
Mathematics, Physics
and Natural Sciences School

PhD course in
Physics and Astronomy

Design and Training of
Quantum Machine Learning Models

for Noise Sensing and
Phases of Matter Classification

Supervisors:

Prof. Leonardo Banchi
Prof. Filippo Caruso

PhD candidate:

Paolo Braccia

Academic year: 2022/2023





Acknowledgements

Ringraziamenti

Questi tre anni avrebbero avuto un sapore diverso senza le persone che mi
hanno accompagnato in questo viaggio. È difficile mettere per iscritto la grati-
tudine senza scadere in una cringiosa banalità, ma farò del mio meglio (spoiler:
fallirò).

In primis, ci tengo a ringraziare i miei relatori, per essere riusciti a guidarmi
attraverso questo percorso nonostante la pandemia e le conseguenti compli-
cazioni. Insieme a loro, tutte le persone che ho potuto conoscere grazie a
questo lavoro e che hanno contribuito a renderlo leggero.
Alla mia famiglia, oltre che grazie, voglio dire “continuiamo così” perché questi
anni, con le loro difficoltà, ci hanno reso più forti ed uniti.
I miei bromi, chi sarei senza di loro? Grazie per la pazza compagnia e per
essere sempre pronti a condividere gioie e, soprattutto, dolori. No sul serio,
senza di voi sarebbe un bel casino.
Ringrazio la mia squadra, e in particolare i gorgoni, fonte inesauribile di risate
e leggerezza.
Un grazie al mitonniere, che sebbene dall’altra parte del mondo è sempre stata
presente.
Grazie Pranzo! Così, per metterti in difficoltà.
Infine, grazie alla persona che più di tutte associo a questo dottorato, non
tanto perché dea quantistica (stacce) quanto perché portatrice di psicopatie
perfettamente compatibile alle mie. Non basterebbe un praticissimo caschetto
porta acqua per sdebitarmi del tuo supporto.
In coda a tutti questi ringraziamenti, un’unica fondamentale offesa: nespole,
fate schifo!





Contents

Overview 1

1 Machine Learning 7
1.1 Artificial intelligence . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . 9
1.1.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . 10

1.2 Ingredients of ML . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Training a ML model . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Generative Adversarial Learning . . . . . . . . . . . . . . . . . . 18

2 Quantum Computing 23
2.1 Ideal Quantum Computing Basic Elements . . . . . . . . . . . . 23

2.1.1 Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Computational Register . . . . . . . . . . . . . . . . . . 25
2.1.3 Gates and Wires . . . . . . . . . . . . . . . . . . . . . . 26
2.1.4 Measurement . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 How to deal with Noise . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Density matrix formalism . . . . . . . . . . . . . . . . . 29
2.2.2 Quantum channels . . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Generalized Measurements . . . . . . . . . . . . . . . . . 35

2.3 Compendium of useful notions . . . . . . . . . . . . . . . . . . . 35
2.3.1 The Bloch Sphere . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Common gates . . . . . . . . . . . . . . . . . . . . . . . 37

3 Quantum Machine Learning 39
3.1 Going Quantum . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Quantum Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Quantum Learning Models . . . . . . . . . . . . . . . . . . . . . 42
3.4 Training a variational quantum circuit . . . . . . . . . . . . . . 46



4 Quantum Generative Adversarial Learning of Noisy Informa-
tion 51
4.1 Quantum adversarial game . . . . . . . . . . . . . . . . . . . . . 51
4.2 Training with parametric quantum circuits . . . . . . . . . . . . 57

4.2.1 Circuits Ansätze . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Emergence of limit cycles . . . . . . . . . . . . . . . . . . 59
4.2.3 Training with optimism . . . . . . . . . . . . . . . . . . 60

4.3 Convex optimization . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Quantum Generative Adversarial Learning of Noisy Maps 65
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Definition of SuperQGANs for quantum maps . . . . . . . . . 66
5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Random Unitary Channels . . . . . . . . . . . . . . . . . 70
5.3.2 Pauli channels: spatial correlations . . . . . . . . . . . . 72
5.3.3 Pauli channels: temporal correlations . . . . . . . . . . . 77
5.3.4 Quantum metrology . . . . . . . . . . . . . . . . . . . . 78

6 Inductive Biases in QML: the Power of Equivariance 83
6.1 The role of inductive biases . . . . . . . . . . . . . . . . . . . . 83
6.2 Geometric Quantum Machine learning . . . . . . . . . . . . . . 85

6.2.1 Basic concepts from representation theory . . . . . . . . 85
6.2.2 Quantum Model for Classification Tasks . . . . . . . . . 88
6.2.3 Equivariant QNNs . . . . . . . . . . . . . . . . . . . . . 89

6.3 How to build an Equivariant Quantum Neural Network . . . . . 91
6.3.1 Thinking in terms of superoperators . . . . . . . . . . . . 94
6.3.2 Nullspace and twirling . . . . . . . . . . . . . . . . . . . 95
6.3.3 Parametrizing the layers of an EQNN . . . . . . . . . . . 100

6.4 A case study: EQCNN for quantum phase classification . . . . . 103
6.4.1 Bond-Alternating XXX Model . . . . . . . . . . . . . . . 104
6.4.2 SU(2)-equivariant QCNN . . . . . . . . . . . . . . . . . . 107
6.4.3 Preliminary Numerics . . . . . . . . . . . . . . . . . . . 112

Conclusions 121

A Basics of game theory 125

B Proof of Theorem 2 127

C Method 129
C.1 SuperQGAN setup . . . . . . . . . . . . . . . . . . . . . . . . . 129

C.1.1 Spatial correlations . . . . . . . . . . . . . . . . . . . . . 129
C.1.2 Temporal correlations . . . . . . . . . . . . . . . . . . . 130



D A deeper representation-theoretic look at EQNNs 131
D.1 Equivariant layers as Fourier space actions . . . . . . . . . . . . 132
D.2 Intermediate representations as hyperparameters . . . . . . . . . 133
D.3 Free parameters in EQNNs . . . . . . . . . . . . . . . . . . . . . 134

D.3.1 Unitary layers . . . . . . . . . . . . . . . . . . . . . . . . 134
D.3.2 Equivariant channels . . . . . . . . . . . . . . . . . . . . 135

E Choi operator method 137

Bibliography 139





Overview

Since ancient times, humankind has inherently sought to simplify its life
by automating disparate tasks. Ever since, advances in this field have cor-
responded to epochal progressions of our species, think of the invention of
the wheel for transportation, all the way to the industrial revolution. While
these efforts were initially expended toward automating mechanical tasks, with
the advent of computers (DATA) and the onset of the information age, much
energy has begun to be invested in creating increasingly high-performance
computational models to automate the way we process information. Then
with the advent of the Internet, every day we produce an enormous amount
of data that we have discovered can be used to improve (but alas, also make
worse in some cases) our daily lives. In recent years, one area of computa-
tional science has taken the limelight, so much so that it is now one of the
first applications that come to mind when we talk about technology, although
it is often misunderstood and associated with sci-fi scenarios. This area is the
famous Machine Learning, also often known as Artificial Intelligence. In fact,
thanks to technological advancement and the creation of increasingly high-
performance computers, results that previously remained only theoretical in
the field of machine learning are now employable on a large scale to make the
most of the immense amount of data we were talking about earlier. At the
same time, these advances present us with an even greater challenge, the im-
plementation of these solutions in an efficient and high-performance manner.
Moore’s law inevitably brings us to the point where the processors we will need
in the future will be of such a size that they must be described by the laws
that govern the microscopic world, quantum mechanics. The inevitability of
this fact is not a condemnation, however, so much as a gateway to a new era
of computation. We are talking about quantum computation. This computa-
tion paradigm, which unfortunately is still far from being fully implemented
on an industrial scale, promises to revolutionize the way we process informa-
tion by appealing to the laws of quantum mechanics. These will allow us to
build algorithms and computational procedures that can beat their classical
counterparts dramatically, being able to go so far as to require exponentially
fewer resources. As much as hardware technology is not yet up to speed with
the theoretical framework that quantum computing has established since the
1980s, the first experimental quantum processors are now beginning to become
available, albeit they are still small, unreliable, and noisy. These detrimental
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properties led the quantum computing community to refer to them as NISQ
processors, abbreviation for Noisy Intermediate-Scale Quantum. Interestingly,
learning algorithms seem to be best suited for this early era of quantum com-
puting. In fact, such computational processes can and have to be supported by
classical processors, resulting in a hybrid computational scheme that is proving
more robust to noise and promises to be one of the first commercial implemen-
tations of the quantum world. This has meant that in the past 5 years, a
new branch of quantum computational physics, quantum machine learning,
has rapidly taken hold and led to the generalization to the quantum world of
the most popular machine learning models that are characterizing this era. A
great deal of effort is currently being expended to "quantize" classical learning
techniques and to propose new learning algorithms that take full advantage
of the quantum properties of the processors on which they will run. Possibly
over-hyped by misconceptions about quantum “magic", this new rising field
of Quantum Machine Learning (QML) is nonetheless a revolutionary one that
combines the power of quantum computers with the insights of machine learn-
ing. By leveraging the unique properties of quantum systems, this approach
has the potential to solve complex problems and make predictions with un-
precedented accuracy. With its potential to transform industries and drive
scientific discovery, quantum machine learning is set to be a major driving
force in the 21st century.

The work presented below, the result of the research carried out during
these three years of doctoral studies, is set precisely in the context of quan-
tum machine learning and addresses the problem of finding good design and
training strategies for quantum learning models. When we talk about quan-
tum models we refer, in a somewhat pop sense, to a quantum generalization
of the famous neural networks that revolutionized classical machine learning
as soon as hardware computational capabilities were able to handle their large
resource consumption. In the quantum world when we talk about Quantum
Neural Networks, we are referring to the possibility of parameterizing and
training the physical evolution of a quantum system in which we have encoded
the information we want to process, by literally modifying its interactions with
a control environment. Therefore, the problem of choosing the architecture,
i.e., how to go about manipulating the evolution of the quantum system under
consideration, and finding effective strategies for finding the ideal form of this
evolution is of paramount importance. Just as in the classical world it has
been realized that neural networks, although they can contain the solution to
any problem if deep enough, are in general impossible to train successfully
unless their structure is appropriately tailored to the problem under consider-
ation. Examples of this are the success of convolutional networks in dealing
with classification problems, recurrent networks for generating temporal pre-
dictions, etc.
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The first part of this research addresses this problem on the particular
learning framework that is generative adversarial learning. This paradigm,
based on Nash game theory, has achieved tremendous success in recent years
in classical machine learning and has therefore naturally been considered for
generalization to the quantum world. Nevertheless, in trying to train these
models, problems can be encountered when information is encoded in noisy
(i.e., mixed) states. The first result we achieved was to find a training strategy
for QGANs that makes it possible to achieve the optimal equilibrium configu-
ration even in the presence of noise.
This result then led us to design an architecture based on adversarial gen-
erative learning that, instead of learning the information encoded within an
unknown quantum state, is able to reproduce a quantum process. Specifically,
through the SuperQGANs we have introduced, it is possible to learn an ap-
proximation of the very noise that plagues a quantum processor and disrupts
its operation. Arguably, that of characterizing noise is one of the most pressing
and important problems of the NISQ era in which we live, because knowing
the characteristics of it can allow us to find optimal strategies to make the
best use of its properties.
In the last part of this research, we instead approached the problem of NISQ
design from a more general (and foundational) point of view. Indeed, it is
a recent achievement of classical machine learning to be able to build neural
network architectures that possess cognitive biases. As mentioned, neural net-
works can guarantee that they contain within them the solution to the problem
they face, but in general they have no idea about the specific properties of the
latter. As a result, relying on networks that are too deep and then searching
for the solution amidst a huge space of incorrect solutions can lead to the fail-
ure of the learning process.
In this sense, cognitive biases become necessary. By this term we refer to the
prior intuition that, as humans, we have with respect to a problem. Often
many features of the data we want to analyze are irrelevant. For example, a
child who sees a picture of a kitten is immediately able to tell that the mirrored
version of the picture contains the same cat. He does not need to "reprocess"
the picture as new. A generic learning model is unable to make this associ-
ation a priori, forcing us to train it on mirrored, translated, etc. variants of
the same image. Recently, however, strategies have been discovered to embed
these cognitive biases directly into the architecture of neural networks, without
having to impose them in the training phase. The last part of this research has
been devoted to the implementation of cognitive biases in quantum learning
models, leading to the formulation of Geometric QML, a framework contain-
ing the recipes needed to cook QNNs capable of ignoring the symmetries of
the problem they address, thus going for the solution in a reduced and more
"benign" space. We believe that this can be a major step forward to arrive at
building quantum learning models that are as easily implementable as possible
on NISQ processors.
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This PhD thesis is organized as follows.
In Chapter 1 we introduce some basic concepts of the machine learning field,
making the reader familiar with the basing ingredients that any learning recipe
is cooked up with. Particularly, we will discuss the three main paradigms of
machine learning: supervised, unsupervised and reinforcement learning. Then
we will comment about the role of data and move on to talk about Neural
Networks, the main learning model that is used in any learning task. We will
then show how to set up their training procedure. Most importantly, the last
section of this chapter will introduce the generative adversarial learning frame-
work that will be extensively used in later chapters.
The next two Chapters, give the reader a crash course on quantum computing
first and then set the stage for quantum machine learning routines. The main
focus of Chapter 2 is to introduce all the quantum notions and notations that
will constantly be used in the rest of the manuscript. We will start by stat-
ing the postulates quantum mechanics rests on, using the circuital description
of a prototypical quantum computation to make the reader familiar with it.
Then we will also discuss what happens when reality, i.e. noise, is is taken
into account. In fact, in real world quantum computation the ideal descrip-
tion of quantum circuits as being isolated quantum systems breaks, and one
needs to adopt a more general formalism that takes unwanted interaction with
an unpredictable environment into account. Chapter 3 builds up the quan-
tum machine learning framework by drawing a parallelism with the machine
learning introduction presented in Chapter 1. The main takeaways from this
chapter are the definition of quantum learning models as parameterized quan-
tum circuits, also called quantum neural networks, namely sequences of logical
quantum operations that can be tuned by changing some parameters, and how
we can gather information on how to update their values through the compu-
tation of quantum gradients.
This concludes the introductory part of this thesis, and from Chapter 4 the
original part of it begins.

Chapter 4 introduces quantum generative adversarial learning, a promising
strategy to use quantum devices for quantum estimation or generative tasks.
After reviewing its ability to properly learn data stored in non-noisy quan-
tum states, already known to the literature, the convergence behaviours of its
training process when those states are noisy instead, which is crucial for its
practical implementation on quantum processors, is investigated. We show
how different training problems may occur during the optimization process,
such as the emergence of a phenomenon known as limit cycles. The latter may
remarkably extend the convergence time in the scenario of mixed quantum
states playing a crucial role in the already available noisy intermediate scale
quantum devices. We propose new strategies to achieve a faster convergence
in any operating regime and test their effectiveness with a numerical analysis.
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Then, in Chapter 5 we leverage this improved convergence ability of quan-
tum generative adversarial learning to design an architecture that is able to
reconstruct and characterize the noise affecting a real quantum processor. Su-
per quantum generative adversarial networks (SuperQGANs), as we decided
to call this newly introduced architecture, generalize the previously studied
learning paradigm from quantum states to quantum maps, or superoperators.
SuperQGANs are not only able to reproduce quantum noise in the form of
a particular class of quantum maps, but also to characterize the correlations,
be those temporal or spatial, that emerge when the processor is used multi-
ple times in series or parallel. After describing their architecture, we end the
chapter by testing their performance by numerical experiments, and we also
show how to employ them for quantum metrology applications.
Lastly, in Chapter 6 we introduce the geometric quantum machine learning
framework. After motivating the need for inductive biases in quantum learning
models, we proceed to review some basic notions of group and representation
theory that are needed in order to derive the building blocks of informed quan-
tum neural networks, i.e. equivariant quantum maps. The concept and uses
of equivariance will be discussed in detail, and then methods for building and
parameterizing such quantum operations will be shown. We will conclude the
chapter by showing how equivariant quantum learning models perform better
than problem agnostic ones on phases of matter classification tasks.
Conclusions and outlooks are drawn in the final Chapter.
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Chapter 1

Machine Learning

This chapter aims at making the reader familiar with the basic concepts
of machine learning. Particularly, after a general introduction on the topic
of artificial intelligence (Sec. 1.1), the three main learning paradigms are dis-
cussed and the universal recipe for learning tasks is laid down (Secs. 1.2,1.3).
Lastly, in Sec. 1.4 we introduce in more detail a particular learning framework:
generative adversarial networks, which will lie at the core of the first part of
this work.
The main references for this chapter are [1–3].

1.1 Artificial intelligence
Over the last decade terms like Artificial Intelligence (AI) and Machine

Learning (ML) have become more and more popular, to the point that nowa-
days they are the first ones to come to our minds when we think about tech-
nology. But what do they actually mean?
Under the AI framework falls any craft, be it hardware or software, that tries
to mimic the innate human ability to learn from their environment and use
the acquired knowledge to make predictions and benefits. Thus, achieving a
general artificial intelligence, as in the Asimov fictional world, is the final goal
of AI research. Now that the goal is clear, how could a machine ever behave as
we do? A focal point of our way of learning is that we develop our knowledge
by acquiring data from the world and inferring, with the help of teachers, the
correlation laws between them. In the very same way, Machine Learning (ML)
is the use of logical algorithms, guided by the statistical theory of computa-
tion, to make a computer learn from data, labelled and raw, without being
explicitly programmed.
An interesting fact about ML is that, as recent as it may appear due to the
pop interest that it has attracted, the term machine learning debuted back
in the late ’50s, and most of the theoretical foundations of the field were laid
during the ’70s and ’80s. The reason why ML has risen to prominence is the
advance in hardware technology, particularly the capability of nowadays com-

7



1 Machine Learning

puters to store and process the huge amounts of data that are needed to carry
on learning tasks. We daily interact with machine learning and AI, even if we
do not notice this interaction most of the times. The most frequent of these
interactions is called profiling. Basically, every time we search for something
on the web, or even pause to look at an insertion on our favourite social net-
work, this action is saved by an algorithm and the thing we were searching for
is labeled as something we may like. Then this information is used by an AI to
present us with fine-tuned advertisements. Thus, the more we browse the more
personalized our browsing experience becomes. Another common example are
self-driving cars, but AI applications are nearly infinite, from the discovery of
new drugs to cancer detection.
The standard ML introduction would now go on and define in detail the various
approaches one can take to get a computer to learn from data, making the
reader familiar with the three main classes of machine learning: supervised,
unsupervised and reinforcement learning. However, since this is not the scope
of this thesis, we will just give a bird’s-eye view of these frameworks. Before
doing this, let us stress that each of these frameworks have their benefits and
drawbacks, and that there is no god-like algorithm that is able to accomplish
learning for every possible task. This is the content of the so called No Free
Lunch Theorem [4].

1.1.1 Supervised Learning
In supervised learning tasks, a machine has to infer a function given a set

of known input-output pairs. One usually refers to inputs as feature vectors,
while outputs are commonly named labels. A nice recent result of this kind of
ML approach is Google Lens [5], an AI driven tool that is able to recognize, i.e.
label, the semantic content of a picture, informing the user about what kind of
tree, bug, etc. they are seeing. In general, the function we want to learn may
describe any kind of relation present in the data, we can even use it to make
future predictions. Regardless of this, what defines a supervised learning task
is the human supervision to the machine, namely the preparation of a labeled
training dataset that the computer can exploit to understand the relation that
we want it to then find in new, unseen, data. We can formally state a super-
vised learning problem as follows: given a dataset D = {(xi, yi)}Ni=1 of labeled
examples x ∈ X belonging to some data space X with Y being the space of
labels, learn the relation f : X → Y , so that upon feeding it a new data point
x̃ /∈ D it predicts the correct output ỹ = f(x̃).

Even though this seems a very simple, maybe even childish, learning frame-
work, things can go wrong in lots of ways. Above all, the possibility of over-
fitting and thus not being able to generalize well. Overfitting means that our
model gets very biased towards the set of examples we used during training,
eventually learning these by heart rather than understanding the underlying
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1.1 Artificial intelligence

fundamental rules. This causes the model, when presented with previously
unseen data that we want to analyze to make predictions, to do poorly, like a
bad scholar being caught unprepared. Being able to avoid this behaviour is the
ultimate quality we look for in our learner, and this property is referred to as
generalization. When training, we aim at achieving maximum generalization
power, so that the model gets to learn the true relationship underlying the
data at hand. Training for too long, or using over-complex models may lead
to overtraining and ultimately to overfitting. Another pitfall to be avoided in
supervised learning is inducing biases during learning. Supervision is surely a
strong aid to the learning process, but since the model can only rely on what
we choose to show him, it is paramount to construct a training dataset that is
not skewed and biased. Often, finding enough training data, and preprocessing
it into a good training dataset turns out to be the true challenge of supervised
learning.

Finally let us recall the most common applications for supervised learning:
• Classification. classification is the process of predicting a categorical

label for a given input data sample. Some common examples of classi-
fication tasks include: email spam detection, i.e. given a list of emails,
predict whether each email is spam or not spam; sentiment analysis,
namely predicting whether a given a piece of text expresses a positive,
negative, or neutral sentiment; fraud detection: given a set of financial
transactions, predict which transactions are fraudulent and which are
legitimate. Image classification, i.e. predicting what object or objects
are present in an image. The models that perform classification are,
unsurprisingly, called classifiers.

• Regression. Regression is a type of machine learning task that involves
predicting a continuous numerical value for a given input data sample.
Some examples of regression tasks include: predicting the price of a house
based on its characteristics (e.g., size, location, age, etc.); predicting the
demand for a product based on various factors (e.g., price, marketing
efforts, seasonality, etc.); predicting the effectiveness of a medical treat-
ment based on patient characteristics (e.g., age, gender, medical history,
etc.); predicting the likelihood of a customer churning (leaving a com-
pany) based on their behavior and other factors. In a regression task, the
input data is usually represented as a set of feature vectors, and the goal
is to learn a function that maps these feature vectors to a continuous
numerical output value. This function is called a regressor.

