it is 155773 €. The TC still 

remains high in absolute terms (as compared to about 53000 € of the TC-optimised 

exchanger), and the equipment configuration remains quite cumbersome. However, a 

significant improvement was obtained compared to sole effectiveness-based optimisation. It 

should also be noted that further increasing effectiveness above the threshold of 0.75 is hard 

to do (in the literature, typical effectiveness values are always taken between 0.5 and 0.7) 
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owing to a rapid cost increase determined by much higher exchange areas. In this case, 

MOO, including total cost, proves to be quite valuable.  

Overall, MOO, apart from the difficulty in choosing the preferred point on the Pareto 

frontier, has three main following advantages. 

• Pareto frontier represents the best obtainable solutions space in which the 

designer can move to make decisions. 

• Given the optimum value of a function, the other OF has the better obtainable 

value: being the point of the Pareto-efficient frontier, neither value can be 

improved without worsening the other one. 

• It is possible to minimise/maximise OFs non-optimisable with single objective 

optimisation without reaching unfeasible solutions (e.g., thermic performances).  

5.1.4 Remarks and limitations 

As claimed in the previous chapters, it was shown that the choice of the OF is not 

indifferent, as it heavily impacts the equipment configuration and the “engineering” quality 

of the resulting design. The consequences of choosing specific kinds of OF were shown and 

discussed.  

Evidence was provided that geometry-based OFs, aimed at pursuing equipment 

compactness and/or reduction in capital investment, are generally penalised by excessive 

pressure drop levels and consequent operating costs. 

OFs which minimise pressure drop are able to strike an excellent overall trade-off 

between thermal, geometrical and economic performances. 

OFs based on thermal performances are not advisable because thermal performance by 

itself does not define a geometric configuration (i.e. does not help the designer in 

determining a viable equipment configuration) and, from a practical engineering point of 

view, generally delivers scarcely viable solutions, which are affected by high costs. 

The best solution appears to directly choose a total cost-based OF, as this implicitly dives 

towards a compromise between area minimisation and pressure loss reduction, delivering an 

excellent overall design that is also cost-effective. In this respect, the designer is advised to 

include in a cost-based OF definition as many elements as possible amenable to economic 

quantification (i.e. footprint, maintenance costs, thermal efficiency through economic 

evaluation of the exchanged energy, etc.) as this is an effective manner to include other 

design objectives having a physical meaning in a balanced design which is also cost-
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effective. Finally, utilization of economic OFs also simplifies the problem of setting design 

constraints which, when based on physical parameters, may be difficult to explicit in 

analytical form manageable by the optimisation algorithms. In fact, violation of physical 

constraints would generally result in equipment configurations with poor cost-effectiveness, 

which are promptly discarded by using an economic OF. This allows us to obtain a good 

engineering design without explicitly imposing a predefined threshold on the design 

parameters. 

Finally, MOO was shown to be useful in tackling intrinsically multidisciplinary design 

problems (such as sustainability optimisation) and reducing the risk of scarcely viable design 

when solely thermal performances are used to drive design optimisation. 

This section showed that the choice of the optimisation objective is relevant as it can 

strongly affect the cost-effectiveness and engineering viability of the obtained equipment 

configuration. Comparison of the performances of different objective functions is made 

possible by carrying out a consistent analysis based on a specific design instance. Different 

objective functions were optimised with the same procedure regarding the processor, 

metaheuristic algorithm and mathematical formulation. Optimal designs were evaluated by 

resorting to a new evaluation index to compare differences from different optimal designs. 

Results show that pressure loss minimising and, above all, total cost minimising objective 

functions strike the best trade-off in equipment performances. Caution is mandatory when 

thermal performances are only being optimised, as this can give rise to unviable and 

economically unsustainable equipment configurations. Multi-objective optimisation assures 

that competing designs do not dominate the thermal optimum from an economic perspective. 

Economic functions are the most used and interesting from an industrial plant's point of 

view. Indeed, they are easy to implement and understand. The importance of thermal and 

geometrical performances is not to be neglected, but the possibility of giving economic value 

to these aspects is advised. 

All results have been obtained referring to a single application example. The analysis 

should be extended to a wide range of alternative problem instances to confirm the validity 

of the results. Therefore, we do not make any claim of generalization, even if results appear 

to be generalizable based on engineering reasoning. Only eight objective functions and 

corresponding performance measures were explored. The analysis could be extended to 

other performance measures and objectives of interest to the designers. Finally, the analysis 
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is limited to shell and tube heat exchangers, while other equipment configurations could be 

taken into account. 

5.2 Shell and Tube Heat Exchanger under uncertainty: an 

overview 

As said in section 5.1, shell and tube heat exchangers are the most frequent type of heat 

transfer equipment utilized in process plants. However, many external and internal sources 

of uncertainty and variability affect heat exchangers’ operations in actual plants, making this 

kind of equipment's thermal and mechanical design rather complex despite their apparent 

structural simplicity. Among external sources of variability, either deterministic or random 

changes in input streams’ conditions may occur, namely variation in hot and cold stream 

flow rate and temperature, changes in their composition and uncertainty in the fluids' 

physical properties. Internal sources of variability include uncertainty deriving from 

imprecise heat transfer and pressure drop correlations, flow maldistribution effects, and 

fouling phenomena [306].  

Sources of uncertainty are often beyond the designer's control (section 1.1.4) and could 

affect different aspects [307]. 

• Variations of the environmental and operating condition: whereas some 

quantities could be assumed as deterministic and constant during the design 

phase, their value could change during the operating time. This is the case of 

input parameters and different noise signals influencing the system's 

performance. 

• Manufacturing tolerances: some design solutions may be affected more or less 

than others by the departure from the geometrical theoretical configuration. 

• Output evaluation: the model and the equations used to evaluate the equipment's 

performances are not the exact description of the reality. In fact, assumptions 

and simplifications necessary to reduce the modelling effort could introduce 

other types of uncertainty and neglect some phenomena. 

• Constraint uncertainties: the feasibility space, i.e. the set of possible solutions, 

could be smaller than the one theoretically envisaged due to the model's 

incapability to determine the actual feasibility region. 
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Furthermore, uncertainty can be divided into a) aleatory uncertainty and b) epistemic 

uncertainty (section 1.1.1). The former comes from the random variability of the input, and 

it is not reducible. In contrast, the latter is imputable to non-perfect knowledge of the 

physical phenomena and unperfect correlations and is theoretically reducible. 

Traditional design methods ignore variability in that they assume constant and known 

values of process conditions, namely the temperature and flow rate of input process streams, 

their composition and thermophysical properties, as well as heat transfer and pressure loss 

coefficients obtained from empirical correlations. Equipment design is based on nominal 

operating conditions, often assuming average values if a variability range is expected and 

providing ex-post verification that minimum heat duty specifications are satisfied when 

operating parameters are changed within a likely range. Nevertheless, uncertainty 

propagation and sensitivity analysis in heat exchangers is a topic that has gathered some 

attention from academics. Statistical methods to understand equipment behaviour have been 

known and used since ’50 [308]. In particular, methods for assessing internal parameters’ 

uncertainty and the capability of designs to satisfy requirements are available [309]. In order 

to protect against uncertainty and obtain a desired degree of confidence in satisfying 

specifications, design handbooks suggest additional pressure drop and surface area to be 

factored in as a safety factor, determined by a statistical combination of the variance of 

uncertain factors [306, 310]. Otherwise, the design is made assuming worst-case conditions. 

This may lead to excessively conservative design, with equipment oversizing or failure to 

meet design specifications under some operational conditions. 

To counter uncertainty reactively, one could design the equipment incorporating some 

structural flexibility (section 3.1.4) to be used if and when necessary (i.e. a bypass stream or 

additional heat transfer area to be put into service on request). However, this may be often 

unpractical given that heat exchangers are designed with a predefined structural architecture 

when the geometrical parameters are fixed in the design phase and can not be changed during 

operation. Alternatively, some kind of equipment regulation and control could be allowed. 

Another approach could be to design allowing output variability, i.e. allowing operational 

states where specifications are not strictly met, provided that some performance measure is 

optimised. 

When the above options are not feasible, the goal of designing a robust heat exchanger 

may be sought (section 3.1.2). Robustness is the ability of the equipment to maintain its 
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operational capability and meeting design specifications under different operating 

circumstances. Technically, it involves a design able to optimise the mean response and 

reduce output variability in the face of input variability and noise factors by preventing 

variability propagation rather than reducing the input variability [311]. Therefore, robustness 

is a manner of passively managing uncertainty by choosing an equipment architecture that 

ensures adequate performance over a wider range of conditions [312]. However, while 

methods to assess the effects of uncertainty propagation in heat exchangers’ performances 

are available in the literature, methods for robust design of heat exchangers under uncertain 

operating conditions are scarce.  

Overall, as shown in the subsequent literature review, optimal heat exchangers’ design 

methods, in general, neglect variability and uncertainty. Manual methods, instead, address 

uncertainty in empirical manners or by adopting penalising approaches such as design for 

average conditions, worst-case design or oversizing. However, no sound justification is 

offered to support their utilization. Most papers addressing uncertainty in heat exchangers 

focus on uncertainty propagation instead of design methods to counter uncertainty. The 

designer is left without guidance about how to deal with uncertainty. Therefore, a knowledge 

gap exists as far as equipment design under uncertainty is concerned.  

5.2.1 Literature review 

The literature on STHEs’ optimisation has been analysed in the previous section. 

However, the design of processes under uncertainty is a research field in itself, extensively 

studied for a long time [313], especially in chemical process plant design and process 

synthesis, as reviewed elsewhere [165, 314].  

However, Costa and Bagajewicz [315] point out that despite advances in computational 

tools, the basic design of process equipment is still carried out in industry by resorting to 

trial-and-verification procedures guided by heuristic rules. This is mainly imputable to the 

circumstance that the academic literature about process design under uncertainty is 

dominated by mixed-integer nonlinear models (for instance [316, 317]) which, regardless of 

the utilized solution techniques (i.e. stochastic or mathematical programming-based), have 

practical limitations that have restrained practitioners from abandoning the time tested 

heuristics and simplified computer-aided tools. 

Nevertheless, the literature specific to heat exchanger design under variable operating 

conditions and parameters uncertainty is comparatively scarce and mainly focused on either 
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assessing the equipment performance variation under uncertainty [318], the effect on designs 

[310] or suggesting guidelines to account for variability [309], rather than in providing 

optimal design solutions and methods. However, it can be argued that general methods 

developed for optimal probabilistic design of processes could also be applied to equipment 

design. In particular, Haseler et al. [319], as well as Clarke et al. [320], investigated the 

sensitivity of the overall heat exchanger calculations and operational performances to 

uncertainties in individual fluid properties, also using Monte Carlo techniques. However, 

they did not consider the uncertainties' effects on process specifications or address any 

optimisation problem. This kind of analysis was also extended to cross-flow heat exchangers 

[321]. The Monte Carlo method was also used by Affan Badar et al. [322] and Mahbub 

Uddin and Bell [310] to appraise the impact of uncertainties on the heat transfer coefficient. 

Prasad and Bharadwaj [323] analysed the performance of a counterflow concentric tube heat 

exchanger, estimating the uncertainties in the temperature response caused by uncertainties 

in the fluids’ inlet temperatures and the overall heat transfer coefficients using a two-point 

distribution technique. Kayansayan [324] developed an analytical method to estimate the 

thermal behaviour of heat exchangers in off-design conditions. Knetsch and Hauptmanns 

[325] investigated the dynamic response of heat exchangers under process and parameters’ 

uncertainty by resorting to a Monte Carlo variability propagation. Lambert and Gosselin 

[326] explored the impact of correlations’ uncertainty on heat exchangers sizing and cost. 

Bounds on thermal systems’ performances when operating in uncertain conditions were 

investigated by Taylor, Hodge and James [327]. Abdelaziz and Radermacher [328] 

investigated the effect of manufacturing tolerances and flow maldistribution on the 

performance of compact heat exchangers. Specific investigations on uncertainties in heat 

exchangers' performances owing to fouling phenomena have been carried out by Khan and 

Zubair [329, 330], Zubair and Qureshi [331], while Yeap et al. [332] develop specific heat 

transfer and pressure drop fouling models to allow estimation of cost-effective extra area to 

heat exchangers. Lemos et al. [333, 334] included velocity-dependent fouling factors and a 

threshold fouling model in a design optimisation procedure. 

From the design point of view, Buckley [308] was the first to use a statistical approach to 

the sizing of process equipment. Starting from a design based on nominal values of design 

parameters and assuming a normal distribution of uncertain parameters, he combined the 

impact of the standard deviation of each variable parameter to determine the overall 
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variability of the required transfer surface area of the heat exchanger. Then, he fixed the 

oversizing level to obtain the desired confidence level. A similar design approach based on 

specifying the probability of meeting a prescribed duty in case of process uncertainty, using 

the root sum squares method, is described by Cho [309] and Affan Badar et al. [322], but 

without attempting an optimal solution. As far as optimal exchanger design under 

uncertainty is considered, Caputo et al. [335, 336] optimised shell and tube exchangers’ 

design considering variability in the input streams conditions (flow rate and temperature) or 

uncertainties in the heat transfer coefficient, adopting an economic objective function. 

Saldanha et al. [260] used multi-objective particle swarm optimisation and scenario 

construction to optimise shell and tube heat exchangers considering uncertainties in the tube-

side inlet and outlet temperatures, pressure drop factor, friction factor, Nusselt number, as 

well as shell-side heat transfer coefficient and pressure drop while the objective function 

minimised heat transfer area and pressure drop. 

Finally, a risk assessment method to evaluate the consequences of process uncertainties 

is provided by Shilling et al. [337]. An application of the robust design of a heat exchanger 

in the automotive sector is given by Arner [107]. Design under uncertainty was also applied 

to heat exchangers network, HEN, [338]. More recently, Al Khulaifi and Al Mutairi [339] 

developed a method for optimal synthesis of HENs, while Floquet et al. [340] presented a 

method to assess the robustness of a HEN. 

Overall, the literature review shows that the research on heat exchanger design has been 

more focused on assessing the impact of uncertain parameters and estimating uncertainty 

propagation. This allows researchers to rate the goodness of an equipment configuration but 

does not directly help in designing the exchanger. The established research stream on 

optimal heat exchanger design generally neglects variability and uncertainty. Statistical 

design methods aimed at ensuring a desired confidence level on expected performances have 

been suggested, but empirical manual methods based on nominal condition design with 

verification for off-design conditions or empirical techniques based on worst-case 

conditions, safety factors and oversizing are used in practice. No justification for such 

empirical methods has been elaborated.  

Methods for optimal stochastic design of heat exchangers are quite scarce. Overall, the 

heat exchangers design community lacks a consistent comparison of design methods 

addressing uncertainty and guidelines helping to choose the proper design method.  
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5.2.2 Methods for heat exchangers’ design under uncertainty 

As shown in Figure 5.4, variability associated with input variables, random events, and 

internal parameters uncertainty propagate through the system, making the output 

performance measures variable as well. The output variability may exceed some 

acceptability ranges bounded by predefined performance levels’ thresholds. As an example 

[325], when a stream feeding a catalytic reactor exceeds a maximum threshold, the catalyst 

may be damaged. In contrast, if it drops below a minimum threshold, the required quality of 

the effluent is not guaranteed. Risk quantifies the system output deviation from the expected 

value in terms of frequency of occurrence and magnitude of consequences. 

 

 

Figure 5.4 Conceptual schematization of system response under uncertainty 

 

One possible general formulation of a process design under uncertainty [341] is the 

following. 

 

𝑀𝑎𝑥         𝑓 (𝑢, 𝑞, 𝑥, 𝜃)

𝑠. 𝑡.    𝑒(𝑢, 𝑞, 𝑥, 𝜃) = 0

                𝑔(𝑢, 𝑞, 𝑥, 𝜃) ≤ 0
  

          𝑔𝑞(𝑦, 𝑦
∗) ≤ 0

                                  𝑢 ∈ 𝑈, 𝑞 ∈ 𝑄, 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝜃 ∈ Θ

    (5.11) 

 

Where f is a scalar function representing the performance measure to be optimised, u, q, 

x,  are the vectors of design, control, state variables, and uncertain parameters, respectively; 
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y is the vector of quality-related variables, having desired values y*, while e represent the 

model equations, gq the quality constraints and g other constraints. 

According to the literature [116, 312], there are basically three methods to protect a 

system against uncertainty, namely a) reducing and controlling input variability; b) active 

protection by making the system flexible. i.e. able to adapt to changing conditions [148]; c) 

passive protection so that the system is able to withstand the influence of uncertainty. This, 

in turn, may be pursued by resorting to two opposite approaches, namely c1) including 

reserves and redundancy in system design (i.e. oversizing or designing for the worst case), 

e.g., as a cushion to buffer variability, or c2) building robustness in the system as means of 

reducing the propagation of uncertainty from input to the output. Robustness criteria can be 

incorporated into the design problem by penalising the output, including a quality cost term 

[341] based on the offset between the expected value and the nominal one and the variability 

around the expected value. This can be made, for instance, through penalty functions, such 

as Taguchi's loss functions (which typically account for nominal-the-best, larger-the-better 

and smaller-the-better conditions), or by imposing explicit restrictions over robustness 

metrics of quality-related variables such as their variance or other moments [311, 342]. 

Robust optimisation problems are reviewed, for instance, by Bertsimas et al. [343], Gorissen 

et al. [344], Dellino et al. [345] and Beyer and Sendhoff [307]. At the same time, advances 

in sensitivity analysis are resumed by Borgonovo and Plischke [88]. 

In the case of heat exchangers, solution a) is often unfeasible. Indeed, although many 

industrial processes are designed to operate in steady-state conditions, many other processes 

instead work in intrinsically unsteady conditions owing to periodic or batch operations. 

Moreover, even processes designed to operate under steady-state conditions are subject to 

random perturbations or occasional changes in production rates. Therefore, they need to be 

associated with a control system able to regulate process parameters, limiting their excursion 

to respect target values. Furthermore, auxiliary plants, such as heat recovery systems, are 

often associated or slaved to process plants, but are not strictly regulated as this could 

interfere with the operations of the main process. Therefore, it is frequent that such heat 

recovery systems, utilising heat exchangers as the means of energy transfer, are fed by 

sources with a time-varying energy content. Moreover, fluid composition and physical 

properties are subject to changes during operation, which are difficult to estimate. From the 

design point of view, equipment designers use empirical correlations to estimate heat transfer 
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and pressure drop coefficients, or fouling rates, which have an intrinsic uncertainty range 

(often up to 15% error range), while the designer may not oversee fabrication to ensure that 

built equipment is consistent with specifications and complies with stated tolerances. Finally, 

the time trend of equipment degradation during operation, i.e. accumulation of fouling 

deposits which affect fluid dynamics and heat transfer, is difficult to estimate and influenced 

by external events such as the timing of maintenance cycles. 

Moreover, the performance variations of a heat exchanger when the values of inlet 

process variables change are not always intuitive. For instance, let us assume that the mass 

flow of the hot fluid increases, whereas, for the sake of simplicity, the cold fluid has constant 

mass flow and inlet temperature. In this case, being fixed the equipment architecture, the hot 

fluid heat transfer increases but, at the same time, the thermal power to be removed increases 

too. If the hot fluid were the controlling one, the former statement would suggest that the hot 

stream output temperature will decrease and the latter that it will increase. The coexistence 

of the two phenomena, with their own influence and magnitude, may determine a non-linear 

trend in the output of the heat exchanger. Overall, the possible non-linear response of the 

equipment makes it strongly susceptible to uncertainty in process conditions as far as 

performance estimation is concerned, and small simultaneous variations of process variables 

may have a relevant amplification effect. This, apart from making the behaviour of the 

equipment not readily intuitive, may prevent it from meeting design and operational 

specifications. 

As far as strategy b) is concerned, it is not feasible to build heat exchangers with a modular 

or changeable structure in order to gain operational flexibility. Therefore, the active 

uncertainty protection frequently adopted is regulation through the installation of a control 

system [346, 347]. However, while this represents an added cost and increased system 

complexity, the range of allowed stream regulation may be somewhat limited.  

For instance, considering that the transferred heat may be expressed as Q~ S U LMTD, 

the most frequently applied regulation strategies try to modify the effective log-mean 

temperature difference LMTD by acting on the flow rate of the controlling stream or 

modifying the overall heat transfer coefficient U by acting on the flow rate of the controlled 

stream. Another option is to bypass a portion of the controlled stream flow rate and let it mix 

downstream the exchanger with the remaining portion of the stream that has passed through 

the equipment. In the case that the controlling stream is a condensing fluid, a fourth control 
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method would be to allow partial condensation on the tube bank in order to modify surface 

area S.  

In greater detail, when a service fluid is available, and the heat exchange is between a 

process and that service fluid, without phase change, three main regulation strategies are 

possible. However, it must be pointed out that only one of the two outlet temperatures may 

be controlled. In fact, once the inlet and outlet temperatures and mass flow of one fluid are 

assigned, the heat exchanger duty is determined. 

Let be tPI and tPO the process fluid inlet and outlet temperature, respectively, tSI and tSO 

the service fluid inlet and outlet temperature, respectively, and mP and mS the corresponding 

mass flows, being tPO the process variable to be controlled. A first control strategy (Figure 

5.5) is to measure the process fluid outlet temperature by a temperature indicator (TI) and 

adjust its value by acting on a valve able to manipulate the mass flow of the service fluid. 

Modifying mS, the service fluid convective coefficient and the outlet service fluid 

temperature change, determining new values for the driving forces and tPO. Even if the 

control scheme shown in Figure 5.5 is frequent, when the service fluid convective coefficient 

is not the controlling one, the change in the overall heat transfer coefficient is very small and 

the regulation may be non-effective.  

A possible alternative is the regulation scheme shown in Figure 5.6, where the 

measurement of the controlled variable determines a modification of the process fluid’s mass 

flow rate. In this case, if an excessively high value of tPO is measured, the control valve is 

opened. Consequently, a bigger mP flows through the equipment, and the output temperature 

reduction is obtained as a net result of the (possible) increment of the overall heat transfer 

coefficient and the reduced heat amount transferred to the unit of mass flowing. Generally, 

the output temperature change per unit change of mass flow is small and may be non-linear. 

 

 

Figure 5.5 Regulation on service fluid 

mass flow 

 

Figure 5.6 Regulation on process fluid 

mass flow 
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Figure 5.7 By-pass control scheme 

 

Figure 5.8 Regulation scheme for 

process/process heat exchangers 

 

The third control strategy is depicted in Figure 5.7, where the heat exchanger is 

overdesigned. At the exit of the equipment, the process flow temperature is higher (if the 

unit has to warm up the process fluid) or lower (if the unit must reduce the temperature of 

the process fluid) with respect to the specified value. The prescribed value of tPO is then 

achieved by blending the main stream passing through the heat exchanger and a bypass 

stream of the same process fluid. 

A different scenario is also possible when the heat exchange is between two process fluids 

for energy-saving purposes. Namely, the first fluid has a mass flow rate mp1 and the second 

one mp2, while the inlet temperatures are tP1I and tP2I, respectively (see Figure 5.8). 

In this case, both outlet temperatures are relevant, and the action on only one of the two 

mass flows is not always possible. This is why the system is sometimes made by two or more 

heat exchangers in series. The first one is the main unit and couples the two process steams 

obtaining output temperatures which are different from the respective specified values. 

Secondary units are arranged in series to the main unit in order to reach the specified output 

temperature by resorting to a service stream. In the simple scheme of Figure 5.8, the main 

unit is actually without any control system, and the temperature of the mass flow rate mP2 is 

tuned by resorting to the secondary unit. 

As a concluding remark, the actual variations of operating conditions cannot be neglected 

when designing a heat exchanger expected to operate in non-stationary conditions, 

irrespective of the installation of a process control system. 

As far as solution c) is concerned, alternative c1) is most often practised either by directly 

increasing the surface area or, indirectly, by increasing the design fouling factors or lowering 

the adopted heat transfer coefficients. Nevertheless, alternative c2), i.e. designing a robust 

exchanger which can accommodate changes in input streams and uncertainty in internal 
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parameters without excessively penalising the output performance, would be an attractive 

solution and possibly superior to the alternative of using extra surface area and allowing for 

extra pressure loss.  

