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A B S T R A C T

Transport theory describes non-equilibrium conditions. The Onsager equa-
tions set a linear relationship between thermodynamic forces and macroscopic
currents. When a temperature gradient is applied, it can generate heat and
ions diffusion. Similarly, an electric field can induce electric currents and heat
transport. The off-diagonal elements of the Onsager matrix address coupled,
e. g. thermoelectric, effects. In the 1950s, Green and Kubo developed a sound
equilibrium framework for transport phenomena based on linear response
theory. Despite the theoretical depth, computational inefficiencies hindered
its broad application to equilibrium molecular dynamics simulations. In the
last decade, the introduction of gauge and convective invariance principles ad-
dressed common misconceptions in the Green Kubo theory, concerning ther-
moelectric and heat transport. The aim of this Thesis is threefold.

• I investigate thermoelectric effects in classical fluids. In insulating liq-
uids, thermopolarization is a quasi-equilibrium phenomenon. After be-
ing perturbed by a temperature inhomogeneity, the dielectric degrees of
freedom relax on a microscopic time scale. In conducting fluids, a tem-
perature gradient induces electric currents. The Seebeck effect refers to
the electric field that must be applied to counterbalance the temperature
gradient and then achieve zero net charge flow. We study thermoelectric
transport in several ionic conductors.

• We develop a Bayesian strategy to compute both diagonal and off-diago-
nal Onsager coefficients from equilibrium molecular dynamics simula-
tions. The Bayesian approach leverages the statistical properties of Green-
Kubo estimators. A single statistical model can be designed to estimate
the entire Onsager matrix.

• Finally, I participated in a collaboration studying heat transport in glasses.
In disordered solids, the acoustic contribution to thermal conductivity is
challenging to estimate. The investigation of nearly 140000-atoms har-
monic models of glasses, reveals the presence of Rayleigh scattering in
the low-frequency regime. In harmonic disordered systems, our findings
predict a divergent bulk thermal conductivity at all temperatures. The
divergence is cured by proper accounting for anharmonic effects.

The results presented in this Thesis are discussed in five papers, four pub-
lished and one under peer review:

v



1. Enrico Drigo and Stefano Baroni. “Seebeck Coefficient of Liquid Wa-
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I propose a quasi-equilibrium theoretical framework to study the ther-
mopolarization effect in polar insulating liquids from the long-wave-
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is estimated via Bayesian linear regression analysis, which also allows
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In the presence of disorder-induced Rayleigh scattering, harmonic theo-
ries of heat transport in glasses inevitably predict that bulk thermal con-
ductivity diverges. We demonstrate that, disorder alone is insufficient to
yield a finite bulk thermal conductivity in glasses. Anharmonic effects
are crucial to provide physically sensible results in disordered systems.
Our findings are tested through extensive numerical simulations.
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I N T R O D U C T I O N

T
he modern theory of transport processes stands on the shoulders
of giants: Albert Einstein, Lars Onsager, Hendrik Casimir, Herbert B.
Callen, Ryogo Kubo, Melville S. Green, John G. Kirkwood, Joaquin

M. Luttinger, Hazime Mori, Paul C. Martin— just to name a few.
The regression of fluctuations is encoded in the second law of thermody-

namics. The theoretical analysis of relaxation effects has been enormously suc-
cessful, with broad applications, ranging from theoretical physics to industry
and technology. Being so flexible, transport theory has many different applica-
tions, including planetary science, design of energy storage devices and heat
management. In the 1930s, Onsager established the celebrated reciprocity rela-
tions. The groundbreaking work expanded the results published in 1905 by
Einstein on Brownian motion. In a linear response theory approach, Green
and Kubo derived the time-honored Green-Kubo formulas of transport coeffi-
cients. Combined with the development of numerical simulations of realistic
atomistic systems, transport theory allows to study non-equilibrium proper-
ties of materials from equilibrium molecular dynamics simulations. The the-
oretical benefits notwithstanding, computational limitations and conceptual
misconceptions penalized equilibrium methods. In response to these draw-
backs, non-equilibrium molecular dynamics approaches were introduced. In
non-equilibrium simulations one superimposes thermodynamic forces on the
simulation cell, directly mimicking transport phenomena. Despite the adher-
ence to the actual process, non-equilibrium methods are sensitive to size ef-
fects. In this Thesis, I study equilibrium techniques, aiming to address some
of their numerical and theoretical challenges.

In the last decade, significant advancements in the theory of transport have
investigated efficient equilibrium approaches, thermoelectric effects and lattice
theory of heat transport. Remarkably, the conundrum concerning the arbitrary
definition of the densities was finally solved. Densities, and the associated
currents, depend on the microscopic partitioning of an extensive conserved
quantity into local contributions. The arbitrariness hindered the extension of
the theory of transport to ab-initio simulations. The gauge invariance princi-
ple of transport coefficients demonstrates that the Onsager matrix is indepen-
dent of the local definition of the densities. Recently, cepstral analysis partially
lifted the computational burden of the computation of diagonal Onsager coef-
ficients, such as: thermal conductivity, electric conductivity, ionic diffusivities
and, shear and bulk viscosity. In speech recognition, cepstral analysis is a com-
mon tool used to filter the noise affecting the signal. Leveraging the statisti-
cal properties of diagonal Green-Kubo estimators, cepstral analysis effectively
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2 Introduction

reduces the numerical cost of accurate transport coefficients and reasonable
error bars, relying on relatively short equilibrium molecular dynamics simu-
lations. The computational benefits notwithstanding, cepstral analysis cannot
be applied to off-diagonal elements of the Onsager matrix.

Coupled phenomena, e. g. thermoelectric effects, are crucial for energy stor-
age devices and heat management. In ionic conductors and polar fluids, tem-
perature gradients induce electric currents and electric polarization, respec-
tively. Among thermoelectric effects, the Seebeck’s is one of the most impor-
tant: it describes the interplay between temperature inhomogeneities and di-
electric degrees of freedom. Thanks to transport theory, in insulating fluids the
Seebeck coefficient can be written as the ratio of two vanishing Onsager coef-
ficients, making practical evaluations impossible. Tackling thermopolarization
of polar fluids, and the consequent indeterminate form 0

0 , requires a paradigm
shift. In this Thesis, developing Bayesian regression tools, thermoelectric ef-
fects in insulating fluids and ionic conductors are directly investigated. In
solids, under the hypothesis that the interatomic distances are much larger
than vibrations, heat carriers can be described as quasi-particles modes in
the harmonic approximation, i. e. phonons. Progress on heat transport, thanks
to the development of the Quasi-Harmonic-Green-Kubo theory and of the
Wigner Boltzmann transport equation, has been fundamental to address both
crystalline and disordered systems. This Thesis delves into the theory of trans-
port in classical fluids as well as in solids. The Thesis is structured as follows.

Chapter 1 introduces the general concepts of the theory of transport phe-
nomena. An overview of the most common approaches is presented. The re-
cent gauge and convective invariance principles are discussed. Chapter 2 is
devoted to numerical methods. I highlight the numerical drawbacks of equi-
librium approaches and propose spectral methods to enhance their efficiency.
Special attention is spent on Bayesian regression analysis. In Chapter 3, the-
oretical and numerical results on thermopolarization in liquid water are pre-
sented. I also analyze the Seebeck coefficient of ionic conductors, applying a re-
cently proposed Bayesian scheme. The statistical properties of the Green-Kubo
estimators lead to an all-encompassing Bayesian regression protocol, which
evaluates the entire Onsager matrix from a single statistical model. The pro-
tocol is applied to estimate the transport coefficients of a promising Li-based
solid-state electrolyte. Finally, in Chapter 4, I review some recent advances on
lattice heat transport in glasses, namely the Quasi-Harmonic-Green-Kubo the-
ory. The foundational role of anharmonic effects is discussed. Remarkably, in
harmonic disordered systems, the inclusion of only Rayleigh scattering results
in a divergent bulk thermal conductivity at all temperatures.
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T H E O RY O F T R A N S P O RT P R O C E S S E S

T
ransport theory is of particular importance both for its theoretical
depth and for its practical applications. Quasi-equilibrium phenom-
ena are investigated under the hypotheses of microscopic reversibil-

ity and linearity of regressions. This chapter presents the Green’s and Kubo’s
linear response theory approach, in its classical and quantum formulation, as
developed in a series of seminal papers in the 1950s. The dynamical response
to time-space dependent perturbations is compared with the phenomenolog-
ical Fick’s law. Additionally, I review some invariance principles of transport
coefficients and the hydrodynamic behavior of conserved densities in normal
fluids.

1.1 irreversible thermodynamics

An equilibrium state is characterized by a set of extensive thermodynamic
variables, such as energy, volume and the number of particles, {E;V ;N}, which
determine entropy S (E,V ,N). The derivatives of entropy are intensive prop-
erties of the state, such as temperature, pressure and chemical potential,{

1
T ; P

T ;−µ
T

}
[1]. In a bipartite system, I define the subsystems’ entropy and

their respective extensive variables as S ({Ak}), S′
({
A′

k

})
[1]. At equilibrium,

the total entropy S◦ is maximized under the constrain A◦
k = Ak +A′

k [1],

Fk ≡ ∂S◦

∂Ak

∣∣∣∣
A◦

k

= 0, (1.1)

where Fk are the so-called affinities. Since S◦ is extensive, it is the sum of the
subsystems’ contributions [1]:

∂S

∂Ak
≡ fk (1.2)

∂S◦

∂Ak

∣∣∣∣
A◦

k

=
∂ (S+ S′)

∂Ak

∣∣∣∣
A◦

k

=
∂S

∂Ak
−
∂S′

∂A′
k

. (1.3)

Combining Eq. (1.1) and (1.2), the affinity reads [1]

Fk = fk − f′k. (1.4)

In thermodynamic equilibrium, fks are constant across the subsystems. In
quasi-equilibrium conditions, Fk is non zero and entropy evolves in time [1].
The quasi-equilibrium condition can be rationalized as the perturbation of a
system at equilibrium by a fluctuation, α ≡ {αk}, of some extensive quantity
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4 theory of transport processes

Ak, such that: Ak = A◦
k + αk [2, 3]. Entropy is a function of the fluctuations,

S(α), and is maximized and redefined to vanish at equilibrium: S◦ ≡ S(α =

0) [2, 3]. The affinities, Fk ≡ ∂S(α)
∂αk

, measure the tendency of the system to
restore equilibrium and characterize irreversible processes [2, 3]:

S =
∑
k

αkFk

Ṡ(t) =
∑
k

α̇k(t)Fk.
(1.5)

From the regression of α(t) towards equilibrium, one can deduce the evolu-
tion of the rate of production of entropy. At the lowest order in the fluctuations,
the variation of S can be expanded as [2, 3]

S = −
1

2

∑
ij

Sijαiαj. (1.6)

In quasi-equilibrium processes, a linear relationship is assumed to hold be-
tween the fluctuations of the extensive variables and the affinities [1, 3–5],

α̇i =
∑
k

LikFk (1.7)

where Fi =
∑

k Rikα̇k and the matrices L, R are mutually reciprocal [2].
Thanks to Eq. (1.7) and Eq. (1.6), the affinities are:

Fi =
∑
j

Sijαj

〈
αiFj

〉
0
= δij,

(1.8)

and ⟨◦⟩0 is the expectation value computed over the microcanonical ensem-
ble [3]. For simplicity, I discuss fluctuations of variables that are even functions
of the velocities and that are thus time-reversal invariant. The future behavior
of the system, having fixed all fluctuations α(t) at instant t, is identical to its
past behavior [3]:

⟨αi(t+ τ)⟩α(t) = ⟨αi(t− τ)⟩α(t) , (1.9)

where the average, ⟨◦⟩α(t), runs over the portion of the microcanonical ensem-
ble on which α(t) is constant [3]. Multiplying by αk(t) and computing the
expectation value over the total microcanonical ensemble, I obtain the micro-
scopic reversibility condition, that is fundamental to the forthcoming discussion
on transport phenomena [1, 3–5],

⟨αi(t+ τ)αk(t)⟩0 = ⟨αi(t− τ)αk(t)⟩0 . (1.10)

The final assumption refers to the dynamics of the fluctuations. There exists a
time-scale, τ, over which the fluctuations evolve as [3]

⟨αi(t+ τ) −αi(t)⟩α(t) = τ
∑
k

LikFk,

⟨αk(t) (αi(t+ τ) −αi(t))⟩0 = τLik.
(1.11)
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The time-scale τ is sufficient for the system to reach a steady flow, yet is much
shorter than the equilibration time after which the disturbance is appreciably
reduced [3]. Because of microscopic reversibility and time-reversal symmetry,
the matrix L reads [3]

⟨αk(t) (αi(t+ τ) −αi(t))⟩0 = τLik

⟨αi(t) (αk(t+ τ) −αk(t))⟩0 = τLki.
(1.12)

Eq. (1.11) and Eq. (1.7) are related to the popular Onsager phenomenological
equations which are generally written in terms of the currents, Ji, induced
by the thermodynamic forces, i. e. the gradients of the intensive variables conju-
gated to the extensive ones being conserved, ∇fk:

Ji =
∑
k

Lik∇fk. (1.13)

Under the assumption of microscopic reversibility and linearity of the regres-
sions, for the matrix L, which enters in Eqs. (1.11) (1.7) (1.13), the Onsager
reciprocity relations hold [3–5]

L = LT. (1.14)

Here, I present a direct derivation of Eq. (1.13), connecting fluxes and ther-
modynamic forces [1]. The differential forms of entropy and its per unit vol-
ume density, s, read:

dS =
∑
k

fk dAk

ds =
∑
k

fk dak .
(1.15)

In continuous systems, where each subsystem can be labeled by a continuous
variable r —dropped for clarity— s does not obey the continuity equation of
conserved densities [1]:

ṡ =
∂s

∂t
+∇ · JS

0 =
∂ak
∂t

+∇ · Jk.
(1.16)

The flux of a conserved quantity, Jk, is dAk

dt [1]. Instead, the flux of entropy
is defined from Eq. (1.15) as JS =

∑
k fkJk [1]. According to the definition of

the entropy flux, the entropy production rate is [1]:

ṡ =
∂s

∂t
+
∑
k

∇ · fkJk

∂s

∂t
=

∑
k

fk
∂ak
∂t

= −
∑
k

fk∇ · Jk,
(1.17)
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and therefore I obtain the usual relation

ṡ =
∑
k

Jk · ∇fk. (1.18)

Eqs. (1.18) and Eq. (1.5) link the rate of increase of entropy to the affinities
and the fluctuations. The affinities, that are defined as the difference of the
intensive thermodynamic variables in discrete systems, are the gradients of
the same intensive variables in continuous systems [1]. This formulation is
more common than the one obtained from the regression of fluctuations and,
under the hypothesis of linearity between fluxes and forces, leads directly to
the Onsager phenomenological equations [1], Eq. (1.13),

Ji =
∑
k

Lik∇fk.

1.2 green-kubo response theory

1.2.1 Linear response theory

In a series of seminal papers [6–9], Green and Kubo derived a sound theo-
retical framework for the description of transport processes from the time-
fluctuations of dynamical variables associated to irreversible processes. The
goal is to construct a statistical-mechanical theory for transport phenomena
near thermal equilibrium. For example, thanks to the fluctuation dissipation
theorem, one can compute the friction constant of a Brownian particle from the
correlation of the forces acting on it [10, 11]. The methodology is restricted to
perturbations that can be expressed as an additional term in the Hamiltonian.
Even if temperature gradients can not be directly included in the Hamilto-
nian, the theory also applies to heat transport. In addressing heat transport, I
rely on so-called mechanical proxies for thermal perturbations, as explained by
Luttinger in 1964 [12].

Following the discussion presented in Ref. [6], let us consider an isolated
system, described by a Hamiltonian H, and an external time dependent force,
F(t), acting on it that is coupled to a quantity A. The force induces a perturba-
tion in the Hamiltonian [6, 7]:

H′(Γ , t) = −A(Γ)F(t). (1.19)

where Γ is the phase-space variable. The change of a quantity ∆B(t), induced
by H′ is determined by the equilibrium properties of H. The statistical ensem-
ble is defined by the distribution function, f, which depends on the phase-
space variable, Γ . The ensemble average, ⟨◦⟩0, of an observable A is:

⟨A⟩0 =

∫
f(Γ)A(Γ)dΓ . (1.20)

A generic observable, A, evolves according to the Hamiltonian [6, 7]

˙̂
A =

(
Ĥ, Â

)
, (1.21)
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where I indicate Â ≡ A(Γ) and
(
Â, B̂

)
=

∑
i

∂Â
∂Ri

∂B̂
∂Pi

− ∂Â
∂Pi

∂B̂
∂Ri

is the usual Pois-
son bracket and Ri, Pi are the canonical position and momentum of atom i, re-
spectively. At equilibrium, one has ∂f̂

∂t =
(
Ĥ, f̂

)
= 0. The force F(t) is switched

on in the infinite past, t = −∞, and adiabatically perturbs the distribution
function [6, 7]. At linear order in the perturbed distribution, f̂(t) = f̂+ f̂ ′(t),
one has

∂f̂(t)

∂t
=
(
Ĥ, f̂(t)

)
+
(
Ĥ′, f̂

)

∂f̂ ′(t)

∂t
=
(
Ĥ, f̂ ′(t)

)
− F(t)

(
Â, f̂

)
,

(1.22)

provided that f(−∞) = f. The variation of the equilibrium distribution is inte-
grated in time as [6, 7],

f̂ ′(t) = −

∫t
−∞ exp

{
i(t− t′)L

}(
Â, f̂

)
F(t′)dt′ , (1.23)

where
(
Ĥ, ◦

)
≡ −iL and L is the Liouvillian time evolution operator such that

˙̂
B =

(
B̂, Ĥ

)
. One can verify that Eq. (1.23) is a solution of Eq. (1.22), by simple

substitution and applying the chain rule. The change of B, ⟨∆B(t)⟩, is [6, 7]
〈
∆B̂(t)

〉
≡

∫
f̂ ′(t)B̂dΓ

= −

∫
dΓ

∫t
−∞ exp

{
i(t− t′)L

}(
Â, f̂

)
B̂F(t′)dt′

= −

∫
dΓ

∫t
−∞

(
Â, f̂

)
B̂(t− t′)F(t′)dt′ .

(1.24)

The response function, ϕBA(t), is defined as [6, 7]

ϕBA(t) = −

∫ (
Â, f̂

)
B̂(t)dΓ , (1.25)

and describes completely the change of the quantity B due to the external
force F coupled to an observable A,

〈
∆B̂(t)

〉
=

∫t
−∞ϕBA(t− t′)F(t′)dt′ . (1.26)

Under the assumption that the ensemble is canonical and thanks to the cyclic
properties of the Poisson brackets, one has [6, 7]

ϕBA(t) = −

∫ (
Â, f̂

)
B̂(t)dΓ

= β

∫
f̂
(
Â, Ĥ

)
B̂(t)dΓ = β

∫
f̂

˙̂
AB̂(t)dΓ

= β

∫
dΓ f̂

∫t
−∞ Â

(
Ĥ, B̂

)
exp

{
i
(
t− t′

)
L
}

dt′ = −β

∫
f̂Â

˙̂
B(t)dΓ ,

(1.27)
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where β = 1
kBT

, T is the temperature of the system and kB is the Boltzmann
constant. Therefore, the response function can be evaluated as an equilibrium
expectation value:

ϕBA(t) = β
〈 ˙̂
AB̂(t)

〉
0

= −β
〈
Â

˙̂
B(t)

〉
0

.
(1.28)

The perturbation, F(t) = eϵtFΘ(−t), is adiabatically switched on at −∞ and
removed at t = 0, where Θ(−t) is the Heaviside function. In the limit of
ϵ→ 0+, the variation of B reads [6, 7]

〈
∆B̂(t)

〉
= F

∫0
−∞ϕBA(t− t′)dt′

= F

∫∞
t

ϕBA(t′)dt′ ≡ FΦBA(t),
(1.29)

where ΦAB is the relaxation function that describes the evolution of the sys-
tem towards equilibrium after the perturbation has been removed [6]. Thanks
to Eq. (1.28), also the relaxation function can be evaluated as an ensemble
average,

ΦAB(t) = β
(〈
ÂB̂(t)

〉
0
−
〈
Â
〉
0

〈
B̂
〉
0

)
. (1.30)

In order for Eq. (1.30) to hold, the system must be ergodic, and therefore a
generic observable A must satisfy [6, 7]

〈
Â
〉
0
= lim

t→∞ 1t
∫t
0

Â(t)dt ,

lim
t→∞

〈
ÂÂ(t)

〉
0
=
〈
Â
〉2
0

.
(1.31)

Quantum formulation of the Green-Kubo response theory

The quantum mechanical formulation of the Green Kubo (GK) theory is sim-
ilar to the classical one [6, 7]. The density matrix, ρ̂, is a constant of motion,
i. e.

[
Ĥ, ρ̂

]
= 0. The force acting on the system perturbs the density matrix,

that at first order, ρ̂(t) = ρ̂+ ρ̂ ′(t), evolves as [6, 7]

d

dt
ρ̂(t) =

1

i h

[
Ĥ+ Ĥ′(t), ρ̂(t)

]
, (1.32)

with the initial condition ρ̂ ′(−∞) = ρ̂. The solution of Eq. (1.32) for ρ̂ ′(t) is

ρ̂ ′(t) = −
1

i h

∫t
−∞ exp

{
−
i (t− t′)

 h
Ĥ

}[
Â, ρ̂

]
exp

{
i (t− t′)

 h
Ĥ

}
F(t′)dt′ . (1.33)

As in classical GK theory, the variation of B̂ due to the perturbed distribution
function reads [6, 7]

〈
∆B̂(t)

〉
≡ Tr

{
ρ̂ ′(t)B̂

}
(1.34)

= −
1

i h
Tr
{∫t

−∞
[
Â, ρ̂

]
B̂(t− t′)F(t′)dt′

}
. (1.35)
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In the Heisenberg picture the operators evolve in time as ˙̂
B(t) = 1

i h

[
B̂(t), Ĥ

]
,

with the initial condition B̂(0) = B̂. The quantum response function is [6, 7]

ϕBA(t) = −
1

i h
Tr
{[
Â, ρ̂

]
B̂(t)

}
, (1.36)

which under the assumption that the ensemble is canonical becomes

ϕBA(t) =

∫β
0

Tr
{
ρ̂

˙̂
A(i hλ)B̂(t)dλ

}
= −

∫β
0

Tr
{
ρ̂Â(i hλ)

˙̂
B(t)dλ

}
.

(1.37)

In the proof of Eq. (1.37), I have used the useful relation [6, 7]
[
Â, exp

{
−βĤ

}]
= exp

{
−βĤ

}(
exp

{
βĤ

}
Â exp

{
−βĤ

}
− Â

)

= exp
{
−βĤ

} ∫β
0

exp
{
λĤ

}[
Â, Ĥ

]
exp

{
−λĤ

}
dλ .

(1.38)

Eqs. (1.28) (1.36) are the key elements for the computation of responses to
dynamical perturbations. Since the extension to the quantum case can be easily
derived, in the following I address only classical systems.

Classical Green-Kubo response theory to a periodic perturbation

I want to apply the classical GK theory to investigate transport phenomena.
Eq. (1.29) relates the relaxation function and the response function,

ϕBA(t) = −Φ̇BA(t)

= −ΦḂA(t)

= ΦBȦ(t),

(1.39)

ΦBA(−t) = τAτBΦBA(t), (1.40)

where τA is the parity of the observable A under time-reversal symmetry [6,
7]. Complementarily to the adiabatic approach, in which an external agent
switches on the perturbation at t = −∞ and removes it at t = 0, one can imag-
ine a different path where the system is at equilibrium at t = 0− and then
a constant perturbation is applied. Under the hypothesis that the relaxation
from a non-equilibrium condition is indistinguishable to the time evolution of
a random fluctuation at equilibrium, the two gedankenexperiments are equiva-
lent.

In space translational invariant systems, perturbations at finite wavelength
are coupled to densities of the same wave-vector, compatible with the enforced
Periodic Boundary Conditions (PBC), as in:

Φba(r, t; r′, t′) = −Vβ
〈(
b̂(r, t) −

〈
b̂(r)

〉
0

) (
â(r′, t′) −

〈
â(r′)

〉
0

)〉
0

=

∫
dk

(2π)3

∫
dω
2π
Φba(k,ω)e−ik·(r−r′)+iω(t−t′).

(1.41)
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The Fourier transform of the relaxation function [13] is connected to the
Fourier transform of the response function, χba, the so-called admittance [13],

2iϕba(r, t; r′, t′)Θ(t− t′) =
∫

dk
(2π)3

∫
dω
2π
χba(k,ω)e−ik·(r−r′)+iω(t−t′). (1.42)

The admittance is a complex-valued function [13],

χba(k,ω) = χ′ba(k,ω) + iχ′′ba(k,ω)

= lim
ϵ→0+

χba(k,ω+ iϵ), (1.43)

and its imaginary part satisfies the fluctuation dissipation theorem [13, 14],

1

2
Φba(k,ω) =

χ′′ba(k,ω)

ω
. (1.44)

Let us consider an equilibrium system perturbed at t = 0 by a potential,
3a(r, t), space and time dependent: Ĥ′ = V3a(k)Θ(t)â(−k, t), where 3a(k) and
â(k) are the space Fourier components as in f(k) = 1

V

∫
V f(r)e

−ik·r dr. The per-
turbation induces a flow of the conserved density b, i. e. a current jb(k, t), that
can be computed from the GK theory as [15, 16]:

〈
ĵb(k, t)

〉
= Φjba(k, t)3a(k)

Φjba(k, t) = −Vβ
〈
ĵb(k, t)â(−k)

〉
0

,
(1.45)

where Jb(t) =
1
V

∫
V jb(r, t). The currents and the densities associated to con-

served quantities obey the continuity equations:

−ik · ĵa(k, t) = ˙̂a(k, t),

−ik · ĵb(k, t) = ˙̂
b(k, t).

