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“It’s easy to play any musical instrument: all you have to do is touch the right
key at the right time and the instrument will play itself.”

Johann Sebastian Bach
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Generative models have experienced significant advancements in recent
years, driven by the introduction of architectures such as Stable Diffusion,
GPT-3, ChatGPT, and many others. These models are designed to learn
probability distributions and efficiently sample from them during inference,
typically conditioned on inputs like text. Trained on large volumes of unlabeled
data, these models possess extensive knowledge that can be transferred to address
specific tasks. In this thesis, we show how they can be harnessed to address a
variety of tasks across different domains, including reasoning, image processing,
and music generation. In particular, we will explore diverse methodologies to
guide the generation process of a learned model to better suit the task at hand.
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Chapter 1

Introduction

In this thesis, I will guide the reader through my academic journey in the field
of generative modeling, and explore some of the various ways these models can
be utilized.

1.1 Motivation
The AI spring. In the last decade, Artificial Intelligence has experienced
remarkable growth in scale, research, and public interest. This surge has led
to increased utilization across various fields and the emergence of high-impact
companies such as OpenAI, Hugging Face, Stability AI, and many others. AI
is now recognized for its potential to generate substantial business outcomes
and reshape industries [1], sparking an arms race [2] in the development and
improvement of AI systems and algorithms.

Several factors contribute to this success. However, the ease of accessing
and processing large quantities of data, combined with the increased power of
general-purpose Graphical Processing Units (GPUs), have been crucial. Particu-
larly notable is the rise of powerful, large-scale generative models like GPT-2
through GPT-4, LLaMA 1 through 3, and Stable Diffusion versions 1.0, XL,
and 3.0. These advancements have significantly increased business interest in
AI applications. This phenomenon has been described as a “pervasive economic
and organizational phenomenon” [3], and it is speculated that AI could boost
the global economy by over $15 trillion by 2030.

What do we mean by harnessing generative models? Generative models
are typically trained using vast amounts of unlabeled (or poorly labeled) data,
usually scraped from the web. A reduced and high-quality number of annotations
are then used to guide this strong self-supervised representation to solve some
different and usually more specific downstream-tasks. This is a common pipeline
in the current AI setting and is sometimes referred to as semi-supervised learning
[4, 5].

This thesis will explore and delve into several methods to effectively harness
the generative power of the latest AI architectures and algorithms. Specifically,
we will cover:

(i) a combination of multiple models, cooperating with each other in order
to solve a difficult reasoning task. We will see an example of this type of
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approach in section 3.4, where a generative autoregressive model cooperates
with a discriminator to improve their output. Similar approaches are used
in image generation, where a contrastive model is used to select the best
result with respect to a written prompt.

(ii) the design and practical usage of algorithms that constrain the generation
process to find a plausible solution for a specific task. An example that
will appear multiple times in this thesis is the source separation problem1,

(iii) fine-tuning of a pre-trained generative model to solve a specific downstream-
task. This is the typical semi-supervised pipeline [4, 5]. We adopted this
approach for the model proposed in section 6.5.

1.2 Thesis Outline
The chapters of this thesis reflect our academic publications, each introducing
and describing in detail the contributions, methodology, and results of our work.

During my first year of PhD, we started to explore the generative modeling
world. This includes (i) a first approach to program synthesis/reasoning through
the usage of autoregressive models, and (ii) participation in a collaborative
benchmark for natural language LLMs. This line of research has led to the
following works:

• Explanatory Learning: Beyond Empiricism in Neural Networks [6]. This
paper introduces a reasoning approach that—using a combination of a
generative model and a binary classifier—allows the production of improved
explanation given an observed phenomenon. An in-depth explanation of
this approach can be found in chapter 3, while the full article can be found
at URL https://arxiv.org/abs/2201.10222.

• Beyond the Imitation Game: Quantifying and extrapolating the capabilities
of language models [7]. This work is a collaborative benchmark designed
to assess the performance of Large Language Models (LLMs) over a
variety of difficult tasks. Our contribution was the proposal of the Symbol
Interpretation Task. In this task, we test the understanding and ability to
associate symbols with concepts in LLMs. This work is further presented
in chapter 4. The whole benchmark paper can be found at https://
arxiv.org/abs/2206.04615.

Throughout my second and third years, I became more interested in generative
modeling in the music domain, where we experimented with various architectures
and signal-processing tasks. Hereafter—in chronological order—are the research
works resulting from this period:

1See https://source-separation.github.io/tutorial/intro/src_sep_101.html for
an explanation of the source separation problem.

https://arxiv.org/abs/2201.10222
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://source-separation.github.io/tutorial/intro/src_sep_101.html
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• Latent Autoregressive Source Separation [8]. In this work, we explore the
utilization of generative models in order to perform source separation on
both the music and image domains. In particular, since the models work
in the latent domain, a procedure to estimate sums in such domains is
utilized. See chapter 5 for more information about this approach. The
resulting paper can be found at https://arxiv.org/abs/2301.08562.

• Multi-Source Diffusion Models for Simultaneous Music Generation and
Separation [9]. Most generative models on music and audio tend to work
directly on mixture. In this work, we explore the utilization of a source-
aware model that can be adapted to solve different music generation tasks.
This work is further presented in section 6.3, while the pdf is available at
https://arxiv.org/abs/2302.02257.

• Generalized Multi-Source Inference for Text Conditioned Music Diffusion
Models [10] In this work, we explore an inference time procedure that
allows the generation of coherent multiple-source audio. The full article
can be found at https://arxiv.org/abs/2403.11706.

• COCOLA: Coherence-Oriented Contrastive Learning of Musical Audio
Representations [11]. In this paper, we proposed a novel contrastive model
useful for the evaluation of coherence between musical sources. While this
is not directly related to generative models, it might be useful as a specific
evaluation metric and possibly as a conditioning classifier throughout the
generation procedure (similarly to DiffusionCLIP [12]). More about this
work in chapter 7. The pdf is available at https://arxiv.org/abs/2404.
16969.

https://arxiv.org/abs/2301.08562
https://arxiv.org/abs/2302.02257
https://arxiv.org/abs/2403.11706
https://arxiv.org/abs/2404.16969
https://arxiv.org/abs/2404.16969
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Chapter 2

Background

This chapter provides a simple background on some of the key architectures
and models that form the foundation of this thesis, specifically focusing on
auto-encoders and generative models.

Auto-encoders. Auto-encoders are a class of neural network architectures
designed for unsupervised learning tasks. They consist of (i) an encoder that
maps input data to a latent representation, and (ii) a decoder that reconstructs
the input from this latent space. Auto-encoders are widely used for dimensionality
reduction, feature learning, and data denoising. Section 2.1 will delve into some
auto-encoders variants, highlighting their unique characteristics and applications.

Generative models. On the other hand, generative models are designed to
generate new data samples according to a given training data distribution. In
recent years, these models have gained significant attention due to their ability
to learn complex data distributions. In this chapter, we will explore two main
types of generative models: autoregressive models and diffusion-based models.
Autoregressive models generate data sequentially, one element at a time, by
modeling the conditional distribution of each element given the previous ones.
In contrast, diffusion-based models generate data by gradually transforming a
simple initial distribution into the target distribution through a series of learned
steps.

By providing a thorough understanding of these models, section 2.2 sets the
stage for the subsequent discussion of their applications and implications in
the context of this research. The insights gained here will be instrumental in
appreciating the novel contributions presented in the later chapters of this thesis.

2.1 Auto-Encoders
Autoencoders are a type of unsupervised machine learning architecture commonly
used for dimensionality reduction and feature extraction. They compress the
input data into a lower dimensional latent vector, which is then decoded into the
original data by a decoder network. In practice, we can think of the compressed
latent vector as a more meaningful and semantic representation of the original
data. Figure 2.1 shows a typical auto-encoder architecture.
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Properties. Similarly to other dimensionality reduction approaches, auto-
encoders are data-specific and lossy, thus they might not preserve the original
data quality, nor generalize well on out-of-distribution data. On the other
hand, they are able to extract informative—often semantic—and non-linear
representations of the original data.

x Eθ(x) z Dψ(z) x′

Figure 2.1: Illustration of a generic auto-encoder archi-
tecture.

Formally, a data point x ∈ RN (with N the total length of the data point1) can
be mapped to a smaller latent vector z ∈ RC via an encoder network Eθ(x) = z.
The vector z can then be brought back into the initial domain through the
decoder network Dψ(z) = x′. If x is in the data distribution and both Eθ and
Dψ have reached an adequate enough solution, then we should have that

x ≈ Dψ(Eθ(x)).

2.1.1 Variational Auto-Encoders
While useful, simple auto-encoder architectures suffer from an important draw-
back: they can easily overfit the training data, thus making the latent represen-
tation less strong and possibly highly irregular. A possible way to alleviate this
issue is the use of Variational Auto-Encoders (VAEs) [13]. Simply put, VAE can
be seen as auto-encoders whose latent distribution is regularized by an improved
loss function, which utilizes variational inference theory.

The training loss for VAEs is composed of two terms which—intuitively—denote
the reconstruction loss of the autoencoder and the regularization loss for the
latent space.

LVAE(x) = α‖x−Dθ(z)‖2 +DivKL(N (µx, σx)||N (0, 1)) (2.1)

with (µx, σx) = Eθ(x) and z sampled from N (µx, σx) using the reparametriza-
tion trick [13]. The hyper-parameter α ∈ R in eq. (2.1) balances the two loss
terms.

1For example, the length of the audio sequence or the number of pixel channels in an image
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2.1.2 Vector Quantized VAEs
Vector Quantized VAEs (VQ-VAE) [14] are an auto-encoder architecture that
allows the mapping between continuous-feature vectors into vectors of discrete
features. This type of translation can be useful if a discrete representation of
the data is necessary2.

Formally, a data point x ∈ RN can be mapped to a discrete latent domain via
a VQ-VAE. First an encoder Eθ : RN → RS×C maps x to Eθ(x) = (h1, . . . ,hS),
where C denotes the number of latent channels and S the length of the latent
sequence. A bottleneck block B : RS×C → [K]S casts the encoding into a
discrete sequence z = (z1, . . . , zS) by mapping each hs into the index3 zs = B(hs)
of the nearest neighbor ezs contained in an ordered set C = {ek}Kk=1 of learned
vectors—called codes—in RC . A decoder Dψ : [K]S → RN maps the latent
sequence back into the data domain, obtaining a reconstruction x̂ = Dψ(z).

Discriminator augmented training. VQ-GANs [15] are an enhanced version
of the VQ-VAE architecture, where the training loss is augmented with a
discriminator and a perceptual loss. These additions improve reconstruction
quality while increasing the compression rate of the autoencoder. We refer
the reader to [14] and [15] for more details on VQ-VAE and VQ-GAN. In the
remainder of the thesis, we will refer to both models as VQ-VAE and make
distinctions only if necessary.

2.2 Generative Models
Generative models are a class of Machine Learning algorithms that aim to
reproduce—as best as possible—a given training data distribution. A variety of
generative models have been developed, each with its advantages and disadvan-
tages. However, for our most of our purposes, we are interested in two kinds:
autoregressive and diffusion-based. At the moment, these are the state-of-the-art
in text, image, and audio generation.

2.2.1 Autoregressive Models
An autoregressive model [16–18] defines a probability distribution over a discrete
domain4 [K]S. In particular, they are often used to model the probabilities of
sequences z = (z1, . . . , zS) of (usually) variable length. Typically, autoregressive
models are used for Natural Language Processing tasks, however, they have seen
extensive usage in several other domains [17–20].

2For example, this is usually the case for autoregressive models.
3Sometime also referred to as “token”.
4e.g. the words of the English language, or the latent domain of a VQ-VAE.
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Sampling. In autoregressive architectures, the joint probability over the se-
quence z = (z1, . . . , zS) is decomposed via the chain rule:

Pφ(z) =
S∏
s=1

Pφ(zs|z<s), (2.2)

where pφ(·) is a learned parametric model5. At inference time, samples can
be drawn from eq. (2.2) using several possible sampling procedures. Ancestral
sampling is often used, where at each step, the token zs is sampled stochastically
from the conditional Pφ(zs|z<s), possibly employing top-k [23] filtering to improve
the diversity of the generated data [24]. When the goal is instead to maximize
the probability of the whole sequence (w.r.t. all the sequences), heuristics like
beam search can also be used [25]. Beam search maintains B possible hypotheses
(beams) z1, . . . , zB in parallel during inference. At each step s, it computes
the conditional distributions Pφ(z

b
s|zb<s) for each beam and selects the B new

hypotheses that maximize the joint distributions Pφ(zb<s) · Pφ(zs|zb<s).

2.2.2 Diffusion Models
Diffusion Models [26–29] are a class of generative models that are able to sample
by iteratively denoising random noise. Intuitively, they learn how data can be
progressively perturbed until it is no longer recognizable. Then, they use this
knowledge to approximate the inverse process: starting from some random noise,
they progressively denoise it until a valid sample is reached.

Formal definition. Like many other generative approaches, Diffusion models
do not try to model the probability density of the training data. Instead, they
model the gradient of the log-probability density of the perturbed training data,
usually through the use of a neural network. Thus, a diffusion model Sθ(·)
parameterizes:

Sθ(x(t), σ(t)) ≈ ∇x(t) log p(x(t)). (2.3)

More specifically, diffusion models borrow a lot from the score-matching theory:
The central idea of score-matching [30–32] is to approximate the score function
of the target density p(x), namely ∇x log p(x), rather than the density itself.
To effectively approximate the score in sparse data regions, denoising diffusion
methods introduce controlled noise to the data and learn to remove it. Formally,
the data distribution is perturbed with a Gaussian perturbation kernel:

p(x(t) | x(0)) = N (x(t); x(0), σ2(t)I) , (2.4)

where the parameter σ(t) regulates the degree of noise added to the data.
Following the authors in [29], we consider an optimal schedule given by σ(t) = t.
With that choice of σ(t), the forward evolution of a data point x(t) in time is
described by a probability flow ODE [27]:

dx(t) = −σ(t)∇x(t) log p(x(t)) dt . (2.5)
5Generally neural networks such as CNNs [21,22] or Transformers [16].
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For t = T � 0, a data point x(T ) is approximately distributed according to a
Gaussian distribution N (x(t); 0, σ2(T )I), from which sampling is straightforward.
Equation (2.5) can be inverted in time, resulting in the following backward ODE
that describes the denoising process:

dx(t) = σ(t)∇x(t) log p(x(t)) dt . (2.6)

NOTE:

Sampling can be performed from the data distribution integrating eq. (2.6)
with a standard ODE solver, starting from an initial (noisy) sample drawn
from N (x(t); 0, σ2(T )I).

Training procedure. The score function Sθ(x(t), σ(t)) is approximated by
minimizing the following denoising score matching loss:

E
t, x(0), x(t)

[
‖Sθ(x(t), σ(t))−∇x(t) log p (x(t) | x(0)) ‖22

]
(2.7)

with the random variable t, x(0), x(t) following the densities

t ∼ U([0, T ]) ,
x(0) ∼ p(x(0)) ,
x(t) ∼ p(x(t) | x(0)) .

Even if feasible, the score function is -most of the time- not directly approxi-
mated by a neural network. Instead, some transformations are usually applied
to the raw output of the network—denoted as Fθ(x). In our case, following the
theory of [29], we define the score function as

Sθ(x, σ) =
Dθ (x;σ)− x

σ2
(2.8)

with the denoiser function Dθ(x;σ) equal to

Dθ(x;σ) = cskip(σ)x + cout(σ)Fθ (cin(σ)x; cnoise(σ)) .

Finally, the score-matching loss in eq. (2.7) can be simplified by expanding
the term p(x(t) | x(0)) with eq. (2.4) and substituting Sθ with eq. (2.8). The
resulting loss function is then defined as

E
t, x(0), ε

[
‖Dθ(x(0) + ε;σ(t))− x(0)‖22

]
,

with the Gaussian noise variable ε ∼ N (ε; 0, σ2(t)I).

Text-conditioned diffusion models. It is possible to add a variable z
representing an (often textual) conditioning input. In other words, eq. (2.3)
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slightly changes to the following equation:

∇x(t) log p(x(t) | z) ≈ Sθ(x(t), z, σ(t)) , (2.9)

The practical way in which conditioning is performed may depend on the
architecture itself and the nature of the conditioning embedding z.

Classifier-free guidance. Using an implicit classifier defined from the model
itself, classifier-free guidance [33] enables the sampling of values that better suit
the conditioning prompt z. This can be done by defining a new score function
S∗
θ (x(t), z, σ(t)) defined as

S∗
θ (x(t), z, σ(t)) =

Sθ(x(t), z, σ(t)) + w (Sθ(x(t), z, σ(t))− Sθ(x(t),∅∅∅, σ(t))) ,

where ∅∅∅ is a fixed embedding modeling the unconditional log probability density
∇x(t) log p(y(t)), and w ∈ R is the embedding scale hyper-parameter. We can use
a negative embedding [34] instead of ∅∅∅ to better guide inference. With an abuse
of notation, we will refer to S∗

θ as Sθ, and make a distinction only if necessary.

2.3 Datasets
For our research, we utilized a variety of datasets. Here, we highlight some of
the most important ones, providing brief descriptions of their respective sizes
and contents.

MNIST [35] is a well-established Machine Learning dataset, being used in
several academic works. It includes 70,000 images of hand-written digits,
60,000 of which compose the training set, while the remaining 10,000 are
used as the test set. Each image is the size of 28×28 pixels and in grayscale
color.

CelebA [36] is a large-scale image dataset, composed of more than 200k images
of celebrity faces. For each image, there are 40 attribute labels available,
ranging from hairstyles, glasses, face shape, and many more. All images
in CelebA have a resolution of 32×32 pixels. CelebA-HQ [37] is a higher
resolution variant of CelebA, composed of 30,000 images with a resolution
of 1024×1024 pixels each.

ImageNet [38] is an important dataset in the Computer Vision community.
It has been used in several works, ranging from object recognition to
generative modeling tasks. It contains more than 14 million images, each
annotated to a WordNet [39] synset by human annotators.

MUSDB18-HQ [40] is the uncompressed version (in WAV format) of the
MUSDB18 dataset, initially introduced in [41]. This dataset is a standard
for evaluating music source separation systems. It comprises 150 tracks—
100 for training and 50 for testing—totaling approximately 10 hours of
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professional-quality audio. Each track is divided into four stems: Bass,
Drums, Vocals, and Other, with Other covering any components not
classified under the first three categories.

MoisesDB [42] features 240 music tracks across diverse genres and artists,
accumulating more than 14 hours of music. Unlike MUSDB18-HQ, Moi-
sesDB is a genuine multi-track dataset, offering a two-tier taxonomy of
11 distinct stems. Each stem in this dataset includes more detailed type
annotations (e.g., a guitar might be labeled as Acoustic Guitar or Electric
Guitar).

MTG-Jamendo [43] is an open a dataset for the music auto-tagging task. It
contains music accessible at the Jamendo6 website. This dataset contains
over 55,000 audio mixtures, annotated with a total of 195 tags. The infor-
mation in these annotation is about the musical genre, which instruments
are in the mixtures, and the mood/theme of the song.

Slakh2100 [44] is synthesized from the Lakh MIDI Dataset v0.1 [45] employing
high-quality sample-based virtual instruments. It features 2100 tracks
organized into 1500 tracks for training, 375 for validation, and 225 for
testing, together amounting to 145h of audio. The tracks are annotated into
34 stem categories. While such a dataset contains an order of magnitude
more data than MUSDB18-HQ and MoisesDB, it does not share the same
level of realism as the latter, being the tracks synthesized from MIDI.

CocoChorales [46] is a chorale audio music dataset created through a synthe-
sis process like Slakh2100. However, it comprises a substantially vaster
collection of 240000 tracks, extending over 1411 hours of audio data. It is
produced by generating symbolic notes via a Coconet model, performing
their synthesis with MIDI-DDSP [47]. This dataset is richly annotated,
featuring details on performance attributes and synthesis parameters. Co-
coChorales includes a diverse range of 13 instruments spanning Strings,
Brass, Woodwind, and Random ensembles.

6https://www.jamendo.com

https://www.jamendo.com
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Chapter 3

Explanatory Learning

In this chapter, we introduce Explanatory Learning (EL), a framework aiming
to improve machines’ capability to interpret and utilize existing knowledge
embedded in symbolic sequences.

This interpreter is developed using a limited collection of symbolic sequences
paired with observations of various phenomena. It can then be used to make
predictions about new phenomena based on their explanations and even discover
these explanations with minimal observations, akin to the methods employed by
human scientists. We conceptualize the EL problem as a straightforward binary
classification task, allowing simple end-to-end machine learning approaches, to
potentially solve it. However, we propose an alternative with Critical Rationalist
Networks (CRNs). These networks adopt a rationalist perspective on knowledge
acquisition. CRNs are inherently designed to exhibit several desirable properties:
they are genuinely explainable, can adjust their processing at test time for
more challenging inferences, and provide strong confidence guarantees in their
predictions.

As a part of our contributions, we introduced Odeen, an elementary EL
environment that simulates a simple flatland-style universe populated with
phenomena to explain. Using Odeen as a testing ground, we show how our
CRNs architecture outperforms end-to-end approaches of comparable size and
architecture in discovering explanations for new phenomena. This chapter delves
into the principles of Explanatory Learning, the construction and advantages of
Critical Rationalist Networks, and the experimental validation using the Odeen
environment.

Explanation: Explanation:

Figure 3.1: The Odeen universe. The intention behind this
universe is to create a convenient environment to study and test

the process of knowledge discovery in machines.
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3.1 Introduction
Predicting the future with accuracy is arguably a key ability for survival and
prosperity in any habitat. Living beings appear to have evolved various systems
to achieve this, such as memory [48], and many seem capable of predicting the
course of complex phenomena [49]. However, no animal seems to match the
predictive capabilities of humans, which might stem from a unique system in
nature.

At the core of this potential system is something we refer to as an explanation,
formed through language. This potentially allows explanations to be transferred
to another human who speaks the same language, enabling them to predict
new phenomena without prior experience. When this transfer is successful,
we say that the human has understood the explanation. This process is a
fundamental aspect of human success. An individual might make accurate
predictions about numerous phenomena without undergoing a painful discovery
process for each one. All that seems necessary is an operating system—mastery
of a language—and someone to communicate the relevant explanations. This
would allow the individual to focus on unexplained phenomena. When an
explanation is found, it is added to the existing shared collection, known as
knowledge.

How might we integrate machines into this system? In this work, we aim to
explore this intriguing problem. Specifically, we propose a learning procedure
that could enable machines (i) to understand existing explanations, as described
above, and (ii) to create new explanations for unexplained phenomena, much
like humans seem to do.

Contributions. Our contribution in this sense is threefold:

(i) We formulate the challenge of creating a machine that masters a language
as the problem of learning an interpreter from a collection of examples in
the form (explanation, observations). The only assumption we make is this
dual structure of data; explanations are free strings and are not required
to fit any formal grammar. This results in the Explanatory Learning (EL)
framework described in section 3.2.

(ii) We present Odeen, a basic environment to test EL approaches, which draws
inspiration from the board game Zendo [50]. Odeen simulates the work of
a scientist in a small universe of simple geometric figures, see fig. 3.1. We
present it in section 3.3, and it is openly available for download1.

(iii) We argue that the empiricist Machine Learning approaches might not be
best suited for EL problems. Instead, we propose the Critical Rationalist
Networks (CRNs), a family of models designed following the epistemological
philosophy pushed forward by [51]. Although a CRN is implemented

1The Odeen dataset and all the code useful to reproduce the results discussed in this chapter
can be found at https://github.com/gladia-research-group/explanatory-learning

https://github.com/gladia-research-group/explanatory-learning
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using two neural networks, the working hypothesis of such a model does
not coincide with the adjustable network parameters, but rather with a
language proposition that can only be accepted or refused in toto. We
will present CRNs in section 3.4, and test their performance on Odeen in
section 3.5.

3.2 Explanatory Learning
Humans do not master a language from birth. For instance, a toddler cannot
understand the message “this soap stings” and predict the burning sensation
from contact with the substance. Instead, the child gradually learns to interpret
such messages and make predictions about a wide range of phenomena [52].
We call this process mastering a language and aim to replicate it in machines
through a similar learning process.

By using a set of explanations alongside observations of various phenomena,
we aim to develop an interpreter capable of determining whether a given phe-
nomenon matches a provided explanation. Furthermore, we want to uncover
these explanations using only a limited number of observations of new phenom-
ena. We first describe the problem setup in the following paragraph, comparing
it to existing ML problems; then we detail our approach in section 3.4.

