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Abstract

This thesis investigates the use of spintronic oscillators for artificial intelligence
(AI) and combinatorial optimization applications, effectively using their inherent
physical nonlinearities to perform complex computational tasks efficiently. Spin-
tronic devices, specifically magnetic tunnel junctions (MTJs), have gained attention
due to their low power consumption, compact form and compatibility with silicon
substrates making them ideal candidates for devices for analog computing. In this
work, MTJ-based oscillators are also analyzed as potential computational units for
solving optimization problems implementing an Ising machine.

The study covers the theoretical and practical aspects of using MTJs in AI,
particularly focusing on implementing analog multiplication through spin-torque
oscillators to reduce computational overhead in neural networks. Through micro-
magnetic simulations, we show that MTJs can reliably perform analog multiplica-
tion. We tested this implementation in a convolutional neural network achieving
high accuracies even with device variability, which holds potential for power efficient
AI applications.

Furthermore, the thesis explores how these oscillators can solve the Max-Cut
problem and similar NP-hard combinatorial optimization challenges by simulating
phase dynamics in Ising models. We propose the use of an efficient algorithm that
allows for finding good solutions for sparse problems with extremely large sizes.
This helps us approaching a problem with 20 million nodes, the largest in literature.
The accuracy of the system is tested comparing the performance obtained solving
benchmark problems with other reference state-of-the-art solutions.

Finally, this work introduces the use of vortex MTJs for the implementation
of memory devices whose polarity can be deterministically written and read with
the use of frequency inputs, and can be selectively controlled in a chains without
individual access. These devices enable the multiplication between an analog signal,
encoded in the power of the input alternated current, and the stored binary value,
effectively implementing a building block of a binary neural network. We present
experimental results of a chain with two and three cascaded devices.
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Chapter 1

Oscillators, magnetic models and
artificial intelligence

The aim of this work is the analysis and application of spintronic oscillators for
the acceleration of the computation in the fields of artificial intelligence (AI) and
combinatorial optimization problems (COPs).

Regarding AI, we will present a novel implementation corroborated by theoret-
ical analyses and simulations of an analog multiplier that can be obtained simply
using an oscillator injected with an alternated current close to its resonance fre-
quency. We used this multiplier in the training and test of a convolutional neural
network (CNN) for the recognition of handwritten digits without loosing accuracy.

We will present experimental proof of the use of magnetic tunnel junctions
(MTJs) with magnetic vortices for storing and reading binary weights, as well as
performing analog multiplication with input signals, all controlled by alternated
currents. We realized a prototype of a chain with two and three devices that do not
require individual device access, and can be controlled using alternated currents
(ac) with specific frequencies.

We will show how the simulation of networks of oscillators and their interactions
can be used to find accurate solutions for COPs. We optimized our system for the
solution of large and sparse graph problems and we approached a problem with 20
million of nodes, the largest in literature.

The outcomes of this work are derived from a combination of theoretical anal-
yses and experimental results. The theoretical analyses were primarily conducted
using micromagnetic models and oscillator models. Micromagnetic models provide
insights into the time evolution of the magnetization patterns of a device with a
specific magnetic structure and account for various factors, including material prop-
erties, shape, applied currents, and magnetic fields. Due to the complexity of these
simulations, the behavior can be studied for few hundreds of nanoseconds.

Oscillator models, which require less material-specific information, are much
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Oscillators, magnetic models and artificial intelligence

less computationally expensive and are particularly useful for studying longer in-
teractions between a single device and external signals and the collective behavior
of interconnected devices. These models were employed to simulate networks of
devices and their interactions.

By integrating these two approaches we gain a comprehensive understanding
of the potential capabilities of the analyzed spintronic devices. "All models are
wrong, some are useful" [1], is the iconic phrase attributed to the statistician George
Box that well describes the necessity of using a model in the right scenario and
knowing its limitations, and by integrating the two models we gain a comprehensive
understanding of the behavior of spintronic oscillators for this specific use.

1.1 Micromagnetic modeling

Magnetism is a phenomenon that arises from the interactions of electric charges,
particularly through the spin and orbital motion of electrons around the atomic
nucleus [2]. These interactions generate magnetic moments, which collectively de-
termine the magnetic properties of a material.

The micromagnetic model divides the device into small cells, where it is assumed
that all magnetic moments, µi, are parallel and aligned in the same direction,
allowing them to be represented by a single vector [3, 4]. This assumption holds
for cells with a size smaller than the exchange length, defined by:

Lex =

√︄
2A

µ0M2
s

(1.1)

where A is the exchange stiffness constant (J/m), µ0 is the permeability of free
space (4π × 10−7 H/m), and Ms is the saturation magnetization of the material
(A/m).

In this work, we consider micromagnetic simulations performed on thin films,
corresponding with the (FL) of an MTJ, as with a single layer along the z-axis, and
a varying number of horizontal cells, ranging from 50× 50 to 200× 200.

Micromagnetic simulations are particularly suitable for analyzing devices whose
largest dimensions typically range from nanometers to micrometers, extending up
to the millimeter scale.

The local magnetization within each cell can be expressed as a continuous vector,
dependent on space and time:

M(r, t) =
1

dV

N∑︂
i=1

µi (1.2)

which represents the density of magnetic moments in a ferromagnetic volume.
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1.2 – Energy contributions

The direction of this vector is described by the unit vector:

m(r, t) =
M(r, t)

Ms

(1.3)

1.2 Energy contributions
The micromagnetic model is based on minimizing the total energy of the system,
which is a combination of several components. The components relevant to this
work will be described in the following sections.

1.2.1 Exchange energy

The exchange energy arises from the quantum mechanical interaction between
neighboring spins, which favors parallel alignment to minimize energy. This en-
ergy penalizes deviations from uniform magnetization, leading to smoother magne-
tization configurations over short distances. The exchange energy density is given
by:

Eex = A (∇m)2 . (1.4)
This term plays a crucial role in stabilizing the magnetic structure at the nanoscale
ensuring no abrupt changes between the magnetization of adjacent cells.

1.2.2 Anisotropy energy

Anisotropy energy accounts for the preference of magnetic moments to align along
specific crystallographic directions, known as easy axes. This energy arises due to
spin-orbit coupling, which makes certain orientations of the magnetization energet-
ically favorable. For uniaxial anisotropy, the energy density is given by:

Eani = −Ku (m · eu)2 (1.5)

where Ku is the anisotropy constant, and eu is the unit vector along the easy axis.
The anisotropy energy helps to define the preferred magnetization directions within
a material. For thin films, where the dimension on the z-axis is much smaller than
the other two, we can define xy-plane as the easy plane since the magnetization is
not favored along the z direction. This term is minimized when the magnetization
vector is parallel to the easy axis, and it is minimized for small variations between
adjacent cells.

1.2.3 Magnetostatic energy

Magnetostatic energy, also known as demagnetizing energy, is associated with the
self-interaction of the magnetic stray field generated by the magnetization distribu-
tion. It tends to oppose the formation of magnetic poles at the surface, encouraging
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magnetic moments to align in such a way that reduces the external field. The mag-
netostatic energy density can be written as:

Emag = −1

2
M ·Hd (1.6)

where Hd is the demagnetizing field, which represents the internal magnetic field
produced by the magnetic material itself due to its magnetization M.

The demagnetizing field Hd acts to reduce the magnetostatic energy by coun-
teracting the magnetization within the material. This field arises because the mag-
netization M generates magnetic poles at the surface and edges of the material,
creating a stray field outside and within the material. The demagnetizing field
thus opposes the magnetization and seeks to minimize surface poles, effectively
encouraging configurations that reduce the overall external field.

In practical terms, the demagnetizing field often leads to the formation of com-
plex magnetization patterns, particularly in structures with confined geometries,
such as nanostructures. These patterns, including domain formation and vortex
states, help minimize the magnetostatic energy by locally aligning magnetic mo-
ments in a way that cancels out or significantly reduces stray fields.

1.2.4 Zeeman energy

The Zeeman energy describes the interaction between the magnetization and an
externally applied magnetic field. It favors alignment of the magnetic moments
with the external field, and its energy density is given by:

EZ = −µ0M ·Hext (1.7)

where Hext is the external magnetic field, and this energy is minimized when the
two vectors have the same direction and verse. This term scales with the intensity
of the external field.

1.2.5 Oersted field

The Oersted field refers to the magnetic field generated by an electric current pass-
ing through or near the magnetic material. This field can interact with the mag-
netization, influencing the overall energy of the system. The Oersted field HOe is
given by Ampere’s law:

∇×HOe = J (1.8)

where J is the current density. The Oersted field becomes particularly significant
in devices involving current-induced magnetization dynamics.
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1.2 – Energy contributions

1.2.6 Thermal field

In real magnetic systems, thermal fluctuations play a significant role especially at
the nanoscale, where thermal energy can influence the magnetization dynamics.
The thermal field accounts for the random fluctuations in magnetization caused by
temperature, and it is particularly important when studying thermally activated
processes, such as magnetization reversal and switching.

The thermal field Hth is typically modeled as a stochastic term in micromagnetic
simulations, adding a random perturbation to the effective magnetic field. This
random thermal field is incorporated into the LLG equation to simulate the impact
of temperature on the magnetization dynamics. The thermal field can be expressed
as

Hth(t) =

√︄
2αkBT

γµ0MsV dt
G(t), (1.9)

where α is the damping factor, kB is Boltzmann’s constant, T is the temperature in
Kelvin, V is the volume of the simulation cell, dt is the time step, G(t) is a vector
of Gaussian-distributed random numbers with zero mean and unit variance.

The thermal field introduces randomness into the micromagnetic model, simu-
lating the effect of thermal noise [5]. This field affects the magnetization over time
and is essential for studying phenomena such as thermal stability, and the behavior
of magnetic systems at room temperatures.

1.2.7 Effective field

The total energy of the micromagnetic system is obtained by summing all the
individual contributions from the different energy terms described previously. The
total energy Etotal can be expressed as:

Etotal = Eex + Eani + Emag + EZ. (1.10)

Other terms can be included for simulating specific configurations, like the Dzyaloshinskii-
Moriya interaction.

The minimization of this total energy determines the equilibrium configuration
of the magnetization in the material. The combined effects of these energy terms
lead to complex and rich magnetic phenomena, especially in nanoscale devices.
Each term contributes to the stability, domain structure, and dynamic behavior of
the magnetic system. The interaction between these energy contributions can lead
to a variety of magnetization states, such as domains, domain walls, vortices, and
other topological features.

In practice, the effective magnetic field Heff used in the Landau-Lifshitz-Gilbert
(LLG) equation is derived from the total energy by:

Heff = − 1

µ0

δEtotal

δM
+HOe +Hth, (1.11)
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and since the Oersted and thermal components are easier to describe as fields, we
can simply add them to the Heff evaluation.

This effective field, incorporating all the energy contributions, governs the mag-
netization dynamics according to the LLG equation. As such, understanding the
balance of these energy components is crucial for predicting and controlling the
magnetic behavior in simulations and experiments.

1.2.8 Landau-Lifshitz-Gilbert equation

The time evolution of the magnetization is governed by the LLG equation, which
describes how the magnetization responds to the effective field derived from the
various energy contributions. The LLG equation is expressed as:

dM

dt
= −γM×Heff +

α

Ms

M× dM

dt
. (1.12)

The first term describes the precession of the magnetization around the effective
field, while the second term represents the damping, which drives the magnetization
toward equilibrium. The LLG equation is fundamental in simulating the dynamic
behavior of magnetic systems.

1.3 The Spin-Transfer Torque

The Spin-transfer torque (STT) is a critical mechanism in the operation of spin-
tronic devices as it allows the control of the magnetization of the FL with an input
current, making the system highly integrable.

STT relies on a spin-polarized current, which is generated by passing an un-
polarized current through a hard magnetic material known as a polarizer. The
polarizer filters the current based on the electron spin: electrons with spins aligned
to the polarizer’s magnetization pass through, while those with opposite spins are
reflected. This selective filtering of spins results in a spin-polarized current.

As illustrated in Fig. 1.1 (a), this process is essential for transferring angular
momentum from the current to the magnetization of the free layer. When the spin-
polarized current reaches the FL, typically made of a softer magnetic material, it
exerts torque on the magnetization. This torque can rotate the magnetization of
the FL, aligning it with the direction of the polarizer’s magnetization.

To reverse the magnetization of the FL, we just need to apply a current in the
opposite direction and the back-scattering effect will induce a spin-polarized current
with opposite polarity. The electrons will transfer their torque to the FL, inducing
an anti-parallel alignment compared with the polarizer, as shown in Fig. 1.1 (b).

In Fig. 1.1, the spins are considered to be only polarized up and down for
simplicity, but the same concept can be extended to a realistic case, where the spin

6



1.3 – The Spin-Transfer Torque

Figure 1.1: (a) Sketch of the spin-polarization of the current polarization and STT aligning
the FL with the polarizer. (b) Sketch of the current polarization via back-scattering and
anti-aligning the FL with the polarizer.
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of the input current has a random orientation in space. The theoretical foundation
of STT is described by the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation,
which extends the LLG equation by incorporating a torque term due to spin-transfer
effects. The LLGS equation can be written as

dm

dt
= −γm×Heff + αm× dm

dt
+ σIdc [m× (m×mp)− q(m×mp)] , (1.13)

where σ represents the spin polarization efficiency mp is the unit vector of the
polarization direction of the spin current. q represents the ratio between the field-
like torque and the Slonczewski torque and Idc is the current magnitude [6, 7, 8].
This equation is referred to as the Landau-Lifshitz-Gilbert-Slonczewski (LLGS)
equation.

In summary, STT allows for the control of the magnetization vector of a mag-
netic layer with the use of spin-polarized current. This effect is of critical importance
for the integrability of spintronic devices, as current integrated chips make use of
currents and voltages.

If the damping term is compensated by the input STT component, the system
starts oscillating as the LLGS is dominated by the precessing component. The
precessional motion is maintained as long as the spin-polarized current is applied,
leading to a steady-state oscillation frequency determined by the properties of the
magnetic layers and the current magnitude, with frequencies between hundreds of
MHz and hundreds of GHz.

1.4 The resistive effects on ferromagnets
In 1988, Albert Fert and Peter Grünberg independently discovered the phenomenon
of Giant Magnetoresistance (GMR), which revealed that the electrical resistance of
magnetic materials in multi-layered structures depends on the relative orientation
of their magnetization [9, 10].

This discovery has been key for the realization and miniaturization of the hard-
disk technology, where the digital bits are stored in small magnetic cells, and gen-
erally this effect allows for the detection of the magnetization of the free layer with
a simple resistance measurement.

1.4.1 Giant Magnetoresistance

In the experiments carried on by Fert and Grünberg the samples were composed
of alternating thin film ferromagnetic and non-magnetic metal layers. The resis-
tance of these multilayers changes dramatically with the relative alignment of the
magnetizations in adjacent ferromagnetic layers [11].

In a simplified GMR stack with two magnetic layers, the resistance is low when
the magnetizations are parallel and high when they are antiparallel. This is due to

8



1.4 – The resistive effects on ferromagnets

the spin-dependent scattering of electrons at the interfaces between ferromagnetic
and non-magnetic layers. When the magnetizations are parallel, electrons with
spins aligned to the magnetization encounter less scattering, resulting in lower
resistance. In the antiparallel alignment, electrons face higher scattering, increasing
the resistance.

In a simplified model where the input current is considered as the sum of two
spin-polarized currents (spin-up current and spin-down current), the behavior of
electron scattering varies depending on the magnetization alignment. In the parallel
state, only one of the spin-polarized components is scattered, resulting in lower
resistance, as shown in Fig. 1.2 (a). However, in the anti-parallel state, both spin-
up and spin-down components experience significant scattering, which increases
the overall resistance of the system, Fig. 1.2 (b). In this figure for the purpose
of simplification it is assumed that when a polarized current passes through a
magnetized material with opposite direction, half of the electrons are scattered,
otherwise no scattering happens. The total number of electrons found in the right
side of the scheme is inversely proportional to the detected resistance.

The GMR ratio is a useful metric for the evaluation of these devices and it is
given by:

GMR =
RAP −RP

RP
, (1.14)

where RAP and RP are the resistances in the anti.parallel and parallel states, re-
spectively. Usual values of GMR are found between 10% and 20% at room temper-
ature [12].

If the magnetization of one of the two layers, typically called the reference layer,
is known, determining the magnetization orientation of the other becomes straight-
forward with a simple resistance measurement. This is a key finding as reading the
magnetization of the free layer becomes easy also in integrated implementations.

1.4.2 Tunnel Magnetoresistance

A similar phenomenon to GMR occurs when the two magnetic layers are separated
by a thin insulating barrier; this is known as Tunneling Magnetoresistance (TMR).
In this case, when the magnetization vectors of the ferromagnetic layers are aligned
parallel, the density of states for spin-up and spin-down electrons aligns in both
layers. This alignment increases the probability of electrons tunneling through the
insulator due to the spin-polarized conduction, resulting in lower resistance.

In the anti-parallel configuration, the density of states for spin-up and spin-down
electrons in the two ferromagnetic layers is misaligned. As a result, the tunneling
probability decreases, leading to an increase in the overall resistance.

The TMR ratio, the key metric for this phenomenon, is expressed as:

TMR =
RAP −RP

RP
, (1.15)
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Figure 1.2: Sketch of the GMR phenomenon considering the case of current flowing from
the polarizer to the FL (a), and vice versa (b). In this example, when a spin-polarized
current passes through a magnetized material with opposite direction, half of the electrons
are scattered.
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and modern MTJs achieve TMR ratios of over 600%, making them highly effective
for applications in magnetic random-access memory (MRAM) and read heads in
hard disk drives [13, 14, 15].

We can now define the magnetic tunnel junction (MTJ) structure, a key com-
ponent in spintronic devices, consisting of a free layer (FL) and a reference layer,
separated by a thin insulating barrier, as illustrated in Fig. 1.3 reported from [16].
This image shows also a sketch of the realization of a pinning layer with the use of
a synthetic antiferromagnet (SAF), which is composed of two ferromagnetic layers
coupled through an antiferromagnetic interaction [17]. The SAF offers several ad-
vantages, including reduced magnetic interference and greater stability, making it
an ideal substitute for the pinned layer in many applications.