1.1.2 Unsupervised Learning
As the name suggests, unsupervised learning does without the human help.

Only unlabeled data are available in training. Nonetheless, one does not al-
ways need supervision to learn patterns in data, afterall it is a no-brainer to
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1 Machine Learning

group marbles according to their colours, even if nobody told us the colours’
names, or even what a colour is. An unsupervised learning task can be for-
mally stated as: given a space X where to draw samples from, and given a
dataset D = {xi}Ni=1 of points drawn according to some, unknown, probability
distribution p(x), learn the latter. A nice property of learning without super-
vision, is that the model gets to have less bias and may even think outside
the box, reaching a better solution than a supervisor may think of. Therefore,
unsupervised learning is also referred to as knowledge discovery, and it is of-
ten used with profit to carry on exploratory data analysis. However, one of
the main challenges of unsupervised learning is evaluating the quality of the
model’s output. Since the model is not provided with labeled data, it can be
difficult to determine whether the discovered patterns and relationships are
meaningful or simply artifacts of the data. As a result, unsupervised learning
often requires domain expertise and human interpretation to be useful. Some
examples of tasks that are tackled with this learning approach are the following

• Clustering. Clustering means grouping together subsets of data that
share the same properties, as in the coloured marbles example. Now,
not having access to any external help, there are no restrictions on the
number of clusters we can look for, and while this freedom may sound
nice, this actually means that finding the correct complexity of the model
becomes an empirical trial and error process.

• Dimensionality Reduction. Sometimes the data that we want to use
to infer some property might contain redundant features that would ul-
timately just confuse the learner. If the human setting up the learning
process cannot spot them on their own, or if the problem at hand is
very complex, say we want to predict the stock price of some product
from personal data collected from social networks, we can resort to di-
mensionality reduction. The idea is to compress the feature space, the
space where datapoints live, to have a smaller dimension in such a way
that only the most important features are represented whereas irrelevant
ones are suppressed. Principal Component Analysis (PCA) is the go-to
routine for this kind of tasks.

1.1.3 Reinforcement Learning
Lastly, there is the reinforcement learning framework, arguably the one

that is closest to how animals learn. In this approach, no examples or labels
are given. Rather, the learner is let free to interact with an environment,
and depending on the actions they choose to take they get either rewarded or
punished. Positive rewards reinforce good strategies, while negative ones make
the learner refrain from those that are detrimental. This is just what we do to
train our pets, they learn how to well behave by associating it to treats reward.
One of the most peculiar characteristics of Reinforcement Learning is that it
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1.2 Ingredients of ML

does not make use of static datasets, but rather a dynamic environment where
to exploit trial and error strategies, and that is why it is the best approach to
tackle automation in fields like automotive or gaming. Gaming is also the best
framework to explain a typical reinforcement learning routine. Basically, the
learner plays the game over and over again, collecting rewards that depend on
the strategy they use. At every iteration, they update their policy to maximize
the expected reward at the end of the game, until they eventually master it.

One of the main challenges of reinforcement learning is balancing explo-
ration (trying out new actions to see what happens) with exploitation (using
the actions that have proven most effective so far). If the agent focuses too
much on exploration, it may take a long time to learn a good policy. If it
focuses too much on exploitation, it may get stuck in a suboptimal policy.
Finding the right balance is important for efficient reinforcement learning.

Some examples reinforcement learning tasks are

• Robotics. Given a robot and a reward signal based on its performance,
learn a policy that allows the robot to perform a task effectively.

• Resource allocation. Given a system with limited resources and basing
the reward given to the agent on the efficiency of the system, have the
learner learn a policy that maximizes the reward.

• Games. Given a set of possible moves in the game and a reward function
based on those and on the game’s outcome, learn a policy that maximizes
the reward and ultimately makes you win as much as possible.

Reinforcement learning algorithms include Q-learning [6], SARSA [7], and
deep Q-networks (DQN) [8]. The choice of algorithm will depend on the na-
ture of the environment and the specific task at hand.

1.2 Ingredients of ML
When dealing with a machine learning task, be it supervised or unsuper-

vised, it eventually all boils down to cook with three ingredients: the data
available, the learning models we can choose from, and the training objective
function, often called loss function. Reinforcement learning is a different kind
of recipe, and we will refrain to go into its details here.

1.2.1 Data
With the explosion of the ML field, thanks to computer finally being able

to handle loads of data in reasonable time, gathering and controlling data has
become a task of paramount importance, so much that people have started to
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refer to it as the new oil.1
Just collecting, and eventually labeling, the data is not enough though. There
are a few assumptions that are needed in order to fall into the mathematical
framework of a working ML algorithm. First of all, the data must be i.i.d.,
that is independently and identically drawn from the distribution they come
from. This is a somewhat unrealistic assumption when it comes to real-world
data, but is nonetheless needed to make use of the underlying statistical the-
ory supporting ML convergence guarantees. Practically, this means that we
need to put all the effort possible into making sure that the dataset we are
going to work with is as little biased as possible. Then, raw data sometimes
is not enough. Most learning algorithms are picky, and they require data pre-
processing before they actually try to learn. With preprocessing one refers to
all the actions that come after the collection of the data and before beginning
the training of the model. A few examples of this are the rescaling of data,
for example to have all data-points bounded in norm, or to change mean and
variance of their distribution and feature selection, through which some com-
ponents of the feature vectors are discarded or merged together [9]

1.2.2 Model
Generally speaking, in ML we call model the, usually parametrized, family

of learners that we want to train to solve our task. Thinking about the super-
vised learning scenario, a model would be a parametrized function fθ : X → Y
for which we want to find the optimal values of parameters θ∗ that best re-
produces the relation between feature space X and label space Y , as hiddenly
described by the dataset D. Notice that we used a single θ symbol to identify
all of the model’s parameters, but this does not mean that they have to be
continuous or smooth. Most often than not, hyperparameters are thrown in
the mix. These are usually discrete, or even non-numerical parameters that
give additional freedom to the model’s family. As a dummy example, consider
a linear regression problem where we want to fit y = fθ(x) = θ0 + θ1x to some
given data D = {(x, y)}. Here intercept θ0 and slope θ1 are the smooth pa-
rameters of the model, whereas there are no hyperparameters to choose from.
When introducing more complex models in the next section we will show an
example of hyperparameters too. Let us use this example to briefly distin-
guish between deterministic and probabilistic models. The former, akin to the
regression example, are families of functions that map the input data space X
to the output space Y , which can be either a numerical field, as for predictive
models for, say, market prices, or a discrete space of labels for classification
tasks. A probabilistic model instead outputs a probability, be it full or condi-
tional. Supervised probabilistic models would then parametrize functions such
as fθ : X×Y → [0, 1] s.t. fθ(x, y) = pθ(x|y), namely the probability of, say, as-

1This expression was coined in 2006 by the British mathematician Clive Humby.
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signing the label y upon being given the input x, or fθ(x, y) = pθ(x, y) the full
probability of the couple (x, y). An unsupervised model would simply output
the distribution p(x). Notice that deterministic models may have an under-
lying probabilistic interpretation. An example of this, that will be treated
thoroughly in section 1.4, are generative models that are trained to output
new samples from some underlying data distribution. The model is determin-
istic, because same inputs will yield identical outputs, but their aim is rather
to learn a difficult distribution. In turn, probabilistic models can turn into
deterministic ones once we decide a routine for drawing from the distribution
they describe. For example, most classifiers work by outputting the probability
distribution of the possible classes yi associated to an input x, namely p(yi|x)
and then picking the most probable as prediction y = argmax

yi

p(yi|x).

Let us now briefly talk about the most known, and hyped, ML models:
Neural Networks (NN). We will not delve any deep into the topic, and refer
the reader to the vast literature about them, but the analogy with them will
come in handy when introducing quantum machine learning models in section
3.3.

Neural Networks

Modeled after the human neural structure and functioning, Neural Net-
works (NNs) are computational models that make of their flexible and modu-
lar architecture their strength. Theorized roughly 80 years ago [10], they have
achieved global popularity over the last decade thanks to computing hardware
finally reaching up to their need of resources. Indeed, in an exponential grow-
ing fashion [11], deeper and heavier NNs have become practical, and this led
to the rise of Deep Learning. The latter is just ML where deep neural networks
are used as learning models [1, 2].

The ancestor, and building block, of any NN is the perceptron [12], which
mimics the behaviour of human neuron by reproducing their integrate and
fire mechanism. Basically, input signals are collected from the terminations
that are afferent to the neuron, weighted and summed up together, this is the
integration step, and the resulting signal determines the activation, or firing, of
the neuron. Mathematically, if x is the collection of input signals, the output
ϕ(x) of a perceptron reads

ϕ(x) = σ(w · x + b) , (1.1)

where w is the weights vector, b an eventual set of biases, and σ is the so called
activation function. In real neurons this is basically a step function, being ac-
tive when its input is above a certain threshold, and staying off otherwise. In
artificial perceptrons, many different activation functions have been proposed
and used throughout the vast ML community, but we will refrain from listing
even only a fraction of them here and address the interested reader to any of
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Figure 1.1: Biological intuition behind Neural Networks. Neural networks
(d) are a computational model that mimics the functioning of our brain
(c). Their constituents are the perceptrons (b), a mathematical trans-
position of the behaviour of the neuron cells (a). A single perceptron is
able to perform linear algebra on its input signals x → w · x + b and
then apply a non-linear activation function σ to the result. The output
signal of Eq. (1.1) is then fed into the next perceptrons, giving rise to a
neural network. With enough intermediate (hidden) layers, NNs can in
principle encode any function imaginable.
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these great textbooks [2, 13, 14]. The important point about activation func-
tions is that they have to be non-linear. Indeed, if this is true, stacking enough
perceptrons onto each other grants us access to the universal approximation
theorem [15]. This is exactly what neural networks were born for. Even if we
do not reach the level of universal expressibility, combining many perceptrons
in one network enables us to explore a huge space of input-output relations
just by tuning the perceptrons weights and biases. Not to mention, the way
we arrange perceptrons together in a NN determines its properties more than
the sheer number of layers the network has. There are several different types
of neural network architectures that are commonly used, each with its own
characteristics and applications. One type is the feed-forward neural network,
which consists of layers of interconnected "neurons" that process and trans-
mit information. The input layer receives data, and each subsequent layer
processes and transforms the data, until it reaches the output layer, which
produces the final result. This is the standard architecture that we have con-
sidered in the previous description and that is depicted in Fig. 1.1. Another
type is the convolutional neural network (CNN), which is commonly used for
image and video recognition tasks. It includes features such as convolutional
layers, which apply filters to the input data to identify patterns, and pooling
layers, which down-sample the data to reduce the number of parameters and
computational requirements. Recurrent neural networks (RNNs) are another
type of neural network that are well-suited for tasks involving sequential data,
such as natural language processing. RNNs include "memory" in the form
of hidden states that can retain information from previous time steps, allow-
ing them to process data with temporal dependencies. There are many other
types of neural network architectures, such as autoencoders, and long short-
term memory (LSTM) networks, each with their own unique characteristics
and applications. All of these architectures are analyzed in depth in [2].

1.2.3 Loss

Lastly, the third main ingredient of any ML routine is the loss function.
Known also as objective function, error, score, etc., a loss function is a measure
of how good the model family we chose for the task at hand is performing.
When dealing with models depending on continuous parameters θ, we always
look for a continuous and differentiable function of those. This way, we can
eventually rely on gradient based methods to move across the model space in
order to find the best one. As a simple example of that, consider a classification
task where we want to associate new data instances x̃ with the class they
belong to, choosing from C different possibilities {yi}Ci=1. given a training
dataset D = {(xi, yi)}Ni=1, we can define a model fθ and evaluate how bad it is
doing its job via the mean squared euclidean distance between its predictions
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and the correct labels

L(fθ,D) = 1
N

∑
D

(fθ(xi)− yi)2 . (1.2)

This is arguably the most common loss function used in ML, but ultimately the
loss function is tied to the task at hand, and there are endless variation for each
kind of them. For probabilistic models, usual choices are the Kullback-Leibler
divergence, or the cross entropy

L(fθ,D) = −
N∑
i=1

yi ln fθ(xi) , (1.3)

where now the yi are the components of the true probability distribution un-
derlying the data, and fθ(xi) are the model’s predicted probabilities.
Defining a metric for the performance of an unsupervised learning model is
clearly harder, as we cannot make use of the labeled examples to build a
distance measure between the target distribution and the model one. In an
unsupervised scenario we are only given samples from the real distribution, and
our model can either generate samples itself, or directly output its parametric
distribution pθ(x), thus learning becomes a matter of comparing distributions
via samples. Most of the approaches to this problem rely on Bayesian learning
[16], and the standard tool used is maximum likelihood estimation [17]. How-
ever, we will not cover the details of this framework, because at the core of
this thesis lies an alternative to it, the generative adversarial learning paradigm
that will be explained in detail in section 1.4.

1.3 Training a ML model
Now that we have gathered all the ingredients, it is time to cook up our

learning procedure. Now, every different ML task has its own preferred setup,
mainly which kind of loss function to use and what class of models to train.
Nonetheless, after those choices are made we are usually left with an extrem-
ization process, the most common scenario being that we just need to minimize
the selected loss function. Ideally, we would want to formulate the optimiza-
tion problem at hand in such a way that it is convex. This would allow us
to use tools from convex optimization theory, that many times help define a
closed-form solution [18]. However, most ML problems do not grant us this
luxury, and all we can do is try to iteratively look for better parameters val-
ues that improve the model’s performance. In this regards, the most common
approach is gradient descent.

The simple idea behind gradient based methods is that the gradient of the
objective function L(θ) that we want to, say, minimize with respect to the
model’s parameters θ, points towards the direction of maximum ascent and
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Figure 1.2: Gradient descent trajectory through loss function landscape.
Gradient-based optimization techniques such as gradient descent, use
the gradient ∇θL of the objective function L as a compass to move
through the latter’s landscape. The goal, in this case, is to reach L’s
global minimum.

thus we can follow it backwards to head to the objective function minima, as
outlined in Fig. 1.2. Gradient descent update rule reads

θ(t+1) = θ(t) − η∇θL(θ(t)) , (1.4)

where η is a hyperparameter known as the learning rate while t is an integer
that keeps track of the current iteration. The gradient, ∇θL(θ(t)), indicates
the direction of ascent in the landscape of the cost function, so following its
negative means moving down into valleys. Tuning the learning rate η we can
make the parameters update steps smaller or bigger. Finding a good value for
η is of great importance, as too small values would lead to very slow training,
while too large ones can potentially make the update jump over minima. It’s
important to note that the cost function and its gradient at each step depend
on the training data, an example being Eq. (1.2). Indeed, we have been a
little sloppy in the definition of the objective functions in the previous section.
Since the datasets one can count on when training a ML model are finite,
they will never be completely representative of the true semantic relations
underlying the data. Thus the loss functions we have shown in eqs. (1.2,1.3)
are only proxies for their exact versions. These data dependent proxies are
called risks in the ML literature [2], but for us nothing changes if we omit
this detail, so we will continue using the term objective (loss) function. Let us
get back to gradient descent. The fact that also the gradient depends on the
training data allows us to choose between different ways on how to compute
it, for example stochastic gradient descent is a variation of gradient descent
that uses only a subset of the training data to compute the gradient of the
cost function at each step. Originally, this involved using a single randomly
chosen training input per iteration, but more commonly it involves using mini-
batches of randomly selected data, with the batch size being a hyperparameter
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in the training process. While gradient descent can get stuck in local minima
or at saddle points where the gradient is zero, the stochastic nature of the
gradient direction in stochastic gradient descent can help avoid these issues.
While standard gradient descent is guaranteed to decrease the cost function in
each iteration (unless the learning rate is too high), stochastic gradient descent
can fluctuate more with smaller batch sizes. There are several variations of
stochastic gradient descent, including methods that dynamically change the
learning rate, make the change in parameters at each step depend on the change
made in previous steps, or take into account the curvature of the optimization
landscape [19].

1.4 Generative Adversarial Learning
Generative adversarial learning is a machine learning framework for train-

ing generative models, specifically designed to address the problem of generat-
ing new, synthetic data samples whose probability distribution closely resem-
bles that of the training data. It was first introduced in the breakthrough paper
[20] where the term Generative Adversarial Networks (GANs) was coined. As
in the other generative ML tasks, the final goal is to train a generator to be
able to output new data, but GANs tackle this problem by exploiting Nash’s
game theory [21] (whose basic concepts are presented in Appendix A) and
using a second learning agent, a discriminator to challenge the generator and
give training feedback to it. In this section we are going to set the stage for
the body of work that we are going to present later in chapter 4.

In the context of generative adversarial networks, the generator can be
thought of as a counterfeiter attempting to create forgery that is indistin-
guishable from the real thing, while the discriminator plays the role of a de-
tective trying to identify and distinguish the counterfeit money from genuine
currency. As the generator and discriminator both learn and improve their re-
spective skills, the generator will occasionally produce high-quality fake money
that the discriminator has difficulty detecting. However, the more fake sam-
ples the discriminator analyzes, the better it becomes at recognizing genuine
currency, leading to an ongoing adversarial game between the two.

A generative model is a type of parametrized agent, often implemented as a
deep neural network, that is capable of synthesizing new data instances. On the
other hand, a discriminative model is a classifier that is able to learn strategies
for distinguishing between data coming from two different distributions. For
example, a GAN may have a generator that creates new images of cats and a
discriminator that classifies images as either real-world cats or synthetic ones.

Let us now add some mathematical details. First of all, let X denote the
space where the real data samples x come from. The characteristic that we
want to learn to reproduce its their distribution P (x), which effectively defines
the data at hand. For example, X may be the space of pictures and P (x) the
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distribution therein describing cats. Now, the generator G must be able to
generate new data samples x̃ ∈ X and to control the distribution of these fake
data Q(x̃). The way we build such a generator is by first choosing some prior
distribution Q0(z) over a so called latent space Z, usually a normal, and then
defining G as the map

G : Z → X ,
z → x̃ = G(z) .

(1.5)

The optimal generator, i.e. the one exactly reproducing the target distribution
P , will be dubbed G∗, and will be the optimal point of a family of parametrized
generators Gθ. Here θ generally refers to any trainable set of parameters that
we endow our model with. Usually, this parametrization is made by resorting
to neural networks, and in that case θ would embody both smooth parameters
as the networks ones, and the discrete ones as the number and type of layers
etc.
Secondly, we need a discriminator D. This ultimately has to be a binary
classifier

D : X → [0, 1] , (1.6)
that associates with samples coming either from P or Q the probability of
them belonging to the real distribution, that is D(x) = p(R|x) is the condi-
tional probability of labeling the input data x as Real. Again, we will rather
work with a parametrized family of such probability measures, and we will
refer to it as Dλ, with λ symbolizing the set of parameters needed by the
discriminator, which is most often realized as a neural network just as G.

Lastly, we need to define the adversarial game in such a way that D and G
will self-supervise each other and accomplish training. The idea [20] is to make
G and D play a zero-sum game, namely a game where each player’s progress
equals their foe’s regress. In this way, we can appeal to Nash’s game theory to
be certain that the game will have a single fixed point, where Q = P and G is
able to perfectly fool the discriminator, which in turn will no longer distinguish
false data from real data, merely constantly outputting 1/2 in surrender.
There are many ways to set up the game, and we will only cover the most
common one. The min-max game we are looking for can be stated as

min
G

max
D

S(G,D) = min
G

max
D

[Ex∼P [ln(D(x))] + Ez∼Q0 [ln(1−D(G(z)))]] .
(1.7)

Here, S(G,D) goes by the name of score function and is closely related to
the binary cross entropy in Eq. (1.3). The game in Eq. (1.7) falls into Nash’s
game theory theorems hypothesis [21], thus, given that G and D are expressive
enough, theoretically the generator can end up fooling the discriminator.

Once the problem has been laid down, it remains to find a fruitful way to
solve it, namely to train our agents D and G. We tackle the min-max game as
a turn based one. We begin by randomly initializing the parameters for both
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agents, i.e. we pick a random starting point in the space of generators and
discriminators. Then, we keep G fixed as we present D with a batch of sam-
ples coming from P and Q and evaluate S(G,D). It is easy to understand why
G has to be held fixed. Indeed, discriminator training tries to come up with
the best way to distinguish real data from fake, put in another way, we want
D to learn how to recognize the generator’s flaws.If G were to change during
this process, D could not ever focus on a particular flaw and would eventually
have a hard time improving its strategy. Thus, we update D to maximize S,
for example we could take some gradient ascent steps, but we do not look for
full maximization, just for a slight improvement of D’s performance. After D
has improved its strategy, G does the same using the updated D as competi-
tor. Again, we do not fully minimize S, and we keep D constant during its
training, as we do not want G to aim at a moving target. This concludes one
turn of the game, and we keep playing until convergence. This juggling back
and forth between two competing agents is what makes GANs capable to solve
very complex generative tasks [22, 23], and a scheme of this training procedure
is found in Fig. 1.3.
As a closing remark, let us point out that GAN convergence is challenging
to monitor and comprehend. Since G is randomly initialized, while D ini-
tially has an easy time distinguishing between fakes and actual objects, as the
generator improves with practice, the discriminator’s performance degrades.
The discriminator has a 50% accuracy when the generator runs flawlessly. To
make its forecast, the discriminator essentially flips a coin. The discriminator
feedback diminishes over time, which complicates the GAN’s overall ability
to converge. The generator starts to train on garbage feedback when the dis-
criminator has reached the point where its output is entirely random, which
could cause the GAN’s quality to collapse. For a GAN, convergence is often a
fleeting, rather than stable, state.
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Figure 1.3: The training pipeline of a classical GAN. An input data point, or
a batch of them, is sampled either from the real distribution or from the
fake, synthetic, one. The discriminator processes the data and outputs
its verdict, telling us with which probability it came from the real dis-
tribution. This probability is used as a feedback from either G and D
to improve on their strategies.
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Chapter 2

Quantum Computing

Having introduced the basics of the machine learning framework, we are
one step away from getting to the core of this work, namely quantum machine
learning. The step we need to take is arguably the hardest one: quantum
mechanics. Using the properties of the microscopic world to design new com-
putational routines, or to enhance classical existing ones, goes by the name of
quantum computation, and giving the reader a crash-course on this field is the
aim of this chapter.

In section 2.1 we will use a typical quantum computational circuit as an
excuse to go through the defining postulates of Quantum Mechanics. Later, in
section 2.2 we will see how the ideal description of quantum computing has to
be adapted to describe real-world quantum processors. Section 2.3 closes the
chapter by listing some important tools that will be used later in this work.
The main references for this chapter are [3, 24, 25].

