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Abstract

This doctoral thesis covers various aspects of theoretical machine learning relative to two of its
most fundamental paradigms: batch learning and online learning. In particular, we address the
role of feedback models for multiple online learning problems, the sample complexity for uniform
convergence, and a learning-theoretic approach to interpretable machine learning. First, we focus
on online learning and investigate variants of the multi-armed bandit problem, including settings
with feedback graphs, expert advice, and delayed feedback. We improve bounds on the minimax
regret for undirected, strongly observable feedback graphs and develop nearly optimal algorithms for
directed, stochastic feedback graphs without prior information on the distribution of the graphs.
Additionally, we derive improved regret bounds for bandits with expert advice and explore the
impact of intermediate observations in the delayed feedback setting, designing a meta-algorithm to
achieve near-optimal regret which shows a reduced effect of the total delay. Second, we study the
uniform convergence property of real-valued function classes with finite fat-shattering dimension. We
provide an improved bound on the sample complexity of uniform convergence, closing the gap with
existing lower bounds. Finally, regarding interpretability, we establish a taxonomy for approximating
complex binary concepts with interpretable models such as shallow decision trees. Leveraging uniform
convergence for Vapnik-Chervonenkis classes and von Neumann’s minimax theorem, we achieve a
surprising trichotomy for interpretable concepts while revealing connections between interpretable
approximations and boosting.





Sommario

Questa tesi di dottorato affronta vari aspetti della teoria del machine learning relativamente
a due fra i suoi paradigmi più importanti: batch learning e online learning. In particolar modo,
gli studi contenuti in questa tesi riguardano il ruolo di vari modelli di feedback in problemi di
online learning, la complessità campionaria della convergenza uniforme, e un approccio teorico e
formale al machine learning interpretabile. Inizialmente, ci concentriamo sul modello di online
learning e analizziamo varianti del famoso problema del multi-armed bandit, fra cui bandit con
grafo di feedback, con raccomandazioni da esperti e con feedback posticipato. Miglioriamo le
garanzie sul minimax regret per grafi di feedback non orientati e fortemente osservabili. Sviluppiamo
inoltre algoritmi quasi-ottimali per il caso di grafi di feedback diretti e stocastici, senza alcuna
informazione a priori sulla distribuzione dei grafi. Forniamo garanzie migliori anche per il minimax
regret del problema di multi-armed bandit con suggerimenti da esperti, e analizziamo l’impatto
di osservazioni intermedie nel caso di feedback con ritardo tramite un meta-algoritmo che ottiene
regret quasi-ottimale con una riduzione dell’effetto negativo causato dal ritardo cumulativo totale.
Successivamente, studiamo la proprietà di convergenza uniforme per classi di funzioni a valori
reali con fat-shattering dimension finita. Deriviamo un miglioramento sul limite superiore alla
complessità campionaria della convergenza uniforme, chiudendo il divario di garanzie precedenti
rispetto ai limiti inferiori noti. Infine, riguardo il problema dell’interpretabilità, stabiliamo una
tassonomia per l’approssimazione di concetti binari complessi tramite modelli intepretabili come,
ad esempio, alberi decisionali poco profondi. Sfuttando stumenti quali la convergenza uniforme
per classi Vapnik-Chervonenkis di funzioni e il teorema minimax di von Neumann, otteniamo
una sorprendente tricotomia per concetti interpretabili, rivelando al contempo delle connessioni
sufficientemente profonde tra approssimazioni interpretabili di concetti e il framework classico di
boosting.
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Chapter 1

Introduction

In the last few decades, machine learning has become a prominent field with a plethora of impactful
real-world applications, gradually improving on the resolution of increasingly complex and structured
problems at a fast pace. The core idea of machine learning is to automatically extract information
from data by learning patterns in order to perform accurate decisions or predictions on unseen data.
Machine learning algorithms have been fundamental tools in solving tasks such as clinical trials, image
recognition, natural language processing, and sequential decision-making in dynamical environments.
The advantage of adopting machine learning approaches is provided by their remarkable adaptability
to learn and generalize from previously gathered data to unobserved scenarios. It is therefore of the
utmost importance nowadays to deepen our understanding relative to how and why some of these
approaches perform remarkably well in practice, so as to develop novel machine learning algorithms
with improved performance and trustworthiness. This is the central motivation for defining formal
models that allow us to study machine learning problems.

The most traditional framework for the mathematical analysis of learning algorithms is that of
statistical learning theory, consisting of a statistical approach whose roots go back to the foundational
work of Vapnik and Chervonenkis (1971),∗ and Valiant (1984). Their research laid the groundwork
for statistical learning theory and, more precisely, for what is known as batch learning. Batch learning
is a traditional machine learning paradigm where learning algorithms are trained on a fixed set
of data collected, and possibly labeled, beforehand. Its utility lies in the possibility to rigorously
quantify how well an algorithm generalizes, that is, performs well on new inputs. In particular,
Vapnik and Chervonenkis (1971) characterized learnability within a statistical learning paradigm
in terms of training set size, whereas Valiant (1984) later tackled the computational aspects of
batch learning problems via the famous Probably Approximately Correct (PAC) learning framework.
These theoretical models and their related insights have driven a vast portion of the research in
machine learning.

While batch learning has been successful in a variety of domains, we need to consider situations
where data is continuously generated and arrives sequentially, or whenever decisions must be
performed in real time, often under uncertainty. This is indeed the case for real-world settings such
as digital markets, online advertising, recommender systems, and adaptive clinical trials, which
span a multitude of relevant fields. We therefore need a different machine learning paradigm that
captures the sequential nature of these scenarios, which becomes especially crucial as technology

∗An English translation by Seckler for the original article in Russian is: Vapnik and Chervonenkis (2015).
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1. Introduction

permeates everyday life more and more. Online learning addresses these challenges of dynamical
environments by moving towards learning models that can be updated as soon as they observe new
data, a property that is in stark contrast with the previous train-test procedure. This leads to the
design and study of online learning algorithms that, unlike batch learning where all the training data
is available upfront, are provided with one instance at a time. The pioneering work of Littlestone and
Warmuth (Littlestone, 1990, Littlestone and Warmuth, 1994), and independently by Vovk (1990),
introduced the online learning framework, allowing the development and the analysis of efficient and
effective sequential decision-making algorithms. This milestone was the first step towards successful
areas of research in machine learning such as reinforcement learning.

It is clear that both batch and online learning are equally important for the advancement of the
overall field of machine learning. In this thesis, we delve into these two research areas individually
and we provide relevant contributions to both.

1.1 Thesis Outline

The structure of this thesis consists of two main parts, each revolving around a different main topic.

Part I: The Role of Feedback in Online Learning. The first part of this dissertation concerns
online learning problems. We provide novel results that further advance the understanding for some
of the most important feedback models. After an introductory overview on the foundations of online
learning in Chapter 2, we begin with our novel results on the minimax regret for online learning
with feedback graphs in Chapter 3. In Chapter 4, we utilize similar techniques to derive improved
regret guarantees for the multi-armed bandit problem with experts advice, whereas we extend the
graph feedback model to consider probabilistic feedback via stochastic feedback graphs and obtain
near-optimal guarantees in Chapter 5. Finally, in Chapter 6 we move to the online learning model
with delayed bandit feedback and study a variation including intermediate observations, proving
high-probability regret guarantees and nearly matching lower bounds.

Part II: Uniform Convergence and a Theory of Interpretability. The second part of this
dissertation discusses topics related to statistical learning theory from a batch learning perspective,
differently from the first part of this thesis. Basics concepts and definitions, together with foundational
results of statistical learning, are provided in Chapter 7. Chapter 8 investigates the sample complexity
for the uniform convergence property of real-valued function classes, a fundamental concept in learning
theory and beyond. There we manage to close the gap in previously known results. Then, we move
our focus to Chapter 9, where we propose a formal learning-theoretic model for the interpretability
of binary concepts and derive a taxonomy of interpretable approximations.

1.2 Definitions and Notations

We denote by N the set of natural numbers {0, 1, 2, . . . }, by N+ := N \ {0} the set of positive
natural numbers, by R the set of real numbers, and by R≥0 the set of non-negative real numbers
(and so on). If A is any finite set, the number of elements in A is denoted by |A|. Fix any
positive integer n ∈ N+. We denote by [n] := {1, . . . , n} the set containing the first n positive
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1.2. Definitions and Notations

integers. For notational convenience, we freely identify n-dimensional real-valued vectors with
real-valued functions having [n] as domain (i.e., Rn ∼= R[n] via x 7→ (i 7→ xi)). More generally,
we will oftentimes treat a real-valued function f : A → R with a finite domain A of size |A| = n

as an n-uple (f(a))a∈A ∈ Rn with components possibly ordered according to some natural order
over A, if any, and vice versa. The inner product, or dot product, between two Euclidean vectors
x, y ∈ Rn is defined as ⟨x, y⟩ :=

∑n
i=1 xiyi or, alternatively, as x⊤y. For any p ∈ (0,∞), we denote

the p-norm of a vector x ∈ Rn as ∥x∥p :=
(∑n

i=1|xi|p
)1/p; whenever the subscript is unspecified,

∥·∥ = ∥·∥2 is considered as the Euclidean norm. We let ∆n be the simplex {p ∈ [0, 1]n : ∥p∥1 = 1},
and we analogously extend its definition so that ∆A :=

{
p ∈ [0, 1]A : ∥p∥1 = 1

}
denotes the family

of probability distributions over any finite domain A. The indicator function I{E} ∈ {0, 1} for some
event E is defined as I{E} := 1 if event E occurs, and I{E} := 0 otherwise. Moreover, we define
positive thresholding by [x]+ := max{x, 0} for any x ∈ R.

Throughout this manuscript, we adopt the Bachmann-Landau symbols with the following meaning:
for any two functions f, g : R → R of the same variable x ∈ R, f(x) = O(g(x)) denotes an upper
bound f(x) ≲ g(x) ignoring positive multiplicative constants, f(x) = Ω(g(x)) is the analogue for
the lower bound f(x) ≳ g(x), and f(x) = Θ(g(x)) is the analogue for both upper and lower bounds
f(x) ≈ g(x). We use Õ(·), Ω̃(·), and Θ̃(·) with a tilde to ignore up-to-polylogarithmic factors while
preserving the same overall meaning of the notation. Furthermore, assuming we are interested in the
limit as x→∞, f(x) = o(g(x)) means that limx→∞

f(x)
g(x) = 0 and, similarly, f(x) = ω(g(x)) means

limx→∞
f(x)
g(x) =∞.
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The Role of Feedback in Online Learning





Chapter 2

Online Learning

This introductory chapter provides an overview on the foundations of online learning. Its purpose is
to concisely define the main concepts related to prediction with expert advice and the multi-armed
bandit problem, with related well-studied algorithmic techniques, and to introduce variations of
their feedback models that generalize to a broader spectrum of sequential decision-making problems.
We refer the reader to Cesa-Bianchi and Lugosi (2006), Hazan (2016), Orabona (2019), Lattimore
and Szepesvári (2020), Slivkins (2019, 2024) for further material on topics related to the content of
this chapter.

2.1 Foundations of Online Learning

The first part of this thesis has its main focus on online learning, an important field of machine
learning involving sequential decision-making problems where an agent has to perform predictions, or
decisions, in a sequential manner while updating its strategy based on the information gathered over
time. Unlike traditional machine learning problems—typically addressed as batch learning—where
the learner is given full access to a large-enough dataset before being asked to make predictions, in
online learning tasks the decision-maker must learn incrementally from a stream of data. Online
learning clearly has a wide range of applications where data is being generated continuously by
sources such as financial markets, sensors, and user interactions. Real-world domains that require, or
would benefit from, the versatility of online learning algorithms thus include finance and marketing,
as well as healthcare and medicine, just to name a few.

The online learning framework formalizes the sequential decision-making problem as a repeated
game between a learner and an adversary. The learner is required to perform decisions over T ∈ N+

rounds, selecting an action It at each round t ∈ [T ] from a specific non-empty action set V . The
adversary, sometimes referred to as nature or the environment, then reveals the loss function
ℓt ∈ [0, 1]V (or some information about it) to the learner, who in turn suffers loss ℓt(It) for its
decision. Throughout this manuscript, we consider the case when the adversary is oblivious, meaning
that it chooses the entire sequence of loss functions ℓ1, . . . , ℓT before the beginning of the game, in
the worst way possible for the specific learner facing it.
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2. Online Learning

2.1.1 Prediction with Expert Advice

The most notable setting of such a problem is that of prediction with expert advice (Cesa-Bianchi,
Freund, Helmbold, Haussler, Schapire, and Warmuth, 1993, Littlestone and Warmuth, 1994, Freund
and Schapire, 1997, Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth, 1997),
where the learner observes the prediction of K ≥ 2 fixed experts at each round t and selects one
expert It possibly at random. In particular, if we denote the experts as the first K positive integers,
the action set consists of the finite set V := [K]. The performance of the learner is measured as the
expected regret

RT := E

[
T∑
t=1

ℓt(It)

]
−min

i∈V

T∑
t=1

ℓt(i) , (2.1)

defined as the difference—in expectation with respect to the random draw of I1, . . . , IT—of the
cumulative loss of the learner and the cumulative loss of the best fixed expert in hindsight. A
summary of the protocol for the prediction with expert advice is provided in Online Protocol 2.1.

One may equivalently define the same problem by considering a decision-maker that selects a
distribution pt over experts from the probability simplex ∆K over the K experts and, hence, the regret
becomes RT =

∑T
t=1⟨ℓt, pt⟩ −minp∈∆K

∑T
t=1⟨ℓt, p⟩. Indeed, the notion of regret becomes equivalent

because the loss of the learner at round t is ⟨ℓt, pt⟩ = E
[
ℓt(It)

]
, where It ∼ pt, and the cumulative

loss of the comparator also is minp∈∆K

∑T
t=1⟨ℓt, p⟩ = mini∈[K]

∑T
t=1 ℓt(i). We nevertheless consider

the first formalization of this problem by convention as it better relates to the definition of the other
problems considered in this thesis.

Online Protocol 2.1: Prediction with expert advice

environment: losses ℓt ∈ [0, 1]V for all t ∈ [T ]
for t = 1, . . . , T do

The learner selects an expert It ∈ V (possibly at random)
The learner suffers loss ℓt(It)
The learner observes losses (ℓt(i))i∈V

Our primary goal for this type of problems is the design of online learning algorithms whose
regret grows slower than the time horizon T , a concept that is captured by the following definition.
We say that a learning algorithm for an online learning problem within the above framework is
no-regret if RT = o(T ) for T → ∞. Considering the problem of prediction with expert advice,
the most immediate strategy for a learner would consist of selecting an action that minimizes the
cumulative loss up to the current round, that is,

It ∈ argmin
i∈V

t−1∑
s=1

ℓs(i)

for t ≥ 2 whereas the first action I1 is chosen arbitrarily. This strategy takes the name of Follow
The Leader (FTL) and, while performing well in stochastic settings where losses are generated as
an i.i.d. sample according to some fixed distribution, and even being minimax optimal when losses
are Bernoulli random variables in particular (Kotłowski, 2018), it is known to perform poorly in
adversarial environments as it can achieve regret RT = Θ(T )—see, e.g., Cesa-Bianchi and Lugosi
(2006, Section 4.3) or De Rooij, Van Erven, Grünwald, and Koolen (2014, Section 5.1).
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2.1. Foundations of Online Learning

To overcome the shortcomings of FTL, we can introduce a controlled amount of randomness in
the choice of the experts. A more clever strategy consists of keeping a weight wt(i) over each expert
i ∈ V at every round t ∈ [T ]. These weights are initially equal across all experts in the absence of any
information about their loss, and are updated over time depending on the performance of each expert
according to the observed losses. In particular, at the end of each round t the update of the weight
wt(i) for expert i is multiplicative with factor exp(−ηℓt(i)), where η > 0 is the learning rate that can
be appropriately tuned. We can then use these weights to define a probability distribution pt such
that pt(i) ∝ wt(i) = exp

(
−η
∑t−1

s=1 ℓs(i)
)
, which we can use to sample the expert It. This popular

algorithm is known as Hedge (whose pseudocode is provided in Algorithm 2.1) or, alternatively,
with the names of Exponential Weights algorithm or Exponentially Weighted Average Forecaster.
The last name particularly derives from the fact that Hedge is equivalent to the instantiation of the
Weighted Average Forecaster with the exponential potential function Φη(x) :=

1
η ln
(∑

i∈[K] exp(ηxi)
)

for x := (x1, . . . , xK)
⊤ ∈ RK and the same learning rate η > 0 (e.g., see Cesa-Bianchi and Lugosi

(2006, Section 2.1)). The regret of Hedge is RT = Θ(
√
T lnK) for the problem of prediction with

expert advice and it is known to be minimax optimal.

Algorithm 2.1: Hedge
1: input: learning rate η > 0
2: w1(i)← 1 for all i ∈ V
3: for t = 1, . . . , T do
4: Let Wt ←

∑
i∈V wt(i)

5: Let pt(i)← wt(i)/Wt for all i ∈ V
6: Select It ∼ pt
7: Incur loss ℓt(It) and observe (ℓt(i))i∈V
8: Let wt+1(i)← wt(i) exp(−ηℓt(i)) for all i ∈ V

2.1.2 The Multi-Armed Bandit Problem

It is often the case that full information is unavailable and we regardless expect a good agent to
sequentially learn. More precisely, many real-world scenarios allow the learner to observe only the
loss ℓt(It) of the selected action It at round t. This new online learning protocol (Online Protocol 2.2)
defines the multi-armed bandit problem (Auer, Cesa-Bianchi, Freund, and Schapire, 1995, 2002b,
Auer, Cesa-Bianchi, and Fischer, 2002a) and this type of feedback intuitively takes the name of
bandit feedback. For instance, some applications with bandit feedback are clinical trials, where the
decision-maker selects one among different treatments to administer to patients and can only observe
the outcome of the selected one, or online advertising, where a platform chooses ads to show to its
users and can track their interactions (e.g., clicks) over the displayed advertisements only.

Online Protocol 2.2: Multi-armed bandit
environment: losses ℓt ∈ [0, 1]V for all t ∈ [T ]
for t = 1, . . . , T do

The learner selects an action It ∈ V (possibly at random)
The learner suffers loss ℓt(It)
The learner observes loss ℓt(It)

The multi-armed bandit problem clearly has a vast range of applications and it is a harder
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problem than prediction with expert advice because of its limited feedback. Nevertheless, it is
possible to design online learning algorithms that achieve a regret guarantee with the same

√
T

dependence on the time horizon T . This result can be obtained by a modification of Hedge. The main
difference consists of the change from full information to bandit feedback. Since Hedge necessitates
the losses of all actions to run, we replace the true loss ℓt(i) with an unbiased estimate for it. The
most common and famous unbiased estimate is the importance-weighted estimator ℓ̂t, defined as

ℓ̂t(i) :=
ℓt(i)

pt(i)
I{It = i} (2.2)

for each i ∈ V ; note that computing it only requires the knowledge of the observed loss ℓt(It).
If we let Et[·] = E[· | I1, . . . , It−1] be the expectation conditioned on the past actions I1, . . . , It−1,
we can observe that ℓ̂t(i) is a conditionally unbiased estimator for the loss ℓt(i) of i ∈ V because
Et[ℓ̂t(i)] = ℓt(i). Furthermore, we observe that Et[ℓ̂t(i)2] = ℓt(i)2

pt(i)
≤ 1

pt(i)
, meaning that the

importance-weighted estimator for ℓt(i) has a conditional second moment bounded from above by the
inverse of the probability pt(i) of selecting action i at round t. The algorithm obtained by executing
Hedge over the sequence of importance-weighted estimates ℓ̂1, . . . , ℓ̂T , instead of the true losses, is
the Exp3 algorithm (Exponential-weight algorithm for Exploration and Exploitation). Given the
understanding of the behavior of Hedge and the properties of importance-weighting, the regret of
Exp3 can be shown to be RT = O(

√
KT lnK) for the multi-armed bandit problem, which is only a√

K factor worse than the minimax regret∗ in the full-information setting.

2.2 Feedback Models

We now introduce extensions and generalizations of prediction with expert advice and the multi-
armed bandit problem. The following online learning frameworks consider more general feedback
models that capture naturally occurring scenarios in many common sequential decision-making tasks.

2.2.1 Partial Feedback and Feedback Graphs

The first extension we consider is a more general setting with possibly partial feedback. For any
t ∈ [T ], consider a map St : V → 2V that determines the set St(i) ⊆ V of actions whose loss is
revealed to the learner if it selects action It = i ∈ V at round t. The map St can vary over time
and is also revealed to the learner. Depending on when the learner receives the information about
feedback structure St, we can distinguish two settings: the informed setting, which happens when
the learner knows St before performing its decision at round t, and the uninformed setting, whenever
the learner sees St only after selecting the action at round t. Online Protocol 2.3 shows a summary
of the interaction protocol for the uninformed partial feedback setting. Observe that this extension
generalizes both full information, obtained when S1(i) = · · · = ST (i) = V for every i, and bandit
feedback, given by S1(i) = · · · = ST (i) = {i} for each i.

Observe that we can equivalently model this setting by defining directed graphs Gt = (V,Et) over
V , that is, where vertices correspond to the actions V and the edges Et ⊆ V × V may change over
time. To be exact, we have an edge (i, j) ∈ Et for i, j ∈ V whenever j ∈ St(i). We therefore have
that Et := {(i, j) ∈ V × V : j ∈ St(i)} given St. Further notice that the feedback set St(i) for i ∈ V

∗The best achievable worst-case regret guarantee.
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Online Protocol 2.3: Online learning with partial feedback

environment: losses ℓt ∈ [0, 1]V and feedback set St : V → 2V , for all t ∈ [T ]
for t = 1, . . . , T do

The learner selects an action It ∈ V (possibly at random)
The learner incurs loss ℓt(It)
The learner observes losses

{(
i, ℓt(i)

)
: i ∈ St (It)

}
and St

corresponds to its out-neighborhood Nout
Gt

(i) in the graph Gt, where Nout
G (i) := {j ∈ V : (i, j) ∈ E}

for any graph G = (V,E). Going back to the standard settings of full information and bandit
feedback, the respective resulting graphs are shown in Figure 2.1.

(a) Full information (b) Bandit feedback

Figure 2.1: Examples of feedback graphs for the full feedback and the bandit feedback settings.

This way of modeling the problem with partial feedback setting is called online learning with
feedback graphs, introduced by Mannor and Shamir (2011) and extensively studied by subsequent
work (Alon, Cesa-Bianchi, Gentile, and Mansour, 2013, Cohen, Hazan, and Koren, 2016, Alon,
Cesa-Bianchi, Gentile, Mannor, Mansour, and Shamir, 2017, Chen, Huang, Li, and Zhang, 2021).
We particularly mention Alon, Cesa-Bianchi, Dekel, and Koren (2015) who determined a trichotomy
of regret regimes depending solely on structural properties of feedback graphs. Assume for simplicity
that the feedback graph G = (V,E) is fixed and given to the learner. Alon et al. (2015) define different
notions of observability of actions depending on their in-neighborhood N in

G (i) := {j ∈ V : (j, i) ∈ E},
i.e., the set of actions that can observe the loss of i ∈ V .

Definition 2.1 (Observability). A vertex i ∈ V is observable in G if N in
G (i) ̸= ∅. An observable

vertex i is strongly observable when i ∈ N in
G (i) (i.e., G contains a self-loop over i) or V \{i} ⊆ N in

G (i),
and it is weakly observable otherwise.

We can extend the same notions to the entire feedback graph G as follows.

Definition 2.2 (Graph observability). A graph G = (V,E) is observable if every vertex in V is
observable. An observable graph G is strongly observable if every vertex in V is strongly observable,
and it is weakly observable otherwise.

What Alon et al. (2015) demonstrate is that the overall dependence of the minimax regret
on the number of rounds T , modulo logarithmic factors, essentially boils down to the structure
of G. The authors even state a more granular characterization of the regret: the two classes of
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graphs in Definition 2.2 are both learnable and depend on different graph-theoretic parameters. The
graph-theoretic quantity relating to strongly observable graphs is the independence number.

Definition 2.3 (Independence). A subset S ⊆ V of vertices in a graph G = (V,E) is an independent
set if (i, j) /∈ E for any two i, j ∈ S such that i ≠ j. The independence number α(G) of G is the
size of a largest independent set in G.

The graph parameter for weakly observable graphs is instead the weak domination number.

Definition 2.4 (Weak domination). A subset D ⊆ V of vertices in a graph G = (V,E) is a
dominating set for U ⊆ V , for any i ∈ U , there exists j ∈ D such that i ∈ Nout

G (j); alternatively,
it satisfies U ⊆

⋃
i∈DN

out
G (i). The weak domination number δ(G) of G is the size of a smallest

dominating set in G for the set W ⊆ V of weakly observable vertices.

With these notions in mind, the above-mentioned trichotomy for the minimax regret of online
learning with feedback graphs states what follows.

Proposition 2.1 (Alon et al. (2015, Theorem 1)). Let G = (V,E) be a feedback graph with |V | ≥ 2.
If T is sufficiently large, the minimax regret for online learning with feedback graph G is

• RT = Θ̃
(√

α(G)T
)

if G is strongly observable;

• RT = Θ̃
(
δ(G)1/3T 2/3

)
if G is weakly observable;

• RT = Θ(T ) if G is not observable.

Not only does the observability structure of the feedback graph impact the dependence of the
regret on the time horizon T , but a specific graph parameter impacts it as well and it differs between
the two learnable settings. We also remark that the more general partial monitoring problem
(e.g., see Cesa-Bianchi and Lugosi (2006, Section 6.4)) has a trichotomy that resembles the one
stated above and depends on observability properties too (Antos, Bartók, Pál, and Szepesvári, 2013,
Bartók, Foster, Pál, Rakhlin, and Szepesvári, 2014). It is interesting to observe that the above
characterization evinces a similar aspect in the simpler problem of multi-armed bandits with feedback
graphs.

In Chapter 3, we further investigate the minimax regret for the problem of online learning
with undirected strongly observable feedback graphs, providing improved upper and lower regret
bounds. Moreover, in Chapter 5, we consider a further extension of the feedback graphs model to
the case of stochastic feedback graphs, i.e., random graphs where, at every round, each edge realizes
independently with some fixed but unknown probability.

2.2.2 Bandit Feedback with Expert Advice

Compared to standard multi-armed bandits, there are situations in which the learner obtains
additional information, possibly related to the losses, by external sources. For example, in recommen-
dation systems we may employ multiple recommendation policies, each using contextual information
in different ways, as multiple experts and use their predictions to pick a single action. One may
think of portfolio management as another example, where we might have many investment strategies
at our disposal and we can leverage this side information to better select assets to allocate. In both
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cases, there are many experts that provide some advice to the learner, who then selects an action
and only observes its loss.

This problem is a variant of bandits named multi-armed bandit with expert advice (Auer et al.,
1995, 2002b). Compared to standard bandits, there are N experts providing advice to the learner at
the beginning of each round. The advice at round t is formally defined as a collection (θjt )j∈[N ] of
distributions θjt ∈ ∆V over actions in V , each associated to some expert j ∈ [N ]. The learner then
selects action It by exploiting the expert advice and receives bandit feedback, meaning that it only
observes ℓt(It) as in the standard version of the problem. Online Protocol 2.4 provides a summary
of the interaction protocol for this problem.

Online Protocol 2.4: Online learning with bandit feedback and expert advice

environment: losses ℓt ∈ [0, 1]V and expert advice θjt ∈ ∆V , for all t ∈ [T ] and all j ∈ [N ]
for t = 1, . . . , T do

The learner receives expert advice (θjt )j∈[N ]

The learner selects an action It ∈ V (possibly at random)
The learner incurs loss ℓt(It)
The learner observes loss ℓt(It)

The notion of regret differs relative to what we considered so far. The main change is due to
comparing to the best fixed expert in hindsight rather than the best fixed action. In particular, we
first observe that the expected loss of an expert j ∈ [N ] at round t corresponds to ⟨ℓt, θjt ⟩ because θjt
is essentially the distribution that expert j would use to select an action to play at round t. We
therefore have that the expected regret for bandits with expert advice becomes

RT = E

[
T∑
t=1

ℓt(It)

]
− min
j∈[N ]

T∑
t=1

⟨ℓt, θjt ⟩ . (2.3)

An algorithm obtained as a variant of Exp3, called Exp4 (Auer et al., 1995, 2002b), that adapts to
the presence of expert advice is known to achieve regret RT = O

(√
KT lnN

)
when N > K, while

we can reduce to standard bandits to show that the minimax regret is RT = Θ
(√
NT

)
when N ≤ K.

Starting from its design, the Exp4 algorithm has become an important baseline or building block for
addressing many related problems; for example, sleeping bandits (Kleinberg, Niculescu-Mizil, and
Sharma, 2010), online multi-class classification (Daniely and Helbertal, 2013), online non-parametric
learning (Cesa-Bianchi, Gaillard, Gentile, and Gerchinovitz, 2017), and non-stationary bandits (Luo,
Wei, Agarwal, and Langford, 2018). Assuming the case N > K, a more tailored algorithm is shown
to achieve an improved regret bound RT = O

(√
KT ln(N/K)

)
(Kale, 2014) and a lower bound of

order Ω
(√

KT (lnN)/(lnK)
)

is known to hold (Seldin and Lugosi, 2016).
In Chapter 4, with a spirit analogous to that of Chapter 3 for the feedback graphs model, we

derive improved regret upper bounds for bandits with expert advice by adopting similar techniques.
We additionally demonstrate an improved lower bound on the minimax regret under a slightly more
restricted feedback.

2.2.3 Delayed Bandit Feedback

In some applications, it is unrealistic to assume that the learner is able to receive the feedback
immediately after performing an action. Hence, the decision-maker might have to repeatedly perform
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decisions without immediately observing the outcome of these choices. The loss ℓt(It) of the action
It chosen at any round t is instead delayed to a subsequent round t+ dt with a fixed but initially
unknown delay dt ∈ N; without loss of generality, we may assume that dt ≤ T − t for each t ∈ [T ].
This additional extension of bandits takes the name of multi-armed bandit with delayed feedback
(Joulani, György, and Szepesvári, 2013, Cesa-Bianchi, Gentile, Mansour, and Minora, 2016, Cesa-
Bianchi, Gentile, and Mansour, 2019, Zimmert and Seldin, 2020, Masoudian, Zimmert, and Seldin,
2022, 2023)—see Online Protocol 2.5 for a summary—and it arises in many realistic scenarios, such
as online advertising, medical trials, or financial investments. To be clear, in online advertising
the outcome can consist of the click-through rate or the number of conversions, which are often
delayed as they depend on user interactions. Even in medical trials we expect that the effects of
an administered drug or a prescribed treatment, which can include the success of the treatment or
possible side-effects, will be observed (or ruled out) after an initially unknown amount of time.

Online Protocol 2.5: Online learning with delayed bandit feedback

environment: losses ℓt ∈ [0, 1]V and delays dt ≤ T − t, for all t ∈ [T ]
for t = 1, . . . , T do

The learner selects an action It ∈ V (possibly at random)
The learner incurs loss ℓt(It) ▷ observed at round t+ dt
The learner observes losses

{(
s, ℓs(Is)

)
: s ≤ t, s+ ds = t

}
It is known that we can design online learning algorithms achieving regret RT = O

(√
KT +√

D lnK
)

where D =
∑T

t=1 dt is the total delay. In the particular setting with fixed delay, i.e.,
when d1 = · · · = dT = d for some fixed d, we even know that the minimax regret (Cesa-Bianchi
et al., 2016, 2019, Zimmert and Seldin, 2020) has rate RT = Θ

(√
KT +

√
dT lnK

)
. These results

immediately illustrate that the presence of delays negatively affects the regret in an unavoidable
way. Although there exist techniques to avoid the significant impact of the few largest delays in the
case of non-uniform delays (Thune, Cesa-Bianchi, and Seldin, 2019), a relevant fraction of the total
delay will nonetheless influence the performance of any online learner in the worst case.

In Chapter 6, we study a variant of the delayed bandit feedback model in which the learner is
immediately provided an intermediate observation between their decision at round t and the arrival
of the loss at round t+ dt. The intermediate observation is a signal associated to each action at
the current round, and the loss is a function of the type of signal only. The main objective is to
understand when intermediate observations help reduce the effect of the total delay on the regret.
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Chapter 3

On the Minimax Regret for Online
Learning with Feedback Graphs

We consider the problem of online learning with undirected strongly observable feedback graphs.
The best known upper bound for the minimax regret in this problem has order

√
αT lnK, where K

is the number of actions, α is the independence number of the graph, and T is the time horizon. The√
lnK factor is known to be necessary for prediction with experts advice (α = 1). On the other hand,

in multi-armed bandits (α = K) the minimax rate is known to be
√
KT , and a lower bound of

√
αT

is known to hold for any α. We provide an improved regret upper bound of
√
αT (1 + ln(K/α)) for

any α, which matches the lower bounds for bandits and experts, interpolating intermediate cases
at the same time. We complement our regret guarantee with an improved

√
αT (lnK)/(lnα) lower

bound for all α > 1, which shows that a logarithmic factor is necessary as soon as α < K.

3.1 Introduction

Feedback graphs provide an elegant interpolation between two popular online learning models: multi-
armed bandit and prediction with expert advice. When learning with an undirected feedback graph
G over K actions, the online algorithm observes not only the loss of the action chosen in each round,
but also the loss of the actions that are adjacent to it in the graph. As already discussed in Chapter 2,
the two aforementioned models are special cases: prediction with expert advice is equivalent to the
case when G is a clique, whereas K-armed bandits is equivalently modeled by a feedback graph
G containing only self-loops. When losses are generated adversarially, the regret in the feedback
graph setting with strong observability (see Definition 2.2 from Chapter 2 for a formal description)
has been shown to scale with the independence number α := α(G) of G—see Proposition 2.1 from
Chapter 2, which more generally considers arbitrary directed graphs. Intuitively, denser graphs,
which correspond to smaller independence numbers, provide more feedback to the learner, thus
enabling a better control on regret. More specifically, the best known upper and lower bounds on the
regret after T rounds are O

(√
αT lnK

)
and Ω

(√
αT
)

(Alon et al., 2013, 2017). It has been known
for three decades that this upper bound is tight for α = 1 (the experts case; see Cesa-Bianchi et al.
(1993, 1997)). When α = K (the bandits case), the lower bound Ω

(√
KT

)
—which has also been

known for nearly three decades (Auer et al., 1995, 2002b)—was matched by a corresponding upper
bound O

(√
KT

)
only by Audibert and Bubeck (2009). These results show that in feedback graphs,
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3. On the Minimax Regret for Online Learning with Feedback Graphs

the logarithmic factor
√
lnK is necessary (at least) for the α = 1 case, while it must vanish from

the minimax regret as α grows from 1 to K, but the current bounds fail to capture this fact. In
this chapter, we prove new upper and lower regret bounds that for the first time account for this
vanishing logarithmic factor.

To prove our new upper bound, we use the standard Follow The Regularized Leader (FTRL)
algorithm run with the q-Tsallis entropy regularizer (here q-FTRL for short). It is well-known
(Abernethy, Lee, and Tewari, 2015) that for q = 1

2 this algorithm (run with appropriate loss
estimates) achieves regret O

(√
KT

)
when α = K, while for q → 1− the same algorithm (with

full information of the losses) recovers the bound O
(√
T lnK

)
when α = 1. When G contains all

self-loops, we show in Theorem 3.1 that, if q is chosen as a certain function q(α,K) of both α

and K, then q(α,K)-FTRL, run with standard importance-weighted loss estimates, achieves regret
O
(√

αT (1 + ln(K/α))
)
. This is a strict improvement over the previous bound, and matches the

lower bounds for bandits and experts while interpolating the intermediate cases. This interpolation
is reflected by our choice of q, which goes from 1

2 to 1 as α ranges from 1 to K. The main technical
hurdle in proving this result is an extension to arbitrary values of q ∈

[
1
2 , 1
)

of a standard result—see,
e.g., Mannor and Shamir (2011, Lemma 3)—that bounds the variance term from the regret of
q-FTRL in terms of α. In Theorem 3.2, using a modified loss estimate, this result is extended to
any undirected strongly observable graph (Definition 2.2), a class of feedback graphs in which some
of the actions might not reveal their loss when played. In Theorem 3.3, we show via a doubling
trick that our new upper bound can also be obtained (up to constant factors) without the need of
knowing (or computing) α. As the resulting algorithm is oblivious to α, our analysis also applies to
arbitrary sequences of graphs (Gt)t∈[T ], where K is constant but the independence number αt of Gt
can change over time, and the algorithm observes Gt only after choosing an action (the so-called
uninformed case). In this setting, the analysis of the doubling trick is complicated by the non-trivial
dependence of the regret on the sequence of αt.

We also improve on the Ω
(√
αT
)

lower bound by proving a new Ω
(√

αT logαK
)

lower bound for
all α > 1. This is the first result showing the necessity—outside the experts case—of a logarithmic
factor in the minimax regret for all α < K. Our proof uses a stochastic adversary generating both
losses and feedback graphs via i.i.d. draws from a joint distribution. This sequence of losses and
feedback graphs can be used to define a hard instance of the multitask bandits problem, a variant of
the combinatorial bandits framework (Cesa-Bianchi and Lugosi, 2012). We then prove our result by
adapting known lower bounding techniques for multitask bandits (Audibert, Bubeck, and Lugosi,
2014). Note that for values of α bounded away from 2 and K, the logarithmic factor logαK in
the lower bound is smaller than the corresponding factor 1 + ln(K/α) in the upper bound—this is
further discussed at the end of this chapter.

3.1.1 Related Work

Several previous works have used the q-Tsallis regularizer with q tuned to specific values other than
1
2 and 1. For example, in Zimmert and Lattimore (2019, Section 4), q is chosen as a function of K to
prove a regret bound of O

(√
αT ln3K

)
for any strongly observable directed feedback graph, which

shaves off a lnT factor compared to previous works. This bound is worse than the corresponding
bounds for undirected graphs because the directed setting is harder. Specific choices of q have been
considered to improve the regret in settings of online learning with standard bandit feedback. For
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example, the choice q = 2
3 was used by Rouyer and Seldin (2020) to improve the analysis of regret in

bandits with decoupled exploration and exploitation. Regret bounds for arbitrary choices of q are
derived by Zimmert and Seldin (2021), Jin, Liu, and Luo (2023) for a best-of-both-worlds analysis of
bandits, though q = 1

2 remains the optimal choice. The 1
2 -Tsallis entropy and the Shannon entropy

(q ≈ 1) regularizers have been combined before in different ways to obtain best-of-both-worlds
guarantees for the graph feedback problem (Erez and Koren, 2021, Ito, Tsuchiya, and Honda, 2022).
The idea of using values of q ∈ (12 , 1) for feedback graphs is quite natural and has been brought
up before, e.g., in Rouyer, Van der Hoeven, Cesa-Bianchi, and Seldin (2022a), but achieving an
improved dependence on the graph structure by picking a suitable value of q has not been, to the
best of our knowledge, successfully pursued before.

On the other hand, the q-FTRL algorithm adopted in the current chapter is essentially equivalent
to the PolyINF algorithm (Audibert, Bubeck, and Lugosi, 2011, Abernethy et al., 2015), which was
used by Kale (2014) to achieve the best known worst-case upper bound. We indeed build on top
of the intuition from Kale (2014), complementing it with our novel bound on the variance term
of FTRL with the negative q-Tsallis entropy regularizer. An approach based on a similar use of
the q-Tsallis regularizer has also been employed by Kwon and Perchet (2016) for the problem of
multi-armed bandits with sparse losses to achieve a O

(√
sT ln(K/s)

)
regret bound, where s is the

maximum number of nonzero losses at any round. After deriving our results, a subsequent work by
Ito (2024) applied the same principle to derive improved regret bounds for contextual linear bandits.

Our lower bound is reminiscent of the Ω
(√

KT logK N
)

lower bound proved in Seldin and Lugosi
(2016) for the problem of bandits with expert advice (with N ≥ K being the number of experts)
described in Chapter 2; for further details on this lower bound, see Eldowa, Cesa-Bianchi, Metelli,
and Restelli (2023a) and Vural, Gokcesu, Gokcesu, and Kozat (2019). Although the two settings are
different, the variant of the multitask bandit problem that our lower bound construction simulates is
the same as the one used in the proof of Eldowa et al. (2023a, Theorem 7).

3.2 Problem Setting

We briefly recall the problem setting for online learning with feedback graphs from Section 2.2.1 of
Chapter 2, here specialized to the case of undirected graphs. We consider the following game played
over T rounds between a learner with action set V = [K] and the environment. At the beginning of
the game, the environment secretly selects a sequence of [0, 1]-valued losses (ℓt)t∈[T ], and a sequence of
undirected graphs (Gt)t∈[T ] over the set of actions V , that is, Gt := (V,Et). At any time t, the learner
selects an action It (possibly at random), then pays loss ℓt(It) and observes the feedback graph Gt
and all losses ℓt(i) of neighbouring actions i ∈ NGt(It), where NGt(i) := {j ∈ V : (i, j) ∈ Et}—see
Online Protocol 3.1, which is a reformulation of Online Protocol 2.3 for undirected feedback graphs.
As already made clear in Chapter 2, the performance of the learner is measured by the regret, which
we restate here for clarity:

RT = E

[
T∑
t=1

ℓt(It)

]
− min
i∈[K]

T∑
t=1

ℓt(i) ,

where the expectation is over the internal randomization of the learner.
For simplicity, form now onwards we use Nt to denote the neighbourhood NGt in the graph Gt

and we use αt to denote the independence number α(Gt) of Gt at time t. In the current chapter, we
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3. On the Minimax Regret for Online Learning with Feedback Graphs

Online Protocol 3.1: Online learning with undirected feedback graphs

environment: losses ℓt ∈ [0, 1]V and undirected graphs Gt = (V,Et), for all t ∈ [T ]
for t = 1, . . . , T do

The learner picks an action It ∈ V (possibly at random)
The learner incurs loss ℓt(It)
The learner observes losses

{
(i, ℓt(i)) : i ∈ NGt(It)

}
and graph Gt

only focus on strongly observable graphs, whereas in the subsequent Chapter 5 we shift towards
arbitrary observability structures in a variation of the problem involving stochastic feedback graphs.

3.3 FTRL with Tsallis Entropy for Undirected Feedback Graphs

As a building block, in this section, we focus on the case when all the feedback graphs G1, . . . , GT

have the same independence number α1 = · · · = αT = α, whereas the general case is treated in the
next section. For simplicity, we start with the assumption that all nodes have self-loops: (i, i) ∈ Et
for all i ∈ V and all t. We later lift this requirement and show that the regret guarantees that we
provide can be extended to general undirected strongly observable feedback graphs, only at the cost
of a constant multiplicative factor.

The algorithm we analyze is q-FTRL (described in Algorithm 3.1), which is an instance of the
Follow The Regularized Leader (FTRL) framework—see, e.g., Orabona (2019, Chapter 7)—with the
(negative) q-Tsallis entropy

ψq(x) :=
1

1− q

(
1−

∑
i∈V

x(i)q

)
∀x ∈ ∆K ,

as the regularizer, whose parameter q ∈ (0, 1) can be tuned according to our needs. Since we do not
observe all the losses in a given round, the algorithm makes use of unbiased estimates for the losses.
When all self-loops are present, we define the estimated losses in the following standard manner. Let
It be the action picked at round t, which is drawn from the distribution pt ∈ ∆K maintained by the
algorithm; the loss estimate for an action i ∈ V at round t is given by

ℓ̂t(i) :=
ℓt(i)

Pt(i)
I{It ∈ Nt(i)} , (3.1)

where Pt(i) = P
(
It ∈ Nt(i)

)
=
∑

j∈Nt(i)
pt(j) is the probability of observing action i. This estimate is

an adaptation of the importance-weighted estimate (Equation (2.2) from Chapter 2) to the undirected
feedback graphs case, which is also conditionally unbiased in the sense that Et

[
ℓ̂t(i)

]
= ℓt(i) for all

t ∈ [T ] and all i ∈ V , where we denote Et [·] = E [· | I1, . . . , It−1].

A key part of the standard regret analysis of q-FTRL (see, e.g., the proof of Lemma A.2
in Appendix A.1) is handling the variance term, which, with the choice of estimator given by
Equation (3.1), takes the form

Bt(q) :=
∑
i∈V

pt(i)
2−q

Pt(i)
. (3.2)
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Algorithm 3.1: q-FTRL for undirected feedback graphs
1: input: q ∈ (0, 1), η > 0
2: initialization: p1(i)← 1/K for all i = 1, . . . ,K
3: for t = 1, . . . , T do
4: Select action It ∼ pt and incur loss ℓt(It)
5: Observe losses

{(
i, ℓt(i)

)
: i ∈ Nt(It)

}
and graph Gt

6: Construct a loss estimate ℓ̂t for ℓt ▷ e.g., (3.1) or (3.6)
7: Let pt+1 ← argminp∈∆K

η
〈∑t

s=1 ℓ̂s, p
〉
+ ψq(p)

By Hölder’s inequality, this term can be immediately upper bounded by

Bt(q) ≤
∑
i∈V

pt(i)
1−q ≤

(∑
i∈V

pt(i)

)1−q(∑
i∈V

11/q

)q
= Kq ,

while previous results on the regret analysis of multi-armed bandits with graph feedback (Mannor
and Shamir, 2011, Alon et al., 2017) would give

Bt(q) ≤
∑
i∈V

pt(i)

Pt(i)
≤ α .

However, the former result would only recover a O
(√
KT

)
regret bound (regardless of α) with the

best choice of q = 1/2, which could be trivially achieved by ignoring side-observations of the losses,
whereas the latter bound would only manage to achieve a O

(√
αT lnK

)
regret bound, incurring the

extra
√
lnK factor for all values of α. Other results in the literature (e.g., see Alon et al. (2015,

2013), Dann, Wei, and Zimmert (2023), Ito et al. (2022), Kocák, Neu, Valko, and Munos (2014),
Rouyer et al. (2022a), Zimmert and Lattimore (2019)) do not bring an improvement in this setting
when bounding the Bt(q) term and, hence, do not suffice for achieving the desired regret bound.
The following lemma provides a novel and improved bound on quantities of the same form as Bt(q)
in terms of the independence number αt = α of the undirected graph Gt.

Lemma 3.1. Let G = (V,E) be any undirected graph with |V | = K vertices and independence number
α(G) = α. Let b ∈ [0, 1], p ∈ ∆K , and consider any nonempty subset U ⊆

{
v ∈ V : v ∈ NG(v)

}
.

Then, ∑
v∈U

p(v)1+b∑
u∈NG(v) p(u)

≤ α1−b .

Proof. First of all, observe that we can restrict ourselves to the subgraph G[U ] induced by U , i.e.,
the graph G[U ] := (U,E ∩ (U × U)). This is because the neighbourhoods in this graph are such
that NG[U ](v) ⊆ NG(v) for all v ∈ U , and its independence number is α(G[U ]) ≤ α(G). Hence, it
suffices to prove the claimed inequality for any undirected graph G = (V,E) with all self-loops, any
p ∈ [0, 1]K such that ∥p∥1 ≤ 1, and the choice U = V . We assume this in what follows without loss
of generality.

For any subgraph H ⊆ G with vertices V (H) ⊆ V , denote the quantity we want to bound from
above as

Q(H) :=
∑

v∈V (H)

p(v)1+b∑
u∈NG(v) p(u)

.
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Our aim is thus to provide an upper bound to Q(G).
Consider a greedy algorithm that incrementally constructs a subset of vertices in the following

way: at each step, it selects a vertex v that maximizes p(v)b/
(∑

u∈NG(v) p(u)
)
, it adds v to the

solution, and it removes v from G together with its neighbourhood NG(v). This step is iterated on
the remaining graph until no vertex is left.

Let S := {v1, . . . , vs} ⊆ V be the solution returned by the above greedy algorithm on G. Also let
G1, . . . , Gs+1 be the sequence of graphs induced by the operations of the algorithm, where G1 = G

and Gs+1 is the empty graph, and let Nr(v) = NGr(v) for v ∈ V (Gr). At every step r ∈ [s] of the
greedy algorithm, the contribution to Q(G) of the removed vertices Nr(vr) amounts to

Q(Gr)−Q(Gr+1) =
∑

v∈Nr(vr)

p(v)1+b∑
u∈N1(v)

p(u)
≤

∑
v∈Nr(vr)

p(v)
p(vr)

b∑
u∈N1(vr)

p(u)

≤
∑

v∈N1(vr)
p(v)∑

u∈N1(vr)
p(u)

p(vr)
b = p(vr)

b ,

where the last inequality is due to the fact that Ni(v) ⊆ Nj(v) for all i ≥ j and v ∈ Vi. Therefore,
we can observe that

Q(G) =
s∑
r=1

(
Q(Gr)−Q(Gr+1)

)
≤
∑
v∈S

p(v)b .

The solution S is an independent set of G by construction. Consider now any independent set
A ⊆ V of G. We have that

∑
v∈A

p(v)b ≤ max
x∈∆K

∑
v∈A

x(v)b = |A| max
x∈∆K

∑
v∈A

x(v)b

|A|

≤ |A| max
x∈∆K

(
1

|A|
∑
v∈A

x(v)

)b
≤ |A|1−b ≤ α1−b , (3.3)

where the second inequality follows by Jensen’s inequality and the fact that b ∈ [0, 1].

Observe that this upper bound is tight for general probability distributions p ∈ ∆K over the
vertices V of any undirected strongly observable graph G (containing at least one self-loop), as it is
exactly achieved by the distribution p⋆ ∈ ∆K defined as p⋆(i) := 1

|S|I {i ∈ S} for some maximum
independent set S ⊆ V of G. Using this lemma, the following theorem provides our improved upper
bound under the simplifying assumptions we made thus far.

Theorem 3.1. Let G1, . . . , GT be a sequence of undirected feedback graphs, where each Gt contains
all self-loops and has independence number αt = α for some common value α ∈ [K]. If Algorithm 3.1
is run with input

q =
1

2

(
1 +

ln(K/α)√
ln(K/α)2 + 4 + 2

)
∈ [1/2, 1) and η =

√
2qK1−q

T (1− q)αq
,

and loss estimates (3.1), then its regret satisfies RT ≤ 2
√
eαT (2 + ln(K/α)).

Proof. One can verify that for any i ∈ V , the loss estimate ℓ̂t(i) defined in Equation (3.1) satisfies
Et
[
ℓ̂t(i)

2
]
≤ 1/Pt(i). Hence, using also the fact that Et

[
ℓ̂t(i)

]
= ℓt(i), Lemma A.1 in Appendix A.1
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implies that

RT ≤
K1−q

η(1− q)
+

η

2q

T∑
t=1

E

[∑
i∈V

pt(i)
2−q

Pt(i)

]
(3.4)

≤ K1−q

η(1− q)
+

η

2q
αqT , (3.5)

where the second inequality follows by Lemma 3.1 with b = 1− q since all actions i ∈ V are such
that i ∈ NG(i). Our choices for q and η allow us to further upper bound the right-hand side of
Equation (3.5) by√

2K1−qαq

q(1− q)
T =

√
2T exp

(
1 +

1

2
ln(αK)− 1

2

√
ln2 (K/α) + 4

)(
2 +

√
ln2 (K/α) + 4

)

≤

√
2eαT

(
2 +

√
ln2 (K/α) + 4

)

≤ 2

√
eαT

√
ln2 (K/α) + 4

≤ 2
√
eαT (2 + ln(K/α)) .

The regret bound achieved in the above theorem achieves the optimal regret bound for the experts
setting (i.e., α = 1) and the bandits setting (i.e., α = K) simultaneously. Moreover, it interpolates
the intermediate cases for α ranging between 1 and K, introducing the multiplicative logarithmic
factor only for graphs with independence number strictly smaller than K. We remark that the chosen
values of q and η do in fact minimize the right-hand side of Equation (3.5). Note that we relied
on the knowledge of α to tune the parameter q. This is undesirable in general because computing
α is NP-hard and it is even hard to approximate. We will show how to lift this requirement in
Section 3.4. The same comment applies to Theorem 3.2, below.

We now illustrate how to achieve the improved regret bound of Theorem 3.1 in the case of
undirected strongly observable feedback graphs where some self-loops may be missing; i.e., there
may be actions i ∈ V such that i /∈ NG(i). Using the loss estimator defined in Equation (3.1) may
lead to a large variance term due to the presence of actions without self-loops. One approach to deal
with this—see, e.g., Zimmert and Lattimore (2019) or Luo, Tong, Zhang, and Zhang (2023)—is to
suitably alter the loss estimates of these actions.

Define St := {i ∈ V : i /∈ Nt(i)} as the subset of actions without self-loops in the feedback graph
Gt at each time step t ∈ [T ]. The idea is that we need to carefully handle some action i ∈ St only in
the case when the probability pt(i) of choosing i at round t is sufficiently large, say, larger than 1/2.
Define the set of such actions as Jt := {i ∈ St : pt(i) > 1/2} and observe that |Jt| ≤ 1. Similarly to
Zimmert and Lattimore (2019), define new loss estimates

ℓ̂t(i) :=


ℓt(i)
Pt(i)

I {It ∈ Nt(i)} if i ∈ V \ Jt
ℓt(i)−1
Pt(i)

I {It ∈ Nt(i)}+ 1 if i ∈ Jt
(3.6)

for which it still holds that Et
[
ℓ̂t
]
= ℓt and that Et

[
ℓ̂t(i)

2
]
≤ 1/Pt(i) for all i /∈ Jt. This change,
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along with the use of Lemma 3.1 for the actions in V \ St, suffices in order to prove the following
regret bound (see Appendix A.2 for the proof) when the feedback graphs do not necessarily contain
self-loops for all actions.

Theorem 3.2. Let G1, . . . , GT be a sequence of undirected strongly observable feedback graphs, where
each Gt has independence number αt = α for some common value α ∈ [K]. If Algorithm 3.1 is run
with input

q =
1

2

(
1 +

ln(K/α)√
ln2(K/α) + 4 + 2

)
∈ [1/2, 1) and η =

1

3

√
2qK1−q

T (1− q)αq
,

and loss estimates (3.6), then its regret satisfies RT ≤ 6
√
eαT (2 + ln(K/α)).

3.4 Adapting to Arbitrary Sequences of Graphs

In the previous section, we assumed for simplicity that all the graphs have the same independence
number. This independence number was then used to tune q, the parameter of the Tsallis entropy
regularizer used by the algorithm. In this section, we show how to extend our approach to the case
when the independence numbers of the graphs are neither the same nor known a-priori by the learner.
Had these independence numbers been known a-priori, one approach is to set q as in Theorem 3.2,
but instead using the average independence number

αT :=
1

T

T∑
t=1

αt .

Doing so would allow us to achieve a O
(√∑T

t=1 αt(1 + ln(K/αT ))
)

regret bound. We now show
that we can still recover a bound of the same order without prior knowledge of αT . For round t and
any fixed q ∈ [0, 1], define

Ht(q) :=
∑

i∈V \St

pt(i)
2−q

Pt(i)
.

We know from Lemma 3.1 that Ht(q) ≤ αqt . Thus, we can leverage these observations and use a
doubling trick (similar in principle to Alon et al. (2017)) to guess the value of αT . This approach is
outlined in Algorithm 3.2. Starting with r = 0 and Tr = 1, the idea is to instantiate Algorithm 3.1
at time-step Tr with q and η set as in Theorem 3.2 but with 2r replacing the independence number.
Then, at t ≥ Tr, we increment r and restart Algorithm 3.1 only if

1

T

t∑
s=Tr

Hs(qr)
1/qr > 2r+1,

since (again thanks to Lemma 3.1) the left-hand side of the above inequality is always bounded form
above by αT . The following theorem shows that this approach essentially enjoys the same regret
bound of Theorem 3.2 up to an additive log2 αT term.
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Algorithm 3.2: q-FTRL for an arbitrary sequence of undirected strongly observable graphs
1: input: Time horizon T
2: define: For each r ∈ {0, . . . , ⌊log2K⌋},

qr =
1

2

(
1 +

ln(K/2r)√
ln2(K/2r) + 4 + 2

)
and ηr =

√
2qrK1−qr

11T (1− qr) (2r)qr

3: initialization: T0 ← 1, r ← 0, instantiate Algorithm 3.1 with q = q0, η = η0, and loss estimates
(3.6)

4: for t = 1, . . . , T do
5: Perform one step of the current instance of Algorithm 3.1
6: if 1

T

∑t
s=Tr

Hs(qr)
1/qr > 2r+1 then

7: r ← r + 1
8: Tr ← t+ 1
9: Restart Algorithm 3.1 with q = qr, η = ηr, and loss estimates (3.6)

Theorem 3.3. Let C := 4
√
6e

√
π+

√
4−2 ln 2

ln 2 . Then, the regret of Algorithm 3.2 satisfies

RT ≤ C

√√√√ T∑
t=1

αt

(
2 + ln

(
K

αT

))
+ log2 αT .

Proof sketch. For simplicity, we sketch here the proof for the case when in every round t, all the
nodes have self-loops; hence, Ht(q) = Bt(q). See the full proof in Appendix A.3, which treats the
general case in a similar manner. Let n :=

⌈
log2 αT

⌉
and assume without loss of generality that

αT > 1. Since Lemma 3.1 implies that for any r and t, Bt(qr) ≤ αqrt , we have as a consequence that
for any t ≥ Tr,

1

T

t∑
s=Tr

Bs(qr)
1/qr ≤ 1

T

t∑
s=Tr

αs ≤ αT ≤ 2n .

Hence, the maximum value of r that the algorithm can reach is n− 1. In doing so, we will execute n
instances of Algorithm 3.1, each corresponding to a value of r ∈ {0, . . . , n− 1}. For every such r, we
upper bound the instantaneous regret at step Tr+1 − 1 (the step when the restarting condition is
satisfied) by 1, hence the added log2 αT term in the regret bound. For the rest of the interval—namely,
for t ∈ [Tr, Tr+1 − 2]—we have via Equation (3.4) that the regret of Algorithm 3.1 is bounded by

K1−qr

ηr(1− qr)
+

ηr
2qr

E

[
Tr+1−2∑
t=Tr

Bt(qr)

]
. (3.7)

Define Tr:r+1 := Tr+1 − Tr − 1, and notice that

Tr+1−2∑
t=Tr

Bt(qr) ≤ Tr:r+1

(
1

Tr:r+1

Tr+1−2∑
t=Tr

Bt(qr)
1/qr

)qr
≤ Tr:r+1

(
T

Tr:r+1
2r+1

)qr
≤ 2T

(
2r
)qr ,
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where the first inequality follows due to Jensen’s inequality since qr ∈ (0, 1), and the second follows
from the restarting condition of Algorithm 3.2. After, plugging this back into Equation (3.7), we
can simply use the definitions of ηr and qr and bound the resulting expression in a similar manner
to the proof of Theorem 3.1. Overall, we get that

RT ≤ 4
√
3eT

n−1∑
r=0

√
2r ln

(
e2K2−r

)
+ log2 αT ,

from which the theorem follows by using Lemma A.3 in Appendix A.1, which shows, roughly speaking,
that the sum on the right-hand side is of the same order as its last term.

Although Algorithm 3.2 requires knowledge of the time horizon, this can be dealt with by
applying a standard doubling trick on T at the cost of a larger constant factor. It is also noteworthy
that the bound we obtained is of the form

√
TαT (1 + ln(K/αT )) and not

√∑
t αt(1 + ln(K/αt)).

Even if both coincide with the bound of Theorem 3.2 when αt is the same for all time steps, the
latter is smaller by the concavity of x(1 + ln(K/x)) in x. It is not clear, however, whether there is
a tuning of q ∈ (0, 1) that can achieve the second bound (even with prior knowledge of the entire
sequence α1, . . . , αT of independence numbers).

3.5 An Improved Lower Bound via Multitask Learning

In this section, we provide a novel lower bound on the minimax regret showing that, apart from the
bandits case, a logarithmic factor is indeed necessary in general. When the graph is fixed over time,
it is known that a lower bound of order

√
αT holds for any value of α (Mannor and Shamir, 2011,

Alon et al., 2017). Whereas for the experts case (α = 1), the minimax regret is of order∗
√
T lnK

(Cesa-Bianchi et al., 1997). The following theorem provides, for the first time, a lower bound that
interpolates between the two aforementioned bounds for the intermediate values of α.

Theorem 3.4. Pick any K ≥ 2 and any α such that 2 ≤ α ≤ K. Then, for any algorithm and
for all T ≥ α logαK

4 log(4/3) , there exists a sequence of losses and feedback graphs G1, . . . , GT such that
α(Gt) = α for all t ∈ [T ] and

RT ≥
1

18
√
2

√
αT logαK.

In essence, the proof of this theorem (see Appendix A.4) constructs a sequence of feedback
graphs and losses that is equivalent to a hard instance of the multitask bandit problem (MTB,
see Cesa-Bianchi and Lugosi (2012)), an important special case of combinatorial bandits with a
convenient structure for proving lower bounds (Audibert et al., 2014, Cohen, Hazan, and Koren,
2017, Ito, Hatano, Sumita, Takemura, Fukunaga, Kakimura, and Kawarabayashi, 2019). We consider
a variant of MTB in which, at the beginning of each round, the decision-maker selects an arm to
play in each one of M stochastic bandit games. Subsequently, the decision-maker only observes (and
suffers) the loss of the arm played in a single randomly selected game. For proving the lower bound,
we use a class of stationary stochastic adversaries (i.e., environments), each generating graphs and
losses in a manner that simulates an MTB instance.

∗As a lower bound, this is commonly known to hold asymptotically as K and T grow. However, it can also be
shown to hold non-asymptotically (though with worse leading constants); see Haussler, Kivinen, and Warmuth (1998,
Theorem 3.22) or Cesa-Bianchi and Lugosi (2006, Theorem 3.6).
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Figure 3.1: This figure shows an example of the multi-task bandit construction used to prove the
lower bound. Here, K = 8 and α = 2; thus, the number of games is M = 3. Each action is identified
by a tuple of three numbers, each corresponding to a choice of one out of a pair of “base actions” in
each game. Each of the three graphs in the figure corresponds to a game, such that two actions
share an edge if and only if they choose the same base action in the corresponding game. At every
round, a graph is randomly drawn, and all actions belonging to the same clique suffer the same loss.