Problem setup. Formally, let phenomena P1, P2, P3, . . . be subsets of a uni-
verse U , which is a large set with no special structure (i.e., all the possible
observations U = {x1, . . . , xz}). Over a universe U , one can define a language
L as a pair (ΣL, IL), where ΣL is a finite collection of short strings over some
alphabet A, with |ΣL| � |A|, and IL is a binary function IL : U ×ΣL → {0, 1},
which we call interpreter.

Definition. We say that a phenomenon Pi is explainable in a language L if
there exists a string e ∈ ΣL such that, for any x ∈ U , it occurs IL(x, e) = 1Pi

(x),
where 1Pi

(x) is the indicator function of Pi. We call the string e an explanation,
in the language L, for the phenomenon Pi.

Consider the general problem of making a new prediction for a phenomenon
P0 ⊂ U . In our setting, this is phrased as a binary classification task: given
a sample x′ ∈ U , establish whether x′ ∈ P0 or not. We are interested in two
instances of this problem, with different underlying assumptions:

• The communication problem: we have an explanation. We are
given an explanation e0 for P0, in an unknown language L. This means
that we do not have access to an interpreter IL; e0 looks like Japanese
to a non-Japanese speaker. Instead, we are also given other explanations
{e1, . . . , en}, in the same language, for other phenomena P1, . . . , Pn, as
well as observations of them, i.e., datasets {D1, . . . , Dn} in the form
Di = {(x1, 1Pi

(x1)), . . . , (xm, 1Pi
(xm))}, with m � |U |. Intuitively, here

we expect the learner to use the explanations paired with the observations
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to build an approximated interpreter ÎL, and then use it to make the
proper prediction for x′ by evaluating ÎL(x′, e0).

• The scientist problem: we do not have an explanation. We
are given explanations {e1, . . . , en} in an unknown language L for other
phenomena P1, . . . , Pn and observations of them {D1, . . . , Dn}. However,
we do not have an explanation for P0; instead, we are given just a small set
of observations D0 = {(x1, 1P0(x1)), . . . , (xk, 1P0(xk))} and two guarantees,
namely that P0 is explainable in L, and that D0 is representative for P0 in
L. That is, for every phenomenon P 6= P0 explainable in L there should
exist at least a xi ∈ D0 such that 1P0(xi) 6= 1P (xi). Again, we expect the
learner to build the interpreter ÎL, which should first guide the search for
the missing explanation e0 based on the clues D0, and then provide the
final prediction through ÎL(x′, e0).

Several existing works fall within the formalization above. The seminal
work of [53] on learning regular sets is an instance of the scientist problem,
where finite automata take the role of explanations, while regular sets are the
phenomena. More recently, CLEVR [54] posed a communication problem in
a universe of images of simple solids, where explanations are textual and read
like “There is a sphere with the same size as the metal cube”. Another example
is CLIP [55], where 400,000,000 captioned internet images are arranged in a
communication problem to train an interpreter, thereby elevating captions to
the status of explanations rather than treating them as simple labels.With EL,
we aim to offer a unified perspective on these works, making explicit the core
problem of learning an interpreter purely from observations.

Relationship with other ML problems. EL can be framed in the general
meta-learning framework. The learner gains experience over multiple tasks to
improve its general learning algorithm, thus requiring less data and computation
on new tasks. However, differently from current meta-learning approaches [56],
we are not optimizing for any meta-objective. Instead, we expect the sought
generality to be a consequence of implicitly defining an interpreter through a
limited set of examples rather than an explicit goal to optimize for.

To many, the concept of explanation may sound close to the concept of
program; similarly, the scientist problem may seem a rephrasing of the funda-
mental problem of Inductive Logic Programming (ILP) [57] or Program Synthesis
(PS) [58]. While similar in nature, this is not the case. ILP has the analogous
goal of producing a hypothesis from positive/negative examples accompanied
by background knowledge. Yet, ILP requires observations to be expressed as
logic formulas, a task requiring a human; only then the ILP solver outputs an
explanation in the form of a logic proposition, which in turn is interpreted by a
human expert. With EL, data can be fed as-is without being translated into
logic propositions, and a learned interpreter plays the expert’s role. PS also
admits raw data as input, it yields a program as output, and replaces the expert
with a handcrafted interpreter; still, the sequence of symbols produced by a PS
system only makes sense to a human (who designed the interpreter), not to the
system itself. Instead, in EL, the interpreter is learned from data rather than
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hardcoded. An empirical comparison demonstrating the benefits of EL over PS
is given in section 3.5.

3.3 The Odeen Environment
In this section, we introduce Odeen, an environment and benchmark to ex-
periment with the EL paradigm. We can think of Odeen as an environment
composed of rules, labels, and structures. In this universe, it is possible to play
many games, each using:

(i) A single “hidden” rule, unknown to the player. Some examples of rules
are: “At least one red square”, “Exactly one circle”, or “At least one square
at the right of a blue circle”.

(ii) A group of structures and boolean labels pairs, with each pair indicating
whether or not a structure is consistent with the hidden rule. A structures
itself can be seen as a sequence of simple geometric shapes.

The player then looks at the set of structures, labeled according to the secret
rule, and their goal is to guess it. To win the game, a player must prove to know
the rule by correctly tagging a large set of new structures2 with the appropriate
labels. Figure 3.2 shows a typical situation in a game of Odeen; for example—in
this particular game—the rule cannot possibly be “A structure must contain at
least one red square” since the fifth structure on the left does not contain a red
square, but respects the rule (as marked by the green label).

Figure 3.2: Example of an Odeen game. The hidden rule
to this particular instance is “At least one square at the right of
a red pyramid”. Indeed, the attentive reader will notice that it is

consistent with all the provided observations.

Connection with Explanatory Learning. We can view each game of Odeen
as a distinct phenomenon within a universe, where each element is a sequence
of geometric figures. In this universe, players act as scientists—akin to Galileo
observing Jupiter’s moons—attempting to explain new phenomena (refer to
fig. 3.1 for a more illustrative example). The challenge for an Odeen scientist

2Odeen is inspired by the board game Zendo, in which players must explicitly guess a
hidden rule, known only to a master. In Zendo, players can also experiment by submitting
new structures to the master.
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can then be framed as follows: make accurate predictions for a new phenomenon
given a few observations of it, alongside explanations and observations of other
phenomena. This encapsulates the essence of the Odeen Explanatory Learning
problem, as illustrated in fig. 3.3 (A and B).

Each game of Odeen is a different phenomenon Pi of a universe U whose
elements x are sequences of geometric figures. The specific task is to make
correct predictions for a new phenomenon P0 (a new game) given: (i) a few
observations D0 of P0 (labeled structures), in conjunction with (ii) explanations
{e1, . . . , en} and observations {D1, . . . , Dn} of other phenomena (other games
and their secret rules). More formally:

Definition. Let us be given s unexplained phenomena with k observations each,
and n explained phenomena with m observations each; let the n phenomena
be explained in an unknown language, i.e., e1, . . . en are plain strings without
any interpreter. The task is to make ` correct predictions for each of the s
unexplained phenomena.

Figure 3.3: The Odeen Explanatory Learning problem.
Given observations and explanations in an unknown language
for some phenomena (A), plus a few observations of a new
phenomenon, explain the latter and prove this knowledge by
correctly tagging a large set of new samples (B). An empiricist
approach attempts to extract this knowledge from data (C, left);
a rationalist one conceives data as theory-laden observations,
used to find the true explanation among a set of conjectures (C,

right).

Instead of requiring the player to reveal the secret explanation explicitly, we
follow the principle of zero-knowledge proofs [59]. In our setting, this is done
by asking the player to correctly tag many unseen structures according to the
discovered rule. This makes it possible for any binary classification method to
fit our EL environment without generating text.

Metrics. As described above, the task is to label ` new structures for each
of s unexplained games. An EL algorithm addressing this task encodes the
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predicted rule as an `-dimensional binary vector v per game (predicted vector),
where vi = 1 means that the i-th structure satisfies the predicted rule, and
vi = 0 otherwise (see fig. 3.4). Let w∗ be the ground-truth vector, obtained
by tagging the ` structures according to the correct secret rule. Then, the
Hamming distance dH(v,w∗) measures the number of wrong tags assigned by
the EL algorithm; if dH(v,w∗) < dH(v,wi), where wi 6= w∗ ranges over all
the possible rules, then we deem the solution v predicted by the algorithm to
be correct. Thus, we define the Nearest Rule Score (NRS) as the number of

predicted rule v

Figure 3.4: Illustration of a prediction vector for Odeen.
For each structure si in the game, we have that vi indicates the

label predicted by the EL algorithm being tested.

correctly predicted rules over a total of s games. A second score, the Tagging
Accuracy (T-Acc), directly counts the number of correct labels averaged over s
games.

3.3.1 Dataset
Having described the components of the Odeen universe, we propose a dataset
that can be used to train and test possible EL algorithms. This dataset is
composed of several training sets—each including different number of training
rules and structures—and a single test set.

Odeen structures are sequences of six elements including spaces, blue or red
circles, blue or red squares, blue or red pyramids—the latter either pointing up
or down. The size of the universe is thus |U | = 76 = 117, 649 possible structures.
We further created a small language with objects, attributes, quantifiers, logical
conjunctions, and interactions (e.g., “touching”). The grammar generates ≈25k
valid rules in total. Each of the |U | structures is tagged according to all the
rules.
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Training sets. The total number of rules produced by the Odeen grammar is
24,794. We consider training sets varying from 500 to 1438 rules. We choose these
rules such that each token and each syntactic construct appears at least once;
then, we uniformly select the others from the distribution. Each rule is associated
with a set of 100, 1000, or 10000 labeled structures that unambiguously identify
it. Thus, we have six possible training sets: 500r × 100s, 500r × 1000s, 500r ×
10000s, 1438r × 100s, 1438r × 1000s, 1438r × 10000s.

NOTE:

We removed from the training set any rule containing the bigram exactly
2, as well as any rule of the form at_least 2 X and at_most 2 X, equiva-
lent to exactly 2 X. This was purposely done to better test our models’
generalization capabilities.

Test set. We generate the 1,132 games that compose the test set the same
way. In the test set 72 rules contain the bigram exactly 2. Rules in the test
set are associated with just 32 labeled structures. The first 10 structures are
chosen by searching pairs of similar structures with different labels, following a
common human strategy in Zendo. The remaining 22 structures are selected to
ensure the lack of ambiguity on the board.

3.4 Critical Rationalist Networks
In principle, an EL problem like Odeen can be approached by training an end-to-
end neural network to predict ŷ = 1Pi

(x′), given as input a set of observations Di

and a single sample x′ (see fig. 3.3 C, left). Such a model would assume that all
the information needed to solve the task is embedded in the data, ignoring the
explanations; we refer to this as the “radical empiricist” approach [60]. A variant
that includes the explanations in the pipeline can be done by adding a textual
head to the network. This way, we expect performance to improve because
predicting the explanation string can aid the classification task. As we show
in the experiments, the latter approach (called “conscious empiricist”) indeed
improves upon the former; yet, it is still a far cry from providing acceptable
results.

We introduce a “rationalist” approach to solving EL problems in the following.
This approach recognizes the given explanations as existing knowledge and
focuses on interpreting them. Our Critical Rationalist Networks (CRNs) tackle
the EL scientist problem introduced in section 3.2: to find l = 1P0(s

′) given
a strucure s′, a D0, {D1, . . . , Dn}, {e1, . . . , en}. The way CRNs approach this
task is by using two independently trained models:

Conjecture Generator (CG): This is a language model that can be used to
sample a rule r ∈ Σ given a batch of labeled structures D = {(sj, lj)}j.
Formally, we can say that

CG(D) ∼ Pθ(r|D) ∼ Pθ (r|{(sj, lj)}j) ,
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with θ the parameters of the language model. The idea behind this model
is to synthesize plausible explanations (i.e. Odeen rules) for the given
observations D.

Interpreter (I) This model estimates whether a structure s ∈ U is consistent
with respect to a rule r ∈ Σ. Thus, we have that I(s, r) = l̂, with
l̂ ∈ {0, 1}. As the name implies, the goal of this is interpret the semantics
of a provided rule.

Algorithm 1 CRN inference procedure
Input: dataset D0, sample s′

Output: explanation ê0, prediction l̂′

1: for t = 1 . . . T do
2: rt ∼ CG(D0) {Sample from language model}
3: end for
4: H(·)← ∅ {Empty dictionary with 0 as default value for keys}
5: for t = 1 . . . T do
6: for (s, l) ∈ D0 do
7: if I(rt, s) = l then
8: H(rt)← H(rt) + 1 {Update hamming distance for rule rt}
9: end if

10: end for
11: end for
12: ê0 ← arg maxtH(rt)
13: l̂′ ← I(ê0, s′)
14: return ê0, l̂′

At test time, we are given a trained CG and a trained I, and we must predict
whether some ŝ /∈ D0 belongs to P0 or not. Our approach is to generate t
probable conjectures by sampling from CG(D0) t times; then, each conjecture
is verified by counting how many times the interpreter I outputs a consistent
prediction over D0. The conjecture with the highest hit rate is our candidate
explanation r̂0 for P0. Finally, we obtain the prediction l̂′ as I(r̂0, s′). See
algorithm 1 for the step-by-step pseudo code.

The interpreter I is a crucial component of our approach. A poor I may fail to
identify e0 among the generated conjectures, or yield a wrong prediction l′ when
given the correct e0. On the other hand, the role of CG is to trade off performance
for computational cost; This is controlled by the parameter t, that is, the number
of conjectures that we would like to sample from our learned distribution. Larger
values for t imply more generated conjectures, corresponding to exhaustive
search if taken to the limit. This potential asymmetry in quality between CG
and I is intuitive, since the learning problem solved by CG is generally harder.
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I

CG
EMP-R

Figure 3.5: CRNs are implemented using encoder-decoder
transformers blocks. Top: I denotes the interpreter model (rule
encoder and label decoder). Bottom: The conjecture generator
CG is composed by blue blocks. The “radical empiricist” (EMP-
R) is composed of orange blocks. The “conscious empiricist”
(EMP-C) baseline model consists of all the transformer blocks
in the right-bottom figure, board encoder with rule and label

decoders (all the blue and orange blocks).

Implementation. Figure 3.5 illustrates the architecture of CRNs, which
we implement using the encoder-decoder transformer architecture [61]. The
figure also shows the architecture of the baseline methods EMP-R and EMP-C,
corresponding to the end-to-end NN model and its variant with a textual head,
respectively.

3.5 Experimental Results
In this section, we compare our CRN approach to the radical (EMP-R) and
conscious (EMP-C) empiricist models over the Odeen challenge, and analyze
several fundamental aspects.

Generalization capabilities. The Odeen challenge addresses the general-
ization capability by asking for explanations for unexplained phenomena. This
is evaluated over s = 1132 new games, where each game is given with k = 32
tagged structures (guaranteed to satisfy a unique, yet unknown rule) and requires
to correctly tag ` = 1176 unseen structures according to the unknown rule. The
training set are n = 1438 games with ground-truth explanations and m = 1000
tagged structures per game. The test set does not include any rule equivalent to
the training rules. One important example is the bigram “exactly two”, which
appears in the test set, but was deliberately excluded from training; the training
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rules only contain “at least/most two” and “exactly one”. The CRN guessed
40% of the 72 test rules with “exactly two”, while the empiricist models (EMP-C,
EMP-R) scored 4% and 0% respectively.

Model NRS T-Accuracy R-Accuracy

CRN 77.7% 98.0% 73.7%
Emp-C 22.5% 90.5% 3.5%
Emp-R 15.6% 89.8% -

Table 3.1: Evaluation results. This table contains the results
for the CRN, radical empiricist, and conscious empiricist models.
As can be seen, our CRN approach yields much better results

for the Odeen challenge.

The various models’ evaluation results can be seen in table 3.1. The NRS
of 77.7% denotes that the CRN discovered the correct explanation for 880
out of 1132 new phenomena. Using the same data and a similar number
of learnable parameters, the empiricist models score 22.5% at most. The R-
Accuracy measures how frequently an output explanation is equivalent to the
correct one; two rules A and B are equivalent if the tags assigned by the hard-
coded interpreter to all the ∼117k structures in U are the same for A and B.
As expected, the explanation predicted by the conscious empiricist model is
rarely correct (R-Acc 3.5%), even when it tags some structures properly (NRS
22.5%); indeed, EMP-C gives no guarantee for the predicted explanation to be
consistent with the tags prediction. Conversely, the CRN consistently provides
the correct explanation when it is able to properly tag the new structures (NRS
77.7%, R-Acc 73.7%). The 4% gap between the two scores is clarified in the
next paragraph.

Handling ambiguity and contradiction. One may reasonably expect that
a CRN equipped with the ground-truth interpreter used to generate the dataset,
would perform better than a CRN with a learned interpreter. Remarkably, this
is not always the case, as reported in Table 3.2.

The better performance of the fully learned interpreter over the ground-truth
one is due to its ability to process ill-formed conjectures generated by the CG. The
conjecture “at least one pointing up” makes the hard-coded interpreter fail, since
“pointing up” must always follow the word “pyramid” by the grammar. Yet, in
Odeen, pyramids are the only objects that point, and the learned I interprets the
conjecture correctly. Other examples include: “exactly one red block touching
pyramid blue” (“pyramid” and “blue” are swapped), or the contradictory “at
least one two pyramid pointing up and exactly one red pyramid”, which was
interpreted correctly by ignoring the first “one”. When the learned interpreter is
not very accurate, the negative effect of errors in tagging prevails.

Making sense out of ambiguous or contradictory messages3 is a crucial
difference between a learned interpreter vs a hardcoded one. As [63] reminds us,
a concept does not need to be precisely defined in order to be meaningful. Our

3This is one of seven essential abilities for intelligence as found in GEB [62, Introduction].
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NRS T-Acc.
Train Data Fully-learned CRN Hardcoded I CRN Learned I

10K struct. 1438 rules 0.813 0.801 0.997
1K struct. 1438 rules 0.777 0.754 1.000
100 struct. 1438 rules 0.402 0.406 0.987

10K struct. 500 rules 0.354 0.377 0.923
1K struct. 500 rules 0.319 0.336 0.924
100 struct. 500 rules 0.109 0.101 0.920

Table 3.2: Explanatory Learning vs Program Synthesis
paradigm. Performance comparison of a data-driven vs ground-
truth interpreter in a CRN. The last column shows the tag
prediction accuracy of the learned I, when provided with the

correct rule.

everyday reasoning is not precise, yet it is effective. “After the small tower, turn
right”; we will probably reach our destination, even when our best attempts at
defining “tower”, as found, e.g., in the Cambridge dictionary, begin with “a tall,
narrow structure...”.

Explainability. The predictions of a CRN are directly caused by a human
understandable explanation that is available in the output; this makes CRNs
explainable by construction. Further, CRNs allow counterfactuals; one may
deliberately change the output explanation with a new one to obtain a new
prediction. The bank ML algorithm spoke: “Loan denied”; explanation: “Two
not paid loan in the past and resident in a district with a high rate of insolvents”.
With a CRN, we can easily discard this explanation and compute a new prediction
for just “Two not paid loan in the past”.

Importantly, by choosing a training set, we control the language used for
explanations; i.e., we explicit the biases that will steer the learning of gener-
alizations [64]. This allows a CRN to ignore undesirable patterns in the data
(e.g., skin color) if these can not be expressed in the chosen language.If the
Odeen training set had no rule with “pointing up/down”, the learned interpreter
would see all equal pyramids, even with unbalanced training data where 90% of
pyramids point up.

On the contrary, current explainability approaches for NNs (end-to-end
empiricist models) either require some form of reverse engineering, e.g., by
making sense out of neuron activations [65], or introduce an ad-hoc block to
generate an explanation given the prediction, without establishing a cause-effect
link between the two [66, 67]. This practice produces explanations that are not
reliable and can be misleading [68], on the contrary CRNs’ explanations are
faithful to what the model actually computes.

Prediction confidence. As explained in section 3.4, at test time the CRN
selects the conjecture with the highest hit rate among the ones generated by
the CG. Alternatively, one may keep only the conjectures coherent with all the
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Figure 3.6: Adjustable thinking time. CRNs have a test-
time parameter t, corresponding to the number of generated
conjectures, which trades off computational cost for performance.
In the inset, we plot the cumulative R-Acc score (y axis) against
the number t of generated conjectures (x axis). The curves show
that > 60% of correct explanations are found within the first 50
candidates, and > 80% are within the first 300. As a reference,
a brute force exhaustive search would reach 100% over a search

space of 24, 794 possible explanations.

structures in the table, returning an “unknown explanation” signal if no such
conjectures are found. If the interpreter is sufficiently accurate, this stricter
condition barely deteriorates the CRN performance, and it will never return
a prediction based on a possibly wrong explanation. For example, tested in a
setting with n = 1438, m = 1000 (same as the Generalization power paragraph),
this stricter CRN discovers the correct explanation for 861 out of 1132 new
phenomena (76%), and admits its ignorance on the other 271. Conversely,
evaluating the confidence of an end-to-end neural network remains an open
problem [69].

3.6 Conclusions
Recently, the attention on the epistemological foundations of deep learning
has been growing. The century-old debate between empiricists and rationalists
about the source of knowledge persists, with two Turing prizes on opposite
sides; [70] argues that empiricism still offers a fruitful research agenda for deep
learning, while [60] supports a rationalist steering to embrace model-based
science principles. This new debate is relevant, since as Pearl notes, today we
can submit the balance between empiricism and innateness to experimental
evaluation on digital machines.
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Limitations and future directions. EL models the essential part of the
knowledge acquisition process, namely the interval that turns a mute sequence
of symbols into an explanation with reach. However, our modeling assumes
a representative set of observations D0 to be given (the k = 32 structures of
the new phenomenon). A more comprehensive explanatory model would allow
the player to do without these observations, and instead include an interaction
phase with the environment where the D0 itself is actively discovered. We see
this as an exciting direction for follow-ups.

Finally, we expect CRNs to be more resilient than end-to-end models to
adversarial attacks. For a given data point x′ ∈ P0 classified correctly by an
empiricist model, a small adversarial change on D0 can flip the prediction for x′

while remaining unnoticed. Conversely, suppose that a CRN made the prediction
for x′, and assume that the correct explanation was ranked as the 5th most
likely by the CG. The same attack on D0 will have the effect of moving the
correct explanation lower in the ranking; however, as long as it stays within the
first t conjectures (300 in this paper), it will always be found by the interpreter
as the correct solution.
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Chapter 4

Beyond the Imitation Game:
BIG-bench

As they scale, language models have shown significant quantitative improvements
and new qualitative capabilities. Despite their potential to transform various
fields, arguably these new capabilities remain poorly understood. To guide future
research, prepare for disruptive advancements, and mitigate socially harmful
effects, it is crucial to understand the current and near-future capabilities
and limitations of language models. To tackle this challenge, the Beyond the
Imitation Game benchmark [7]— also known as BIG-bench—was introduced.
This benchmark consists of 204 tasks contributed by 450 authors from 132
institutions, covering a wide range of topics. These topics span linguistics,
childhood development, mathematics, common-sense reasoning, biology, physics,
social bias, software development, and more. BIG-bench focuses on tasks that
are believed to be beyond the capabilities of current language models.

In this chapter, we will describe one of such tasks; the Symbol Interpretation
Task (SIT). This task in particular was developed us and included in the collab-
orative effort of BIG-bench. More information regarding this task, alongside the
actual benchmark files, can be found at this page.

NOTE:

BIG-bench was designed to encompass a large and diverse set of tasks,
optionally supporting arbitrary programmatic tasks. This wide scope is a
significant strength of BIG-bench. However, it also means that full evaluation
can be computationally expensive. To mitigate this problem, a subset of 24
tasks (see table 4.1) for a lightweight evaluation set, known as BIG-bench
Lite (BBL) has been selected by the BIG-bench core contributors. Amongst
these, our Symbol Interpretation Task was also chosen, showing further
interest from the research community.