In conclusion, we have demonstrated how the MTJ structure enables the effi-
cient writing and reading of the magnetization state of the FL using only current.
This is essential for advancing spintronic oscillators, as we have observed that a
dc input can offset the intrinsic damping, inducing sustained magnetization oscil-
lations in the FL. Through the GMR or TMR effect, these oscillations manifest as
variations in the device’s resistance as when a dc current is applied, the oscillation
of the magnetization leads to a variation in the voltage across the device terminals,
generating a measurable frequency signal. This variation makes the system easy to
control in integrated solutions, making it one of the smallest controllable oscillators
in nature [18, 19].

Figure 1.3: (a) Sketch of the structure of the MTJ with a SAF as pinnning layer. Image
reported from [16].
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1.5 Artificial Intelligence

1.5.1 The advantages of analog computing in AI

With the advent of ChatGPT in late 2022, the world witnessed a profound trans-
formation as artificial intelligence, particularly large language models (LLMs) [20,
21, 22], became part of the daily life of millions of users. These models have quickly
established themselves as indispensable tools across various domains, from enhanc-
ing customer service interactions to assisting in the generation of scientific papers
and creative content [23, 24].

This rapid adoption of LLMs has started a competitive race among leading
technology companies to develop increasingly sophisticated models. As the scale
and complexity of these models grow, so does the demand for computational power,
leading to significant energy consumption and resource requirements. The focus
on developing more powerful models, however, has highlighted the inefficiencies
inherent in current computing architectures. Considering the frequency of use, the
most time-consuming and energy-intensive operations in AI implementations are
often associated with memory read and write processes, as well as the multiplication
of numerical values.

In response to these challenges, academic and industrial research are trying to
identify and implement more efficient computational solutions [19, 25]. In this work
we will analyze two main areas of exploration for the optimization of neural net-
works (NNs): the realization of analog multiplication and in-memory computing.
The first has a critical impact on the carbon footprint, and the second one could
also drastically reduce the operation times as devices can be used both as memory
and computing units, enabling operations like the multiply-and-accumulate (MAC)
directly within the memory. The added cost is the increased complexity of manu-
facturing and control of analog signals.

1.5.2 Machine Learning and Deep Learning

Machine learning (ML) is a subset of AI that describes the systems that learn
from data and make predictions or decisions without being explicitly programmed
for every task. At its core, ML revolves around training models on datasets to
recognize patterns and relationships, enabling these models to apply generalized
patterns to unseen data. The field is commonly divided into three main types:
supervised learning, where the model learns from labeled data [26]; unsupervised
learning, which relies on unlabeled data to identify structures and patterns [27];
and reinforcement learning, where agents learn by interacting with an environment
and receiving feedback in the form of rewards or penalties [28, 29].

Deep learning, a specialized area within machine learning, represents a signifi-
cant advancement, driven by the development of artificial neural networks (ANNs).
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Deep learning models automatically learn features through multiple layers of neu-
rons (hence the word deep), enabling them to excel in complex tasks like image
recognition and natural language processing. The advent of deep learning required
the realization of large datasets and the availability of extended computational
power, and this is the reason why, even though this field was theorized in late
1950s [30], practical implementations have been developed in recent years such the
development of autonomous driving cars, medical images interpreters, text and im-
age generation and many others [31, 32]. Central to deep learning are multilayered
networks where each layer extracts increasingly abstract features from the data,
leading to more accurate predictions.

In the following, we will introduce linear layers, useful for extracting general
information over large inputs, and CNNs [33], suitable for analyzing data structures
organized in grids, like images.

1.5.3 Fully Connected layers

Fully Connected (FC) layers, also known as linear or dense layers, are fundamental
components of NNs. A FC layer performs a linear transformation by multiplying
the input vector by a weight matrix and adding a bias term. Mathematically, this
is represented as:

y = Wx + b (1.16)

where x is the input, W is the weight matrix, b is the bias vector, and y is the
output. This transformation is crucial because it maps the input data into a new
space, allowing the network to learn different representations and extract important
features from the data.

In most cases, except for the input and output layers, the output passes through
an activation function that introduces nonlinearities in the network. The intro-
duced nonlinearities is the key difference between NNs and linear transformations
and those are necessary for the learning of complex patterns, like image and lan-
guage features, and for strengthening the connections between related neurons. The
connections implement the interactions between neurons and their impact on the
processing of the information.

A simple and effective activation function is the ReLU (rectified linear unit),
that returns the input value for positive inputs and zero for negative inputs, or in
simpler terms:

ReLU(x) = max(0, x). (1.17)

Figure 1.4 shows a sketch of a deep fully connected neural network composed only
of linear layers. The network is divided into input, hidden and output layers.

Each connection represents a weight and each circle in the hidden layers repre-
sents the application of the activation function on the sum of all the outputs from
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the previous layer multiplied by a specific weight. On the right is presented a zoom
of the framed portion representing how the weights link neurons in adjacent layers.

The output of the neuron with position x of the hidden layer l can be defined
as

Ll(x) = ReLU

(︄
bl(x) +

N∑︂
i=1

Ll−1(i) ·Wl−1(i, x)

)︄
. (1.18)

where Wl−1 is the matrix containing all the weights that connect the layer l with
the previous one, Ll−1 is the vector with the outputs of the previous layer and bl

is the vector containing the biases of nodes of the specific layer.

Figure 1.4: Sketch of a NN composed of an input layer, three hidden layers and an output
layer. Each connection represents a weight and each circle in the hidden layers represents
the application of the activation function. On the right is represented a zoom of the
framed portion with the explicit evaluation of the values of L21 and L22, with W11 and
W12 being the weights and B21 and B22 being the biases. Image source (modified) [34].

Linear layers play a key role in neural networks by connecting all the neurons
from one layer to those in the next, making them particularly powerful for combin-
ing information learned from different parts of the input. They enable the network
to make complex predictions by aggregating and synthesizing features learned by
previous layers [35].

In deep learning models, FC layers are often found at the end of the network,
following convolutional or recurrent layers.

The importance of FC layers lies in their capacity to consolidate learned features
into meaningful outputs. While other types of layers (such as convolutional layers)
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are specialized for processing specific data types (e.g., spatial data in CNNs), linear
layers are versatile and can be used for a wide range of tasks, such as classification,
regression, and sequence generation. Their simplicity and efficiency make them
flexible and essential for the decision-making process in neural networks.

Despite their straightforward operation, FC layers are computationally inten-
sive when dealing with high-dimensional data, as they require a large number of
parameters. However, they remain a crucial part of most deep learning models, bal-
ancing complexity and generalization, and ensuring that the network can interpret
the information extracted by specialized layers, and for this reason in the following
example we will observe a FC layer analyzes the output of two convolutional layers.

1.5.4 Convolutional Neural Networks

CNNs are specialized NNs designed to process grid-like data, such as images. They
use layers that focus on detecting spatial hierarchies in data, making them highly
effective for tasks like image recognition and object detection [36].

At the heart of a CNN are its convolutional layers, which apply filters (also called
kernels) to input data to detect features like edges, textures, or patterns. These
filters move across the input data, performing element-wise operations that produce
feature maps. A major advantage of convolutional layers is weight sharing, where
the same filter is applied across different parts of the input. This makes CNNs more
efficient than fully connected layers and gives them the ability to detect features
regardless of their position within the image, providing translation invariance.

Figure 1.5 describes and example of convolution of a 3 × 3 filter applied to a
5×5 matrix. We can observe that each element of the final matrix is higher in value
if the analyzed window matches the filter. In this way, the network can study the
images and recognize different patterns. The size of each dimension of the output
matrix in this case is 5 − (3 − 1)/2, and in general Si − (Sw − 1)/2, where Si is
the size of the input matrix and Sw the size of the weight matrix. A zero-padding
frame is usually added to small images to avoid this reduction of dimensionality.

The values contained in each filter are chosen by the network during training.
Following the convolutional layers, pooling layers (like max pooling) reduce the

spatial dimensions of the feature maps, retaining the most important information
while making the network more computationally efficient and reducing overfitting.
Pooling helps CNNs focus on high-level abstract features while preserving the es-
sential spatial relationships of the data.

Activation functions are applied after each convolution to introduce non-linearity
into the model, essential to model non-linear relationships in data, further enhanc-
ing their capacity to identify intricate features.

The final layers of a CNN often include FC layers, which take the high-level
features extracted by the convolutional and pooling layers and map them to output
categories, such as finding the right class for an input image. These layers are
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Figure 1.5: Sketch of the first step of the convolution between a 3×3 filter W (orange) by
a 5× 5 data matrix D (green) resulting in a result 3× 3 matrix C (blue). The following
values are obtained shifting the filter horizontally and vertically through the whole data
matrix D.
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critical for consolidating the learned features and producing the final decision or
prediction.

The importance of CNN layers lies in their ability to progressively learn features
at different levels of abstraction, from simple edges in the early layers to more
complex shapes and objects in deeper layers. This hierarchical structure has made
CNNs the backbone of many modern AI applications, including computer vision,
video analysis, and even tasks outside of visual data, such as text analysis and game
AI.

By allowing the network to focus on spatial hierarchies and reduce computa-
tional complexity, CNN layers enable models to efficiently handle high-dimensional
data, contributing significantly to the success of AI in areas such as medical imag-
ing, autonomous driving, and facial recognition.

1.5.5 An example of a CNN applied for the recognition of
handwritten images

We present a practical example of a CNN applied to the problem of handwritten
digit recognition. The network is trained on the MNIST dataset [37], which consists
of 60,000 images of handwritten digits from 0 to 9, each represented as a grayscale
image of size 28× 28 pixels. The goal of the CNN is to classify each image into one
of the 10 possible digit classes (from 0 to 9).

The architecture can be described as a sequence of transformations applied to
the input image and is composed of the following layers with the size of the output
data in each step represented in square brackets:

• Input Layer: The input to the network is a 28×28 grayscale image ì[28×28].

• Convolutional Layer: The first convolutional layer applies sixteen 3 × 3
filters to the input image. The images are zero-padded in order to compensate
for the reduction of dimensionality after the convolution. Each filter scans
the input image and detects low-level features, such as edges or textures.
The result is a set of feature maps, where each feature map corresponds to
a filter. The idea behind this layer is that the network is able to adapt the
filters during the training phase such that the system is able to recognize the
local features of handwritten numbers, like the diagonal line for the 7, or the
roundness of the 8. [28× 28× 16, one image per filter].

• ReLU Activation: A ReLU activation function is applied element-wise to
the feature maps. ReLU introduces non-linearity to the model, allowing the
CNN to capture complex patterns [28× 28× 16].

• Pooling Layer: After applying ReLU, a max-pooling operation is used to
reduce the dimensionality of the feature maps, making the network more
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computationally efficient and reducing overfitting. The pooling layer reduces
the size of the feature maps by selecting the maximum value in each region
of a fixed size (in this case, 2× 2) [14× 14× 16].

• Second Convolutional Layer: The images are zero-padded again and a
second convolutional layer with 16 filters, each of size 14× 14× 16 is applied
to the pooled feature maps, this layer extracts higher-level features from the
image, such as the fact that the 8 is composed of two circles, or that the zero
is a large circle [14× 14× 16].

• ReLU Activation: Another ReLU activation function is applied to the
output of the second convolutional layer, introducing further non-linearity
[14× 14× 16].

• Pooling Layer: A second max-pooling layer is applied [7× 7× 16].

• Flatten Layer: The output of the set of 16 two-dimensional feature maps
is flattened into a one-dimensional vector to serve as input for the fully con-
nected layer [784].

• Fully Connected Layer: The flattened feature vector is passed through
a fully connected (linear) layer. This layer connects every neuron to every
neuron in the previous layer. The fully connected layer has 10 outputs, cor-
responding to the 10 digit classes (0 to 9) [10].

The CNN is trained using the backpropagation algorithm, which calculates the
gradient of the loss function with respect to each weight by applying the chain
rule through the network. During backpropagation, the error is propagated from
the output layer back to the input layer, updating the weights of the network to
minimize the overall loss.

This process allows the model to learn from its mistakes by adjusting the weights
to reduce the difference between the predicted output and the true labels.

The output of the model is a score (also named logit) for each class representing
if the input image has specific features associated with that class. This output can
be translated to the confidence of the network that each specific class is the correct
output. This is evaluated as

softmax(zi) =
ezi∑︁C
j=1 e

zj
, (1.19)

where z = [z1, z2, . . . , zn] is the score vector and C is the number of classes.
The optimization of the model is done using the Adam optimizer, a variant of

gradient descent that combines the advantages of two popular algorithms: AdaGrad
and RMSProp [38]. After backpropagating what is the influence of each weight
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of the network on the studied output, the Adam optimizer adapts the learning
rate (a parameter that describes the magnitude of the variation applied to each
weight) based on both the first moment (mean) and the second moment (uncentered
variance) of the gradient. This process allows the model to learn from its mistakes
by adjusting the weights to reduce the difference between the predicted output
and the true labels and the adaptive learning rate leads to faster and more stable
convergence during training, especially in large datasets or complex models. The
final aim is always to minimize the loss.

The loss function used is categorical cross-entropy, which measures the differ-
ence between the predicted probability distribution and the true distribution of the
target labels. The cross-entropy loss for a given sample is defined as:

L = −
C∑︂
i=1

yi log(pi) (1.20)

yi is the true label (represented as a one-hot encoded vector), and pi is the predicted
probability (the softmax output) for class i. The goal of training is to minimize
this loss, reducing the difference between the predicted and true distributions.

The dataset is usually divided into three parts: training, validation, and test
sets. The training set is used to train the model by feeding it into the network over
multiple iterations (epochs) to adjust the model’s parameters. The validation set is
used during training to monitor the model’s performance and tune hyperparame-
ters, such as the learning rate or number of layers, without influencing the model’s
parameters directly. Finally, the test set is reserved for the final evaluation of the
model, providing an unbiased estimate of its performance on unseen data, ensuring
the model’s ability to generalize.

This example, illustrated in Fig. 1.6, shows the steps to implement a classifica-
tion task using a CNN; this process results being very computationally expensive
as during the training all the images of the dataset are passing through the whole
network for multiple epochs. Except from some logarithmic and exponential eval-
uations, the whole training and test of the network is formed by sums and mul-
tiplications. The analog implementation of the MAC would provide a significant
improvement in the optimization power and chip area of AI-specific devices. In
this work we propose two solutions for the improvement of the efficiency of NNs:
one for the implementation of the analog multiplication obtained simulating spin-
torque oscillators tested with the presented CNN structure, and an experimental
prototype for the implementation of the MAC between analog inputs and binary
weights for applications in binary neural networks (BNN).
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Figure 1.6: Sketch of an exemplary CNN.
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Chapter 2

Spintronic Oscillators for Analog
Multiplication

This chapter describes the application of spintronic oscillators for implementing
analog multiplication between two numbers and shows an application within the
machine learning domain.

As later described in detail, given any parabolic phenomenon, with few measure-
ments and a constant scaling operation it is possible to multiply any two numbers.
In this chapter we observe two ways of obtaining a parabolic phenomenon using
the interaction between two oscillators and between an oscillator and an external
current source.

The aim of applying these mechanisms is to achieve a rapid and low-power
consumption implementation, leveraged by the implementation of nanometric-scale
spintronic oscillators that would act as co-processing units in conventional digital
devices.

To validate the effectiveness of this approach, the system has been analyzed
through a combination of micromagnetic simulations and experimental data. These
simulations provide a detailed understanding of the spintronic oscillator’s behavior
under various conditions, while experimental data offer real-world insights into the
system’s performance. Furthermore, the practical application of this technology
has been demonstrated through its use in a handwritten digit recognition task,
which is a standard benchmark in machine learning.

2.1 Analog multiplication with a parabola

The aim of this paragraph is the derivation of the multiplication of any two numbers
F and G given an ideal parabolic phenomenon P (X) = aX2 + bX + c. When a
signal composed by the difference of two F and G is applied to the parabolic
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function P (X), we obtain

P (F −G) = aF 2 + aG2 − 2aFG+ bF − bG+ c. (2.1)

We can substitute P (F ) and P (G)

P (F −G) = P (F ) + P (−G)− 2aFG− c, (2.2)

and from this equation it is easy to extract the FG product

FG =
P (F −G)− P (F )− P (−G) + c

−2a
. (2.3)

In summary, from three measurements of a parabolic phenomenon, P (F −G),
P (F ) and P (−G), it is possible to obtain the analog multiplication of any two
numbers rescaling the output with constant values.

This is the key concept that will be used in the following part of the chapter,
where the parabolic function will be implemented using the difference between two
dc currents injected into spintronic devices, and the output will be a dc voltage
measured at the ends of the devices.

2.2 Modeling the devices
We will model the device using a theoretic framework that comprehensively takes
in consideration the nonlinear features of spintronic devices. This model will be
referred in the rest of the work as Slavin model for the scientist who devised it [39].

2.2.1 Slavin model of a single oscillator

The model defines the behavior of a single oscillator with the complex variable c(t)
characterized by an amplitude p(t) and a phase ϕ(t) which defines the oscillation
as:

c(t) =
√︁

p(t)ejϕ(t). (2.4)

The oscillator system is analyzed as a reactive component, with a positive and a
negative damping. In a circuital analogy, these correspond to a inductor-capacitor
couple, a positive and a negative resistance. The oscillation is observed when
the positive and negative component compensate each other and the circuit is
completely reactive, as represented in Fig. 2.1. In magnetic terms, this can be
achieved compensating the damping of the magnetization with spin-transfer torque
such that the system can precess indefinitely. Considering Eq. 1.13, this condition
is obtained when

α(m× (m× heff)) = σIdc [m× (m×mp)− q(m×mp)] . (2.5)
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Figure 2.1: Equivalent circuit of the tunnel-diode oscillator. When the device is self
oscillating, the resistive components compensate each other. Figure adapted from [39].
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There is usually not a single value of Idc that satisfies this condition, but a range
of currents [40, 41].