Fix 2 ≤ α ≤ K = |V | and assume for simplicity that M = logαK is an integer. We now construct
an instance of online learning with time-varying feedback graphs Gt = (V,Et) with α(Gt) = α

that is equivalent to an MTB instance with M bandit games each containing α “base actions”.
Since K = αM , we can uniquely identify each action in V with a vector a =

(
a(1), . . . , a(M)

)
in

[α]M . The action at ∈ V chosen by the learner at round t is equivalent to a choice of base actions
at(1), . . . , at(M) in the M games. The feedback graph at every round is sampled uniformly at
random from a set of M undirected graphs {Gi}Mi=1, where Gi = (V,Ei) is such that (a, a′) ∈ Ei

if and only if a(i) = a′(i). This means (see Figure 3.1) that each graph Gi consists of α isolated
cliques {Ci,j}αj=1 such that an action a belongs to clique Ci,j if and only if a(i) = j. Clearly, the
independence number of any such graph is α. Drawing feedback graph Gt = Gi corresponds to the
activation of game i in the MTB instance. Hence, choosing at ∈ V with feedback graph Gt = Gi is
equivalent to playing base action at(i) in game i in the MTB. As for the losses, we enforce that,
given a feedback graph Gt, all actions that belong to the same clique of the feedback graph are
assigned the same loss. Namely, if Gt = Gi and a(i) = a′(i) = j, then ℓt(a) = ℓt(a

′), which can be
seen as the loss ℓt(j) assigned to base action j in game Gi. To choose the distribution of the losses
for the base actions, we apply the classic needle-in-a-haystack approach of Auer et al. (1995) over
the M games. More precisely, we construct a different environment for each action a ∈ V in such a
way that the distribution of the losses in each MTB game slightly favors (with a difference of a small
ε > 0) the base action corresponding to a in that game. The proof then proceeds similarly to, for
example, the proof of Theorem 5 in Audibert et al. (2014) or Theorem 7 in Eldowa et al. (2023a).

While both our upper and lower regret bounds achieve the desired goal of interpolating between
the minimax rates of experts and bandits, the logarithmic factors in the two bounds are not exactly
matching. In particular, if we compare 1 + log2(K/α) and logαK, we can see that although they
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coincide at α = 2 and α = K, the former is larger for intermediate values. It is reasonable to believe
that the upper bound is of the correct order, seeing as it arose naturally as a result of choosing the
best parameter for the Tsallis entropy regularizer, whereas achieving the extra logarithmic term in
the lower bound required a somewhat contrived construction.

3.6 Conclusions

We have demonstrated that a proper tuning of the q-FTRL algorithm allows one to achieve a
O
(√

αT (1 + ln(K/α))
)

regret for the problem of online learning with undirected strongly observable
feedback graphs. Our bound interpolates between the minimax regret rates of the bandits and the
experts problems, the two extremes of the strongly observable graph feedback spectrum. Furthermore,
we have shown how to achieve an analogous bound when the graphs vary over time, and without
requiring any prior knowledge of the graphs. These results are complemented by our new regret lower
bound of Ω

(√
αT (lnK)/(lnα)

)
, which holds for α ≥ 2 and shows the necessity of a logarithmic

factor in the minimax regret except for the bandits case. While our results provided the tightest
characterization of the minimax rate for this setting, a subsequent work (Chen, He, and Zhang,
2024) showed a lower bound for fixed feedback graphs composed of disjoint cliques that implies
worst-case optimality (up to constant factors) of our proposed algorithm for each pair of K and
α—see Appendix A.5 for a more detailed comparison with results therein. Extending our results
to the case of directed strongly observable feedback graphs is a considerably harder task—see
Appendix A.6 for a preliminary discussion. Better understanding this more general setting is an
interesting future direction.
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Chapter 4

Improved Regret Bounds for Bandits
with Expert Advice

In this chapter, we revisit the multi-armed bandit problem with expert advice. Under a restricted
feedback model, we prove a novel lower bound of order

√
KT ln(N/K) for the worst-case regret

by reduction to the multi-armed bandit problem with feedback graphs, where K is the number of
actions, N > K is the number of experts, and T is the time horizon. This matches a previously
known upper bound of the same order and improves upon the best available lower bound of order√
KT (lnN)/(lnK). For the standard feedback model with expert advice, we prove a new instance-

based regret bound that depends on a disagreement measure between the experts and provides a
logarithmic improvement compared to prior results.

4.1 Introduction

The problem of bandits with expert advice provides a simple and general framework for incorporating
contextual information into the multi-armed bandit problem. This framework, already introduced in
Chapter 2, can be summarized as follows: compared to standard bandits, the learner additionally
receives in every round a recommendation, in the form of a probability distribution over the actions,
from each expert in a given set. This set of experts can be seen as a set of strategies, each mapping
an unobserved context to a (randomized) action choice. The goal of the learner is to minimize their
expected regret with respect to the best expert in hindsight (see its definition in Equation (2.3));
that is, the difference between their expected cumulative loss and that of the best fixed expert, which
differs from competing against the best fixed action as per the classical notion of regret from plain
bandits. We briefly recall that this problem was first formulated by Auer et al. (1995, 2002b), who
proposed the Exp4 algorithm as a solution strategy. Auer et al. (2002b) proved a regret bound of
order

√
KT lnN on the expected regret incurred by the Exp4 strategy, where T denotes the number

of rounds, K the number of actions, and N the number of experts. This result is of a worst-case
nature, in that it holds for any sequence of losses assigned to the actions and for any sequence of
expert recommendations.

The appealing feature of the bound of Auer et al. (2002b) is that it exhibits only a logarithmic
dependence on the number of experts, in addition to the

√
K dependence on the number of actions

known to be unavoidable in the classical bandit problem. While the minimax regret in the latter
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problem has been shown to be of order
√
KT (Audibert and Bubeck, 2009) modulo constant

factors, a similar exact characterization remains missing for the expert advice problem. Kale
(2014) studied a generalized version of the bandits with expert advice problem—originally proposed
by Seldin, Crammer, and Bartlett (2013)—where the learner is only allowed to query the advice
of M ≤ N experts. When M = N , the results of Kale (2014) imply an upper bound of order√
min{K,N}T

(
1 + ln(N/min{K,N})

)
on the minimax regret, improving upon the bound of Auer

et al. (2002b). Unlike the latter, the logarithmic factor in Kale (2014) bound diminishes as K
increases with respect to N , leading to a bound of order

√
NT when N ≤ K, which is tight in

general as the experts in that case can be made to emulate an N -armed bandit problem. This
improved bound was achieved via the PolyINF algorithm (Audibert and Bubeck, 2009, 2010) played
on the expert set utilizing the importance-weighted loss estimators of Exp4. Later, Seldin and Lugosi
(2016) proved a lower bound of order

√
KT (lnN)/(lnK) for N ≥ K.

As these upper and lower bounds on the regret still preserve an open gap, the correct minimax
rate remains unclear. In this chapter, we take a step towards resolving this issue by showing
that the upper bound is not improvable in general under a restricted feedback model in which
the importance-weighted loss estimators used by Exp4 or PolyINF remain implementable. In this
restricted model, without observing the experts’ recommendations yet, the learner picks an expert
(possibly at random) at the beginning of each round, and the environment subsequently samples the
action to be executed from the chosen expert’s distribution. Afterwards, the learner only observes the
distributions of the experts that had assigned positive probability to the chosen action. As evinced in
the previous paragraph, the phenomenon manifested in the regret bound by Kale (2014) is similar in
spirit to the behaviour we observed in the previous Chapter 3 for the problem of multi-armed bandits
with feedback graphs. We then leverage this (seemingly faint) connection and, via a reduction from
the feedback graphs setting, we use the recent results of Chen et al. (2024) to obtain a lower bound
of order

√
KT ln(N/K) for bandits with expert advice when N > K.

Departing from the worst-case results discussed thus far, a few works have obtained instance-
dependent bounds for this problem. The dependence on the instance can be in terms of the assigned
sequence of losses through small-loss bounds (Allen-Zhu, Bubeck, and Li, 2018), or in terms of
the sequence of expert recommendations through bounds that reflect the similarity between the
recommended expert distributions (McMahan and Streeter (2009), Lattimore and Szepesvári (2020,
Theorem 18.3), Eldowa, Cesa-Bianchi, Metelli, and Restelli (2024)). Our focus here is on the latter

case, where to the best of our knowledge the state of the art is a bound of order
√∑T

t=1 Ct lnN ,
shown in the recent work of Eldowa et al. (2024) for the Exp4 algorithm. Here, Ct is the (chi-squared)
capacity of the recommended distributions at round t. This quantity measures the dissimilarity
between the experts’ recommendations and satisfies 0 ≤ Ct ≤ min{K,N} − 1. Improving upon this

result, we illustrate that it is possible to achieve a bound of order
√∑T

t=1 Ct
(
1 + ln(N/max{CT , 1})

)
,

where CT =
∑T

t=1 Ct/T is the average capacity. This bound combines the best of the bound of
Eldowa et al. (2024), i.e., its dependence on the agreement between the experts, and that of Kale
(2014), i.e., its improved logarithmic factor, simultaneously outperforming both.

Roadmap. For better clarity, we recall the formal definition of the problem setting in the next
section. In Section 4.3, as a preliminary building block, we present Algorithm 4.1, an instance
of the FTRL algorithm with the (negative) q-Tsallis entropy as the regularizer, also previously
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adopted in Chapter 3 for the multi-armed bandit problem with feedback graphs. We then show in
Section 4.4 that combining this algorithm with a doubling trick allows us to achieve the improved
instance-based bound mentioned above. The lower bound for the restricted feedback setting is
presented in Section 4.5. Finally, we provide some concluding remarks in Section 4.6.

4.2 Problem Setting and Notations

We present here the formal definition of the multi-armed bandit problem with expert advice, which
has slightly different notation compared to its introduction in Chapter 2. This choice will later help
depict in a more immediate way the connection to the feedback graphs setting. Furthermore, only
within this chapter, we let x ∨ y := max{x, y} and x ∧ y := min{x, y} for any x, y ∈ R to ease the
presentation of the results and the overall readability.

Let V := [N ] be a finite set of N experts and A := [K] be a finite set of K actions. The
environment is characterized by a fixed and unknown sequence of [0, 1]-valued loss functions (ℓt)t∈[T ]

over actions, and a fixed and unknown sequence of expert advice (θit)i∈V,t∈[T ], where θit ∈ ∆K is
the distribution over actions recommended by expert i at round t. At the beginning of each round
t ∈ [T ], the expert recommendations (θit)i∈V are revealed to the learner, who then selects (possibly
at random) an action At ∈ A and subsequently suffers and observes the loss ℓt(At). For any expert
i ∈ V , we define its loss in round t as yt(i) := ⟨ℓt, θit⟩ =

∑
a∈A θ

i
t(a)ℓt(a). The goal is to minimize

the expected regret with respect to the best expert in hindsight:

RT := E

[
T∑
t=1

ℓt(At)

]
−min

i∈V

T∑
t=1

yt(i) ,

where the expectation is taken with respect to the randomization of the learner.

4.3 FTRL with Tsallis Entropy for Bandits with Expert Advice

The Exp4 algorithm can be seen as an instance of the FTRL framework (Orabona, 2019, Chapter 7),
where a distribution pt over the experts is maintained at each round t and updated as follows

pt+1 ← argmin
p∈∆N

η

〈 t∑
s=1

ŷs, p

〉
+
∑
i∈V

p(i) ln p(i) ,

where η > 0 is the learning rate, the second term is the negative Shannon entropy of p, and ŷs(i) is
an importance-weighted estimate of ys(i). The action At is then drawn from the mixture distribution∑

i∈V pt(i)θ
i
t(·). Consider a more general algorithm (outlined in Algorithm 4.1) where the negative

Shannon entropy is replaced with the negative q-Tsallis entropy, which for q ∈ (0, 1), we recall, is
given by

ψq(x) =
1

1− q

(
1−

∑
i∈V

x(i)q

)
∀x ∈ ∆N .

In the limit when q → 1−, the negative Shannon entropy is recovered. The following theorem
provides a regret bound for this proposed algorithm. This result is not novel, as a similar bound
is implied by Theorem 2 in Kale (2014) for a closely related algorithm in a more general setting.
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Algorithm 4.1: q-FTRL for bandits with expert advice
1: input: q ∈ (0, 1), η > 0
2: initialization: p1(i)← 1/N for all i ∈ V
3: for t = 1, . . . , T do
4: receive expert advice (θit)i∈V
5: draw expert It ∼ pt and action At ∼ θItt
6: construct ŷt ∈ RN where ŷt(i) :=

θit(At)∑
j∈V pt(j)θ

j
t (At)

ℓt(At) for all i ∈ V

7: let pt+1 ← argminp∈∆N
η
〈∑t

s=1 ŷs, p
〉
+ ψq(p)

We provide a concise proof of the result for completeness. As mentioned before, when N ≤ K,
this bound is trivially tight in general. Otherwise, when N > K, we prove an order-wise matching
minimax lower bound in Section 4.5 under additional restrictions on the received feedback.

Theorem 4.1. Let ξ := K ∧N . Algorithm 4.1 run with

q =
1

2

1 +
ln (N/ξ)√

ln2 (N/ξ) + 4 + 2

 ∈ [1/2, 1) and η =

√
2qN1−q

T (1− q)ξq
,

guarantees expected regret
RT ≤ 2

√
eξT

(
2 + ln (N/ξ)

)
.

Proof. Let i∗ ∈ argmini∈V
∑T

t=1 yt(i), and note that RT =
∑T

t=1 E
[
yt(It)− yt(i∗)

]
as E [ℓt(At)] =

E [yt(It)]. For any round t ∈ [T ], let Ft := σ(I1, A1, . . . , It, At) denote the σ-algebra generated by
the random events up to the end of round t, and let Et[·] := E[· | Ft−1] with F0 being the trivial
σ-algebra. For any action a ∈ A, let ϕt(a) :=

∑
i∈V pt(i)θ

i
t(a) and note that, conditioned on Ft−1,

At is distributed according to ϕt. As pt is Ft−1-measurable, it is then easy to verify that Et[ŷt] = yt.
Hence, Lemma A.2 in Appendix A.1 (relative to the results from Chapter 3) implies that

RT ≤
N1−q

(1− q)η
+

η

2q

T∑
t=1

E

[∑
i∈V

pt(i)
2−q ŷt(i)

2

]
. (4.1)

For any fixed t ∈ [T ] and i ∈ V , we have that

Et
[
ŷt(i)

2
]
= Et

[
θit(At)

2

ϕt(At)2
ℓt(At)

2

]
≤ Et

[
θit(At)

2

ϕt(At)2

]
= Et

[∑
a∈A

θit(a)
2

ϕt(a)2
I{a = At}

]
=
∑
a∈A

θit(a)
2

ϕt(a)
,

(4.2)

where the inequality holds because ℓt(At) ∈ [0, 1] and the final equality holds because Et [I{a = At}] =
P(a = At | Ft−1) = ϕt(a). Thus, it holds that

Et

[∑
i∈V

pt(i)
2−q ŷt(i)

2

]
=
∑
a∈A

∑
i∈V pt(i)

2−qθit(a)
2

ϕt(a)

≤
∑
a∈A

∑
i∈V pt(i)

2−qθit(a)
2−q

ϕt(a)
max
i∈V

θit(a)
q
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≤
∑
a∈A

(∑
i∈V pt(i)θ

i
t(a)

)2−q
ϕt(a)

max
i∈V

θit(a)
q

=
∑
a∈A

ϕt(a)

(
maxi∈V θ

i
t(a)

ϕt(a)

)q
≤
(∑
a∈A

max
i∈V

θit(a)

)q
≤ ξq ,

where the second inequality follows from the superadditivity of x2−q for x ≥ 0 and q ∈ (0, 1), the
third inequality follows from the concavity of xq for q ∈ (0, 1) because of Jensen’s inequality, and the
last inequality holds since maxi∈V θ

i
t(a) ≤ min

{
1,
∑

i∈V θ
i
t(a)

}
. Substituting back into Equation (4.1)

yields that

RT ≤
N1−q

(1− q)η
+

η

2q
ξqT .

Finally, in a similar manner as the proof of Theorem 3.1 from Chapter 3, substituting the specified
values of η and q allows us to conclude the proof by showing that the expected regret satisfies

RT ≤

√
2N1−qξq

q(1− q)
T

=

√
2T exp

(
1 +

1

2
ln(ξN)− 1

2

√
ln2 (N/ξ) + 4

)(
2 +

√
ln2 (N/ξ) + 4

)

≤

√
2T exp

(
1 +

1

2
ln(ξN)− 1

2
ln (N/ξ)

)(
2 +

√
ln2 (N/ξ) + 4

)

=

√
2eξT

(
2 +

√
ln2 (N/ξ) + 4

)
≤ 2

√
eξT

√
ln2 (N/ξ) + 4

≤ 2
√
eξT

(
2 + ln(N/ξ)

)
.

4.4 An Improved Instance-Based Regret Bound

We now proceed to introduce some fundamental notions, also present in Eldowa et al. (2024), with
the aim of deriving better instance-dependent regret guarantees. These concepts will allow us to
obtain a more refined regret bound whose form is analogous to the bound of Theorem 4.1, except that
it will depend on the dissimilarity between the experts’ recommendations at each round, replacing
K ∧N with an effective number of experts. Before discussing the algorithm, we introduce these
relevant quantities: for any round t ∈ [T ] and any probability distribution τ ∈ ∆N , define

Qt(τ) :=
∑
i∈V

τ(i)χ2
(
θit
∥∥∑

j∈V τ(j)θ
j
t

)
=
∑
a∈A

∑
i∈V τ(i)θ

i
t(a)

2∑
j∈V τ(j)θ

j
t (a)

− 1 ,

where χ2(p ∥ q) :=
∑

a∈A q(a)
(
p(a)/q(a)− 1

)2
=
∑

a∈A p(a)
2/q(a)− 1 is the chi-squared divergence

between distributions p, q ∈ ∆K . Additionally, let

Ct := sup
τ∈∆N

Qt(τ) and CT :=
1

T

T∑
t=1

Ct
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be the chi-squared capacity of the recommended distributions at round t and their average over the
T rounds. As remarked before, Ct is never larger than (K ∧N)− 1 and can be arbitrarily smaller
depending on the agreement between the experts at round t. In particular, it vanishes when all
recommendations are identical.

The idea of Algorithm 4.2 is to tune Algorithm 4.1 as done in Theorem 4.1, but with CT replacing
K ∧N . However, to avoid requiring prior knowledge of CT , we rely on a doubling trick to adapt to
its value. At any given time step t, we maintain a running instance of Algorithm 4.1 tuned with an
estimate for CT . Let mt be the time step when the present execution of Algorithm 4.1 at round t
had started. If the current estimate is found to be smaller than 1

2T

∑t
s=mt

Qs(ps), the algorithm
is restarted and the estimate is (at least) doubled. This quantity we test against is a simple lower
bound for CT /2 that can be constructed without computing the capacity at any round. As the value
of CT can be arbitrarily close to zero, the initial guess (which ideally should be a lower bound) is
left as a user-specified parameter for the algorithm, and appears in the first (and more general)
bound of Theorem 4.2. The second statement of the theorem shows that choosing ln(e2N)/T as the

initial guess suffices to obtain a regret guarantee of order
√∑T

t=1 Ct
(
1 + ln(N/max{CT , 1})

)
, up to

an additive logarithmic term. This simultaneously outperforms the
√∑T

t=1 Ct lnN bound of Eldowa

et al. (2024) and the
√
(K ∧N)T

(
1 + ln(N/(K ∧N))

)
bound of Kale (2014).

The proof combines elements from the proof of Theorem 1 of Eldowa et al. (2024) and the proof
of Theorem 3.3 from Chapter 3 which employs a similar algorithm to address online learning with
time-varying feedback graphs. Compared to the techniques adopted in Chapter 3, we require a more
refined analysis to account for the case when CT < 1. This refinement is achieved in part via the use
of Lemma B.1, which also allows adapting the analysis of Eldowa et al. (2024) to account for the fact
that we use the negative q-Tsallis entropy as a regularizer in place of the negative Shannon entropy.

Theorem 4.2. Assuming that T ≥ ln(e2N), Algorithm 4.2 run with input J ∈ (0, N ] satisfies

RT ≤ 38e

√(
CT ∨ J

)
T ln

(
e2N

CT ∨ J ∨ 1

)
+

[
log2

(
CT
J

)]
+

+
18e

5
ln
(
e2N

) [
log2

(
4
((
JT ∨ CTT

)
∧ ln(e2N)

)
JT

)]
+

+ 1 .

In particular, setting J = ln(e2N)/T yields that

RT ≤ 38e

√
CTT ln

(
e2N

CT ∨ 1

)
+

[
log2

(
CTT

ln(e2N)

)]
+

+ 46e ln
(
e2N

)
+ 1 .

Proof. For brevity, we define U := CT ∨ J . Let s :=
⌈
log2 J

⌉
− 1 and n :=

⌈
log2 U

⌉
− 1, the latter of

which is the largest value that rt can take because, for any round t,

1

T

t∑
s=mt

Qs(ps) ≤
1

T

T∑
s=1

Qs(ps) ≤
1

T

T∑
s=1

Cs ≤ 2n+1 .

Without loss of generality, we assume that for any (integer) r ∈ {s, . . . , n}, there are at least two
rounds in which rt = r, and we use Tr to refer to the index of the first such round. Additionally, we
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Algorithm 4.2: q-FTRL with the doubling trick for bandits with expert advice
1: input: J ∈ (0, N ]
2: initialization: r1 ←

⌈
log2 J

⌉
− 1, m1 ← 1, p1(i)← 1/N for all i ∈ V

3: define: For each integer r ∈ (−∞, log2N ],

qr :=
1

2

(
1 +

ln(N/2r)√
ln2(N/2r) + 4 + 2

)

ηr := min

{√
qr(N1−qr − 1)

eT (1− qr) (2r)qr
,

qr
1− qr

(
1− e

qr−1
2−qr

)}
4: for t = 1, . . . , T do
5: receive expert advice (θit)i∈V
6: draw expert It ∼ pt and action At ∼ θItt
7: construct ŷt ∈ RN where ŷt(i) :=

θit(At)∑
j∈V pt(j)θ

j
t (At)

ℓt(At) for all i ∈ V

8: if 1
T

∑t
s=mt

Qs(ps) > 2rt+1 then
9: pt+1(i)← 1/N for all i ∈ V

10: rt+1 ←
⌈
log2

(
1
T

∑t
s=mt

Qs(ps)
)⌉
− 1, mt+1 ← t+ 1

11: else
12: pt+1 ← argminp∈∆N

ηrt
〈∑t

s=mt
ŷs, p

〉
+ ψqrt (p)

13: rt+1 ← rt, mt+1 ← mt

define Tn+1 := T +2. Note that for any r in this range, qr ∈ [1/2, 1). Let i∗ ∈ argmini∈V
∑T

t=1 yt(i).
We start by decomposing the regret over the intervals corresponding to fixed values of rt ∈ {s, . . . , n}
and bounding the instantaneous regret at the last step of each but the last interval by 1:

RT = E
[ T∑
t=1

(
yt(It)− yt(i∗)

)]

≤ E
[ n∑
r=s

Tr+1−2∑
t=Tr

(
yt(It)− yt(i∗)

)]
+ n− s

≤ E
[ n∑
r=s

Tr+1−2∑
t=Tr

(
yt(It)− yt(i∗)

)]
+ log2

(
U/J

)
+ 1 . (4.3)

Let ei∗ ∈ RN be the indicator vector for i∗ and define ỹt ∈ RN where ỹt(i) := ŷt(i)− ℓt(At) for every
i ∈ V . Similar to the proof of Theorem 3.3 from Chapter 3, for each r ∈ {s, . . . , n} we note that

E

[
Tr+1−2∑
t=Tr

(
yt(It)− yt(i∗)

)]
= E

[
T∑
t=1

I
{
rt = r,

1

T

t∑
s=mt

Qs(ps) ≤ 2rt
}(
yt(It)− yt(i∗)

)]

(a)
= E

[
T∑
t=1

I
{
rt = r,

1

T

t∑
s=mt

Qs(ps) ≤ 2rt
}
⟨pt − ei∗ , ŷt⟩

]
(b)
= E

[
T∑
t=1

I
{
rt = r,

1

T

t∑
s=mt

Qs(ps) ≤ 2rt
}
⟨pt − ei∗ , ỹt⟩

]
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= E

[
Tr+1−2∑
t=Tr

⟨pt − ei∗ , ỹt⟩

]
,

where (a) follows since Et
[
yt(It)

]
=
∑

i∈V pt(i)yt(i), Et
[
ŷt
]
= yt, and the fact that the indicator at

round t is measurable with respect to Ft−1 (where Ft−1 and Et are defined in the same way as in the
proof of Theorem 4.1); and (b) follows since pt, ei∗ ∈ ∆N and ŷt(i)− ỹt(i) = ℓt(At) is identical for all
i ∈ V . Similarly to the last argument, the fact that

〈
ỹs − ŷs, p− q

〉
= 0 holds for any p, q ∈ ∆N at

any round s implies that pt+1 can be equivalently defined as argminp∈∆N
ηrt
〈∑t

s=mt
ỹs, p

〉
+ψqrt (p).

Hence, using that ỹt(i) ≥ −1, we can invoke Lemma B.1 (with b = 1 and c = e) to obtain that

Tr+1−2∑
t=Tr

⟨pt − ei∗ , ỹt⟩ ≤
N1−qr − 1

(1− qr)ηr
+
eηr
2qr

Tr+1−2∑
t=Tr

∑
i∈V

pt(i)
2−qr ỹt(i)

2 .

For any round t ∈ [T ] and action a ∈ A, recall that ϕt is defined so that ϕt(a) =
∑

i∈V pt(i)θ
i
t(a).

Similar to Equation (4.2) in the proof of Theorem 4.1, we have that

Et
[
ỹt(i)

2
]
= Et

[
ℓt(At)

2

(
θit(At)− ϕt(At)

)2
ϕt(At)2

]

≤ Et

[(
θit(At)− ϕt(At)

)2
ϕt(At)2

]

=
∑
a∈A

(
θit(a)− ϕt(a)

)2
ϕt(a)

=
∑
a∈A

ϕt(a)

(
θit(a)

ϕt(a)
− 1

)2

= χ2(θit ∥ϕt) .

Therefore, for any round t and any r ∈ {s, . . . , n}, it holds that

Et

[∑
i∈V

pt(i)
2−qr ỹt(i)

2

]
≤
∑
i∈V

pt(i)
2−qrχ2(θit ∥ϕt)

= Qt(pt)
∑
i∈V

pt(i)χ
2(θit ∥ϕt)

Qt(pt)
pt(i)

1−qr

≤ Qt(pt)

(∑
i∈V

pt(i)χ
2(θit ∥ϕt)

Qt(pt)
pt(i)

)1−qr

= Qt(pt)
qr

(∑
i∈V

pt(i)
2χ2(θit ∥ϕt)

)1−qr

= Qt(pt)
qr

(∑
i∈V

pt(i)
2
∑
a∈A

θit(a)
2

ϕt(a)
−
∑
i∈V

pt(i)
2

)1−qr

= Qt(pt)
qr

(∑
a∈A

∑
i∈V pt(i)

2θit(a)
2∑

j∈V pt(j)θ
j
t (a)

−
∑
i∈V

pt(i)
2

)1−qr

≤ Qt(pt)qr
(∑
a∈A

∑
i∈V

pt(i)θ
i
t(a)−

∑
i∈V

pt(i)
2

)1−qr

= Qt(pt)
qr

(
1−

∑
i∈V

pt(i)
2

)1−qr

≤ Qt(pt)qr ,
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where the second inequality follows from the definition of Qt(pt) and the fact that x1−qr is concave
in x ≥ 0, and the third inequality uses the superadditivity of x2 for non-negative real numbers and
the non-negativity of the quantity in brackets. If we define Tr:r+1 := Tr+1−Tr− 1, it then holds that

E

Tr+1−2∑
t=Tr

∑
i∈V

pt(i)
2−qr ỹt(i)

2

 = E

[
T∑
t=1

I
{
rt = r,

1

T

t∑
s=mt

Qs(ps) ≤ 2rt
}∑
i∈V

pt(i)
2−qr ỹt(i)

2

]

≤ E

Tr+1−2∑
t=Tr

Qt(pt)
qr


≤ E

Tr:r+1

 1

Tr:r+1

Tr+1−2∑
t=Tr

Qt(pt)

qr
≤ E

[
Tr:r+1

(
T

Tr:r+1
2r+1

)qr]
≤ 2T (2r)qr ,

where the second inequality uses the concavity of xqr in x ≥ 0 and the third inequality uses that
1
T

∑Tr+1−2
t=Tr

Qt(pt) ≤ 2r+1 since the algorithm is not reset in the interval [Tr, Tr+1 − 2].

Overall, we have shown that

E

[
Tr+1−2∑
t=Tr

(
yt(It)− yt(i∗)

)]
≤ N1−qr − 1

(1− qr)ηr
+
eηr
qr

(2r)qr T .

If
√

qr(N1−qr−1)
eT (1−qr)(2r)qr ≤

qr
1−qr

(
1− e

qr−1
2−qr

)
, then substituting the values of ηr and qr gives that

N1−qr − 1

(1− qr)ηr
+
eηr
qr

(2r)qr T = 2

√
e(N1−qr − 1) (2r)qr T

qr(1− qr)

= 2

√
N1−qr − 1

N1−qr

√
eN1−qr (2r)qr T

qr(1− qr)

≤ 2e
√
2

√
N1−qr − 1

N1−qr

√
2r (2 + ln(N2−r))T

≤ 2e
√
2

(√
lnN

ln(N2−r)
∧ 1

)√
2r (2 + ln(N2−r))T

= 2e
√
2
√

2r ln
(
e2N(2−r ∧ 1)

)
T ,

where the first inequality holds via the same arguments laid in the last passage of the proof of
Theorem 4.1, and the second inequality holds because

N1−qr − 1

N1−qr = 1− exp
(
− ln

(
N1−qr))

≤ (1− qr) lnN

=
1

2

(
1− ln(N/2r)√

ln(N/2r)2 + 4 + 2

)
lnN
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=
lnN

2 ln(N/2r)

(
2 + ln(N/2r)−

√
ln(N/2r)2 + 4

)
≤ lnN

ln(N/2r)
,

using also the fact that 1− e−x ≤ x. Otherwise, if
√

qr(N1−qr−1)
eT (1−qr)(2r)qr >

qr
1−qr

(
1− e

qr−1
2−qr

)
, then ηr takes

the latter value and we obtain that

N1−qr − 1

(1− qr)ηr
+
eηr
qr

(2r)qr T ≤ N1−qr − 1

(1− qr)ηr
+ ηr

N1−qr − 1

(1− qr)

 1− qr
qr

(
1− e

qr−1
2−qr

)
2

= 2
N1−qr − 1

qr

(
1− e

qr−1
2−qr

)
≤

18
(
N1−qr − 1

)
5qr(1− qr)

=
18 (2r)−qr

(
N1−qr − 1

)
(2r)qr

5qr(1− qr)

≤ 18e

5
(2r)1−qr ln

(
e2N(2−r ∧ 1)

)
≤ 18e

5

(
1 ∨
√
2r
)
ln
(
e2N(2−r ∧ 1)

)
,

where the last inequality holds because qr ≥ 1/2, and the second inequality holds since

1− e
qr−1
2−qr ≥ 1− qr

2− qr
− 1

2

(
1− qr
2− qr

)2

=
3− qr

2(2− qr)2
(1− qr) ≥

5

9
(1− qr) ln

(
e2N(2−r ∧ 1)

)
,

using that e−x ≤ 1− x+ x2/2 for x ≥ 0 and that qr ≥ 1/2. Thus, the results above yield that

E

[
Tr+1−2∑
t=Tr

(
yt(It)− yt(i∗)

)]

≤ max

{
2e
√
2
√
2rT ln

(
e2N(2−r ∧ 1)

)
,
18e

5

(
1 ∨
√
2r
)
ln
(
e2N(2−r ∧ 1)

)}
. (4.4)

Let M := ln(e2N)/T and m := log2M , and note that m ≤ 0 (and M ≤ 1) holds by the assumption
that T ≥ ln(e2N). In the case when n ≤ 0, we have that

E

 n∑
r=s

Tr+1−2∑
t=Tr

(
yt(It)− yt(i∗)

)
≤ 18e

5

[
(n ∧ ⌊m⌋)− s+ 1

]
+
ln
(
e2N

)
+ 2e
√
2

n∑
r=n∧⌈m⌉

√
2rT ln

(
e2N

)
≤ 18e

5

[
log2

(
4(U ∧M)/J

)]
+
ln
(
e2N

)
+ 8e

√
2UT ln

(
e2N

)
,

where the second inequality uses that

n∑
r=α

(√
2
)r

=
(√

2
)α n−α∑

r=0

(√
2
)r

=
(√

2
)α (√2)n−α+1 − 1

√
2− 1

≤
√
2√

2− 1

(√
2
)n ≤ 4

√
U ,
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with α := n ∧ ⌈m⌉. Otherwise, if n > 0, then

E

 n∑
r=s

Tr+1−2∑
t=Tr

(
yt(It)− yt(i∗)

)
≤ 18e

5

[
log2 (4M/J)

]
+
ln
(
e2N

)
+ 8e

√
2T ln

(
e2N

)
+ E

 n∑
r=s+

Tr+1−2∑
t=Tr

(
yt(It)− yt(i∗)

)
≤ 18e

5

[
log2 (4M/J)

]
+
ln
(
e2N

)
+ 8e

√
2T ln

(
e2N

)
+

18e

5

n∑
r=0

√
2r ln

(
e2N2−r

)
T

≤ 18e

5

[
log2 (4M/J)

]
+
ln
(
e2N

)
+ 8e

√
2T ln

(
e2N

)
+ 26e

√
UT ln

(
e2N/U

)
≤ 18e

5

[
log2 (4M/J)

]
+
ln
(
e2N

)
+ 38e

√
UT ln

(
e2N/U

)
,

where the first inequality follows from the analysis of the first case with n = 0, the second inequality
uses that r ≥ 0 and the assumption that T ≥ ln(e2N), the third inequality uses Lemma A.3 from
Appendix A.1 (relative to Chapter 3), and the fourth uses that x ln(e2N/x) is increasing in [0, eN ]

and that U ≥ 2 in this case. The theorem then follows by combining the bounds provided for the
two cases together with Equation (4.3).

4.5 A Lower Bound for Restricted Advice via Feedback Graphs

In this section, we provide a novel lower bound on the minimax regret for a slightly harder formulation
of the multi-armed bandit problem with expert advice. We consider a setting where the learner
picks an expert It (possibly at random) instead of an action at the beginning of each round t ∈ [T ]

without observing any of the experts’ recommendations relative to the current round beforehand.
The action At to be performed is subsequently drawn by the environment from the chosen expert’s
distribution, i.e., At ∼ θItt . Afterwards, the learner observes At, the incurred loss ℓt(At), and only
the advice θit of experts i ∈ V that have the drawn action At in their support, i.e., θit(At) > 0. For
experts outside this set, the learner can only infer that, by definition, θit(At) = 0. We will refer to
this variation of the problem as the multi-armed bandit with restricted expert advice.∗ Observe
that Algorithm 4.1 is still implementable in this scenario and guarantees a regret upper bound of
order

√
ξT (1 + ln(N/ξ)) for ξ := K ∧ N , as previously analyzed. Here we show that the regret

of Algorithm 4.1 is the best regret we can hope for, up to constant factors, for any number K of
actions and any number N of experts. While a Ω(

√
NT ) regret lower bound in the case N ≤ K is

immediate as mentioned before, the following theorem provides an Ω
(√

KT ln(N/K)
)

lower bound
when N > K, improving upon the Ω

(√
KT (lnN)/(lnK)

)
lower bound of Seldin and Lugosi (2016).

In what follows, we fix N > K ≥ 2. We derive the lower bound relying on a reduction from the
multi-armed bandit problem with feedback graphs. In the latter setting, we assume there exists
a graph G = (V,E) over a finite set V = [N ] of actions from which the learner selects one action
Jt ∈ V at each round t ∈ [T ]. Then, the learner observes the losses of the neighbours of Jt in G.
For the construction of the lower bound, it suffices to assume that G is undirected and contains all
self-loops, i.e., (i, i) ∈ E for each i ∈ V . Consequently, the graph G is strongly observable and the

∗This differs from the limited expert advice model studied by Kale (2014).
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learner always observes the loss of the selected action. We particularly focus on a specific family of
graphs (also considered in the recent work of Chen et al. (2024)) where the N vertices are partitioned
into disjoint cliques with self-loops. Precisely, we let M := ⌊K/2⌋ ≥ 1 be the number of disjoint
cliques in G. For any k ∈ [M ], let Ck be the set of vertices of the k-th clique in G. Since each Ck is
a clique with all self-loops, we have that (i, j) ∈ E if and only if i, j ∈ Ck for some k ∈ [M ], and thus
E :=

⋃
k∈[M ](Ck × Ck). Additionally, for our purposes, we only consider the partition into cliques

Ck :=
{
i ∈ [N ] : i ≡ k mod M

}
of roughly the same size |Ck| ≥ ⌊N/M⌋ ≥ ⌊2N/K⌋ ≥ N/K.

Hence, we will focus on the class of instances, denoted by ΞFG, of the multi-armed bandit
problem with feedback graphs where the graph assumes the particular structure described above. In
particular, any instance I ∈ ΞFG is defined as a tuple I := (T,G,L) containing the number T of
rounds, the feedback graph G = (V,E) over V = [N ] composed of the disjoint cliques C1, . . . , CM as
defined above, and the sequence L := (ℓt)t∈[T ] of binary loss functions ℓt : V → {0, 1} over V . On the
other hand, we let ΞBEA be the class of instances for the multi-armed bandit problem with restricted
expert advice, with N experts and K actions. An instance I ∈ ΞBEA is a tuple I :=

(
T, V,A,Θ,L

)
containing the number T of rounds, the set V = [N ] of experts, the set A = [K] of actions, the
sequence Θ := (θit)i∈V,t∈[T ] of expert advice where θit ∈ ∆K , and the sequence L := (ℓt)t∈[T ] of loss
functions ℓt : A → {0, 1} over A. The sought result is established by showing that the worst-case
regret of any algorithm against a particular subset of instances in ΞBEA is order-wise at least as
large as the minimax regret on ΞFG, combined with a lower bound on the latter quantity by Chen
et al. (2024).

Theorem 4.3. Let B be any possibly randomized algorithm for the multi-armed bandit problem
with restricted expert advice for any number K ≥ 2 of actions A = [K] and any number N > K of
experts V = [N ]. Then, for a sufficiently large T , there exist a sequence ℓ1, . . . , ℓT : A → {0, 1} of
binary loss functions and a sequence (θit)i∈V,t∈[T ] of expert advice such that the expected regret of B
is Ω

(√
KT ln(N/K)

)
.

Proof. We first describe a reduction from the multi-armed bandit problem with feedback graphs to
the multi-armed bandit problem with restricted expert advice. We accomplish this by providing
a mapping ρ : ΞFG → ΞBEA from the considered instance class ΞFG of the former problem to the
instance class ΞBEA of the latter.

Consider any instance I := (T,G,L) ∈ ΞFG and recall that G = (V,E) is a union of M = ⌊K/2⌋
disjoint cliques C1, . . . , CM over V = [N ]. The mapped instance ρ(I) := (T, V,A,Θ,L′) ∈ ΞBEA is
defined over the same number of rounds T and an experts set corresponding to the actions V in the
original instance I, whose sequence of recommendations is provided by Θ = (θit)i∈V,t∈[T ]. We first
observe that the cardinality of the new action set A = [K] does relate to the number of cliques M .
In particular, considering the partition of experts given by the cliques in G, we also partition the
actions (in the expert advice instance ρ(I)) by associating 2 actions to each clique. Precisely, for
any k ∈ [M ], we associate actions Ak := {2k − 1, 2k} to Ck. If K is even, this partitions the entire
set of actions A, while it leaves out action K otherwise. We can ignore the latter case and assume
K is even without loss of generality, since we can otherwise leave action K outside of the support of
any expert advice θit ∈ ∆K in the following construction (thus becoming a spurious action).

Second, we focus on the construction of the loss sequence L′ := (ℓ′1, . . . , ℓ
′
T ). For any t ∈ [T ], we
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define ℓ′t ∈ {0, 1}A as

ℓ′t(2k − 1) := 0 and ℓ′t(2k) := 1 ∀k ∈ [M ] .

Finally, we define the sequence of expert advice (θit)i∈V,t∈[T ] depending on the sequence of losses L
of the starting instance I. For any t ∈ [T ], any k ∈ [M ], and any i ∈ Ck, we define θit ∈ ∆K as

θit :=

δ2k−1 if ℓt(i) = 0

δ2k if ℓt(i) = 1
,

where δj ∈ ∆K is the Dirac delta at j ∈ A. This ensures that the loss of expert i at round t, given
by yt(i) =

∑
a∈A θ

i
t(a)ℓ

′
t(a) coincides with ℓt(i), the loss of action i in the original feedback graphs

instance at the same round. Moreover, the knowledge of ℓt(i) suffices to infer θit.

At this point, given our instance mapping ρ and our algorithm B, we design an algorithm Bρ
for the class ΞFG. Consider any instance I ∈ ΞFG. Over the interaction period, the algorithm Bρ,
without requiring prior knowledge of I, maintains a running realization of B on instance ρ(I). At
any round t ∈ [T ], let It be the expert selected by algorithm B in ρ(I), and let kt ∈ [M ] be the index
of the clique It belongs to, i.e., It ∈ Ckt . Algorithm Bρ, interacting with the instance I, executes
action Jt = It provided by B and observes the losses (ℓt(i))i∈Ckt

. Then, thanks to the design of
the mapping ρ, Bρ can construct and provide B the feedback it requires and which complies with
instance ρ(I). Namely, it determines that At = 2kt − 1 if ℓt(Jt) = 0 or else that At = 2kt, then
passes At, its loss ℓ′t(At) (trivially determined), and the restricted advice (θit)i∈Ckt

to B. The last
of which is a super-set of the recommended distributions having positive support on At since At is
never picked by experts outside Ckt by construction. Now, let

RB(I ′) := E

[
T∑
t=1

ℓ′t(At)

]
−min

i∈V

T∑
t=1

∑
a∈A

θit(a)ℓ
′
t(a) = E

[
T∑
t=1

yt(It)

]
−min

i∈V

T∑
t=1

∑
a∈A

θit(a)ℓ
′
t(a)

be the expected regret of algorithm B on some instance I ′ =
(
T, V,A, (θit)i∈V,t∈[T ], (ℓ′t)t∈[T ]

)
∈ ΞBEA.

Similarly, let

RBρ(I) := E

[
T∑
t=1

ℓt(Jt)

]
−min

i∈V

T∑
t=1

ℓt(i)

be the expected regret of algorithm Bρ on some instance I =
(
T,G, (ℓt)t∈[T ]

)
∈ ΞFG. Since Jt = It,

we have that yt(It) = ℓt(Jt) via the properties of ρ laid out before. Hence, we can conclude that
RB(ρ(I)) = RBρ(I) for any instance I ∈ ΞFG. Define ρ(ΞFG) :=

{
ρ(I) : I ∈ ΞFG

}
⊆ ΞBEA as the

subclass of instances in ΞBEA obtained from ΞFG via ρ. Then, it holds that

sup
I∈ΞBEA

RB(I) ≥ sup
I∈ρ(ΞFG)

RB(I) = sup
I∈ΞFG

RB(ρ(I)) = sup
I∈ΞFG

RBρ(I) .

On the other hand, Lemma E.1 in Chen et al. (2024) implies that

sup
I∈ΞFG

R
Bρ

T (I) = Ω

(√
T
∑
k∈[M ]

ln(1 + |Ck|)

)
= Ω

(√
KT ln(N/K)

)
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for sufficiently large T since
∑

k∈[M ] ln(1 + |Ck|) ≥M ln(N/M) ≥ K ln(2N/K)/4, thus concluding
the proof.

4.6 Conclusions

As the lower bound of Theorem 4.3 was proved for a harder formulation of the problem, it remains
to be shown whether the same impossibility result holds for the more standard setup. We conjecture
it should be possible to prove such a lower bound. If it indeed holds, this would imply that the
minimax regret in the two variants is of the same order; that is, as far as we are only concerned with
the worst-case regret, the standard feedback setup would be shown to be essentially as hard as the
restricted one.
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Chapter 5

Online Learning with Stochastic Feedback
Graphs

We consider once more the framework of online learning with feedback graphs. Here we study
an extension where the graph directed and stochastic, following a distribution similar to the
heterogeneous Erdős-Rényi model: at every round, each edge in the graph independently realizes
with some unknown edge-specific probability. We prove nearly optimal regret bounds depending on
graph-theoretic quantities measured on the support of the stochastic feedback graph with thresholded
edge probabilities. Our results hold without any preliminary knowledge about the graphs distribution.
When the learner is allowed to observe the entire realized graph, we derive a more efficient algorithm
that exhibits improved bounds in some cases, featuring a dependence on weighted versions of the
same graph parameters.

5.1 Introduction

In this chapter, we move back to the feedback graphs setting by considering a meaningful extension
of its framework. If the aim of Chapter 3 was the achievement of improved (and actually worst-case
optimal up to constants) regret guarantees, which also resulted in techniques and ideas that led
to improved regret upper and lower bounds for bandits with expert advice in Chapter 4, here we
introduce a more general and harder feedback model for partial loss observability. In this setting, the
loss of any action in all decision rounds is preliminarily chosen by an oblivious adversary as usual,
but the feedback is probabilistically received by the learner at the end of each round t. More precisely,
the loss ℓt(i) of each action i ∈ V (including the action It selected by the learner at round t) is
independently observed with a certain probability p(It, i), where the probabilities p(i, j) ∈ [0, 1] for
all pairs i, j ∈ V are fixed but unknown.

This feedback model can be viewed as a probabilistic feedback version of the plain graph feedback
model for online learning as we considered so far, where the feedback received by the learner is
determined by a deterministic directed graph defined over the set of actions. In the standard model,
the learner deterministically observes the losses of all the actions in the out-neighborhood of the one
selected in a specific round. In certain applications, however, deterministic feedback is not realistic.
Consider for instance a sensor network for monitoring the environment, where the learner can decide
which sensor to probe in order to maximize some performance measure. Each probed sensor may
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also receive readings from other sensors, but whether a sensor successfully transmits information
to another sensor depends on a number of uncontrollable environmental factors, which include the
positions of the sensors, as well as their internal state (e.g., battery levels), the weather conditions,
and so on. Due to the variability of some of these factors, the possibility of reading from another
sensor can be naturally modeled as a stochastic event.

Online learning with adversarial losses and stochastic feedback graphs has been studied before,
but under fairly restrictive assumptions on the probabilities p(i, j). Let G be a stochastic feedback
graph, represented by its probability matrix

[
p(i, j)

]
i,j∈V ∈ [0, 1]V×V where V := [K] is the action

set (for K ≥ 2). When p(i, j) = ε for all distinct i, j ∈ V and for some ε > 0, then G follows the
Erdős-Rényi random graph model. Under the assumption that ε is known and p(i, i) = 1 for all
i ∈ V (all self-loops occur with probability 1), Alon et al. (2017) show that the optimal regret after
T rounds is of order

√
T/ε, up to logarithmic factors. This result has been extended by Kocák,

Neu, and Valko (2016a), who prove a regret bound of order
√∑T

t=1(1/εt) when the parameter εt of
the random graph is unknown and allowed to change over time. However, their result holds only
under rather strong assumptions on the sequence (εt)t∈[T ] of probabilities. In a recent work, Ghari
and Shen (2022, 2024) show a regret bound of order (α/ε)

√
KT , ignoring logarithmic factors, when

each (unknown) probability p(i, j) in G is either zero or at least ε for some known ε > 0, while all
self-loops (i, i) are guaranteed to have probability p(i, i) ≥ ε. Here α is the independence number
(computed ignoring edge orientations) of the support graph supp (G), i.e., the directed graph whose
adjacency matrix A ∈ {0, 1}V×V is defined so that A(i, j) := I{p(i, j) > 0}. Their bound holds
under the assumption that supp (G) is preliminarily known to the learner.

Our analysis does away with a crucial assumption that was key to prove all previous results.
Namely, we do not assume any special property of the matrix G, and we do not require the learner
to have any preliminary knowledge of this matrix. The fact that positive edge probabilities are not
bounded away from zero implies that the learner must adaptively choose a threshold ε ∈ (0, 1] below
which the edges are deemed to be too rare to be exploitable for learning. Indeed, waiting for the
realization of rare edges slows down learning if ε is too small. On the other hand, when ε is too
large, then the feedback becomes sparse and the regret increases.

To formalize the intuition behind rare edges, we introduce the notion of thresholded graph
supp ([G]ε) for any ε > 0.∗ This is the directed graph with adjacency matrix A such that A(i, j) :=
I{p(i, j) ≥ ε} for each i, j ∈ V . As the thresholded graph is a deterministic feedback graph G,
we can refer to Proposition 2.1 from Chapter 2 (and more generally to Alon et al. (2015)) for a
characterization of the minimax regret RT based on whether G is not observable (RT of order T ),
weakly observable (RT of order δ1/3T 2/3), or strongly observable (RT of order

√
αT ).† We remind

the reader that α and δ in this context are, respectively, the independence and the weak domination
number of G (see Definitions 2.3 and 2.4). Let αε and δε respectively denote the independence
number and the weak domination number of supp ([G]ε) for any ε > 0. As αε and δε both grow when
ε gets larger, the ratios αε/ε and δε/ε capture the trade-off involved in choosing the threshold ε.
We define the optimal values for ε as follows:

ε∗s := argmin
ε∈(0,1]

{αε
ε

: supp ([G]ε) is strongly observable
}
, (5.1)

∗This notation is more precisely defined in Section 5.2.
†All these rates ignore logarithmic factors.
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ε∗w := argmin
ε∈(0,1]

{
δε
ε

: supp ([G]ε) is observable
}
. (5.2)

We adopt the convention that the minimum of an empty set is infinity and the relative argmin is
set to 0. The argmin’s are well defined: there are at most K2 values of ε for which the support of
[G]ε varies, and the minimum of each ratio is attained in one of these values. For simplicity, we let
α∗ := αε∗s and δ∗ := δε∗w . Our first result can be informally stated as follows.

Theorem 5.1 (Informal). Consider the problem of online learning with an unknown stochastic
feedback graph G on T rounds. If supp ([G]ε) is not observable for ε = Θ̃(K3/T ), then any learning
algorithm suffers regret linear in T . Otherwise, there exists an algorithm whose expected regret,
ignoring logarithmic factors in K and T , satisfies

RT ≲ min

{√
α∗

ε∗s
T ,

(
δ∗

ε∗w

)1/3

T 2/3

}
.

This bound is tight (up to logarithmic factors).

This result shows that, without any preliminary knowledge of G, we can obtain a bound that
optimally trades off between the strongly observable rate

√
(α∗/ε∗s)T , for the best threshold ε for

which supp ([G]ε) is strongly observable, and the (weakly) observable rate (δ∗/ε∗w)
1/3T 2/3, for the

best threshold ε for which supp ([G]ε) is (weakly) observable. Note that this result improves on
Ghari and Shen (2022, 2024) bound (αε/ε)

√
KT , who additionally assume that supp ([G]ε) and ε (a

lower bound on the self-loop probabilities) are both preliminarily available to the learner. On the
other hand, the algorithm achieving the bound of Theorem 5.1 need not receive any information
(neither prior nor during the learning process) besides the stochastic feedback.

We obtain positive results in Theorem 5.1 via an elaborate reduction to online learning with de-
terministic feedback graphs. Our algorithm works in two phases: first, it learns the edge probabilities
in a round-robin procedure, then it commits to a carefully chosen estimate of the feedback graph and
feeds its support to an algorithm for online learning with deterministic feedback graphs. There are
two main technical challenges the algorithm faces: on the one hand, it needs to switch from the first
to the second phase at the right time in order to achieve the near-optimal regret. On the other hand,
in order for the reduction to work, it needs to simulate the behaviour of a deterministic feedback
graph using only feedback from a stochastic feedback graph (with unknown edge probabilities). We
complement the results in Theorem 5.1 with matching lower bounds that are achieved by a suitable
modification of the hard instances in Alon et al. (2015, 2017) so as to consider stochastic feedback
graphs.

Our final result in the current chapter is a second algorithm that, at the cost of an additional
assumption on the feedback (i.e., the learner additionally observes the realization of the entire
feedback graph at the end of each round), has regret which is never worse and may be considerably
better than the regret of the algorithm in Theorem 5.1. While the bounds in Theorem 5.1 are tight
up to logarithmic factors, we show that the factors α∗/ε∗s and δ∗/ε∗w can be improved for specific
feedback graphs. Specifically, we design weighted versions of the independence and weak domination
numbers, where the weights of a given node depend on the probabilities of seeing the loss of that
node. On the technical side, we design a new importance-weighted estimator which uses a particular
version of upper-confidence estimates of the edge probabilities p(i, j), rather than the true edge
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probabilities, which are unknown. We prove that the cost of using this estimator is of the same
order as the regret bound achievable had we known p(i, j). Additionally, the algorithm that obtains
these improved bounds is more efficient than the algorithm of Theorem 5.1. The improvement in
efficiency comes from the following idea: we start with an optimistic algorithm that assumes that
the support of G is strongly observable and only switches to the assumption that the support of G is
(weakly) observable when it estimates that the regret under this second assumption is smaller. The
algorithm learns which regime is better by keeping track of a bound on the regret of the optimistic
algorithm while simultaneously estimating the regret in the (weakly) observable case, which it can
do efficiently.

5.1.1 Related Work

The results of Alon et al. (2015) for adversarial online learning with feedback graphs—also based
on prior work by Alon et al. (2013), Kocák et al. (2014)—have been more recently improved by
Chen et al. (2021), with tighter graph-theoretic constants in the regret bound. Variants of the
adversarial setting have been studied by Feng and Loh (2018), Arora, Marinov, and Mohri (2019),
Rangi and Franceschetti (2019) and Van der Hoeven, Fusco, and Cesa-Bianchi (2021), who study
online learning with feedback graphs and switching costs, and online multi-class classification with
feedback graphs. There is also a considerable amount of work in stochastic enviromnents (Liu,
Buccapatnam, and Shroff, 2018, Cortes, DeSalvo, Gentile, Mohri, and Yang, 2019, Li, Chen, Wen,
and Leung, 2020). Finally, Rouyer, Van der Hoeven, Cesa-Bianchi, and Seldin (2022b) and Ito et al.
(2022) independently designed different best-of-both-worlds learning algorithms achieving nearly
optimal (up to logarithmic factors in T ) regret bounds in the adversarial and stochastic settings. It
is therefore clear that bandits with feedback graphs have been extended and investigated in multiple
flavours in the past, even in very recent work.

As per the initial definition of the model that we introduced in Chapter 2 and considered at some
point in Chapter 3 too, some lines of work focus on scenarios where the feedback graph is not fixed
but changes over time, resulting in a sequence G1, . . . , GT of feedback graphs. Specifically, Cohen
et al. (2016) study a setting where the graphs are adversarially chosen and only the local structure of
the feedback graph is observed. They show that, if the losses are generated by an adversary and all
nodes always have a self-loop, one cannot do better than

√
KT regret, and we might as well simply

employ a standard multi-armed bandit algorithm. Furthermore, removing the guarantee on the
self-loops induces an Ω(T ) regret. In Section 5.3, we are in a similar situation, as we also observe only
local information about the feedback graph and the losses are generated by an adversary. However,
we show that if the graphs are stochastically generated with a strongly observable support for some
threshold ε, there is a

√
αT/ε regret bound. As a consequence, for ε not too small, observing only

the local information about the feedback graphs is in fact sufficient to obtain better results than
in the bandit setting. Similarly, if there are no self-loops in the support but the support is weakly
observable, then our regret bounds are sublinear rather than linear in T . Alon et al. (2013, 2017)
and Kocák et al. (2014) also consider adversarially generated sequences G1, G2, . . . of deterministic
feedback graphs. In the case of directed feedback graphs, Alon et al. (2013) investigate a model in
which Gt is revealed to the learner at the beginning of each round t. Alon et al. (2017) and Kocák
et al. (2014) extend this analysis to the case when Gt is strongly observable and made available only
at the end of each round t. These are precisely the informed and uninformed settings, as we briefly
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mentioned in Chapter 2. In comparison, in our setting the graphs (or the local information about
the graph) revealed to the learner (at the end of each round) may not even be observable, let alone
strongly observable. Despite this seemingly challenging setting for previous works, we nevertheless
obtain sublinear regret bounds. Finally, Kocák, Neu, and Valko (2016b) study a feedback model
where the losses of other actions in the out-neighborhood of the action played are observed with an
edge-dependent noise. In their setting, the feedback graphs Gt are weighted and revealed at the
beginning of each round. They introduce edge weights st(i, j) ∈ [0, 1] that determine the feedback
according to the following additive noise model: st(It, j)ℓt(j) + (1− st(It, j))ξt(j), where ξt(j) is a
zero-mean bounded random variable. Hence, if st(i, j) = 1, then It = i allows to observe the loss
of action j without any noise. If st(i, j) = 0, then only noise is observed. Note that they assume
st(i, i) = 1 for every action i, implying strong observability. Although somewhat similar in spirit to
our feedback model, our results do not directly compare with theirs.

Further work also takes into account a time-varying probability for the revelation of side-
observations (Kocák et al., 2016a). While the idea of a general probabilistic feedback graph has
been already considered in the stochastic setting (Li et al., 2020, Cortes, DeSalvo, Gentile, Mohri,
and Zhang, 2020), the recent work by Ghari and Shen (2022, 2024) seems to be the first one in the
adversarial setting that generalizes from the Erdős-Rényi model to a more flexible distribution where
they allow “edge-specific” probabilities. We remark, however, that the assumptions of Ghari and
Shen (2022, 2024) exclude some important instances of feedback graphs. For example, we cannot
hope to employ their algorithm for efficiently solving the revealing action problem (see for example
Alon et al. (2015)). In a spirit similar to ours, Resler and Mansour (2019) studied a version of the
problem where the topology of the graph is fixed and known a priori, but the feedback received by
the learner is perturbed when traversing edges.

5.2 Problem Setting and Notations

A feedback graph over a set V := [K] of actions is any directed graph G := (V,E), possibly with
self-loops, contrarily to the more restricted case of undirected graphs assumed thus far. For any vertex
i ∈ V , we adopt the already introduced notation for the in-neighborhoodN in

G (i) = {j ∈ V : (j, i) ∈ E}
and the out-neighborhood Nout

G (i) = {j ∈ V : (i, j) ∈ E} of i; we may omit the subscript when the
graph is clear from the context.

In the online learning problem with a stochastic feedback graph, an oblivious adversary privately
chooses a stochastic feedback graph G (i.e., the distribution of the feedback graphs) and a sequence
ℓ1, ℓ2, . . . of loss functions ℓt : V → [0, 1]. At each round t = 1, 2, . . . , the learner selects an action
It ∈ V to play and, independently, the adversary draws a feedback graph Gt from G (denoted by
Gt ∼ G). The learner then incurs loss ℓt(It) and observes the feedback

{
(i, ℓt(i)) : i ∈ Nout

Gt
(It)
}
. In

some cases we consider a richer feedback, where at the end of each round t the learner also observes
the entire realized graph Gt. The learner’s performance is measured using the standard notion of
regret which, we recall, is defined as

RT = max
k∈V

E

[
T∑
t=1

(
ℓt(It)− ℓt(k)

)]
,

where I1, . . . , IT are the actions played by the learner, and the expectation is computed over both the
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Algorithm 5.1: RoundRobin

1: environment: stochastic feedback graph G, sequence of losses ℓ1, ℓ2, . . . , ℓT
2: input: time horizon T , stopping function Φ, actions V = [K]
3: ne ← 0, for all e ∈ V 2

4: for each τ = 1, 2, . . . , ⌊T/K⌋ do
5: for each i = 1, 2, . . .K do
6: play action i and observe Nout

Gt
(i) from Gt ∼ G ▷ t is the time step

7: ne ← ne + 1 for all e ∈ Nout
Gt

(i)

8: p̂τe ← ne/τ for all edges e ∈ V 2

9: ετ ← 60 ln(KT )/τ
10: Ĝτ ←

(
V, {e ∈ V 2 : p̂τe ≥ ετ}

)
with weights p̂τe ▷ estimated feedback graph

11: if Φ(Ĝτ , T ) ≤ τK then
12: output Ĝτ , ετ
13: output Ĝτ , ετ

sequence G1, . . . , GT of feedback graphs drawn i.i.d. from G and the learner’s internal randomization.
Fix any stochastic feedback graph G := {p(i, j) : i, j ∈ V },‡ implicitly described by edge

probabilities [p(i, j)]i,j∈V ∈ [0, 1]V×V . We sometimes use e to denote a pair (i, j), in which case we
write pe to denote the probability p(i, j). When Gt := (V,Et) is drawn from G, each pair (i, j) ∈ V ×V
independently becomes an edge (i.e., (i, j) ∈ Et) with probability p(i, j). For any threshold ε > 0, we
define the thresholding [G]ε of G as the stochastic graph represented by {p′(i, j) : i, j ∈ V }, where
p′(i, j) := p(i, j)I{p(i, j) ≥ ε}. We also define the support graph of G as the (deterministic) graph
supp (G) := (V,E) having E := {(i, j) ∈ V × V : p(i, j) > 0}. To keep the notation tidy, we write
α(G) instead of α(supp (G)) and similarly for δ.

5.3 Block Decomposition Approach

In this section, we present an algorithm for online learning with stochastic feedback graphs via a
reduction to online learning with deterministic feedback graphs. Our algorithm EdgeCatcher

(Algorithm 5.3) has an initial exploration phase followed by a commit phase. In the exploration
phase, the edge probabilities are learned online in a round-robin fashion. A carefully designed
stopping criterion then triggers the commit phase, where we feed the support of the estimated
stochastic feedback graph to an algorithm for online learning with (deterministic) feedback graphs.

5.3.1 Estimating the Edge Probabilities

As a first step we design a routine, RoundRobin (Algorithm 5.1), that sequentially estimates the
stochastic feedback graph until a certain stopping criterion is met. The stopping criterion depends
on a non-negative function Φ that takes as input a stochastic feedback graph G together with a time
horizon. Let τ̂ ≤ T/K be the index of the last iteration of the outer for-loop in Algorithm 5.1. We
want to make sure that, for all τ ≤ τ̂ , the stochastic feedback graphs Ĝτ are valid estimates of the
underlying G up to a Θ(ετ ) precision. To formalize this notion of approximation, we introduce the
following definition.

‡From now on, we may slightly abuse the set notation to denote the collection of edge probabilities.
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Definition 5.1 (ε-good approximation). A stochastic feedback graph Ĝ := {p̂e : e ∈ V 2} is an
ε-good approximation of G := {pe : e ∈ V 2} for some ε ∈ (0, 1], if the following holds:

1. all the edges e ∈ supp(G) with pe ≥ 2ε belong to supp(Ĝ);
2. for all edges e ∈ supp(Ĝ) with pe ≥ ε/2 it holds that |p̂e − pe| ≤ pe/2;
3. no edge e ∈ V 2 with pe < ε/2 belongs to supp(Ĝ).

We can now state the following theorem; we defer the proof in Appendix C.2. The proof follows
from an application of the multiplicative Chernoff bound on edge probabilities.

Theorem 5.2. If RoundRobin (Algorithm 5.1) is run on the stochastic feedback graph G, then,
with probability at least 1− 1/T , the estimate Ĝτ is an ετ -good approximation of G simultaneously
for all τ ≤ τ̂ , where τ̂ ≤ T/K is the index of the last iteration of the outer for-loop in Algorithm 5.1.