4.1 Symbol Interpretation Task
The Symbol Interpretation Task (SIT) was partially inspired by our Odeen
dataset, previously described in section 3.3. This task asks language models
to choose the sentence—amongst a given set—consistent with two observed

https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/symbol_interpretation
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Big-bench Lite Tasks
auto_debugging logical_deduction
bbq_lite_json misconceptions_russian
code_line_description novel_concepts
conceptual_combinations operators
conlang_translation parsinlu_reading_comprehension
emoji_movie play_dialog_same_or_different
formal_fallacies_... repeat_copy_logic
hindu_knowledge strange_stories
known_unknowns strategyqa
language_identification symbol_interpretation_task
linguistics_puzzles vitaminc_fact_verification
logic_grid_puzzle winowhy

Table 4.1: BIG-bench Lite tasks in alphabetical order.
This is a diverse subset of JSON tasks that can be cheaply
evaluated by most language models. This subset includes our

Symbol Interpretation Task.

structures, where a structure is a sequence of six pieces represented by emojis.
This task is composed of five similar smaller tasks that require interpreting
statements referring to structures of an input simple world. This world is built
using emojis; a structure is represented as a sequence of six emojis. Crucially,
in every variation, we make explicit the semantic link between the emojis and
their respective names. Some examples of this mapping can seen in table 4.2.

As previously mentioned, SIT is composed of five different sub-tasks that try
to measure slightly different things. These are named Plain, Adversarial, Tricky,
Agnostic name-side, and Agnostic emoji-side.

Plain: This can be considered as our baseline task. It is the simpler among all
other sub-tasks, thus it is expected for language models to perform better
at it. Each example in this sub-task is constituted by three sections; (i) A
description of the SIT environment, describing how structures of pieces are
made. (ii) Two structures, composed of a sequence of six symbols (emojis)
each. (iii) A collection of five sentences expressed in natural language,
such that only one of them is both consistent with the first structure and
not consistent with the other. See fig. 4.1 for an example.

Agnostic name-side: In this sub-tasks, instead of using natural language
names to refer to symbols, we use simple sequences of arbitrary letters.
An example would be “ is a X Y”. The motivation behind these changes
is to test the ability to use arbitrary placeholders rather than meaningful
words.

Agnostic emoji-side: This sub-task is symmetric to the Agnostic name-side
one. Indeed, instead of mapping shape emojis to an arbitrary name,
we map arbitrary emojis to their descriptive name. An example of this

https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/auto_debugging/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/logical_deduction/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/bbq_lite_json/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/misconceptions_russian/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/code_line_description/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/novel_concepts/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/conceptual_combinations/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/operators/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/conlang_translation/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/parsinlu_reading_comprehension/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/emoji_movie/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/play_dialog_same_or_different/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/formal_fallacies_syllogisms_negation/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/repeat_copy_logic/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/hindu_knowledge/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/strange_stories/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/known_unknowns/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/strategyqa/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/language_identification/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/symbol_interpretation/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/linguistics_puzzles/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/vitaminc_fact_verification/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/logic_grid_puzzle/README.md
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/winowhy/README.md
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mapping would be “ is a red square”. The motivation behind these
changes is to test the ability to ground meaningful words to unrelated
world objects.

Adversarial: This is a similar sub-task to the previous one, with the difference
being that instead of mapping arbitrary emojis to a “common-sense” name,
we purposely select shape emojis that might be confusing for the model.
For example, “ is a red square”. The motivation behind these changes
is to test the ability of language models to remap the “common-sense”
word-meaning association presumably seen at training.

Tricky: This sub-task is similar to the Plain sub-task. However, instead of
using the “common-sense” name, we use its reversed string. An example
of this emoji-to-name mapping is “ is a der reauqs”. The motivation
behind these changes is to test the ability to compose capabilities (i.e.,
work with words in reverse order).

Sub-Task Mapping Example

Plain “ is a red square”
Adversarial “ is a red square”
Tricky “ is a der reauqs”
Agnostic name-side “ is a X Y”
Agnostic emoji-side “ is a red square”

Table 4.2: Examples of the semantic mapping between
symbols—emojis in our case—and their names. Each sub-task
tries to measure different capabilities from the language models.

What is SIT trying to measure? The task is trying to measure the ability
of the language model to reason and interpret a simple scene described solely
in natural language. The model has to ground the observations in natural
language and reason about the relationships between the objects in the scene.
In particular, we speculate that for language models to successfully solve these
tasks, they require the combination of several key abilities:

Domain separation of text tokens: The ability to treat text tokens in two
fundamentally different ways, as language tokens or as references to ab-
stract objects. Thus, the language model should be able to use a certain
level of abstraction.

Language grounding: Ground language tokens to objects of a hypothetical
world. The ability to parse and then immediately use descriptions of
new objects, i.e., assimilate semantic maps at inference time. Invariance
to wrong object symbols and/or nonsensical object names, which again
indicates a sort of abstract understanding of the meaning convention
underlying language.
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Figure 4.1: Instance of a Plain sub-task example. For
illustration purposes, the correct answer has been crossed in this

case.
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Perception: Perceive objects in the scene, alongside their qualities.

(i) Object identification: Identify the types of pieces, i.e. whether it is a
square, a circle, or a triangle.

(ii) Attribute identification: Identify the various attributes of pieces. This
means understanding which color each piece has and -optionally for
triangles- their orientation.

Reasoning: To adequately solve these tasks the evaluated language models
should be able to perform some basic reasoning operation about the objects
in the scene. In particular, we identified that LLms should be able to;

(i) Counting: quantify various types of pieces in the given structures.
For example, understand whether there are one, two, or more blue
circles.

(ii) Relational reasoning: perform reasoning about positional relation-
ships between pieces (at the right of, at the left of, touching, sur-
rounded by) and use their common-sense meaning in the SIT context.

(iii) Logical reasoning: evaluate simple logic operations like “and/or” in
the properties that are being assessed.

We speculate that all the aforementioned abilities are required to give an accept-
able solution to the SIT benchmark.

Sentece groups. There are three sentence groups of increasing difficulty for
each subtask:

• The first group comprises 66 examples with simple quantification sentences
(e.g., “There is exactly one blue circle”). We expect these examples to be
the easiest to solve among the ones in the task since they require only the
capability to count the number of elements in the observed structures.

• The second group of 66 examples contains simple sentences connected with
logical operators. An instance of these types of sentences would be “There
are at least two yellow squares and exactly one blue circle”. These pose a
slightly more difficult challenge since they require the language model to
apply boolean reasoning on top of counting and grounding.

• Finally, the last 66 examples use sentences expressing positional relation-
ships between pieces in the structure (e.g., “There is exactly one triangle
at the right of a yellow circle”).

This was done to possibly have a more fine-grained understanding of the results
from the benchmark. Indeed, by only testing some groups, it would be possible
to extrapolate more information about the tested LLM (e.g. whether it is able
to count, apply logical operators, or have an understanding of spatiality in the
structures).
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Tricky vs Agnostic name-side. The subtask SIT-tricky may seem not
so different from SIT agnostic name-side at first sight. However, the main
difference is that the tricky subtask contains more information that an agent
could exploit to solve it. In particular, in the tricky subtask, the text is the
same as SIT-plain but in reverse order (e.g., “red square” -> “der erauqs”).
Once an agent understands how to reverse words (GPT-3, for example, seems
able to generate anagrams and reverse words), it could use the reverse function
and the same knowledge learned in solving SIT-plain to solve SIT-tricky. In
the name-agnostic subtask, words are entirely unrelated. We think that the
SIT-tricky subtask introduces interesting variations like the ability to compose
capabilities; it could be interesting to see the comparison between SIT-tricky
and SIT agnostic name-side.

To solve the SIT sub-tasks, humans tend to implement the following strategy,
which starts from the answers rather than the question: for each possible choice,
check if it is consistent with the first structure and not consistent with the
second structure. If this is the case, the choice is the correct one. Implementing
this strategy could be challenging for a language model since it has to pay
attention to each choice separately and, for each choice, test the consistency and
not consistency of the structures in the question.

4.2 Experimental Result
For each sub-task, we computed the accuracy on several models. In particular, we
tested on GPT-2, RoBERTa, and BART (the last two fine-tuned on MultiNLI).
Given a SIT example, we compute the accuracy using the following procedure:
the model’s probability is predicted for each of the possible five sentences. The
score is then 1 if the predicted sentence is consistent with the input structures
otherwise the score is equal to 0. The final sub-task score is then the average
across all examples in the sub-task. The results are presented in table 4.3.

Model Plain Adversarial Tricky Agnostic-name Agnostic-emoji

GPT-2 15.1% 17.6% 20.2% 16.6% 17.6%
RoBERTa 14.1% 15.6% 19.1% 18.1% 14.6%
BART 20.2% 23.2% 21.2% 21.2% 23.2%
Random 20.0% 20.0% 20.0% 20.0% 20.0%

Table 4.3: Multiple-choice accuracy for different LLMs.
This table reports the multiple-choice accuracy evaluated on
different LLM architectures. The results for all the models we

tested are similar to the random guess accuracy.

NOTE:

We investigated the byte-level Byte-Pair Encoding (BPE) tokenization [71]
capabilities of GPT-2, RoBERTa, and BART. We assessed that emojis are
tokenized correctly in all the sub-tasks.

https://huggingface.co/gpt2
https://huggingface.co/roberta-large-mnli
https://huggingface.co/facebook/bart-large-mnli
https://huggingface.co/datasets/multi_nli
https://huggingface.co/gpt2
https://huggingface.co/roberta-large-mnli
https://huggingface.co/facebook/bart-large-mnli
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Figure 4.2: Overall multiple-choice accuracy as the num-
ber of parameters grows. This plot shows the performance
of various LLMs on the SIT task. Performance is computed as
the average of the multiple-choice accuracy over all sub-tasks.
Note that the human baseline significantly surpasses the mod-
els’ performance. This is especially true if we consider the best
human rater. All tested models don’t diverge much from the
random guess baseline, thus suggesting that this task is good for

assessing the capabilities of future LLMs.

4.3 Limitations and future work
A perfect score on this task does not imply a general ability to reason about
real-world problems, objects, and relationships between objects. However, it
might help in designing models in this direction. Solving this task is a necessary
but not sufficient condition for tackling general reasoning since the model could
have applied a heuristic unknown to us to solve it.

Rephrasing the task with a free-text answer instead of multi-choice could
be a promising research area for future work. In this case, the task is much
harder for the model (conjecture the hidden sentence), but also more difficult to
evaluate quantitatively.
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Part II

Generative modeling in the
Signal domain
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Chapter 5

Latent Autoregressive Source
Separation

Autoregressive models have made remarkable strides across various domains,
demonstrating exceptional generation quality and performance in downstream
tasks. In continuous domains, an important element of this success is the
implementation of quantized latent spaces1. These quantized spaces allow
for dimensionality reduction and faster inference times, thus improving the
efficiency and effectiveness of these models. However, leveraging existing pre-
trained models for novel tasks often presents challenges, as it might necessitate
fine-tuning or similar approaches.

This chapter introduces LASS, an approach to vector-quantized Latent Au-
toregressive Source Separation. LASS aims to de-mix an input signal into its
constituent sources without the need for further gradient-based optimization or
modifications to existing models. Our method relies on a Bayesian framework
with autoregressive models serving as priors. For the likelihood function, we
construct a discrete (and sparse) mapping by performing frequency counts over
latent sums of addend tokens. We evaluate our approach using both images
and audio, exploring various sampling strategies. Our results demonstrate that
LASS not only competes effectively with existing separation methods in terms of
quality but also offers substantial improvements in inference time and scalability
to higher-dimensional data.

5.1 Introduction
Autoregressive models have achieved impressive results in a plethora of domains
ranging from natural language [72] to densely-valued domains such as audio
[73] and vision [15, 74], including multimodal joint spaces [75, 76]. In the
dense setting, it is typical to train autoregressive models over discrete latent
representations obtained through the quantization of continuous data, possibly
using VQ-VAE autoencoders [14]. This way, generating higher resolution samples
while simultaneously reducing inference time is possible. Additionally, the learned
latent representations are useful for downstream tasks [77]. However, in order to
perform new non-trivial tasks, the standard practice is to fine-tune the model or,
in alternative, elicit prompting by scaling training [78,79]. The former is usually

1such as those obtained via VQ-VAE autoencoders
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Figure 5.1: 256x256 separations obtained with LASS.
To perform these image separations, we used pre-trained au-
toregressive models. Left: class-conditional ImageNet. Right:

unconditional CelebA-HQ.

the default option, but it requires additional optimization steps or modifications
to the model. The latter is challenging on non-trivial tasks, especially in domains
different from natural language [80, 81].

Our work aims at tackling one of such tasks, namely source separation,
leveraging existing vector-quantized autoregressive models without requiring
any gradient-based optimization or architectural modifications. The task of
separating two or more sources from a mixture signal has recently received much
attention following the success of deep learning, especially in the audio domain,
ranging from speech [82], music [83], and universal source separation [84, 85].
Although not as prominent as its audio counterpart, image source separation
has been addressed in literature [86]. Most successful approaches use explicit
supervision to achieve notable results [87,88], or leverage large-scale unsupervised
regression [89].

We propose a generative approach to perform source separation via autore-
gressive prior distributions trained on a latent VQ-VAE domain (when class
information is used, the approach is weakly supervised; otherwise, it is unsu-
pervised). A non-parametric sparse likelihood function is learned by counting
the occurrences of latent mixed tokens with respect to the sources’ tokens,
obtained by mapping the data-domain sum signals and the relative addends via
the VQ-VAE. This module is not invasive, neither for the VQ-VAE nor for the
autoregressive priors, given that the representation space of the VQ-VAE does
not change while learning the likelihood function. Finally, the likelihood function
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is combined with the estimations of the autoregressive priors at inference time
via the Bayes formula, resulting in a posterior distribution. The separations
are obtained from the posterior distributions via standard discrete samplers
(e.g., ancestral, beam search). We call our method LASS (Latent Autoregressive
Source Separation).

We can summarize our contributions as follows:

(i) We present LASS as a Bayesian inference technique for source separa-
tion, capable of utilizing existing pre-trained autoregressive models within
quantized latent spaces.

(ii) We experiment with LASS in the image domain and demonstrate com-
petitive results at a significantly lower inference time cost compared to
competitors on MNIST and CelebA (32×32). We also present qualitative
results on ImageNet (256×256) and CelebA-HQ (256×256), highlighting
LASS’s scalability with pre-trained models. To our knowledge, this is the
first method to extend generative source separation to higher resolution
images.

(iii) We experiment with LASS in the music source separation task on the
Slakh2100 dataset. LASS obtains performance comparable to state-of-the-
art supervised models, with a significantly smaller cost in inference and
training time with respect to generative competitors.

5.2 Related Work
With the advent of deep learning, most prominent methods for source separation
can be classified as regression-based or generative-based methods. The problem
of source separation has traditionally been addressed in an unsupervised manner,
often referred to as blind source separation [90–93]. In this context, no information
is available about the sources that need to be separated from a mixture signal.
Consequently, these methods rely on broad mathematical priors, such as source
independence [91] or repetition [94], to achieve separation. With the advent of
deep learning, the most prominent methods for source separation can now be
classified as either regression-based or generative-based approaches.

Regression-based source separation. In this setting, a mixture is fed to a
parametric model (i.e., a neural network) that outputs the separated sources.
Training is typically performed in a supervised manner by matching the estimated
separations with the ground truth sources with a regression loss (e.g., L1 or
L2) [95]. Supervised regression has been applied to image source separation [86],
but it has been mainly investigated in the audio domain, where two approaches
are prevalent: the mask-based approach and the waveform approach. In the
mask-based approach, the model performs separation by applying estimated
masks on mixtures, typically in the STFT domain [96–101]. In the waveform
approach, the model outputs the estimated sources directly in the time domain
to overcome phase estimation, which is required when transforming the signal
from the STFT domain to the waveform domain [87, 88, 102].
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Generative source separation. Following the success of deep generative
models [13, 27, 28, 103], a new class of generative source separation methods is
gaining prominence. This setting emphasizes the exploitation of broad generative
models (especially pre-trained ones) to solve the separation task without needing
a specialized architecture (as with regression-based models).

Following early work on deep generative separation based on GANs [104–106],
[107] propose the generative separation method BASIS in the image setting
using score-based models [26] (BASIS-NCSN) and a noise-annealed version of
flow-based models (BASIS-Glow). The inference procedure is performed in the
image domain through Langevin dynamics [108], obtaining good quantitative
and qualitative results. The authors extend the Langevin dynamics inference
procedure to autoregressive models by re-training them with a noise schedule,
introducing the Parallel and Flexible (PnF) method [109]. Although innovative,
mainly when used for tasks such as inpainting, this method cannot use pre-
trained autoregressive models directly, requiring fine-tuning under different noise
levels. Further, working directly on the data domain, it exhibits a high inference
time and scales with difficulty to higher resolutions. In this paper, we extend
this line of research by proposing a separation procedure for latent autoregressive
models that does not involve re-training, is scalable to arbitrary pre-trained
checkpoints and is compatible with standard discrete samplers.

Figure 5.2: Schematic of the LASS separation procedure.
Illustration of the separation procedure at s = 3 and is repeated
until s = S. At the end of inference, we obtain x1 and x2 decoding
z1 and z2 via the VQ-VAE decoder (not depicted in the picture).

We refer the reader to algorithm 2 for more details.
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5.3 Method
Let x = (x1, x2) ∈ R2×N denote two sources distributed according to pdata =
(p1

data, p
2
data) and y = (x1 + x2)/2 an observable mixture. The goal of generative

source separation is to estimate the sources x given the mixture y, using the
Bayesian posterior (assuming independent sources):

p(x1, x2|y) ∝ p1

data(x1)p2

data(x2)p(y|x1, x2). (5.1)

Working directly with Eq. (5.1) in the continuous data domain is inefficient. To
overcome this problem, we first model pdata with autoregressive models in the
latent space of a VQ-VAE. By changing the domain, we subsequentially redefine
the likelihood function p(y|x1, x2) such that no gradient-based optimization
or model re-training is required. We address the first issue in the following
subsection and the second in the subsequent one. We then describe how to
perform inference using LASS to separate data and propose a post-inference
refinement procedure.

5.3.1 Latent Autoregressive Source Separation
This paper explores the case in which pdata is estimated by a unique autoregressive
model pφ for all the sources (unsupervised2) and the case in which we have two
independent ones, pφ = (pφ1 , pφ2), for each of the two sources (weakly supervised),
either in terms of class-conditioned or independently trained models. We will
focus on this latter case in the following, since the former can be generalized
setting pφ1 = pφ2 .

We denote the latent sources and mixtures, respectively, with z = (z1, z2) =
B(Eθ(x)) and m = B(Eθ(y)). The posterior distribution in Eq. (5.1) can be
locally expressed in the latent domain as:

p(zs|z<s,m≤s) ∝ pφ(zs|z<s)p(m≤s|z≤s), (5.2)

for all s = 1, . . . , S. The first factor is the (joint) Bayesian prior, modeled with
autoregressive distributions. The second factor is the likelihood function, which
quantifies the likelihood of the sequences z1

≤s, z2
≤s to combine into m≤s.

Since each code in the convolutional VQ-VAE describes a local portion of
the data, and given that the mixing operation is point-wise in the data domain,
the mixing relation between latent codes is local also in the latent domain. As
such, we can drop the dependency on the previous context inside the likelihood
function in Eq. (5.2), approximating it as:

p(m≤s|z≤s) ≈ p(ms|zs). (5.3)
2Not to be confused with the unsupervised blind setting, i.e., in our unsupervised setting

we have access to sources but we do not have class labels.
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Notice that not depending on the global context and thus on the specific position
in the sequence, we can drop the position index s:

p(ms|zs) = p(ms|z1

s, z
2

s) = p(m|z1, z2). (5.4)

The following subsection describes how LASS models the likelihood function.

5.3.2 Discrete Likelihoods for Source Separation
Previous works in generative source separation [107, 109] model likelihood func-
tions directly in the data domain, typically employing a σ-isotropic Gaussian
term:

p(y|x) = N (y|(x1 + x2)/2, σ2I).

In our setting, we cannot combine z1
s and z2

s (or the associate dense codes ez1s
and ez2s ) with the canonical sum operation, given that the VQ-VAE does not
impose an explicit arithmetic structure on the latent space.

To cope with this, we model the likelihood function in Eq. (5.4) using discrete
conditionals, represented with rank-3 tensors3 L ∈ RK×K×K :

p(· |z1, z2) = Lz1,z2,:.

In order to learn L, we perform frequency counts on latent mixed tokens given
the latent sources’ tokens, by iterating over a dataset X. We first initialize
a null integer tensor F0 ∈ NK×K×K . Iterating over x1, x2 ∈ X, we compute
y = (x1+x2)/2, then obtain the latent sequences z1 = B(Eθ(x1)), z2 = B(Eθ(x2))
and m = B(Eθ(y)). For each entry (z1

s, z
2
s,ms) ∈ (z1, z2,m), at step t, we simply

increment the previous count by one:

Ftz1s ,z2s ,ms
= Ft−1

z1s ,z
2
s ,ms

+ 1 ,

Ftz2s ,z1s ,ms
= Ft−1

z2s ,z
1
s ,ms

+ 1 .

We permute the order of the addends in order to enforce the commutative
property of the sum. After performing the statistics, we can define L as:

Lz1,z2,: =
1∑K

k=1 Fz1,z2,k
Fz1,z2,:.

Zmix = Z1 + Z2

At inference time, the likelihood function (parametric in z1 and z2, with m fixed)
can be obtained by slicing the tensor along m, namely:

p(m|·, ·) = L:,:,m.

At first glance, modeling the conditional distributions without parameters
could seem memory inefficient, with a complexity of O(K3). In practice, the

3We follow the notation for tensors as in [110].
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Algorithm 2 LASS inference
Input: y
Output: x1, x2

1: m← B(Eθ(y))
2: z1 ← []
3: z2 ← []
4: for s = 1 to S do
5: prior← log(pφ1(· |z1)⊗ pφ2(· |z2))
6: likelihood← log(L:,:,ms)
7: posterior← prior + λ likelihood
8: (z1

s, z
2
s)← Sampler(posterior)

9: z1 ← concat(z1, z1
s)

10: z2 ← concat(z2, z2
s)

11: end for
12: x1 ← Dψ(z1)
13: x2 ← Dψ(z2)
14: return x1, x2

tensor L is highly sparse. We showcase this in table 5.1 for all our experiments,
where the density of L is defined as the percentage of nonzero elements in L.

NOTE:

Employing discrete likelihood functions for source separation in the latent
domain of a VQ-VAE is a flexible approach; there is no need to change the
VQ-VAE representation, the non-parametric learning procedure does not
depend on hyperparameters, and the autoregressive priors do not require
re-training.

5.3.3 Inference Procedure
Given an observable mixture y, the autoregressive priors pφ1 , pφ2 and the esti-
mated likelihood tensor L, it is possible to perform inference and estimate x1, x2,
as described in Algorithm 2 and depicted in Figure 5.2.

We start by mapping y to the latent domain obtaining m = B(Eθ(y)) and
initializing the estimates z1, z2 with the empty sequences. The algorithm iterates
over s = 1, . . . , S. At each step, the joint prior (a K ×K matrix) is computed
(Line 5) by taking the outer product of the two distributions predicted by the
autoregressive models conditioned over the past context. We use the logarithms of
the distributions for numerical stability. The log-likelihood function is computed
next (Line 6), applying the logarithm on L:,:,ms . In our experiments, we can
apply different scaling factors λ to the log-likelihood to balance it to the priors.
The two matrices are then combined to form the posterior on Line 7.

Finally (Lines 8-10), different techniques can be employed to sample the
best candidate tokens (z1

s, z
2
s) from the posterior. In our experiments, we used

ancestral sampling (with and without top-k filtering) and beam search. After
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Dataset K Likelihood density

MNIST 256 1.49 %
CelebA 512 6.06 %
CelebA-HQ 1024 3.80× 10−1 %
ImageNet 16384 3.90× 10−3 %
Slakh (Drum + Bass) 2048 7.60× 10−2%

Table 5.1: Statistics on likelihood functions over different
datasets. K is the number of VQ-VAE latent codes. Likelihood
density is the percentage of nonzero elements in the likelihood

tensor L.

the inference loop ends, the estimated sequences are mapped back to the data
domain with the decoder of the VQ-VAE (Lines 12-13), obtaining x1 and x2.