Based on the above discussion, it can be stated that the utilized methods for heat 

exchanger design under uncertainty either fall into one of the following categories. 

Method 1) Neglect uncertainty. The exchanger is designed for nominal conditions, and 

uncertainty is neglected. In this case, Polley and Pugh [348] suggest sizing the equipment 

according to nominal operating conditions, i.e. referring to a nominal “design point” and 

then evaluating the responses of the exchanger to changed conditions. In case the obtained 

performances fall outside an accepted interval, the “design point” is changed in order to 

obtain an alternative equipment configuration. However, one problem of a design based on 

average values of input conditions derives from the consideration that excursions of input 

process parameters above and below the nominal value will not be compensated, as the same 

percentage changes of opposite sign in input variables are likely to determine output effects 

having different magnitude owing to the possible nonlinear behaviour of the equipment. The 

basic conceptual flaw inherent in designing for average input values is a well-known 

example of the so-called Jensen's Law [349], also known as the "Flaw of Averages", which, 

roughly speaking, states that exceptions made for linear functions, the average of all the 

possible outcomes associated with uncertain parameters is generally not equal to the value 

obtained from using the average value of the parameters" [105]. Finally, it should also be 

noted that the economic effect of unmet specification in the value of a controlled process 

parameter may be quite different in case the specification is not met in excess or in defect of 

the nominal desired value. Furthermore, if changes in input parameters above and below 

their respective average value do not have the same probability of occurrence their impact 

can be even stronger. For instance, in a heat recovery contexts a heat recovery amount higher 

than the nominal value could be useless, while one lower than the nominal value would shut 

down the process or require an auxiliary heating. Imagine, for instance, the case where a hot 

stream should be cooled at least to a threshold temperature level Tth. Then, exceeding the 

threshold (i.e. having an output temperature T < Tth) does not have a significant economic 

benefit, while not meeting the target cooling level (i.e. having T > Tth) might imply additional 

cooling expenses. This means that deviations of the same magnitude but of a different sign 
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with respect to the average may have different economic values, so the economic effects do 

not compensate by designing the equipment according to average process values.  

Method 2) Design for worst case. It is a classic example of “overdesign”, where the 

reference design point is chosen assuming the (most credible) worst conditions likely to be 

expected. When average operating conditions instead of extreme ones are experienced most 

of the time, this design may prove to be uneconomical and unsatisfying from the thermal 

performance point of view. It is important to highlight that the worst-case definition is not 

straightforward when several physical quantities are involved and interdependent. For 

example, the growth of process fluid’s mass flow rate increases the quantity of heat to be 

transferred but, at the same time, increases the velocity of the fluid and, consequently, the 

heat transfer coefficient. Therefore, the worst-case definition is difficult under uncertainty.  

Method 3) Accommodate uncertainty through the use of design margins. This alternative 

overdesign method implies designing for the nominal design point but adding some “design 

margin”, i.e., the addition of extra surface area [348]. A proper way of adopting a safety 

margin is to obtain the probability density function of the heat transfer area required to meet 

specifications under the various operating conditions, often assumed to be Gaussian, and 

then specify the oversizing level in terms of multiples of the standard deviation in order to 

obtain a prescribed probability of satisfying the specifications [308, 309]. Nevertheless, in 

practice, this merely means that the heat exchange area computed for nominal design 

conditions, neglecting uncertainties, is multiplied by a safety factor (from 15% to 100%) 

chosen relying on the designer's experience ([306], page 193). This is rather equivalent to 

design for worst-case conditions, but it may have strong drawbacks from the financial and 

operational point of view. For instance, in the words of Polley and Pugh [348], “It can give 

rise to control problems. It can give rise to operability problems. It can promote fouling. It 

can result in under-performance of heat exchanger networks.”  

Method 4) Design to optimise a prescribed performance measure. In this method, the 

output variability is accepted, but the equipment is designed in order that, considering the 

actual performances resulting from off-design operation, a specific goal is met. This, in 

general, is obtained by optimising an assigned objective function (i.e. the net economic value 

including capital and operating costs, the value of economic performance EP of exchanged 

or recovered energy and possibly penalties for not meeting specifications).  
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For instance, such an objective function (OF, €/yr) could be expressed as the net economic 

result. 

 

𝑂𝐹 = ±𝐶𝐼𝜏 ±  ∑ 𝑃𝑗𝐶𝑒𝑛𝐻𝑝𝑗 ± 𝐶𝑝𝑒 ± ∑ 𝐶𝑇𝐸(𝑡𝑗𝑜)
𝑁
𝑗=1

𝑁
𝑗=1 ∆𝑇𝑗𝑚𝑗𝐶𝑝𝐻𝑝𝑗        (5.12) 

 

Where the signs of the various terms depend on whether a minimisation or maximisation 

of OF is sought and whether the economic value of exchanged heat, represented by the latter 

term at the right-hand member, is revenue or an operating cost. In the above equation, CI is 

the capital investment,  the capital recovery factor, j  (1 to N) the index representing the 

j-th operating condition, Cen (€/kWh) is the electric energy unit cost, Pj is the required fluid 

pumping power in the j-th operating condition, H the yearly operating hours, pj the 

probability of the j-th operating condition, Cpe a penalty value in case any of the design 

constraints is violated, CTE(tjo) a user-defined function specifying the unit value of 

exchanged energy (€/kJ) as a function of the actual outlet temperature tjo of the reference 

stream in the j-th operating state, Tj the difference between tjo and the desired goal 

temperature for the reference outlet stream in the j-th operating state, mj the mass flow rate 

of the reference stream in the j-th operating state, Cp the constant pressure specific heat of 

the stream. 

Adopting this approach, Caputo et al. [335, 336] optimised shell and tube exchangers’ 

design by considering both deterministic and random changes in the input streams’ 

conditions (flow rate and temperature) and uncertainties in the overall heat transfer 

coefficient. In both papers, a GA optimisation algorithm used previously for optimal design 

in deterministic conditions [192] and to include fouling effects [197] was utilized. This 

approach proved to be superior to Methods 1, 2, and 3.  

Method 5) Design for robustness. This means designing an exchanger with the explicit 

goal of minimising the variability of the actual output with respect to a reference nominal 

output when factoring in changes in the input streams’ process conditions and/or internal 

parameters’ variations. The first general mathematical formulation of robust design was 

done by Taguchi, introducing a quadratic loss function, giving a quantitative interpretation 

of the quality cost. Firstly, he remarked on the importance of the type of specification 

(bilateral or unilateral) and then gave three different formulations for the computation of the 

expected quality loss: nominal is better, more is better, and less is better. While the first 
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considers both the standard deviation and the mean of the quantity of interest, the remaining 

two formulations consider only the distances of the mean from the specification. 

As mentioned in section 3.1.2, robust design can act on the output performances of 

interest in three different ways: a) reducing the reducible uncertainty, b) changing the slope 

of the transfer function that determines uncertainty propagation from the input to the output 

and c) when the transfer function is non-linear, moving the design point on a flatter portion 

of the curve (Figure 5.9). 

 

 

Figure 5.9 Robust design uncertainty mitigation: a) reducible uncertainty reduction, b) 

slope changing and c) moving on a flatter portion of the curve 

 

For heat exchangers, specifications may be assigned in three different ways. 

• A single value of outlet temperature is used when uncertainty is not considered, and 

the problem is formulated in a deterministic manner. In this case, uncertainty is not 

allowed. 

• More/less is better, meaning that the specification is achieved if the outlet 

temperature is at least equal to a defined value, and the lower (or higher) the best. 

The uncertainty may be considered; 

• Nominal is better, meaning that the specification is met when the outlet temperature 

falls in a specified range around a defined value, and the closer the value is to the 

target, the better. The uncertainty may be considered. 

In robust design literature, the design problem is thus formulated as expressed in section 

3.1.2 [106, 350, 351].  

a) b) c)
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A different formulation which assigns different weights to minimising the mean and the 

standard deviation in the objective function is also proposed by Doltsinis et al. [350] 

(equation 5.13). 

 

find                              𝑥 

(5.13) 

minimising   𝑓 = (1 − 𝛼)𝐸(𝑓(𝑥, 𝑦))/�̅� + 𝛼𝜎(𝑓(𝑥, 𝑦))/𝜎∗ 

subject to 𝐸(𝑔𝑖(𝑥, 𝑦)) + 𝛽𝑖𝜎(𝑔𝑖(𝑥, 𝑦)) ≤ 0                      (i=1,2,…,k) 

 𝜎 (𝑐𝑗(𝑥, 𝑦)) ≤ 𝜎+𝑗                                              (j=1,2,…,l)      

 𝑥−𝑎  ≤ 𝑥𝑎 ≤ 𝑥+𝑎                                             (a=1,2,…,n) 

 0 ≤ 𝛼 ≤ 1 

 

E(f), that is, the expected value of the performance function, and its standard deviation 

σ( ) are both minimised. 𝛽𝑖 is a flexibility index for the i-th constraint that represents the 

maximum acceptable probability of not satisfying the i-th constraint, and cj is the structural 

performances function that imposes an upper limit on standard deviation at 𝜎+𝑗.  

However, no research explicitly focused on a formally robust exchanger seems to be 

available.                                                                                                                                                                                            

5.3  Framework application for optimising STHEs 

This section provides the application of the framework presented in Chapter 4 to the case 

of shell and tube heat exchanger design under uncertainty. The framework application is 

made to answer the following research questions: should uncertainty always be considered 

when designing heat exchangers, or can it be neglected? Are the available approaches for 

designing shell and tube heat exchangers effective when uncertainty is not included still 

effective when considered? Which is the preferred method to be applied in specific problem 

instances? 

The application procedure involves the following steps. 

• Uncertainty sources identification. 

• Uncertainty sources modelling. 

• Performance measure selection. 

• Design routine selection. 
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• Independent Design Variable identification. 

• Uncertainty propagation method selection. 

• Optimisation method selection. 

• Objective function formulation. 

Figure 5.10 shows the application results, in which the unused blocks have been 

blackened. 

  

 

Figure 5.10 General framework applied to the STHE optimisation with blackened unused 

blocks 
 

The aleatory uncertainty is considered by including the variability of the input streams’ 

conditions. Indeed, the variability of temperatures and mass flow rates of both cold and hot 

fluids are considered. The epistemic uncertainty is included by considering the uncertainty 

in the correlations used to assess the heat transfer coefficients and the fouling resistances. 

Additionally, the failures may be included by considering the clogging of tubes by fouling. 

The modelling of aleatory uncertainty is performed by resorting to probability theory. 

The fluids' inlet mass flow rates and temperatures are represented by normal probability 

density functions centred on their nominal values. Then, the probability distributions are 

discretised in several equally spaced samples. 

The modelling of epistemic uncertainty is made using probability theory, too. Indeed, a 

uniform probability density function is defined for each epistemic uncertain internal 

parameter. These distributions are built around the assessed nominal value of each parameter 

and then discretised in several equally spaced intervals. 
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The performance measure choice is a challenging task, as amply discussed in section 5.1. 

However, since the goal of heat exchangers is to transfer heat, and a deliverable is to preserve 

cost-effectiveness, the equipment is evaluated on the probability of satisfying the 

specification and expected total cost. The former is achieved by comparing the probability 

density function of the outlet temperatures with the specification. In contrast, the latter is 

calculated by resorting to Hall’s correlation, in which the required pumping power is 

computed using the expected pressure drop of the designed equipment. 

The system model, which includes the design routine and the evaluation model, comprises 

Kern’s design routine for achieving the architecture of the STHE and the -NTU for 

evaluating the outlet temperatures. Kern’s design routine calculates the dependent design 

variable starting from the independent ones. 

The independent design variables are selected according to the design procedure used. 

They are the shell diameter, the baffle spacing, the outlet tubes’ diameter, the number of tube 

passages, the selection of the fluid that flows through tubes, the pattern of tubes and a 

fictitious value for reference process condition to be used for design purposes, that are, cold 

mass flow rate, inlet hot fluid temperature, inlet cold fluid temperature. 

The uncertainty is propagated through the model resorting to the design of experiments. 

A full factorial experiment is performed by permutating all the values of all uncertain 

variables and parameters obtained by their distributions’ discretisation. Additionally, the 

uncertainty is also propagated in the designed equipment by using the Taylor expansion 

formula for the moments of functions of random variables. 

The optimisation process is made using the genetic algorithm, a meta-heuristic algorithm 

widely adopted in the literature for STHE optimisation purposes. At each iteration, the 

algorithm changes the values of the independent design variables, the design routine 

computes the dependent design variables, and the evaluation procedure assesses the 

performance of the current design through the fitness function calculation. It stops when the 

number of maximum iterations is reached or when convergence in a local minimum is found, 

that is, when, for a number of iterations, the value of the fitness function does not change. 

Several objective functions, also called fitness functions, are suitable for this optimisation 

process. For that reason, two of them are chosen. The former concerns the probability of 

satisfying the specification in the three most common cases, that are, nominal is better, more 

is better, and less is better. The latter is a function for robust design and optimises 



179 
 

simultaneously the difference between the mean of outlet temperature and its specification 

and its standard deviation. 

Figure 5.11 shows the yet-described framework more concisely. The framework is used 

to evaluate or optimise the design. While the former task is addressed, the feedback 

optimisation arc does not work. The evaluation is used to assess the performance of the 

different design methods exposed in the previous section and to compare them with the ones 

obtained using this framework for optimisation purposes, too. 

 

 

 

Figure 5.11 Framework for STHE optimisation under uncertainty 

 

5.3.1 Assessing the performance of different design methods for STHEs 

under uncertainty: a case study  

In order to answer the research questions introduced in the introduction and to show the 

capabilities of the framework, a comparison in a consistent manner of the above five design 

methods will be made using a common case study. Methods 1, 2, and 3 are surely effective 

when uncertainty is not propagated in the obtained design, but are they yet when this is done? 
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Therefore, two different problem instances will be considered to focus on both random 

and epistemic uncertainty. Case study 1 will examine the circumstance where uncertainty 

exists in the input streams’ conditions (i.e. external random variability). In contrast, Case 2 

will examine the impact of uncertainties in the design correlations (i.e. internal epistemic 

uncertainty). 

In Case 1, the author assumes that a countercurrent heat exchanger has to be designed to 

cool a process fluid and that the nominal flow rates, temperatures and thermophysical 

properties of both fluids are shown in Table 5.8. 

 

Table 5.8 Nominal conditions and thermophysical properties of the two fluids for Case 1 
Fluid m (kg/s) ti (°C) to (°C)  (kg/m3) Cp (kJ/kg K)  (Pa s)  (W/m K) Rf (m2 K/W) 

methanol 25 95 40 750 2.84 0.00034 0.19 0.0002 

seawater 74.38 27.5 40 995 4.2 0.0008 0.59 0.00033 

 

As explained in the previous section, here, the author will only consider the thermal 

performance as objective, while economic evaluation will be used only to compare the 

obtained alternative design solutions. 

For the sake of cost comparison, the total discounted heat exchanger cost is computed as 

the sum of investment cost (equation 5.14) and the present worth of pumping cost (DOC, 

equation 5.15). Economic values and parameters for the case studies are shown in Table 5.9. 

For symbols’ meanings, please refer to the nomenclature of this section in the List of 

Symbols section at the end of the thesis. 

 

 𝐼𝐶 = 𝑎1 + 𝑎2𝑆
𝑎3 (5.14) 

 

𝐷𝑂𝐶 = ∑

[(
1
𝜂) ∙

(
𝑚𝑇

𝜌𝑇
) ∙ Δ𝑃𝑇 + (

𝑚𝑆

𝜌𝑆
) ∙ Δ𝑃𝑇

1000 ] ∙ 𝐶𝑒𝑛 ∙ 𝐻

(1 + 𝐼)𝑛

𝑁𝑦

𝑛=1

 

(5.15) 

 

 

Table 5.9: Parameters used to assess the investment and operating costs 

a1 (€) a2 (€ 𝑚2∙𝑎3⁄ ) a3  H (h/yr) I (%/yr) Ny (yr) Cen (€/kWh) 

8000 259.2 0.91 0.7 7000 10 10 0.12 
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In order to evaluate the impact of aleatory uncertainty on equipment design, both more is 

better (MisB) and nominal is better (NisB) specifications are compared. Aleatory 

uncertainty of inputs has been modelled in the way shown in Table 5.10, assuming that all 

variables have a normal probability density distribution. 

 

Table 5.10 Probability distributions of flow rates and temperatures of inlet fluids 

 thi (°C) mh (kg/s) tci (°C) mc(kg/s) 

E[x] 95 25 27.5 75 

σ 2.14 0.83 1.25 0.83 

CV 0.02 0.03 0.05 0.01 

 

Where the operator E[x] is the expected value of each x-th process parameter labelled in the 

columns,  is the standard deviation, and CV = E[x] is the coefficient of variation. 

The design campaign has been carried out as follows. 

1. Nominal design is done by mimicking the traditional design process by manually 

changing the following design variables: outer diameter of tubes, fluids side pass, shell 

diameter, baffle spacing, number of tube side passes and tube pattern, until all constraints 

are satisfied and suitable cost reduction is obtained. 

2. Worst-case design scenario is carried out considering the lowest logarithmic mean 

temperature difference and the higher value of duty. 

3. Safety factor design is carried out considering a safety factor with a value of 1.5. The 

value has been chosen to reach a probability approximately 100% of meeting 

specification for more is better design. However, in the following, even the values of 1.25 

and 1.75 will be considered in order to perform a sensitivity analysis.  

The effect of safety factor use is an increase in the exchanger’s length and, consequently, 

in the heat exchange surface. 

4. Objective function optimised design. In this case, two alternatives are considered 

depending on NisB or MisB specifications. For the NisB case, the objective function OF 

is to maximise the probability of obtaining a temperature in a range of ±2 °C across the 

specification (equation 5.16). For the MisB case, the adopted objective function is to 
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maximise the probability of having an exit temperature lower than the specification 

(equation 5.17).  

 𝑂𝐹 = max  P [(𝑡𝑜 − 2) < 𝑇𝑜𝑢𝑡𝑖 < (𝑡𝑜 + 2)] (5.16) 

 𝑂𝐹 = max  P [𝑇𝑜𝑢𝑡𝑖 < 𝑡𝑜] (5.17) 

 

Where P[..] is the probability of obtaining the wanted result, 𝑇𝑜𝑢𝑡𝑖 is the actual outlet 

temperature when scenario i is under analysis, and 𝑡𝑜 is the specification.  

5. Robust design. Regardless of traditional formulations of robust design, which usually 

include the average and standard deviation of the performance measure in the objective, 

here the objective is pursued by minimising the expression in equation 5.18, i.e. centring 

the outlet temperatures distribution on the specification and reducing its standard 

deviation. Moreover, although the usual formulation for robust design resorts to economic 

penalties to asses a solution, here, no economic penalty is included in the objective 

function to guarantee more consistency with the other design methods. In fact, here, the 

author is more interested in minimising the distance from the specification regardless of 

the economic consequence of an unmet specification. 

The proposed objective function (OBJ) simultaneously minimises the difference between 

the mean of outlet temperature and the specification and its standard deviation. 

 

 𝑂𝐵𝐽 = min√∑(𝑇𝑜𝑢𝑡𝑖 − 𝑡𝑜)2
𝑛𝑠

𝑖=1

∙ 𝑝𝑖 (5.18) 

 

Where 𝑛𝑠 is the number of considered scenarios, and 𝑝𝑖 is the probability of the i-th scenario.  

This novel formulation differs from the traditional Taguchi formulation, which separately 

minimises deviation and standard deviation by resorting to penalty cost factors. Compared 

to other objective functions found in the literature, the rather simple structure of the chosen 

function is justified by considering that the goal of this design approach is to reduce 

uncertainty propagation, which merely implies minimising output variability in the face of 

input variability. 
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In order to globally evaluate the behaviour of obtained designs, each configuration has 

been assessed in a set of possible operating conditions, including all possible permutations 

of discretized probability density functions of each aleatory process quantity (mh, thi, mc, tci).  

In order to build the design scenarios, a six-sigma truncated Gaussian distribution is used, 

and five equally spaced samples are taken, thus generating 625 combinations. The pdf of the 

mass flow rates is included to correctly size the pumping system and avoid excessive 

pressure drops.  

It should be noted that design Methods 1), 2), and 3) do not utilize any optimisation 

procedure. Therefore, obtained solutions are not necessarily the best, while Methods 4) and 

5) seek optimisation of the above-stated objective functions. 

The adopted optimal design procedure for Methods 4) and 5), based on a GA, is shown 

in Figure 5.12.  

The procedure starts with specification definition (outlet temperature of one of the two 

fluids) and data collection (fluids’ chemical composition, computation of thermophysical 

properties , , , Cp at mean temperature, Rf, HE type – fixed tube sheet, U-tube, split ring 

floating head and others - and choice of probability density function for process variables 

mc, mh, tci and thi). The second step of the adopted procedure builds scenarios containing 

expected operating conditions. Each scenario is obtained by permuting discretized pdf, 

previously identified. The next step is managed by an optimisation algorithm (GA), which 

selects initial values of Independent Design Variables (IDV, namely Ds, B, do, Ntp, Tube side 

(fluid that flows through tubes), Pattern and a fictitious value for reference process condition 

to be used for design purposes mc, thi, tci). Such values are supplied to a design routine using 

Kern relations [305] to determine Dependent Design Variables (DDV, namely fictitious mh 

and Q, vs, vt, hS, hT, Udirt, di, Pt, Cl, Ntt, Ltt, S). “Fictitious” means that values of temperatures 

and mass flow rates selected by GA are used for design purposes but do not correspond to 

nominal values of process parameters. The use of a fictitious design point is required because 

it is not assured, given the variability of actual streams’ conditions and Jensen’s inequality, 

that designing the equipment with a deterministic algorithm (Kern method) for the nominal 

design point delivers an equipment configuration which optimises the selected objective 

function [335]. In fact, Jensen's inequality suggests that mean values of temperatures and 

mass flow rates are not always the best choice for equipment design. The use of a GA 

assigning fictitious values to the input process conditions, to be used as the reference nominal 
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operating point for design purposes, frees the designer from assuming an average design 

point or choosing an arbitrary design point in case of process conditions variability. 

The obtained equipment configuration is evaluated in the Performance Evaluation step 

over the entire range of actual operating conditions described by the assumed scenarios, 

determining the expected value of pressure drop E[P], operating cost E[OC] and 

discounted operating cost E[DOC], expected total cost E[TC] and fluids outlet temperatures’ 

probability density functions. Based on the obtained equipment configuration and the 

scenario values of the input process variables, the corresponding output temperature values 

are computed by resorting to the -NTU method. 

During Constraint Violation Analysis, a penalty cost is considered if some constraint is 

violated (e.g. use of a correlation out of its validity range), rejecting unsuitable equipment. 

Each feasible design found is saved. GA acts iteratively by modifying IDV and supplying 

them to the design routine, looking for alternative designs. The adopted optimisation tool, 

provided by Matlab, uses traditional genetic algorithm tools – elite count, crossover, 

mutation and migration. The procedure stops when the best current value is maintained for 

a defined number of iterations or when a maximum number of runs is reached. 

No explicit validation of the design procedure and obtained results is provided, given that 

the adopted method iteratively utilizes an established and well-proven design algorithm from 

the literature (Kern and efficiency method). The numerical implementation was validated in 

previous works of the same author utilizing the same code. The optimisation algorithm was 

taken from the widely utilized MATLAB library. 

For each solution, the expected values of outlet temperatures are computed by resorting 

to -NTU method across all scenarios. Possible constraint violation is checked before 

comparing a solution with others found by GA. Solutions not respecting constraints are 

disregarded. The constraints are the maximum allowed pressure drop of 70 kPa for both shell 

and tube sides, Reynolds number > 300 shell side or 10.000 tube side, and tube length to 

shell diameter ratio in the range 3 to 15. The Reynolds number is computed according to 

Kern’s method [305] using the equivalent hydraulic diameter corresponding to the adopted 

tubes’ pattern and the flow velocity evaluated referring to the shell free pass area along the 

diametral plane.  
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Figure 5.12 Optimised design procedure considering operating variable conditions 

 

In Case 2, the influence of epistemic uncertainty on the performance of the equipment is 

instead investigated. Input variables are fixed at their nominal values while the uncertainty 

of heat transfer coefficients correlations and fouling resistances’ values are accounted for. 