The oscillation is described by the variation of the c(t) variable through time,
and it is defined as:

∂c

∂t
+ jω(|c|2)c+ Γ+(|c|2)c− Γ−(|c|2)c = f(t). (2.6)

In this equation ω represents the natural frequency of the device, and Γ+ and Γ−
correspond with the positive and negative damping. The term f(t) represents an
external stimulus such the application of an input current or the influence of a
coupled oscillator. In absence of an external stimulus this term is null.

The dependence of the frequency ω on the power of the oscillations is modulated
through the nonlinear frequency shift parameter N

ω(|c|2) = ω0 +N |c|2, (2.7)

which can be calculated as N = 8πγM0 [39].

2.2.2 Slavin model of two interacting oscillators

Considering a system of two spintronic oscillators (namely 1 and 2) in presence
of a communication channel, each device exerts a slight influence on the other,
which can be characterized with f(t) in 2.6. The influence from one device on the
other is analyzed as an external force with a coupling parameter Ω determining the
amplitude, and a phase shift parameter β that takes into account the reciprocal
latency needed for the signal generated in one device to reach the other.

In this case, the expression that determines the oscillation of a system with two
devices is:

∂c1
∂t

+ jω1(|c1|2)c1 + Γ+,1(|c1|2)c1 − Γ−,1(|c1|2)c1 = Ω1,2e
jβ1,2c2. (2.8)

The equation for the second oscillator is obtained by substituting each subscript 1
with 2 and vice versa.

In our following analyses we will consider Ωi,j = Ωj,i = Ω and βi,j = βj,i = β
representing a symmetric system. An active version of this system has been recently
realized experimentally with signal amplifiers and controlling the phase shift [42].

2.2.3 From complex amplitude to power and phase

The variables c1 and c2 that determine the oscillations are a complex variables and
can be decomposed in oscillation powers and phases, as in Eq. 2.4. This exem-
plification makes the system easier to analyze with ordinary differential equation
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(ODE) solvers, and helps studying the phase-locking behavior between two or more
devices.

In the following part this derivation is presented.
Considering Eq. 2.4, the time derivative of c1 can be defined as

∂c1
∂t

=
∂p1
∂t

ejϕ1(t)

2
√︁

p1(t)
+ j
√︁

p1(t)e
jϕ1(t)

∂ϕ1

∂t
, (2.9)

hence this can be substituted, together with Eq. 2.4, in Eq. 2.8 obtaining:

∂p1
∂t

ejϕ1(t)

2
√︁

p1(t)
+ j
√︁
p1(t)e

jϕ1(t)
∂ϕ1

∂t
+ jω1(p1)

√︁
p1(t)e

jϕ1(t) + Γ+,1(p1)
√︁
p1(t)e

jϕ1(t)

−Γ−,1(p1)
√︁

p1(t)e
jϕ1(t) = Ω

√︁
p2(t)e

j(ϕ2(t)+β)

(2.10)

and the whole equation is multiplied by 2
√

p1(t)

ejϕ1(t)
, obtaining

∂p1
∂t

+ 2jp1(t)
∂ϕ1

∂t
+ 2jω1(p1)p1(t) + 2Γ+,1(p1)p1(t)− 2Γ−,1(p1)p1(t) =

2Ω
√︁

p1(t)p2(t)e
j(ϕ2(t)−ϕ1(t)+β).

(2.11)

The exponential components can be simplified using Euler’s formula

ejα = cosα + j sinα (2.12)

which is applied to Eq. 2.11 such that the two complex components can be extracted
and evaluated independently. The real part represents the oscillation power

∂p1
∂t

= −2p1(t)(Γ+,1(p1)− 2Γ−,1(p1)) + 2Ω
√︁

p1(t)p2(t) cos (ϕ2(t)− ϕ1(t) + β),

(2.13)

and the imaginary part the phase

∂ϕ1

∂t
= −ω1(p1) + Ω

√︄
p2(t)

p1(t)
sin (ϕ2(t)− ϕ1(t) + β). (2.14)

In summary, for a system with two oscillators, the evolution of the powers and
phases will be dictated by the following equations:

∂p1
∂t

= 2Ω
√︁

p1(t)p2(t) cos (ϕ1(t)− ϕ2(t)− β)− 2(Γ+,1 − Γ−,1)p1(t), (2.15)

∂ϕ1

∂t
= −ω1(p1)− Ω

√︄
p2(t)

p1(t)
sin (ϕ1(t)− ϕ2(t)− β), (2.16)
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∂p2
∂t

= 2Ω
√︁

p1(t)p2(t) cos (ϕ1(t)− ϕ2(t)− β)− 2(Γ+,2 − Γ−,2)p2(t), (2.17)

∂ϕ2

∂t
= −ω2(p2)− Ω

√︄
p1(t)

p2(t)
sin (ϕ2(t)− ϕ1(t)− β). (2.18)

These equations can be extended for the case of n oscillators influencing each other
that will be useful in the following chapter, and the ith element is represented as

∂pi
∂t

= −2(Γ+,i − Γ−,i)pi(t) +
n∑︂

j=1,j /=i

2Ω
√︂

pi(t)pj(t) cos (ϕi(t)− ϕj(t)− β), (2.19)

∂ϕi

∂t
= −ωi(pi)−

n∑︂
j=1,j /=i

Ω

√︄
pj(t)

pi(t)
sin (ϕi(t)− ϕj(t)− β). (2.20)

2.2.4 An external signal injected to an oscillator

When an external signal with amplitude fe and frequency ωe is applied to the device,
whether through a superimposed ac current or a magnetic field, if its frequency falls
within a specific range close to the natural resonance frequency of the oscillator,
the device becomes influenced by this external signal. As a result, the oscillator’s
frequency locks onto the external frequency, a phenomenon known as injection
locking, where the device synchronizes to the injected signal.

This effect is widely utilized in modern technological applications [43, 44], as
it enables a frequency-stable output, enhances output power, and reduces phase
noise. These nonlinear properties make injection locking particularly valuable from
a computing standpoint. In this work, we use this effect to implement the analog
multiplication between two values.

Starting from Eq. 2.6, the application of an external signal with amplitude fe
and angular frequency ωe to a spintronic oscillator can be modeled as

∂c

∂t
+ jω(|c|2)c+ Γ+(|c|2)c− Γ−(|c|2)c = fee

−jωet. (2.21)

Following the previous derivation, we can decompose the power and phase of
the oscillations as:

∂p

∂t
= −2(Γ+ − Γ−)p(t) + 2

√︁
p(t)fe cos(ϕ+ ωet), (2.22)

∂ϕ

∂t
= −ω(p)− fe√︁

p(t)
sin(ϕ+ ωet). (2.23)

These equations can be easily extended to the case of having an injected signal
in a system with n interacting devices, and will be useful in the following chapter.
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In such case we have:

∂pi
∂t

= −2(Γ+,i − Γ−,i)pi(t) +
n∑︂

j=1,j /=i

2Ω
√︂

pi(t)pj(t) cos (ϕi(t)− ϕj(t)− β)

+2
√︁

pi(t)fe cos(ϕi + ωet),

(2.24)

∂ϕi

∂t
= −ωi(pi)−

n∑︂
j=1,j /=i

Ω

√︄
pj(t)

pi(t)
sin (ϕi(t)− ϕj(t)− β)

− fe√︁
pi(t)

sin(ϕi + ωet).

(2.25)

2.3 The degree of match
Having established that any parabolic phenomenon can facilitate analog multi-
plication, this section presents an initial analysis of how to achieve such parabolic
behavior using spin-torque oscillators (STOs) using the degree of match (DOM)[45,
46, 47].

The DOM is a valuable mathematical tool used to assess the degree of frequency
locking between two complex oscillating variables and it is defined as

DOM(t) =
1

2
|c1(t) + c2(t)| (2.26)

and in this paragraph it is observed that for STOs it is parabolic in a frequency
region named locking bandwidth.

2.3.1 Simulation parameters

The parameters of the two simulated oscillators have been chosen to represent
devices used in current state-of-the-art implementations [48], and are listed in Ta-
ble 2.1.

Considering two coupled STOs with similar fabrication characteristics, when the
same input current is applied, they will begin oscillating at similar frequencies [49,
50]. If the coupling is sufficiently strong, the two devices will synchronize, meaning
they will oscillate at exactly the same frequency.

To achieve this locking, the natural frequencies of the devices must lie within
the locking bandwidth which is a specific range of frequencies [39, 51].

Since the oscillation frequency is dependent on the input dc current, for two
identical devices with parameters listed in Table 2.1, changing the input current
will result in a shift in the operating frequency, and the locking range can be
observed by applying different currents.
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Parameter Value Parameter Value

Ω 107 N/2π −3.44GHz

ω0/2π 4.2GHz V 85 ∗ 140 ∗ 1.8nm3

β −1.63π Ms 9500Oe

Q 2.66 γ 2.21× 105m/C

Γg/2π 252MHz σ 2.5× 1012S/m

Table 2.1: Parameters used in the simulations.

2.3.2 Multiplication and locking bandwidth

The input currents for the following analyses are centered around 2Ith. Specifically,
to evaluate how the two devices interact under different input currents, the input
of one device will be kept fixed while the input of the other device will vary. To
simplify this evaluation, we will analyze the difference between supercriticalities as
input, defined as ∆ξ = (I1 − I2)/Ith.

Figure 2.2 (a) shows the final values of several DOM analyses, computed as a
function of ∆ξ, where a clearly regular behavior defines the locking region. Out-
side this region, the behavior is random. This distinction is further illustrated in
Figure 2.2 (b), which shows the time evolution of three DOM curves for synchro-
nized oscillators (solid lines) and unsynchronized oscillators (dashed lines). Each
line represents a single case, and the final values from these analyses are used in
Figure 2.2 (a). When the oscillators are synchronized, the DOM converges and
the converging values are higher when the natural frequencies of the devices are
matching, for ∆ξ = 0. Instead, outside the locking bandwidth, the DOM does not
converge and the final value is random.

Figure 2.2 (c) provides a close-up view of the DOM peak (for 0.01 < ∆ξ <
0.0078) shown in (a), comparing the numerical DOM with an ideal parabola. The
two curves closely overlap, yielding a correlation coefficient of r = 99.95%. This
region of the DOM curve is highly effective for performing multiplication, as demon-
strated in Figure 2.2 (d), which compares 104 examples of random multiplications
computed using the DOM (blue dots) with ideal multiplication (red line), showing
excellent agreement. The inset reveals a slightly asymmetric error distribution,
with a root mean square error of eRMS = 0.003.

2.3.3 The phase shift between oscillators

One of the most influential parameters in the analysis of Eqs. 2.15-2.18 is the phase
shift β. This phase shift primarily depends on the type of interaction and the delay
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Figure 2.2: Analysis of the DOM for two coupled STOs. (a) DOM vs. ∆ξ exhibiting
a parabolic behavior within the locking range. (b) Representation of multiple DOM
analyses over time, where each line corresponds to a different ∆ξ input, represented in
the legend. Continuous lines indicate cases of frequency locking between the oscillators.
(c) Close-up view of (a), showing a clear second-order behavior in the DOM (solid black
curve) compared to an ideal parabolic fit (dashed red curve). (d) Representation of 104

multiplications obtained using the simulated DOM (blue dots), with the ideal result shown
as the bisector of the first quadrant (orange line). The inset displays the error distribution.
Figure adapted from [48].
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of the coupling signal [39]. In the case of devices sharing the same substrate it can
be adjusted by altering the distance between the oscillators or by incorporating
a delay line between them, making it an additional degree of freedom during the
design process.

The DOM described in Eq. 2.2 (a) exhibits a distinct parabolic behavior when
the oscillators are locked in-phase. However, for opposite-phase locking, a simi-
lar pattern is observed subtracting the two complex variables in Eq. 2.26. Fig-
ure 2.3 shows how the locking bandwidth, defined as difference in supercriticality,
varies with respect to the parameter β for both in-phase and opposite-phase DOM
analyses. The figure indicates that for β = −1.64π and β = −0.63π there is a
pronounced peak, corresponding with a large bandwidth in terms of differential
input supercriticality, making these values optimal. The first value, in particular,
has been selected for Fig. 2.2. Figures 2.3 (b) and (c) present two different DOM
evaluations for β = −1.43π, a suboptimal value, and β = −1.13π, the worst-case
scenario observed. The supercriticality bandwidth was calculated by determining
the maximum distance between relative minima in the DOM plot. The optimal
value β = −1.64π is used for the analysis in the subsequent sections.

2.3.4 Device mismatching

In former analyses, it was assumed that the two oscillators were identical. However,
it is crucial to examine the DOM when dealing with two different interacting oscil-
lators to test if the system is robust to device mismatching, a common problem in
the manufacturing of spintronic devices. Specifically, we focused on the nonlinear
frequency shift coefficient N .

Figure 2.4 (a) compares the DOM for two cases: N1 = N2 shown in orange,
these are the values used in Fig. 2.2 (a), and N1 = 1.05N2 shown in blue. The two
curves share similar characteristics, with the primary difference being a shift in the
input current required to achieve the locking range.

Figure 2.4 (b) illustrates the frequency curves for these two configurations, con-
sidering both equal and differing values of N1, as a function of ∆ξ. With N2 fixed,
it is evident that outside the locking region, the oscillating frequency of this de-
vice remains roughly constant. The frequency of the first device increases linearly
outside the locking range as expected since ∆ξ is proportional to its input current.
In this context, a variation on the nonlinear frequency shift N for an oscillator
results in a shift in its frequency curve, which in turn causes a shift in the locking
region. Similar results were observed when considering larger differences in the N
coefficients.

This analysis confirms the validity of the DOM method for devices with varying
characteristics.
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Figure 2.3: (a) Analysis of the supercriticality bandwidth as a function of the phase shift
β.(b) DOM observed for the suboptimal value of β = −1.43π. (c) DOM observed for the
worst-case scenario with β = −1.13π. Figure adapted from [48].
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Figure 2.4: (a) A comparison of the DOM for N1 = N2 (as shown in Fig. 2.2 (a)) in orange,
and for N1 = 1.05N2 in blue. (b) Frequencies of the two oscillators for N1 = N2 (left) and
N1 = 1.05N2 (right). The light and dark blue curves represent the first oscillator, which
exhibits a constant oscillating frequency outside the locking region. The orange and green
curves represent the frequency of the second oscillator, whose frequency changes together
with the input ∆ξ. Figure adapted from [48].
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2.3.5 Application of thermal noise

The DOM has also been computed with thermal noise included in the model as
an additional Gaussian stochastic term with zero mean and unit variance. The
amplitude of this noise is given by

Dn =

√︄
2Γ+(p)kBT

Lexω(p)
(2.27)

where kB is Boltzmann’s constant, T is the temperature, and Lex is the exchange
length [52]. We analyzed temperature values up to 400 K and found that, within
this parameter space, the thermal noise does not influence the parabolic trend of
the DOM. The correlation coefficient remains rnoise = 99.95% at 400 K.

In conclusion, the DOM is a useful tool for evaluating the degree of synchro-
nization of two oscillators, which resulted being much resistant to device variation
and the application of thermal noise. However, even though it has a clear parabolic
behavior, it is not practical for the computation of the analog multiplication as it
requires the detection of both the amplitude and phase from the two oscillators,
which is a particularly challenging task for integrated devices.

2.4 The Degree of Rectification

The Degree of Rectification (DOR) characterizes how effectively a single oscillator
synchronizes with an external ac input. When a dc current is applied to a Spin-
Torque Oscillator (STO), it induces an oscillatory behavior. If an alternating input
signal is introduced and its frequency falls within the oscillator’s locking range, the
STO will lock its frequency to the external input, due to the injection locking [53,
54].

Similar to the Degree of Match (DOM), the locking bandwidth can also be
observed in relation to the applied dc input. Within this range, the oscillator’s
frequency remains constant and matches the external signal, although the phase
difference between the two signals varies for different inputs. There are two main
differences with the previous case:

• Only one device and an external signal are required, halving the device re-
quirements;

• The phase variation influences the rectification properties of the device, re-
sulting in an output dc voltage at the oscillator terminals that depends on the
input current in a parabolic manner [55]. This process simplifies the reading
of the parabolic signal in an integrated circuit.
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As this phenomenon describes quantitatively how much the two signals are matched
and this results in a rectification voltage, we named it "Degree of Rectification".

This section presents an analysis of the DOR based on micromagnetic simula-
tions, which are then compared with experimental data and applied to a practical
implementation in a CNN for the recognition of handwritten digits [56, 57].

2.4.1 Micromagnetic analyses

In this section we present the frequency and phase behavior of the free layer of an
MTJ when an alternating current is applied.

The analyzed device is a hybrid MTJ, illustrated in Fig. 2.5 (a), composed
of an out of plane (OOP) FL (1.63-nm-thick Co20Fe60B20) and an in-plane (IP)
polarizer (synthetic antiferromagnet Co70Fe30 (2.3 nm)/Ru (0.85 nm)/Co40Fe40B20

(2.4 nm)) exchange biased by a PtMn (15 nm) layer. The device is patterned with
an elliptical cross-section (150 × 60 nm2) and its resistances in the parallel and
antiparallel states are RP = 640 Ω and RAP = 1200 Ω, respectively. An additional
advantage of this device is its zero-field operation [53].

Figure 2.5: (a) Sketch of the MTJ. Simulated frequency (blue squares) and powers (orange
triangles) of the oscillations for various dc input currents. Figure adapted from [55].

To explain the concept of the DOR, we perform micromagnetic simulations of
the MTJ’s FL magnetization by numerically solving an adaptation of Eq. 1.13 [53,
6, 58], and the spin polarization efficiency is defined as

σ =
g|µB|

|e|γ0M2
SVFL

, (2.28)

where g is the gyromagnetic splitting factor, µB is the Bohr magneton, e is the
electron charge, and VFL is the volume of the free layer. The total current flowing
through the MTJ is given by

I = Idc + Iac,max sin(2πfac + ϕac), (2.29)
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and we consider a null ϕac.