(1.46)

According to the GK theory, the relaxation function can be computed as

ϕjba(k, t) = −Vβ
〈
ĵb(k, t) ˙̂a(−k)

〉
0
= −ikVβ

〈
ĵb(k, t)ĵa(−k)

〉
0

=
ik
k2
Vβ
〈 ˙̂
b(k, t) ˙̂a(−k)

〉
0
= −

ik
k2
ϕ̈ba(k, t),

(1.47)

Φjba(k, t) =
∫t
0

ϕjba(k, t′)dt′

= −
ik
k2
ϕ̇ba(k, t).

(1.48)

Eq. (1.45) can be rewritten in the form

〈
ĵb(k, t)

〉
=

(
−Vβ

∫t
0

〈
ĵb(k, t′) ˙̂a(−k)

〉
0

dt′
)
3a(k)

=

(
Vβ

∫t
0

〈
ĵb(k, t′)ĵa(−k)

〉
0

dt′
)
· (−ik3a(k)) .

(1.49)
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In the homogeneous limit, k → 0, I evaluate the time dependent response of
the current to the thermodynamic force, i.e. the gradient of the potential.

〈
Ĵb

〉
= lim

t→∞
(
−
Vβ

3

∫t
0

lim
k→0

〈
ĵb(k, t′) · ĵa(−k)

〉
0

dt′
)
∇3a. (1.50)

The macroscopic homogeneous response to the gradient of the potential is

〈
Ĵb

〉
=
Vβ

3

∫∞
0

〈
Ĵb(t) · Ĵa

〉
0

dt∇3a. (1.51)

Therefore, thanks to the classical GK theory of linear response, the Onsager
coefficients can be computed from the equilibrium fluctuations of the currents:

Lab =
Vβ

3

∫∞
0

〈
Ĵb(t) · Ĵa

〉
0

dt . (1.52)

The Helfand-Einstein formulation of transport coefficients

Each Onsager coefficient can be evaluated as a GK integrals, defined in
Eq. (1.52). Thanks to the seminal work of Einstein [17], that relates the mean
squared displacement of a diffusing particle to its velocity autocorrelation
function, Helfand discussed an alternative expression for the transport coef-
ficients [18]. For a generic stationary stochastic process, X̂t, one has [15]:

1

τ

〈∣∣∣∣
∫τ
0

X̂t dt
∣∣∣∣
2
〉

0

= 2

∫τ
0

〈
X̂tX̂0

〉
0

dt−
2

τ

∫τ
0

〈
X̂tX̂0

〉
0
tdt , (1.53)

where, in the τ→ ∞ limit, the second term of the right-hand side is negligible.
When the generic stochastic process is a flux, Eq. (1.53) provides a new, equiv-
alent with respect to GK integrals, method for computing Onsager coefficients:

Laa = lim
τ→∞ Vβ3

∫τ
0

(
1−

t

τ

)〈
Ĵa(t) · Ĵa

〉
0

dt (1.54)

= lim
τ→∞ Vβ6

〈∣∣∣∣
∫τ
0

Ĵa(t)

∣∣∣∣
2
〉

0

dt . (1.55)

The HE formula is an unbiased estimator of the Onsager coefficient and is
more statistically efficient than the GK integral [19].

The Fick’s law

The order of the limits in Eq. (1.50) is crucial. At finite k, in the limit t → ∞,
the system is at equilibrium with the perturbation 3a(k)Θ(t) and the varia-

tions of the perturbed densities are zero:
〈 ˙̂
b(k, t→ ∞)

〉
=
〈

˙̂a(k, t→ ∞)
〉
= 0.

Thanks to the continuity equations, after having imposed a constant perturba-
tion at t = 0 the k-Fourier components of the currents vanish at equilibrium.
When I invert the order of the limits in Eq. (1.50), the transport coefficient
vanishes as well. In the long-time limit, when the fluctuations of the densities
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become uncorrelated, Eq. (1.48), that is the finite k estimator of the transport
coefficient, is zero [16]. On the contrary, the correlation of the macroscopic
fluxes in Eq. (1.51) (1.52) are not affected by the same challenges. In the linear
regime and assuming that b(r, t) is the only relevant conserved density, the
hydrodynamic Fick’s law holds:

〈
ĵb(r, t)

〉
= −Db∇

〈
b̂(r, t)

〉

〈 ˙̂
b(r, t)

〉
= Db∇2

〈
b̂(r, t)

〉
,

(1.56)

where Db is a diffusion constant. After a brief inspection of Eq. (1.56), the hy-
drodynamic time scale 1

Dbk2 emerges. In this period of time, the initial inhomo-
geneity is reduced, but not vanishes. Furthermore, the current has reached a
plateau before the fluctuation relaxes towards thermodynamic equilibrium [3]:
see Fig.2 in Ref. [16]. In setting k equal to zero, the dynamics of the fluctuation
is locked in the hydrodynamic regime [16, 20],

〈
b̂(k, t)

〉
=
〈
b̂(k, 0)

〉
e−Dbk

2t

〈
ĵ(k, t)

〉
= −Db

(
k
〈
b̂(k, 0)

〉
e−Dbk

2t
)

.
(1.57)

An important caveat must be stressed: in systems with long-range interaction
forces, the correlation function is not equal to the transport coefficient even in
the long-wavelength limit [11, 13], see for details Appendix A and Appendix B.

1.2.2 Representation of the heat flux

In the microcanonical ensemble the rate of production of entropy density, ṡ,
is [21]

ṡ = Je · ∇
1

T
+

n∑
k=1

Jk · ∇
(
−
µk
T

)
, (1.58)

where Je is the energy flux, n is the number of species and Jk is the number
current of the species k. Through thermodynamic manipulations, one has [21]

T d
µk
T

= dµk|T −
hk
T

dT . (1.59)

In Eq. (1.59) the suffix T indicates that the differential of the chemical po-
tential has been taken at constant temperature and hks are the molar partial
enthalpies [22–24]. The isothermal gradient of the chemical potential is a ther-
modynamic force. The heat flux, i.e. the current associated to the gradient of
the temperature field, is [21]

Jq = Je −

n∑
k=1

hkJk

ṡ = −
1

T2
Jq · ∇T − 1

T

n∑
k=1

Jk · ∇µk|T .

(1.60)
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Equivalently, the derivation of heat density follows from the hypothesis of
local thermal equilibrium considering the interactions with the surrounding
environment. Let the system be partitioned in many blocks which allow en-
ergy and particle exchange. In local thermal equilibrium, the Boltzmann factor
is:

exp
{
−

∫
V

ê(r) −
∑

k µk(r)n̂k(r)
T(r)

dr
}

. (1.61)

I am assuming that the chemical potential µ(r) depends on r only through
T(r). Thanks to Eq. 1.59, assuming that T(r) = T + T ′(r) and expanding at
linear order in T ′(r), one can write:∫
V

ê(r) −
∑

k µk (T(r)) n̂k(r)
T(r)

dr ≈ Ê−
∑

k µkN̂k

T
−

∫
V

T ′(r)
ê(r) − hkn̂k(r)

T2
dr .

(1.62)

where ê(r) − hkn̂k(r) is the heat density, which is a mechanical quantity that
can be evaluated from a equilibrium molecular dynamics simulation. The def-
inition of the thermodynamic force and of the flux coupled to the temperature
gradient are interdependent. Ref.[21] explains that each definition describes
a different experimental setup. Of course, this arbitrariness leaves all physi-
cal results unchanged. Nevertheless, one specific choice might result in more
transparent Onsager coefficients, which can be directly compared to the trans-
port coefficients entering the hydrodynamic equations.

Mori’s approach in the grand canonical ensemble

As expressed above, ensembles play a central role in the definition of the On-
sager coefficients. In single component systems, the microcanonical average
of the energy and the heat flux autocorrelation coincide. Transport theory has
been derived both in the microcanonical ensemble, as proposed by Kubo and
Green [6, 9], and in the grand canonical ensemble [25], as developed by Mori
in a groundbreaking paper in 1958 [25]. In Mori’s approach, the heat flux On-
sager coefficient is computed as

Lqq =
V

3kBT2

∫∞
0

〈
Ĵq(t) · Ĵq

〉
g.c.

dt , (1.63)

where ⟨◦⟩g.c. is the expectation value over the grand canonical ensemble. Mori
pointed out that, even in single component systems, the enthalpic term of the
heat flux in Lqq yields a non-vanishing contribution, apparently contradict-
ing the work of Green and Kubo which relies on the microcanonical ensem-
ble averages. The conundrum was solved separately by Green and Martin in
the early 1960s [20, 26]. Green’s comment focuses on relaxation of fluctua-
tions in different ensembles. In the grand canonical ensemble, the relaxation
of the fluctuations describes the reach of macroscopic equilibrium, whereas
in the microcanonical ensemble, is related to the microscopic processes of the
fluid [26]. Martin discussed the impact of computing the autocorrelation of the
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macroscopic fluxes setting k equal to 0, and realized that these homogeneous
correlations can actually depend on the ensemble. The hydrodynamic equa-
tions themselves are ensemble dependent because they are strongly sensitive
to the initial and boundary conditions. Nevertheless, in taking the k → 0 limit
in Eq (1.50), and making sure that 1

k is much smaller than the linear dimen-
sion of the system, these complications become negligible [20]. In the V → ∞
and then the k → 0 limit, the choice of ensemble and flux is irrelevant [20].
Otherwise, considering the non-physical limit, k = 0 at finite V , there exist
a specific relation between fluxes and ensembles [20]. The fluxes and ensem-
bles considered in Green and Kubo’s, and Mori’s work, result in the correct
evaluation of the nonphysical limit [20, 26].

1.3 invariance principles in the theory of transport

1.3.1 Gauge invariance principle of transport coefficients

The definition of the density, b(r) depends on the partitioning of the exten-
sive quantity B =

∫
V b(r)dr into local contributions. Two densities b(r) and

b′(r) are equivalent if their integral over the volume coincides:
∫
V b(r)dr =∫

V b
′(r)dr. Two equivalent densities differ only by the divergence of a

bounded vector, p(r),

b′(r, t) = b(r, t) −∇ · p(r, t). (1.64)

Each density is linked to its respective current, jb(r, t) and j′b(r, t), by the
continuity equation:

j′b(r, t) = jb(r, t) + ṗ(r, t)

J ′
b(t) = Jb(t) + Ṗ (t),

(1.65)

where P (t) = 1
V

∫
V p(r, t)dr. The two definitions of the density lead to two

currents, that differ by the time derivative of a bounded vector. For energy
density, the bounded vector p(r, t) reflects the arbitrariness on partitioning of
the total energy into local contributions [27]. Thanks to the Helfand-Einstein
formulation of Onsager coefficients, Eqs. (1.55) (1.55), the coefficient associated
to the current J ′

b(t), L
′
bb, can be written as:

L′bb = c lim
τ→∞ 1

2τ

〈∣∣∣∣
∫τ
0

Ĵ ′
b(t)dt

∣∣∣∣
2
〉

0

(1.66)

where c is the appropriate constant that depends on the flux being considered
and

Db(τ) =

∫τ
0

Jb(t)dt (1.67)
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is the generalized dipole associated to the current Jb. The Onsager coefficient
L′BB can be computed as

L′bb = c lim
τ→∞

〈∣∣∣D̂b(τ)
∣∣∣
2
〉

0

+ 2
〈
D̂b(τ) · P̂ (τ)

〉
0
+

〈∣∣∣P̂ (τ)
∣∣∣
2
〉

0

2τ
. (1.68)

On one hand, as anticipated by Einstein in 1905 [17] and clarified by Helfand
in 1960 [18], the variance of the generalized dipole of a diffusive process grows
linearly in time. On the other, the variance of P (τ) is limited by definition:

〈∣∣∣D̂b(τ)
∣∣∣
2
〉

0

∼ O(τ)

〈
D̂b(τ) · P̂ (τ)

〉
0
∼ O(τ1/2)

〈∣∣∣P̂b(τ)
∣∣∣
2
〉

0

∼ O(1).

(1.69)

In the long time limit, thanks to Eqs. (1.68) and (1.69), the transport coefficient
associated with the modified current J ′

b coincides with the one derived from
Jb,

L′BB = c lim
τ→∞

〈∣∣∣D̂b(τ)
∣∣∣
2
〉

0

2τ
= LBB. (1.70)

Eq. (1.70) synthesizes the so-called gauge invariance principle of transport co-
efficients [15, 19]. The addition of the divergence of a bounded vector field
changes the density and also the resulting macroscopic current, nevertheless
it does not affect the measurable Onsager coefficient. The invariance principle
of the Onsager coefficients has only been studied recently but it has been ap-
plied for the computation of thermal conductivity, electric conductivity and
oxidation charges [19, 28–36].

1.3.2 Convective invariance of heat conductivity in multicomponent systems

Thermal conductivity is defined in absence of convective flows as

κ ≡

〈
Ĵe

〉

∇T

∣∣∣∣∣∣
Jk=0

. (1.71)

In Eq. (1.71), I consider any Cartesian component of the energy current and
temperature gradient. To address heat transport, the expression of the energy
flux, even if it depends on the specific decomposition of the energy density
into local contributions, is crucial. It can be formally derived from the energy
density:

e(r, Γ) =
∑
n

δ(r − Rn)en(Γ)

en(Γ) =
P2
n

2Mn
+ vn ({R}) ,

(1.72)
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where Rn is the position of the n-th atom, Pn is the canonical momentum and
vn ({R}) is the per-atom decomposition of the potential energy, V, such that∑

n vn = V. Je is evaluated via the continuity equation as

Je(Γ) =
1

V

∫
V

ė(r, Γ)r dr

=
1

V

∫
V

[∑
n

(
∂e(r, Γ)
∂Rn

· Vn +
∂e(r, Γ)
∂Pn

· Fn

)]
r dr

=
1

V

[∑
n

enVn +
∑
n,m

(Rn − Rm) Fnm · Vn

]
,

(1.73)

where Vn = Pn/Mn and Fnm = − ∂vn

∂Rm
is the n-th contribution to the force

acting on the m-th atom.
In single component systems, κ is proportional to the energy Onsager coef-

ficient:

Lee =
V

3kBT

∫∞
0

〈
Ĵe(t) · Ĵe(0)

〉
0

dt . (1.74)

In a two-component system, the Onsager equations read
〈
Ĵe

〉
= Lee∇

1

T
+ Le1∇

(
−µ1
T

)
+ Le2∇

(
−µ2
T

)

〈
Ĵ1

〉
= L1e∇

1

T
+ L11∇

(
−µ1
T

)
+ L12∇

(
−µ2
T

)

〈
Ĵ2

〉
= L2e∇

1

T
+ L21∇

(
−µ1
T

)
+ L22∇

(
−µ2
T

)
.

(1.75)

Thermal conductivity, defined in Eq. (1.71), in a M-component system is

κ =
1

T


Lee −

M−1∑
k,p=1

Lke
(
L−1

)
kp
Lep


 , (1.76)

where

Lke =
V

3kBT

∫∞
0

〈
Ĵk(t) · Ĵe(0)

〉
0

dt , (1.77)

Lkp =
V

3kBT

∫∞
0

〈
Ĵk(t) · Ĵp(0)

〉
0

dt . (1.78)

Notably, Eq. (1.76) is invariant under the transformation Je → Je +∑M
k=1 ckJk, and ck can be any real number. This invariance principle is

dubbed convective invariance of thermal conductivity and is based on the hy-
drodynamic definition of the transport coefficient.

1.4 hydrodynamic description of a diffusive process

The hydrodynamic description of transport presented in Ref. [14] is very pow-
erful. Transport in a normal —single component and isotropic— fluid is de-
scribed by the conservation laws, constitutive equations and thermodynamic
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relations [14, 20]. In such systems the number of particles, energy and mo-
mentum are conserved. The continuity equations, that hold microscopically,
are:

∂tn(r, t) +∇ · j(r, t)
m

= 0

∂tj(r, t) +∇ · τ (r, t) = 0

∂te(r, t) +∇ · je(r, t) = 0,

(1.79)

where m is the particle mass, n is the number density, e is the energy den-
sity, j is the momentum density and τ is the stress tensor that serves as a
momentum current. The continuity equations are not sufficient to describe
the dynamics of the fluid. Under the assumptions that the fluctuations of the
densities in space and time are "slow" [14, 21], and that the system is in lo-
cal thermodynamic equilibrium, the constitutive equations hold. They link the
five conserved quantities, which characterize completely the state of the fluid,
with the intensive variables, that are conventionally chosen to be temperature,
T(r, t), pressure, p(r, t), and, average velocity, v(r, t) [14]:

〈
ĵ(r, t)

〉
= ⟨n̂(r, t)⟩mv(r, t) = nmv(r, t)

〈
τ̂αβ(r, t)

〉
= p(r, t)δαβ − η

[
∇αvβ(r, t) +∇βvα(r, t) −

2

3
∇ · v(r, t)δαβ

]

− ξ∇ · v(r, t)δαβ〈
ĵe(r, t)

〉
= (⟨ê⟩+ p)v(r, t) − κ∇T(r, t).

(1.80)

Eqs. (1.80) are the linearized Navier-Stokes equations and η, ξ and κ are shear
and bulk viscosity, and thermal conductivity respectively [14].

Combining Eq. (1.80) and Eq. (1.79), Ref. [14] provides a detailed derivation
of the hydrodynamic functional form of the densities response functions in
terms of thermodynamic derivatives and transport coefficients. In the long-
wavelength limit, the static susceptibilities are equal to some thermodynamic
derivatives. For a generic quantity A, one has

∂A

∂µ

∣∣∣∣
T ,V

=

∫
dω
π

χ′′An(k = 0,ω)

ω
. (1.81)

Thanks to Eq. (1.81), one derives the sum rules [14, 20, 37]

lim
k=0

∫
dω
π

χ′′nn(k,ω)

ω
= lim

k=0
χnn(k) = n

∂n

∂p

∣∣∣∣
T

lim
k=0

∫
dω
π

χ′′nq(k,ω)

ω
= lim

k=0
χnq(k) = T

∂n

∂T

∣∣∣∣
p

lim
k=0

∫
dω
π

χ′′qq(k,ω)

ω
= lim

k=0
χqq(k) = nmcpT .

(1.82)

where q = e − hn is the heat density as in Eq. (1.62), h is the per unit vol-
ume enthalpy and mncp = T

V
∂S
∂T

∣∣
p

. Notice that, in the canonical ensemble,
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where the number of particles is fixed, χ′nn(k = 0) = 0 and in the micro-
canonical ensemble χ′qq(k = 0) = 0. Even if the macroscopic fluctuations of
conserved densities are ensemble dependent, χ′(k) describes local fluctuations
that are independent on the boundary conditions [14]. Building on Martin dis-
cussion [20], one must consider first the V → ∞ limit, and then k → 0.

As derived in Ref. [14], the absorptive parts of the densities response func-
tions read

1

ω
χ′′nn(k,ω) =m

∂n

∂p

∣∣∣∣
T

[
cv/cpc

2k4ΓB

(ω2 − c2k2)2 + (ωk2ΓB)2
+

(1− cv/cp)k
2DT

ω2 + (k2DT )2
−

(
1−

cv

cp

)
(ω2 − c2k2)k2DT

(ω2 − c2k2)2 + (ωk2ΓB)2

]

(1.83)

1

ω
χ′′qq(k,ω) =mncpT

k2DT

ω2 + (k2DT )2
(1.84)

1

ω
χ′′nq(k,ω) =T

∂n

∂T

∣∣∣∣
p

[
k2DT

ω2 + (k2DT )2
−

(ω2 − c2k2)k2DT

(ω2 − c2k2)2 + (ωk2ΓB)2

]
, (1.85)

where DT = κ
mncp

, ΓB = Dl +DT (cp/cv − 1) is the Brillouin peak, Dl =
4/3η+ξ

mn and mncv = T
V

∂S
∂T

∣∣
n

. The bulk viscosity depends on the longitudi-
nal fluctuations of the momentum, Eq. (1.83), that are linked to the numeber
density’s via the continuity equation:

4

3
η+ ξ = lim

ω→0
lim
k→0

m2ω3

k4
χ′′nn(k,ω) = lim

ω→0
lim
k→0

ω

k2
χ′′l (k,ω). (1.86)

χl is the longitudinal component of the momentum response function. Thanks
to Eq. (1.84), thermal conductivity of a normal fluid is

Tκ = lim
ω→0

lim
k→0

ω

k2
χ′′qq(k,ω). (1.87)

Interestingly, Eqs. (1.86) (1.87) are Kubo-like formulas.
Since in Eq. (1.86) limk→0

1
k4χ

′′
nn(k,ω) is finite, then limk→0

1
k2χ

′′
nn(k,ω)

must vanish. Thanks to these considerations and to Eq. (1.85), I write

0 = lim
ω→0

lim
k→0

m2ω

k2
χ′′nn(k,ω) = lim

ω→0
lim
k→0

mω

k2
χ′′nq(k,ω). (1.88)

Eqs. (1.88) (1.87) lead to the familiar convective invariance property [14, 20],

Tκ = lim
ω→0

lim
k→0

ω

k2
χ′′q+λn,q+λn(k,ω) = lim

ω→0
lim
k→0

ω

k2
χ′′e,e(k,ω), ∀λ. (1.89)

In normal fluids, κ can be computed directly from the fluctuation of the energy
density.
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C E P S T R A L A N D B AY E S I A N R E G R E S S I O N A N A LY S I S O F
R E S P O N S E F U N C T I O N S

G
reen kubo linear response theory provides sound theoretical founda-
tions for computing Onsager coefficients via Equilibrium Molecular
Dynamics (EMD) simulations. This chapter addresses the numerical

challenges associated with GK estimators. First, I analyze the computational
drawbacks of the direct time integration of the correlation function of the
fluxes. Next, cepstral analysis is reviewed, emphasizing its efficiency and limi-
tations. The final sections introduce a Bayesian protocol for the comprehensive
estimation of the entire Onsager matrix, along with a Bayesian linear regres-
sion scheme designed to extrapolate the long-wavelength limit of periodic
response functions.

2.1 statistical properties of green-kubo estimators

The Onsager coefficient, Lab, can be evaluated from the time-integral of the
correlation function of the fluxes, Ja and Jb, as Eq. (1.52) [6–9]:

Lab = Vβ

∫∞
0

〈
Ĵb(t)̂Ja(0)

〉
0

dt . (2.1)

The GK formula allows to investigate non-equilibrium properties through EMD

simulations, offering an alternative to Non Equilibrium Molecular Dynamics
(NEMD) methods, whose statistical uncertainty is challenging to derive [38–43].
The Helfand Einstein (HE) formula, Eq. (1.54), reads [18]:

Lab = lim
τ→∞Vβ

∫τ
0

(
1−

t

τ

)〈
Ĵa(t)̂Jb(0)

〉
0

dt . (2.2)

In this chapter I study statistical techniques aiming to enhance the numerical
efficiency of Eqs. (2.1) (2.2) and to provide a sound estimate of the statistical
uncertainty [31, 44–46].

In microcanonical simulations, the Hamilton equations of motion are inte-
grated via the velocity-Verlet algorithm, with a finite time-step ϵ. The simu-
lated trajectory itself is a sample of a stochastic process. I denote with the hat,
as in ◦̂, functions of the phase space, stochastic processes and their samples.
In a EMD trajectory of length τtot ≡ Nϵ, I harvest the currents’ time-series,
denoted as {̂Jma = Ĵa(mϵ)}. The time-correlation of the fluxes is

Ĉm
ab =

1

N−m

N−1−m∑
l=0

Ĵ l+m
a Ĵ lb. (2.3)

Thanks to the central limit theorem, Ĉm
ab is a sample of a normal-distributed

stochastic process whose variance decreases with N.