In particular, nominal values of heat transfer coefficients are computed with deterministic 

correlations (equations 5.19, 5.20) [305], whereas fouling resistances by resorting to 

commonly used values [305].  

 

 ℎ𝑆 = 0.36(𝜆𝑆/𝐷𝑒)(𝑅𝑒𝑆
0.55𝑃𝑟𝑆

1/3)(µ𝑆/µ𝑤𝑆)
0.14 (5.19) 

 ℎ𝑇 = 0.027(𝜆𝑇/𝑑𝑖)(𝑅𝑒𝑇
0.8𝑃𝑟𝑇

1/3)(µ𝑇/µ𝑤𝑇)
0.14 (5.20) 

 

Then, to model epistemic uncertainty and to evaluate the effect of low and high levels of 

uncertainty, their actual values are changed in the range ±20% and ±40% of the respective 

nominal value, assuming a uniform distribution. For each variable, the range is divided into 

eight equally spaced intervals. All the 4096 admissible permutations are considered. 
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5.3.2 Results discussion 

Comparison of design solutions under Aleatory Uncertainty 

Design results for the NisB (Case 1A) and MisB (Case 1B) for each of the five design 

methods are shown in Table 5.11 and Table 5.12. Please note that in the Tables, results 

related to Methods 1,2, 3 and 5 are the same for both NisB and MisB cases because the 

procedure is unchanged, and the only difference is in the probability of meeting the 

specification. Results for Method 4 instead are different due to the change in the objective 

function. Relevant geometric characteristics and outputs of interest are printed in bold 

typeface. 

 

Table 5.11 Different designs obtained by different design modes and performance 

evaluations for nominal is better specification 
Name [-] Case 1A 

Design type [-] Nominal Worst Case Safety factor 
Objective 

function 
Robust design 

thi [°C] 95.0 101.4 95.0 96.3 94.6 

tho [°C] 40.0 40.0 40.0 40.0 40.0 

mh [kg/s] 25.0 27.5 25.0 25.9 27.3 

tci [°C] 27.5 31.3 27.5 25.9 25.2 

tco [°C] 40.0 40.0 40.0 40.0 40.0 

mc [kg/s] 74.4 130.6 74.4 70.1 68.1 

Q [kW] 3905 4798 3905 4136 4222 

LMTD [°C] 28.7 27.0 28.7 30.4 30.4 

F [-] 0.81 0.82 0.81 0.81 0.81 

HE type [-] SRFH SRFH SRFH SRFH SRFH 

Tube Side [-] 
Cold 

fluid 
Cold fluid Cold fluid Hot fluid Hot fluid 

Ds [m] 0.9 1.0 0.9 1.0 1.0 

B [m] 0.4 0.3 0.4 0.8 0.5 

do [m] 0.02 0.02 0.02 0.0318 0.04 

Ntp [-] 2 2 2 4 4 

Ntt [-] 918 1191 918 345 258 

Ltt [m] 4.2 4.0 6.4 8.1 8.7 

vs [m/s] 0.52 0.53 0.52 0.42 0.72 

vt [m/s] 0.81 1.10 0.81 0.79 0.70 

ReS [-] 16701 17200 16701 16391 25956 

PrS [-] 5.1 5.1 5.1 5.7 5.7 

ReT [-] 16109 21813 16109 44163 49453 

PrT [-] 5.7 5.7 5.7 5.1 5.1 

hS [W/m2 K] 1709 1737 1709 2507 3513 
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hT [W/m2 K] 4126 5259 4126 1803 1569 

Udirt [W/m2 K] 684 720 684 598 602 

S [m2] 244 299 367 279 284 

L/D [-] 4.74 4.00 7.10 7.94 8.36 

ΔPT [Pa] 25331 29610 37996 9371 56752 

ΔPS [Pa] 7373.7 12421 9757 10092 7168 

OBJ Value [°C] 1.27 2.03 3.73 1.25 1.24 

E[ΔPT] [Pa] 7487 4493 9905 9492 6045 

E[ΔPS] [Pa] 25355 24840 38032 10631 66712 

Pattern [-] Triang Triang Triang Square Triang 

OBJ Value 

norm 
[-] 3.17% 5.08% 9.33% 3.12% 3.09% 

MAX[ΔPT] [Pa] 7857 4714 10388 10939 6973 

MAX[ΔPS] [Pa] 29214 28620 43821 11161 70040 

IC [€] 46618 54459 63851 51590 52213 

OC [€/yr] 1675 2299 2395 1244 5378 

E[OC] [€/yr] 1686 1397 2410 1333 6226 

E[DOC] [€] 10359 8582 14807 8193 38257 

DOC [€] 10290 14124 14717 7646 33043 

TC [€] 56908 68583 78567 59236 85257 

E[TC] [€] 56976 63040 78658 59783 90470 

Probability to 

satisfy the 

specificication 

NisB 

[-] 89% 61% 12% 90% 90% 

Thout [°C] 1.27 1.26 1.24 1.25 1.24 

E[Thout] [°C] 39.9 38.4 36.5 40.0 40.0 

CV [-] 3.17% 3.27% 3.40% 3.12% 3.09% 

OBJ Value 

norm E[Thout] 
[-] 3.18% 5.29% 10.24% 3.12% 3.09% 

 

Table 5.12 Different designs obtained by different design modes and performance 

evaluations for more is better specification 
Name [-] Case 1B 

Design type [-] Nominal 
Worst 

Case 

Safety 

factor 

Objective 

function 

Robust 

design 

thi [°C] 95.0 101.4 95.0 101.3 94.6 

tho [°C] 40.0 40.0 40.0 40.0 40.0 

mh [kg/s] 25.0 27.5 25.0 27.5 27.3 

tci [°C] 27.5 31.3 27.5 31.3 25.2 

tco [°C] 40.0 40.0 40.0 40.0 40.0 

mc [kg/s] 74.4 130.6 74.4 130.4 68.1 

Q [kW] 3905 4798 3905 4791 4222 

LMTD [°C] 28.7 27.0 28.7 27.0 30.4 

F [-] 0.81 0.82 0.81 0.82 0.81 

HE type [-] SRFH SRFH SRFH SRFH SRFH 
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Tube Side [-] 
Cold 

fluid 
Cold fluid Cold fluid Hot fluid Hot fluid 

Ds [m] 0.9 1.0 0.9 0.8 1.0 

B [m] 0.4 0.3 0.4 0.5 0.5 

do [m] 0.02 0.02 0.02 0.0127 0.04 

Ntp [-] 2 2 2 6 4 

Ntt [-] 918 1191 918 2151 258 

Ltt [m] 4.2 4.0 6.4 2.7 8.7 

vs [m/s] 0.52 0.53 0.52 1.50 0.72 

vt [m/s] 0.81 1.10 0.81 1.26 0.70 

ReS [-] 16701 17200 16701 17094 25956 

PrS [-] 5.1 5.1 5.1 5.7 5.7 

ReT [-] 16109 21813 16109 28285 49453 

PrT [-] 5.7 5.7 5.7 5.1 5.1 

hS [W/m2 K] 1709 1737 1709 8794 3513 

hT [W/m2 K] 4126 5259 4126 3161 1569 

Udirt [W/m2 K] 684 720 684 918 602 

S [m2] 244 299 367 235 284 

L/D [-] 4.74 4.00 7.10 3.25 8.36 

ΔPT [Pa] 25331 29610 37996 179170 56752 

ΔPS [Pa] 7373.7 12421 9757 37451 7168 

OBJ Value [°C] 1.27 2.03 3.73 2.38 1.24 

E[ΔPT] [Pa] 7487 4493 9905 31427 6045 

E[ΔPS] [Pa] 25355 24840 38032 64428 66712 

Pattern [-] Triang Triang Triang Triang Triang 

OBJ Value 

norm 
[-] 3.17% 5.08% 9.33% 5.94% 3.09% 

MAX[ΔPT] [Pa] 7857 4714 10388 36201 6973 

MAX[ΔPS] [Pa] 29214 28620 43821 67641 70040 

IC [€] 46618 54459 63851 45236 52213 

OC [€/yr] 1675 2299 2395 17570 5378 

E[OC] [€/yr] 1686 1397 2410 7037 6226 

E[DOC] [€] 10359 8582 14807 43237 38257 

DOC [€] 10290 14124 14717 107962 33043 

TC [€] 56908 68583 78567 153199 85257 

E[TC] [€] 56976 63040 78658 88473 90470 

Probability to 

satisfy the 

specificication 

MisB 

[-] 53% 89% 100% 95% 52% 

Thout [°C] 1.27 1.26 1.24 1.24 1.24 

E[Thout] [°C] 39.9 38.4 36.5 38.0 40.0 

CV [-] 3.17% 3.27% 3.40% 3.27% 3.09% 

OBJ Value 

norm E[Thout] 
[-] 3.18% 5.29% 10.24% 6.26% 3.09% 
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Geometrical differences between the optimised equipment (Methods 4 and 5) and the 

non-optimised ones reside mainly in the larger length of the firsts and in the number of tube 

passes, that are doubled. Significant differences in baffle spacing and shell diameter are not 

detectable. The outer diameter of tubes doubles in Method 5 as compared to the others. The 

hot fluid pass in the optimised design is tube side. This choice can be explained by the greater 

simplicity in reaching the goal for the algorithm thanks to the larger number of degrees of 

freedom offered by passing in the tube side. Being the probability density function of the 

inlet temperature centred on the specification, the nominal design (Method 1) has high 

performances, comparable with those of optimised equipment, but this does not happen for 

worst-case design (Method 2) and safety factor (Method 3) because the higher heat exchange 

area increases the difference between the expected value of the outlet temperature and the 

specification. Robust design (Method 5) has the best performance in this case, achieving the 

lowest standard deviation of the output and the same probability to meet the specification of 

the Method 4 design. Expected total cost is computed resorting to the probability density 

function of pumping costs, as affected by the pressure drops and the investment cost, but 

does not consider any cost or revenue coming from meeting or not the specification. From 

this point of view, the Robust design is the most expensive while the nominal design is the 

least expensive, but it is comparable with the optimised design obtained from Method 4.  

It can be noticed that in the MisB case, Method 3 (safety factor) performs as well as 

optimisation Method 4 because it directly acts on the surface area. Conversely, Method 4 

indirectly tries to correct the LMTD by changing the input reference conditions (i.e. fluid 

mass flow rates and temperatures) but always within the variability range imposed by the 

assumed probability distribution functions.  This constraint is included to prevent the 

optimisation algorithm from selecting fictitious conditions leading to excessive pressure 

drops or oversizing. However, the safety factor method should be used with caution. In fact, 

while it can ensure total satisfaction of specifications, this may be obtained at the expense of 

excessive oversizing, whereas other methods can reach a more effective compromise design. 

For instance, Method 4 reduces by 5% the probability of meeting the specifications but 

allows a 30% reduction of heat exchange surface, although, in this case study, suffering a 

pressure drop increase. 
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The poor performance of robust design in MisB case, similar to Method 1 design, is 

justified considering that reducing the variability of the output is not the objective of this 

kind of problem. 

In Figure 5.13 and Figure 5.14, the relevant results, namely the probability of satisfying 

the specification and the obtained value of the objective function (equation 5.18), are shown. 

The lower the value of the objective function and the higher the probability of meeting the 

specification, the better the obtained exchanger. A low value of the objective function means 

outlet temperature distributions with low standard deviation and centred on the specification, 

while a high probability to meet the specification means the correct sizing of the equipment. 

The usage of safety factor and of the worst-case scenario is useful when the assigned 

specification is MisB, but leads to inferior solutions when the problem is NisB as the 

distribution of the outlet temperature is not centred on the specification. For the perfect 

centring, the robust design results in the best solution. 

 

 

Figure 5.13  Probability to satisfy the specification under NisB (a) and MisB (b) for 

different design methods 
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Figure 5.14 Objective function value under NisB (a) and MisB (b) specification fo 

different design methods 

 

In order to find dominating solutions, it is useful to represent the obtained equipment 

configurations in terms of total cost and probability to meet the specifications as made in 

Figure 5.15.  

 

 

Figure 5.15 Probability to meet the specification and expected total cost of designs in 

Case 1A (a) and 1B (b) 
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In the case of NisB specification, and when the standard deviation of the output is 

neglected, Method 1 provides the lowest cost and a probability of satisfying the specification 

comparable with the optimised approaches (Methods 4 and 5).  

However, it should be borne in mind that the cost shown neglects the economic effect of 

failing to meet the specification. When such effects are accounted for, on a case-specific 

basis, the solutions comparison could lead to significantly different results. 

Sensitivity analysis on Safety factor effect 

To show the impact of the safety factor (SF), three different values, namely 1.25, 1.5, and 

1.75, are assumed, and the resulting equipment configurations are shown in Table 5.13, 

while in Figure 5.16 the comparison of probability to meet the specification NisB and MisB 

cases and expected total cost of designs obtained with different safety factor values is shown. 

 

Table 5.13 Safety factor selection effect on performances and designs configuration 
Name [-] Safety factor effect 

Safety factor 

value 
[-] 1.25 1.5 1.75 

thi [°C] 95.0 95.0 95.0 

tho [°C] 40.0 40.0 40.0 

mh [kg/s] 25.0 25.0 25.0 

tci [°C] 27.5 27.5 27.5 

tco [°C] 40.0 40.0 40.0 

mc [kg/s] 74.4 74.4 74.4 

Q [kW] 3905 3905 3905 

LMTD [°C] 28.7 28.7 28.7 

F [-] 0.81 0.81 0.81 

HE type [-] SRFH SRFH SRFH 

Tube Side [-] Cold fluid Cold fluid Cold fluid 

Ds [m] 0.9 0.9 0.9 

B [m] 0.4 0.4 0.4 

do [m] 0.02 0.02 0.02 

Ntp [-] 2 2 2 

Ntt [-] 918 918 918 

Ltt [m] 5.3 6.4 7.4 

vs [m/s] 0.52 0.52 0.52 

vt [m/s] 0.81 0.81 0.81 

ReS [-] 16701 16701 16701 

PrS [-] 5.1 5.1 5.1 

ReT [-] 16109 16109 16109 

PrT [-] 5.7 5.7 5.7 
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hS [W/m2 K] 1709 1709 1709 

hT [W/m2 K] 4126 4126 4126 

Udirt [W/m2 K] 684 684 684 

S [m2] 305 367 428 

L/D [-] 5.92 7.10 8.29 

ΔPT [Pa] 31663 37996 44328 

ΔPS [Pa] 8565 9757 10948 

OBJ Value [°C] 2.62 3.73 4.36 

E[ΔPT] [Pa] 8696 9905 11114 

E[ΔPS] [Pa] 31694 38032 44371 

Pattern [-] Triang Triang Triang 

OBJ Value 

norm 
[-] 6.55% 9.33% 10.91% 

DELTA [-] - - - 

MAX[ΔPT] [Pa] 9122 10388 11653 

MAX[ΔPS] [Pa] 36518 43821 51125 

IC [€] 55312 63851 72261 

OC [€/yr] 2035 2395 2755 

E[OC] [€/yr] 2048 2410 2772 

E[DOC] [€] 12583 14807 17032 

DOC [€] 12503 14717 16930 

TC [€] 67815 78567 89191 

E[TC] [€] 67895 78658 89293 

Probability to 

satisfy the 

specificication 

MisB 

[-] 97% 100% 100% 

Probability to 

satisfy the 

specificication 

NisB 

[-] 40% 12% 4% 

Thout [°C] 1.25 1.24 1.23 

E[Thout] [°C] 37.7 36.5 35.8 

CV [-] 3.32% 3.40% 3.44% 

OBJ Value 

norm E[Thout] 
[-] 6.95% 10.24% 12.18% 

 

As can be seen in Figure 5.16, in NisB case, it is not useful to adopt the safety factor 

method because the total cost rises and the probability of meeting specification lowers when 

the value of SF increases. This happens because in Method 3, the equipment is first designed 

according to Method 1 procedure, and then the surface area is increased by a safety factor. 

Thus, the pdf of the outlet temperature, which is centred on the nominal specification in 

Method 1, when applying the surface extension, is shifted towards lower temperatures. 
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Instead, when the specification is MisB, the growth of SF increases the expected total 

cost but also improves the performance. Caution must be applied in choosing SF value 

because it has a decreasing marginal return. In fact, when it grows from 1.25 to 1.5, a gain 

of only 3% is obtained in the probability to meet the specification, and there is no gain in 

rising SF from 1.5 to 1.75. 

 

 

Figure 5.16 Comparison of probability to meet the specification NisB (a) and MisB (b) and 

expected total cost of designs obtained with different safety factor values 
 

Comparison of design solutions under Epistemic Uncertainty 

As previously stated, in this section, attention is focused on the impact of epistemic 

uncertainty only. This refers to “internal” variability imputable to unperfect knowledge of 

heat transfer and fouling phenomena through empirical correlations.  

In this section, an exchanger designed for nominal operating conditions (Method 1) will 

be used as a reference case and compared to the robust design (Method 5) configuration by 

observing the resulting output variability. 

In practice, the shell side and tube side heat transfer coefficients (equation 5.19 and 5.20) 

and fouling factors will be computed resorting to widely accepted literature correlations in 

nominal operating conditions and the obtained values will be then changed in the +/- 40% 

range with a more detailed analysis focused on +/- 20% variations using uniform 

distributions.  
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In particular, possible variation of heat transfer coefficients over such a wide range may 

determine the shift of controlling film from tube side to shell or vice-versa. Moreover, the 

change of the heat transfer coefficients when the heat exchange area was assigned would 

modify the outlet temperatures, thus shifting their probability distribution.  

However, here, heat transfer coefficients’ variation is caused only by epistemic 

uncertainty instead of by changes in fluids’ flow rates or thermophysical properties.  

 

Figure 5.17 shows both the probability of satisfying the specifications (outlet hot fluid 

temperature of 40 +/-2 °C) and the weighted average dispersion of outlet temperature around 

the specification (i.e. the objective function value, equation 5.18).  

In general, an increase in objective function value, as well as a decrease in the probability 

of satisfying the specification, is observed when the uncertainty in heat transfer coefficient 

calculation and fouling factor increase. This is caused by the structure of the input/output 

temperature transfer function, as shown below. However, resorting to robust design (Method 

5), better results can be obtained compared to nominal design (Method 1), with gains 

increasing when the uncertainty level increases. In fact, when the uncertainty range increases 

from +/- 20% to +/-40%, the output temperature variability reduction in Method 5 compared 

to Method 1 grows from 7% to 11%. 

 

 

Figure 5.17 Probability to satisfy the specification NisB (a) and Objective Function values 

(b) under epistemic uncertainty effect 
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Obtained design configurations and their performances are shown in Table 5.14. The 

optimised designs (Method 5) are more compact than the equipment designed according to 

Method 1. In particular, the outer diameter of tubes and of the shell decrease, while the length 

is similar. The number of tube passages increases, and the final result is that the fluid velocity 

both in the shell and tube side increases. Results suggest that robust design can be effective 

in countering epistemic uncertainty, albeit to a minor extent. 

 

Table 5.14 Nominal design evaluation and optimised heat exchanger design under 

epistemic uncertainty effect 
Name [-] Nominal Optimised 

Design type [-] -0.2 -0.4 -0.2 -0.4 

thi [°C] 95.0 95.0 95.0 95.0 

tho [°C] 40.0 40.0 40.0 40.0 

mh [kg/s] 25.0 25.0 25.0 25.0 

tci [°C] 27.5 27.5 27.5 27.5 

tco [°C] 40.0 40.0 40.0 40.0 

mc [kg/s] 74.4 74.4 74.4 74.4 

Q [kW] 3905 3905 3905 3905 

LMTD [°C] 28.7 28.7 28.7 28.7 

F [-] 0.81 0.81 0.81 0.81 

HE type [-] SRFH SRFH SRFH SRFH 

Tube Side [-] Cold fluid Cold fluid Hot fluid Hot fluid 

Ds [m] 0.9 0.9 0.8 0.6 

B [m] 0.4 0.4 0.8 0.6 

do [m] 0.02 0.02 0.018 0.012 

Ntp [-] 2 2 6 4 

Ntt [-] 918 918 726 1026 

Ltt [m] 4.2 4.2 4.8 4.5 

vs [m/s] 0.52 0.52 0.55 0.91 

vt [m/s] 0.81 0.81 1.69 1.80 

ReS [-] 16701 16701 12088 13425 

PrS [-] 5.1 5.1 5.7 5.7 

ReT [-] 16109 16109 53716 38030 

PrT [-] 5.7 5.7 5.1 5.1 

hS [W/m2 K] 1709 1709 3747 5954 

hT [W/m2 K] 4126 4126 3726 4239 

Udirt [W/m2 K] 684 684 846 959 

S [m2] 244 244 198 174 

L/D [-] 4.74 4.74 5.81 7.03 

ΔPT [Pa] 25331 25331 14068 53992 

ΔPS [Pa] 7374 7374 69992 69986 
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OBJ Value [°C] 1.07 2.09 0.99 1.87 

Pattern [-] Triang Triang Square Square 

OBJ Value 

norm 
[-] 2.66% 5.23% 2.48% 4.67% 

IC [€] 46618 46618 39816 36379 

OC [€/yr] 1675 1675 4062 7643 

DOC [€] 10290 10290 24957 46961 

TC [€] 56908 56908 64773 83340 

Probability to 

satisfy the 

specificication 

NisB 

[-] 95% 67% 96% 72% 

Thout [°C] 1.05 1.98 0.98 1.80 

E[Thout]  [°C] 40.2 40.7 40.2 40.5 

CV [-] 2.61% 4.86% 2.43% 4.43% 

OBJ Value 

norm E[Thout] 
[-] 2.65% 5.14% 2.46% 4.61% 

 

Comparison of aleatory and epistemic uncertainty impact 

In order to compare the relative impact of epistemic and aleatory uncertainty, the standard 

deviation of outlet temperature σy is evaluated by resorting to the Taylor expansion formula 

for the moments of functions of random variables.  

 

 𝜎𝑦 = √∑(
𝑑𝑦

𝑑𝑥𝑖
𝜎𝑥𝑖)

2𝑁

𝑖=1

 (5.21) 

 

In equation 5.21 N is the number of variables affected by uncertainty (i.e. mass flow rates 

and temperatures when aleatory uncertainty is under investigation, and the heat transfer 

coefficients and fouling resistances when epistemic one is considered), being σxi is the 

standard deviation of the i-th input variable x.  

In Figure 5.18, the standard deviation of the hot stream outlet temperature is shown when 

uncertainty is propagated in an optimised design (Method 5) and a nominally designed 

(Method 1) exchanger. This result is computed assuming for each i-th variable 𝜎𝑖 = 𝑧 ∙

𝐸[𝑥𝑖] ∙ 𝐶𝑉𝑖, where z is a scaling factor, E[x] and CV are, respectively, the expected value and 

coefficient of variation of the assigned variables’ distribution. The same factor z (0.5, 1, 1.5, 

2) is used to scale each process variable in the same manner. 

Overall, the outlet temperature variability increases linearly with the inlet temperature 

variability but less than proportionally with the mass flow rates’ variability. This linear 
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growth of output also means that the possible compensation effects occurring when 

homogeneous variables assume opposite values are not able to significantly reduce the outlet 

variability. 

 

 

Figure 5.18 Output standard deviation under aleatory (a) and epistemic(b) uncertainty 

computed with uncertainty propagation formula applied on a robust optimised and a non-

optimised HE 

 

Findings and results discussion 

Although the above results were obtained referring to a single specific numerical 

experiment, there are some findings which appear to be somewhat generalizable in order to 

provide some guidelines for designers, as summarized below. 

1. The input uncertainty is linearly propagated in output uncertainty. The linear 

correlation implies that if inlet uncertainty increases, the difference in performance 

between the robust heat exchanger (Method 5) and a piece of equipment designed 

for nominal conditions (Method 1) becomes more significant. 