2.1 Ideal Quantum Computing Basic Elements
Once well understood, circuital quantum computing, i.e. the quantum

computing paradigm where every computation is laid down as a sequence of
simple logical operations arranged in a circuit, turns into a very diagrammatic
and graphical field. We will take the backwards journey, starting from one
such diagram, the quantum circuit in Fig. 2.1, and explaining its components
one by one. In doing so, we will also introduce the postulates upon which
quantum mechanics rests. As the name of the section suggests, all of the
following applies on paper, while making actual quantum computations in the
real world is much more of a mess, as we will discuss later in section 2.2.

2.1.1 Qubits
The first circuital element we need to address is the unit of quantum in-

formation, the qubit, one of them is singled out in component (a) of Fig. 2.1.
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Figure 2.1: The prototypical quantum circuit. (a): a qubit; (b): the qubits
register; (c) transmission wire (no evolution); (d): a single qubit gate;
(e): entangling two qubits gate; (f): measurement apparatus.

Just like classical computation is built upon bits, units of information that can
be in either one of two states usually labelled 0 and 1, quantum computing
uses qubits for that scope. Qubits are simple quantum physical systems, but
how do we describe the state they are in? The first postulate of Quantum
Mechanics (QM) addresses this question: the state of an isolated quantum me-
chanical system ψ lives in a Hilbert space Hψ. Hilbert spaces are vector spaces
endowed with a scalar product and a notion of distance following from it, and
they can be defined over the real or complex field, the latter being the case for
QM. Quantum computation always uses finite dimensional systems, so we can
represent a qubit’s quantum state as a vector |ψ⟩ ∈ Hψ. The symbol |·⟩ goes
by the name of ket, and together with the bra ⟨·|, which is used for vectors in
the dual space1 H∗

ψ it defines Dirac’s braket notation. Here a braket is the in-
ner product of two quantum state vectors |ψ⟩ , |ϕ⟩ → ⟨ψ|ϕ⟩. The braket inner
product defines the states’ norms as ∥ψ∥2 = ⟨ψ|ψ⟩. As in any vector space, we
are free to choose a complete orthonormal basis {|ek⟩}dim(H)

k=1 and expand the
quantum state |ψ⟩ at hand over it

|ψ⟩ =
dim(H)∑
k=1
⟨ek|ψ⟩ |ek⟩ . (2.1)

The coefficients ⟨ek|ψ⟩ are called the amplitudes of the quantum state |ψ⟩.
Notice that we have dropped the subscript |ψ⟩, and that from now on we will

1The space of one-forms acting over Hψ
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always refer to the Hilbert space of a quantum system simply as H. As we
are going to see better in a few steps, the probabilistic nature of quantum
mechanics leads to the need of adding a constraint to the accessible region of
H, indeed physical states are those with unit norm ⟨ψ|ψ⟩ = 1. Notice that this
requirement also gives rise to a gauge freedom for quantum states, namely the
two states |ψ⟩ and |ϕ⟩ = eiθ |ψ⟩ contain the very same information about the
quantum system they are describing.

With this in mind, a qubit can be defined as any quantum two-level system,
that is, the simplest possible non-trivial quantum object. Two-level means
that dim(H) = 2, and in analogy with their classical counterpart, the two
orthonormal levels are dubbed |0⟩ and |1⟩. Thus, any single qubit state reads:

|ψ⟩ = α |0⟩+ β |1⟩ α, β ∈ C, |α|2 + |β|2 = 1 . (2.2)

The basis {|0⟩ , |1⟩} is usually called computational basis.

2.1.2 Computational Register
The set of qubits labeled by the index (b) of Fig. 2.1 represents the workspace

of our quantum computer, and goes by the name of computational register or
simply qubit register. The way quantum systems assemble in a composite one
is described by yet another postulate. This states that given two systems
Q1, Q2 with associated Hilbert spaces HQ1 ,HQ2 , the global quantum state of
the system Q1 ∪Q2 lives in the tensor product Hilbert space H = HQ1 ⊗HQ2 .
In general, given N quantum systems {Qi}Ni=1, the composite Hilbert space
reads

Htot =
N⊗
i=1
HQi

, (2.3)

The dimension of a composite quantum system thus scales multiplicatively:
dim(Htot) = ∏N

i=1 dim(HQi
). As all that matters to us are qubits, and since a

single qubit has an associated Hilbert space of size two, we get that a compu-
tational quantum register QR of size N accommodates an exponential number
of basis states, namely dim(HQR) = 2N .
Consider now the simplest case, where just N = 2 qubits compose the register,
Q1 and Q2. Calling {|0⟩1 , |1⟩1} and {|0⟩2 , |1⟩2}, the computational bases of
the two qubits, the resulting computational basis of HQR is:

{|00⟩ , |10⟩ , |01⟩ , |11⟩} , (2.4)

Notice that, for the sake of simplicity, we dropped both the tensor product
sign |00⟩ = |0⟩ ⊗ |0⟩, and the subscripts indexing the single qubits. This
is usual in quantum computation, rather, the ordering of the binary digits in
the register’s ket is what keeps track of it, the first qubit being on the far right.
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With two qubits we can start to study fancy states like:

|B⟩ = |00⟩+ |11⟩√
2

. (2.5)

This state is famously known as the Bell state, and what makes it relevant is
that it is an entangled state. The state of a composite quantum system is said
to be entangled when it cannot be described as a collection of ket states of its
constituents |ψ⟩ ≠ |ψA⟩ ⊗ |ψB⟩. On the other hand, when this is possible, and
the system state can be written as a tensor product of single subsystems kets,
we call the state separable.

2.1.3 Gates and Wires
Reading the quantum circuit in Fig. 2.1 from left to right we are reading

it forward in time. That is, the circuit diagram represents a time sequence
of operations acting on the qubit, or more of them as we will discuss in the
following sections. That means that the piece of wire, and the boxes that
appear respectively as marks (c), (d), (e) in the figure represent temporal
evolution of the qubit’s state |ψ⟩. The way isolated quantum systems evolve
in time is stated in the second postulate of quantum mechanics: given the
state |ψ0⟩ of a quantum system at time t = 0, its evolved state at time t
will be related to the initial one by the action of a unitary operator Ut as
|ψt⟩ = Ut |ψ0⟩. The unitary operator is the solution of the famous Schrödinger
equation

iℏ
d

dt
|ψ⟩ = H |ψ⟩ , (2.6)

and we recall that an operator U is unitary if and only if UU † = U †U = I. The
operator H appearing in (2.6) is called the Hamiltonian of the system, and is
nothing but the quantum analogue of the usual energy functional of classical
mechanics. Indeed, states that have a well defined energy are eigenvectors of
H, and the associated eigenvalues is their energy. However, let us stop for
now, we will discuss about physical observables later when introducing the
last component of any quantum circuit. When the Hamiltonian H is time-
independent, Eq. (2.6) has a simple solution in terms of it

|ψt⟩ = Ut |ψ0⟩ = e−itH |ψ0⟩ , (2.7)

where we adopted the convention ℏ = 1, as is usual in theoretical quan-
tum physics. In the following, we will not need the general solution of the
Schrödinger equation for time-dependent Hamiltonians, thus we refer the in-
terested reader to [24, 25] for the generalization of Eq. (2.7) to that case.

So, wires and boxes describe the evolution of the state of our information
carrier, and in practice they allow us to control the information flow through
the circuit. But what kind of evolution are we talking about? Wires are
associated to null evolution. That is, their role is just to preserve the state
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of the qubit they are linked to, and we can interpret them as imposing a null
dynamics H ∼ 0 onto the qubit.

Boxes instead implement actual operations on the qubit, and their role is
to control the logical workflow of the algorithm at hand. They go by the name
of gates, just as in classical computer circuits. The action of every quantum
gate V can be expressed as in Eq. (2.7), more explicitly:

V = e−iτG , (2.8)

where G is called the gate’s generator, and τ is the gate− time. We will give
a list of common generators and gates at the end of this chapter. The gate
time is usually what allows us to devise parametric gates. Indeed, by letting
the qubit evolve under the dynamics imposed by the generator G for a tunable
amount of time τ we can control the way the qubit’s state steers in its Hilbert
space. This lies at the heart of the most prominent class of quantum machine
learning models, as we will see later in section 3.3.

The box (e) that we find along the circuit has two input wires and two
output ones, it is the prototypical two-qubit gate. These gates, whose action
has the very same structure as the single qubit ones that we just described, have
the additional, and fundamental, effect of generating entanglement. That is,
their generator corresponds to an interaction between the two physical systems
realizing the qubits. Interaction here means that the generator hamiltonian G
cannot be split into two separate hamiltonians G = G1⊗G2 acting separately
on the two systems. This is always assumed, as otherwise two parallel single
boxes would have been used in the circuit diagram of Fig. 2.1. It is easy to
see how single qubit gates cannot introduce entanglement in the qubit register.
Indeed, whenever we perform separate evolutions of two qubits via gates V1, V2,
the global evolution of the two-qubit register reads V = V1 ⊗ V2. Thus, if
the register was in a separate state |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩, after the evolution
entanglement will still be absent as V |ψ⟩ = (V1 |ψ1⟩) ⊗ (V2 |ψ2⟩). In section
2.3 we will show a simple circuit that generates entanglement, synthesizing the
Bell state in Eq. (2.5).

2.1.4 Measurement
At the end of any quantum computational routine a measuring apparatus,

labeled as (f) in Fig. 2.1, awaits. Indeed, without it no information could ever
be retrieved from a quantum system. While all of the previous postulates
implied a deterministic description and dynamics of the ket states describing
the state of a quantum system, the measurement postulate, the one describing
how an observer can actually gather the information contained in such kets,
introduces the stochasticity that quantum mechanics is known for.

A quantum mechanical measurement can be described as follows [24]. Con-
sider a quantum system Q in a ket state |ψ⟩ that we want to probe for a
physical observable A. In quantum mechanics, every observable is described
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by an hermitian operator Â = Â† acting on the Hilbert space of the system
at hand, HQ. Then, the possible outcomes of a measurement of A are all and
only the eigenvalues {ak} (again, we are assuming a finite-size Hilbert space
d = dim(H)) and they can occur with probability

pk = |⟨ak|ψ⟩|2 . (2.9)

where |ak⟩ is the eigenvector of Â associated with the corresponding eigenvalue
ak. Eq. (2.9) is known as the Born rule. This type of measurement is called
projective measurement, as it revolves around the projection of |ψ⟩ on the
eigenspace of the measurement outcome via the projector Pk = |ak⟩⟨ak|. After
measuring ak, the state of the system drastically changes into

|ψ⟩ → Pk |ψ⟩√
⟨ψ|Pk |ψ⟩

, (2.10)

and this phenomenon is known as collapse. The average value of the observable
A over the state |ψ⟩ can be statistically defined in the usual way, and this leads
to a nice and compact quantum mechanical expression

⟨A⟩ψ =
∑
k

pkak =
∑
k

ak ⟨ψ|ak⟩ ⟨ak|ψ⟩ = ⟨ψ|
∑
k

akPk |ψ⟩ = ⟨ψ| Â |ψ⟩ . (2.11)

where we used the spectral decomposition of Â.
The stochastic nature of the measurement outcomes is what really defines

quantum mechanics, and it also explains why ket vector states must have unit
norm. Indeed, recalling that the set of eigenvectors of an operator satisfies the
completeness property ∑d

k=1 |ak⟩ ⟨ak| = 1, and that by definition of probability∑
k pk = 1, we have

1 =
M∑
k=1

pk =
d∑

k=1
|⟨ak|ψ⟩|2 =

d∑
k=1
⟨ψ|ak⟩ ⟨ak|ψ⟩ = ⟨ψ|ψ⟩ , (2.12)

Thus, after having steered the ket state of the quantum register |QR⟩
through its Hilbert space by the means of the quantum gates, at the end
of the circuit we perform measurements, reconstructing the outcomes proba-
bilities from their frequencies, and constructing expectation values with those.
Last but not least, let us comment that the expectation values in Eq. (2.11)
can only be computed by using the average of each single measurement out-
come as their proxy. In the quantum computing community, each of the single
measurements is called a shot, and the number of shots one uses to compute
expectation values is decided by the precision one needs to achieve.

2.2 How to deal with Noise
When a quantum system is not isolated, but rather is a subsystem of some

larger one, the description of its state via ket vectors may break down. As we
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have seen with the example of the Bell state in Eq. (2.5), whenever entangle-
ment is present in the system as a whole its constituents cannot be associated
with a well defined ket state. This property, which has no classical analogue,
is a fundamental property of the microscopic world, and not a flaw of our de-
scription of it. Still, we might be interested in the description of a subsystem
alone, as it might be the only thing we have access to. This is what always
happens in real quantum computing, since we still do not have the technology
to completely isolate the qubit register from its surroundings and we do not
even know how these two interact. Sure, the universe as a whole is an isolated
quantum system, and we could try to start from its ket and derive what hap-
pens to the qubit register...
Fortunately, quantum mechanics has developed an elegant way to deal with
this: the density matrix formalism, and the general open quantum system
framework.

2.2.1 Density matrix formalism
Let us consider an isolated quantum system described by a ket |ψ⟩. We

call such a state a pure state. Now, from |ψ⟩ we can build the projector onto
it

ρψ = |ψ⟩ ⟨ψ| , (2.13)

and call it the density matrix associated to the pure state |ψ⟩. In fact, we can
completely reformulate the description of isolated quantum systems in terms
of ρψ, that from now on for the sake of brevity will be simply dubbed as ρ.
The evolution and measurement postulates can be reformulated as

• Given the unitary evolution operator defined in (2.7), the density oper-
ator evolves with:

ρ(t) = Û(t)ρ(0)Û(t)† . (2.14)

• Referring to the observable A defined around Eq. (2.9), the probability pk
of obtaining the outcome ak, associated with the projective measurement
Pk = |ak⟩ ⟨ak| is:

pk = Tr(ρPk) . (2.15)

and the expectation value of A thus reads

⟨A⟩ = Tr(ρÂ) . (2.16)

Moreover, the collapse of the state after the outcome ak has been ob-
served implies

ρψ
ak−→ PkρPk

Tr(PkρPk)
. (2.17)
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More than this, we can avoid using kets altogether and define as viable quan-
tum states the operators ρ ∈ B(H), belonging to the space of bounded linear
operators acting over the Hilbert space H associated with the quantum system
that satisfy

• Hermiticy, ρ† = ρ ;

• Positivity ⟨ψ| ρ |ψ⟩ ⩾ 0 ∀ |ψ⟩ ∈ H;

• Tr(ρ) = 1.

These properties are indeed satisfied by pure states ρ = |ψ⟩ ⟨ψ|, but those also
have an additional property that we can relax, allowing for the description of
more general states, namely that of being projectors: ρ2 = ρ → Tr[ρ2] = 1.
The states that are not described by projectors are not pure, and rather go
by the name of mixed states. The quantity P (ρ) = Tr[ρ2] ∈ [1/d, 1], where
d = dim(H), is called the purity of the quantum state, and it is the figure of
merit of states being pure (P (ρ) = 1) or mixed (P (ρ) < 1).

Mixed states arise either from entanglement, as hinted before and as we
shall see in a moment, or from the absence of complete knowledge of the state
of an isolated system. Indeed, all we might know about an isolated quantum
system is that it could be in either one of an ensemble of states {|ψk⟩} with
probabilities pk. This is the case when we are told that the system |ψ⟩ has
been measured along some observable which we know the eigenvectors {|ψk⟩}
of, but we forgot to write down the measurement outcome and so all we know
is that now the system has collapsed in one of the |ψk⟩ with probability pk =
∥⟨ψk|ψ⟩∥2. We can then include this classical uncertainty into the description
of the quantum system by associating to the ensemble {(pk, |ψk)⟩} the density
matrix

ρensemble =
∑
k

pk |ψk⟩ ⟨ψk| . (2.18)

However, there is actually no need to carry on with the distinction between
entanglement-born mixed states and ensemble ones, as they are treated iden-
tically by quantum mechanics.

Let us finally come to the characterization of entangled quantum subsys-
tems. Consider an isolated bipartite quantum system Ψ consisting of two
subsystems ΨA and ΨB. Now, say that we can only access ΨA and that the
system as a whole is in the pure state |ψ⟩ ∈ HΨA

⊗ HΨB
. The state of the

subsystem ΨA will then be described by

ρA = TrB(ρ) , (2.19)

where ρ = |ψ⟩ ⟨ψ| is the pure density matrix associated to |ψ⟩, and we used
A,B in place of ΨA,ΨB to shorten up the notation. The state ρA is called the
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Figure 2.2: Ideal vs Real quantum computation. (a): the ideal circuital scheme
of quantum computation. (b): what happens in a real-world quantum
computation where noise is unavoidable.

reduced density matrix of subsystem ΨA, and the operator TrB is the partial
trace operator, defined as:

TrB(ρ) =
∑
b

(1A ⊗ ⟨b|)ρ(1A ⊗ |b⟩) . (2.20)

with 1A the identity operator on the Hilbert space HΨA
. Basically, we are

tracing out all of the degrees of freedom associated with the inaccessible sub-
system ΨB and encoded in the orthonormal basis {|b⟩}. The reduced density
matrix ρA contains all the information we need to compute expectation values
of observables with support on ΨA only, indeed any such observable OA can
be extended to the whole Hilbert space H as OA → OA ⊗ IB, and plugging
this in the expectation value (2.16) we get

⟨OA⟩ = Tr[ρ(OA ⊗ IB)] = TrA[ρAOA] . (2.21)

2.2.2 Quantum channels
We have seen that the unitary pure states evolution can be easily reformu-

lated in terms of their density matrix (Eq. (2.14)), and this simple extension
still works for ensemble mixed states, as long as the system they describe is
isolated, and their mixedness arises only from our classical uncertainty about
it. The evolution of entangled subsystem, whose mixedness emerges from the
impossibility of treating them separately, is a different story. Let us keep
analysing the simple bipartite system ΨA ∪ ΨB. As it evolves unitarily for a
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time t with Ut, the global (say pure) state ρ of Ψ changes into ρt = UtρU
†
t .

Consequently, the reduced density matrix ρA of ΨA evolves into

ρ
(t)
A = TrB

[
UtρU

†
t

]
. (2.22)

It is easy to guess that the evolution of ρA cannot be recast as ρ(t)
A = Ũρ

(0)
A Ũ †

for some unitary Ũ , and this leads to the question: how can we characterize
the evolution of a system when we do not have access to the full dynamics of
the universe? In order to describe the most general processes that can evolve a
quantum system, the formalism of quantum maps, or quantum operations, has
been developed [26], see Fig. 2.2. Quantum maps thus are functions Φ from
the space of density matrices B(Hin) on an input Hilbert space Hin to that on
an output one Hout.

ρin ∈ B(Hin)→ ρout = Φ(ρin) ∈ B(Hout) . (2.23)

Notice that now we allow the output Hilbert space to be different from the
starting one. This can happen, for example, when part of the system we
are dealing with is discarded, or when adding an external auxiliary system
is needed. What kind of properties do these maps need to have? The only
requisite we need to impose onto them is that they map valid quantum states
into valid quantum states. Since density matrices have to comply with the
properties listed below Eq. (2.17), we get that quantum maps Φ must be:

1. Linear : they must transform any superposition of input states into the
superposition of the associated output ones, namely:

ρin =
∑
k

pkρk → ρout =
∑
k

pkΦ(ρk) (2.24)

As a side note, notice how a superposition of density matrices must
be convex, that is the coefficients pk must be a probability distribution
(pk ⩾ 0, ∑ pk = 1), or else the superposition’s trace would not be one.

2. Trace-Preserving: the normalization of the input density matrix, i.e.
Tr[ρin] = 1 must be preserved Tr[Φ(ρin)] = 1

3. Completely-Positive: since a valid density matrix is a positive operator,
the same must hold for the output of the quantum map. Particularly,
a completely positive map Φ is such that Φ(A) ⩾ 0 ∀A ⩾ 0 and (1B ⊗
Φ(A)) ⩾ 0 whenever A is embedded in an enlarged space, B being the
extra system.

From these properties stems the usual way that quantum maps are called:
CPTP (Completely Positive and Trace Preserving) maps.2 Moreover, when

2CPTP maps are not the only possible quantum operations. The trace condition can
be relaxed to be non-increasing Tr[Φ(ρin)] ⩽ 1, and correlations between a system and its
environment may lead to a non-CP evolution [27, 28]. We will never need to consider these
cases.
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Figure 2.3: Diagrammatic representation of quantum channels and their
compositions. (a): a quantum channel Φ mapping an input state
ρin → ρout; (b): two channels Φ1,2 being composed in series; (c): the
same channels composed in parallel.

the output Hilbert space is the same as the input one, they are usually called
quantum channels. We will use channel and map interchangeably, and we will
refrain from specifying every time input and output Hilbert spaces, as it will
be clear from the context. Notice that the unitary evolution ρt = UtρU

†
t is just

a particular kind of channel ρt = Ut(ρ), namely a unitary channel.

Given two channels Φ and Λ, it is straightforward to check that any convex
combination of them ϵ = pΦ + (1 − p)Λ, p ∈ [0, 1], is again a CPTP map.
This is the convexity property of quantum channels. Aside from convex com-
binations, channels might be composed in series (concatenation) or in parallel
(tensor product), where we borrowed terminology from classical electrical cir-
cuits. Concatenation is the application of the two channels one after the other
ϵ = Λ ◦ Φ. Two channels are said to be unitarily equivalent if their action is
related by changes of basis in the input and output spaces, namely if there
exist two unitary channels U ,U ′ s.t. Λ = U ′ ◦ Φ ◦ U . Composition in parallel
is done by letting the two channels act on different subsystems at the same
time, i.e. ϵ = Φ ⊗ Λ, an example of this being the extension of a channel
onto a bigger space Φext = Φ ⊗ I, but also the simultaneous evolution under
different dynamics of two components of a quantum systems. Both of these
composition rules are sketched in Fig. 2.3.