19
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The GK and HE estimators of the Onsager coefficient, Eqs. (2.1) (2.2), are

LX
ab(τ) = Vβ

∫∞
0

〈
Ĵa(t)̂Jb(0)

〉
0
Θτ

X(t)dt , (2.4)

where X = GK or HE, and

Θτ
X(t) =

1 for |t| ⩽ τ; (GK)

1−
|t|
τ for |t| ⩽ τ; (HE)

. (2.5)

Although in the large-time limit both the HE and the GK formula yield an
unbiased estimator of the Onsager coefficient, it is important to note that the
variance associated with the HE integral is a third of the GK one’s [19]. Since
the variance of Eq. (2.3) decreases with the total length of the trajectory, τtot,
the statistical uncertainty of the GK and HE integrals, Eq. (2.4), are

var(L̂X
ab(τ)) = (Vβϵ)2

N∑
n=0

var
(
Ĉn
ab

)
Θτ

X(n ∗ ϵ)2 (2.6)

∝ 1

τtot

∫τ
−τ

Θτ
X(t)

2 dt =

 2τ
τtot

(GK)

1
3

2τ
τtot

(HE)
. (2.7)

It can be proved that the prefactor in front of Eq. (2.7) is 2L2ab [19].
I simulate molten CsF modeled with a sample of 512 atoms interacting via

the Born-Mayer-Huggins-Tosi-Fumi force field [47–49]. The trajectories are in-
tegrated via the velocity-Verlet algorithm with a time-step of 1 fs, as imple-
mented in the LAMMPS code [50]. Before the microcanonical production run, I
equilibrate the system in the NPT ensemble for 200 ps and in the NVT ensem-
ble for 200 ps, at the target temperature and pressure. The Coulomb interac-
tion is considered via Ewald summation with accuracy 10−7 as implemented
in LAMMPS [50]. From a microcanonical 40 ns-long trajectory of molten CsF at
1200 K and 0 bar I compute the electric conductivity,

σ =
V

3kBT

∫∞
0

〈
Ĵ(t) · Ĵ(0)

〉
0

dt , (2.8)

—J being the electric current— via GK and HE methods, and estimate the
statistical uncertainty via block analysis on 1 ns-long segments. Block analysis
prescribes to divide the trajectory into several segments of the same length.
On each block I compute Eq. (2.4) and then evaluate the variance across the
estimated samples.

In Fig. 2.1, the GK and HE integrals rapidly converge to the asymptotic value
as a function of the integration time, τ. The lower panel of Fig. 2.1 shows that
Eq. (2.7) grows linearly in τ, and that the variance associated with the HE for-
mula is smaller than the GK’s one. Furthermore, Eq. (2.7) demonstrates that
var(L̂X

ab(τ)) is proportional to τ
τtot

. I test Eq. (2.7) numerically, computing the
variance of σ from trajectories of different length. In Fig. 2.2, var

(
σHE(τ)

)
τtot



2.1 statistical properties of green-kubo estimators 21

0

200

400
[S

m
−

1
]

σGK(τ) σHE(τ)

0 2 4
τ ps

0

200

400

[S
2

m
−

2
]

var
(
σGK(τ)

)
/3

var
(
σHE(τ)

)

Figure 2.1: Estimate and variance of electric conductivity (upper-lower panels) of
molten CsF at 1200 K and 0 bar, computed via the GK and HE integrals,
Eq. (2.4) (2.7), as a function of the upper time limit, τ.

is in good agreement with the theoretical behavior, 4
3σ

2τ. Fig. 2.2 also dis-
plays that, when integrated over the whole trajectory, the variance of L̂X

ab(τtot)

is independent on τtot. The time integration of the correlation of the fluxes,
L̂X
ab(τtot), is a non-consistent estimator, i.e. its statistical uncertainty does not

vanish in the large N-limit. At the cost of long EMD simulations, the consis-
tency of L̂X

ab(τ) is restored via block analysis.
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Figure 2.2: Variance of the electric conductivity of molten CsF at 1200 K and 0 bar,
computed via the HE formula from trajectories of different length, τtot,
compared to the theoretical behavior described in Eq. (2.7)

2.2 cepstral analysis of diagonal onsager coefficients

In the following sections, I will describe spectral methods for the computation
of Onsager coefficients which do not require block analysis [15, 19, 31, 44–46].
The Power Spectral Density (PSD) is defined as the Fourier transform of the
time-correlation function of a diffusive flux, J,

S(ω) =

∫∞
−∞

〈
Ĵ(t)̂J(0)

〉
0
eiωt dt . (2.9)

The diagonal Onsager coefficient associated with the flux J, is:

L =
Vβ

2
lim
ω→0

S(ω). (2.10)

In the 1930s, Wiener and Khinchin proved [51, 52] that the PSD of a station-
ary processes is the expectation value of the modulus squared of the Fourier
transform of the process,

S(ω) = lim
τ→∞ 1τ

〈∣∣∣∣
∫τ
0

Ĵ(t)eiωt dt
∣∣∣∣
2
〉

0

= lim
τ→∞ 2Re

∫τ
0

〈
Ĵ(t)̂J(0)

〉
0
eiωt dt .

(2.11)

The current time-series, Ĵn = Ĵ(nϵ), 0 ⩽ n ⩽ N, is a stationary process. Its
Fourier transform,

F̂k =

N−1∑
n=0

e2πi
kn
N Ĵn (2.12)
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is a stochastic process uncorrelated across different frequencies. Thanks to
the Wiener and Khinchin theorem, Eq. (2.11), the variance of Eq.(2.12), is the
estimator of the PSD, i. e. the periodogram [51, 52]:

Ŝk = S(ωk)ξ̂k (2.13)

where k ∈ [0,N− 1], ωk = 2π k
N and ξ̂k is a χ2-distributed random variable.

Since at k = 0 and at the Nyquist frequency Eq. (2.12) is real, one has: ξ̂k ∼
1
2χ

2
2 for k < {0, N

2 } and ξ̂k ∼ χ21 for k ∈ {0, N
2 }. Notice that the periodogram,

Eq. (2.13), is affected by multiplicative noise.
By performing block analysis on ℓ independent and equivalent fluxes time-

series, the PSD reads

ℓ
Ŝk =

1

ℓ

ℓ∑
i=1

Ŝik

= S(ωk)
1

ℓ

ℓ∑
i=1

ξ̂ik = S(ωk)
ℓ
ξ̂k. (2.14)

Block analysis effectively reduces the error: var
(
ℓ
ξ̂k

)
= 1

2ℓ . In practice, it is a
computationally expensive procedure which requires long trajectories.

2.2.1 Cepstral analysis

The key idea of cepstral analysis is to compute the logarithm of Eq. (2.14),
i.e. the log-periodogram, thus turning the multiplicative noise into an additive
one. Under the assumption that the log-periodogram is a smooth function of
the frequency, I can apply a low-pass filter and then select only few Fourier
components. I will show that the reconstructed log-periodogram yields a con-
sistent estimator of the log-PSD at all frequencies [19, 31, 44].

The log-periodogram is

ℓ
L̂k = log

(
ℓ
Ŝk

)

= log (S(ωk)) + log
(
ℓ
ξ̂k

)
.

(2.15)

On one hand, Eq. (2.15) is now affected by additive noise. On the other hand,
it is a biased estimator of the true log-PSD. The logarithm of a χ-squared vari-
able can be simply decomposed in its average, λℓ, and a zero-mean stochastic
process,

log
(
ℓ
ξ̂k

)
= λℓ +

ℓ
λ̂k, (2.16)

where λℓ and the variance of
ℓ
λ̂k can be computed analytically as

λℓ =
〈

log
(
ℓ
ξ̂k

)〉
= ψ(ℓ) − log (ℓ) (2.17)

σ2ℓ =

〈
log
(
ℓ
ξ̂k

)2〉
− λ2ℓ = ψ′(ℓ), (2.18)
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and ψ(ℓ), ψ′(ℓ) are the digamma and tri-gamma function respectively [53].
A low pass filter reduces the non-Gaussian noise of Eq. (2.15). In order to im-

plement this procedure, I define the cepstrum as the inverse Fourier transform
of the log-periodogram [19, 31, 44]:

ℓ
Ĉn =

1

N

N−1∑
k=0

ℓ
L̂ke

−2πikn
N . (2.19)

Thanks to the central limit theorem, each cepstral coefficient, Eq. (2.19), is
affected by additive Gaussian-distributed noise

ℓ
Ĉn = λvδp0 +Cn + ℓµ̂n (2.20)

〈
ℓµ̂n

2
〉
=


σ2
ℓ

N n < {0, N
2 }

2σ2
ℓ

N n ∈ {0, N
2 }

. (2.21)

In the large-N limit, ℓµ̂ns are independent zero-mean normal variables. Cep-

stral coefficients are real, periodic and symmetric:
ℓ
Ĉn =

ℓ
ĈN−n. Provided

that the log-PSD is smooth enough, only P cepstral coefficients are required to

reconstruct the original spectrum:
ℓ
Ĉn ≈ 0 for P ⩽ n ⩽ N−P. The selection of

the meaningful cepstral coefficient is a crucial step in the cepstral procedure.

If one selects blindly all
ℓ
Ĉns, then the estimator would be non-consistent for

the same reasons Eq. (2.4) is not. I am interested in the k = 0 component of
Eq. (2.15) that reads

ℓ
L̂0(P) =

ℓ
Ĉ0 + 2

P−1∑
n=1

ℓ
Ĉn (2.22)

= λℓ + log (S(0)) + ℓµ̂0 + 2

P−1∑
n=1

ℓµ̂n. (2.23)

Therefore, the expectation value and variance of Eq. (2.22) are

ℓL0(P) =
〈
ℓ
L̂0(P)

〉
= λℓ + log (S(0)) (2.24)

σℓ(P,N)2 = var
(
ℓ
L̂0(P)

)
= σ2ℓ

4P− 2

N
. (2.25)

There are several criteria for selecting the optimal number of cepstral coef-
ficients. A common choice is the Akaike Information Criterion (AIC), which
aims to balance the bias introduced by the finite summation in Eq. (2.22) and
the variance in Eq. (2.25). AIC selects the number of cepstral coefficients which
minimizes the loss function,

AIC(P) = −2max
w

logL(w,P) + 2P, (2.26)

where L(w,P), w = {w0 . . . wP−1}, is the Likelihood function:

2 logL(w,P) = −(w0 + λℓ −
ℓ
Ĉ0)

2 −

P−1∑
n=1

(wn −
ℓ
Ĉn)

2 −

N/2∑
n=P

(
ℓ
Ĉn). (2.27)
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Figure 2.3: Left panel: Cepstral coefficients of the electric current periodogram ob-
tained from a 1 ns-long microcanonical trajectory of molten CsF at 1200 K
and 0 bar. The red vertical line highlights the best number of cepstral co-
efficients selected by the AIC. Right panel: AIC function computed as a
function of the number of cepstral coefficients on the same trajectory

The best number of parameters, P⋆ is estimated as

P⋆ = argmin
P

AIC(P). (2.28)

Eq. (2.27) is maximized when wn =
ℓ
Ĉn − λℓδn0, thus the AIC function reads

AIC(P) =

N/2∑
n=P

(
ℓ
Ĉn)

2 + 2P. (2.29)

Cepstral analysis combined with AIC yields a consistent estimator of diagonal
Onsager coefficients [31, 44, 54]. Therefore, cepstral analysis does not require
block analysis to estimate the variance of the filtered spectrum [31, 44, 54].
By avoiding block analysis, the numerical efficiency of computing transport
coefficients improves [28, 31, 32, 44, 54–57].

2.2.2 Numerical experiments on cepstral analysis

Cepstral analysis can be employed to compute electric conductivity, Eq. (2.8),
from a 1 ns trajectory of molten CsF at 1200 K and 0 bar. The results are dis-
played in Fig. 2.3 and Fig. 2.4. In Fig. 2.3 cepstral coefficients rapidly converge
to zero, and AIC selects only 10 of them. As shown in Fig. 2.4, the variance of
Eq. (2.24) grows linearly with P. The cepstral estimator of diagonal Onsager
coefficients, Eq. (2.24) and Eq. (2.25), is itself a Gaussian random variable. In
order to showcase this statement, I evaluate electric conductivity of CsF via
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Figure 2.4: Cepstral estimate of the electric conductivity (upper panel) and its vari-
ance (lower panel), computed from a 1 ns-long microcanonical trajectory
of molten CsF at 1200 K and 0 bar, as a function of the number of cepstral
coefficients considered.

cepstral analysis from 200 200 ps-long microcanonical trajectories and then
compute the histogram of the outcomes. The results are displayed in Fig. 2.5
and compared to the reference cepstral estimate obtained from a 1 ns-long
trajectory. The red curve is a Gaussian fit to the data and the green one is also
Gaussian, with mean and standard deviation evaluated averaging those pre-
dicted by cepstral analysis over the 200 segments. The data in Fig. 2.5 also pass
the Shapiro-Wilk normality test at a standard level of significance of 0.05 [57,
58].

Thermal conductivity of multicomponent systems via cepstral analysis

Cepstral analysis is a viable tool to compute thermal conductivity in both
single and multicomponent systems. In multicomponent systems thermal con-
ductivity is computed as Eq. (1.76). The PSD-matrix, S(ω), is

Sij(ω) = lim
τ→∞ 1τ Re

〈(∫τ
0

Ĵi(t)e
iωt dt

)(∫τ
0

Ĵj(t)e
−iωt dt

)〉

0

= lim
τ→∞ 2Re

∫τ
0

〈
Ĵi(t)̂Jj(0)

〉
0
eiωt dt ,

(2.30)
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Figure 2.5: Histogram of the cepstral estimates of electric conductivity of molten CsF
at 1200 K and 0 bar, computed from 200 200 ps-long trajectories. The
dashed grey area is the electric conductivity and its statistical uncertainty
estimated via cepstral analysis from a 1 ns-long simulation. The red curve
is a Gaussian fit on the data and the green one is a Gaussian whose mean
and variance are the average of the cepstral ones estimated from the 200
trajectories. In the plot is also reported the p-value of the Shapiro-Wilk
normality test.

where i, j ∈ {E, 1 . . .M} and M is the number of diffusive fluxes [31, 46]. The
expression for thermal conductivity in multicomponent systems is

κ =
V

2kBT2
lim
ω→0

S
E
(ω) =

V

2kBT2
lim
ω→0

1

(S−1(ω))EE
, (2.31)

where SE(ω) is the reciprocal of the EE-element of the inverse periodogram
matrix, Eq.(2.30). SE(ω) is referred to as Shur complement, as defined in
Eq. (1.76) [31]. Eq. (2.31) derives directly from the thermodynamic definition
of thermal conductivity:

κ ≡

〈
Ĵe

〉

∇T

∣∣∣∣∣∣
Jk=0

.

In order to apply cepstral analysis, Eq. (2.31) must be a positive definite χ2-
distributed variable.

The periodogram-matrix Ŝk, the estimator of Eq. (2.30), is a Wishart pro-
cess [31]. Interestingly, the Shur complement of a Wishart matrix is itself
Wishart distributed [31]. Therefore, the estimator of Eq. (2.31) is χ2-distributed
and the cepstral filter can be applied [31]. In order to compute the correct trans-
port coefficient in liquids with more than one diffusing species, the multicom-
ponent formula for thermal conductivity is crucial. To showcase this statement,
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Figure 2.6: Cepstral filtered PSD (solid line) and raw periodogram (shaded area) of the
energy flux (blue) and of Eq. (2.31) (orange), computed from a 1 ns-long
trajectory of molten CsF at 1200 K and 0 bar.

I compute thermal conductivity of molten CsF from a 1 ns-long microcanoni-
cal trajectory, according to Eq. (2.31) and to the single-component formula,

κ =
V

2kBT2
lim
ω→0

SEE(ω). (2.32)

The outcomes of the analysis are shown in Fig. 2.6 and prove numerically that
the single-component formula significantly deviates from Eq. (2.31). In the
present test case, Eq. (2.32) overestimates thermal conductivity by about one
order of magnitude.

The cepstral filter is based on the statistical properties of the diagonal ele-
ments of the periodogram matrix. AIC automatically selects the optimal num-
ber of cepstral coefficients in Eq. (2.24) and Eq. (2.25), yielding a consistent
estimator of the Onsager coefficient. Bypassing block analysis, cepstral anal-
ysis requires short EMD simulations to achieve reasonable error bars [31, 44].
However, cepstral analysis has two main drawbacks: it is only applicable to χ2-
squared random variables and it performs poorly in filtering zero-frequency
peaked PSD [44], due to the large number of cepstral coefficients selected by
AIC [44, 46]. For example, in weakly anharmonic crystals, because of the AIC,
cepstral estimates significantly deviate from the GK ones. The Minimum Mean
Square Error (MMSE) model selection method was developed as an alternative
to the AIC one, and partially alleviates the numerical drawbacks of cepstral
analysis in such systems [59]. Remarkably, the cepstral filter is not applicable
to off-diagonal Onsager coefficients.
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2.3 bayesian regression analysis of wishart processes

Cepstral analysis is a powerful tool for estimating diagonal Onsager coeffi-
cients, such as electric conductivity [54], shear and bulk viscosity [57] and
thermal conductivity [28, 31, 32, 54–56]. Nevertheless, this filtering technique
is not designed for off-diagonal Onsager coefficients. The periodogram matrix,
Ŝk, —i. e. the estimator of Eq. (2.30)—

S(ωk) =
〈

Ŝk

〉
, (2.33)

Sij(ωk) = lim
τ→∞ 1τ Re

〈(∫τ
0

Ĵi(t)e
iωkt dt

)(∫τ
0

Ĵj(t)e
−iωkt dt

)〉

0

= lim
τ→∞ 2Re

∫τ
0

〈
Ĵi(t)̂Jj(0)

〉
0
eiωkt dt ,

is a Wishart-distributed stochastic process. The Onsager matrix, L, is the 0-
frequency limit of the periodogram matrix:

L =
Vβ

2
lim
ω→0

S(ω).

Ŝ
ij
k s are neither positive definite random variables nor χ2-squared distributed.

For these reasons one cannot apply cepstral analysis to filter its noise.
We devise a tailored filtering method to address this type of stochastic pro-

cesses [45, 46]. The off-diagonal periodogram, Ŝijk , is a stochastic process which
follows the Gamma-Variance distribution, whose probability density function
is [60]

p
(
S
ij
k

)
=

∣∣∣Sijk
∣∣∣
ν−1
2

Γ
(
ν
2

) √
2ν−1π(1− ρ(ωk)2)[Sii(ωk)Sjj(ωk)]

ν+1
4

×Kν−1
2




∣∣∣Sijk
∣∣∣

[Sii(ωk)Sii(ωk)]1/2(1− ρ(ωk)2)




× exp

{
ρ(ωk)S

ij
k

[Sii(ωk)Sjj(ωk)]1/2(1− ρ(ωk)2)

}
,

(2.34)

where ν = 2ℓ , ℓ is the number of equivalent fluxes (in isotropic fluids ℓ = 3),
ρ(ωk) is the correlation coefficient, Γ is the Gamma function and K is the
modified Bessel function of second kind. After a simple change of variables,
the correlation coefficient estimator, ρ̂k, and its probability density are

ρ̂k =
Ŝ
ij
k

[Sii(ωk)Sjj(ωk)]
1/2

(2.35)

p(ρk) ∝
|ρk|

ν−1
2

√
1− ρ(ωk)2

Kν−1
2

(
|ρk|

1− ρ(ωk)2

)
exp

{
ρ(ωk)ρk
1− ρ(ωk)2

}
. (2.36)

Eq. (2.35) describes a Gamma-Variance stochastic process, independent at dif-
ferent frequencies [51, 52]. In order to obtain a reliable and accurate estimate
of the PSD, we employ Bayesian regression [45, 46].
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2.3.1 Bayesian regression analysis

Let us consider two stochastic processes X̂ and Ŷ. Under the hypothesis
p(X, Y) = p(Y,X), the Bayes theorem states

p(Y)p(X | Y) = p(X)p(Y | X). (2.37)

The aim of this section is to describe how to apply Bayesian regression meth-
ods to filter the periodogram.

Given a dataset, D, and a model, Θ(·, ·), defined by P parameters w ≡
{w0 . . . wP−1}, Bayesian regression searches for the best model that approxi-
mates the dataset, D. D ≡ {yn; xn} is a collection of samples of a function y(x)
which depends on an input x. The dataset itself is a stochastic process that is
distributed according to p(D | y),

⟨yn⟩p(D|y) = y(xn). (2.38)

Here, ⟨·⟩p(◦) represents the expectation value with respect to the probability
distribution p(◦). Of course, y(x) is unknown. The aim of the procedure is
to seek the optimal set of parameters, w, such that Θ(w; x) ≈ y(x). The first
step in the Bayesian procedure for determining the best model, is to define
the probability that the dataset was generated not by y(x), but by Θ(w, ·): the
so-called Likelihood distribution function, p(D | w),

⟨yn⟩p(D|w) = Θ(w; xn). (2.39)

The Likelihood function characterizes how the dataset is distributed knowing
the model. Bayes theorem reverses the flow of information, thus allowing to
compute the distribution of the parameters at given dataset:

p(w | D) =
p(D | w)p(w)

p(D)
, (2.40)

where p(w) is the prior distribution of the parameters, i.e. the agnostic proba-
bility density of w. p(w | D) is usually referred to as posterior distribution of
the parameters. The optimal value of the parameters, provided the informa-
tion stored in the dataset, is estimated as the expectation value of w over the
posterior distribution [61]:

⟨w⟩p(w|D) = w. (2.41)

There is significant flexibility in selecting the model, which can be as expres-
sive as needed, as well as in choosing the prior. For instance, the prior can be
a Gaussian parametrized by a positive real number α:

p(w | α) =
( α
2π

)P
2

exp
{
−
α

2
∥w∥2

}
. (2.42)
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This prescription is equivalent to a L2 regularization term [61]. Bayesian re-
gression allows to select the optimal prior by computing its posterior distribu-
tion, p(α | D). According to Bayes theorem, one has [61]

p(α | D) ∝ p(D | α)p(α) (2.43)

p(D | α) =

∫
p(D | w)p(w | α)dw . (2.44)

If the log-Likelihood function is quadratic, the model is linear in the param-
eters and, the prior is Gaussian, Eq. (2.44) can be computed analytically [61].
On the contrary, if the Likelihood is not Gaussian, only numerical solutions
are available. As in Eq. (2.44) and Eq. (2.43), the best number of parameters of
the model, P, is estimated maximizing

p(P | D) ∝ p(D | P)p(P) (2.45)

p(D | P) =

∫
p(D | w,P)p(w | P)dw . (2.46)

In the large sample limit, the integrand in Eq. (2.46), p(D | w,P)p(w | P) ≡
p̃(w | D,P), can be rewritten as [61]

log p̃(w | D) ≈ log p̃(w | D) + (w − w)†
∂2 log p̃(w | D)

2∂w2

∣∣∣∣
w
(w − w)

= log p̃(w | D) −
N

2
(w − w)† I(w) (w − w) ,

(2.47)

where I(w) is the average Fisher information matrix over the dataset [61]. As
a general remark I want to stress that, assuming reasonable hypotheses on
the prior distribution of the parameters, i.e. smoothness etc., the Bernstein-
Von Mises theorem states that in the large-sample limit, the posterior dis-
tribution converges to a Gaussian, centered in w, with covariance matrix
N−1I−1(w) [62]. This simple statement proves the consistency of the Bayesian
regression approach. Integrating Eq. (2.47) and assuming a uniform prior of
the models, p(P), I recover the Bayesian Information Criterion (BIC) [61]:

log p(P | D) ≈ log p(D | w) −
k

2
logN ≡ −2BIC(P). (2.48)

2.3.2 Numerical experiments on Bayesian regression analysis

The aforesaid Bayesian method has been applied to two "synthetic" datasets,
each consisting of 8000 samples of Gamma-Variance distributed stochastic pro-
cesses, y(xk). The synthetic datasets were generated from simple functions, sin
and tanh, with Gamma-variance noise added to create spectra compatible with
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Figure 2.7: The grey shaded area is the synthetic dataset, the solid black line displays
the signal. The solid red line and the red shaded area show the Bayesian
regression and its estimated statistical uncertainty. The upper and lower
panels address the synthetic datasets generated via sin and tanh functions,
respectively.

bona fide off-diagonal periodograms. The datasets are modeled with a cubic
spline [63], Θcs,

y(xk) ≈ Θcs (xk|w) =



C1(xk), x0 = 0 ⩽ xk ⩽ x1

...

Ci(xk), xi−1 ⩽ xk ⩽ xi

...

CP(xk), xP−1 ⩽ xk ⩽ xM

(2.49)

where Ci(x) are third order polynomials, with Ci(x
i−1) � wi−1; Θcs (xk|w) is

twice differentiable with respect to its argument, xk; w = {w0, . . . ,wP−1} rep-
resent the P parameters of the model optimized through Bayesian regression;
the inputs x0, . . . , xP−1 are the (fixed) values at which the spline is evaluated,
usually called knots. Notice the superscript labels that distinguish the knots
from the sample inputs.

The Likelihood function, that is the distribution of the data knowing the
model, is defined in Eq. (2.36). The optimal parameters are estimated via
Eq. (2.41), computing the expectation value as a Monte Carlo Markov Chain
(MCMC) average over the posterior distribution of the parameters, assuming
a uniform prior, as implemented in the emcee code [64, 65]. The results of
the Bayesian regression are displayed in Fig. 2.7, which shows that the spline
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Figure 2.8: Eq. (2.26) as a function of the number of the cubic spline knots. The vertical
red line highlights the minimum of the AIC function and indicated the
best model selected by the AIC. The upper and lower panels address the
synthetic datasets generated via sin and tanh functions, respectively.

model is expressive enough to capture the features of the signal. In order to
select the best number of parameters I apply AIC, Eq (2.26). The AIC function,
Eq. (2.26), is displayed in Fig. 2.8 for both datasets. AIC always selects a low
number of parameters, proving that a higher number of parameters would
only increase the variance on the prediction. The parameters, drawn from the
MCMC, pass the Shapiro-Wilk test at a level of significance of 0.05. The impact
of a Gaussian prior on the results has been studied. The optimal value of α is
selected by maximizing Eq. (2.44), under the assumption of a uniform p(α), as
introduced in Eq. (2.43). The right panels of Fig. 2.9 display log p(α | D) as a
function of the width of the Gaussian prior and its associated maximum. The
selected Gaussian priors do not alter the outcomes obtained with a uniform
one.
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Figure 2.9: Left panels: log p(α | D) estimated via Eq. (2.44) assuming a uniform dis-
tribution p(α). The vertical line indicates the maximum of log p(α | D)

and thus the optimal value of α. Right panels: distribution of the pa-
rameters sampled from the MCMC according to the posterior distribution,
p(w | D,α = 0). The red solid curve is the optimal prior, p(w | α), selected
maximizing log p(α | D). The upper and lower panels address the syn-
thetic datasets generated via sin and tanh functions, respectively.