2.4.2 Simulation results

Fig 2.5 (b) shows the oscillation frequencies (orange triangles) and powers of the
magnetization (blue squares) of self-oscillations when an above-threshold dc input
is applied. This step is key to determine the threshold current |Ith| = 0.056mA
and the working frequencies for the subsequent application of an ac current. The
negative currents are due to the simulation of the polarizer aligned over the −x
axis.

The nonlinear frequency shift parameter N is evaluated as df0
dp0

≈ −411MHz.
In the oscillation regime, as the magnetoresistance varies at the same frequency as
the ac current, we observe a rectification voltage [59, 60].

Within the specific locking range, variations in the input dc current do not
change the frequency but modify the amplitude of the oscillating magnetization
dmX(Idc), which is related to the oscillator power, p, by dmX =

√
p. The intrin-

sic phase shift, ϕ(Idc), between the ac current and the oscillating signal is also
influenced by the dc current [61]. The output voltage can be calculated using [53]:

Vdc =
(RAP −RP)

√
pIac,max

4
cos[ϕ(Idc)]. (2.30)

Considering Eq. 2.30 we can notice that the relation between the dc voltage
and the phase is cosinusoidal and not parabolic. There is a close relation between
the cosine and the parabola for angles close to zero, π or multiples of π, and to
apply this transformation we can use the Taylor-Mc Laurin expansion of the cosine
which, truncated to the second term, is

cos(ϕ) ≈ 1− ϕ2

2
. (2.31)

This is valid for angles close to zero or even multiples of π, and a similar formulation
can be found for odd multiples of π. Fig. 2.6 shows a comparison of the cosine
(blue), parabola (orange) and their difference (green), which is close to zero for
angles between -0.5 and 0.5 radians. This effectively means that for small angles,
all the considerations previously made about computing with parabolic terms can
be extended to cosinusoidal (and sinusoidal) phenomena.

We can now approximate the dc voltage as a function of the angle

Vdc ≈ K(1− ϕ2

2
), (2.32)

where K is the multiplying factor of Eq. 2.30, and we want to define a relation
between the dc output voltage and the the dc input current.
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Figure 2.6: Plot of the cosine (blue) and parabolic function (orange) 1 − ϕ2

2 . Their
difference is reported with a green line.
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Figure 2.7: (a) Rectified dc voltage as a function of the applied dc current for the spin-
torque diode, with Iac,MAX = 70.7µA and fac = 800MHz. The circles represent the results
from micromagnetic simulations, while the solid line shows the corresponding parabolic
fit. (b) The intrinsic phase shift (empty squares) and the amplitude of the magnetization
along the x-axis (filled diamonds) are shown as a function of the dc current for the same
Iac,MAX and fac as in panel (a). (c) Phase diagram of the intrinsic phase shift plotted as
a function of both the microwave frequency and the dc current, with Iac,MAX = 70.7µA.
The vertical line indicates the threshold current for auto-oscillation, |Ith| = 0.056mA,
while the horizontal line marks the microwave frequency used in panels (a) and (b). (d)
Time-domain traces of the applied current (left y-axis) and the spatially averaged x-
component of the magnetization ⟨mX⟩ (right y-axis), corresponding to the working point
marked by the circle in panel (c). The time delay ∆t between the two traces is also
indicated in the figure. Figure adapted from [55].
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Figure 2.7 (a) provides an example of rectification voltage obtained for Iac,max =
70.7µA and fac = 800MHz. The maximum voltage is achieved for Idc,0 = −0.134mA,
corresponding to a phase shift close to zero (see Fig. 2.7 (b)), where the additional
phase shift due to the polarizer orientation is not considered). Figure 2.7 (b) shows
dmX (filled diamonds) and ϕ (empty squares) for the simulations in Fig. 2.7 (a).

The intrinsic phase shift, obtained for different input currents when applying an
external ac signal, exhibits a quasi-linear dependence on the dc current, with minor
deviations near the edge of the locking region, similar to what is observed in [61, 62].
The amplitude of magnetization shows a weak dependence on the current, which
is expected for an oscillator with a large nonlinear frequency shift. The power p of
the injection-locked oscillator is described by

p

p0
= 1 +

√
σIac,max

1 + (N/Pξ)2
, (2.33)

where ξ = Idc/Ith is the supercriticality of the dc bias current and P is the effective
damping rate [63]. For the studied device, N/P exceeds 15, resulting in a reduced
dependence of the oscillator power on Idc, as shown in Fig. 2.7 (b) (blue diamonds),
where a variation of less than 3% is observed in dmX . We can conclude that the
variation of the phase shift is the dominant effect in Eq. 2.30.

The quasi-linear trend of the intrinsic phase shift shown in Fig. 2.7(b) can be
approximated by ϕ(Idc) = mIdc + n. The fitting parameters are identified from
the rectified voltage as follows. The maximum rectified voltage, Vdc,max ≈ K, is
achieved at Idc,0 (see Fig. 2.7 (a) and (b)), where ϕ is zero, leading to n = −mIdc,0.

We can now substitute the linear phase-current relation in Eq. 2.32 obtaining

Vdc ≈ K(1− mI2dc + 2mnIdc + n2

2
). (2.34)

We can use this relation to calculate m, since

d2Vdc

dI2dc

⃓⃓⃓⃓
Idc=Idc,0

= −m2Vdc,max, (2.35)

and the other terms of this equation are easy to extract from experimental data.
Finally, knowing m and n, we obtain the relation between the output dc voltage

and the input dc current

Vdc(Idc) = aI2dc + bIdc + c, (2.36)

where the coefficients are given by:

a = −1

2
Vdc,maxm

2, b = Vdc,maxm
2Idc,0, c = Vdc,max

{︃
1− (mIdc,0)

2

2

}︃
. (2.37)
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This parabolic relation, can be utilized in future works to easily estimate the DOR
behavior and yields results that closely align with experimental results, as can
be seen in Figure 2.8, that illustrates a comparison between the parabolic fit of
the micromagnetic data shown in Fig. 2.7 (a) and the parabola derived from an-
alytically evaluated parameters based on the experimental data presented in [53],
demonstrating excellent agreement. The parameters are reported in Tab. 2.2.

In order to consider the resistive effects of the device on the rectified signal, an
additional term proportional to the dc current is included in the rectified voltage,
leading to a linear shift in the parabolic equation:

Vdc(Idc) = aI2dc + (b+Rdc)Idc + c, (2.38)

where Rdc represents the variation in dc resistance induced by the microwave input.

Figure 2.8: Comparison of Vdc values derived from micromagnetic simulations (circles),
the parabolic fit (solid line), and the parabola obtained using analytical data (dashed
line). The parameters of the fit and the analytical analysis are reported in Tab. 2.1.
Figure reported from [55].

Parabolic DOR: Vdc(Idc) = aI2dc + bIdc + c

Parameters Fit Analytical

a(mV/mA)2 −1.225× 103 −1.397× 103

b(mV/mA) −325 −371

c (mV) −12.6 −15.7

Table 2.2: Parameters obtained fitting experimental result and analytically using Eq. 2.37,
and applied in the analytical curve represented in Fig. 2.8.

In order to implement a multiplier using spintronic diodes, it is essential for
the devices to operate with currents and microwave input frequencies that bring
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the intrinsic phase shift ϕ close to zero or π, as this is the closest portion to an
ideal parabola (see Eq. 2.31). Figure 2.7 (c) summarizes the results of a systematic
investigation of ϕ as a function of Idc and fac for Iac,max = 70.7µA. The vertical line
indicates the threshold current Ith, and the horizontal one represents the working
point for the data in Fig. 2.7 (a) and (b). For this particular device geometry, ϕ = 0
is achieved near the boundary of the locking range.

Figure 2.7 (d) provides an example of the time-domain evolution of the spatially
averaged x-component of the magnetization ⟨mX⟩, obtained for Idc = −0.148mA
and fac = 800MHz (see the circle in Fig. 2.7 (c)), along with the ac current and
the indication of dmX . A constant time shift can be observed when comparing the
time traces. The magnetization dynamics are primarily driven by a first harmonic
containing approximately 76% of the total energy, while higher-order harmonics
account for the remaining 24%, as illustrated in Fig. 2.10. These higher-order
harmonics may have a direct impact on the measurement of the intrinsic phase
shift in time-domain traces. Therefore, the intrinsic phase shift is calculated in the
Fourier space.

Figure 2.9 shows an example of the evolution of the magnetization when a dc
step is applied to induce the injection locking regime. The transient time is approx-
imately 10 ns, which provides a good estimate of the speed of the multiplication
operation.

Figure 2.9: Time-domain trace illustrating the injection locking of the x-component of the
magnetization (blue solid line) obtained with the application of a dc current step from 0
to −0.148mA. The corresponding normalized dc current is depicted by the orange solid
line. The applied ac current has an amplitude of Iac,MAX = 70.7µA and a frequency of
fac = 800MHz. Figure adapted from [55].

2.4.3 DOR-based analog multiplication

From the device’s input-output relationship, the parameters a, b, and c can be
identified, satisfying the relation Vdc(Idc) = aI2dc + bIdc + c, which links the bias
current Idc and the rectified dc voltage Vdc. The input current range is then scaled
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Figure 2.10: FFT of the x-component of the magnetization obtained for Idc = −0.148mA,
Iac = 70.7µA, and fac = 800MHz depicted by the circle in Fig. 2.7 (c), normalized by
the sum of the three dominant peaks. The first harmonic contributes approximately 76%
of the total. Adapted from [55].
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to the desired input range x (for simplicity, we will consider the range [−1, 0]) using
the following linear transformation:

Idc = |Idc,0 − Idc,−1|x+ Idc,0,

where Idc,0 and Idc,−1 are the current values corresponding to the numeric inputs 0
and -1. This results in an even parabolic equation where Vdc(x) = Vdc(−x). The
new parabolic relationship is given by Vdc(x) = a′x2+c′, where a′ = a|Idc,0−Idc,−1|2
and c′ = Vdc,MAX (see Fig. 2.11). The final calculation to compute FG depends on
evaluating the voltages for x = F , G, and (F −G) combined as shown in Eq. 2.3.

For example, consider Fig. 2.11, which shows experimental values of the rectified
Vdc plotted against both Idc and the input x. If we take F = −0.62, G = −0.44, and
F −G = −0.18, the corresponding Vdc values, Vdc,F = 17.85mV, Vdc,G = 18.30mV,
and Vdc,F−G = 18.57mV, can be used in Eq. 2.3, considering the parameters a′ =
−2.0476mV and c′ = 18.565mV. In this manner, the product obtained is 0.241,
which is very close to the desired result FG = 0.273.

Figure 2.11: Experimental data (circles) presented in the article [53] and parabolic fit
(solid line), showing the rectified voltage as a function of the numerical input encoded
with the dc current for the parabolic equation. Figure adapted from [55].

We propose two scenarios for the implementation of the analog multiplication
in hardware with the DOR:

1) Maximum speed: This is achieved by using three diodes for each multiplica-
tion and a CMOS circuit to perform the addition. The required time is the sum of
the time needed to achieve locking and the time to perform the addition (division
is handled simultaneously with an appropriate gain for the analog adder).

2) Minimal area occupancy: In this case, the three DOR operations are per-
formed using the same diode. The time required is at least three times longer, and
additional memory elements are necessary to store the data before the summation.

Considering the low area occupancy of the simulated devices, the first scenario
is the most advantageous for current technological needs.
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2.4.4 Application in computer vision

As an initial step, we evaluate the micromagnetic and experimental multiplications
based on DOR comparing it with the ideal case. Figures 2.12 (a) and (b) present
200 multiplications obtained using DOR, derived using numerical data in Fig. 2.7
(a) (circles) and experimental results from Fig. 2.11, compared to the ideal mul-
tiplication output (solid line). The findings indicate that the correlation between
the ideal case and the micromagnetic (experimental) DOR multiplication is 99.93%
(99.83%).

Figure 2.12: (a) Comparison between DOR-based multiplications derived from micro-
magnetic simulations (circles) and the ideal multiplication (solid line, bisector of the first
quadrant). (b) Similar comparison as in (a), but using the experimental curve for DOR
multiplication presented in [53]. (c) Probability density functions of the correlation for the
convolution of 104 random filters, considering DOR-based multiplication via simulation
(blue curve) and experimental data (orange line). (d) Image of a snail, extracted from the
ImageNet dataset [33]; the inset shows the 3× 3 blur filter used for the convolution. (e)
Convolution result using ideal multiplication. (f) DOR-based convolution result obtained
using micromagnetic data. (g) DOR-based convolution result obtained using experimen-
tal data. Figure adapted from [55].

The second evaluation involves the convolution of a snail image (extracted from
the ImageNet dataset [33]) with 3 × 3 filters. Figure 2.12 (c) depicts the probabil-
ity density functions (PDFs) of the correlation coefficients, r, computed from 104

random filter instances. The mean correlation coefficients are r̄sim = 99.41% and
r̄expt. = 97.87% for the simulated and experimental data, respectively. The lower
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average correlation and greater variability in the experimental data arise from less-
precise parabolic behavior.

As an illustration, we display the convolution of the snail image in Fig. 2.12
(d), using a 3 × 3 blurring filter with uniform weights. Although this filter is not
included in the random statistical analysis shown in Fig. 2.12 (c), it represents an
edge case where multiplication errors are comparable, and these errors accumulate
during convolution making it a worst-case scenario. Figures 2.12(e, f, g) show the
convolution results for the ideal case (e) and DOR-based ((f) simulated and (g)
experimental) multiplications. The correlation coefficients are rsim = 99.07% and
rexpt. = 96.64%, which, as expected, fall outside the lower tails of the PDFs in
Fig. 2.12 (c). Similar results are found with other images from the same dataset.

Currently, as the development and application of LLMs we are witnessing a race
between big tech companies for the realization of the most performing model [64],
new academic analysis are demonstrating that the precision in the MAC can be
sacrificed for reducing the memory impact of AI models without significant impact
on performance [65, 66]. In this context, we test the impact of DOR-based multi-
plication in a simple CNN for the recognition of handwritten images. Our analysis
demonstrates that the impact of having a less accurate precision in the multiplica-
tion operation is minimal on the global accuracy of the network. Specifically, we
consider a basic CNN with the architecture depicted in Fig. 2.13 (a), which is the
one described in detail in the previous chapter.

The CNN is trained using Python and TensorFlow on the MNIST dataset [56],
with a training set of 48000 images and a validation set of 12000 images. Testing is
carried out on a test set of 10000 images. To avoid overfitting, dropout layers [67]
and early stopping are applied. The recognition accuracy achieved is 98.64% on
the training set and 98.57% on the test set.

Next, the trained weights are used to evaluate the accuracy on the same test
set, taking into account DOR-based multiplication in the convolutional layers (Con-
vDOR). The recognition accuracy in this case is 96.83%, and when DOR-based
multiplication is applied to both the convolutional and fully connected layers (Con-
vDOR+FCDOR), the accuracy drops to 94.72%, as summarized in Table 2.3 (row
a). Since this test simulates the potential hardware effects of spin-torque diodes
(STDs) in DOR-based multiplication, the accuracy reduction (less than 4%) can
be mitigated with a few additional training iterations of the FC layer. In this case,
we apply DOR-based multiplication to the convolutional layer and ideal multipli-
cation to the FC layer (ConvDOR+trainFC), resulting in an improved accuracy of
98.40%, which is comparable to the original accuracy of 98.57%.

2.4.5 Robustness analysis

To study how this system is robust to device-to-device variations, we introduce a
random variation of ±2.5% to the parameters of the parabola used in DOR-based
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Figure 2.13: (a) Structure of the CNN. (b) Recognition accuracy percentage as a function
of the number of epochs. The black (blue) line represents results for the training (valida-
tion) dataset. (c) Feature maps of a test image obtained using ideal multiplication (top)
and DOR-based multiplication (bottom). (d) Probability distribution of all classes for
the image of the handwritten digit one in the inset, obtained from the CNN using ideal
multiplication (red) and the CNN using DOR-based multiplication applied to the convo-
lutional layers with additional training of the FC layer (green). Figure adapted from [55].
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multiplication. Fig. 2.14 shows how this variation has an impact on 200 computed
multiplications. Table 2.3 (row b) shows that introducing this variation in the
convolutional and FC layers, the accuracy of the network is dramatically reduced;
nonetheless, adding a subsequent training phase recovers almost fully the ideal
accuracy. This means that, with the training, the network is adapting to the added
nonlinearities of the system.

As previously discussed, the cosine function can be approximated to a parabola
for values close to multiples of π, and considering a large input portion of the
considered experimental curve, as represented in Fig. 2.15 leads to less precise
multiplications; row (c) in Table 2.3 shows that also in this case, the accuracy after
the training of the FC layer is comparable with the benchmark.

Figure 2.14: (a) 200 random multiplications (circles) performed using the DOR-based
method, incorporating a 2.5% random variation in the parameters, compared with the
ideal result (solid line). Figure adapted from [55].

Figure 2.15: Experimental data showing the output dc voltage as a function of the input
dc current in an injection-locked STD (circles), reported in Ref. [53]. The data are fitted
with ideal parabolas, considering both a narrower range (red curve) and a wider range
(blue curve). Near the peak, the red curve overlaps with the blue one. Figure adapted
from [55].
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Test accuracy (%)

Ideal ConvDOR ConvDOR + FCDOR ConvDOR + trainFC

a 98.57 96.83 94.72 98.40

b 85.51 51.18 98.33

c 97.07 93.11 98.35

Table 2.3: Accuracies obtained applying the ideal multiplication (Ideal), the DOR-based
multiplication applied in the convolution layers (ConvDOR), the DOR-based multiplica-
tion applied in the convolution layers and in the FC layer (ConvDOR + FCDOR), the
DOR-based multiplication applied in the convolutional layers training the FC layers after
the substitution (ConvDOR + trainFC). (a) Results obtained using the curve shown
in 2.11. (b) Results obtained simulating device to device variations. (c) Results obtained
using a larger input-current range (the blue curve in Fig. 2.15).