CPTP requirements can be recast in an alternative condition for quantum
maps, namely that they can be expressed as sum of conjugation by linear
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operators:

Φ(ρ) =
R∑
k=1

KkρK
†
k , with:

∑
k

K†
kKk = I . (2.25)

The operators {Kk} are called the Kraus operators, and the representation
(2.25) is called the Kraus representation of the channel Φ. The number R of
Kraus operators is called the Kraus rank. Notice that this decomposition is
not unique, as two sets of Kraus operators {Kk}, {K ′

k} yield the same map if
they are related by a unitary rotation Kk = UkjK

′
j, indeed∑

k

KkρK
†
k =

∑
k

UkjK
′
jρK

′†
i U

†
ik =

∑
k

U †
ikUkjK

′
jρK

′†
i =

∑
i

K ′
iρK

′†
i . (2.26)

Nonetheless, it can be shown that there is a upper bound to the Kraus rank of
a quantum channel R ⩽ d2, where d = dim(H) is the dimension of the input
Hilbert space.

Another, equivalent, representation for quantum maps is the Stinespring
representation [26]. This states that it is always possible to find a suitable,
albeit fictional, environment E, in a pure state |ω⟩ non-entangled with the
system state ρ such that the global state of the system Ψ plus the environment
E reads ρ⊗ |ω⟩⟨ω|, so that:

Φ(ρ) = TrE
[
UΨE(ρ⊗ |ω⟩⟨ω|)U †

ΨE

]
, (2.27)

for some unitary coupling interaction UΨE. As for the Kraus representation
(2.25), Stinespring’s representation (2.27) is not unique, its freedom lying in
the choice of the initial environment state |ω⟩. The equivalence between Stine-
spring and Kraus representation can be readily understood performing the
partial trace in (2.27), indeed, choosing {|ek⟩} as an orthonormal basis for the
environment E we can identify the Kraus operators Kk as Kk = ⟨ek|UΨE |ω⟩.

Lastly, there exists yet another way to characterize a quantum map: the
Choi-Jamiolkowski (CJ) isomorphism [26]. This allows to associate with every
map Φ acting on a system Ψ a unique density matrix JΦ of an extended
system ΨA, where A is an auxiliary quantum system with the same size d as
Ψ if Φ maps Ψ onto itself, or with size equal to that of the output system. In
particular, the CJ state is defined as

JΦ = (Φ⊗ 1A)(|Ω⟩⟨Ω|) , (2.28)

where |Ω⟩ = (1/
√
d)∑i |ei⟩Ψ ⊗ |ei⟩A is a maximally entangled state of the

composite system ΨA, with {|ei⟩Ψ/A} being orthonormal bases of Ψ and A.
The CJ state JΦ holds all of the information needed to specify the action of
the map Φ on any state, as one can see that in it are encoded the results
of applying Φ to all the elements of the canonical basis of density matrices.
Particularly, we can express the action of Φ on any quantum state ρ via the
CJ state as [29]

Φ(ρ) = TrΨ[JΦ(ρ⊤ ⊗ 1dim(Hout))] . (2.29)
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2.2.3 Generalized Measurements
We have seen in section 2.1.4 that quantum measurements can be described

in terms of sets of projectors {Pa} onto the eigenspaces associated with the
possible outcomes {a} of an observable A. The open quantum systems frame-
work admits a generalization of this projective measurement scheme. Indeed,
consider yet again a bipartite quantum system ΨA ⊗ ΨB whose second com-
ponent ΨB we do not have access to, or we do not care about. If a global
projective measurement {Pk} is performed on the whole system, assuming its
state to be the unentangled state ρ = ρA ⊗ ρB, the probability of observing
the outcome k reads

p(k) = Tr [Pkρ] = TrA [[TrB PkρB] ρA] = TrA [EkρA] , (2.30)

where the operators {Ek} define a Positive Operator valued Measurement
(POVM). The elements {Ek} of a POVM satisfy ∑k Ek = I, as follows from
the probabilities p(k) summing up to one in (2.30). In general a POVM is de-
fined by a set of positive semi-definite hermitian operators {Ek}, called effects,
summing up to I. Each of them is associated with an outcome, and the prob-
ability of said outcome is given by Tr[Ekρ], where ρ is the state of the system
being measured. In general, the number of effects in a POVM might be larger
than the size of the Hilbert space they act on, as opposed to what happens with
a projective measurement. Interestingly, the outcome associated with an effect
might actually be undefined. This is at the core of the so called unambiguous
state discrimination protocol [30]. In quantum computing, implementing a
POVM directly in a quantum circuit is a hard task. Most architectures only
allow for rather simple projective measurements along the computational basis
defined around Eq. (2.2). However, thanks to Naimark’s dilation theorem [24],
we can physically realize a POVM by performing a projective measurement
on an extended Hilbert space. Naimark’s theorem, in its simplest form, i.e.
that of finite dimensional quantum systems, states that a POVM {Ek} acting
on a Hilbert space H of dimension d, can be realized through a projective
measurement {Pk} on an Hilbert space H′ of size d′ related to the original one
via an isometry V : H → H′. In practice, one realises a POVM by adding
an auxiliary system to the quantum register, entangling the two together via
some unitary circuit U and then performing a projective measurement Pk on
the auxiliary system alone. This yields the POVM:

Ek = Tra
[
(1⊗ |0⟩a ⟨0|a)(U(1⊗ P a

k )U †)
]
, (2.31)

where we labeled the auxiliary system as a.

2.3 Compendium of useful notions
In this final section we will list the most used quantum gates, with their

matrix representation and action. Before doing this however, we are going to
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Figure 2.4: The Bloch sphere representation of the Hilbert space of a single
qubit. A pure state |ψ⟩ lives on the surface of the sphere (r = 1),
whereas a mixed one ρ is found inside the ball (r < 1).

cover a helpful representation of the Hilbert space C2 where single qubit states
live.

2.3.1 The Bloch Sphere
The Bloch sphere [31, 32] is a geometric representation of the state space of

a single qubit, the basic unit of quantum information. It is a convenient way
to visualize and understand the behavior of quantum states and operations
in quantum computing and quantum information theory. The Bloch sphere
is a unit sphere in three-dimensional space, with pure qubit states being rep-
resented as points on the surface of the sphere. The state of a qubit can be
represented by a two-dimensional complex vector, as we have seen in Eq. (2.2),
with the Bloch sphere providing a convenient way to visualize this vector in
three-dimensional space. Indeed, we can express any qubit state as

|ψ⟩ = cos (θ/2) |0⟩+ eiϕ sin (θ/2) |1⟩ , (2.32)

where {|0⟩ , |1⟩} is the computational basis we introduced at the end of section
2.1.1, and its elements correspond to the north and south poles of the sphere,
respectively. The coordinates (θ, ϕ) are just the usual spherical coordinates of
R3, while the radial one is fixed to r = 1 by the quantum mechanical constraint
∥|ψ⟩∥ = 1. In figure 2.4 we show the Bloch sphere and how the gates that we
are going to review steer the state |ψ⟩ on it.

Mixed single qubit states populate the interior of the sphere instead. Indeed
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any mixed single qubit state ρ can be decomposed as

ρ = 1
2(1 + r · σ) , s.t. ∥r∥ < 1 , (2.33)

where σ = (X, Y, Z) are the three Pauli operators and r is the coordinate of
ρ inside the Bloch sphere. It is easy to check that pure states (2.32) can be
expressed in the same way with the additional constraint ∥r∥ = 1.

2.3.2 Common gates
In what follows we are going to list common single and two-qubit gates.

Let us start form the single qubit ones.
• Pauli Operations: the three Pauli matrices, usually dubbed X, Y, Z

or σx, σy, σz, being unitaries can function as single qubit quantum gates.
Indeed, they are constantly used in any quantum computational routine.
Their matrix representation over the single qubit Hilbert space C2, w.r.t.
the computational basis reads

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2.34)

• Hadamard Gate: The Hadamard gate acts via

H = 1√
2

(
1 1
1 −1

)
. (2.35)

The action of the Hadamard gate on a qubit is to rotate it by an angle of
π/2 around the x-axis of the Bloch sphere. What makes the Hadamard
gate one of the most useful quantum gates is the fact that, when applied
to the computational basis states, it outputs an homogeneous superpo-
sition of those, i.e. H |0⟩ = 1/

√
2(|0⟩+ |1⟩) and H |0⟩ = 1/

√
2(|0⟩− |1⟩).

These states are the eigenstates of X, usually they are dubbed respec-
tively as |+⟩ and |−⟩, and they are a common choice for the initialization
of the quantum register.

• Rotation Gate: the last single qubit gate that we will review is the most
general one. It is a parametric operation, and it will have an important
role in the rest of this manuscript. The rotation gate R(α, β, γ) reads

R(α, β, γ) =
(

cos (α/2) −eiγ sin (α/2)
eiβ sin (α/2) ei(β+γ) cos (α/2)

)
. (2.36)

This gate implements the most general unitary evolution of the state of a
qubit, thus it can map between any two points of the Bloch Sphere. It can
be decomposed via the Euler angles in a sequence of rotations around two
axes of the sphere, for example as R(α, β, γ) = Rz(γ)Ry(α)Rz(β). Here,
rotations around a fixed axis with versor n read Rn(θ) = cos (θ/2)1 +
i sin (θ/2) n · σ.
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Let us move on to two qubits entangling gates

• CNOT: The Controlled NOT operation (CNOT) is probably the most
used entangling operation. It flips the computational basis state of the
target qubit whenever the control one is found in state |0⟩. Its matrix
representation over such basis is

CNOT = 1√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.37)

We can understand its utility by realizing that by only applying H and
it we can synthesize the maximally entangled state in eq (2.5). Indeed,
starting from the |00⟩ computational basis state of a two-qubits regis-
ter, if we first apply H on the first (rightmost) one we get H |00⟩ =
(1/
√

2)(|00⟩+ |01⟩). Then, if we apply a CNOT with the control qubit
being the one we acted on withH we arrive at the bell state CNOT H |00⟩ =
(1/
√

2)(|00⟩+ |11⟩).

• SWAP: the SWAP operator acts by swapping the states of the two
targeted qubits, namely SWAP |ψ⟩ ⊗ |ϕ⟩ = |ϕ⟩ ⊗ |ψ⟩. Its matrix repre-
sentation is

SWAP = 1√
2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (2.38)

It is needed in the NISQ era because of the limited connectivity of current
quantum processors. Indeed, if one needs to entangle two physically
distant qubits in the register, one first has to move their states close
with a ladder of SWAPs, and then apply the entangling operation.
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Chapter 3

Quantum Machine Learning

This chapter introduces the framework of this thesis: Quantum Machine
Learning (QML). By incorporating the concepts and results of machine learn-
ing that we quickly covered in chapter 1 into the field of quantum computation
that we just finished overviewing in the last chapter, QML tries to get the
best of both worlds. The power of quantum computing can lead to exponen-
tial increase in performance for classical ML tasks, and at the same time the
advanced learning algorithms can help experimental quantum computing to
deal with nowadays NISQ limitations. Here we will set the stage of quantum
machine learning, trying to build upon our introduction of classical ML with
the aim of introducing the basic tools that we will use in the following chap-
ters. The main source of this chapter are [3] and references therein.
After quickly discussing strategies to encode classical data into quantum com-
puters in Section 3.2, the main body of this chapter is devoted to introducing
quantum learning models (Sec. 3.3) and how to train them (Sec. 3.4).

3.1 Going Quantum
Why going quantum? How could resorting to quantum computational tech-

niques benefit the ML community? How could quantum physics take advan-
tage of machine learning tools? In brief, what is the Quantum Machine Learn-
ing program? On one hand, the idea that quantum computing could level up
classical machine learning is almost natural. There is a direct relation between
what machine learning models can efficiently generate and process, namely ML
is very good at finding patterns in data that can be as easily synthesized. At
the same time, it is well known [33] that classical devices struggle to simulate
even small quantum systems, and that quantum data distribution can hardly
be tackled with said machines. In turn, quantum devices come with the innate
ability to generate and handle such complex data patterns. This leads to the
belief that quantum computers will overcome their classical counterparts for
the most difficult tasks. This belief is not just faith, obviously, technically
speaking quantum algorithms come with a list of provable speedups, meaning
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that they can be proved to outperform the best known classical algorithms.
This outperforming is usually weighted in terms of computational time, but
other resources might be involved in the process [3]. Nonetheless, when a
quantum algorithm is exponentially better than its classical competitor we
talk about quantum supremacy, as opposed to the term quantum advantage,
that is instead used for power law separation. Notice that it may be that
the best possible classical algorithm for a given task is simply unknown, so
from a theoretical computer science perspective the whole supremacy discus-
sion might be futile. An example of this is the famous algorithm for integer
factorization devised by Shor [34]. It promises to exponentially outperform
the classical approach to the problem, but it is still possible that an even bet-
ter classical algorithm will be found. Despite this, with quantum processors
finally becoming available for experiments, solid statistical evidence of scaling
advantage, even if only over a finite range of problem sizes, can be (and is
being [35, 36]) acquired. On the other hand, ML techniques have taken over
a whole bunch of physics fields, particularly where a lot of experimental data
must be analyzed, as those collected at the L.H.C. experiment in Geneva [37].

Thus, merging the fields of machine learning and quantum computing just
feels natural, and it is no surprise that attempts at combining them have been
around since the beginning of quantum computing in the 1980s. The term
quantum machine learning started to be used around 2013 [38], and interest
in the topic began to increase significantly in 2014 when the first book entirely
dedicated to it came out [39], leading to a growing body of literature and the
formation of a community around the field. In recent years, quantum machine
learning has become a well-established sub-discipline of quantum computing
research, with a strong presence in industry, with big names such as IBM and
Google leading the private efforts, and various open-source software frame-
works [40–42] available.

Figure 3.1: The four sectors of QML.

40



3.2 Quantum Data

As we have seen in the introductory chapter on classical machine learning,
learning frameworks have three main ingredients: data, models and optimiza-
tion strategies. Depending on which of those we turn quantum, we can define
the QML diagram shown in Fig. 3.1. The division usually only looks at data
and processing device, both of which can be either classical (C) or quantum
(Q). One would say that the CC sector does not belong to quantum machine
learning, but in the QML community, this sector studies all of the classical
machine learning improvements and new methods that are inspired or bor-
rowed from quantum physics. The problem of simulability of large quantum
systems [33] has indeed fueled a lot of computational research on the quantum
side, leading to the establishment of powerful classical methods such as ten-
sor networks [43], that can, and are, be adapted to tackle classical ML tasks
[44]. QC refers to the collection of classical machine learning techniques that
are used to benefit quantum computing. Among these, discrimination strate-
gies for quantum states [45], error correction [46], prediction of observables
expectation values based on a limited number of measurements [47], or even
neural-network quantum states [48]. We then come to the CQ corner of QML.
This arguably is the real QML domain, or at least the one that has the most
commercial power. Indeed, as commented before, using quantum processor to
treat classical data, and thus for classical applications such as those governing
our daily life, has the potential to revolutionize AI. The main challenge in CQ
QML is data-encoding, as to use a quantum device to, say, image classification
we need to turn the images into quantum states that can be loaded on a quan-
tum register. Many encoding strategies have been developed [3] and we will
briefly look at some of those in the next section. The sector this manuscript
fits in is, however, the last one. The QQ intersection of QML deals with coher-
ent quantum information, already stored or directly produced, on a quantum
device. Of course, once the data encoding process has been carried out, CQ
and QQ come together as one, but QQ mostly deals with completely quantum
problems, such as efficient quantum state generation [49], simulation and clas-
sification of the phases of some condensed matter model [50] and many others,
see [3] and references therein.

3.2 Quantum Data
As in classical machine learning, data stays the fuel of any QML routine.

Arguably, loading data into a quantum device is the greatest challenge for CQ
QML. On top of being a delicate process, it also constitutes a bottleneck for
any QML algorithm. In this work, we will not use any encoding strategy, since
we will always assume to work in the QQ sector and that our quantum dataset
are already available at the quantum processor level. Nonetheless, here we list
two common, but alas not much useful, encoding strategies.

• Basis Encoding: Basis encoding strategy associates a quantum state in
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the computational basis {|0⟩ , |1⟩}⊗n, where n is the size of the qubits
register, with a classical n-bit string. For example, the quantum state
|010⟩ would be associated with the classical bit-string 010. This is a
straightforward method of encoding data, as each bit is directly replaced
by a qubit and computations can be performed in parallel on all possible
bit sequences in a superposition. In quantum algorithms, the output is
often also encoded in the computational basis. The amplitudes of the
basis states can then be used to indicate the likelihood of a particular
measurement result, with the goal of increasing the probability or abso-
lute square of the amplitude corresponding to the solution. It is evident
that this strategy cannot be NISQ-friendly, as it requires as many qubits
as the classical bits.

• Amplitude Encoding: This strategy corresponds to associating each data
point with an amplitude of the qubits register quantum state. Thus
now, instead of binary-representing a classical floating point number x
and then associating it to the equivalent quantum basis state, one wants
x as the coefficient of said basis states. Clearly, first of all one needs
to normalize the classical data such that it has norm one, or else it
would be impossible to load it into a valid quantum state. Then, we
map x = (x1, . . . , xn) into our register as |ψx⟩ = ∑

i xi |i⟩, where |i⟩
are the computational basis states. While amplitude encoding requires
fewer qubits than basis encoding, the methods used to prepare the dense
amplitude vectors are computationally expensive, making it less suitable
for use on near-term quantum devices.

Data encoding on quantum computers is a great challenge for full-purpose
QML, and people are also starting to realize that it might not only be a
necessary preliminary step to later perform a QML task, but rather that finding
a clever encoding map can be formulated as part of the learning algorithm as
well. For further details and references we address the reader to [3].

3.3 Quantum Learning Models
We have seen in section 1.2.2 that learning models are basically parametric

functions fθ : X → Y from the dataset space to the labels’ one, if the model is
deterministic, or to [0, 1] if it is probabilistic. Conceptually, a quantum learn-
ing model has the very same structure, with the only difference being that
the dataset space X is now some Hilbert space HX . The way the quantum
model fθ is implemented in practice is via parametric quantum circuits (PQC).
Examples of learning algorithms realized via PQCs are the quantum approxi-
mation optimization algorithm [51], and the variational autoencoders [52] and
eigensolvers [53]. A detailed review on PQCs and their features, as well as
applications, can be found in Ref. [54].
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PQCs are quantum circuits whose gates depend on tunable external pa-
rameters. Recalling the gate structure U = exp{−itG} discussed in section
2.1, we can understand how the gate time t is the best candidate to play the
role of the controllable parameter θ. Indeed, most of the parametric gates
are realized by choosing a fixed gate generator G and letting it act on the
qubits register for a variable time θ. As an example, from the Pauli operators
{σx, σy, σz} that we reviewed in section 2.3 we can build three of the most used
parametric gates [55]:

Rx(θ) = e−iθσx/2 =
(

cos θ
2 −i sin θ

2
−i sin θ

2 cos θ
2 ,

)
(3.1)

Ry(θ) = e−iθσy/2 =
(

cos θ
2 − sin θ

2
− sin θ

2 cos θ
2 ,

)
(3.2)

Rz(θ) = e−iθσz/2 =
(
e−iθ/2 0

0 eiθ/2 .

)
(3.3)

These implement rotations around the x, y and z axis of the Bloch sphere dis-
cussed in the compendium section of the previous chapter, and are nothing but
the special case of the rotation gate from Eq. (2.36). Although two-qubit en-
tangling gates can also be parameterized, a common choice being G = σz⊗σz,
most of the PQCs used by the QML community defer the need for entangling
operations to fixed gates, most often than not to the sole CNOT gate defined
in eq (2.37). Adopting this strategy, a common layout for a parametrized
quantum circuit is the following

U(θ) = VD+1

D∏
j=1

Wj(θj)Vj , (3.4)

where we denoted as W (θ) the parametric gates, usually single qubit ones,
and with V the non parametric, entangling, operations. Here D is the number
of layers, sometimes also called the depth of the quantum circuit.

One can even consider more general operations, i.e. parametrized quantum
channels that need not implement unitary evolution on the qubit register, but
can leverage the larger family of CPTP maps. Sometimes, this extension of
parameterized quantum circuits is called quantum neural network (QNN) [56].
In this case, aD-layered QNN would read as a concatenation of CPTP channels
Φθ = ND

θD
◦ · · · ◦ N 1

θ1 , where the N l
θl

(with l = 1, . . . , D) are parametrized
CPTP channels such that θ = (θ1, . . . ,θD). From the previous, the l-th layer
maps between operators (density matrices) acting on some Hilbert space Hl−1

to operators acting on some (possibly different) Hilbert space Hl. That is,
N l

θl
: Bl−1 → Bl, where we have defined for simplicity of notation Bl := B(Hl).

Let us go back to unitary PQCs for the moment being, as their QNNs
cousins are straightforwardly recovered. Upon measuring an observable O, the
PQC in Eq. (3.4) leads to the model’s output

fθ(x) = Tr
[
OU(θ)ρxU(θ)†

]
= ⟨U(θ)†OU(θ)⟩ρx , (3.5)
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where we denoted the input data point as ρx, and we used the density matrix
formalism for the sake of generalization. Notice that we kept things easy here,
one is always free to use more observables {Oj} in order to build a set of out-
puts {⟨U(θ)†OjU(θ)⟩ρx} = {f jθ(x)}, and apply some classical post processing
function C to make the model’s output more complex f̃θ(x) = C({f jθ(x)}). The
second equality in (3.5) shows how we can interpret the PQC output both as
the expectation value of a fixed, predetermined, observable O over the para-
metric state that we obtain by steering the input state ρx in its Hilbert space
with the PQC U(θ), or equivalently as the expectation value over ρx of a para-
metric observable U(θ)†OU(θ). Recall from section 2.1 that the theoretical
expectation value in Eq. (3.5) has to be statistically evaluated when perform-
ing real quantum computation. This means that, given an available number of
shots S, we sample O S times and average over the observed eigenvalues. Since
O(1/ϵ2) shots are needed to achieve error ϵ, this might sound as a great obsta-
cle for reaching a low runtime, as each single measurement has to be repeated
by re-running the circuit as a whole, because of the measurement collapsing
the state. Perhaps surprisingly though, running a fixed circuit many times
does not constitute that big of an overhead, the more costly operation being
the change of the circuit’s parameter or architecture instead. Analogously, one
can build a probabilistic quantum model by simply identifying the generated
distribution as that of the measurement outcomes.

We are now left with the question: how would one choose a PQC ar-
chitecture? An important figure of merit of parametrized quantum circuit is
expressibility. In brief, expressibility measures how well the chosen PQC archi-
tecture is able to probe the Hilbert space of the quantum register. The more it
explores it, the more it is expressive. Sometimes just making the circuit deeper
by adding more layers is enough to reach the desired expressibility, but the real
game-changer is always the ansatz that is being used. Think of how a PQC
made of single qubit gates only will never change the entanglement content of
the input state, no matter how deep we make it, while a single CNOT can do
it, as we have shown under eq (2.37).