2. Aleatory uncertainty has a higher impact than epistemic uncertainty on the 

performances of the exchanger. In fact, the variations of mass flow rates and 
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temperatures influence the log mean temperature difference and even the heat 

transfer coefficients, while epistemic uncertainty only affects the latter.  

3. A symmetric change in homogeneous variables does not necessarily lend itself to 

effective variability compensation. 

4. As far as random variations of external process variables are concerned, optimisation 

methods, including robust design, generally lead to more compact equipment in 

terms of surface area, albeit with a smaller number of longer and larger diameter 

tubes and more tube passes. In the case of NisB specification, a nominal point design 

provides performances comparable to optimal design, while safety factor and worst-

case design deliver poor performances as the distribution of the outlet temperature is 

not centred on the specification. This suggests that in NisB cases with symmetrical 

variations of process parameters around their average, a simple design based on 

average conditions neglecting uncertainty can be acceptable. The worst-case design 

and safety factor method is not effective with symmetric variations of process 

parameters because it leads to a higher heat exchange area, increasing the gap 

between expected performance and the design specification and also lowering the 

probability of meeting the specification. In MisB situations, the latter method can 

ensure satisfaction of specifications over a wide range of operating conditions but at 

the expense of excessive oversizing. Caution must be applied in choosing the safety 

factor value as it has a decreasing marginal return. Robust design performs as poorly 

as the nominal design point method, as reducing the variability of the output is not 

the design goal in this type of application. 

5. In case of epistemic uncertainty of internal parameters, the robust design method can 

be slightly superior to nominal point design and also provide a piece of more compact 

equipment.  

6. Robust design appears to be effective in compensating both aleatory and epistemic 

uncertainty, although in a minor manner. In fact, with a given inlet uncertainty, some 

configurations amplify the uncertainty while others dampen it, so it is, in theory, 

possible to optimise the HE and obtain a more robust design, but in practice, the 

behaviour difference is not really significant. Moreover, a heat exchanger is 

characterized by a geometrically fixed physical structure, making the equipment 

hardly adaptable to changing operating conditions. 
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Based on the above findings, Table 5.15 can be built to provide suggestions for choosing 

the preferable design method to address uncertainty. This table is to be intended as a starting 

reference only. We do not make a claim of its absolute validity, and the designer is 

encouraged to explore alternative methods as it is hard to predefine which is the best method 

in a specific instance. 

 

Table 5.15 Suggested STHE design approaches for addressing uncertainty 

Type of uncertainty 
Bilateral specifications 

(Nominal is Better) 

Unilateral specifications 

(More is Better) 

Random variation of 

external process conditions 
I, IV, V II, III, IV 

Epistemic uncertainty of 

internal parameters 
V 

Legend: I) design for nominal reference condition; II) worst case design; III) use of safety margins; IV) 

objective function optimisation; V) robust design. 

 

5.3.3 Remarks and limitations 

The purpose of this section was to discuss the existing methods to cope with uncertainty 

in shell and tube heat exchangers’ design, understand the influence of uncertainty on the 

thermal performances of the equipment and explore the potential of applying the proposed 

framework for optimal robust design of exchangers under uncertainty.  

The main proposed novelty resides in the direct and consistent comparison of alternative 

design methods under uncertainty that was not performed earlier, and no detailed analysis of 

their effectiveness is available. Moreover, to the best of our knowledge, this is the first time 

that the robust design of heat exchangers has been practically considered as a tool to address 

uncertainty. 

Results show that different methods may give different results, and they are not 

exchangeable. There is no preferred method to deal with the uncertainty, but the best solution 

is not to neglect it. In fact, variations in mass flow rates could lead to errors in pumping 

system sizing and to unexpectedly high-pressure drop values, with correspondingly high 

pumping costs, while changes in inlet temperatures could dramatically reduce the driving 

force. The application of the uncertainty propagation formula through Taylor expansions 

shows that in shell and tube heat exchangers, uncertainty in the input propagates to the output 

in a linear manner. Different geometric configurations of the equipment could reduce the 
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proportionality constant, but not in a significant manner. Aleatory uncertainty has the 

greatest impact on the output. In fact, it influences the heat transfer coefficient with the mass 

flow rates and with inlet temperatures the log-mean temperature difference, while the 

epistemic one influences only the first one. As practical advice, at first, it is necessary to 

understand the nature of the problem. In fact, when NisB specifications apply, results suggest 

avoiding Worst-Case scenario and Safety factor methods and preferring Objective function 

optimisation and Robust optimisation. In MisB case, the Safety factor method with the 

correct selection of safety factor value, as shown, can lead to superior performances, while 

Robust optimisation has no benefit. 

The main limitation of the study is that a single objective function is considered, that 

economic consequences of failing to meet specifications are not considered and that results 

refer to a single, although extensive, numerical experiment. The generality of findings must 

be verified by resorting to a more extensive experimental campaign. 

Now that the framework has been applied to this case study, it is possible to address the 

research questions proposed in section 5.3. Even though when the probability density 

functions or ranges which represent the variability of the temperatures and mass flow rate of 

the inlet fluids, as well as the epistemic uncertainty, are centred in the mean value of the 

quantities, the uncertainty may be neglected by resorting to the Method 1, some issues 

related to the pressure drop can arise. Indeed, in some cases, they may exceed the upper 

bound, causing severe problems to the mechanical structure or the operability of the 

equipment. Therefore, uncertainty should be considered to avoid this kind of problem, but 

also to ensure the specification is achieved when the distributions or ranges are not centred 

in the mean value of the quantities. The available approaches, which lead to performing 

design in the absence of variability, do not perform well when uncertainty is included, as has 

been demonstrated. Finally, at the end of section 5.3.2, a resume of the preferred methods in 

specific problem instances has been provided. 

In future works, the use of Method 4 will be examined in greater detail by exploring the 

impact of different objective functions, including both thermal and economic parameters and 

the value of exchanged heat. Moreover, the combined effect of both aleatory and epistemic 

uncertainty will be explored.  

Overall, based on the findings of the approach application, designers of shell and tube 

heat exchangers can gain greater awareness of when and why uncertainty should be 
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accounted for and can be assisted in choosing with greater confidence the proper design 

approach for heat exchangers operating under uncertainty.  

5.4 Final remarks 

In this Chapter, the framework proposed in Chapter 4 has been applied to the STHE 

design evaluation and optimisation under uncertainty. 

Since selecting the proper variable of interest and objective function is a crucial task and 

the literature was scarce in comparing different OFs for optimising STHEs, a literature 

review and a comparison of several OFs on a consistent basis have been carried out. The 

results allow us to produce a brief guide to understand the effects of different OFs on the 

final design configuration. Additionally, it has been found that caution is mandatory when 

thermal performances are only being optimised, as this can give rise to unviable and 

economically unsustainable equipment configurations. Multi-objective optimisation assures 

that competing designs do not dominate the thermal optimum from an economic perspective. 

Economic functions are the most used and interesting from an industrial plant's point of 

view. Indeed, they are easy to implement, understand and use, and their results are 

straightforward to compare. The importance of thermal and geometrical performances is not 

to be neglected, but the possibility of giving economic value to these aspects is advised. 

Then, considering that equipment operates in actual plants, i.e. without constant 

conditions, a literature review of the design and evaluation of STHEs under uncertainty has 

been carried out. The literature on STHEs’ design often overlooks the effects of the 

uncertainty. Therefore, the aforementioned general framework has been applied to STHEs’ 

design optimisation and evaluation, and a case study in which several existing designing 

approaches were compared on a consistent basis was shown. 

The results allow us to address the subsequent research questions. 

• Should uncertainty always be taken into account when designing heat exchangers, 

or can it be neglected?  

• Are the available approaches for designing shell and tube heat exchangers 

effective when uncertainty is not included still effective when it is considered? 

• Which is the preferred method to be applied in specific problem instances? 

Firstly, it can be stated that uncertainty should be considered to ensure the achievement 

of the specification and the respect of constraints when the distributions or ranges are not 
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centred in the mean value of the quantities. Additionally, the available approaches, which 

lead to performing design in the absence of variability, may not be effective when the 

uncertainty is included. Finally, a brief guide to selecting the proper methods in specific 

problem instances has been provided. 
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Framework application to industrial systems 

assessment 

This Chapter adapts the General Framework presented in Chapter 4 to address the 

industrial systems assessment goal. In order to show the capabilities of the approach, the 

considered system is rather complex than the equipment faced in Chapter 5. Indeed, the 

selected systems are offshore wind power systems. 

Other features of the framework are also used, which in the equipment design 

optimisation problem were neglected. The blocks of uncertainty that enter the economic 

model and the external disruptive events that were before switched off are now used to 

perform the risk assessment procedure. Furthermore, the feedback arc is used for including 

risk mitigation actions on an already concluded design, i.e. for market risk mitigation 

purposes. 

Some sources of deep uncertainty involving the environment in which the system operates 

are included using scenario analysis. The applied scenario analysis procedure will be 

described in the following, and the literature and references used to build scenarios will be 

described. 

Before beginning, an explanation of why the selected systems are offshore wind power 

plants may be helpful. 

Exploiting renewable energy sources is a fundamental aspect of the decarbonization and 

energy transition strategies enforced to counteract climate change and secure energy supply. 

While wind energy is a mature technology, offshore wind power systems are experiencing 

notable growth in developing novel technical solutions and in the global installed power 

base. Offshore wind power plants have several advantages over their land-based 

counterparts, especially considering the higher available wind speeds owing to the absence 

of terrain obstacles, the lack of land consumption, and the lower visual impact, which allows 

wider acceptance from the public opinion. Nevertheless, offshore wind power plants are 

penalized by higher installation and operational costs owing to logistic issues, the necessity 
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of transferring the produced energy on land, and the severity of the operating environment, 

causing much higher maintenance expenses. 

However, renewable energy systems are subject to several sources of uncertainty, both 

epistemic and aleatory, impacting system profitability and generating technical and 

economic performance variability, resulting in investment risk and financial risk [352]. This 

could even be hedged by new financing instruments [353] but requires a thorough 

consideration during the design, planning and assessment phases.  

In wind power systems, uncertainty does not only arise from imprecise turbine design 

relationships and variability of wind speed and sales price of produced energy but also from 

downtime and costs deriving from random failure of internal components [354-356] as well 

as from disruptive external events deriving by natural hazards and man-made events (i.e. 

ships collisions, rogue waves, earthquakes, etc.) which threat to destroy the entire system 

truncating its useful life. 

However, while previous literature focused on analysing specific uncertainty issues of 

wind power systems, such as wind speed of energy price forecasting [357-360], an overall 

model incorporating and integrating all variability sources [361, 362] is still lacking. 

Moreover, available economic assessment models for wind power plants, both on-land and 

offshore, usually only allow a deterministic analysis of a sensitivity analysis by changing the 

value of variables one at a time. When a random variation of parameters is included, it is 

usually made considering the economic effect of just a few variables, thus preventing a 

comprehensive assessment of the effect of uncertainties on investment profitability and risk. 

The framework is adapted to this type of energy conversion system to give a contribution 

to fill this gap and to address the following research questions. Considering a profitable 

offshore investment system evaluated on mean values, is it still economically effective when 

the risk assessment procedure considers numerous sources of uncertainty? Does the 

economic performance of these systems significantly change when uncertainty is included 

in the evaluation procedure? Since the energy market is volatile, is it possible to include 

effective financial instruments for mitigating the market risk? Should scenario analysis be 

considered to include the changes in the environment in the long term? Is combining 

different scenarios by using their associated probability a viable solution to assess a single 

performance instead of several performances, one for each scenario? 
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 The general framework adaptation produces a new general method for risk analysis and 

economic performance assessment of renewable energy systems, particularly offshore wind 

power plants. This methodology simultaneously considers the main sources of epistemic and 

aleatory uncertainty, allowing us to estimate the net present value probability distribution 

and some associated risk measures. The developed approach can be useful for a more 

detailed and risk-aware assessment of offshore wind power investments, providing a useful 

decision-making tool for designers, managers, and investors. 

As will emerge from the following literature review, no papers focus on the economic 

evaluation of offshore power systems under uncertainty. Secondly, in the literature, some 

articles focus on the power system evaluation under uncertainty, considering only the 

aleatory uncertainty of wind speed (renewable energy load) or a few other variables. This 

thesis considers the random uncertainty related to wind source availability, the economic 

market scenarios, as well as the impact of random failures and disruptive events. 

Furthermore, this framework includes epistemic uncertainty related to the non-perfect ability 

of the mathematical model to represent the system and the epistemic uncertainty of the 

system's characteristics (e.g., power curve, gearbox efficiencies, etc.). Finally, climate 

change is also considered. 

The Chapter is organized as follows. Firstly, a literature review is carried out to assess 

the state of the art in economic evaluation and uncertainty propagation in (offshore) wind 

power systems. The general framework adaptation to assess the economic performance of 

renewable energy systems under uncertainty is presented. Subsequently, three possible 

scenarios for the evolution of the environment in which the system operates are presented. 

Next, a detailed model focused on offshore wind power systems is developed. Finally, a case 

study is presented to show the model's capabilities and demonstrate the importance of 

considering uncertainty during the economic performance assessment of offshore wind 

power systems. In conclusion, a discussion of the model limitations and perspectives for 

future work are provided. 

The studies carried out to write this chapter produced the four papers in references [363-

366]. 
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6.1 Offshore wind power systems economic evaluation under 

uncertainty 

Historically, energy power plants' technical feasibility and economic viability have been 

assessed by resorting to deterministic analysis assuming average and nominal values of input 

parameters. In order to account for uncertainty, a sensitivity analysis is often made. While 

sophisticated global sensitivity analysis techniques are available (e.g., the Sobol method), 

these are computationally intensive. Consequently, one often finds simplified analyses 

where the value of one parameter at a time is changed, and the resulting impact of the chosen 

performance measure is observed. As a step further, Monte Carlo analysis techniques have 

often been used to generate random scenarios. This can be performed by simultaneously 

changing around the mean in a random manner multiple variables value, or, in more 

sophisticated cases, by reproducing specific structure (by means of marginal characteristics 

and dependence properties). As an alternative, a substantially deterministic analysis can be 

performed accompanied by a dynamic analysis factoring in the random uncertainty of 

relevant time-dependent parameters such as electricity market price evolution and wind 

speed changes. However, the above approaches neglect a thorough analysis of all variables' 

uncertainty propagation issues, resulting in erroneous performance estimation and poor risk 

assessment.  

In recent years, some authors have begun to study the problem of uncertainty in renewable 

energy systems. In traditional and renewable energy systems, short- and long-term decisions 

must be made under uncertain conditions. Thus, methods for modelling uncertainty in 

decision-making under uncertainty in the energy sector have been reviewed [367]. Since 

energy supply and demand are strongly affected by uncertainty, an optimisation strategy was 

proposed for the operating schedule [368]. A multi-criteria decision-making problem under 

uncertainty was developed to select the most appropriate renewable energy system at a 

specific site [369]. A generic stochastic simulation-optimisation framework for deploying 

financially viable systems has been proposed [370]. This framework includes the uncertainty 

of energy sources and model elements but does not directly consider failures, disruptive 

events, financial risk, and fiscal policy risk. The failures and maintenance uncertainty greatly 

affect the system's economic performance, so a method focusing on modelling the 

uncertainty of reliability costs and failures has been proposed [371].  



208 
 

The most studied type of uncertainty in the wind power sector is aleatory uncertainty. In 

fact, most papers available in the literature focus on wind speed and power forecasting.  

One of the most widely used approaches for wind speed prediction consists of 

constructing a Weibull probability density function from historical wind speed data [358, 

359, 372-377]. Probabilistic forecasting methods are also used to identify the most suitable 

type of predictive distribution [378], demonstrating the maturity of this research field. The 

use of the Markov chain in short-term prediction has also been explored in order to reduce 

restricted assumptions on wind speed probability distribution [379]. Other works have 

focused on forecasting wind power produced by incorporating the temporal and spatial 

dependence structure [380] or adopting other solutions, which are reviewed elsewhere [381]. 

Another source of aleatory uncertainty in the economic evaluation of renewable power 

plants stems from the electricity sale price. The energy price can be analysed as a stochastic 

process by employing ARIMA [382, 383], ARMA and ARMAX [384] models. 

Table 6.1 compares how uncertainty has been accounted for in the relevant literature. The 

table excludes articles focusing only on energy price prediction [382, 384-392] and wind 

speed prediction [31, 393, 394] not applied to a wind system. 

 

Table 6.1 Comparison of wind energy systems uncertainty modelling in the literature 

 
Type of model 

(Technical/Economic) 
Uncertainty modelling 

References Included 
Energy 

price 

Wind 

speed 
Technical model Failures 

[395] Yes/Yes No No No No 

[396] Yes/Yes No No No No 

[397, 398] Yes/Yes No Yes No No 

[399] Yes/No No Yes No No 

[400] Yes/No No Yes No No 

[360] Yes/No No Yes 
Wind Power 

forecasting 
No 

[401] Yes/No No Yes Power Curve No 

[402] Yes/No No Yes 

Manufacturing 

tolerance and insect 

contamination 

No 

[357] Yes/Yes Yes Yes No No 

[370] Yes/Yes Yes Yes Power Curve No 

[403-405] Yes/No No No No Yes 

[358, 406] Yes/Yes No Yes No No 

[407, 408] Yes/No No Yes No Yes 

[409] Yes/No No No No Yes 
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[410] Yes/No No Yes 

Wake effect, 

internal wind farm 

collector system, 

unavailability of 

wind turbine 

No 

This work Yes/Yes Yes Yes See Table 6.3 Yes 

 

 

Note that authors of papers [357] and [395] use commercial software, EViews and 

RETScreen, respectively, to conduct their analysis. Although the most popular methods for 

dealing with uncertainty, especially epistemic uncertainty, are Monte Carlo sampling from 

a predefined probability density function and, especially for aleatory uncertainty, stochastic 

models, the above works deal with stated sources of uncertainty by different methods, e.g. 

using Markov chains and ARIMA and SARIMA methods for aleatory uncertainty. With the 

exception of this work, only three papers in the table above include failures, and none 

assesses the economic performances of wind turbines. Considering the epistemic uncertainty 

of relations and the effectiveness of the WT model, only four papers include these sources 

of uncertainty but not failures. 

There are several computer tools, some purely deterministic, others considering 

uncertainty, for analysing the integration of renewable energies in various energy systems. 

energyPro [411] was developed for the technical and financial analysis and optimisation of 

thermal generation, renewable generation and energy storage systems, but it is a 

deterministic tool and only admits sensitivity analysis. Hybrid Optimisation of Multiple 

Energy Resources [412] is another tool that can simulate different system solutions and 

admits optimisation and sensitivity analysis. The availability and load of the energy resource 

can be generated synthetically by taking variability into account, or time series can be 

imported by the user. Scheduled maintenance activities can be defined, but random failures 

cannot be included in the analysis. Grid outages can be scheduled or random. Disruptive 

events can be considered, but they can occur at most once a year and their duration and start 

date are constant, which can only be randomised during the sensitivity analysis. The change 

in loads, prices and costs is only considered with a percentage change from one year to the 

next. RETScreen [413] provides both sensitivity and risk analysis. The risk analysis is 

performed for the financial feasibility indicator selected by the user, but only using the 

Monte Carlo simulation. The user obtains the probability distribution of the selected 
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indicator, but only a small number of key input parameters can be changed. Moreover, 

component efficiency, system life cycle and other important sources of epistemic uncertainty 

are not included. The random uncertainty of failures and disturbance events is neglected. 

Finally, SAM [414] is designed to facilitate decision-making in the renewable energy sector. 

It can perform parametric analysis, exceedance probability analysis and stochastic analysis. 

With stochastic analysis, it is possible to include uncertainty by estimating the effect of 

variability of inputs on an output variable by using Latin hypercube sampling.  The 

shortcoming of this tool is its inability to include changes in the primary source over the 

years, random failures and other sources of uncertainty that change during the life cycle 

years. Therefore, it calculates the energy produced using coefficients to consider system 

availability, ageing of components and other losses. In this way, not only failures are 

neglected, but also disruptive events. 

Overall, to the best of our knowledge, a general framework for evaluating the economic 

performance of renewable energy systems which simultaneously includes all sources of 

uncertainty is still lacking, and this thesis is the only one that considers a wide range of 

uncertainty sources to evaluate economic performances of offshore wind energy systems. 

6.1.1 A common external disruptive event: ship collision 

Some papers in the literature have focused on the ship collision analysis on offshore wind 

turbines. The majority of works have considered fixed-bottom structures. Indeed, monopile 

foundations for offshore wind turbines' response to ship collision have been tested both with 

a striking rigid body ship and a deformable body [415]. Another work considers the 

deformation of jacket foundation under ship collision, including different scenarios of the 

ship’s speed, collision direction and angle [416]. The previous papers conclude that the ship 

collision may cause plastic deformation, leading to wind turbine collapse. The effects of 

collision increase when the wind load is considered in the analysis, reducing the needed 

impact energy for the turbine's collapse [417]. The risk of collision is higher in considering 

service vessels during maintenance operations. Some authors have demonstrated that even 

if the vessel speed is low, the wind turbine structure can be affected by the impact, resulting 

in structural damage [418]. In the same work, the authors show that 20% of the ship-turbine 

strikes are on approach, while 80% are on drift. Therefore, this means that 80% of collisions 

happen with a speed of 0.3-2.8 m/s. Indeed, the most frequent speed is 1.2 m/s. The relevance 

of offshore maintenance in fixed-bottom wind turbines has been extensively reviewed in a 
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contribution [419]. Therefore, the risk of collision with a maintenance vessel increases due 

to the high number of interventions. The authors of [420] consider the collision of a barge 

and a bulk ship with different loads with a fixed-bottom offshore wind turbine. The 

combination of the results they obtained allows them to provide two fragility curves, one for 

each type of ship. The driving factor of the fragility curves is the speed of the ship now of 

the strike. When considering floating offshore wind turbines, the literature is scarce. In 

recent years, intending to fill this gap, a contribution proposes an initial step for analysing 

the effects of ship collision on a spar floating offshore wind turbine [421]. The results 

indicate that the mass and the initial velocity lead the deformation process. Furthermore, 

there is an elastic response of the overall structure which reduce the total effect of the impact 

in comparison with a fixed turbine type at the same speed. For the floating spar, a strike with 

a speed of about 5 m/s may seriously damage the system. Indeed, the failure analysis of a 

spar buoy structure shows that crash with vessel is a relevant event, with a probability of 

about 10-6 events per hour. The consequences of these events have been considered severe. 

The dynamic and damage analysis carried out in a recent paper allow us to understand how 

severe are the consequences of the collision of a ship with a spar buoy [422]. Finally, the 

combination of collision load and wind-wave-mooring loads have been investigated [423]. 

The analysis of the literature suggests that:  

• The ship collision impacts the floating structures less than the bottom-fixed ones. 

• The wind and wave load decrease the critical speed, leading to the wind turbine’s 

collapse. 

• Most collisions happen between small service vessels with a load ranging from 

125 to 850 tons. Collision with a bulk ship with a mass of 30,000 tons is rarer but 

may happen. 

• 20% of the collisions happen on approach at high speed, while most happen on 

drift with a low speed in the range of 0.3-2.8 m/s. 

• Speed collision higher than 5/6 m/s may be critical and can damage the spar 

structure. 

• Only fragility curves for the ship collision between a barge and bulk ship and 

fixed-bottom structure are available in the literature. 
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6.1.2 Climate change effects on wind power systems 

Climate change affects weather conditions, and the fact that renewable energy systems 

suffer from this issue is well-known. Wind energy systems are one of the instruments used 

to mitigate climate change and produce green energy. However, wind energy systems suffer 

from climate evolution, and climate change may negatively impact wind farms’ production. 