Figure 2.16 presents a simulation of the studied device with Iac,max = 70.7µA
and f = 543MHz at room temperature. In the presence of a thermal field, the
frequency of self-oscillation is reduced, as expected due to the decrease in saturation
magnetization. It’s interesting to notice that the transient time is reduced to few
nanoseconds.

Figure 2.16: An example illustrating the application of a dc current step from 0 to −0.177
mA (with the normalized dc current shown in orange), alongside a plot of the magnetiza-
tion transient along the x-axis (blue). This is observed when an alternating current with
amplitude Iac,MAX = 70.7µA and frequency f = 543MHz is applied at room temperature.
Figure adapted from [55].
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2.5 Conclusion
In this chapter, we investigated the application of spintronic oscillators for analog
multiplication, with a particular emphasis on their potential in reducing computa-
tional complexity and energy consumption in artificial intelligence tasks. We de-
fined and implemented through micromagnetic simulations and analyses performed
using experimental data, a method for the realization of the analog multiplication
using the DOM and DOR characteristics of spin-torque oscillators.

We demonstrated that STOs can achieve analog multiplications under a vari-
ety of conditions, including device mismatches and thermal noise. Furthermore,
the application of DOR-based multiplication in computer vision tasks, such as im-
age recognition through convolutional neural networks, highlighted the practical
potential of these devices, even if the individual multiplications are not precise.

In conclusion, this chapter described how spintronic oscillators can be used for
designing an analog accelerator for artificial intelligence implementations, proposing
a low-size and low-power solution.
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Chapter 3

Oscillators applied to Combinatorial
Optimization Problems

This chapter explores how oscillators can be employed to implement solvers for
combinatorial problems.

We focus on problems characterized by non-polynomial (NP) complexity [68],
where the time required to find the optimal solution grows more than linearly
with the problem size, making them highly inefficient to solve using conventional
algorithms.

One of the most well-known problems in this category is the travelling sales-
man problem (TSP), which involves finding the shortest possible route to visit n
locations, given the distances between each pair of points. The time complexity for
evaluating all possible routes and identifying the optimal one is O(n!), making it
computationally prohibitive for large n. However, in many cases, it is acceptable to
find a good solution rather than the absolute best. For these situations, heuristic
methods can be highly effective [69, 70, 71, 72, 73, 74, 75, 76].

In practical scenarios, for example, finding a route that is 10.1 km long when
the optimal path is 10 km may be preferable if it significantly reduces the time
needed to reach a solution. Heuristics can be useful in such cases because they rely
on a degree of randomness in their approach. This stochastic feature allows for the
exploration of multiple potential solutions without exhaustively evaluating every
possibility, thus speeding up the process.

3.1 The Max-Cut Problem

The Max-Cut problem [74] is used as a reference for this work as it is a well-known
NP-hard problem [77] that requires a limited amount of parameters. Given an
undirected weighted graph (meaning that the connections don’t have a direction
and have an associated value) G = (V,E), where V is the set of vertices (or nodes)
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and E is the set of edges (or connections), the objective of the Max-Cut problem
is to partition the vertices into two disjoint sets such that the accumulated amount
of weights of edges "cut" between the sets is maximized. Figure 3.1 shows an
exemplary graph composed of four nodes with weighted connections and its corre-
sponding Max-Cut, represented by the black dashed line. The nodes are labelled
with ones and zeros associated to the two disjoint sets. The maximum combination
of cut edges is trivial in this example and the Max-Cut is 3.

Despite its NP-hardness, heuristic and approximation algorithms have been de-
veloped to tackle the Max-Cut problem. The approach that will be analyzed in this
work utilizes Ising machines (IMs), which associates the problem to a Hemiltonian
energy function such that its minimization will also be a solution of the starting
problem.

IMs originated from the Ising model, initially developed as a method to describe
ferromagnetism in statistical physics [78]. The Ising model, introduced by Wilhelm
Lenz and later studied in detail by his student Ernst Ising, represents spins on a
lattice that can interact with their neighbors. Over time, researchers realized that
the energy minimization process inherent in the Ising model could be repurposed
to solve combinatorial optimization problems (COPs).

One of the critical challenges in the performance analysis of combinatorial prob-
lems, such as the Max-Cut problem, lies in the large number of possible combina-
tions to check for an exact solution as it is required to evaluate approximately 2N

combinations, as each node can have two states. For example, in a problem with
100 nodes (N = 100), there are approximately 1.26×1030 combinations. Due to the
computational infeasibility of this approach, solver accuracy is typically assessed us-
ing well-established problem sets comparing the results obtained with other solvers
in literature. In this work, we consider the G-set [79], and the accuracy is defined as
the ratio between the obtained Max-Cut and the reference value, which corresponds
to the results published in [80].

Another essential metric for evaluating combinatorial solvers is scalability, i.e.,
the ability to handle problems of varying sizes, with the goal of addressing the
largest possible instances. In this work, we study scalability based on d-regular
graphs, where each node is connected to exactly d other nodes. When d = 3, the
problem instance is referred to as cubic.

In this work, we explore different models of oscillators applied for the imple-
mentations of IMs using the Max-Cut as a benchmark problem.

3.2 How Ising Machines solve combinatorial prob-
lems

The Ising model consists of the following components:
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Figure 3.1: A schematic representation of a 4-node Max-Cut problem and its solution,
corresponding to MC= 3. Figure adapted from [81].
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• Spins: The system consists of a network of spins, where each spin can be in
one of two states: +1 (up) or −1 (down). These spins represent the binary
state of the nodes, commonly found in combinatorial problems.

• Interactions: Each pair of spins interacts via a coupling strength, Jij. This
interaction determines whether two spins prefer to align or anti-align.

• External Fields: Each spin can experience an external bias field, denoted
as hi, which influences the state of each spin individually.

The system’s total energy, or Hamiltonian, is given by:

H = −
∑︂
i,j

Jijsisj −
∑︂
i

hisi (3.1)

where si ∈ {−1, 1} represents the state of the i-th spin, and Jij and hi are param-
eters that define the problem.

The Max-Cut has been chosen because by definition all the bias terms hi are
null, reducing the controlling parameters of the solver.

Many combinatorial optimization problems, such as the TSP, max-cut, or graph
partitioning, can be formulated as minimizing an objective function. These objec-
tive functions are often quadratic, which can be mapped to an Ising Hamiltonian.
The objective then becomes finding the spin configuration that minimizes the total
energy, which corresponds to the optimal solution of the combinatorial problem.

The article [82] presents the mapping of many NP problems to Ising-compatible
formulations.

The goal of an Ising machine is to find the ground state, which is the configura-
tion of spins that minimizes the energy. Since the energy landscape contains many
local minima that correspond to suboptimal solutions, finding the global minimum
is akin to solving the combinatorial optimization problem.

By adjusting the coupling strengths Jij and biases hi according to the prob-
lem’s formulation, the energetic landscape changes and the Ising machine explores
different spin configurations. The machine evolves toward low-energy states and,
if the mapping has been done correctly, these usually correspond to good solutions
of the starting problem.

A the state-of-the-art, there is not a common solution for solving combinatorial
optimization problems. In the last century many algorithmic implementations have
been proposed, but usually these are not suitable for approaching problems with
large sizes, achieve suboptimal accuracies, are very problem-specific, or a combina-
tion of the three [83, 84, 85].

Hardware solutions are very promising as, even if the solving times grow more
than linearly with the size of the problem, having analog computation often means
dividing the computing times by 3-4 orders of magnitude comparing with software
solutions, shifting it for small problems from milliseconds to microseconds or lower,
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depending on the used devices. This means that for larger problems, solutions
in the order of seconds-minutes are still acceptable, while algorithmic approaches
might take days or months. In this category we find quantum annealers, optical
solvers, devices implemented with LC oscillators and spintronic ones.

The key idea behind the implementation of the hardware Ising machine is that
the Ising Hamiltonian is associated to the energy functions that govern the devices’
behavior. Due to the inherent properties of the system, which tends to favor a
low energy state, the machine naturally evolves toward a local minimum effectively
finding a good solution of the starting problem.

Quantum Annealers, as for the D-Wave products [86, 87], use quantum effects
to explore the energetic landscape and find the global minimum by slowly "an-
nealing" the system, meaning that the input amplitude is gradually increased (or
decreased) and this helps the solver escape local minima. Quantum solvers use
superconducting circuits and quantum mechanics for the computation. In this way,
very fast solutions can be achieved (in the order of microseconds) at the cost of
bulky systems that require entire lab rooms and tens of kW of power for the cryo-
genic cooling, necessary for keeping the qubits at temperatures of the order of 15
mK [88].

Optical solutions, where the coupling is implemented with delay lines and phase
modulation, can be useful for approaching large problems (the largest hardware
Ising machine is optical with 100k spins), but kilometers of optic fiber are required
making the system bulky and not suitable for integration [69, 89, 90].

Electrical solutions use inductors and capacitors to implement oscillators, and
as well are not suitable for realizing highly integrated implementations [91, 92],
nevertheless these allow to realize a very educating environment to test how things
work in a macro scale. Spintronic solutions are very promising as the devices can
be manufactured with sizes in the order of tens to hundreds of nanometers [93]
and are compatible with the silicon technology. However, as in most hardware
solutions, the connectivity is a critical challenge, and as for current technological
solutions, the connections are only local between physically adjacent nodes and not
reprogrammable. Nonetheless many progress have been done in recent years [94,
95, 96, 97] and the field is growing rapidly.

The main alternative to hardware implementations is software simulation, where
the machine is simulated using classical computational resources. This approach
offers flexibility, allowing researchers to study in detail the behavior of oscillators
and, as demonstrated in this work, to realize networks with tens of millions of
nodes [98, 99, 100, 101, 102, 103, 104].

The focus of this chapter will be the analysis of simulated oscillator Ising ma-
chines (OIMs) [105] for two main reasons: to model possible spintronic-compatible
solutions and to test the performance in terms of solving times, size and accuracy
of the digital implementation itself.
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3.3 Modeling OIMs

To implement an IM using oscillators, certain requirements of the Ising model must
be fulfilled to realize a system that minimizes an Hamiltonian energy function.
Specifically, we need a system that represents a network of nodes interacting with
each other and characterized by binary outputs. This binarization is essential for
problems like the Max-Cut, where each node must be labeled with a binary value
corresponding to one of the two disjoint groups into which the system is divided.

Additionally, we need to incorporate a biasing term, which, while not necessary
for solving the Max-Cut problem, is crucial for other applications.

The adjacency matrix Jij can be realized by exploiting the interaction properties
of the oscillators, as described, for example, by Eqs. 2.15-2.18, which illustrate how
two oscillators influence each other.

To achieve the binarization of the oscillator phases, a suitable method is the ap-
plication of a signal at twice the oscillation frequency. This induces a phenomenon
known as sub-harmonic injection locking (SHIL) [106, 107], where the system locks
onto the external ac signal.

Figure 3.2 illustrates an example of an oscillatory signal locked to an injected
signal with the same frequency (a) and with twice the frequency (b). In the case of
injection locking, the oscillator locks to the external signal both in frequency and
phase. In the case of SHIL, while the oscillator does not lock in frequency, only two
distinct phases are possible, separated by π and this can be utilized to binarize the
system. Hence, in a system of two interacting oscillators, depending on the sign of
the interaction, the devices will oscillate either in phase or out of phase.

In an IM, the biasing term can be understood as a mechanism that influences
a spin to settle into the +1 state when a positive bias is applied, and into the −1
state when a negative bias is applied. In our system, all oscillators operate at the
same frequency, but the injection locking mechanism can still be useful as it affects
the phase of each individual node and its application makes one of the two possible
phases more favorable, effectively guiding the oscillator to adopt the phase that
corresponds to either the +1 or −1 state, effectively implementing the bias.

In summary, starting from the example illustrated in Fig. 3.1, we introduce
a second layer representing the natural evolution of the phases in the network of
oscillators. This is shown in Fig. 3.3, where the randomly initialized phases evolve
and converge towards the binary states −1 (ϕ = 0) and 1 (ϕ = π).

3.3.1 Kuramoto Model

The Kuramoto model of oscillators is developed for the analysis of group behavior of
biological systems and later found to be well representative of physical systems [108,
109]. It is also suitable for the implementation of an OIM, where each phase of the
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Figure 3.2: Illustration of injection locking (a) and SHIL (b), where the oscillator signal
is depicted by the blue and green dashed lines, and the injected signal is represented by
the solid orange line.

Figure 3.3: (a) Illustration of an exemplary graph. (b) Time evolution of the OIM where
each phase converges to the output state, represented in (c). Figure adapted from [81].
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network is defined as

dϕi

dt
= −K

N∑︂
j=1

Ji,j sin(ϕi − ϕj)− S sin(2ϕi) + A⟨ξ⟩ (3.2)

and the time dependence of ϕi, ϕj, and ξ has been omitted for simplicity.
The first term describes the interaction between the phase ϕi and the other

phases in the system, determined by the non-zero elements in the ith row of the
adjacency matrix J (or equivalently, the ith column, since the matrix is symmetric).
When Ji,j is positive, the jth phase attracts the ith one, and the system tends to
minimize the difference (ϕi−ϕj); if Ji,j is negative, the jth phase acts as a repeller,
maximizing the difference (ϕi − ϕj) in the phase space.

The second term represents the SHIL signal that is necessary for the binarization
of the energetic landscape introducing minima for phases equal to 0 and π.

The final term, ⟨ξ⟩, represents Gaussian white noise with zero mean and unit
variance. This noise helps the system explore the energy landscape by providing
the necessary energy to escape local minima, a technique commonly employed in
similar solvers [73, 102, 110, 111, 112].

The tree terms are modulated by the amplitude factors K, S and A.
Since the systems studied in this work consist of identical oscillators, we employ

a frequency-normalized version of the Kuramoto model, as the frequency term only
adds a constant shift to all phases without altering the system’s dynamics.

3.3.2 Slavin Model

Analogously, we adapted the Slavin model of oscillators to test if this model, which
well represents realistic devices, can provide insights about future spintronic imple-
mentations.

Adapting the model to the Ising case, the evolution of each oscillator can be
described by a set of two coupled differential equations [63]:

dpi
dt

= −2pi [Γ+,i(pi)− Γ−,i(pi)] + 2Fe
√
pi cos(2ωit+ 2ϕi)

+ 2Ω
N∑︂
j=1

Jij
√
pipj cos(ϕi − ϕj − β) + ξp(t), (3.3)

dϕi

dt
= −ωi(pi)−

Fe√
pi

sin(2ωit+ 2ϕi)

+ Ω
N∑︂
j=1

Jij

√︃
pj
pi

sin(ϕi − ϕj + β) + ξϕ(t), (3.4)
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where ϕi and pi represent the time evolution of the oscillator’s phase and power,
respectively.

In both equations, the first term on the right-hand side describes the behavior
of an isolated oscillator. The functions Γ+ and Γ− account for the positive and
negative damping effects. By expanding these functions to the first order, we
obtain Γ+(pi) = Γ0(1+Qpi) and Γ−(pi) = Γ0Iratio(1− pi), where Q is the nonlinear
damping coefficient, and Iratio is the ratio of applied current to the threshold current
required for self-oscillation. These equations have been validated by experimental
data [63, 113, 114].

As previously mentioned, the oscillator’s frequency, ωi, depends on its power,
pi, through the relationship ωi = ω0 + N0pi, where ω0 is the resonance frequency
and N0 is the nonlinear frequency shift. Also in this case we are studying a system
with identical oscillators, and due to the relation between frequency and oscillatory
power, the final frequency can vary slightly from device to device for different power
values.

Noise is introduced following the approach described in [63], and the results,
with or without thermal noise at room temperature, are qualitatively similar.

The term with amplitude Fe represents the external signal used for SHIL. The
third terms model the interaction between oscillators, with the coupling strength
Ω and the network topology determining their interaction. The parameter β is the
phase delay between the coupled signals, which depends primarily on the coupling
mechanism and the spatial separation of the oscillators and its effect has been
studied in the previous chapter.

The parameters used for the simulations are based on experimental data from
MTJ-based spintronic oscillators [115] with CoFeB as the free layer (see Tab. 3.1
for the complete parameter set).

The Q and N parameters have been chosen from experimental measurements[116],
and we conducted a systematic analysis for understanding how they influence the
overall accuracy to improve future hardware design and choose the right technology
of oscillators.

Fig. 3.4 shows the average Max-Cut obtained simulating 100 iterations per cell.
The results show that, in general, the parameter Q has a lesser impact on the Max-
Cut score compared to the parameter N , whose optimal value is approximately N ≈
10N0, considering N0 as a reference value [97, 116]. These findings suggest that the
nonlinear behavior of spintronic oscillators could be advantageous for implementing
an IM hardware system.

3.3.3 Comparison between Kuramoto and Slavin Models

Figure 3.5 (a) and (b) show the time variation of the oscillator phases (and the
powers for Slavin model) obtained inputting the same problem to the two solvers.
In both cases an annealing of the parameters controlling the injection locking and
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Figure 3.4: A grid search was conducted to find the optimal values for the nonlinear
frequency shift (N) and the nonlinear damping coefficient (Q). The Max-Cut performance
was evaluated by averaging the results from inputting 100 randomly generated cubic
graphs, each with 100 oscillators, into the model for various combinations of N and Q
values. Figure adapted from[117].
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Parameter Value

ω0 (GHz) 4.2
N
2π

(GHz) -3.44

Q 2

Iratio 2

ΓG (MHz) 252

β (rad) −0.64π

Fe 3× 109

Ω 1× 109

dt (ps) 5
Table 3.1: Slavin Model Parameters.

SHIL is applied in an increasing manner until a treshold is reached and the values
are resetted to zero. The annealing cycle is shown in green in Fig. 3.5 (c) and
the amplitude of the noise it kept constant. Figure 3.5 (a) presents the phases
of the oscillators modelled with Kuramoto’s theory. We can distinguish two main
behaviors in this plot as the phases either align or diverge, and this depends on
the amplitude of the coupling coefficient, when it is too high, the phases start mix-
ing and this helps getting out of local minima looking for a better configuration.
Analogously, Fig. 3.5 (b) shows the phases and the powers simulated using Slavin
model. In this case the mixing happens when the interactions are low, and increas-
ing the amplitude of the control parameters makes the system stabilize to the found
solution. Also the powers are represented in this plot, and it is clear how there is
a binarization also regarding the powers.