Post-inference Refinement. The quality of the separated images is limited
by the quality of the images obtained via the VQ-VAE decoder. To enhance the
separations we can adopt an additional refinement step by iteratively optimizing
the VQ-VAE latent representations of the samples:

e1

t+1 = e1

t + α∇e1t ‖Dψ(e1

t) +Dψ(e2

t)− 2y‖2 (5.5)
e2

t+1 = e2

t + α∇e2t ‖Dψ(e1

t) +Dψ(e2

t)− 2y‖2 (5.6)

for t = 1, . . . , T − 1 and e1
1 = Eθ(x1), e2

1 = Eθ(x2). In simple words, we
optimize for dense latent embeddings such that their decodings better sum to
the mixture, initializing them to the output of Algorithm 2. We found this
strategy particularly helpful on the MNIST datset, where we assess the quality
of the separation through a pixel-wise metric (PSNR) and the VQ-VAE tends
to produce smooth images.

5.4 Experimental Results
We performed quantitative and qualitative experiments on various datasets to
demonstrate the efficacy and scalability of LASS. In the image domain, we
evaluate on MNIST [35] and CelebA (32×32) [36] and present qualitative results
on the higher resolution datasets CelebA-HQ (256×256) [37] and ImageNet
(256×256) [38]. In the audio domain, we test on Slakh2100 [111], a large dataset
for music source separation suitable for generative modeling. We conducted
all our experiments on a single Nvidia RTX 3090 GPU with 24 GB of VRAM.
Implementation details for all the models are listed on the companion website4.

5.4.1 Image Source Separation
We choose the Transformer architecture [16] as the autoregressive backbone for
all image source separation experiments. With MNIST and CelebA, we first

4github.com/gladia-research-group/latent-autoregressive-source-separation

github.com/gladia-research-group/latent-autoregressive-source-separation
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Figure 5.3: Results on MNIST with top-k sampling
(k = 32) over a random batch of examples. Top-k sampling
produces more defined digits, in agreement with the results in

table 5.3.

Separation Method MNIST (PSNR)↑ CelebA (FID)↓

Average 14.9 15.19
NMF 9.4 -
S-D 18.5 -
BASIS Glow 22.7 -
BASIS NCSN 29.3 7.55
LASS (Ours) 24.2 8.96

Table 5.2: Comparison with other methods. We evaluate
LASS on both the MNIST and CelebA test sets. Results are
reported in PSNR (higher is better) and FID (lower is better).

train a VQ-VAE, then train the autoregressive Transformer on its latent space.
We use K = 256 codes on MNIST and K = 512 on CelebA, given that CelebA
presents more variability, requiring more information to reconstruct data. On
CelebA-HQ and ImageNet, we leverage pre-trained VQ-GANs [15] alongside the
pre-trained Transformers published by the authors5 (celebahq_transformer
checkpoint for CelebA-HQ and cin_transformer for ImageNet). Given the
flexibility of LASS, they are employed inside the separation algorithm without
modifications. On CelebA-HQ the VQ-GAN has K = 1024 codes, while on
ImageNet has K = 16384. As a first step, in all image-based experiments we
learn the L tensor using the procedure presented in the section “Method”. As
shown in table 5.1, CelebA presents the lowest sparsity (highest density) while
ImageNet has the highest. In all cases, density is below 7%, and the inference
procedure is not affected by memory issues.

5github.com/CompVis/taming-transformers
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Quantitative Results To assess the quality of image separations produced by
LASS, we compare our method with different baselines on MNIST and CelebA.

On MNIST, we compare LASS with results reported for the two generative
separation methods “BASIS NCSN” (score-based) and “BASIS Glow” (noise-
annealed flow-based) from [107], the GAN-based “S-D” method [105], the fully
supervised version of Neural Egg “NES” and the “Average” baseline, where
separations are obtained directly from the mixture x1 = x2 = y/2. In all these
cases, the evaluation metric is the PSNR (Peak Signal to Noise Ration) [112].
We follow the experimental procedure of [107] on MNIST and perform separation
on a set of 6,000 mixtures obtained by combining 12,000 test sources. In order
to choose the best sampler for this dataset, we validate the set of samplers
in table 5.3 on 1,000 mixtures constructed from the test split. We find that
stochastic samplers perform best (PSNR > 20 dB) while MAP methods do not
reach a satisfactory performance. We hypothesize that beam search tends to fall
into sub-optimal solutions by performing incorrect choices in early inference over
sparse images such as MNIST digits. Top-k sampling with k = 32 performs best,
so we choose it to perform the evaluation (a qualitative comparison is shown in
Figure 5.3). For each mixture in the test set we sample a candidate batch of
512 separations, select the separation whose sum better matches the mixture
(w.r.t. the L2 distance), and finally perform the refinement procedure in Eqs.
(5.5), (5.6) with T = 500 and α = 0.1. Evaluation metrics on this experiment
are shown in table 5.2, while inference time is reported in table 5.4. Our method
achieves higher metrics than “NMF”, “S-D” and “BASIS Glow” and is faster
than “BASIS NCSN”, thanks to the latent quantization. The higher PSNR
achieved by the later method can be attributed to the fact that, in their case, the
underlying generative models perform sampling directly in the image domain; in
our case, the VQ-VAE compression can hinder the metrics.

We compare our method to “BASIS NCSN”, using the pre-trained NCSN
model [26] on CelebA. In this case, we evaluate against the FID metric [113]
instead of PSNR, given that for datasets that feature more variability than
MNIST, source separation can be an underdetermined task [107]: semantically
good separations can receive a low PSNR score since the generative models
may alter features such as color and cues (an effect amplified by a VQ-GAN
decoder). The FID metric better quantifies if the separations belong to the
distribution of the sources. We test on 10,000 mixtures computed from pair of
images in the validation split using a top-k sampler with k = 32. We scale the
likelihood term by multiplying it by λ = 3. It is a known fact in the literature
that score-based models outperform autoregressive models on FID metrics [114]
on different datasets, yet our method paired with an autoregressive model shows
competitive results with respect to the score-based “BASIS NCSN”.

Qualitative results. To demonstrate the flexibility of LASS in using existing
models without any modification, we leverage pre-trained checkpoints on CelebA-
HQ and ImageNet. In this case, only the likelihood tensor L is learned. We
showcase a curated results list in Figure 5.1 and a more extensive list on the
companion website. To the best of our knowledge, our method is the first to
scale up to 256×256 resolutions and can be used with more powerful latent
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Sampling Method MNIST (PSNR) Slakh (SDR)

Greedy 17.36 ± 5.90 1.23 ± 2.33
Beam Search 16.96 ± 5.78 5.01 ± 2.39
Ancestral Sampl. 24.03 ± 6.37 4.23 ± 2.29
Top-k (k = 16) 23.74 ± 6.55 3.13 ± 2.53
Top-k (k = 32) 24.23 ± 6.23 2.93 ± 2.20
Top-k (k = 64) 23.85 ± 6.13 3.24 ± 3.29

Table 5.3: LASS performance using different sampling
strategies. On MNIST, the reported score is PSNR (dB) (higher
is better), while on Slakh is SDR (dB) (higher is better). When
stochastic samplers are used (ancestral or top-k), the selected
solution in the batch is the one whose sum minimizes the L2

distance to the input mixture.

Method Time

MNIST LASS (Ours) 4.49 s ± 0.27 s
BASIS NCSN 53.34 s ± 0.51 s

Slakh LASS (Ours) 1.33 min ± 0.87 s
PnF 42.29 min ± 1.08 s

Table 5.4: Inference speed comparisons for performing
one source separation. To estimate variance, we repeat in-
ference 10 times on MINST and 3 times on Slakh. We consider

3-second-long mixtures on Slakh.

autoregressive models without re-training (which is cumbersome for very large
models). As such, end-users can perform generative separation without having
access to extensive computational resources for training these large models.

5.4.2 Music Source Separation
We perform experiments on the Slakh2100 dataset [111] for the music source
separation task. This dataset contains 2100 songs with separated sources
belonging to 34 instrument categories, for a total of 145 hours of mixtures. We
focus on the “Drums” and “Bass” data classes, with tracks sampled at 22kHz.
We use the public checkpoint of [73] for the VQ-VAE model, taking advantage
of its expressivity in modeling audio data over a quantized domain. Given
that such a model is trained at 44kHz, we upsample input data linearly, then
downsample the output back at 22kHz. For the two autoregressive priors, we
train two Transformer models, one for “Drums” and another for “Bass” and learn
the likelihood function over the VQ-VAE (statistics are reported in table 5.1).
We compare LASS to a set of unsupervised blind source separation methods
-“rPCA” [92], “ICA” [91], “HPSS” [94], “FT2D” [115] - and to two supervised
baselines Demucs [88] and Conv-Tasnet [87] using the SDR (dB) evaluation
metric computed with the museval library [116]. To evaluate the methods,
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Separation Method Avg. Drums Bass

rPCA 0.82 0.60 1.05
ICA -1.26 -0.99 -1.53
HPSS -0.45 -0.56 -0.33
REPET 1.04 0.53 1.54
FT2D 0.95 0.59 1.31
LASS (Ours) 4.86 4.73 4.98
Demucs 5.39 5.42 5.36
Conv-Tasnet 5.47 5.51 5.43

Table 5.5: Comparison with other source separation
methods on Slakh (“Drums” and “Bass” classes). Results
are reported in SDR (dB) (higher is better). Lower part of the
table shows supervised methods. With “Avg” we refer to the

mean between the results over the two classes.

we select 900 music chunks of 3 seconds from the test splits of the “Drums”
and “Bass” classes, combining them to form 450 mixtures. The validation
dataset is constructed similarly (with different music chunks). As a sampling
strategy, we use beam search since it shows the best results on a validation of
50 mixtures (table 5.3), using B = 100 beams. Evaluation results are reported
in table 5.5: LASS clearly performs better than all the blind unsupervised
baselines and is comparable with the results obtained by methods that use
supervision. Furthermore, we compare the time performance of LASS against
the generative source separation method “PnF” [109] by evaluating the time
required to separate a mixture of 3 seconds sampled at 22 kHz (piano vs. voice
on “PnF”). Results in table 5.4 show that LASS is significantly faster, and as
such, it can be adopted in more realistic inference scenarios.

5.5 Limitations
In this work, we limit our analysis to the separation of two sources. Even if
this is a common setup especially in image separation [86, 109], dealing with
multiple sources is a possible line of future work. Under our framework, this
would require to increase the dimensions of the discrete distributions (both the
priors and the likelihood function). To alleviate this problem, techniques such
as recursive separation may be employed [117].

Another limitation of the proposed method is the locality assumption taken in
eq. (5.3). Different tasks such as colorization and super-resolution would require
a larger conditioning context, and newer quantization schemes to aggregate
latent codes on global contexts (using self-attention in the encoder and the
decoder of the VQ-VAE) [118]. Adopting a VQ-VAE quantized with respect to
the latent channels [119] combined with a parametric likelihood function could
be a way to solve this limitation, while still maintaining the flexible separation
between VQ-VAE, priors, and likelihoods presented in the paper.
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5.6 Conclusion
In this chapter, we introduced LASS as a source separation method for latent
autoregressive models. Thanks to its unintrusive approach it does not modify
the structure of the priors, allowing the utilization of pretrained latent space
autoregressive models. We have tested our method on different datasets and have
shown results comparable to state-of-the-art methods while being more scalable
and faster at inference time. Additionally, we have shown qualitative results
at a higher resolution than those proposed by our competitors. We believe our
method will benefit from the improved quality of newer autoregressive models,
improving both the quantitative metrics and the perceptive results.
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Chapter 6

Diffusion Models for
Multi-Source Music Generation

In this chapter, we introduce a series of diffusion-based generative architectures
intended to allow a more instrument-aware and compositional control over
music generation. This is important if we are interested in utilizing generative
models as useful tools in an audio-processing and/or music-producing pipeline.
In particular, our research effort resulted in three main works. These—in
chronological order of development—are:

Multi-Source Diffusion Models (MSDM): This is the first audio diffusion
model we designed: it is able to take both music synthesis and source
separation by learning the score of the joint probability density of sources
sharing a context. In addition to classic total inference tasks, such as
generating a mixture and separating sources, we also explore the partial
generation (or accompaniment generation) task, where a subset of the
sources is generated given the others. An example would be the generation
of a piano track that complements an existing drum track.

Generalized Multi-Source Inference (GMSI): This work is a generaliza-
tion of our previous MSDM approach to arbitrary time-domain and text-
conditioned diffusion models. These models do not require separated data
as they are trained on mixtures, and can parameterize an arbitrary number
of sources, thus giving a hypothetical user extensive control. We propose
an inference procedure enabling the coherent generation of sources and
accompaniments.

CompoNet: This is a diffusion architecture based on ControlNet [120], which
allows the performing of several types of generative tasks through a new
fine-training procedure, unifying several compositional models (MSDM,
GMSDI, StemGen [121], and InstructME [122]). Beyond the flexibility
offered by the ability to perform numerous compositional tasks, our model
is the first to manage stems of the same type in the same track and
introduces semantic control at the stem level.

6.1 Introduction
Generative models have recently gained a lot of attention thanks to their success-
ful application in many fields, such as NLP [123, 124], image synthesis [125, 126]
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or protein design [127]. The audio domain is no exception to this trend [18,128].
Indeed, the task of automatic music production has seen significant advance-
ments thanks to recent developments in generative AI. In particular, the families
of generative models showcasing state-of-the-art music synthesis are latent lan-
guage models [129] and diffusion models [26, 28, 130]. Latent language models
map a continuous-domain (time or spectral) signal to a sequence of discrete
tokens and estimate a density over such sequences autoregessively [18, 131] or
via mask-modeling [132]. Diffusion models [128,133], on the other hand, operate
on continuous1 representations directly, capturing the gradient of the log-density
perturbed by a Gaussian process. Despite differences between these generative
models, they typically share some mechanisms for conditioning on rich textual
embeddings, obtained either using text-only encoders [134] or audio-text con-
trastive encoders [135–137]. Such a mechanism allows generating a musical track
following a natural language prompt.

Multi-source coherency. A peculiarity of the audio domain is that an audio
sample y can be seen as the sum of multiple—usually coherent—individual
sources {x1, . . . , xN}, resulting in a mixture y =

∑N
n=1 xn. Indeed, unlike in

other sub-fields of the audio domain (like speech), musical sources2 present
in musical mixtures share a context given their strong interdependence. For
example, the bass line of a song follows the drum’s rhythm and harmonizes
with the melody of the guitar. Mathematically, this fact can be expressed by
saying that the joint distribution of the sources p(x1, . . . , xN) does not factorize
into the product of individual source distributions {pn(xn)}n=1,...,N . Knowing
the joint p(x1, . . . , xN) implies knowing the distribution over the mixtures p(y)
since the latter can be obtained through the sum. The converse is more difficult
mathematically, being an inverse problem.

Nevertheless, humans have developed the ability to process multiple sound
sources simultaneously in terms of synthesis (i.e., musical composition or gener-
ation) and analysis (i.e., source separation). More specifically, composers can
invent multiple sources {x1, . . . , xN} that sum to a consistent mixture y and,
extract information about the individual sources {x1, . . . , xN} from a mixture y.
This ability to compose and decompose sound is crucial for a generative music
model. A model designed to assist in music composition should be capable of
isolating individual sources within a mixture and allow for independent operation
on each source. Without this feature, it might be hard for musical generative
models to be effectively employed in music production tasks: the subsequent
manipulation of sub-tracks, creation of accompaniments, and source separation
are often required. Therefore, we argue that the task of compositional music
generation is highly connected to the task of music source separation.

To the best of our knowledge, no model in deep learning literature was able
to perform both tasks simultaneously before our model. Models designed for
the generation task directly learn the distribution p(y) over mixtures, collapsing
the information needed for the separation task. In this case, we have accurate

1(e.g. time, spectral, or latent domains)
2Often referred to as stems.
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mixture modeling but no information about the individual sources. It is worth
noting that approaches that model the distribution of mixtures conditioning on
textual data [18,138] face the same limitations. Conversely, models for source
separation [139] either target p(x1, . . . , xN | y), conditioning on the mixture, or
learn a single model pn(xn) for each source distribution (in a weakly-supervised
manner) and condition on the mixture during inference [8, 107]. In both cases,
generating mixtures is impossible. In the first case, the model inputs a mixture,
which hinders the possibility of unconditional modeling, not having direct access
to p(x1, . . . , xN) (or equivalently to p(y)). In the second case, while we can
accurately model each source independently, all essential information about
their interdependence is lost, preventing the possibility of generating coherent
mixtures.

Contributions. For this line of research on multi-source generation on music,
our contributions can be summarize as follow:

(i) We bridged the gap between source separation and music generation by
learning p(x1, . . . , xN), the joint (prior) distribution of contextual sources
(i.e., those belonging to the same song). For this purpose, we use the de-
noising score-matching framework to train a Multi-Source Diffusion Model
(MSDM). We can perform both source separation and music generation
during inference by training this single model.

(ii) With MSDM, we obtained competitive results on source separation against
state-of-the-art discriminative models [140] on the Slakh2100 [44] dataset.
This is partially due to a novel procedure for computing the posterior
score based on Dirac delta functions, exploiting the functional relationship
between the sources and the mixture.

(iii) Using our inference time procedure GMSDI, we can tackle all of MSDM
capabilities requiring only mixture data for training. The result is thus an
unsupervised algorithm when paired with a contrastive encoder.

(iv) Thanks to its flexible approach, GMSDI can parameterize an arbitrary
number and type of sources, allowing for rich semantic control. This might
be especially useful for instruments that are less common in stem-separated
datasets.

(v) We proposed CompoNet, a powerful fine-tuned variant of AudioLDM2,
able to tackle a wide variety of compositional music generation tasks.

6.2 Related Work

6.2.1 Generative Models for Audio
Deep generative models for audio, learn—either directly or implicitly—the
probability density of audio mixtures, represented in our notation by p(y),
possibly conditioning on additional data such as text. Various general-purpose



56 Chapter 6. Diffusion Models for Multi-Source Music Generation

generative models, such as autoregressive models, GANs [141], and diffusion
models, have been adapted for use in the audio field.

Autoregressive models have a well-established presence in audio modeling [142].
Jukebox [20] proposed to model musical tracks with Scalable Transformers
[16] on hierarchical discrete representations obtained through VQ-VAEs [129].
Furthermore, using a lyrics conditioner, this method generated tracks with vocals
following the text. However, while Jukebox could model longer sequences in latent
space, the audio output suffered from quantization artifacts. By incorporating
residual quantization [143], newer latent autoregressive models [144, 145] can
handle extended contexts and output more coherent and naturally sounding
generations. State-of-the-art latent autoregressive models for music, such as
MusicLM [18], can guide generation by conditioning on textual embeddings
obtained via large-scale contrastive pre-training [135,146]. MusicLM can also
input a melody and condition on text for style transfer. A concurrent work,
SingSong [147], introduces vocal-to-mixture accompaniment generation. Our
accompaniment generation procedures differ from the latter since we aim to
perform generation at the stem level in a composable way, while the former
outputs a single accompaniment mixture.

DiffWave [148] and WaveGrad [149] were the first diffusion (score) based
generative models in audio, tackling speech synthesis. Many subsequent mod-
els followed these preliminary works, mainly conditioned to solve particular
tasks such as speech enhancement [150–153], audio upsampling [154], MIDI-to-
waveform [155, 156], or spectrogram-to-MIDI generation [157]. The first work in
source-specific generation with diffusion models is CRASH [158]. [128, 159, 160]
proposed text-conditioned diffusion models to generate general sounds, not
focusing on restricted classes such as speech or music. Closer to our work, diffu-
sion models targeting the musical domain are Riffusion [161] and Moûsai [138].
Riffusion fine-tunes Stable Diffusion [126], a large pre-trained text-conditioned
vision diffusion model, over STFT magnitude spectrograms. Moûsai performs
generation in a latent domain, resulting in context lengths that surpass the
minute.

6.2.2 Compositional Waveform Music Generation
In the music domain, we usually have N distinct source waveforms {x1, . . . , xN}
with xn ∈ RD for each n. The sources coherently sum to a mixture y =

∑N
n=1 xn.

In this setting, multiple tasks can be performed: one may generate a coherent
set of waveforms {xi}i—such that their sum is a valid mixture y—or separate
the individual sources x from a given mixture y. We refer to the first task as
total generation and the second as source separation. A subset of sources can
also be fixed in the generation task, and the others can be generated coherently.
We call this task partial generation or accompaniment generation. In general, we
say that compositional music generation (in the waveform domain3) consists in

3as opposed to symbolic domains such as MIDI or sheet music [162]
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the generation of source-aware music tracks. That is, we say that a model can
perform compositional music generation if it allows the manipulation and/or
extraction of specific stems during the generation process.

An example of a (non-musical) compositional model is AUDIT [163]. It
proposes a diffusion model conditioned by a T5 Encoder [134], trained with
instructions that allow the addition, removal (drop), and replacement of sources
in an input audio mixture. This model operates on general audio signals with
weak dependencies between the sources (e.g., environmental sounds). While
MSDM is an unconditional generative model that processes single sources in
parallel, AUDIT is a conditional generative model that processes mixtures
sequentially. InstructME [122] introduces AUDIT in the musical setting of
MSDM, where sources are highly interdependent.

Another model is StemGen [121]: given an instrument tag and an input
audio mixture, it generates a single accompaniment source, via a masked music
language model [132].

6.2.3 Audio Source Separation
Existing audio source separation models can be broadly classified into dis-
criminative and generative. Discriminative source separators are deterministic
parametric models that input the mixtures and systematically extract one or all
sources, maximizing the likelihood of some underlying conditional distribution
p(x1, . . . , xN | y). These models are typically trained with a regression loss [164]
on the estimated signal represented as waveform [87, 139, 165], STFT [166, 167],
or both [83]. On the other hand, generative source separation models learn a
prior model for each source, thus targeting the distributions {pn(xn)}n=1,...,N .
The mixture is observed only during inference, where a likelihood function
connects it to its constituent sources. The literature has explored different priors,
such as GANs [104, 106, 168], normalizing flows [107, 169], and autoregressive
models4 [109].

The separation method closer to ours is the NCSN-BASIS algorithm [107]. This
method was proposed for source separation in the image domain, performing
Langevin Dynamics for separating the mixtures with an NCSN score-based
model. It employs a Gaussian likelihood function during inference, which, as we
demonstrate experimentally, is sub-optimal compared to our novel Dirac-based
likelihood function.

NOTE:

The main difference between our methods with respect to other generative
source separation methods (including NCSN-BASIS) is the modeling of the
sources’ joint distribution. As such, we can perform source separation and
generate mixtures or subsets of stems with a single model.
4Such as our LASSsource separation procedure, discussed in section 5.3.
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Contextual information between sources is explicitly modeled in [140] and
[170]. The first work models the relationship between sources by training
an orderless NADE estimator, which predicts a subset of the sources while
conditioning on the input mixture and the remaining sources. The subsequent
study achieves universal source separation [171,172] through adversarial training,
utilizing a context-based discriminator to model the relationship between sources.
Both methods are discriminative, as they are conditioned on the mixtures
architecturally. The same architectural limitation is present in discriminative
approaches for source separation that use diffusion-based [173, 174] or diffusion-
inspired [175] methods. Our method sets itself apart as it proposes a model not
constrained architecturally by a mixture conditioner, so we can also perform
unconditional generation.

6.3 Multi-Source Diffusion Models
As briefly mentioned in section 6.1, the key contribution of Multi-Source Diffusion
Models (MSDM ) is the ability to perform all compositional tasks5 of total
generation, accompaniment generation, and source separation simultaneously.
This can be done by training a single diffusion model that captures the prior
p(x1, . . . , xN). Indeed, the model—illustrated in fig. 6.1—approximates the noisy
score function:

∇x(t) log p(x(t)) = ∇(x1(t),...,xN (t)) log p(x1(t), . . . , xN(t)) ,

with a neural network:

Sθ(x(t), σ(t)) : RN×D × R→ RN×D , (6.1)

where x(t) = (x1(t), . . . , xN(t)) denotes the sources perturbed with the Gaussian
kernel in eq. (2.4).

6.3.1 Compositional Tasks
The three tasks of our method are solved during inference by discretizing the
backward eq. (2.6). Although different tasks require distinct score functions,
they all originate directly from the prior score function in eq. (6.1). We analyze
each of these score functions in detail.

Total Generation The total generation task is performed by sampling from
eq. (2.6) using the score function in Stθ(x, σ). The mixture is then obtained by
summing over all the generated sources.

Partial Generation In the partial generation task, we fix a subset of source
indices I ⊂ {1, . . . , N} and the relative sources xI := {xn}n∈I . The goal
is to generate the remaining sources xI := {xn}n∈I consistently, where I =

5Described in section 6.2.2.
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Figure 6.1: Diagram illustrating the MSDM method.
MSDM leverages a forward Gaussian process (right-to-left) to
learn the score over contextual sets (indicated by large rectan-
gles) of instrumental sources (represented by waveforms) across
different time steps t. During inference, the process is reversed
(left-to-right), enabling us to perform tasks such as total genera-
tion, partial generation, or source separation (detailed in fig. 6.2).