Indeed, in the future, some regions of the world may experience a reduced wind speed, 

whereas others may experience an increase. A deep review of climate change’s impact on 

wind energy has been proposed in the literature [424]. The authors focused on the variability 

of the wind resource in northern Europe, considering also the effects of climate change on 

the maintenance of wind farms. Indeed, they considered extreme wind speed, icing, sea ice 

and permafrost, and also air density. They concluded that the wind speed will increase in 

some regions of north and central Europe, but undesirable weather-critical events will also 

increase. Other authors focused on changes in wind speed and direction at 10 m worldwide 

due to anthropogenic climate change [425]. They showed that global warming impacts the 

future of wind resources, underlined the possible increase of extreme wind speed probability 

due to tropical cyclones, and proposed a map for further studies. A recent work studied the 

evolution of wind speed in Chile to evaluate its impact on optimal power system expansion 

plans [426]. They analysed three different scenarios of concentration of greenhouse gasses 

and concluded that even though mean wind speed will slightly increase in the next years, its 

variability will increase too. Another work deeply analysed future wind speed probability 

distribution [427]. The authors resorted to several circulation models and simulated wind 

speed at 10 m under the representative concentration pathway (RCP) RCP 8.5 condition. The 

RCP 8.5 scenario supposes that emissions will continue to increase during the 21st century. 

It is often taken as the worst-case climate change scenario. It hypothesises that the global 

mean temperature will increase by 5°C in 2100 compared with its value in the pre-industrial 

era. The sea level will also increase by about 0.63 m [428, 429]. The simulation about the 

near-surface wind speed showed that the most significant wind speed decrease will be in 

Eastern Russia and the USA. The authors analysis provided fitting distribution, accuracy, 

mean value, and standard deviation of current wind speed and the simulated wind speed in 

the near, midterm, and far future. Even though they said that, in some world regions, wind 

speed changes will be marginal, a slight change strongly affects the extracted power from 

the wind. Since the wind farm of the numerical example is located in Italy, a study on the 
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impacts of climate change on power generation in Italy is considered [430]. The paper 

studied wind resource availability in Italy for short, until 2050, medium, until 2080, and 

long, until 2100, term. Two scenarios were analysed: the RCP 8.5 and the RCP 4.5. The RCP 

4.5 supposes that the emissions peak in 2040 and then decline. It is often considered the most 

probable baseline scenario in which the increases in temperature in 2100 will be about 2.5-

3 °C, and the sea level increases of about 0.47 m compared to the data of the pre-industrial 

baseline.  They assessed wind producibility as the ratio between the produced power per 

hour and the installed power. The results showed that in both scenarios, the wind 

producibility will increase in the short period in the plant region of the numerical study of 

about 3-4%. However, in other regions of Italy the producibility will decrease. 

6.2 The future of offshore wind power systems in Italy: 

scenarios description 

In the literature, scenario planning (section 1.2.9) is a widely adopted approach to explore 

the possible evolutions of macroscopic variables over medium and long time horizons. As a 

matter of fact, several reviews are available on this topic [431-433]. This approach focuses 

on the complexity and uncertainty of the environment. Indeed, its primary goal is not to 

forecast variables’ values but to depict several different futures. The uses of scenario 

planning relies on defining plausible and possible description of the future. Even though 

various methods exist, most of them have a high implication of subjective judgments. 

Therefore, the scenarios’ making process is often low replicable. Indeed, all the three most 

important techniques of scenarios, that is, Intuitive logic methodology, La prospective 

methodology, and Probabilistic modified trends methodology, are based on experts’ 

judgments [434]. Generally, scenarios are produced by analysing reality and identifying the 

most influential variables on future development. Then, it is crucial to determine the driving 

forces which cause the changes in the future-influent variables. Basically, the scenario 

planning includes the following steps. 

1. Defining the objective of the study. The output of this step is the system selection, 

the study's time horizon, the geographic boundaries, and the stakeholders. 

2. Collecting data. Resorting to the specifications obtained in step 1, it is possible to 

collect the data collection about all relevant issues necessary to describe the events 

which affect the factors and variables which lead to the future’s development. 
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3. Understanding trends and uncertain elements. The identified factors and variables 

are studied to understand their influence on the system under analysis, the range of 

their variability over time, and trends. Additionally, their number is streamlined by 

conducting uncertainty analysis or similar approaches. 

4. Understanding the interdependence between the events, the factors, and variables 

value. This step is crucial to understand whether and how a variable affects another. 

This way, one can suppose a correlation matrix, which transparently defines the 

probability of an event or a value once another happens. 

5. Building the scenarios. Combining different trends and uncertainty allows us to 

describe several scenarios, which are then reduced in number by using expert 

judgments and available data, establishing a subjective procedure. 

Analysts and decision-makers often suppose strategies to cope with the consequences of 

realising different scenarios. For the sake of completeness, also more quantitative 

approaches to scenario planning exist. They are based mainly on the combination of 

analytical formulation, sampling methods, and the contribution of experts. For instance, the 

Interactive Cross Impact Simulation uses Monte Carlo simulation, combining data and 

experts’ opinions [435]. On the other hand, Trend impact analysis resorts to historical trend 

interpolation and opinions to set the probabilities and impacts of future events [436]. 

Steps 2 and 3 are often carried out using cause-effect analysis [437, 438]. This approach 

often gives a cause-effect matrix in which the rows are the variables, whereas the columns 

are the outputs.  In the intersections, there is a qualitative or quantitative measure of the 

effect that a variable has on the output. 

Step 4 often uses the cross-impact analysis, which is a widely adopted tool for 

understanding the interdependences between events [439, 440]. It is used to analyse if and 

how much the occurrence of an event influences the probability of occurrence of another 

event. Typically, the output of the procedure is a cross-impact matrix. The cross-impact 

matrix is a matrix in which each row and each column represent a variable. In the 

intersections is a qualitative or quantitative value describing the interdependence level. The 

qualitative can be, for instance, a plus, neutral or minus symbol. In contrast, the quantitative 

measure can be the value of reduction of the probability of occurrence of the event in the 

column once the event in the row has occurred. This approach allows futurists to build 

consistent and plausible scenarios. 
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Thus, based on the aforementioned studies, scenario analysis seems to be a suitable tool 

to capture the effects of long-term electricity prices, investment cost reductions, and subsidy 

policy changes on the economic performance of offshore wind power systems. 

The adopted method follows the subsequent steps. 

• Selecting scenario variables. 

• Identifying the driving forces. 

• Defining the possible events. 

• Defining the variables’ values. 

• Conducting a cause-effect analysis. 

• Conducting a cross-impact analysis. 

• Combining the variables’ values to obtain the scenarios. 

This approach used and analysed scenarios to model social, political, and regulatory risk 

and understand their effect on the NPV distribution. As will be seen in the case study, it is 

supposed that the plant, including several wind generators, will start its production in 2030 

to evaluate cost reduction effects over the years.  

The first step concerns the scenario’s variables selection. Three scenario variables were 

selected: the long-term energy price, the investment cost reduction, and the subsidy policy. 

Then, in step 2, the driving forces must be identified. These variables have three different 

driving forces: geopolitical relationships, European energy policy, and Italian energy policy, 

respectively. Each driving factor affects the relative variable in function of the event that 

will happen in the future. Each variable can assume three different values according to the 

event which will happen.  

Steps 3 and 4 were carried out to identify the possible events and the relative variables’ 

values, as described below.  

Starting from the World Energy Outlook report [441], long-term energy price values were 

defined according to [442]. Three distinct events were considered, namely Relief (R), 

Central (C), and Tension (T). In addition to considering traditional energy market drivers, 

the analysis also incorporates the geopolitical situation. Event R assumes a relaxation of 

tensions between the USA, Europe, Russia, and China in the coming years. It anticipates a 

continued import of fossil fuels from Russian pipelines, resulting in a reduction in energy 

prices. However, there is an ongoing effort to reduce dependence on Russia, leading to a 

decrease in natural gas imports compared to the pre-2021 levels. The renewable energy 
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targets recently adopted will remain in place. In event C, Europe will cease importing 

Russian pipeline gas by 2027, and there will be a smooth increase in the utilization of 

renewable resources in subsequent years. Natural gas is gradually replaced by synthetic fuels 

such as green hydrogen. To maintain competitiveness, the price of natural gas falls. 

Furthermore, there is an increase in the utilization of heat pumps, and by 2060, electric 

vehicles and trucks in Europe will account for 95% of the market. In event T, the current 

tensions between Russia and the West persist and escalate in the coming years, leading to a 

rise in energy prices. Europe immediately halts the importation of Russian pipeline gas, and 

European consumers find themselves in competition with Asian markets for energy 

resources. 

The events are related to three variables’ values, namely Relief (R), with a mean variable 

value of 60 €/MWh; Central (C), with a mean variable value of 79 €/MWh; and Tension (T), 

with a mean variable value of 100 €/MWh.  

Investment cost reduction is modelled by the offshore wind power learning rate [443, 

444], which is considered fixed and equal to 9%. This data was combined with events about 

the offshore wind power installed capacity in Europe in 2030 [445], which may be 40.5, 70.2 

and 98.93 GW. The three values of the scenario’s variables considered are High Investment 

Cost Reduction (H), Medium Investment Cost Reduction (M), and Low Investment Cost 

Reduction (L). The extent of investment cost reduction is influenced by the projected 

installed capacity in 2030. As already said, a fixed learning rate of 9% is assumed, while the 

global European installed capacity can vary, with values of 40.5 GW, 70.2 GW, and 98.93 

GW for the L, M, and H scenarios, respectively, based on the forecasted developments in 

the energy economy over the coming years. In the L event, limited progress is made in 

electricity interconnections between European states, unfavourable national policies 

regarding permitting and planning in high-potential markets persist, and the European 

renewable energy target is not achieved. In the M event, regional cooperation mechanisms 

are established, the renewable energy directive is implemented, and national policies 

promoting wind energy are strengthened. Additionally, there is an intensification of power 

interconnection infrastructures. In the H event, the European targets for renewable energy 

sources (RES) are increased to 35%. The power transmission network is intensified beyond 

the initial target of 15%, and there is an acceleration in new installations due to favourable 

policies implemented by member states.  
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The higher the installed capacity in 2030, the higher the percentage of investment cost 

reduction. This combination leads to three variable values, namely High Investment Cost 

Reduction (H), with a reduction of 23%; Medium Investment Cost Reduction (M), with a 

reduction of 17%; and Low Investment Cost Reduction (L), with a reduction of 12%.  

Regulatory risk is included in considering subsidies. Although there are currently no 

subsidies for offshore wind power plants at the time of this study, the Italian government is 

considering the introduction of a subsidy plan. Three events have been considered: feed-in 

tariff (F), feed-in premium tariff (P), and no subsidies (N). In the feed-in tariff event, the 

lack of available data led to the setting of the tariff at 187 €/MWh, based on the historical 

levelized cost of energy for offshore wind power systems [446]. If this event occurs, the time 

series of electricity prices has no influence on the Net Present Value (NPV) since the power 

generated is sold at a fixed price. In the feed-in premium tariff event, a fixed tariff of 31 

€/MWh is applied. In this case, the selling price is calculated by adding the feed-in premium 

value to the current market price of energy. In the no-subsidies event, the selling price is 

solely based on the current energy market price, without any additional subsidies or 

premiums. 

Step 5 concerns performing the cross-impact analysis. In this work, since the driving 

forces are assumed to be independent, the events are considered independent. Thus, it was 

supposed that the variables did not impact each other.  

Table 6.2 provides a resume of the considered scenario’s variables, the driving forces, the 

events, and the variables’ values. 

Table 6.2 Values of scenario’s variables 

Scenario’s variable Driving force Events Variable’s value 

Long-term energy 

price 

Geopolitical 

relationships 

Tension 100 €/MWh 

Central 79 €/MWh 

Relief 60 €/MWh 

Investment cost 

reduction 

European energy 

policy 

High 23% 

Medium 17% 

Low 12% 

Subsidy’s policy Italian energy policy 

Feed-in 187 €/MWh 

Feed-in premium 31 €/MWh 

No subsidies - 
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It is important to note that if the Feed-in Tariff subsidy is selected, the NPV probability 

density function is not influenced by the energy price but is still influenced by the investment 

cost reduction. Therefore, the consistent and possible scenarios obtained by combining all 

the scenario variables' values are 21. Each scenario is represented by two or three letters 

corresponding to the evolution story of the associated variables. More details about the 

selected scenarios can be found in reference [364]. 

Even if assessing the probability of scenarios is challenging, to help decision-makers 

select the more plausible scenario, the author tries to contribute critically by using the 

plausibility cone concept [37, 70]. Scenarios were clustered into four groups: preferable, 

possible, plausible, and probable. Subsidies policy around the world is heading towards a 

feed-in premium tariff. Therefore, despite scenarios HF, MF, and LF being preferable from 

the wind power investor perspective, they are not in the probable group. Daily news about 

relationships between West and Est countries yields only possible scenarios with take relief 

assumptions (R). Other scenarios with no subsidies (N) are plausible, but Italian politicians 

wanted to pursue a subsidy policy, especially for wind and solar energy. Thus, scenarios 

with feed-in premium subsidies are in the probable group. Ultimately, the continuous 

investment in wind power systems worldwide, especially in Europe, makes the high 

investment cost reduction the most probable hypothesis. Therefore, the author believes HTP 

and HCP are the most probable futures. 

Finally, a simplified procedure for scenarios combination (section 4.1.4) has been 

developed. This procedure was used to include the effect of possible changes of a scenario 

variable over time (type IV uncertainty, section 4.1.1) and follows the subsequent steps. 

1. Defining a set of probable scenarios. 

2. Associating a probability to each scenario resorting to experts’ judgments. 

3. Assessing the performance of the system in each scenario. 

4. Combine the results, resorting to the supposed scenarios’ probabilities. 

One possible approach to Step 4 is using a weighted sum, which weighs the scenarios’ 

probabilities. In the case study, more details on the application of the procedure will be 

provided. 

 



219 
 

6.3 Framework application for evaluating wind power systems 

under uncertainty 

This section provides the application of the framework presented in Chapter 4 to the case 

of wind power systems evaluation under uncertainty. The framework application is made to 

demonstrate the model's applicability to several fields, address the assessment goal, and 

answer the above-expressed research questions. For symbols’ meanings, please refer to the 

nomenclature of this section in the List of Symbols section at the end of the thesis. 

The application procedure involves the following steps. 

• Uncertainty sources identification. 

• Uncertainty sources modelling. 

• Performance measure selection. 

• Technical model formulation. 

• Economic model formulation. 

• Uncertainty propagation method selection. 

• Scenarios analysis. 

• Risk mitigation strategy selection. 

• Risk assessment. 

For renewable energy systems, and specifically offshore ones, nine families of 

uncertainty sources can be identified. 

• Input uncertain variables, such as the availability and intensity of energy sources, 

represented by stochastic processes. 

• External random events, such as disruptive events, for example, earthquakes, ships 

or iceberg collisions, storms, rogue waves, etc. 

• Internal parameters epistemic uncertainty, such as the uncertainty related to 

components' efficiencies values or to the inaccurate values given by the relationships 

used to design the system. 

• Internal random events, for example, components’ failures. 

• Financial risk, that is settled, e.g., in cost of debt or, in general, in cost of capital. 

• Tax risk, arising from changes in tax policies of countries. 
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• Social risk, for example, the resistance of the population to the construction of a plant 

or the change in environmental laws and energy policies of governments, which 

might allow support for renewable energy production. 

• Market risk, i.e. the risk associated with changes in the selling price of energy or 

changes in the value of demand. 

As far as wind energy systems are concerned, the reference [361] provides a 

comprehensive list of specific sources of variability and literature contributions addressing 

each source. 

In this application, we include the sources of uncertainty indicated in Table 6.3, where is 

indicated the affected variable, its variability type, the nature of uncertainty (Epistemic, E, 

or aleatory, A), as well as the adopted modelling approach. 

 

Table 6.3 Considered sources of uncertainties 

Variable 
Uncertainty 

nature 

Variability 

type 
Modelling approach 

Bank interest rate E II 

Monte Carlo sampling from 

predefined pdf 

 

Investment cost E II 

Plant nominal life E II 

Self-interest rate E II 

Power coefficient E II 

Gear box 

efficiency 
E II 

Generator 

efficiency curve 
E II 

Monte Carlo sampling from a 

predefined pdf centred on the nominal 

performance curve 

 

Power electronic 

efficiency curve 
E II 

Number of 

required 

technicians for 

system restoring 

E II 

Repair costs E II 

Disruptive external 

events 
A III 

Monte Carlo sampling from hazard 

curve and random generation of 

failure severity level from fragility 

curve 

Components 

failures 
A III 

Monte Carlo sampling of Time to 

failure pdf and Monte Carlo sampling 

of time to repair pdf 

Wind speed A I Markov chain 

Electricity price A I ARIMA time series 

Wind direction A I Monte Carlo sampling from 

predefined pdf Wake effect E II 
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Regulatory risk A IV 

Scenario analysis 

 

Long-term market 

risk 
A IV 

Investment cost-

related risk 
A IV 

 

The sources of uncertainty stated above are the inputs to the technical, reliability (i.e., the 

probability that a product will properly operate for a design life under the specified 

environmental or operating conditions [447]) and economic model and are used to assess the 

risk of the investment. As well known, risk refers to the uncertainty of outcome, of actions 

and events, and it represents uncertainty about and severity of the outcomes of an activity 

[448].  

The technical model consists of mathematical formulations representing the system and 

the relationships used to assess its power output considering the wind variability and the 

wind turbine conversion efficiency.  The reliability model is used to assess the availability 

of the system and determine production interruption periods caused by internal and external 

failure events. The economic model is used to evaluate costs, revenues and, thus, the required 

performance indicators of the economic result.  

The model is conceived with a modular blocks structure, so that the specific manner to 

model the variables' uncertainties can be changed in order to utilize the one better suited to 

specific situations, and new modules can be added to model additional uncertainties.  

Market risk is described by the electricity price variability. An ARIMA model is adopted, 

as motivated in section 6.3.7. Given that in long-term analysis, the electricity price could 

change seriously under different scenarios, a trend parameter is included in the model to 

increase or decrease the price of a fixed or random percentage every year. Financial risk, 

such as interest rate variability, is simulated by Monte Carlo sampling from a predefined 

probability density function. 

The random discontinuities of social risk, political risk, and regulatory risk are included 

by using a scenario analysis module. The uncertainty of plant life duration is accounted for 

by Monte Carlo sampling from a predefined probability distribution. 

The flowchart in Figure 6.1 shows the logical sequence of the computational procedure 

in the proposed framework. Basically, a Monte Carlo analysis approach is adopted where a 

sequence of random instances of the system life is simulated through a predefined number 

of iterations. At first, wind turbines’ type and location are chosen. Environmental data are  



222 
 

 

Figure 6.1 Flowchart of the framework adapted for offshore wind power systems 

 

gathered, and the turbine technical characteristics and farm layout are input to the program 

data set. The number of runs, the expected life years of the system, and all other constant 

input data are declared, and the simulation is started. In each iteration, the value of variables 

subjected to epistemic uncertainty is generated by sampling the corresponding probability 

distributions. Then, for each year, the hourly time series of wind speed (section 6.3.3) and 

electricity prices (section 6.3.7), as well as the calendar or randomly occurring components 

faults (section 6.3.6), are generated through simulation of the corresponding stochastic 

processes. This allows us to compute the net annual energy production. Subsequently, the 

annual cash flows are computed by resorting to the economic model, and the Net Present 

Value (NPV) is computed. After the predetermined number of runs is terminated, the 

resulting set of NPV values is used to build the NPV frequency distribution histogram.  

In the end, risk is assessed with the following three risk indicators. 
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• The NPV Coefficient of Variation CV = σ[NPV] / E[NPV]. 

• The probability that NPV < 0. 

• The Value-at-Risk (VaR) at 5%. 

 

For computational purposes, the algorithm is based on four data vectors updated in 

each iteration. The adopted vectors WS, EP, NPP, and A represent, over the system life span, 

the annual sequence of wind speed, electricity price, nominal produced power and 

availability array with a time discretization chosen by the user, respectively. In this work, a 

1-hour time discretization is adopted. The availability array values are the instantaneous 

system binary state variable dyh = 1 or 0, representing whether the system is up or down 

according to failures and the subsequent restoration downtime. The y subscript represents 

the simulated year, and h is the current hour within the year. The same subscripts notation is 

also used to denote elements of EP, WS, and NPP elements. 

Figure 6.2 shows the framework application to offshore wind power systems. 

 

 
Figure 6.2 Proposed general framework for economic performance evaluation of 

renewable energy system 

 

6.3.1 Wind farm technical and reliability model 

The technical and reliability model enables the computation of power extracted by a 

horizontal-axis wind turbine based on the instantaneous wind velocity value, as described 

by Mathew [449]. This allows us to compute revenues from energy sales in order to assess 

investment profitability. Power P (MW) extracted by a horizontal axis turbine from the 

undisturbed flow of wind is expressed in (6.1). 
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𝑃 =

1

2
𝑐𝑝𝜌𝑆𝑈

3𝜂𝑔𝜂𝑔𝑏𝜂𝑝𝑒·10
−6 (6.1) 

 

Where U  is the undisturbed wind speed, S is the rotor swept area, and ρ air density, cp is 

the turbine-specific power coefficient [449], and ηgb the wind speed-dependent efficiency of 

the gearbox, ηg of generator and ηpe of power electronics. As well-known, the power 

coefficient and efficiency values suffer from epistemic uncertainty, while the wind speed 

suffers from aleatory uncertainty, as explained subsequently. 

 One of the most important sources of uncertainty is component failures, which strictly 

affect the availability of the wind turbine and its actual power output. In order to account for 

equipment outages, an hourly availability array Ayh is generated as described subsequently. 

The hourly availability array stores a sequence of 0 (systems in the down state) and 1 

(systems in the operational state) for each hour of the entire life of the system. An hourly 

wind speed array WSyh stores instead the generated time series of wind speed and, using the 

power curve of the WT, it is transformed into the Nominal Produced Power array (NPPyh). 

Finally, the hourly produced energy array (6.2) is obtained by multiplying elementwise the 

NPPyh and the availability array. 

 

 𝐻𝑃𝑦ℎ = 𝑁𝑃𝑃𝑦ℎ(∙)𝐴𝑦ℎ (6.2) 

 

 The assessment of produced energy becomes more complex when passing from a single 

wind turbine to a wind farm owing to the so-called wake effect, which determines a power 

loss in downstream turbines operating in the wake of an upstream generator [450]. In fact, 

when the wind passes through the turbines located upstream in a wind farm, the extraction 

of energy by the initial row of turbines and the turbulent motion of the rotating blades causes 

the flow to weaken and become disturbed. Consequently, the power generated by the first 

row of turbines located downwind is significantly lower compared to the upwind turbines. 

This deficit pattern persists for all subsequent turbines following the initial wake field. In 

certain cases, particularly in large-scale wind farms, the power deficit can range from 20% 

to 40% [451]. As a result, the annual energy production may suffer losses of up to 15% 

[452]. Additionally, rotor-induced turbulence increases the dynamic mechanical loading on 

downwind turbines. Thus, the wake effect not only diminishes the productivity and 

economic viability of the wind farm but also imposes limitations on the lifespan of the wind 

turbines, as indicated in [453]. 
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The minimisation of wake effects calls for the layout optimisation of the wind farm [454]. 

While numerous models exist to represent the wake effect in wind farms [455] and 

research is underway to investigate wake losses [456], in this work, Jensen's wake model 

[457, 458] has been adopted as it has been recognized as a suitable choice in layout 

optimisation studies [459] due to its simplicity and relatively high accuracy when compared 

to other widely adopted wake models.  

According to Jensen's model [458], the wind speed deficit (ΔU [m/s]) is computed as in 

(equation 6.3) where Ua [m/s] is the undisturbed wind speed at the up-wind wind turbine a, 

Ct is the thrust coefficient, and it is also a function of wind speed, Xab [m] the horizontal 

distance between the wind turbines, k is the wake decay constant, Ab [m2] is the rotor swept 

area, Da [m] is the wind turbine diameter and Aab [m2] is the overlapped area between the 

up-wind and down-wind wind turbines. 