5.3.2 Reduction to Deterministic Feedback Graphs

As a second step, we present BlockReduction (Algorithm 5.2) which reduces the problem of
online learning with stochastic feedback graph to the corresponding problem with deterministic
feedback graph. Surprisingly enough, in order for this reduction to work, we do not need the exact
edge probabilities: an ε-good approximation is sufficient for this purpose.

The intuition behind BlockReduction is simple: given that each edge e in supp ([G]ε) appears
in Gt with probability pe ≥ ε at each time step t, if we wait for Θ

(
(1/ε) lnT

)
time steps it will

appear at least once with high probability. Applying a union bound over all edges, we can argue
that considering ∆ = Θ

(
(1/ε) ln(KT )

)
realizations of the stochastic feedback graph, then all the

edges in supp ([G]ε) are realized at least once with high probability.

B1

ĉ1

B2

ĉ2

. . . BN

ĉN

T

∆ ∆ ∆

Figure 5.1: Illustration for the blocks reduction with blocks B1, . . . , BN each of size ∆, with potential
remainder rounds outside any block.

Imagine now to play a certain action a consistently during a block Bτ of ∆ consecutive rounds.
We want to reconstruct the average loss suffered by a′ in Bτ :

cτ (a
′) :=

∑
t∈Bτ

ℓt(a
′)

∆
, (5.3)

and we want to do it for all actions a′ in the out-neighborhood of a. Let ∆τ
(a,a′) be the number

of times that the loss of a′ is observed by the learner within block Bτ ; i.e., the number of times
that (a, a′) is realized in the ∆ rounds. With this notation in mind, we can define the natural
estimator ĉτ (a′):

ĉτ (a
′) :=

∑
t∈Bτ

ℓt(a
′)
I{(a, a′) ∈ Et}

∆τ
(a,a′)

. (5.4)

Conditioning on the event Eτ(a,a′) that the edge (a, a′) in Ĝ is observed at least once in block Bτ , we
show in Lemma C.1 in Appendix C.2 that ĉτ (a′) is an unbiased estimator of cτ (a′). The overall idea
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5. Online Learning with Stochastic Feedback Graphs

Algorithm 5.2: BlockReduction

1: environment: stochastic feedback graph G, sequence of losses ℓ1, ℓ2, . . . , ℓT
2: input: time horizon T , threshold ε, estimate Ĝ of G, learning algorithm A
3: ∆← ⌈2ε ln(KT )⌉, N ← ⌊T/∆⌋, Ĝ← supp

(
Ĝ
)

4: initialize: A with time horizon N and graph Ĝ
5: Bτ ← {(τ − 1)∆ + 1, . . . , τ∆}, for all τ = 1, . . . , N
6: for each round τ = 1, 2, . . . , N do
7: let pτ be the probability distribution over actions output by A
8: draw action aτ ∼ pτ
9: for each round t ∈ Bτ do

10: play action aτ and observe the revealed feedback ▷ Gt ∼ G
11: for all a′ ∈ Nout

Ĝ
(aτ ) do compute ĉτ (a′) as in (5.4), and feed them to A

12: play arbitrarily in the remaining T −∆N rounds

of the blocks reduction is briefly illustrated in Figure 5.1.
Therefore, we can construct conditionally unbiased estimators of the average losses over the

blocks as if the stochastic feedback graph were deterministic. This allows us to reduce the original
problem to that of online learning with deterministic feedback graph on the meta-instance given by
the blocks. The details of BlockReduction are reported in Algorithm 5.2, while the theoretical
properties are summarized in the next result, whose proof can be found in Appendix C.2.

Theorem 5.3. Consider the problem of online learning with stochastic feedback graph G, and let Ĝ be
an ε-good approximation of G. Let A be an algorithm for online learning with arbitrary deterministic
feedback graph G with regret bound RA

N (G) over any sequence of N losses in [0, 1]. Then, the regret
of BlockReduction (Algorithm 5.2) run with input (T, ε/2, Ĝ,A) is at most ∆RA

N

(
supp(Ĝ)

)
+∆,

where N := ⌊T/∆⌋ and ∆ := ⌈4ε ln(KT )⌉.

For online learning with deterministic feedback graphs we use the variants of the well-known
Exp3.G algorithm proposed by Alon et al. (2015). Together with Theorem 5.3, this gives the
following corollary; the details of the proof are in Appendix C.2.

Corollary 5.1. Consider the problem of online learning with stochastic feedback graph G, and let Ĝ
be an ε-good approximation of G for ε ≥ 1/T and with support Ĝ. The following statements hold:

• If Ĝ is strongly observable with independence number α, then the regret of BlockReduction

run with parameter ε/2 using Exp3.G for strongly observable graphs as base algorithm A satisfies:
RT ≤ 4Cs

√
(α/ε)T · ln3/2(KT ), where Cs > 0 is a constant in the regret bound of A.

• If Ĝ is (weakly) observable with weak domination number δ, then the regret of BlockReduction

run with parameter ε/2 using Exp3.G for weakly observable graphs as base algorithm A satisfies:
RT ≤ 4Cw(δ/ε)

1/3T 2/3 ln2/3(KT ), where Cw > 0 is a constant in the regret bound of A.

Note that we can explicitly compute valid constants Cs = 12 + 2
√
2 and Cw = 8 directly from

the proofs of the main results by Alon et al. (2015).

5.3.3 Explore then Commit to a Graph

We are now ready to combine the two routines we presented, RoundRobin and BlockReduction,
in our final online learning algorithm, EdgeCatcher (Algorithm 5.3). EdgeCatcher has two
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Algorithm 5.3: EdgeCatcher

1: environment: stochastic feedback graph G, sequence of losses ℓ1, ℓ2, . . . , ℓT
2: input: time horizon T and actions V = [K]
3: let Φ be defined as in Equation (5.5)
4: run RoundRobin(T,Φ, V ) and obtain Ĝ and ε̂
5: compute ε̂∗s and ε̂∗w for graph Ĝ as in Equations (5.1) and (5.2)
6: let ε̂∗ be the best threshold as in Equation (5.5)
7: if ε̂∗ = ε̂∗s then
8: let A be Exp3.G for strongly observable feedback graph
9: else

10: let A be Exp3.G for weakly observable feedback graph
11: let T ′ := T − τ̂K be the remaining time steps ▷ τ̂ as in RoundRobin
12: run BlockReduction(T ′, ε̂∗/2, [Ĝ]ε̂∗ ,A)

phases: in the first phase, RoundRobin is used to quickly obtain an ε-good approximation Ĝ of
the underlying feedback graph G, for a suitable ε. In the second phase, the algorithm commits to Ĝ
and feeds it to BlockReduction. The crucial point is when to commit to a certain (estimated)
stochastic feedback graph. If we commit too early, we might not observe a denser support graph,
which implies missing out on a richer feedback. If we wait for too long, then the exploration phase
ends up dominating the regret in a suboptimal way. To balance this trade-off, we use the stopping
function Φ. This function takes as input a probabilistic feedback graph together with a time horizon
and outputs the regret bound that BlockReduction would guarantee on this pair. It is defined as

Φ(G, T ) := min

{
4Cs

√
α∗

ε∗s
T · ln3(KT ) , 4Cw

(
δ∗

ε∗w
ln2(KT )

)1/3

T 2/3

}
(5.5)

for the specific choice of Exp3.G as the learning algorithm A adopted by BlockReduction.
Note that the dependence of Φ on the feedback graph G is contained in the topological parameters
α∗ and δ∗ and the corresponding thresholds ε∗s and ε∗w, defined in Equations (5.1) and (5.2); see
Appendix C.1 for more details on their computation. If we apply Φ to a stochastic feedback graph
that is observable w.p. zero, its value is conventionally set to infinity. Observe that, otherwise, the
minimum is achieved for a specific ε∗ and a specific G∗ = [G]ε∗ .

In Appendix C.2, we provide a sequence of lemmas (Lemmas C.2 and C.3 in particular) showing
that, if RoundRobin outputs an ε-good approximation of the graph, then the regret is bounded by
a multiple of the stopping criterion evaluated at G. Combined with Theorem 5.2, which tells us that
RoundRobin does in fact output an ε-good approximation of the graph with high probability, this
proves our main result for this section as stated in Theorem 5.4 below.

Theorem 5.4. Consider the problem of online learning with stochastic feedback graph G on T time
steps. If supp

(
[G]ε(K,T )

)
is observable for ε(K,T ) := CK3(ln(KT ))2/T for a given constant C > 0,

then there exists an algorithm whose regret RT , ignoring logarithmic factors in K and T , satisfies
RT ≲ min

{√
(α∗/ε∗s)T ,

(
δ∗/ε∗w

)1/3
T 2/3

}
.
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5. Online Learning with Stochastic Feedback Graphs

5.4 Lower Bounds

In this section, we provide lower bounds that match the regret bound guaranteed by EdgeCatcher,
shown in Theorem 5.4, up to logarithmic factors in K and T . These lower bounds are valid even if
the learner is allowed to observe the realization of the entire feedback graph at every time step, and
knows a priori the “correct” threshold ε to work with. Theorem 5.5 summarizes the lower bounds
whose proofs can be found in Appendix C.3.

Theorem 5.5 (Informal). Let A be a possibly randomized algorithm for the online learning problem
with stochastic feedback graphs. Consider any directed graph G = (V,E) with |V | ≥ 2 and any
ε ∈ (0, 1]. There exists a stochastic feedback graph G with supp (G) = G and, for a sufficiently large
time horizon T , there is a sequence ℓ1, . . . , ℓT of loss functions on which the expected regret of A with
respect to the stochastic generation of G1, . . . , GT ∼ G is

• Ω(
√

(αε/ε)T ) if G is strongly observable,

• Ω̃((δε/ε)
1/3T 2/3) if G is weakly observable,

• Ω(T ) if G is not observable,

where αε := α([G]ε) and δε := δ([G]ε).

The lower bound in the non-observable case is the same as Alon et al. (2015, Theorem 6) with
a deterministic feedback graph. The remaining lower bounds are nontrivial adaptations of the
corresponding bounds for the deterministic case by Alon et al. (2015, 2017). The main technical
hurdle is due to the stochastic nature of the feedback graph, which needs to be taken into account in
the proofs. The rationale behind the constructions used for proving the lower bounds is as follows:
since each edge is realized only with probability ε, any algorithm requires 1/ε rounds in expectation
in order to observe the loss of an action in the out-neighborhood of the played action, whereas one
round would suffice with a deterministic feedback graph. Note that Theorem 5.5 implies that, if
supp

(
[G]ε(K,T )

)
is not observable for ε(K,T ) as in Theorem 5.4, then there is no hope to achieve

sublinear regret, as the lower bounds for both strongly and weakly observable supports are linear in
T for all ε ≤ ε(K,T ).

5.5 Refined Graph-Theoretic Parameters

Although the results from Section 5.3 are worst-case optimal up to logarithmic factors, we may find
that the factors

√
α(Gε)/ε and (δ(Gε)/ε)

1/3 for strongly and weakly observable Gε := supp ([G]ε),
respectively, may be improved upon in certain cases. In particular, we show that, under additional
assumptions on the feedback that we receive, we can obtain better regret bounds. To understand
our results, we need some initial definitions. First, we introduce the definition for a weighted version
of the independence number.

Definition 5.2 (Weighted independence number). First, the weighted independence number for a
graph H = (V,E) and positive vertex weights w : V → R>0 is defined as

αw(H,w) := max
S∈I(H)

∑
i∈S

w(i) ,

where I(H) denotes the family of independent sets in H.

50
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We consider two different weight assignments computed in terms of any stochastic feedback
graph G with edge probabilities [p(i, j)]i,j∈V and supp(G) = G. For any i ∈ V , they are defined
as the w−

G (i) :=
(
minj∈N in

G (i) p(j, i)
)−1, the inverse of the least probability of observing i from

any other vertex, and w+
G (i) :=

(
minj∈Nout

G (i) p(i, j)
)−1, the inverse of the least probability of

observing any other vertex from i. Then, the two corresponding weighted independence numbers
are α−

w (G) := αw(G,w
−
G ) and α+

w (G) := αw(G,w
+
G ). The parameter of interest for the results in this

section is αw(G) := α−
w (G) + α+

w (G).§ For more details on the weighted independence number, see
Appendix C.5.

Furthermore, we analogously introduce a weighted version of the weak domination number.

Definition 5.3 (Weighted weak domination number). The weighted weak domination number δw
for a graph H = (V,E) and positive vertex weights w : V → R>0 is defined as

δw(H,w) := min
D∈D(H)

∑
i∈D

w(i) ,

where D(H) denotes the family of weakly dominating sets in H.

In this section, we focus on the weighted weak domination number δw(G) := δw(G,w
+
G ). We also

define what we call the self-observability parameter σ(G) of the stochastic feedback graph G as

σ(G) :=
∑

i∈V :i∈N in
G (i)

1

p(i, i)
.

To gain some intuition on the graph-theoretic parameters introduced above, consider the graph
with only self-loops, also used in Example 5.1 below. If all p(i, i) = ε, the learner needs to pull a
single arm 1/ε times for one observation in expectation, and K/ε times to see the losses of all arms
once. However, when the edge probabilities are different we need to pull arms for

∑K
i=1 1/p(i, i)

times. The weighted independence number, weighted weak domination number, and self-observability
parameter generalize this intuition and tell us how many observations the learner needs in order to
see all losses at least once in expectation. We now state the main result of this section.

Theorem 5.6 (Informal). There exists an algorithm with per-round running time of O(K4) and
whose regret RT , ignoring logarithmic factors, satisfies

RT ≲ min

{
T, min

ε

{√
αw([G]ε)T : supp ([G]ε) is strongly observable

}
,

min
ε

{(
δw([G]ε)

)1/3
T 2/3 +

√
σ([G]ε)T : supp ([G]ε) is observable

}}
.

The regret bound in Theorem 5.6 follows from Theorem C.5 in Appendix C.4. In that section
of Appendix C.4, we essentially design a version of the Exponential Weights algorithm tailored to
handle stochastic feedback graphs, analogously to the Exp3.G algorithm (Alon et al., 2015) for
deterministic graphs. However, this description alone is only partial. The main missing detail regards

§One may equivalently define αw(G) as the average, or the maximum, of the two weighted independence numbers.
This preserves the same shape of the regret guarantees within this section, by only loosing a multiplicative factor of√
2 at most.
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5. Online Learning with Stochastic Feedback Graphs

the absence of any a priori information of the stochastic feedback graph, not even on the structure
of the support given by the best thresholding (contrarily to our first algorithm from Section 5.3
that first determines the graph structure to play over). We observe that avoiding separating the
learning phases and, instead, simultaneously learning both the stochastic feedback graph G and the
losses appears to be crucial if we desire an improved instance-dependence of our regret bound. To
satisfy this requirement, as briefly anticipated before, our algorithm first optimistically assumes the
support from the best thresholding to be strongly observable, and eventually switches to the weakly
observable regime in a timely manner when it is determined to be preferable in terms of regret.
Since the construction and the analysis of the above algorithm are both particularly involved, we
defer them to Appendix C.4. We nevertheless provide here some intuition to understand the design
of this algorithm and how its properties guarantee the final regret bound from Theorem 5.6.

5.5.1 Proof Sketch for the Improved Regret Analysis

We begin from the per-round running time, which is mainly determined by approximating δw for
all K2 possible thresholds. In each of the thresholded graphs, we can compute a (ln(K) + 1)-
approximation for the weighted weak domination number in O(K2) time by reduction to set cover
(Chvatal, 1979, Vazirani, 2001). Doing so only introduces an extra factor of order ln1/3(K) in the
regret bound.

Regarding the regret analysis, an important property of the bound in Theorem 5.6 is that it is
never worse than the bounds obtained before. The following example shows that the regret bound
in Theorem 5.6 can also be better than previously obtained regret bounds.

Example 5.1 (Faulty bandits). Consider a stochastic feedback graph G for the K-armed bandit
setting: p(i, i) = εi ∈ (0, 1] for all i ∈ V and p(i, j) = 0 for all i ≠ j. In this case, the regret
of EdgeCatcher is Õ

(√
KT/(mini εi)). On the other hand, Theorem 5.6 provides the bound

Õ
(√

T
∑

i(1/εi)
)
, as αw(G) = 2

∑
i 1/εi. In the special case when εi = ε ∈ (0, 1] for some i ∈ V

while εj = 1 for all j ̸= i, the regret of EdgeCatcher is Õ(
√
KT/ε), while Theorem 5.6 guarantees

a Õ(
√

(K + 1/ε)T ) regret bound.

To derive these tighter bounds, we exploit the additional assumption that the realized feedback
graph Gt is observed at the end of each round. This allows us to simultaneously estimate the
feedback graph and control the regret, rather than performing these two tasks sequentially as in
Section 5.3. In particular, we use this extra information to construct a novel importance-weighted
estimator for the loss, which for rounds t ≥ 2 is defined to be

ℓ̃t(i) :=
ℓt(i)

P̂t(i)
I
{
i ∈ Nout

Gt
(It) ∧ i ∈ Nout

Ĝt
(It)
}

∀i ∈ V , (5.6)

where P̂t(i) :=
∑

j∈N in
Ĝt

(i) πt(j)p̂t(j, i) is the estimated probability of observing the loss of arm i at

round t, πt(i) ∈ ∆V is the distribution we sample It from, and Ĝt is the support of the estimated
graph Ĝt. Note that we ignore losses that we receive due to missing edges in Ĝt, even when they
are realized. We demonstrate that we do pay an additive term in the regret for wrongly estimating
an edge, which is why it is important to control which edges are in Ĝt. Ideally, we would use
Pt(i) :=

∑
j∈N in

Ĝt
(i) πt(j)p(j, i) rather than P̂t(i), as this is the true probability of observing the loss of
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arm i in round t. However, since we do not have access to p(j, i), we instead use an upper-confidence
estimate of p(j, i) for rounds t ≥ 2 given by

p̂t(j, i) := p̃t(j, i) +

√
2p̃t(j, i)

t− 1
ln(3K2T 2) +

3

t− 1
ln(3K2T 2) ,

where p̃t(j, i) := 1
t−1

∑t−1
s=1 I{(j, i) ∈ Es}. We denote by ĜUCB

t the stochastic graph with edge
probabilities p̂t(j, i). Note that the support of ĜUCB

t is a complete graph because p̂t(j, i) > 0 for all
(j, i) ∈ V × V . These estimators for the edge probabilities are sufficiently good for our purposes
whenever some “good” event K occurs, which we define as

K :=
⋂
t≥2

⋂
i,j∈V

{
|p̃t(j, i)− p(j, i)| ≤

√
2p̃t(j, i)

t− 1
ln(3K2T 2) +

3

t− 1
ln(3K2T 2)

}
.

An important property of ℓ̃t can be found in Lemma 5.1 below. It tells us that we may treat ℓ̃t
as if event K is always realized, i.e., the estimator p̂t(j, i) is always an upper bound on p(j, i). The
proof of Lemma 5.1 is implied by Lemma C.5 in Appendix C.4.

Lemma 5.1 (Informal). Let ek denote the basis vector with ek(i) := I{i = k} as i-th entry for each
i ∈ [K]. The loss estimate ℓ̃t defined in (5.6) satisfies

RT = Õ

(
E

 T∑
t=2

√√√√ K∑
i=1

πt(i)

(t− 1)P̂t(i)

∣∣∣∣∣∣ K
+max

k∈V
E

[
T∑
t=2

K∑
i=1

(
πt(i)− ek(i)

)
ℓ̃t(i)

∣∣∣∣∣ K
])

. (5.7)

Lemma 5.1 shows that we only suffer Õ
(√∑T

t=2

∑K
i=1

πt(i)
Pt(i)

)
additional regret compared to when

we know p(j, i). Lemma 5.1 also shows that ℓ̃t behaves nicely in the sense that, conditioned on K,
we have ℓ̃t(i) ≤ ℓt(i)

Pt(i)
I
{
i ∈ Nout

Gt
(It)∧ i ∈ Nout

Ĝt
(It)
}
. This is a crucial property to bound the regret of

our algorithm. We show that, with a modified version of Exp3.G, the second sum on the right-hand
side of Equation (5.7) is bounded from above by a term of order

√∑T
t=2

∑K
i=1

πt(i)
Pt(i)

too, meaning
that the overall regret is also bounded similarly. The final step of the analysis is to prove that
the above term is bounded in terms of the minimum of the weighted independence number and
the weighted weak domination number plus self-observability. As we finally manage to do so, this
concludes the proof for Theorem 5.6.
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Chapter 6

Delayed Bandits: When Do Intermediate
Observations Help?

We study a K-armed bandit problem with delayed bandit feedback and intermediate observations.
In this model, an intermediate observation is any element from a finite state space S and is observed
immediately after taking an action, whereas the loss is observed after an adversarially chosen delay.
We show that the regime of the mapping of states to losses determines the complexity of the problem,
irrespective of whether the mapping of actions to states is stochastic or adversarial. If the state-loss
mapping is adversarial, then we prove that intermediate observations cannot help. Otherwise, if the
same mapping is stochastic, we design an algorithm whose regret grows at rate

√(
K +min{|S|, d}

)
T

without logarithmic factors, implying that intermediate observations can reduce the negative effect
of the total delay if their number |S| sufficiently small. We also provide refined high-probability
regret bounds for non-uniform delays, together with experimental validation of our results.

6.1 Introduction

Delay is an ubiquitous phenomenon that many sequential decision makers have to deal with. For
example, outcomes of medical treatments are often observed with delay, purchase events happen
with delay after advertisement impressions, and acceptance/rejection decisions for scientific papers
are observed with delay after manuscript submissions. The impact of delay on the performance of
sequential decision makers, measured by regret, has been extensively studied under full information
and bandit feedback, and in stochastic and adversarial environments. Yet, in many real-life situations,
intermediate observations may be available to the learner. For example, a health check-up might give
a preliminary indication on the effect of a treatment, an advertisement click might be a precursor
for an upcoming purchase, and preliminary reviews might provide some information regarding an
upcoming acceptance or rejection decision. In this chapter, we investigate when and how intermediate
observations can be used to reduce the impact of delays in observing the final outcome of an action
in a multi-armed bandit setting.

Online learning with delayed feedback and intermediate observations was studied by Mann,
Gowal, György, Hu, Jiang, Lakshminarayanan, and Srinivasan (2019) in a full-information setting,
and subsequently by Vernade, György, and Mann (2020) in a non-stationary stochastic bandit setting.
In the paper of Vernade et al. (2020), at each round the learner chooses an action and immediately
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6. Delayed Bandits: When Do Intermediate Observations Help?

observes a signal (also called state) belonging to a finite set. The actual loss (i.e., feedback) incurred
by the learner in that time step is only received with delay, which can be fixed or random. More
formally, the observed state is drawn from a distribution that only depends on the chosen action,
and the incurred loss is drawn from a distribution that only depends on the observed state (and not
on the chosen action), forming a Markov chain.

Action
At

State
St = st(At)

Loss
ℓt(St)i.i.d. stochastic

or adversarial
i.i.d. stochastic
or adversarial

no delay delay dt

Figure 6.1: Scheme depicting the delayed feedback setting with intermediate observations.

The work of Vernade et al. (2020) studies a setting where mappings st from actions to states are
non-stationary and losses ℓt over states are i.i.d. stochastic. In this chapter, we instead consider
two possible regimes for the action-state mappings st (stochastic and adversarial) and two possible
regimes for the mappings ℓt from states to losses (also stochastic and adversarial). Altogether, we
study four different regimes, defined by the combination of the first and the second mapping type
(see Figure 6.1).

We characterize (within logarithmic factors) the minimax regret rates for all of them, by giving
upper and lower bounds. Similar to Vernade et al. (2020), we assume that the states are observed
instantaneously, and that the losses are observed with some delay d ∈ N. We show that the minimax
regret rate is fully determined by the regime of the state-loss mapping, regardless of the regime of
the action-state mapping. The results are informally summarized in Table 6.1, where K denotes the
number of actions, S denotes the number of states, and T denotes the time horizon. It is assumed
that the losses belong to the [0, 1] interval. All of our upper bounds hold with high probability
(with respect to the learner’s internal randomization) irrespective of the regime of the action-state
mapping.

State-loss mapping Regret bounds References

Adversarial
√
dT +

√
KT

Cesa-Bianchi et al. (2019)
Theorem 6.7

Stochastic min
{√

ST + d
√
S,
√
dT
}
+
√
KT

Theorems 6.2 and 6.3
Corollary 6.2

Table 6.1: Summary of our results with fixed delay d, ignoring logarithmic factors.

We recall that, up to logarithmic factors, the minimax regret rate in multi-armed bandits with
delays without intermediate observations is of order

√
(K + d)T (Cesa-Bianchi et al., 2019, Zimmert

and Seldin, 2020). Therefore, given our findings we conclude that, if the mapping from states to
losses is adversarial, then intermediate observations do not help (in the minimax sense) because the
regret rates are the same irrespective of whether the intermediate observations are used or not, and
irrespective of whether the mapping from actions to states is stochastic or adversarial. However, if
the mapping from states to losses is stochastic, and the number S of states is smaller than the delay
d, then intermediate observations are helpful, and we provide an algorithm, AdaMetaBIO, which is
able to exploit them. Our result improves on the Õ

(√
KST

)
regret bound obtained by Vernade

et al. (2020) for the case of stochastic and stationary action-state mapping. Our algorithm also
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applies to a more general setting of non-uniform delays (dt)t∈[T ] where we achieve a high-probability
regret bound of order

√
KT +min {ST,DT }, ignoring logarithmic factors once more and terms not

depending on T . This improves upon the total delay term DT = d1 + · · · + dT similarly to the
respective term in the fixed delay setting.

Roadmap. We provide a formal definition of the problem in Section 6.2. In Section 6.3, we
introduce two algorithms, MetaBIO and AdaMetaBIO, for the model of bandits with intermediate
observations. Section 6.4 contains the analysis of both algorithms, where we prove high-probability
regret bounds for the setting of adversarial action-state mappings and stochastic losses. We provide
regret lower bounds in Section 6.5, and experimental validation of our results in Section 6.6,
concluding with a short discussion in Section 6.7.

6.1.1 Related Work

Adaptive clinical trials have served an inspiration for the multi-armed bandit model (Thompson,
1933) and, interestingly, they have also pushed the field to study the effect of delayed feedback (Simon,
1977, Eick, 1988). In the bandit setting, Joulani et al. (2013) have studied a stochastic setting with
random delays, whereas Neu, György, Szepesvári, and Antos (2010, 2014) have studied an adversarial
setting with constant delays. Cesa-Bianchi et al. (2019) have shown an Ω(max{

√
KT,

√
dT lnK})

lower bound for adversarial bandits with uniformly delayed feedback, and an upper bound matching
the lower bound within logarithmic factors by using an Exp3-style algorithm (Auer et al., 2002b),
whereas Zimmert and Seldin (2020) have reduced the gap to the lower bound down to constants by
using a Tsallis-INF approach (Zimmert and Seldin, 2021). Follow up works have studied adversarial
multi-armed bandits with non-uniform delays (Thune et al., 2019, Bistritz, Zhou, Chen, Bambos,
and Blanchet, 2019, 2022, György and Joulani, 2021, Van der Hoeven and Cesa-Bianchi, 2022) with
Zimmert and Seldin (2020) providing a near-optimal algorithm, and Masoudian et al. (2022) and
Masoudian, Zimmert, and Seldin (2024) deriving best-of-both-worlds extensions and a matching
lower bound for special sequences of delays. Two key techniques for handling non-uniform delays
are the skipping technique, introduced by Thune et al. (2019), and algorithm parametrization by
the number of outstanding observations (an observed quantity at action time related to delays), as
opposed to the delays (an unobserved quantity at action time), introduced by Zimmert and Seldin
(2020). Finally, the presence of delays has been further considered in more complex extensions of
multi-armed bandits (Van der Hoeven, Zierahn, Lancewicki, Rosenberg, and Cesa-Bianchi, 2023).

6.2 Problem Setting

We consider an online learning setting with a finite set A := [K] of K ≥ 2 actions and a finite set
S := [S] of S ≥ 2 states. In each round t ∈ [T ], the learner picks an action At ∈ A and receives
a state St := st(At) ∈ S as an intermediate observation according to some unknown action-state
mapping st ∈ SA. The learner then incurs a loss ℓt(St) ∈ [0, 1], which exclusively depends on the
state associated to the selected action and is only observed at the end of round t+dt, where the delay
dt ≥ 0 is (fully) revealed to the learner only when the loss observation is received. The difficulty of
this learning task depends on three elements, all initially unknown to the learner:

• the sequence of action-state mappings s1, . . . , sT ∈ SA;
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• the sequence of loss vectors ℓ1, . . . , ℓT ∈ [0, 1]S ;

• the sequence of delays d1, . . . , dT ∈ N, where dt ≤ T − t for all t ∈ [T ] without loss of generality.

Note that unlike standard bandits, as remarked above, here the losses are functions of the
states instead of the actions. However, since actions are chosen without a-priori information on the
action-state mappings, learners have no direct control on the losses they will incur and, because of
the delays, they also have no immediate feedback on the loss associated with the observed states.
Note also that, for all t ≥ 1, the states st(a) for a ̸= At and the losses ℓt(s) for s ≠ St are never
revealed to the algorithm. For brevity, we refer to this setting as (delayed) Bandits with Intermediate
Observations (BIO).

In the setting of stochastic losses, we assume the loss vectors ℓt ∈ [0, 1]S are sampled i.i.d. from
some fixed but unknown distribution Q, and let θ ∈ [0, 1]S be the unknown vector of expected
losses for the states. That is, ℓt(s) ∼ Q(· | s) has mean θ(s) for each t ∈ [T ] and s ∈ S. Note
that we allow dependencies between the stochastic losses of distinct states in the same round, but
require losses to be independent across rounds. In the setting of stochastic action-state mappings, we
assume that each observed state St is independently drawn from a fixed but unknown distribution
P (· |At). If both losses and action-state mappings are stochastic, then ℓt(St) is independent of At
given St. When losses or action-state mappings are adversarial, we assume an oblivious adversary as
in previous chapters.

Our main quantity of interest is the regret measured via the learner’s cumulative loss
∑T

t=1 ℓt(St),
where St = st(At) and (At)t∈[T ] is the sequence of actions chosen by the learner. In the case of
stochastic losses, we define the performance of the learner by

∑T
t=1 θ(St). In the case of stochastic

action-state mappings, we average each instantaneous loss over the random choice of the state:∑
s ℓt(s)P (s |At) for adversarial losses and

∑
s θ(s)P (s |At) for stochastic losses. Regret is always

computed according to the best fixed action in hindsight with respect to some appropriate notion of
cumulative loss. In particular, for stochastic state-action mappings, the cumulative losses of the best
action are

min
a∈A

T∑
t=1

∑
s∈S

ℓt(s)P (s | a) and min
a∈A

T∑
t=1

∑
s∈S

θ(s)P (s | a) ,

respectively, whereas for adversarial state-action mappings they are, intuitively,

min
a∈A

T∑
t=1

ℓt(st(a)) and min
a∈A

T∑
t=1

θ(st(a)) .

6.3 A Reduction to Standard Delayed Feedback

In this section, we introduce MetaBIO (Algorithm 6.1), a meta-algorithm that transforms any
algorithm B tailored for the delayed setting without intermediate observations into an algorithm
for our setting. We then propose AdaMetaBIO, a modification of MetaBIO that delivers an improved
regret bound for our setting. The idea of MetaBIO is to reduce the impact of delays using the
information we get from intermediate observations. More precisely, if we have enough observations
for the current state St at time t, we immediately feed to B an estimate of the mean loss of this state
as if it were the actual loss at time t; otherwise, we wait for dt time steps and refine our estimate
using the additional loss observations.

58



6.3. A Reduction to Standard Delayed Feedback

The are two key steps in the design of our algorithm: how we construct the mean estimate and
when we use it instead of waiting for the actual loss. They are the steps highlighted in green in
Algorithm 6.1 (Lines 10 and 16). For all t ∈ [T ] and all s ∈ S, we use θ̃t(s) to denote the estimate
of θ(s) at round t and nt(s) to denote the number of observations for state s that we want to
observe before using θ̃t(s). We add a subscript t to L(s) in Algorithm 6.1 to denote the set of loss
observations Lt(s) := {(j, ℓj(s)) : j + dj ≤ t, Sj = s} for state s that we have collected by the end of
round t. Thus, θ̃t(s) is computed by using Nt(s) := |Lt(s)| loss observations.

Algorithm 6.1: MetaBIO

1: input: Algorithm B for standard delayed bandits, confidence parameter δ ∈ (0, 1)
2: initialize L(s)← ∅ for all s ∈ S
3: for t = 1, . . . , T do
4: get At from B and play it
5: observe St = st(At)
6: for j : j + dj = t do
7: receive (j, ℓj(Sj))
8: update L(Sj)← L(Sj) ∪ {(j, ℓj(Sj))}
9: initialize feedback setMt ← ∅

10: compute nt(St)
11: if |L(St)| ≥ nt(St) then
12: add t toMt

13: for j : j + dj = t ∧ |L(Sj)| < nj(Sj) do
14: add j toMt

15: for j ∈Mt do
16: compute θ̃j(Sj) from L(Sj) ▷ using δ
17: feed

(
j, Aj , θ̃j(Sj)

)
to B

Fixed delay setting. When all rounds have delay d, we simply choose nt(s) := d for all s ∈ S, t ∈
[T ]. In other words, if we have at least d observations for some state, then we can compensate for
the effect of delays and construct a well-concentrated mean estimate around the actual mean. Let
θ̂t(s) :=

∑
j∈Lt(s)

ℓj(s)
/
Nt(s). Then our mean loss estimate is a lower confidence bound for θ(s)

defined by

θ̃t(s) := max

{
0, θ̂t(s)−

1

2
εt(s)

}
(6.1)

for εt(s) :=
√

2
Nt(s)

ln 4ST
δ .

Arbitrary delay setting. In the arbitrary delay setting, where we do not have preliminary
knowledge of delays, we cannot really use the delays to set nt(s). Instead, at the end of time t, we
have access to the number of outstanding observations σt :=

∣∣{j ∈ [t] : j + dj > t}
∣∣, which is the

number of yet-to-arrive loss observations at the end of round t.∗ Then, for any s ∈ S, we may set
nt(s) := σt. With this choice, incurring zero delay at some round implies that we received at least
half of all the loss observations we could have received in the no-delay setting (see Appendix D.2.4).
In Section 6.4 we see that this ensures our mean estimate is well concentrated around its mean.

∗This differs from prior work that considers outstanding observations at the beginning of the round.
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Since Algorithm 6.1 waits for the actual loss at time t only if Nt(St) < σt, then d̃t :=

dt I{Nt(St) < σt} is the actual delay incurred by the algorithm, and L
t+d̃t

(s) is the set of loss
observations used to compute the estimate of the mean loss at time t. Because some losses may
arrive at the same time, the high-probability analysis of MetaBIO requires these observations to be
ordered. More precisely, we construct our mean estimate at time t+ d̃t for the feedback of round t
using the set

L′t(s) :=
{
(j, ℓj(s)) ∈ Lt+d̃t(s)

∣∣∣ j + d̃j < t+ d̃t ∨ j<t
}
. (6.2)

Letting N ′
t(s) := |L′t(s)|, we define the empirical mean

θ̂t(s) :=
∑

j∈L′
t(s)

ℓj(s)

N ′
t(s)

. (6.3)

Then, we set εt(s) :=
√

2
N ′

t(s)
ln 4ST

δ and define the mean loss estimator θ̃t(s) as a lower confidence

bound similarly to Equation (6.1). We remark that, while θ̃t(s) is employed for the estimation of
the mean loss θt(s) of the state s, the estimator is only ever adopted starting from time t+ d̃t with
some (possibly nonzero) delay d̃t. We may thus use all the collected losses in L′t(s) ⊆ Lt+d̃t(s) for
its definition. Therefore, once receiving the losses at the end of round t, Algorithm 6.1 constructs
the estimator θ̃j(Sj) for the incurred loss at any (previous) round j ∈Mt from the feedback setMt

using as much information as possible gathered thus far, i.e., losses in L′j(Sj) ⊆ Lt(Sj).

The AdaMetaBIO algorithm. As we already anticipated, the goal of intermediate observations
is to reduce the impact of delays. However, if the number of states is too large compared to the
average delay, then the information we get from intermediate observations could be misleading. We
introduce AdaMetaBIO (Algorithm 6.2) to address this issue. Given a horizon T ,† this algorithm runs
B (which is tailored for the setting without intermediate observations) until the total incurred delay
exceeds ST , and then switches to MetaBIO. We precise that AdaMetaBIO computes Dt :=

∑
j≤t σj

as the sum of outstanding observation counts up to round t, which is then used in the switching
condition.

Algorithm 6.2: AdaMetaBIO

1: input: Algorithm B for standard delayed bandits, confidence parameter δ ∈ (0, 1)
2: initialize D0 ← 0
3: for t = 1, . . . , T do
4: get At from B
5: for j : j + dj = t do
6: receive (j, ℓj(Sj))
7: feed (j, Aj , ℓj(Sj)) to B
8: set σt ←

∑t−1
j=1 I{j + dj > t}

9: update Dt ← Dt−1 + σt
10: if Dt (3 lnK + ln(6/δ)) > 49ST ln 8ST

δ then
11: break
12: if t < T then
13: run MetaBIO(B, δ/2) for the remaining rounds

†Note that we may remove the a-priori knowledge of T by using a doubling trick at the cost of a polylog factor in
the regret. See Remark 6.1 for further details.
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6.4 Regret Analysis

We analyze MetaBIO and AdaMetaBIO in the setting of adversarial action-state mappings and
stochastic losses where the regret is defined by

RT :=
T∑
t=1

θ(St)−min
a∈A

T∑
t=1

θ(st(a)) .

Our analysis guarantees a bound on RT that holds with high probability (and not just in expectation),
hence the reason why RT is not defined by taking the expectation over the internal randomization
of the learner or the stochasticity of the environment (as done in all previous chapters). A related
notion of regret is

RT :=

T∑
t=1

ℓt(St)−min
a∈A

T∑
t=1

ℓt(st(a)) ,

which considers the realized losses instead of their means. The two quantities are close with high
probability: each inequality in

−
√

2T ln(2K/δ) ≤ RT −RT ≤
√
2T ln(2/δ) (6.4)

individually holds with probability at least 1 − δ for any given δ ∈ (0, 1); see Lemma D.1 in
Appendix D.

Let DT :=
∑T

t=1 dt be the total delay. We start by showing an upper bound on the total actual
(or effective) delay D̃T =

∑T
t=1 dtI{Nt(St) < σt} ≤ DT incurred by MetaBIO. Then, we provide a

high-probability regret analysis of both MetaBIO and AdaMetaBIO.
More precisely, we can show that MetaBIO incurs the delays of no more than min {2Sσmax, T}

rounds, where σmax := maxt∈[T ] σt. In the worst case, these rounds correspond with those from the
set

Φ ∈ argmax
J⊆[T ]

{
DJ : |J | = min {2Sσmax, T}

}
. (6.5)

where we denote DJ :=
∑

t∈J dt for any J ⊆ [T ]. Note that the set Φ is fully determined by the
delay sequence d1, . . . , dT . Moreover, the total delay incurred by MetaBIO cannot be worse than the
sum of delays corresponding to the rounds in Φ, as stated in the lemma below.

Lemma 6.1 (Total effective delay). If MetaBIO is run with any algorithm B on delays (dt)t∈[T ],
then its total effective delay is D̃T ≤ DΦ.

Lemma 6.1 (proof in Appendix D.2.1) implies that, if all delays are bounded by dmax, then
D̃T ≤ 2Sσmaxdmax, which does not depend on T . In the fixed-delay setting with delay d, for example,
we get a total effective delay of at most 2Sd2, rather than the total delay dT we would incur without
access to intermediate observations (when T is large enough).

We now turn MetaBIO into a concrete algorithm by instantiating B. Specifically, we use DAda-Exp3
(György and Joulani, 2021), a variant of Exp3 which does not use intermediate observations and is
robust to delays. DAda-Exp3 guarantees the following regret bound.

Theorem 6.1 (György and Joulani (2021, Corollary 4.2)). For any δ ∈ (0, 1), the regret of
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DAda-Exp3 with respect to the realized losses in the adversarial bandits with arbitrary delays satisfies

RT ≤ 2
√

3(2KT +DT ) lnK +

(√
2KT +DT

3 lnK
+
σmax

2
+ 1

)
ln

2

δ

with probability at least 1− δ.

While Theorem 6.1 shows a high-probability bound on RT , Equation (6.4) shows that a high-
probability bound for one notion of regret ensures a high-probability bound for the other. Although
the original bound by György and Joulani (2021) was stated with dmax instead of σmax, we can
replace the former with the latter by observing that, in the analysis of György and Joulani (2021,
Theorem 4.1), they only use dmax to upper bound the number of outstanding observations. Note
that σmax is never larger than dmax, indicating it is a well-behaved term that is not vulnerable to a
few large delays. See Masoudian et al. (2022, Lemma 3) for a refined quantification of the relation
between σmax and dmax.

If we consider a fixed confidence level δ ∈ (0, 1), then we can make the learning rate ηt and
the implicit-exploration term γt in DAda-Exp3 depend on the specific value of δ so as to achieve an
improved regret bound (see Appendix D.2.2). This allows us to show that in the BIO setting with
adversarial action-state mappings and stochastic losses, the regret RT of DAda-Exp3 is bounded
from above by

2
√
2KTCK,6δ + 2

√
DTCK,6δ +

σmax + 2

2
ln

2

δ
(6.6)

with probability at least 1− δ, where

CK,δ := 3 lnK + ln
12

δ
(6.7)

is a negligible logarithmic factor in K and 1/δ only.
Next, we state the regret bound for MetaBIO. We remark that we initialize DAda-Exp3 with

confidence parameter δ/2 so as to guarantee the high-probability bound as in Equation (6.6) with
probability at least 1− δ/2 as required.

Theorem 6.2. Let δ ∈ (0, 1). If we run MetaBIO using DAda-Exp3, then the regret of MetaBIO in
the BIO setting with adversarial action-state mappings and stochastic losses satisfies

RT ≤ 2
√

2KTCK,3δ + 7

√
ST ln

4ST

δ
+ 2
√
DΦCK,3δ +

σmax + 2

2
ln

4

δ
(6.8)

with probability at least 1− δ.

We begin the analysis of Theorem 6.2 by decomposing the regret into two parts: (i) the regret
RT of DAda-Exp3 with losses θ̃t(St), and (ii) the gap RT −RT , corresponding to the cumulative
error of the estimates fed to DAda-Exp3. For the first part, we follow an approach similar to György
and Joulani (2021) and apply Neu (2015, Lemma 1) to obtain a concentration bound for the loss
estimates defined using importance weighting along with implicit exploration. When using the actual
losses, the application of Neu (2015, Lemma 1) is straightforward. However, when the mean loss
estimate θ̃t(St) is used rather than the actual loss, there is a potential dependency between the
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chosen action At and θ̃t(St). In Appendix D.2.3 we carefully design a filtration to show that we may
indeed use the high-probability regret bound of DAda-Exp3 in order to upper bound the first part
(regret RT defined in terms of the estimates θ̃t).

The second part requires to bound the cumulative error of our estimator in Equation (6.3) for the
observed states (St)t∈[T ]. To this end, we use the Azuma-Hoeffding inequality to control the error of
these estimates. Doing so causes a Õ(

√
ST ) term to appear in the regret bound. The detailed proof

of this part is in Appendix D.2.4, together with the proof of Theorem 6.2.
The presence of the additive Õ(

√
ST ) term in the regret bound implies that, when S ≫

max {DT /T,K}, using intermediate feedback leads to no advantage over ignoring it. So we ideally
want to recover the original bound in Equation (6.6) when this happens. AdaMetaBIO is an adaptive
extension of MetaBIO that solves this issue and gives the following regret guarantee. The proof of
this result is deferred to Appendix D.2.5. We remark that, to achieve this bound, before the eventual
switch at some round t∗ we use algorithm DAda-Exp3 with confidence parameter set to δ/3 so as to
guarantee a high-probability bound on Rt∗ with probability at least 1− δ/2 over the first t∗ rounds
(during which DAda-Exp3 runs by itself).

Theorem 6.3. Let δ ∈ (0, 1). If we run AdaMetaBIO with DAda-Exp3, then the regret of AdaMetaBIO

in the BIO setting with adversarial action-state mappings and stochastic losses satisfies

RT ≤ 3min

{
7

√
ST ln

8ST

δ
,
√
DTCK,2δ

}
+ 6
√
KTCK,2δ + 2

√
DΦCK,2δ + (σmax + 2) ln

8

δ
(6.9)

with probability at least 1− δ.

If we consider any upper bound dmax on the delays (dt)t∈[T ], we can further observe that the
regret RT of AdaMetaBIO (with DAda-Exp3) satisfies

RT = Õ
(√

KT +min
{√

S
(√
T + dmax

)
,
√
dmaxT

})
with high probability. This also follows from the fact that, as previously mentioned, we can bound
the total delay of MetaBIO by DΦ ≤ 2Sd2max.

Given the previous regret bounds, we observe that we may further improve the dependency on
the delays by adopting the idea of skipping rounds with large delays when computing the learning
rates. This “skipping” idea was introduced by Thune et al. (2019) and has been leveraged by György
and Joulani (2021) to show that DAda-Exp3 can achieve a refined high-probability regret bound—see
György and Joulani (2021, Theorem 5.1). As a consequence, we can indeed provide an improved
bound in our setting by following similar steps as in the proof of Theorem 6.2. The only main change
is the adoption of the version of DAda-Exp3 that uses the skipping procedure.

Corollary 6.1. Let δ ∈ (0, 1). If we run MetaBIO with DAda-Exp3 with skipping (György and Joulani,
2021, Theorem 5.1), then the regret of MetaBIO in the BIO setting with adversarial action-state
mappings and stochastic losses satisfies

RT = O
(√

KTCK,δ +

√
ST ln

ST

δ
+ ln

1

δ
+
√
CK,δ lnK min

R⊆Φ

{
|R|+

√
DΦ\R lnK

})
with probability at least 1− δ.
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This result could also be extended in a similar way to AdaMetaBIO, so as to achieve the best
result from the presence of intermediate feedback.

So far, we have provided some high-probability guarantees for the regret of both MetaBIO and
AdaMetaBIO, by which we can derive some expectation bounds as well (e.g., by setting δ ≈ 1/T ).
However, using the empirical mean estimators θ̂t as the mean loss estimators at time t and working
directly with the expected regret allows us to improve the achievable bound by a polylogarithmic
factor. Hence, for the expected regret we use Tsallis-INF (Zimmert and Seldin, 2020), a learning
algorithm for the standard delayed bandit problem that uses a hybrid regularizer to deal with delays
and gives a minimax-optimal expected regret bound in the standard delayed setting. The proof of
this expected regret upper bound is in Appendix D.2.6.

Proposition 6.1. If we execute AdaMetaBIO with Tsallis-INF (Zimmert and Seldin, 2020), and
use the switching condition

√
8Dt lnK > 6

√
ST ln(2ST ) at each round t ∈ [T ], where Dt =

∑t
j=1 σj,

then the regret of AdaMetaBIO in the BIO setting with adversarial action-state mappings and stochastic
losses satisfies

E [RT ] ≤ 4
√
2KT + 2

√
2DΦ lnK + 4min

{
3
√
ST ln(2ST ),

√
2DT lnK

}
.

Remark 6.1. In MetaBIO, we can replace T by t2 in the definition of the confidence intervals for
Equation (6.3) and remove the need for prior knowledge of the time horizon T . In AdaMetaBIO,
we could use a doubling trick to avoid the prior knowledge of T in the switching condition. On the
other hand, it is not required to know the number of states S for expectation bounds on the regret
of MetaBIO. However, removing the prior knowledge of S in the high-probability regret bounds is
challenging. Indeed, to the best of our knowledge, there is no result in the BIO setting that avoids
prior knowledge on the number of states. Lifting this requirement in the high-probability analysis is
thus an interesting question for future work.

6.5 Lower Bounds

The lower bounds in this section are for the expected regret E [RT ]. Since our algorithms provide
high-probability guarantees, the upper bounds also apply to the expected regret. Throughout this
section we will make use of constant delay, i.e., dt = d for all t ∈ [T ]. We will first prove a general√
KT lower bound for all algorithms in BIO, after which we specialize to particular cases.

We start by proving a Ω
(√
KT

)
lower bound for any algorithm in our setting and for any

combination of stochastic or adversarial action-state mappings and loss vectors. The construction is
a reduction to the standard bandits lower bound construction.

Theorem 6.4. Irrespective to whether the action-state mappings and loss vectors are stochastic or
adversarial, there exists a sequence of losses such that any (possibly randomized) algorithm in BIO
suffers regret E [RT ] = Ω

(√
KT

)
.

Proof. Our construction only uses two states h1 and h2. The loss vectors, which are deterministic
and do not change over time, are defined as follows: ℓt(h1) := 1 and ℓt(h2) := 0 for all t ≥ 0. The
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stochastic action-state mapping, which is also constant over time, is given by

st(a) :=

h1 with probability pa

h2 with probability 1− pa

for all a ∈ A and t ≥ 0, where the probabilities pa are to be determined. Thus, the loss of an arm
a is ℓt(st(a)) := ℓt(h1) = 1 with probability pa and ℓt(st(a)) := ℓt(h2) = 0 with probability 1− pa.
Since the loss is determined by the state, the learner receives bandit feedback without delay. We can
then choose pa for a ∈ A to mimic the standard Ω

(√
KT

)
distribution-free bandit lower bound—e.g.,

see Slivkins (2019, Chapter 2). By Yao’s minimax principle, the same lower bound also applies to
the case with adversarial action-state mappings. Since the loss vectors are deterministic, this covers
all possible cases in BIO.

Adversarial action-state mapping and stochastic losses. We first prove a lower bound of
order

√
ST for any number K ≥ 2 of actions. However, we do need a minor generalization of our

setting to allow correlation between unseen losses. Specifically, we allow all pairs of losses ℓj(s), ℓj′(s′)
of distinct states s ̸= s′ to be correlated if j > j′ and j − j′ ≤ d, while we guarantee the i.i.d. nature
of losses for any fixed state. Since E [ℓt(St)] = E [θ(St)], this does not affect the analysis for the
upper bound on the regret of our algorithms since E [RT ] ≤ E [RT ] (see Lemma D.3). However,
for a high-probability upper bound, we need to relate RT and RT , which now leads to an additive
Õ(
√
ST ) term rather than an additive Õ(

√
T ) term as in Equation (6.4).

In the proof of the
√
ST lower bound, we leverage the fact that losses are independent only

across time steps for a fixed state, while they may depend on the losses of the other states. Note
that our lower bound holds even when the learner knows the action-state assignments beforehand.
We provide a sketch of the proof of Theorem 6.5 below; see Appendix D.3 for the full proof.

Theorem 6.5. Suppose that the action-state mapping is adversarial and the losses are stochastic
and that dt = d for all t ∈ [T ]. If T ≥ min{S, d} then there exists a distribution of losses and
a sequence of action-state mappings such that any (possibly randomized) algorithm suffers regret
E [RT ] = Ω

(√
min{S, d}T

)
.

Proof sketch. First, suppose that S ≤ 2d. For the construction of the lower bound we only consider
two actions and equally split the states over these two actions. Then, we divide the T time steps
in blocks of length S/2 ≤ d. In each block, each state has the same loss. Since the block length is
smaller then the delay, we have effectively created a two-armed bandit problem with T ′ = T/(S/2)

rounds and loss range [0, S/2], for which we can prove a Ω
(
S
√
T ′
)
= Ω

(√
ST
)

lower bound by
showing an equivalent lower bound for the full information setting. If S > 2d, we use the same
construction with only 2d states, and obtain a Ω

(√
dT
)

lower bound.

Finally, we can show the following lower bound, whose proof can be found in Appendix D.3.

Theorem 6.6. Suppose that the action-state mapping is adversarial, the losses are stochastic, and
that dt = d for all t ∈ [T ]. If T ≥ d+ 1 then there exists a distribution of losses and a sequence of
action-state mappings such that any (possibly randomized) algorithm suffers regret

E [RT ] = Ω
(
min

{
(d+ 1)

√
S,
√
(d+ 1)T

})
.
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This term is also present in the dynamic regret bound of NSD-UCRL2, but it is necessarily incurred
from their analysis even in the stationary case (Vernade et al., 2020, Theorem 1).

This last lower bound implies that the regret of our algorithm is near-optimal. Since the lower
bound of Theorem 6.4 applies to the case where the action-state mapping is adversarial and the
losses are stochastic, we find the following result as a corollary of Theorem 6.4, Theorem 6.5, and
Theorem 6.6.

Corollary 6.2. Suppose that the action-state mapping is adversarial, the losses are stochastic, and
that dt = d for all t ∈ [T ]. If T ≥ 1 + min{S, d}, then there exists a distribution of losses and a
sequence of action-state mappings such that any (possibly randomized) algorithm suffers regret

E [RT ] = Ω
(
max

{√
KT,

√
min{S, d}T , (d+ 1)

√
S
})

.

Stochastic action-state mappings and adversarial losses. In this case, we recover the
standard lower bound for adversarial bandits with bounded delay.

Theorem 6.7. Suppose that the action-state mapping is stochastic, the losses are adversarial, and
that dt = d for all t ∈ [T ]. Then there exists a stochastic action-state mapping and a sequence of
losses such that any (possibly randomized) algorithm suffers regret E [RT ] = Ω

(
max

{√
KT,

√
dT
})

.

Proof. Since by Theorem 6.4 we already know that any algorithm must suffer Ω
(√
KT

)
regret, we

only need to show a Ω(
√
dT ) lower bound. We use two states, h1 and h2. Our action-state mapping

is deterministic and, for all t ≥ 0, assigns st(a) := h1 to all but one action a⋆, to which the mapping
assigns st(a⋆) := h2. We now have constructed a two-armed bandit problem with delayed feedback
and T rounds, for which a Ω(

√
dT ) lower bound is known (Cesa-Bianchi et al., 2019).

Adversarial action-state mappings, adversarial losses. Since we can recover the construction
of the lower bound in Theorem 6.7, we immediately have the following result.

Corollary 6.3. Suppose that the action-state mapping is adversarial, the losses are adversarial, and
that dt = d for all t ∈ [T ]. Then there exists an action-state mapping and a sequence of losses such
that any (possibly randomized) algorithm suffers regret E [RT ] = Ω

(
max

{√
KT,

√
dT
})

.

6.6 Experiments

We empirically compare our algorithm MetaBIO with the following baselines: DAda-Exp3 (György
and Joulani, 2021) for adversarial delayed bandits without intermediate observations (which we used
to instantiate the algorithm B), the standard UCB1 algorithm (Auer et al., 2002a) for stochastic
bandits without delays and intermediate observations, and NSD-UCRL2 (Vernade et al., 2020) for
non-stationary stochastic action-state mappings and stochastic losses. We run all experiments with
a time horizon of T = 104. All our plots show the cumulative regret of the algorithms considered
as a function of time. The performance of each algorithm is averaged over 20 independent runs in
every experiment, and the shaded areas consider a range centered around the mean with half-width
corresponding to the empirical standard deviation of these 20 repetitions. In the first two experiments,
we consider both fixed delays d ∈ {50, 100, 200} and random delays dt ∼ Laplace(50, 25) sampled
i.i.d. from the Laplace distribution with E [dt] = 50.
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Figure 6.2: Cumulative regret over time for the stochastic action-state mapping when delays are
fixed or random.

Experiment 1: stochastic action-state mappings. Here we use a stationary version of the
experiments in Vernade et al. (2020)—see Table D.1 in Appendix D.4 for details. We set K = 4 and
S = 3, while we repeat this experiment for the previously mentioned values of delays. Figure 6.2
shows that, across all delay regimes, MetaBIO largely improves on the performance of DAda-Exp3 by
exploiting intermediate observations.

Experiment 2: adversarial action-state mappings. In this construction, we simulate the
adversarial mapping using a construction adapted from Zimmert and Seldin (2021): we alternate
between two stochastic mappings while keeping the loss means fixed. We set K = 4, S = 3, and
we consider multiple instances for the different values of delays as in the previous experiment.
The interval between two consecutive changes in the distribution of action-state mappings grows
exponentially. See Table D.2 in Appendix D.4 for details. Figure 6.3 shows that MetaBIO and
MetaBIO with “skipping” outperform both UCB1 and NSD-UCRL2.

Experiment 3: utility of intermediate observations. Here we set K = 8, d = 100, and investi-
gate how the performance of MetaBIO changes when the number S of states varies in {4, 6, 8, 10, 12}.
The mean loss is always 0.2 for the optimal state and 1 for the others. The optimal action always
maps to the optimal state. The suboptimal actions map to the optimal state with probability 0.6

and map to a random suboptimal state with probability 0.4. This implies that the expected loss of
each arm remains constant when the number of states changes. Figure 6.4 shows that the regret
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Figure 6.3: Cumulative regret over time for the adversarial action-state mapping when delays are
fixed or random. All algorithms have small variance except for UCB1 and NSD-UCRL2.

gap between MetaBIO and DAda-Exp3 shrinks as the number of states increases. This observation
confirms our theoretical findings about the dependency of the regret on the number of states, which
leads to a larger improvement the fewer they are.

Experiment 4: performance of AdaMetaBIO when S < d. We use the same setting as in
Experiment 1 with delay d = 20.‡ Figure 6.6 shows the performance of AdaMetaBIO compared
with both DAda-Exp3 and MetaBIO. Before the switching point, AdaMetaBIO runs DAda-Exp3 (up
to independent internal randomization). Afterwards, AdaMetaBIO switches to MetaBIO (which in
turn runs DAda-Exp3 as a subroutine) and quickly aligns with its performance. Note that, at the
switching time, AdaMetaBIO uses (via MetaBIO) the same instance of DAda-Exp3 that was already
running, rather than starting a new instance. It can be shown that our analysis of AdaMetaBIO

applies to this variant as well without changes in the order of the bound.

Experiment 5: performance of AdaMetaBIO when S > d. We use a setting that is almost
identical to that of Experiment 3, except we set d = 4 and S = 14. The performance of the three
algorithms is shown in Figure 6.5. We can observe that AdaMetaBIO does not switch to MetaBIO

and its performance is thus the same as that of DAda-Exp3, whereas MetaBIO incurs a larger regret.

‡Compared to the switching condition used for the analysis of AdaMetaBIO, we replace 49ST ln 8ST
δ

with ST . This
change allows the switching condition to be triggered more easily to provide a better visualization of the behaviour of
AdaMetaBIO, while it only introduces a polylog factor in its regret bound.
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Figure 6.4: Cumulative regret over time of both DAda-Exp3 and MetaBIO with different numbers of
states S ∈ {4, 6, 8, 10, 12}.
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Figure 6.5: Cumulative regret over time of
DAda-Exp3, MetaBIO and AdaMetaBIO when
S > d.
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Figure 6.6: Cumulative regret over time of
DAda-Exp3, MetaBIO and AdaMetaBIO. The ver-
tical blue line marks the switching point of
AdaMetaBIO.

6.7 Conclusions

The work of Vernade et al. (2020) also considers a non-stationary action-state mapping and derive
regret bounds for the switching regret. Preliminary results suggest that, as long as there is an
algorithm that can provide bounds on the switching regret with delayed feedback, our ideas also
transfer to this setting. To the best of our knowledge, there is currently no algorithm that can
provide bounds on the switching regret with delayed feedback and we leave this as a promising
direction for future work.
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Chapter 7

Statistical Learning Theory

This introductory chapter provides the basics of the established and well-studied statistical learning
framework, accompanied by fundamental and classical results from the learning theory literature.
Part of the content in this introductory chapter is inspired from the textbook by Shalev-Shwartz and
Ben-David (2014), which is recommended to read for further details and remarks. Throughout this
part of the manuscript, we implicitly assume measurability whenever required for ease of exposition.

7.1 The Statistical Learning Framework

We begin this chapter by introducing the statistical learning framework, which is a general mathe-
matical model for the analysis of learning algorithms. This framework determines how any example
(x, y), which is a pair composed by a data point x and a label y, received by a learning algorithm is
generated and how the performance of any label predictor is evaluated. Let X be the domain space
and let Y be the label space. We assume that each example Z = (X,Y ) ∼ D is drawn independently
from a fixed but unknown distribution D over the example space Z := X × Y. These examples are
then collected within a training set S := (Z1, . . . , Zm) ∈ Zm of size m ∈ N, where Z1, . . . , Zm ∼ D
are i.i.d., and provided to the learning algorithm.

The aim of a learning algorithm is to provide an appropriate predictor, or hypothesis, h : X → Y
given a training set. To measure the quality of the labels predicted by h, we adopt a nonnegative
loss function ℓ : Y × Y → R≥0. Then, in the statistical learning framework, an instance is generally
described by the pair (D, ℓ) and the performance of a given predictor h is measured by the statistical
risk

ℓD (h) := E(X,Y )∼D
[
ℓ (Y, h(X))

]
.

On the other hand, the empirical risk, or training error, ℓS (h) of h is the average loss over the
examples Zi := (Xi, Yi) from the training set S, that is,

ℓS (h) :=
1

m

m∑
i=1

ℓ (Yi, h(Xi)) .

Observe that, while a learner might be unable to compute the statistical risk ℓD (h) of a given
hypothesis h because D is unknown, it is possible to calculate its empirical risk ℓS (h) over the
training set S provided access to the loss function. Also notice that, assuming h does not depend on
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S, the empirical risk of h is an unbiased estimator for its statistical risk since ES∼Dm [ℓS (h)] = ℓD (h)

by linearity of expectation, where Dm is the product probability measure over Zm.

A learning algorithm can be seen as a function

A :
⋃
m∈N
Zm → YX

that outputs a hypothesis A(S) ∈ YX upon receiving a certain training set S ∈ Zm of size m. While
in general the predictor A(S) can be any function from a class Hm ⊆ YX that depends on the
training set size m, we henceforth consider learning algorithms that output hypotheses from a fixed
hypothesis class H ⊆ YX . The restriction of the output of A to H introduces what is known as an
inductive bias.

Ideally, the most desirable behavior for a learning algorithm consists of providing the best possible
mapping from data points to labels in terms of statistical risk. This concept is well known and takes
the name of Bayes optimal predictor.

Definition 7.1 (Bayes optimal predictor). Given any instance (D, ℓ), the Bayes optimal predictor
f∗ : X → Y is the best possible predictor f∗ ∈ argminf∈YX ℓD (f) which is defined as

f∗(x) = argmin
y∈Y

ED [ℓ(Y, y) |X = x] ∀x ∈ X .

Its risk ℓD (f∗) is also known as Bayes risk or Bayes error.

Since we restrict the learning algorithm to select a hypothesis from the class H, it may be
impossible for the learner to compute the Bayes optimal predictor f∗ if the latter does not belong
to H. Hence, we may only hope for such an algorithm to find the best predictor in the class

h∗ ∈ argmin
h∈H

ℓD (h) ,

which might not perform as well as f∗. Moreover, the problem about computing either h∗ or f∗ lies
in the necessity of knowing D, which is an unsatisfiable requirement in many scenarios. We should
consequently expect the risk of a hypothesis output by the learner to be larger than the Bayes risk,
and the design of the learning algorithm should aim at closing this gap as much as possible.