More formally, given a N qubit PQC U(θ) ∈ SU(2N), its expressibility is
defined by comparing the distribution of the circuit output states |ψ(θ)⟩ =
U(θ) |0 . . . 0⟩ for randomly chosen θ [57] with the Haar distribution, the uni-
form distribution over the special unitary group SU(2N). The comparison is
carried out by evaluating the difference between the t-moments of the distri-
butions

At =
∥∥∥∥∫

Haar
(|ψ⟩⟨ψ|)⊗tdψ −

∫
θ
(|ψ(θ)⟩⟨ψ(θ)|)⊗tdψ(θ)

∥∥∥∥2

HS
. (3.6)

Here
∫

Haar dψ is the integration over ket states distributed according to the
Haar measure, i.e. over unitaries V with |ψ⟩ = V |0 . . . 0⟩, whereas ∥·∥HS is the
usual Hilbert-Schmidt norm:

∥A∥HS = Tr(A†A) . (3.7)
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Full expressibility would imply At = 0∀t, since in that case the PQC could
explore the whole Hilbert space. This would come at the cost of having high
model complexity, roughly speaking a large number of parameters, and thus
more difficult training. As usual in learning scenarios, one has to find the sweet
spot between expressibility and complexity [58], more often than not relying
on heuristic approaches. We address the interested reader to [59–61] for a
refined analysis of the expressibility, and other interesting figures of merit like
entangling capability or parameter dimension, of some of the most used ansätze.

Unfortunately, one does not simply pick the most expressive anstatz. In-
deed, one has to add the practical limitations of current NISQ devices to the
discussion. Particularly, their low-depth requirement and the limited connec-
tivity between the qubits they support.

Figure 3.2: Two ansätze for PQCs. (a): Hardware Efficient Ansatz (HEA); (b):
SU(4) brick-layered ansatz. The HEA architecture features general sin-
gle qubit unitary evolutions U ∈ SU(1), usually decomposed via the Eu-
ler angles, as discussed under Eq. (2.36), through rotations around the
z and y axes, followed by alternated CNOTs. The SU(4) brick-layered
ansatz, is pretty much self explanatory, general SU(4) operations, pa-
rameterized by 15 parameters are applied in a brick-layered fashion.

Most of the available quantum processors have their qubits arranged in
simple one-dimensional geometries, such as lines, rings, or t-shapes. at the
same time, current technology allows good control over operations that are
performed over physically adjacent qubits. Thus, to perform entangling oper-
ations between two distant qubits one needs to first perform ladders of SWAP
gates in order to bring the targeted states to adjacent spots. This obviously
leads to additional circuit depth and noise accumulation. All of these limita-
tions have led the QML practitioners to almost only rely on harware-efficient
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ansätze (HEA). With this term, the QML community refers to a class of cir-
cuit architectures that aim at being device-friendly, by using only gates that
are native to the physical realization of the quantum processor at hand, and
arranging them to get the most out of the given connectivity. The prototypical
HEA layout, for a quantum processor that has line connectivity, is shown on
the left of Fig. 3.2. As we can see, the idea is to perform simple one-qubit op-
erations on each qubit composing the quantum register, and then follow those
with a ladder of entangling gates.

When performing numerical simulations of QML routines it is common to
adopt stronger ansätze than the HEA class. On one hand, in a simulation
scenario we do not need to worry about noise and decoherence, and on the
other hand at that stage we are mostly concerned with testing the theoretical
feasibility of the learning protocol. Once the method has been tested, one
can scale it down to be hardware-friendly, and hopefully perform experiments
on real quantum devices. A typical choice for the PQC architecture at the
simulation stage is the SU(4) brick-layered ansatz depicted on the right of
Fig. 3.2.

Finally, there exists a third avenue for the choice of PQC architecture:
problem-inspired ansätze. This class of PQCs are directly inspired by the
physical properties of the problem at hand, a famous example being the case
of the Quabtum Alternating Operator Ansatz (QAOA) [51] for combinatorial
problems. Here, one cannot use a generic ansatz, but rather has to implement
unitary evolution of the qubit register according to a given hamiltonian that is
defined by the problem itself Belonging to this class is also a whole new family
of architectures that is taking over the QML community: geometric ansätze.
Their name is derived from the geometric deep learning architectures that are
under the spotlight in classical machine learning, and their guiding principles
are the symmetries of the problem or dataset we need to tackle. We will not
delve into their detail here, as this topic will be extensively covered in chapter
6.

3.4 Training a variational quantum circuit
As for its classical counterpart, training a quantum machine learning model

fθ is the act of extremising an objective function C(θ) in terms of the model’s
parameters θ. To optimize the model one can use gradient-based techniques
such as the gradient descent method described in section 1.3. Now, the cost
function may depend non-trivially on the model’s output fθ(x), where x is
some input data point and we are using a deterministic model y = fθ(x) as
an example. No matter the kind of functional dependence of the cost function
on the variational circuit model, it is still a classical dependence, this meaning
that after the circuit fθ has been computed, all the following operations can,
and are, be performed on a classical computer. Thus, the derivative ∂C

∂fθ
can

easily be computed classically and embedded in automatic differentiation [62]
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frameworks such as those used by the strongest ML libraries. The tricky
part comes when realizing that, in order to compute the full derivative of the
cost function w.r.t. the model’s parameters, one also needs to evaluate the
derivative of the circuit’s output. Namely, one needs

∂θk
C = ∂C

∂fθ

∂fθ

∂θk
, (3.8)

and while the first factor is easy to compute, the second is non-trivial. To
keep things easy, we will consider a single output quantum model, but all of
the following can be extended to multi-valued ones. Thus, keep in mind we
will use the term gradient somewhat recklessly. In principle, one can always
resort to finite difference methods to compute derivatives numerically, e.g. by
the central derivative rule

∂fθ

θk
∼ fθ−ϵk − fθ+ϵk

2ϵ , (3.9)

that approximates the partial derivative given two function evaluations at
slightly diminished and augmented values, by a shift of magnitude ϵ, of the
parameter θk with respect to which we want to differentiate fθ. However, for
a quantum computation relying on approximate methods such as finite differ-
ence ones is risky. In fact, since any practical, i.e. on a real quantum device,
evaluation of the model fθ comes with an innate error stemming from the
finite number of shots we make to compute expectation values of quantum
observables, if the gradient is small we may not trust its approximate value,
and we might be forced to use a lot more circuit repetition in order to carry on
the optimization. Is there a way to compute the exact gradient of a quantum
function? Fortunately, the answer is yes. Consider a simple quantum model

fθ = ⟨0|U(θ)†OU(θ) |0⟩ , (3.10)

given by the expectation value of some observable O over the parametrized
state |ψθ⟩ = U(θ) |0⟩ prepared by a PQC U(θ). Computing its derivative with
respect to θk we get

∂θk
fθ = ⟨0| (∂θk

U(θ)†)OU(θ) |0⟩+ ⟨0|U(θ)†O(∂θk
U(θ)) |0⟩ , (3.11)

where we used the linearity of the expectation value. This looks like a nice
expression to be evaluated on a quantum device, except that the two terms
appearing in (3.11) are not expectation values themselves, since bra and ket
states on the left and right of O are different, and the derivative of a PQC might
not be unitary itself. Nonetheless, there are choices of gate generators for the
PQC that make so that the gradient in (3.11) can indeed be computed [63].
Consider, for the sake of simplicity, that the PQC U(θ) consists of a single gate
U(θ) = exp{−iθ/2G}. Assume further that the generator G satisfies G2 = I,
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then we can expand the gate as U(θ) = cos θ/2I − i sin θ/2G, and substituting
in Eq. (3.10) and using duplication trigonometric identities we find

fθ = ⟨0|A+B cos θ + C sin θ |0⟩ , (3.12)

for hermitian operators A,B,C depending only on O and G and not on θ.
Then, using

d cosx
dx

= − sin x = cosx+ s− cosx− s
s sin s

d sin x
dx

= cosx = sin x+ s− sin x− s
s sin s ,

(3.13)

which come from the trigonometric addition and subtraction relations, and are
valid as long as s ̸= kπ, k ∈ Z, we arrive at

∂fθ
∂θ

= f(θ + s)− f(θ − s)
2 sin s , (3.14)

which is the celebrated parameter shift rule (PSR). Notice that the condition
G2 = I which we started from holds for any Pauli operator, and those are
the most common generators for parametric gates. Not only that, but in
principle one can always expand any generic gate into a product of Pauli
generated gates [64], and then use (3.14). Notice that, while any value of s
that is not an integer multiple of π can do, there is a preferred choice that not
only makes Eq. (4.11) nice but most importantly minimizes its variance when
experimentally computed via a finite number of shots [63], namely s = π/2.
In the following we will always assume that this is the choice when computing
quantum gradients. Thus, for us the parameter shift rule reads:

∂fθ
∂θ

=
f(θ + π

2 )− f(θ − π
2 )

2 . (3.15)

Even though we derived the parameter shift rule assuming that the PQC con-
sisted of a single rotation-like gate, it is clear that if the target parameter θ
appears in a single gate all of the above still holds. If the parameter which we
want to derive controls more gates along the PQC instead, we can simply use
the chain derivative rule, compute the parameter shift for each appearance of
θ and then sum up each contribution. Moreover, let us mention that the PSR
can be generalized to compute second-order derivatives such as the Hessian,
that are at the core of more advanced gradient-based optimization approaches
[65]. Thus, wrapping up, quantum machine learning models allow for efficient
gradient estimation, which in turn enables the use of standard optimization
strategies based on gradient descent. For a N parameters PQC, assuming we
use S shots to estimate expectation values, computing a gradient requires 2NS
calls to the quantum model. While S can be chosen to be small [3], having to
iterate over all of the N parameters is a huge step back with respect to classi-
cal ML, where backpropagation algorithms allow to compute the gradient of a
model in a single evaluation. This kind of power is not in reach for quantum
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devices, as quantum mechanics forbids sharing of information between partial
derivatives [24], but since N has to be low anyways, using the PSR is safe and
useful.

Once the ability of computing quantum gradients has been acquired, we
can embed any QML routine in a variational hybrid computation pipeline, as
depicted in Fig. 3.3. Basically, a quantum device is queried any time we need to
evaluate the quantum model to get its predictions, or to compute its gradients,
and all the information retrieved from the measurements is fed into a classical
optimizer which, according to the adopted optimization strategy, suggests an
update of the model’s parameters. The synergistic use of both classical and
quantum devices, allowing for a minimal use of the noisy quantum processor,
while all of the auxiliary computation are run on the classical one, makes the
hybrid protocol NISQ-friendly, as opposed to fully quantum routines as the
famous Shor algorithm [34].

Figure 3.3: The Hybrid Quantum-Classical Computation Scheme [66].
Quantum and classical processor work together in the variational hy-
brid computation paradigm. Quantum hardware (blue box) is queried
to compute losses and gradients, that are reconstructed via the measure-
ment apparatus (red box). The results are fed into a classical machine
(green box) that suggests updated values for the parameters controlling
the quantum circuit.
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Chapter 4

Quantum Generative
Adversarial Learning of Noisy
Information

Now that we have introduced all the needed preliminaries and the quan-
tum machine learning framework, we are ready to delve deeper in one of its
applications. In this chapter we will describe a particular branch of quantum
machine learning: quantum generative adversarial networks, and we will show
how to solve some issues that arise when training them on noisy devices. The
following is the result of our published work [67].

4.1 Quantum adversarial game
We introduced in section 1.4 the classical framework of generative adver-

sarial networks (GANs) [20], which is arguably one of the most outstanding
and discussed ML applications. Let us here quickly recall that GANs are
learning models that, by exploiting Nash’s game-theory results, particularly
Kakutani’s fixed point theorem [68], can learn to, in principle exactly, repro-
duce some target data distribution. Practically, two agents, usually dubbed
the generator (G) and the discriminator (D), compete against each other in
a zero-sum game, playing in turns, each turn trying to improve their own
strategy. The generator wants to fool the discriminator, making it label its
generated data as coming from the target distribution, whereas the discrimi-
nator wants to correctly tell fake samples apart from real ones. Under some
reasonable assumptions1 the game admits a unique equilibrium state, where
G can exactly generate samples from the target distribution and D can only
helplessly assign labels at random.

Nash’s game theory and the adversarial game framework find a place in
quantum machine learning as well. Indeed, it is a recent result of QML that

1Namely that the strategy spaces of the agents are compact and convex [68]
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Figure 4.1: The pipeline of a QGAN. Here σ denotes the real data, ρ is the
fake sample generated by G, whereas D implements the discriminative
POVM and decides if its input was real or fake.

GANs can be promoted to the quantum domain [69, 70], and their quantum
cousins, perhaps not surprisingly, go by the name of Quantum Generative
Adversarial Networks (QGANs). A schematic pipeline of their functioning is
sketched in Fig. 4.1.

As a classical GAN aims at learning to copy some data distribution, QGANs
goal is to learn reproducing an unknown state of a quantum system. Indeed,
now the target data distribution is encoded in some quantum state described
by the density operator ρR, where the subscript makes clear that it is the real
distribution. Analogously, the generator will output its fake data as a quan-
tum density matrix ρG. Thus, the discriminator task is that of distinguishing
between two quantum states, and as such its action can be implemented as
a two-outcome positive operator-valued measure (POVM) ΠD

i whose outcome
i ∈ {R,G} judges whether the state is real or fake. Again, D and G play
against each other. At each turn G will update ρG, using the discriminator’s
feedback to get closer and closer to ρR. In turn, D will improve its strategy for
the binary quantum state discrimination task it has to carry out. The error in
such discrimination process is given by the conditional probability of judging
real a generated state, i.e.

p(R|G) = Tr[ΠD
RρG] , (4.1)

and by that of judging fake a real state

p(G|R) = Tr[ΠD
GρR] = 1− Tr[ΠD

RρR] , (4.2)
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4.1 Quantum adversarial game

where we used the condition satisfied by the POVM effects ∑i=G,R Πi = I, and
the defining property of density matrices Tr[ρ] = 1. Assuming that real and
fake states are presented to the discriminator with equal a priori probabilities,
we can define the discrimination error as

SD = p(R|G) + p(G|R)
2 . (4.3)

The discriminator strategy during their turn can then be formalized as a min-
imization of the discrimination error that, without loss of generality, can be
written as

Discriminator : maxΠD
Tr[ΠD(ρR − ρG)] , with ρR, ρG fixed ,(4.4)

where we set ΠD ≡ ΠD
R to simplify the notation. An analytic solution to the

above optimization is provided by Helstrom’s theorem [71, 72], which states
that the optimum POVM {ΠD

i } is formed by projectors onto the positive (ΠD
R)

and negative (ΠD
G) subspaces of the operator ρR− ρG. On the other hand, the

generator’s strategy is to fool the discriminator as much as possible by reducing
their ability to distinguish the real and generated states. This can be restated
as making the probability of D labeling the fake state as real as big as possible.
Thus, the generator’s objective function can be chosen as

SG = p(R|G) . (4.5)

Since the generator can only act on ρG, we can also recast its optimal strategy
as

Generator : minρG
Tr[ΠD(ρR − ρG)] , with ρR,ΠD fixed . (4.6)

This strategy has a formal analytic solution as ρG = |πmax⟩⟨πmax|, where
|πmax⟩ is the eigenvector of ΠD with maximum eigenvalue. If D is always
playing with the optimal Helstrom measurement, then ρG is a projection onto
an eigenstate of ρR − ρG with positive eigenvalue. As in the classical case,
without any restriction on the operations performed by both agents, the game
should end when G is able to perfectly reproduce the real data and, accord-
ingly, D is unable to correctly discriminate fake data from real ones. Even in
the quantum domain, this corresponds to the unique Nash equilibrium of the
underlying game [69].

However, it is simple to show that D and G cannot and should not solve the
optimization problems (4.4) and (4.6) at each iteration. Firstly, they cannot
find the optimal solution without perfectly knowing, at each iteration, ρR and
the other player’s strategy, which contradicts the original scope of the game.
Secondly, they should not perform such difficult optimization at each round: if
D and G iteratively play using the solution of Eqs. (4.4)-(4.6), then they never
reach the equilibrium for mixed states ρR. This is summarized by the following
theorem, whose proof is straightforward: as discussed above, the solution of
(4.6) is always a pure state ρG = |πmax⟩⟨πmax|, and as such ρG ̸= ρR in general.
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4 Quantum Generative Adversarial Learning of Noisy Information

Theorem 1. For mixed states ρR, the adversarial game fails to converge when
D and G iteratively solve the strategies (4.4)-(4.6).

To achieve convergence, each player must only slightly update their strategy
at each operation [69], rather than using Eqs. (4.4)-(4.6). Moreover, in the
language of Nash equilibria, each player is unaware of the adversary’s move,
and the best they can do is to assume that the opponent is playing with the
optimal strategy and fight against it. We can then define the score function of
a QGAN as the bilinear function SD we defined in (4.3)

S(ρG,ΠD) = Tr[ΠD(ρR − ρG)] , (4.7)

where we dropped the D subscript since the same score can be used to train
the generator, and use this as the objective function of a standard GAN game,
as discussed in section 1.4. Let us check one last time that: G increases
its score whenever D loses the same amount, making this a zero-sum game;
both the states ρG and the measurement operators ΠD form a convex set in
their respective spaces.2 Therefore, the Nash equilibrium is the result of the
minimax problem minρG

maxΠD
S(ρG,ΠD) = 1

2 minρG
∥ρR − ρG∥1 = 0 where

the first equality follows from the Helstrom theorem and the definition of the
1-norm [73]. As a result, the Nash equilibrium is when the generator is able
to perfectly reproduce ρR, as originally shown in [69].
However, how to achieve in practice this equilibrium configuration is far from
being trivial.

Inspired by the success of gradient-based training of generative adversarial
networks [74], the most natural approach to play the quantum adversarial
game described by the score function (4.7) is to use a suitable parametrization
of ρG and ΠD, see e.g. the one with PQCs described in Fig. 4.2, and then
iteratively update these parameters, e.g. via the gradient descent optimizer in
Eq. (1.4) [69]. Using these methods, convergence with pure target states ρR =
|ψR⟩ ⟨ψR| has been obtained in several scenarios [70, 75]. Moreover, QGANs
have been exploited to learn classical distributions of data [76, 77], thus they
have immediately found applications in both CQ and QQ quantum machine
learning. All of the early works on QGANs focused on learning pure quantum
states, whereas mixed states (i.e. noisy information) have been addressed only
as ensembles of pure data [78]. However, the latter play a crucial role in the
coming NISQ technologies since the environmental noise is unavoidable and
usually partially destroys the quantum features as entanglement that do not
have a classical counterpart and that are instead mainly responsible for the
predicted quantum speedups. These reasons led us to strongly believe that,
in order to get a deeper understanding of the performance of QGANs on real
noisy quantum device, it is remarkably relevant to investigate the scenario of
learning mixed quantum states. This has been the main focus of this first work
of us, and in the next sections we will show a thorough numerical investigation

2Since ΠD is part of a POVM it is a positive operator with ∥ΠD∥∞ < 1.

54



4.1 Quantum adversarial game

|0〉a
|0〉⊗n

|0〉⊗n
A

R/G
ρR/G

×

D ×

Figure 4.2: QGAN circuit structure for generic n-qubit mixed states. The
R/G/D blocks are PQCs that are exploited to create real/generated
data, and to implement the discrimination process, respectively. The
discriminator has access to an ancilla qubit a, while the auxiliary qubits
A are used by R/G to create mixed states. The × symbol over a wire
means tracing the degrees of freedom associated to it.

on the problematics of naive gradient-descent based training of QGANs when
ρR, and consequently ρG, are mixed.

This is due to the bilinear nature of the score function (4.7). Indeed it has
been shown that the adversarial optimization of bilinear score functions may
display limit cycles when trained with standard gradient descent rules, or even
a “chaotic” behaviour, see e.g. [79, 80] and references therein.

Recall that, as we have seen in section 2.2, to generate mixed quantum
states, one can create a generic pure state (living in a larger Hilbert space) as
a quantum circuit by applying quantum gates to a given pure (ground) state,
and then tracing out half of the qubit register. The same procedure can be
exploited to generate the fake data, but in terms of a PQC where the gate
parameters can be tuned. Besides, D applies another PQC to the real or fake
state at hand, and entangles it to an additional (ancilla) qubit that later is
measured in order to perform the discrimination, this way applying Naimark’s
theorem and allowing for a two outcomes POVM to be implemented – see Fig.
4.2.

More precisely, let us consider the simplest case where ρR is a single-qubit
mixed state. The most natural parametrization of ρR is via the Bloch vector
r, namely ρR = [1 + r · σ]/2 where we recall from compendium section 2.3
that σ is the vector of Pauli matrices and |r| ⩽ 1. Similarly we parametrize
ρG with the Bloch vector g and ΠD = [d01 + d · σ]/2, where d0 = TrΠD

and d0 ⩾ |d| (because ΠD ⩾ 0). With this simple parametrization Eq. (4.7)
becomes a bilinear form in the Bloch vectors

S(ΠD, ρG) = d · (r − g)
2 . (4.8)

The above score function has been extensively investigated in Refs. [81, 82]
where the emergence of limit cycles in classical GANs training was shown.
Limit cycles are a detrimental behaviour that can spoil GANs training. Roughly
speaking, when training gets stuck in a limit cycle the two agents start mod-
ifying their strategies in a periodic way, endlessly chasing each other without
ever attaining convergence. Nonetheless, Refs. [81, 82] focus on bilinear prob-
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a) Figures of merit. b) Trajectory of ρG in the Bloch ball.

Figure 4.3: Emergence of a limit cycle when the score (4.8) is optimized
via gradient descent/ascent, as described in the main text. Here the
learning rate of both agents is η = 0.1, and one training turn consists of
5 discriminator’s steps followed by a single generator’s one.

lems with linear constraints, while Bloch vectors satisfy a non-linear constraint
since they live in the Bloch ball. This difference may be the reason behind
the good performance of quantum adversarial learning for pure states [70, 75],
as pure states lie at the boundary of the Bloch sphere where such non-linear
constraints are important. However, when dealing with the optimization of
highly mixed states, which lie well inside the Bloch ball, the presence of the
boundary may not affect the optimization, and limit cycles may emerge. We
summarise this aspect in the following theorem, whose proof, adapted from
[81], can be found in Appendix B:

Theorem 2. (informal statement): Gradient descent/ascent applied to the
problem minρG

maxΠD
S(ΠD, ρG) diverges for states far from the surface of the

Bloch sphere.