 

 
∆𝑈 = 𝑈𝑎(1 − √1 − 𝐶𝑡) (

𝐷𝑎

𝐷𝑎 + 2𝑘𝑋𝑎𝑏
)
2 𝐴𝑎𝑏

𝐴𝑏
 (6.3) 

 

If the distance between the two centres of the rotor on the plane orthogonal to the wind 

direction of the two considered wind turbines (d) is lower than the wind turbine diameter 

and higher than zero, the overlapped area can be calculated resorting to (equation 6.4), where 

Ra and Rb are the radii of the two wind turbines, d (equation 6.5) is the distances between the 

centre of the two rotors with coordinates (xa, ya) and (xb, yb), respectively, on the plane 

orthogonal to the wind direction, x is calculated with the (equation 6.6), and y is computed 

resorting to (equation 6.7). 

 

 𝐴𝑎𝑏 = 𝑅𝑎
2 sin−1 (

𝑦

𝑅𝑎
) + 𝑅𝑏

2 sin−1 (
𝑦

𝑅𝑏
) − 𝑦(𝑥 +√𝑅𝑏

2 − 𝑅𝑎
2 + 𝑥2) (6.4) 

 
𝑑 = √(𝑥

𝑏
− 𝑥𝑎)

2 − (𝑦
𝑏
− 𝑦

𝑎
)2 (6.5) 

 
𝑥 =

𝑅𝑎
2 − 𝑅𝑏

2 + 𝑑2

2𝑑
  (6.6) 

 𝑦 = √𝑅𝑎2 − 𝑥2 (6.7) 

 

 

If the distance between the two centres of the rotor on the plan orthogonal to the wind 

direction of the two considered wind turbines is equal to zero, the overlapped area is equal 
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to the rotor swept area. If the distance between the two centres of the rotor on the plan 

orthogonal to the wind direction of the two considered wind turbines is higher than the wind 

turbine diameter, the overlapped area is equal to zero. 

As wind turbine rotors dynamically adjust their positions to maximise energy capture, the 

interaction between upwind and downwind turbines is not static. Consequently, the 

overlapped area between two turbines can vary from 0 to the rotor swept area (Ab), leading 

to a corresponding variation in the ratio from 0 to 1. This dynamic nature implies that the 

wind speed deficit is not constant. To accurately determine the overlapped area, it is 

necessary to have knowledge of the wind direction and the overall layout of the wind farm. 

This indicates that certain wind farm configurations can result in minimal wake losses. 

Furthermore, a trade-off arises between space utilization, which affects costs associated with 

cabling and movements required for maintenance and inspections, and the distances between 

wind turbines aimed at reducing their mutual interaction. In any case, as per the findings 

presented in [460, 461], it is commonly recommended that a safe distance for installing new 

turbines should be approximately 7-10 times the diameter of the turbine blades when 

positioned downstream. For turbines installed orthogonal to the prevailing wind direction, a 

distance of around three-five times the turbine blade diameter is typically considered safe. 

The first step in the power computation process is to acquire accurate time series data for 

the wind direction. These data can either be readily available or obtained by combining the 

two components, x-axis and y-axis of the wind speed time series, respectively. In order to 

capture the variability of wind direction, Monte Carlo sampling is performed using a Kernel 

distribution [462]. This allows to better match experimental data which may not adequately 

fit a predetermined parametric density function.  Experimental data is fitted by considering 

the conditional probability of wind direction and wind speed. This means that a particular 

wind direction is only considered valid if it corresponds to an acceptable level of wind speed 

from that direction. This approach allows for a more realistic representation of the 

relationship between wind direction and wind speed in the modelling process. Subsequently, 

the process continues as follows: 

1. The coordinates of the wind turbines' location in the wind farm are provided. 

2. The matrix of distances Xab, between each pair of wind turbines is computed. 

The dimensions of this matrix correspond to the number of turbines present in 

the wind farm. 
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3. For every wind direction, the system is rotated to align orthogonally with the 

wind direction under consideration. 

4. The overlapped area (Aab) for each wind turbine is evaluated. It is important to 

note that a wind turbine can be influenced by multiple other turbines or none at 

all. Therefore, a matrix of values Aab, for each wind turbine,  with dimensions 

equal to the number of turbines, is created. Each element of the matrix represents 

the extent to which wind turbine a is affected by wind turbine b. 

5. By utilizing the wind speed associated with the wind direction of each specific 

hour, and hence the corresponding overlapped area values, the power extracted 

by each wind turbine during a specific hour is calculated. This results in a 

structure comprising matrices, one for each wind turbine, representing the 

extracted power for each hour throughout the year.  

Following this, the aforementioned data is integrated with the up-time and down-time 

array of each turbine, as detailed in subsequent sections [363]. When constructing these 

arrays, a notable distinction from the case in which only a single piece of equipment is 

considered is that each wind turbine will possess its own individual failure history and 

energy production record. As a result, each turbine will contribute to the overall revenue by 

selling the energy it generates. Once one has the actual hourly produced power of each 

turbine, they can be summed up to obtain the whole hourly produced electricity of the farm. 

6.3.2 Economic model 

The economic model encompasses both cost computation and revenue computation, as it 

was shown. 

The cost items, as summarized in Table 6.4, are taken into account during the cost 

computation process. The adopted cost model is extensively described in the reference [463]. 

The author resorts to [464] for estimating the floating platform cost and to [465] for the 

installation procedure. The evaluation of corrective maintenance costs and the revenue 

computation have been carried out as explained in the following [363], accounting for the 

presence of multiple turbines. 
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Table 6.4 Cost model items 

Cost Item Sub-items 
Literature 

source 

Investment 

cost 

Wind turbine and floating platform purchase (wind 

turbine, floating platform, cables and transmission 

system, mooring and anchoring systems) 

[463] 

  

Wind turbine and floating platform installation 

(loading onto a vessel, sea transport, mooring, 

electrical cable lying, onshore cable installation) and 

rent of the shipyard 

Operating cost Grid access fees, insurance costs, and seabed rental 

 Maintenance cost (preventive) 

 Maintenance cost (corrective) See text [363] 
 

It is important to note that when the wind farm is considered, the array cables cost 

increases dramatically and always determines a relevant percentage of the investment. In 

fact, in the optimisation of the wind farm layout, there is a trade-off between the spacing 

between the turbines, which increasingly reduces the wake effect, and the space 

consumption, which increasingly causes the growth of the investment cost due to the cable 

arrays and, generally of all transmission system. Additionally, the operation cost is affected 

by the farm layout.  

Since the annual failure list is computed resorting to the methodology discussed in section 

6.3.6, the annual cost of corrective maintenance encompasses the cost of each failure ReCi 

(equation 6.8). Material costs, also called restoration costs, are also factored in, drawing from 

relevant data found in Carroll et al. [356]. 

 

 𝑅𝑒𝐶𝑖 = 𝐶𝑡𝑁𝑡𝑅𝑇𝑖 + 𝑅𝐶𝑖 (6.8) 

 

Where Ct is the hourly cost of technicians, RTi is the recovery time of the failure, Nt is the 

number of technicians required for operations, and RCi is the cost of the materials used for 

the activities. The costs of external random events are estimated as expressed in section 

6.3.5. In any case, a brief recap is made here. The restoration cost is taken from the literature 

[356] and has a different value for each component depending on the failure mode. There 

are three failure modes, i.e., minor repair, major repair, and major replacement. Finally, the 

costs of restoring the equipment damaged by a disruptive event, based on the generated 

disruptive events list, are calculated as a percentage of total investment for low and medium 

damage levels as the external event impacts the entire system instead of on a single 
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component. For a high damage level, on the other hand, the wind turbine’s life is interrupted 

because the system cannot be restored.  The revenues of the y-year Ry are computed 

according to equation 6.9 through elementwise multiplication of the vector of hourly 

produced electricity HPyh, which represents the production of the whole wind farm,  and the 

hourly electricity price vector EPyh and summation over the yearly hours.  

 

 

𝑅𝑦 = ∑ 𝐻𝑃𝑦ℎ(∙)𝐸𝑃𝑦ℎ

8760

ℎ=0

 (6.9) 

 

Where h identifies the specific hour, and EPyh is the simulated hourly electricity price vector, 

as explained subsequently. 

6.3.3 Wind uncertainty modelling 

While the literature commonly relies on sampling Weibull probability distributions based 

on historical data to address this uncertainty [359, 373, 376], this approach can result in 

unrealistic sudden changes in speed and direction values. In order to mitigate this issue, this 

work adopts a Markov chain method, following the approach outlined by Negra et al. [31], 

to generate hourly time series of wind speeds over the entire lifespan of the plant. This 

methodology relies on the historical hourly wind speed data at the selected site. Given that 

available weather data refer to wind speed at 10m above sea level, to assess the wind speed 

values at the height of the turbine's hub, the log law is used [466]. In greater detail, the 

adopted method sets up a birth-and-death Markov process using the historical time series to 

calculate the number of possible states and the transition rates of the Markov process. The 

calculation of the number of possible states and the transition rates are strictly related to the 

maximum and minimum values of wind speed of the training time series and the time of 

permanence in certain states, respectively. This approach allows us to consider both 

statistical parameters of the past values of wind speed and its randomness, generating a time-

series of wind speed values for each run, to be stored in the hourly wind speed array WSyh. 

The number of possible states and the transition rates depend on the maximum and minimum 

values.  

6.3.4 Epistemic uncertainty of internal parameters 

Within the model, the epistemic uncertainty of internal parameters is associated with the 

efficiency of components and model simplifications. To model this type of uncertainty, a 



230 
 

probability density function is utilized, centred around the mean value of the quantities and 

bounded by their maximum and minimum values. The considered sources of epistemic 

uncertainty related to the technical model are namely the power coefficient, gear box 

efficiency, generator efficiency curve, and power electronic efficiency curve. 

The selected wake effect model suffers from epistemic uncertainty, also in single wake 

conditions, that has been investigated in literature [467]. While at the wake centre, Jensen's 

model is one of the most accurate models, and it is the most accurate model for wind speeds 

lesser than 8.5 m/s, it was found that it underestimates the wake loss of about 2-5%, and 

considering the entire wake cone the model overestimates the wind speed reduction. The 

maximum differences between the predicted wind speeds after the wake effect and the 

measured ones are observable at low distances. In fact, for a downstream distance ranging 

from 2.55 diameters to 3.75 diameters, the measured average wind speed is higher than the 

predicted one of about 14%-12%. Approaching from a downstream distance of about 5.1 

diameters to 7.3 diameters, the error changes from 12% to 7%. Although there is a 

conservative aspect in this underestimation, the model proposed in this work tries to cope 

with the real uncertainty of the system. For that reason, the assessed value of the wind speed 

after the decay due to the wake effect computed by Jensen's model is adjusted by sampling 

a value from a uniform distribution ranging from 0.07 to 0.12. 

6.3.5 External random events 

With the term “disruptive events”, the author refers to external natural events (i.e. 

earthquakes, storms, rogue waves, impact with icebergs, etc.) or even man-made events, 

such as terrorism acts or collisions with ships, which could impact the wind turbine structure 

causing a damage. The sensitivity of a wind turbine's structural integrity to natural hazards 

depends on the type of platform. For instance, monopile and tripod foundations, being 

bottom-supported, may be affected by earthquakes, while floating structures would remain 

unaffected.  

This modelling framework is suitable for various wind turbine support structures. e.g. 

spar buoy, tension leg platform, semi-submersible platform, monopile or tripod structure. 

Monopile and tripod foundations are fixed and limited to shallow water (i.e. <50m), but they 

are widespread [468], while floating structures are used for deep water. 

This means that a library of disruptive events models should be built and included in the 

simulation according to the site and the considered support structure.  
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A possible model for earthquakes is described in the following. It is assumed that a hazard 

curve (Figure 6.3) is available to describe the annual probability of a seismic event occurring 

at a specific site in relation to its magnitude, expressed in terms of peak ground acceleration 

(PGA).  

 

 

Figure 6.3 Example of hazard curve discretization and example of fragility curves 

 

According to [469], to calculate the date of the event and its magnitude, the hazard curve 

is discretized into a user-defined number of magnitude classes. For each magnitude value, 

the annual probability of occurrence is thus obtained. Since each different magnitude class 

occurs at a fixed constant rate, the distribution of the time between events is exponentially 

distributed. Monte Carlo sampling is used to determine the time to the next event and added 

to the current event date. The procedure is repeated until the end of plant life is reached, and 

the process is replicated over all magnitude classes in order to obtain a list of events' dates 

and their magnitudes. 

In order to estimate the damage the system suffers after each event, fragility curves are 

used [469]. Given the magnitude of the event (e.g. PGA), the fragility curve provides the 

probability of exceeding a predetermined damage state, i.e. failure modes. The limit seismic 

load before failure occurs is a random variable log-normally distributed, and the system will 

fail if its seismic capacity is less than or equal to the ground motion level corresponding to 

the chosen intensity measure. The cumulative distribution function of the probability of 

exceeding a fixed damage state (cdff) conditional on a PGA is given by (6.10). 
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Where Φ is the standard normal cumulative distribution, µ the mean of the distribution 

and equal to a·PGA·b, a and b being experimentally derived constants, and β the standard 

deviation of the distribution. 

Fragility curves are available in the literature for many pairs of damage states’ 

components, systems and plants, but they can also be constructed using simulation 

procedures (e.g. Finite Elements Simulation). With regard to bottom-fixed offshore wind 

power plants, fragility curves are available for monopile [470-472] and jacket foundations 

[473] subjected to seismic loading, the combination of aerodynamic and seismic loads [474, 

475] and hurricane and seismic load [476], as well as electrical grid damages [477, 478]. 

While [474, 476] refer to land-based wind turbines, their results are easily applied to bottom-

fixed offshore wind systems.  

Three different damage levels are considered here, namely low, medium, and high. Each 

damage level is associated with a specific time to repair and cost, which is a percentage of 

the investment. The highest damage level is associated with destructive damage, i.e. the 

interruption of turbine life and the impossibility of restoring it. If the probability distributions 

of repair time and cost are known, it is possible to consider their uncertainty using Monte 

Carlo sampling. 

For the determination of the damage level, for each turbine, a random number between 0 

and 1 is sampled for each event, starting from the highest damage level and arriving at the 

lowest. If the random number is less or equal to the cdff value associated with the PGA of 

the event, damage occurs. If the random number is greater than the cdff value, it is compared 

with another damage level until all occurrences of damage states are verified. If the random 

number is greater than all cdff values, the event does not lead to a fault. 

The disruptive events that do not lead to a failure are neglected, while the others are 

included in the list of failures with their date, time to repair and cost. 

At the end of this procedure, the output is a list containing, for each turbine, the 

occurrence date, down time and expected cost of all disruptive events that will occur in the 

current run. 

Additionally, another model to account for ship collision is described. The ship collision 

event simulation and the relative damage assessment are developed following a procedure 

that is like the disruptive events simulation procedure proposed above. Based on the 
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literature review, the whole ship collision probability, that is, 10-6 events per hour, is divided 

into low-speed, medium-speed, and high-speed collision. The low-speed collisions represent 

50% of the events, the medium-speed collisions are 30% of the events, and the high-speed 

collisions are 20% of the events. The speeds are 1 m/s, 2.8 m/s, and 6 m/s respectively. 

The size of the ship which strikes the wind turbine structure is divided into three classes. 

The 10% of the events are caused by a heavy bulk ship and cause disruptive events that lead 

to the collapse of the structure. The 36% of the events are caused by a medium-sized ship 

that causes medium damage to the turbine. The 54% of the collision is caused by a light 

service vessel that leads to a little damage to the turbine. The three sizes are associated with 

three supposed different estimated fragility curves with a mean of log(1.48) m/s, log(3.88) 

m/s, and log(4) m/s and a standard deviation of 0.23 m/s, 0.55 m/s, and 0.55 m/s respectively. 

Figure 6.4 shows the fragility curves of the wind turbine. 

 
Figure 6.4 Fragility curves of the wind turbine for different ship sizes 

 

The fragility curves have been supposed by comparing the data about the expected 

deformation of the fixed-bottom wind turbine under different wind speed impacts, for which 

the fragility curves are available in the literature, and the data on the expected deformation 

of the spar buoy platform under the same wind speed impact. The impact of a heavy bulk 

ship leads to the disruption of the structure, whereas with the medium to a restoring cost and 

production loss of 30% of the investment cost. Finally, the impact of the light service vessel 
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is associated with an economic loss of 10% of the investment cost. For each turbine, the 

procedure follows the subsequent steps. 

1. For each impact speed, the event date is sampled from an exponential distribution 

build with the events/year rate associated with each impact speed. Therefore, three event 

types are possible: low, medium, and high impact speed. 

2. The event date is summed with the time now, the event speed that identifies the event 

type, and the date is added to the event list, and the simulation clock jumps to the event date.  

3. Step 2 is repeated until the simulation clock reaches the plant years life. If the time 

now exceeds the plant’s life, the event is neglected, and the event list is concluded. 

4. Starting from the event with the nearest date and arriving at the farthest, a random 

number between 0 and 1 is sampled and compared with the lowest probability value 

associated with the ship size. If the random number is lesser than the probability, the event 

is associated with that type of ship; if not, the next higher probability is considered, and the 

procedure is repeated. Finally, if the random number is higher than all the probability 

associated with the ship type, the smallest ship is selected. 

5. Starting from the event with the nearest date and arriving at the farthest, a random 

number between 0 and 1 is sampled and compared with the ship size cumulative distribution 

function value associated with the impact speed. Suppose the random number is lesser than 

the probability value. In that case, damage occurs, and the economic loss associated with the 

event type is added to the list of economic losses due to ship collision. If the event is an 

impact with a heavy bulk ship, the wind turbine collapses, and it cannot be recovered. The 

event does not lead to a fault if the random number is greater than the cumulative distribution 

function value associated with the impact speed. 

At the end of the procedure, for each turbine, an event list with event date, impact speed, 

ship size, and economic loss is obtained. This list enters the technical model to change the 

farm layout if an impact with a bulk ship occurs and always the economic model to concur 

in the net present value assessment. 

6.3.6 Internal random events 

It is assumed that the wind turbine system can be decomposed into the following 

components or subassemblies [479]: pitch and hydraulic system, generator, gearbox, blades, 

grease/oil/cooling liquid substitution, electrical components, contractor/circuit breaker, 

controls, safety, sensors, pumps/motor, hub, heaters/coolers, yaw system, tower/structure, 
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power supply/converter, service, transformer and other. Each component or subassembly 

has three different failure modes, which determine a minor repair, a major repair, or a 

replacement. The components are considered in series, so when a single element fails, the 

whole system fails and production stops. Each failure mode of each component is associated 

with a specific mean failure rate, time to repair and expected restoration cost (i.e. material 

replacement cost, subsequently utilized to compute the repair cost). 

Although the adopted procedure has already been shown in section 4.2.4, it is reported 

here for the sake of readability.   

For each j-th component, an overall constant failure rate λj is known, as well as the 

frequency distribution fi of the three i-th failure modes. 

For each turbine, the algorithm to generate the failures events list includes the following 

steps:  

1. The actual failure rate of each component failure mode is computed as k = j fi. As 

failures occur at a constant rate, the distribution of their time to failure (TTF) will be 

exponential. All subsequent failures of the same type will occur after a certain 

random TTF, calculated from the last time the same type of failure occurred. The 

TTF is to be considered as a net time, i.e. excluding plant shutdowns due to further 

failure types occurring in the meantime. The different failure types, being 

conceptually independent of each other, will not affect the timing of the failure 

sequence of the other categories. 

2. For each of the fault types, generate a TTF sequence by repeatedly randomly 

sampling its distribution. In practice, having extracted a random number R ϵ [0,1], 

the m-th TTF of the k-th fault type will be TTFkm = - λk ln (R). 

3. Repeat the procedure until the sum of the TTFkm generated for the fault type 

considered is at least equal to the nominal life of the installation, so as to generate a 

random sequence of faults of the same type covering the entire life of the installation. 

4. For each k-th fault type, the theoretical date of occurrence of the m-th fault (assuming 

a zero time to repair, TTR) will be equal to the sum of all previous TTFs (TTFkm) 

times m, ranging from 1 to m-1. 

5. Repeat steps 2 to 4 for each type of failure, obtaining as many independent sequences 

of timed failures. 
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6. Combine the obtained sequences into a single sequence by sorting the faults by 

increasing dates. This would be the timetable in which the various faults would 

hypothetically occur if repairs were instantaneous or occurred in negligible time. 

7. Starting with the first fault in the sequence, add the random TTR generated for the 

repair of the fault under consideration to the current dates of all subsequent faults. 

The number of required technicians for the repair is sampled from a standard 

distribution centred on the mean number of required technicians and with a user-

given standard deviation. The restoration cost is sampled from a triangular 

distribution centred in the mean value of the restoration cost and with minimum and 

maximum values a percentage of the mean value (e.g. 90% and 110%). The repair 

cost is calculated by multiplying the hourly cost of the technicians, the number of 

required technicians, and restoring time and adding the cost of materials (equation 

6.8). 

8. Repeat step 7 sequentially for all scheduled faults, updating the attempted occurrence 

date of all subsequent faults each time. This gradual shift allows the net TTF value 

of each fault to be maintained with respect to the previous occurrence of the same 

type of fault, net of interruptions for the repair of other faults occurring in the 

meantime. When the date of failures following the current one, as a result of this 

forward shift sequence, becomes greater than the nominal life of the system, these 

failures will be ignored because they will not occur. 

9. When the TTR has also been added for the penultimate fault in the sequence (and 

thus the date of the next fault has slipped), the actual occurrence date of all faults is 

obtained. 

The time-phased lists of external disruptive events and components’ failures are then 

merged in order to obtain, for each turbine, a global list containing all events and occurrence 

dates, ordered over time, their time to repair, the required number of technicians for the 

repair and their restoration cost over the entire plant life.  

If the disruptive event date falls in a down-time period, the fault restoration process is 

interrupted, and the system restoration from the disruptive event starts. The events’ dates of 

the failures following a disruptive event are shifted, as explained in the above algorithm, 

while the event date of a disruptive event remains unchanged.  
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At the end of the events generation procedure, the entire system life span is subdivided 

into unit time intervals Δt (here Δt = 1 hr). For each time interval, the system state variable 

d is defined, assuming value 0 if the system is down and 1 if the system is up. The values of 

the state variable are stored in an hourly availability array Ayh where subscripts represent the 

y-th year of equipment life and the h-th hour. 

6.3.7 Economic model uncertainty 

This section and the subsequent one include all uncertainties affecting the economic and 

financial parameters, i.e. electricity price variability, the uncertainty of capital investment, 

including learning effects, tax policy etc. Additionally, the sources of epistemic uncertainty 

in the economic model are bank interest rate, investment cost, plant nominal life, and self-

interest rate. 

The computation of investment costs introduces epistemic uncertainty due to the 

relationships utilized. In order to address this, the value is sampled from a probability 

distribution constructed based on the computed expected value. On the other hand, revenue 

calculation involves multiplying the hourly produced power by the hourly energy price while 

disregarding any downtime periods. Market risk is primarily considered through the 

modelling of hourly energy prices. Historical time series data is used as input to perform 

regression analysis and obtain coefficients for an autoregressive integrated moving average 

(ARIMA) model. These parameters are then utilised to simulate, using Monte Carlo 

simulation, 1000 paths for each run, and the middle time series is selected from the set for 

revenue computation in the current run. Additionally, scenarios on the forecasted mean 

electricity price are used to set the mean value over that will be constructed the time series 

to include long-term variability. Since the coefficients of the ARIMA model change 

depending on the provided data, for the sake of example in (equation 6.11) the structure of 

the adopted ARIMA(1,1,1) equation is shown.  

 

 𝑦𝑦 = (1 − 𝜙1)𝑚 + (1 + 𝜙1)𝑦𝑡−1 − 𝜙1𝑦𝑡−2 + 𝑒𝑡 + 𝜃1𝑒𝑡−1   (6.11) 

 

Where y is the variable under regression, m is the drift term, Φ1 is the auto-regressive 

coefficient, θ1 represents the moving average coefficient, e is the error term, and the subscript 

t identifies the reference time period. 
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In order to incorporate financial risk, Monte Carlo sampling is employed, drawing from 

a predefined probability density function of the plant's nominal life, bank investment cost, 

and self-interest rate. 