2.4 bayesian extrapolation of static response functions

In condensed matter systems, because of the enforced PBC, only external peri-
odic perturbations are allowed. Thus, the response to a periodic perturbation
is of particular interest. In Eq. (1.82) I have showed that, in the long-wavelength
limit, some static response functions converge to well-defined thermodynamic
derivatives.

In order to extrapolate the long wavelength limit, I design a Bayesian linear
regression method. Let us consider the spatial Fourier transform, as in f(k) =
1
V

∫
V f(r)e

−ik·r dr, of the density of a conserved quantity, a(k) and b(k), and a
perturbation acting on the Hamiltonian: H′(Γ) = V3a(k)a(−k, Γ). The external
potential, 3a(k), acts as a tunable parameter. At first order in 3a(k), one has

⟨b(k)⟩ =
∫
b(k, Γ)e−β(H+H′) dΓ∫
e−β(H+H′) dΓ

≈
∫
b(k, Γ)e−βH (1−βV3a(k)a(−k, Γ))dΓ∫
e−βH (1−βV3a(k)a(−k, Γ))dΓ

≈ ⟨b(k)⟩0 −βV (⟨b(k)a(−k)⟩0 − ⟨b(k)⟩0 ⟨a(−k)⟩0) 3a(k).
(2.50)
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The static linear response function χab(k) is

χab(k) ≡
∂b(k)
∂3a(k)

∣∣∣∣
3a(k)=0

= −βV (⟨b(k)a(−k)⟩0 − ⟨b(k)⟩0 ⟨a(−k)⟩0) .
(2.51)

Static linear response theory determines the response of the thermodynamic
derivatives such as the dielectric constant, specific heats and the isothermal
compressibility. Because of the central limit theory, the estimator of Eq. (2.51) is
a Gaussian process. The static response function, χab(k) can be approximated
by a low-order polynomial of the wave-vector, k. In a liquid, isotropy dictates
that χab(k) is only a function of the modulus squared of its argument, k2:

χab(k) = w0 +w1k
2 + · · ·+wP−1k

2P−2, (2.52)

where w = {w0,w1, . . . ,wP−1} are the parameters to be optimized in the
Bayesian regression.

Because of PBC, from a single EMD trajectory with a cubic simulation cell, one
has access to an equispaced grid of k-vectors in reciprocal space. The bigger
the cubic simulation cell, the denser the grid becomes. Even in isotropic fluids,
a finite cubic simulation cell with PBC, reduces spherical symmetry to cubic.
In reciprocal space, the space Fourier transforms of the response functions
are symmetric under cubic transformations. The symmetry reduction, from
spherical to cubic, might affect finite size samples of wave-vector dependent
response functions, making estimates at wave-vectors with the same magni-
tude but not equivalent under cubic symmetry, incompatible. For example,
from a EMD trajectory with a cubic simulation cell of linear dimension L, finite
size effects might appear at k-vectors: 2π

L (2, 2, 1) and 2π
L (3, 0, 0). In isotropic

systems, the infinite size limit of the wave-vector dependent response func-
tions must only depend on the modulus of the probed wave-vector.

A simple Bayesian linear regression procedure can be applied to evaluate
the long-wavelength limit of Eq. (2.52). Since the estimator of Eq. (2.51) is
Gaussian, the Likelihood distribution function reads

p(D | w) = exp

{
−

N∑
i=1

(
χiab − wΘi

)2

2σ2i

}
, (2.53)

where χiab = χab(ki) is the estimated response function at wave-vector ki, Θ
is the basis set of monomials of even degree, Θi ≡ Θ(ki) = {1,k2i , . . . ,k2P−2

i },
σ2i is the variance associated to χiab computed via block analysis. As discussed
in Sec. 2.3, the posterior distribution is computed thanks to Bayes theorem,
Eq. (2.40). The prior distribution of the parameters is Gaussian parametrized,
by a real positive number α, Eq. (2.42). Since both the prior and the Likeli-
hood distributions are Gaussian, the posterior is Normal with mean µ and
covariance matrix Σ:

p(w | D,α) =

(
1√
2π|Σ|

)P

e−
1
2 (w−µ)†Σ−1(w−µ). (2.54)
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After some algebra, one has [61]

µ = ΣΦ†y (2.55)

Σ−1 = α1 +Φ†Φ, (2.56)

where I define y ≡ {
χi
ab

σi
} to be the vector of the elements in the dataset D and

Φi ≡ Θi

σi
. Furthermore, the posterior distribution of the hyper-parameter α,

Eq. (2.44), is [61]

p(D | α) =

(
1

2π

)N/2 ( α
2π

)P/2 ∫
e−E(w) dw (2.57)

E(w) =

N∑
i=1

(yi − wΦi)
2

2
+
α

2
∥w∥2. (2.58)

The integral in Eq. (2.57) reads

( α
2π

)P/2 ∫
e−E(w) dw = e−E(µ) (2π)P/2 |Σ|

1/2 (2.59)

and the log-posterior of α is

log p(D | α) =
P

2
logα− E(µ) −

1

2
log
∣∣Σ−1

∣∣− N
2

log 2π. (2.60)

I select the optimal prior maximizing Eq. (2.60) [61]. Under the hypothesis that
p(α | D) is extremely peaked around its maximum, α, I can write

p(D | P) =

∫
p(D | w)p(w | α,P)p(α)dw dα (2.61)

=

∫
p(D | α,P)p(α)dα (2.62)

≈ p(D | α,P)p(α). (2.63)

Since p(α) does not depend on P, the optimal number of parameters is the
one which maximizes p(D | α,P).

In order to validate the long-wavelength Bayesian extrapolation of static
response functions, I compute the dielectric constant, the specific heat at con-
stant pressure and isothermal compressibility of 544 rigid TIP4P/2005 water
molecules at ambient conditions [66]. The TIP4P/2005 force field is well known
to approximate accurately some thermodynamic properties of water [66–73].
Furthermore, the TIP4P/2005 model associates fixed point charges to the
atoms. I generate 1 ns-long EMD trajectories, integrated using the velocity-
Verlet algorithm with a time step of 0.5 fs as implemented in the LAMMPS

code [50]. In the simulations, I equilibrate the system in the NPT ensemble
at 350 K and 0 bar for 100 ps. After the equilibration run, from the 1 ns-long
NVE trajectory, I sample heat, charge and, number density every 50 fs. The
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long-wavelength limit of static response functions coincide with standard fluc-
tuation methods [14, 74]:

1−
1

ϵ
=
∂P

∂D
=
4πV

kBT
lim
k→0

⟨ρ̂(k)ρ̂(−k)⟩NVE,D

k2
= lim

k→0
χ(k), (2.64)

= 1−
kBT

4πV⟨P2⟩NVE,E
, (2.65)

cp =
1

N

(
∂H

∂T

)

p

=
V

nkBT2
lim
k→0

⟨q̂(k)q̂(−k)⟩NVE = lim
k→0

cp(k), (2.66)

=
1

NkBT2

〈
∆H2

〉
NPT

, (2.67)

κT = −
1

V

(
∂V

∂p

)

T

=
V

n2kBT
lim
k→0

⟨n̂(k)n̂(−k)⟩NVE = lim
k→0

κT (k), (2.68)

=
1

VkBT

〈
∆V2

〉
NPT

(2.69)

where ρ, q and, n are the charge, heat and number densities, respectively, P is
the macroscopic dipole,N is the number of particles, and, "NVE, E" and "NVE,
D" indicate the microcanonical ensembles where the internal electric field and
the applied field are fixed, respectively. The results of the simulations are dis-
played in Fig. 2.10, showing satisfactory agreement between Bayesian long-
wavelength extrapolations, Eqs. (2.64) (2.66) (2.68), and standard fluctuation
methods, Eqs. (2.65) (2.67) (2.69) [14, 74, 75].

Responses to homogeneous perturbations are not compatible with PBC but
they can be estimated as the long wavelength limits of wave-vector dependent
correlation functions. As proved in Fig. 2.10, the Bayesian regression protocol
allows to evaluate the k → 0 limit and its error bar efficiently.
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Figure 2.10: The black dots are estimates of isobaric specific heat, cp, isother-
mal compressibility, κT , and dielectric constant, ϵ, computed through
Eqs. (2.64) (2.66) (2.68), of liquid TIP4P/2005 water at 350 K and 0 bar. The
solid red line and the shaded red area are the Bayesian regression analy-
ses and their statistical errors, fitted on Eqs. (2.64) (2.66) (2.68). The blue
dots are the results of the fluctuation formulas, Eqs. (2.65) (2.67) (2.69).
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S E E B E C K C O E F F I C I E N T O F C L A S S I C A L F L U I D S

I
n this chapter, I address thermoelectric effects in classical fluids. The
thermopolarization coefficient of liquid water is studied in the frame-
work of static linear response theory and computed via a tailored

Bayesian linear regression scheme. In order to estimate the Seebeck coefficient
in ionic conductors, we develop a Bayesian protocol based on the statistical
properties of the thermoelectric Green Kubo estimator. Finally, we extend the
Bayesian strategy proposing a comprehensive statistical model able to address
the entire Onsager matrix.

3.1 thermopolarization effect in insulating polar fluids

3.1.1 Thermopolarization effect from static response theory

Thermopolarization is of great theoretical and experimental interest [40–42,
75–85]. The response in polarization to a thermal field can be studied via
EMD or NEMD simulations. Applying a thermal gradient in a simulation cell
is a delicate procedure. In most calculations, a sink and source heat region,
thermostatted at two different temperatures, are identified at the edges and in
the middle of the simulation box, respectively [40–42, 76–82]. The temperature
difference between the center and the edges must be small so that second
and higher order responses are negligible, but large enough to observe a non
zero signal. For these reasons, estimating the statistical uncertainty in a NEMD

run is challenging. A static approach, based on linear response theory, for the
computation of the thermopolarization coefficient is possible [75]. The Seebeck
effect describes the electric field induced by a temperature gradient when no
electric current flows [1, 21, 86, 87]:

J = σE −K12/T∇T
Jq = K12eE − Lqq∇T ,

(3.1)

S ≡ E

∇T

∣∣∣∣
J=0

. (3.2)

where E and ∇T are any Cartesian components of the electric field and temper-
ature gradient, J is the electric current, Jq is the heat current, e is the electron
charge and {σ;K12;Lqq} are the Onsager coefficients as defined in Ref. [86].
The Seebeck coefficient is the ratio of one off-diagonal and one diagonal On-
sager coefficient:

S =
K12

σT
. (3.3)

39
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In polar insulating fluids, an even in solid insulators, the ratio is an indeter-
minate form 0

0 . In these systems one cannot compute the Seebeck coefficient
from the Onsager matrix, thus a new method is needed. An homogeneous
temperature gradient is incompatible with PBC enforced in EMD simulations.
One has to consider only periodic thermal perturbations commensurate with
PBC. The equivalent mechanical perturbation that mimics a temperature inho-
mogeneity must induce the same unbalance in the heat density, q, defined in
Eq. (1.62), [12]

Ĥ′ = −
V

T
q̂(k)T ′(−k), (3.4)

where T ′(r) = T(r) − T is the deviation from the average temperature. Thanks
to Gauss law, the Fourier transform of the polarization is P (k) = ikρ(k)/k2.
Analogously, the Fourier transform of the temperature gradient reads: ikT(k).
In absence of external charges, the total field coincides with the polarization
one. Therefore, for the Seebeck coefficient, one has:

S = lim
k→0

S(k), where (3.5)

S(k) = −
4π

k2
χqρ(k), (3.6)

χqρ being the charge-temperature susceptibility. Thanks to static linear re-
sponse theory, the charge-temperature susceptibility is the equal-time corre-
lation function between heat and charge density:

χρq(k) ≡
∂ρ(k)
∂T(k)

=
V

kBT2
⟨q̂(k)ρ̂(−k)⟩0 .

(3.7)

The heat density depends on the microscopic decomposition of energy into
local contributions. The energy density can be redefined by adding the diver-
gence of a bounded vector, p: e(r) → e(r) +∇ · p(r) [19, 44, 88]. Under the
assumption that p is the gradient of a scalar field, the k → 0 limit of Eq. (3.5)
is unaffected by this gauge freedom [75].

3.1.2 Bayesian regression analysis of the thermopolarization coefficient of liquid wa-
ter

The static linear response approach is tested by computing the thermopolar-
ization coefficient of liquid water at 400 K and 0 bar via Eq. (3.5) (3.6) and
comparing the results to state-of-the-art NEMD calculations [76]. I simulate liq-
uid water in a 0.5 ns-long EMD trajectory with 512 SPC/E water molecules [75,
89]. The SPC/E model assumes fixed OH bond distance and HOH angle, and
assigns fix-point charges to the atoms. The equations of motions are integrated
via the velocity-Verlet algorithm with a time-step of 0.25 fs, as implemented
in LAMMPS[50].
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Figure 3.1: Wave-vector dependence of the Seebeck coefficient, S(k), Eq. (3.6), of SPC/E
water at T = 400 K and 0 bar [75]. The data are averages over equivalent
wave-vectors. The red line is our Bayesian polynomial fit and the shaded
area indicates the predicted uncertainty. At k = 0 I report the extrapola-
tion and the value obtained by Wirnsberger et al. [76] via NEMD. Figure
reproduced from Ref. [75].

The samples of the wave-vector dependent Seebeck coefficient, Eq. (3.7), are
averages computed over the trajectory and therefore are Gaussian variables
whose variance decreases increasing the trajectory’s length. In order to extrap-
olate the long-wavelength limit in Eq. (3.5), I employ the Bayesian extrapo-
lation method detailed in Sec. 2.4. I approximate Eq. (3.6) with a low order
polynomial, defined in Eq. (2.52),

S(k) ≈ w0 +w1k
2 +w2k

4 · · ·+wPk
2P.

The procedures for prior optimization and model selection are described in
Sec. 2.4. The outcomes of Eq. (3.6) and the Bayesian linear regression results
are displayed in Fig. 3.1. The long-wavelength limit, Eq. (3.5), is in good agree-
ment with previous state-of-the-art NEMD calculations [76]. In Fig. 3.2, I dis-
play the optimal model selection procedure by showing the probability of
the number of parameters after optimizing the prior distribution, discussed
in Eq. (2.60) [61, 75]. Fig. 3.2 shows that the model selection protocol is cru-
cial to prevent over-fitting. Considering a dataset containing 29 elements, the
Bayesian analysis selects the model with 3 parameters.

The optimal number of parameters and the limk→0 S(k) prediction are de-
pendent on the maximum k-vector included in the Bayesian regression. Under
the assumption that the wave-vectors are sufficiently small in magnitude, the
long-wavelength extrapolation and the optimal number of parameters should
converge as one enlarges the dataset on which the regression is performed.
Fig. 3.3 shows the convergence of the prediction and of the selected optimal
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Figure 3.3: Upper panel: Bayesian linear regression prediction of the k = 0 value of
the Seebeck coefficient of SPC/E water at T = 400 K and 0 bar, as a function
of the maximum magnitude of the k-vectors, kmax [75]. The NEMD result
from Ref. [76] is also reported. Lower panel: Optimal number of parame-
ters of the Bayesian regression fit as a function of kmax. Figure reproduced
from Ref. [75].

number of parameters, as a function of the k-vector with maximum magni-
tude, kmax, included in the fit. The outcomes prove that our method is numer-
ically stable.

The size effects of Eq. (3.6) are estimated computing the Seebeck coefficient
from a 0.5 ns-long simulation with 1728 SPC/E water molecules at 400 K and
0 bar. Fig. 3.4 presents the outcomes of the investigation of larger box sizes,
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Figure 3.4: Wave-vector dependence of the Seebeck coefficient, S(k), Eq. (3.6), of 512
and 1728 SPC/E water molecules at T = 400 K and 0 bar [75]. The data are
averages over equivalent wave-vectors.

highlighting that the statistical uncertainty of Eq. (3.6) increases when probing
wave-vectors of smaller magnitudes. Additionally, the analysis does not re-
port significant size effects. Since numerical estimates of Eq. (3.6) at k-vectors
with small magnitudes have larger error bars, the brute force extrapolation
of the long-wavelength limit —simulating large systems— would have been
challenging. Bayesian regression allows to estimate the long-wavelength limit
and its statistical uncertainty from small box-sizes and short EMD simulations,
reducing the computational burden of the numerical method.

Since the Bayesian procedure is stable and accurate for the extrapolation
of long-wavelength limits of periodic static response functions, I investigate
the Seebeck coefficient of liquid SPC/E water in a wide temperature-pressure
range and compare our results with previous NEMD calculations [75, 80]. The
long-wavelength extrapolations of the Seebeck coefficient, reported in Fig. 3.5,
are in good agreement with NEMD results [75, 80].

In this section I proved that the polarization induced by a temperature gra-
dient is a quasi-equilibrium effect [75]. In a polar insulating fluid, after being
perturbed by a temperature gradient, the dielectric degrees of freedom equi-
librate in a microscopic time scale, compared to the one of hydrodynamic
variables, thus allowing to apply static linear response theory to thermopo-
larization effects. I benchmarked the static approach against state-of-the-art
NEMD simulations of water [76, 77], showing that the protocol is valid and
predictive. Leveraging on Bayesian linear regression methods, I estimated the
long-wavelength limit in Eq. (3.5), overcoming some of the numerical difficul-
ties of large-size extrapolations [75].

In conclusion, on the applicative side, in the presence of large temperature
gradients, water can display huge polarization, especially if the electric suscep-
tibility of the fluid is enhanced by complex polar molecules. This conditions
has been recently reported in mitochondria, the furnaces of the cell [90]. In-
deed, a temperature drop of about 10 ◦C was allegedly observed across the
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Figure 3.5: Upper panel: Seebeck coefficient, S, Eq. (3.5), estimated at various
temperature-pressure conditions, via Bayesian linear regression [75].
The results are compared with NEMD simulations in Armstrong et al.
[80]. Lower panel: Mass density of SPC/E water evaluated at different
temperature-pressure conditions and compared with Armstrong et al. [80]
at 350 bar [75]. Figure reproduced from Ref. [75].

intermembrane space whose extent is of the order of 10 nm [90]. Even if the
claim has been mitigated by others [91, 92], cellular metabolism requires huge
amounts of energy and may be the source of large thermal gradients [90–92].
The numerical simulations of SPC/E water suggest a electromotive force of
2–6 mV generated by a 4–12 ◦C temperature drop across a 12 nm slab. In
order to draw definitive conclusions on the thermoelectric properties of mito-
chondria, too little is known about the temperature distribution in the cell and
on the composition of the intermembrane fluid. Further investigations might
shed some light on the thermoelectric interplay in the cell metabolism mecha-
nism, which could open unexplored avenues for molecular simulations in life
science [75].
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3.2 thermoelectric effects in ionic conductors

3.2.1 Seebeck effect and thermoelectric transport in ionic conductors

In Sec. 3.1, I addressed the polarization induced by a temperature gradient
in polar fluids. In such systems, charge transport is forbidden. Conversely, in
ionic conductors charged ions diffuse. In insulators, the Seebeck effect is a
quasi-equilibrium phenomenon, whereas in conducting systems, it is related
to charge transport. In ionic conductors, when a temperature gradient, or an
electric field, is applied, charge transport occurs. The Onsager equations in
Eq. (3.1) set a linear relation between the external thermodynamic forces and
the induced currents:

J = σE −K12/T∇T
Jq = K12eE − Lqq∇T ,

In Eq. (1.60), the heat current, Jq, depends on the partial enthalpies, hi:
Jq = Je −

∑
i hiJi. The method used for the calculation of the partial en-

thalpies is based on the discussion presented in Refs. [22–24] and is reviewed
in Appendix C [21]. I am interested in thermoelectric phenomena, such as the
application of an electric field and the corresponding rise of the heat current,
or viceversa, of a temperature gradient and the resulting diffusion of ions. The
Seebeck effect describes the electric field generated by a temperature gradient
in absence of an electric current. Depending on open or closed circuit condi-
tions, the Seebeck effect refers to completely different processes [93, 94]. After
a temperature gradient is applied, a conducting closed system (open circuit)
initially transports charge. In the long-time limit the system polarizes, and
eventually, no electric current flows. In a open system (closed circuit), a steady
electric current rises. To achieve zero net current, I must impose an electric
field to counterbalance the electric flow induced by the temperature gradient.
Here, I study closed circuit conditions: the Seebeck effect refers to the electric
field that must be applied to an open system, perturbed by a temperature gra-
dient, in order to obtain zero net electric currents [93]. The Seebeck coefficient,
Eqs. (3.2) (3.3), is defined as

S ≡ E

∇T

∣∣∣∣
J=0

=
K12

σT
.

Although NEMD simulations directly implement thermodynamic forces,
they require careful checks to avoid size effects and, second and higher order
responses [43, 95–97]. In this section I analyze the statistical and numerical
challenges of the calculation of the Seebeck coefficient through EMD simula-
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tions. The GK theory provides a solid theoretical background for computing
Onsager coefficients, Eqs. (1.74) (1.77) (2.8),

σ =
V

3kBT

∫∞
0

〈
Ĵ(t) · Ĵ(0)

〉
0

dt ,

K12 =
V

3kBT2

∫∞
0

〈
Ĵ(t) · Ĵq(0)

〉
0

dt ,

Lqq =
V

3kBT

∫∞
0

〈
Ĵq(t) · Ĵq(0)

〉
0

dt .

(3.8)

As discussed in Sec. 2.1, the numerical evaluation of Onsager coefficients via
the GK integrals is far from trivial. The block analysis of HE and GK integrals
requires long EMD trajectories to reach convergence and reasonable error bars.
Thanks to the Wiener-Khintchine theorem [51, 52], the GK integrals can be
rewritten as the 0-frequency limit of the PSD, Eq. (2.30),

Sij(ω) =

∫∞
0

〈
Ĵi(t) · Ĵ j(0)

〉
eiωt dt ,

where Ji can be any current entering the Onsager equations, in the present
case Ji = {J ,Jq}.

3.2.2 Bayesian regression analysis of the Seebeck coefficient

We apply the tools developed in Sec. 2.3 to compute the Seebeck coefficient
through GK theory [46]. The off-diagonal elements of the periodogram ma-
trix, Eq. (2.33), are distributed according to the Gamma-variance distribution,
whose probability density, defined in Eq.(2.34), is

p
(
S
cq
k

)
=

∣∣Scqk
∣∣ν−1

2

Γ
(
ν
2

) √
2ν−1π(1− ρ(ωk)2)[σ(ωk)Lqq(ωk)]

ν+1
4

×Kν−1
2

( ∣∣Scqk
∣∣

[σ(ωk)Lqq(ωk)]1/2(1− ρ(ωk)2)

)

× exp
{

ρ(ωk)S
cq
k

[σ(ωk)Lqq(ωk)]1/2(1− ρ(ωk)2)

}
,

(3.9)

where Scq is the charge-heat component of the periodogram. σ(ω) and
Lqq(ω) are the PSD of the charge and heat fluxes, reported in Eq. (3.8). The
correlation coefficient estimator is

ρ̂k = Ŝcqk (σ(ωk)Lqq(ωk))
−1/2. (3.10)

ρ̂k is independent across different frequencies and its probability density is
reported in Eq. (2.36).

We define a Bayesian regression analysis to filter ρ̂k. The model of ρ(ω), de-
fined in Eq. (2.36), is a cubic spline, Θcs in Eq. (2.49), ρ(ω) ≈ Θcs (ω|θ), [46, 63].
The parameters of the model, θ = {θ0, . . . , θP−1}, are optimized via Bayesian
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regression as explained in Sec. 2.3. We identify Eq. (2.36) with the Likelihood
distribution of the Bayesian regression procedure [46]. Since correlation coef-
ficients are independent across different frequencies, the Likelihood distribu-
tion reads p({ρk} | θ) =

∏
k p(ρk | θ). The expectation value of the parameters

over the posterior distribution, defined in Eq. (2.41), is estimated as a MCMC

average implemented in the emcee code [64], assuming a uniform prior. The
convergence of the MCMC is carefully checked analyzing the autocorrelation
time of the Monte Carlo realizations, τMCMC, making sure that the length of
the chain, N, is N > 100τMCMC [46]. The Seebeck coefficient reads

S =
1

T

〈
θ̂0

〉
p(θ|{ρk})

√
Lqq(0)

σ(0)
. (3.11)

The optimal number of parameters of the spline model, Θcs in Eq. (2.49), is
selected via AIC, Eq. (2.26),

AIC(P) = −2max
θ

log [p({ρk} | θ,P)] + 2P. (3.12)

As in Ref. [46], Lqq(0) and σ(0) are computed via cepstral analysis, described
in Sec. 2.2. Since the correlation coefficient is a even function of the frequency,
a model with P parameters corresponds to a spline with 2P− 1 knots.