We bring evidence to the previous statement by running a QGAN game in
a single qubit scenario where both D and G are parametrized via their Bloch
vectors. We employ gradient descent/ascent (GDA) – namely gradient descent
for g and gradient ascent for d –on the score function (4.8) with an added
penalty term to enforce the constraints on the Bloch vectors, i.e. ∥g∥ ⩽ 1 and
∥d∥ ⩽ d0 ⩽ 2 − ∥d∥. Results are shown in Fig. 4.3, where the limit cycle
behaviour in the trajectory of g is evident.

An algorithm dubbed “optimistic mirror descent” (OMD) has been pro-
posed in Ref. [81] to escape from the limit cycles that emerge in the minimax
optimization of bilinear cost functions (4.8). In the next section we show that,
although perfect limit cycles may not exist for more complex parametriza-
tions of ρG and ΠD, a simple gradient descent/ascent update may produce a
“chaotic” behaviour, where convergence is not observed. We find instead that
convergence is obtained via OMD.
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4.2 Training with parametric quantum circuits

Figure 4.4: The building block of G and D circuits with 3 CNOTs and 15
single-qubit rotations. U1 and U2 implement elements of SU(2) and
SU(4), respectively, where Ri are rotations around the i-th axis.

4.2 Training with parametric quantum circuits
Here, we will ultimately be concerned with the problem of learning a mixed

state via a QGAN game. Since every mixed state can be written as a pure state
in a larger Hilbert space (Fig. 4.2), we build the generator via the following
PQC with classical parameters θG

ρG = TrA [|ψGA(θG)⟩ ⟨ψGA(θG)|] , |ψGA(θG)⟩ = U(θG) |0⟩⊗2n , (4.9)

where both A and ρG contain n qubits, and U(θG) is the unitary operator
corresponding to the PQC. Similarly, since every measurement operator can
be written as a projective measurement onto a larger Hilbert space (Fig. 4.2),
we define the discriminator’s POVM with classical parameters θD as

ΠD = Tra
[
U(θD)†(1D ⊗ |0⟩ a ⟨0|)U(θD)

]
. (4.10)

where a is a single auxiliary qubit. This measurement can be interpreted as
follows: first apply a PQC U(θD) entangling the system with an auxiliary
qubit a, then measure the qubit a in the computational basis. If the outcome
0 is detected, then we guess that the state is the real state, otherwise (outcome
1) the state is judged as fake.

4.2.1 Circuits Ansätze
Following Refs. [75, 83], G and D circuits are built by repeating a two-

qubit block which implements a generic unitary U ∈ SU(4). As discussed in
section 3.3, this ansatz is not necessarily device-friendly, as controlling a generic
element of SU(4) and doing so many times requires many logical operations.
Nonetheless, since we are interested in exact numerics to get a grasp on the
feasibility of the QGAN method for mixed states, we do not have to worry
about that. As shown in Fig. 4.4, the building block is composed of 15 single-
qubit rotations as those described in eqs. (3.1,3.1,3.3) and 3 CNOT gates. One
block allows to generate every two-qubit pure state. For larger registers, we
apply this block to each pair of consecutive qubits, thus obtaining a layer.
Layers are then concatenated in a staggered pattern.
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4 Quantum Generative Adversarial Learning of Noisy Information

We have discussed in section 4.2 that gradients of quantum models can
quite conveniently be analytically evaluated directly via the quantum device
by querying the model itself twice for every parameter it has. This is the
parameter shift rule [84–86] that we introduced in Eq. (3.15), and that we
restate here

∂f

∂θi
= 1

2

[
f
(

θ + π

2 ei

)
− f

(
θ − π

2 ei

)]
, (4.11)

where ei is the unit vector in the i-th direction, and the rule holds thanks to
our ansatz being made of repeated Pauli rotations and fixed entangling gates.

First of all, before tackling mixed states learning, let us confirm the feasi-
bility of the QGAN protocol for pure states. In Fig. 4.5 we show the results
of our numerical investigation, where the training was evaluated in terms of
some relevant figures of merit:

• the score function (4.7) value S. Recall that, while in other learning task
such as regression or classification the objective function has a definite
meaning, usually the error the model is making, and as such we know that
small values of it are favourable, in the adversarial learning framework
the score function cannot be used to understand how the agents are
performing. Still, we expect it to be stationary at the equilibrium point.

• the generator’s score function SG (4.5), i.e. the probability p(R|G) of D
labelling fake data as true. Again, we expect it to be stationary when
the game converges.

• the trace distance d = 1
2∥ρG− ρR∥1 between the generated state and the

target one, unequivocally telling us whether the generated fake state is
approaching and has, at the end, reached the target one.

• the fidelity F =
[
Tr
√√

ρGρR
√
ρG
]2

between target and fake state, which
is another measure of distance between quantum states. For pure states
fidelity and trace distance are equivalent, but for mixed states they cap-
ture different features [24].

In our simulations the target real data are random pure states of n qubits,
with n = 1, 2, 3, obtained via a PQC with the same structure of the one
used for G, but with random fixed parameters. Here, training is carried out
via alternately updating D and G via a single gradient descent/ascent step.
We have tried different optimizers, always observing a qualitatively similar
convergence behaviour. Particularly, the task resulted easy already for the
vanilla gradient descent of Eq. (1.4), and while we could arguably improve
convergence time by performing some hyperparameter optimization to look for
e.g. the best learning rate this is beyond the scope of this analysis.
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Figure 4.5: Convergence of QGANs for learning pure states of n qubits.
Both agents rely on standard gradient descent/ascent optimization. The
target and the initial fake states are randomly chosen on the Bloch
sphere.

4.2.2 Emergence of limit cycles
We now turn to our real interest, the more appealing case of learning mixed

states. They have been so far addressed as an ensemble of orthogonal pure
states [78], while here they are created by tracing out half of the qubits register.
Our results are summarized in Fig. 4.6, where we show the learning process for
mixed states of the form ρR = I

2 + a
2
√

2(σx + σy) with purity P = Trρ2 = 1+a2

2 ,
ranging from the completely mixed one P = 1/2 to P = 3/4. The selected
optimizers are the previously defined GDA and Adam, i.e. one of the best
performing optimization algorithm for ML [87]. The messy behaviour that
we can observe in Fig. 4.6 shows how none of the chosen optimizers allows
to reach convergence. This does not change even if we tweak the values of
the optimization hyperparameters. However, comparing these results with the
ones in Fig. 4.3, we can see that for PQCs the exact limit-cycle behaviour
disappears because the score function is no longer bilinear. Let us point out
that in Fig. 4.6 we have an overparametrization because D and G use 15
parameters each, whereas a general single-qubit POVM has 4 real degrees of
freedom only, and a single qubit mixed state has 3. For this reason we devise
two tailored circuits in order to achieve a minimal parametrization for both D
and G (see Fig. 4.7), as in the following:

ρG(θ) = 1
2

(
1 + c(θ1)c(θ2) c(θ1)s(θ2) (s(θ3) + ic(θ3))

c(θ1)s(θ2) (s(θ3)− ic(θ3)) 1− c(θ1)c(θ2)

)
, (4.12)

and

ΠD(θ) = 1
2

(
1 + c (θ1 + θ2) c (θ4) s(θ4) (c(θ1)s(θ3)− ic(θ2)c(θ3))

s(θ4) (c(θ1)s(θ3) + ic(θ2)c(θ3)) 1− c (θ1 − θ2) c (θ4)

)
,

(4.13)
with cos(θ) ≡ c(θ) and sin(θ) ≡ s(θ). Even with these tailored circuits, con-
vergence is not achieved as numerically reported in Fig. 4.8. Moreover, by
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a.1) GDA: P = 1/2. a.2) GDA: P = 2/3. a.3) GDA: P = 3/4.

b.1) Adam: P = 1/2. b.2) Adam: P = 2/3. b.3) Adam: P = 3/4.

Figure 4.6: Limit-cycle-like behaviour of QGANs when learning mixed
states for different values of the purity P . As optimizers, we use
GDA (top row) and Adam (bottom row). None of them display conver-
gence, although the latter has a less pronounced oscillating behaviour.
In all these cases the initial configurations of G and D correspond to
the same random parameters. These trajectories have been obtained by
running the QGAN for 250 total turns, where each turn comprises 10
optimization steps for D followed by 1 for G. Lastly, the learning rate of
GDA is set to 0.1, whereas that of Adam is 0.05.

Figure 4.7: The minimal circuits for G (top), and D (bottom).

using simple gradient descent method, we still observe limit cycles (not shown
in figure).

4.2.3 Training with optimism
In standard GANs competing players are usually unaware of the oppo-

nent’s strategy. However, each player may try to guess the opponent’s move
in order to improve its strategy. This is the building concept of the Optimistic
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Figure 4.8: Training behaviour for learning a mixed state with P = 3/4
under the same conditions of 4.6 with Adam and the tailored agents,
but a different initial configuration.

a) OMD: P = 1/2. b) OMD: P = 2/3. c) OMD: P = 3/4.

Figure 4.9: Convergence of QGANs for learning mixed states via OMD
under the same conditions used in Fig. 4.6.

Mirror Descent (OMD) optimization algorithm [88], which was shown to fix
convergence issues, namely limit cycles, of classical GANs with bilinear score
functions – see Ref. [81]. However, there it has been used to enhance con-
vergence also in the case of non-bilinear score functions. Motivated by these
results, we now show that OMD works successfully also for our QGANs – see
Fig. 4.9. More specifically, the OMD-based update rule for the score function
of Eq. (4.7), S(θD,θG) := S(ΠD(θD), ρG(θG)), reads

θt+1
D = θtD + 2ηD∇θD

S(θDt ,θGt )− ηD∇θD
S(θDt−1,θ

G
t−1) , (4.14)

θt+1
G = θtG − 2ηG∇θG

S(θDt+1,θ
G
t ) + ηG∇θG

S(θDt ,θGt−1) , (4.15)

where ηD/G are the learning rates for D and G. Notice that this rule corresponds
to the scenario where D is optimized first, which is the one we adopted.
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4.3 Convex optimization
Since PQCs are not the only way of modelling quantum states, here we

present a non-parametric method, hereafter dubbed ConvexQGAN, to solve
the minimax problem minρG

maxΠD
S(ρG,ΠD) using the formalism of convex

optimization presented in Ref. [89]. Both {ρG} and {ΠD} are convex sets,
while S(ρG,ΠD) is bilinear, thus when we iteratively fix either ρG or ΠD we
always obtain a convex function over a convex set. Therefore, by adapting the
Frank-Wolfe algorithm from Ref. [89], we may write the following update rules
at the k-th step

Πk+1
D = (1− αk)Πk

D + αk |Dk⟩ ⟨Dk| , (4.16)
ρk+1
G = (1− βk)ρkG + βk |Gk⟩ ⟨Gk| , (4.17)

where αk and βk are decaying learning rates, e.g. typically αk = βk = 2
k+2 , the

state |Gk⟩ is the eigenvector with smallest eigenvalue of∇ρG
S(ρkG,Πk

D) = −Πk
D,

while |Dk⟩ is the eigenvector with smallest eigenvalue of −∇ΠD
S(ρkG,Πk

D) =
−(ρR − ρkG). Although the update rules directly follow from the Frank-Wolfe
algorithm, we highlight here an interesting result from the physics points of
view. The states |Dk⟩ are elements of Helstrom measurement to optimally
distinguish the real state ρR from the current fake state ρkG. As such, it is
tempting to consider a different strategy with αk = 1 at each iteration step.
The downside of the latter approach is that the measurement operator highly
fluctuates between different steps. However, for αk = 1 we get |Dk⟩ = |Gk⟩ so
Eq. (4.17) gets a clear operational meaning. The generator’s state is iteratively
updated with one of the states entering in the Helstrom optimal measurement.
This reminds us the original optimization from Eq. (4.6), but without its con-
vergence issues for mixed states. Indeed, the update rule of Eq. (4.17) allows
the generation of mixed states, unlike in Eq. (4.6).

Finally we propose a physics inspired alternative by observing that, for
small βk, Eq. (4.17) can be interpreted as an imaginary time evolution

ρk+1
G ∝ eβkHkρkGe

βkHk , Hk = |Gk⟩ ⟨Gk| , (4.18)

where after the imaginary evolution we need to normalize the state such as
Tr[ρk+1

G ] = 1. The gradient-based Frank-Wolfe algorithm (4.16)-(4.17) and
the imaginary time iteration (4.18) are numerically studied in Fig. 4.10 for
random 5-qubit states with full-rank. For the imaginary time iteration we use
αk = 1, so |Gk⟩ = |Dk⟩ in (4.18). We observe in Fig. 4.10 that the imaginary
time evolution, together with the optimal Helstrom measurement at each step,
significantly outperforms the Frank-Wolfe iteration, both in terms of speed
and accuracy.

ConvexQGAN methods show fast convergence towards the equilibrium con-
figuration, but they require eigendecompositions of the state at each step. This
operation is simple for classical computers as long as the Hilbert space is suf-
ficiently small. To extend this operation to larger systems, we now discuss
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Figure 4.10: ConvexQGAN: Learning different random mixed states using either
the Frank-Wolfe iteration (4.16)-(4.17), the imaginary time evolution
(4.18) or the quantum circuit update from (4.21). The cases with αk =
1 in (4.17) correspond to Helstrom measurements. For each algorithm,
20 lines are plotted for different random initial states. All simulations
are for 5-qubit states.

how to write an update like in Eq. (4.18), but using a quantum circuit. For
this purpose, we use the following quantum map, which is at the heart of the
quantum density matrix exponentiation algorithm [90],

E±t
σ [ρ] = Tr2[e±it SWAPρ⊗ σe∓itSWAP] = cos(t)2ρ+ sin(t)2σ ± i

2 sin(2t)[ρ, σ] ,
(4.19)

where SWAP is the swap operator (see Eq. (2.38)). Applying this map twice
with different signs, one has

E−t
σ ◦ E+t

σ [ρ] = cos(t)4ρ+ sin(t)2(1 + cos2 t)σ + 1
4 sin(2t)2[[ρ, σ], σ] . (4.20)

Therefore, setting I tσ[ρ] = E−t
σ ◦E+t

σ [ρ] and tk such that cos4 tk = 1−βk, namely
βk ≈ 2t2k, we get

ρk+1
G = I tkHk

[ρkG] = (1− βk)ρkG + βk(Hk +Hkρ
k
G + ρkGHk − 2HkρHk) +O(β2

k) ,
(4.21)

where Hk was defined in (4.18). The latter update rule is akin to a mixture of
(4.17) and (4.18), but it has the advantage that it can be explicitly evaluated
as a quantum circuit applied to ρk and two copies of the state |Gk⟩. As
shown in Fig. 4.10, the performance obtained with the update rule (4.21) is
similar to that of imaginary time evolution. Therefore, if the states |Gk⟩ can
be efficiently prepared, for instance via strategies like the Helstrom classifier
circuit from [91], then the above update rule can be used for QGAN training
in a quantum computer.
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Chapter 5

Quantum Generative
Adversarial Learning of Noisy
Maps

In this chapter we show how to generalize the QGAN architecture we just
finished analysing in Chapter 4, from the context of quantum states to the
context of quantum maps (or superoperators). In other words, the real data
we want to target is a noisy quantum map while the generator’s duty will now
be that of synthesising fake quantum maps that mimic the real (unknown)
one’s action as best as possible. Since this new learning scheme targets su-
peroperators and is still based on the QGAN paradigm, we decided to dub it:
SuperQGAN.

In what follows we are going to present the reader with the introduction,
and preliminary study, of SuperQGANs that we published in [92].

5.1 Motivation
We ended the previous chapter having endowed quantum generative ad-

versarial networks with the ability of fruitfully tackling mixed states by the
means of optimism. As we have discussed in section 2.2, mixed states arise
naturally when the quantum systems we want to describe is not isolated, but
is part of a larger one. Contextually, the transformations these states are sub-
ject to, i.e. their evolution in time, has to be described by the quantum maps
[24, 26] we introduced in section 2.2.2. These maps are thus the only way we
can characterize what happens in a real quantum computing device instead of
the ideal unitary circuit we designed.

Indeed, in this NISQ era, the circuital paradigm of perfect quantum com-
putation remains only an ideal abstraction. The simple logic gates one would
like to compose in order to build the desired algorithm are not perfect unitary
evolutions of the targeted systems. Rather, they also induce unwanted, but
also unavoidable, couplings with the environment leading, for example, to de-
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coherence and loss of quantumness. It is thus more appropriate to address the
physical processes occurring in a NISQ processor by describing the action of
a quantum circuit, or of any of the gates constituting it, rather than with a
unitary U mapping the input state as |ψ⟩ → U |ψ⟩, with a general CPTP map
Φ. Recall that those are completely positive (CP) and trace-preserving (TP)
linear super-operators acting on the space of density operators of the input sys-
tem Φ : ρ→ Φ(ρ). Sometimes they can go by the name of quantum channels,
namely when their input and output spaces are the same, but we will continue
using the terms map and channel equivalently. Understanding the properties
of the quantum maps, and thus of the hidden couplings with the environment,
that are really happening in a quantum computer is of paramount importance
in order to move on to an era of computation where quantum protocols are
dominant. These unwanted couplings, on top of limiting the depth of the
quantum circuits that can be reliably devised, may also induce back-flows of
information from the environment to the computing system, leading to the
observation of memory effects when repeatedly using a given quantum gate.
Having ways to characterize the noise occurring on NISQ processors can lead
to devise tailored circuital schemes that can minimize error rates, as in error
mitigation protocols such as those of [93, 94], or even exploit noisy processes
to achieve the desired goal – see for instance Refs. [95–97].

5.2 Definition of SuperQGANs for quantum
maps

Let us recall from the discussion around figure 2.3 that when a single qubit
map is independently applied (in parallel) to n qubits, then the global quantum
map reads as Φ⊗n. When this map is applied n times (in series) to the same
qubit, we will write it as Φn = Φ ◦ · · · ◦ Φ. In both cases, it is assumed
that the noisy operations are uncorrelated: there are no spatial or temporal
noise correlations. However, in a NISQ device neighboring qubits typically
experience spatially correlated noise, and the later-time evolution may display
(non-Markovian) memory effects, hence leading to temporal noise correlations.
As depicted in Fig. 5.2, both these cases can be represented by the action of a
map Φ(n), more general than either Φ⊗n or Φn. Particularly, this generalized
map Φ(n) is defined so that for spatially correlated noise, it maps n-qubit states
to n-qubit states, while for temporally correlated noise Φ(n) maps a single qubit
to a “history” of single qubit states ρt, with t = 1, . . . , n, each one representing
the state of the system after the t-th use of the memory map Φ – see Fig. 5.2.

Before stating our definition of SuperQGANs, let us quickly recall the ba-
sic structure of a “standard” QGAN that we covered in detail in the previous
Chapter. QGANs are generative quantum models that, by exploiting an ad-
versarial game where a Generator (G) agent, able to produce tunable fake
instances ρ of some target (real) distribution of data, encoded in a quantum
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Figure 5.1: Pictorial representation of a SuperQGAN, where the Discrimina-
tor needs to distinguish a real noisy quantum circuit from a fake one
created by the Generator. These two agents play against each other, in
particular the Generator needs to generate better and better data such
that the task of the Discriminator becomes more and more complicated.
The game ends (convergence) when the generator learns to create the
real noisy quantum circuit (i.e., fake=real), hence identifying the errors
occurring in the real circuit (crosses) running on a NISQ device.

state σ, is opposed to a Discriminator (D) that is in turn able to find good
strategies, i.e. good POVMs, to tell real and fake data apart. Played in turns,
this game can be framed in Nash’s game-theory and, under reasonable assump-
tion of convexity, possesses a unique equilibrium point [68], where G is able to
completely fool D and achieve a perfect data copying strategy.

Since ultimately the QGAN scheme is an adaptive state-tomography pro-
tocol, the extension from states to superoperators is conceptually simple: we
need to promote QGANs to a process-tomography [98] scheme. With this in
mind, we define a SuperQGAN as yet another two-player game, where now
the generator tries to reproduce a general CPTP map Φ(n) and D has to carry
out an optimization over process-tomography strategies.

The general maps Φ(n), portrayed in Fig. 5.2 describe, either spatially cor-
related or temporally correlated noise. For temporal correlations, the map can
be expressed as a “quantum comb” [99], where the name comes from their
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Figure 5.2: General detection scheme for spatially correlated (a) and tem-
porally correlated (b) noise. Noise couples the system qubits S with
the environmental qubits E. We use the same diagram to display both
the real noise Φ(n)

R and the generated fake noise Φ(n)
F , though these may

physically correspond to different evolutions – e.g. real interaction with
an environment vs. a quantum circuit. The discriminator has access
to auxiliary qubits A and a measurement qubit M. Based on the mea-
surement outcome on M, the map Φ(n) is judged either real or fake. For
spatially correlated noise (a), the generator applies an initialization map
DI on S+A and a measurement map DM on S+A+M, finally measuring
M. For temporally correlated noise (b), the discriminator applies the
general map D that probes the system S at intermediate times, finally
measuring M. In both cases, the discriminator has no access to the en-
vironmental qubits E.

schematic resemblance with an actual comb. Quantum combs are graphical
representations of quantum circuits that repeatedly act on a system and on
environmental ancillary qubits that sort of play the role of an entanglement
reservoir, as in Fig. 5.2(b). Each “comb tooth” implements a quantum op-
eration on the system at a certain time. The system state ρin

t goes into the
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tooth from the left and the output state ρout
t exits from the right. All teeth

are linked via the comb shaft, which represents environmental memory effects
due to entanglement or other correlations between system and environment.
Without external perturbations ρin

t = ρout
t−1, while in general the input and out-

put states will be different if the system is probed, as in Fig. 5.2(b). For both
spatial and temporal correlations, the discriminator can use all the resources
offered by quantum mechanics to optimally discriminate the two processes [73]:
these include entangling the system with a suitable number of ancillary qubits
and performing generalized measurements (POVM) on the extended space.
Nonetheless, the discriminator has no access to the environment responsible
for the noisy evolution (see Fig. 5.2).