{1, . . . , N}−I. To do so, we estimate the gradient of the conditional distribution:

∇xI(t) log p(xI(t) | xI(t)). (6.2)

This falls into the setting of imputation or, as it is more widely known in the
image domain, inpainting. We approach imputation using the method in [27].
The gradient in eq. (6.2) is approximated as follows:

∇xI(t) log p([xI(t), x̂I(t)]) ,

where x̂I is a sample from the forward process: x̂I(t) ∼ N (xI(t); xI(0), σ(t)
2I).

The square bracket operator denotes concatenation. Approximating the score
function, we write:

∇xI(t) log p(xI(t) | xI(t)) ≈ SθI([xI(t), x̂I(t)], σ(t)) ,

where SθI denotes the entries of the score network corresponding to the sources
indexed by I.

Source Separation We view source separation as a specific instance of con-
ditional generation, where we condition the generation process on the given
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(a) Total generation.

(b) Partial generation.

(c) Source separation.

Figure 6.2: Inference tasks with MSDM. Oblique lines
represent the presence of noise in the signal, decreasing from left
to right, with the highest noise level at time T when we start
the sampling procedure. A: We generate all stems in a mixture,
obtaining a total generation. B: We perform partial generation
(accompaniment generation) by fixing the sources x1 (Bass) and
x3 (Piano) and generating the other two sources x̂2(0) (Drums)
and x̂4(0) (Guitar). We denote with x1(t) and x3(t), the noisy
stems obtained from x1 and x3 via the perturbation kernel in
eq. (2.4). C: We perform source separation by conditioning the

prior with a mixture y, following algorithm 3.
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Algorithm 3 ‘MSDM Dirac’ sampler for source separation.
Require: I number of discretization steps for the ODE, R number of corrector steps,
{σi}i∈{0,...,I} noise schedule, Schurn

1: Initialize x̂ ∼ N (0, σ2
I I)

2: α← min(Schurn/I,
√
2− 1)

3: for i← I to 1 do
4: for r ← R to 0 do
5: σ̂ ← σi · (α+ 1)
6: ε ∼ N (0, I)
7: x̂← x̂ +

√
σ̂2 − σ2

i ε

8: z← [x̂1:N−1, y−
∑N−1

n=1 x̂n]
9: for n← 1 to N − 1 do

10: gn ← Sθn(z, σ̂)− SθN (z, σ̂)
11: end for
12: g← [g1, . . . , gN−1]
13: x̂1:N−1 ← x̂1:N−1 + (σi−1 − σ̂)g
14: x̂← [x̂1:N−1, y−

∑N−1
n=1 x̂n]

15: if r > 0 then
16: ε ∼ N (0, I)
17: x̂← x̂ +

√
σ2
i − σ2

i−1ε

18: end if
19: end for
20: end for
21: return x̂

mixture y = y(0). This requires computing the score function of the posterior
distribution:

∇x(t) log p(x(t) | y(0)) . (6.3)

Standard methods for implementing conditional generation for diffusion models
involve directly estimating the posterior score in eq. (6.3) at training time
(i.e., Classifier Free Guidance, as described in [33]) or estimating the likelihood
function p(y(0) | x(t)) and using the Bayes formula to derive the posterior. The
second approach typically involves training a separate model, often a classifier,
for the score of the likelihood function as in Classifier Guided conditioning,
outlined in [176].

In diffusion-based generative source separation, learning a likelihood model
is typically unnecessary because the relationship between x(t) and y(t) is repre-
sented by a simple function, namely the sum. A natural approach is to model the
likelihood function based on such functional dependency. This is the approach
taken by [107], where they use a Gaussian likelihood function:

p(y(t) | x(t)) = N (y(t) |
N∑
n=1

xn(t), γ2(t)I), (6.4)

with the standard deviation given by a hyperparameter γ(t). The authors argue
that aligning the γ(t) value to be proportionate to σ(t) optimizes the outcomes



62 Chapter 6. Diffusion Models for Multi-Source Music Generation

of their NCSN-BASIS separator.
We present a novel approximation of the posterior score function in eq. (6.3)

by modeling p(y(t) | x(t)) as a Dirac delta function centered in
∑N

n=1 xn(t):

p(y(t) | x(t)) = 1y(t)=
∑N

n=1 xn(t) . (6.5)

and we present only the final formulation, which we call ‘MSDM Dirac’. The
method constrains a source, without loss of generality xN , by setting xN(t) =
y(0)−

∑N−1
n=1 xn(t) and estimates:

∇xm(t) log p(x(t) | y(0)) ≈ Sθm((x1(t), . . . , xN−1(t), y(0)−
N−1∑
n=1

xn(t)), σ(t)) (6.6)

− SθN((x1(t), . . . , xN−1(t), y(0)−
N−1∑
n=1

xn(t)), σ(t)) ,

(6.7)

where 1 ≤ m ≤ N − 1 and Sθm, S
θ
N denote the entries of the score network

corresponding to the m-th and N -th sources. Our approach models the limiting
case wherein γ(t) → 0 in the Gaussian likelihood function. This represents a
scenario where the dependence between x(t) and y(t) becomes increasingly tight,
sharpening the conditioning on the given mixture during the generation process.

The separation procedure can be additionally employed in the weakly-
supervised source separation scenario, typically encountered in generative source
separation [8, 107, 169]. This scenario pertains to cases where we know that
specific audio data belongs to a particular instrument class, but we do not have
access to sets of sources that share a context. To adapt to this scenario, we
assume independence between sources p(x1, . . . , xN) =

∏N
n=1 pn(xn) and train

a separate model for each source class. We call the resulting model ‘Indepen-
dent Source Diffusion Model with Dirac Likelihood’ or ‘ISDM Dirac’. While
the ISDM method lacks generative capabilities, it enables us to demonstrate
the effectiveness of generative source separation when combined with Dirac
likelihood.

The sampler. Our approach utilizes a first-order ODE integrator, specifically
the Euler method, and incorporates stochasticity via the Schurn mechanism as
discussed in [29]. Additionally, we apply a correction step as described in [27,107].
This correction procedure entails injecting additional noise and then re-denoising
at each denoising step i employing the score network fixed at σi. This process
is repeated R times for each denoising step i. The pseudocode for the ’MSDM
Dirac’ source separation sampler is outlined in algorithm 3.

6.3.2 Experimental Results
We perform experiments on Slakh2100 [44], a common dataset for music source
separation. We chose Slakh2100 because it has a significantly larger quantity
of data (145h) than other multi-source waveform datasets like MUSDB18 [177]
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Model FAD ↓ Quality ↑ Coherence ↑

MSDM 6.55 6.44± 2.12 6.34± 2.37
Mixture Model 6.67 6.04± 2.48 5.63± 2.65

Table 6.1: Comparison between total generation capa-
bilities of MSDM and an equivalent architecture trained
on mixtures. Both subjective (quality and coherence) and
objective (FAD) evaluations are shown. Subjective evaluation is
performed through listening tests, where subjects are asked to
evaluate songs from 1 to 10 with respect to the overall quality
of the chunk and to coherence (i.e., how the instruments sound
plausible together). Results show a very small difference between
the model trained on mixtures and MSDM. This suggests that,
given the same dataset and architecture, the generative power of
MSDM is the same as the model trained on mixtures, while being

able to perform separation and partial generation.

(10h). The amount of data plays a decisive role in determining the quality of a
generative model, making Slakh2100 a preferable choice.

Music Generation

The performance of MSDM on the generative tasks is tested through subjective
and objective evaluation. Subjective evaluation is carried out through listening
tests. Concisely, we produced an online form used for the results shown in
table 6.1. In this form, subjects were asked to rate—from 1 to 10—the quality
and instrument coherence of 30 generated chunks, of which 15 are generated
from the mixture model and 15 from MSDM.

As for the objective evaluation of the generative tasks, we generalize the FAD
protocol in [147] to our total generation and partial generation tasks. Given Dreal
a dataset of ground truth mixtures chunks and I a set indexing conditioning
sources (∅ for total generation), we build a dataset Dgen whose elements are the
sum between conditioning sources (indexed by I) an the respective generated
sources. We define the sub-FAD as FAD(Dreal, Dgen). Our method is the first
able to generate any combination of partial sources, and as such, we do not have
a competitor baseline. We thus report the sub-FAD results of our method as
baseline metrics for future research, together with listening test results.

Results for total and partial generations are reported and discussed in table 6.1
and table 6.3 respectively. Concisely, table 6.1 shows that the generative power
of MSDM is the same of a model with the same architecture and trained on
mixtures of the same dataset. Table 6.3 shows that the task of partial generation
can be performed with non-trivial quality and can used as a baseline for future
works on general accompaniment generation.
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Model Bass Drums Guitar Piano All

Demucs [139,140] 15.77 19.44 15.30 13.92 16.11
Demucs + Gibbs (512 steps) [140] 17.16 19.61 17.82 16.32 17.73

Dirac Likelihood
ISDM 18.44 20.19 13.34 13.25 16.30
ISDM (correction) 19.36 20.90 14.70 14.13 17.27
MSDM 16.21 17.47 12.71 13.29 14.92
MSDM (correction) 17.12 18.68 15.38 14.73 16.48

Gaussian Likelihood [107]
ISDM 13.48 18.09 11.93 11.17 13.67
ISDM (correction) 14.27 19.10 12.74 12.20 14.58
MSDM 12.53 16.82 12.98 9.29 12.90
MSDM (correction) 13.93 17.92 14.19 12.11 14.54

Table 6.2: Quantitative results for source separation on
the Slakh2100 test set. We use the SI-SDRi as our evaluation
metric (dB – higher is better). We present both the super-
vised (‘MSDM Dirac’, ‘MSDM Gaussian’) and weakly-supervised
(‘ISDM Dirac’, ‘ISDM Gaussian’) separators and specify if a
correction step is used. ‘All’ reports the average over the four
stems. The results show that: (i) Dirac likelihood improves over-
all results, even outperforming the state of the art when applied
to ISDM (ii) adding a correction step is beneficial (iii) MSDM
with Dirac likelihood and one step of correction gives results
comparable with the state of the art and superior to the Demucs
model trained in [140] overall. We stress again that while the
baselines are trained on the separation task alone, MSDM is able

to perform also generative tasks.

Source Separation

We compare our supervised MSDM and weakly-supervised MSDM with the
‘Demucs’ [139] and ‘Demucs + Gibbs (512 steps)’ regressor baselines from [140],
the state-of-the-art for supervised music source separation on Slakh2100, aligning
with the evaluation procedure of [140].

NOTE:

To evaluate source separation, we use the scale-invariant SDR improvement
(SI-SDRi) metric [178]. The SI-SDR between a ground-truth source xn and
an estimate x̂n is defined as:

SI-SDR(xn, x̂n) = 10 log10

‖αxn‖2 + ε

‖αxn − x̂n‖2 + ε
,

where α = x>n x̂n+ε
‖xn‖2+ε and ε = 10−8. The improvement with respect to the

mixture baseline is defined as SI-SDRi = SI-SDR(xn, x̂n)− SI-SDR(xn, y).
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Slakh2100
Generated Sources Input Sources FAD

Single source imputation
Bass Drums, Guitar, Piano 0.45
Drums Bass, Guitar, Piano 1.09
Guitar Bass, Drums, Piano 0.11
Piano Bass, Drums, Guitar 0.76

Two sources imputation
Bass, Drums Guitar, Piano 2.09
Bass, Guitar Drums, Piano 1.00
Bass, Piano Drums, Guitar 2.32
Drums, Guitar Bass, Piano 1.45
Drums, Piano Bass, Guitar 1.82
Guitar, Piano Bass, Drums 1.65

Three sources imputation
Bass, Drums, Guitar Piano 2.93
Bass, Drums, Piano Guitar 3.30
Bass, Guitar, Piano Drums 4.90
Drums, Guitar, Piano Bass 3.10

Table 6.3: Quantitative results for the partial generation
task on Slakh2100. We use the FAD as our objective evaluation
metric (lower is better). No baseline is reported since our work
is the first able to generate any combination of accompaniments;
the results thus pose a baseline for future works on general

accompaniment generation.
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We evaluate over the test set of Slakh2100, using chunks of 4 seconds in
length (with an overlap of two seconds) and filtering out silent chunks and
chunks consisting of only one source, given the poor performance of SI-SDRi
on such segments. We report results comparing our Dirac score posterior with
the Gaussian score posterior of [107], using the best parameters of the ablation
experiments and 150 inference steps. Our results are illustrated and discussed
in table 6.2. Concisely, MSDM proves to be very close to the state of the
art. Moreover, our newly defined sampling procedure, when used in the weakly
supervised flavor, yields results that are better than the competitors on some
stems.

6.3.3 Limitations
Our model’s ability to handle both total and partial generation and source
separation positions it as a significant step toward the development of general
audio models. This flexibility paves the way for more advanced music composition
tools, where users can easily control and manipulate individual sources within
a mixture. However, the amount of available contextual data constrains the
performance of our model. To address this, pre-separating mixtures and training
on the separations, as demonstrated in [147], may prove beneficial.
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6.4 Generalized Multi-source Diffusion Infer-
ence

We train a text-conditioned diffusion model (eq. (2.9)) Sθ(y(t), z, σ(t)), with pairs
of audio mixtures y(t) and associated text embeddings z, containing information
about the sources present in the mixture. We assume that each text embedding
z is of the form z1⊗· · ·⊗ zK (more compactly

⊗K
k=1 zk), where each zk describes

a source xk present in y and ⊗ denotes an encoding of concatenated textual
information (e.g., z1 ⊗ · · · ⊗ zK = Etext

φ (q1, . . . , qK), with Etext
φ (qk) = zk). The

idea is to leverage such text embeddings for parameterizing the individual source
score functions:

∇xk(t) log p(xk(t) | zk) ≈ Sθ(xk(t), zk, σ(t)) , (6.8)

even if the model is trained only on mixtures. We devise a set of inference
procedures for Sθ, called Generalized Multi-Source Diffusion Inference, able to
solve the tasks of SMSDM

θ in the relaxed data setting.

Figure 6.3: Diagram for unconditional generation proce-
dure with GMSDI, sampling two coherent sources.

6.4.1 Total generation
In order to generate a coherent set of sources {xk}k∈[K], described by text embed-
dings {zk}k∈[K], we can sample from the conditionals p(xk(t) | xk̄(t), y(t), z1, . . . , zK , z1⊗
· · · ⊗ zK):

p(x(t), y(t) | z1, . . . , zK , z1 ⊗ · · · ⊗ zK)
p(xk̄(t), y(t) | zk̄, z1 ⊗ · · · ⊗ zK)

. (6.9)
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First, we develop the numerator in eq. (6.9) using the chain rule:

p(x(t), y(t) | z1, . . . , zK , z1 ⊗ · · · ⊗ zK)
= p(xk(t) | zk)p(y(t), xk̄(t) | xk(t), zk̄, z1 ⊗ · · · ⊗ zK)
= p(xk(t) | zk)p(y(t) | x(t))p(xk̄(t) | xk(t), zk̄)
≈ p(xk(t) | zk)p(y(t) | x(t)) . (6.10)

We assume independence of the likelihood p(y(t) | x(t)) from embeddings and
approximate the last equality dropping the unknown term p(xk̄(t) | x(t), zk̄). We
substitute eq. (6.10) in eq. (6.9), take the gradient of the logarithm with respect
to xk(t) and model the likelihood with isotropic Gaussians [179] depending on a
variance γ2

xk :

∇xk(t)
log p(xk(t) | zk)p(y(t) | x(t))

log p(xk̄(t), y(t) | zk̄, z1 ⊗ · · · ⊗ zK)
=∇xk(t) log p(xk(t) | zk) +∇xk(t) log p(y(t) | x(t))

=∇xk(t) log p(xk(t) | zk) +∇xk(t) logN (y(t) |
K∑
l=1

xl(t), γ2
xkI)

=∇xk(t) log p(xk(t) | zk) +
1

γ2
xk
(y(t)−

K∑
l=1

xl(t)) . (6.11)

Applying similar steps we obtain the score of the density on y(t) conditioned on
x(t) (notice the opposite likelihood gradient):

p(y(t) | x(t), z1, . . . , zK , z1 ⊗ · · · ⊗ zK)

≈ ∇y(t) log p(y(t) |
K⊗
l=1

zl) +
1

γ2
y
(
K∑
l=1

xl(t)− y(t)) . (6.12)

During inference, we sample from eq. (6.11) and eq. (6.12) in parallel, replacing
the gradients of the log-densities with score models (eq. (6.8)):{

Sθ(xk(t), zk, σ(t)) + 1
γ2xk

(y(t)−
∑K

l=1 xl(t))
Sθ(y(t),

⊗K
l=1 zl, σ(t)) + 1

γ2y
(
∑K

l=1 xl(t)− y(t)) .
(6.13)

A diagram of the method is illustrated in fig. 6.3. Given a partition {Jm}m∈[M ]

of [K] containing M subsets (i.e., ∪m∈[M ]Jm = [K]), we can perform inference
more generally with:{

Sθ(
∑

j∈Jm
xj(t),

⊗
j∈Jm

zj, σ(t)) + 1
γ2Jm

(y(t)−
∑K

l=1 xl(t))
Sθ(y(t),

⊗K
l=1 zl, σ(t)) + 1

γ2y
(
∑K

l=1 xl(t)− y(t)).
(6.14)
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Figure 6.4: FAD between generated sources and
Slakh2100 test data (200 chunks, ∼12s each). Neg Prompt

indicates the presence of negative prompting.

6.4.2 Partial generation
We can generate accompaniments xJ for a given set of sources xI , described
by {zi}i∈I , by selecting a set of accompaniment text embeddings {zj}j∈J . We
integrate eq. (6.13) for j ∈ J :Sθ(xj(t), zj(t), σ(t)) + 1

γ2xj

[
y(t)−

(
α
∑

i∈I xi(t) + β
∑

l∈J xl(t)
)]

Sθ(y(t),
⊗K

l=1 zl, σ(t)) + 1
γ2y

[(
α
∑

i∈I xi(t) + β
∑

l∈J xl(t)
)
− y(t)

]
,

(6.15)

with xi(t) (i ∈ I) sampled from the perturbation kernel in eq. (2.4) conditioned
on xi and α, β ∈ R scaling factors. Using eq. (6.14), we can generate the
accompaniment mixtures

∑
j∈J xj directly.

6.4.3 Source separation
Source separation can be performed by adapting eq. (6.6) to the text-conditioned
model. Let an observable mixture y(0) be composed by sources described by
{zk}k∈[K]. We can separate the sources by choosing a constrained source (w.l.o.g.
the K-th) and sampling, for k ∈ [K − 1], with:

Sθ(xk(t), zk, σ(t))− Sθ(y(0)−
K−1∑
l=1

xl(t), zK , σ(t)) . (6.16)



70 Chapter 6. Diffusion Models for Multi-Source Music Generation

We call this method GMSDI Separator. We also define a GMSDI Extractor,
where we extract the k-th source xk with:

Sθ(xk(t), zk, σ(t))− Sθ(y(0)− xk(t),
⊗
l 6=k

zl, σ(t)) , (6.17)

constraining the mixture
∑

l 6=k xl(t), complementary to xk(t).

6.4.4 Experimental Setup
To validate our theoretical claims, we train two time-domain Moûsai-like [133]
diffusion models. The first model is trained on Slakh2100 [44]. Slakh2100 is
a dataset used in source separation, containing 2100 multi-source waveform
music tracks obtained by synthesizing MIDI tracks with high-quality virtual
instruments. We train the diffusion model on mixtures containing the stems
Bass, Drums, Guitar, and Piano (the most abundant classes). To condition the
diffusion model, we use the t5-small pre-trained T5 text-only encoder [134],
which inputs the concatenation of the stem labels present in the mixture (e.g.,
“Bass, Drums” if the track contains Bass and Drums). Given that we know the
labels describing the sources inside a mixture at training time, such an approach
is weakly supervised. The window size is 218 at 22kHz (∼12s).

The second model is trained on a more realistic dataset, namely MTG-
Jamendo [43]. MTG-Jamendo is a music tagging dataset containing over 55000
musical mixtures and 195 tag categories. We train our diffusion model on
the raw_30s/audio-low version of the dataset, using the first 98 shards for
training and the last 2 for validation. The model window is of 219 samples
(∼24s) at 22kHz. We condition the model with the pre-trained checkpoint
music_audioset_epoch_15_esc_90.14.pt6 of the LAION CLAP contrastive
encoder [137]. At training time, we condition the diffusion model with embed-
dings Econtr

φ (y) obtained from the training mixtures y themselves, resulting in
an unsupervised model. At inference time, we use ADPM27 [180] with ρ = 1 for
generation and AEuler2 with schurn = 20 for separation.

6.4.5 Experimental Results
First, we want to understand whether the model trained on Slakh2100 mixtures
can parametrize single sources well. We sample, for each stem, 200 chunks of
∼12s, conditioning with embeddings of single stem labels (e.g., “Bass”). Then,
we compute the Fréchet Audio Distance (FAD) [181] with VGGish embeddings
between such samples and 200 random Slakh2100 test chunks of the same source.
In fig. 6.4, we compare our model against the weakly supervised version of
MSDM [9], where a model learns the score function for each stem class (a
setting requiring access to clean sources). We notice that single-stem prompting
is insufficient for obtaining good FAD results, especially for Bass and Drums,
causing silence to be generated. We find negative prompts (section 2.2.2) essential
for obtaining non-silent results using “Drums, Guitar, Piano” (Bass), “Bass”

6https://github.com/LAION-AI/CLAP
7https://github.com/crowsonkb/k-diffusion
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Figure 6.5: FAD results on total and partial generation.
These results were obtained on Slakh2100 test mixtures. In
particular, 200 chunks were randomly selected, with ∼12 seconds

of sound each.

(Drums), “Bass, Drums” (Guitar), “Bass, Drums” (Piano). In all settings above,
we use 150 sampling steps.

Following, we ask how well the model can perform coherent synthesis with
GMSDI. In fig. 6.5, we compute the FAD between 200 random Slakh2100 test
mixture chunks (∼ 12s each) and mixture chunks obtained by summing the
model’s generated stems (unconditional) or the generated stems together with
the conditioning tracks (conditional). On total generation (All), we set γy =∞
and reach ∼ 1 lower FAD point, using 600 sampling steps. On partial generation,
we sample using 300 steps, setting γy � ∞, to inform the generated mixture
about the conditioning sources. In this scenario, MSDM tends to generate
silence. To enforce non-silent results with MSDM, we sample 100 examples for
each conditioning chunk and select the sample with the highest L2 norm.

For source separation, we employ the SI-SDR improvement (SI-SDRi) [182] as
an evaluation metric and follow the evaluation protocol of [9]. First, we perform
a grid search (table 6.4) to find a good embedding scale w. For the GMSDI
Separator, we do not use negative prompting, while for the GMSDI Extractor,
we only use negative prompts for Bass and Drums. We evaluate on the full
Slakh2100 test set with w = 3 and constrained Drums for GMSDI Separator
and w = 7.5 for GMSDI Extractor, showcasing results in table 6.5. Training
only with mixtures (plus associated labels), the ensemble of the two separators
reaches 11.56 dB, being zero-shot, i.e., we do not target source separation during
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Model w = 3.0 w = 7.5 w = 15.0 w = 24.0

GMSDI Extractor 7.66 9.61 6.00 -0.62
GMSDI Separator (Bass) 8.10 6.72 -1.09 -20.60
GMSDI Separator (Drums) 9.44 8.69 -1.48 -21.62
GMSDI Separator (Guitar) 5.82 4.37 -2.27 -17.49
GMSDI Separator (Piano) 7.60 6.41 -2.68 -16.90

Table 6.4: Grid search over embedding scale w on 100
chunks (∼12s each) of Slakh2100 test set. Results in
SI-SDRi. The source in parenthesis is the constrained source.

Model Bass Drums Guitar Piano All
Demucs + Gibbs (512 steps) [140] 17.16 19.61 17.82 16.32 17.73
ISDM 19.36 20.90 14.70 14.13 17.27
MSDM 17.12 18.68 15.38 14.73 16.48
GMSDI Separator 9.76 15.57 9.13 9.57 11.01
GMSDI Extractor 11.00 10.55 9.52 10.13 10.30
Ensamble 11.00 15.57 9.52 10.13 11.56

Table 6.5: Quantitative results for source separation on
the Slakh2100 test set. Results in SI-SDRi (dB – higher is

better).

training [183].