We compute the Seebeck coefficient of molten CsF, NaCl, KCl, LiCl at differ-
ent pressure-temperature conditions from EMD simulations performed using
LAMMPS [46, 50]. The CsF system is modeled with a sample of 512 atoms in-
teracting through the Born-Mayer-Huggins-Tosi-Fumi force field [47–49]. We
equilibrate the systems in the NpT ensemble for 200ps and in the NVT en-
semble for 200ps [46]. The fluxes are harvested from NVE trajectories whose
length ranges from 40 to 400ns. Energy and charge fluxes are sampled every
fs.

As a benchmark, we estimate the Seebeck coefficient of molten CsF at 1400 K
and 0 bar via the GK formula from a 40 ns long trajectory [46]. The reference GK

result is estimated via block analysis over 1ns-long segments. In Fig. 3.6, we
compare, as a function of the length of the trajectory, τ, the Seebeck coefficient
computed via Bayesian regression and block analysis [46]. The Bayesian esti-
mate converges rapidly to the reference one. The variance of both methods is
displayed in Fig. 3.7, which proves that Bayesian regression analysis yields an
efficient estimator of the Seebeck coefficient, whose variance decreases increas-
ing τ. Compared to block analysis, Bayesian regression is almost one order of
magnitude more efficient, allowing trajectory lengths to be limited to a few
nanoseconds.

To further investigate the statistical properties of the Bayesian regression es-
timator, we analyze the distribution of the Bayesian regression results obtained
from 200 2 ns-long EMD simulations of molten CsF at 1200 K and 0 bar [46].
In Fig. 3.8 we present the distribution of the outcomes: the solid red line is
a Gaussian curve fitted to the raw data while the solid green line is a Gaus-
sian centered on the average of the predictions with its width estimated from
the average of the predicted statistical uncertainties [46]. The two curves are
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Figure 3.6: Seebeck coefficient of CsF at 1400K and 0 bar computed from GK and
the Bayesian regression as a function of the length of the equilibrium MD
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Figure 3.7: Variance of the Seebeck coefficient of CsF at 1400K and 0 bar computed
from GK and the Bayesian regression as a function of the length of the
equilibrium MD trajectory. The dashed line indicates the τ−1 scaling.

in good agreement, showing that the Bayesian standard deviation is compat-
ible with the true one. The Bayesian regression analysis outcomes pass the
Shapiro-Wilk normality test with a level of significance of 0.05 [58].

By properly modifying the Likelihood function, Bayesian regression can ad-
dress diagonal elements of the periodogram matrix, defined in Eq. (2.14) [46].
In Fig. 3.9, we display the periodogram of the electric current, defined in
Eqs. (2.9) (2.14), of molten CsF at 1400K and 0 bar, obtained from a 5ns EMD

simulation [46]. The Bayesian regression analysis is in good agreement with
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Figure 3.8: Distribution of the Bayesian estimates of the Seebeck coefficient extracted
from 200 2ns-long trajectories of CsF at 1200K and 0 bar, and the p-value
of the Shapiro-Wilk normality test. The solid red line is a Gaussian curve
fitted on the distribution of the Bayesian predictions while the solid green
line is a Gaussian curve centered on the average of the predictions with,
as standard deviation, the average of the uncertainty estimated from the
Bayesian analysis. The vertical gray band represent the reference GK esti-
mate of the Seebeck coefficient estimated via block analysis from a 40ns-
long simulation [46]. Figure reproduced from Ref. [46].

the cepstral filter on the same data. Compared to the virtually negligible cost
of cepstral analysis, implementing MCMC significantly impacts the computa-
tional efficiency of the Bayesian method.

After careful benchmarks on CsF, we extend the study to molten NaCl, KCl,
and LiCl under several pressure-temperature conditions [46]. NaCl, KCl, and
LiCl are simulated with a sample of 1000 atoms modeled with the Deep Poten-
tial Molecular Dynamics (DeePMD) neural network interatomic potential [99–
101]. The Hamiltonian equations of motion are integrated using the Velocity-
Verlet algorithm with a 1 fs time step, as implemented in LAMMPS [50]. We
equilibrate the systems in the NpT ensemble for 500ps and in the NVT en-
semble for 200ps. After equilibration, energy [28] and electric currents are
harvested from a 2ns NVT [102] trajectory sampled every 2.5 fs [46]. Machine
learning potentials do not feature explicit atomic charges. Thanks to the gauge
invariance principle of transport coefficients, integer oxidation charges can be
assigned to the atomic species to estimate Onsager coefficients [19, 103, 104].
Fig. 3.10 displays the Seebeck coefficient of molten CsF, NaCl, KCl, LiCl at
several temperature-pressure conditions. The Bayesian regression analysis on
NaCl and KCl shows order of magnitude-agreement with experimental mea-
sures of thermopower reported in Ref. [105]. It is interesting to notice that the
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Figure 3.10: Seebeck coefficient of molten LiCl, CsF, NaCl and KCl as functions of
pressure and temperature [46]. The Seebeck coefficient has been esti-
mated via the Bayesian regression analysis as detailed in the text. Figure
reproduced from Ref. [46].

Seebeck coefficient change sign between LiCl and the other molten salts. In-
deed, an isotopic effect has been reported to affect the Seebeck coefficient [106].
In the case of LiCl and CsF, the change in sign is possibly due to the consider-
able inverted anion-cation mass ratio.

Via extensive MCMC sampling, the Bayesian regression protocol yields a con-
sistent and accurate estimator of the Seebeck coefficient [46]. The procedure
leverages Bayesian regression to tackle off-diagonal —as well as diagonal—
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Figure 3.11: Heat conductivity of α (upper panel) and β (lower panel) LPS at different
temperatures computed by NLL Bayesian regression analysis and com-
pared to the results of Ref. [55].

transport coefficients from moderately-long EMD simulations. Being able to
address the Seebeck effect, the Bayesian approach inaugurates a novel strat-
egy to assess thermoelectric efficiency of ionic materials from relatively short
EMD simulations [45, 46].

3.2.3 Bayesian regression analysis of transport coefficients

Spectral methods target the statistical properties of the periodogram matrix,
defined in Eq. (2.33), enabling the efficient computation of transport coeffi-
cients from relatively short EMD simulations [44, 75]. A single statistical model
can address the entire Onsager matrix in a all-encompassing Bayesian regres-
sion protocol [45]. Some of the numerical drawbacks of EMD methods de-
scribed in Sec. 2.1, Sec. 2.2 and, Sec. 3.2.1 can be partially lifted by a com-
prehensive Bayesian regression analysis [45].

The probability density of a Wishart-distributed stochastic process, e. g. Ŝk

defined in Eq. (2.33), is:

p(Sk) =
(det{Sk})

(ℓ−M−1)/2e−Tr(S(ωk)
−1Sk)/2

2
ℓM
2 (det S(ωk))ℓ/2ΓM( ℓ2)

, (3.13)
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Figure 3.12: Electric conductivity of α (upper panel) and β (lower panel) LPS at dif-
ferent temperatures computed by NLL Bayesian regression analysis and
compared to the results of Ref. [56].

where M is the number of thermodynamic fluxes, ℓ is the number of equiv-
alent realizations of the currents, in a isotropic system ℓ equals 3, and S is a
M×M positive-definite matrix.

One can design a single Bayesian model to infer the entire periodogram ma-
trix [45]. For the Bayesian regression of the periodogram matrix, Eq. (3.13)
is chosen as the Likelihood distribution. In order to impose positive def-
initeness, S(ω) is rewritten as the product of a triangular matrix, C(ω):
S(ω) = C(ω)C(ω)T . We model each entry of C(ω) using a spline with P knots,
as defined in Eq. (2.49) [45]. Building on the discussion detailed in Sec. 2.3 and
Sec. 3.2, we estimate the optimal value of the parameters from their posterior
distribution, Eq. (2.41), assuming a uniform prior [45]. Because of the com-
putational cost of the MCMC [46], here we evaluate the optimal value and the
variance of the parameters minimizing the Negative Log-Likelihood (NLL) in
the Laplace approximation [45, 107]. The minimization usually requires far
fewer steps than the MCMC to achieve convergence. In the Laplace approxima-
tion, the covariance matrix of the parameters is derived expanding the NLL to
second order [107]. The optimal number of knots of the spline is selected via
AIC, as discussed in Eq. 3.12 and Sec. 2.2.

The NLL method is tested computing the transport coefficients of Li3PS4

(LPS). LPS is recognized as one of most promising compounds in the family
of sulfide Solid State Electrolyte (SSE) [55, 56], in which the Li ions diffuse
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periodogram computed from a 5 ns-long trajectory of α-LPS at 400 K. The
black solid line indicates a WF of width 0.01 THz and the red dotted line
is the NLL Bayesian regression analysis.

while the other atoms maintain a well-defined solid structure. LPS is present
in three different phases: α, β and γ [108–113]. The inter-atomic potential of
LPS is fitted via the machine learning neural network Neuroevolution Potential
(NEP), as discussed in Appendix D. Even if the γ phase is the most stable at
room temperature, it is the least conducting [56]. For this reason, we disregard
the analysis of the γ phase. α and β-LPS are simulated in a wide range of
temperatures [45, 56]. The trajectories are integrated via the velocity-Verlet
algorithm as implemented in the GPUMD code with a 0.5 fs time step [114–
116]. LPS is modeled with a sample of 6144 atoms and equilibrated in the NVT
ensemble for 10 ns [102]. After equilibration, the production data are harvested
every time-step from a 5 ns-long NVT trajectory [102]. The NEP force field is
not able to predict atomic charges. Thanks to the gauge invariance of transport
coefficients, we can assign oxidation charges to the atoms without affecting the
Onsager matrix [19, 46, 104].



54 seebeck coefficient of classical fluids

0

−2

−4

S
[m

V
K
−

1
]

α-LPS

β-LPS

400 600 800
T [K]

10−2

10−1

100

Z
T

Figure 3.14: Seebeck coefficient (upper panel), figure of merit (lower panel) of α and
β-LPS, computed via NLL Bayesian regression analysis, as a function of
temperature.

In Fig 3.11 and Fig. 3.12, we validate the NEP by computing, via the NLL

Bayesian regression method, the electric and heat conductivity of α and β-LPS

in a wide range of temperatures [45]. The NLL results are in good accordance
with previous calculations [55, 56]. The slight deviation visible in Fig 3.11-
3.12, can be due to the smaller box sizes considered in Ref. [55, 56]. The
NLL approach yields an accurate estimator of diagonal elements of the peri-
odogram matrix and is computationally more efficient than the MCMC method
discussed in Ref. [46]. The Bayesian regression of the entire periodogram ma-
trix is based on the statistical properties of a Wishart process. The NLL analysis
of the periodogram of α-LPS at 400 K is reported in Fig. 3.13. The results are
in good agreement with the Window Filter (WF) applied to the raw data, prov-
ing that the spline model is expressive enough to capture the features of the
periodogram.

The Seebeck coefficient and heat conductivity of a multi component system,
Eqs. (3.3) (1.76), are not Onsager coefficients, but can be derived easily from
the periodogram [15, 45, 46]. In Fig. 3.14 we display the Seebeck coefficient
and figure of merit of α and β-LPS in a wide range of temperatures [45]. The
figure of merit, ZT = S2σ

κ T , is a measure of thermoelectric efficiency [117,
118]. ZT depends dramatically on S and its typical values range between 10−3

—poor thermoelectric material— to 1 —excellent thermoelectric material—.
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α and β-LPS demonstrate competitive thermoelectric performance [117, 118].
The best efficiency is achieved at relatively high temperatures, which in part
overshadows the good thermoelectric properties of LPS. Bayesian analysis is
able to access the information stored across all frequencies of the periodogram.
The Laplace approximation of the NLL reduces the computational cost of the
optimization procedure compared to MCMC [45, 107]. A single statistical model
filters the Onsager matrix, accounting for the different statistical properties of
the periodograms.





4
T H E R M A L T R A N S P O RT I N S O L I D A N D L I Q U I D
I N S U L AT O R S

I
n quasi equilibrium conditions, the hydrodynamic equations govern
the relaxation of the densities of conserved extensive variables. In
this chapter, I study heat propagation in solids and liquids. In 1994,

Palmer proposed to extrapolate thermal conductivity through energy density
fluctuations. We review this approach and overcome some of its numerical dif-
ficulties thanks to cepstral analysis. The energy density fluctuations method is
compared to a recently proposed technique, which instead addresses mass
density fluctuations. Next, I briefly overview the Quasi-Harmonic-Green-
Kubo theory of heat transport in solids. Careful numerical simulations on
large harmonic models of glasses reveal disorder-induced Rayleigh scattering
at low frequencies. When considering only Rayleigh scattering in harmonic
disordered systems, the predicted thermal conductivity diverges at all temper-
atures, irrespective of configuration disorder.

4.1 extrapolation of thermal conductivity from energy den-
sity fluctuations

In this section, I describe how to estimate transport coefficients employing
density rather than current fluctuations. In 1994, Palmer proved that the re-
gression of density fluctuations towards equilibrium is related to transport
coefficients, which are usually derived from standard GK theory [119, 120].
As Palmer pointed out, the dynamics of the fluctuations is numerically hard
to estimate from EMD simulations. Additionally, in the case of heat transport,
energy density depends on the arbitrary partitioning of the total energy into
atomic contributions [15, 119, 120].

In single component materials, the hydrodynamic equations governing the
evolution of the densities are particularly simple [14]. In these systems, energy
is uncoupled to other conserved quantities. Under these conditions, energy
transport is a diffusive process [14]:

1

ω
χ′′nn(k,ω) =m

∂n

∂p

∣∣∣∣
T

[
cv/cpc

2k4ΓB

(ω2 − c2k2)2 + (ωk2ΓB)2
+

(1− cv/cp)k
2DT

ω2 + (k2DT )2
−

(
1−

cv

cp

)
(ω2 − c2k2)k2DT

(ω2 − c2k2)2 + (ωk2ΓB)2

]

(4.1)

1

ω
χ′′qq(k,ω) =mncpT

k2DT

ω2 + (k2DT )2
(4.2)
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where q is the heat density, n is the number density, DT = κ
mncp

, ΓB = Dl +

DT (cp/cv − 1) is the Brillouin peak and the other parameters are defined as
in Eqs. (1.83), (1.85), (1.84). Leveraging the hydrodynamic functional form of
the density-density correlation function, 1

ωχ
′′
nn, Cheng and Frenkel proposed

an accurate method to infer thermal conductivity of normal fluids from the
wave-vector dependent width of the Rayleigh and Brillouin peaks [121],

γR(k) = DTk
2 (4.3)

γB(k) =
1

2
(Dl +DT (cp/cv − 1)) k

2. (4.4)

As a practical downside, the ratio between the intensities of the Brillouin
and Rayleigh peak —the Landau Planczek (LP) ratio RLP = (cp/cv − 1)— van-
ishes in incompressible fluids. For these systems, the analysis of the number
density autocorrelation function does not provide any insight on the transport
of heat [121]. Thanks to the work of Cheng, Frenkel and Palmer [14, 119–121],
we develop a numerical technique for the extrapolation of thermal conductiv-
ity from energy density fluctuations in normal systems which overcomes some
of the numerical drawbacks highlighted by Palmer and is applicable also to
incompressible fluids and solids [122].

The Energy Density Structure Factor (EDSF), C̃(k,ω), is defined as

1

ω
χ′′ee(k,ω) =

1

2kBT
C̃(k,ω), (4.5)

C̃(k,ω) = V

∫∞
−∞ ⟨ê(k, t)ê(−k, 0)⟩ eiωtdt. (4.6)

The continuity equation links in a very simple fashion the energy density, e,
and current, j, correlations: C̃ee(k,ω) = k2

ω2 C̃jj(k,ω). Thus, the extrapolation
of heat conductivity from energy fluctuations is equivalent to the usual GK

formula. In the hydrodynamic regime, the correlation function of the energy
density is

C̃(k,ω) = kBT
2k

2DTmncp

ω2 + k4D2
T

. (4.7)

Therefore, heat conductivity can be extrapolated as:

κ = lim
k→0

κ(k), (4.8)

κ(k) =
kBT

2

k2
(mncp)

2

C̃(k,ω = 0)
. (4.9)

On the theoretical side, as introduced by Palmer in 1994 [119, 120], this ap-
proach is simple and straightforward since it only assumes energy to be a
diffusive process. On the numerical side, as discussed in Sec. 2.1, the zero-
frequency limit in Eq. (4.9) inherits the computational limitations of time inte-
grals of autocorrelation functions. We filter the EDSF via cepstral analysis [44]
and then extrapolate the long-wavelength limit via Bayesian-regression analy-
sis as detailed in Ref [75], Sec. 2.4 and Sec. 3.1 [122].
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Figure 4.1: Upper panel: EDSF of liquid Argon computed at the k-vectors of minimum
magnitude, kmin = 1.77nm−1 [122]. Lower panel: same, but for the k-
vectors, kmax = 11.3nm−1 [122]. The WF line refers to a window filter of
with 0.05 THz [122]. The shaded red area indicates the cepstral statistical
uncertainty. Notice the logarithmic scale on the y-axis. Figure reproduced
from Ref. [122].

As Cheng and Frenkel point out [121], even if energy currents and densi-
ties depend on the specific gauge choice, the long time integral of their long-
wavelength autocorrelation function does not. For the current, the invariance
is proved by the gauge invariance principle of transport coefficients [15]. One
can arbitrarily add to the energy density the divergence of a bounded vector,
e′(r) = e(r) +∇ · p(r). According to this prescription, the EDSF must change.
Thanks to the Wiener-Khintchine theorem [51, 52], the ω = 0 value of the
transformed EDSF can be computed as

C̃′(k,ω = 0) = lim
τ→∞

[
V

2τ

〈∣∣∣∣
∫τ
0

ê(k, t)dt
∣∣∣∣
2
〉

+

〈∣∣∣∣
∫τ
0

k · p̂(k, t)dt
∣∣∣∣
2
〉
+

2k · Im
〈∫τ

0

ê(k, t)dt
∫τ
0

p̂(−k, t′)dt′
〉]

.

(4.10)

In the limit k → 0 both the energy density’s and p’s Fourier transform are real.
In the long-wavelength limit, Eq. (4.8) is unaffected by the gauge transforma-
tion.

We compute thermal conductivity of liquid Argon, liquid SPC/E water
and, solid silica from the regression of energy density fluctuations [122].
As anticipated, we employ cepstral analysis to filter out the noise of the
frequency/wave-vector dependent EDSF [122]. In EMD simulations, water is
modeled with a sample of 216 molecules interacting through the SPC/E force
field [89] at T = 300 K and p = 0 bar, and the trajectories are integrated us-
ing the velocity-Verlet algorithm as implemented in LAMMPS with a time-step
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Figure 4.2: Upper panel: Wave-vector dependent heat conductivity, κ(k), of SPC/E
water at T = 300 K and 0 bar, estimated from the EMD simulation, kmin =

3.40nm−1 [122]. Central panel: same for liquid Argon at T = 100 K and
0 bar, kmin = 1.77nm−1 [122]. Lower panel: same for solid amorphous
Silica at T = 500 K, kmin = 3.04nm−1 [122]. The data are averages over
equivalent wave-vectors. The red line indicates the Bayesian regression
analysis with the associated estimated uncertainty. At k = 0 we display
the Bayesian extrapolation and GK estimate, on the same EMD trajectory, of
heat conductivity [122]. Figure reproduced from Ref. [122].

of 0.25 fs [50, 122]. Argon is modeled with a sample of 864 atoms interact-
ing through a Lennard-Jones potential [123] at T = 100 K and p = 0 bar, and
time-step 1fs. Amorphous Silica is modeled with a sample of 648 atoms in-
teracting via the BKS potential [124] at 500 K, and time-step 0.25 fs. The data
are harvested from microcanonical simulations 1 ns, 2 ns and, 1 ns-long, of
SPC/E water, liquid Argon and, solid Silica, respectively. The energy densities
are sampled every 2.5, 2.5 and, 5 fs, respectively. [122].

In Fig. 4.1, the EDSF of liquid Argon displays the typical diffusion peak
at zero-frequency, which is related to thermal diffusivity. The peak becomes
sharper as we reduce the magnitude of the probed wave-vector, making the
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Figure 4.3: Distribution of the wave-vector dependent heat conductivity, κ(k), of
SPC/E water at T = 300K and 0 bar as evaluated from 100 200ps-long
EMD trajectories and the p-value of the Shapiro-Wilk normality test [122].
The solid lines represent a Gaussian curve fitted on the distribution of heat
conductivities at the wavevector presented [122]. Figure reproduced from
Ref. [122].

cepstral procedure increasingly more challenging [122]. Once we have com-
puted the zero-frequency limit via cepstral analysis, we are left with the non-
trivial issue of estimating the long-wavelength limit [122].

As for the thermopolarization coefficient of liquid water, we rely on the
Bayesian linear regression analysis described in Sec. 2.4 [122]. The wave-vector
dependent thermal conductivity, Eq. 4.9, is approximated as a low order poly-
nomial of magnitude of the k-vector, Eq. (2.52),

κ(k) ≈ w0 +w1k
2 +w2k

4 · · ·+wMk
2M.

In the Bayesian extrapolation, we optimize the hyperparameter α, which en-
ters in the Gaussian prior of the parameters, Eq. (2.42). The optimization of
the prior and the selection of the optimal model are discussed in Sec. 2.4. In
Fig. 4.2 we present Eq. (4.9) and the Bayesian linear regressions [122], which
are in good agreement with GK calculations estimated on the same trajecto-
ries. A crucial requirement for the long-wavelength regression described in
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Figure 4.4: Wave-vector dependent heat conductivity, κ(k), of SPC/E water at 300 K
and 0 bar, as evaluated from the EMD simulations for three different linear
box sizes, L: 18.5 Å, 31.1 Åand 37.4 Å; corresponding to 216, 1000 and 1728
water molecules respectively [122]. The data are averages over equivalent
wave-vectors. At k = 0 we report, as dots, the Bayesian extrapolations of
heat conductivity at each size. Figure reproduced from Ref. [122].

Sec. 2.4 is the Gaussian distribution of the samples. According to Sec. 2.2,
cepstral estimates of Eq. 4.9 are Gaussian variables. In order to investigate di-
rectly this aspect of the analysis, we evaluate thermal conductivity of SPC/E
water from 100 200 ps-long trajectories [122]. Fig. 4.3 displays the histogram
of the results of Eq. 4.9, which pass the Shapir-Wilk normality test with a level
of significance of 0.05 [58, 122]. The long-wavelength extrapolation is stable
as we increase the linear size of the simulation box [122]. In Fig. 4.4, we re-
port the wave-vector dependent thermal conductivity and its long-wavelength
Bayesian extrapolation for three increasing box sizes [122]. At finite wave-
vectors, Eq. (4.9) estimates do not show significant finite size effects. Neverthe-
less, the error bar increases decreasing the magnitude of the probed k-vector.
The long-wavelength Bayesian extrapolation allows to restrict the analysis to
small systems and short trajectory lengths [122].