Our SuperQGAN can be mathematically described as the following min-
max game

min
Φ(n)

F

max
D

Tr
[
D ⋆

(
Φ(n)
R − Φ(n)

F

) (
|0⟩⟨0|⊗ND

)]
, (5.1)

where ND is the total number of qubits used by the discriminator, namely
the sum of system qubits S, ancillary qubits A and measurement qubits M in
Fig. 5.2, Φ(n)

R/F are, respectively, the real (R) and fake (F) process maps, whileD
describes the set of operations performed by the discriminator. When the task
is to discriminate between two processes as in Fig. 5.2(a), then D = (DI ,DM)
is a pair of CPTP maps, the initialization map DI and the measurement
map DM , and the star-operation in Eq. (5.1) refers to the composition map
D ⋆Φ = DM ◦Φ ◦DI , as in Fig. 5.2(a), with Φ being a CPTP map. When the
task is to discriminate between two quantum “combs”, as in Fig. 5.2(b), the
discriminator’s strategy can be entirely different: the discriminator can probe
the system at all times t = 1, . . . , n and, by doing this, alter the state in S.
In other terms, the input ρin

t in the t-th comb tooth will be different from the
output ρout

t−1 from the previous tooth. As a consequence, all the outputs in S
at later times will be altered. The probe can be effectively implemented via
measurements or via operations that couple the system S with the ancillary
qubits A, owned by the discriminator, and the latter is the path we decided
to follow since mid-circuit measurements are difficult to carry out on NISQ
devices. All these operations are grouped into a process map D, which is pic-
torially written via the “upside-down comb” in Fig. 5.2(b), while the combined
action of D and Φ(n) is represented by the star-operation ⋆ in Eq. (5.1).

Let us take a quick break and discuss an alternative approach to adversarial
quantum noise sensing. We have seen in section 2.2.2 that there exists an iso-
morphism between CPTP maps Φ acting over d-dimensional quantum systems
and the bipartite states JΦ = (I ⊗ Φ)(|Ω⟩⟨Ω|) living in d2-dimensional quan-
tum systems, where |Ω⟩ = ∑d

i=1 |i, i⟩ /
√
d. The bipartite states JΦ are called

Choi-Jamiołkowski (CJ) states [73], and completely characterize the channel
Φ. Thus, if we can prepare the maximally entangled state |Ω⟩ and manage
to apply the channel to half of it, we could in practice prepare the state JΦ

and try to learn it to investigate the map Φ. Since the CJ states are mixed,
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resorting to the optimism-improved QGAN we have studied in the previous
chapter would analogously lead to learning the noise affecting our computa-
tions. However, this approach can still be framed in the SuperQGAN game
of Eq. (5.1). It just corresponds to a particular discrimination strategy: we
need as many ancillary qubits as the system qubits in Fig. 5.2(a), and we need
to fix the initialization circuit DI such that the input for CPTP map Φ(n) is
|Ω⟩, namely DI(|0⟩⟨0|⊗ND) = |Ω⟩⟨Ω|. Most process tomography schemes [98]
tackle the CJ state to carry out the characterization of the map at hand. How-
ever, we decided to directly model the channel Φ and avoid the preparation of
|Ω⟩, to try to keep the need of quantum resources as low as possible.

Indeed, in the following applications we will approximate the general maps
Φ(n)
F and D via quantum circuits with a certain depth and with a certain

amount of ancillary qubits. For spatially correlated noise, without any restric-
tion on the possible operations, the maximization over D in Eq. (5.1) results
in the diamond distance [73] between two channels

∥∥∥Φ(n)
R −Φ(n)

F

∥∥∥
⋄
, whose min-

imum is always zero with Φ(n)
R = Φ(n)

F . On the other hand, when either D or G
have access to non-universal resources, the final value in (5.1) may be greater
than zero and in general Φ(n)

R ̸= Φ(n)
F . For instance, a restricted discrimination

strategy without ancillary qubits will be computationally simpler, yet not gen-
eral enough. On the other hand, deep quantum circuits with many ancillary
qubits may be universal, yet numerically hard to train.

5.3 Applications

5.3.1 Random Unitary Channels
A random unitary operation describes a physical process that can be de-

composed into the probabilistic application of one of a finite set of unitary
operations [97]. It has been demonstrated that in this case if one has access to
the environment introducing noise and can measure it obtaining classical infor-
mation, then the corresponding noise process can be corrected [100]. In a real
quantum computer this might be also the very likely case when one is dealing
with a quantum circuit that is ideally a unitary transformation on some initial
qubit states but in practice each gate of the circuit with some probability can
correspond to a slightly different gate. Since the user has no access to such
information, this introduce noise in the quantum computation that can be de-
scribed by a random unitary map. Random operations can be also exploited to
create quantum information scrambling as it was experimentally demonstrated
in a 10-qubit trapped-ion quantum simulator [101]. Moreover, random opera-
tions can also allow to tailor the noise for scalable quantum computation via
randomized compiling [102]. In Ref. [103] they exploit ML to classify single-
qubit stochastic errors that can be written as a convex combination of unitary
operations [103]. From the mathematical point of view, these transformations
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are described by CPTP maps whose action on an input state ρ can be put in
the form

ΦR(ρ) =
∫
U(s)ρU(s)†p(s)ds, or ΦR(ρ) =

∑
k

pkUkρU
†
k (5.2)

where in the continuous case p(s) is a probability density and U(s) is some
trajectory in the space of unitaries U(2N), assuming ρ to be a N qubit state as
usual in quantum computation, while in the discrete case {Uk} and {pk} are,
respectively, a set of unitary operators and the frequencies with which they
occur in the system. That is, a random unitary map implements a particular
non-unitary evolution of the system, where different unitary evolutions hap-
pen in a probabilistic manner. Let us remind here that, as we have already
discussed in section 2.2.2 any convex linear combination of CPTP maps is
again a valid quantum channel, and thus so are the random unitary channels
in Eq. (5.2).

We focus on the simple case where the operators U(s) are known and the
task is to reconstruct the probability density p(s). This task can be naturally
expressed as SuperQGAN where the cost function (5.1) depends linearly on
p(s). The generator G can use a trial CPTP map ΦF (ρ) =

∫
U(s)ρU(s)†q(s)ds

where the unitary operators U(s) are those entering in (5.2), assumed to be
known, while q(s) must be learnt during the game. Even if the discriminator D
can apply all possible detection schemes, this game can end with p(s) ̸= q(s).
Mathematically speaking, the mapping p(s) 7→ ΦR is not injective and we may
get ΦF = ΦR even with p(s) ̸= q(s). This possibility can be formally checked
by studying the CJ state of the random unitary map ΦR, which is given by the
convex combination JΦR =

∫
JU(s)p(s)ds of the CJ states JU(s) of the unitary

channels ρ 7→ U(s)ρU(s)†, with the same probability density p(s). In general
the states JU(s) are not linearly independent and the perfect reconstruction of
the random unitary map is not enough to learn p(s). Notice that this is due
to the unitary gauge freedom of the Kraus representation (Eq. (2.26)) of any
channel. Indeed, considering a discrete random unitary channel for the sake
of simplicity, we can rearrange it as

Φ(ρ) =
∑
k

pkUkρU
†
k

=
∑
k

(√pkUk)ρ(
√
pkUk)† =

∑
k

KkρK
†
k ,

(5.3)

where we simply reabsorbed the positive coefficient √pk in the unitaries Uk to
reveal the Kraus decomposition of Φ.

In what follows, we will show the study carried on in [92] where, tackling
a particular kind of random unitary channels we have been able to completely
characterize a noisy map in terms of the probability distribution {pk}. This
special family of random unitary maps is that of Pauli Channels.
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5 Quantum Generative Adversarial Learning of Noisy Maps

5.3.2 Pauli channels: spatial correlations
As we are going to see shortly, Pauli channels posses the desirable property

of being in one-to-one correspondence with the probability distribution {pk}
that appears in the second line of (5.2). This makes them the perfect choice
for our generative agent, and this had an heavy weight in us deciding to study
them. However, there are other favourable properties of Pauli channels that
make them worth to investigate. Indeed, it is reasonable to assume that the
average noise affecting a quantum circuit is a Pauli channel [104], which rep-
resents a very large family of random unitary maps. Although this class is not
the more general one, one can show that a Pauli map can exceptionally well
approximate any realistic noise without introducing new errors [105, 106].
Learning schemes for Pauli channels have been previously discussed in Refs.
[107, 108]. Their methods rely on acquiring a large dataset of n-qubits mea-
surement results that later get analysed to efficiently infer the Pauli error
rates [108], or an averaged version of those [107]. In contrast, our procedure
needs only single qubit measurements and uses machine learning techniques to
produce error rates that get closer to the real ones after each measurement.

More specifically, Pauli channels belong to the family of random unitary
channels described before in Eq. (5.2), where the unitary operators U(s) belong
to the discrete set of Pauli matrices. In the single qubit case, these are obtained
by choosing {U(k)} = {σk} with σ0 = I and σ1:3 = {X, Y, Z}, i.e. they are
convex combinations of Pauli evolutions. This single-qubit Pauli channel can
be readily extended to the n-uses case, both in series (e.g., when the channel is
applied n times to the same qubit) and in parallel (e.g., when multiple copies of
the channel are used to process a string of input qubit states at the same time).
We have studied the time and space correlated Pauli channels separately.

For spatial correlations, the channel can be represented as in Fig. 5.2(a),
and maps n-qubit states ρ(n) to n-qubit states as follows

Φ(n)
p (ρ(n)) =

∑
k

p
(n)
k σ

(n)
k ρ(n)σ

(n)
k , (5.4)

where σ(n)
k = σk1⊗. . .⊗σkn are Pauli strings, and k is a multi-index. It is simple

to check that the CJ states of different channels Jσk are linearly independent,
so the mapping p(n)

k 7→ Φ(n)
p is bijective. Indeed by linearity of quantum maps,

the Choi state JΦ defined in Eq. (2.28) of a random unitary channel is the
convex combination of those of the single unitaries. Thus, if they are linearly
independent any of their convex combinations will yield a different channel.
One can readily check that

Tr
[
Jσi(Jσj )†

]
∝
∣∣∣Tr

[
σiσ

†
j

]∣∣∣2 ∝ δi,j , (5.5)

where δi,j is the usual Kronecker delta, and we used single qubit Pauli matrices,
but the result is readily extendable to the case of Pauli strings. Orthogonality
with respect to the Hilbert-Schmidt inner product is enough to ensure that we
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can uniquely associate a Pauli channel to its probability distribution.

Notice that, when the probability can be factorized as p(n)
k = ∏n

j=1 p(kj), the
channel has no spatial correlations, and Φ(n)

p is a tensor product of independent
channels on each qubit, whereas the above factorization property does not hold
anymore when the noise is correlated. We can exploit the above relation to
check for spatial correlations, by first learning p(k) and then using it to check
if p(2)

k is factorized or not. Indeed, it suffices to show Φ(2) ̸= Φ(1)⊗Φ(1) to rule
out the absence of correlations.

Let us then present the SuperQGAN protocol to learn the p(n)
k of a gen-

eral, parallel n-uses Pauli channel. The generative agent (G) tunes a fake
distribution q(n)

k to generate its copy Φ(n)
q of the channel in Eq. (5.4). Particu-

larly, G will simulate the Pauli channel Φ(n)
q by acting separately on the probes

register with all the Pauli words appearing in Eq. (5.4) and then weighting the
results with the probabilities q(n)

k . For the sake of numerical simulations, the
fake distribution will be parameterized with unbounded real parameters β

k
(n)
ias

q
(n)
ki

(β) = e
−β

k
(n)
i

Z
, with Z =

∑
k(n)

e−β
k(n) . (5.6)

This obviously introduces a redundant degree of freedom, but also allows us to
discard any constraint issue on their domain. The other agent, the Discrimina-
tor (D), will control both the measurement operator M and the initialization
circuit I. The measurement operator is modelled as a parameterized quantum
circuit (PQC) [54] with parameters θM , followed as in standard QGANs by
a single-qubit measurement on the ancillary qubit M, see Fig. 5.2(a). The
initialization circuit is also modelled as a PQC with parameters θI , entangling
the system with ancillary qubits A. The resulting score function reads

S(θI ,θM ,β) = Tr
[
M(θM )

(
Φ(n)
p (ρ(θI))− Φ(n)

q(β)(ρ(θI))
)]

=̂ Sp − Sq
, (5.7)

where M(θM ) is the POVM element and ρ(θI) is the global input state of the
channels, both controlled by D. The linearity of the trace allows us to rewrite
each of the two terms Sp and Sq in (5.7) as a sum of terms weighted by the
respective distributions. Suppressing parameters dependencies and indexes
we can write Sp = ∑

k p
(n)
k S(σk) and analogously for Sq, with S(σk) being the

scores associated to the Pauli string σk. We address the reader to the Methods
Appendix C.1 for a detailed description of the circuits architectures. All
the simulations in this section are based on the Yao.jl quantum computation
package for Julia [42].

In Fig. 5.3 we show the success of our protocol in assessing a single-use
(n = 1) Pauli channel. Among different figures of merit used to track the
learning process, we stress the role of
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Figure 5.3: SuperQGAN learning a single-use Pauli channel. Top panel shows
the training figures of merit (left), and gradients norms (right). Bottom
one compares target and learnt distributions. The figures of merit that
were tracked during training are: S, the score function (5.7); p(T |G),
G’s objective function; KL, the Kullback-Leibler divergence between tar-
get and generated distributions; Avg Fid, the averaged fidelity between
target and generated channels. The latter two quantities are defined in
the main text above Eq. (5.10). The simulation was run mimicking real
measurements taken with one hundred shots, and the error bars showed
over the final generated distributions are obtained as the standard devi-
ation over one hundred runs with different random initialization.

• the Kullback-Leibler divergence

KL(p, q) =
∑
k

pk log(pk/qk) , (5.8)

which is a measure of similarity between two probability distributions.
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Figure 5.4: SuperQGAN learning a two-uses spatially correlated Pauli
channel. Top panel shows the training figures of merit (left), and gra-
dients (right). Bottom one compares target and learnt distributions,
as described in Fig. 5.3. The target distribution is generated using the
single use distribution of Fig. 5.3, with the correlation law (5.10) with
µ = 0.5. Measurement outcomes are simulated as the result of one
hundred shots, whereas the uncertainty on the final generated distribu-
tion is due to averaging over one hundred different runs, as described in
Fig. 5.3.

Notice that it is not a proper metric, it is not symmetric in the two
distributions, and does not satisfy the triangle inequality. Nonetheless,
it is a type of statistical distance, that measures the surprise stemming
from using q as a model when the real distribution underlying the data
is p.
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Figure 5.5: SuperQGAN learning a correlated two-uses Pauli channel when
G is not allowed to generate correlated distributions (blue dots)
as opposed to the case when it can (red diamonds). Each point
corresponds to a full learning procedure, where the target distribution
is obtained from the prior of Fig. 5.3 with the correlation of Eq. (5.10).

• the (discretized) averaged fidelity [24]

F̄ (Φ,Λ) = lim
N→∞

1
N

N∑
i=1

F (Φ(ρi),Λ(ρi)) , (5.9)

where F (ρ, σ) =
(
tr
√√

ρσ
√
ρ
)2

is the usual fidelity between quantum
states and the average is carried out over N output states of the given
maps when the input states are as many Haar random input ones.

In order to test the performance of our setup when correlations may be
present, we considered the multi-use scenario and we resorted to a particular
form of spatial correlations described by

pij = (1− µ)pipj + µpiδij , (5.10)

which has been introduced in [109], and interpolates between non-correlated
channel for µ = 0 and a maximally correlated one for µ = 1. Indeed, µ = 0
corresponds to a factorized probability distribution, meaning that each use of
the channel happens independently from the others, while µ = 1 implies that
whichever action (Pauli operator) is drawn on one use, gets repeated on the
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other information carrier.
When the generator is allowed to tune a generic, i.e. correlated, distribution,
the SuperQGAN is able to learn the target distribution no matter the amount
of correlations. In Fig. 5.4 we show it with a two-uses example.

On the other hand, if G is constrained to generate non-correlated distri-
butions only, i.e.is it is allowed to only tune a prior q(1)

k and use it to output
q

(n)
k = ∏n

j=1 q
(1)
kj

, the process fails. Particularly, as one would expect, in this
case the final Kullback-Leibler divergence grows with µ, as shown in Fig. 5.5.

5.3.3 Pauli channels: temporal correlations
The reiterate interaction between a system and its surrounding environ-

ment typically gives rise to a non-Markovian evolution of the system [110]. If
the system is probed at discrete times tn, such evolution can be expressed as
a quantum comb [111], as in Fig. 5.2b.

In our analysis we considered a simplified non-Markovian noise model based
on Pauli channels with probability vectors p(n)

k , as in Eq. (5.4). While in
Eq. (5.4) the probabilities p(n)

k describe the (possibly spatially correlated) noisy
operations on different qubits, here p(n)

k model the noisy operations on a single
qubit but at different times, i.e.

Φn(ρ) =
∑

k

p
(n)
k σkρσk , (5.11)

where now σk = σk1σk2 · · ·σkn . In other terms, in Eq. (5.4) ks refers to the Pauli
operation applied to the s-th qubit, while in Eq. (5.11) kt refers to the Pauli
operation applied to a single qubit at the t-th discrete iteration. One way to
express the above circuit as the comb of Fig. 5.2b is to assume that during the
t-th iteration, and for all iterations t = 1, . . . , n, the environment is measured
with a four-outcome POVM, and depending on the measurement outcome
kt a Pauli operation σkt is applied onto the system. The probability vector
then models the joint probability of all possible POVM outcomes. If noise is
temporally uncorrelated, then the probability is factorized p

(n)
k = ∏n

j=1 p(kj).
If noise is Markovian, then p

(n)
k = p(k1)

∏n
j=2 p(kj|kj−1). For more general

probabilities, this model allows to describe non-Markovian noise.
In a similar way to what we have done for spatial correlations, we can define

a SuperQGAN to learn p
(n)
k : as usual, G tries to reproduce the distribution

and D tries to discriminate between the real noise and the generated one.
Although spatial and temporal Pauli correlations can both be modelled via p(n)

k ,
the discrimination strategy can be entirely different. Indeed, the most general
discrimination strategy for temporal correlations is the one depicted in Fig. 5.2,
where D inserts some probing operations at the intermediate times t = 1, . . . , n
and, depending on the outcomes, decides whether the noisy channel was real
or generated. In general, the probe alters the state, due to the wavefunction
collapse (Eq. (2.10)), thus influencing all the future evolution.
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We now proceed to show the results of our numerical test of SuperQ-
GAN’s performance in the temporal correlations case. Again, the interested
reader may find a detailed description of the SuperQGAN architecture, as
well as of the training procedure, in the Methods Appendix C.1. In the single-
use case the setup coincides with the one exploited for spatial correlations, as
do the results. Hence, we show a correlated example given again in terms of
the correlation law (5.10), which can be readily interpreted as a time correla-
tion once the multi-indices are treated as time labels. Particularly, in Fig. 5.6
we show the success of our protocol in a two-uses Pauli channel. Assuming to
know in advance the model of correlation occurring in the quantum map, we
can devise G in such a way that it only has to tune the correlations parameters,
rather than the whole distribution. Then, we have used the learnt n = 1 error
rates p to tackle the n = (2, 3, 4, 5, 6) temporally correlated Pauli channels
with a generator that only controls µ. The number of turns needed to achieve
convergence is found to be independent from n, as shown in Fig. 5.7.

5.3.4 Quantum metrology
Not only noise sensing, but also quantum metrology [112] can be rephrased

as a SuperQGAN with δ-like probability distribution in Eq. (5.2), i.e. p(s) =
δ(s− s̄). In other terms, we have a mapping implementing a unitary evolution
ρ → U(s̄)ρU(s̄)† and the metrology task is to estimate s̄. Efficient quan-
tum algorithms that fully exploit quantum effects to maximize the estimation
precision typically employ either adaptive strategies or parallel applications
of the unitary channel U(s̄)⊗n on an entangled state. Similar strategies are
also needed when the parameter s to be estimated is not fixed, but rather
distributed according to some probability p(s). In particular, we studied a
paradigmatic model of quantum metrology, namely the Mach-Zehnder-type
interferometer [113, 114], whose unitary evolution can be written as

U(s) =
(

1 0
0 e2πis

)
. (5.12)

We assume that we can exactly express the parameter s by using m-bits as
s = ∑m

j=1 sj/2j, where 0 ⩽ s < 1 and sj ∈ {0, 1}, i.e. s ≡ sb = b/2m for
an integer b < 2m. When this assumption is not satisfied, we may get a
reconstruction error. For instance, let us suppose to run the phase estimation
algorithm for general s using an m + 1 qubit register. If sb is the best m-bit
approximation of s, then the algorithm will output b′ ̸= b with probability
pr(b′|b) = |2−m(1 − e2miδ)/(1 − eiδ)|2, where δ = 2π(s − sb − sb′) [24]. The
distribution pr(b′|b) is peaked around b′ = b or around b′ = b± 1 when 2ms is
close to two different integers, so the reconstruction error is small and mostly
limited to nearby values. In our analysis, we fixed m and consider the error
due to the finite m as an imperfect reconstruction of p(s).

The number n of independent applications of U(s) needed to reconstruct s
with m-bit precision increases with m [115]. To simplify our treatment, here
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Figure 5.6: SuperQGAN learning a two-uses temporally correlated Pauli
channel. Top panel shows the training figures of merit (left), and gra-
dients (right). Bottom one compares target and learnt distributions, as
described in Fig. 5.3. The target distribution is generated using a ran-
dom single-use prior, using the correlation law (5.10) with µ = 0.5. As
in Fig. 5.3, one hundred shots were used to simulate real measurement
outcomes, and error bars over the learnt distribution correspond to the
standard deviation of one hundred randomly initialized runs.

we assumed that m is fixed, so p(s) becomes a discrete distribution with 2m
entries, and we consider n parallel applications of U(s). As a result, we get
the following random unitary channel

Φ(n)
R (ρ) =

2m−1∑
b=0

p(sb)U(sb)⊗nρU(sb)⊗n† , (5.13)

where sb = b/2m as above and b is an integer. The CJ state of each unitary
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5 Quantum Generative Adversarial Learning of Noisy Maps

Figure 5.7: Total number of turns needed to achieve averaged fidelity
greater than threshold value of 0.999 between target and gen-
erated channels. Each dot corresponds to the mean over 10 runs of the
modified SuperQGAN whose generator knows the correlation model of
Eq. (5.10) and the n = 1 probabilities p. Although the sample size is
small, we observe that the number of iterations to achieve convergence
does not increase with the number n of channel uses, hence supporting
the successful feasibility of our protocol for larger n.

channel U(s) is a tensor product of a maximally entangled pure state |χs⟩⊗n,
with |χs⟩ = (|00⟩ + 22πis |11⟩)/

√
2. To check for their linear independence,

we may focus on the Gram matrix1 with the Hilbert-Schmidt product, Gst =
Tr[χ⊗n

s χ⊗n
t ] = |G̃st|2, where χs = |χs⟩⟨χs| and G̃st = ⟨χs|χt⟩n. The Gram

matrix has zero determinant, and hence at least a zero eigenvalue, when the
matrices χ⊗n

s are linearly dependent. The matrix G̃ can be diagonalized via a
discrete Fourier transform, obtaining the eigenvalues g̃k = 2m−n∑n

ℓ=0

(
n
ℓ

)
δ

(2m)
ℓ,k

where δ
(c)
ab is 1 if a = b (mod) c and 0 otherwise, and k = 0, . . . , 2m − 1.