6.3.8 Long-term scenario effects (type IV uncertainty) 

To the best of our knowledge, previous works have never accounted for Type IV 

uncertainty, which represents random discontinuities arising from factors such as economic, 

political, and regulatory scenario variations combined with all the other sources of 

uncertainty. This omission hinders a comprehensive assessment of the system's economic 

viability. In the proposed method, scenarios’ effects are taken into account by modelling the 

long-term trend of average electricity price, the impact of learning effects on capital 

investment and the changes in subsidies’ policies. 

In greater detail, the market risk itself encompasses both short-term, specifically 

modelling the fluctuations in energy prices over a brief period, and long-term changes that 

may occur under various scenarios. When considering future wind farm investments, it also 

becomes appropriate to incorporate the risk associated with potential reductions in 

investment costs due to the learning rate, called investment cost-related risk in Table 6.3. 

Additionally, given the substantial role subsidies play in this sector, it is crucial to model the 

potential changes that may arise over an extended period due to political decisions. The latter 

source of risk is called regulatory risk in Table 6.3.   

The model incorporates the concept of investment cost reduction by utilizing the offshore 

wind power learning rate, as documented in the studies by Fortes et al. (2015) and Shields 

et al. [443, 444], where authors consider a constant learning rate of about 9%. This value is 

combined with scenarios concerning the projected installed capacity of offshore wind power 

in Europe by 2030, as presented by Nghiem and Pineda [445]. Figure 6.5 shows the resulting 

learning effect curve. The curve represents the price per megawatt installed in the function 

of the year of installation, considering the cumulative growth of installed capacity over the 

years. 
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Figure 6.5 Learning rate curve: investment costs of offshore wind power system per MW 

installed during the years 
 

The values of scenarios’ variables have already been defined in section 6.2, and their 

number reduction has been discussed. Furthermore, the scenarios’ combination procedure 

has been introduced. Despite that, a brief recap is made in the following.  

Commonly adopted scenarios’ variables have been taken from the literature to consider 

the long-term market risk and regulatory risk [442]. In literature, reports on the possible 

evolution of the mean electricity price and its volatility are widespread. One can select the 

report that most fits its requirements and the boundary condition of the case study. The short-

term variability of the energy price is then simulated starting from the expected yearly energy 

price found in the considered scenarios. Regulatory risk can be modelled by considering 

possible strategies of subsidies. Indeed, nowadays, countries basically adopt three different 

policies: no-subsidies, feed-in tariff, and feed-in premium tariff. A Feed-in tariff consists of 

a fixed price paid for the generated power without the influence of the current market price. 

Instead, the feed-in premium tariff consists of an extra-price paid by summing the subsidy 

value to the current market price. 

If variables (e.g., the electricity price, the investment cost reduction, and subsidies policy) 

have different driving factors and the assumptions are not mutually exclusive, they can be 
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combined to obtain new and more comprehensive scenarios. During the reports’ selection, 

this issue must be carefully considered.  

One significant drawback of scenario analysis is the challenge it poses in decision-making 

under deep uncertainty, primarily due to the absence of assigned probabilities to scenarios. 

While assigning probabilities to scenario occurrences can be a complex task, there are certain 

variables for which such probabilities can be defined. For instance, by analysing political 

interests and opinions regarding renewable energy sources, it becomes possible to make 

assumptions about the evolution of subsidy policies.  

By assigning realistic probabilities to the best and worst-case scenarios, it becomes 

possible to use the mid-case scenarios as representative probabilities for each scenario. With 

sufficient information available, it is feasible to perform accurate estimations of scenario 

probabilities and associate credible probabilities with each scenario. In this study, a four-

step process is followed to integrate various scenarios and evaluate a single net present value 

probability density function for the investment. Firstly, scenarios pertaining to regulatory, 

long-term market, and investment cost-related risks are constructed, and the most probable 

scenarios are selected, as exposed in section 6.2. Next, the net present value probability 

density function is assessed for each scenario individually. Then, these functions are 

multiplied by their corresponding probabilities and subsequently aggregated by summation. 

The procedure is demonstrated in the case study example. 

6.3.9 Climate change effect 

In this work, climate change is considered an almost surely event, which affects the 

environment and the weather year after year. According to the literature, the inclusion of 

climate change is performed considering the expected percentual changes in wind speed 

producibility in the region of the location of the wind turbine. The wind producibility is 

expressed as produced power per hour divided by the rated power of the wind turbine. For 

instance, in the numerical example, the increase of 4% at the end of the plant’s life of wind 

producibility is considered for the location of the wind turbine. The percentual increase has 

been supposed to be linear. Therefore, starting from 0% and arriving at 4% each year of the 

plant life presents a percentual increase of 0.2%. The expected percentual changes increase 

or decrease the hourly produced power of the plant. Therefore, the adjusted produced power 

enters the economic model and the simulation proceeds. 
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6.3.10 Risk assessment 

As a measure of investment profitability, the Net Present Value (NPV) of cash flows over 

the project life span is adopted here. NPV is affected by all the above-discussed sources of 

uncertainties with their propagation effects. Therefore, in the NPV computation procedure, 

there are several nested uncertainty models. Each run of the simulation procedure ends with 

a specific value of computed NPV. To do this, the investment cost I0 must be computed as 

shown above. Then, I0  is reduced according to different scenarios related to the learning 

effect, and finally, it is sampled by a triangular distribution centred in its model-calculated 

nominal value using Monte Carlo simulation. Revenues are affected by the uncertainty of 

energy prices and the produced power. Moreover, the produced power is affected by the 

random uncertainty of the wind speed (modelled resorting to Markov processes) and by the 

epistemic uncertainty of the internal parameters (Monte Carlo sampled from a distribution 

centred on their nominal values). The random and disruptive events lists and the sample-

based computation of corrective maintenance costs directly affect the operating cost. 

Furthermore, bank and self-interest rate suffers from epistemic uncertainty, which is 

modelled using Monte Carlo sampling. The weighted average cost of capital uncertainty 

affects the NPV values acting on the discounting operation but also on the loan instalment, 

which influences taxes. 

To begin, the user selects a location and wind turbines’ type, and the program populates 

the data set with the turbine's technical specifications and relevant environmental data. Once 

all constant input data, including the number of runs, projected system lifespan years, and 

other necessary details, are declared, the simulation is initiated. 

During each run, the values of variables affected by epistemic uncertainty are determined 

by sampling the relevant probability distributions throughout each cycle. Subsequently, 

through simulation of the corresponding stochastic processes, annual time series of failures, 

wind speed, and electricity prices are generated. This enables the calculation of annual net 

produced energy, disregarding downtime periods. Subsequently, the economic model is 

utilized to calculate annual cash flows and determine the NPV, resulting in an NPV 

frequency distribution histogram computed over the entire number of performed runs.  

Risk assessment involves computing the probability density function of the NPV, 

evaluating the probability of obtaining an NPV lower than zero, and assessing the Value at 

Risk (VaR), assumed to be the maximum economic loss over the entire life of the system, 
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with a confidence level of 95%. Additionally, the coefficient of variation of NPV is assessed 

as a measure of its variability.  

The NPV is computed according to (equation 6.12), where Io is the investment cost, Y is 

the expected life of the plant expressed in years, CFy represents the cash flow related to the 

y-th year, and WACC (equation 6.13) is the weighted average cost of capital. 

 

 

𝑁𝑃𝑉 = −𝐼0 +∑
𝐶𝐹𝑦

(1 +𝑊𝐴𝐶𝐶)𝑦

𝑌

𝑦=1

 (6.12) 

 

 
𝑊𝐴𝐶𝐶 = 𝑐0 (

𝐼0 − 𝑉0
𝐼0

) + 𝑐𝑑 (
𝑉0
𝐼0
) (6.13) 

 

Where V0 stands for the debt, cd represents its cost, and co is the cost of equity. 

Considering the yearly revenue, the yearly operating cost (OCy) and taxes (Ty), the cash flow 

related to the y-th year is calculated as shown in (equation 6.14). 

 

 𝐶𝐹𝑦 = 𝑅𝑦 − 𝑂𝐶𝑦 − 𝑇𝑦 (6.14) 

 

Taxes can be expressed by (equation 6.15) considering the tax rate (a), the share interests 

of the debt (qy), and the depreciation charge (AMM).  

 

 𝑇𝑦 = 𝑎[𝑅𝑦 − 𝑂𝐶𝑦 − 𝑞𝑦 − 𝐴𝑀𝑀] (6.15) 

 

The loan instalment L (equation 6.16) is supposed to be constant; therefore, if Vy-1 is the 

outstanding debt from the year y, the shared interest is computable with (equation 6.17).  

 

 

 
𝐿 = 𝑉0

𝑐𝑑(1 + 𝑐𝑑)
𝑛

(1 + 𝑐𝑑)𝑛 − 1
 (6.16) 

   

 𝑞𝑦 = 𝑐𝑑𝑉𝑦−1 (6.17) 

 

Where n is the number of years of repayment of the financed capital, which is set 

according to the loan agreement. 

6.3.11 Risk hedging 

Given that uncertainty can negatively affect the profitability of the investment, financial 

tools can be employed to hedge risk and are included in the risk assessment model. In 

particular, financial derivatives can be used for speculative purposes or for risk hedging. In 
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the case of renewable energy projects, investors typically aim for the latter. Different energy 

markets require different risk hedging strategies, which is why practical guides are available 

to manage market uncertainty [480]. Electricity and weather-based swap and forward 

contracts are commonly utilized for risk mitigation. This involves resorting to a fixed price 

per MWh for a predetermined energy amount [481, 482]. Additionally, more complex 

financial instruments, such as vanilla plain options and exotic energy derivatives, have been 

explored [483]. Given the market's volatility, strategies for accurately pricing wind power 

future contracts [484] and power forward contracts [485] are already under investigation. As 

energy forecasting is a challenging task, addressing prediction errors can assist in risk 

mitigation. This is why weather derivatives based on forecast errors have been developed 

[486]. Real options theory has also been explored in the feasibility study of wind farms [487]. 

In order to streamline the computational burden of the simulation tool and maintain 

simplicity, an over-the-counter (OTC) contract was selected for inclusion in this thesis, 

despite the availability of other appropriate financial instruments for mitigating electricity 

price risk. The framework's modular nature allows for easy modification of this specific 

block (depicted as the feedback arc in Figure 6.2) to accommodate an expanded range of 

contracts, both in number and type. 

The implemented model incorporates a forward contract as the chosen financial 

instrument, which entails a fixed volume (V) representing the total MW of power sold to a 

single client at a predetermined price, called strike price (St). The mathematical formulation 

of the forward price F, considering that the electricity is not storable, is in (6.18). 

 

 𝐹 = 𝑉 ∙ 𝑆𝑡 ∙ 𝑒𝑟∙𝑡 (6.18) 

 

Where r  is the risk-free rate of the investment and t is the delivery date in years. 

Generally, the forward power price is often a biased forecast of the future spot price. The 

forward premium decreases with the expected variance of wholesale spot prices and 

increases with the expected skewness of wholesale spot prices. In equilibrium, F is the 

expected value of the spot price minus the expected variance of spot prices multiplied by a 

positive parameter (k) plus the skewness of spot prices multiplied by a positive parameter 

(𝛾), as shown in (6.19) [488]. These two parameters are usually selected to take into account 

the risk aversion of the investors. 

 

 𝐹 = 𝐸(𝑆𝑡) − 𝑘 ∙ 𝑣𝑎𝑟(𝑆𝑡) + 𝛾 ∙ 𝑠𝑘𝑒𝑤(𝑆𝑡) (6.19) 
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The negative impact of expected spot price variance on forward premiums is rooted in 

the risk-averse behaviour of producers who seek to mitigate price risk through forward 

contracts. Conversely, a positive skewness implies a higher likelihood of significant upward 

price spikes, prompting risk-averse retailers to hedge against spot price risk. Consequently, 

the risk-related hedging actions of both producers and retailers exert downward and upward 

pressure on forward prices as a means to safeguard against spot price uncertainty. In any 

case, the previous equations are used to estimate the price of the forward, but generally, the 

buyer and the seller arrive at different estimations. In fact, the buyer assumes that the price 

will increase, whereas the seller assumes that it will decrease. 

Through this instrument, the seller effectively hedges against the risk of a decrease in the 

energy price, while the buyer hedges against the risk of an increase in the energy price. The 

buyer benefits when the fixed price exceeds the prevailing market price, whereas the seller 

benefits in the opposite scenario. The contract establishes a mandatory obligation for the 

seller, who is the energy producer, to supply a fixed quantity of energy to the buyer and to 

the buyer to buy it. The contracted energy must be delivered on an hourly basis, with each 

hour's amount determined by the ratio between the total volume of the contract and the total 

number of hours within the interval that spans from the contract's start date to its expiration 

date. In the case of a contract duration exceeding one year, the price must be adjusted by 

capitalizing it using the market-free risk cost of capital. In situations where the energy 

producer is unable to meet the required delivery quantities due to factors such as a lack of 

wind or the unavailability of certain wind turbines, they are obliged to supply all the available 

produced energy and compensate the buyer with a penalty as predetermined in the contract. 

This penalty is proportional to the amount of undelivered power. The computational 

procedure of the producer cash flow related to the forward contract (FC) is shown in equation 

6.20. 

 

 𝑖𝑓 𝐻𝑃𝑦ℎ ≥ 𝑉𝑦ℎ ∶ 𝐹𝐶𝑦 = 𝐹𝑃 ∙ 𝑉𝑦ℎ 

(6.20)   

 𝑒𝑙𝑠𝑒 ∶ 𝐹𝐶𝑦 = 𝐹𝑃 ∙ 𝐻𝑃𝑦ℎ − 𝐹𝑃𝑃(𝑉𝑦ℎ −𝐻𝑃𝑦ℎ) 

 

Where Vyh is the due hourly volume, FP is the contracted electricity price per MWh, and 

FPP is the contracted penalty. Following the determination of the total energy generated by 

the farm within a specific hour, if the quantity is less than or equal to the fixed quantity stated 
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in the contract, all the energy is sold at the predetermined strike price, and the corresponding 

penalty is calculated and paid to the buyer. However, if the generated energy exceeds the 

contractually obligated amount, only the energy specified by the contract is sold at the strike 

price, while the remaining power is sold at the prevailing market price. 

The financial instrument is integrated into the revenue computation process. 

6.4 Assessing the performance of wind farms under 

uncertainty: a case study 

In order to show its capabilities, the model was implemented in MATLAB environment 

and applied to the example of a 20 turbines wind farm located 5 kilometres off the port of 

Brindisi, Italy, at coordinates latitude 40.68, longitude 18.06 degrees (Figure 6.6). The water 

depth is approximately 400 metres. The expected date for the investment is the year 2030. 

 

 

Figure 6.6 Site location and wind farm layout 

 
 

The following description applies to each wind turbine within the farm. Based on the 

specific site characteristics, a horizontal axis NREL 5-MW reference wind turbine [489] was 

selected. It is installed on a SPAR platform. The wind turbine is designed for a rated wind 

speed of 11.4 m/s (with cut-in and cut-off wind speeds at 3 and 25 m/s, respectively). The 

wind turbine features a rotor diameter of 126 meters and a hub height of 90 meters. It utilizes 

a geared drive train and operates with pitch regulation. The power curve and the power 

coefficient of this turbine are presented in Figure 6.7. 
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Figure 6.7. 5 MW Wind turbine power curve and power coefficient 

 

The farm arrangement is based on adopting twenty turbines arranged in two rows, with a 

horizontal spacing of 3 diameters and a vertical spacing of 8 diameters. The adopted layout 

has been selected according to the indication provided in references [460, 461] to reduce the 

wake effect impact on the produced energy. 

To illustrate the dynamic behaviour of the wake area, Figure 6.8 presents the percentage 

of waked area for the adopted reference wind turbine type as a function of wind direction, 

assuming it is the fifth of the front row, exposed to the north. When the wind originates from 

the south, it is overshadowed by the turbines in the second row, and when the wind comes 

from the east or west, it is affected by the turbines within the same row. 

 
Figure 6.8 Percentage of waked rotor area in the function of wind direction 
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The site-specific wind direction distribution is represented by the wind rose shown in 

Figure 6.9.  

 

 
Figure 6.9 Real data wind rose (left side) and simulated data wind rose for the first year of 

a generic run (right side) 

 

The ECMWF (European Centre for Medium-Range Weather Forecasts) provided ERA5-

Land hourly wind data spanning from 1950 to the present. From this dataset, the hourly time 

series of wind speed and wind direction at the height of 10 meters were extracted for the 

period between 2015 and 2019, and used for defining states and transition rates of the 

Markov chain. These, which are employed to generate synthetic wind speed values 

throughout the operational life of the wind plant, are to be adjusted to the hub height using 

a logarithmic law. 

The average wind speed during the twenty years of operation is 5.89 m/s, the same as the 

historical series, and the coefficient of variation of the historical time series is 0.55, while 

the one of the synthetic time series is 0.5. In addition, the maximum value of the speed is 18 

m/s, the same as the historical time series. Figure 6.10 shows a sample wind speed time 

series compared with actual data.  

 

 

Based on the simulated wind speed, the instantaneous power output is computed 

according to equation 6.1, assuming the power curve and power coefficient curves of the 

readopted reference turbine type shown in Figure 6.7. Furthermore, the produced power is  
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Figure 6.10 Real wind speed data (red line) compared with simulated wind speed time 

series for a generic year of the simulation. 

 

adjusted to consider climate change effects by adopting the procedure and data explained in 

section 6.3.9. 

In order to estimate structure costs, all geometrical and construction data for the Spar 

floating platform were sourced from Castro-Santos [464], employing the adopted cost 

model. The same model was used for estimating the wind turbines’ cost, resorting to the 

above-declared data. For the distance-related costs, the wind farm layout and location were 

considered. The main results of the cost estimation are resumed in Table 6.5. 

The expected investment cost is computed according to 2013 values. Table 6.5 costs have 

been adjusted by applying the current EU producer price index (PPI) to account for present 

value considerations. The European PPI in 2013 was 103.7, and at the beginning of 2023 

was 133.6 [490]. This correction leads to an increase of about 30%. 

 

Table 6.5 Main items costs calculated by the model 

Cost item Nominal value 

Wind turbines 157.4 M€ 

Floating platforms 92.0 M€ 

Transmission systems 29.3 M€ 

Mooring and anchoring systems 36.5 M€ 

Wind turbines installation 13.0 M€ 

Floating platforms installation 13.9 M€ 

Mooring and anchoring systems installation 1.4 M€ 

Transmission systems installation 3.5 M€ 

Total Investment Cost 347 M€ 
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Additionally, to better account for investment cost-related risk, three different learning 

effect values were considered. This allows us to include the effect of capital cost reduction 

in case the investment is delayed. 

In section 6.2, the possible events related to the investment cost reduction have already 

been discussed (Table 6.2). Therefore, as a result of the aforementioned assumptions, the 

investment cost reductions for events H, M, and L are respectively about 23%, 17%, and 

12% based on the assumed learning curve discussed in section 6.3.8. 

As far as electricity sale revenues are considered, a time series of energy prices must be 

generated. 

The hourly time series of the Italian energy price in 2021, obtained from the GME (Italian 

Power Exchange) database, is employed to estimate the parameters of the ARIMA regression 

model. This model has been used to simulate the wind speed values throughout the 

operational lifespan of the wind plant. In addition to capturing short-term variability, which 

is shown, for instance, in Figure 6.11, a long-term trend component that affects the average 

base price is also incorporated, assuming the three values of the scenario’s variables exposed 

in section 6.2, and shown in Figure 6.12. The behaviour of the electricity price is similar to 

the real-time series behaviour in terms of mean and maximum and minimum values. 

 

 

Figure 6.11 Simulated time series of electricity price for one year of plant's life 
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Figure 6.12 Mean energy price during years according to the T value of scenario’s variable 

(red line), C value (blue line) and R value (green line). 
 

In section 6.2, the possible values of the scenario’s variable subsidy policy have been 

fixed in feed-in, feed-in premium, and no subsidies, as summarised in Table 6.2. 

The scenarios’ variables are grouped into three categories, one for each scenario driver 

(i.e., mean electricity price, subsidies, and learning effect), and, within each group, they are 

mutually exclusive. It is important to note that if the Feed-in Tariff subsidy is selected, the 

NPV probability density function is not influenced by the energy price but is still influenced 

by the investment cost reduction. This results in a total of twenty-one possible scenarios 

when considering all the permissible permutations. The energy price events and investment 

cost events are based on the European energy scenarios for 2050. The energy price scenarios 

are primarily driven by the relationship between West and East countries, while the 

investment cost scenarios are influenced by the internal policies of European member states. 

On the other hand, the subsidy scenarios are primarily influenced by the internal policy of 

Italy. These assumptions allow for the assumption of independence among the different 

variables' evolutions and enable the consideration of all possible permutations. 

Recalling the consideration made in section 6.2, in order to demonstrate the model's 

capabilities and streamline the number of scenarios, a scenario reduction process was 

conducted by utilizing the concept of the plausibility cone [37, 70-72]. The plausibility cone 
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concept allows us to establish a narrowed range of scenarios that are deemed plausible within 

a certain context.  

The author has categorized the assumed scenarios into four groups: preferable, possible, 

plausible, and probable. While scenarios HF, MF, and LF may be considered preferable from 

the perspective of a wind power investor, they do not fall into the probable group. This is 

because the trend in subsidies policies worldwide is shifting towards a feed-in premium tariff 

rather than a feed-in tariff. However, among the set of three scenarios, LF remains the most 

plausible option. This is because if the investment cost reduction is lower, the regulator may 

adopt a more effective subsidies policy. Moreover, the current daily news on the geopolitical 

situation suggests a non-relief scenario between West and East countries, indicating that 

scenarios assuming relief (R) are only possible rather than probable. Given that the worst-

case tension scenario (T) serves as one of the boundaries for the analysis, the central scenario 

(C) becomes the most probable option. While scenarios with no subsidies (N) are plausible, 

it appears that Italian politicians are inclined towards implementing a subsidies policy, 

particularly for wind and solar energy. Therefore, scenarios involving feed-in premium 

subsidies fall into the probable group. Furthermore, considering the ongoing investments in 

wind power systems worldwide and in Europe, it is highly probable that a significant 

reduction in investment costs will occur. Consequently, in the author’s opinion, the High 

Investment Cost Reduction (HCP) scenario represents the most probable future outcome. 

Based on the statements and projections made by the European and Italian governments 

regarding renewable energy sources and the expected advancements in wind power 

technology, four distinct narratives on subsidies policy development were considered (this 

defines the treatment of Type IV uncertainty considered in this application example). 

Simulation results were then combined by taking into account their respective probabilities 

to obtain a consolidated probability density function for the NPV. The NPV density function 

for each scenario was evaluated individually and then multiplied by its associated 

probability. Finally, these individual results were summed together to derive the overall NPV 

probability density function. In order to capture the varying stages of the plant's life cycle, it 

was divided into six time spans. For each time span, a specific percentage change in the 

Feed-in Premium tariff value was assigned, as detailed in Table 6.6. 
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Table 6.6 Time span percentage change in feed-in premium tariff value 

Probability  Time span 

 1 2 3 4 5 6 

35% 0% 0% 0% 0% 0% 0% 

5% 5% 10% 15% 20% 25% 25% 

20% -5% -30% -50% -60% -70% -70% 

40% 0% 0% -70% -70% -70% -70% 
 

In order to account for epistemic uncertainty in each variable, Monte Carlo simulation is 

employed using symmetrical triangular distributions [min, nominal, max]. The minimum 

and maximum values in the distribution are determined as the nominal value ± (PD × 

nominal value), where PD represents the percentual deviation. However, for bank interest 

rate and self-interest rate, epistemic uncertainty is not described by a percentage deviation 

but by an absolute deviation. The bank interest rate is set as (6 ± 4)%, while the self-interest 

rate is (4 ± 2)%. Nominal values and the adopted PD, based on references [491, 492], can be 

found in Table 6.7. Additional assumed parameters for the analysis include a financial loan 

duration of 10 years, with 50% of the investment cost being financed. The tax rate is set at 

35%, the hourly cost for technicians is 50 €/hour per person, and the yearly percentage of 

amortization is 7%.  