Density-based methods designed for the computation of thermal conduc-
tivity, do not rely on the energy current, which for some classical force fields
or quantum density functionals may be hard to express analytically or im-
plement numerically. On a final note, we stress that the regression of energy
density fluctuations is about one order of magnitude less efficient than the GK

formula filtered via cepstral analysis, estimated on the same trajectory [122].
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4.2 foundations of quasi-harmonic-green-kubo theory

Below the melting point, in solid insulators transport is governed by the vibra-
tions of atoms oscillating around their equilibrium positions. Under the hy-
pothesis that atomic vibrations are much smaller than interatomic distances,
normal modes in the harmonic approximation, i. e. phonons, are the natural
basis to describe the vibrational properties of the system. In this limit, one
can take anharmonicity into account as a perturbation affecting the crystalline
or amorphous solid [125, 126]. In strongly anharmonic systems, the quasi-
harmonic approximation breaks down and other models of heat transport
must be considered [127]. As in Refs.[125, 126], heat transport in solids is dis-
cussed according to the linear GK theory in the quasi-harmonic approximation.
The potential energy, V̂, of N atoms can be expanded around the equilibrium
position,

{
R0
i

}
, as a functions of the displacements, {ûi},

V̂ = V
({

R0
})

+
1

2

N∑
i,j=1

ûT
j · ∂2V

∂ui∂uj

∣∣∣∣
{R0}

· ûi +O
(
û3
)
. (4.11)

The second order derivatives of the potential with respect to the displacements,
evaluated at the equilibrium positions, are usually referred to as second-order
Interatomic Force Constants (IFC). Up to second-order corrections, we describe
harmonic systems diagonalizing the dynamical matrix, i. e. the second-order
IFC matrix rescaled by the masses of the atoms, D,

Dij,αβ =
1√
MiMj

∂2V

∂ui,α∂uj,β

∣∣∣∣
{R0}

(4.12)∑
jβ

Dij,αβεjµ,β = ω2
µεiµ,α (4.13)

where εµ is the eigenvector with eigenvalue ω2
µ. The normal modes and their

amplitudes are naturally defined as

ξ̂µ =
∑
i,α

εjµ,β
√
Miûi,α, π̂µ =

∑
i,α

εjµ,β
√
Mi

˙̂ui,α (4.14)

âµ =

√
ωµ

2
ξ̂µ + i

√
1

2ωµ
π̂µ. (4.15)

In the basis of the normal amplitudes, the harmonic Hamiltonian is particu-
larly simple:

Ĥ0 =
1

2

∑
µ

ωµ

(
âµâ

∗
µ + â∗µâµ

)
. (4.16)
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Thanks to the gauge invariance principle [19], the harmonic energy flux
reads [125, 126]:

Ĵα =
1

V

∑
i

R0i,α
˙̂ϵi (4.17)

=
1

2V

∑
ij,βγ

(
R0i,α − R0j,α

) √
MiMjDij,βγûi,β ˙̂uj,γ (4.18)

=
i

2V

∑
µν

vµν,αωµ

(
â∗µ + âν

)
(â∗ν − âµ) (4.19)

where the minimum image convention is understood computing the position
differences and vµν,α is the first moment of the dynamical matrix, i. e. the
velocity matrix,

vµν,α =
1

2
√
ωµων

∑
ij,βγ

(
R0i,α − R0j,α

) √
MiMjDij,βγεiν,βεjµ,γ. (4.20)

The anharmonic perturbation to the harmonic Hamiltonian reads

Ĥ′′′ =
1

6

∑
ijk,αβγ

∂3V

∂ui,α∂uj,β∂uk,γ
ûi,αûj,βûk,γ. (4.21)

We treat Eq. (4.21) as an external perturbation affecting the harmonic Hamilto-
nian. The anharmonic disturbance can be decomposed in the the basis of the
normal amplitudes,

Ĥ′′′ =
∑
µνλ

Φµνλ
1

√
ωµωνωλ

(
âµ + â∗µ

)
(âν + â∗ν) (âλ + â∗λ) (4.22)

where Φµνλ is the third-order IFC tensor computed with respect to the nor-
mal modes coordinates. The quantum analogue of the previous relations is
obtained mapping the amplitudes into the bosonic creator/annihilation op-
erators: âµ; â∗µ 7→

√
 hâµ;

√
 hâ†µ. According to GK linear response theory,

thermal conductivity is

καβ =


1

TV

∫ 1
kBT

0 ds
∫∞
0 dt

〈
Ĵα(t− i hs)̂Jβ(0)

〉
; quantum

1
kBT2V

∫∞
0 dt

〈
Ĵα(t)̂Jβ(0)

〉
; classical

. (4.23)

Since the harmonic energy flux is a quadratic in the amplitudes, or creator-
annihilation operators, the average in Eq. (4.23) is a 4-body correlation func-
tion. We factorize the 4-body correlation function via the Wick theorem, or
classically by the Isserlis theorem, as products of 2-body correlations [125],
〈
â†µ(t)âν(t)â

†
σâλ

〉
≈
〈
â†µâν

〉〈
â†σâλ

〉
δµνδσλ +

〈
â†µ(t)âλ

〉〈
âν(t)â

†
σ

〉
δµλδνσ.

(4.24)
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As a further approximation, we model the decay of the phonons [125, 126]. In
order to do so, we assume a Markovian decay, neglecting memory effects [125,
126]:

〈
â†µâµ(t)

〉
≈ nµe

−iωµt−|t|γµ . (4.25)

The linewidth, γµ, is the decay rate of the mode µ due to the anharmonic inter-
actions and, in the quasi-harmonic limit, γµ/ωµ ≪ 1. Under these hypotheses,
thermal conductivity is [125, 126]

καβ =
1

V

∑
µν

nµ(nν + 1) +nν(nµ + 1)

2kBT2
(ωµ +ων)

2

4
vµν,αv

∗
µν,βτµν (4.26)

τµν ≡
γµ + γν

(ωµ −ων)2 + (γµ + γν)2
(4.27)

Cµν ≡
nµ(nν + 1) +nν(nµ + 1)

2kBT2
(ωµ +ων)

2

4
. (4.28)

Thanks to the Fermi Golden Rule (FGR), the anharmonic linewidths read [125,
126]

γµ =  hπ
∑
µλ

∣∣∣∣
Φµνλ√
ωµωνωλ

∣∣∣∣
2
(
1

2
(nν +nλ + 1) δ (ωµ −ων −ωλ)

(nν −nλ) δ (ωµ +ων −ωλ)

)
.

(4.29)

Thermal conductivity in the Quasi Harmonic Green Kubo (QHGK) theory
is [125, 126, 128]:

καβ =
1

V

∑
µν

Cµνvµν,αv
∗
µν,βτµν. (4.30)

QHGK theory addresses at once both crystalline and disordered systems, con-
necting the Allen Feldman (AF) theory of amorphous solids [129–133] and
the linearized Boltzmann Transport Equation (BTE) in the Relaxation Time Ap-
proximation (RTA), designed for crystals [128, 134–136]. The limitation of BTE

have been overcome in the recently proposed Wigner Boltzmann Transport
Equation (WBTE) formalism [137–141].

In amorphous systems, harmonic normal modes are not diagonal in the
plain waves basis, but at low frequencies. Indeed, in such solids, low-energy
vibrations are responsible for sound propagation. The AF model is a purely
harmonic theory of heat propagation in glasses. In the limit of vanishing an-
harmonic linewidths, thermal conductivity is

καβ =
1

V

∑
µ

CµDµ, (4.31)
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where Cµ is the specific heat of the mode µ, Cµ =  hωµ
∂nµ

∂T , and Dµ is the
diffusivity of the mode, defined as,

Dµ = π
∑
ν

vµν,αv
∗
µν,βδ (ωµ −ων) (4.32)

= lim
η→0V→∞

∑
ν

vµν,αv
∗
µν,β

η

(ων −ωµ)2 − η2
, (4.33)

η being the smearing parameter to be made arbitrary small while increas-
ing the size of the system. One can decompose thermal conductivity into
modes contributions. Allen and Feldman provided a qualitative classification
of modes in glasses as propagons, diffusons and locons[129, 131, 133]. The distinc-
tion is based on the Vibrational Dynamical Structure Factor (VDSF), Sb(k,ω),
which for harmonic systems reads

S◦b(k,ω) =
∑
µ

δ(ω−ωµ)|⟨µ|k,b⟩| (4.34)

⟨µ|k,b⟩ = 1√
N

∑
i,α

ζb,α(k)ε∗iµ,αe
ik·Ri , (4.35)

where b is the brach index, Ri is the position of the i-th atom, k is the wave-
vector compatible with PBCs and ζb(k) is the polarization unit vector. The
harmonic VDSF measures the overlap between of the modes with frequency
ωµ and the plain wave. Anharmonic effects can be included in the RTA ap-
proximation as:

Sb(ω, k) =
1

π

∑
µ

γµ

γ2µ + (ω−ωµ)2
|⟨µ|k,b⟩|2. (4.36)

In the low-frequency regime, the VDSF can be fitted as a narrow Lorentzian
centered in ωµ,

Sb(ω, k) ≈ αb(k)
π

Γb(k)
(ω− cbk)2 + Γb(k)2

. (4.37)

The low-energy excitations are dubbed propagons, they are responsible
for sound propagation, have a linear dispersion and a population density
quadratic in frequency. Increasing the energy, we encounter an intermediate
region where the k-vector is almost a good quantum number, linearity breaks
down but the linewidth is still smaller than the probed frequency. Finally,
in the high-energy sector, locons are present, which are localized states fully
spread in the Fourier space [131, 133, 142].

4.3 the role of anharmonicity in heat transport in glasses

Because of the intrinsic disordered structure of glasses, in order to to sam-
ple the low-energy vibrations large size models are required. To overcome
this computational drawback, hydrodynamic extrapolations of the propagons’
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contribution to thermal conductivity have been developed [142]. Finite models
of glasses implicitly introduce a infrared cutoff below the minimal available
frequency ωmin = c2πL , where c is the speed of sound and 2π

L is the minimum
magnitude of the wave-vectors compatible with PBC.

As soon as the AF harmonic theory of glasses was proposed, it was realized
that, including only Rayleigh (ω4) scattering, a continuous Debye approxi-
mation of hydrodynamic vibrations results in the infrared divergence of bulk
thermal conductivity at all temperature, irrespective of configurational disor-
der [129–131, 133, 142–145]. Extensive numerical simulations are required to
support the hypothesis of Rayleigh scattering, but direct numerical diagonal-
ization of the dynamical matrix for models with more than 20000 atoms is
practically unfeasible. Therefore, the infrared divergence is very challenging
to observe in numerical simulations.

By iteratively estimating the harmonic VDSF, a Lanczos-Haydock procedure
circumvents the computational impediment due to large sizes. The harmonic
VDSF associated with propagons can be approximated as a Lorentzian:

S◦b(ω, k) ≈
α◦
b(k)
π

Γ◦b(k)
(ω− cbk)2 + Γ

◦
b(k)2

, (4.38)

whose parameters are fitted from the raw data obtained from either direct
numerical diagonalization or Haydock’s method.

In the bulk limit, the number of atoms is extended to infinity, allowing the
sum over the modes to be converted into a frequency integral. The contribu-
tion of propagons to thermal conductivity is

κP =
∑
b

c2b
3

∫ωP

0

C(ω)ρb(ω)
1

2Γb(ω/cb)
dω. (4.39)

The propagons’ limit frequency, ωP, which signals the end of the low-
frequency regime and introduces diffusons, is a tunable parameter, to be se-
lected carefully via convergence analysis [142, 145–147]. The continuous inte-
gral, reflecting the bulk limit of propagons’ contribution, is usually referred
to as hydrodynamic extrapolation [142]. Obviously, the sampling of diffusons
(and locons) is not affected by the infrared cutoff, thus their contribution, κD,
can be estimated from medium/small size glasses. In the anharmonic approx-
imation, grounded in hydrodynamic considerations, the low-frequency func-
tional form of the sound attenuation linewidth is [142, 148]

Γb(ω/cb) ≈ Abω
2 +Bbω

4. (4.40)

In the harmonic limit, Ab = 0, only Rayleigh scattering is present. The anhar-
monic lifetimes are estimated from the FGR on small systems and then fitted at
low frequencies. By briefly inspecting Eq. (4.39), noticing that the propagons’
density of states is quadratic and that the mode heat capacity C(ω) ∝ ω,
the pure harmonic ω4 disorder-induced Rayleigh scattering would inevitably
cause thermal conductivity to diverge. Random media theory also predicts the
occurrence of Rayleigh, ω4, sound attenuation in harmonic systems [149, 150].
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Being prototypical examples of glasses, widely addressed in the scientific
literature both computationally and experimentally, amorphous silica (aSiO2),
silicon (aSi) and, silicon carbide (aSiC) are considered in the present study [129,
130, 133, 145, 151–163]. We present extensive numerical simulations validating
the presence of Rayleigh scattering in harmonic glasses [145]. Haydock’s meth-
ods can address the harmonic VDSF of large models of disordered systems,
with almost 140000 atoms.

The diagonal elements of the harmonic vibrational Green’s function are of
the form:

lim
η→0

Im ⟨k,b|
(
(ω+ iη)2 − D

)−1
|k,b⟩ = π

2|ω|

[
S0b(ω, k) + S0b(−ω, k)

]
. (4.41)

In Haydock’s approach, the harmonic VDSF is computed as a continued frac-
tion:

π

2|ω|

[
S0b(ω, Q) + S0b(−ω, Q)

]
= lim

η→0
Im

1

(ω+ iη)2 − a0 −
b21

(ω+ iϵ)2 − a1 −
b22
. . .

,

(4.42)

whose coefficients {a0,a1, . . . } and {b1,b2, . . . } are estimated from the iterative
Lanczos chain:

|ξ−1⟩ = 0,
|ξ0⟩ = |Q,b⟩
bn |ξn⟩ = (K − an−1) |ξn−1⟩− bn−1 |ξn−2⟩
an = ⟨ξn|D |ξn⟩
bn = ⟨ξn|D |ξn−1⟩ .

(4.43)

Haydock’s iterative routine significantly alleviates the computational bur-
den of harmonic VDSFs, which, in direct diagonalization algorithms, requires
O
(
(3N)3

)
operations, to be compared with the O

(
(3N)2

)
complexity of a sin-

gle Lanczos step. Typical simulations converge after kL = 600 Lanczos steps,
significantly reducing the numerical overload to O

(
kL(3N)2)

)
, kL being much

smaller than N. Since D is sparse, the number of operations needed by Hay-
dock’s routine can be further simplified to a complexity O(kL3N). Haydock’s
procedure is commonly used for diagonalization purposes but is notoriously
unstable in the estimation of eigenvectors [164, 165]. The iterative algorithm
is carefully benchmarked, computing the VDSF of a model of aSiC with 13824

atoms, against direct diagonalization. In Fig. 4.5 we display the sound damp-
ing coefficients, showing excellent agreement between the two methods [145].

The numerical simulation in support of the Rayleigh scattering hypothesis
in harmonic systems are estimated from 13824, 97336 and, 139968-atoms mod-
els of aSi, aSiC and, aSiO2, respectively; and displayed in Fig. 4.6. aSi is highly
disordered and a model of roughly 10000 atoms suffices to show Rayleigh
scattering. On the contrary, aSiO2 hinders the truly harmonic ω4 trend, up
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Figure 4.5: Harmonic sound damping coefficients of aSiC obtained by fitting the
harmonic vibrational dynamical structure factor computed via Haydock’s
method (orange dots) and via direct diagonalization (cyan crosses). Both
results are averaged over 4 samples of 13, 824 atoms, the error bars rep-
resent standard deviations. Upper panel, transverse modes; lower panel,
longitudinal modes. Figure reproduced from Ref. [145]

to 140000 atoms models. aSiC is an intermediate system, which nevertheless
requires at least 30000 atoms to reveal the ω4 scaling. aSi interatomic force
field is modeled with the Tersoff force field [166], aSiC and aSiO2 with the
Vashishta potential [167, 168]. Our results are averaged over 4, 4 and, 10 in-
dependent samples of aSiO2, aSiC and, aSi, respectively. Further details on
the numerical simulations and the quenching procedure for generation of the
glasses are reported in Ref. [145]. Fig. 4.6 shows the harmonic sound dump-
ing coefficients, which displays a crossover ω4 → ω2. Taking into account the
crossover in harmonic systems, one has [153]

Γ◦b(ω) = Cbω
2[1+ (ωb

XO/ω)2δ]−1/δ, (4.44)

where Cb is a constant, ωb
XO is the polarization-dependent crossover angular

frequency, and δ = 1.5 determines the sharpness of the transition.
The AF thermal conductivity, Eqs. (4.39) (4.31) (4.32) (4.33), can be studied

as a function of the smearing η and of the temperature T :

κ =
1

3V

∑
µν

Cµ|vµν|
2 η

(ωµ −ων)2 + η2
. (4.45)
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Figure 4.6: Sound damping coefficients in the harmonic approximation for aSi, aSiC,
and aSiO2. The estimate is obtained by fitting the harmonic vibrational
dynamical structure factor, and expressing the linewidth as a function of
ω. The sizes of the models are respectively 13824, 97336 and 139968 atoms.
The estimated errors are smaller than the size of the markers. The dashed
and continuous gray lines represent respectively the ω2 and ω4 scaling.
Note the logarithmic scale on both axes. Figure reproduced from Ref. [145]

As displayed in Fig. 4.7, in finite systems, as the AF linewidth vanishes, the
Lorentzian window encompasses less and less modes, causing thermal con-
ductivity to be artificially reduced. Keeping the smearing fixed and increas-
ing the number of atoms, we achieve converge in size, reaching the hydrody-
namic limit described in Eq. 4.39 [145]. We fit the harmonic sound dumping
coefficients, presented in Fig. 4.6, according to Eq. (4.44) [145]. In the case of
aSiC and aSiO2 the crossover angular frequency is ωXO = 12 rad ps−1 and
6 rad ps−1. Fitting the harmonic sound dumping coefficients, one infers the
propagons’ contribution to thermal conductivity at low frequency as defined
in Eq. (4.39). In Fig. 4.7 we show that in the bulk and η→ 0 limit, AF thermal
conductivity diverges at all temperatures, due to the infrared contribution of
propagons described in Eq. (4.39).
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Figure 4.7: AF thermal conductivity of aSi, aSiC, and aSiO2 samples with different
number of atoms (N), as a function of the smearing, η. Calculations are
made at a temperature of 500K. The black, solid, line is the sum of the
infinite-size analytical result for propagon and the small-size term due
to diffusons/locons. The red solid line is the diffusons’ contribution. The
cutoff frequency, ωP, for propagons is set to ωP/2π = 3THz, ωP/2π =

3THz, and ωP/2π = 1.2THz, for the three materials, respectively. The red
solid line indicates the diffusons’ contribution to thermal conductivity, κD.
Figure reproduced from Ref. [145]

In the harmonic approximation, the constant smearing factor employed in
the AF calculations can be associated to a boundary scattering contribution
present in thin-films glasses [145]. The finite size of the samples sets an upper-
bound to the average mean free path of the modes [145]. One can map for-
mally the AF smearing to the thickness of the thin-films [145]. In typical ex-
periments, the glass samples are 1 nm-80 µm thick. To compare the numerical
results to experiments, in the QHGK approximation we include anharmonic
linewidths [145]. We compute the QHGK thermal conductivity in small systems
and then fit the anharmonic linewidths at low frequencies [142, 145]. Accord-
ing to the Mattihessen sum rule, the results of the fit are combined with the
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Figure 4.8: Thermal conductivity of aSiO2 and aSi as functions of temperature. Mark-
ers are experimental data taken from Refs. [163, 169] (aSiO2) and Refs. [157,
160–162] (aSi). The solid lines, color-matched to the markers, represent hy-
drodynamic QHGK results for films of the same thickness. Light-green,
dotted lines are AF results on a finite system, and obtained with a smear-
ing parameter η set to the average angular frequency spacing. Figure re-
produced from Ref. [145]

harmonic ones, including also boundary scattering effects of thin films [145,
170].

The QHGK calculation, with the addition of the hydrodynamic extrapolation
and boundary scattering, are presented in Fig. 4.8 and compared with exper-
iments on thin-films, in a wide range of thicknesses and temperatures. In the
bulk limit at finite temperature, the anharmonic linewidths, which scale as
ω2, prevent bulk thermal conductivity to dramatically diverge. At zero tem-
perature and infinite size, neglecting quantum tunneling, the system becomes
harmonic [142, 145]. In thin-films the boundary scattering is independent of
temperature and, as T approaches zero, the occupation of the modes is dras-
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tically reduced, maintaining a constant lifetime. Therefore, in thin-films, even
in the quasi-harmonic regime, thermal conductivity vanishes at zero tempera-
ture.

In conclusion, this work proves that in the harmonic approximation, bulk
thermal conductivity diverges at all temperatures due to the unlimited con-
tribution of propagons [145]. The infrared catastrophe was predicted by the
same Allen and Feldman in their seminal papers [129, 131], but, due to the
limited computational resources, was never addressed in actual numerical
simulations. We have discussed in details the numerical algorithm which al-
lows us to perform VDSF calculations on models of glasses with almost 140000
atoms [145]. The effectiveness of previous AF calculations is rationalized in
terms of boundary scattering and comparison to experiments on thin-films,
whose thickness can be directly mapped into a finite AF smearing. The hydro-
dynamic extrapolation emphasizes the importance of accurate quasi-harmonic
linewidths, which make bulk thermal conductivity, divergent in the harmonic
case, finite at non zero temperatures [145].





C O N C L U S I O N S

A
lthough transport coefficients are crucial for technological appli-
cations, their computation using EMD simulations requires long tra-
jectories. In this Thesis, thermal transport and thermoelectric effects

have been studied in both classical fluids and solids.
On one hand, in ionic conductors a temperature gradient generates a steady

electric current in closed circuit conditions. On the other hand, in insulators
charge transport is forbidden. Nevertheless, in polar fluids the molecules can
rearrange to induce a macroscopic polarization across the system. Standard
transport theory links the Seebeck coefficient to the ratio of an off-diagonal
and a diagonal element of the Onsager matrix. In the absence of charge trans-
port, this formulation results in an indeterminate form 0

0 . I developed a static
theoretical framework to investigate thermopolarization in polar fluids from
EMD simulations. In insulators, the dielectric response to a temperature in-
homogeneity is a quasi-equilibrium phenomenon. Under these conditions,
when perturbed, dielectric degrees of freedom relax in a microscopic time
scale. Thermopolarization, being the response to a homogeneous perturba-
tion —incompatible with PBC— is particularly hard to access. Thanks to static
linear response theory, the thermopolarization coefficient is estimated as the
long-wavelength limit of a suitable periodic static susceptibility. I employed
Bayesian regression analysis to evaluate the long-wavelength extrapolation
and its statistical uncertainty.

In ionic conductors, the Seebeck effect is a fundamental thermoelectric
phenomenon. Since the Seebeck coefficient is derived from the Onsager ma-
trix, we designed a Bayesian regression protocol to filter the spectra of both
diagonal and off-diagonal Onsager coefficients. In a recently developed all-
encompassing Bayesian regression framework, a single statistical model is able
to address the entire Onsager matrix. The spectral methods presented in this
Thesis overcome some of the numerical drawbacks that hindered the compu-
tation of transport coefficients via EMD methods.

The final chapter of this Thesis addresses heat transport. In solids, in the
quasi-harmonic approximation, QHGK theory treats both crystalline and dis-
ordered systems in a unified formalism. Investigating exceptionally large har-
monic models of glasses, we numerically verified the presence of disorder-
induced Rayleigh scattering in the propagon regime. The existence of Rayleigh
scattering at low frequencies has far-reaching consequences. In harmonic sys-
tems, it predicts a divergent bulk thermal conductivity at all temperatures,
critically emphasizing the importance of anharmonic effects.
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A
K U B O ’ S A N D M A RT I N ’ S D I S C U S S I O N O N T R A N S P O RT
T H E O RY

T
he appendix reports results and discussions presented in Ref. [11]
and Ref. [13]. In 1965, Martin proposed a relationship between the
response to slowly varying external forces and to the deviations of

internal observables [13]. In 1966 Kubo discussed a Langevin approach to
tackle the same problem [11]. The method is discussed in details in Ref. [11]
and here I review some of the results.

In an interacting system where the Hamiltonian is perturbed by Ĥ′ ∝
b̂(−k)3ext

b (k), the continuity equation of the density b is

̂̇b(k, t) = −ik · ĵ0b(k, t) − ik · ĵ′b(k, t), (A.1)

Eq. A.1 is equivalent to a Langevin equation such that

−ik · ĵ0b =−

∫t
0

γ(k, t− t′)b̂(k, t′)dt′

ĵb(k, t) = ĵ0b(k, t) + ĵ′b(k, t),
(A.2)

where j0b(k, t) and j′b(k, t) are the systematic and random currents, respec-
tively [11].

The response of the current to the gradient of the external potential,
〈
ĵb(k, t)

〉
= −Reµext(k,ω)ik3ext

b (k)eiωt. (A.3)

is computed from GK theory as [11],

µext(k,ω) = Vβ

∫∞
0

〈
ĵb(−k)ĵb(k, t)

〉
0
eiωt dt . (A.4)

γ(k, t) in Eq. (A.2), can be evaluated from the fluctuations of the random
current j′b(k, t) as [11]

γ(k,ω) =
1

χbb(k, 0)
k · Vβ

∫∞
0

〈
ĵ′b(−k)ĵ′b(k, t)

〉
0
eiωt dt · k, (A.5)

χbb(k,ω) being the Fourier transform of the response function defined in
Ch. 1. Thanks to Eq. (A.5), one can define the screened mobility, µ∗ [11]:

γ(k,ω) ≡ k · µ∗(k,ω) · k
χbb(k, 0)

. (A.6)

Ref. [11] proves that the relation between µext and µ∗ is [11, 13]:

µ∗(k,ω) =
µext(k,ω)

1−
k·µext(k,ω)·k
iωχbb(k,0)

. (A.7)
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One can define the shielding factor, ϵ∗(k,ω),

µext(k,ω) =
µ∗(k,ω)

ϵ∗(k,ω)
. (A.8)

ϵ∗(k,ω) is expressed as [11, 171, 172]

ϵ∗(k,ω) = 1+
k · µ∗(k,ω) · k
iωχbb(k, 0)

,

1

ϵ∗(k,ω)
= 1−

k · µext(k,ω) · k
iωχbb(k, 0)

= 1−
χbb(k,ω)

χbb(k, 0)
.

(A.9)

It is informative to associate the internal response, µ∗(k,ω), with the pertur-
bation to the gradient of a local field, 3∗b(k), [11, 173]

〈
ĵb(k, t)

〉
= −Reµ∗(k,ω)ik3∗b(k)e

iωt. (A.10)

The local field can be written in terms of the external potential and of the
shielding factor [11],

3
∗
b(k, t) ≡ 1

ϵ∗(k,ω)
3

ext
b (k, t) = 3ext

b (k, t) −
χbb(k,ω)

χbb(k, 0)
3

ext
b (k, t)

= 3ext
b (k, t) +

〈
b̂(k, t)

〉

χbb(k, 0)
.

(A.11)

In systems with short-range interactions χ−1
BB(k, 0) is not singular at k = 0 —it

is the inverse of a thermodynamic derivative— and therefore, in the k → 0

and then ω→ 0 limit, ϵ∗(k,ω) → 1 [11, 13].



B
M A RT I N ’ S A N A LY S I S O N R E S P O N S E S T O E L E C T R I C
P E RT U R B AT I O N S

Principles of dielectric response in charged systems

I
review Martin’s work on the interplay between responses to internal
and external fields, presented in Ref. [86]. As discussed in Sec. 2.4,
only external periodic density modulations are compatible with PBC.