6.4.6 Limitations
While the lack of a requirement of specific stem-separated data is a nice upside
of this approach, we still need models that have a good enough “understanding”
single-stem distributions for the GMSDI procedure to work effectively. This
might be true for probably the most common instruments—such as piano and
guitar—it might be more difficult for less popular instruments, or for instruments
that rarely can be heard performing by themselves.

Another important drawback of GMSDI is the necessity to stay in the time
domain, rather than the latent space of a VAE, like most successful diffusion
models [126,128,184]. Thus it is required to enhance this method for usage in
the latent domain8.

8It is not doable with the standard approach since the latent space of a VAE might not
preserve linearity enough for a correct sampling.
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6.5 CompoNet
As a conclusion of our multi-source diffusion work, we propose an improved
compositional model for music called CompoNet and compare it with our initial
MSDM model (section 6.3).

CompoNet uses a pre-trained latent diffusion model εφ, based on U-Net
architecture [185] conditioned via cross-attention layers [16], on a large dataset
of tuples (m, c) comprising audio mixtures m and relative textual descriptions c.
The mixtures m are mapped to latent vectors z = EVAE(m) using a pre-trained
VAE encoder [13], while the text descriptions are mapped to a continuous
sequence s = ETXT(c) using a text encoder (e.g., [134]). Following the DDPM
formulation [28], the model is trained to reverse the forward Gaussian noising
process given by:

zt =
√
ᾱtz +

√
1− ᾱtε, ε ∼ N (0, I) , (6.18)

where t ∈ [0, T ] is a time index (with T the maximum time step), ᾱt is defined by
integrating a noise schedule [28], and ε is sampled from the standard Gaussian
distribution. The model is trained with denoising score matching [186]:

min
φ

Ez,ε,s,t
[
‖ε− εφ(zt, s, t)‖22

]
, (6.19)

with zt obtained via eq. (6.18).

For our downstream task, we fine-tune a ControlNet [120] adapter Cψ for
tackling all compositional musical tasks (fig. 6.6) with a single model.

The U-Net εφ comprises an encoder, bottleneck, decoder structure εφ =
DφD ◦BφB ◦EφE . The ControlNet adapter is defined as Cψ(zt, s, t,w) = EφE(zt+
convin(w), s, t), where convin is a zero-initialized convolutional layer, and w is a
latent (VAE) embedding of an external audio input. The ControlNet adapter
outputs the set of processed features {Ci

ψ(zt, s, t,w)}i=1,...,I for each layer of EφE ,
with I the total number of layers. The full ControlNet conditional architecture
is defined as εφ,ψ = DφD ◦ BφB ◦ EφE ,ψ with EφE ,ψ combining the encoder and
ControlNet adapter features at each layer i with zero-initialized convolutional
layers convi:

Ei
φE ,ψ

(zt, s, t,w) = Ei
φE
(zt, s, t) + convi(Ci

ψ(zt, s, t,w)) .

While we have described the general ControlNet architecture, we still have
to describe how we train it in CompoNet, namely, the roles of the z,w and s
variables. Iterating over a dataset containing tuples (x, t) with multi-stem tracks
x = {xn}n=1,...,N and tag descriptions t = {tn}n=1,...,N for each stem, we sample
from x two arbitrary subsets of stems Y,X ⊆ x, with |X| > 0. Y contains input
stems while X contains output stems. The topological relationships between
such subsets define all possible compositional tasks, as depicted in fig. 6.6. While
previous models partially solve some tasks (see tables 6.6 and 6.7), ours is the
first to solve all of them simultaneously. We proceed like in eq. (7.1) and mix the
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sources in Y and X, obtaining mY and mX , respectively. Afterward, we encode
them in the VAE latent space, defining z = EVAE(mX) and w = EVAE(mY ). We
define the following prompt s:

s = ETXT(tY1 , . . . , tY|Y | , SEP, tX1 , . . . , tX|X|) , (6.20)

specifying input and output mixture tags separated by a special token SEP.
Having specified the required inputs and outputs, we train εφ,ψ via the

usual denoising scoring matching loss, optimizing only the parameters of the
ControlNet encoder. The s prompt instructs the model which task to perform
based on the specified stems combination.

Identity (ID) Edit: Add (EA)

Accompaniment
Generation (AG)

Unconditional
Generation (UG)

Source Separation
(Extraction, Drop) (SS)

Edit: Replace (ER)

Figure 6.6: Inter-stem compositional generation tasks. Y
and X represent the input and output stem sub-sets, respectively.

6.5.1 Experimental Setup
Model implementation. In CompoNet, we employ the AudioLDM2 [128,184]
architecture. Since the authors pre-train the model on a large array of datasets
[187–194], we skip the pretext-task training phase and directly fine-tune a
ControlNet adapter based on the AudioLDM 2-Large checkpoint9. During fine-
tuning, we directly pass the conditioning prompt in eq. (6.20) to the text-
embedding mechanism of AudioLDM2 (based on CLAP [136,137], T5 [134], and
GPT2 [72]), conditioning both the U-Net and the ControlNet adapter.

9https://huggingface.co/cvssp/audioldm2-large

https://huggingface.co/cvssp/audioldm2-large
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Model Task

UG AG SS EA ER

MSDM 3 3(MS) 3(MS) 7 7

GMSDI 3 3(MS) 3(MS) 7 7

StemGen [121] 3 3(1S) 7 7 7

Audit [163] 3 7 3(Remove 1S) 3(1S) 3(1S)
InstructME [122] 3 7 3(Extract 1S; Remove 1S) 3(1S) 3(1S)
CompoNet 3 3(MS) 3(MS) 3(MS) 3(MS)

Table 6.6: Compositional audio models comparison. The
various tasks are illustrated in fig. 6.6. 1S vs MS: the task

operates on one vs multiple sources at a time.

Model Methodology Input Output Coherence

MSDM Train / Supervised Multi / Source Multi / Source 3

GMSDI Inf. / Weakly Sup. Multi / Sub-mix Multi / Sub-mix 3

StemGen Train / Supervised Single / Sub-mix Single / Source 3

Audit Train / Supervised Single / Sub-mix Single / Sub-mix 7

InstructME Train / Supervised Single / Sub-mix Single / Sub-mix 3

CompoNet Train / Fine-tuning Single / Sub-mix Single / Sub-mix 3

Table 6.7: Compositional audio models comparison. The
various tasks are illustrated in fig. 6.6. Multi vs Single on
Input / Output: the model accepts multiple vs single inputs /
outputs. Source vs Sub-mix on Input / Output: the model

processes single sources or sub-mixes as inputs / outputs.

6.5.2 Experimental Results
For the accompaniment generation evaluation, we compare our MSDM model
with the new proposed CompoNet. We train CompoNet on MUSDB18-HQ
and Slakh2100 (restricted to Bass, Drums, Guitar, and Piano stems at test
time). We also consider a Random baseline, where, for a given input, we output
a random sub-mix from a different test track. We generate 200 chunks for
both datasets and models, conditioning on random stem subsets of test tracks
and querying a subset of the complementary. The chunks are ∼6s / 10.24s
long on MUSDB18-HQ / Slakh2100. Given that MSDM tends to generate
silence, we sample 12 candidate tracks for each generated track, selecting the
one with the highest L2 norm. We compare the COCOLA score in eq. (7.4) with
the FAD [195, 196] metric (interpreted as a sub-FAD [9, 147]) computed with
CLAP [136], EnCodec [197], and VGGish [198] backbones.

We showcase the results in table 6.8. With the FAD metrics, the model
assigns the best score to the Random baseline. This behavior can be explained
by considering that the Random outputs are real data, and the FAD evaluates
well the perceptual quality. At the same time, it fails to assess the coherence
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between the tracks, and tends to score MSDM better.

Method FAD ↓
CLAP

FAD ↓
EnCodec

FAD ↓
VGGish COCOLA score ↑

Slakh2100
MSDM 0.23 92.81 2.01 3.31
CompoNet 0.30 106.23 3.20 13.50
Random 0.064 51.44 0.16 0.069
Ground Truth - - - 16.57

MUSDB18-HQ
MSDM 0.29 148.09 2.36 11.61
CompoNet 0.37 130.04 2.14 11.94
Random 0.11 100.25 0.35 4.40
Ground Truth - - - 16.25

Table 6.8: Comparison between MSDM and CompoNet.

6.6 Conclusions
In this chapter, we have discussed a number of diffusion-based approaches to
compositional music generation. In particular, we:

(i) presented MSDM, a general method—based on denoising score-matching—
for source separation, mixture generation, and accompaniment generation
in the musical domain. Our approach utilizes a single neural network
trained once, with tasks differentiated during inference. Moreover, we have
defined a new sampling method for source separation. We quantitatively
tested the model on source separation, obtaining results comparable to
state-of-the-art regressor models. We qualitatively and quantitatively
tested the model on total and partial generation. For the first one we
showed the model has the same generative power of the same model trained
on mixtures. For the latter, we showed the accompaniment generated are
plausible and nontrivial.

(ii) described GMSDI, a compositional music generation method working
with any time-domain text-guided diffusion model. This method obtains
reasonable generation and separation metrics on Slakh2100, enabling
unsupervised compositional music generation for the first time. In future
work, we want to extend the technique to latent diffusion models and
narrow the gap with supervised methods.

(iii) introduced CompoNet, a novel compositional model for music based on
ControlNet that can simultaneously solve a wide range of tasks. Further,
we evaluated its performance against our original baseline MSDM and
showed a stark improvement.
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Chapter 7

Coherence-Oriented Contrastive
Learning for Audio

In this chapter, we introduce COCOLA (Coherence-Oriented Contrastive Learn-
ing for Audio), a contrastive learning method designed to capture the harmonic
and rhythmic coherence between musical audio samples. COCOLA operates at
the level of music track stems: this approach allows for the objective evaluation
of compositional models in the task of accompaniment generation, providing a
robust framework for assessing musical coherence. To facilitate further research
and development, we release all trained models.

7.1 Introduction
In the last couple of years, there have been significant advances in music genera-
tion in the continuous domain [18,131,132,138,199], thanks to the impressive
development of generative models [27, 28,123]. In addition to producing high-
quality tracks of increasing length [199], these models offer precise semantic
control through textual conditioning [134, 136]. However, they fall short as
tools for musical composition since they output a final mix containing all stems.
To address this, a diverse range of compositional generative models is emerg-
ing1 [9, 121, 122]. These models (i) define generative tasks at the stem level and
(ii) might be used iteratively and interactively. Arguably, the most significant
application of these models is accompaniment generation: given multiple condi-
tioning sources (combined or not), the model generates a new set (or a mixture)
of coherent stems.

The measuring problem. An important issue with this line of research is
the lack of an objective metric for measuring the coherence of the generated
accompaniments with respect to the provided input. In section 6.3.2, we proposed
the sub-FAD metric as a multi-stem generalization of the FAD [195] protocol
proposed in [147], however, this metric is not optimal for assessing coherence, as
it tends to focus on global quality rather than the level of harmony and rhythm
shared between accompanying stems.

Our solution. To this end, we propose a novel contrastive model called
COCOLA (Coherence-Oriented Contrastive Learning for Audio), which can

1See chapter 6.
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Figure 7.1: Illustration of COCOLA score. COCOLA
is a contrastive model able to estimate the coherence between

instrumental tracks and generated accompaniments.

evaluate the coherence between conditioning tracks and generated accompani-
ments (fig. 7.1). The model is trained by maximizing the agreement between
disjoint sub-components of an audio window (sub-mixtures of stems) and mini-
mizing it on sub-components belonging to different windows. With the model,
we define a COCOLA score as the similarity between conditioning tracks and
accompaniments in the embedding space.

7.2 Related Work

7.2.1 Contrastive Methods for Audio
Contrastive learning [200,201] can be formulated both as a supervised or self-
supervised problem.

Supervised approach. Supervised contrastive learning methods are typically
cross-modal, requiring labeled information alongside audio data. In early works,
the labeled information was in the form of simple tags, while the loss used to
align embeddings of audio segments and tags was the triplet loss [202]. Within
the same data setting, [203] used the contrastive loss of SimCLR [204]. With
the advent of the transformer architecture [16], using complex sentences instead
of simple tags became feasible. MuLaP [135] is the first model to train a
common representation between audio and sentences in the musical domain. In
such work, the audio and text are processed by a joint transformer encoder,
conveying information about the two modalities through cross-attention layers.
Although it is not a contrastive model per se, an audio-text matching loss uses
negative examples to encourage the model to focus on aligned pairs. More recent
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Figure 7.2: The COCOLA training procedure (single
stem case). We first randomly crop windows of size L from a
batch of K tracks (depicted on the left). As a second step, we
randomly select two distinct stems in each window. For example,
in the first window we select x11 (Guitar) and x13 (Drums). Thus,
we embed all selected stems with the COCOLA encoder fθ,
obtaining latent representations. For example, we obtain h1

1 and
h1
2 from the first window. Finally, we compute the contrastive

loss (eq. (7.3)) considering embedings belonging to the same
window as positive pairs and combinations of embeddings between

different windows as negative pairs.

works [136,137,146,205], consider separate textual and audio encoders, which
makes it possible to use the two branches independently at inference time.

Self-supervised approach. Self-supervised representation learning methods
[206–209] build embedding spaces targeting structural information extracted
from the audio data itself. In [210], the authors build positive examples for a
triplet loss by augmenting with Gaussian noise, time and frequency translations,
and sampling with time proximity. They also consider example mixing. While we
compare coherent mixes in our method (section 7.3.1), in [210], positive pairs are
not coherence-related (e.g., mixing siren and dog sounds). As in the supervised
case, following [204], multi-class cross-entropy losses are employed [211–213].
In COLA [211], the authors train an embedding model with contrastive loss
using the simple criterion of sampling positive pairs only from the same audio
track (still employing Gaussian noise), outperforming a fully supervised baseline
in a plethora of tasks. [214] pairs mixtures with sources extracted via source
separation.

Interestingly, our proposed COCOLA method shares aspects of both supervised
and self-supervised approaches. Given that stems are pre-separated, we cannot
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consider the method purely self-supervised. At the same time, we process such
data with a uni-modal encoder, as is the case for self-supervised methods.

7.3 Method

7.3.1 Stem-Level Contrastive Learning
In our setting, we have access to a dataset D = {x̄k}k=1,...,K̄ containing K̄
musical tracks x̄k, each separated into a variable number N of individual stems
x̄kn, i.e., x̄k = {x̄kn}n=1,...,N . As a first step, we sample a batch of K < K̄ tracks
{x̄k}k=1,...,K from D, with possible repetitions. Following, we slice a window xk
of size L for each track x̄k in the batch (all stems in a window share the same
length), such that no window contained in the same track overlaps for more than
a ratio r, obtaining a new batch {xk}k=1,...,K . Afterward, we select, for each k,
two disjoint non-empty stem subsets Xk

1 , X
k
2 of xk. We define the sub-mixes mk

1

and mk
2 by summing the stems in Xk

1 , X
k
2 :

mk
1 =

∑
xkn∈Xk

1

xkn, mk
2 =

∑
xkn∈Xk

2

xkn (7.1)

When Xk
1 , X

k
2 are singletons, the sub-mixes are simply two stems in the window

(single stem case). We work with sub-mixes because current compositional
music generation methods [121] operate over them. Like in COLA [211], we
use a convolutional audio-only encoder2 fθ : RL → Rd, mapping mk

1 and mk
2 to

lower-dimensional embedding vectors hk1 = fθ(mk
1) and hk2 = fθ(mk

2), with d the
embedding dimension.

The COCOLA training procedure maximizes the agreement between pairs
hk1,hk2 of sub-mixes embeddings in the same window. It decreases it for pairs
hk1,h

j
2 (j 6= k) of sub-mixes embeddings in different windows. As in COLA, we

use a bilinear similarity metric:

sim(hk1,h
j
2) = (hk1)TWhj2 , (7.2)

where W is a learnable matrix. The loss we optimize is the multi-class cross
entropy:

L = −
K∑
k=1

log exp(sim(hk1,hk2))∑K
j=1 exp(sim(hk1,h

j
2))

. (7.3)

We depict the training procedure of COCOLA in fig. 7.2 for the single stem case.

2In our notation, we incorporate into fθ any domain transform preceding or following the
convolutional network operations, like the (pre) mel-filterbank map and the (post) projection
head g in COLA.
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NOTE:

In the COLA training procedure, the positive pairs are (fully mixed) windows
belonging to the same track. In COCOLA, they are sub-mixes belonging
to the same window. As such, we allow for negative pairs belonging to the
same track but in different windows. The r ratio has to be chosen well to
avoid strong overlaps between windows in the same track. In that case, we
could potentially consider (nearly) coherent sub-mixes as negative pairs.

7.3.2 The COCOLA Score
Equipped with the encoder fθ, we can quantify the coherence of the accompani-
ments generated by a generative model pφ(x | y), where y is the conditioning
variable and x is the modeled variable; respectively, input and output of the
generative model. The model’s variables can be either a set of stems or sub-mixes.
Given the input y, the model pφ generates an output x̃ ∼ pφ(x | y). We can
compute the coherence between y and x̃ by first embedding the two vectors
hy = fθ(y) and hx̃ = fθ(x̃) (summing the stems beforehand if considering a set
of stems). We define the COCOLA score between x and ỹ as:

COCOLA score(y, x̃) = sim(hy,hx̃) , (7.4)

the similarity (eq. (7.2)) between their embeddings. The described procedure is
depicted in fig. 7.1.

7.4 Experimental Setup
Datasets. For training and evaluating COCOLA, we use four public stem-
separated datasets: MUSDB18-HQ [40], MoisesDB3 [42], Slakh2100 and Coco-
Chorales4 [46]. These datasets are quite different from each other; some are
synthesized and offer large volumes of clean—albeit less diverse—music, while
others consist of real studio recordings but are significantly smaller in size. For
a more in-depth discussion see section 2.3.

Model implementation. To implement the COCOLA encoder fθ, we follow
[211] and employ the EfficientNet-B0 [215] convolutional architecture followed
by a linear projection layer, operating on the mel-filterbank audio representation.
The embedding dimension is 512. With respect to the original baseline, we add
a 0.1 dropout on the EfficientNet layers.

Training details. All COCOLA models are trained on an NVIDIA RTX 4070
Super with 12GB of VRAM. Each training batch contains 32 audio chunks of
5s (16kHz). We set the maximum window overlap ratio r = 50% and train
with the Adam optimizer [216] with a 10−3 learning rate. We add Gaussian

3Not having pre-computed splits, we set a custom 0.8 (train) / 0.1 (validation) / 0.1 (test)
split.

4In our experiments we use the tiny version, comprising 4000 tracks.
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Figure 7.3: Cosine vs bilinear similarity during training.
Training is performed with “COCOLA All”. The accuracy metric
is defined in eq. (7.5). We adopt the bilinear similarity in eq. (7.2),

given its improved performance.

noise to positive samples as a data augmentation method, with σ = 10−3. We
experimented training with cosine similarity [204] but reported (fig. 7.3) lower
performance, corroborating [211].

7.5 Experimental Results
We employ four COCOLA encoder models in our experiments: “COCOLA
MoisesDB”, “COCOLA Slakh2100”, “COCOLA CocoChorales” and “COCOLA
All”. The first three are trained on the homonym datasets, while the last one
is trained on all three combined. For the “COCOLA CocoChorales” we use
all ensables while on “COCOLA All” we use only the Random ensamble for
a more balanced partitioning, with respect to the other datasets. MUSDB18-
HQ, being the smallest dataset, is used as a held-out test dataset for studying
generalization.

7.5.1 Coherent Sub-Mix Classification
We cross-test the performance of all COCOLA models, performing classification
of coherent pairs on the test split of our datasets. More specifically, given an
encoder fθ, we iterate a test set, collecting at each step a batch of K windows
x1, . . . , xK . Following the steps in section 7.3.1 we compute all similarities
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sim(hk1,h
j
2) for k, j ∈ [K]. We define the accuracy over a batch as:

1

K

K∑
k=1

1

(
k = arg max

j∈[K]

sim(hk1,h
j
2)

)
, (7.5)

where 1 is the indicator function. We obtain the final accuracy averaging over all
batches in the dataset. For our evaluation we use K = 2 and depict in table 7.1
the results across all combinations of models and test datasets. While both
“COCOLA MoisesDB” and “COCOLA Slakh2100” perform only slightly better
than a random choice, “COCOLA CocoChorales” features improved performance.
Finally, combining the three dataset, we obtain an accuracy of over 90% on all
datasets, showcasing generalization with 90.43% on the held-out MUSDB18-HQ.

Test Dataset
Train Dataset MUSDB18-HQ MoisesDB Slakh2100 CocoChorales

MoisesDB [42] 52.56% 53.01% 51.22% 60.32%
Slakh2100 [44] 53.06% 53.58% 53.78% 59.35%
CocoChorales [46] 70.10% 61.48% 67.50% 99.78%
All 90.43% 93.06% 90.06% 99.89%

Table 7.1: Classification accuracy. Results on various test
sets with COCOLA models using K = 2 sub-mixture test pairs.

MUSDB18-HQ is used as a hold-out test dataset.

7.6 Conclusion
In this chapter, we proposed COCOLA: a contrastive encoder for recognizing the
coherence between musical stems. Then, we evaluated different audio datasets
with our model COCOLA and found it adept at evaluating accompaniment co-
herence. Indeed, such a model could help future research on compositional music
generation by providing a specialized quantitative metric on accompaniment
quality.

Future work. We plan to improve the quality of COCOLA by training on
additional stem-level datasets [217] or using data obtained by pre-separating [147]
larger realistic music datasets [218]. In future work, we would also like to explore
inference-side methods that can guide the diffusion process using COCOLA as a
likelihood function, offering an alternative (or additional) loss for the GMSDI
method.
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Chapter 8

Conclusions

In this thesis, we covered various approaches and architectures to harness the
generative powers for solving tasks from different domains: reasoning, images,
and music. The common ground among all these fields is the exploration of
various approaches and procedures to harness (and sometimes measure) the
generative capabilities of the current state-of-the-art generative models.

In the reasoning and language domain, we have seen how the collaborative
effort of a generative model with a discriminative interpreter can be used to
improve a property deduction task. This was developed in conjunction with a
toy reasoning environment composed of simple sequences of geometric shapes
and logical properties. This line of research was further explored with our
participation in a collaborative benchmark on Large Language Models: for
this benchmark, we proposed a task inspired by our aforementioned reasoning
environment.

In source separation, we developed several procedures that use (possibly
pre-trained) generative models. In particular, we have seen: (i) an approach
that is able to separate two mixed continuous signals using a sparse estimated
joint probability over latent discrete codes. (ii) A diffusion-based method that
separates musical mixture by performing constrained generation over the sources’
joint probability. (iii) A fine-tuned approach that learns—amid other things—
how to disentangle the single sources from a provided mixture.

For music production, we have investigated several approaches to tackle the
generation of coherent audio sources, possibly conditioned on some provided
musical tracks. We were amongst the first researchers that approached this
compositional music direction in the waveform domain, thanks to our multi-
source diffusion architecture [9]. We further explored this line of research by
developing an inference time procedure to exploit pre-trained diffusion models on
music. Finally, we approached the task of compositional music generation in a
semi-supervised approach by fine-tuning an existing audio diffusion architecture
over several possible music accompaniment generation tasks.

In conclusion, this thesis spans several methodologies and useful tools to aid
the utilization of (often pre-trained) generative architecture. This is a valuable
effort since generative artificial intelligence utilization is rapidly increasing in
both the industry and academic domains.





87

Bibliography

[1] K. Schwab, The Fourth Industrial Revolution. USA: Crown Publishing
Group, 2017.

[2] A. R. Chow and B. Perrigo, “The ai arms race is changing everything,”
20203.

[3] G. Krogh, “Artificial intelligence in organizations: New opportunities
for phenomenon-based theorizing,” Academy of Management Discoveries,
vol. 4, pp. 404–409, 12 2018.

[4] X. Yang, Z. Song, I. King, and Z. Xu, “A survey on deep semi-supervised
learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 35,
p. 8934–8954, Sept. 2023.

[5] J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised learning,”
Machine Learning, vol. 109, pp. 373 – 440, 2019.