 

Table 6.7 Parameters for variables showing epistemic uncertainty 

Variable Nominal value PD 

Power coefficient See curve in Figure 6.7 ± 1 % 

Generator efficiency  See curve in Figure 6.13 ± 1 % 

Power electronic 

efficiency 

See curve in Figure 6.13 ± 1 % 

Gearbox efficiency 98 % ± 1 % 

Restoration Cost [356] ±·10 % 

Investment cost 350 M€  ±·30 % 

Plant years life 20 (nominal) ±10 % 
 

In order to model failures, data on the average failure rate, average repair time, average 

cost, and the average number of technicians classified according to main components and 

damage level were taken from [356] and used to generate failure histories according to the 

method described above. Since in Carroll et al. [356] the failure and restoration data were 

referred to 2-4 MW wind turbines, the values of restoration cost were increased by 10% to 

account for a higher power turbine and adjusted with the European Producer Price Index  
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Figure 6.13 Generator and power electronic efficiency curves 

 

with the aim to consider inflation. Considering the site location and the floating platform 

type, earthquake-disruptive events were neglected because of the very low probability and 

effects of their occurrences. However, ship collisions events are included by following the 

procedure and data reported in section 6.3.5. 

As far as the risk hedging is concerned in the examined scenarios, Table 6.8 provides 

the main assumptions on the forward contract. 

 

Table 6.8 Forward contract 

Expiring Date 2042 

Starting date 2030 

Strike price 130 €/MWh 

Yearly volume 50 GWh 

Risk-free rate 1.5% 

Penalty per MWh 20 €/MWh 

 

The system analysis was performed, including 1000 iterations. The obtained frequency 

distribution of the Net Present Value is shown in Figure 6.14. The NPV average value is 

about 8 M€ and a standard deviation of 11 M€. In fact, its maximum value is 43 M€, whereas 

its minimum is -18 M€. The VaR at 5% of probability of occurrence is equal to -9 M€, so 

only with a probability lesser than 5% will there be a loss bigger than 9 M€. However, the 

probability of the NPV being less than 0, resulting in economic loss, is 24%.  Table 6.9 

provides some information on the NPV and other risk parameters. 
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Figure 6.14 Net present value frequency distribution of wind farm. 
 

Table 6.9 Profitability and risk analysis results 

Min Data Value -1.87·107 € 

Max Data Value 4.26·107 € 

E[NPV] 7.99·106 € 

σ 1.09·107 € 

CV 1.37 

P(NPV<0) 24.00 % 

VaR 5% -9.04·106 € 
 

Figure 6.15 shows the net present value distribution and the cumulative probability of a 

wind power system composed of a single wind turbine as compared to the NPV distribution 

and cumulative probability of the 20 units wind farm. The aforementioned data are still 

adopted for the comparison, but the future contract yearly volume underwent a twenty-fold 

reduction to account for the change in the number of wind turbines between the two systems 

considered. These distributions are obtained by resorting to the distribution fitter of 

MATLAB using a confidence level of 95%. Due to the low average wind speed that 

characterized the wind of the Mediterranean sea, a single wind turbine investment is not 

cost-effective. In fact, the expected value of the NPV is -2.2 M€ in front of an adjusted 

investment of about 25.5 M€. The scale economies and the higher availability of the system, 

which arise from the bigger number of independent wind turbines, more than compensate 
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the wake effect. Nevertheless, in spite of low average wind speeds, the wind farm design 

leads to a cost-effective investment.  

 

 

Figure 6.15 Net present value probability distribution (left side) and cumulative probability 

of net present value (right side) 

 

6.5 Final remarks 

This chapter presented the adaptation of the general framework introduced in Chapter 4 

for economic evaluation and economic risk assessment of industrial systems. The blocks of 

uncertainty that enter the economic model and the external disruptive events have been used 

to perform the risk assessment procedure. Furthermore, the feedback arc has been used for 

including risk mitigation actions on an already concluded design, i.e. for market risk 

mitigation purposes. Some sources of deep uncertainty involving the environment in which 

the system operates have been included using scenario analysis.  

The selected industrial system was offshore wind farms, and by using the framework, 

their evaluation and risk assessment under uncertainty have been carried out. By addressing 

this topic, the author aims to fill a significant gap in the existing literature where uncertainty 

is often overlooked or dealt with using simplified methods such as static Monte Carlo 

simulation or one parameter at a time sensitivity analysis. Moreover, previous studies have 

typically focused on considering uncertainty in only a limited number of influencing 

variables, such as wind speed and electricity price, without taking into account the broader 

range of uncertainties. The first step that acknowledges the importance of considering 

several sources of uncertainty simultaneously in this context can be found in reference [363], 

and it solely focuses on a single wind turbine, disregarding crucial factors in wind farms like 
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wind direction and the wake effect. Furthermore, that work does not account for type IV 

uncertainty sources, nor does it propose or provide any risk mitigation measures. By contrast, 

this part of the thesis addresses these limitations and provides a more comprehensive 

approach to the economic evaluation and risk assessment of offshore wind farms. A broader 

set of influencing variables has been considered, including wind direction and wake effect, 

climate change, ship collisions, and accounting for type IV uncertainty sources, such as 

political, regulatory, and technology development risk. Additionally, this work suggests and 

offers potential risk mitigation instruments to enhance decision-making in this field.  

The proposed model encompasses several notable features that contribute to its novelty 

and advancement in the field. Specifically, it introduces the following key elements in 

greater detail. Firstly, this model is the first attempt towards an integrated evaluation of 

uncertainty propagation, encompassing various types of variability sources within both short 

and long-term time horizons for wind farms. This comprehensive approach sets it apart from 

previous models that often focused on isolated aspects of uncertainty. Moreover, the model 

incorporates the economy of scale effects into the estimation of capital investment, and it 

accounts for the interference caused by the wake effect in energy production, an important 

factor that affects overall performance and efficiency. Furthermore, the model demonstrates 

its versatility by incorporating the capability to model scenario changes throughout the 

system's life cycle and the effects of climate change. Lastly, the model includes the 

consideration of financial derivatives as risk-hedging instruments. By integrating these 

instruments into the analysis, the model offers a more comprehensive perspective on risk 

management and enables stakeholders to make more informed decisions. 

The numerical application showed the model capabilities and demonstrated the 

importance of considering uncertainty propagation when assessing the profitability and 

investment risk of wind energy systems. In fact, despite the average value of the NPV 

amounting to 8 million euros, which represents the value obtained under the assumption of 

all nominal values for variables, the application of this uncertainty propagation method 

reveals concerning insights. Specifically, there is a 5% probability of incurring losses 

exceeding 9 million euros and a 24% chance of experiencing some level of loss.  

The current model at present is limited to a single elementary financial instrument, 

although it is feasible to incorporate more sophisticated tools. In addition, only electricity 

market risk hedging is included. Moreover, only earthquakes and ship collisions are 
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considered as external disruptive events. As a future work, the model will be extended in 

order to include a wider library of risk hedging instruments modelling, such as swaps and 

futures contracts, also including weather risk hedging. Furthermore, the model will 

incorporate additional types of disruptive events, such as rogue waves and hurricanes. 

Moreover, although the model has encompassed long-term phenomena associated with 

climate change, it neglected extreme weather events. They will be included, enabling a more 

comprehensive evaluation of the risks involved. It is worth noting that the installation of 

offshore wind turbines can influence the precipitation patterns in nearby onshore locations. 

The extraction of kinetic energy from the airflow by wind turbines introduces convergence 

upstream and divergence downstream, which appears to reduce precipitation near the shore 

[493]. Further studies are required to assess the environmental impact of this renewable 

energy system. Moreover, the presence of offshore platforms introduces new risks to 

maritime traffic, thus necessitating quantitative risk assessments for specific shipping routes 

[494].  

The model serves as a valuable decision support tool specifically designed for the 

planning phase of offshore wind investment projects. Its primary objective is to facilitate a 

risk-aware profitability evaluation, providing stakeholders with crucial insights to inform 

their decision-making processes. Additionally, the model's capability to assess the outcomes 

of alternative design choices throughout the project's life cycle makes it a valuable resource 

for designers. They can utilize the model to compare and evaluate various technical 

solutions, considering factors such as performance, cost-effectiveness, and risk implications. 

This feature enables designers to make informed decisions by weighing the trade-offs 

associated with different design options. Moreover, due to its modular architecture, the 

model can be employed during the operations phase as well. For example, it can be utilized 

to test alternative maintenance policies or production control strategies by leveraging real-

time wind and energy price forecasts. By selectively turning off certain modules, short-term 

simulations can be performed to evaluate the effectiveness and efficiency of different 

operational approaches. Overall, the suggested approach not only contributes to a more 

detailed and comprehensive assessment of offshore wind farm investments but also supports 

risk-aware decision-making throughout the project's life cycle. 

Therefore, recalling the research question mentioned in the introduction of Chapter 6, one 

can affirm that uncertainty strongly influences the economic evaluation of wind power 
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systems, and an economically effective investment evaluated without including uncertainty 

may no longer be effective when uncertainty is included. Furthermore, since the high 

volatility of the energy market, risk mitigation strategies can be used to reduce, with great 

results, the effect of market uncertainty. The scenario analysis is crucial to include long-term 

changes in the environment in which the system operates because they seriously affect the 

system’s performance, as can be seen in the numerical example. Finally, since simulating 

different scenarios leads to different economic results, the proposed procedure for combining 

the scenarios helps in estimating a single performance measure instead of several 

performances, which are hard to understand. 

In the end, the use of the general framework to address the performance assessment under 

uncertainty of an industrial system has been shown.  
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Conclusions 

Industrial systems are subject to various sources of uncertainty, which significantly 

impact their design and assessment. Indeed, the performance of components, equipment, and 

systems is strongly affected by uncertainty and the variability of the operating conditions. 

While this is widely recognised in the literature, it often still lacks the ability to address the 

inclusion of uncertainty during the design and evaluation phases. Although the industrial 

environment is characterised by a VUCA context, that includes market volatility, weather 

fluctuations, customer behaviour, and other factors, the complexity of modelling multiple 

uncertain and variable processes, inputs, and parameters involved in designing and 

evaluating industrial systems, as well as the ambiguity inherent in representing reality 

through models, are often streamlined, or overlooked. Since industrial designers and 

managers operate within a VUCA context, the necessity of proposing new methods to 

navigate this dynamic environment arises. 

Starting from the existing frameworks and methods available in the literature reviewed in 

Chapter 1, Chapter 2, and Chapter 3, this thesis aims to provide a comprehensive framework 

for designing and evaluating industrial systems under uncertainty, presented in Chapter 4. 

Numerous existing approaches have been systematised to produce a general framework that 

represents the uncertainty sources, propagates the uncertainty in the system model, assesses 

the technical and economic risk, and optimises the design or mitigates the risk. Additionally, 

a novel uncertainty sources classification method has been proposed. It clusters the 

uncertainty into four groups by analysing the variables' behaviour over time. According to 

this method, the uncertainty sources can be variables changing their value randomly over 

time, variables assuming an unknown value which is described according to a predefined 

probability density function, random occurrence of point events of either known or unknown 

intensity, and a random discontinuity where one or more variables occur a random step 

change in value at a random time. This classification is helpful in selecting the proper method 

for uncertainty representation and propagation. This way, selecting the proper system model 

is easier, too. 

The incorporation of uncertainty in the design and evaluation of industrial systems 

showed that it is crucial to avoid erroneous or not enough conscious decisions. 
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The application of the framework in two case studies, presented in Chapter 5 and Chapter 

6, has shown that the framework is general because of the differences between the 

investigated systems. The industrial systems of case studies have never been studied from 

the comprehensive uncertainty perspective proposed in this work. In particular, the study of 

designing shell and tube heat exchangers under uncertainty and variable operating conditions 

fills a literature gap, as most papers have neglected the uncertainty sources, and highlighted 

that uncertainty should be included during their design phase. Indeed, a heat exchanger that 

is able to meet the specifications when evaluated in nominal conditions may not meet them 

when uncertainty is considered. Furthermore, the application of the framework to the 

problem of evaluating offshore wind power plants fills the literature gap related to addressing 

this issue and demonstrates that a system that is economically effective when evaluated by 

neglecting uncertainty may not be effective when included. 

This new approach has the potential to describe and better understand the actual 

performance and behaviour of industrial systems, and the case studies are just two examples 

that demonstrate the benefits of including uncertainties and support the hypothesis that 

motivated this thesis. The analyses conducted with the framework support are more 

conscious of the reality, so the designs and evaluations can provide a more realistic forecast 

and representation of the performance. 

The proposed general framework and the case studies carried out allow the author to 

address the research questions that have been stated in the Introduction. 

Firstly, the additional modelling efforts required by the proposed general framework are 

justified in terms of achieving a more realistic assessment of the techno-economic 

performance of a design, improving the performance by adopting optimisation algorithms 

under uncertainty, and enabling a more accurate evaluation of economic performance. 

Indeed, the equipment design considering uncertainty has shown superior performance in 

comparison with pieces of equipment designed neglecting it. Furthermore, the more well-

modelled uncertainty sources are considered, the greater the accuracy of the risk assessment 

procedure. This results in an economic and technical benefit in considering uncertainty 

during the design and evaluation of equipment and industrial plants.  

Then, the inclusion of the uncertainty of correlations, components’ failures, disruptive 

events, and similar elements strongly affect the technical and economic performance of an 

industrial system. Indeed, the analysis of the distribution of the outlet temperature of the 
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shell and tube heat exchanger and the net present value distribution of the offshore wind 

farm have shown that the dispersion of the values around the expected one is not neglectable 

in order to achieve a proper risk assessment. Considering simultaneously the uncertainty 

sources, their effect may be accurately assessed. 

Finally, the analysed case studies have shown that an economically or technically viable 

system under deterministic conditions may not be viable when uncertainty is included. 

The general framework for designing and evaluating industrial systems under uncertainty 

has been developed, and its application has shown the vital role of uncertainty in determining 

industrial systems performance. 

Although the main objective of the thesis has been achieved, some limitations need to be 

pointed out. Firstly, although some suggestions have been provided, the user must manually 

select the required blocks and all the modelling methods without a procedure that helps in 

this decision-making process. Moreover, only two application examples have been carried 

out, thus resulting in a non-fully generalisation of the framework. Additionally, only market 

risk mitigation strategy capabilities have been shown. Finally, the lack of a manufacturing 

plant case study limits the current applicability of the framework to equipment and process 

plants. 

Future works 

Future works should address the limitations mentioned above. In particular, the lack of a 

procedure to help select the proper number of blocks and modelling methods makes this task 

difficult. Addressing the aforementioned issues allows researchers to comprehend whether 

it is possible to produce an automatic procedure for selecting the proper number of blocks 

of the framework and proper modelling methods.  

Then, other case studies should be analysed, with particular attention to manufacturing 

plants, which involve an enormous number of sources of uncertainty. Moreover, they are 

influenced by both continuous quantities and discrete uncertain variables. The present 

framework can cope with the uncertainty affecting equipment and process plants. However, 

it will be understood whether it is able to deal with the various sources of uncertainty which 

affect manufacturing plants. 

Eventually, other risk mitigation strategies should be tested and include real-time data to 

dynamically adapt and select risk mitigation instruments to specific instances. 
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At present, risk mitigation strategies for market risk have been successfully implemented. 

The effect of including other risk mitigation strategies to reduce the effects of other risks 

should be investigated. 

Finally, the possibility of including real-time data to help the dynamic adaptation of risk 

mitigation tools to specific instances should be addressed. 
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List of symbols  

Section 5.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol Unit  Caption Symbol Unit  Caption 

A [m2] Heat transfer area L [m] Tube length 

a1 [-] Numerical constant m [kg/s] Mass flow rate 

a2 [-] Numerical constant n [-] Number of tube passages 

a3 [-] Numerical constant Nt [-] Tubes number 

AFP [m2] Footprint in plant Ny [yr] Equipment life 

B [m] Baffle spacing NTU [-] Number of thermal units 

C* [-] Ratio of capacity rates OC [€/yr] Operating cost 

Cen [€/kWh] Energy cost P [kW] Pumping power 

Cl [m] Clearance Pattern [-] Tubes pattern 

cp [kJ/kgK] Specific heat Pr [-] Prandlt number 

De [m] Equivalent diameter Pt [m] Tube pitch 

do [m] Tube outer diameter Q [W] Duty 

DOC [€] 
Discounted operating 
cost 

Re [-] Reynolds number 

Ds [m] Shell diameter Rf [m2 K/W] 
Conductive fouling 

resistance 

F [-] 
Temperature difference 

corrective factor 
S [m2] Heat exchanger surface 

g [-] 
Number of entransy 

dissipation units 
TC [€] Total cost 

H [h/yr] Annual operating time t [°C] Fluid temperature 

h [W/m2K] Heat transfer coefficient Tube Side [-] Fluid tube side passage 

i [%/yr] Annual discount rate U [W/m2K] 
Global heat transfer 

coefficient 

IC [€] Investment cost VFP [m3] Volumetric footprint 

L/D [-] Length diameter ratio v [m/s] Fluid velocity 

LMTD [°C] 
Logarithmic mean 

temperature difference 
   

Subscripts Greek symbols 

c [-] Cold fluid P [Pa] Pressure drop 

h [-] Hot fluid ε [-] Effectiveness 

i [-] Inlet η [-] 
Overall pumping 

efficiency 

o [-] Outlet λ [W/mK] Thermal conductivity 

s [-] Shell side μ [Pa s] Viscosity 

t [-] Tube side ρ [kg/m3] Density 
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Section 5.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol Unit  Caption Symbol Unit  Caption 

B [m] Baffle spacing Max P [Pa] 
Maximum value of 

pressure drop 

Cen [€/kWh] Energy cost m [kg/s] Mass flow rate 

Cp [kJ/kgK] Specific heat Nb [-] Baffle number 

CV [-] Coefficient of variation Pr [-] Prandlt number 

do [m] Tube outer diameter Re [-] Reynolds number 

di [m] Tube inner diameter Ntp [-] Number of tube passages 

DOC [€] 
Discounted operating 

cost 
Ntt [-] Tubes number 

De [m] 
Shell side equivalent 
diameter 

Ny [yr] Equipment life 

Ds [m] Shell inner diameter OC [€/yr] Operating cost 

E[x]  Expected value of x Pattern [-] Tubes pattern 

F [-] 
Temperature difference 
corrective factor 

Q [W] Duty 

H [h/yr] Annual operating time Rf [m2 K/W] 
Conductive fouling 

resistance 

HE type [-] Heat exchanger type S [m2] Heat exchanger surface 

h [W/m2K] 
Heat transfer 
coefficient 

TC [€] Total cost 

I [%/yr] Annual discount rate t [°C] Fluid temperature 

IC [€] Investment cost Tube Side [-] Fluid tube side passage 

L/D [-] Length diameter ratio Udirt [W/m2K] 
Global heat transfer 

coefficient 

LMTD [°C] 
Logarithmic mean 

temperature difference 
v [m/s] Fluid velocity 

Ltt [m] Tube length    

Subscripts Greek symbols 

c Cold fluid P [Pa] Pressure drop 

h Hot fluid  [W/mK] Thermal conductivity 

i Inlet fluid  [-] 
Overall pumping 

efficiency 

o Outlet fluid  (Pa s) Viscosity 

S Shell side fluid  [kg/m3] Density 

T Tube side fluid σ  Standard deviation 
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Section 6.3 

Symbol Unit  Caption Symbol Unit  Caption 

A [-] Availability O&M [€/y] 

Managing and 

preventive maintenance 
cost 

AMM [€/y] Depreciation charge OC [€/y] Operating cost 

AP [MWh/y] Annual produced energy P [W] Power 

CF [€/y] Cash flow P(x) [-] 
Occurrence probability 

of x 

Ct [€/h] 
Hourly cost of 

technichans 
q [-] Share interest debt 

cp [-] Power coefficient R [€/y] Revenue 

CV [-] Coefficient of variation RC [€] Restoration cost 

E[x] [-] Expected value of x ReC [€] Repair cost 

EP [€/MWh] Hourly electricity price RT [h] Recovery time 

HP [MW] Hourly produced energy S [m2] Swept area 

FC [€] 
Forward contract’s cash 

flow 
T [€/y] Taxes 

FP [€/MWh] 
Contracted electricity 
price 

U [m/s] Wind speed 

FPP [€/MWh] Contracted penality V [MWh] Duty volume 

I0 [€] Investment cost V0 [€] Debt 

L [€/y] Loan instalment VaR [-] Value at risk 

NPP [MW] 
Nominal produced 
power 

WACC [-] 
Weighted average cost 
of capital 

NPV [€] Net Present Value WS [m/s] Wind speed 

Nt [-] 
Number of required 

technicians 
Y [-] Plant years life 

Subsctipts Greek symbols 

Symbol Unit  Caption Symbol Unit  Caption 

y  Year σ [€] Standard deviation 

h  Hour ρ [kg/m3] Air density 

- - - ηg [-] Generator efficiency 

- - - ηgb [-] Gearbox efficiency 

- - - ηpe [-] 
Power electronic 
efficiency 
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List of acronyms  

ALARP: As Low As Reasonably Practicable 

ANN: Artificial Neural Network 

ANOVA: ANalysis Of VAriance 

AR: AutoRegressive 

ARIMA: AutoRegressive Integrated Moving Average 

ARMA: AutoRegressive Moving Average 

ARMAX: AutoRegressive Moving Average with eXogenous inputs model 

CDF: Cumulative Distribution Function 

CFD: Computational Fluid Dynamics 

CV: Coefficient of Variation 

DDV: Dependent Design Variable 

DfR: Design for Reliability 

DOE: Design Of Experiments 

DST: Dempster-Shafer Theory 

ECMWF: European Centre for Medium-Range Weather Forecasts 

EU: European Union 

FEM: Finite Element Method 

FMEA: Failure Modes and Effects Analysis 

FMECA: Failure Mode, Effects, and Criticality Analysis 

FMS: Flexible Manufacturing System 

FORM: First-Order Reliability Method 

GA: Genetic Algorithm 

GBM: Geometric Brownian Motion 

GME: Gestore dei Mercati Energetici 

GSA: Global Sensitivity Analysis 

HE: Heat Exchanger 

HEN: Heat Exchanger Network 

IC: Investment Cost 

IDEAL: Integrated Design Automation Laboratory 
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IDV: Independent Design Variable 

IS: Importance Sampling 

KPI: Key Performance Indicator 

LHS: Latin Hypercube Sampling 

LMTD: Logarithmic Mean Temperature Difference 

MCS: Monte Carlo Sampling 

MILP: Mixed Integer Linear Programming 

MisB: More is Better 

MOGA: Multi-Objective Genetic Algorithm 

MOO: Multi-Objective Optimisation 

NASA: National Aeronautics and Space Administration 

NisB: Nominal is Better 

NPV: Net Present Value 

NREL: National Renewable Energy Laboratory 

OC: Operating Cost 

OF: Objective Function 

OTC: Over-The-Counter 

PD: Percentual Deviation 

PDF: Probability Density Function 

PGA: Peak Ground Acceleration 

PPI: Producer Price Index 

PRA: Probabilistic Risk Assessment 

PROMETHEE: Preference Ranking Organization Method for Enrichment Evaluation 

PSUADE: Problem Solving Environment for Uncertainty Analysis and Design Exploration 

QRA: Quantitative Risk Assessment 

RAROC: Risk-Adjusted Return on Capital 

RBDO: Reliability-Based Design Optimisation 

RCP: Representative Concentration Pathway 

RES: Renewable Energy Sources 

RMSE: Root Mean Square Error 

SAM: System Advisor Model 

SARIMA: Seasonal AutoRegressive Integrated Moving Average 
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SD: System Dynamics 

SF: Safety Factor 

SORM: Second-Order Reliability Method 

STHE: Shell and Tube Heat Exchanger 

TAC: Total Annual Cost 

TC: Total Cost 

TI: Temperature Indicator 

UQTk: Uncertainty Quantification Toolkit 

USA: United States of America 

VaR: Value at Risk 

VUCA: Volatility Uncertainty Complexity Ambiguity 

WAMPM: Weighted Average of Multiple Performance Measures 

WT: Wind Turbine 

CFD: Computational Fluid Dynamics
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