In spatially translational invariant systems, I write:

jα(k,ω) =
∑
β

σαβ(k,ω)Eβ(k,ω), (B.1)

where Jα and Eβ are any components of the electric current and total field,
respectively. Eq. (B.1) is decomposed in its transverse and longitudinal com-
ponents,

jT (k,ω) = σT (k,ω)ET (k,ω)

jL(k,ω) = σL(k,ω)EL(k,ω).
(B.2)

The ratio σαβ(k,ω) = jα(k,ω)/Eβ(k,ω) is non analytic if a field Eβ(k, t)
exists such that its Fourier transform Eβ(k,ω0) = 0 for some ω0. It can be
argued that there always exists a field Eβ(k, t) which vanishes at t < 0 and
whose Fourier transform is non zero for everyω0 [86]. As discussed by Martin
in Ref. [86], this reasoning does not apply to the total field Eβ(k, t), as it
depends on the internal degrees of freedom and therefore, is not a tunable
parameter [37, 86]. From these considerations it follows that, in response to a
wave-vector dependent perturbation, the ratio is only measurable for a range
of frequencies. σ(k,ω) and its analytic continuation do not satisfy the Kramers
Kronig (KK) relations [86].

The Poisson and the continuity equations constrain severely the longitudi-
nal component of the electric conductivity and Dielectric Function (DF) [86]:

[
ω+ 4πiσL(k,ω)

]
EL(k,ω) = 0 (B.3)

and the longitudinal DF can be written as

ϵL(k,ω) ≡ k ·D(k,ω)

k ·E(k,ω)
=
ρext(k,ω)

ρtot(k,ω)

= 1+ 4πi
σL(k,ω)

ω
,

(B.4)

ρ and ρext being the total and external charge densities. Eq. (B.4) can be refor-
mulated in terms of the charge response function, χρρ, [86]

[
ϵL(k,ω)

]−1
= 1+ 4πe2

χρρ(k,ω)

k2
. (B.5)
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Ref. [37] proves that the requirement for ϵL(k,ω) to be analytic is:

ϵL(k, 0) =
(
1+ 4πe2

χρρ(k)
k2

)−1

> 0 (B.6)

Nevertheless, the only constrain for χρρ, Eq.(B.5), is [171]:

χρρ(k) < 0

ϵL(k)−1 = 1+ 4πe2
χρρ(k)
k2

⩽ 1.
(B.7)

In a seminal paper [171], Maximov demonstrates that, at finite wavelength, a
negative dielectric constant is possible [86, 171–181].

The response function describes the reaction of the system to an external
perturbation, it is causal and fulfills the KK relations [86, 171]. The screened
response to the total charge density is

ρ(k,ω) =
4πe

k2
χsc
ρρ(k,ω) (ρext(k,ω) + ρ(k,ω)) . (B.8)

Thanks to relation between the screened and unscreened response function [37,
86], one has

χρρ(k,ω) =
χsc
ρρ(k,ω)

1− 4πe2

k2 χsc
ρρ(k,ω)

. (B.9)

The longitudinal DF, to be compared with Eq. (B.5), reads

ϵL(k,ω) = 1−
4πe2

k2
χsc
ρρ(k,ω). (B.10)

I have computed the wave-vector dependent dielectric constant of water
from a 1 ns-long microcanonical trajectory with 4352 TIP4P/2005 molecules.
The procedure for the generation of the trajectory is described in Sec. 2.4. The
charge response function and the dielectric constant are computed according
to Eq.s (2.64), (2.65) and (B.5). Fig. B.1 displays the unscreened charge response
function (times a minus sign) and the Bayesian-regression analysis of Eq. (2.64).
The results are in good agreement with previous calculations [172, 179, 182–
184].

The charge response function crosses −1 at k⋆ ≈ 3Å−1, and it reflects in a
stiff rise of ϵ(k). When χρρ(k) ≈ −1, as in a metal, the induced charge density
perfectly balances the external fluctuation. In this condition, ρ = −ρext ⇒
ρtot(r) = 0, the system displays local perfect screening. Recently, the effect
of long-range interactions has also been studied in the context of machine
learning potentials [185–187]. The conclusions drawn in Ref. [185–187] are in
accordance with those discussed in this section.
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Figure B.1: Upper panel: Bayesian regression analysis of Eqs. (2.64)-(2.65). Lower
panel: Wave-vector dependent dielectric constant, Eq. (B.5).The black dots
are computed from a EMD trajectory of liquid TIP4P/2005 water at 350 K
and 0 bar. The red solid line is the estimate of Eq. (B.5) from the Bayesian-
inference regression of Eq. (2.64).

Principles of transport phenomena in charged systems

The Onsager equations are [86, 87]

J = σE −K12/T∇T
Jq = K12eE − Lqq∇T ,

where J is the electric current, Jq is the heat current, E is the electric field,
∇T is the temperature gradient and, {σ,K12,Lqq} are the Onsager coefficients.
In open circuit conditions, i. e. in a closed system, the charge density response
to a temperature inhomogeneity is [12]

δρ ≡ χρqδT/T (B.11)

δE = χρq/k
2∇T/T (B.12)

where q is the heat density defined in Eq. (1.62) [21–24].
In order to determine the general relation between responses to external

and internal fields, I observe that:

δna(r) =
∫

dr
(
χAA(r, r′)δ3A(r′) + χAB(r, r′)δ3B(r′) + χAρ(r, r′)δV0(r′)

)
(B.13)
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where 3A,B is the potential coupled to the respective density nA,B and V0 is the
Coulomb potential generated by the external charge density. I want to rewrite
the response in terms of the total potential V = V0+Vint. Vint is the field of the
induced charge ⟨δρ⟩. V depends self-consistently on the induced charge as

δV0 =
δV0

δV

(
δV +

δV

δ3B
δ3B +

δV

δ3A
δ3A

)
(B.14)

=
δV0

δV

(
δV +

δVint

δ3B
δ3B +

δVint

δ3A
δ3A

)
(B.15)

The response of the density, na(r), to the screened potential is

δna(r) =
∫

drχAA(r, r′)δ3A(r′) +
∫

drχAB(r, r′)δ3B(r′)+∫
drχAρ(r, r′)

(
δV0

δV

(
δV(r′) +

δVint

δ3B
δ3B(r′) +

δVint

δ3A
δ3A(r′)

)) (B.16)

Taking into account the total electrostatic potential V , all response functions
change [86]:

δnA

δ3B

∣∣∣∣
sc

≡ χAB
sc = χAB + χAρ

δV0

δV

δVint

δvB
= χAB + χAρ

ϵL

k2
χρB (B.17)

The thermo-power transport coefficient, K12, is determined knowing that,

σL = lim
ω→0

lim
k→0

ωϵ(k,ω)/i (B.18)

= lim
ω→0

lim
k→0

χρρ
′′sc(k,ω)ω/k2 (B.19)

and therefore [86],

K12 = lim
ω→0

lim
k→0

χρq(k,ω)ωϵL(k,ω)/ik2 (B.20)

= lim
ω→0

lim
k→0

χρq
scω/ik2 (B.21)

In practical microcanonical simulations it is customary to set the total charge
to zero, i. e. keeping E = 0. This prescription is equivalent to the computation
of the screened response function.

Hydrodynamic behavior of number and charge densities

Number and charge densities behave differently in the hydrodynamic
regime [173, 188]. Their correlation function in the hydrodynamic regime can
be approximated with a Lorentzian of width Γ(k):

S(k,ω) ≈ S(k)Γ(k)
ω2 + (Γ(k))2

(B.22)

I compute the correlation functions from a 0.5 ns-long microcanonical simu-
lation of molten CsF at 1200 K and 0 bar with 512 atoms. The details of the
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Figure B.2: Number (right panel) and charge (left panel) density correlation functions,
Eq. (B.28), of molten CsF at 1200 K and 0 bar computed from a 0.5 ns-long
microcanonical simulation. The shaded lines represent the raw data, the
solid lines are the cepstral filtered signals.

simulation are described in Sec. 2.1. The number density, n, is a diffusive pro-
cess. In the hydrodynamic regime, it follows the Fick’s law. For the number
correlation function, one has: [14, 173, 188]

SNN(k,ω) ≈ SNN(k)Dk2

ω2 + (Dk2)2
. (B.23)

and ΓNN = Dk2.
The dynamics of the charge density is strikingly different. Thanks to the

continuity equation, I write [188]

−iωρ(k,ω) = ρ(k, t = 0) + ik · J(k,ω) (B.24)

−ik ·E(k,ω) = 4πρ(k,ω) (B.25)

ρ(k,ω) =
ρ(k, t = 0)

−iω+ 4πσL(k,ω)
(B.26)

In the hydrodynamic regime, the charge correlation function is approximated
as [173, 188]

Sρρ(k,ω) ≈
4πσSρρ(k)
ω2 + (4πσ)2

(B.27)

and Γρρ = 4πσ. Charge fluctuations in the hydrodynamic regime are not prop-
agating.

On one hand, as a function of frequency, SNN(k,ω) is a Lorentzian centered
at 0 with width Dk2. On the other hand, the width of Sρρ(k,ω) is constant in
the probed wave-vector [188]. In Fig. B.2 I show

S(k,ω)

S(k)Γ(k)
≈ 1

ω2 + (Γ(k))2
(B.28)
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for number and charge density fluctuations. In the 0-frequency limit Eq. (B.28)
is the inverse squared width of the Lorentzian. In the case of number fluctu-
ations, the width shrinks a the wavelength increases: indeed, number density
is a diffusive process. On the contrary, the width of the charge density cor-
relation function is constant: in fact, charge fluctuations are neutralized in a
microscopic time. Recently, the static effect of the long-range Coulomb inter-
action on charge density fluctuations has drawn some attention also in the
machine learning community [185–187].



C
D E B E N E D E T T I C A L C U L AT I O N O F PA RT I A L M O L A R
Q U A N T I T I E S

P
artial molar enthalpies are thermodynamic derivatives, fundamen-

tal in the definition of heat density and current. Therefore, thermo-
electric transport coefficients, such as the Seebeck and the Peltier co-

efficients, depend on these quantities [21, 46, 75, 87]. Indeed, convective in-
variance [15, 19], which holds for thermal conductivity, does not apply to off-
diagonal Onsager coefficients [21]. In a series of seminal papers, Debenedetti
set theoretical and numerical grounds for the computation of partial molar en-
thalpies from EMD simulation [22–24]. The estimation of these thermodynamic
derivatives is rooted in the Kirkwood-Buff theory of fluctuations [189].

Let us define partial molar quantities, λi, as[23]

λi =
∂λ

∂Ni

∣∣∣∣
T ,P,[N]i

(C.1)

where [N]i indicates that I am keeping the number of all species fixed but the
i-th. λi can be computed by finite differences evaluating

λ(N1 . . . Ni . . . Nn, T ,P) − λ(N1 . . . Ni − 1 . . .Nn, T ,P) (C.2)

where n is the total number of species. Of course, finite differences approaches
suffer from major numerical challenges and, because of electro-neutrality, are
applicable only to neutral systems. Therefore, a general fluctuation procedure
is extremely desirable. The partial molar energy can be written as:

Ej =
E

V
Vj +

∑
i

⟨δEδNi⟩
∂βµi
∂Ni

∣∣∣∣
T ,P,[N]j

(C.3)

∂E

∂βµi

∣∣∣∣
β,[βµ]i

=
E

V
(C.4)

∂E

∂V

∣∣∣∣
β,[βµ]i

= ⟨δEδNi⟩ (C.5)

where ⟨◦⟩ is the expectation value in the grand-canonical ensemble. Notably,
Ref. [22, 189] prove that Eq (C.3) can be rewritten in terms of Kirkwood-Buff
concentrations fluctuations:

Ej =
u
∑

i xi|∆|ij∑
ik xkxi|∆|ik

+
∑
i

⟨δEδNi⟩


 |∆|ij

|∆|
−

(∑
k xk|∆|kj

)
(
∑

k xk|∆|ki)∑
kl xkxl|∆|kl

|∆|




(C.6)

where x is the mole fraction, |∆|ij it the cofactor of ij-th element in the deter-
minant |∆| of the matrix ∆ij =

〈
NiNj

〉
.
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88 debenedetti calculation of partial molar quantities

The expectation value over the open control volume is estimated from a sim-
ple microcanonical trajectory, identifying 3 independent slices which divide
the box in half in the xx, yy and zz directions. The aforementioned numeri-
cal protocol forces the molar quantities to satisfy the homogeneity constraint.
The fluctuations method allows to compute thermodynamic derivatives, such
as the partial molar quantities, from simple microcanonical simulations. Of
course, fluctuations are evidently affected by ergodicity issues in solids and
viscous low-temperature fluids. The method is particularly suitable for liquids
well above the melting temperature.



D
VA L I D AT I O N O F T H E M A C H I N E L E A R N I N G
I N T E R AT O M I C P O T E N T I A L O F S O L I D - S TAT E
E L E C T R O LY T E S

W
e expanded an existing dataset [55, 56] for LPS developed for Gaus-

sian Approximation Potentials [190] The new structures are gen-
erated by means of the active learning scheme implemented in

dp-gen v0.12.0, [191]. We apply the scheme to reach around 10000 struc-
tures of α, β and γ-LPS, with temperatures ranging from 300 K to approxi-
mately 1000 K. The inter-atomic interaction is fitted via the version 4 NEP us-
ing gpumd v3.9.4 [114], trained on Density Functional Theory (DFT) energies
and forces, estimated at the PBEsol level of theory [116, 192]. The Quantum

ESPRESSO™ code was used for all DFT single point calculations [193–196]. The
electronic Kohn-Sham wave-function and density are computed with 70 Ry
and 400 Ry cutoffs respectively, PAW pseudo-potentials and 0.008 Ry Marzari-
Vanderbilt smearing [197, 198]. The NEP is tested on a separate test-set con-
taining 2600 configurations [45]. Fig. D.1 displays the NEP performance on the
test-set.

Figure D.1: Energy (left panel) and force (right panel) parity plots of NEP predictions
vs DFT reference data.
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[109] Ömer Ulaş Kudu et al. “Structural details in Li3PS4: Variety in thio-
phosphate building blocks and correlation to ion transport.” In: Energy
Storage Materials 44 (2022), pp. 168–179. issn: 2405-8297. doi: https:
//doi.org/10.1016/j.ensm.2021.10.021.

[110] Kenji Homma, Masao Yonemura, Takeshi Kobayashi, Miki Nagao,
Masaaki Hirayama, and Ryoji Kanno. “Crystal structure and phase
transitions of the lithium ionic conductor Li3PS4.” In: Solid State Ion-
ics 182.1 (2011), pp. 53–58. issn: 0167-2738. doi: https://doi.org/10.
1016/j.ssi.2010.10.001.

[111] Takuya Kimura, Takeaki Inaoka, Ryo Izawa, Takumi Nakano, Chie
Hotehama, Atsushi Sakuda, Masahiro Tatsumisago, and Akitoshi
Hayashi. “Stabilizing High-Temperature alpha-Li3PS4 by Rapidly Heat-
ing the Glass.” In: Journal of the American Chemical Society 145.26 (2023).
PMID: 37340711, pp. 14466–14474. doi: 10.1021/jacs.3c03827.

[112] Niek J.J. de Klerk, Eveline van der Maas, and Marnix Wagemaker.
“Analysis of Diffusion in Solid-State Electrolytes through MD Simu-
lations, Improvement of the Li-Ion Conductivity in beta-Li3PS4 as an
Example.” In: ACS Applied Energy Materials 1.7 (2018). PMID: 30057999,
pp. 3230–3242. doi: 10.1021/acsaem.8b00457.

[113] Frazer N. Forrester, James A. Quirk, Theodosios Famprikis, and James
A. Dawson. “Disentangling Cation and Anion Dynamics in Li3PS4

Solid Electrolytes.” In: Chemistry of Materials 34.23 (2022), pp. 10561–
10571. doi: 10.1021/acs.chemmater.2c02637.

[114] Zheyong Fan et al. “GPUMD: A package for constructing accurate
machine-learned potentials and performing highly efficient atomistic
simulations.” In: The Journal of Chemical Physics 157.11 (2022), p. 114801.
issn: 0021-9606. doi: 10.1063/5.0106617.

https://doi.org/10.1103/PhysRev.55.1083
http://iopscience.iop.org/article/10.1088/2632-2153/ad805f
http://iopscience.iop.org/article/10.1088/2632-2153/ad805f
https://doi.org/https://doi.org/10.1016/j.susmat.2021.e00297
https://doi.org/https://doi.org/10.1016/j.susmat.2021.e00297
https://doi.org/https://doi.org/10.1016/j.ensm.2021.10.021
https://doi.org/https://doi.org/10.1016/j.ensm.2021.10.021
https://doi.org/https://doi.org/10.1016/j.ssi.2010.10.001
https://doi.org/https://doi.org/10.1016/j.ssi.2010.10.001
https://doi.org/10.1021/jacs.3c03827
https://doi.org/10.1021/acsaem.8b00457
https://doi.org/10.1021/acs.chemmater.2c02637
https://doi.org/10.1063/5.0106617


bibliography 103

[115] Zheyong Fan, Luiz Felipe C. Pereira, Hui-Qiong Wang, Jin-Cheng
Zheng, Davide Donadio, and Ari Harju. “Force and heat current for-
mulas for many-body potentials in molecular dynamics simulations
with applications to thermal conductivity calculations.” In: Phys. Rev. B
92 (9 2015), p. 094301. doi: 10.1103/PhysRevB.92.094301.

[116] Zheyong Fan, Zezhu Zeng, Cunzhi Zhang, Yanzhou Wang, Keke Song,
Haikuan Dong, Yue Chen, and Tapio Ala-Nissila. “Neuroevolution ma-
chine learning potentials: Combining high accuracy and low cost in
atomistic simulations and application to heat transport.” In: Phys. Rev.
B 104 (10 2021), p. 104309. doi: 10.1103/PhysRevB.104.104309.

[117] M. Bonetti, S. Nakamae, M. Roger, and P. Guenoun. “Huge Seebeck co-
efficients in nonaqueous electrolytes.” In: The Journal of Chemical Physics
134.11 (2011), p. 114513. doi: 10.1063/1.3561735.

[118] Hui Wang, Dan Zhao, Zia Ulla Khan, Skomantas Puzinas, Magnus P.
Jonsson, Magnus Berggren, and Xavier Crispin. “Ionic Thermoelectric
Figure of Merit for Charging of Supercapacitors.” In: Advanced Elec-
tronic Materials 3.4 (2017), p. 1700013. doi: https://doi.org/10.1002/
aelm.201700013.

[119] Bruce J. Palmer. “Transverse-current autocorrelation-function calcula-
tions of the shear viscosity for molecular liquids.” In: Phys. Rev. E 49 (1
1994), pp. 359–366. doi: 10.1103/PhysRevE.49.359.

[120] Bruce J. Palmer. “Calculation of thermal-diffusion coefficients from
plane-wave fluctuations in the heat energy density.” In: Phys. Rev. E
49 (3 1994), pp. 2049–2057. doi: 10.1103/PhysRevE.49.2049.

[121] Bingqing Cheng and Daan Frenkel. “Computing the Heat Conductivity
of Fluids from Density Fluctuations.” In: Phys. Rev. Lett. 125 (13 2020),
p. 130602. doi: 10.1103/PhysRevLett.125.130602.

[122] Enrico Drigo, Maria Grazia Izzo, and Stefano Baroni. “Heat conductiv-
ity from energy-density fluctuations.” In: The Journal of Chemical Physics
159.18 (2023), p. 184107. issn: 0021-9606. doi: 10.1063/5.0168732.

[123] L.A Rowley, D Nicholson, and N.G Parsonage. “Monte Carlo grand
canonical ensemble calculation in a gas-liquid transition region for 12-
6 Argon.” In: J. Comput. Phys. 17.4 (1975), pp. 401–414. issn: 0021-9991.
doi: https://doi.org/10.1016/0021-9991(75)90042-X.

[124] B. W. H. van Beest, G. J. Kramer, and R. A. van Santen. “Force fields
for silicas and aluminophosphates based on ab initio calculations.” In:
Phys. Rev. Lett. 64 (16 1990), pp. 1955–1958. doi: 10.1103/PhysRevLett.
64.1955.

[125] Alfredo Fiorentino and Stefano Baroni. “From Green-Kubo to the full
Boltzmann kinetic approach to heat transport in crystals and glasses.”
In: Phys. Rev. B 107 (5 2023), p. 054311. doi: 10.1103/PhysRevB.107.
054311.

https://doi.org/10.1103/PhysRevB.92.094301
https://doi.org/10.1103/PhysRevB.104.104309
https://doi.org/10.1063/1.3561735
https://doi.org/https://doi.org/10.1002/aelm.201700013
https://doi.org/https://doi.org/10.1002/aelm.201700013
https://doi.org/10.1103/PhysRevE.49.359
https://doi.org/10.1103/PhysRevE.49.2049
https://doi.org/10.1103/PhysRevLett.125.130602
https://doi.org/10.1063/5.0168732
https://doi.org/https://doi.org/10.1016/0021-9991(75)90042-X
https://doi.org/10.1103/PhysRevLett.64.1955
https://doi.org/10.1103/PhysRevLett.64.1955
https://doi.org/10.1103/PhysRevB.107.054311
https://doi.org/10.1103/PhysRevB.107.054311


104 bibliography

[126] Leyla Isaeva, Giuseppe Barbalinardo, Davide Donadio, and Stefano
Baroni. “Modeling heat transport in crystals and glasses from a uni-
fied lattice-dynamical approach.” In: Nature Communications 10.1 (2019),
p. 3853. issn: 2041-1723. doi: 10.1038/s41467-019-11572-4.

[127] Lorenzo Monacelli, Raffaello Bianco, Marco Cherubini, Matteo Calan-
dra, Ion Errea, and Francesco Mauri. “The stochastic self-consistent har-
monic approximation: calculating vibrational properties of materials
with full quantum and anharmonic effects.” In: Journal of Physics: Con-
densed Matter 33.36 (2021), p. 363001. doi: 10.1088/1361-648X/ac066b.
url: https://dx.doi.org/10.1088/1361-648X/ac066b.

[128] Giuseppe Barbalinardo, Zekun Chen, Nicholas W. Lundgren, and Da-
vide Donadio. “Efficient anharmonic lattice dynamics calculations of
thermal transport in crystalline and disordered solids.” In: Journal of
Applied Physics 128.13 (2020), p. 135104. issn: 0021-8979. doi: 10.1063/
5.0020443.

[129] Philip B. Allen and Joseph L. Feldman. “Thermal conductivity of disor-
dered harmonic solids.” In: Phys. Rev. B 48 (17 1993), pp. 12581–12588.
doi: 10.1103/PhysRevB.48.12581.

[130] Philip B Allen and Jonathan Kelner. “Evolution of a vibrational wave
packet on a disordered chain.” In: Am. J. Phys. 66.6 (1998), pp. 497–506.
doi: 10.1119/1.18890.

[131] Philip B Allen and Joseph JL Feldman. “Thermal Conductivity of
Glasses: Theory and Application to Amorphous Si.” In: Phys. Rev. Lett.
62.6 (1989), pp. 645–648. doi: 10.1103/PhysRevLett.62.645.

[132] Joseph L. Feldman, Philip B. Allen, and Scott R. Bickham. “Numerical
study of low-frequency vibrations in amorphous silicon.” In: Phys. Rev.
B 59 (5 1999), pp. 3551–3559. doi: 10.1103/PhysRevB.59.3551.

[133] Jaroslav Fabian Philip B. Allen Joseph L. Feldman and Frederick
Wooten. “Diffusons, locons and propagons: Character of atomic vibra-
tions in amorphous Si.” In: Philosophical Magazine B 79.11-12 (1999),
pp. 1715–1731. doi: 10.1080/13642819908223054.

[134] R. Peierls. “Zur kinetischen Theorie der Wärmeleitung in Kristallen.”
In: Annalen der Physik 395.8 (1929), pp. 1055–1101. doi: https://doi.
org/10.1002/andp.19293950803.

[135] A. Ward, D. A. Broido, Derek A. Stewart, and G. Deinzer. “Ab initio
theory of the lattice thermal conductivity in diamond.” In: Phys. Rev. B
80 (12 2009), p. 125203. doi: 10.1103/PhysRevB.80.125203.

[136] Andrea Cepellotti and Nicola Marzari. “Thermal Transport in Crystals
as a Kinetic Theory of Relaxons.” In: Phys. Rev. X 6 (4 2016), p. 041013.
doi: 10.1103/PhysRevX.6.041013.

[137] Michele Simoncelli, Nicola Marzari, and Francesco Mauri. “Unified the-
ory of thermal transport in crystals and glasses.” In: Nature Physics 15.8
(2019), pp. 809–813. issn: 1745-2481. doi: 10.1038/s41567-019-0520-x.

https://doi.org/10.1038/s41467-019-11572-4
https://doi.org/10.1088/1361-648X/ac066b
https://dx.doi.org/10.1088/1361-648X/ac066b
https://doi.org/10.1063/5.0020443
https://doi.org/10.1063/5.0020443
https://doi.org/10.1103/PhysRevB.48.12581
https://doi.org/10.1119/1.18890
https://doi.org/10.1103/PhysRevLett.62.645
https://doi.org/10.1103/PhysRevB.59.3551
https://doi.org/10.1080/13642819908223054
https://doi.org/https://doi.org/10.1002/andp.19293950803
https://doi.org/https://doi.org/10.1002/andp.19293950803
https://doi.org/10.1103/PhysRevB.80.125203
https://doi.org/10.1103/PhysRevX.6.041013
https://doi.org/10.1038/s41567-019-0520-x


bibliography 105

[138] Michele Simoncelli, Nicola Marzari, and Francesco Mauri. “Wigner For-
mulation of Thermal Transport in Solids.” In: Phys. Rev. X 12 (4 2022),
p. 041011. doi: 10.1103/PhysRevX.12.041011.