This fact is more explicitly depicted by the well-known bias-variance decomposition of the risk of
a given hypothesis h ∈ H:

ℓD (h) = ℓD (h)− ℓD (h∗)︸ ︷︷ ︸
variance error

+ ℓD (h∗)− ℓD (f∗)︸ ︷︷ ︸
bias error

+ ℓD (f∗)︸ ︷︷ ︸
Bayes error

.

This decomposition shows that, except for the unavoidable Bayes error, the learner mainly incurs two
types of errors: the bias error, which is the error of approximating f∗ introduced by the inductive
bias from the choice of H, and the variance error, which consists of the error in estimating h∗ within
H by using the information contained in the training set S.
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7.2 PAC Learning and Uniform Convergence

As mentioned in the previous section, the objective of the learner A is to output a hypothesis from H
that minimizes the risk. The main issue we pointed out is that the learning algorithm cannot directly
optimize the risk given the lack of knowledge about D. Hence, it has to use only the information
provided by the training set S. The most natural approach would be for the algorithm to optimize
the empirical risk over S instead. Such an algorithm is commonly known as an Empirical Risk
Minimization (ERM) algorithm and its output is

A(S) = hERM
S ∈ argmin

h∈H
ℓS (h) .

The hope of adopting the ERM rule is that optimizing the empirical risk leads to minimizing the
true risk as well. This is known to be approximately the case, e.g., for binary classification tasks
and it is also known to suffice for more general learning problems under some conditions. Moreover,
the quality of hERM

S in terms of statistical risk intuitively depends on the size of S.
Let us begin with a common simplifying assumption called realizability, which is a property of H

given D and ℓ.

Assumption 7.1 (Realizability). There exists h ∈ H such that ℓD (h) = 0.

Under the realizability assumption, ℓD (h∗) = 0 must also hold. Furthermore, both h∗ and hERM
S

have empirical risk
0 ≤ ℓS

(
hERM
S

)
≤ ℓS (h∗) = 0

almost surely for any i.i.d. sample S, where the first inequality follows by nonnegativity of the loss
function, the second one is due to the optimality of hERM

S with respect to the empirical risk over S,
and the equality holds with probability 1 since ℓD (h∗) = 0. On the other hand, we cannot reach the
same conclusion for ℓD

(
hERM
S

)
. Indeed, while the empirical risk is an unbiased estimator of the true

risk for any fixed hypothesis in H, as mentioned in the previous section, ℓS
(
hERM
S

)
is generally not

because hERM
S depends on the entire training set S. Consequently, the above reasoning is insufficient

for concluding that hERM
S is able to learn and requires a more sophisticated argument.

The notion of learnability for a given learning task has been a main object of study in statistical
learning theory. The most notable formalization of this concept is that of Probably Approximately
Correct learnability introduced by Valiant (1984).

Definition 7.2 (PAC learnability). A class H is Probably Approximately Correct (PAC) learnable
if there exists a function m̃PAC

H : (0, 1)2 → N and a learning algorithm A such that the following holds.
For any ε, δ ∈ (0, 1) and any distribution D over Z for which the realizability assumption holds, then
algorithm A, given an i.i.d. sample S ∼ Dm of size m ≥ m̃PAC

H (ε, δ), it returns hS = A(S) such that

P
S∼Dm

(
ℓD (hS) > ε

)
≤ δ .

As the name states, a learning algorithm is said to PAC learn whenever its output hS , given
an i.i.d. training set S, incurs with probability 1− δ (“probably”) a risk bounded from above by ε
(“approximately correct”).

By relaxing the realizability assumption, we can extend the definition of PAC learnability for
more general settings commonly known as agnostic. Observe that, in the absence of realizability,
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the learning algorithm cannot aspire to obtain risk close to zero. Hence, we can only compare its
performance to the risk ℓD (h∗) of the best predictor in the class H. This is the reason why the
learnability notion in the agnostic setting revolves around the variance error ℓD (hS)− ℓD (h∗) rather
than the risk ℓD (hS) only.

Definition 7.3 (Agnostic PAC learnability). A class H is agnostic PAC learnable if there exists
a function mPAC

H : (0, 1)2 → N and a learning algorithm A such that the following holds. For any
ε, δ ∈ (0, 1) and any distribution D over Z, then algorithm A, given an i.i.d. sample S ∼ Dm of size
m ≥ mPAC

H (ε, δ), it returns hS = A(S) such that

P
S∼Dm

(
ℓD (hS)− ℓD (h∗) > ε

)
≤ δ .

The property of agnostic PAC learnability is a formalization of the computational aspect of a
statistical learning task, describing the feasibility of the algorithmic learnability via a certain class of
predictors up to any given accuracy and probability of success. Additionally, showing that an ERM
algorithm is an successful agnostic PAC learner would suffice to prove the agnostic PAC learnability
of H. The former condition can be shown to hold under some potentially stronger property of H. In
particular, we can first notice that the variance error of an ERM algorithm is

ℓD
(
hERM
S

)
− ℓD (h∗) = ℓD

(
hERM
S

)
− ℓS

(
hERM
S

)
+ ℓS

(
hERM
S

)
− ℓD (h∗)

≤ ℓD
(
hERM
S

)
− ℓS

(
hERM
S

)
+ ℓS (h

∗)− ℓD (h∗) by optimality of hERM
S

≤
∣∣ℓD (hERM

S

)
− ℓS

(
hERM
S

)∣∣+ |ℓS (h∗)− ℓD (h∗)|

≤ 2 sup
h∈H
|ℓS (h)− ℓD (h)| .

Then, deriving a upper bound on the absolute difference between empirical risk and true risk,
uniformly over all hypotheses in H, implies the desired property for ERM.

This type of uniform bound is more generally captured by the convergence in probability of the
empirical mean of a function in a given class over an i.i.d. process to its expectation, uniformly over
all functions in a given class. Said property takes the name of uniform convergence in probability or,
simply, uniform convergence.

Definition 7.4 (Uniform convergence). Let Z be any domain. A class F ⊆ RZ of real-valued
functions has the uniform convergence property if there exists a function mF : (0, 1)2 → N such that,
for any ε, δ ∈ (0, 1) and any distribution D over Z, if Z,Z1, . . . , Zm ∼ D are i.i.d. random variables
for any m ≥ mF (ε, δ), then

P
Z1,...,Zm∼D

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

f(Zi)− EZ∼D [f(Z)]

∣∣∣∣∣ > ε

)
≤ δ .

We now show that uniform convergence is a stronger notion than agnostic PAC learnability in
general. Recalling that the domain is the example space Z = X × Y, we define the function class

LH,ℓ :=
{
fh : fh(x, y) := ℓ(y, h(x)),∀(x, y) ∈ Z,∀h ∈ H

}
where each function fh corresponds to the evaluation of the loss ℓ between an input label y ∈ Y and
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the prediction of the hypothesis h over the input point x ∈ X . It is then immediate to show that

1

m

m∑
i=1

fh(Zi) = ℓS (h) and EZ∼D [fh(Z)] = ℓD (h)

for any sample S = (Z1, . . . , Zm) ∈ Zm. Then, the uniform convergence property of LH,ℓ guarantees
a bound in probability on the supremum

sup
fh∈LH,ℓ

∣∣∣∣∣ 1m
m∑
i=1

fh(Zi)− EZ∼D [fh(Z)]

∣∣∣∣∣ = sup
h∈H
|ℓS (h)− ℓD (h)| .

It is therefore clear that uniform convergence is an extremely powerful tool, with strong impli-
cations in statistical learning theory and beyond. In Chapter 9, for instance, we leverage uniform
convergence—together with other mathematical tools—to derive surprising results in the context of
a learning-theoretic model for the interpretability of binary concepts.

7.3 Combinatorial Dimensions for Learning

In this part we introduce purely combinatorial quantities that relate to the hypothesis class H, and
we will briefly analyze the relationship between them. Surprisingly enough, while these combinatorial
parameters only measure the “richness” of function classes, they are able to characterize properties
of these classes such as uniform convergence and PAC learnability.

Let us first restrict ourselves to the simpler binary classification setting. We particularly assume
that the label space is Y = {0, 1} and hence that any predictor h ∈ H is a binary function
h : X → {0, 1}. We define the loss function ℓ to be the 0-1 loss function, i.e., ℓ(y, y′) := I{y ≠ y′} for
any y, y′ ∈ {0, 1}. The first quantity we introduce is the growth function (Vapnik and Chervonenkis,
1971) and it counts the maximum number of distinct ways that m data points from X can be labeled
by hypotheses in H, for any m ∈ N; this is also commonly called the m-th shatter coefficient.

Definition 7.5 (Growth function). The growth function for a binary function class F ⊆ {0, 1}X is
a function ΠF : N→ N defined as

ΠF (m) := sup
x1,...,xm∈X

∣∣{(f(x1), . . . , f(xm)) : f ∈ F}∣∣ ∀n ∈ N .

Then, by a simple combinatorial reasoning we know that the growth function for H satisfies
ΠH(m) ≤ 2m, where 2m is the maximum number of dichotomies in the binary classification setting.
By definition, if ΠH(m) = 2m then there exists S ∈ Xm that is shattered by H, meaning that the
points in S can be classified in all possible ways by predictors in H.

The other notion that we introduce here is the Vapnik-Chervonenkis dimension (Vapnik and
Chervonenkis, 1971), commonly abbreviated in VC dimension.

Definition 7.6 (VC dimension). Let F ⊆ {0, 1}X be a class of binary functions. The VC dimension
VC(F) of F is the size of the largest set of points in X that can be shattered by F , that is,

VC(F) := max {m ∈ N : ΠF (m) = 2m} .
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We define VC(F) :=∞ if ΠF (m) = 2m for all m ∈ N.

Even though the VC dimension is an exclusively combinatorial property of binary function classes,
and learnability is never mentioned or explicitly considered within its definition, it is capable of
characterizing both PAC learnability and uniform convergence for binary classification problems.
The complete result states a stronger characterization and it is known as the fundamental theorem
of statistical learning. Here we report its qualitative version.

Theorem 7.1 (The fundamental theorem of statistical learning). Consider any domain X . Let
H ⊆ {0, 1}X be a binary hypothesis class and let ℓ be the 0-1 loss function. Then, the following
statements are equivalent:

1. H has finite VC dimension;

2. LH,ℓ has the uniform convergence property;

3. H is agnostic PAC learnable;

4. any ERM algorithm is a successful agnostic PAC learner;

5. H is PAC learnable (under Assumption 7.1);

6. any ERM algorithm is a successful PAC learner (under Assumption 7.1);

Additionally, the fundamental theorem even quantifies the sample complexity for which the above
properties of H are guaranteed in terms of its VC dimension. Namely, assuming VC(H) <∞, there
exists universal constants c, C > 0 such that the sample complexities for uniform convergence and
agnostic PAC learnability are both

c · VC(H) + ln(1/δ)

ε2
≤ mH(ε, δ),m

PAC
H (ε, δ) ≤ C · VC(H) + ln(1/δ)

ε2
,

whereas the sample complexity for PAC learnability in the realizable setting is

c · VC(H) + ln(1/δ)

ε
≤ m̃PAC

H (ε, δ) ≤ C · VC(H) ln(1/ε) + ln(1/δ)

ε
.

It clearly follows that the VC dimension is a crucial dimension that characterizes fundamental
properties of binary function classes. Despite the fact that binary classification tasks have numerous
use-cases, many fundamental learning problems concern the adoption of predictors whose outputs
consist of real values, taking the name of real-valued regression problems. These problems also have
multiple applications in fields such as medicine and economics. Therefore, one may wonder about
the feasibility of generalizing these notions to classes of real-valued functions. This question has
already been thoroughly addressed in the past, leading to the introduction of other combinatorial
dimensions. A first notable example is given by Pollard’s pseudodimension (Pollard, 1990).

Definition 7.7 (Pseudodimension). Let F ⊆ RX be a class of real-valued functions. A set S ⊆ X
of points are pseudo-shattered by F if there exists a function r : S → R such that, for every B ⊆ S
there exists fB ∈ F for which

fB(x) ≥ r(x) ∀x ∈ B ,

fB(x) < r(x) ∀x ∈ S \B .
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The pseudodimension Pdim(F) of F is the largest number of points in X that can be pseudo-shattered
by F . We define Pdim(F) :=∞ if every finite set of points can be pseudo-shattered.

The finiteness of the pseudodimension is known to guarantee the uniform convergence property.
The issue is that, as per related definitions of dimensions (Vapnik, 1989), their finiteness does
not provide an exact characterization of uniform convergence. The main cause of this problem
lies in the excessive generality of their definition. Thus arises the need for more refined, scale-
sensitive dimensions of real-valued function families. One such case is constituted by the fat-
shattering dimension (Kearns and Schapire, 1994), whose definition indeed resembles that of the
pseudodimension while relying on a scale parameter.

Definition 7.8 (γ-fat-shattering dimension). Let F ⊆ RX be a class of real-valued functions and let
γ > 0 be a scale (or width) parameter. A set S ⊆ X of points are γ-shattered by F if there exists a
function r : S → R such that, for every B ⊆ S there exists fB ∈ F for which

fB(x) ≥ r(x) + γ ∀x ∈ B ,

fB(x) ≤ r(x)− γ ∀x ∈ S \B .

The γ-fat-shattering dimension fatF(γ) of F is the largest number of points in X that can be
γ-shattered by F . We define fatF (γ) :=∞ if every finite set of points can be γ-shattered.

Restricting to the world of [0, 1]-valued functions,∗ Alon, Ben-David, Cesa-Bianchi, and Haus-
sler (1997) demonstrate the equivalence between finite fat-shattering dimension and the uniform
convergence property, showing the crucial role of scale-sensitivity in the complexity measure of the
hypothesis class; this equivalence is known for the realizable setting too (Shalev-Shwartz, Shamir,
Srebro, and Sridharan, 2010). The fat-shattering dimension has been shown to characterize even
agnostic PAC learnability with respect to the absolute loss ℓ(y, y′) = |y − y′| (Bartlett, Long, and
Williamson, 1996, Bartlett and Long, 1998) and the square loss ℓ(y, y′) = (y − y′)2 (Alon et al.,
1997). Nonetheless, the landscape of learnability for real-valued function classes in the realizable
setting is fundamentally different compared to the binary case (Shalev-Shwartz et al., 2010); e.g., see
Attias, Hanneke, Kalavasis, Karbasi, and Velegkas (2023) for a detailed overview and recent results.

While not equivalent under realizability (Attias et al., 2023, Example 1), uniform convergence
remains a sufficient condition for the PAC learnability via any ERM algorithm. It thus remains an
important problem to study the sample complexity mF(ε, δ) for classes with finite fat-shattering
dimension. The best bounds known so far exhibit a spurious polylogarithmic factor in the upper
bound, contrarily to analogous bounds in the VC dimension or in the pseudodimension. In the
upcoming Chapter 8, we address this problem by deriving improved bounds on the sample complexity
of uniform convergence.

∗Similar results are known for real-valued function classes with any finite range.
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Chapter 8

An Improved Uniform Convergence
Bound with Fat-Shattering Dimension

The fat-shattering dimension characterizes the uniform convergence property of real-valued function
classes. The state-of-the-art upper bounds on the sample complexity (Bartlett and Long, 1995)
feature a multiplicative squared logarithmic factor in the accuracy, leaving an open gap with the
existing lower bound. In this chapter, by relying on a refined packing number bound by Rudelson
and Vershynin (2006), we provide an improved uniform convergence bound that closes this gap.

8.1 Introduction

We first recall the definition of uniform convergence. Given a class of real-valued functions F ⊂ RX

with domain X , it is said that F enjoys the uniform convergence property if, for any X -valued i.i.d.
process X,X1, X2, . . . , the sequence of empirical means 1

m

∑m
i=1 f(Xi) converges in probability to

its expectation E [f(X)], uniformly over any f ∈ F . Formally, F enjoys the uniform convergence
property if, for every ε, δ > 0, there exists m̂F := m̂F(ε, δ) ∈ N such that, for every m ≥ m̂F and
every X -valued i.i.d. process X,X1, X2, . . . , it holds that

P

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

f(Xi)− E [f(X)]

∣∣∣∣∣ > ε

)
≤ δ .

Among all the functions m̂F for which the previous property holds, the smallest of them (pointwise
in ε, δ), namely m∗

F , is called the sample complexity for the uniform convergence of F .
Uniform convergence is a fundamental tool in learning theory as argued in Chapter 7. Indeed, we

can learn any class of functions F that enjoys uniform convergence via empirical risk minimization.
Besides learnability, uniform convergence has notable practical applications. In particular, whenever
F enjoys uniform convergence, we can estimate the risk of any model in F by computing its empirical
risk over the same dataset used to select the model, an aspect that can be especially useful when the
model is selected via (heuristic) approximations of algorithms featuring theoretical guarantees. In
all these applications, it is crucial to have sharp estimates of the sample complexity m∗

F .
A large body of work has focused on identifying conditions implying uniform convergence (Vapnik

and Chervonenkis, 1971, Pollard, 1986, Ben-David, Cesa-Bianchi, and Long, 1992, Alon et al.,
1997, Bartlett and Long, 1998). In particular, Alon et al. (1997) showed that the fat-shattering
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dimension—introduced by Kearns and Schapire (1994)—characterizes the uniform convergence
property for real-valued functions. However, state-of-the-art estimates on the sample complexity
m∗

F for the uniform convergence (Bartlett and Long, 1995) have an accuracy gap of order ln2(1/ε)

when compared to the corresponding lower bound for the special case of binary functions (Vapnik
and Chervonenkis, 1971). These bounds are extensively used in the current literature (see, e.g.,
Attias, Kontorovich, and Mansour (2022), Attias and Hanneke (2023), Belkin (2018), Hu, Peale, and
Reingold (2022)) and, regrettably, have not been improved ever since.

In this chapter, we close this gap by removing the exogenous ln2(1/ε) factor. Our improvement
builds upon a carefully designed chaining argument leveraging sharp estimates (up to constants) for
the metric entropy based on the fat-shattering dimension (Rudelson and Vershynin, 2006).

8.2 Preliminaries

Throughout the current chapter we use the following specific notation. For any m ∈ N and
any p ∈ [1,∞], we let dp : Rm × Rm → [0,∞) be the metric defined, for any g, h ∈ Rm, by
dp(g, h) :=

(
1
m

∑m
i=1 |g(i)− h(i)|p

)1/p if p < ∞, and by dp(g, h) := maxi∈[m] |g(i) − h(i)| if p = ∞.
If (X , d) is a metric space, ε > 0 and x ∈ X , the closed ball of radius ε centered at x is denoted by
Bε(x) := {y ∈ X : d(x, y) ≤ ε}. In this case, for any ε > 0 and any X̃ ⊂ X , we recall that X̃ is said
to be an ε-net if X ⊂

⋃
x∈X̃ Bε(x), while X̃ is said to be an ε-separated set if d(x1, x2) > ε for any

two distinct points x1, x2 ∈ X̃ . The ε-packing number P
(
X , d, ε

)
of the metric space (X , d) is the

maximum number of elements of any ε-separated set, whenever this maximum exists; otherwise,
we set it to ∞. For any n ∈ N+, if A1, . . . , An are non-empty subsets of some vector space V , we
denote their Minkowski sum using the notation A1 + · · ·+An := {v1 + · · ·+ vn : ∀i ∈ [n], vi ∈ Ai}.
We recall that a Rademacher random variable (with respect to some underlying probability measure
P) is any random variable Z such that P(Z = 1) = 1/2 = P(Z = −1).

8.3 The Uniform Convergence Bound

In this section we present our result, which improves on state-of-the-art bounds based on the fat-
shattering dimension, and whose proof is deferred to Section 8.5. We start by recalling that we defined
the fat-shattering dimension (Definition 7.8) fatF (γ) as the maximum number of elements that are
γ-shattered by F , when this maximum exists; otherwise, we set fatF(γ) =∞. The fat-shattering
dimension is a scale-sensitive generalization to real-valued functions of the classical VC dimension
for binary functions. It is well known (Alon et al., 1997) that the finiteness of the fat-shattering
dimension for a class of functions F characterizes the uniform convergence of F .

We are now ready to state our main theorem for classes of functions with bounded range.

Theorem 8.1. There exists a universal constant C > 0 such that the following holds. For any a < b,
any F ⊂ [a, b]X ,∗ and any probability measure P, if X,X1, X2, . . . is a P-i.i.d. X -valued sequence

∗To avoid measurability pathologies (see Ben-David (2015)), and for the sake of simplicity, we carry out the proof
under the further assumption that the class F is countable. This assumption can be greatly relaxed (Alon et al., 1997)
relying on measurability conditions such as the “image admissible Suslin” property (Dudley, 1984, Section 10.3.1,
page 101). For further discussion on some well-behavedness conditions, see, e.g., Blumer, Ehrenfeucht, Haussler, and
Warmuth (1989).
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of random variables, then, for every ε > 0 satisfying fatF(ε/32) < ∞, every δ ∈ (0, 1), and every
m ∈ N satisfying

m ≥ C · (b− a)
2

ε2

(
fatF (ε/32) + ln

1

δ

)
, (8.1)

we have that, with probability at least 1− δ,

sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

f(Xi)− E [f(X)]

∣∣∣∣∣ ≤ ε .
Before presenting a proof of Theorem 8.1, some remarks are in order. The best previously known

bound on the sample complexity of the uniform convergence of [a, b]-valued functions was of the
order of

(b− a)2

ε2

(
fatF (ε/5) ln

2

(
b− a
ε

)
+ ln

1

δ

)
; (8.2)

see Theorem 9, Eq. (5) in Bartlett and Long (1995).† The bound of Equation (8.1) improves on
Equation (8.2) by removing the extra ln2

(
(b− a)/ε

)
factor whenever fatF (γ) is at most of the order(

(b− a)/γ
)α for some constant α ≥ 0, which is typical. Indeed, this is the case for linear separators

in Hilbert spaces (Mendelson and Schechtman, 2004, Attias and Kontorovich, 2024), polyhedra
in Euclidean spaces with finitely many facets and margin (Gottlieb, Kaufman, Kontorovich, and
Nivasch, 2022), general Lipschitz functions in bounded metric spaces with finite doubling dimension
(Gottlieb, Kontorovich, and Krauthgamer, 2014), uniform Donsker classes of bounded functions
(Rudelson and Vershynin, 2006, Theorem 1.1), and many types of finite aggregations of such classes
(Attias and Kontorovich, 2024). However, when fatF(γ) grows as exp(1/γ), then the bound of
Equation (8.1) is worse than that of Equation (8.2). Nevertheless, to our knowledge, there are no
notable examples in learning theory that achieve this growth rate.

On the one hand, our bound is optimal as for the dependence on ε and δ. Indeed, if F ⊂ {0, 1}X

and ε < 16, then fatF(ε/32) = VC(F). In this case, it is well known that to ensure uniform
convergence, at least order of ε−2(VC(F) + ln(1/δ)) samples are required. On the other hand, it
shows a worse dependence on the constant factor in the scale of the fat-shattering dimension, which
we did not attempt to optimize. It is thus an interesting question whether our analysis could be
further refined to improve said constant; we leave this task to future work.

Our proof does not rely on discretizing the range [a, b] as was done in previous work (Bartlett
and Long, 1995, Alon et al., 1997). We avoid this use of discretization by relying on a technical
lemma (Lemma 8.3) and the breakthrough result of Rudelson and Vershynin (2006), which bounds
directly the packing number of certain metric spaces of functions in terms of a quantity depending
on the fat-shattering dimension. We further note that an alternative route one might consider goes
through Dudley’s entropy integral and an application of the metric entropy bound due to Mendelson
and Schechtman (2004). It is unclear whether this approach may lead to a better constant in the
scale of the fat-shattering dimension, as the bound in Mendelson and Schechtman (2004) leaves it
unspecified. We leave the interesting question of finding better constants as an open problem.

Finally, we emphasize that, while our result is the first sample complexity bound with finite
fat-shattering dimension that removes the spurious polylogarithmic factor in the accuracy to the

†The original bound was stated for [0, 1]-valued functions, but with a straightforward adaptation of the proof, it
can be extended to [a, b]-valued functions while preserving the scale of the fat-shattering dimension.
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best of our knowledge, a bound on the empirical Rademacher complexity of function classes with
finite fat-shattering dimension via Dudley’s integral is known (e.g., see Rakhlin and Sridharan (2014,
Corollary 12.8)) to take the form

Rm(F ;x) := Eσ

[
sup
f∈F

1

m

m∑
i=1

σif(xi)

]
≤ inf

α≥0

{
4α+

12√
m

∫ 1

α

√
c1fatF (c2β) ln

2

β
dβ

}
,

where x = (x1, . . . , xm) ∈ Xm is a collection of m arbitrary points in X , σ = (σ1, . . . , σm) is
a vector of m i.i.d. Rademacher random variables, and c1, c2 > 0 are absolute constants. This
quantity is tightly related to the quantities that we introduce in our proofs, but the above inequality
alone can only provide a guarantee on supx∈Xm Rm(F ;x), whereas here we are interested in the
uniform convergence property of F . Anyhow, the notion of empirical Rademacher complexity can be
leveraged to derive such bounds, and this further supports the intuition that analyzing the sample
complexity through the Rademacher complexity bound via Dudley’s integral might help in improving
the constants in our bound, depending on how c1 and c2 can be quantified.

8.4 Auxiliary Results

The proof follows the pattern of chaining techniques (Talagrand, 1994) and, for the sake of clarity, it
is provided here with the aid of a sequence of technical lemmas. In all the lemmas in the current
section, consider F ,P, a, b, ε, δ, and the sequence X,X1, X2, . . . , to be defined as in the statement of
Theorem 8.1. Also, fix m ∈ N+.

The first tool we introduce is a symmetrization lemma, which can be proved along the lines of
the corresponding symmetrization lemma for [0, 1]-valued functions; the latter is provided, e.g., by
Bartlett and Long (1995, Lemma 10).

Lemma 8.1 (Symmetrization). If m ≥ 4 ln(2) ·
(
(b− a)/ε

)2, then

P

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ > ε

)
≤ 2 · P

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

(
f(Xi)− f(Xm+i)

)∣∣∣∣∣ > ε

2

)
.

The importance of symmetrization lies in bounding the probability of the desired event from
above in terms of the probability of a similar event based on two i.i.d. samples of same size m. To
give some vague intuition, this is performed by essentially replacing the true mean with the empirical
mean over the second sample; in a way, we use the latter quantity as an estimate of the former.

The second tool we require is a permutation lemma, which can be proved following the lines of
the corresponding permutation lemma found, e.g., in Anthony and Bartlett (1999, Lemma 4.5). Its
usefulness consists of removing any dependence on the unknown probability distribution of the i.i.d.
process X1, X2, . . . , by focusing instead on rescaled i.i.d. Rademacher random variables.

Lemma 8.2 (Permutation lemma). Let Z1, . . . , Zm be a family of P-independent Rademacher random
variables. Then,

P

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

(
f(Xi)− f(Xm+i)

)∣∣∣∣∣ > ε

2

)
≤ sup

x1,...,x2m∈X
P

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

Zi
(
f(xi)− f(xm+i)

)∣∣∣∣∣ > ε

2

)
.
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In the light of the previous two lemmas, it will be sufficient to estimate the last probability
involving the supremum of linear combinations of Rademacher random variables. Luckily enough,
the latter has been thoroughly studied in the literature, and there is a plethora of concentration
bounds involving this kind of random variables. Most notable is Hoeffding’s inequality (Hoeffding,
1963), which we indeed employ later on.

From here onwards, we fix a sequence Z1, . . . , Zm of P-i.i.d. Rademacher random variables. For
each vector x := (x1, . . . , x2m) ∈ X 2m, define the family

F(x) :=
{(
f(xi)

)
i∈[2m]

: f ∈ F
}

of vectors in R2m that represent the restrictions of the functions in F to the sample x. To be more
explicit, for any f ∈ F there is some ϕ ∈ F(x) such that ϕ(i) = f(xi) for all i ∈ [2m].

For each x ∈ X 2m, we fix an ε/8-separated ε/8-net Fε(x) of the metric space
(
F(x), d2

)
. These

sets can be built following an iterative procedure where, at each step, we add another element whose
distance from any already selected element is greater than ε/8. This procedure terminates after at
most P

(
F(x), d2, ε/8

)
steps, and we note explicitly that P

(
F(x), d2, ε/8

)
<∞ as a consequence of

a subsequent technical result (see Lemma 8.6). When this procedure stops, every element of F(x) is
within ε/8 distance from some element in Fε(x).

The next ingredient is a lemma whose purpose is to reduce the problem of bounding the supremum
over the whole family F to another problem where the supremum is taken with respect to the
ε/8-separated set Fε(x), over which we plan to implement a chaining procedure. We explicitly note
that, to prove the following result, the sole property of Fε(x) we use is that it is an ε/8-net of the
metric space

(
F(x), d2

)
.

Lemma 8.3. Given that Fε(x) is an ε/8-net of (F(x), d2) for any x ∈ X 2m, it holds that

sup
(x1,...,x2m)∈X 2m

P

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

Zi
(
f(xi)− f(xm+i)

)∣∣∣∣∣ > ε

2

)

≤ sup
x∈X 2m

P

(
sup

ϕ∈Fε(x)

∣∣∣∣∣ 1m
m∑
i=1

Zi
(
ϕ(i)− ϕ(m+ i)

)∣∣∣∣∣ > ε

4

)
.

Proof. For each sample x := (x1, . . . , x2m) ∈ X 2m and each vector ξ := (ξ1, . . . , ξm) ∈ {−1, 1}m,
select ϕx,ξ ∈ F(x) such that ∣∣∣∣∣ 1m

m∑
i=1

ξi
(
ϕx,ξ(i)− ϕx,ξ(m+ i)

)∣∣∣∣∣ > ε/2

whenever it is feasible to do so, otherwise select ϕx,ξ ∈ F(x) arbitrarily. Notice that, if it holds that

sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

ξi
(
f(xi)− f(xm+i)

)∣∣∣∣∣ > ε/2

then also ∣∣∣∣∣ 1m
m∑
i=1

ξi
(
ϕx,ξ(i)− ϕx,ξ(m+ i)

)∣∣∣∣∣ > ε/2

85



8. An Improved Uniform Convergence Bound with Fat-Shattering Dimension

holds, and vice versa.

For each x ∈ X 2m and each ξ ∈ {−1, 1}m, let φεx,ξ ∈ Fε(x) be such that

d2(ϕx,ξ, φ
ε
x,ξ) ≤

ε

8
. (8.3)

Then, for each x := (x1, . . . , x2m) ∈ X 2m we have

P

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

Zi
(
f(xi)− f(xm+i)

)∣∣∣∣∣ > ε

2

)

=
1

2m

∑
ξ∈{−1,1}m

I

{
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

ξi
(
f(xi)− f(xm+i)

)∣∣∣∣∣ > ε

2

}

=
1

2m

∑
ξ∈{−1,1}m

I

{∣∣∣∣∣ 1m
m∑
i=1

ξi
(
ϕx,ξ(i)− ϕx,ξ(m+ i)

)∣∣∣∣∣ > ε

2

}

≤ 1

2m

∑
ξ∈{−1,1}m

I

{∣∣∣∣∣ 1m
m∑
i=1

ξi
(
φεx,ξ(i)− φεx,ξ(m+ i)

)∣∣∣∣∣ > ε

4

}
+

1

2m

∑
ξ∈{−1,1}m

I
{
d1(ϕx,ξ, φ

ε
x,ξ) >

ε

8

}

≤ 1

2m

∑
ξ∈{−1,1}m

I

{∣∣∣∣∣ 1m
m∑
i=1

ξi
(
φεx,ξ(i)− φεx,ξ(m+ i)

)∣∣∣∣∣ > ε

4

}
+

1

2m

∑
ξ∈{−1,1}m

I
{
d2(ϕx,ξ, φ

ε
x,ξ) >

ε

8

}

=
1

2m

∑
ξ∈{−1,1}m

I

{∣∣∣∣∣ 1m
m∑
i=1

ξi
(
φεx,ξ(i)− φεx,ξ(m+ i)

)∣∣∣∣∣ > ε

4

}

≤ 1

2m

∑
ξ∈{−1,1}m

I

{
sup

ϕ∈Fε(x)

∣∣∣∣∣ 1m
m∑
i=1

ξi
(
ϕ(i)− ϕ(m+ i)

)∣∣∣∣∣ > ε

4

}

= P

(
sup

ϕ∈Fε(x)

∣∣∣∣∣ 1m
m∑
i=1

Zi
(
ϕ(i)− ϕ(m+ i)

)∣∣∣∣∣ > ε

4

)
,

where the second equality follows by definition of ϕx,ξ, the second inequality follows from the fact
that d1(x,y) ≤ d2(x,y) for all vectors x,y ∈ R2m, and the third equality holds by definition of φεx,ξ
and the fact that Fε(x) is an ε/8-net.

Leveraging Hoeffding’s inequality (Hoeffding, 1963), we can prove the following lemma, which
can be viewed as a multi-scale concentration inequality.

Lemma 8.4. Let L ∈ N. Consider ε0, . . . , εL > 0 such that
∑L

j=0 εj ≤ ε/4. For each x ∈ X 2m, let
H̃0(x), . . . , H̃L(x) ⊂ Fε(x) such that Fε(x) ⊂ H̃0(x) + · · ·+ H̃L(x). Then,

sup
x∈X 2m

P

(
sup

ϕ∈Fε(x)

∣∣∣∣∣ 1m
m∑
i=1

Zi
(
ϕ(i)− ϕ(m+ i)

)∣∣∣∣∣ > ε

4

)

≤ 2
L∑
j=0

sup
x∈X 2m

∑
h∈H̃j(x)

exp

(
−

ε2jm
2

2
∑m

i=1

(
h(i)− h(m+ i)

)2
)
.

Proof. Fix x := (x1, . . . , x2m) ∈ X 2m. For each ϕ ∈ Fε(x), since Fε(x) ⊂ H̃0(x) + · · ·+ H̃L(x), we
can (and do) select hϕ0 ∈ H̃0(x), . . . , h

ϕ
L ∈ H̃L(x) such that ϕ = hϕ0 + · · ·+ hϕL. Furthermore, notice
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that for each (ξ1, . . . , ξm) ∈ {−1, 1}m it holds{
sup

ϕ∈Fε(x)

∣∣∣∣∣ 1m
m∑
i=1

ξi
(
ϕ(i)− ϕ(m+ i)

)∣∣∣∣∣ > ε

4

}
⊂

L⋃
j=0

{
sup

ϕ∈Fε(x)

∣∣∣∣∣ 1m
m∑
i=1

ξi
(
hϕj (i)− h

ϕ
j (m+ i)

)∣∣∣∣∣ > εj

}
.

It follows that

P

(
sup

ϕ∈Fε(x)

∣∣∣∣∣ 1m
m∑
i=1

Zi
(
ϕ(i)− ϕ(m+ i)

)∣∣∣∣∣ > ε

4

)

=
1

2m

∑
ξ∈{−1,1}m

I

{
sup

ϕ∈Fε(x)

∣∣∣∣∣ 1m
m∑
i=1

ξi
(
ϕ(i)− ϕ(m+ i)

)∣∣∣∣∣ > ε

4

}

≤
L∑
j=0

1

2m

∑
ξ∈{−1,1}m

I

{
sup

ϕ∈Fε(x)

∣∣∣∣∣ 1m
m∑
i=1

ξi
(
hϕj (i)− h

ϕ
j (m+ i)

)∣∣∣∣∣ > εj

}

≤
L∑
j=0

1

2m

∑
ξ∈{−1,1}m

I

{
sup

h∈H̃j(x)

∣∣∣∣∣ 1m
m∑
i=1

ξi
(
h(i)− h(m+ i)

)∣∣∣∣∣ > εj

}

≤
L∑
j=0

∑
h∈H̃j(x)

1

2m

∑
ξ∈{−1,1}m

I

{∣∣∣∣∣ 1m
m∑
i=1

ξi
(
h(i)− h(m+ i)

)∣∣∣∣∣ > εj

}

=
L∑
j=0

∑
h∈H̃j(x)

P

(∣∣∣∣∣ 1m
m∑
i=1

Zi
(
h(i)− h(m+ i)

)∣∣∣∣∣ > εj

)
=: (⋆) .

Now, for each j ∈ {0, 1, . . . , L}, and each h ∈ H̃j(x), the sequence
(
W h
i (x)

)
i∈[m]

is a sequence of
bounded zero-mean independent random variables

W h
i (x) := Zi

(
h(i)− h(m+ i)

)
∀i ∈ [m] .

More precisely, we notice that for each i ∈ [m] it holds that

−|h(i)− h(m+ i)| ≤W h
i (x) ≤ |h(i)− h(m+ i)| .

By Hoeffding’s inequality (Hoeffding, 1963), we obtain

(⋆) ≤ 2
L∑
j=0

∑
h∈H̃j(x)

exp

(
−

ε2jm
2

2
∑m

i=1

(
h(i)− h(m+ i)

)2
)
.

Taking the supremum over x ∈ X 2m on the first and the last term of this chain of inequalities, and
switching said supremum with the sum over j ∈ {0, . . . , L} on the last expression, we conclude the
proof.

Now, for each x ∈ X 2m, we need to build a suitable sequence H̃0(x), . . . , H̃L(x) to which we
want to apply Lemma 8.4. Our choice for such a sequence follows a standard chaining argument
(Talagrand, 1994). From now on, we fix l := ⌊log2

(
(b− a)/ε

)
⌋+ 4 and, for each x ∈ X 2m, we define

by induction over j ∈ {0, 1, . . . , l} the sets G0(x), . . . ,Gl(x) ⊂ Fε(x) in the following way:
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• G0(x) := {g0}, for an arbitrary choice of g0 ∈ Fε(x).

• For any j ∈ [l], we initially define Gj(x) := Gj−1(x). Then, iteratively, we add elements
ϕ ∈ Fε(x) to Gj(x) for which d2(ϕ, g) > (b− a) · 2−j for every other element g already in Gj(x).
The procedure is carried out until we can no longer add other elements.‡

Notice that, by construction, for each x ∈ X 2m and each j ∈ {0, 1, . . . , l}, the set Gj(x) is a (b−a)·2−j-
net and (b−a) ·2−j-separated set of

(
Fε(x), d2

)
, which implies that, for any ϕ ∈ Fε(x), there exists—

and hence we can and do select—an element πj(ϕ) ∈ Gj(x) such that d2
(
ϕ, πj(ϕ)

)
≤ (b− a) · 2−j .

For each x ∈ X 2m, we finally define

H0(x) := G0(x) ,

Hj(x) :=
{
g − πj−1(g) : g ∈ Gj(x)

}
, ∀j ∈ [l] . (8.4)

The relevant properties of this sequence of sets are summarized by the following lemma.

Lemma 8.5. For any x ∈ X 2m, consider H0(x), . . . ,Hl(x) defined as in (8.4). It holds that

1. Fε(x) ⊂ H0(x) + · · ·+Hl(x) ;

2. ∀j ∈ {0, . . . , l}, ∀h ∈ Hj(x),
∑m

i=1

(
h(i)− h(m+ i)

)2 ≤ 16m(b− a)24−j ;

3. ∀j ∈ {0, . . . , l}, |Hj(x)| ≤ P
(
Fε(x), d2, (b− a) · 2−j

)
.

Proof. Fix an arbitrary x ∈ X 2m. First, we prove that Fε(x) = Gl(x). We know that Gl(x) ⊂ Fε(x)
by construction. Consider now any ϕ ∈ Fε(x). By our choice of l, we have that

d2(ϕ, πl(ϕ)) ≤ (b− a) · 2−l ≤ ε

8
.

If ϕ ̸= πl(ϕ) were true then we would have that d2(ϕ, πl(ϕ)) > ε/8 because Fε(x) is an ε/8-separated
set, which is a contradiction. Then, it must hold that ϕ = πl(ϕ) and thus Fε(x) ⊂ Gl(x).

Second, for each j ∈ {0, . . . , l} and each g ∈ Gj(x), we prove that there exist h0 ∈ H0(x), . . . , hj ∈
Hj(x) such that g =

∑j
k=0 hk. We prove this claim by induction over j ∈ {0, 1, . . . , l}. The base

case j = 0 is trivial. Assuming the claim holds for j < l and that g ∈ Gj+1(x), we have that
πj(g) =

∑j
k=0 hk for some h0 ∈ H0(x), . . . , hj ∈ Hj(x) by the inductive hypothesis, and thus

g = (g − πj(g)) + πj(g) =
∑j+1

k=0 hk for hj+1 := g − πj(g) ∈ Hj+1(x), hence proving the claim.
The above property for the specific case of j = l implies that Fε(x) = Gl(x) ⊂ H0(x)+ · · ·+Hl(x).

This shows that the first point in the statement holds.
Consider now any j ∈ [l] and any h ∈ Hj(x). By definition of h, there exists some g ∈ Gj(x)

such that h = g − πj−1(g). Then,

m∑
i=1

(
h(i)− h(m+ i)

)2 ≤ 2

2m∑
i=1

h(i)2 = 4m · d2(g, πj−1(g))
2

≤ 4m(b− a)2 · 2−2(j−1) = 16m(b− a)2 · 4−j .

‡Note that this process has to terminate, since |Fε(x)| ≤ P
(
F(x), d2, ε/8

)
< ∞, as a consequence of Lemma 8.6.
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On the other hand, for the case j = 0 we have that

m∑
i=1

(
g0(i)− g0(m+ i)

)2 ≤ m(b− a)2 ,

thus proving the second point of the statement.

Finally, noting that the map πj : Gj(x)→ Hj(x) is a surjective map for each j ∈ {0, 1, . . . , l}, we
have that |Hj(x)| ≤ |Gj(x)|, which, together with the fact that Gj(x) is a (b− a) · 2−j-separated set
of
(
Fε(x), d2

)
, yields the third point of the statement.

The last ingredient to prove the main theorem is the following lemma, which is an immediate
corollary of Rudelson and Vershynin (2006, Corollary 5.4), observing that the metric d2 is the natural
metric on L2(µ) when the underlying measure µ is the uniform probability measure on the set [m].

Lemma 8.6. There exists a universal constant C̃ > 0 for which the following holds. For any
x ∈ X 2m and any 0 < ζ < (b− a)/2 such that fatF (ζ/2) <∞,

P(F(x), d2, ζ) ≤
(
2(b− a)

ζ

)C̃fatF (ζ/2)

.

Proof. Let C̃, c̃ be universal constants as in Rudelson and Vershynin (2006, Corollary 5.4). Define
F ′(x) := {(ϕ− a)/(b− a) : ϕ ∈ F(x)} and ζ ′ := ζ/(b− a) ∈ (0, 1/2). A direct computation shows
that fatF ′(x)

(
c̃ζ ′
)
= fatF(x)

(
c̃ζ
)

and P(F ′(x), d2, ζ
′) = P(F(x), d2, ζ). Now, further observing that

F ′(x) is 1-bounded in d∞ since F(x) + {−a} is (b− a)-bounded in d∞, we may apply Rudelson and
Vershynin (2006, Corollary 5.4) to F ′(x) with ζ ′ to infer that

P(F(x), d2, ζ) = P(F ′(x), d2, ζ
′) ≤

(
1

c̃ζ ′

)C̃fatF′(x)(c̃ζ
′)

=

(
b− a
c̃ζ

)C̃fatF(x)(c̃ζ)

.

Finally, we arrive at the conclusion by observing that fatF(x)(c̃ζ) ≤ fatF (c̃ζ) and that, in our specific
case, Rudelson and Vershynin (2006, Corollary 5.4) holds with the choice c̃ := 1/2.

8.5 Proof of the Main Result

We are now ready to present the proof of our main result, that is, the uniform convergence bound in
Theorem 8.1. In this proof, each of the technical results from the previous section has a relevant role.

Proof of Theorem 8.1. We may assume that ε < b− a without loss of generality, since otherwise

P

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

f(Xi)− E [f(X)]

∣∣∣∣∣ ≤ ε
)

= 1 .

Pick C̃ as the universal constant whose existence is stated in Lemma 8.6. Let κ := fatF(ε/32)

and R := b − a. Furthermore, define cj := 1
44

√
42−j(j + 1) and ρj := min

{
2−(j+1), 1/8

}
for each

j ∈ {0, 1, . . . , l}. Then, by carefully combining the technical lemmas introduced thus far, we have
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that

P

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

f(Xi)− E [f(X)]

∣∣∣∣∣ > ε

)
(a)

≤ 2P

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

(f(Xi)− f(Xm+i))

∣∣∣∣∣ > ε

2

)
(b)

≤ 2 sup
(x1,...,x2m)∈X 2m

P

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

Zi(f(xi)− f(xm+i))

∣∣∣∣∣ > ε

2

)
(c)

≤ 2 sup
x∈X 2m

P

(
sup

ϕ∈Fε(x)

∣∣∣∣∣ 1m
m∑
i=1

Zi(ϕ(i)− ϕ(m+ i))

∣∣∣∣∣ > ε

4

)
(d)

≤ 4
l∑

j=0

sup
x∈X 2m

∑
h∈Hj(x)

exp

(
−

ε2c2jm
2

2
∑m

i=1

(
h(i)− h(m+ i)

)2
)

(e)

≤ 4
l∑

j=0

sup
x∈X 2m

|Hj(x)| exp

(
−
4jε2c2jm

32R2

)
(f)

≤ 4
l∑

j=0

sup
x∈X 2m

P
(
F(x), d2, 2−jR

)
exp

(
−
4jε2c2jm

32R2

)
(g)

≤ 4

l∑
j=0

ρ
−C̃fatF (ρjR)
j · exp

(
−
4jε2c2jm

32R2

)
(h)

≤ 4 · 8C̃κ
l∑

j=0

exp

(
j · C̃κ ln(2)−

4jε2c2jm

32R2

)
(i)
= 4 · 8C̃κ · exp

(
− ε2m

2 · 442R2

) l∑
j=0

exp

(
j
(
C̃κ ln(2)− ε2m

2 · 442R2

))
(j)

≤ 8C̃κ+1 · exp
(
− ε2m

2 · 442R2

)
, (8.5)

where the marked inequalities respectively follow as explained (in order) by the following points:

(a) By Lemma 8.1, assuming m ≥ 4 ln(2) · (R/ε)2.

(b) By Lemma 8.2, in the light of the fact that Z1, . . . , Zm is a family of P-independent Rademacher
random variables.

(c) By Lemma 8.3.

(d) By Lemma 8.4 with the choice L := l, for each j ∈ {0, 1, . . . , l}, H̃j(x) := Hj(x) and εj := cjε.
Note that the assumptions of Lemma 8.4 are satisfied as a consequence of the first point of
Lemma 8.5, and the fact that

∑l
j=0 cj ≤ 1/4.

(e) By the second point in Lemma 8.5.

(f) By the third point in Lemma 8.5 and the fact that P
(
Fε(x), d2, 2−jR

)
≤ P

(
F(x), d2, 2−jR

)
.

(g) By Lemma 8.6. Specifically, if j ≥ 2, we set ζ := R · 2−j (and upper bound). Instead, if
j ∈ {0, 1}, we first bound P

(
F(x), d2, 2−jR

)
from above with P (F(x), d2, R/4), then apply

the lemma setting ζ := R/4 (and upper bound again).
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(h) By the fact that the function γ 7→ fatF (γ) is monotonically non-increasing, and ρl = 2−(l+1) ≥
ε/(32R) because l = ⌊log2

(
R/ε

)
⌋+ 4.

(i) By our choice of c0, . . . , cl.

(j) Assuming m ≥ 2 · 442 ln(2) · (R/ε)2 ·
(
C̃κ+ 1

)
.

Finally, observe that the right-hand side of Equation (8.5) is at most δ for

m ≥ 2 · 442 ·R2

ε2

((
C̃κ+ 1

)
ln(8) + ln

1

δ

)
. (8.6)

Therefore, for a sufficiently large universal constant C > 0 in the statement of the theorem, we
see that any value of m that satisfies Equation (8.1) suffices to guarantee Equation (8.6) and the
assumptions in items (a) and (j), concluding the proof.
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Chapter 9

A Theory of Interpretable
Approximations

The growing demand for machine learning models that are interpretable by humans has become more
prominent in recent years. In this chapter, we study such questions by introducing interpretable
approximations, a notion that captures the idea of approximating a target concept c by a small
aggregation of concepts from some base class H. In particular, we consider the approximation of a
binary concept c by decision trees based on a simple class H (e.g., of bounded VC dimension), and
use the tree depth as a measure of complexity. Our primary contribution is a remarkable trichotomy
for any pair of H and c: either c cannot be approximated by H, or c can be approximated by H
but without any universal complexity rate, or else c can be approximated by H with a complexity
bounded from above by a constant, for any data distribution and any desired accuracy, which
depends only on H and c. This taxonomy stands in stark contrast to the landscape of supervised
classification, which offers a complex array of distribution-free and universally learnable scenarios. We
show that, in the case of interpretable approximations, even a slightly nontrivial a-priori guarantee
on the complexity of approximations implies approximations with constant (distribution-free and
accuracy-free) complexity. We extend our trichotomy to classes H of unbounded VC dimension and
give characterizations of interpretability based on the algebra generated by H.

9.1 Introduction

Many machine learning techniques, such as deep neural networks, produce large and complex models
whose inner workings are difficult to grasp. In sectors such as healthcare and law enforcement, where
the stakes of automated decisions are high, this is a serious problem: complex models make it hard
to explain the rationale behind an outcome, or why two similar inputs produce different outcomes.
In those cases, interpretable models may become the preferred choice. Although there is an ongoing
debate around the notion of interpretability (Erasmus, Brunet, and Fisher, 2021), decision trees are
typically considered as the quintessential example of interpretable models (Molnar, 2022): ones that
favor a transparent decision-making process, and that allow users to understand how individual
features influence predictions. A line of research in this area studies the extent to which small
decision trees can approximate some specific learning models, such as neural networks (Craven
and Shavlik, 1995) and k-means classifiers (Dasgupta, Frost, Moshkovitz, and Rashtchian, 2020).
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Inspired by these results, we develop a general theory of interpretability viewed as approximability
via simple decision trees. Our guiding principle can be summarized as follows.

Interpretable approximations = Small aggregations of simple hypotheses

In analogy with PAC learning, we focus on binary classification tasks and view a classifier (e.g.,
a neural network) as a concept c ⊆ X , where X is the data domain. Now let H ⊆ 2X be a family
of simple hypotheses, for instance decision stumps or halfspaces. Our goal is to understand how
well c can be approximated by aggregating a small set of elements in H. To formalize this goal in
the language of decision trees we introduce two notions. First, we say that c is approximable by H if,
under any given data distribution, there exists a finite decision tree using splitting functions from H
that approximates c arbitrarily well. Moreover, if the approximation can be always achieved using a
shallow tree, we say that c is interpretable by H. It is easy to see that, depending on c and H, one
may have interpretability, approximability but not interpretability, or even non-approximability. In
Section 9.4, we give explicit examples of pairs (c,H) for each one of the three above cases.

Note that in this initial investigation of the general structure of interpretable approximations we
focus on the fundamental question of what conditions ensure the existence of accurate approximations
and interpretations. Important topics, such as the informational or computational complexity of
obtaining accurate interpretations, are not addressed in this chapter. Note also that we do not make
any specific assumption on the data distribution P . Our approach is thus in line with standard notions
and theories in machine learning—e.g., universal Bayes consistency (Devroye, Györfi, and Lugosi,
2013), PAC learnability (Shalev-Shwartz and Ben-David, 2014), and universal learnability (Bousquet,
Hanneke, Moran, van Handel, and Yehudayoff, 2021)—as it encompasses both distribution-free and
distribution-dependent guarantees.

While our primary focus is not algorithmic, our results reveal profound connections within
the algorithmic framework of boosting. Indeed, there is a clear relationship between boosting,
which involves the aggregation of weak hypotheses to learn a target concept, and interpretable
approximation, which concerns the aggregation of simple hypotheses to approximate a target concept.
However, our findings uncovers and exploits deeper links at a technical level. In particular, our
general construction that gives decision trees whose depth depends logarithmically on the accuracy is
based on boosting decision trees, and its analysis uses potential functions from this line of work. Our
improved bound for the case of VC classes, which provides approximating decision trees with constant
(accuracy- and distribution-free) depth, is somewhat more subtle; it is also based on a boosting
perspective, this time using majority-vote based algorithms and Von Neumann’s minimax theorem.
However, to eliminate the dependency on the accuracy, we utilize tools from VC theory, particularly
uniform convergence (which we have already defined in Chapter 7 and further investigated for
real-valued function classes in Chapter 8).

9.1.1 Contributions

Here we provide a summary of the contributions contained in the current chapter.

Degrees of interpretability (Section 9.4). We introduce our learning-theoretic notions of
approximability and interpretability. Informally speaking, we use the depth of the shallowest
approximating tree to measure the extent to which a certain concept c is interpretable by a given
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class H (e.g., hyperplanes or single features). Approximability is our weakest notion, as we do not
constrain the rate at which the shallowest approximating tree grows as a function of the desired
accuracy. Our strongest notion is instead interpretability with a tree depth that is constant with
respect to both accuracy and data distribution. In between these two extremes, a wide variety of
behaviors is possible, as the tree depth may grow at different rates that may be uniform, or depend
on the data distribution (similarly to the distinction between PAC learning and universal learning).

Collapse of the degrees (Section 9.5). We prove that the range of possible behaviors collapses
dramatically, and only three cases are actually possible: c is uniformly interpretable by H, c is
approximable but not interpretable by H, c is not approximable by H. If the class H of splits has
bounded VC dimension, which conforms to our request that H be simple, we show that whenever c
is interpretable (possibly with a distribution-dependent rate) then it is uniformly interpretable by H
at constant depth. This means that, for every data distribution P and every accuracy ε > 0, there
exists an H-based decision tree that approximates c with accuracy ε and whose depth is bounded
by a constant depending only on c and H (but not on P or ε). Thus, whenever c is interpretable
at some arbitrary rate, it is in fact interpretable at a constant rate. We show a similar collapse
for classes H of unbounded VC dimension: in this case, we show that interpretability collapses to
uniform interpretability at logarithmic depth O

(
log 1

ε

)
.

Algebraic characterizations (Section 9.6). We prove that the trichotomy described above
can be characterized in terms of algebras and closures over H. For example, we show that if H has
bounded VC dimension, then c is interpretable at constant depth if and only if c is in the algebra
generated by the closure of H, i.e., the family of all the concepts that can be approximated arbitrarily
well by single hypotheses of H. We also present a simpler characterization when the domain X is
countable.

Extension to other complexity measures (Section 9.7). Finally, we exploit the equivalence
between H-based decision trees and Boolean formulae over H to show that the trichotomy above
holds for a large class of complexity measures, including not only tree-depth but also, for example,
circuit size. In particular, we show that for any complexity measure in our class, interpretability
collapses to uniform interpretability at constant complexity rate for VC classes and at polynomial
complexity rate for non-VC classes.

9.2 Related Work

According to Molnar (2022), there are different approaches to interpretability in learning. One
important distinction is between local explanation, where we explain the prediction of the model on
a single data point, and global interpretation, where we explain the model itself. The content of
this chapter will focus on the latter. A common approach to global interpretation is to use simpler
“interpretable” models (e.g., decision trees) to approximate more complex ones (Craven and Shavlik,
1995). This is known as post-hoc interpretability (Molnar, 2022). For example, Zhang, Yang, Ma, and
Wu (2019) used decision trees to interpret convolutional neural networks. Formally, interpretability
can be modeled as a property of a classifier. For example, Dziugaite, Ben-David, and Roy (2020)
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define a variant of empirical risk minimization (ERM), where each classifier in a given class H is either
interpretable or not, and the task is to learn an interpretable one even though the target concept is
not necessarily interpretable. We generalize this setup by assigning a complexity measure to each
classifier, e.g., the depth for decision trees. This allows to trade-off the desired accuracy ε and the
maximum depth of a decision tree one is willing to call interpretable. Learning-theoretic perspectives
on interpretability are rare and typically not covered in standard books and surveys. One important
line of work initiated by Dasgupta et al. (2020) deals with the problem of approximating a given
k-means or k-median clustering with decision trees. From this perspective, our setup can be seen as a
generalization from clusterings to arbitrary concepts. However, that line of work focuses on efficient
algorithms to compute decision trees with k leaves and approximation guarantees in terms of the
k-means or k-medians cost function, not in terms of classification error under a distribution as we do
here. Bastani, Kim, and Bastani (2017) discuss a related problem setup where a given classifier is
approximated using a decision tree. Under strong assumptions, the authors state convergence results
for the proposed decision tree. However, they do not state bounds on the required depth which
is assumed to be given as a hyperparameter. Some algorithmic analyses exist for specific cases of
hypothesis spaces and standard explainers. For example, Garreau and Luxburg (2020) analyse LIME
(Ribeiro, Singh, and Guestrin, 2016), one of the most used explanation techniques. Li, Nagarajan,
Plumb, and Talwalkar (2021) discuss generalization bounds for local explainers. Blanc, Lange, and
Tan (2021) introduce a local variant of our setup with the goal of explaining the classification f(x)
of a single instance x using a conjunction with small size (i.e., a small decision list). Their results
cannot be used for our goal of global interpretation as one would have to take the union of all
the local conjunctions for all (potentially infinite) instances x. Closer to our setup, Moshkovitz,
Yang, and Chaudhuri (2021) state bounds on the depth of a decision tree required to fit a linear
classifier with margin. Similarly to us, they also strongly rely on boosting arguments. Vidal and
Schiffer (2020) give upper bounds on the number of nodes of a single decision tree to approximate
an ensemble of trees. While mainly focusing on local explainability, Blanc et al. (2021) also state
bounds on the depth of a decision tree required to fit an arbitrary classifier f : {0, 1}d → {0, 1} under
the uniform distribution on {0, 1}d. They do so by relying on classical bounds on the depth in terms
of certificate complexity (Smyth, 2002, Tardos, 1989). As we focus instead on general hypothesis
classes and distributions, their results are not directly comparable to ours.

9.3 Preliminaries and Definitions

Let X be any domain. We denote by P a distribution∗ on X and by P(X ) the set of all distributions
on X , by H ⊆ 2X a hypothesis class on X , and by VC(X ,H) its VC dimension specifying the
domain X . We denote by Alg(H) the algebra generated by H, i.e., the smallest set system A ⊆ 2X

closed under complements and finite unions such that H ⊆ A and ∅,X ∈ A. The σ-algebra σ(H) is
the smallest algebra containing H that is closed under countable unions. We denote by c ∈ 2X an
arbitrary concept (not necessarily in H). As usual we also view c as a binary classification function
c : X → {0, 1}. Our goal is to understand how well c can be approximated using aggregations of
hypotheses in H.

∗By default we assume a fixed but otherwise arbitrary σ-algebra on X and that all functions/sets discussed in our
theorems are measurable. We also borrow standard assumptions on the underlying σ-algebra which allow us to use
the VC Theorem (Vapnik and Chervonenkis, 1971). See, e.g., Blumer et al. (1989).
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A decision tree over X is a full finite binary tree T with nodes V(T ), where every leaf z ∈ L(T )
holds a label λz ∈ {0, 1} and every internal node v ∈ V(T ) \ L(T ) holds a splitting criterion (or
decision stump) fv : X → {0, 1}. The depth (or height) of T is denoted as depth(T ). We say T is
H-based if fv ∈ H for all v ∈ V(T ), and we denote by TH the set of all H-based decision trees. We
also use T to denote the binary classifier T : X → {0, 1} induced by T in the standard way. Note
that TH ≡ Alg(H), as any H-based tree T can be rewritten as a Boolean formula and vice versa. For
every d ∈ N+ we let Algd(H) := {T ∈ Alg(H) : depth(T ) ≤ d}. Given P ∈ P(X ) and a concept
c ∈ 2X , the loss of T with respect to c under P is LP (T, c) := Px∼P (T (x) ̸= c(x)) = P

(
T−1(1)△c

)
,

where A△B := (A \B) ∪ (B \A) is the symmetric difference between A and B.
The central object of interest within the current chapter is represented by accurate approximations

for a given concept c which, according to the main focus of this chapter, consist of decision trees
that utilize hypothesis from the given class H as splitting criteria. To be precise, an ε-accurate
H-approximation of c under P is an H-based decision tree T with LP (T, c) ≤ ε. The set of all such
trees is denoted as T cH(ε | P ),† and their minimal depth is

depthcH(ε | P ) := inf
T∈T c

H(ε|P )
depth(T ) . (9.1)

9.4 Approximability and Interpretability

This section introduces the key definitions used in our results. We start with the definition of
approximability.

Definition 9.1 (Approximability). A concept c is approximable by H if T cH(ε | P ) ̸= ∅ for every
distribution P ∈ P(X ) and every ε > 0.

Approximability is our weakest notion, as it only requires that for any desired accuracy value a
tree approximating c exists under any distribution, without any constraint on its depth. In fact, there
may not even exist a function f such that depthcH(ε | P ) is bounded by f(ε) for all distributions P .

For example, for X = Rd let c be the unit d-dimensional Euclidean ball centered at the origin and
H be the family of affine halfspaces whose boundary is orthogonal to, say, the d-th dimension. Then,
any finite aggregation T of such halfspaces is unable to discern points that are aligned along the i-th
dimension for any i ≠ d and, thus, necessarily incurs a constant LP (T, c) for some distribution P .
On the other hand, if we extend H to be the family of all halfspaces in X = Rd, then it is possible
to show that we can approximate the unit ball c up to any accuracy under any distribution. Indeed,
it is known that a variant of the 1-nearest neighbour (1-NN) algorithm is universally strongly Bayes
consistent in essentially separable metric spaces (Hanneke, Kontorovich, Sabato, and Weiss, 2021),
and any 1-NN classifier corresponds to a finite Voronoi partition which can be represented as an
H-based decision tree. However, we expect the number of Voronoi cells, and thus the depth of
the H-based decision tree representing it, to grow larger as the distribution P concentrates around
the decision boundary (that is, the surface of the unit ball c). Consider, for instance, a family
of distributions Pα with α ∈ (0, 1), where each Pα has support corresponding to the spherical
shell Bd(1 + α) \ Bd(1 − α) with inner radius 1 − α and outer radius 1 + α (here we denote by
Bd(r) := {x ∈ Rd : ∥x∥2 ≤ r} the origin-centered Euclidean ball of radius r > 0 in Rd). Then,

†This is also known as the ε-Rashomon set (Fisher, Rudin, and Dominici, 2019).
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we expect the number of Voronoi cells defining the decision boundary of the 1-NN classifiers that
guarantee loss at most 0 < ε ≤ 1 to grow as α→ 0+. Figures 9.1a and 9.1b illustrate these examples
in R2.

(a) Non-approximable (b) Approximable but not interpretable (c) Uniformly interpretable

Figure 9.1: Approximating a disk with halfspaces: the approximation error is the grey-shaded area,
while the pink area is the margin region. In (a), we show inapproximability with x-axis-aligned
halfspaces. In (b), we show the disk is approximable (but not interpretable) with arbitrary halfspaces,
via a Voronoi tessellation with one-sided error. In (c), we show the disk with margin is uniformly
interpretable with halfspaces.