Figure 3.5 (c) shows the cut evaluated through time for the two models in red
and blue, which in this case reach the same maximum value of 136.

From this analysis we can conclude that both Kuramoto and Slavin models are
capable of achieving good results of Max-Cut instances meaning that this technol-
ogy is promising for the approach of similar problems and that spintronic oscillators
might be useful for the development of an hardware solver. From a computational
point of view, the Slavin model results more expensive than the Kuarmoto one in
terms of time and memory complexity, as two coupled ordinary differential equa-
tions (ODEs) must be evaluated instead of one.

In summary, this analysis demonstrates that both the Slavin and Kuramoto
models of oscillators are effective for implementing an IM to tackle Max-Cut prob-
lems, and show a comparable behavior. However, the Slavin model proves to be
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Figure 3.5: Sample executions of a maximum cut search on the same randomly generated
cubic graph with 100 oscillators, simulated using the Kuramoto model (a) and the Slavin
model (b). The graphs illustrate the oscillator phases, which are used to determine the
cut value, as well as the power of the oscillators in the Slavin model. The cut values for
both models, calculated at each time step (solid lines), are displayed in (c) along with
the linear annealing schedule for the amplitude parameters (dashed line). Both models
employ a sawtooth-shaped annealing schedule. Figure adapted from [117].
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more computationally expensive. Consequently, in the following analyses, we will
focus solely on the Kuramoto model. Nevertheless, it is reasonable to expect that
the results presented here could be extended to the Slavin model and, more broadly,
to potential hardware implementations.

3.4 Optimizing and Scaling Up OIMs

In this section we will present some modifications to the Kuramoto model to im-
prove its efficiency and scalability for a GPU implementation, approaching d-regular
problems with up to 20 million nodes, one order of magnitude higher than the
largest we could find in literature.

We will observe more in detail the effect of noise annealing and how this can
significantly improve the accuracies. Furthermore, we introduce an annealing ap-
proach that divides the analysis into checkpoints, enabling the system to resume
from a prior state after each iteration. This method enhances the exploration of
the solution space in scenarios with limited time. The system consistently attains
accuracies averaging over 99.5% (up to 99.9%) on G-set problems, with computa-
tion times ranging from under 5 minutes to 1 hour. This makes it highly applicable
to large-scale and time-sensitive tasks.

3.4.1 Problem Generation

When addressing extremely large problems (N > 1M), the generation of problem
instances must also be optimized. In this section, we present a simple and efficient
code developed for generating d-regular graphs with unitary weights, specifically
for sparse cases (d < 50).

In a d-regular graph, each node is connected to exactly d other nodes. Conse-
quently, the code must adhere to three key constraints:

• Each node must be connected to precisely d other nodes.

• Self-connections are not allowed.

• Duplicate connections between the same nodes are not allowed.

The core idea involves initializing a vector composed of integer values from 1
to N , denoted as v = [1, 2, . . . , N ]. This vector is randomly shuffled, and adjacent
values in the sequence are used to establish new connections. As an example, after
shuffling v[1] is connected with v[2], then v[3] is connected with v[4], etc. In this
way we are sure that all the nodes will be connected in couples.

After this step, it’s necessary to check that the new connections are all unique
and not duplicate of those from previous steps. If this is not the case, the previous
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step is repeated. Otherwise, the degree is increased by one. The generation is
stopped when the degree reaches the input value d. The pseudocode of the graph
generation is presented below, where the weights are considered to be all unitary.

We chose the Fisher-Yates algorithm for shuffling the main vector due to its
linear computational complexity with respect to the number of nodes, similar to
other operations in the algorithm.

Unlike the edge_list output, the check_vector also includes duplicate con-
nections. This is essential for the check_regularity function, which verifies that
no duplicate values exist in each row for columns up to the current degree. If
duplicates are found, the function returns 0, causing the while loop to restart.

The primary limitation of this algorithm is its time complexity dependency on
the degree of the problem, which is more than linear. This impacts the algorithm’s
performance, already impacting for degrees higher than 10, making this solution
suitable only for sparse regular instances.

3.4.2 Noise Annealing

To effectively approach COPs, solvers must possess two key abilities:

• They must be able to explore the energy landscape broadly to identify promis-
ing regions.

• They need to focus on local energy minima to find accurate solutions.

To perform a wide exploration of the energy landscape, solvers rely on mo-
mentum, which is provided by injected noise. This allows them to overcome large
energy barriers. The key advantage of using stochastic methods over deterministic
algorithms lies in this ability of locating the optimal region of the landscape where
a good local minimum resides, which is computationally expensive for deterministic
approaches.

Once a promising region of the energy landscape is identified, the solver must
search for the local energy minimum to provide a precise solution. In this phase,
algorithmic methods have proven effective, as the nearest local minimum can be
deterministically evaluated [80, 118]. The benefit of using an Ising Machine is
the smooth transition between these two processes, which can be modulated by
annealing the noise amplitude.

In an OIM, when noise is absent, the phases either attract or repel each other,
and the SHIL enforces two stable phase states: 0 or π.

When noise of sufficient amplitude is applied, the system is continuously pushed
out of its local energy minimum, allowing it to explore different configurations.
Unlike changing the initial conditions, which occurs only once, applying noise causes
continuous exploration of the landscape.
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Codice 3.1: Pseudocode for d-regular graph generation

# Initialization
SET d as degree of the problem
SET N as number of oscillators

SET shuffling_vector to increasing integer values [1, 2, ..., N]
INITIALIZE edge_list with zeros and size (d * N / 2, 3)
INITIALIZE check_vector with zeros and size (N, d)

# Start of the cycle
FOR each deg from 1 to d:

SET flag = 0
WHILE flag == 0:

CALL Fisher-Yates_shuffling(shuffling_vector)
FOR each index j from 1 to N / 2:

SET connection1[deg, j] = shuffling_vector[j]
SET connection2[deg, j] = shuffling_vector[N / 2 + j]
CALL update_check_vector(check_vector, connection1[deg, j],

connection2[deg, j], deg, j)↪→

# The function update_check_vector updates the current check_vector with
the new connections before checking if all constraints are satisfied↪→

END FOR

# While loop iterates until check_regularity confirms the graph is
regular up to the current degree↪→

SET flag = check_regularity(check_vector, deg)

END WHILE

# Update the edge_list with the generated and verified edge vector
SET edge_list[deg * N / 2 : (deg + 1) * N / 2, 1] = connection1
SET edge_list[deg * N / 2 : (deg + 1) * N / 2, 2] = connection2
SET edge_list[deg * N / 2 : (deg + 1) * N / 2, 3] = ones(N / 2)

END FOR

The most effective way to find good energy minima involves starting with a high
level of noise and gradually reducing it over time. This process is commonly known
as annealing [119, 120].

Figure 3.6 (a) provides a 2-dimensional representation of the energy landscape.
The system is capable of exploring states between the noise level and the black
landscape. When reducing linearly the noise, the system gets stuck in region of the
landscape progressively smaller until being trapped in a local minimum. Figure 3.6
(b) shows the cuts evaluated during an exemplary iteration, where the noise is
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applied in a linearly decreasing fashion until the system achieves an optimal and
stable solution.

Figure 3.6: (a) Sketch of a simplified energy landscape. When substantial noise is intro-
duced, the system moves freely across the landscape, exploring multiple states. As the
noise gradually decreases, the system tends to stabilize in one of the lower-energy states,
which are separated by barriers that cannot be crossed without noise. (b) Exemplary anal-
ysis of the cut throughout an entire iteration, during which a linearly decreasing noise is
applied until achieving an optimal and stable solution.

3.4.3 Algorithmic Implementation

This section describes the implementation of a GPU-accelerated OIM that uses
Heun’s method for the integration of ODEs, developed in native C++/CUDA. The
solver is specifically optimized for large, sparse, d-regular problems. As we now shift
our focus to the Kuramoto model of oscillators from a computational rather than
physical perspective, a hyperbolic tangent term is introduced within the sinusoidal
component of the coupling term of the phase dynamics, resulting in:

dϕi

dt
= −K

N∑︂
j=1

Ji,j tanh(Q sin(ϕi − ϕj))− S sin(2ϕi) + A⟨ξ⟩, (3.5)

where this tanh term amplifies the sinusoidal function’s influence. Figure 3.7
shows a plot of sin(x), tanh(2 sin(x)), and tanh(10 sin(x)). Considering x as the
phase difference between two oscillators, we observe that the coupling contribution
becomes zero only when the two phases are either in phase (x = 0) or in phase
opposition (x = π). In all other cases, the coupling contribution is non-zero, and
the addition of the tanh function ensures a significant interaction even with minimal
phase difference, thus accelerating convergence.

The parameter Q is set to 10, as described in [105].
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Figure 3.7: Plot of sin(x), tanh(2 sin(x)) and tanh(10 sin(x)).
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The main scalability limitation arises from the adjacency matrix in Eq. 3.2,
which governs the coupling between oscillators and has a size of N2 [72]. For d-
regular problems, each row (or column, since the matrix is symmetric) contains
only d non-zero values. To exploit this sparsity, we used a weighted edge list repre-
sentation for the graphs. This data structure is a matrix with three columns: two
store the indices of the connected nodes, and the third contains the edge weights.
The number of rows corresponds to the total number of connections, which for
d-regular problems is d ·N/2.

The goal of this approach is to convert the adjacency matrix into a structure of
size 3 · d ·N/2, maintaining all the necessary information without explicitly storing
the null connections. This is particularly advantageous for sparse problems, where
the degree is limited.

The second key step involves computing the first term in Eq. 3.2, and the
coupling information is processed and stored in a support vector.

By the end of the loop, the support vector holds all the coupling data, allowing
the phase variation for each oscillator to be expressed as:

dϕi

dt
= SupportVectori − S sin(2ϕi) + ξ. (3.6)

In other words, we proposed the implementation of an edge list and a support
vector with a total size of 2 · d · N substituting the adjacency matrix. With this
modification, the phase variations can be calculated using two sequential (non-
nested) loops: one with d·N/2 iterations and another with N iterations, this results
being an improvement in the time and memory complexity for sparse problems
comparing with the original formulation of Eq. 3.2 that requires an adjacency matrix
of size N2, and consequently N2 steps are necessary in each interaction. In essence,
this optimization reduces the time and memory complexities from O(N2) to O(d·N),
making this method excellent for sparse (low d) instances.

A figure of merit can be defined by dividing the memory requirements of both
methods, yielding 4 ·d/N . When this figure of merit is less than 1, the vector-based
representation is preferable for both memory efficiency and computation time. In
practice, since the dot product (present in the starting formulation) is efficiently
implemented with GPUs, the proposed method is preferable when 4 · d/N ≪ 1.

Figure 3.8 illustrates a 2-regular graph with 5 nodes and unitary weights (a),
along with the corresponding representations of the adjacency matrix J , the equiv-
alent edge list, and the support vector that is updated at each iteration (b).

The pseudocode of the support vector implementation is reported below.

3.4.4 Scalability

Figure 3.9 (a) shows the Max-Cut values obtained for d-regular problems with
degrees ranging from 3 to 25 and sizes up to 20 million nodes, overcoming the
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Figure 3.8: (a) Diagram of a 2-regular graph consisting of 5 nodes with uniform connec-
tions. (b) Representation, from left to right, of the adjacency matrix (zeros shown as
blank spaces), the corresponding edge list, and the support vector. Here, Oi represents
the index of the ith oscillator. α and β are placeholders for the terms Q sin(φi − φj) and
Q sin(φj −φi), respectively, where Q is a constant and φi, φj are the phases of oscillators
i and j.
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Codice 3.2: Pseudocode for the update of the Support Vector

// Initialization
INITIALIZE SupportVector with zeros and size N * d / 2

// Start of the cycle
FOR each k from 1 to N * d / 2:

SET Osc1 = EdgeList[k, 1]
SET Osc2 = EdgeList[k, 2]
SET Coupling = EdgeList[k, 3]

SET SupportVector[Osc1] += K * Coupling * tanh(Q * sin(phase[Osc1] -
phase[Osc2]))↪→

SET SupportVector[Osc2] += K * Coupling * tanh(Q * sin(phase[Osc2] -
phase[Osc1]))↪→

END FOR

largest problem size approached by an IM found in the literature by an order of
magnitude. For problems with sizes up to 1 million nodes, the results were averaged
over 20 instances, while a single instance was considered for larger problems. The
article [121] shows a linear relation between the theoretical upper bound of the Max-
Cut and the size of the problem for a fixed degree; the same is shown in Fig. 3.9
(a) demonstrating the solver’s ability to find high-quality solutions across small
and large problems without significant accuracy loss. It is important to note that
Fig. 3.9 (a) provides a broad view of the solver’s accuracy, though subtle variations
may not be easily noticeable due to the logarithmic scale. The detailed accuracy
of the solver is discussed in the next chapter and evaluated using a benchmark set
of smaller problems.

The upper part of Fig. 3.9 (b) shows the solving times for the instances in
Fig. 3.9 (a). For smaller problems, the execution time is dominated by initialization
processes, such as memory allocation. For problems with more than 1 million nodes,
the solving time scales linearly with the graph size. This linearity is more clearly
observed in the lower part of the figure, which shows solving times normalized by
the number of nodes.

In summary, the runtime and memory requirements scale linearly with the num-
ber of simulated nodes, the degree of the problem (or equivalently, with the total
number of connections for non-regular instances), and the number of time steps.

The analyses were conducted with one thousand time steps using an Nvidia
T1000 GPU with 8 GB of RAM.
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Figure 3.9: (a) Max-Cut values obtained for problems of various sizes and densities. (b)
The upper part of the figure shows the runtimes of the problems mentioned in (a). The
red curve, given by the equation t = 1.8 × 10−4 ×N − 58.1, illustrates the interpolation
of the solution times for the last 4 data points with a degree of 25, indicating a linear
relationship between the number of oscillators and the runtime. The lower section of the
figure presents the solution times normalized by the number of oscillators. For linear
solution times, this graph should remain constant, which is observed for problems with
sizes exceeding 1 million.
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3.4.5 Accuracy

Evaluating the accuracy of d-regular problems with varying sizes is challenging
because the exact solution for random instances may differ in each case. While
upper bounds have been studied, such analyses are primarily applicable to dense
problems [121, 122].

To facilitate comparison with other state-of-the-art methods, we benchmarked
the OIM using the G-set [79], a well-known collection of problems with sizes ranging
from 800 to 20000 nodes and diverse connection structures.

Figure 3.10 (a) shows a comparative analysis of the accuracy for 100 instances,
with the number of time steps per iteration varying from 100 to 105. The mean
values are indicated by the dotted lines. The plot illustrates that, as the number
of time steps increases, the average accuracy improves, and the variance decreases,
signifying that the probability of finding a good solution in a single run increases
with the simulation time, as expected. However, when looking for the best solution,
it is necessary to repeat the analysis multiple times.

To determine the optimal balance between the duration of each iteration and
the number of repetitions, we fixed the total number of time steps and varied the
iteration length, ensuring that the product of the number of iterations and the size
of each iteration remained constant at 107 steps.

Figure 3.10 (b) shows that for problem G25, the best configuration is achieved
by performing an analysis with 105 time steps, repeated 100 times.

These analyses were conducted with linearly decreasing noise, and fixed values
for the K and S parameters.

Figure 3.10: (a) Plot of the accuracies achieved by varying the iteration durations for
different problems in the G-set. Each data point represents the average of 100 iterations,
with the accuracy values indicated by the colored shading. (b) A boxplot generated by
varying the number of steps used in each iteration, with the iterations repeated until a
total of 107 time steps is reached.
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3.4.6 Segmented analysis

In this section, we present an alternative approach to enhance system accuracy
within a constrained timeframe by segmenting OIM operations across a limited
number of total time steps.

During the annealing process, the OIM begins from a random configuration and,
as noise is gradually reduced, it becomes trapped in various energy regions until a
local minimum is reached. To explore multiple local minima, this process must be
repeated several times.

We introduced checkpoints in the analysis where the phase state is saved and
used as the starting point for future runs of the OIM. In this way, after completing a
full iteration, instead of restarting from a random initial state, the search resumes
from a checkpoint, with the previously saved state and the corresponding noise
value. This enables the exploration of several local minima in a shorter time. This
concept can be interpreted as a bifurcation analysis of the energy landscape. An
example is shown in Fig. 3.11 (a), where the system converges to different local
minima, improving the exploration of a specific region of the energy landscape.
The inset of Fig. 3.11 (a) provides a zoomed view of the last segment repeated five
times, with the dashed lines indicating the reference Max-Cut value (green) [80] and
the one obtained in the study that introduced OIMs (red) [105] for this problem.
The vertical lines represent the checkpoints.

After repeating the analysis from a saved state a chosen number of times, the
system returns to a previous checkpoint and the process is repeated. In every case,
the noise values are also restored to those saved at the checkpoint.

Using this strategy, numerous configurations can be examined with different
segment durations and repetition schedules. Figure 3.11 (b) shows a boxplot of
four different trials. T1 represents the best result from Fig. 3.10 (b), achieved
with 100 iterations, each consisting of 105 time steps. The other trials represent
example runs, keeping the total number of time steps limited to 107 while testing
different segmentation routines. T2, T3, and T4 use 94 · 103, 200 · 103, and 840 · 103
time steps for a complete iteration, as reported in Tab. 3.2, with varying check-
point repetitions to reach the target of 107 total steps. T1 and T2 have similar
durations and comparable means, but segmenting the analysis (T2) allowed for the
exploration of a greater number of local minima, resulting in solutions with lower
energy and higher cuts. T3 performs the best, resulting in a good balance between
longer segments and a higher number of repetitions, allowing for broader explo-
ration of the landscape. This configuration is used in the following analysis. The
dashed lines serve as reference points, representing the results from the original
OIM study [105] and the reference values [80], which are used as benchmarks for
subsequent accuracy evaluations. Figure 3.11 shows that during this analysis the
proposed method overcame multiple times previous OIM results (red dashed line),
however the reference value (green dashed line) has not been reached.
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Although the presented analysis is conducted for only one exemplary problem,
similar results have been obtained for different problems of the G-set.