[139] Anees Pazhedath, Lorenzo Bastonero, Nicola Marzari, and Michele Si-
moncelli. “First-principles characterization of thermal conductivity in
LaPO4-based alloys.” In: Phys. Rev. Appl. 22 (2 2024), p. 024064. doi:
10.1103/PhysRevApplied.22.024064.

[140] Enrico Di Lucente, Michele Simoncelli, and Nicola Marzari. “Crossover
from Boltzmann to Wigner thermal transport in thermoelectric skut-
terudites.” In: Phys. Rev. Res. 5 (3 2023), p. 033125. doi: 10 . 1103 /

PhysRevResearch.5.033125.

[141] Michele Simoncelli, Francesco Mauri, and Nicola Marzari. “Thermal
conductivity of glasses: first-principles theory and applications.” In: npj
Computational Materials 9.1 (2023), p. 106. issn: 2057-3960. doi: 10.1038/
s41524-023-01033-4.

[142] Alfredo Fiorentino, Paolo Pegolo, and Stefano Baroni. “Hydrodynamic
finite-size scaling of the thermal conductivity in glasses.” In: npj Com-
putational Materials 9.1 (2023), p. 157. issn: 2057-3960. doi: 10.1038/
s41524-023-01116-2.

[143] W. Schirmacher. “Thermal conductivity of glassy materials and the “bo-
son peak".” In: Europhysics Letters 73.6 (2006), p. 892. doi: 10.1209/epl/
i2005-10471-9. url: https://dx.doi.org/10.1209/epl/i2005-10471-
9.

[144] Jason M. Larkin and Alan J. H. McGaughey. “Thermal conductivity
accumulation in amorphous silica and amorphous silicon.” In: Phys.
Rev. B 89 (14 2014), p. 144303. doi: 10.1103/PhysRevB.89.144303.

[145] Alfredo Fiorentino, Enrico Drigo, Stefano Baroni, and Paolo Pegolo.
“Unearthing the foundational role of anharmonicity in heat transport
in glasses.” In: Phys. Rev. B 109 (22 2024), p. 224202. doi: 10.1103/
PhysRevB.109.224202.

[146] A. F. Ioffe and A. R. Regel. In: Progresses in Semiconductors. Ed. by A. F.
Gibson. Vol. 4. Heywood, London, 1960, p. 237.

[147] Philip B. Allen, Joseph L. Feldman, Jaroslav Fabian, and Frederick
Wooten. “Diffusons, locons and propagons: Character of atomic vibra-
tions in amorphous Si.” In: Phil. Mag. B 79.11-12 (1999), pp. 1715–1731.
doi: 10.1080/13642819908223054.

[148] Allan Griffin. “Brillouin Light Scattering from Crystals in the Hydro-
dynamic Region.” In: Rev. Mod. Phys. 40 (1 1968), pp. 167–205. doi:
10.1103/RevModPhys.40.167.

[149] Maria G. Izzo, Giancarlo Ruocco, and Stefano Cazzato. “The Mixing
of Polarizations in the Acoustic Excitations of Disordered Media With
Local Isotropy.” In: Frontiers in Physics 6 (2018). issn: 2296-424X. doi:
10.3389/fphy.2018.00108.

https://doi.org/10.1103/PhysRevX.12.041011
https://doi.org/10.1103/PhysRevApplied.22.024064
https://doi.org/10.1103/PhysRevResearch.5.033125
https://doi.org/10.1103/PhysRevResearch.5.033125
https://doi.org/10.1038/s41524-023-01033-4
https://doi.org/10.1038/s41524-023-01033-4
https://doi.org/10.1038/s41524-023-01116-2
https://doi.org/10.1038/s41524-023-01116-2
https://doi.org/10.1209/epl/i2005-10471-9
https://doi.org/10.1209/epl/i2005-10471-9
https://dx.doi.org/10.1209/epl/i2005-10471-9
https://dx.doi.org/10.1209/epl/i2005-10471-9
https://doi.org/10.1103/PhysRevB.89.144303
https://doi.org/10.1103/PhysRevB.109.224202
https://doi.org/10.1103/PhysRevB.109.224202
https://doi.org/10.1080/13642819908223054
https://doi.org/10.1103/RevModPhys.40.167
https://doi.org/10.3389/fphy.2018.00108


106 bibliography

[150] M. G. Izzo, B. Wehinger, S. Cazzato, A. Matic, C. Masciovecchio, A.
Gessini, and G. Ruocco. “Rayleigh scattering and disorder-induced
mixing of polarizations in amorphous solids at the nanoscale: 1-octyl-
3-methylimidazolium chloride glass.” In: Phys. Rev. B 102 (21 2020),
p. 214309. doi: 10.1103/PhysRevB.102.214309.

[151] Jaeyun Moon, Raphaël P. Hermann, Michael E. Manley, Ahmet Alatas,
Ayman H. Said, and Austin J. Minnich. “Thermal acoustic excitations
with atomic-scale wavelengths in amorphous silicon.” In: Phys. Rev.
Mater. 3 (6 2019), p. 065601. doi: 10.1103/PhysRevMaterials.3.065601.

[152] C Masciovecchio, G Baldi, S Caponi, L Comez, S Di Fonzo, D Fioretto, A
Fontana, A Gessini, SC Santucci, F Sette, et al. “Evidence for a crossover
in the frequency dependence of the acoustic attenuation in vitreous
silica.” In: Physical review letters 97.3 (2006), p. 035501.

[153] Giacomo Baldi, Valentina M Giordano, and Giulio Monaco. “Elastic
anomalies at terahertz frequencies and excess density of vibrational
states in silica glass.” In: Phys. Rev. B 83.17 (2011), p. 174203. doi: 10.
1103/PhysRevB.83.174203.

[154] Jeffrey L. Braun, Christopher H. Baker, Ashutosh Giri, Mirza Elahi,
Kateryna Artyushkova, Thomas E. Beechem, Pamela M. Norris, Zayd
C. Leseman, John T. Gaskins, and Patrick E. Hopkins. “Size effects on
the thermal conductivity of amorphous silicon thin films.” In: Phys. Rev.
B 93 (14 2016), p. 140201. doi: 10.1103/PhysRevB.93.140201.

[155] Volker L. Deringer, Noam Bernstein, Albert P. Bartók, Matthew J. Cliffe,
Rachel N. Kerber, Lauren E. Marbella, Clare P. Grey, Stephen R. Elliott,
and Gábor Csányi. “Realistic Atomistic Structure of Amorphous Silicon
from Machine-Learning-Driven Molecular Dynamics.” In: J. Phys. Chem.
Lett. 9.11 (2018), pp. 2879–2885. doi: 10.1021/acs.jpclett.8b00902.

[156] Yuping He, Davide Donadio, and Giulia Galli. “Heat transport in amor-
phous silicon: Interplay between morphology and disorder.” In: Appl.
Phys. Lett. 98.14 (2011), p. 144101. issn: 0003-6951. doi: 10.1063/1.
3574366.

[157] B. L. Zink, R. Pietri, and F. Hellman. “Thermal Conductivity and Spe-
cific Heat of Thin-Film Amorphous Silicon.” In: Phys. Rev. Lett. 96 (5
2006), p. 055902. doi: 10.1103/PhysRevLett.96.055902.

[158] L Wieczorek, HJ Goldsmid, and GL Paul. “Thermal conductivity of
amorphous films.” In: Thermal Conductivity 20 (1989), pp. 235–241.

[159] Tsuneyuki Yamane, Naoto Nagai, Shin-ichiro Katayama, and Minoru
Todoki. “Measurement of thermal conductivity of silicon dioxide thin
films using a 3ω method.” In: J. Appl. Phys. 91.12 (2002), pp. 9772–9776.
issn: 0021-8979. doi: 10.1063/1.1481958.

https://doi.org/10.1103/PhysRevB.102.214309
https://doi.org/10.1103/PhysRevMaterials.3.065601
https://doi.org/10.1103/PhysRevB.83.174203
https://doi.org/10.1103/PhysRevB.83.174203
https://doi.org/10.1103/PhysRevB.93.140201
https://doi.org/10.1021/acs.jpclett.8b00902
https://doi.org/10.1063/1.3574366
https://doi.org/10.1063/1.3574366
https://doi.org/10.1103/PhysRevLett.96.055902
https://doi.org/10.1063/1.1481958


bibliography 107

[160] Xiao Liu, J. L. Feldman, D. G. Cahill, R. S. Crandall, N. Bernstein, D. M.
Photiadis, M. J. Mehl, and D. A. Papaconstantopoulos. “High Thermal
Conductivity of a Hydrogenated Amorphous Silicon Film.” In: Phys.
Rev. Lett. 102 (3 2009), p. 035901. doi: 10 . 1103 / PhysRevLett . 102 .

035901.

[161] Ho-Soon Yang, David G. Cahill, X. Liu, J. L. Feldman, R. S. Crandall,
B. A. Sperling, and J. R. Abelson. “Anomalously high thermal conduc-
tivity of amorphous Si deposited by hot-wire chemical vapor deposi-
tion.” In: Phys. Rev. B 81 (10 2010), p. 104203. doi: 10.1103/PhysRevB.
81.104203.

[162] David G. Cahill, M. Katiyar, and J. R. Abelson. “Thermal conductivity
of a-Si:H thin films.” In: Phys. Rev. B 50 (9 1994), pp. 6077–6081. doi:
10.1103/PhysRevB.50.6077.

[163] ET Swartz and RO Pohl. “Thermal resistance at interfaces.” In: Appl.
Phys. Lett. 51.26 (1987), pp. 2200–2202.

[164] Nathalie Vast and Stefano Baroni. “Effects of isotopic disorder on the
Raman spectra of crystals: Theory and ab initio calculations for dia-
mond and germanium.” In: Phys. Rev. B 61 (14 2000), pp. 9387–9392.
doi: 10.1103/PhysRevB.61.9387.

[165] C.C. Paige. “Accuracy and effectiveness of the Lanczos algorithm
for the symmetric eigenproblem.” In: Linear Algebra Appl. 34 (1980),
pp. 235–258. doi: 10.1016/0024-3795(80)90167-6.

[166] J. Tersoff. “Empirical interatomic potential for silicon with improved
elastic properties.” In: Phys. Rev. B 38 (14 1988), pp. 9902–9905. doi:
10.1103/PhysRevB.38.9902.

[167] Priya Vashishta, Rajiv K. Kalia, Aiichiro Nakano, and José Pedro Rino.
“Interaction potential for silicon carbide: A molecular dynamics study
of elastic constants and vibrational density of states for crystalline and
amorphous silicon carbide.” In: J. Appl. Phys. 101.10 (2007), p. 103515.
issn: 0021-8979. doi: 10.1063/1.2724570.

[168] José P. Rino, Ingvar Ebbsjö, Paulo S. Branicio, Rajiv K. Kalia, Ai-
ichiro Nakano, Fuyuki Shimojo, and Priya Vashishta. “Short- and
intermediate-range structural correlations in amorphous silicon car-
bide: A molecular dynamics study.” In: Phys. Rev. B 70 (4 2004),
p. 045207. doi: 10.1103/PhysRevB.70.045207.

[169] S.-M. Lee and David G. Cahill. “Heat transport in thin dielectric films.”
In: Journal of Applied Physics 81.6 (1997), pp. 2590–2595. issn: 0021-8979.
doi: 10.1063/1.363923.

[170] Augustus Matthiessen and Moritz von Bose. “On the influence of tem-
perature on the electric conducting power of metals.” In: Philos. Trans.
R. Soc. 152 (1862), pp. 1–27. doi: 10.1098/rstl.1862.0001.

https://doi.org/10.1103/PhysRevLett.102.035901
https://doi.org/10.1103/PhysRevLett.102.035901
https://doi.org/10.1103/PhysRevB.81.104203
https://doi.org/10.1103/PhysRevB.81.104203
https://doi.org/10.1103/PhysRevB.50.6077
https://doi.org/10.1103/PhysRevB.61.9387
https://doi.org/10.1016/0024-3795(80)90167-6
https://doi.org/10.1103/PhysRevB.38.9902
https://doi.org/10.1063/1.2724570
https://doi.org/10.1103/PhysRevB.70.045207
https://doi.org/10.1063/1.363923
https://doi.org/10.1098/rstl.1862.0001


108 bibliography

[171] O. V. Dolgov, D. A. Kirzhnits, and E. G. Maksimov. “On an admissible
sign of the static dielectric function of matter.” In: Rev. Mod. Phys. 53 (1
1981), pp. 81–93. doi: 10.1103/RevModPhys.53.81.

[172] Philippe A. Bopp, Alexei A. Kornyshev, and Godehard Sutmann.
“Static Nonlocal Dielectric Function of Liquid Water.” In: Phys. Rev. Lett.
76 (8 1996), pp. 1280–1283. doi: 10.1103/PhysRevLett.76.1280.

[173] Jean-Pierre Hansen and Ian R. McDonald. “Chapter 10 - Ionic Liquids.”
In: Theory of Simple Liquids (Third Edition). Ed. by Jean-Pierre Hansen
and Ian R. McDonald. Third Edition. Burlington: Academic Press, 2006,
pp. 291–340. isbn: 978-0-12-370535-8. doi: https://doi.org/10.1016/
B978-012370535-8/50012-4.

[174] O. V. Dolgov and E. G. Maksimov. “The sign of the static dielectric
constant of simple metals.” In: JETP Letters 28 (1 1978), p. 3. url: http:
//jetpletters.ru/ps/0/article_23810.shtml.

[175] D A Kirzhnits. “Are the Kramers-Kronig relations for the dielectric
permittivity of a material always valid?” In: Soviet Physics Uspekhi 19.6
(1976), p. 530. doi: 10.1070/PU1976v019n06ABEH005268.

[176] V D Gorobchenko and Evgenii G Maksimov. “The dielectric constant of
an interacting electron gas.” In: Soviet Physics Uspekhi 23.1 (1980), p. 35.
doi: 10.1070/PU1980v023n01ABEH004860.

[177] David Pines. “"Extended Electron-Gas Hamiltonian" — an Author’s
Comment.” In: Phys. Rev. B 2 (5 1970), pp. 1424–1425. doi: 10.1103/
PhysRevB.2.1424.

[178] Saverio Moroni, David M. Ceperley, and Gaetano Senatore. “Static Re-
sponse and Local Field Factor of the Electron Gas.” In: Phys. Rev. Lett.
75 (4 1995), pp. 689–692. doi: 10.1103/PhysRevLett.75.689.

[179] Philippe A. Bopp, Alexei A. Kornyshev, and Godehard Sutmann. “Fre-
quency and wave-vector dependent dielectric function of water: Collec-
tive modes and relaxation spectra.” In: The Journal of Chemical Physics
109.5 (1998), pp. 1939–1958. issn: 0021-9606. doi: 10.1063/1.476884.

[180] A. Fasolino, M. Parrinello, and M.P. Tosi. “Static dielectric behavior of
charged fluids near freezing.” In: Physics Letters A 66.2 (1978), pp. 119–
121. issn: 0375-9601. doi: https://doi.org/10.1016/0375-9601(78)
90013-0.

[181] G. Monet, F. Bresme, A. Kornyshev, and H. Berthoumieux. “Nonlocal
Dielectric Response of Water in Nanoconfinement.” In: Phys. Rev. Lett.
126 (21 2021), p. 216001. doi: 10.1103/PhysRevLett.126.216001.

[182] P. Bopp, G. Jancsó, and K. Heinzinger. “An improved potential for non-
rigid water molecules in the liquid phase.” In: Chemical Physics Letters
98.2 (1983), pp. 129–133. issn: 0009-2614. doi: https://doi.org/10.
1016/0009-2614(83)87112-7.

https://doi.org/10.1103/RevModPhys.53.81
https://doi.org/10.1103/PhysRevLett.76.1280
https://doi.org/https://doi.org/10.1016/B978-012370535-8/50012-4
https://doi.org/https://doi.org/10.1016/B978-012370535-8/50012-4
http://jetpletters.ru/ps/0/article_23810.shtml
http://jetpletters.ru/ps/0/article_23810.shtml
https://doi.org/10.1070/PU1976v019n06ABEH005268
https://doi.org/10.1070/PU1980v023n01ABEH004860
https://doi.org/10.1103/PhysRevB.2.1424
https://doi.org/10.1103/PhysRevB.2.1424
https://doi.org/10.1103/PhysRevLett.75.689
https://doi.org/10.1063/1.476884
https://doi.org/https://doi.org/10.1016/0375-9601(78)90013-0
https://doi.org/https://doi.org/10.1016/0375-9601(78)90013-0
https://doi.org/10.1103/PhysRevLett.126.216001
https://doi.org/https://doi.org/10.1016/0009-2614(83)87112-7
https://doi.org/https://doi.org/10.1016/0009-2614(83)87112-7


bibliography 109

[183] A.G. Kalinichev and K. Heinzinger. “Molecular dynamics of super-
critical water: A computer simulation of vibrational spectra with the
flexible BJH potential.” In: Geochimica et Cosmochimica Acta 59.4 (1995),
pp. 641–650. issn: 0016-7037. doi: https://doi.org/10.1016/0016-
7037(94)00289-X.

[184] Imre Ruff and Dennis J. Diestler. “Isothermal–isobaric molecular dy-
namics simulation of liquid water.” In: The Journal of Chemical Physics
93.3 (1990), pp. 2032–2042. issn: 0021-9606. doi: 10.1063/1.459080.

[185] Bingqing Cheng. Latent Ewald summation for machine learning of long-
range interactions. 2024. arXiv: 2408 . 15165 [cs.LG]. url: https : / /

arxiv.org/abs/2408.15165.

[186] Stephen J. Cox. “Dielectric response with short-ranged electrostat-
ics.” In: Proceedings of the National Academy of Sciences 117.33 (2020),
pp. 19746–19752. doi: 10.1073/pnas.2005847117.

[187] Ang Gao and Richard C. Remsing. “Self-consistent determination of
long-range electrostatics in neural network potentials.” In: Nature Com-
munications 13.1 (2022), p. 1572. issn: 2041-1723. doi: 10.1038/s41467-
022-29243-2.

[188] Jean Pierre Hansen and Ian R. McDonald. “Statistical mechanics of
dense ionized matter. IV. Density and charge fluctuations in a simple
molten salt.” In: Phys. Rev. A 11 (6 1975), pp. 2111–2123. doi: 10.1103/
PhysRevA.11.2111.

[189] John G. Kirkwood and Frank P. Buff. “The Statistical Mechanical The-
ory of Solutions. I.” In: The Journal of Chemical Physics 19.6 (1951),
pp. 774–777. issn: 0021-9606. doi: 10.1063/1.1748352.

[190] Albert P. Bartók, Mike C. Payne, Risi Kondor, and Gábor Csányi. “Gaus-
sian Approximation Potentials: The Accuracy of Quantum Mechanics,
without the Electrons.” In: Phys. Rev. Lett. 104 (13 2010), p. 136403. doi:
10.1103/PhysRevLett.104.136403.

[191] Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang,
Han Wang, and E Weinan. “DP-GEN: A concurrent learning platform
for the generation of reliable deep learning based potential energy mod-
els.” In: Comp. Phys. Commun. 253 (2020), p. 107206. doi: 10.1016/j.cpc.
2020.107206.

[192] John P. Perdew, Adrienn Ruzsinszky, Gábor I. Csonka, Oleg A. Vydrov,
Gustavo E. Scuseria, Lucian A. Constantin, Xiaolan Zhou, and Kieron
Burke. “Restoring the Density-Gradient Expansion for Exchange in
Solids and Surfaces.” In: Phys. Rev. Lett. 100 (13 2008), p. 136406. doi:
10.1103/PhysRevLett.100.136406.

https://doi.org/https://doi.org/10.1016/0016-7037(94)00289-X
https://doi.org/https://doi.org/10.1016/0016-7037(94)00289-X
https://doi.org/10.1063/1.459080
https://arxiv.org/abs/2408.15165
https://arxiv.org/abs/2408.15165
https://arxiv.org/abs/2408.15165
https://doi.org/10.1073/pnas.2005847117
https://doi.org/10.1038/s41467-022-29243-2
https://doi.org/10.1038/s41467-022-29243-2
https://doi.org/10.1103/PhysRevA.11.2111
https://doi.org/10.1103/PhysRevA.11.2111
https://doi.org/10.1063/1.1748352
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1016/j.cpc.2020.107206
https://doi.org/10.1016/j.cpc.2020.107206
https://doi.org/10.1103/PhysRevLett.100.136406


110 bibliography

[193] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra,
Roberto Car, Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti,
Matteo Cococcioni, Ismaila Dabo, et al. “QUANTUM ESPRESSO: a
modular and open-source software project for quantum simulations
of materials.” In: J. Condens. Matter Phys. 21.39 (2009), p. 395502. doi:
10.1088/0953-8984/21/39/395502.

[194] Paolo Giannozzi, Oliviero Andreussi, Thomas Brumme, Oana Bunau,
M Buongiorno Nardelli, Matteo Calandra, Roberto Car, Carlo Cavaz-
zoni, Davide Ceresoli, Matteo Cococcioni, et al. “Advanced capabilities
for materials modelling with Quantum ESPRESSO.” In: J. Condens. Mat-
ter Phys. 29.46 (2017), p. 465901. doi: 10.1088/1361-648X/aa8f79.

[195] Paolo Giannozzi, Oscar Baseggio, Pietro Bonfà, Davide Brunato,
Roberto Car, Ivan Carnimeo, Carlo Cavazzoni, Stefano De Gironcoli,
Pietro Delugas, Fabrizio Ferrari Ruffino, et al. “Quantum ESPRESSO
toward the exascale.” In: J. Chem. Phys. 152.15 (2020). doi: 10.1063/5.
0005082.

[196] Ivan Carnimeo, Fabio Affinito, Stefano Baroni, Oscar Baseggio, Laura
Bellentani, Riccardo Bertossa, Pietro Davide Delugas, Fabrizio Ferrari
Ruffino, Sergio Orlandini, Filippo Spiga, et al. “Quantum ESPRESSO:
One further step toward the exascale.” In: Journal of Chemical Theory
and Computation 19.20 (2023), pp. 6992–7006. doi: 10.1021/acs.jctc.
3c00249.

[197] P. E. Blöchl. “Projector augmented-wave method.” In: Phys. Rev. B 50

(24 1994), pp. 17953–17979. doi: 10.1103/PhysRevB.50.17953.

[198] Nicola Marzari, David Vanderbilt, Alessandro De Vita, and M. C.
Payne. “Thermal Contraction and Disordering of the Al(110) Sur-
face.” In: Phys. Rev. Lett. 82 (16 1999), pp. 3296–3299. doi: 10.1103/
PhysRevLett.82.3296.

https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1063/5.0005082
https://doi.org/10.1063/5.0005082
https://doi.org/10.1021/acs.jctc.3c00249
https://doi.org/10.1021/acs.jctc.3c00249
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevLett.82.3296
https://doi.org/10.1103/PhysRevLett.82.3296

	Abstract
	Contents
	Acronyms
	[]Introduction
	1 Theory of Transport Processes
	1.1 Irreversible thermodynamics
	1.2 Green-Kubo response theory
	1.2.1 Linear response theory
	1.2.2 Representation of the heat flux

	1.3 Invariance principles in the theory of transport
	1.3.1 Gauge invariance principle of transport coefficients
	1.3.2 Convective invariance of heat conductivity in multicomponent systems

	1.4 Hydrodynamic description of a diffusive process

	2 Cepstral and Bayesian regression analysis of response functions
	2.1 Statistical properties of Green-Kubo estimators
	2.2 Cepstral analysis of diagonal Onsager coefficients
	2.2.1 Cepstral analysis
	2.2.2 Numerical experiments on cepstral analysis

	2.3 Bayesian regression analysis of Wishart processes
	2.3.1 Bayesian regression analysis
	2.3.2 Numerical experiments on Bayesian regression analysis

	2.4 Bayesian extrapolation of static response functions

	3 Seebeck coefficient of classical fluids
	3.1 Thermopolarization effect in insulating polar fluids
	3.1.1 Thermopolarization effect from static response theory
	3.1.2 Bayesian regression analysis of the thermopolarization coefficient of liquid water

	3.2 Thermoelectric effects in ionic conductors
	3.2.1 Seebeck effect and thermoelectric transport in ionic conductors
	3.2.2  Bayesian regression analysis of the Seebeck coefficient
	3.2.3 Bayesian regression analysis of transport coefficients


	4 Thermal transport in solid and liquid insulators
	4.1 Extrapolation of thermal conductivity from energy density fluctuations
	4.2 Foundations of Quasi-Harmonic-Green-Kubo theory
	4.3 The role of anharmonicity in heat transport in glasses

	[]Conclusions
	Appendix
	A Kubo's and Martin's discussion on transport theory
	B Martin's analysis on responses to electric perturbations
	C Debenedetti calculation of partial molar quantities
	D Validation of the machine learning interatomic potential of solid-state electrolytes
	Acknowledgments

	[]Acknowledgments
	Bibliography