Next, we define our notion of interpretability. Recall that we view an interpretation as an
approximation via a tree of small depth. We formalize “small” by requiring the existence of a function
that bounds the tree depth in terms of its accuracy.

Definition 9.2 (Interpretability). A concept c is interpretable by H if there is a function f : (0, 1]→
N such that, for every distribution P ∈ P(X ), there exists εP > 0 for which

depthcH(ε | P ) ≤ f(ε) for all 0 < ε ≤ εP .

If this is the case, then we say that c is interpretable by H at depth rate f .
A concept c is uniformly interpretable by H if there is a function f ′ : (0, 1]→ N such that

depthcH(ε | P ) ≤ f ′(ε) for all P ∈ P(X ) and 0 < ε ≤ 1 .

If this is the case, we say that c is uniformly interpretable by H at depth rate f ′.

Note that interpretability requires the bound on the depth to hold only for values of ε that are
smaller than a certain threshold εP which may depend on the distribution P . Uniform interpretability,
instead, requires the depth bound to hold for all ε irrespective of the distribution.

Recalling the above example with the Euclidean space X = Rd as domain and the family of
halfspaces as the hypothesis class H, if the concept c corresponds to the unit Euclidean ball with
margin µ > 0 then c is uniformly interpretable. More formally, such a concept c can be modeled as
a partial function c : X → {0, 1} with natural domain X̃ ⊂ X , where points in the margin belong to
X \X̃ = Bd(1+µ)\Bd(1) and c−1(1) = Bd(1). Then, without loss of generality, the same definitions
and results apply as if the concept c was a total function by restricting the domain to X̃ and, for
every distribution P ∈ P(X ), considering the distribution P̃ (·) := P (· | X̃ ) instead. This follows
from the fact that we incur no mistakes for any labeling of points that do not belong to the domain
of the “partial” concept c, and the loss of any H-approximation T of c is thus given by L

P̃
(T, c). By

reusing geometric results on the approximation of convex bodies, there exists a polytope Q such
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that Bd(1) ⊆ Q ⊆ Bd(1 + µ), whose (finite) number of vertices is bounded from above by a function
of d and µ (Naszódi, 2019). The polytope Q thus separates the positively labeled points Bd(1)

from the negatively labeled ones—achieving loss 0 under any distribution with support X̃—and it
is equivalently representable as an H-based decision tree with depth bounded by a function of d
and µ only (i.e., the intersection of halfspaces associated to the facets of Q). See Figure 9.1c for an
illustration of this example in R2.

At first glance, our notions of interpretability may appear a little narrow. Suppose that, for every
distribution P , a concept c is interpretable by H at polynomial depth rate, but the degree can grow
unbounded with P . In other words, for every d ∈ N+ there exists Pd such that c is interpretable
by H at polynomial depth rate with degree d, but not at polynomial depth rate with any smaller
degree d′ < d. Then c is not interpretable by H according to our definition, but we could still say
that c is interpretable at polynomial depth rate. More formally, we could consider the family F of
all polynomials, and require that for every P there is some f ∈ F that bounds depthcH(· | P ). By
varying F , we obtain a vast range of interpretability rates: logarithmic, sublinear, linear, polynomial,
exponential, and so on. Surprisingly, our results show that this hierarchy collapses: an approximable
concept c is either not interpretable at all, or is uniformly interpretable at logarithmic rate.

9.5 A Trichotomy for Interpretability

This section states our main result: as soon as a concept is interpretable at some rate, then it is
uniformly interpretable at a constant rate for VC classes, and at a logarithmic rate in general.

Theorem 9.1 (Interpretability trichotomy). Let X be any domain. For every concept c and every
VC hypothesis class H over X exactly one of the following cases holds:

(1) c is not approximable by H;

(2) c is approximable but not interpretable by H;

(3) c is uniformly interpretable by H at constant depth rate.

If VC(X ,H) =∞ then all claims above hold true, but with (3) replaced by:

(3′) c is uniformly interpretable by H at depth rate at most logarithmic.

Moreover, all cases are nonempty.

We emphasize again that Theorem 9.1 is in stark contrast with the behavior of excess risk in
terms of training set size observed in statistical learning, where, in the non-uniform (or universal)
setting, both exponential and linear rates are possible. It should also be noted that we do not
know if case (3′) collapses into case (3)—that is, if a constant depth rate holds also for non-VC
classes—or if a non-constant rate is in general unavoidable—e.g., because of the significantly stronger
representative power of non-VC classes. This is one of the interesting questions left open.

We further observe that, while point (3) of Theorem 9.1 shows that c is uniformly interpretable
by H at a constant depth rate, this does not necessarily imply the existence of a single H-based
decision tree providing such a guarantee for all values of ε > 0. For example, consider a domain
X = N, a concept c = {0}, and a hypothesis class H = {{1, . . . , n} : n ∈ N+}. Now let P be the
distribution such that P (0) = 0.5 and P (x) = 2−(x+1) for all x ∈ N+. For any ε > 0 the depth-1
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decision tree with splitting criterion h = {1, . . . , ⌈log2(1/ε)⌉} is an ε-accurate approximation of c
under P , but no H-based tree is an ε-approximation of c for all ε simultaneously.

Our proof of Theorem 9.1 combines a variety of techniques from different contexts. The first
step involves identifying a criterion which can be thought of as a form of “weak interpretability”
(items (a) and (b) in the proof). The rest of the proof demonstrates that if a concept c fails to satisfy
this criterion, then it is not interpretable by H, and if it does, then it is uniformly interpretable by
H. The former impossibility result entails establishing a lower bound on the interpretation rate
for an arbitrarily small accuracy with respect to a fixed and carefully tailored distribution. This
type of lower bounds are more intricate than distribution-free lower bounds (such as those outlined
in the No-Free-Lunch Theorem in the PAC setting) and were studied, e.g., by Antos and Lugosi
(1998), Bousquet, Hanneke, Moran, Shafer, and Tolstikhin (2023). In the complementary case, when
c satisfies the weak interpretability criterion with respect to H, we prove that c is in fact uniformly
interpretable by H with logarithmic depth, and if H has a finite VC dimension, then c is uniformly
interpretable with constant depth. The logarithmic construction and its analysis builds on ideas
and techniques originating from boosting algorithms for decision trees (Kearns and Mansour, 1999,
Takimoto and Maruoka, 2003). The derivation of constant depth approximation when H is a VC
class relies on a uniform convergence argument (Vapnik and Chervonenkis, 1971) combined with
the Minimax Theorem (Von Neumann, 1928). This derivation is also linked to boosting theory and
resembles the boosting-based sample compression scheme by Moran and Yehudayoff (2016).

Proof of Theorem 9.1. We start by proving the cases (1)-(3). Suppose (1) fails, so depthcH(ε | P ) <∞
for all P ∈ P(X ) and all ε > 0. This implies that, for any fixed γ ∈ (0, 12), exactly one of the
following two cases holds:

(a) for every d ∈ N there exists a distribution Pd such that depthcH
(
1
2 − γ | Pd

)
> d;

(b) there exists d ∈ N such that depthcH
(
1
2 − γ | P

)
≤ d for all distributions P .

Suppose (a) holds; we show this implies case (2) of the trichotomy. To this end, we prove that there
is no function r : (0, 1]→ N such that c is interpretable by H at depth rate r. Choose indeed any
such r. For every n ∈ N+, let dn := r

(
2−n(12 − γ)

)
, and consider the following distribution over X :

P ∗ :=
∑
i∈N+

2−i · Pdi . (9.2)

Since Pdn appears in P ∗ with coefficient 2−n, this implies that, for εn := 2−n(12 −γ), any εn-accurate
H-interpretation of c under P ∗ is (12−γ)-accurate under Pdn and so has depth larger than dn := r(εn).
Indeed, for any n ∈ N+, any tree T ∈ T cH(εn | P ∗) satisfies that

εn ≥ LP ∗(T, c) =
∑
i∈N+

2−iLPdi
(T, c) ≥ 2−nLPdn

(T, c) ,

which means that LPdn
(T, c) ≤ 2nεn = 1

2 − γ and thus T cH(εn | P ∗) ⊆ T cH(12 − γ | Pdn). Consequently,
we have that

depthcH(εn | P ∗) ≥ depthcH

(
1

2
− γ | Pdn

)
> dn = r(εn) (9.3)

holds for all n ∈ N+. We conclude that c is not interpretable by H at depth rate r, as desired.
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Now suppose (b) holds; we show this implies case (3) of the trichotomy. Let T be the set
of all binary classifiers that are represented by H-based decision trees of depth at most d, where
d ∈ N satisfies depthcH

(
1
2 − γ | P

)
≤ d for all P ∈ P(X ). It is known that VC(X ,H) <∞ implies

VC(X , T ) <∞ (Dudley, 1978).
We will first prove the claim by taking as domain an arbitrary but finite subset U ⊆ X . Later

on we will choose U appropriately as a function of the distribution P ∈ P(X ), and this will prove
the theorem’s claim. Fix then any such U , and let P(U) be the family of all distributions over U .
By definition of d,

sup
P∈P(U)

inf
T∈T

LP (T, c) ≤
1

2
− γ . (9.4)

By Von Neumann’s minimax theorem, recalling that the value of the game does not change if the
column player uses a pure strategy, we have that

sup
P∈P(U)

inf
T∈T

LP (T, c) = inf
D∈P(T )

sup
x∈U

E
T∼D

[Lδx(T, c)] , (9.5)

where P(T ) is the set of all distributions over T , δx is the Dirac delta at x ∈ U , and ET∼D [Lδx(T, c)]

is thus the expected loss on x of a tree T drawn from D. Hence, there exists D∗ ∈ P(T ) for which

E
T∼D∗

[Lδx(T, c)] ≤
1

2
− γ ∀x ∈ U , (9.6)

and therefore, since c(x), T (x) ∈ {0, 1} for all x and T ,∣∣∣c(x)− P
T∼D∗

(T (x) = 1)
∣∣∣ = P

T∼D∗

(
T (x) ̸= c(x)

)
≤ 1

2
− γ ∀x ∈ U . (9.7)

Let (T , U) be the dual set system of (U, T ). Note that the dual VC dimension VC(T , U) satisfies

VC(T , U) ≤ VC(T ,X ) < 2VC(X ,T )+1 <∞ , (9.8)

where the second inequality shows a known relation (Assouad, 1983) between the primal VC dimension
VC(X , T ) of (X , T ) and its dual VC dimension VC(T ,X ). By the classic uniform convergence result
of Vapnik and Chervonenkis (1971) and the probabilistic method, there exists a multiset R ⊆ T
with |R| ≤ r := r(VC(X , T ), γ, d) such that, for every x ∈ U ,∣∣∣∣ |{T ∈ R : T (x) = 1}|

|R|
− P
T∼D∗

(T (x) = 1)

∣∣∣∣ < γ

2
. (9.9)

Together with Equations (9.7) and (9.9), this yields∣∣∣∣ |{T ∈ R : T (x) = 1}|
|R|

− c(x)
∣∣∣∣ < 1

2
− γ

2
(9.10)

by the triangle inequality.‡ We now build a H-based decision tree T ∗
U that computes the majority

‡Note that, if no D∗ achieves the infimum of the r.h.s. of Equation (9.5), the same result holds with, say, (1− γ)/2
as the r.h.s. of Equation (9.6) because it suffices to show that the l.h.s. of Equation (9.10) is strictly less than 1/2 for
our purposes.
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T1

T2

Tr

T1(x)

T2(x)

x ∈ S

Tr−1(x)

Tr(x)

T ∗
S(x) = Maj(T1, . . . , Tr)(x)

Figure 9.2: Construction of the majority-vote tree T ∗
S for some finite S ⊆ X given the collection

T1, . . . , Tr, where Maj(T1, . . . , Tr)(x) denotes the majority vote prediction computed for x ∈ S.

vote over all T ∈ R. This tree can be constructed as shown in Figure 9.2 and described as follows.
Let T1, . . . , T|R| be the trees in R. Replace each leaf of T1 with a copy of T2; in the resulting tree
replace every leaf with a copy of T3, and so on until obtaining T ∗

U . For each leaf z ∈ L(T ∗
U ) of

T ∗
U , define its label λz as the majority vote given by leaves of (the copies of) T1, . . . , T|R| that are

encountered on the path from the root of T ∗
U to z. Note that T ∗

U has depth bounded by rd and, by
Equation (9.10), computes c(x) for all x ∈ U . Thus, LU (T ∗

U , c) = 0 where LU is the expected loss
over the uniform distribution over U .

We now choose the set U appropriately. Let T ∗ be the family of all H-based decision trees
whose depth is at most rd. Because, once again, VC(X , T ∗) < ∞, by uniform convergence there
is a finite multiset U ⊆ X such that, for all T ∈ T ∗, |LP (T, c)− LU (T, c)| ≤ ε. Since T ∗

U ∈ T ∗ and
LU (T

∗
U , c) = 0, it follows that LP (T ∗

U , c) ≤ ε. This completes the proof of case (3). Case (3′) follows
from Theorem 9.2 below, assuming (b) holds.

It remains to prove that all cases are nonempty. For (1) let X := {a, b}, H := {X}, c := {a}, and
note that under the uniform distribution no H-interpretation of c is ε-accurate for ε < 1

2 . For (3)
consider any X ,H with H ≠ ∅ and choose any c ∈ H; this holds for (3′) too if H is not a VC class.
For (2) we show c,H that satisfy case (a) above. Let X := N, c := N+, and H := {{i} : i ∈ N+}.
For every n ∈ N+ consider the distribution Pn with support {0, . . . , n} such that Pn(0) := 1

2 and
that Pn(i) := 1

2n for every i ∈ {1, . . . , n}. To conclude note that depthcH
(
1
2 − γ | Pn

)
is unbounded

as a function of n for any constant γ ∈ (0, 12).

The proof of case (3′) of Theorem 9.1 uses the following result. Its proof can be found in
Appendix E.1, and is an adaptation of the results by Kearns and Mansour (1999) and Takimoto and
Maruoka (2003) on boosting decision trees. The main difference is that, via an adequate modification
of the TopDown algorithm (Kearns and Mansour, 1999), we bound the depth rather than the size of
the boosted decision tree.

Theorem 9.2. Let X be any domain. For any concept c and any hypothesis class H over X ,
if there exist γ ∈ (0, 12) and d ∈ N such that depthcH

(
1
2 − γ | P

)
≤ d for all P ∈ P(X ), then

depthcH(ε | P ) ≤ d
2γ2

log 1
2ε for all P ∈ P(X ) and all ε > 0.
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9.6 Algebraic Characterizations

In this section we show that the notions of approximability and interpretability admit set-theoretical
and measure-theoretical characterizations based on properties of H and the algebras it generates.

To begin with, we need a notion of closure of H. Loosely speaking, we want to include all
concepts that, under every distribution, can be approximated arbitrarily well by single elements of H.
In other words, these are the concepts that are approximable by H using decision trees of depth 1.

Definition 9.3. The closure of H ⊆ 2X is

clos(H) :=
{
h ⊆ X

∣∣∀P ∈ P(X ), ∃h1, h2, . . . ∈ H s.t. lim
n→∞

P (h△hn) = 0
}
. (9.11)

Observe that clos(H) ⊇ H by definition. To illustrate the closure let us discuss the hypothesis
class H of rational halfspaces in R2, i.e., sets of the form

{
{(x, y) : ax+ by + d ≥ 0} : a, b, d ∈ Q

}
.

Every concept c : R2 → {0, 1} is approximable by H, as before, relying on the 1-NN algorithm.
Halfspaces with real coefficients such as {(x, y) : x+ y ≥

√
2} are not in H but are interpretable by

H with depth 1. In general, the closure is related to the concept of universally measurable sets.
We start with the following lemma, which is derived from well-known results in measure theory

(see the proof in Appendix E.2).

Lemma 9.1. Let X be any domain and H ⊆ 2X . Then, clos(σ(H)) = clos(Alg(H)).

We now state the algebraic characterization of the concepts that are approximable by a given
hypothesis class H on some domain X .

Theorem 9.3 (Algebraic characterization of approximability). Let X be any domain and H any
hypothesis class over X . A concept c ⊆ X is approximable by H if and only if c ∈ clos(σ(H)).

Proof. Suppose c is universally approximable by H. Let P ∈ P(X ) be any distribution. Then,
for every ε > 0 there exists an ε-accurate H-approximation T ∈ Alg(H) of c under P . Then
P (T△c) = LP (T, c) ≤ ε. Consider now the sequence T1, T2, . . . ∈ Alg(H) such that, for each n ∈ N+,
Tn is an εn-accurateH-approximation of c under P with the choice εn := 2−n. The sequence (Tn)n∈N+

is such that limn→∞ P (Tn△c) ≤ limn→∞ 2−n = 0, and thus c ∈ clos(Alg(H)) = clos(σ(H)), where
the latter equality follows by Lemma 9.1.

Now suppose c ∈ clos(σ(H)) = clos(Alg(H)). Fix a distribution P ∈ P(X ) and ε > 0. By
definition of closure, and because Alg(H) ≡ TH, there exists a sequence T1, T2, . . . ∈ Alg(H) of trees
such that limn→∞ P (Tn△c) = 0, and thus there exists some i ∈ N+ such that P (Ti△c) ≤ ε. This
implies that Ti is an ε-accurate H-approximation of c under P with finite depth. As this holds for
every P and every ε > 0, it follows that c is universally approximable by H.

Furthermore, we manage to prove an algebraic characterization for the concepts that are uniformly
interpretable, given a VC class H on some domain X .

Theorem 9.4 (Characterization of uniform interpretability for VC classes). Let X be any domain
and let H be a VC hypothesis class over X . A concept c is uniformly interpretable (at a constant
depth) if and only if c ∈

⋃∞
d=1 clos(Algd(H)).
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Proof. Since VC(X ,H) <∞, item (3) of Theorem 9.1 implies that there exists d ∈ N such that, for
all P ∈ P(X ) and all ε > 0, depthcH(ε | P ) ≤ d. Using an argument similar to the one used in the
proof of Theorem 9.3, we then conclude that c ∈ clos(Algd(H)). Hence, the set of concepts that are
uniformly interpretable by H is precisely

⋃∞
d=1 clos(Algd(H)).

If the domain X is countable, then closure reduces to pointwise convergence and our algebraic
characterization becomes simpler. This is formalized in the next theorem, whose proof relies on some
technical lemmas and can be found in Appendix E.2. Namely, we show that clos(σ(H)) = σ(H) and⋃∞
d=1 clos(Algd(H)) = Alg(clos(H)).

Theorem 9.5. (Characterization for VC classes and countable domains) Let X be any
countable domain, let c be any concept, and let H be a VC hypothesis class over X . Then:

1. c is approximable by H if and only if c ∈ σ(H).
2. c is approximable but not interpretable by H if and only if c ∈ σ(H) \Alg(clos(H)).
3. c is uniformly interpretable by H if and only if c ∈ Alg(clos(H)).

One way to interpret the above algebraic characterization of approximable and uniformly
interpretable concepts consists of what follows, whenever X is countable and H is VC. A concept c
approximable by H equivalently belongs to clos(Alg(H)), which alternatively means that there exists
a sequence of finite H-based trees that converges to c (or, alternatively, the trees in the sequence
approximate increasingly well c with loss arbitrarily close to zero). On the other hand, the class of
concepts that are uniformly interpretable by H corresponds to Alg(clos(H)), meaning that any such
concept c is essentially equivalent to a single finite tree whose splitting functions can be individually
approximated arbitrarily well by single elements of H.

9.7 General Representations

Although shallow decision trees are the blueprint of interpretable models, our theory naturally
extends to ways of measuring the complexity of elements in Alg(H) different from the tree depth.
Next, we define a set of minimal conditions (satisfied, e.g., by tree depth) that a function must
satisfy to be used as a complexity measure for Alg(H).

Definition 9.4. Let X be any domain and H a hypothesis class over X . A function Γ: Alg(H)→ N
is a graded complexity measure if:

1. Γ(f) = 0 for all f ∈ H,

2. Γ(f1 ∪ f2) ≤ 1 + Γ(f1) + Γ(f2) for all f1, f2 ∈ Alg(H),
3. Γ(f1 ∩ f2) ≤ 1 + Γ(f1) + Γ(f2) for all f1, f2 ∈ Alg(H), and

4. Γ(X \ f) ≤ 1 + Γ(f) for all f ∈ Alg(H).

The minimal complexity of an ε-accurate H-interpretation of c under P is

ΓcH(ε | P ) := inf
T∈Alg(H):LP (T,c)≤ε

Γ(T ) . (9.12)

The definitions of approximability, interpretability, and uniform interpretability are readily
generalized to an arbitrary graded complexity measure, by simply replacing depth(·) with Γ(·). We
can then prove the following extension of Theorem 9.1.
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Theorem 9.6 (Interpretability trichotomy for general representations). Let X be any domain and
let Γ be any graded complexity measure. Then, for every concept c and every VC hypothesis class H
over X exactly one of the following cases holds:

(1) c is not approximable by H;

(2) c is approximable by H but not interpretable by H;

(3) c is uniformly interpretable by H at constant Γ-complexity rate.

If VC(X ,H) =∞ then all claims above hold true, but with (3) replaced by:
(3′) c is uniformly interpretable by H at a Γ-complexity rate O

(
1
εd

)
for some d ∈ N .

Unlike Theorem 9.1, cases (2) and (3) might collapse for certain choices of Γ even when H is not
a VC class. Indeed, according to our definition, Γ is not forced to grow at any specific rate, and thus
Γ(f) might be bounded by some constant uniformly over Alg(H). In an extreme case one might in
fact set Γ ≡ 0, although clearly this would not yield any interesting result.

Proof of Theorem 9.6. The proof is similar to the proof of Theorem 9.1. Suppose (1) fails, so
ΓcH(ε | P ) < ∞ for all ε > 0 and all distributions P . This implies that, for any fixed γ ∈ (0, 12),
exactly one of the following two cases holds:

(a) for every k ∈ N there exists a distribution Pk such that ΓcH
(
1
2 − γ | Pk

)
> k;

(b) there exists k ∈ N such that ΓcH
(
1
2 − γ | P

)
≤ k for all distributions P .

Suppose (a) holds; we show this implies case (2) of the trichotomy. Choose any function r : (0, 1]→ N.
For every n ∈ N+, let dn := r(2−n(12 − γ)), and consider the following distribution over X :

P ∗ :=
∑
n∈N+

2−n · Pdn . (9.13)

Since Pdn appears in P ∗ with coefficient 2−n, this implies that, for εn := 2−n(12 −γ), any εn-accurate
interpretation of c under P ∗ is (12 − γ)-accurate under Pdn , and thus

ΓcH(εn | P ∗) ≥ ΓcH

(
1

2
− γ | Pdn

)
> dn = r(εn) . (9.14)

Hence, ΓcH(εn | P ∗) > r(εn) for all n ∈ N+.
Suppose now (b) holds; we show this implies case (3) of the trichotomy. Define the family

Ak :=
{
A ∈ Alg(H) : Γ(A) ≤ k

}
. Fix any P ∈ P(X ) and ε > 0. Following the same argument as in

the proof of case (3) in Theorem 9.1, there exists an Ak-based decision tree T such that LP (T, c) ≤ ε
and depth(T ) ≤ d for some d ∈ N independent of P and ε. Now we rewrite T as an element of
Alg(H). Let Av ∈ Ak be the decision stump T used at v ∈ V(T ) and, denoting by L(T ) the set of
leaves of T , let λz ∈ {0, 1} be the label of the leaf z ∈ L(T ) in T . For every v ∈ V(T ), define

ATv :=


X v ∈ L(T ), λv = 1

∅ v ∈ L(T ), λv = 0

(Av ∩ATu ) ∪ (Av ∩ATw) v /∈ L(T )
(9.15)
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where u and w are, respectively, the left and right child of v when v /∈ L(T ). Let A := ATr
where r is the root of T . Observe that A is equivalent to T , and that A ∈ Alg(H). Moreover,
Γ(ATv ) ≤ 4 + 2Γ(Av) + Γ(ATu ) + Γ(ATw) by the properties of Γ (see Definition 9.4). Therefore,

Γ(A) = O

( ∑
v∈V(T )

(Γ(Av) + 1)

)
= (k + 1)×O(|V(T )|) = O(|V(T )|) , (9.16)

where we used the fact that Γ(Av) ≤ k because Av ∈ Ak. To conclude the proof, note that the above
bound on depth(T ) implies O(|V(T )|) = O(2depth(T )) = O(2d), where both d and the constants in
the O(·) notation depend neither on P nor on ε.

As for case (3′), assume again (b) holds. Then, Theorem 9.2 applied to the class Ak implies
the existence of an Ak-based decision tree T such that LP (T, c) ≤ ε and depth(T ) ≤ d log 1

2ε for all
P and ε > 0, where d = 1

2γ2
. Constructing again A ∈ Alg(H) equivalent to T as above and using

the bound on depth(T ), we have Γ(A) = O(|V(T )|) = O(2depth(T )) = O
(

1
εd

)
where both d and the

constants in the O(·) notation are independent of P and ε.

We remark that the O
(

1
εd

)
bound on the complexity rate for case (3′) is due to the generality

of Γ; in Appendix E.3, we show a more specific condition on Γ that recovers the O(log(1/ε)) rate.
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Appendix A

Proof Details for Chapter 3

A.1 Auxiliary Results

Lemma A.1. If Algorithm 3.1 is run with q ∈ (0, 1), learning rate η > 0, and non-negative loss
estimates that satisfy Et

[
ℓ̂t
]
= ℓt for all t = 1, . . . , T , then its regret satisfies

RT ≤
K1−q

(1− q)η
+

η

2q

T∑
t=1

E

[∑
i∈V

pt(i)
2−q ℓ̂t(i)

2

]
.

Proof. Let i∗ ∈ argmini∈V
∑T

t=1 ℓt(i) be an action that minimizes the cumulative loss, and let
ei∗ ∈ RK be an indicator vector for i∗. Recall that for t ∈ [T ], Et[·] = E[· | I1, . . . , It−1], and notice
that pt is measurable with respect to the σ-algebra generated by I1, . . . , It−1. Hence, using that

Et
[
ℓt(It)

]
=
∑
i∈V

pt(i)ℓt(i) and Et
[
ℓ̂t
]
= ℓt ,

we have, via the tower rule and the linearity of expectation, that

RT = E

[
T∑
t=1

ℓt(It)

]
−

T∑
t=1

ℓt(i
∗) = E

[
T∑
t=1

⟨pt − ei∗ , ℓt⟩

]
= E

[
T∑
t=1

⟨pt − ei∗ , ℓ̂t⟩

]
,

from which we can obtain the desired result by using Lemma A.2 (which holds even if the loss ℓ̂t at
each round t ∈ [T ] depends on the prediction pt made at that round).

Lemma A.2. Let q ∈ (0, 1), η > 0, and (yt)
T
t=1 be an arbitrary sequence of non-negative loss vectors

in RK . Let (pt)T+1
t=1 be the predictions of FTRL with decision set ∆K and the q-Tsallis regularizer ψq

over this sequence of losses. That is, p1 ∈ argminp:=∆K
ψq(p), and for t ∈ [T ],

pt+1 := argmin
p∈∆K

η
t∑

s=1

〈
ys, p

〉
+ ψq(p) .

Then for any u ∈ ∆K ,

T∑
t=1

⟨pt − u, yt⟩ ≤
K1−q

(1− q)η
+

η

2q

T∑
t=1

∑
i∈V

pt(i)
2−q yt(i)

2 .
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Proof. By Theorem 28.5 in Lattimore and Szepesvári (2020), we have that

T∑
t=1

⟨pt − u, yt⟩ ≤
ψq(u)− ψq(p1)

η
+

T∑
t=1

(
⟨pt − pt+1, yt⟩ −

1

η
Dψq(pt+1, pt)

)

=
K1−q − 1

(1− q)η
+

T∑
t=1

(
⟨pt − pt+1, yt⟩ −

1

η
Dψq(pt+1, pt)

)

≤ K1−q

(1− q)η
+

T∑
t=1

(
⟨pt − pt+1, yt⟩ −

1

η
Dψq(pt+1, pt)

)
,

where Dψq(·, ·) is the Bregman divergence based on ψq. For bounding each summand in the second
term, we follow a similar argument to that used in Theorem 30.2 in Lattimore and Szepesvári (2020).
Namely, for each i ∈ V and round t ∈ [T ], define yt(i) := I{pt+1(i) ≤ pt(i)}yt(i). We then have that

⟨pt − pt+1,yt⟩ −
1

η
Dψq(pt+1, pt)

≤ ⟨pt − pt+1, yt⟩ −
1

η
Dψq(pt+1, pt)

=
1

η
⟨pt − pt+1, ηyt⟩ −

1

2η

∥∥pt+1 − pt
∥∥2
∇2ψq(zt)

≤ η

2

∥∥yt∥∥2(∇2ψq(zt))−1

=
η

2q

∑
i∈V

zt(i)
2−q yt(i)

2

=
η

2q

∑
i∈V

(
γtpt+1(i) + (1− γt)pt(i)

)2−q
yt(i)

2

≤ η

2q

∑
i∈V

pt(i)
2−q yt(i)

2 + γt
η

2q

∑
i∈V

(
pt+1(i)

2−q − pt(i)2−q
)
yt(i)

2

≤ η

2q

∑
i∈V

pt(i)
2−q yt(i)

2

≤ η

2q

∑
i∈V

pt(i)
2−q yt(i)

2 ,

where zt := γtpt+1+(1−γt)pt for some γt ∈ [0, 1]; the first inequality holds due to the non-negativity
of the losses, the second inequality is an application of the Fenchel-Young inequality, the second
equality holds since the Hessian of ψq is a diagonal matrix with (∇2ψq(x))i,i = qx(i)q−2, the third
inequality is an application of Jensen’s inequality (since q ∈ (0, 1)), and the fourth inequality holds
since yt(i) = 0 for any i such that pt+1(i)

2−q > pt(i)
2−q.

Lemma A.3. Let a and b be positive integers such that 2 ≤ a ≤ b, and let n =
⌈
log2 a

⌉
. Then,

n−1∑
r=0

√
2r ln

(
e2b2−r

)
≤
√
2π + 2

√
2− ln 2

ln 2

√
a ln

(
e2b

a

)
.

Proof. Since n ≤ log2(2b) and 2r ln
(
e2b2−r

)
is monotonically increasing in r for r ∈ [0, log2(eb)], we
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can bound the sum by an integral:

n−1∑
r=0

√
2r ln

(
e2b2−r

)
≤
∫ n

0

√
2r ln

(
e2b2−r

)
dr .

We proceed via a change of variable; let x := e2b2−r, and note that dr = − dx
x ln 2 . We then have that

∫ n

0

√
2r ln

(
e2b2−r

)
dr =

√
e2b

∫ n

0

√
2r

e2b
ln
(
e2b2−r

)
dr

= −e
√
b

ln 2

∫ e2b2−n

e2b

√
lnx

x3
dx =

e
√
b

ln 2

∫ e2b

e2b2−n

√
lnx

x3
dx

=
e
√
b

ln 2

[
−
√
2π · erfc

(√
(lnx)/2

)
− 2
√

(lnx)/x
]e2b
e2b2−n

≤ e
√
b

ln 2

(
√
2π · erfc

(√
ln(e2b2−n)/2

)
+ 2

√
2n ln(e2b2−n)

e2b

)
,

where erfc(x) := 1− 2√
π

∫ x
0 exp(−z2) dz is the complementary Gaussian error function, which is always

positive. By Chang, Cosman, and Milstein (2011, Theorem 1), we have that erfc(x) ≤ exp(−x2).
Consequently,

∫ n

0

√
2r ln

(
e2b2−r

)
dr ≤ e

√
b

ln 2

(
√
2π

√
2n

e2b
+ 2

√
2n ln(e2b2−n)

e2b

)

=

√
2n

ln 2

(√
2π + 2

√
ln(e2b2−n)

)
≤
√
2a

ln 2

(
√
2π + 2

√
ln

(
e2b

2a

))

≤
√
2π + 2

√
2− ln 2

ln 2

√
a ln

(
e2b

a

)
,

where in the second inequality we used once again the fact that 2r ln
(
e2b2−r

)
is monotonically

increasing in r for r ∈ [0, log2(eb)] to replace n with log2(a) + 1, and the last inequality holds since
b ≥ a.

A.2 Proofs of Section 3.3

In this section, we provide the proof of Theorem 3.2, which is restated below.

Theorem 3.2. Let G1, . . . , GT be a sequence of undirected strongly observable feedback graphs, where
each Gt has independence number αt = α for some common value α ∈ [K]. If Algorithm 3.1 is run
with input

q =
1

2

(
1 +

ln(K/α)√
ln2(K/α) + 4 + 2

)
∈ [1/2, 1) and η =

1

3

√
2qK1−q

T (1− q)αq
,

and loss estimates (3.6), then its regret satisfies RT ≤ 6
√
eαT (2 + ln(K/α)).
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Proof. Let i∗ ∈ argmini∈V
∑T

t=1 ℓt(i) and ei∗ ∈ RK be its indicator vector. Whenever Jt is nonempty,
let jt ∈ V be the only action such that Jt = {jt}. Similarly to Zimmert and Lattimore (2019), let
zt := I {Jt ̸= ∅} I {It ∈ Nt(jt)} 1−ℓt(jt)

1−pt(jt) and define new losses ℓ̃t(i) := ℓ̂t(i) + zt for each time step

t ∈ [T ] and each action i ∈ V . Since pt, ei∗ ∈ ∆K , we have that ⟨pt− ei∗ , ℓ̂t⟩ = ⟨pt− ei∗ , ℓ̃t⟩ for every
t ∈ [T ]. Then, using the fact that Et

[
ℓ̂t
]
= ℓt, we get that

RT = E

[
T∑
t=1

⟨pt − ei∗ , ℓ̂t⟩

]
= E

[
T∑
t=1

⟨pt − ei∗ , ℓ̃t⟩

]
,

where the first equality holds via the same arguments made in the proof of Lemma A.1. If we
consider the optimization step of Algorithm 3.1, computing the same inner product over the new
losses ℓ̃1, . . . , ℓ̃T for some p ∈ ∆K gives

〈 t∑
s=1

ℓ̃s, p
〉
=

t∑
s=1

zs +
〈 t∑
s=1

ℓ̂s, p
〉
,

where the sum
∑t

s=1 zs is constant with respect to p. This implies that the objective functions in
terms of either (ℓ̂t)t∈[T ] and (ℓ̃t)t∈[T ], respectively, are minimized by the same probability distribu-
tions. However, notice that, unlike (ℓ̂t)t∈[T ], the loss vectors in (ℓ̃t)t∈[T ] are always non-negative.
Consequently, similar to the proof of Lemma A.1, we may apply Lemma A.2 to upper bound the
regret of Algorithm 3.1 in terms of the losses (ℓ̃t)t∈[T ]. Doing so gives

E

[
T∑
t=1

⟨pt − ei∗ , ℓ̃t⟩

]
≤ K1−q

η(1− q)
+

η

2q

T∑
t=1

E

[∑
i∈V

pt(i)
2−qEt

[
ℓ̃t(i)

2
]]

. (A.1)

We can bound the second term by observing that ℓ̃t(jt) = 1 whenever Jt ̸= ∅. Therefore,∑
i∈V

pt(i)
2−qEt

[
ℓ̃t(i)

2
]
≤ 2

∑
i∈V \Jt

pt(i)
2−qEt

[
ℓ̂t(i)

2
]
+ 2Et

[
z2t
] ∑
i∈V \Jt

pt(i)
2−q + 1

≤ 2
∑

i∈V \Jt

pt(i)
2−q

Pt(i)
+ 2Et

[
z2t
] ∑
i∈V \Jt

pt(i)
2−q + 1

≤ 2
∑

i∈V \Jt

pt(i)
2−q

Pt(i)
+ 3 ,

where the second inequality holds because Et
[
ℓ̂t(i)

2
]
≤ 1/Pt(i) for all i /∈ Jt, and the third inequality

follows from the fact that

Et
[
z2t
] ∑
i∈V \Jt

pt(i)
2−q = I {Jt ̸= ∅}

(
1− ℓt(jt)

)2
1− pt(jt)

∑
i∈V \Jt

pt(i)
2−q ≤ 1 .

We can handle the remaining sum by separating it over nodes i ∈ St, which satisfy Pt(i) = 1− pt(i)
because of strong observability, and those in St = V \ St. In the first case, any node i ∈ St \ Jt has
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pt(i) ≤ 1/2 and thus

∑
i∈St\Jt

pt(i)
2−q

Pt(i)
=

∑
i∈St\Jt

pt(i)
2−q

1− pt(i)
≤ 2

∑
i∈St\Jt

pt(i)
2−q ≤ 2 .

while in the second case we have that
∑

i∈St
pt(i)

2−q/Pt(i) ≤ αq by Lemma 3.1 with U = St and
b = 1− q. Overall, we have shown that

∑
i∈V

pt(i)
2−qEt

[
ℓ̃t(i)

2
]
≤ 2

∑
i∈St

pt(i)
2−q

Pt(i)
+ 7 ≤ 2αq + 7 ≤ 9αq . (A.2)

Plugging back into (A.1), we obtain that

RT ≤
K1−q

η(1− q)
+

9η

2q
αqT

= 3

√
2K1−qαq

q(1− q)
T

≤ 6
√
eαT (2 + ln(K/α)) ,

where the equality is due to our choice of η, and the last inequality follows as in the proof of
Theorem 3.1 together with our choice of q.

A.3 Proofs of Section 3.4

In this section, we provide the proof of Theorem 3.3, which is restated below.

Theorem 3.3. Let C := 4
√
6e

√
π+

√
4−2 ln 2

ln 2 . Then, the regret of Algorithm 3.2 satisfies

RT ≤ C

√√√√ T∑
t=1

αt

(
2 + ln

(
K

αT

))
+ log2 αT .

Proof. Notice that if αT = 1, the initial guess is correct and the algorithm will never restart. Moreover,
since in this case we have that αt = 1 for all t, the theorem follows trivially from the regret bound of
Theorem 3.2. Hence, we can assume for what follows that αT > 1. Let i∗ ∈ argmini∈[K]

∑T
t=1 ℓt(i)

and n =
⌈
log2 αT

⌉
. Note that the maximum value of r that the algorithm can reach is n− 1. To

see this, observe that Lemma 3.1 implies that for any r and t, Ht(qr) ≤ αqrt . Consequently, for any
t ≥ Tr,

1

T

t∑
s=Tr

Hs(qr)
1/qr ≤ 1

T

t∑
s=Tr

αs ≤ αT ≤ 2n .

For t ∈ [T ], let rt be the value of r at round t. Without loss of generality, we assume that r takes each
value in {0, . . . , n− 1} for at least two rounds. Additionally, we define Tn = T + 2 for convenience.
We start by decomposing the regret over the n intervals (each corresponding to a value of r in
{0, . . . , n− 1}) and bounding the instantaneous regret with 1 for each step in which we restart (i.e.,
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at the last step of each but the last interval):

RT = E

[
T∑
t=1

(
ℓt(It)− ℓt(i∗)

)]

≤ E

[
n−1∑
r=0

Tr+1−2∑
t=Tr

(
ℓt(It)− ℓt(i∗)

)]
+ n− 1

≤ E

[
n−1∑
r=0

Tr+1−2∑
t=Tr

(
ℓt(It)− ℓt(i∗)

)]
+ log2 αT . (A.3)

For what follows, let ei∗ ∈ RK be an indicator vector for i∗ and let ℓ̃t be as defined in the proof of
Theorem 3.2. Fix r ∈ {0, . . . , n− 1}, we proceed by bounding the regret in the interval [Tr, Tr+1− 2]:

E

[
Tr+1−2∑
t=Tr

(
ℓt(It)− ℓt(i∗)

)]

= E

[
T∑
t=1

I
{
rt = r,

1

T

t∑
s=Trt

Hs(qrt)
1/qrt ≤ 2rt+1

}(
ℓt(It)− ℓt(i∗)

)]

(a)
= E

[
T∑
t=1

I
{
rt = r,

1

T

t∑
s=Trt

Hs(qrt)
1/qrt ≤ 2rt+1

}
⟨pt − ei∗ , ℓ̂t⟩

]

(b)
= E

[
T∑
t=1

I
{
rt = r,

1

T

t∑
s=Trt

Hs(qrt)
1/qrt ≤ 2rt+1

}
⟨pt − ei∗ , ℓ̃t⟩

]

= E

[
Tr+1−2∑
t=Tr

⟨pt − ei∗ , ℓ̃t⟩

]
(c)

≤ K1−qr

ηr(1− qr)
+

ηr
2qr

E

[
Tr+1−2∑
t=Tr

∑
i∈V

pt(i)
2−qr ℓ̃t(i)

2

]

(d)
=

K1−qr

ηr(1− qr)
+

ηr
2qr

E

[
T∑
t=1

I
{
rt = r,

1

T

t∑
s=Trt

Hs(qrt)
1/qrt ≤ 2rt+1

}
Et
[∑
i∈V

pt(i)
2−qr ℓ̃t(i)

2

]]
(e)

≤ K1−qr

ηr(1− qr)
+

ηr
2qr

E

[
T∑
t=1

I
{
rt = r,

1

T

t∑
s=Trt

Hs(qrt)
1/qrt ≤ 2rt+1

}
(2Ht(qr) + 7)

]

=
K1−qr

ηr(1− qr)
+

ηr
2qr

E

[
Tr+1−2∑
t=Tr

(2Ht(qr) + 7)

]
, (A.4)

where (a) follows since Et
[
ℓt(It)

]
=
∑

i∈V pt(i)ℓt(i), Et
[
ℓ̂t
]
= ℓt, and the indicator at round t is

measurable with respect to σ(I1, . . . , It−1), that is, the σ-algebra generated by I1, . . . , It−1; (b) follows
since ⟨pt − ei∗ , ℓ̂t⟩ = ⟨pt − ei∗ , ℓ̃t⟩ holds by the definition of ℓ̃t; (c) is an application of Lemma A.2,
justifiable with the same argument leading to (A.1) in the proof of Theorem 3.2; (d) uses once again
that the indicator at round t is measurable with respect to σ(I1, . . . , It−1); finally, (e) follows via
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(A.2). Define Tr:r+1 = Tr+1 − Tr − 1, and notice that

Tr+1−2∑
t=Tr

Ht(qr) =
Tr:r+1

Tr:r+1

Tr+1−2∑
t=Tr

(
Ht(qr)

1/qr
)qr

≤ Tr:r+1

(
1

Tr:r+1

Tr+1−2∑
t=Tr

Ht(qr)
1/qr

)qr
≤ Tr:r+1

(
T

Tr:r+1
2r+1

)qr
≤ 2T

(
2r
)qr ,

where the first inequality follows due to Jensen’s inequality since qr ∈ (0, 1), and the second follows
from the restarting condition of Algorithm 3.2. Next, we plug this inequality back into (A.4), and
then, similar to the proof of Theorem 3.2, we use the definitions of ηr and qr and bound the resulting
expression to get that

E

[
Tr+1−2∑
t=Tr

(
ℓt(It)− ℓt(i∗)

)]
≤ K1−qr

ηr(1− qr)
+

11ηr
2qr

T (2r)qr

≤ 2

√
11eT2r

(
2 + ln

(
K2−r

))
≤ 4
√

3eT2r ln
(
e2K2−r

)
.

We then sum this quantity over r and use Lemma A.3 to get that

E

[
n−1∑
r=0

Tr+1−2∑
t=Tr

(
ℓt(It)− ℓt(i∗)

)]
≤ 4
√
3eT

n−1∑
r=0

√
2r ln

(
e2K2−r

)
≤ 4
√
6e

√
π +
√
4− 2 ln 2

ln 2

√
αTT

(
2 + ln (K/αT )

)
,

which, together with (A.3), concludes the proof.

A.4 Proof of the Lower Bound

In this section, we prove the lower bound provided in Section 3.5, which we restate below. As
remarked before, our proof makes use of known techniques for proving lower bounds for the multitask
bandit problem. In particular, parts of the proof are adapted from the proof of Theorem 7 in Eldowa
et al. (2023a).

Theorem 3.4. Pick any K ≥ 2 and any α such that 2 ≤ α ≤ K. Then, for any algorithm and
for all T ≥ α logαK

4 log(4/3) , there exists a sequence of losses and feedback graphs G1, . . . , GT such that
α(Gt) = α for all t ∈ [T ] and

RT ≥
1

18
√
2

√
αT logαK.

Proof. Once again, we define M = logαK, which we assume for now to be an integer; we discuss in
the end how to extend the proof to the case when it is not. The proof will be divided into five parts
I–V. We begin by formalizing the class of environments described in Section 3.5 and stating two
useful lemmas.
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I. Preliminaries

We remind the reader that we identify each action in V with a vector a :=
(
a(1), . . . , a(M)

)
∈ [α]M .

We will focus on a set of M undirected graphs G := {Gi}Mi=1, where Gi consists of α isolated cliques
(with self-loops) {Ci,j}αj=1 such that an action a belongs to clique Ci,j if and only if a(i) = j. As
remarked before, all these graphs have independence number α. For convenience, we also use actions
in V as functions from G to [α], with a(Gi) := a(i).

An environment is identified by a function µ : [α]× G → [0, 1] such that at every round t, after
having drawn a graph Gt from the uniform distribution over G (denoted with UG), the environment
latently draws for each j ∈ [α] and G ∈ G, a Bernoulli random variable γt(j;G) with mean µ(j;Gt).
Subsequently, for defining the loss of action a ∈ V at round t, we simply set ℓt(a) := γt(a(Gt);Gt),
whose expectation, conditioned on Gt, is µ(a(Gt);Gt). To simplify the notation, we use µ(a;G) as
shorthand for µ(a(G);G) and γt(a;G) as shorthand for γt(a(G);G). Denote by At the action picked
by the player at round t, which is chosen prior to observing Gt. We will focus on the following notion
of stochastic regret, which we define for environment µ as:

RT (µ) = max
a∈V

Eµ
[ T∑
t=1

(ℓt(At)− ℓt(a))
]
,

where Eµ[·] denotes the expectation with respect to the sequence of losses and graphs generated by
environment µ, as well as the randomness in the choices of the player. We can use the tower rule to
rewrite this expression as

RT (µ) = max
a∈V

T∑
t=1

Eµ
[
Eµ
[
Eµ
[
ℓt(At)− ℓt(a)

∣∣∣∣Gt, At] ∣∣∣∣At]]

= max
a∈V

T∑
t=1

Eµ
[
Eµ
[
µ(At;Gt)− µ(a;Gt)

∣∣∣∣At]]

= max
a∈V

T∑
t=1

Eµ
[ M∑
i=1

UG(G
i)(µ(At;G

i)− µ(a;Gi))
]

= max
a∈V

1

M

M∑
i=1

Eµ
[ T∑
t=1

(µ(At;G
i)− µ(a;Gi))

]
. (A.5)

For a fixed algorithm, one can show via standard arguments that

sup
(ℓt)Tt=1,(Gt)Tt=1

RT ≥ sup
µ
RT (µ) .

Hence, it suffices for our purposes to prove a lower bound for the right-hand side of this inequality.
In the following, we will have to be more precise about the probability measure with respect to

which the expectation in (A.5) is defined. Let λt ∈ {0, 1}K/α denote the vector of losses observed by
the player at round t, which corresponds to the losses of the actions connected to At assuming that
a systematic ordering of the actions makes it clear which coordinate of λt belongs to which action.
Let 1K/α and 0K/α be the K/α dimensional∗ vectors of all ones and all zeros respectively. Clearly,

∗Note that K/α = αM−1 is an integer since M(≥ 1) was assumed to be an integer.
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we have that λt = γt(At;Gt)1K/α = ℓt(At)1K/α, which is a binary random variable taking values in
{0K/α,1K/α}. Let Pλµ be the probability distribution of λt in environment µ. Notice then that we
have that

Pλµ(γt = 1K/α |Gt = G,At = a) = µ(a;G) . (A.6)

Let Ht = (A1, G1,λ1, . . . , At, Gt,λt) ∈ (V × G × {0, 1}K/α)t be the interaction trajectory after
t steps. The policy π adopted by the player can be modelled as a sequence of probability kernels
{πt}Tt=1 each mapping the trajectory so far to a distribution over the actions, i.e., At is sampled
from πt(· |Ht−1). An environment µ and a policy π (implicit in the notation, and fixed throughout
the rest of the proof) together define a distribution Pµ over the set of possible trajectories of T steps
such that

Pµ(HT ) :=
T∏
t=1

πt(At |Ht−1)UG(Gt)Pλµ(λt |Gt, At) .

If P and Q are two distributions defined on the same space, let DKL(P ∥Q) and δ(P,Q) be
the KL-divergence and the total variation distance respectively between P and Q. Furthermore,
let d(p ∥ q) be the KL-divergence between two Bernoulli random variables with means p and q.
The following lemma provides an expression for the KL-divergence between two the probability
distributions associated to two environments.

Lemma A.4. For a fixed policy, let µ and µ′ be two environments as described above. Then,

DKL(Pµ ∥Pµ′) =
1

M

M∑
i=1

∑
a∈V

Nµ(a;T )d
(
µ(a;Gi)

∥∥µ′(a;Gi)) ,
where Nµ(a;T ) := Eµ

[∑T
t=1 I{At = a}

]
.

Proof. The proof is similar to that of Lemma 15.1 in Lattimore and Szepesvári (2020). Namely, we
have in our case that

DKL(Pµ ∥Pµ′) = Eµ
[
ln

Pµ(HT )

Pµ′(HT )

]
= Eµ

[
ln

∏T
t=1 πt(At |Ht−1)UG(Gt)Pλµ(λt |Gt, At)∏T
t=1 πt(At |Ht−1)UG(Gt)Pλµ′(λt |Gt, At)

]

=
T∑
t=1

Eµ
[
ln

Pλµ(λt |Gt, At)
Pλµ′(λt |Gt, At)

]

=

T∑
t=1

Eµ
[
Eµ
[
Eµ
[
ln

Pλµ(λt |Gt, At)
Pλµ′(λt |Gt, At)

∣∣∣∣Gt, At] ∣∣∣∣At]]

=

T∑
t=1

Eµ
[
Eµ
[
DKL(Pλµ(· |Gt, At) ∥Pλµ′(· |Gt, At))

∣∣∣∣At]]

=

T∑
t=1

Eµ
[ M∑
i=1

UG(G
i)DKL(Pλµ(· |Gi, At) ∥Pλµ′(· |Gi, At))

]

129



A. Proof Details for Chapter 3

=
1

M

M∑
i=1

T∑
t=1

Eµ
[
DKL(Pλµ(· |Gi, At) ∥Pλµ′(· |Gi, At))

]

=
1

M

M∑
i=1

∑
a∈V

Nµ(a;T )DKL(Pλµ(· |Gi, a) ∥Pλµ′(· |Gi, a))

=
1

M

M∑
i=1

∑
a∈V

Nµ(a;T )d
(
µ(a;Gi)

∥∥µ′(a;Gi)) ,
where the last equality holds via (A.6).

The following standard lemma, adapted from Lattimore and Szepesvári (2020), will be used in
the sequel.

Lemma A.5. Let P and Q be probability measures on the same measurable space (Ω,F). Let a < b

and X : Ω −→ [a, b] be an F-measurable random variable. Then,∣∣∣∣∫
Ω
X(ω)dP (ω)−

∫
Ω
X(ω)dQ(ω)

∣∣∣∣ ≤ (b− a)
√

1

2
DKL(P ∥Q) .

Proof. We have, by Exercise 14.4 in Lattimore and Szepesvári (2020), that∣∣∣∣∫
Ω
X(ω)dP (ω)−

∫
Ω
X(ω)dQ(ω)

∣∣∣∣ ≤ (b− a)δ(P,Q) ,

from which the lemma follows by applying Pinsker’s inequality.

II. Choosing the environments

We will construct a collection of environments {µa}a∈V , each associated to an action, such that for
any i ∈ [M ] and j ∈ [α],

µa(j;G
i) :=

1

2
− εI{a(i) = j} ,

where 0 < ε ≤ 1
4 will be tuned later. In words, for a fixed graph, environment µa gives a slight

advantage to actions that are connected to a in that graph, and thus agree with a in the corresponding
game. Additionally, for every a ∈ V and i ∈ [M ], we define environment µ−ia to be such that for any
s ∈ [M ] and j ∈ [α],

µ−ia (j;Gs) :=

1
2 , if s = i

µa(j;G
s), otherwise.

Similar to Eldowa et al. (2023a), we will define, for every i ∈ [M ], an equivalence relation ∼i on the
arms such that

a ∼i a′ ⇐⇒ ∀s ∈ [M ] \ {i}, a′(s) = a(s) ,

for any a, a′ ∈ V . This means that two arms are equivalent according to ∼i if and only if their
choices of base actions coincide in all games that are different from i. Let V/ ∼i be the set of
equivalence classes of ∼i. It is easy to see that V/ ∼i contains exactly αM−1 equivalence classes,
and that each class consists of α actions, each corresponding to a different choice of base action in
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game i. Notice then that for an equivalence class W ∈ V/ ∼i, all environments µ−ia with a ∈ V are
indeed identical. In the sequel, this environment will also be referred to as µ−iW .

III. Lower-bounding the regret of a single environment

Note that in environment µa, we have that a = argmina′∈V
∑M

i=1 µa(a
′;Gi). Consequently, starting

from (A.5) we get that

RT (µa) =
M∑
i=1

1

M
Eµa

[ T∑
t=1

(µa(At;G
i)− µa(a;Gi))

]

=
M∑
i=1

1

M
Eµa

[ T∑
t=1

(
1

2
− εI{At(i) = a(i)} −

(
1

2
− ε
))]

=
ε

M

M∑
i=1

Eµa
[ T∑
t=1

(1− I{At(i) = a(i)})
]

=
ε

M

M∑
i=1

(
T −Nµa(i, a;T )

)
,

where for environment µ, action a, and game i, Nµ(i, a;T ) := Eµ
[∑T

t=1 I{At(i) = a(i)}
]

is the
expected number of times in environment µ that the action chosen by the policy agrees with action
a in game i. Next, we use Lemma A.5 to obtain that

RT (µa) ≥
ε

M

M∑
i=1

(
T −Nµ−i

a
(i, a;T )− T

√
1

2
DKL

(
Pµ−i

a

∥∥Pµa)) . (A.7)

For bounding the KL-divergence term, we start from Lemma A.4:

DKL

(
Pµ−i

a

∥∥Pµa) = 1

M

M∑
s=1

∑
a′∈V

Nµ−i
a
(a′;T )d

(
µ−ia (a′;Gs)

∥∥µa(a′;Gs))
=

1

M

∑
a′∈V

Nµ−i
a
(a′;T )d

(
µ−ia (a′;Gi)

∥∥µa(a′;Gi))
=

1

M

∑
a′∈V

Nµ−i
a
(a′;T )d

(
1/2

∥∥ 1/2− εI{a′(i) = a(i)}
)

=
1

M

∑
a′∈V

I{a′(i) = a(i)}Nµ−i
a
(a′;T )d

(
1/2

∥∥ 1/2− ε)
≤ cε2

M

∑
a′∈V

I{a′(i) = a(i)}Nµ−i
a
(a′;T )

=
cε2

M

∑
a′∈V

I{a′(i) = a(i)}Eµ−i
a

T∑
t=1

I{At = a′}

=
cε2

M
Eµ−i

a

T∑
t=1

I{At(i) = a(i)}

=
cε2

M
Nµ−i

a
(i, a;T ) ,
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where the second equality holds since the two environments only differ in Gi, and the inequality
holds for ε ≤ 1

4 with c = 8 log 4
3 . Plugging back into (A.7) gets us that

RT (µa) ≥
ε

M

M∑
i=1

(
T −Nµ−i

a
(i, a;T )− εT

√
c

2M
Nµ−i

a
(i, a;T )

)
. (A.8)

IV. Summing up

Fix i ∈ [M ]. Notice that for W ∈ V/ ∼i,∑
a∈W

I{At(i) = a(i)} = 1

since each action in W corresponds to a different choice of base action in game i. Hence,

1

αM

∑
a∈V

Nµ−i
a
(i, a;T ) =

1

αM

∑
W∈V/∼i

∑
a∈W

Nµ−i
a
(i, a;T )

=
1

αM

∑
W∈V/∼i

∑
a∈W

Nµ−i
W
(i, a;T )

=
1

αM

∑
W∈V/∼i

Eµ−i
W

[
T∑
t=1

∑
a∈W

I{At(i) = a(i)}

]

=
1

αM
αM−1T =

T

α
.

Using this together with (A.8) allows us to conclude that

sup
µ
RT (µ) ≥

1

αM

∑
a∈V

RT (µa)

≥ 1

αM

∑
a∈V

ε

M

M∑
i=1

(
T −Nµ−i

a
(i, a;T )− εT

√
c

2M
Nµ−i

a
(i, a;T )

)

≥ ε

M

M∑
i=1

(
T − 1

αM

∑
a∈V

Nµ−i
a
(i, a;T )− εT

√
c

2MαM

∑
a∈V

Nµ−i
a
(i, a;T )

)

=
ε

M

M∑
i=1

(
T − T

α
− εT

√
cT

2Mα

)

= εT

(
1− 1

α
− ε
√

cT

2Mα

)
≥ εT

(
1

2
− ε
√

cT

2Mα

)
,

where the third inequality holds due to the concavity of the square root, and the last inequality
holds by our assumption that α ≥ 2. Setting ε = 1

4

√
2Mα
cT yields that

sup
µ
RT (µ) ≥

1

16

√
2

c
·
√
αTM ≥ 1

18

√
αTM =

1

18

√
αT logαK ,
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whereas it holds that ε ≤ 1
4 thanks to the assumption made on T in the statement of the theorem.

V. The case when logαK is not an integer

If M is not an integer,† we can use the same construction as before for the first α⌊M⌋ actions and
force the remaining actions to behave identically to some action in the construction. That is, we can
designate a certain action such that, in all environments, all the excess actions receive the same loss
as this action and are connected to it, to each other, and to every action that happens to share an
edge with this designated action in a given graph (in other words, we are expanding the designated
action into a clique). This way, the independence number of all the graphs in the construction is
still α, and the excess actions do not provide any extra utility to the learner; playing one of them is
exactly like playing the designated action, and the construction does not hide this from the player.
We can then obtain the same bound as before but in terms of ⌊M⌋, thus costing us an extra 1/

√
2

factor to recover the desired bound (using that ⌊M⌋ ≥M/2).

A.5 Comparison with Recent Work

In Chen et al. (2024), the authors consider a special case of the undirected feedback graph problem
where the graph (fixed and known) is composed of α disjoint cliques with self-loops. For j ∈ [α], let
mj denote the number of actions in the j-th clique, implying that

∑α
j=1mj = K (the number of arms).

For this problem, Chen et al. (2024, Theorem 4) provides a lower bound of order
√
T
∑α

j=1 ln(mj + 1).
In particular, if the cliques are balanced (i.e., m1 = · · · = mα = K/α), the lower bound becomes of
order

√
αT ln(1 +K/α), thus matching the regret bound of Algorithm 3.1. This means that, for

any value of 1 ≤ α ≤ K, there are feedback graphs on K nodes with independence number α such
that no other algorithm can achieve a better minimax regret guarantee than that of our proposed
algorithm.

We emphasize that this does not imply graph-specific minimax optimality. Indeed, as shown
in Chen et al. (2024), when the cliques are unbalanced, the regret guarantee of our algorithm can
be inferior to that of the algorithm they proposed, which matches the

√
T
∑α

j=1 ln(mj + 1) bound.
However, beyond the disjoint cliques case, their algorithm requires computing a minimum clique
cover for the given feedback graph G, which is known to be NP-hard (Karp, 1972). More importantly,
their reliance on a clique cover leads to a dependence of the regret on the clique cover number
θ(G) instead of the independence number α(G). One can argue that the ratio between θ(G) and
α(G) can be Ω(K/(lnK)2) for most graphs on a sufficiently large number K of vertices (e.g., see
Mannor and Shamir (2011, Section 6)). Finally, it is not clear how to generalize their approach to
time-varying feedback graphs (informed or uninformed). Hence, despite the contributions of our
work and those of Chen et al. (2024), the problem of characterizing the minimax regret rate at a
graph-based granularity still calls for further investigation.

†Note that M is never smaller than 1 since α ≤ K.
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A.6 Directed Strongly Observable Feedback Graphs

In this section, we consider the case of directed strongly observable graphs. For a directed graph
G = (V,E), recall that we define N in

G (i) = {j ∈ V : (j, i) ∈ E} to be the in-neighbourhood of node
i ∈ V in G, and Nout

G (i) = {j ∈ V : (i, j) ∈ E} to be its out-neighbourhood. A directed graph G is
strongly observable if for every i ∈ V , at least one of the following holds: i ∈ N in

G (i) or j ∈ N in
G (i) for

all j ≠ i. The independence number α(G) is still defined in the same manner as before; that is, the
cardinality of the largest set of nodes such that no two nodes share an edge, regardless of orientation.
The interaction protocol is the same as in the undirected case, except that, in each round t ∈ [T ],
the learner only observes the losses of the actions in Nout

Gt
(It), which is the out-neighbourhood in

graph Gt of the action It picked by the learner. As before, we will use N in
t (i) and Nout

t (i) to denote
N in
Gt
(i) and Nout

Gt
(i) respectively. For this setting, a bound of O

(√
αT · ln(KT )

)
was proven in Alon

et al. (2015) for the Exp3.G algorithm. Later, Zimmert and Lattimore (2019) proved a bound of
O
(√
αT ln3K

)
for OSMD with a variant of the q-Tsallis entropy regularizer where q was chosen as

1− 1/(lnK).

To use Algorithm 3.1 in the directed case, one can define loss estimates analogous to (3.6) by
using the in-neighbourhood in place of the neighbourhood in the relevant quantities. Namely, let
St :=

{
i ∈ V : i /∈ N in

t (i)
}
, Jt := {i ∈ St : pt(i) > 1/2}, and Pt(i) :=

∑
j∈N in

t (i) pt(j). The loss
estimates (again due to Zimmert and Lattimore (2019)) can then be given by

ℓ̂t(i) :=


ℓt(i)
Pt(i)

I
{
It ∈ N in

t (i)
}

if i ∈ V \ Jt
ℓt(i)−1
Pt(i)

I
{
It ∈ N in

t (i)
}
+ 1 if i ∈ Jt .

Algorithm 3.1 with these loss estimates can be analyzed in a similar manner to the proof of
Theorem 3.2, with the major difference being the way that the variance term is handled for actions
with self-loops. Namely, the relevant term is

∑
i∈V :i∈N in

t (i)

pt(i)
2−q∑

j∈N in
t (i) pt(j)

,

on which we elaborate more in the following.