Figure 3.11: (a) An illustrative representation of the evaluated cut during the segmented
analysis, with different checkpoints marked by vertical red lines. Five repetitions are
shown, each starting from the last checkpoint. The inset provides a close-up view of the
cuts. The dashed lines represent the maximum values obtained by the works introducing
OIM [105] (in red) and the reference values [80] (in green). (b) A boxplot showing the
results from four different trials: without segmentation (T1) and with varying segmenta-
tion approaches (T2, T3, and T4). The whiskers represent the full range of observations,
with the median marked by a horizontal line and the mean indicated by a white dot.

Trial Duration S1 Duration S2 Duration S3 Repetitions S1 Repetitions S2 Repetitions S3

T2 32k 32k 30k 5 6 10

T3 70k 70k 60k 5 5 5

T4 300k 300k 240k 3 3 3

Table 3.2: Durations in time steps and the number of repetitions for each checkpoint of
the trials shown in Figure 3.11 (b). The analysis was carried out with a fixed total of 107

steps.

3.4.7 G set evaluation

Based on the previous considerations, the G-set problems were approached using
the T3 segmented analysis with two minor variations, focusing primarily on the size
of the analysis, fixed to 106, 107, and 4 · 107 time steps. These correspond to total
computation times of approximately 2-5, 20-50, and 80-200 minutes per problem,
respectively. These durations include the reading and writing processes that occur
multiple times during each iteration.

The results of this analysis are presented in Table 3.3, alongside the results
reported in [80] and [105].
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The average accuracies computed for the G1-G54 problems demonstrate that
the OIM achieves an average accuracy exceeding 99.5%, with the highest accuracies
obtained from the longest runs, as expected.

When considering the G55-G81 problems, which are typically excluded from
benchmark analyses due to their size, the accuracies slightly decrease but still
surpass the 99% threshold on average.

In some instances, highlighted in bold in Table 3.3, the Max-Cut found was
higher than the reference values.

In conclusion, the proposed method is effective for obtaining both fast, accurate
results within minutes and highly accurate results within hours.

Problem Benlic et
al.[80]

Wang et
al.[105]

This work
(106 steps)

This work
(107 steps)

This work
(4 · 107
steps)

G1 11624 11624 11624 11624 11624

G2 11620 11620 11615 11617 11617

G3 11622 11622 11615 11622 11622

G4 11646 11646 11640 11641 11644

G5 11631 11631 11631 11627 11631

G6 2178 2178 2176 2178 2178

G7 2006 2000 1997 1998 1998

G8 2005 2004 1992 2005 2004

G9 2054 2054 2043 2046 2048

G10 2000 2000 1997 1998 1999

G11 564 564 554 564 564

G12 556 556 552 556 556

G13 582 582 574 582 582

G14 3064 3061 3060 3062 3063

G15 3050 3049 3040 3050 3050

G16 3052 3052 3041 3052 3052

G17 3047 3046 3037 3045 3047

Continued on next page
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Continued from previous page

Problem Benlic et
al.[80]

Wang et
al.[105]

This work
(106 steps)

This work
(107 steps)

This work
(4 · 107
steps)

G18 992 990 988 991 991

G19 906 906 903 906 906

G20 941 941 941 941 941

G21 931 931 930 930 931

G22 13359 13356 13348 13357 13358

G23 13344 13333 13325 13336 13336

G24 13337 13329 13303 13335 13335

G25 13340 13326 13319 13326 13333

G26 13328 13313 13299 13324 13322

G27 3341 3323 3318 3341 3341

G28 3298 3285 3270 3297 3298

G29 3405 3396 3371 3396 3391

G30 3412 3402 3380 3412 3412

G31 3309 3296 3286 3306 3306

G32 1410 1402 1378 1402 1404

G33 1382 1374 1356 1374 1376

G34 1384 1374 1362 1380 1380

G35 7684 7675 7645 7684 7684

G36 7678 7663 7635 7673 7674

G37 7689 7679 7643 7680 7686

G38 7687 7679 7642 7685 7688

G39 2408 2404 2385 2408 2408

G40 2400 2389 2385 2395 2397

Continued on next page
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Continued from previous page

Problem Benlic et
al.[80]

Wang et
al.[105]

This work
(106 steps)

This work
(107 steps)

This work
(4 · 107
steps)

G41 2405 2401 2400 2404 2405

G42 2481 2469 2459 2472 2474

G43 6660 6660 6656 6656 6657

G44 6650 6648 6648 6649 6649

G45 6654 6653 6642 6653 6654

G46 6649 6649 6643 6646 6646

G47 6657 6656 6650 6656 6656

G48 6000 6000 6000 6000 6000

G49 6000 6000 6000 6000 6000

G50 5880 5874 5846 5880 5880

G51 3848 3846 3829 3847 3848

G52 3851 3848 3835 3847 3850

G53 3850 3846 3835 3847 3850

G54 3852 3850 3840 3851 3851

G55 10294 - 10201 10283 10289

G56 4012 - 3919 4004 4009

G57 3492 - 3406 3462 3470

G58 19263 - 19160 19263 19271

G59 6078 - 6001 6070 6069

G60 14176 - 14071 14169 14172

G61 5789 - 5661 5782 5788

G62 4868 - 4742 4830 4826

G63 26997 - 26870 26996 27003

Continued on next page
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Continued from previous page

Problem Benlic et
al.[80]

Wang et
al.[105]

This work
(106 steps)

This work
(107 steps)

This work
(4 · 107
steps)

G64 8735 - 8630 8715 8723

G65 5558 - 5404 5504 5510

G66 6360 - 6178 6292 6296

G67 6940 - 6780 6886 6890

G70 9541 - 9416 9565 9562

G72 6998 - 6804 6928 6934

G77 9926 - 9652 9842 9844

G81 14030 - 13638 13892 13910

Avg.
Accuracy
1-54

- 99.87% 99.51% 99.92% 99.94%

Avg.
Accuracy
1-81

- - 99.18% 99.82% 99.85%

Table 3.3: Max-Cut values of the G-set problems achieved in [80] using BLS, in [105] using
OIMs, and by the OIM implementation presented in this work under three configurations:
106, 107, and 4 · 107 total steps per problem.

3.5 Conclusion

In this chapter, we have demonstrated the applicability of oscillator-based Ising
Machines to combinatorial optimization problems, specifically focusing on the Max-
Cut problem. Through modeling approaches based on the Kuramoto and Slavin
models, we observed that both approach the problems in a similar manner. How-
ever, the Kuramoto model proved to be more computationally efficient, making it
preferable for large-scale implementations.

We developed an algorithmic solution that optimized both time and space com-
plexities, achieving linear scalability with respect to the number of connections.
Furthermore, the combination of noise annealing techniques and efficient GPU-
accelerated implementations allowed us to solve problems with up to 20 million
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nodes, surpassing the current state-of-the-art by an order of magnitude.
The segmented analysis approach further improved the accuracy and efficiency

of the OIMs, ensuring that near-optimal solutions could be obtained within minutes
for smaller accuracies, while more accurate solutions could be obtained over hours.

In conclusion, the results presented in this chapter establish OIMs as a viable
and scalable solution for combinatorial optimization tasks, offering significant im-
provements in both computational speed (reduced to a linear dependency on the
number of connections) and solution accuracy.
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Chapter 4

Controlling vortex oscillators with
an ac current input

This chapter explores the use of magnetic vortex oscillators to perform analog
multiplication between an analog signal and a binary weight, a crucial operation
in BNNs. This approach holds significant potential for developing fast and energy-
efficient accelerators in artificial intelligence applications.

We demonstrate how a vortex oscillator, implemented using a MTJ stack with
a diameter of less than 1 µm, can implement the writing and reading functionalities
of binary weights solely through the application of an alternating current. These
devices enable the multiplication of an analog input signal encoded in the ampli-
tude of the ac current by a binary weight. The key advantage lies in the use of
frequency-based current to write and read the weights, which allows for cascading
multiple devices with different resonance frequencies. This eliminates the need for
individual access to each device, enabling independent writing and reading in a
chain configuration. This is particularly advantageous in potential 3D structures,
where direct access to each device is impractical or inefficient.

The concept is simple and rooted in theoretical analysis, and we present ex-
perimental results from the implementation of a prototype consisting of a chain of
three devices. These findings underscore the feasibility of using vortex oscillators to
enhance AI hardware accelerators by simplifying architecture and reducing power
consumption.

4.1 Vortex oscillators

Vortex oscillators are based on the dynamic behavior of magnetic vortices in ferro-
magnetic materials, typically found in thin films or nanodots. A magnetic vortex is
a particular spin configuration where the magnetic moments in a thin, disk-shaped
or ellyptical-shaped ferromagnet align in a circular fashion around a central core.
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At the center of this structure, known as the vortex core, the magnetization points
perpendicular to the plane, either upwards or downwards. Figure 4.1 (a) presents
a sketch of the magnetization along the z-axis for the two polarity states, and (b)
shows a top view of two micromagnetic analyses where the arrows represent the
magnetization in local areas and the blue and red colors represent the positive and
negative OOP component, respectively. The two examples presented also show a
different chirality, meaning that the circular orientation of the IP components can
be either clockwise or counterclockwise; this is another key property of magnetic
vortices, which however, will not be analyzed in the work.

The vortex core can move within the plane of the magnetic material in response
to external stimuli, such as spin-polarized currents or magnetic fields [123, 124].
This movement is called the gyrotropic motion, where the vortex core precesses
around its equilibrium position [125]. The dynamics of this motion can be affected
by external interactions such as magnetic fields, spin-transfer torque or spin-orbit
torque[126, 127, 128].

Figure 4.1: (a) Three dimensional sketch of the z-axis component of the magnetization for
the two polarities. (b) Top view of the magnetization obtained with two micromangetic
simulations of a circular FL with a vortex. The IP magnetization is represented in white,
while the vortex cores are represented in red and blue for their OOP up and down com-
ponents.

4.1.1 Gyrotropic Motion and Frequency

The gyrotropic motion of the vortex exhibits a circular trajectory on the magnetic
disk. This motion occurs at a characteristic frequency, typically in the range of
hundreds of MHz to several GHz, depending on the size and material properties of
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the ferromagnetic disk. The frequency of vortex oscillators is determined by several
factors:

• Material properties: The magnetic properties of the material, the fabrica-
tion process and imperfections influence the gyrotropic frequency.

• Size of the device: The core is subject to the boundary effects present at
the edges of the devices and the size of the magnetic disk influences the range
of motion and the frequency [126].

• External biasing fields: The application of an external magnetic field can
tune the frequency by either pinning the vortex core or altering its equilibrium
position [129, 130]. This effect will be studied more in detail in this work.

• Applied currents: Spin-polarized currents can induce sustained motion of
the vortex core by exerting a torque on the spins, leading to continuous oscil-
lations with the applied frequency. The amplitude of the oscillations increases
for applied currents with frequencies close to the natural resonance frequency
of the oscillator[123, 124, 128, 131, 132].

4.1.2 Spin-Transfer Torque and diode effect

The use of magnetic vortices as oscillators primarily relies on the STT effect. When
a dc spin-polarized current passes through the magnetic material, the angular mo-
mentum of the electrons is transferred to the magnetic structure, causing the vortex
to move. If this dc current is maintained, it sustains the motion of the vortex core,
leading to continuous oscillations.

The oscillations generated by the vortex motion can be detected as a time-
varying resistance in the device due to the TMR effect. This oscillating resistance
produces an ac voltage signal, making vortex oscillators useful as high-frequency
microwave signal generators.

In electronics, the term oscillator typically refers to a device that converts a dc
input into an ac output. However, vortex oscillators can also function as diodes.
Specifically, when provided with an ac input, vortex oscillators can generate a
measurable dc voltage, and this phenomenon is known as spin-diode effect [60,
133]. Given a device with specific characteristics, the amplitude of the dc voltage
generated depends on the natural frequency of oscillation of the device, and the
input frequency and power [134]. The plot of several dc voltages measured for
different values of input frequency is named spin-diode curve.

Figure 4.2 shows an example of an experimental spin-diode curve obtained for an
input with -30dBm (or 1µW) of power, where the resonance frequency is observed
at about 400 MHz.

81



Controlling vortex oscillators with an ac current input

Figure 4.2: Plot of the experimental points of a spin-diode curve, obtained for an input
with -30dBm (or 1µW) of power.
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4.2 The influence of a dc magnetic field on the res-
onance frequency

A key aspect of this analysis is the interaction between the magnetic vortex and
an OOP external magnetic field. As experimentally demonstrated in [129], the
resonance frequencies of magnetic vortices in nanodisks subjected to a constant
perpendicular magnetic field increases or decreases, depending on the polarity of
the vortex core, and the magnitude of the shift depends on the applied field.

Figure 4.3, reported from the work [129], shows experimental proof of the res-
onance frequency splitting for different fields applied (a), and an example of the
absorption signals obtained with the magnetic resonance force microscopy (b).

In essence, the resonance frequency of the gyrotropic motion is directly influ-
enced by the applied perpendicular magnetic field, with two distinct behaviors
observed for the different polarity states. In this work, we analyze MTJ vortex
structures and observe a slight frequency shift in the resonance without the appli-
cation of an external field, indicating the presence of a small intrinsic field compo-
nent within the MTJ stack. Although this component is not included by design, it
can still be useful for reading and writing the vortex core polarization, as will be
demonstrated in the following sections.

Figure 4.3: (a) Frequency splitting observed in experimental analyses applying an OOP
magnetic field with different intensities. (b) Response obtained with the magnetic reso-
nance force microscopy. Figure reported from [129].
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4.3 The MTJ devices

Although the fabrication process was not part of this work, for a better under-
standing and reproducibility of the results, it is useful to provide some information
about the key features of the measured devices.

For a device to be considered a suitable candidate for this analysis, it must meet
the following key requirements:

• The design and structure should ensure that the vortex is the ground state of
the magnetization at room temperature in the absence of an external magnetic
field;

• It should exhibit high TMR to facilitate spin-diode conversion and enable
reliable dc output measurements;

• The free layer should be as homogeneous as possible to minimize pinning
effects that would alter the motion of the vortex core.

These specifications were achieved by the authors of the study [135], who also
supplied the devices used in this work. They fabricated a circular MTJ structure
featuring a CoFe(2.0 nm)/Ru(0.7 nm)/CoFeB(2.6 nm) synthetic antiferromagnet
(SAF) as the pinned layer, and a CoFeSiB free layer, separated by a thin MgO(1.0
nm) layer. The amorphous nature of the free layer helps to reduce crystalline
defects. An annealing treatment at 330°C for 2 hours in a 1 T magnetic field was
applied to align the pinning layer and crystallize the MgO oxide barrier.

In summary, the measured device is a circular-section MTJ stack with various
diameters, all below 1 µm, and a highly optimized free layer designed to minimize
imperfections.

4.4 The measurement setup and routine

The measurement experiments consisted mainly in measuring the dc voltage ob-
tained when an ac input is passed through the device.

The measurement setup consists of the following components:

• An AC current generator;

• A bias tee to separate the ac and dc components;

• A nanovoltmeter for dc voltage detection;

• A wire-bonded device.
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This setup is intentionally simple, as no amplification stages or external mag-
netic fields are required, and one of the key advantages of this work is that the
results can be replicated in an integrated solution.

Each device is individually wire-bonded to a gold-plated substrate, with con-
nections of minimal length to reduce the absorption of interference signals in the
frequency range of interest of 0.1 to 1 GHz. The gold plate is then connected to
the instruments via RF cables.

The basic measurement routine involves a few straightforward steps:

• Injecting a current with a specific power and frequency into the sample;

• Waiting for a few milliseconds to avoid measuring transient phenomena;

• Detecting the resulting DC voltage.

This simple routine is used to obtain each data point of a spin-diode analysis,
where the input frequency is swept, and forms the basis for more complex analyses
discussed later in this work.

Some other configurations have been tested with the use of external antennas,
high intensity magnetic fields and dc currents, but this work focuses on the appli-
cation of only an ac current.

Figure 4.4: Schematic of the measurement setup.

4.4.1 Reading the core state

The spin-diode curve is a key component of this project, as it provides significant
information about the devices in a very limited amount of time, as with just a few
seconds of measurements, we can immediately determine the following:
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• Resonance frequency: The curve directly reveals the resonance frequency
of the device.

• Gyrotropic motion as the main signal: When a peak is observed be-
tween 50 MHz and 1000 MHz, we can safely assume that gyrotropic motion
is being measured. If the resonance frequency largely shifts (>100MHz) when
applying inputs with different powers, it may indicate the influence of pin-
ning phenomena on the motion. A small shift of few MHz for different input
powers is expected due to the nonlinear frequency shift described in previous
chapters (see Eq.2.7).

• Integrity of the MgO barrier: This can be assessed by examining the am-
plitude of the output. If the amplitude falls within a specific range, the MgO
barrier is considered intact; otherwise, the measured output is significantly
lower. The MgO barrier is the most delicate part of the measured devices,
and can be broken with a few volts[136]. Therefore, protection from static
discharge is essential when handling MTJs.

• Expulsion of the vortex core: If the vortex core is expelled during the
measurement, the spin-diode curve becomes flat near for applied frequencies
close to the resonance, as illustrated in [137].

• Core polarity: The resonance frequency shift between the two polarity
states leads to small but measurable changes in the spin-diode curve for the
same applied powers, as it is shown in Fig. 4.5. This is a key result of this
work.

Figure 4.5 shows an example of spin-diode curves evaluated on the same device
initialized with different vortex polarities, where it’s clearly visible the frequency
shift. If one of the curves and its associated polarity state is known, it can be used
as a reference to identify the polarity of the vortex core.