[6] A. Norelli, G. Mariani, L. Moschella, A. Santilli, G. Parascandolo, S. Melzi,
and E. Rodolà, “Explanatory learning: Beyond empiricism in neural
networks,” CoRR, vol. abs/2201.10222, 2022.

[7] A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch,
A. R. Brown, A. Santoro, A. Gupta, A. Garriga-Alonso, A. Kluska,
A. Lewkowycz, A. Agarwal, A. Power, A. Ray, A. Warstadt, A. W. Ko-
curek, A. Safaya, A. Tazarv, A. Xiang, A. Parrish, A. Nie, A. Hussain,
A. Askell, A. Dsouza, A. Slone, A. Rahane, A. S. Iyer, A. Andreassen,
A. Madotto, A. Santilli, A. Stuhlmüller, A. Dai, A. La, A. Lampinen,
A. Zou, A. Jiang, A. Chen, A. Vuong, A. Gupta, A. Gottardi, A. Norelli,
A. Venkatesh, A. Gholamidavoodi, A. Tabassum, A. Menezes, A. Kirubara-
jan, A. Mullokandov, A. Sabharwal, A. Herrick, A. Efrat, A. Erdem,
A. Karakaş, B. R. Roberts, B. S. Loe, B. Zoph, B. Bojanowski, B. Özyurt,
B. Hedayatnia, B. Neyshabur, B. Inden, B. Stein, B. Ekmekci, B. Y. Lin,
B. Howald, B. Orinion, C. Diao, C. Dour, C. Stinson, C. Argueta, C. F.
Ramírez, C. Singh, C. Rathkopf, C. Meng, C. Baral, C. Wu, C. Callison-
Burch, C. Waites, C. Voigt, C. D. Manning, C. Potts, C. Ramirez, C. E.
Rivera, C. Siro, C. Raffel, C. Ashcraft, C. Garbacea, D. Sileo, D. Gar-
rette, D. Hendrycks, D. Kilman, D. Roth, D. Freeman, D. Khashabi,
D. Levy, D. M. González, D. Perszyk, D. Hernandez, D. Chen, D. Ippolito,
D. Gilboa, D. Dohan, D. Drakard, D. Jurgens, D. Datta, D. Ganguli,
D. Emelin, D. Kleyko, D. Yuret, D. Chen, D. Tam, D. Hupkes, D. Misra,
D. Buzan, D. C. Mollo, D. Yang, D.-H. Lee, D. Schrader, E. Shutova,
E. D. Cubuk, E. Segal, E. Hagerman, E. Barnes, E. Donoway, E. Pavlick,



88 BIBLIOGRAPHY

E. Rodola, E. Lam, E. Chu, E. Tang, E. Erdem, E. Chang, E. A. Chi,
E. Dyer, E. Jerzak, E. Kim, E. E. Manyasi, E. Zheltonozhskii, F. Xia,
F. Siar, F. Martínez-Plumed, F. Happé, F. Chollet, F. Rong, G. Mishra,
G. I. Winata, G. de Melo, G. Kruszewski, G. Parascandolo, G. Mari-
ani, G. Wang, G. Jaimovitch-López, G. Betz, G. Gur-Ari, H. Galijasevic,
H. Kim, H. Rashkin, H. Hajishirzi, H. Mehta, H. Bogar, H. Shevlin,
H. Schütze, H. Yakura, H. Zhang, H. M. Wong, I. Ng, I. Noble, J. Jumelet,
J. Geissinger, J. Kernion, J. Hilton, J. Lee, J. F. Fisac, J. B. Simon, J. Kop-
pel, J. Zheng, J. Zou, J. Kocoń, J. Thompson, J. Wingfield, J. Kaplan,
J. Radom, J. Sohl-Dickstein, J. Phang, J. Wei, J. Yosinski, J. Novikova,
J. Bosscher, J. Marsh, J. Kim, J. Taal, J. Engel, J. Alabi, J. Xu, J. Song,
J. Tang, J. Waweru, J. Burden, J. Miller, J. U. Balis, J. Batchelder, J. Be-
rant, J. Frohberg, J. Rozen, J. Hernandez-Orallo, J. Boudeman, J. Guerr,
J. Jones, J. B. Tenenbaum, J. S. Rule, J. Chua, K. Kanclerz, K. Livescu,
K. Krauth, K. Gopalakrishnan, K. Ignatyeva, K. Markert, K. D. Dhole,
K. Gimpel, K. Omondi, K. Mathewson, K. Chiafullo, K. Shkaruta, K. Shrid-
har, K. McDonell, K. Richardson, L. Reynolds, L. Gao, L. Zhang, L. Dugan,
L. Qin, L. Contreras-Ochando, L.-P. Morency, L. Moschella, L. Lam, L. No-
ble, L. Schmidt, L. He, L. O. Colón, L. Metz, L. K. Şenel, M. Bosma,
M. Sap, M. ter Hoeve, M. Farooqi, M. Faruqui, M. Mazeika, M. Baturan,
M. Marelli, M. Maru, M. J. R. Quintana, M. Tolkiehn, M. Giulianelli,
M. Lewis, M. Potthast, M. L. Leavitt, M. Hagen, M. Schubert, M. O.
Baitemirova, M. Arnaud, M. McElrath, M. A. Yee, M. Cohen, M. Gu,
M. Ivanitskiy, M. Starritt, M. Strube, M. Swędrowski, M. Bevilacqua,
M. Yasunaga, M. Kale, M. Cain, M. Xu, M. Suzgun, M. Walker, M. Ti-
wari, M. Bansal, M. Aminnaseri, M. Geva, M. Gheini, M. V. T, N. Peng,
N. A. Chi, N. Lee, N. G.-A. Krakover, N. Cameron, N. Roberts, N. Doiron,
N. Martinez, N. Nangia, N. Deckers, N. Muennighoff, N. S. Keskar, N. S.
Iyer, N. Constant, N. Fiedel, N. Wen, O. Zhang, O. Agha, O. Elbaghdadi,
O. Levy, O. Evans, P. A. M. Casares, P. Doshi, P. Fung, P. P. Liang, P. Vi-
col, P. Alipoormolabashi, P. Liao, P. Liang, P. Chang, P. Eckersley, P. M.
Htut, P. Hwang, P. Miłkowski, P. Patil, P. Pezeshkpour, P. Oli, Q. Mei,
Q. Lyu, Q. Chen, R. Banjade, R. E. Rudolph, R. Gabriel, R. Habacker,
R. Risco, R. Millière, R. Garg, R. Barnes, R. A. Saurous, R. Arakawa,
R. Raymaekers, R. Frank, R. Sikand, R. Novak, R. Sitelew, R. LeBras,
R. Liu, R. Jacobs, R. Zhang, R. Salakhutdinov, R. Chi, R. Lee, R. Stovall,
R. Teehan, R. Yang, S. Singh, S. M. Mohammad, S. Anand, S. Dillavou,
S. Shleifer, S. Wiseman, S. Gruetter, S. R. Bowman, S. S. Schoenholz,
S. Han, S. Kwatra, S. A. Rous, S. Ghazarian, S. Ghosh, S. Casey, S. Bischoff,
S. Gehrmann, S. Schuster, S. Sadeghi, S. Hamdan, S. Zhou, S. Srivas-
tava, S. Shi, S. Singh, S. Asaadi, S. S. Gu, S. Pachchigar, S. Toshniwal,
S. Upadhyay, Shyamolima, Debnath, S. Shakeri, S. Thormeyer, S. Melzi,
S. Reddy, S. P. Makini, S.-H. Lee, S. Torene, S. Hatwar, S. Dehaene,
S. Divic, S. Ermon, S. Biderman, S. Lin, S. Prasad, S. T. Piantadosi, S. M.
Shieber, S. Misherghi, S. Kiritchenko, S. Mishra, T. Linzen, T. Schuster,
T. Li, T. Yu, T. Ali, T. Hashimoto, T.-L. Wu, T. Desbordes, T. Rothschild,



BIBLIOGRAPHY 89

T. Phan, T. Wang, T. Nkinyili, T. Schick, T. Kornev, T. Tunduny, T. Ger-
stenberg, T. Chang, T. Neeraj, T. Khot, T. Shultz, U. Shaham, V. Misra,
V. Demberg, V. Nyamai, V. Raunak, V. Ramasesh, V. U. Prabhu, V. Pad-
makumar, V. Srikumar, W. Fedus, W. Saunders, W. Zhang, W. Vossen,
X. Ren, X. Tong, X. Zhao, X. Wu, X. Shen, Y. Yaghoobzadeh, Y. Lakretz,
Y. Song, Y. Bahri, Y. Choi, Y. Yang, Y. Hao, Y. Chen, Y. Belinkov,
Y. Hou, Y. Hou, Y. Bai, Z. Seid, Z. Zhao, Z. Wang, Z. J. Wang, Z. Wang,
and Z. Wu, “Beyond the imitation game: Quantifying and extrapolating
the capabilities of language models,” 2023.

[8] E. Postolache, G. Mariani, M. Mancusi, A. Santilli, L. Cosmo, and
E. Rodolà, “Latent autoregressive source separation,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 37, pp. 9444–9452, Jun.
2023.

[9] G. Mariani, I. Tallini, E. Postolache, M. Mancusi, L. Cosmo, and E. Rodolà,
“Multi-source diffusion models for simultaneous music generation and
separation,” arXiv preprint arXiv:2302.02257, 2023.

[10] E. Postolache, G. Mariani, L. Cosmo, E. Benetos, and E. Rodolà, “Gener-
alized multi-source inference for text conditioned music diffusion models,”
in ICASSP 2024 - 2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 6980–6984, 2024.

[11] R. Ciranni, E. Postolache, G. Mariani, M. Mancusi, L. Cosmo, and
E. Rodolà, “Cocola: Coherence-oriented contrastive learning of musical
audio representations,” 2024.

[12] G. Kim and J. C. Ye, “Diffusionclip: Text-guided image manipulation
using diffusion models,” CoRR, vol. abs/2110.02711, 2021.

[13] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proc.
ICLR, 2014.

[14] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete
representation learning,” in Proc. NeurIPS, 2017.

[15] P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-
resolution image synthesis,” in Proc. CVPR, pp. 12873–12883, 2021.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Proc. NeurIPS,
vol. 30, 2017.

[17] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent
neural networks,” CoRR, vol. abs/1601.06759, 2016.

[18] A. Agostinelli, T. I. Denk, Z. Borsos, J. Engel, M. Verzetti, A. Caillon,
Q. Huang, A. Jansen, A. Roberts, M. Tagliasacchi, et al., “Musiclm:
Generating music from text,” arXiv preprint arXiv:2301.11325, 2023.



90 BIBLIOGRAPHY

[19] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio,” 2016.

[20] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever,
“Jukebox: A generative model for music,” arXiv preprint arXiv:2005.00341,
2020.

[21] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves,
et al., “Conditional image generation with pixelcnn decoders,” Proc.
NeurIPS, vol. 29, 2016.

[22] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “Pixelcnn++:
Improving the pixelcnn with discretized logistic mixture likelihood and
other modifications,” arXiv preprint arXiv:1701.05517, 2017.

[23] W. Kool, H. van Hoof, and M. Welling, “Ancestral gumbel-top-k sampling
for sampling without replacement,” Journal of Machine Learning Research,
vol. 21, no. 47, pp. 1–36, 2020.

[24] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case
of neural text degeneration,” in Proc. ICLR, 2020.

[25] D. R. Reddy et al., “Speech understanding systems: A summary of results
of the five-year research effort,” Department of Computer Science. Camegie-
Mell University, Pittsburgh, PA, vol. 17, p. 138, 1977.

[26] Y. Song and S. Ermon, “Generative modeling by estimating gradients
of the data distribution,” in Advances in Neural Information Processing
Systems, pp. 11895–11907, 2019.

[27] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and
B. Poole, “Score-based generative modeling through stochastic differential
equations,” in Proc. ICLR, 2021.

[28] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Proc. NeurIPS, vol. 33, pp. 6840–6851, 2020.

[29] T. Karras, M. Aittala, T. Aila, and S. Laine, “Elucidating the design space
of diffusion-based generative models,” in Advances in Neural Information
Processing Systems, 2022.

[30] A. Hyvärinen, “Estimation of non-normalized statistical models by
score matching,” Journal of Machine Learning Research, vol. 6, no. 24,
pp. 695–709, 2005.

[31] D. P. Kingma and Y. LeCun, “Regularized estimation of image statistics
by score matching,” in Advances in Neural Information Processing Systems
(J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, eds.),
vol. 23, Curran Associates, Inc., 2010.



BIBLIOGRAPHY 91

[32] P. Vincent, “A connection between score matching and denoising autoen-
coders,” Neural Computation, vol. 23, no. 7, pp. 1661–1674, 2011.

[33] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” in NeurIPS
2021 Workshop on Deep Generative Models and Downstream Applications,
2021.

[34] G. Sanchez, H. Fan, A. Spangher, E. Levi, P. S. Ammanamanchi, and
S. Biderman, “Stay on topic with classifier-free guidance,” arXiv preprint
arXiv:2306.17806, 2023.

[35] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[36] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” in Proc. ICCV, December 2015.

[37] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of
GANs for improved quality, stability, and variation,” in Proc. ICLR, 2018.

[38] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. CVPR, pp. 248–255,
2009.

[39] G. A. Miller, “WordNet: A lexical database for English,” in Human
Language Technology: Proceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994, 1994.

[40] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and R. Bittner,
“Musdb18-hq - an uncompressed version of musdb18,” Aug. 2019.

[41] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and R. Bittner, “The
MUSDB18 corpus for music separation,” Dec. 2017.

[42] I. G. Pereira, F. Araujo, F. Korzeniowski, and R. Vogl, “Moisesdb: A
dataset for source separation beyond 4 stems,” in Ismir 2023 Hybrid
Conference, 2023.

[43] D. Bogdanov, M. Won, P. Tovstogan, A. Porter, and X. Serra, “The mtg-
jamendo dataset for automatic music tagging,” in International Conference
on Machine Learning, 2019.

[44] E. Manilow, G. Wichern, P. Seetharaman, and J. Le Roux, “Cutting music
source separation some Slakh: A dataset to study the impact of training
data quality and quantity,” in Proc. IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA), IEEE, 2019.

[45] C. Raffel, Learning-Based Methods for Comparing Sequences, with Appli-
cations to Audio-to-MIDI Alignment and Matching. PhD thesis, Columbia
University, USA, 2016.



92 BIBLIOGRAPHY

[46] Y. Wu, J. Gardner, E. Manilow, I. Simon, C. Hawthorne, and J. Engel,
“The chamber ensemble generator: Limitless high-quality mir data via
generative modeling,” arXiv preprint arXiv:2209.14458, 2022.

[47] Y. Wu, E. Manilow, Y. Deng, R. Swavely, K. Kastner, T. Cooijmans,
A. Courville, C.-Z. A. Huang, and J. Engel, “Midi-ddsp: Detailed con-
trol of musical performance via hierarchical modeling,” in International
Conference on Learning Representations, 2021.

[48] J. McConnell, “Memory transfer through cannibalism in planarians,” J.
Neuropsychiat., vol. 3, pp. 542–548, 1962.

[49] A. H. Taylor, R. Miller, and R. D. Gray, “New caledonian crows reason
about hidden causal agents,” PNAS, vol. 109, no. 40, pp. 16389–16391,
2012.

[50] K. Heath, “Zendo,” 2001.

[51] K. Popper, The Logic of Scientific Discovery. Julius Springer, Hutchinson
& Co, 1935.

[52] L. E. Schulz, A. Gopnik, and C. Glymour, “Preschool children learn about
causal structure from conditional interventions,” Developmental science,
vol. 10, no. 3, pp. 322–332, 2007.

[53] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, p. 87–106, Nov. 1987.

[54] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and
R. Girshick, “CLEVR: A Diagnostic Dataset for Compositional Language
and Elementary Visual Reasoning,” in Proc. CVPR, pp. 1988–1997, 2017.

[55] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable
visual models from natural language supervision,” in Proc. ICML, 2021.

[56] T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J. Storkey, “Meta-
learning in neural networks: A survey,” IEEE Transactions on Pattern
Analysis & Machine Intelligence, may 2020.

[57] E. Y. Shapiro, Inductive inference of theories from facts. Yale University,
Department of Computer Science, 1981.

[58] M. Balog, A. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow, “Deep-
coder: Learning to write programs,” in 5th International Conference on
Learning Representations, ICLR 2017-Conference Track Proceedings, 2017.

[59] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge and
its applications,” in Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing, STOC ’88, (New York, NY, USA), p. 103–112,
Association for Computing Machinery, 1988.



BIBLIOGRAPHY 93

[60] J. Pearl, “Radical empiricism and machine learning research,” Journal of
Causal Inference, vol. 9, no. 1, pp. 78–82, 2021.

[61] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, (Red Hook, NY, USA), p. 6000–6010, Curran Associates
Inc., 2017.

[62] D. Hofstadter, Gödel, Escher, Bach: an eternal golden braid, vol. 13. Basic
books New York, 1979.

[63] G. Rota, “The pernicious influence of mathematics upon philosophy,”
Synthese, vol. 88, no. 2, pp. 165–178, 1991.

[64] T. M. Mitchell, The need for biases in learning generalizations. Department
of Computer Science, Laboratory for Computer Science Research, 1980.

[65] G. Goh, N. Cammarata, C. Voss, S. Carter, M. Petrov, L. Schubert, A. Rad-
ford, and C. Olah, “Multimodal neurons in artificial neural networks,”
Distill, 2021. https://distill.pub/2021/multimodal-neurons.

[66] L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, and
T. Darrell, “Generating visual explanations,” in European conference on
computer vision, pp. 3–19, Springer, 2016.

[67] M. Hind, D. Wei, M. Campbell, N. C. Codella, A. Dhurandhar, A. Mo-
jsilović, K. Natesan Ramamurthy, and K. R. Varshney, “Ted: Teaching ai
to explain its decisions,” in Proceedings of the 2019 AAAI/ACM Conference
on AI, Ethics, and Society, pp. 123–129, 2019.

[68] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nature Machine
Intelligence, vol. 1, no. 5, pp. 206–215, 2019.

[69] A. Meinke and M. Hein, “Towards neural networks that provably know
when they don’t know,” arXiv preprint arXiv:1909.12180, 2019.

[70] Y. LeCun, “The epistemology of deep learning.” Institute for Ad-
vanced Studies https://www.ias.edu/sites/default/files/video/
lecun-ias-20190222.pdf; https://youtu.be/gG5NCkMerHU, 2019. Ac-
cessed: 2021–10-04.

[71] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” CoRR, vol. abs/1508.07909, 2015.

[72] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models
are few-shot learners,” Proc. NeurIPS, vol. 33, pp. 1877–1901, 2020.

[73] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever,
“Jukebox: A generative model for music,” 2020.

https://www.ias.edu/sites/default/files/video/lecun-ias-20190222.pdf
https://www.ias.edu/sites/default/files/video/lecun-ias-20190222.pdf
https://youtu.be/gG5NCkMerHU


94 BIBLIOGRAPHY

[74] A. Razavi, A. van den Oord, and O. Vinyals, “Generating diverse high-
fidelity images with VQ-VAE-2,” in Proc. NeurIPS, 2019.

[75] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen,
and I. Sutskever, “Zero-shot text-to-image generation,” in Proc. ICML,
pp. 8821–8831, PMLR, 2021.

[76] J. Yu, Y. Xu, J. Y. Koh, T. Luong, G. Baid, Z. Wang, V. Vasudevan,
A. Ku, Y. Yang, B. K. Ayan, et al., “Scaling autoregressive models for
content-rich text-to-image generation,” arXiv preprint arXiv:2206.10789,
2022.

[77] R. Castellon, C. Donahue, and P. Liang, “Codified audio language model-
ing learns useful representations for music information retrieval,” arXiv
preprint arXiv:2107.05677, 2021.

[78] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M.
Dai, and Q. V. Le, “Finetuned language models are zero-shot learners,”
CoRR, vol. abs/2109.01652, 2021.

[79] V. Sanh, A. Webson, C. Raffel, et al., “Multitask prompted training
enables zero-shot task generalization,” in Proc. ICLR, 2022.

[80] H. Yang, J. Lin, A. Yang, P. Wang, C. Zhou, and H. Yang, “Prompt
tuning for generative multimodal pretrained models,” arXiv preprint
arXiv:2208.02532, 2022.

[81] A. Hertz, R. Mokady, J. Tenenbaum, K. Aberman, Y. Pritch, and D. Cohen-
Or, “Prompt-to-prompt image editing with cross attention control,” arXiv
preprint arXiv:2208.01626, 2022.

[82] S. Dovrat, E. Nachmani, and L. Wolf, “Many-speakers single channel
speech separation with optimal permutation training,” in Interspeech,
2021.

[83] A. Défossez, “Hybrid spectrogram and waveform source separation,” in
Proceedings of the ISMIR 2021 Workshop on Music Source Separation,
2021.

[84] S. Wisdom, H. Erdogan, D. P. W. Ellis, R. Serizel, N. Turpault, E. Fonseca,
J. Salamon, P. Seetharaman, and J. R. Hershey, “What’s all the fuss about
free universal sound separation data?,” in Proc. ICASSP, pp. 186–190,
2021.

[85] E. Postolache, J. Pons, S. Pascual, and J. Serrà, “Adversarial permuta-
tion invariant training for universal sound separation,” arXiv preprint
arXiv:2210.12108, 2022.

[86] T. Halperin, A. Ephrat, and Y. Hoshen, “Neural separation of observed
and unobserved distributions,” 36th International Conference on Machine
Learning, ICML 2019, vol. 2019-June, pp. 4548–4557, 2019.



BIBLIOGRAPHY 95

[87] Y. Luo and N. Mesgarani, “Conv-tasnet: Surpassing ideal time–frequency
magnitude masking for speech separation,” IEEE/ACM transactions on
audio, speech, and language processing, vol. 27, no. 8, pp. 1256–1266, 2019.

[88] A. Défossez, N. Usunier, L. Bottou, and F. Bach, “Music Source Separation
in the Waveform Domain,” arXiv:1911.13254 [cs, eess, stat], 2019. arXiv:
1911.13254.

[89] S. Wisdom, E. Tzinis, H. Erdogan, R. Weiss, K. Wilson, and J. Hershey,
“Unsupervised sound separation using mixture invariant training,” in Proc.
NeurIPS, vol. 33, pp. 3846–3857, 2020.

[90] P. Comon, “Independent Component Analysis, a new concept?,” Signal
Processing, 1994.

[91] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms
and applications,” Neural networks, vol. 13, no. 4-5, pp. 411–430, 2000.

[92] P.-S. Huang, S. D. Chen, P. Smaragdis, and M. Hasegawa-Johnson,
“Singing-voice separation from monaural recordings using robust prin-
cipal component analysis,” in Proc. ICASSP, pp. 57–60, IEEE, 2012.

[93] P. Smaragdis, C. Févotte, G. J. Mysore, N. Mohammadiha, and M. Hoff-
man, “Static and dynamic source separation using nonnegative factoriza-
tions: A unified view,” IEEE Signal Processing Magazine, vol. 31, no. 3,
pp. 66–75, 2014.

[94] Z. Rafii and B. Pardo, “Repeating pattern extraction technique (repet): A
simple method for music/voice separation,” IEEE transactions on audio,
speech, and language processing, vol. 21, no. 1, pp. 73–84, 2012.

[95] E. Gusó, J. Pons, S. Pascual, and J. Serrà, “On loss functions and evalua-
tion metrics for music source separation,” in Proc. ICASSP, pp. 306–310,
2022.

[96] S. T. Roweis, “One microphone source separation,” in Proc. NIPS, 2000.

[97] S. Uhlich, F. Giron, and Y. Mitsufuji, “Deep neural network based instru-
ment extraction from music,” in Proc. ICASSP, 2015.

[98] P.-S. Huang, M. Kim, M. A. Hasegawa-Johnson, and P. Smaragdis,
“Singing-voice separation from monaural recordings using deep recurrent
neural networks,” in Proc. ISMIR, 2014.

[99] A. A. Nugraha, A. Liutkus, and E. Vincent, “Multichannel audio source
separation with deep neural networks,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 24, no. 9, pp. 1652–1664, 2016.

[100] J.-Y. Liu and Y.-H. Yang, “Denoising auto-encoder with recurrent skip
connections and residual regression for music source separation,” 2018.