Let p ∈ ∆K and β ∈ (0, 1/2) be such that mini∈V p(i) ≥ β. We first consider the variance
term given by the negative Shannon entropy regularizer. It is known (Alon et al., 2015) that such
a variance term, restricted to nodes with a self-loop in the strongly observable feedback graph
G = (V,E), has an upper bound of the form

∑
i∈V :i∈N in

G (i)

p(i)∑
j∈N in

G (i) p(j)
≤ 4α(G) ln

(
4K

α(G)β

)
. (A.9)

In addition to the fact that this variance bound has a linear dependence on the independence number
α(G) of G, we observe that there is a logarithmic factor in K/α and 1/β given by the fact that we
now consider directed graphs. The main problem is that, in general, we cannot hope to improve
upon the above logarithmic factor as it can be shown to be unavoidable unless we manage to restrict
the probability distributions we consider. Indeed, it is possible to show (Alon et al., 2017, Fact 4)
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that there exist probability distributions p ∈ ∆K and directed strongly observable graphs G for
which α(G) = 1 and

∑
i∈V :i∈N in

G (i)

p(i)∑
j∈N in

G (i) p(j)
=
K + 1

2
=

1

2
log2

(
4

mini p(i)

)
= α(G) logω(1)

(
K

α(G)

)
.

A usual way to avoid this is to introduce some explicit exploration to the probability distributions
in order to force a lower bound on the probabilities of all nodes, e.g., as in Exp3.G (Alon et al.,
2015). This would bring the linear dependence on K down to α in the above bad case, while, on the
other hand, introducing a ln(KT ) factor which then worsens the overall dependence on the time
horizon T .

Consider now the variance term given by the analysis of the q-FTRL algorithm. As already
argued in Section 3.3, we can reuse the variance bound in (A.9) for the case of negative Shannon
entropy because ∑

i∈V :i∈N in
G (i)

p(i)2−q∑
j∈N in

G (i) p(j)
≤

∑
i∈V :i∈N in

G (i)

p(i)∑
j∈N in

G (i) p(j)

for any q ∈ (0, 1), and such a bound is the best known so far for the general case of directed
strongly observable graphs. However, we can be more clever in the way we utilize it. Similarly
to the proof of Zimmert and Lattimore (2019, Theorem 14), we can gain an advantage from the
adoption of q-FTRL by splitting the sum in the variance term into two sums according to some
adequately chosen threshold β on the probabilities of the individual nodes. More precisely, by
choosing β ≈ exp

(
− ln(K/α) lnK

)
and q = 1− 1/(lnK), we can prove that

∑
i∈V :i∈N in

G (i)

p(i)2−q∑
j∈N in

G (i) p(j)
= O

(
α

(
1 + ln

K

α

)
lnK

)
.

We can further argue that, by following a similar analysis as in the proofs of Theorems 3.1 and 3.2,
this variance bound would allow to show that the regret of q-FTRL is O

(√
αT
(
1 + ln(K/α)

)
· lnK

)
,

where there is an additional lnK factor when compared to our regret bound in the undirected case
(Theorem 3.2).

The presence of extra logarithmic factors is to be expected in the directed case, as many
edges between distinct nodes might reduce the independence number of the graph, while providing
information in one direction only. However, the undirected graph G′ obtained from any directed
strongly observable graph G by reciprocating edges between distinct nodes has the same independence
number α(G′) = α(G) but the regret guarantee given by the more general analysis of q-FTRL would
introduce a spurious lnK multiplicative factor. We remark that all the currently available upper
bounds on the variance term (either with negative Shannon entropy or negative q-Tsallis entropy
regularizers) do not exactly reflect the phenomenon of a gradually disappearing logarithmic factor
when the graph is closer to being undirected (i.e., has fewer unreciprocated edges).

Taking these observations into account, we believe that it should be possible to achieve tighter
guarantees that match our intuition, by improving the currently available tools. The bound on the
variance term, for instance, is one part of the analysis that might be improvable. We might want to
have a similar bound as (A.9) but with a sublinear dependence on α that varies according to the
parameter q of the negative q-Tsallis entropy; e.g., ignoring logarithmic factors, we could expect it
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to become of order αq as we managed to prove for the undirected case (Lemma 3.1). Doing so could
allow a better tuning of q that might lead to improved logarithmic factors in the regret.
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Appendix B

Missing Results from Chapter 4

B.1 Auxiliary Result

Lemma B.1. Let q ∈ (0, 1), b > 0, c > 1, and (yt)
T
t=1 be a sequence of loss vectors in RN satisfying

yt(i) ≥ −b for all t ∈ [T ] and i ∈ [N ]. Let (pt)T+1
t=1 be the predictions of FTRL with decision set ∆N

and the q-Tsallis regularizer ψq over this sequence of losses; that is, p1 := argminp∈∆N
ψq(p), and

for t ∈ [T ],

pt+1 := argmin
p∈∆N

η

t∑
s=1

〈
ys, p

〉
+ ψq(p) ,

assuming the learning rate η satisfies 0 < η ≤ q
(1−q)b

(
1− c

q−1
2−q

)
. Then for any u ∈ ∆N ,

T∑
t=1

⟨pt − u, yt⟩ ≤
N1−q − 1

(1− q)η
+
ηc

2q

T∑
t=1

N∑
i=1

pt(i)
2−q yt(i)

2 .

Proof. Let p′t+1 := argminp∈RN
≥0
⟨p, yt⟩+Dψq(p, pt), where Dψq(·, ·) denotes the Bregman divergence

based on ψq. Via Lemma 7.14 in Orabona (2019) we have that

T∑
t=1

⟨pt − u, yt⟩ ≤
ψq(u)− ψq(p1)

η
+

η

2q

T∑
t=1

N∑
i=1

zt(i)
2−q yt(i)

2

≤ N1−q − 1

(1− q)η
+

η

2q

T∑
t=1

N∑
i=1

zt(i)
2−q yt(i)

2 ,

where zt lies on the line segment between pt and p′t+1. A simple derivation shows that

p′t+1(i) = pt(i)

(
1

1 + η 1−q
q yt(i)pt(i)1−q

) 1
1−q

,

for each i ∈ [N ]. On the other hand, it holds that

η
1− q
q

yt(i)pt(i)
1−q ≥ −η1− q

q
bpt(i)

1−q ≥ −η1− q
q

b ≥ c
q−1
2−q − 1 ,

where the first inequality uses that yt(i) ≥ −b (and that pt(i), η > 0), the second uses that pt(i) ≤ 1,
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and the third uses that η ≤ q
(1−q)b

(
1− c

q−1
2−q

)
. This entails that p′t+1(i) ≤ c

1
2−q pt(i), which implies

that zt(i) ≤ c
1

2−q pt(i) concluding the proof.
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Appendix C

Proof Details for Chapter 5

C.1 On the Computation of the Optimal Probability Thresholds

The tasks of finding the independence number and (weak) domination number in a graph are
notoriously NP-hard problems. In particular, while for the domination number, by a reduction to
set cover, a simple greedy approach yields a logarithmic (in the number K of nodes) approximation
(Vazirani, 2001), for the independence number it is known that even computing a K1−ϵ-approximation
is hard, for any ϵ > 0 (Håstad, 1999, Zuckerman, 2007).

Our algorithm OptimisticThenCommitGraph solves these computational aspects directly,
whereas the hardness of finding α∗ and δ∗ may limit the applicability of EdgeCatcher in instances
with a large and complex action space. In fact, the computation of the stopping function Φ involves
finding the best thresholds ε∗s and ε∗w, defined in Equations (5.1) and (5.2), and therefore repeatedly
solving NP-hard problems. In what follows, we present some observations that clarify to which
extent (and at which cost) EdgeCatcher can still be implemented efficiently.

First, it is important to note that our algorithm is robust with respect to approximate knowledge
of the topological parameters: the definition of Φ can be tweaked as to consider the approximation
factor at the cost of having the same factor showing up in the regret bound (with the same order as
the approximated graph parameter). This partly solves the problem for weakly observable graphs (as
the (log(K) + 1)-approximation only gives and extra polylog(K) in the regret) and for the classes of
graphs where it is possible to efficiently compute good approximations of the independence number,
e.g., planar graphs (Baker, 1994) or bounded-degree graphs (Halldórsson and Radhakrishnan, 1997).

Another approach consists in considering the fractional solutions of the independence and
domination number linear programs. While for the former we obtain an approximation given by the
integrality gap, for the latter we can show a tight dependence on the fractional weak domination
number (thus improving the regret bound), as in Chen et al. (2021).

Furthermore, note that it is always possible to ignore the α and δ terms in the definition of Φ; it
is not hard to see that such an approach yields a regret bound (ignoring polylog terms) of the type
min{

√
(K/ε1)T , (K/ε2)

1/3T 2/3}, where ε1, respectively ε2, is the largest ε such that supp ([G]ε) is
strongly, respectively weakly, observable. Although suboptimal, this drastic approach gives a regret
bound with an optimal dependence on the T and ε terms (as ε∗s ≤ ε1 and ε∗w ≤ ε2).

Finally, we conclude by discussing how it is possible to drastically reduce the number of times
that EdgeCatcher calls the routine to compute α and δ, at the cost of losing a small multiplicative
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factor in the regret. Crucially, we do not need to check the stopping condition involving Φ in every
single round: it suffices to do so for a logarithmic number of times. Assume, in fact, to check the
stopping condition in RoundRobin only when τ is a power of 2, i.e., τ = 2b for some integer b.
This single check covers all rounds τ ′ such that τ/2 = 2b−1 ≤ τ ′ ≤ 2b = τ . On the stochastic
graph estimate Ĝτ we can compute αετ /ετ and δετ /ετ , which are also 2-approximations for the
best respective ratios on any thresholded graph corresponding to rounds of RoundRobin between
τ/2 and τ (note that such an approach would also improve the dependency of ετ and ∆ on T in
Theorems 5.2 and 5.3, and thus in the regret bound, from log(T ) down to log(log(T )) due to an
improved union bound).

C.2 Missing Results from Section 5.3

C.2.1 Proof of Theorem 5.2

Theorem 5.2. If RoundRobin (Algorithm 5.1) is run on the stochastic feedback graph G, then,
with probability at least 1− 1/T , the estimate Ĝτ is an ετ -good approximation of G simultaneously
for all τ ≤ τ̂ , where τ̂ ≤ T/K is the index of the last iteration of the outer for-loop in Algorithm 5.1.

Proof of Theorem 5.2. For all edges e and time steps τ ≤ τ̂ , we define the following two events: the
event Eτe := {p̂τe ≥ ετ} that e belongs to the support of Ĝτ , and the event Fτe := {|p̂τe − pe| ≤ pe/2}
that p̂τe is well estimated. For all τ ≤ τ̂ , we also define large and small edges in E according to their
probabilities: E+

τ := {e ∈ V 2 : pe ≥ 2ετ} and E−
τ := {e ∈ V 2 : pe < ετ/2}.

First, we look at the complementary event of Eτe for any τ ≤ τ̂ and e ∈ E+
τ . We have:

P
(
Eτe
)
= P (p̂τe < ετ ) ≤ P (p̂τe ≤ pe/2) = P (p̂τe − pe ≤ −pe/2) ≤ e−

τ
8
pe ≤ e−

τ
4
ετ ≤ 1

4KT 2
.

Note that in the first and second to last inequalities we used the fact that pe ≥ 2ετ , in the last
inequality the definition of ετ and the fact that K ≥ 2, while in the second inequality we applied
the Chernoff lower bound (multiplicative version, see Mitzenmacher and Upfal (2005, part 2 of
Theorem 4.5)) on the estimator p̂τe .

If we call E the event corresponding to part 1 of Definition 5.1, we have the following:

P (E) = P

⋂
τ≤τ̂

⋂
e∈E+

τ

Eτe

 ≥ 1−
∑
τ≤τ̂

∑
e∈E+

τ

P (p̂τe < ετ ) ≥ 1−
∑
τ≤τ̂

|E+
τ |

4KT 2
≥ 1− 1

4T
, (C.1)

where we used that |E+
τ | ≤ K2 for all τ ≤ τ̂ ≤ T/K with probability 1.

Next, we study the complementary event of Fτe for e ̸∈ E−
τ . For such e and any τ ≤ τ̂ , we can

directly use the two-sided Chernoff bound (multiplicative version, as in Mitzenmacher and Upfal
(2005, Corollary 4.6)) on the estimator p̂τe :

P
(
Fτe
)
= P

(
|p̂τe − pe| >

1

2
pe

)
≤ 2e−

τ
12
pe ≤ 2e−

τ
24
ετ ≤ 1

2KT 2
.

Note that we used the definition of ετ and the facts that 2pe ≥ ετ and K,T ≥ 2. Now, if we call
F the event corresponding to part 2 of Definition 5.1, we can proceed via union bounding as in
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Equation (C.1) and get

P (F) = P

⋂
τ≤τ̂

⋂
e/∈E−

τ

Fτe

 ≥ 1− 1

2T
. (C.2)

As a third step, we get back to the Eτe events, but we consider e ∈ E−
τ . For τ ≤ τ̂ and e ∈ E−

τ we
have:

P (Eτe ) = P (p̂τe ≥ ετ ) ≤ P
(
p̂τe − pe ≥

1

2
ετ

)
= P (p̂τe − pe ≥ xpe) ,

where we used pe < ετ/2 and named x = ετ/(2pe) > 1. At this point we can use the Chernoff upper
bound (multiplicative version, see Mitzenmacher and Upfal (2005, part 1 of Theorem 4.4) with
δ = x) and obtain:

P (Eτe ) ≤ P (p̂τe − pe ≥ xpe) ≤
(

ex

(1 + x)1+x

)τpe
≤ e−

τ
3
xpe = e−

τ
6
ετ ≤ 1

4KT 2
.

The third inequality follows from 2x/(2 + x) ≤ ln(1 + x) which holds for all positive x:

ex

(1 + x)1+x
= ex−(1+x) ln(1+x) ≤ e−x

2/(2+x) ≤ e−x/3, ∀x ≥ 1 .

If we now call C the event described in part 3 of Definition 5.1, we get, using the bound on P (Eτe )
and a union bound as in Equations (C.1) and (C.2):

P (C) = P

⋂
τ≤τ̂

⋂
e∈E−

τ

Eτe

 ≥ 1− 1

4T
. (C.3)

The theorem then follows by a union bound on the complementary events of E ,F and C.

C.2.2 Proof of Theorem 5.3

In order to prove the regret bound achieved by BlockReduction, we need to show that it is able
to compute unbiased estimators for the average loss of observed actions within each time block. This
property is guaranteed as long as the learner plays consistently a same action within each time block,
and conditioned on the event that each action in the support out-neighborhood of the chosen action
is observed at least once in the respective time block (depending on the realizations of the feedback
graph).

Lemma C.1. Let G = supp (G) and cτ and ĉτ defined as in Equations (5.3) and (5.4). For each
block Bτ , if the learner plays consistently action a, then for each a′ ∈ Nout

G (a) the estimators ĉτ (a′)
are unbiased under Eτ(a,a′):

E
[
ĉτ (a

′)
∣∣∣ Eτ(a,a′)] = cτ (a

′) , ∀a′ ∈ Nout
G (a) .

Proof. Recall that Eτ(a,a′) is the event that the edge (a, a′) in G is observed at least once in block Bτ .
Substituting the definition (5.4) of the estimator, we can write

E
[
ĉτ (a

′)
∣∣∣ Eτ(a,a′)] = ∑

t∈Bτ

ℓt(a
′)E

[
I{(a, a′) ∈ Et}

∆τ
(a,a′)

∣∣∣∣∣ Eτ(a,a′)
]
.
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Now we just need to prove that the expectation in the right-hand side is equal to 1/∆:

E

[
I{(a, a′) ∈ Et}

∆τ
(a,a′)

∣∣∣∣∣ Eτ(a,a′)
]
=

∆∑
r=1

E
[
I{(a, a′) ∈ Et}

r

∣∣∣∣∆τ
(a,a′) = r

]
P
(
∆τ

(a,a′) = r
∣∣∣ Eτ(a,a′))

=
∆∑
r=1

1

r
P
(
(a, a′) ∈ Et

∣∣∣∆τ
(a,a′) = r

)
P
(
∆τ

(a,a′) = r
∣∣∣ Eτ(a,a′))

=
1

∆

∆∑
r=1

P
(
∆τ

(a,a′) = r
∣∣∣ Eτ(a,a′)) =

1

∆
.

Note that in the third equality we used the fact that, conditioned on ∆τ
(a,a′) = r > 0, the r time

steps when (a, a′) ∈ Et are distributed uniformly at random in the ∆ time steps.

We can now prove the regret bound of BlockReduction in Theorem 5.3, which we restate
below. Its regret depends on the performance of the algorithm A used on the meta-instance derived
from the blocks reduction.

Theorem 5.3. Consider the problem of online learning with stochastic feedback graph G, and let Ĝ be
an ε-good approximation of G. Let A be an algorithm for online learning with arbitrary deterministic
feedback graph G with regret bound RA

N (G) over any sequence of N losses in [0, 1]. Then, the regret
of BlockReduction (Algorithm 5.2) run with input (T, ε/2, Ĝ,A) is at most ∆RA

N

(
supp(Ĝ)

)
+∆,

where N := ⌊T/∆⌋ and ∆ := ⌈4ε ln(KT )⌉.

Proof of Theorem 5.3. Consider the partition of the T time steps into N blocks B1, . . . , BN of equal
size ∆ and let E be the clean event, corresponding to all edges e in the graph Ĝ := supp

(
Ĝ
)

being
realized at least once in each block. Formally, denoting G = (V,E), we let E :=

⋂N
τ=1

⋂
e∈E Eτe ,

where Eτe are defined as in the proof of Lemma C.1. By Definition 5.1 (part 3), all the edges e ∈ E
have a probability pe in G that is at least ε/2. Thus, it is immediate to verify that

P (Eτe ) = 1− (1− pe)∆ ≥ 1−
(
1− ε

2

)∆
≥ 1− e−ε∆/2 ≥ 1− 1

K2T 2

holds for any edge e ∈ E using our choice of ∆. We show by union bound that the probability any
of these edges never realizes in some block is

P

 ⋃
τ≤N

⋃
e∈E
Eτe

 ≤∑
τ≤N

∑
e∈E

P
(
Eτe
)
≤ 1

T
,

where we used that there are at most K2 directed edges (including self-loops) in Ĝ and we substituted
the chosen values of N and ∆.

We can then bound the overall regret RT as follows:

RT ≤ E

[
T∑
t=1

ℓt(It)

∣∣∣∣∣ E
]
−min

k

T∑
t=1

ℓt(k) + T · P
(
E
)
+ (T −∆N) . (C.4)

Note that the final term is an upper bound to the regret in the final time steps of the algorithm. We
just showed that P

(
E
)

is smaller than 1/T . This, together with the fact that T −∆N is at most
∆− 1, gives the additive ∆ we have in the final statement.
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We now focus on the remaining term, which corresponds to the regret conditioned on E . It is
equal to

E

[
T∑
t=1

ℓt(It)

∣∣∣∣∣ E
]
−min

k

T∑
t=1

ℓt(k) = ∆ ·

(
E

[
N∑
τ=1

∑
t∈Bτ

ℓt(Iτ )

∆

∣∣∣∣∣ E
]
−min

k

N∑
τ=1

∑
t∈Bτ

ℓt(k)

∆

)

= ∆ ·

(
E

[
N∑
τ=1

cτ (Iτ )

∣∣∣∣∣ E
]
−min

k

N∑
τ=1

cτ (k)

)
, (C.5)

where, we recall it, cτ (i) is the average loss of action i in block Bτ . Indeed, our algorithm chooses
the same action It := Iτ for all time steps t ∈ Bτ , and the decision is based on algorithm A.

Consider now the loss estimates ĉ1, . . . , ĉN that we provide to algorithm A. These estimates are
such that E [ĉτ (i) | E ] = cτ (i) by Lemma C.1. Note that conditioning on E instead that on the single
Eτe does not affect the fact that the estimators are unbiased: this is due to the fact that the edge
realizations are independent from the losses and the strategy of the learner.

Therefore, letting k∗ be the action minimizing c1(k) + · · ·+ cT (k) over k = 1, . . . ,K,

E

[
N∑
τ=1

cτ (Iτ )

∣∣∣∣∣ E
]
−min

k

N∑
τ=1

cτ (k) = E

[
N∑
τ=1

ĉτ (Iτ )−
N∑
τ=1

ĉτ (k
∗)

∣∣∣∣∣ E
]
≤ RA

N (Ĝ) , (C.6)

where RA
N (Ĝ) is the regret bound of algorithm A given losses ĉ1, . . . , ĉN and feedback graph

Ĝ = supp
(
Ĝ
)
. Finally, substituting Equations (C.5) and (C.6) into Equation (C.4) yields the desired

bound.

C.2.3 Proof of Corollary 5.1

Corollary 5.1. Consider the problem of online learning with stochastic feedback graph G, and let Ĝ
be an ε-good approximation of G for ε ≥ 1/T and with support Ĝ. The following statements hold:

• If Ĝ is strongly observable with independence number α, then the regret of BlockReduction

run with parameter ε/2 using Exp3.G for strongly observable graphs as base algorithm A satisfies:
RT ≤ 4Cs

√
(α/ε)T · ln3/2(KT ), where Cs > 0 is a constant in the regret bound of A.

• If Ĝ is (weakly) observable with weak domination number δ, then the regret of BlockReduction

run with parameter ε/2 using Exp3.G for weakly observable graphs as base algorithm A satisfies:
RT ≤ 4Cw(δ/ε)

1/3T 2/3 ln2/3(KT ), where Cw > 0 is a constant in the regret bound of A.

Proof of Corollary 5.1. The statement follows from Theorem 5.3, the assumption on ε (which
lets us safely handle the additive ∆ term), and the fact that Exp3.G achieves regret RA

N ≤
Cs
√
αN ln(KN) on strongly observable graphs, and regret RA

N ≤ Cw(δ lnK)1/3N2/3 on (weakly)
observable graphs.

C.2.4 Proof of Theorem 5.4

To prove Theorem 5.4 we first need two preliminary lemmata. In Lemma C.2 we present some
generic properties of the stopping function Φ(G, T ), while in Lemma C.3 we prove that Φ(G, T − τ̂K)

is indeed the regret obtained in BlockReduction after the stopping condition in RoundRobin is
triggered.
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Lemma C.2. Let G be a stochastic feedback graph such that Φ(G, T ) ̸= ∞, and let ε∗ be the
threshold where the argmin in the definition of Φ(G, T ) is attained. Consider a run of the algorithm
EdgeCatcher where RoundRobin does not fail while using the stopping function Φ defined in
Equation (5.5). We have the following:
(i) Φ(Ĝτ ′ , T ) ≤ 2Φ(Ĝτ , T ), for all τ, τ ′ such that τ ≤ τ ′ ≤ τ̂ ,
(ii) Φ(Ĝτ , T ) ≤

√
2Φ(G, T ) for all τ such that 120 ln(KT )/ε∗ ≤ τ ≤ τ̂ (if such τ exists),

where τ̂ ≤ ⌊T/K⌋ is the index of the last iteration of the outer for loop in Algorithm 5.1.

Proof. We consider a run of EdgeCatcher where RoundRobin does not fail. This means that all
the Ĝτ are ετ -good approximation of G, for all τ ≤ τ̂ . Focus on the first part of the statement. All
edges in supp

(
Ĝτ
)

are contained in supp
(
Ĝτ ′
)

since RoundRobin does not fail. This implies that
the observability regime only improves as τ increases. We have two cases: if the best threshold for Ĝτ
(say it corresponds to some edge probability in Ĝτ without loss of generality) induces a thresholded
stochastic feedback graph with strongly observable support G = (V,E) and independence number
α, we have that Ĝτ ′ is strongly observable too; moreover, all the edges e ∈ E are such that
|pe − p̂τe | ≤ pe/2 by Definition 5.1 (part 2); the same holds for τ ′: |pe − p̂τ

′
e | ≤ pe/2. Consider graph

G with edge probabilities p̂τ ′e , respectively pe and p̂τe and let ε1, respectively ε2 and ε3, be their
smallest probability (restricting on the edges of G). We have that:

min
ε∈(0,1]

{
α
(
[Ĝτ ′ ]ε

)
ε

: supp
(
[Ĝτ ′ ]ε

)
strongly observable

}
≤ α

ε1
≤ 2

α

ε2
≤ 4

α

ε3

= 4 min
ε∈(0,1]

{
α
(
[Ĝτ ]ε

)
ε

: supp
(
[Ĝτ ]ε

)
strongly observable

}
,

where the first inequality follows from suboptimality of graph G with threshold ε1 for Ĝτ ′ , the
second and the third inequality by the conditions on pe, p̂τ

′
e and pτe , and the last equality by

definition of G and α. If we now substitute this inequality in the definition of Φ, we obtain that
2Φ(Ĝτ , T ) ≥ Φ(Ĝτ ′ , T ). We can reason in the same exact way considering the (weakly) observable
case and obtain 3

√
4Φ(Ĝτ , T ) ≥ Φ(Ĝτ ′ , T ). Putting the two results together we conclude the proof of

point (i).
We move our attention to the second part of the lemma. Because of Theorem 5.2 together with

the lower bound on τ , it holds that Ĝτ is an ε∗/2-good approximation of G. This implies that all
the edges in supp ([G]ε∗) are contained in the support of Ĝτ and that they are well approximated,
as in parts 1 and 2 of Definition 5.1. We have two cases, according to the topology of the support
corresponding to the threshold ε∗ which guarantees the optimal regret for G. First, consider the case
that ε∗ corresponds to a strongly observable structure in supp ([G]ε∗) with independence number α∗;
we have that

min
ε∈(0,1]

{
α
(
[Ĝτ ]ε

)
ε

: supp
(
[Ĝτ ]ε

)
strongly observable

}
≤ 2

α∗

ε∗

= 2 min
ε∈(0,1]

{
α([G]ε)
ε

: supp ([G]ε) strongly observable
}
,

where in the first inequality we used the suboptimality of threshold ε∗/2 for Ĝτ and the fact that
the independence number of α([Ĝτ ]ε∗) is at most α∗ (and the strong observability is maintained).
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Then, we have that

Φ(Ĝτ , T ) ≤ 4Cs

√
2
α∗

ε∗
T
(
ln(KT )

)3/2
=
√
2Φ(G, T ) ,

where the inequality follows naturally from the (possible) suboptimality of the choice of the strongly
observable regime and the threshold ε∗/2 for Ĝτ . We can argue similarly for the case in which the
optimal ε∗ corresponds to the weakly observable regime in G. In this case, for the same arguments
as per the strongly observable regime, we have that

min
ε∈(0,1]

{
δ([Ĝτ ]ε)

ε
: supp

(
[Ĝτ ]ε

)
observable

}
≤ 2

δ∗

ε∗
= 2 min

ε∈(0,1]

{
δ([G]ε)
ε

: supp ([G]ε) observable
}
.

Finally, similarly to the strongly observable case, it holds that

Φ(Ĝτ , T ) ≤ 4Cw

(
2
δ∗

ε∗
(
ln(KT )

)2)1/3

T 2/3 =
3
√
2Φ(G, T ) ≤

√
2Φ(G, T ) .

This concludes the proof.

Lemma C.3. Consider a run of EdgeCatcher (Algorithm 5.3). Assume that the invocation of
RoundRobin returns a stochastic feedback graph Ĝ that is an ε̂-good approximation of G satisfying
Φ(Ĝ, T − τ̂K) ≤ τ̂K, where τ̂ is the index of the last iteration of the outer for loop in Algorithm 5.1.
Then, the regret experienced by the invocation of BlockReduction is at most Φ(Ĝ, T − τ̂K).

Proof. Denote with RBR
T ′ the worst-case regret experienced by BlockReduction in the final

T ′ = T − τ̂K time steps, under the assumption on Ĝ in the statement, and let ε̂∗ be the best
threshold as in Algorithm 5.3. We have two cases, according to ε̂∗ referring to strongly or (weakly)
observable graphs. If ε̂∗ = ε̂∗s, then, by the part of Corollary 5.1 relative to strongly observable
graphs, we have that

RBR
T ′ ≤ 4Cs

√
α̂∗

ε̂∗s
T ′
(
ln(KT ′)

)3/2
= Φ(Ĝε̂∗ , T ′) .

If ε̂∗ = ε̂∗w, then we can apply the part of Corollary 5.1 relative to (weakly) observable graphs and
obtain that

RBR
T ′ ≤ 4Cw

(
δ̂∗

ε̂∗w

(
ln(KT ′)

)2)1/3

(T ′)2/3 = Φ(Ĝε̂∗ , T ′) .

At this point, we have all the essential ingredients to prove the regret bound of EdgeCatcher

as stated in Theorem 5.4. We rewrite the statement of Theorem 5.4 for convenience.

Theorem 5.4. Consider the problem of online learning with stochastic feedback graph G on T time
steps. If supp

(
[G]ε(K,T )

)
is observable for ε(K,T ) := CK3(ln(KT ))2/T for a given constant C > 0,

then there exists an algorithm whose regret RT , ignoring logarithmic factors in K and T , satisfies
RT ≲ min

{√
(α∗/ε∗s)T ,

(
δ∗/ε∗w

)1/3
T 2/3

}
.
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Proof of Theorem 5.4. We condition the analysis on the clean event E that RoundRobin does not
fail. Let ε̃ be the largest ε such that supp

(
[G]ε

)
is observable, and τ̃ be the smallest (random) integer

such that supp
(
Ĝτ̃
)

is observable for Ĝτ̃ in RoundRobin. We have some immediate bound on these
quantities. First, ε̃ ≥ ε(K,T ), by the assumption on supp

(
[G]ε(K,T )

)
being observable. Second,

τ̃ ≤ 120
ε̃ ln(KT ); this is due to the fact that, after τ = ⌈120ε̃ ln(KT )⌉ time steps, the estimated graph

Ĝτ is an ε̃/2-good approximation of G and thus contains all the edges in supp
(
[G]ε̃

)
by Definition 5.1

(part 1) with ε = ε̃/2, and because of the conditioning on E . All in all, we can summarize these
observations by noticing that

T

2K
≥ 120

ln(KT )

ε(K,T )
≥ 120

ln(KT )

ε̃
≥ τ̃ ,

where the first inequality is true as long as ε(K,T ) ≥ 240K ln(KT )/T . Using point (i) of Lemma C.2
and the inequality we just showed, we observe that

Φ(Ĝ⌊ T
2K

⌋, T ) ≤ 2Φ(Ĝτ̃ , T ) ≤ 8Cw

(
2
KT 2

ε̃
ln(KT )2

)1/3
≤ 8Cw

(
2
KT 2

ε(K,T )
ln(KT )2

)1/3
≤ T

2
,

as long as ε(K,T ) ≥ 2 · 163C3
wK(ln(KT ))2/T . Note that in the previous chain of inequalities we

considered the (possibly suboptimal) choice of the (weakly) observable structure of the graph with
threshold ε̃ and upper bound on δ given by K. The inequality we just showed implies that the
stopping criterion in RoundRobin is triggered and thus we can apply Lemma C.3.

Now, let τ∗ be the smallest τ such that Φ(G, T ) = Φ([G]ε∗ , T ) ≤ τK, being ε∗ the optimal
threshold for G. In this second step, we want to show that τ̂ is not too far away from τ∗ for the
interesting values of τ∗; namely, that τ̂ ≤ 4τ∗ as long as Φ(G, T ) is not Ω̃(T ).

First, consider the case that Φ(G, T ) refers to the strongly observable regime in Φ([G]ε∗ , T ). By
minimality of τ∗, we have the following:

τ∗K ≥ Φ(G, T ) = 4Cs

√
α∗

ε∗
T
(
ln(KT )

)3/2 ≥ 1

2
τ∗K . (C.7)

We now set the constant appearing in the definition of ε(K,T ) from the statement to be C = 2·163C3
w.

With this choice, the previously stated requirements for ε(K,T ) are satisfied, while at the same
time it holds that Φ(G, T ) ≤ C2

sT (ln(KT ))
2/(15K); this is immediate to verify by arguing that

Φ(G, T ) is at most the regret incurred by using the (possibly suboptimal, weakly) observable
structure of G truncated at ε(K,T ). Then, from the second inequality of (C.7), it follows that
τ∗ ≤ 2C2

sT (ln(KT ))
2/(15K2). We can rewrite the first inequality of (C.7) as follows:

ε∗ ≥ 16C2
s

α∗

(Kτ∗)2
T
(
ln(KT )

)3 ≥ 120
ln(KT )

τ∗
.

Consider now to what happens at the τ = ⌈120 ln(KT )/ε∗⌉ ≤ 4τ∗ iteration of RoundRobin. The
estimated graph Ĝτ in that iteration is an ε∗/2-good approximation of G, thus it contains all the
edges of G, with the probabilities correctly estimated up to a constant multiplicative factor, as
detailed in Definition 5.1 (part 2). Thus,

Φ(Ĝ4τ∗ , T ) ≤ 2Φ(Ĝτ , T ) ≤ 2
√
2Φ(G, T ) ≤ 4τ∗K,
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which implies that the stopping time τ̂ is attained before 4τ∗. Note that the first inequality is due to
point (i) of Lemma C.2, whereas the second inequality follows from point (ii) of Lemma C.2.

Similarly, we consider the case that Φ(G, T ) refers to the weakly observable regime in Φ([G]ε∗ , T ).
By minimality of τ∗, we have the following:

τ∗K ≥ Φ(G, T ) = 4Cw

(
δ∗

ε∗
(
ln(KT )

)2)1/3

T 2/3 ≥ 1

2
τ∗K . (C.8)

By the choice of ε(K,T ), we have that Φ(G, T ) ≤ T
√
2C3

w ln(KT )/(15K). Then, from the second
inequality of (C.8), it follows that τ∗ ≤ T

√
8C3

w ln(KT )/(15K3). Consider now the first inequality,
we can rewrite it to obtain:

ε∗ ≥ 64C3
w

δ∗

(Kτ∗)3
(
T ln(KT )

)2 ≥ 120
ln(KT )

τ∗
.

We can now use the same argument as in the strongly observable case and conclude that τ̂ ≤ 4τ∗.

At this point, we are ready to show that our algorithm EdgeCatcher exhibits the desired
regret bounds. We are conditioning on the good event E ; this happens with probability at least
1− 1

T , so we just analyze this case, as the complementary of E yields at most an extra additive 1, in
expectation, to the regret bound.

Recall that RT is the worst-case regret; thus,

RT ≤ τ̂K +Φ(Ĝ, T − τ̂K) ≤ 2τ̂K ≤ 8τ∗K ≤ 16Φ(G, T ) ,

where in the first inequality we used the decomposition in regret before and after the commitment
and the bound on Lemma C.3 (which is applicable given the conditioning on E and thus all the Gτ
are ετ -good approximations of G), in the second one the definition of τ̂ , in the third one the fact
that τ̂ ≤ 4τ∗, and in the last the definition of τ∗ as minimal τ such that Φ(G, T ) ≤ τK.

C.3 Proofs of Lower Bounds

The main idea in the lower bounds is that the adversary sets all edge probabilities equal to ε ∈ (0, 1]

in order to define a stochastic feedback graph G with a specific support G that satisfies adequate
properties. This requires the attribution of additional power to the adversary because we allow it
to choose the edge probabilities; nevertheless, this is fine from a worst-case perspective because it
corresponds to choosing a particularly difficult instance among those that have certain characteristics.
Doing so makes the edge between each (ordered) pair of nodes either realize independently at each
round t with probability equal to ε, or never realize. Moreover, there exists a vertex that is at least
marginally better than the other ones with respect to the expected loss. The learner only obtains
information about the loss of the optimal node whenever it plays a node that is adjacent to it in
G = supp(G) and the edge between the played node and the optimal node is realized. Since that
edge is realized only with probability ε, it is significantly harder for the the learner to detect the
optimal node, which allows the adversary to increase the size of the gaps between the optimal node
and the suboptimal ones. More specifically, while in the deterministic setting playing once action a
is enough to observe the loss incurred by a neighbouring action a′, the learner will now need 1/ε
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time steps, in expectation, to observe the loss of a′ if the edge (a, a′) only realizes with probability ε.
Further notice that, in the setting considered within the proofs of our lower bounds, the learner may
even know the true distribution G and observe the realization of the entire feedback graph Gt at the
end of each round t.

We start with a lower bound for the strongly observable case considering stochastic feedback
graphs G with α(G) > 1. The following result can be recovered by adapting the proof of Alon et al.
(2017, Theorem 5) that holds for any graph of interest (directed or undirected).

Theorem C.1. Pick any directed or undirected graph G = (V,E) with α(G) > 1 and any ε ∈
(0, 1]. There exists a stochastic feedback graph G with supp (G) = G and such that, for all T ≥
0.0064α([G]ε)3/ε and for any possibly randomized algorithm A, there exists a sequence ℓ1, . . . , ℓT
of loss functions on which the expected regret of A with respect to the stochastic generation of
G1, . . . , GT ∼ G is at least 0.017

√
α([G]ε)T/ε.

Proof. The structure of this proof follows the same rationale of the lower bound by Alon et al. (2017,
Theorem 5) with additional considerations due to the stochasticity of the feedback graph. To prove
the lower bound we will use Yao’s minimax principle (Yao, 1977), which shows that it is sufficient to
provide a probabilistic strategy for the adversary on which the expected regret of any deterministic
algorithm is lower bounded.

We can assume that G has all self-loops. If G is missing some self-loops, we may add them for
the sake of the lower bound: this only makes the problem easier for the learner. Also note that
the addition of self-loops does not change the independence number of G. Now let G be such that
p(i, j) ∈ {0, ε} and p(i, j) := ε if and only if (i, j) ∈ E, for all i, j ∈ V . Note that α(G) = α(G) and
G = [G]ε. We also remark that the following lower bound for such a G will be a lower bound for the
instance having a stochastic feedback graph obtained from the starting graph, without the addition
of self-loops, by setting the realization probability of all its edges to ε. Without loss of generality, we
order the nodes depending on an (arbitrary) independent set of G of size α(G) so that 1, 2, . . . , α(G)

are the nodes belonging to said independent set, and α(G) + 1, . . . , |V | correspond to all the other
nodes in G.

We will use the following distribution of losses. We sample Z from some (later defined) distribution
Q over the independent set chosen above. Conditioned on Z = i, the loss ℓt(j) is sampled from
an independent Bernoulli distribution with mean 1

2 if j ̸= i and j ≤ α(G), it is sampled from an
independent Bernoulli with mean 1

2 − β if j = i for some β ∈ [0, 14 ], and it is set to 1 otherwise.

We denote by Ti the number of times node i was chosen by the algorithm after T rounds and
denote by Tbad :=

∑
i>α(G) Ti the number of times the algorithm chooses an action not in the

independent set. We use Ei[·] := E[· |Z = i] and Pi(·) := P (· |Z = i) to denote the expectation and
probability over (G1, ℓ1), . . . , (GT , ℓT ) conditioned on Z = i, respectively. We denote by ℓt(It) the
loss of algorithm A playing It in round t. We emphasize that the complete loss sequence and the
(partial) loss sequence observed by the learner may differ depending not only on the actions of the
learner but also on the realization of the edges in the feedback graph. This last observation will be
used to lower bound the regret of the learner also in terms of ε, the probability of an edge realization.

We set Q(i) := 1
α(G) if i is in the independent set and Q(i) := 0 otherwise. Following Alon et al.

(2017, Equation (8)) we have, for any deterministic algorithm A, that
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max
k∈V

E

[
T∑
t=1

(
ℓt(It)− ℓt(k)

)]
≥ β

(
T − 1

α(G)

∑
i≤α(G)

Ei[Ti]
)
. (C.9)

We now consider an auxiliary distribution P0, also over (G1, ℓ1), . . . , (GT , ℓT ), which is equivalent
to the distribution Pi that we specified above, but with β = 0 for all nodes. We denote by E0

the corresponding expectation. We also denote by λt the feedback set at time t, composed by
the realization Gt of the feedback graph together with the set of losses observed by the learner
in round t, and by λt := (λ1, . . . , λt) the tuple of all feedback sets up to and including round t.
Since the algorithm is deterministic, its action It in round t is fully determined by λt−1. Therefore,
Ei[Ti |λT ] = E0[Ti |λT ]. When λt−1 is understood from the context, let Pj,t := Pj(· |λt−1) be the
conditional probability measure of feedback sets λt at time t. We have that

Ei[Ti]− E0[Ti] =
∑
λT

Pi(λT )Ei[Ti |λT ]−
∑
λT

P0(λ
T )E0[Ti |λT ]

=
∑
λT

Pi(λT )Ei[Ti |λT ]−
∑
λT

P0(λ
T )Ei[Ti |λT ]

≤ T
∑

λT :Pi(λT )>P0(λT )

(
Pi(λT )− P0(λ

T )
)
.

By using Pinsker’s inequality and the chain rule for the relative entropy, we can further observe that

∑
λT :Pi(λT )>P0(λT )

(
Pi(λT )− P0(λ

T )
)
≤
√

1

2
DKL(P0 ∥Pi)

=

√√√√1

2

T∑
t=1

∑
λt−1

P0(λt−1)DKL(P0,t ∥Pi,t) ,

which, combined with the previous inequality, allows us to affirm that

Ei[Ti]− E0[Ti] ≤

√√√√1

2

T∑
t=1

∑
λt−1

P0(λt−1)DKL(P0,t ∥Pi,t) . (C.10)

At this point, observe that supp (G) = G = (V,E). Fix any λt−1 and consider DKL(P0,t ∥Pi,t)
where, we recall, P0,t(λt) = P0(λt |λt−1) and Pi,t(λt) = Pi(λt |λt−1). Recall that λt−1 fully determines
the node It picked by the algorithm in round t. If (It, i) ̸∈ E, then P0,t and Pi,t have the same
distribution and the relative entropy term is 0. If (It, i) ∈ E, then the loss of node i in λt follows a
Bernoulli distribution with mean 1

2 under P0 and follows a Bernoulli distribution with mean 1
2 − β

under Pi. Denote by Et the event that edge (It, i) is realized in Gt. Note that P0(Et) = Pi(Et) = ε.
Using the log-sum inequality and the fact that the relative entropy between the two aforementioned
Bernoulli distributions is given by 1

2 ln
(

1
1−4β2

)
, we can see that

DKL(P0,t ∥Pi,t) = DKL

(
εP0,t(· | Et) + (1− ε)P0,t(· | Et)

∥∥ εPi,t(· | Et) + (1− ε)Pi,t(· | Et)
)

= DKL

(
εP0,t(· | Et) + (1− ε)P0,t(· | Et)

∥∥ εPi,t(· | Et) + (1− ε)P0,t(· | Et)
)

≤ εDKL

(
P0,t(· | Et) ∥Pi,t(· | Et)

)
+ (1− ε)DKL

(
P0,t(· | Et) ∥P0,t(· | Et)

)
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= εDKL

(
P0,t(· | Et) ∥Pi,t(· | Et)

)
= −ε

2
ln
(
1− 4β2

)
≤ 8 ln(4/3)β2ε . (C.11)

With this inequality, we may upper bound the sum in the right-hand side of (C.10) by considering,
for each t, only the tuples λt−1 for which i ∈ Nout

G (It) holds. Indeed, the KL divergence for any
other possible λt−1 is equal to 0 because the edge (It, i) never realizes (it is not in the support of G,
hence p(It, i) = 0). As a consequence,

T∑
t=1

∑
λt−1

P0(λ
t−1)DKL(P0,t ∥Pi,t) ≤

T∑
t=1

P0(i ∈ Nout
G (It))8 ln(4/3)β

2ε

= 8 ln(4/3)β2εE0[|{t : i ∈ Nout
G (It)}|]

≤ 8 ln(4/3)β2εE0[Ti + Tbad] .

(C.12)

We may claim that E0[Tbad] ≤ 0.04

√
α(G)
ε T , because otherwise the expected regret under P0 would

have been at least

max
k∈V

E0

[
T∑
t=1

(ℓt(It)− ℓt(k))

]
= E0

Tbad + 1

2

∑
j≤α(G)

Tj

− 1

2
T

= E0

1
2
Tbad +

1

2

(
Tbad +

∑
j≤α(G)

Tj

)− 1

2
T

= E0

[
1

2
Tbad

]
> 0.02

√
α(G)

ε
T .

Combining Equations (C.10) and (C.12), and using that E0[Tbad] ≤ 0.04

√
α(G)
ε T , we find that

Ei[Ti]− E0[Ti] ≤ 2Tβ

√√√√ε ln(4/3)E0

[
Ti + 0.04

√
α(G)

ε
T

]
.

This implies that the regret can be further lower bounded, continuing from (C.9), by

β

T − 1

α(G)

α(G)∑
i=1

E0[Ti]−
1

α(G)

α(G)∑
i=1

2Tβ

√√√√ε ln(4/3)E0

[
Ti + 0.04

√
α(G)

ε
T

]
≥ β

T − 1

α(G)

α(G)∑
i=1

E0[Ti]− 2Tβ

√√√√√ε ln(4/3)E0

 1

α(G)

α(G)∑
i=1

Ti + 0.04

√
α(G)

ε
T




≥ βT

1− 1

α(G)
− 2β

√√√√ε ln(4/3)

(
T

α(G)
+ 0.04

√
α(G)

ε
T

) ,

where the first inequality is Jensen’s inequality for concave functions and the second inequality is due
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to the fact that
∑α(G)

i=1 E0[Ti] ≤ T by definition of Ti. Since we assumed that T ≥ 0.0064α(G)3/ε,

we have that 0.04

√
α(G)
ε T ≤ T

2α(G) and thus

max
k∈V

E

[
T∑
t=1

(ℓt(It)− ℓt(k))

]
≥ βT

(
1− 1

α(G)
− 2β

√
3

2
ln(4/3)

εT

α(G)

)

≥ βT

(
1

2
− 2β

√
3

2
ln(4/3)

εT

α(G)

)
,

where in the second inequality we used the assumption that α(G) ≥ 2. By setting β = 1
33

√
α(G)

2 ln(4/3)εT ∈
(0, 14 ], we may complete the proof as

max
k∈V

E

[
T∑
t=1

(ℓt(It)− ℓt(k))

]
≥ 1

33

(
1

2
−
√
3

33

)√
α(G)T

2 ln(4/3)ε
≥ 0.017

√
α(G)

ε
T .

Given that this lower bound leaves the case α(G) = 1 uncovered, we provide an additional lower
bound that considers any feedback graph. This new bound is tight up to logarithmic factors, for
instance, in all cases where α(G) is constant.

Theorem C.2. Pick any directed or undirected graph G = (V,E) with |V | = K ≥ 2 and any
ε ∈ (0, 1]. There exists a stochastic feedback graph G with supp (G) = G and such that, for all
T ≥ 1/(2ε) and for any possibly randomized algorithm A, there exists a sequence ℓ1, . . . , ℓT of loss
functions on which the expected regret of A with respect to the stochastic generation of G1, . . . , GT ∼ G
is at least 1

32

√
2T/ε.

Proof. Following a similar rationale as in the proof of Theorem C.1, we can consider G to be the
complete graph (with all self-loops) because the problem for it is easier than that with any other
graph. In fact, adding edges never makes the problem harder to solve. Moreover, we can define
G by setting all edge probabilities to ε so that [G]ε = G and supp (G) = G. We remark that the
lower bound with such a G is also a lower bound for the instance obtained by considering the initial
(possibly non-complete) graph and assigning realization probability ε to all its edges. Applying Yao’s
minimax principle allows us to reduce our current aim to proving a lower bound for the expected
regret of any deterministic algorithm against a randomized adversary.

We can then construct the sequence of loss functions by defining their distribution. Let v ∈ V
be an arbitrary vertex, say, v = 1. Pick Z ∈ {−1,+1} uniformly at random and define β :=
1
4(2εT )

−1/2 ∈ [0, 14 ]. Then, let the loss at any time t be independently ℓt(i) ∼ Ber
(
1
2

)
for i ̸= 1

while ℓt(1) ∼ Ber
(
1
2 − βZ

)
. Define P1(·) := P (· |Z = +1) and P2(·) := P (· |Z = −1), as well as

E1[·] := E [· |Z = +1] and E2[·] := E [· |Z = −1]. We also define P0(·) and E0[·], obtained in an
analogous manner as the previous ones by setting β = 0.

At this point, let T1 be the number of times t that the algorithm selects vertex It = 1 after
T rounds. Following a similar computation as in Equations (C.10) and (C.12), we first denote by
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Pj,t := Pj(· |λt−1) the conditional probability over feedback sets λt, and notice that

E1[T1]− E2[T1] ≤ T

√√√√1

2

T∑
t=1

∑
λt−1

P2(λt−1)DKL(P2,t ∥P1,t)

≤ T

√
εβT ln

(
1 +

4β

1− 2β

)
≤ 2βT

√
2εT . (C.13)

Conditioning on Z = +1, the algorithm incurs an expected instantaneous regret equal to β whenever
it picks any vertex i ̸= 1. Otherwise, conditioning on Z = −1, the algorithm incurs the same
expected instantaneous regret each time it selects vertex 1. The expected regret thus becomes

max
k∈V

E

[
T∑
t=1

(ℓt(It)− ℓt(k))

]
≥ 1

2
E1[β(T − T1)] +

1

2
E2[βT1]

≥ β

2
T − β

2
(E1[T1]− E2[T1])

≥ βT
(
1

2
− β
√
2εT

)
=

1

4
βT =

1

32

√
2T

ε
,

where the third inequality follows by Equation (C.13), and we also use our choice of β.

We can additionally prove further lower bounds for the weakly observable case. Here we also
adapt the proof for the lower bound in the case of a deterministic feedback graph by having each
edge realize only with probability ε ∈ (0, 1] at each time step. We make the same considerations
as in the previous lower bound for strongly observable graphs. In this case, however, we refer to
Alon et al. (2015, Theorem 7). As in the case of deterministic feedback graph, we need the following
combinatorial lemma.

Lemma C.4 (Alon et al. (2015, Lemma 8)). Let G = (V,E) be a directed graph over |V | = n

vertices, and let W ⊆ V be a set of vertices whose minimal dominating set is of size k. Then, there
exists an independent set U ⊆ W of size |U | ≥ 1

50k/ lnn, such that any vertex of G dominates at
most lnn vertices of U .

We can then prove the desired lower bound which states what follows.

Theorem C.3. Pick any directed or undirected, weakly observable graph G = (V,E) with |V | = K

and δ(G) ≥ 100 lnK, and any ε ∈ (0, 1]. There exists a stochastic feedback graph G with supp (G) = G

and such that, for all T ≥ 2K/(ε lnK) and for any possibly randomized algorithm A, there exists a
sequence ℓ1, . . . , ℓT of loss functions on which the expected regret of A with respect to the stochastic
generation of G1, . . . , GT ∼ G is at least 1

150

( δ([G]ε)
ε ln2K

)1/3
T 2/3.

Proof. The proof follows the steps of the lower bound from Alon et al. (2015, Theorem 7). As
in the previous lower bounds, we use Yao’s minimax principle to infer that it suffices to design a
probabilistic adversarial strategy that leads to a sufficiently large lower bound for the expected
regret of any deterministic algorithm.

We consider any weakly observable G = (V,E) having |V | = K vertices and δ(G) ≥ 100 lnK.
Since the adversary may choose edge probabilities, it can pick them all equal to ε so that G = [G]ε
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and supp (G) = G. By Lemma C.4 we know that G contains an independent set U of size
|U | = m ≥ δ(G)/(50 lnK) such that any v ∈ V dominates no more than lnK vertices of U . We
will denote actions in U as “good” actions, whereas all the others will be denoted as “bad” actions.
Given our assumption on δ(G), we observe that m ≥ 2. A further observation we can make is that
N in
G (i) ⊆ V \ U for all i ∈ U because U is independent, meaning that we need to pick a bad action

in order to be able to observe the loss of any good action.

As similarly done in the proof of Theorem C.1, we sample Z from our “target” set U uniformly
at random. This choice induces a distribution of the losses ℓt(i) for all t and all i independently. To
be precise, given β := m1/3(32εT lnK)−1/3 ∈ [0, 14 ], the loss is ℓt(i) ∼ Bern(12 − β) if i = Z, while it
is ℓt(i) ∼ Bern(12) if i ∈ U , i ≠ Z. The loss is deterministically set to ℓt(i) := 1 for any other vertex
i ∈ V \ U .

Taking up the same notation introduced in the proof of Theorem C.1, we denote by Ti the number
of times action i is played by the deterministic algorithm after T rounds, while Tbad :=

∑
i∈V \U Ti.

In particular, It is the action chosen by the algorithm at time t. We also use Pi(·) := P (· |Z = i)

and Ei[·] := E [· |Z = i] with a similar definition, including the auxiliary distribution P0 and the
corresponding expectation E0 obtained by setting β = 0. Moreover, for each good action i we
introduce Xi :=

∑T
t=1 I{It ∈ N in

G (i)} to denote the number of times the algorithm picks a bad action
from N in

G (i).

Notice that we can restrict our reasoning to algorithms that have Tbad ≤ βT (otherwise reducing
to this case by only introducing a factor 3 in the regret bound), as similarly argued in the proof of
Alon et al. (2015, Theorem 7). This implies that∑

i∈U
Xi ≤ Tbad lnK ≤ βT lnK (C.14)

since each j ∈ V \ U dominates at most lnK vertices of U .

Recalling Equation (C.10), we are interested in bounding

Ei[Ti]− E0[Ti] ≤ T

√√√√1

2

T∑
t=1

∑
λt−1

P0(λt−1)DKL(P0,t ∥Pi,t) , (C.15)

where Pj,t := Pj(· |λt−1) is the conditional probability over feedback sets λt. The KL divergence in the
above sum is DKL(P0,t ∥Pi,t) ≤ 8 ln(4/3)β2ε, where we use a similar reasoning as in Equation (C.11).
As a consequence,

T∑
t=1

∑
λt−1

P0(λ
t−1)DKL(P0,t ∥Pi,t) ≤

T∑
t=1

P0(It ∈ N in
G (i))8 ln(4/3)β2ε

≤ 4β2εE0[|{t : It ∈ N in
G (i)}|]

= 4β2εE0[Xi] ,

which together with Equation (C.15) allows us to show that

Ei[Ti]− E0[Ti] ≤ βT
√
2εE0[Xi] . (C.16)
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Let us now consider the expected regret for the deterministic algorithm at hand. We know that
it must be at least

max
k∈V

E

[
T∑
t=1

(ℓt(It)− ℓt(k))

]
≥ 1

m

∑
i∈U

Ei[β(T − Ti)] = βT − β

m

∑
i∈U

Ei[Ti]

because the algorithm incurs at least β regret each time it picks an action different from Z. By
Equations (C.14) and (C.16), and using the concavity of the square root, the summation on the
right-hand side is such that

1

m

∑
i∈U

Ei[Ti] ≤ βT
√

2ε

m

∑
i∈U

E0[Xi] +
1

m
E0

[∑
i∈U

Ti

]

≤ T
√

2β3ε

m
T lnK +

T

m

=
1

4
T +

1

m
T ≤ 3

4
T , (C.17)

where the equality follows by our choice of β, whereas the last inequality holds because m ≥ 2.
Hence, the expected regret is

max
k∈V

E

[
T∑
t=1

(ℓt(It)− ℓt(k))

]
≥ β

4
T =

1

4

( m

32ε lnK

)1/3
T 2/3 ≥ 1

50

(
δ(G)

ε ln2K

)1/3
T 2/3 .

An additional theorem is required in order to cover the case δ(G) < 100 lnK. In the same way
as in Alon et al. (2015), we follow a simple reasoning with generic weakly observable graphs. The
following lower bound holds for weakly observable graphs of any size and is tight up to logarithmic
factors for instances having δ(G) < 100 lnK.

Theorem C.4. Pick any directed or undirected, weakly observable graph G = (V,E) with |V | ≥ 2

and any ε ∈ (0, 1]. There exists a stochastic feedback graph G with supp (G) = G and such that,
for all T ≥ 2

√
2/ε and for any possibly randomized algorithm A, there exists a sequence ℓ1, . . . , ℓT

of loss functions on which the expected regret of A with respect to the stochastic generation of
G1, . . . , GT ∼ G is at least

√
2

16 ε
−1/3T 2/3.

Proof. The proof follows a similar structure as that of Alon et al. (2015, Theorem 11). We consider
the same instance constituted by a graph G = (V,E) having |V | ≥ 3 vertices, since it is the minimum
number of vertices in order for G to be weakly observable. In fact, any graph with exactly 2 vertices
is either unobservable or strongly observable. By definition, there exists a vertex in this graph with
no self-loop and with at least one incoming edge missing from any of the remaining vertices. Without
loss of generality, let v = 1 be such a vertex and let 2 /∈ N in

G (v) be one of the vertices without an
edge towards v. We may consider the case where all edge probabilities are set to ε (implying that
G = [G]ε and supp (G) = G), given that we essentially assume the adversary can select them.

We can apply Yao’s minimax principle, as usual, to reduce this problem to that of lower bounding
the expected regret for any deterministic algorithm against a randomized adversary. Hence, we
need to design a distribution for the loss functions ℓ1, . . . , ℓT provided to the algorithm. Let
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β := 1
2
√
2
(εT )−1/3 ∈ [0, 14 ] and pick Z ∈ {−1,+1} uniformly at random. For all t, we choose the

losses such that ℓt(1) ∼ Ber (1/2− βZ), ℓt(2) ∼ Ber (1/2), and ℓt(j) := 1 for all j ̸= 1 independently.
Similarly to the construction in the proof of Theorem C.3, we have “good” actions {1, 2} incurring
at most β expected instantaneous regret, while all remaining actions are “bad” since they incur at
least 1/2 instantaneous regret in expectation.

We reuse the same definitions for Ti and Xi as in the proof of Theorem C.3 for any fixed
deterministic algorithm. On the other hand, we let P1(·) := P (· |Z = +1) and P2(·) := P (· |Z = −1).
We analogously define E1[·] := E [· |Z = +1] and E2[·] := E [· |Z = −1]. Finally, we introduce P0(·)
and E0[·] obtained as the previous ones by setting Z = 0.

Following the same rationale that led to Equation (C.16), we can show that

Ei[Ti]− E0[Ti] ≤ βT
√
2εEi[X1]

for i ∈ {1, 2}. This implies, via similar steps as in Equation (C.17), that

1

2
E1[T1] +

1

2
E2[T2] ≤ βT

√
2εE [X1] +

T

2
. (C.18)

Finally, if E [X1] >
1
32β

−2ε−1, the algorithm’s expected regret becomes

max
k∈V

E

[
T∑
t=1

(ℓt(It)− ℓt(k))

]
≥ 1

2
E [X1] >

1

64
β−2ε−1 =

1

8
ε−1/3T 2/3 ,

where the last equality holds by our choice of β. Otherwise, when E [X1] ≤ 1
32β

−2ε−1, the right-hand
side of Equation (C.18) is bounded by 3

4T and thus the regret must be

max
k∈V

E

[
T∑
t=1

(ℓt(It)− ℓt(k))

]
≥ 1

2
E1[β(T − T1)] +

1

2
E2[β(T − T2)] ≥

β

4
T =

√
2

16
ε−1/3T 2/3 .

C.4 Be Optimistic If You Can, Commit If You Must

In this section, we describe Algorithm C.1 and the analysis we use to obtain the results of Section 5.5.
First of all, we briefly state the rationale for the design of this new algorithm. The main idea is
similar in spirit to that of EdgeCatcher: Algorithm C.1 constantly updates the estimates for the
edge probabilities of the underlying G and computes the best regret regime it can achieve. However,
EdgeCatcher has to wait until it can determine the best regret regime before actually tackling
the learning task.
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Algorithm C.1: OptimisticThenCommitGraph (otcG)
Environment: stochastic feedback graph G, sequence of losses ℓ1, ℓ2, . . . , ℓT
Input: time horizon T and actions V = {1, 2, . . . ,K}
Initialize: sample I1 uniformly at random, receive G1

for t = 2, . . . , T do
if Equation (C.19) has never been true then ▷ optimistic phase

p̃t(j, i)← 1
t−1

∑t−1
s=1 I{(j, i) ∈ Es}

p̂t(j, i)← p̃t(j, i) +
√

2p̃t(j,i)
t−1 ln(3K2T 2) + 3

t−1 ln(3K
2T 2)

ĜUCB
t ← {p̂t(j, i) : i, j ∈ V }

compute θt and εθt as in Equation (C.26)
Ĝt ← {p̂t(j, i)I{p̂t(j, i) ≥ εθt} : i, j ∈ V } and Ĝt ← supp

(
Ĝt
)

compute pmin
t ← miniminj∈N in

Ĝt
(i) p̂t(j, i)

γt ← min
{(

mins∈[2,t] tp
min
s

)−1/2
, 12

}
ηt−1 ←

(
16/(mins∈[2,t](p

min
s )2) + 4t/(mins∈[2,t] p

min
s ) +

∑t−1
s=2 θs(Ĝs)

)−1/2

set ψt to be the uniform distribution over V
set qt(i) ∝ exp

(
ηt−1

∑t−1
s=2 ℓ̃t(i)

)
πt(i)← (1− γt)qt(i) + γtψt(i)

if Equation (C.19) is true for any t′ − 1 < t then ▷ commit phase
set t⋆ to the first round t′ − 1 in which Equation (C.19) is true
set G̃ = {p̃(j, i) : i, j ∈ V } as the stochastic graph with p̃(j, i) = 1

t⋆
∑t⋆

s=1 I{(j, i) ∈ Es}
set Ĝ = {p̃(j, i)I{p̃(j, i) ≥ εt⋆} : i, j ∈ V } with εt⋆ as in Equation (C.29)
set [Ĝ]ε⋆δ,σ ← {p̃(j, i)I{p̃(j, i) ≥ ε

⋆
δ,σ} : i, j ∈ V } with ε⋆δ,σ as in Equation (C.30)

p̃t(j, i)← 1
t−1

∑t−1
s=1 I{(j, i) ∈ Es}

p̂t(j, i)← p̃t(j, i) +
√

2p̃t(j,i)
t−1 ln(3K2T 2) + 3

t−1 ln(3K
2T 2)

ĜUCB
t ← {p̂t(j, i) : i, j ∈ V }
Ĝt ← ĜUCB

t and Ĝt ← supp
(
Ĝt
)

γ ← min
{(
δw([Ĝ]ε⋆δ,σ) ln(KT )

)1/3
T−1/3, 12

}
η ←

√
ln(K)

(
2T
(
δw([Ĝ]ε⋆δ,σ)/γ + σ([Ĝ]ε⋆δ,σ)

))−1

set ψt according to (C.31)
set qt(i) ∝ exp

(
η
∑t−1

s=t⋆+1 ℓ̃t(i)
)

πt(i)← (1− γ)qt(i) + γψt(i)

sample It ∼ πt
receive Gt and {(i, ℓt(i)) : i ∈ Nout

Gt
(It)}

compute ℓ̃t(i) as in (5.6)

On the contrary, Algorithm C.1 begins by optimistically assuming that the best thresholded graph
has a strongly observable support while simultaneously updating the edge probability estimates; this
is made possible given the additional assumption on receiving the realized graph Gt = (V,Et) ∼ G
together with the observed losses at the end of each round t. At any point in time, as soon as
Algorithm C.1 finds that it can achieve a better regret regime by switching to the weakly observable
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one (by computing the optimal threshold on the current estimate for G), it commits to weak
observability. We can prove that this strategy is able to achieve the best possible regret over all
thresholded feedback graphs, analogously to EdgeCatcher, but with a dependency on the improved
graph-theoretic parameters introduced in Section 5.5.