In practical implementations, when the frequency response of the device is
known, only one dc voltage measure is necessary. The vertical line in Fig. 4.5
shows that for input currents with frequency of 394 MHz, the voltage measured is
either positive or negative due to the core polarity, making the detection extremely
simple.

Although magnetic devices are usually characterized by hysteretical behavior,
when evaluating the spin-diode curve, the few milliseconds of delay between analyz-
ing different points are orders of magnitude longer than the relaxation time of the
structure, which returns to its ground state after each measurement. This ensures
that if the spin-diode curve is measured multiple times under identical conditions,
the output remains consistent, apart from minor measurement errors.
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4.4 – The measurement setup and routine

Figure 4.5: Plot of the experimental points of two spin-diode curves measured on the
same device initialized with two distinct polarity states. For each point, the power of the
ac current input is -30dBm.
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4.5 Multiplication of the input value for a binary
signal

The output dc voltage measured in the spin-diode curve depends linearly on the
input power, and this phenomenon has been previously addressed in the context of
analog multiply-and-accumulate (MAC) operations in neuromorphic implementa-
tions [138, 139]. In these implementations, the factors to be multiplied are encoded
in the power of the injected signal and in the amplitude of a dc current passing
through an antenna deposited over the devices, which is linearly shifting the reso-
nance frequency of the devices.

We can apply the input/output linearity and the observed frequency shift to
multiply a value encoded in the input power with the binary weight encoded in the
vortex core polarity.

Figure 4.6 (a) shows the spin-diode curves obtained for various input amplitudes
corresponding to the up (orange) and down (blue) core polarity states. In this plot,
the amplitude of the response increases linearly with the applied input.

Figure 4.6 (b) shows the voltages measured when an input with variable power
is applied with a fixed frequency, indicated by the vertical line in Figure 4.6 (a).
In other words, Figure (b) presents only the measured points of (a) aligned over
the vertical line. This Figure highlights the clear linear relationship between the
input power and the output dc voltage, multiplied by the binary state encoded in
the core.

From these analyses, we can conclude that a single device can not only store
a binary weight, but also multiply an analog value by that weight. This is a key
result in the context of current technology where the memory transfer is orders of
magnitude larger than the computation times [140, 141], and having devices that
are capable to both store information and manipulate them, like for the binary
MAC, will significantly reduce this gap, commonly known as the Von Neumann
bottleneck.

To provide context, current spintronic neuromorphic solutions for in-memory
computation rely on controlling the movement of domain walls [142, 143, 144,
145], skyrmions [146, 147], the dynamics of superparamagnetic devices [148] and
other effects [149, 150]. All of these implementations require precise fine-tuning of
the devices’ operational points through additional currents, magnetic fields, non-
miniaturizable state detectors, or a combination of the three. These constraints
diminish the advantages of leveraging physical phenomena at the nanoscale.

In contrast, the solution proposed in this work requires only an alternating
current with a specific frequency to store the weight in the devices. This approach
enables both the storage of binary weights and their use in multiplying input signals,
significantly enhancing the potential for miniaturization in future neuromorphic
devices.
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Figure 4.6: (a) Plot of experimental points of many spin-diode curves obtained linearly
increasing powers from 0.1 µW to 1 µW for the two polarity states. The output voltage
linearly increases with the injected power. The red line represents the frequency with
maximum output difference between the states. (b) Plot of the dc voltages detected for
different powers when the input signal has the frequency depicted by the red line in (a).
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4.6 Writing the core state
In the state of the art, numerous studies have demonstrated how STT can be
effectively used to switch the vortex core [124, 132, 151]. The application of a spin-
polarized alternated current induces the gyrotropic motion of the vortex, which
begins to oscillate with a frequency f corresponding to the one of the applied
signal. The radius r of this oscillation depends on the applied power and the
proximity to the resonance frequency. The tangential velocity of the vortex core
can be expressed as v = 2πfr. As the velocity increases, simulations and theoretical
analysis show that the variation in magnetization due to the core’s motion induces a
local out-of-plane (OOP) magnetization with an orientation opposite to that of the
core [127]. At high velocities, this local field generates a vortex-antivortex pair with
opposite polarities. As a result, the observed antivortex and core compensate each
other, and a new vortex with opposite polarity remains. In essence, the polarity
of the core switches when the tangential velocity exceeds a critical threshold. This
phenomenon is well described in Fig.4.7 reported from [124], which shows a few
timeframes of micromagnetic analyses showing the inversion of polarization of the
core.

Figure 4.7: Simulation of the time evolution of the core switching process, 3D (upper
diagrams) and top view (lower diagrams). Figure reported from [124].

In summary, by applying ac inputs with frequencies near resonance and sufficient
power, the vortex core’s polarity can be reversed. This phenomenon, combined with
the resonance frequency shift, allows for selective manipulation of the devices.

Figure 4.8 (a) illustrates an hypotesis of a phase diagram depicting the switching
mechanism as a function of input frequency and power in the absence of an applied
OOP magnetic field. For input powers below the threshold, the tangential velocity
does not surpass the critical value, and no switching occurs. In the colored region,
the core switches continuously for the entire duration of the ac input. After the
input is turned off, the core’s final state is found randomly in either polarity.

Figure 4.8 (b) presents the hypotesis of a phase diagram when a small OOP
magnetic field of the order of few mT is applied, depending on the initial vortex core
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polarization. The switching regions are slightly shifted, and new regions emerge.
If the vortex is initialized with a down polarization and an input with power and
frequency within the orange region of the diagram is applied, no switching occurs,
and the core retains its down polarization. However, if the initial polarization is up
and the same input is applied, the core switches polarity. Once the core switches to
down, the resonance frequency shifts, meaning that further application of the same
frequency and power will no longer induce switching, leaving the final core state
with down polarization. Thus, after applying inputs from the orange region, the
final core polarization is always down, regardless of the initial state. The opposite
holds true for the blue region, where the final polarization is always up.

Figure 4.8: Hypotesis of phase diagrams describing the switching pheonomenon depending
on the applied frequency and power in absence of magnetic field applied (a) and with a
small OOP magnetic field (b), as in the observed devices. In the latter case, two new
regions appear in which the system always switches from up to down or vice versa.

In conclusion, we successfully developed a method to control the vortex core
polarity using an ac current with specific input power and frequency. This method
is also useful for initializing the devices.

The detection of this phenomenon relies on recognizing the polarization state
through the spin-diode effect described in the previous chapter.

For subsequent analyses, the following measurement routine was employed:

• Initialization of the core polarization;

• Detection of the current polarization state to verify correct initialization;

• Application of an input with specific frequency and power;

• Detection of the final polarization state.

This routine requires reliable initialization of the polarization states. If the blue
and orange regions of the devices are unknown, two approaches can be employed:

• Find a point within the grey region of Fig. 4.8 (b) and initialize the core with
a random polarization. During post-processing, divide the analyses based on
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their initialized polarization state. This method is effective if a large number
of measurements are made per point (e.g., 100 analyses per point, divided by
the initialization of the core).

• Chose a power value above the threshold and apply varying frequencies to
locate one point in the blue region and one in the orange region. This method
requires some trial and error, and could be useful if a quick characterization
is needed.

Figure 4.9 (a) shows an experimentally obtained switching diagram. The blue
crosses represent points where, over 100 analyses, the switching from state down to
up was achieved 100% of the time. The opposite case is represented by the orange
crosses. The dots and crosses represent the bands of Fig 4.8 (b), confirming the
presented hypothesis.

Figure 4.9 (b) presents the probability of switching between the two states as
a function of frequency, with input power held constant at 1mW. The blue curve
represents analyses where the initial polarization was set to down, while the orange
curve corresponds to analyses where the initial polarization was up. Every point of
these curves is the result of 100 iterations, and we can clearly se that there are two
zones where the switching happens deterministically. These are the frequencies of
interest for the writing of the core. In between these curves, the final state observed
is random. Outside the presented frequencies, the switching never happens.

During both the writing and reading of the states, the ac current input is used
near the resonance frequency; the key difference between the two analyses is that
reading is performed using low power signals (on the order of -30 dBm, or 1 µW),
while writing requires high power signals (on the order of 0 dBm, or 1 mW).

Figure 4.9: (a) Plot of the experimentally observed points with specific power and fre-
quency for which the switching has been observed the 100% of times over 100 instances.
The red dashed line represents the threshold power. (b) Plot of the probability of switch-
ing from down to up (blue) and from up to down (orange) when the power of the input
signal is fixed at 1mW.
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4.7 A chain of multiple devices
In the previous sections, we demonstrated how to read and write the core of a vortex
oscillator, establishing that it is possible to successfully implement a memory block
that operates solely on ac frequency currents.

When an input with a frequency outside the resonance range is applied, the
system exhibits two key behaviors: in the reading case, the detected dc voltage is
nearly zero, and in the writing case, the device does not switch. This indicates that
the system is insensitive to inputs with frequencies that deviate from those near
the device’s resonance.

As a consequence, we can cascade multiple devices, each with a different res-
onance frequency, eliminating the need for individual access. This configuration
allows us to read and write to each device independently by selecting the frequency
and power of the input signals. In essence, this describes a multi-bit memory block
that does not require direct access to each bit.

Figure 4.10 (a) and (b) illustrate two possible configurations. The first is the
cascade setup, whose prototype results are presented in the following section. In the
second configuration the devices are stacked vertically, creating a 3D structure. This
design enhances space efficiency by significantly reducing the system’s footprint. In
both configurations, input signals are used to select the target device by tuning to
the corresponding resonance frequency. In the figure different colors in the signals
represent different frequencies, each corresponding to a specific device.

Figure 4.10: (a) Cascade configuration, every oscillator is connected with the other with-
out individual access. (b) Stack configuration, the oscillators are deposited one over the
other. In both cases, the frequency applied matches the resonance frequency of the target
device.

4.7.1 Two-device chain

To demonstrate the system’s ability to control multiple devices using only frequency
signals, we implemented a chain of two devices, carefully selected for their distinct
resonance frequencies. Figure 4.11 (a) presents four experimental spin-diode re-
sponses, obtained by initializing the oscillators in the four possible combinations
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of states. The input signals have variable frequencies, with the power fixed at -30
dBm (1 µW). The resonance frequencies of the devices are approximately 370 MHz
and 460 MHz.

In the green region of the plot the green and blue curves (both characterized
by having the first oscillator in the down state) are nearly identical, as are the
orange and red curves (with the first oscillator in the up state). This indicates
that, regardless of the state of the second oscillator, the dc output voltage in this
frequency range is primarily influenced by the state of the first oscillator. Thus,
the core polarity of the first oscillator can be easily distinguished from a single
measurement with an input frequency of around 370 MHz.

A similar pattern is observed in the blue part of the plot, where the orange and
blue curves (second oscillator down) are closely aligned, as are the red and green
curves (second oscillator up). Although the shift in resonance frequency between
the two states is smaller for the second oscillator, a dc voltage measurement at
an input frequency of 465 MHz can still reliably provide information about the
oscillator’s core state.

Figure 4.11 (b) shows the probability of switching from one state to another
when applying inputs with a power of 0 dBm (1 mW) at various frequencies, where
each point of the curves is the result of 100 trials. As previously mentioned, the state
of each oscillator is detected both before and after each pulse. The legend indicates
that the switching of one device occurs independently of the state of the other
(denoted by an "X"). Of particular interest are the regions of the plot that show
a 100% probability of switching, which demonstrates that we can deterministically
control the core polarization of the device.

We can notice that, especially for the device with the lowest resonance frequency,
the frequency windows of interest in (a) and (b) are slightly shifted. This is due
to the nonlinear frequency shift, an effect studied in detail in the previous chapter,
that introduces a dependence of the resonance frequency on the amplitude of the
oscillations, which is closely related with the power of the ac input. This effect is
not desirable for this specific implementation as, in future integrations, the windows
of frequencies for the reading and writing functionalities must be juxtaposed to fit
as many devices as possible in a chain.

The realization of this prototype required overcoming several challenges:

• Finding devices with the right resonance frequency. While knowing the size
gives an indication of the resonance frequency range, each device has slightly
different values of resonance frequencies, caused by device-to-device varia-
tions, leading to variations in their exact resonance frequency. For this ap-
plication we need devices with resonance frequencies separated by more than
100 MHz, at least during the prototype phase.

• Not all devices successfully switch states. We observed that the ratio of
useful devices increases with a larger device diameter, though the underlying
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Figure 4.11: (a) Spin-diode experimental curve obtained initializing each oscillator in
the four possible states. For each resonance frequency, the curves divide in two groups,
depending on the state of a specific oscillator, and this can be used to detect easily the
state of that oscillator. The green and blue areas represent the frequencies at which the
two devices are susceptible to external inputs. (b) Probabilities of switching a specific
oscillator from an initialized state. The windows of 100% probability show how we can
control (write) deterministically the core polarity states. Each point is the result of 100
measurements.
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cause remains unclear. Further analysis may provide insights to improve the
likelihood of manufacturing devices that consistently switch.

• Among the devices that do switch, not all exhibit a frequency window with
a 100% switching probability.

• The devices had to be wire-bonded, and constructing a circuit with multiple
wire-bonded chiplets (each of them containing a target oscillator) increases
the risk of breakage during the process (several devices have been broken in
the process) and introduces additional noise due to resistance mismatches and
power losses.

The next generation of prototypes should aim for an integrated design to mini-
mize losses, caused by multiple wire bonds, chaining devices with increasing sizes,
characterized by decreasing resonance frequencies.

4.7.2 Three-device chain

We present the results obtained by adding an additional device with a resonance
frequency of approximately 220 MHz to the previously reported chain, thereby
realizing a system with three cascaded devices.

Figure 4.12 (a) shows the spin-diode curves obtained after initializing the system
in all eight possible configurations, as indicated in the legend, with an input power
of -10 dBm (100 µW). As observed before, near the natural resonance frequency
of each device, represented by the yellow, green and blue areas, the curves form
two distinct groups that merge depending on the state of the respective oscillator,
making the detection of the state straightforward at least for the yellow and green
areas. The spin-diode curves associated with the blue area exhibit different trends
for the two core polarities, however the resonance frequencies are very close, making
the reading of the polarity harder with a one-shot voltage measurement. This device
is the same analyzed in Fig. 4.11 (a) resonating in the blue window of frequencies,
but the higher input power applied in this case causes the resonance frequencies
of the two polarity states to overlap. The enhanced input power is necessary due
to the cascading of three devices, which increases both the input resistance and
the number of bonded wires, leading to losses caused by reflections resulting from
impedance mismatches with the current source. These reflections are visible as
small oscillations in the curves.

Figure 4.12 (b) illustrates the probability of switching the core polarity of each
device following the application of an input signal with a power of 9 dBm (about
8 mW). In every case, a frequency window is observed where the probability of
switching is high, indicating that we can write the polarity of each device’s core
individually and deterministically.
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In summary, these early prototypes demonstrate the potential of vortex MTJ
oscillators to be effectively controlled using only an ac frequency input.

Figure 4.12: (a) Spin-diode curve obtained initializing each oscillator in the eight possible
states, as in 4.11 (a). The yellow, green and blue areas represent the frequencies at which
the three devices are susceptible to external inputs for the specific input power. (b)
Probabilities of switching a specific oscillator from an initialized state, as in 4.11 (b). The
windows of 100% probability show how we can control (write) deterministically the core
polarity states. Each point is the result of 100 measurements.

4.8 Conclusion
We present a novel experimental observation of the intrinsic effect of an OOP
magnetic field in a MTJ stack, designed for use in a memory device and as a
neuromorphic node for multiplying binary weights and analog inputs.

Our experiments demonstrate how the vortex core polarization within an MTJ
can be used to store binary weights. We introduce a method for reading and writing
the vortex core using low-power and high-power ac current inputs, respectively, by
tuning the input frequency, eliminating the need for external antennas or applied
magnetic fields. This method enables multiplication between a binary weight and
a continuous value, which is encoded in the power input to the system.

We successfully demonstrate this with prototypes of two- and three-device chains,
achieving complete control without direct access to individual elements.

Future prototypes should prioritize integrating these devices into a single chip,
reducing the need for wire bonds and addressing impedance mismatch challenges.
Further refinement in controlling each device’s switching dynamics will optimize
performance and scalability of this memory architecture for practical applications.
The incorporation of these devices into AI accelerators and systems demanding
high-performance, and low-power computation will mark a significant advancement
in the fields of spintronics and neuromorphic computing.
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Conclusion

This work studied the use of spintronic oscillators as accelerators in computer vision,
for efficiently finding high-quality solutions to combinatorial optimization problems,
and for the implementation of in-memory computing devices.

We observed that using parabolic (or cosinusoidal) phenomena, while less pre-
cise than conventional implementations, proves highly effective in artificial intelli-
gence applications, where the network compensate for any introduced imprecision.
Extending these analyses to other devices in the future would be valuable; for exam-
ple, exploring the quadratic relationship between drain current and gate voltage in
MOSFET transistors could reveal a very size- and power-efficient implementation.

Our approach successfully tackled Max-Cut problems with up to 20 million
nodes using an architecture optimized for large, sparse problems and oscillator sim-
ulations based on the Kuramoto model. This method also achieved high accuracy
(>99.5%) compared to a reference solver. Given this optimization, it would be
interesting to apply the system to practical problems requiring a solver capable of
computing extremely large graphs. From a technical perspective, it would be inter-
esting to test this architecture in a multi-GPU environment, and with an optimized
C++ code on a system with terabytes of RAM.

Finally, we experimentally demonstrated that vortex MTJs can be used to im-
plement an effective multi-bit memory device controllable by frequency inputs,
enabling multiplication of an analog input and a binary weight. We developed an
initial prototype with three chained devices, achieving control without individual
device access. Future work could test the scalability of this architecture to de-
termine the maximum number of devices that can be controlled simultaneously,
necessitating the design of an integrated prototype.

In conclusion, this thesis has explored the potential of spintronic oscillators for
diverse applications, highlighting the advantages of analog computing for achieving
compact, low-power, and high-speed implementations.
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