96 BIBLIOGRAPHY

[101] N. Takahashi, N. Goswami, and Y. Mitsufuji, “Mmdenselstm: An efficient
combination of convolutional and recurrent neural networks for audio
source separation,” in Proc. IWAENC, pp. 106–110, 2018.

[102] F. Lluís, J. Pons, and X. Serra, “End-to-end music source separation: Is
it possible in the waveform domain?,” in INTERSPEECH, pp. 4619–4623,
2019.

[103] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” Proc.
NIPS, vol. 27, 2014.

[104] Y. C. Subakan and P. Smaragdis, “Generative adversarial source separa-
tion,” in Proc. ICASSP, pp. 26–30, IEEE, 2018.

[105] Q. Kong, Y. Xu, W. Wang, P. J. B. Jackson, and M. D. Plumbley, “Single-
channel signal separation and deconvolution with generative adversarial
networks,” in Proc. IJCAI, p. 2747–2753, AAAI Press, 2019.

[106] V. Narayanaswamy, J. J. Thiagarajan, R. Anirudh, and A. Spanias, “Un-
supervised audio source separation using generative priors,” 2020.

[107] V. Jayaram and J. Thickstun, “Source separation with deep generative
priors,” in Proc. ICML, PMLR, 2020.

[108] G. Parisi, “Correlation functions and computer simulations,” Nuclear
Physics B, vol. 180, no. 3, pp. 378–384, 1981.

[109] V. Jayaram and J. Thickstun, “Parallel and flexible sampling from autore-
gressive models via langevin dynamics,” in Proc. ICML, pp. 4807–4818,
PMLR, 2021.

[110] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[111] E. Manilow, G. Wichern, P. Seetharaman, and J. Le Roux, “Cutting music
source separation some Slakh: A dataset to study the impact of training
data quality and quantity,” in Proc. IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA), IEEE, 2019.

[112] A. Horé and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in Proc.
ICPR, pp. 2366–2369, 2010.

[113] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” in Proc. NeurIPS, vol. 30, 2017.

[114] T. Dockhorn, A. Vahdat, and K. Kreis, “Score-based generative modeling
with critically-damped langevin diffusion,” ArXiv, vol. abs/2112.07068,
2021.

http://www.deeplearningbook.org


BIBLIOGRAPHY 97

[115] P. Seetharaman, F. Pishdadian, and B. Pardo, “Music/voice separation
using the 2d fourier transform,” in 2017 IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA), pp. 36–40, IEEE,
2017.

[116] F.-R. Stöter, A. Liutkus, and N. Ito, “The 2018 signal separation evaluation
campaign,” in Proc. LVA/ICA, pp. 293–305, 2018.

[117] N. Takahashi, S. Parthasaarathy, N. Goswami, and Y. Mitsufuji, “Recur-
sive speech separation for unknown number of speakers,” arXiv preprint
arXiv:1904.03065, 2019.

[118] J. Yu, X. Li, J. Y. Koh, H. Zhang, R. Pang, J. Qin, A. Ku, Y. Xu,
J. Baldridge, and Y. Wu, “Vector-quantized image modeling with improved
vqgan,” arXiv preprint arXiv:2110.04627, 2021.

[119] Y. Xu, Y. Song, S. Garg, L. Gong, R. Shu, A. Grover, and S. Ermon,
“Anytime sampling for autoregressive models via ordered autoencoding,”
arXiv preprint arXiv:2102.11495, 2021.

[120] L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to text-
to-image diffusion models,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 3836–3847, 2023.

[121] J. D. Parker, J. Spijkervet, K. Kosta, F. Yesiler, B. Kuznetsov, J.-C. Wang,
M. Avent, J. Chen, and D. Le, “Stemgen: A music generation model
that listens,” in ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1116–1120, IEEE,
2024.

[122] B. Han, J. Dai, X. Song, W. Hao, X. He, D. Guo, J. Chen, Y. Wang,
and Y. Qian, “Instructme: An instruction guided music edit and remix
framework with latent diffusion models,” arXiv preprint arXiv:2308.14360,
2023.

[123] OpenAI, “Gpt-4 technical report,” 2023.

[124] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al., “Llama: Open and
efficient foundation language models,” arXiv preprint arXiv:2302.13971,
2023.

[125] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchi-
cal text-conditional image generation with clip latents,” arXiv preprint
arXiv:2204.06125, 2022.

[126] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 10684–10695, 2022.



98 BIBLIOGRAPHY

[127] J.-E. Shin, A. J. Riesselman, A. W. Kollasch, C. McMahon, E. Simon,
C. Sander, A. Manglik, A. C. Kruse, and D. S. Marks, “Protein design
and variant prediction using autoregressive generative models,” Nature
communications, vol. 12, no. 1, p. 2403, 2021.

[128] H. Liu, Z. Chen, Y. Yuan, X. Mei, X. Liu, D. Mandic, W. Wang, and
M. D. Plumbley, “Audioldm: Text-to-audio generation with latent diffusion
models,” arXiv preprint arXiv:2301.12503, 2023.

[129] A. van den Oord, O. Vinyals, et al., “Neural discrete representation
learning,” Advances in neural information processing systems, vol. 30,
2017.

[130] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and
B. Poole, “Score-based generative modeling through stochastic differential
equations,” in International Conference on Learning Representations, 2020.

[131] J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Synnaeve, Y. Adi, and
A. Défossez, “Simple and controllable music generation,” arXiv preprint
arXiv:2306.05284, 2023.

[132] H. F. Garcia, P. Seetharaman, R. Kumar, and B. Pardo, “Vampnet:
Music generation via masked acoustic token modeling,” arXiv preprint
arXiv:2307.04686, 2023.

[133] F. Schneider, Z. Jin, and B. Schölkopf, “Moûsai: Text-to-music generation
with long-context latent diffusion,” arXiv preprint arXiv:2301.11757, 2023.

[134] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, and P. J. Liu, “Exploring the limits of transfer learning with
a unified text-to-text transformer,” The Journal of Machine Learning
Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[135] I. Manco, E. Benetos, E. Quinton, and G. Fazekas, “Learning music audio
representations via weak language supervision,” in ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 456–460, IEEE, 2022.

[136] B. Elizalde, S. Deshmukh, M. Al Ismail, and H. Wang, “Clap learning
audio concepts from natural language supervision,” in ICASSP 2023-2023
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5, IEEE, 2023.

[137] Y. Wu, K. Chen, T. Zhang, Y. Hui, T. Berg-Kirkpatrick, and S. Dubnov,
“Large-scale contrastive language-audio pretraining with feature fusion and
keyword-to-caption augmentation,” in ICASSP 2023-2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 1–5, IEEE, 2023.

[138] F. Schneider, Z. Jin, and B. Schölkopf, “Moûsai: Text-to-music generation
with long-context latent diffusion,” arXiv preprint arXiv:2301.11757, 2023.



BIBLIOGRAPHY 99

[139] A. Défossez, N. Usunier, L. Bottou, and F. Bach, “Music source separation
in the waveform domain,” arXiv preprint arXiv:1911.13254, 2019.

[140] E. Manilow, C. Hawthorne, C.-Z. A. Huang, B. Pardo, and J. Engel,
“Improving source separation by explicitly modeling dependencies be-
tween sources,” in ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 291–295, IEEE,
2022.

[141] C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio synthesis,”
in International Conference on Learning Representations, 2019.

[142] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet: A Generative
Model for Raw Audio,” in Proc. 9th ISCA Workshop on Speech Synthesis
Workshop (SSW 9), p. 125, 2016.

[143] N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, and M. Tagliasacchi,
“Soundstream: An end-to-end neural audio codec,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. 30, pp. 495–507,
2021.

[144] Z. Borsos, R. Marinier, D. Vincent, E. Kharitonov, O. Pietquin, M. Sharifi,
D. Roblek, O. Teboul, D. Grangier, M. Tagliasacchi, et al., “Audiolm: a lan-
guage modeling approach to audio generation,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 2023.

[145] F. Kreuk, G. Synnaeve, A. Polyak, U. Singer, A. Défossez, J. Copet,
D. Parikh, Y. Taigman, and Y. Adi, “Audiogen: Textually guided au-
dio generation,” in The Eleventh International Conference on Learning
Representations, 2023.

[146] Q. Huang, A. Jansen, J. Lee, R. Ganti, J. Y. Li, and D. P. W. Ellis,
“Mulan: A joint embedding of music audio and natural language,” in
International Society for Music Information Retrieval Conference, 2022.

[147] C. Donahue, A. Caillon, A. Roberts, E. Manilow, P. Esling, A. Agostinelli,
M. Verzetti, I. Simon, O. Pietquin, N. Zeghidour, et al., “Singsong:
Generating musical accompaniments from singing,” arXiv preprint
arXiv:2301.12662, 2023.

[148] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Diffwave: A
versatile diffusion model for audio synthesis,” in International Conference
on Learning Representations, 2021.

[149] N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi, and W. Chan, “Wave-
grad: Estimating gradients for waveform generation,” in International
Conference on Learning Representations, 2021.

[150] Y.-J. Lu, Y. Tsao, and S. Watanabe, “A study on speech enhancement
based on diffusion probabilistic model,” in 2021 Asia-Pacific Signal and



100 BIBLIOGRAPHY

Information Processing Association Annual Summit and Conference (AP-
SIPA ASC), pp. 659–666, IEEE, 2021.

[151] J. Serrà, S. Pascual, J. Pons, R. O. Araz, and D. Scaini, “Universal speech
enhancement with score-based diffusion,” arXiv preprint arXiv:2206.03065,
2022.

[152] R. Sawata, N. Murata, Y. Takida, T. Uesaka, T. Shibuya, S. Takahashi,
and Y. Mitsufuji, “Diffiner: A Versatile Diffusion-based Generative Refiner
for Speech Enhancement,” in Proc. INTERSPEECH 2023, pp. 3824–3828,
2023.

[153] K. Saito, N. Murata, T. Uesaka, C.-H. Lai, Y. Takida, T. Fukui, and
Y. Mitsufuji, “Unsupervised vocal dereverberation with diffusion-based
generative models,” in ICASSP 2023-2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2023.

[154] C.-Y. Yu, S.-L. Yeh, G. Fazekas, and H. Tang, “Conditioning and sampling
in variational diffusion models for speech super-resolution,” in ICASSP
2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2023.

[155] G. Mittal, J. Engel, C. Hawthorne, and I. Simon, “Symbolic music gen-
eration with diffusion models,” in Proceedings of the 22nd International
Society for Music Information Retrieval Conference, 2021.

[156] C. Hawthorne, I. Simon, A. Roberts, N. Zeghidour, J. Gardner, E. Manilow,
and J. Engel, “Multi-instrument music synthesis with spectrogram diffu-
sion,” in International Society for Music Information Retrieval Conference,
2022.

[157] K. W. Cheuk, R. Sawata, T. Uesaka, N. Murata, N. Takahashi, S. Taka-
hashi, D. Herremans, and Y. Mitsufuji, “Diffroll: Diffusion-based gener-
ative music transcription with unsupervised pretraining capability,” in
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1–5, IEEE, 2023.

[158] S. Rouard and G. Hadjeres, “CRASH: raw audio score-based generative
modeling for controllable high-resolution drum sound synthesis,” in Pro-
ceedings of the 22nd International Society for Music Information Retrieval
Conference, ISMIR 2021, pp. 579–585, 2021.

[159] D. Yang, J. Yu, H. Wang, W. Wang, C. Weng, Y. Zou, and D. Yu, “Diff-
sound: Discrete diffusion model for text-to-sound generation,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 2023.

[160] S. Pascual, G. Bhattacharya, C. Yeh, J. Pons, and J. Serrà, “Full-band
general audio synthesis with score-based diffusion,” in ICASSP 2023-2023
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2023.



BIBLIOGRAPHY 101

[161] S. Forsgren and H. Martiros, “Riffusion - Stable diffusion for real-time
music generation,” 2022.

[162] R. Yuan, H. Lin, Y. Wang, Z. Tian, S. Wu, T. Shen, G. Zhang, Y. Wu,
C. Liu, Z. Zhou, et al., “Chatmusician: Understanding and generating
music intrinsically with llm,” arXiv preprint arXiv:2402.16153, 2024.

[163] Y. Wang, Z. Ju, X. Tan, L. He, Z. Wu, J. Bian, et al., “Audit: Audio
editing by following instructions with latent diffusion models,” Advances
in Neural Information Processing Systems, vol. 36, 2024.

[164] E. Gusó, J. Pons, S. Pascual, and J. Serrà, “On loss functions and evalu-
ation metrics for music source separation,” in ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 306–310, IEEE, 2022.

[165] F. Lluís, J. Pons, and X. Serra, “End-to-end music source separation: Is
it possible in the waveform domain?,” in INTERSPEECH, pp. 4619–4623,
2019.

[166] N. Takahashi, N. Goswami, and Y. Mitsufuji, “Mmdenselstm: An efficient
combination of convolutional and recurrent neural networks for audio
source separation,” in Proc. IWAENC, pp. 106–110, 2018.

[167] W. Choi, M. Kim, J. Chung, and S. Jung, “Lasaft: Latent source attentive
frequency transformation for conditioned source separation,” in ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 171–175, IEEE, 2021.

[168] Q. Kong, Y. Xu, W. Wang, P. J. B. Jackson, and M. D. Plumbley, “Single-
channel signal separation and deconvolution with generative adversarial
networks,” in Proc. IJCAI, p. 2747–2753, AAAI Press, 2019.

[169] G. Zhu, J. Darefsky, F. Jiang, A. Selitskiy, and Z. Duan, “Music source
separation with generative flow,” IEEE Signal Processing Letters, vol. 29,
pp. 2288–2292, 2022.

[170] E. Postolache, J. Pons, S. Pascual, and J. Serrà, “Adversarial permutation
invariant training for universal sound separation,” in ICASSP 2023-2023
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2023.

[171] I. Kavalerov, S. Wisdom, H. Erdogan, B. Patton, K. Wilson, J. Le Roux,
and J. R. Hershey, “Universal sound separation,” in 2019 IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA),
pp. 175–179, IEEE, 2019.

[172] S. Wisdom, E. Tzinis, H. Erdogan, R. Weiss, K. Wilson, and J. Hershey,
“Unsupervised sound separation using mixture invariant training,” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 3846–3857,
2020.



102 BIBLIOGRAPHY

[173] R. Scheibler, Y. Ji, S.-W. Chung, J. Byun, S. Choe, and M.-S. Choi,
“Diffusion-based generative speech source separation,” in ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2023.

[174] S. Lutati, E. Nachmani, and L. Wolf, “Separate and diffuse: Using a
pretrained diffusion model for improving source separation,” arXiv preprint
arXiv:2301.10752, 2023.

[175] G. Plaja-Roglans, M. Marius, and X. Serra, “A diffusion-inspired training
strategy for singing voice extraction in the waveform domain,” in Proc. of
the 23rd Int. Society for Music Information Retrieval, 2022.

[176] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,”
in Advances in Neural Information Processing Systems (M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.), vol. 34,
pp. 8780–8794, Curran Associates, Inc., 2021.

[177] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and R. Bittner, “The
MUSDB18 corpus for music separation,” 2017.

[178] J. L. Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, “Sdr – half-baked
or well done?,” in ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 626–630, 2019.

[179] V. Jayaram and J. Thickstun, “Source separation with deep generative
priors,” in Proceedings of the 37th International Conference on Machine
Learning, pp. 4724–4735, 2020.

[180] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps,”
Advances in Neural Information Processing Systems, vol. 35, pp. 5775–5787,
2022.

[181] K. Kilgour, M. Zuluaga, D. Roblek, and M. Sharifi, “Fréchet Audio
Distance: A Reference-Free Metric for Evaluating Music Enhancement
Algorithms,” in Proc. Interspeech 2019, pp. 2350–2354, 2019.

[182] J. Le Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, “Sdr–half-baked
or well done?,” in ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 626–630, IEEE,
2019.

[183] J. Pons, X. Liu, S. Pascual, and J. Serrà, “Gass: Generalizing audio source
separation with large-scale data,” arXiv preprint arXiv:2310.00140, 2023.

[184] H. Liu, Q. Tian, Y. Yuan, X. Liu, X. Mei, Q. Kong, Y. Wang, W. Wang,
Y. Wang, and M. D. Plumbley, “Audioldm 2: Learning holistic audio gen-
eration with self-supervised pretraining,” arXiv preprint arXiv:2308.05734,
2023.



BIBLIOGRAPHY 103

[185] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th International Con-
ference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18,
pp. 234–241, Springer, 2015.

[186] Y. Song and S. Ermon, “Generative modeling by estimating gradients
of the data distribution,” in Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada (H. M.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and
R. Garnett, eds.), pp. 11895–11907, 2019.

[187] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C.
Moore, M. Plakal, and M. Ritter, “Audio set: An ontology and human-
labeled dataset for audio events,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 776–780, 2017.

[188] X. Mei, C. Meng, H. Liu, Q. Kong, T. Ko, C. Zhao, M. D. Plumbley,
Y. Zou, and W. Wang, “Wavcaps: A chatgpt-assisted weakly-labelled
audio captioning dataset for audio-language multimodal research,” arXiv
preprint arXiv:2303.17395, 2023.

[189] C. D. Kim, B. Kim, H. Lee, and G. Kim, “AudioCaps: Generating cap-
tions for audios in the wild,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers)
(J. Burstein, C. Doran, and T. Solorio, eds.), (Minneapolis, Minnesota),
pp. 119–132, Association for Computational Linguistics, June 2019.

[190] H. Chen, W. Xie, A. Vedaldi, and A. Zisserman, “Vggsound: A large-scale
audio-visual dataset,” in ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 721–725,
IEEE, 2020.

[191] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, “Fma: A
dataset for music analysis,” in International Society for Music Information
Retrieval Conference, 2016.

[192] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The million
song dataset,” in Proceedings of the 12th International Conference on
Music Information Retrieval (ISMIR 2011), 2011.

[193] G. Chen, S. Chai, G. Wang, J. Du, W.-Q. Zhang, C. Weng, D. Su,
D. Povey, J. Trmal, J. Zhang, et al., “Gigaspeech: An evolving, multi-
domain asr corpus with 10,000 hours of transcribed audio,” arXiv preprint
arXiv:2106.06909, 2021.

[194] K. Ito and L. Johnson, “The lj speech dataset.” https://keithito.com/
LJ-Speech-Dataset/, 2017.

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/


104 BIBLIOGRAPHY

[195] D. Roblek, K. Kilgour, M. Sharifi, and M. Zuluaga, “Fr\’echet audio
distance: A reference-free metric for evaluating music enhancement algo-
rithms,” in Proc. Interspeech, pp. 2350–2354, 2019.

[196] A. Gui, H. Gamper, S. Braun, and D. Emmanouilidou, “Adapting frechet
audio distance for generative music evaluation,” in ICASSP 2024-2024
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1331–1335, IEEE, 2024.

[197] A. Défossez, J. Copet, G. Synnaeve, and Y. Adi, “High fidelity neural
audio compression,” Transactions on Machine Learning Research, 2023.

[198] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen, R. C.
Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, et al., “Cnn
architectures for large-scale audio classification,” in 2017 ieee international
conference on acoustics, speech and signal processing (icassp), pp. 131–135,
IEEE, 2017.

[199] Z. Evans, C. Carr, J. Taylor, S. H. Hawley, and J. Pons, “Fast timing-
conditioned latent audio diffusion,” arXiv preprint arXiv:2402.04825, 2024.

[200] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 1, pp. 539–546 vol. 1, 2005.

[201] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[202] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding
for face recognition and clustering,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 815–823, 2015.

[203] X. Favory, K. Drossos, T. Virtanen, and X. Serra, “COALA: Co-aligned
autoencoders for learning semantically enriched audio representations,” in
ICML 2020 Workshop on Self-supervision in Audio and Speech, 2020.

[204] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for
contrastive learning of visual representations,” in International conference
on machine learning, pp. 1597–1607, PMLR, 2020.

[205] I. Manco, E. Benetos, E. Quinton, and G. Fazekas, “Contrastive audio-
language learning for music,” in Ismir 2022 Hybrid Conference, 2022.

[206] S. Pascual, M. Ravanelli, J. Serrà, A. Bonafonte, and Y. Bengio, “Learning
problem-agnostic speech representations from multiple self-supervised
tasks,” Interspeech 2019, 2019.

[207] M. Tagliasacchi, B. Gfeller, F. d. C. Quitry, and D. Roblek, “Pre-training
audio representations with self-supervision,” IEEE Signal Processing Let-
ters, vol. 27, pp. 600–604, 2020.



BIBLIOGRAPHY 105

[208] H.-H. Wu, C.-C. Kao, Q. Tang, M. Sun, B. McFee, J. P. Bello, and
C. Wang, “Multi-task self-supervised pre-training for music classification,”
in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 556–560, IEEE, 2021.

[209] P.-Y. Huang, H. Xu, J. Li, A. Baevski, M. Auli, W. Galuba, F. Metze, and
C. Feichtenhofer, “Masked autoencoders that listen,” Advances in Neural
Information Processing Systems, vol. 35, pp. 28708–28720, 2022.

[210] A. Jansen, M. Plakal, R. Pandya, D. P. Ellis, S. Hershey, J. Liu, R. C.
Moore, and R. A. Saurous, “Unsupervised learning of semantic audio
representations,” in 2018 IEEE international conference on acoustics,
speech and signal processing (ICASSP), pp. 126–130, IEEE, 2018.

[211] A. Saeed, D. Grangier, and N. Zeghidour, “Contrastive learning of general-
purpose audio representations,” in ICASSP 2021-2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 3875–3879, IEEE, 2021.

[212] H. Al-Tahan and Y. Mohsenzadeh, “Clar: Contrastive learning of auditory
representations,” in International Conference on Artificial Intelligence and
Statistics, pp. 2530–2538, PMLR, 2021.

[213] J. Spijkervet and J. A. Burgoyne, “Contrastive learning of musical repre-
sentations,” CoRR, vol. abs/2103.09410, 2021.

[214] C. Garoufis, A. Zlatintsi, and P. Maragos, “Multi-source contrastive learn-
ing from musical audio,” arXiv preprint arXiv:2302.07077, 2023.

[215] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolu-
tional neural networks,” in International conference on machine learning,
pp. 6105–6114, PMLR, 2019.

[216] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(Y. Bengio and Y. LeCun, eds.), 2015.

[217] S. Sarkar, E. Benetos, and M. Sandler, “Ensembleset: a new high quality
synthesised dataset for chamber ensemble separation,” in Ismir 2022
Hybrid Conference, 2022.

[218] D. Bogdanov, M. Won, P. Tovstogan, A. Porter, and X. Serra, “The
mtg-jamendo dataset for automatic music tagging,” in Machine Learning
for Music Discovery Workshop, International Conference on Machine
Learning (ICML 2019), (Long Beach, CA, United States), 2019.


	Abstract
	Acknowledgements
	Introduction
	Motivation
	Thesis Outline

	Background
	Auto-Encoders
	Variational Auto-Encoders
	Vector Quantized VAEs

	Generative Models
	Autoregressive Models
	Diffusion Models

	Datasets

	I Generative modeling in Reasoning and Language
	Explanatory Learning
	Introduction
	Explanatory Learning
	The Odeen Environment
	Dataset

	Critical Rationalist Networks
	Experimental Results
	Conclusions

	Beyond the Imitation Game: BIG-bench
	Symbol Interpretation Task
	Experimental Result
	Limitations and future work


	II Generative modeling in the Signal domain
	Latent Autoregressive Source Separation
	Introduction
	Related Work
	Method
	Latent Autoregressive Source Separation
	Discrete Likelihoods for Source Separation
	Inference Procedure

	Experimental Results
	Image Source Separation
	Music Source Separation

	Limitations
	Conclusion

	Diffusion Models for Multi-Source Music Generation
	Introduction
	Related Work
	Generative Models for Audio
	Compositional Waveform Music Generation
	Audio Source Separation

	Multi-Source Diffusion Models
	Compositional Tasks
	Experimental Results
	Music Generation
	Source Separation

	Limitations

	Generalized Multi-source Diffusion Inference
	Total generation
	Partial generation
	Source separation
	Experimental Setup
	Experimental Results
	Limitations

	CompoNet
	Experimental Setup
	Experimental Results

	Conclusions

	Coherence-Oriented Contrastive Learning for Audio
	Introduction
	Related Work
	Contrastive Methods for Audio

	Method
	Stem-Level Contrastive Learning
	The COCOLA Score

	Experimental Setup
	Experimental Results
	Coherent Sub-Mix Classification

	Conclusion

	Conclusions