Consequently, there are two regimes of Algorithm C.1. In the first regime, the algorithm works
under the assumption that supp (G) is strongly observable; in the second regime, the algorithm
works under the assumption that supp (G) is observable. The switch happens in round t⋆ + 1, where
t⋆ is the first round t− 1 in which

Ψt−1 ≥ Λt−1, (C.19)

is true. The term Ψt is an upper bound on the regret after the first t rounds, and is given by

Ψt := min

{
t, 2 + 11(ln(3K2T 2))2 max

s∈[2,t]
θs(Ĝs)

+
(
12 ln(K) + 4

√
2 ln(3K2T 2)

)√
t max
s∈[2,t]

θs(Ĝs)
}
, (C.20)

where Ĝt minimizes θt, which is defined in Equation (C.26). The term θt(Ĝt) is an upper bound
the second-order term in the regret bound of Exponential Weights. Crucially, the same term θt(Ĝt)
does not require us to compute a weighted independence number at each round: we can explicitly
compute it in O(K4) time. Furthermore, in Lemma C.10 we show that, conditioning on the event
K, the term θt(Ĝt) is upper bounded by the minimum thresholded weighted independence number
of G, which in turn is useful when bounding the regret. We recall that the event K, introduced in
Section 5.5, corresponds to the event that

|p̃t(j, i)− p(j, i)| ≤
√

2p̃t(j, i)

t− 1
ln(3K2T 2) +

3

t− 1
ln(3K2T 2), ∀(j, i) ∈ V × V

for all t ≥ 2 simultaneously.
Similarly, Λt is an upper bound on the regret of Algorithm C.1 if it were to switch regime in

round t and is given by

Λt = min
ε

{
41T 2/3

(
ln(3K2T 2)δw([Ĝt]ε)

)1/3
+ 41

√
ln(3K2T 2)σ([Ĝt]ε)T

}
, (C.21)

where Ĝt := {p̃t(j, i)I{p̃t(j, i) ≥ 60 ln(KT )/t} : i, j ∈ V }. In other words, Algorithm C.1 changes
regime whenever it thinks that the regret of a (weakly) observable graph is smaller than the regret of
a strongly observable graph. In the following, we prove that Ψt and Λt are indeed upper bounds on
the regret, but first we state Lemma C.5, which is a central result in this section. More precisely, it
provides an upper bound for the cost of not using the exact edge probabilities p(j, i) but instead using
upper confidence bound estimates p̂t(j, i). Note that the bound scales with π̄t(i) :=

∑
j∈N in

Ĝt
(i) πt(j).

For [G]ε having a strongly observable support, this is an important property of the bound since we
require that π̄t(i) ≤ 1− πt(i) for vertices i without a self-loop in supp ([G]ε) to ensure that we can
bound the regret in terms of the weighted independence number.

Lemma C.5. Define π̄t(i) :=
∑

j∈N in
Ĝt

(i) πt(j). For any distribution u over [K] and t⋆ ≤ T , with
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estimator (5.6) we have that

E

[
t⋆∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤ 2 +

t⋆∑
t=2

E

[
6 ln(3K2T 2)

t− 1

K∑
i=1

πt(i)π̄t(i)

P̂t(i)

∣∣∣∣∣ K
]

+ E

 t⋆∑
t=2

2

√
2
ln(3K2T 2)

t− 1

√√√√ K∑
i=1

πt(i)π̄t(i)

P̂t(i)

∣∣∣∣∣∣ K
+ E

[
t⋆∑
t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]
.

Proof. For t > 1, by the empirical Bernstein bound (Audibert, Munos, and Szepesvári, 2007,
Theorem 1), with probability at least 1− 1

K2T 2 we have that

∣∣∣∣∣ 1

t− 1

t−1∑
s=1

I{(j, i) ∈ Es} − p(j, i)

∣∣∣∣∣ ≤
√
2
σ2t ln(3K

2T 2)

t− 1
+

3

t− 1
ln(3K2T 2)

≤
√

2p̂t(j, i)

t− 1
ln(3K2T 2) +

3

t− 1
ln(3K2T 2) , (C.22)

where we used the fact that

σ2t =
1

t− 1

t−1∑
s′=1

(
I{(j, i) ∈ Es′} −

1

t− 1

t−1∑
s=1

I{(j, i) ∈ Es}
)2
≤ 1

t− 1

t−1∑
s=1

I{(j, i) ∈ Es} ≤ p̂t(j, i) .

Thus, by the union bound over K2 edges and t⋆ rounds, we have that equation (C.22) holds for
all edges and time steps t ≥ 2 with probability at least 1− 1

T . This means that P (K) ≥ 1− 1
T by

definition of K.

By using the tower rule and the fact that ℓt(i) ∈ [0, 1], we can see that

E

[
t⋆∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]

= P (κ)E

[
t⋆∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

∣∣∣∣∣κ
]
+ (1− P (K))E

[
t⋆∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

∣∣∣∣∣K
]

≤ P (κ)T + E

[
t⋆∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

∣∣∣∣∣ K
]

≤ 2 + E

[
t⋆∑
t=2

K∑
i=1

(πt(i)− u(i))ℓt(i)

∣∣∣∣∣ K
]
. (C.23)

Let Xt := I
{
i ∈ Nout

Gt
(It)∧ i ∈ Nout

Ĝt
(It)
}

be the indicator of the event that i belongs to both Nout
Gt

(It)

and Nout
Ĝt

(It), and let ξt(i) := P̂t(i) − Pt(i) =
∑

j∈N in
Ĝt

(i) πt(j)(p̂t(j, i) − p(j, i)). We continue by

applying Lemma C.12 on the expectation in the right-hand side of Equation (C.23), obtaining that

E

[
t⋆∑
t=2

K∑
i=1

(πt(i)− u(i))ℓt(i)

∣∣∣∣∣ K
]

= E

[
t⋆∑
t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]
+ E

[
t⋆∑
t=2

K∑
i=1

(πt(i)− u(i))ξt(i)
Xtℓt(i)

Pt(i)P̂t(i)

∣∣∣∣∣ K
]
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≤ E

[
t⋆∑
t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]
+ E

[
t⋆∑
t=2

K∑
i=1

πt(i)ξt(i)
Xtℓt(i)

Pt(i)P̂t(i)

∣∣∣∣∣ K
]
,

where the inequality is due to the fact that the loss is non-negative and the fact that ξt(i) > 0 because
p̂t(j, i)− p(j, i) > 0 is true, given K. We already know that p̂t(j, i) ≥ p̃t(j, i) by definition of p̂t(j, i).

As long as K holds, we also know that p̃t(j, i) − p(j, i) ≤
√

2p̃t(j,i)
t−1 ln(3K2T 2) + 3

t−1 ln(3K
2T 2) is

true. Then, we can use all the above observations to demonstrate that the term ξt(i) satisfies

ξt(i) =
∑

j∈N in
Ĝt

(i)

πt(j)(p̂t(j, i)− p(j, i))

≤
∑

j∈N in
Ĝt

(i)

πt(j)

(√
2p̂t(j, i)

t− 1
ln(3K2T 2) +

3

t− 1
ln(3K2T 2)

)

+
∑

j∈N in
Ĝt

(i)

πt(j) (p̃t(j, i)− p(j, i))

≤ 2
∑

j∈N in
Ĝt

(i)

πt(j)

(√
2p̂t(j, i)

t− 1
ln(3K2T 2) +

3

t− 1
ln(3K2T 2)

)
(C.24)

By the Cauchy-Schwarz inequality, it holds that

∑
j∈N in

Ĝt
(i)

πt(j)
√
aj =

∑
j∈N in

Ĝt
(i)

√
πt(j)

√
πt(j)aj ≤

√√√√π̄t(i)
∑

j∈N in
Ĝt

(i)

πt(j)aj

with aj ≥ 0 for all j ∈ N in
Ĝt
(i), where we recall that π̄t(i) =

∑
j∈N in

Ĝt
(i) πt(j). We can use this property

to further bound ξt(i) in Equation (C.24) as

ξt(i) ≤ 2
∑

j∈N in
Ĝt

(i)

πt(j)

(√
2p̂t(j, i)

t− 1
ln(3K2T 2) +

3

t− 1
ln(3K2T 2)

)

≤ 2

√
2π̄t(i)

P̂t(i) ln(3K2T 2)

t− 1
+ π̄t(i)

6 ln(3K2T 2)

t− 1
.

At this point, we can use the inequality for ξt(i) to show that

E

[
t⋆∑
t=2

K∑
i=1

πt(i)ξt(i)
Xtℓt(i)

Pt(i)P̂t(i)

∣∣∣∣∣ K
]

≤ E

 t⋆∑
t=2

2

√
2
ln(3K2T 2)

t− 1

K∑
i=1

πt(i)
Xtℓt(i)

√
π̄t(i)

Pt(i)

√
P̂t(i)

∣∣∣∣∣∣ K


+

t⋆∑
t=2

E

[
6 ln(3K2T 2)

t− 1

K∑
i=1

πt(i)π̄t(i)
Xtℓt(i)

Pt(i)P̂t(i)

∣∣∣∣∣ K
]

≤ E

[
t⋆∑
t=2

2

√
2
ln(3K2T 2)

t− 1

K∑
i=1

πt(i)

√
π̄t(i)

P̂t(i)

∣∣∣∣∣ K
]

(C.25)
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+

t⋆∑
t=2

E

[
6 ln(3K2T 2)

t− 1

K∑
i=1

π̄t(i)πt(i)

P̂t(i)

∣∣∣∣∣ K
]

≤ E

 t⋆∑
t=2

2

√
2
ln(3K2T 2)

t− 1

√√√√ K∑
i=1

πt(i)π̄t(i)

P̂t(i)

∣∣∣∣∣∣ K


+

t⋆∑
t=2

E

[
6 ln(3K2T 2)

t− 1

K∑
i=1

πt(i)π̄t(i)

P̂t(i)

∣∣∣∣∣ K
]
,

where in the second inequality we used the fact that ℓt(i) ≤ 1 and that Et−1[Xt] = Pt(i), while the
final inequality is Jensen’s inequality for concave functions.

By combining the above, we may complete the proof:

E

[
t⋆∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤ 2 +

t⋆∑
t=2

E

[
6 ln(3K2T 2)

t− 1

K∑
i=1

πt(i)π̄t(i)

P̂t(i)

∣∣∣∣∣ K
]

+ E

 t⋆∑
t=2

2

√
2
ln(3K2T 2)

t− 1

√√√√ K∑
i=1

πt(i)π̄t(i)

P̂t(i)

∣∣∣∣∣∣ K
+ E

[
t⋆∑
t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]
.

C.4.1 Initial Regime of otcG

To understand the initial regime of otcG (Algorithm C.1), consider the following. Since the support
of ĜUCB

t is the complete graph, there always exists a threshold ε for which supp
(
[ĜUCB
t ]ε

)
is strongly

observable. For ease of notation, given any stochastic feedback graph G with edge probabilities
p(j, i), we introduce

Pt(i,G) :=
∑

j∈N in
supp(G)

(i)

πt(j)p(j, i) .

Denote by S the family of strongly observable graphs over vertices V = [K]; we can then define εθt as

εθt = argmin
ε : supp([ĜUCB

t ]ε)∈S
θt((ĜUCB

t )ε)

= argmin
ε : supp([ĜUCB

t ]ε)∈S

(
2

miniminj∈N in

supp([ĜUCB
t ]ε)

(i) p̂t(j, i)
+

∑
i∈N in

supp([ĜUCB
t ]ε)

(i)

2πt(i)

Pt(i, (ĜUCB
t )ε)

)
.

(C.26)

A crucial property of Ĝt (that is, ĜUCB
t thresholded at εθt ) is that, if p̂t(j, i) ≥ p(j, i) for all edges

(j, i), by Lemma C.10 we have that

min
ε : supp([ĜUCB

t ]ε)∈S
θt([ĜUCB

t ]ε) = Õ

(
min

ε : supp([G]ε)∈S
αw([G]ε)

)
,

which is a property we will use when computing the final regret bound of Algorithm C.1. It also ensures
that we can bound the cost of not knowing p(j, i) in Lemma C.5 by min

ε : supp([ĜUCB
t ]ε)∈S θt([Ĝ

UCB
t ]ε),

which is also important in computing the final regret bound of Algorithm C.1. We thus upper bound
the regret of the initial regime of otcG in terms of θt in what follows.
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Lemma C.6. For any distribution u over [K], after t⋆ ≤ T rounds Algorithm C.1 guarantees

E

[
t⋆∑
t=1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]
≤ 2 + 11(ln(3K2T 2))2 E

[
max
t∈[2,t⋆]

θt(Ĝt)
∣∣∣∣ K]

+
(
12 ln(K) + 4

√
2 ln(3K2T 2)

)
E

[√
t⋆ max
t∈[2,t⋆]

θt(Ĝt)

∣∣∣∣∣ K
]
.

Proof. We start with an application of Lemma C.5:

E

[
t⋆∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤ 2 +

t⋆∑
t=2

E

[
6 ln(3K2T 2)

t− 1

K∑
i=1

πt(i)π̄t(i)

P̂t(i)

∣∣∣∣∣ K
]

+ E

 t⋆∑
t=2

2

√
2
ln(3K2T 2)

t− 1

√√√√ K∑
i=1

πt(i)π̄t(i)

P̂t(i)

∣∣∣∣∣∣ K
+ E

[
t⋆∑
t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]
,

where, we recall it, π̄t(i) =
∑

j∈N in
Ĝt

(i) πt(j). Now, for i without a self-loop in Ĝt we have that

π̄t(i) ≤ 1− πt(i). Now, conditioning on K, we may follow the reasoning surrounding Equation (C.28)
to find that

K∑
i=1

πt(i)π̄t(i)

P̂t(i)
≤ θt(Ĝt) .

We now use
∑T

t=1
1
t ≤ ln(T ) + 1,

∑T
t=1

1√
t
≤ 2
√
T , and the above inequality to obtain that

E

[
t⋆∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤ 2 +

t⋆∑
t=2

E
[
6 ln(3K2T 2)

t− 1
θt(Ĝt)

∣∣∣∣ K]

+ E

[
t⋆∑
t=2

2

√
2
ln(3K2T 2)

t− 1

√
θt(Ĝt)

∣∣∣∣∣ K
]
+ E

[
t⋆∑
t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]

≤ 2 + 6(ln(3K2T 2))2 E
[
max
t∈[2,t⋆]

θt(Ĝt)
∣∣∣∣ K]+ E

[
4
√

2 ln(3K2T 2)t⋆ max
t∈[2,t⋆]

θt(Ĝt)

∣∣∣∣∣ K
]

+ E

[
t⋆∑
t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]
.

By applying Lemma C.7, we can complete the proof:

E

[
t⋆∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤ 2 + 6(ln(3K2T 2))2 E

[
max
t∈[2,t⋆]

θt(Ĝt)
∣∣∣∣ K]

+ E

[
4
√
2 ln(3K2T 2)t⋆ max

t∈[2,t⋆]
θt(Ĝt)

∣∣∣∣∣ K
]

+ E

7 ln(K)

√√√√ t⋆∑
t=2

θt(Ĝt) + max
t∈[2,t⋆]

θt(Ĝt)

∣∣∣∣∣∣ K

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+ E

[
max
t∈[2,t⋆]

4 ln(K)

pmin
t

+ 5 ln(K)

√
max
t∈[2,t⋆]

t⋆

pmin
t

∣∣∣∣∣ K
]

≤ 2 + 11(ln(3K2T 2))2 E
[
max
t∈[2,t⋆]

θt(Ĝt)
∣∣∣∣ K]

+
(
12 ln(K) + 4

√
2 ln(3K2T 2)

)
E

[√
t⋆ max
t∈[2,t⋆]

θt(Ĝt)

∣∣∣∣∣ K
]
,

where we used that 1
pmin
t
≤ θt(Ĝt) for all t ∈ [2, t⋆].

In the proof of Lemma C.6 we make use of the following auxiliary result, which bounds the regret
of πt given K.

Lemma C.7. For any distribution u over [K], after t⋆ ≤ T rounds Algorithm C.1 guarantees

E

[
t⋆∑
t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]
≤ E

7 ln(K)

√√√√ t⋆∑
t=2

θt(Ĝt) + max
t∈[2,t⋆]

θt(Ĝt)

∣∣∣∣∣∣ K


+ E

[
max
t∈[2,t⋆]

4 ln(K)

pmin
t

+ 5 ln(K)

√
max
t∈[2,t⋆]

t⋆

pmin
t

∣∣∣∣∣ K
]
.

Proof. We want to apply Lemma C.11, which bounds the regret of Exponential Weights. Recall
that Algorithm C.1 defines

pmin
t = min

i∈V
min

j∈N in
supp(Ĝt)

(i)
p̂t(j, i)

as the minimum (positive) edge probability in Ĝt. Observe that for any node i without a self-loop in
supp

(
Ĝt
)

we have that

P̂t(i) =
∑
j ̸=i

p̂t(j, i)
(
(1− γt)qt(i) +

γt
K

)
≥ pmin

t

∑
j ̸=i

(
(1− γt)qt(i) +

γt
K

)
= (1− πt(i))pmin

t (C.27)

=
(
1− (1− γt)qt(i)−

γt
K

)
pmin
t

≥ γt
2
pmin
t .

Using (C.27) and the definitions of ηt−1 and γt, together with the fact that ℓt(i) ∈ [0, 1], we can see
that

ηt−1ℓ̃t(i) ≤ ηt−1
1

P̂t(i)
≤ ηt−1

2

γtpmin
t

≤ 1 ,

where the last inequality is due to the fact that ηt−1 ≤ 1
2γtp

min
t . Given event K, since for any

node i without a self-loop in supp
(
Ĝt
)

we have that ηt−1ℓ̃t(i) ≤ 1, we may apply Lemma C.11 with
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St = S = {i : i ̸∈ N in
supp(Ĝt)

(i)} to obtain that

E

[
t⋆∑
t=2

K∑
i=1

(qt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]

≤ E

 lnK
ηt⋆

+

t⋆∑
t=2

ηt−1

∑
i∈St

qt(i)(1− qt(i))ℓ̃t(i)2 +
∑
i ̸∈St

qt(i)ℓ̃t(i)
2

 ∣∣∣∣∣∣ K
 .

We now bound

E

[∑
i∈St

qt(i)(1− qt(i))ℓ̃t(i)2
∣∣∣∣∣ K
]
= E

[∑
i∈St

qt(i)(1− qt(i))
Pt(i)ℓt(i)

2

P̂t(i)(Pt(i) + ξt(i))

∣∣∣∣∣ K
]

≤ E

[∑
i∈St

qt(i)
(1− qt(i))
P̂t(i)

∣∣∣∣∣ K
]

= E

[∑
i∈St

qt(i)(1− qt(i))
Pt(i, Ĝt)

∣∣∣∣∣ K
]

≤ E

[∑
i∈St

2qt(i)

pmin
t

∣∣∣∣∣ K
]
≤ E

[
2

pmin
t

∣∣∣∣ K] .
For i ̸∈ St, since πt(i) ≥ 1

2qt(i) and P̂t(i)− Pt(i) ≥ 0 given K, we have that

E

∑
i ̸∈St

qt(i)ℓ̃t(i)
2

∣∣∣∣∣∣ K
 ≤ E

∑
i ̸∈St

qt(i)

P̂t(i)

∣∣∣∣∣∣ K
 ≤ E

∑
i ̸∈St

2πt(i)

Pt(i, Ĝt)

∣∣∣∣∣∣ K
 ,

which combined with the preceding inequality means that, given K, we have that

∑
i∈St

qt(i)(1− qt(i))
P̂t(i)

+
∑
i ̸∈St

qt(i)

P̂t(i)
≤ 2

pmin
t

+
∑
i ̸∈St

2πt(i)

Pt(i, Ĝt)
= θt(Ĝt) . (C.28)

Therefore, we have that

E

[
t⋆∑
t=2

K∑
i=1

(qt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]

≤ E

 lnK
ηt⋆

+

t⋆∑
t=2

ηt−1

∑
i∈St

qt(i)(1− qt(i))
Pt(i, Ĝt)

+
∑
i ̸∈St

qt(i)

Pt(i, Ĝt)

 ∣∣∣∣∣∣ K


≤ E

[
lnK

ηt⋆
+

t⋆∑
t=2

ηt−1θt(Ĝt)

∣∣∣∣∣ K
]
.

Now, using a slightly modified version of (Gaillard, Stoltz, and Van Erven, 2014, Lemma 14)
(replacing |ai| ≤ 1 by |ai| ≤ maxi |ai|) we can see that

t⋆∑
t=2

ηt−1θt(Ĝt) ≤
t⋆∑
t=2

θt(Ĝt)

√√√√1 +

t−1∑
s=2

θs(Ĝs)
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≤ 3

√√√√ t⋆∑
t=2

θt(Ĝt) + max
t∈[2,t⋆]

θt(Ĝt) .

As a final step in this proof, we want to consider the distribution πt the algorithm actually samples
actions from instead of qt. We can bound

∑t⋆

t=2 γt ≤ 2
√
maxt∈[2,t⋆]

t⋆

pmin
t

and

1

ηt⋆
≤ 4

mint∈[2,t⋆] p
min
t

+

√
t⋆

mint∈[2,t⋆] p
min
t

+

√√√√ t⋆∑
t=2

θt(Ĝt) .

Thus, combining the above we find that

E

[
t⋆∑
t=2

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]
≤ E

[
t⋆∑
t=2

K∑
i=1

(qt(i)− u(i))ℓ̃t(i) +
t⋆∑
t=2

γt

∣∣∣∣∣ K
]

≤ E

7 ln(K)

√√√√ t⋆∑
t=2

θt(Ĝt) + max
t∈[2,t⋆]

θt(Ĝt)

∣∣∣∣∣∣ K


+ E

[
max
t∈[2,t⋆]

4 ln(K)

pmin
t

+ 5 ln(K)

√
max
t∈[2,t⋆]

t⋆

pmin
t

∣∣∣∣∣ K
]
.

C.4.2 Regret After Round t⋆

With Lemma C.6 at hand, we can control the regret in the first t⋆ rounds. However, we also need
to control the regret in the remaining rounds, which we show how to do here. Recall that G̃ is the
graph with edge probabilities p̃(j, i) := 1

t⋆
∑t⋆

s=1 I{(j, i) ∈ Es}. At the end of round t⋆ we have that
Ĝ = [G̃]εt⋆ is an εt⋆-good approximation of G with high probability, where

εt⋆ :=
60 ln(KT )

t⋆
. (C.29)

We set

ε⋆δ,σ := argmin
ε : supp([Ĝ]ε) observable

(
δw([Ĝ]ε) ln(3K2T 2)

)1/3
T 2/3 +

√
σ([Ĝ]ε)T ln(3K2T 2) (C.30)

and define the corresponding stochastic graph by [Ĝ]ε⋆δ,σ =
{
p̃(j, i)I

{
p̃(j, i) ≥ ε⋆δ,σ

}
: i, j ∈ V

}
. We

denote its support by Ĝ⋆ := supp
(
[Ĝ]ε⋆δ,σ

)
. We also require any estimated minimum weight weakly

dominating set in round t, given by

D⋆
t := argmin

D∈D(Ĝ⋆)

∑
i∈D

1

minj∈Nout
Ĝ⋆ (i) p̂t(i, j)

,

where D(Ĝ⋆) corresponds to the family of weakly dominating sets in Ĝ⋆. We define

ψt(i) ∝


(
minj∈Nout

Ĝ⋆ (i) p̂t(i, j)
)−1 for i ∈ D⋆

t

0 for i ̸∈ D⋆
t

(C.31)

164



C.4. Be Optimistic If You Can, Commit If You Must

to be the exploration distribution in round t. Note that this distribution is non-uniform over the
weakly dominating set D⋆

t . This is because we want to ensure that the loss of each node is observed
roughly equally often. If we were to sample uniformly at random, then this would not be possible
because the probability that an edge realizes is not necessarily identical for all edges; however, note
that the distribution is in fact uniform if the estimated edge probabilities are uniform.

Lemma C.8. Suppose that Ĝ is an εt⋆-good approximation of G. For any distribution u over [K],
Algorithm C.1 guarantees

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]

≤ 16δw([Ĝ]ε⋆δ,σ) ln(3K
2T 2) + 5(δw([Ĝ]ε⋆δ,σ) ln(3K

2T 2))1/3T 2/3 + 4
√
σ([Ĝ]ε⋆δ,σ)T ln(K) .

Proof. Consider the set S := {i : i ̸∈ N in
Ĝ⋆

(i)} of nodes without a self-loop in Ĝ⋆. Observe that for
any node i ∈ S, given K, we have that for some node k ∈ D⋆

t with t > t⋆,

P̂t(i) =
∑
j ̸=i

p̂t(j, i) ((1− γ)qt(i) + γψt(i))

≥ γp̂t(k, i)ψt(k)

≥ γ∑
k∈D⋆

t

(
minj∈Nout

Ĝ⋆ (k) p̂t(k, j)
)−1 .

Observe that E [p̂t(j, i) | K] ≥ p(j, i) ≥ 1
2 p̃(j, i) for all edges (j, i) in Ĝ⋆ by definition of εt⋆-good

approximation. This implies that

P̂t(i) ≥
γ

2δw(Ĝε⋆δ,σ)
(C.32)

holds for any node i ∈ S, conditioning on K. We apply Lemma C.11 with St = ∅ to obtain

E

[
T∑

t=t⋆+1
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]
≤ E
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lnK
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+
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η
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qt(i)ℓ̃t(i)
2
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lnK

η
+
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η
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qt(i)

P̂t(i)

∣∣∣∣∣ K
]
,

where we used the fact that P̂t(i)− Pt(i) ≥ 0, given K. Recalling Equation (C.32) and using the
fact that πt(i) ≥ 1

2qt(i), we can see that

E

[∑
i∈S

qt(i)

P̂t(i)

∣∣∣∣∣ K
]
≤ E
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i∈S

2πt(i)

P̂t(i)

∣∣∣∣∣ K
]
≤ E

[
4δw(Ĝε⋆δ,σ)

γ

∣∣∣∣∣ K
]
.

Considering the sum over i ̸∈ S, we have

E

∑
i ̸∈S

qt(i)

P̂t(i)

∣∣∣∣∣∣ K
 ≤ E

∑
i ̸∈S

2πt(i)

P̂t(i)

∣∣∣∣∣∣ K

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≤ E

∑
i ̸∈S

2

p̂t(i, i)

∣∣∣∣∣∣ K
 ≤ E

∑
i ̸∈S

4

p̃(i, i)

∣∣∣∣∣∣ K
 ≤ 4σ([Ĝ]ε⋆δ,σ) .

Thus, we have that

E

[
K∑
i=1

qt(i)

P̂t(i)

∣∣∣∣∣K
]
≤ 4E

[
δw([Ĝ]ε⋆δ,σ)

γ
+ σ([Ĝ]ε⋆δ,σ)

∣∣∣∣∣ K
]
, (C.33)

which means that we can use η :=
√

ln(K)
4T

(
δw([Ĝ]ε⋆δ,σ)/γ + σ([Ĝ]ε⋆δ,σ)

)−1 to obtain

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]
≤ E

[
T∑

t=t⋆+1

K∑
i=1

(qt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]
+ γT

≤ lnK

η
+ 4ηT

(
δw([Ĝ]ε⋆δ,σ)

γ
+ σ([Ĝ]ε⋆δ,σ)

)
+ γT

= 4

√√√√T ln(K)

(
δw([Ĝ]ε⋆δ,σ)

γ
+ σ([Ĝ]ε⋆δ,σ)

)
+ γT .

Now, observe that T ≤ 8δw([Ĝ]ε⋆δ,σ) ln(3K
2T 2) whenever the algorithm’s parameter satisfies

γ = min
{(
δw([Ĝ]ε⋆δ,σ) ln(3K

2T 2)
)1/3

T−1/3,
1

2

}
=

1

2
.

As a consequence,

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]

≤ 4

√√√√T ln(K)

(
δw([Ĝ]ε⋆δ,σ)

γ
+ σ([Ĝ]ε⋆δ,σ)

)
+ γT

≤ 16δw([Ĝ]ε⋆δ,σ) ln(3K
2T 2) + 5(δw([Ĝ]ε⋆δ,σ) ln(3K

2T 2))1/3T 2/3 + 4
√
σ([Ĝ]ε⋆δ,σ)T ln(K) ,

which completes the proof.

For the following lemma, we will use a simplifying assumption on T : we will assume that T is
such that

2 +
(
37δw([Ĝ]ε⋆δ,σ) + 12σ([Ĝ]ε⋆δ,σ)

)
ln(3K2T 2)2 + 12δw([Ĝ]ε⋆δ,σ)

2/3
(
ln(3K2T 2)

)5/3
T 1/3

≤ 28
(
δw([Ĝ]ε⋆δ,σ) ln(3K

2T 2)
)1/3

T 2/3 + 29
√
ln(3K2T 2)σ([Ĝ]ε⋆δ,σ)T . (C.34)

Lemma C.9. Suppose that Equation (C.34) holds and that Ĝ is an εt⋆-good approximation of G.
For any distribution u over [K], Algorithm C.1 guarantees

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
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≤ 41
(
ln(3K2T 2)δw([Ĝ]ε⋆δ,σ)

)1/3
T 2/3 + 41

√
ln(3K2T 2)σ([Ĝ]ε⋆δ,σ)T .

We also have that

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤

min
ε≥2εt⋆

{
82
(
ln(3K2T 2)δw([G]ε)

)1/3
T 2/3 + 82

√
ln(3K2T 2)σ([G]ε)T : supp ([G]ε) observable

}
.

Proof. Following the proof of Lemma C.5, we can see that

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤ 2 +

T∑
t=t⋆+1

E

[
6 ln(3K2T 2)

t− 1

K∑
i=1

πt(i)π̄t(i)

P̂t(i)

∣∣∣∣∣ K
]

+ E

 T∑
t=t⋆+1

2

√
2
ln(3K2T 2)

t− 1

√√√√ K∑
i=1

πt(i)π̄t(i)

P̂t(i)

∣∣∣∣∣∣K
+ E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣K
]
.

Now, using the same reasoning that led to Equation (C.33), we have that

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤ 2 +

T∑
t=t⋆+1

E

[
12 ln(3K2T 2)

t− 1

(δw([Ĝ]ε⋆δ,σ)
γ

+ σ([Ĝ]ε⋆δ,σ)
) ∣∣∣∣∣K

]

+ E

 T∑
t=t⋆+1

4

√
ln(3K2T 2)

t− 1

√
δw([Ĝ]ε⋆δ,σ)

γ
+ σ([Ĝ]ε⋆δ,σ)

∣∣∣∣∣∣ K


+ E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]

≤ 2 + E

[
12 ln(3K2T 2)2

(
δw([Ĝ]ε⋆δ,σ)

γ
+ σ([Ĝ]ε⋆δ,σ)

) ∣∣∣∣∣ K
]

+ E

8
√√√√T ln(3K2T 2)

(
δw([Ĝ]ε⋆δ,σ)

γ
+ σ([Ĝ]ε⋆δ,σ)

) ∣∣∣∣∣∣∣ K


+ E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]
,

where we used that
∑T

t=1
1√
t
≤ 2
√
T and

∑T
t=2

1
t−1 ≤ 1+ln(T ) ≤ ln(3K2T 2) for K,T ≥ 2. Following

the final steps in the proof of Lemma C.8, we can show that

E

8
√√√√T ln(3K2T 2)

(
δw([Ĝ]ε⋆δ,σ)

γ
+ σ([Ĝ]ε⋆δ,σ)

) ∣∣∣∣∣∣∣ K


≤ 32δw([Ĝ]ε⋆δ,σ) ln(3K
2T 2) + 8T 2/3

(
δw([Ĝ]ε⋆δ,σ) ln(3K

2T 2)
)1/3

+ 8
√
Tσ([Ĝ]ε⋆δ,σ) ln(3K

2T 2) .
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Hence, by applying Lemma C.8, we obtain that

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓ̃t(i)

∣∣∣∣∣ K
]

≤ 16δw([Ĝ]ε⋆δ,σ) ln(3K
2T 2) + 5T 2/3(δw([Ĝ]ε⋆δ,σ) ln(3K

2T 2))1/3 + 4
√
Tσ([Ĝ]ε⋆δ,σ) ln(K) .

Finally, by definition of γ we notice that

12 ln(3K2T 2)2
δw([Ĝ]ε⋆δ,σ)

γ
≤ 24δw([Ĝ]ε⋆δ,σ) ln(3K

2T 2)2 + 12T 1/3δw([Ĝ]ε⋆δ,σ)
2/3
(
ln(3K2T 2)

)5/3
.

Thus, combining the above we obtain

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤ 2 + 37δw([Ĝ]ε⋆δ,σ) ln(3K

2T 2)2 + 12T 1/3δw([Ĝ]ε⋆δ,σ)
2/3
(
ln(3K2T 2)

)5/3
+ 13T 2/3

(
δw([Ĝ]ε⋆δ,σ) ln(3K

2T 2)
)1/3

+ 12
√
Tσ([Ĝ]ε⋆δ,σ) ln(3K

2T 2)

+ 12σ([Ĝ]ε⋆δ,σ) ln(3K
2T 2)2 .

Since we assumed that Equation (C.34) holds, we can show that

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]

≤ 41T 2/3
(
δw([Ĝ]ε⋆δ,σ) ln(3K

2T 2)
)1/3

+ 41
√
Tσ([Ĝ]ε⋆δ,σ) ln(3K

2T 2) ,

which is the first result in the statement. For the second result, recall that ε⋆δ,σ is the minimizer of
the above bound by its definition in Equation (C.30). Since Ĝ is an εt⋆-good approximation of G, we
conclude that

E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤

min
ε≥2εt⋆

{
82T 2/3

(
ln(3K2T 2)δw([G]ε)

)1/3
+ 82

√
ln(3K2T 2)σ([G]ε)T : supp ([G]ε) observable

}
.

C.4.3 Regret After T Rounds

We now have all the intermediate results we need to prove the overall regret bound of Algorithm C.1.

Theorem C.5. Suppose that (C.34) holds. Then, for any distribution u over [K], Algorithm C.1
satisfies

E

[
T∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤ min

{
T ,
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6 + 2 min
ε : supp([G]ε) strongly observable

{
198αw([G]ε)(ln(2K3T 2))3

+
(
12 ln(K) + 4

√
2 ln(3K2T 2)

)√
18t⋆αw([G]ε) ln(2K3T 2)

}
,

4 + 164 ln(3K2T 2) min
ε : supp([G]ε) observable

(
(δw([G]ε))1/3T 2/3 +

√
σ([G]ε)T

)}
.

Proof. Let us recall that in Equations (C.20) and (C.21) we define

Ψt⋆ = min

{
t⋆, 2 + 11(ln(3K2T 2))2 max

t∈[2,t⋆]
θt(Ĝt)

+
(
12 ln(K) + 4

√
2 ln(3K2T 2)

)√
t⋆ max
t∈[2,t⋆]

θt(Ĝt)

}

and

Λt⋆ = 41
(
ln(3K2T 2)δw(Ĝε⋆δ,σ)

)1/3
T 2/3 + 41

√
ln(3K2T 2)σ(Ĝε⋆δ,σ)T .

Denote by E the event that [G̃]εt{p̃t(j, i)I{p̃t(j, i) ≥ 60 ln(KT )/t} : i, j ∈ V } is a εt-good approxi-
mation of G with εt := 60 ln(KT )/t for all t ≤ T . By Lemma C.13, we have that E occurs with
probability at least 1− 1

T and thus, for any t⋆ ∈ [1, T ], we have that

E

[
T∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]

≤ 1 + E

[
T∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

∣∣∣∣∣ E
]

= 1 + E

[
t⋆∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

∣∣∣∣∣ E
]
+ E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)

∣∣∣∣∣ E
]

≤ 1 + E [Ψt⋆ + Λt⋆ | K, E ] ,

where the last inequality is due to Lemmas C.6 and C.9. We now consider two cases depending on
whether Algorithm C.1 commits to the weakly observable regret regime at any time step or it never
does so. In the first case, say Equation (C.19) never holds for any t ∈ [2, T ]. We consequently have
that

E

[
T∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤ 1 + E [min {Ψt⋆ ,Λt⋆} | K, E ] .

We first try to upper bound the conditional expectation of Λt⋆ . By definition of ε-good approximation
of G, we have

E [Λt⋆ | K, E ] = E

[
min
ε∈[0,1]

{
41
(
ln(3K2T 2)δw([Ĝt⋆ ]ε)

)1/3
T 2/3
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+ 41

√
ln(3K2T 2)σ([Ĝt⋆ ]ε)T : supp

(
[Ĝt⋆ ]ε

)
observable

} ∣∣∣∣∣ K, E
]

≤ 2E

[
min

ε∈[2εt⋆ ,1]

{
41
(
ln(3K2T 2)δw([Ĝt⋆ ]ε)

)1/3
T 2/3

+ 41

√
ln(3K2T 2)σ([Ĝt⋆ ]ε)T : supp ([G]ε) observable

} ∣∣∣∣∣K, E
]
.

To cover the remaining thresholds in [0, 2εt⋆), we define ε⋆Λ := maxQ as the largest threshold ε that
minimizes

Q := argmin
ε∈[0,1]

{
41
(
ln(3K2T 2)δw([Ĝt⋆ ]ε)

)1/3
T 2/3

+ 41

√
ln(3K2T 2)σ([Ĝt⋆ ]ε)T : supp ([G]ε) observable

}
.

If ε⋆Λ < 2εt⋆ , meaning that ε⋆Λ as well as the other thresholds in Q do not belong to the already
covered interval [2εt⋆ , 1], then t⋆ < 120 ln(KT )

ε⋆Λ
= 120 ln(KT )tε⋆Λ with tε⋆Λ := 1/ε⋆Λ. Thus, we must

have that

t⋆ ≤ 120 ln(KT )
((
δw([G]ε⋆Λ)

)1/3
t
2/3
ε⋆Λ

+
√
σ([G]ε⋆Λ)tε⋆Λ

)
≤ min

ε∈[0,1]

{
120 ln(KT )

(
(δw([G]ε))1/3T 2/3 +

√
σ([G]ε)T

)
: supp ([G]ε) observable

}
,

where the first inequality is due to the fact that δw([G]ε⋆Λ) ≥ tε⋆Λ or σ([G]ε⋆Λ) ≥ tε⋆Λ or both are true
because either p(i, i) = ε⋆Λ for some i such that i ∈ N in

supp([G]ε⋆
Λ
)(i) or one of the minimum outgoing

edge probabilities for a vertex in some minimum weight weakly dominating set is equal to ε⋆Λ.

On the other hand, we also need to upper bound the conditional expectation of Ψt⋆ . By
Lemma C.10 and recalling the definition of αw from Section 5.5, we have that

E
[
max
t∈[2,t⋆]

θt(Ĝt)
∣∣∣∣ K] ≤ E

[
min

ε : supp([G]ε) strongly observable
18αw([G]ε) ln(2K3T 2)

∣∣∣∣ K] .
and thus

2 + E
[
11(ln(3K2T 2))2 max

t∈[2,t⋆]
θt(Ĝt)

∣∣∣∣ K, E]
+ E

[(
12 ln(K) + 4

√
2 ln(3K2T 2)

)√
t⋆ max
t∈[2,t⋆]

θt(Ĝt)

∣∣∣∣∣ K, E
]

≤ 2 + min
ε : supp([G]ε) strongly observable

{
198αw([G]ε)(ln(2K3T 2))3

+
(
12 ln(K) + 4

√
2 ln(3K2T 2)

)√
18t⋆αw([G]ε) ln(2K3T 2)

}
.
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Since 120 ln(KT ) ≤ 82 ln(3K2T 2), we can combine the above to obtain

E

[
T∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤ min

{
T ,

3 + min
ε

{
198αw([G]ε)(ln(2K3T 2))3+

(
12 ln(K) + 4

√
2 ln(3K2T 2)

)√
18t⋆αw([G]ε) ln(2K3T 2) : supp ([G]ε) strongly observable

}
,

1 + min
ε

{
82 ln(3K2T 2)

(
(δw([G]ε))1/3 T 2/3 +

√
σ([G]ε)T

)
: supp ([G]ε) observable

}}
.

In the second case, t⋆ is the first round in which Equation (C.19) holds. Therefore, we must have

E

[
T∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤ 1 + 2E [Ψt⋆ | K, E ]

and

E

[
T∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]

≤ 1 + E

[
t⋆−1∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

∣∣∣∣∣ E
]
+ 1 + E

[
T∑

t=t⋆+1

K∑
i=1

(πt(i)− u(i))ℓt(i)

∣∣∣∣∣E
]

≤ E [Ψt⋆−1 + Λt⋆ | K, E ] + 2

≤ E [Λt⋆−1 + Λt⋆ | K, E ] + 2 ,

which combined give us

E

[
T∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤ 1 + E [min {Λt⋆−1 + Λt⋆ + 1, 2Ψt⋆} | K, E ] .

Following the proof of the bound in the case where Equation (C.19) never holds for any t ∈ [2, T ],
we can see that

E

[
T∑
t=1

K∑
i=1

(πt(i)− u(i))ℓt(i)

]
≤ min

{
T ,

6 + 2 min
ε : supp([G]ε) strongly observable

{
198αw([G]ε)(ln(2K3T 2))3

+
(
12 ln(K) + 4

√
2 ln(3K2T 2)

)√
18t⋆αw([G]ε) ln(2K3T 2)

}
,

4 + 164 ln(3K2T 2) min
ε : supp([G]ε) observable

(
(δw([G]ε))1/3 T 2/3 +

√
σ([G]ε)T

)}
,

which completes the proof.
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C.4.4 Auxiliary Lemmas for otcG

In this section, we prove some results that are useful in the above regret analysis of otcG (Algo-
rithm C.1). Recall that S is the family of strongly observable graphs over vertices V = [K].

Lemma C.10. Suppose that there exists a threshold ε such that supp ([G]ε) ∈ S. Then, we have that

E

[
max
t∈[2,t⋆]

min
ε : supp([ĜUCB

t ]ε)∈S
θt([ĜUCB

t ]ε)

∣∣∣∣∣ K
]
≤ E

[
min

ε : supp([G]ε)∈S
18αw([G]ε) ln(2K3T 2)

∣∣∣∣ K]

Proof. Let us recall the definition of θt:

θt([ĜUCB
t ]ε) =

2

miniminj∈N in

supp([ĜUCB
t ]ε)

(i) p(j, i)
+

∑
i∈N in

supp([ĜUCB
t ]ε)

(i)

2πt(i)

Pt(i, [ĜUCB
t ]ε)

.

By definition of the weighted independence number (see Appendix C.5 for further details), we have
that

2

miniminj∈N in

supp([ĜUCB
t ]ε)

(i) p(j, i)
≤ 2αw([ĜUCB

t ]ε) .

By Lemma C.16, we have that

2
∑

i∈N in

supp([ĜUCB
t ]ε)

(i)

πt(i)

Pt(i, [ĜUCB
t ]ε)

≤ 16αw([ĜUCB
t ]ε) ln(2K

3T 2) ,

where we used that γtψt(i) ≥ 1
KT and p̂t(j, i) ≥ 1

T . Given K, we have that p̂t(j, i) ≥ p(j, i) and thus
it holds that

E
[
max
t∈[2,t⋆]

min
ε : supp([ĜUCB

t ]ε)∈S
θt([ĜUCB

t ]ε)

∣∣∣∣K]
≤ E

[
max
t∈[2,t⋆]

min
ε : supp([ĜUCB

t ]ε)∈S
18αw([ĜUCB

t ]ε) ln(2K
3T 2)

∣∣∣∣K]
≤ E

[
min

ε : supp([G]ε)∈S
18αw([G]ε) ln(2K3T 2)

∣∣∣∣ K] .
The following result is a variant of the bound in Alon et al. (2015, Lemma 4) with a decreasing

learning rate.

Lemma C.11. Let q1, . . . , qT be the probability vectors defined by qt(i) ∝ exp(−ηt−1
∑t−1

s=1 ℓs(i)) for
a sequence of loss functions ℓ1, . . . , ℓT such that ℓt(i) ≥ 0 for all t and i. Let η0 = η1 ≥ . . . ≥ ηT .
For each t, let St be a subset of [K] such that ηt−1ℓt(i) ≤ 1 for all i ∈ St. Then, for any distribution
u it holds that

T∑
t=1

K∑
i=1

(qt(i)− u(i))ℓt(i) ≤
ln(K)

ηT
+

T∑
t=1

ηt−1

∑
i∈St

qt(i)(1− qt(i))ℓt(i)2 +
∑
i ̸∈St

qt(i)ℓt(i)
2

 .

Proof. The proof follows from a minor adaptation of the proof of Alon et al. (2015, Lemma 4). We
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start from Van der Hoeven, Van Erven, and Kotłowski (2018, Lemma 1):

T∑
t=1

K∑
i=1

(qt(i)− u(i))ℓt(i)

≤ ln(K)

ηT
+

T∑
t=1

(
K∑
i=1

qt(i)ℓt(i) +
1

ηt−1
ln

(
K∑
i=1

qt(i) exp(−ηt−1ℓt(i))

))
.

(C.35)

Now, since ℓt(i) ≥ 0 we may use exp(x) ≤ 1 + x+ x2 for x ≤ 1 and ln(1− x) ≤ −x for all x < 1 to
show that

1

ηt−1
ln

(
K∑
i=1

qt(i) exp(−ηt−1ℓt(i))

)
≤ 1

ηt−1
ln

(
1−

K∑
i=1

qt(i)(ηt−1ℓt(i)− η2t−1ℓt(i)
2)

)

≤ −
K∑
i=1

qt(i)(ℓt(i)− ηt−1ℓt(i)
2) .

Combined with Equation (C.35), this gives us

T∑
t=1

K∑
i=1

(qt(i)− u(i))ℓt(i) ≤
ln(K)

ηT
+

T∑
t=1

K∑
i=1

ηt−1qt(i)ℓt(i)
2 .

We define ℓ̄t :=
∑

i∈St
qt(i)ℓt(i). Since ℓt(i) ≥ 0 we have that ηt−1(ℓt(i)− ℓ̄t) ≥ −1 by construction.

Since adding the same ℓ̄t to each ℓt(i) on the r.h.s. of Equation (C.35) does not influence the regret
we have

T∑
t=1

K∑
i=1

(qt(i)− u(i))ℓt(i) ≤
ln(K)

ηT
+

T∑
t=1

K∑
i=1

ηt−1qt(i)(ℓt(i)− ℓ̄t)2 .

To complete the proof we follow the proof of Alon et al. (2015, Lemma 4), which gives us

T∑
t=1

K∑
i=1

(qt(i)− u(i))ℓt(i) ≤
ln(K)

ηT
+

T∑
t=1

ηt−1

∑
i∈St

qt(i)(1− qt(i))ℓt(i)2 +
∑
i ̸∈St

qt(i)ℓt(i)
2

 .

Lemma C.12. Let ξt(i) :=
∑

j∈N in
Ĝt

(i) πt(i)(p̂t(j, i)− p(j, i)). In any round t, we have that

K∑
i=1

(πt(i)− u(i))ℓ̂t(i)

=

K∑
i=1

(πt(i)− u(i))ℓ̃t(i) +
K∑
i=1

(πt(i)− u(i))ξt(i)
I
{
i ∈ Nout

Gt
(It) ∧ i ∈ Nout

Ĝt
(It)
}
ℓt(i)

Pt(i)P̂t(i)
.

Proof. Let Xt := I
{
i ∈ Nout

Gt
(It) ∧ i ∈ Nout

Ĝt
(It)
}

and denote by

ξt(i) := P̂t(i)− Pt(i) =
∑

j∈N in
Ĝt

(i)

πt(i)(p̂t(j, i)− p(j, i)) .
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We have that

ℓ̃t(i) =
Xtℓt(i)

P̂t(i)
=

Xtℓt(i)

Pt(i) + ξt(i)

=
Xtℓt(i)(Pt(i) + ξt(i))

Pt(i)(Pt(i) + ξt(i))
− ξt(i)

Xtℓt(i)

Pt(i)(Pt(i) + ξt(i))

=
Xtℓt(i)

Pt(i)
− ξt(i)

Xtℓt(i)

Pt(i)(Pt(i) + ξt(i))

= ℓ̂t(i)− ξt(i)
Xtℓt(i)

Pt(i)P̂t(i)
.

Therefore, for any distribution u we have that

K∑
i=1

(πt(i)− u(i))ℓ̂t(i) =
K∑
i=1

(πt(i)− u(i))ℓ̃t(i) +
K∑
i=1

(πt(i)− u(i))ξt(i)
Xtℓt(i)

Pt(i)P̂t(i)
,

which completes the proof.

Lemma C.13. Let [G̃]εt = {p̃t(j, i)I{p̃t(j, i) ≥ εt} : i, j ∈ V } and εt := 60 ln(KT )/t for all t ∈ [2, T ].
Then, with probability at least 1− 1/T , [̃G]εt is an εt-good approximation of G for all t ∈ [2, T ].

Proof. Let E+
t := {(i, j) ∈ V 2 : p(i, j) ≥ 2εt} and E−

t := {(i, j) ∈ V 2 : p(i, j) < εt/2} be the
two sets of edges as defined in the proof of Theorem 5.2. We let E t(i,j) := {p̃t(i, j) ≥ εt} and
F t(i,j) := {|p̃t(i, j)−p(i, j)| ≤ p(i, j)/2}, for all (i, j) ∈ V 2 and all t ∈ [2, T ], be the events as similarly
denoted in that same proof. We consequently define the events E , F , and C as

E =

T⋂
t=1

⋂
(i,j)∈E+

t

E t(i,j) , F =

T⋂
t=1

⋂
(i,j)/∈E−

t

F t(i,j) , C =
T⋂
t=1

⋂
(i,j)∈E−

t

E t(i,j) .

The following steps hold for all K ≥ 2 and all T ≥ 2.
We begin by observing that P (p̃t(i, j) < εt) ≤ exp(−tεt/4) ≤ 1/(4K2T 2) for all t ∈ [2, T ] and

all (i, j) ∈ E+
t , by a simple adaptation of the same argument in the proof of Theorem 5.2. Then,

P (E) ≥ 1−
T∑
t=1

|E+
t |

4K2T 2
≥ 1− 1

4T
,

which follows from the fact that |E+
t | ≤ K2 for all t ∈ [2, T ]. We can similarly argue that

P (|p̃t(i, j)− p(i, j)| > p(i, j)/2) ≤ 2 exp(−tεt/24) ≤ 1/(2K2T 2) for all t ∈ [2, T ] and all (i, j) /∈ E−
t ;

this implies that P (F) ≥ 1 − 1/(2T ). Finally, we observe that P (p̃t(i, j) ≥ εt) ≤ exp(−tεt/6) ≤
1/(4K2T 2) for all t ∈ [2, T ] and all (i, j) ∈ E−

t , hence P (C) ≥ 1− 1/(4T ). The statement follows by
union bound over the complements of E , F , and C.

C.5 Weighted Independence Number

To improve the regret bounds in the case of strongly observable support, we need to introduce
another graph-theoretic quantity: the weighted independence number αw(G,w), where w ∈ RK>0 is a
vector of positive weights assigned to the vertices of our strongly observable graph G = (V,E) with
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V = [K]. Let w(U) :=
∑

i∈U wi denote the weight of a subset of vertices U ⊆ V . Recall that the
weighted independence number is defined as

αw(G,w) := max
S∈I(G)

w(S) ,

that is, the weight of a maximum weight independent set. This set is chosen among all sets in the
family I(G) of independent sets of G. It can be equivalently defined by the following integer linear
program:

αw(G,w) = max
x

K∑
i=1

wixi

s.t. xi + xj ≤ 1 ∀(i, j) ∈ E, i ̸= j

xi ∈ {0, 1} ∀i ∈ V

We plan to define w according to our needs in what follows.

C.5.1 Undirected Graph

Let G be a stochastic feedback graph with edge probabilities p(i, j) and such that its support
supp (G) = G = (V,E) is undirected and strongly observable. Moreover, letN(i) be the neighborhood
in G of any vertex i ∈ V (excluding i) and let C(i) := N(i) ∪ {i} be the extended neighborhood of i
including vertex i itself.

We can use the edge probabilities from G to define a weight for each vertex i as

wG(i) := wi =

(
1

|C(i)|
∑
j∈C(i)

p(j, i)

)−1

.

This vertex weight is equal to the inverse of the arithmetic mean of the incident edge probabilities
(including its self-loop). Note that the two probabilities p(i, j) and p(j, i) in the two directions of
any undirected edge (i, j) ∈ E need not be equal.

This definition allows us to upper bound the second-order term in the regret for vertices with
self-loop (as similarly done in the analysis of Exp3.G (Alon et al., 2015)) in terms of the weighted
independence number since we can reduce it to bounding∑

i∈V

1∑
j∈C(i) p(j, i)

=
∑
i∈V

wi
|C(i)|

.

We thus require a weighted version of Turán’s theorem, which is formulated in the lemma below.
This result has already been proved (Sakai, Togasaki, and Yamazaki, 2003), but we nevertheless
provide a proof for completeness.

Lemma C.14. Let G = (V,E) be an undirected graph with positive vertex weights wi. Then,∑
i∈V

wi
|C(i)|

≤ αw(G,w) .

Proof. Consider the following algorithm: as long as the graph is not empty, repeatedly choose a
vertex j that minimizes |C(j)|/wj among all remaining vertices and remove it from the graph along
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with its neighborhood. Let i1, . . . , is be the sequence of s vertices picked by this algorithm, which
form an independent set by construction. Additionally, let G1, . . . , Gs+1 be the sequence of graphs
generated by this iterative procedure, where G1 = G is the starting graph and Gs+1 is the empty
graph. We also let Cr(i) denote the extended neighborhood over Gr of any i ∈ V (Gr). Define

Q(H) :=
∑

i∈V (H)

wi
|C(i)|

∀H ⊆ G ,

as the quantity we are trying to bound for G and consider it over the graphs in the sequence
generated by the procedure. It is strictly decreasing until reaching Q(Gs+1) = 0. In particular, at
any step of the procedure it decreases by

Q(Gr)−Q(Gr+1) =
∑

j∈Cr(ir)

wj
|C(j)|

≤
∑

j∈Cr(ir)

wir
|C(ir)|

=
|Cr(ir)|
|C(ir)|

wir ≤ wir ,

where the first inequality is due to the optimality of |C(ir)|/wir at step r. We can use this inequality
to bound Q(G) by

Q(G) =
s∑
r=1

(Q(Gr)−Q(Gr+1)) ≤
s∑
r=1

wir ≤ max
S∈I(G)

w(S) = αw(G,w) .

C.5.2 Directed Graph

Compared to the result in the previous section, we are more generally interested in directed graphs.
We consider the case of directed, strongly observable support supp (G) = G = (V,E) with V = [K]

and (i, i) ∈ E for all i ∈ V . In the directed case, we distinguish the in-neighborhood N in(i) over
G of a vertex i ∈ V from its out-neighborhood Nout(i). We use the convention that vertices with
self-loops are not included in their neighborhoods, while all vertices are always included in their
extended in-neighborhood C in(i) := N in(i) ∪ {i} and out-neighborhood Cout(i) := Nout(i) ∪ {i},
respectively. We make this distinction to comply as much as possible with previous works providing
analogous results (Alon et al., 2017), where the neighborhoods N in(i) and Nout(i) did not include i
even in the presence of the self-loop (i, i) ∈ E.

The weighted independence number is defined in the same way as per undirected graphs, ignoring
the direction of edges for the independence condition. Here we define in two slightly different manners
the vertex weights: let

win
G (i) := win

i =

(
1

|C in(i)|
∑

j∈Cin(i)

p(j, i)

)−1

(C.36)

be the inverse of the arithmetic mean of the incoming edge probabilities for i, and

wout
G (i) := wout

i =

(
1

|Cout(i)|
∑

j∈Cout(i)

p(i, j)

)−1

(C.37)

the analogous over outgoing edges. These two different assignments of vertex weights induce two
weighted independence numbers αw(G,w

in) and αw(G,w
out), respectively.
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Then, we prove a lemma similar to (Alon et al., 2017, Lemma 13) in the weighted case. Note,
however, that in this case the lemma is tightly related to the specific definitions of vertex weights we
are adopting.

Lemma C.15. Let G = (V,E) be a directed graph with edge probabilities p(i, j) ∈ [0, 1], and positive
vertex weight vectors win and wout as in Equations (C.36) and (C.37), respectively. Then,

∑
i∈V

win
i

|C in(i)|
≤ 3(αw(G,w

in) + αw(G,w
out)) ln(K + 1) .

Proof. We prove the statement by induction as in the proof of Alon et al. (2017, Lemma 13). Consider
the following algorithm: as long as the graph is not empty, repeatedly choose the vertex j that
maximizes |C in(j)|/win

j among all remaining vertices and remove it from the graph along with its
incident edges. Let i1, . . . , iK be the vertices in the order the algorithm picks them. Additionally, let
G1, . . . , GK+1 be the sequence of graphs generated by this iterative procedure, where G1 = G is the
original graph and GK+1 is the empty graph. We also let C in

r (i) denote the extended in-neighborhood
over Gr of any i ∈ V (Gr). Similarly to the proof of Lemma C.14, define

Q(H) :=
∑

i∈V (H)

win
i

|C in(i)|
∀H ⊆ G

as the quantity we want to bound for G, where the size of the in-neighborhood is always computed
with respect to the starting graph G.

Define a new instance of the problem with graph G′ := (V,E′) as the undirected version of G,
where the edge probabilities are defined as p′(i, j) := 1

2p(i, j) +
1
2p(j, i) for all i, j ∈ V such that

either (i, j) ∈ E or (j, i) ∈ E. This new graph has C(i) = C in(i) ∪ Cout(i). As a consequence, we
can derive new vertex weights w′

i :=
(

1
|C(i)|

∑
j∈C(i) p

′(j, i)
)−1. This instance is such that

∑
i∈V

|C(i)|
w′
i

=
∑
i∈V

∑
j∈C(i)

p′(j, i) =
∑
i∈V

∑
j∈Cin(i)

p(j, i) =
∑
i∈V

|C in(i)|
win
i

. (C.38)

Furthermore, notice that the newly defined vertex weights satisfy

w′
i =

|C(i)|∑
j∈C(i) p

′(j, i)
≤ |C in(i)|∑

j∈C(i) p
′(j, i)

+
|Cout(i)|∑
j∈C(i) p

′(j, i)

≤ 2|C in(i)|∑
j∈Cin(i) p(j, i)

+
2|Cout(i)|∑
j∈Cout(i) p(i, j)

= 2(win
i + wout

i ) . (C.39)

Consider now the first vertex i1 chosen by the procedure we introduced before. The value it
maximizes is lower bounded by

max
i∈V

|C in(i)|
win
i

≥ 1

K

∑
i∈V

|C in(i)|
win
i

=
1

K

∑
i∈V

|C(i)|
w′
i

by Equation (C.38)
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≥ K∑
i∈V

w′
i

|C(i)|

by Jensen’s inequality

≥ K/2∑
i∈V

win
i

|C(i)| +
∑

i∈V
wout

i
|C(i)|

by Equation (C.39)

≥ K/2

αw(G,win) + αw(G,wout)
. by Lemma C.14 over G′ (C.40)

We can use this fact to show an upper bound for the sum Q(G) as

Q(G) =
∑
i∈V

win
i

|C in(i)|
=

win
i1

|C in(i1)|
+

K∑
r=2

win
ir

|C in(ir)|

≤ 2(αw(G,w
in) + αw(G,w

out))

K
+Q(G2) . by Equation (C.40)

As a last step, recursively repeat the same reasoning on Q(G2) and iterate it until reaching GK to
conclude that

Q(G) ≤ 2

K∑
r=1

αw(Gr, w
in) + αw(Gr, w

out)

K − r + 1
≤ 3(αw(G,w

in) + αw(G,w
out)) ln(K + 1) .

We finally have all the tools required for demonstrating the next lemma. It essentially corresponds
to Alon et al. (2015, Lemma 5) with the addition of edge probabilities. The main difference is that we
show an upper bound in terms of two distinct independence numbers. They are both computed over
the graph G with vertex weights defined in terms of the worst-case edge probabilities. To be specific,

we have a first weight assignment w− to vertices such that w−
G (i) := w−

i =
(
minj∈Cin(i) p(j, i)

)−1
is

the reciprocal of the minimum incoming edge probability for vertex i. The second assignment w+,
instead, assigns weight w+

G (i) := w+
i =

(
minj∈Cout(i) p(i, j)

)−1 equal to the inverse of the minimum
outgoing edge probability for i.

Lemma C.16. Let G = (V,E) be a directed graph with |V | = K ≥ 2 and edge probabilities p(i, j),
and such that (i, i) ∈ E for all i ∈ V . Let zi ∈ R+ be a positive weight assigned to each i ∈ V .
Assume that

∑
i∈V zi ≤ 1 and that zi ≥ β for all i ∈ V , given some constant β ∈ (0, 12 ]. Then,

∑
i∈V

zi∑
j∈Cin(i) zjp(j, i)

≤ 6(αw(G,w
−) + αw(G,w

+)) ln

(
2K2

βρ

)
,

where ρ := mini∈V
∑

j∈Cin(i) p(j, i) > 0.

Proof. The structure of this proof is similar to that of Alon et al. (2015, Lemma 5). Define a
discretization of z1, . . . , zK such that (mi − 1)/M ≤ zi ≤ mi/M for positive integers m1, . . . ,mK

and M :=
⌈
2K
βρ

⌉
. The discretized values are such that, for all i ∈ V ,

∑
j∈Cin(i)

mjp(j, i) ≥M
∑

j∈Cin(i)

zjp(j, i) ≥
2K

βρ
β
∑

j∈Cin(i)

p(j, i) ≥ 2K ≥ 2|C in(i)| , (C.41)

where the first inequality holds because zj ≤ mj/M , the second follows by definition of M and by
the assumption on zj , whereas the third is due to the definition of ρ. Then, the sum of interest
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becomes∑
i∈V

zi∑
j∈Cin(i) zjp(j, i)

≤
∑
i∈V

mi

M
∑

j∈Cin(i) zjp(j, i)
since zi ≤ mi/M

≤
∑
i∈V

mi∑
j∈Cin(i)mjp(j, i)− |C in(i)|

since Mzj ≥ mj − 1

≤ 2
∑
i∈V

mi∑
j∈Cin(i)mjp(j, i)

by Equation (C.41). (C.42)

Now build a new directed graph G′ := (V ′, E′) derived (as in the proof of Alon et al. (2015,
Lemma 5)) from graph G by replacing each node i ∈ V with a clique Ki of size mi and all its edges
having probability p(i, i). Additionally add an edge from any i′ ∈ Ki to any j′ ∈ Kj having edge
probability p(i, j) if and only if (i, j) ∈ E. As a consequence, the right-hand side of Equation (C.42)
is equal to

2
∑
i∈V ′

1∑
j∈Cin

G′ (i)
p(j, i)

.

Observe that the independent sets in G are preserved in G′: any independent set S = {i : i ∈ V ′} ∈
I(G′) in G′ has a corresponding one {i : i′ ∈ S, i′ ∈ Ki} in G with same cardinality and weight,
assuming that the weight of i′ ∈ Ki in G′ is equal to the weight of i ∈ V according to the weight
assignment in G. We can reduce this latter sum to the same form as in Lemma C.15 by assigning
vertex weights

win
i′ :=

( ∑
j∈Cin(i)

mj∑
k∈Cin(i)mk

p(j, i)

)−1

, wout
i′ :=

( ∑
j∈Cout(i)

mj∑
k∈Cout(i)mk

p(i, j)

)−1

,

to each vertex i′ ∈ Ki, for all i ∈ V . Indeed, the previous sum becomes

∑
i∈V ′

1∑
j∈Cin

G′ (i)
p(j, i)

=
∑
i∈V ′

win
i

|C in
G′(i)|

≤ 3(αw(G
′, win) + αw(G

′, wout)) ln(|V ′|+ 1) by Lemma C.15

≤ 3(αw(G,w
−) + αw(G,w

+)) ln(|V ′|+ 1) ,

where the last inequality follows from the fact that win
i′ ≤ w

−
i and wout

i′ ≤ w
+
i for all i ∈ V and all

i′ ∈ Ki.
We conclude the proof by observing that this newly constructed graph also has

1 + |V ′| = 1 +
∑
i∈V

mi ≤ 1 +
∑
i∈V

(Mzi + 1) ≤ K +M + 1 ≤ 2K

(
1 +

1

βρ

)
≤ 2K2

βρ

vertices, where the final inequality holds because βρ ≤ K/2 by definition, and we used the fact that
K ≥ 2.
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Appendix D

Proof Details for Chapter 6

D.1 Auxiliary Results

Lemma D.1. Consider any algorithm that picks actions (At)t∈[T ] in the adversarial delayed bandits
problem with intermediate feedback with arbitrary action-state mappings (st)t∈[T ] and i.i.d. loss
vectors (ℓt)t∈[T ]. Then, for any given δ ∈ (0, 1),

RT −RT ≤
√

2T ln(2/δ) and RT −RT ≤
√
2T ln(2K/δ)

individually hold with probability at least 1− δ.

Proof. First, observe that we can relate the two notions of regret as

RT = RT +

T∑
t=1

(
θ(St)− ℓt(St)

)
+min

a∈A

T∑
t=1

ℓt(st(a))−min
a∈A

T∑
t=1

θ(st(a))︸ ︷︷ ︸
(△)

.

By Azuma-Hoeffding inequality, we can show that each side of

−
√
T

2
ln

1

δ′
≤

T∑
t=1

(
θ(St)− ℓt(St)

)
≤
√
T

2
ln

1

δ′
(D.1)

holds with probability at least 1− δ′. Now, define

a∗ℓ ∈ argmin
a∈A

T∑
t=1

ℓt(st(a)) and a∗θ ∈ argmin
a∈A

T∑
t=1

θ(st(a)) .

On the one hand, observe that

(△) ≤
T∑
t=1

ℓt(st(a
∗
θ))−

T∑
t=1

θ(st(a
∗
θ)) ≤

√
T

2
ln

1

δ′
,

where the last inequality holds with probability at least 1− δ′ by Azuma-Hoeffding inequality. On
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the other hand, we can show that

(△) ≥
T∑
t=1

ℓt(st(a
∗
ℓ ))−

T∑
t=1

θ(st(a
∗
ℓ )) =: (⋄) .

However, in this case a∗ℓ depends on the entire sequence ℓ1, . . . , ℓT . We thus need to use a union
bound in order to show that

P

(
(⋄) ≤ −

√
T

2
ln
K

δ′

)
≤
∑
a∈A

P

(
T∑
t=1

ℓt(st(a))−
T∑
t=1

θ(st(a)) ≤ −
√
T

2
ln
K

δ′

)
≤ δ′ ,

where the last inequality follows by Azuma-Hoeffding inequality. We conclude the proof by setting
δ′ = δ/2.

Lemma D.2. The estimates (θ̂t)
T
t=1 defined in Equation (6.3) are such that |θ̂t(s)− θ(s)| ≤ 1

2εt(s)

simultaneously holds for all t ∈ [T ] and all s ∈ S with probability at least 1− δ/2.

Proof. In a similar way as in Vernade et al. (2020), define Xm(s) to be the empirical mean estimate
for θ(s) which uses the first m ∈ [T ] observed losses corresponding to state s ∈ S. Notice that

θ̂t(s) = XN ′
t(s)

(s), while we define ε′m(s) :=
√

2
m ln 4ST

δ so that εt(s) = ε′N ′
t(s)

(s). We can additionally
observe that E [Xm(s)] = θ(s). Then, we can use Azuma-Hoeffding inequality to show that

P

⋂
s∈S

⋂
t∈[T ]

{
|θ̂t(s)− θ(s)| ≤

1

2
εt(s)

} ≥ P

⋂
s∈S

⋂
m∈[T ]

{
|Xm(s)− θ(s)| ≤

1

2
ε′m(s)

}
≥ 1− 2

∑
s∈S

T∑
m=1

e−
1
2
ε′m(s)2m

= 1− δ

2
,

where we also used a union bound in the second inequality.

Lemma D.3. Consider any algorithm that picks actions (At)t∈[T ] in the BIO setting with adversarial
action-state mappings (st)t∈[T ] and stochastic loss vectors (ℓt)t∈[T ]. Assume that the losses for any
fixed state are i.i.d., whereas pairs of losses ℓj(s), ℓj′(s′) of distinct states s ̸= s′ might be correlated
when j > j′ and j − j′ ≤ dj′. Then, it holds that E [RT ] ≤ E [RT ], where the expectation is with
respect to the stochasticity of the losses and the randomness of the algorithm.

Proof. We know that E [ℓt(st(a))] = θ(st(a)) for any fixed a ∈ A and all t ∈ [T ]. We further observe
that

E [ℓt(St)] = E
[
E [ℓt(st(At)) | At]

]
= E [θ(St)]

holds for all t ∈ [T ], as At is independent of losses that can be correlated with ℓt. Now, define

a∗ℓ ∈ argmin
a∈A

T∑
t=1

ℓt(st(a)) and a∗θ ∈ argmin
a∈A

T∑
t=1

θ(st(a)) .
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Then, we conclude the proof by showing that

E [RT ] =
T∑
t=1

E [ℓt(St)]− E

[
T∑
t=1

ℓt(st(a
∗
ℓ ))

]

≥
T∑
t=1

E [ℓt(St)]− E

[
T∑
t=1

ℓt(st(a
∗
θ))

]
=

T∑
t=1

E [θ(St)]−
T∑
t=1

θ(st(a
∗
θ)) = E [RT ] .

D.2 High-Probability Regret Bound

D.2.1 Total Effective Delay Bound

Lemma 6.1 (Total effective delay). If MetaBIO is run with any algorithm B on delays (dt)t∈[T ],
then its total effective delay is D̃T ≤ DΦ.

Proof of Lemma 6.1. For any s ∈ S, we define Ts := {t ∈ [T ] : St = s} to be the set of all rounds
when the state observed by the learner corresponds to s. Denote by ts the last time step t ∈ Ts
such that Nt(s) < σt and let Cs := {t ∈ Ts : t ≤ ts} be those rounds in Ts that come no later than
ts. According to the choice of ts, all the rounds in Ts for which learner waits for the respective
delayed loss, must belong to Cs, while the learner incurs d̃t = 0 delay for rounds t ∈ Ts \ Cs. Now
we partition Cs into two sets: the observed set Cobss := {t ∈ Cs : t+ dt ≤ ts} and the outstanding set
Couts := {t ∈ Cs : t+ dt > ts}. From the choice of ts, we can see that the number of rounds in Cobss is

|Cobss | ≤ Nts(s) < σts ≤ σmax ,

and the number of rounds in Cout
s is

|Couts | ≤ σts ≤ σmax .

Therefore, we have |Cs| ≤ 2σmax. So if we define Call :=
⋃
s∈S Cs, then |Call| ≤ min {2Sσmax, T} = |Φ|.

This also implies that
T∑
t=1

d̃t ≤
∑
t∈Call

dt ≤
∑
t∈Φ

dt

by definition of Φ.

D.2.2 Improved Regret for DAda-Exp3 for Fixed δ

We follow the analysis of Theorem 4.1 in György and Joulani (2021, Appendix A) and our goal is
to use the knowledge of δ ∈ (0, 1) to tune the learning rates (ηt)t∈[T ] and the implicit exploration
terms (γt)t∈[T ], accordingly. Let d1, . . . , dT be the sequence of delays perceived by DAda-Exp3, and
let DT :=

∑T
t=1 dt be its total delay. Furthermore, let σt be the number of outstanding observations

of DAda-Exp3 at the beginning of round t ∈ [T ]. Suppose that we take γt = cηt with c > 0 for all
t ∈ [T ], then following the same analysis as in György and Joulani (2021, Appendix A), we end up
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with the following regret bound that holds with probability at least 1− 2δ′ for any δ′ ∈ (0, 1/2):

RT ≤
lnK

ηT
+

T∑
t=1

ηt(σt + (c+ 1)K) +
ln(K/δ′)

2cηT
+
σmax + c+ 1

2c
ln(1/δ′)

=
1

ηT

(
lnK +

ln(K/δ′)

2c

)
+

T∑
t=1

ηt(σt−1 + (c+ 1)K) +
σmax + 1

2c
ln(1/δ′) +

ln(1/δ′)

2
.

Therefore, by taking η−1
t =

√
(c+1)Kt+

∑t
j=1 σj

2 ln(K)+ 1
c
ln(K/δ′)

, we get the following bound with probability at

least 1− 2δ′:

RT ≤ 2

√√√√((c+ 1)KT +
T∑
t=1

σt

)(
2 ln(K) +

ln(K/δ′)

c

)
+
σmax + 1

2c
ln(1/δ′) +

ln(1/δ′)

2
.

We know that
∑T

t=1 σt = DT by definition of σt. Then, we can set c = 1 to obtain that the regret
RT (as per the original notion of regret used in György and Joulani (2021)) is

RT ≤ 2
√
2KT (3 ln(K) + ln (1/δ′)) + 2

√
DT (3 ln(K) + ln (1/δ′)) +

σmax + 2

2
ln(1/δ′) (D.2)

with probability at least 1− 2δ′.

From Lemma D.1, we have that

RT ≤ RT +
√
2T ln(2/δ′) (D.3)

holds with probability at least 1− δ′. So, combining Equations (D.2) and (D.3), and setting δ := 3δ′,
we can upper bound our notion of regret RT as

RT ≤ 2
√

2KT (3 ln(K) + ln (3/δ)) +
√

2T ln(6/δ) + 2
√
DT (3 ln(K) + ln (3/δ)) +

σmax + 2

2
ln(3/δ)

(D.4)
with probability at least 1− δ.

D.2.3 Reduction to DAda-Exp3 via MetaBIO

Based on the reduction via MetaBIO, we require that B guarantee a regret bound

R̂B
T =

T∑
t=1

θ̃t(St)−min
a∈A

T∑
t=1

θ̃t(st(a)) (D.5)

that holds with high probability when the losses experienced by B are of the form θ̃t
(
st(a)

)
. Note

that, even though the action-state mappings s1, . . . , sT are unknown to the learner, we can provide
those losses as long as B requires bandit feedback only. Indeed, we can compute θ̃t(St) defined in
Equations (6.1) and (6.3), while we cannot determine st(a) for all actions a ∈ A that are not At.
As mentioned in Section 6.4, in this work we consider DAda-Exp3 (György and Joulani, 2021) as
algorithm B used by MetaBIO. In what follows, we refer to this specific choice for the algorithm B.

The analysis of DAda-Exp3 for the high-probability bound (Theorem 6.1) is such that most steps
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only require that the loss of each action is bounded in [0, 1]. Then, those steps apply for any such
sequence of loss vectors. However, the crucial part of that analysis that requires attention is the
application of Lemma 1 from Neu (2015). We restate it below for reference.

Before that, we introduce the notation required for stating the result. We consider a learner
choosing actions A1, . . . , AT according to probability distributions p1, . . . , pT over actions. We
denote by Ft−1 the observation history of the learner until the beginning of round t. The result uses
importance-weighted estimates for the losses ℓ1, . . . , ℓT with implicit exploration, where the implicit
exploration parameter is γt ≥ 0 for each time t. These loss estimates are defined as

ℓ̃t(a) =
I{At = a}
pt(a) + γt

ℓt(a) ∀t ∈ [T ],∀a ∈ A . (D.6)

Lemma D.4 (Neu (2015, Lemma 1)). Let γt and αt(a) be nonnegative Ft−1-measurable random
variables such that αt(a) ≤ 2γt, for all t ∈ [T ] and all a ∈ A. Let ℓ̃t(a) be as in (D.6). Then,

T∑
t=1

K∑
a=1

αt(a)
(
ℓ̃t(a)− ℓt(a)

)
≤ ln (1/δ)

holds with probability at least 1− δ for any δ ∈ (0, 1).

In our case, we require an analogous result that work when loss vectors correspond with our
estimates θ̃1, . . . , θ̃T . However, these estimate have a dependency with the past actions chosen by
the learner. This requires some nontrivial changes in the proof of Neu (2015, Lemma 1).

Before that, we introduce some crucial definitions for this proof. Let ρ(t) := t+ dt be the arrival
time for the realized loss ℓt(St) of the state St observed at time t ∈ [T ]. Let ρ̃(t) := t+ d̃t be instead
the arrival time perceived by algorithm B relative to its choice of At at time t, i.e., when B receives
θ̃t(St). This also means that θ̃t(St) is only defined at time ρ̃(t) ≤ ρ(t).

Let π : [T ]→ [T ] be the permutation of [T ] that orders rounds according to their value of ρ̃. In
other words, π satisfies the following property:

π(r) < π(t) ⇐⇒ ρ̃(r) < ρ̃(t) ∨ (ρ̃(r) = ρ̃(t) ∧ r < t) ∀r, t ∈ [T ] . (D.7)

This permutation allows us to sort rounds according to the order in which MetaBIO feeds B with a
respective estimate for the mean loss. In particular, the r-th round in this order corresponds with
the round tr := π−1(r), for any r ∈ [T ]. Hence, we can equivalently define the round tr as the round
such that its estimate θ̃tr(Str) for the mean loss θ(Str) is the r-th estimate received by B.

Define
Fr := {(j, Aj , Sj , ℓj(Sj)) | j ∈ [T ], π(j) ≤ r} ∀r ∈ [T ] (D.8)

as the information observed by B by the end to the time step when we feed it the estimate relative to
round tr. Note that this defines a filtration, as Fr−1 ⊆ Fr for all r ∈ [T ], which has some desirable
properties thanks to the ordering π we consider. In particular, we have that d̃tr , εtr , ptr , N ′

tr are
Fr−1-measurable random variables by the way we define them. This property is also due to the fact
that Ntr and L′tr are determined when conditioning on Fr−1. Moreover, we are now interested in
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the following importance-weighted loss estimates with implicit exploration:

ℓ̃t(a) :=
I{At = a}
pt(a) + γt

θ̃t(st(a)) ∀t ∈ [T ],∀a ∈ A . (D.9)

Corollary D.1. Let γtr and αtr(a) be non-negative Fr−1-measurable random variables such that
αtr(a) ≤ 2γtr , for all r ∈ [T ] and all a ∈ A. Let ℓ̃t(a) be as in (D.9). Then,

T∑
t=1

K∑
a=1

αt(a)
(
ℓ̃t(a)− θ̃t(st(a))

)
≤ ln (1/δ)

holds with probability at least 1− δ for any δ ∈ (0, 1).

Proof. We follow the proof of Neu (2015, Lemma 1) by considering any realization ℓ1, . . . , ℓT of the
losses. The main difference is that, when defining the supermartingale as in the original proof, we
need to consider the terms of the sum in the order denoted by π instead of the increasing order of t.
For this reason, we rewrite the sum from the statement by following the order given by π:

T∑
r=1

K∑
a=1

αtr(a)
(
ℓ̃tr(a)− θ̃tr(str(a))

)
.

At this point, we need prove that E
[
ℓ̃tr(a)

∣∣Fr−1

]
≤ θ̃tr(str(a)), where we recall that tr = π−1(r).

Also recall that εtr , ptr and γtr are Fr−1-measurable. This property allows us to prove the inequality
with the conditional expectation of θ̂t instead of the one with the actual optimistic estimates θ̃t, by
the definition of the latter. In other words, we now need to prove that E

[
ℓ̂tr(a)

∣∣Fr−1

]
≤ θ̂tr(str(a)),

where ℓ̂t(a) =
I{At=a}
pt(a)+γt

θ̂t(st(a)).

We can consider two cases depending on whether d̃tr < dtr is true or not (and, thus, we are in
the case d̃tr = dtr). In the first case, note that the realized losses used for computing θ̂tr(str(a))
correspond to time steps in L′tr(str(a)), for which there is a corresponding tuple in Fr−1. Therefore,
we have that θ̂tr(str(a)) is Fr−1-measurable, and we can show that

E
[
ℓ̂tr(a)I

{
d̃tr < dtr

} ∣∣∣ Fr−1

]
= E

[
I{Atr = a}
ptr(a) + γtr

∣∣∣∣ Fr−1

] I{d̃tr < dtr

}
N ′
tr(str(a))

∑
j∈L′

tr
(str (a))

ℓj(str(a)) .

In the second case, we have that d̃tr = dtr , which implies that tr ∈ L′tr(str(a)) in the case Atr = a.
This means that we have a corresponding tuple in Fr−1 only for rounds in L′tr(str(a)) \ {tr}.
Nonetheless, this does not pose an issue since we have the indicator I{Atr = a}, and thus Str = st(a).
Indeed, we have that

E
[
ℓ̂tr(a)I

{
d̃tr = dtr

} ∣∣∣ Fr−1

]
= E

 I{Atr = a}
ptr(a) + γtr

·
I
{
d̃tr = dtr

}
N ′
tr(str(a))

∑
j∈L′

tr
(str (a))

ℓj(str(a))

∣∣∣∣∣∣ Fr−1


= E

[
I{Atr = a}
ptr(a) + γtr

∣∣∣∣ Fr−1

] I{d̃tr = dtr

}
N ′
tr(str(a))

∑
j∈L′

tr
(str (a))

j ̸=tr

ℓj(str(a))
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+ E
[
I{Atr = a}
ptr(a) + γtr

∣∣∣∣ Fr−1

] I{d̃tr = dtr

}
N ′
tr(str(a))

ℓtr(str(a))

= E
[
I{Atr = a}
ptr(a) + γtr

∣∣∣∣ Fr−1

] I{d̃tr = dtr

}
N ′
tr(str(a))

∑
j∈L′

tr
(str (a))

ℓj(str(a))

and therefore the inequality

E
[
ℓ̂tr(a)

∣∣∣ Fr−1

]
= E

[
I{Atr = a}
ptr(a) + γtr

∣∣∣∣ Fr−1

]
θ̂tr(str(a)) ≤ θ̂tr(str(a))

is true because I
{
d̃t < dt

}
+ I
{
d̃t = dt

}
= 1 for all t ∈ [T ], and by definition of θ̂t.

As already mentioned, this is equivalent to proving that E
[
ℓ̃tr(a)

∣∣Fr−1

]
≤ θ̃tr(str(a)) holds.

By using a notation similar to the original proof, if we define λ̃r :=
∑K

a=1 αtr(a)ℓ̃tr(a) and λr :=∑K
a=1 αtr(a)θ̃tr(str(a)), the process (Zr)r∈[T ] with Zr := exp

(∑r
j=1

(
λ̃j − λj

))
is a supermartingale

with respect to (Fr)r∈[T ] which has the same properties as in the proof of Neu (2015, Lemma 1).
This concludes the current proof by following a similar reasoning as in the original one.

Thanks to this result, we can conclude that the adoption of DAda-Exp3 for the reduction via
MetaBIO can guarantee a high-probability regret bound on R̂B

T as stated in Theorem 6.1, but with
total delay D̃T =

∑T
t=1 d̃t instead of DT .

D.2.4 Regret of MetaBIO

By Lemma D.2, we have that

RT ≤
T∑
t=1

θ̃t(St)−min
a∈A

T∑
t=1

θ̃t(st(a)) +
T∑
t=1

εt(St) = R̂B
T +

T∑
t=1

εt(St) (D.10)

with probability at least 1− δ/2, where R̂B
T (Equation (D.5)) is the regret of algorithm B when fed

with (θ̃t ◦ st)t∈[T ] as losses.

Lemma D.5. Conditioning on the event as stated in Lemma D.2, the sum of errors suffered from
MetaBIO by using the loss estimates (θ̃t)t∈[T ] from Equations (6.1) and (6.3) is

T∑
t=1

εt(St) ≤
(
4 + 2

√
2
)√

ST ln
4ST

δ
.

Proof. First, observe that we can rewrite the sum of errors as

T∑
t=1

εt(St) =

T∑
t=1

εt(St)I
{
d̃t < dt

}
+

T∑
t=1

εt(St)I
{
d̃t = dt

}
.

We now provide an upper bound for the first sum of errors. For any s ∈ S, we define Ts :=

{t ∈ [T ] : St = s} to be the set of all rounds when the state observed by the learner corresponds to s.
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We can bound it as

T∑
t=1

εt(St)I
{
d̃t < dt

}
=
∑
s∈S

∑
t∈Ts

εt(s)I
{
d̃t < dt

}
=

√
2 ln

4ST

δ

∑
s∈S

∑
t∈Ts

√
1

N ′
t(s)

I
{
d̃t < dt

}
≤ 2

√
ln

4ST

δ

∑
s∈S

∑
t∈Ts

√
1

Mt(s)
I
{
d̃t < dt

}
(because N ′

t(s) ≥ 1
2Mt(s))

≤ 4

√
ln

4ST

δ

∑
s∈S

√
MT (s) (since Mt(s) is increasing over Ts)

≤ 4

√
ST ln

4ST

δ
,

where the second inequality holds because N ′
t(St) = Nt(St) ≥ 1

2Mt(St) when d̃t < dt since Mt(St) ≤
Nt(St) + σt, while the last one follows by Jensen’s inequality and the fact that

∑
s∈S MT (s) = T .

As a last step, we provide an upper bound to the second sum. Let Js :=
{
r ∈ Ts : d̃r = dr

}
and

notice that |Js| ≤ |Ts| =MT (s). Observe that ρ(t) = ρ̃(t) for each round t such that d̃t = dt, and
thus by Equation (D.7) we have that

π(r) < π(t) ⇐⇒ ρ(r) < ρ(t) ∨ (ρ(r) = ρ(t) ∧ r < t)

for all r, t ∈ [T ] such that d̃r = dr and d̃t = dt. Define νs : Js →
[
|Js|
]

by

νs(t) := |{r ∈ Js : π(r) ≤ π(t)}| ∀t ∈ Js .

Observe that νs(t) ≤ N ′
t(s) = |L′t(s)| for all s ∈ S and all t ∈ Js. This is due to the fact that νs(t)

counts a subset of L′t(s); to be precise, we have that νs(t) = |L′t(s) ∩ Js|. Moreover, notice that the
condition π(r) ≤ π(t) defines a total order over Js. Hence, νs(t) counts the number of elements of
Js preceding t ∈ Js (including t itself) in this total order. This implies that νs is a bijection between
Js and

[
|Js|
]
. Then, using a similar reasoning as before, we show that

T∑
t=1

εt(St)I
{
d̃t = dt

}
=

√
2 ln

4ST

δ

∑
s∈S

∑
t∈Ts

√
1

N ′
t(s)

I
{
d̃t = dt

}
=

√
2 ln

4ST

δ

∑
s∈S

∑
t∈Js

√
1

N ′
t(s)

(by definition of Js)

≤
√
2 ln

4ST

δ

∑
s∈S

∑
t∈Js

√
1

νs(t)
(since νs(t) ≤ N ′

t(s) for t ∈ Js)

≤ 2

√
2 ln

4ST

δ

∑
s∈S

√
|Js| (since νs(t) is bijective)

≤ 2

√
2 ln

4ST

δ

∑
s∈S

√
MT (s) (since |Js| ≤MT (s))
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≤ 2

√
2ST ln

4ST

δ
. (by Jensen’s inequality)

Theorem 6.2. Let δ ∈ (0, 1). If we run MetaBIO using DAda-Exp3, then the regret of MetaBIO in
the BIO setting with adversarial action-state mappings and stochastic losses satisfies

RT ≤ 2
√
2KTCK,3δ + 7

√
ST ln

4ST

δ
+ 2
√
DΦCK,3δ +

σmax + 2

2
ln

4

δ
(6.8)

with probability at least 1− δ.

Proof of Theorem 6.2. By Equation (D.10), the regret RT can be bounded as

RT ≤ R̂B
T +

T∑
t=1

εt(St) ≤ R̂B
T + 7

√
ST ln

4ST

δ

with probability at least 1− δ/2, where the last inequality follows by Lemma D.5. From what we
argued in Appendix D.2.3, we can upper bound R̂B

T using the high-probability regret bound of
DAda-Exp3. Notice that the delays incurred by DAda-Exp3 via MetaBIO are those given when providing
the estimates

(
θ̃t
)
t∈[T ]. We denote these delays by d̃1, . . . , d̃T , and the total delay perceived by

DAda-Exp3 is thus D̃T =
∑T

t=1 d̃t. Hence, from the improved bound for DAda-Exp3 in Equation (D.2),
we have that

R̂B
T ≤ 2

√
2KT (3 ln(K) + ln (4/δ)) + 2

√
D̃T (3 ln(K) + ln (4/δ)) +

σmax + 2

2
ln(4/δ)

holds with probability at least 1 − δ/2. The combination of the above two inequalities, together
with Lemma 6.1, concludes the proof.

D.2.5 Regret of AdaMetaBIO

Theorem 6.3. Let δ ∈ (0, 1). If we run AdaMetaBIO with DAda-Exp3, then the regret of AdaMetaBIO

in the BIO setting with adversarial action-state mappings and stochastic losses satisfies

RT ≤ 3min

{
7

√
ST ln

8ST

δ
,
√
DTCK,2δ

}
+ 6
√
KTCK,2δ + 2

√
DΦCK,2δ + (σmax + 2) ln

8

δ
(6.9)

with probability at least 1− δ.

Proof of Theorem 6.3. Let t∗ ∈ [T ] be the last round before AdaMetaBIO switches from DAda-Exp3

to MetaBIO, i.e., the last round that satisfies Dt∗CK,4δ ≤ 49ST ln 8ST
δ . Then, define

a∗ ∈ argmin
a

T∑
t=1

θ(st(a)) .

We may decompose regret as

RT =
t∗∑
t=1

(
θ(St)− θ(st(a∗))

)
+

T∑
t=t∗+1

(
θ(St)− θ(st(a∗))

)
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≤
t∗∑
t=1

θ(St)−min
a∈A

t∗∑
t=1

θ(st(a))︸ ︷︷ ︸
Rt∗

+

T∑
t=t∗+1

θ(St)−min
a∈A

T∑
t=t∗+1

θ(st(a))︸ ︷︷ ︸
Rt∗:T

.

The incurred delay until time t∗ is Dt∗ . Thus, from Equation (D.4), we get that the following bound

Rt∗ ≤ 2
√
2Kt∗CK,2δ +

√
2t∗ ln

12

δ
+ 2
√
Dt∗CK,2δ +

σmax + 2

2
ln

6

δ
(D.11)

holds with probability at least 1 − δ/2, where we recall that CK,δ = 3 lnK + ln(12/δ). If our
algorithm never switches, then t∗ = T and we get the bound in (D.11) for RT . Note that this is no
greater than the upper bound in the statement as

√
DTCK,2δ ≤ 7

√
ST ln(8ST/δ) by definition of

t∗ in this case.

Otherwise, we use the switching condition
√
Dt∗CK,2δ ≤ 7

√
ST ln(8ST/δ) along with the fact

that
√
t∗ ln(12/δ) ≤

√
Kt∗CK,2δ to get

Rt∗ ≤ 3
√

2Kt∗CK,2δ + 14

√
ST ln

8ST

δ
+
σmax + 2

2
ln

6

δ
. (D.12)

Furthermore, Theorem 6.2 directly gives us an upper bound for Rt∗:T since AdaMetaBIO runs
MetaBIO for t > t∗ with the confidence parameter set to δ/2. We just need to bound the total
incurred delays of these rounds, namely D̃t∗:T . Let σ′t be the outstanding observations for any round
t > t∗ as perceived by the execution of MetaBIO starting after round t∗, that is, when considering
only delays (dt)t>t∗ . It is immediate to observe that σ′t ≤ σt and thus maxt>t∗ σ

′
t ≤ maxt>t∗ σt.

Moreover, from Lemma 6.1 we have
D̃t∗:T ≤ DΦ′ ,

where Φ′ denotes a set of min {T − t∗, 2Sσ′max} rounds with the largest delays among (dt)t>t∗ , with
σ′max := maxt>t∗ σ

′
t. So we have

DΦ′ ≤ DΦ

due to the fact that |Φ′| = min {T − t∗, 2Sσ′max} ≤ min {T, 2Sσmax} = |Φ|. Therefore, from
Theorem 6.2 we obtain

Rt∗:T ≤ 2
√

2K(T − t∗)CK,3δ + 7

√
ST ln

8ST

δ
+ 2
√
DΦCK,3δ +

σmax + 2

2
ln

8

δ
(D.13)

with probability at least 1− δ/2. We conclude the proof by combining Equations (D.12) and (D.13)
along with the fact that

√
t∗ +

√
T − t∗ ≤

√
2T to get that the bound

RT ≤ 6
√
KTCK,2δ + 3min

{
7

√
ST ln

8ST

δ
,
√
DTCK,2δ

}
+ 2
√
DΦCK,2δ + (σmax + 2) ln

8

δ

holds with probability at least 1− δ.
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D.2.6 Expected Regret Analysis of AdaMetaBIO with Tsallis-INF

Proposition 6.1. If we execute AdaMetaBIO with Tsallis-INF (Zimmert and Seldin, 2020), and
use the switching condition

√
8Dt lnK > 6

√
ST ln(2ST ) at each round t ∈ [T ], where Dt =

∑t
j=1 σj,

then the regret of AdaMetaBIO in the BIO setting with adversarial action-state mappings and stochastic
losses satisfies

E [RT ] ≤ 4
√
2KT + 2

√
2DΦ lnK + 4min

{
3
√
ST ln(2ST ),

√
2DT lnK

}
.

Proof of Proposition 6.1. We begin by studying of expected regret of MetaBIO and we then give
a regret analysis of AdaMetaBIO. When running MetaBIO, we use the unbiased empirical mean
estimators (θ̂t)t∈[T ] as the mean loss estimates, rather than the lower confidence bounds (θ̃t)t∈[T ].
The expected regret is defined as

E[RT ] =
T∑
t=1

E [θ(St)]−
T∑
t=1

θ(st(a
∗)) ,

where we fix any a∗ ∈ argmina∈A
∑T

t=1 θ(st(a)). Here we use a version of Tsallis-INF that is
tailored for the delayed bandits problem (Zimmert and Seldin, 2020), which guarantees a bound in
expectation on the regret

R̂Tsallis
T (a) :=

T∑
t=1

θ̂t(St)−
T∑
t=1

θ̂t(st(a))

against any fixed action a ∈ A, using the loss estimates
(
θ̂t
)
t∈[T ]. Observe that this regret is defined

in terms of our estimates, as required in our case. By Zimmert and Seldin (2020, Theorem 1),
Tsallis-INF guarantees that its expected regret is

E
[
R̂Tsallis
T (a∗)

]
= E

[
T∑
t=1

θ̂t(St)−
T∑
t=1

θ̂t(st(a
∗))

]
≤ 4
√
KT +

√
8D̃T lnK ≤ 4

√
KT +

√
8DΦ lnK ,

where the last inequality uses Lemma 6.1. Then, we can focus on our notion of regret and use the
above regret bound to obtain that

E[RT ] = E
[
RT − R̂Tsallis

T (a∗)
]
+ E

[
R̂Tsallis
T (a∗)

]
= E

[
T∑
t=1

(
θ(St)− θ̂t(St)

)]
+ E

[
T∑
t=1

(
θ̂t(st(a

∗))− θ(st(a∗))
)]

+ E
[
R̂Tsallis
T (a∗)

]
≤ E

[
T∑
t=1

(
θ(St)− θ̂t(St)

)
︸ ︷︷ ︸

∆

]
+ E

[
T∑
t=1

(
θ̂t(st(a

∗))− θ(st(a∗))
)]

+ 4
√
KT +

√
8DΦ lnK .

(D.14)

We know that our mean estimator is unbiased. Therefore, we have that E
[
θ̂t(st(a

∗))
]
= θ(st(a

∗))

for any t ∈ [T ], meaning that the second term in the right-hand side of (D.14) is equal to zero.

On the other hand, we can apply Lemma D.2 to get the following bound for ∆ that holds with
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probability at least 1− δ/2 for any δ ∈ (0, 1):

∆ ≤ min

{
1

2

T∑
t=1

εt(St), T

}
, (D.15)

where we recall that εt(s) =
√

2
N ′

t(s)
ln 4ST

δ . In particular, the inequality ∆ ≤ T is true in general.
By Lemma D.5, we can bound the right-hand side of (D.15) as

1

2

T∑
t=1

εt(St) ≤
7

2

√
ST ln

4ST

δ

when conditioning on the event as in the statement of Lemma D.2. If we denote such an event as E ,
we have that P

(
E
)
≤ δ/2 and that E [∆ | E ] ≤ 7

2

√
ST ln (4ST/δ). As a consequence, we notice that

E [∆] = E [∆ | E ]P (E) + E
[
∆ | E

]
P
(
E
)
≤ 7

2

√
ST ln

4ST

δ
+
δ

2
T ≤ 5

√
ST ln (2ST ) + 1

where in the last inequality we set δ = 2/T . Since we assume that S ≥ 2, we can easily observe that
E [∆] ≤ 6

√
ST ln (2ST ). Plugging this into Equation (D.14) gives us

E [RT ] ≤ 4
√
KT +

√
8DΦ lnK + 6

√
ST ln(2ST ) . (D.16)

At this point, we can proceed to the proof of the overall bound on the expected regret of
AdaMetaBIO. The behaviour of AdaMetaBIO follows the same principle as before, but the switching
condition is different: √

8Dt lnK > 6
√
ST ln(2ST ) .

Similar to the analysis of AdaMetaBIO in Appendix D.2.5, we decompose the regret into

E[RT ] ≤
t∗∑
t=1

E [θ(St)]−min
a∈A

t∗∑
t=1

θ(st(a))︸ ︷︷ ︸
Rt∗

+
T∑

t=t∗+1

E [θ(St)]−min
a∈A

T∑
t=t∗+1

θ(st(a))︸ ︷︷ ︸
Rt∗:T

,

where t∗ is the last round satisfying
√
8Dt∗ ≤ 6

√
ST ln (2ST ). Then, we have

E[Rt∗ ] ≤ 4
√
Kt∗ +

√
8Dt∗ lnK . (D.17)

If t∗ = T then Rt∗ = RT and we get the bound in Equation (D.17), where we note that
√
8DT lnK ≤

6
√
ST ln (2ST ) by definition of t∗ in this case, and we can replace DT by DT . Otherwise, t∗ < T

and we can apply the bound for MetaBIO from Equation (D.16), along with the fact that the total
incurred delay after round t∗ is upper bounded by DΦ, in order to derive an upper bound for E[Rt∗:T ]
that is

E[Rt∗:T ] ≤ 4
√
K(T − t∗) +

√
8DΦ lnK + 6

√
ST ln(2ST ) . (D.18)

Finally, if we use the fact that
√
8Dt∗ ≤ 6

√
ST ln(2ST ) (by definition of t∗) in Equation (D.17),
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and combine it with Equation (D.18), we conclude that

E[RT ] ≤ 4
√
2KT +

√
8DΦ lnK + 2min

{
6
√
ST ln(2ST ),

√
8DT lnK

}
,

where we also used the fact that
√
t∗ +

√
T − t∗ ≤

√
2T .

D.3 Proofs for the Lower Bounds

Theorem 6.5. Suppose that the action-state mapping is adversarial and the losses are stochastic
and that dt = d for all t ∈ [T ]. If T ≥ min{S, d} then there exists a distribution of losses and
a sequence of action-state mappings such that any (possibly randomized) algorithm suffers regret
E [RT ] = Ω

(√
min{S, d}T

)
.

Proof of Theorem 6.5. Assume without loss of generality that K = 2 and let S := {h1, . . . , hS} be
the finite set of possible states. Let S′ := ⌊min{S/2, d}⌋ and let I1, . . . , IT be the actions chosen by
the considered algorithm. Split the T time steps into m := ⌊T/S′⌋ blocks B1, . . . , Bm of equal size
S′, eventually leaving ≤ S′ − 1 extra time steps. We assume with no loss of generality that the last
step corresponds to the end of the m-th block. The feedback formed by the losses of the actions
chosen by the algorithm in a certain block is received only after the last time step of the same block
since S ≤ 2d. Define bi := (i− 1)S′ + 1 for all i ∈ [m]. We assume that the learner receives all the
realized losses ℓt(st(A)) for all t ∈ Bi and all A ∈ {1, 2} at the end of each block, which means that
we are in a full information setting, as this only helps the algorithm.

Now, we define a specific sequence of assignments from actions to states, and construct losses
so that the expected regret becomes sufficiently large. Let st(A) := h2(t−bi)+A for all t ∈ Bi, all
i ∈ [m] and all A ∈ {1, 2}; this means that, for the first time step of any block, actions 1 and 2
will be assigned to states h1 and h2 respectively, then to h3 and h4 respectively in the next time
step of the same block, and so on. Let ε := 1

4

√
S′

2T ln(4/3) ∈
[
0, 14
]

and let θ(A) ∈ R2 be a vector

of mean losses such that θ(A)i := 1
2 − I {i = A} ε, for each A ∈ {1, 2}. We simplify the notation

with EA [·] := E
[
·
∣∣ θ(A)] and PA (·) := P

(
·
∣∣ θ(A)), where the conditioning on θ(A) means that we

sample losses for each state assigned to i ∈ {1, 2} such that they are Bernoulli random variables with
mean θ(A)i . In particular, conditioning on θ(A), we sample independent Bernoulli random variables
Xi

1, . . . , X
i
m with mean θ

(A)
i , one for each block, for i ∈ {1, 2}. Then, the losses are defined as

ℓt(st(i)) := Xi
j for each t ∈ Bj and each j ∈ [m].

We can now proceed to show a lower bound for the expected pseudo-regret. Let Ti be the number
of times the learner chooses action i over all T time steps. The expected pseudo-regret over the two
instances determined by θ(k) for k ∈ {1, 2} adds up to

E1 [RT ] + E2 [RT ] = ε (2T − E1 [T1]− E2 [T2]) .

Following the standard analysis, we show that the difference E2 [T2]− E1 [T2] is such that

E2 [T2]− E1 [T2] ≤ T · dTV(P2,P1) ≤ T
√

1

2
DKL (P1 ∥P2) ,

where the last step follows by Pinsker’s inequality.

193



D. Proof Details for Chapter 6

Let λi := {(It, ℓt(St(1)), ℓt(St(2))) | t ∈ Bi} be the feedback set known to the learner by the end
of block Bi, and let λi := (λ1, . . . , λi) be the tuple of all feedback sets up to the end of block Bi.
Denote by Pk,i (·) the probability measure of feedback tuples λi conditioned on θ(A). By the chain
rule for the relative entropy, we can observe that

DKL (P1 ∥P2) =

m∑
i=1

∑
λi−1

P1

(
λi−1

)
DKL

(
P1,i

(
· | λi−1

)
∥P2,i

(
· | λi−1

))
≤

m∑
i=1

∑
λi−1

P1

(
λi−1

)
16ε2 ln (4/3)

= 16mε2 ln (4/3) ,

where we used the fact that each relative entropy DKL

(
P1,i

(
· | λi−1

)
∥P2,i

(
· | λi−1

))
corresponds

to the sum of the relative entropy between two Bernoulli distributions with means 1/2 and 1/2− ε
and that between Bernoulli distributions with means 1/2− ε and 1/2, respectively, which is upper
bounded by 16ε2 ln (4/3) for ε ∈ [0, 1/4]. This follows by an application of the chain rule for
the relative entropy, as well as from the fact that the distribution of It is the same under both
P1,i

(
· | λi−1

)
and P2,i

(
· | λi−1

)
, for all t ∈ Bi and any λi−1. Therefore, we have that

E2 [T2]− E1 [T2] ≤ 2εT
√
2m ln (4/3)

which also implies that

E1 [RT ] + E2 [RT ] ≥ εT

(
1− 2ε

√
2
T

S′ ln (4/3)

)
=
εT

2
≥ 1

8

√
⌊S/2⌋T
2 ln(4/3)

≥ 1

8

√
ST

6 ln (4/3)
,

where we used the facts that m ≤ T/S′ and that ⌊S/2⌋ ≥ S/3 for any integer S ≥ 2. This means
that the expected pseudo-regret of the learner has to be 1

16

√
ST

6 ln(4/3) at least in one of the two
instances. Now, for S > 2d we use the same construction, but now we only use 2d states, which
leads to the promised Ω(

√
min{S, d}T ) lower bound.

Theorem 6.6. Suppose that the action-state mapping is adversarial, the losses are stochastic, and
that dt = d for all t ∈ [T ]. If T ≥ d+ 1 then there exists a distribution of losses and a sequence of
action-state mappings such that any (possibly randomized) algorithm suffers regret

E [RT ] = Ω
(
min

{
(d+ 1)

√
S,
√
(d+ 1)T

})
.

Proof of Theorem 6.6. Let S′ := min
{
⌊S2 ⌋, ⌊

T
d+1⌋

}
≥ 1. We consider the first (d+ 1)S′ rounds of

the game and divide them into S′ blocks B1, . . . , BS′ of same length d+ 1. In this way, we ensure
that the feedback for any time step in some block is revealed to the learner only after its final round.

Without loss of generality, we can assume that the learner observes all the losses of one block
immediately after its last time step; this only helps the learner since they would observe only the
incurred losses at possibly later rounds otherwise. We can further simplify the problem by assuming
that losses are deterministic functions of the states, i.e., ℓt ≡ θ for every round t. This also means
that the problem turns into an easier, full-information version of our problem with deterministic
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losses. Now, let the adversary choose the action-state mappings such that for each block index i
and each action a ∈ A, St(a) = St′(a) ∈ {s2i−1, s2i} for all t, t′ ∈ Bi. Furthermore, we assume that
the losses are chosen such that θ(s2i−1) ∈ {0, 1} and θ(s2i) = 1 − θ(s2i−1) for all i ∈ [S′]. In this
construction, the learner cannot obtain any useful information from the states of a block because of
the delays. Moreover, the states observed in one block are not observed again in the other blocks.

It thus suffices to prove a lower bound for a standard full information game with S′ rounds and
loss range [0, d+ 1]. Hence, we can conclude that the expected regret of any algorithm has to be

E [RT ] = Ω
(
(d+ 1)

√
S′
)
= Ω

(
min

{
(d+ 1)

√
S,
√
(d+ 1)T

})
.

D.4 Action-State Mappings and Loss Means Used in the Experi-
ments

Table D.1 and Table D.2 describe the instances used to generate the data for the experiments of
Section 6.6.

Mean loss s = 1 s = 2 s = 3

θ(s) 0.2 0.4 0.8

Mapping P (1|a) P (2|a) P (3|a)
a = 1 0.8 0.1 0.1
a = 2 0.4 0.5 0.1
a = 3 0.3 0.7 0.0
a = 4 0.5 0.3 0.2

Table D.1: Mean losses and stochastic action-state mapping for Experiment 1 in Section 6.6.

Mean loss s = 1 s = 2 s = 3

θ(s) 0 1 1

Environment 1
Mapping P (1|a) P (2|a) P (3|a)
a = 1 0.06 0.47 0.47
a = 2 0 0.50 0.50
a = 3 0 0.50 0.50
a = 4 0 0.50 0.50

Environment 2
Mapping P (1|a) P (2|a) P (3|a)
a = 1 1 0 0
a = 2 0.94 0.03 0.03
a = 3 0.94 0.03 0.03
a = 4 0.94 0.03 0.03

Table D.2: Mean losses and stochastic action-state mappings for Experiment 2 in Section 6.6.
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Appendix E

Proof Details for Chapter 9

E.1 Boosting Decision Trees with Bounded Depth

Theorem 9.2. Let X be any domain. For any concept c and any hypothesis class H over X ,
if there exist γ ∈ (0, 12) and d ∈ N such that depthcH

(
1
2 − γ | P

)
≤ d for all P ∈ P(X ), then

depthcH(ε | P ) ≤ d
2γ2

log 1
2ε for all P ∈ P(X ) and all ε > 0.

We use a surrogate loss G(q) :=
√
q(1− q), where 0 ≤ q ≤ 1. Since min{q, 1− q} ≤ G(q), the

surrogate loss bounds from above the classification error of the majority vote. For a distribution
P ∈ P(X ), let GP (c) := G

(
P (c = 1)

)
. Let the conditional surrogate loss of f : X → {0, 1} be

GP (c | f) := P (f = 0)G
(
P (c = 1 | f = 0)

)
+ P (f = 1)G

(
P (c = 1 | f = 1)

)
. (E.1)

Finally, given a decision tree T with leaves L(T ), define the conditional surrogate loss of T as

HP (c | T ) :=
∑

z∈L(T )

P (z)G(pc|z) , (E.2)

where P (z) is the probability that x ∼ P is mapped to leaf z in the tree T and pc|z := P (c = 1 | z).
Our goal is to construct an H-based decision tree T such that HP (c | T ) ≤ ε, implying that
LP (T, c) ≤ ε because G

(
pc|z
)

bounds from above the probability that T (x) ̸= c(x) conditioned on x
being mapped to z in T .

Our variant of TopDown, called TopDownLBL (TopDown Level-By-Level), starts from a single-leaf
tree T with a majority-vote label and works in phases. In each phase, we replace each leaf z ∈ L(T )
of the current tree T with a suitably chosen H-based d-depth tree Tz using the same criterion as
TopDown. The main difference is that the weak learners adopted by TopDownLBL consist of H-based
trees of depth bounded by d, which generalize from the individual decision stumps of H as in TopDown

(corresponding to the case d = 1). Hence, at the end of each phase, the depth of T increases by at
most d. The algorithm stops if and when HP (c | T ) ≤ ε.

We use the two following lemmas.

Lemma E.1 (Takimoto and Maruoka (2003, Lemma A.1)). Let P be a balanced distribution, i.e.,
P (c = 1) = P (c = 0) = 1

2 . Let f : X → {0, 1} be such that LP (f, c) ≤ 1
2 − γ for some γ ∈ (0, 12).

Then, GP (c | f) ≤ (1− 2γ2)GP (c).

197



E. Proof Details for Chapter 9

Lemma E.2 (Takimoto and Maruoka (2003, Proposition 5)). Let P be a distribution and P ′ its
balanced version. If GP ′(c | h) ≤ (1− β)GP ′(c) for some β > 0 then GP (c | h) ≤ (1− β)GP (c).

Proof of Theorem 9.2. Our algorithm TopDownLBL can be equivalently viewed as building a H′-based
tree T ′, where H′ is the class of H-based d-depth trees. Any H′-based tree T ′ can be transformed
into a H-based tree T in a top-down fashion simply by listing the nodes at each level of T ′ starting
from the root, and iteratively replacing every decision stump h′ ∈ H′ with the corresponding H-based
tree Th′ . Then, each leaf z ∈ L(Th′) of Th′ is replaced by copies of the left or right subtree of the
decision stump h′ in T ′ based on the values (0 or 1) of the label λz of z. Clearly, the depth of T is
at most d times the depth of T ′.

We now bound the drop in HP (c | T ′) when a leaf z in the H′-based tree T ′ is replaced by
a decision stump in H′. Let P the distribution over X conditioned on x being mapped to z and
let P ′ its “balanced” version satisfying P ′(c = 1) = P ′(c = 0) = 1

2 . Because of our weak learning
assumption, we know there exists h′z ∈ H′ with error at most 1/2 − γ on P ′. By Lemma E.1,
GP ′(c | h′z) ≤ (1− 2γ2)GP ′(p′c|z), where p′c|z =

1
2 because of the balanced property of P ′. Hence, by

Lemma E.2,
GP (c | h′z) ≤ (1− 2γ2)GP (pc|z) . (E.3)

Let T ′
z be the tree T ′ in which we replaced a leaf z ∈ L(T ′) with the decision stump h′z ∈ H′. Using

Equation (E.3),

HP (c | T ′)−HP (c | T ′
z) =

(
GP (pc|z)−GP (c | h′z)

)
P (z) ≥ 2γ2GP (pc|z)P (z) . (E.4)

Now let T ′
i be the tree after the algorithm has run for i phases. Using the above inequality for each

z ∈ L(T ′
i ), we obtain

HP (c | T ′
i )−HP (c | T ′

i+1) ≥
∑

z∈L(T ′
i )

2γ2GP (pc|z)P (z) = 2γ2HP (c | T ′
i ) . (E.5)

Hence, after m phases,

LP (T
′
m, c) ≤ HP (c | T ′

m) ≤
(
1− 2γ2

)m
HP (c | T ′

0) ≤
1

2
e−2mγ2 , (E.6)

where T ′
0 is the initial tree consisting of a single leaf z and, in the last inequality, we used the fact

that HP (c | T ′
0) = GP (pc|z) ≤ 1

2 and the inequality 1− x ≤ e−x. The proof is concluded by noting
that 1

2e
−2mγ2 ≤ ε for m ≥ 1

2γ2
log 1

2ε .

We remark that we recover the standard setting of boosting decision trees when d = 1. In this
special case, our result matches the depth lower bound mentioned by Kearns and Mansour (1999),
while guaranteeing a O

(
2depth

c
H(ε|P )

)
= O

(
(1/ε)1/(2γ

2)
)

tree-size upper bound that is analogous to
the ones by Kearns and Mansour (1999) and Takimoto and Maruoka (2003).

E.2 Further Proofs for the Algebraic Characterization

E.2.1 Algebraic Characterization

Lemma 9.1. Let X be any domain and H ⊆ 2X . Then, clos(σ(H)) = clos(Alg(H)).
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Proof of Lemma 9.1. We begin with the proof of the first identity in the statement. The inclusion
clos(Alg(H)) ⊆ clos(σ(H)) immediately follows by definition of closure. We now show that the
converse is also true. Let T ∈ clos(σ(H)). Fix a distribution P ∈ P(X ) and ε > 0. By definition of
closure, there exists a sequence A1, A2, . . . ∈ σ(H) such that limi→∞ P (Ai△T ) = 0. Consequently,
for every ε > 0 there exists some i ∈ N+ such that P (Ai△T ) ≤ ε. Thus, we can assume without loss
of generality that the sequence (Ai)i∈N+ satisfies P (Ai△T ) ≤ εi for the choice εi := 2−i, for each
i ∈ N+ (as we can select such a subsequence). Denote the restriction of P to σ(H) as P

∣∣
σ(H)

, that is
P
∣∣
σ(H)

: σ(H)→ R≥0 and P
∣∣
σ(H)

(A) := P (A) for all A ∈ σ(H). It is well known that, for each i, we
can select an element Bi ∈ Alg(H) with P

∣∣
σ(H)

(Bi△Ai) ≤ εi (see, e.g., Halmos (2013, Theorem D,
Section 13)); hence, P (Bi△Ai) ≤ εi. By the triangle inequality P (T△Bi) ≤ 2εi = 2−i+1 for any
i, which also implies that limi→∞ P (T△Bi) = 0 for the sequence (Bj)j∈N+ in Alg(H). Therefore,
T ∈ clos(Alg(H)).

E.2.2 Algebraic Characterization for Countable Domains

Theorem 9.5. (Characterization for VC classes and countable domains) Let X be any
countable domain, let c be any concept, and let H be a VC hypothesis class over X . Then:

1. c is approximable by H if and only if c ∈ σ(H).
2. c is approximable but not interpretable by H if and only if c ∈ σ(H) \Alg(clos(H)).
3. c is uniformly interpretable by H if and only if c ∈ Alg(clos(H)).

Proof of Theorem 9.5. Item 1 follows from Lemma E.3 and Theorems 9.3 and 9.4, whereas items 2
and 3 follow from Lemma E.5.

Lemma E.3. Let X be any countable domain and H be any hypothesis class over X . Then,
clos(Alg(H)) = σ(H).

Proof. Clearly σ(H) ⊆ clos(σ(H)) = clos(Alg(H)) by Lemma 9.1. Now we prove the converse. Let
A ∈ clos(σ(H)) and let P ∈ P(X ) such that P (x) > 0 for all x ∈ X ; note that P exists as X is
countable and it also means that supp(P ) = X . By definition of clos(σ(H)), there exists a sequence
(Ai)i∈N+ in σ(H) such that

lim
i→∞

P (A△Ai) = 0 . (E.7)

By selecting an appropriate subsequence, we can assume P (A△Ai) ≤ 2−i for all i ∈ N+ without loss
of generality. Define

Bi :=
⋂
j≥i

Aj ∀i ∈ N+ (E.8)

and observe that Bi ∈ σ(H) for each i ∈ N+. Note that

P (A△Bi) = P

(
A△

⋂
j≥i

Aj

)
≤
∑
j≥i

P (A△Aj) ≤ 2−i+1 . (E.9)

Note also that Bi ⊆ A for all i ∈ N+. Suppose indeed this was not the case, then Bi \A ̸= ∅. Hence,
by definition of Bi, there exists some x ∈ Aj \A for all j ≥ i. Since P (x) > 0 by the choice of P , we

199



E. Proof Details for Chapter 9

have the contradiction

lim
i→∞

P (A△Ai) ≥ P (x) > 0 . (E.10)

Now consider the set

B :=
⋃
i∈N+

Bi = lim
i→∞

Bi . (E.11)

Note that by construction B ∈ σ(H).∗ Moreover, since Bi ⊆ Bi+1 and Bi ⊆ A for all i ∈ N+, we
have that the sequence (A△Bi)i∈N+ is downward monotone and thus

P (A△B) = P

( ⋂
i∈N+

A△Bi
)

= lim
i→∞

P (A△Bi) = 0 . (E.12)

Given that P has full support, this implies A = B.

Definition E.1. Let X be any set. A sequence (hi)i∈N in 2X is pointwise convergent to h ∈ 2X if

∀x ∈ X ∃ix ∈ N : ∀i ≥ ix x ∈ hi ⇐⇒ x ∈ h . (E.13)

Proposition E.1. If X is countable then every infinite sequence (hi)i∈N in 2X contains an infinite
subsequence that is pointwise convergent.

Let H ⊆ 2X and let clospw(H) be the family of all subsets of X that are the pointwise limit of
some sequence in H. Clearly H ⊆ clospw(H) ⊆ 2X .

Lemma E.4. If X is countable then clospw(H) = clos(H).

Proof. To see that clospw(H) ⊆ clos(H), recall the definition of pointwise convergence, and note how
it implies that if a sequence (hi)i∈N converges pointwise to h then limi→∞ P (hi△h) = 0 for every
P ∈ P(X ). To see that clospw(H) ⊇ clos(H), choose any sequence (hi)i∈N that converges to some
h ∈ clos(H) under an appropriate distribution P ∈ P(X ) such that supp(P ) = X (which exists as
X is countable); observe that this implies the pointwise convergence of (hi)i∈N to h.

Lemma E.5. If X is countable and H is a VC class over X , then clos(Algd(H)) ⊆ Alg(clos(H))
for every d ∈ N.

Proof. Let d ∈ N and c ∈ clos(Algd(H)). By Lemma E.4, c ∈ clospw(Algd(H)), so there exists an
infinite sequence of trees (Ti)i∈N in Algd(H) that converge pointwise to c. Without loss of generality,
we may assume that every Ti is a complete tree of depth d.† Now consider the sequence (h1i )i∈N of
decision rules used by the first node (say, the root) of those trees. By Proposition E.1 there is an
infinite subsequence (h1ij )j∈N that is pointwise convergent to some h1 ∈ H. Now consider the infinite
sequence of trees (Tij )j∈N, and repeat the argument for the second node (say, a child of the root
corresponding to a specific output of the decision stump at the root). By repeating the argument
2d − 1 times (one for every internal node of the trees) we obtain an infinite sequence (T ∗

i )i∈N of trees

∗In particular, B = lim infi→∞ Ai.
†One can always complete Ti using internal nodes that hold, e.g., the decision rule of the root.
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in Algd(H) that converge pointwise to c and such that at every node v the decision rules converge
pointwise to some hv. Now let T ∗ be the decision tree obtained by using hv as decision rule at v.
We observe that T ∗ = c. Let x ∈ X . By Definition E.1, for each node v there exists ivx such that
x ∈ hvi iff x ∈ hv for every i ≥ ivx, where hvi is the stump used at v by T ∗

i . By letting ix := maxv i
v
x

it follows that x ∈ hvi iff x ∈ hv for every i ≥ ix and all nodes v simultaneously. Therefore all trees
T ∗
i with i ≥ ix send x to the same leaf, and moreover that leaf remains the same if we use hv at v.

Note also that, since (T ∗
i )i∈N is infinite, then we can assume that every leaf predicts the same label

in all T ∗
i (since there is certainly an infinite subsequence that satisfies such a constraint). It follows

that (T ∗
i )i∈N converges pointwise the tree T ∗ that uses the limit stump hv at v. But the labeling of

(T ∗
i )i∈N converges pointwise to c, too. We conclude that T = T ∗. Finally, note that by construction

hv ∈ clospw(H), and thus hv ∈ clos(H) by Lemma E.4, for all v; hence, T ∗ ∈ Alg(clos(H)). It follows
that c ∈ Alg(clos(H)).

E.3 Remarks on the Graded Complexity Measure

In Section 9.7 we demonstrated more general guarantees for any graded complexity measure Γ, given
any domain X and any hypothesis class H over X . Observe that, when H is a non-VC class, item
(3′) of Theorem 9.6 states an upper bound on the Γ-complexity rate of order O

(
1
εd

)
for a constant

d ∈ N. This bound is indeed larger compared to the previous guarantee of O(log(1/ε)) on the depth
of H-based decision trees (Theorem 9.1) and it has to do with the generality of the definition of
graded complexity measure.

Keeping this in mind, we remark that it is possible to recover the O(log(1/ε)) Γ-complexity
rate bound under a stronger assumption on the graded complexity measure Γ. In particular, it is
sufficient for Γ to satisfy

Γ(f1 ∪ f2) ≤ 1 + max{Γ(f1),Γ(f2)} ∀f1, f2 ∈ Alg(H) . (E.14)

Note that this condition is satisfied when Γ corresponds to the depth of H-based decision trees. For
example, consider a similar representation of trees as in Equation (9.15) using directly H for the
decision rules of the internal nodes.

Thus, we can follow the same steps as in the proof of Theorem 9.6 with a particular focus on
the construction of A from the decision tree T in Equation (9.15). It immediately follows that
Γ(ATv ) ≤ 3 + Γ(Av) + max

{
Γ(ATu ),Γ(A

T
w)
}

for any internal node v /∈ L(T ), where u and w are,
respectively, the left and right child of v. Now, let ρ(z) ⊆ V(T ) be the nodes along the path from
the root of T to the leaf z ∈ L(T ). We can thus show that

Γ(A) = O

(
max
z∈L(T )

∑
v∈ρ(z)

(Γ(Av) + 1)

)
= O

(
(k + 1) · depth(T )

)
= O

(
log

1

ε

)
, (E.15)

where we used the fact that T has depth(T ) ≤ 1
2γ2

log 1
2ε and that Γ(Av) ≤ k for any internal node

v of T .

201


	Acknowledgments
	Ringraziamenti
	Preface
	Introduction
	Thesis Outline
	Definitions and Notations

	I The Role of Feedback in Online Learning
	Online Learning
	Foundations of Online Learning
	Prediction with Expert Advice
	The Multi-Armed Bandit Problem

	Feedback Models
	Partial Feedback and Feedback Graphs
	Bandit Feedback with Expert Advice
	Delayed Bandit Feedback


	On the Minimax Regret for Online Learning with Feedback Graphs
	Introduction
	Related Work

	Problem Setting
	FTRL with Tsallis Entropy for Undirected Feedback Graphs
	Adapting to Arbitrary Sequences of Graphs
	An Improved Lower Bound via Multitask Learning
	Conclusions

	Improved Regret Bounds for Bandits with Expert Advice
	Introduction
	Problem Setting and Notations
	FTRL with Tsallis Entropy for Bandits with Expert Advice
	An Improved Instance-Based Regret Bound
	A Lower Bound for Restricted Advice via Feedback Graphs
	Conclusions

	Online Learning with Stochastic Feedback Graphs
	Introduction
	Related Work

	Problem Setting and Notations
	Block Decomposition Approach
	Estimating the Edge Probabilities
	Reduction to Deterministic Feedback Graphs
	Explore then Commit to a Graph

	Lower Bounds
	Refined Graph-Theoretic Parameters
	Proof Sketch for the Improved Regret Analysis


	Delayed Bandits: When Do Intermediate Observations Help?
	Introduction
	Related Work

	Problem Setting
	A Reduction to Standard Delayed Feedback
	Regret Analysis
	Lower Bounds
	Experiments
	Conclusions


	II Uniform Convergence and a Theory of Interpretability
	Statistical Learning Theory
	The Statistical Learning Framework
	PAC Learning and Uniform Convergence
	Combinatorial Dimensions for Learning

	An Improved Uniform Convergence Bound with Fat-Shattering Dimension
	Introduction
	Preliminaries
	The Uniform Convergence Bound
	Auxiliary Results
	Proof of the Main Result

	A Theory of Interpretable Approximations
	Introduction
	Contributions

	Related Work
	Preliminaries and Definitions
	Approximability and Interpretability
	A Trichotomy for Interpretability
	Algebraic Characterizations
	General Representations


	Bibliography
	Appendices
	Proof Details for Chapter 3
	Auxiliary Results
	Proofs of Section 3.3
	Proofs of Section 3.4
	Proof of the Lower Bound
	Comparison with Recent Work
	Directed Strongly Observable Feedback Graphs

	Missing Results from Chapter 4
	Auxiliary Result

	Proof Details for Chapter 5
	On the Computation of the Optimal Probability Thresholds
	Missing Results from Section 5.3
	Proof of Theorem 5.2
	Proof of Theorem 5.3
	Proof of Corollary 5.1
	Proof of Theorem 5.4

	Proofs of Lower Bounds
	Be Optimistic If You Can, Commit If You Must
	Initial Regime of otcG
	Regret After Round t*
	Regret After T Rounds
	Auxiliary Lemmas for otcG

	Weighted Independence Number
	Undirected Graph
	Directed Graph


	Proof Details for Chapter 6
	Auxiliary Results
	High-Probability Regret Bound
	Total Effective Delay Bound
	Improved Regret for DAda-Exp3 for Fixed δ
	Reduction to DAda-Exp3 via MetaBIO 
	Regret of MetaBIO 
	Regret of AdaMetaBIO 
	Expected Regret Analysis of AdaMetaBIO  with Tsallis-INF

	Proofs for the Lower Bounds
	Action-State Mappings and Loss Means Used in the Experiments

	Proof Details for Chapter 9
	Boosting Decision Trees with Bounded Depth
	Further Proofs for the Algebraic Characterization
	Algebraic Characterization
	Algebraic Characterization for Countable Domains

	Remarks on the Graded Complexity Measure