The eigenvalues of G are then obtained via convolution gk = 2−m∑
u g̃ug̃k⊕u =

2m−2n∑
ℓ

(
n
ℓ

)(
n
ℓ⊕k

)
, where ⊕ is the addition modulo 2m and

(
n
k

)
= 0 for k > n.

Therefore, when n < 2m/2 at least one eigenvalue gk is zero and, accordingly,

1The Gram matrix G is a square matrix that represents the inner products between a
set of vectors {vi}. Its elements read Gij = ⟨vi,vj⟩, where ⟨·, ·⟩ is the appropriate inner
product of the space the vectors belong to. One important use of the Gram matrix is to
determine whether the set of vectors is linearly independent, which can be determined by
checking if the determinant of the Gram matrix is non-zero.
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the mapping (5.13) is not injective, namely two channels Φ(n)
R may be equal

even with different distributions p(s). According to our analysis, we need a
number of probes satisfying

n ⩾ 2m−1 , (5.14)

to be sure that the reconstruction of Φ(n)
R allows a unique reconstruction of

p(s).
We then performed a numerical study using a SuperQGAN, where G tries

to generate a fake channel with the same mathematical form of Eq. (5.13), but
different probability q(s) instead of p(s). To simplify the numerical treatment,
G parametrizes its distribution again as in Eq. (5.6),

q(s) = e−βs/Z, Z =
∑
s

e−βs , (5.15)

with real parameters βs. The SuperQGAN setup is analogue to that of
spatial correlation learning outlined in Sec. 5.3.2 although we do not need to
test all possible combination of unitaries since only tensor products appear.
No differences in training performance are expected, and indeed, when one has
enough resources, namely when (5.14) is satisfied, G is always able to learn
the correct distribution p(s). In table 5.1 we show the final Kullback-Leibler
divergence between p(s) and q(s) after the averaged fidelity between real and
generated channels has reached the threshold value ftr = 0.99999. As one
can see, sub-optimal values of n lead to a learnt distribution q(s) that is not
converging to the target one.

m
n 2m−1 2m−1 − 1

2 0.000065(4) 0.088(2)
3 0.00016(1) 0.038(1)
4 0.00012(8) 0.0015(1)

Table 5.1: Final values of Kullback-Leibler divergence KL(p, q) between tar-
get distribution p(s) appearing in Eq. (5.13) and G’s generated one q(s).
The SuperQGAN is stopped as soon as the averaged fidelity between
target and fake channels gets larger than 0.99999. Values reported here
refer to an average over 10 runs with fixed targets and different (random)
parameters’ initializations.
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Chapter 6

Inductive Biases in QML: the
Power of Equivariance

While in Chapter 4 we have dealt with finding a training strategy for learn-
ing mixed states with QGANs, which we then exploited to design a noise
sensing architecture that resorts to generative-adversarial learning, the Su-
perQGANs described in Chapter 5, in this chapter we are going to leave the
particular paradigm of quantum GANs and tackle the design of learning mod-
els from a general perspective.
In the first part of this chapter, Sections 6.1-6.3, we are going to introduce a
general framework for designing quantum learning models that are not com-
pletely agnostic to the problem they will try to solve, but rather are endowed
with inductive biases regarding the symmetries of the data they need to pro-
cess. This framework, called geometric quantum machine learning (GQML) is
the result of the work carried out during the 2022 Quantum Computing Sum-
mer School at the Los Alamos National Laboratories, which has been drafted
in [116].
In the last part, Section 6.4, we are going to apply the recipe for informed
quantum learning model to build a classifier to distinguish different phases of
matter, and test it against a problem agnostic one to showcase the benefits of
GQML.

6.1 The role of inductive biases
When we discussed learning models architectures, particularly the quantum

ones of section 3.3, we said that one of the main avenues that is currently be-
ing followed by the QML community for choosing the parameterized quantum
circuit structures that are eventually trained is that of hardware efficiency. We
commented on how current quantum devices, belonging to the so-called NISQ
era, are noisy and small, and how these limitations make it so that circuital
ansätze over a certain depth do not allow for reliable quantum computation.
However, besides knowing that we need to keep the depth, and the connec-
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6 Inductive Biases in QML: the Power of Equivariance

tivity, of our quantum learning models low, hardware efficient ansätze do not
come with suggestions on which gates to use, or on how to arrange them.
Nonetheless, choosing a PQC architecture is not simply a matter of taste, and
there are indeed other criteria than just NISQ-friendliness. Among these, a
paramount one are dataset symmetries.

In classical machine learning, recognizing the symmetries that underlie the
targeted dataset has been crucial, and has led to great advances. For example,
knowing that an image of a cat will still be an image of a cat even if we move
the pixels around, e.g. by translating, rotating or flipping the whole image,
helps explain why convolutional neural networks [117] are so effective at image
classification: they process images in a way that is symmetrical with respect
to translation [118].

In recent years, the role of symmetries in machine learning has been studied
in problems that involve more general symmetry groups than just translations.
This has led to the growth of a field known as geometric deep learning [118].
At the core of this field lies the idea that incorporating prior knowledge of
symmetry into a model can effectively constrain the search space and make
the learning task easier. In fact, symmetry-aware models have been shown to
perform and generalize better than models that are agnostic to the problem
in a wide range of tasks [118–125]. As a result, there has been a lot of work
on developing a mathematically rigorous framework for designing symmetry-
embedded models using the tools of representation theory. This has led to the
development of so-called equivariant neural networks (ENNs) [126–130], which
have the key property that their action commutes with that of the symmetry
group. In other words, applying a symmetry transformation to the input and
then passing it through the ENN produces the same result as passing the raw
input through the ENN and then applying the transformation.

Equivariance1 is the mathematical property of preserving the symmetries
of the feature vectors belonging to the dataset we want to process through a
deep (equivariant) neural network. The toolbox that enables geometric deep
learning is representation theory [118], whose machinery allows to find ways to
craft equivariant layers that, stacked up, eventually build an ENN. The con-
volutional neural network (CNN) [117] is a well-known example of an equiv-
ariant architecture, commonly used in image and signal processing. In CNNs,
the relevant symmetry group is the translation group in R2, and it has been
shown that the convolution and pooling layers of a CNN are equivariant to this
group [127]. There have been attempts to generalize CNNs to other groups
and data [126], including homogeneous ENNs for spherical images and molec-
ular data [131–134], and non-homogeneous architectures such as graph neural
networks [120, 135, 136]. In the first case, the underlying symmetry groups
are the one of rotations SO(3) and the Euclidean one E(n) = Rn ⋊ O(n), in
the second case instead the relevant group is that of permutations Sn. Addi-

1Sometimes referred to as covariance. Here we will stick to the term that has been
adopted by the ML community.
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tionally, more advanced representation-theoretic techniques have been used to
develop steerable and gauge-equivariant CNNs on general manifolds [129, 137].
It has also been demonstrated that equivariant layers can be constructed using
either real or Fourier space [121].

The geometric deep learning field is growing rapidly, and over the last
two years a lot of effort has been devoted to finding designing strategies for
equivariant network layers [124, 138, 139]. A theoretical analysis of the benefits
of using ENNs in terms of improved training and generalization error can be
found in [125, 140–142], whereas expressibility and universality of ENNs have
been investigated in [143–147].

6.2 Geometric Quantum Machine learning
It just feels natural to import the fundamental ideas of geometric deep

learning into quantum machine learning (QML) to exploit the inductive biases
coming from the symmetries of the quantum problem at hand in order to craft
better models ansätze than the hardware efficient ones, and this process is
in full swing. Some proposals have already been put forward. Consider for
example the problem of classifying states that present either a large or a low
amount of multipartite entanglement [148–150]. Since the entanglement spec-
trum cannot be altered by local unitaries, we can employ models whose outputs
are invariant under the action of any such transformation [151]. In this rush for
the development of Geometric Quantum Machine Learning (GQML) [151–156]
we contributed by establishing a theoretical framework to design equivariant
ansätze for parametric quantum circuits (see Fig. 6.1), and by numerically
studying the performance of equivariant quantum models against problem-
agnostic ones.

In order to be able to explain how to build equivariant quantum models,
we first need to introduce some basic definitions and concepts from group
and representation theory. The interested reader can find more details in the
established textbooks [157–159], or in [160], where representation theory is
presented from a QML practitioner point of view.

6.2.1 Basic concepts from representation theory
It should be clear by now that the aim of GQML is to exploit the sym-

metries underlying the (quantum) dataset at hand to build learning models
that preserve them. We will label general symmetry groups as G, and we here
briefly recall their fundamental properties. A group G is a set of elements
equipped with an internal operation, usually dubbed product that satisfy

• Closure: the group must be closed under the operation that defines it,
i.e. g1 ◦ g2 ∈ G ∀g1, g2 ∈ G where we denoted the group product as ◦. In
the following we will always omit that and simply write g1 ◦ g2 = g1g2.
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Figure 6.1: Schematic workflow of GQML [116]. a) In GQML, we begin by
identifying the symmetry group(s) that do not change the labels of the
data. For example, if the data can be depicted on a 3D sphere and
the labels remain unchanged when the action of SO(3) is applied, then
SO(3) is the symmetry group. b) It has been observed in both classical
and quantum machine learning that models with equivariant layers often
perform better than those with non-equivariant architectures. Equivari-
ance means that applying a rotation to the input data and sending it
through the layer is the same as first sending the data through the layer
and then rotating the output. On the other hand, using either raw or ro-
tated data as input in a non-equivariant layer often results in distorted,
non-rotationally related outputs. c) In this research, we present a set
of methods for creating equivariant quantum neural networks (EQNNs)
that can be used to easily build quantum models with strong geometric
assumptions.

• Identity Element: there must exist in G an unique element e, called the
identity element, s.t. eg = ge = g ∀g ∈ G.

• Inverse Element: for any element g of the group, there must exist a
unique element, called the inverse element g−1, such that gg−1 = g−1g =
e.

• Associativity: the operation that defines the group must be associative,
which means that the order in which the elements are combined does not
affect the result, namely (g1g2)g3 = g1(g2g3).

A symmetry group is then a group G whose elements are associated with sym-
metry transformations of the system under consideration.

The way we describe the actual action of symmetry group elements onto
a system is by their representation. Representation theory lies at the core of
geometric deep learning and, as such, of geometric quantum machine learning,
thus here we recall some of its basic concepts.
Assume that the system state is described by vectors living in a Hilbert space
H, then:

Definition 1 (Representation). A representation, dubbed (R,H) or just R for
short, of a group G on a vector space H is a homomorphism R : G→ GL(H)
from the group G to the space of invertible linear operators on H, that preserves
the group structure of G.
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Specifically, a group homomorphism R satisfies

R(g1)R(g2) = R(g1g2) ∀g1, g2 ∈ G . (6.1)

This implies that, for all g ∈ G, the representation of its inverse is the in-
verse of its representation, R(g−1) = R(g)−1, and the representation of the
identity element e is the identity operator on H, R(e) = 1dim(H). Given a
representation, it is relevant to define its commutant.

Definition 2 (Commutant). Given a representation R of G, we define the
commutant of R as the set of bounded linear operators on H that commute
with every element in R, i.e.,

comm(R) = {H ∈ B(H) | [H,R(g)] = 0 ∀g ∈ G} . (6.2)

Let us furthermore introduce the following definitions about representa-
tions:

• If a representation R is such that R(g) = 1∀g ∈ G, the representation
is called trivial.

• A representation is faithful if it maps distinct group elements to distinct
elements inH. As an example of unfaithfulness, the trivial representation
maps all group elements to the identity in H.

• Two representations R1 and R2 are equivalent if there exists a change of
basis W such that WR1(g)W † = R2(g) for all g ∈ G, in which case we
denote R1 ∼= R2.

• A subrepresentation is a subspace K ⊂ H that is invariant under the
action of the representation, i.e., R(g) |w⟩ ∈ K for all g ∈ G and |w⟩ ∈ K.
The group can then be represented through R|K, the restriction of R to
the vector subspace K. A subrepresentation K is non-trivial if K ̸= {0}
(the zero vector) and K ̸= H.

Most of the interesting symmetry group in physics are non finite. This
means that G is not a finite set of elements, but rather a continuous space.
We will assume any non finite group G to be a (compact) Lie group, with its
associated Lie algebra g. For us, a Lie group will be defined by the relation
eg = G, i.e. g = {a|ea ∈ G}. In particular, if G has a representation R then
g has a representation r given by the differential of R, that is, given a ∈ g,
R(ea) = er(a). Moreover, a very important fact about representations for QML
practitioners is that if a group G is finite or compact, its representations can
be chosen to be unitary [161], and we will always assume that this choice has
been made in the following.
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The representation we will use and mention the most in the following is
the so-called adjoint representation, denoted AdR, which describes how the
group acts on density matrices (and other bounded operators). A unitary
representation R on H induces an action on B(H), given by

AdR(g)(ρ) = R(g)ρR(g)†, ∀g ∈ G, ρ ∈ B(H) . (6.3)

Note that for the case of Lie groups, the adjoint representation also exists at
the Lie algebra level and is given by adr(a)(·) = [r(a), ·].

Lastly, let us introduce the following distinction between symmetry groups.

Definition 3 (Inner and outer symmetries). Given a composite Hilbert space,
such as the one describing a qubit register, we call a representation of a group
an inner symmetry if it acts locally on each subsystem, and an outer sym-
metry if it permutes the subsystems.

Consider for example an n-qubit register, for the group SU(2), whom the
single qubit gates belong to, the tensor product representation R(g ∈ SU(2)) =
g⊗n is an inner symmetry, locally rotating each qubit by the same amount. An
example of an outer symmetry is instead the qubit-permuting representation
of Sn, given by R(g)⊗n

j=1 |ψj⟩ = ⊗n
j=1

∣∣∣ψg−1(j)
〉
.

Given a quantum machine learning problem, that we will consider to be a
supervised one for the sake of exposure simplicity, we want to first identify the
underlying symmetries and then devise a model that preserves them. Let us
well define the problem first.

6.2.2 Quantum Model for Classification Tasks
We are going to study a simple classification problem where we are given a

dataset D = {ρi, yi}Mi=1 of quantum data points ρi with their associated scalar
labels yi and we want to infer the underlying relation F : X → Y that assigns
the latter to the former. We denoted X the data points space, which is some
subset of the space of density operators acting on the Hilbert space describing
the quantum system at hand, while we used Y for the labels space. Notice
that this framework holds regardless of the data being classical and embedded
into a quantum computer (CQ) [162] or straight up quantum (QQ) [150] As
thoroughly described in section 3.3, we now need devise a quantum learning
model fθ : X → Y to approximate the true relation F . As described there,
our quantum learning model is a so-called quantum neural network (QNN),
composed of a sequence of layers of quantum CPTP maps. We resort to general
QNNs rather than PQCs because in what follows we will need to consider
operations that do not preserve the number of qubits they act on. Thus, let
us recall the structure of a QNN

Φθ = ND
θD
◦ · · · ◦ N 1

θ1 , (6.4)
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with each N l
θl

being the l-th layer CPTP map. Sticking to our supervised
classification example, the QNN will output its predicted labels as

ℓθ(ρ) = C({Tr[Φθ(ρ)Oj]}j) . (6.5)

Where ρ ∈ X is the input state, the set of observables {Oj}j are measured on
the QNN output Φθ(ρ) and their expectation values are fed to some classical
post-processing function C. To train the model, we minimize the empirical loss

L̂θ({ρi, yi}Mi=1) = 1
M

M∑
i=1
F(ℓθ(ρi), yi) , (6.6)

defined in terms of some problem-dependent function F , that in the case of
classification might for example be the squared error F(ℓθ(ρi), yi) = (ℓθ(ρi)−
yi)2. Once the hybrid quantum-classical training has been carried out, we will
use the optimal parameters θ∗ to classify unseen data.

Now that we have a solid setting, we are ready to introduce equivariance
into QML to promote it to GQML.

6.2.3 Equivariant QNNs
First of all, what is a symmetry of a quantum machine learning problem?

Definition 4 (G-invariance). Given a group G acting via some representation
R on the data points ρi ∈ X , we say that it is a symmetry group of the QML
task at hand if its action leaves the true labels yi = F (ρi) unchanged, i.e. if

F (R(g)ρR(g)†) = F (ρ), ∀g ∈ G∀ρ ∈ X . (6.7)

We call this property G-invariance.

Once one such G-invariance has been identified in the QML task under con-
sideration, it becomes natural to try to embed this prior information (inductive
biases) about the problem into the learning model. In the case of classifying
QNNs, this translates into finding appropriate parameterized quantum maps
N l

θl
and measurement operators {Oj}. The injection of inductive biases in the

model make it so that the latter will only explore a relevant subset of all pos-
sible functions f : X → Y . Models with strong inductive biases often perform
better than agnostic ones [163–165]. GQML scope is to provide a framework
for incorporating prior geometric knowledge into the learning model in or-
der to improve its trainability, data requirements, generalization, and overall
performance.

Embedding the spotted G-invariance into our QNN means making it so
that fθ(ρ) = fθ(R(g)ρR(g)†), for any g ∈ G and ρ ∈ X , and for all values of
θ. That is, our model must be G-invariant too. Equivariance is the tool we
use to achieve that.
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Definition 5 (Equivariant map). Given a group G and its representations
(Rin,Hin) and (Rout,Hout). A linear map ϕ : Bin → Bout is (G,Rin, Rout)-
equivariant if and only if

ϕ ◦ AdRin(g) = AdRout(g) ◦ ϕ, ∀g ∈ G . (6.8)

Definition 5 can be graphically understood noting that it implies the closure
of the following diagram:

Bin Bin

Bout Bout .

AdRin(g)

ϕ ϕ

AdRout(g)

Equivariant maps ϕ are then those who commute with the symmetry trans-
formations, belonging to some group G, of the states they act on. This
means that transforming the input state ρ via the input representation Rin

as ρ′ = AdRin(g)(ρ) and then applying the map to get ρout = ϕ(ρ′) yields
the same result as first applying ϕ and then transforming the output state
ρout = AdRout(g)(ϕ(ρ)). The definition of equivariance given in Def. 5 also
allows to characterize invariant maps, as it suffices to choose the trivial repre-
sentation as the output one to have ϕ ◦ AdRin(g) = ϕ∀g ∈ G.

We can define equivariance for operators as well:

Definition 6 (Equivariant operator). Given a group G and its representation
(R,H), an operator O ∈ B(H) is (G,R)-equivariant if and only if

[O,R(g)] = 0, ∀g ∈ G . (6.9)

This basically corresponds to saying that O ∈ comm(R), i.e. that comm(R)
only contains equivariant operators.

Equivariant quantum maps and operators now open up the possibility of
defining a strategy to come up with quantum learning models that are endowed
with the inductive bias of the symmetry of the problem. Indeed, using Defs. 5
and 6 we can make so that the predictions of Eq. (6.5) are G invariant.

Proposition 1 (Invariance from equivariance). A model consisting of an (G,Rin, Rout)-
equivariant QNN and a (G,Rout)-equivariant set of measurements is G-invariant.

Proof. For every g ∈ G, ρ ∈ Bin and θ we have

fθ(AdRin(g)(ρ)) = C({Tr
[
Φθ(AdRin(g)(ρ))Oj

]
}j)

= C({Tr
[
AdRout(g)(Φθ(ρ))Oj

]
}j)

= C({Tr
[
Φθ(ρ)Rout(g)†OjR

out(g)
]
}j)

= C({Tr[Φθ(ρ)Oj]}j) = hθ(ρ) .
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The basic principle of this recipe is that we want the processing map Φ of
the learning models to be agnostic to the symmetry, which is reflected in the
fact that the representations of the group at hand commute with it, so that
when we take an equivariant measurement at the end the group action cancels
out leaving an invariant prediction.

We are now ready to formalize the basic framework for EQNNs. However,
let us first make some remarks. First of all, even if we decided to only consider
a supervised classification setting, the geometric quantum machine learning
machinery can be applied also in unsupervised learning scenarios [166, 167],
generative modeling [70, 168–170] or reinforcement learning [171, 172]. Sec-
ondly, equivariance is not new to quantum information theory [173–196] but
its appearance and use in the QML community is only a couple years old.

6.3 How to build an Equivariant Quantum Neu-
ral Network

In [116], come to this point, we delve deeper in the theory of equivari-
ant quantum maps, using representation theory tools to characterize their
degrees of freedom, and to understand how to exploit intermediate represen-
tation changes to control the EQNN expressibility. In this thesis however, we
will adopt a more pragmatical approach and jump straight into the techniques
we have developed to build the (G,Rin, Rin)-equivariant layers of an EQNN.
With those, we will be able to conclude with a working example where we
show the advantages of using quantum models endowed with inductive biases
as opposed to problem-agnostic ones.

Thus, from now on we will assume that every Hilbert space H being consid-
ered is that of a quantum register composed of n qubits. Furthermore, let us
make the structure of a general equivariant quantum neural network explicit:

Definition 7 (Layered EQNN). An L-layered G-equivariant QNN is defined
by a sequence of L+1 representations of G, (Rin, R1, . . . , Rout), and a sequence
of (G,Rl, Rl+1)-equivariant layers.

The way the data is G-equivariantly processed in such a quantum model
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Figure 6.2: Equivariant quantum neural network [116]. a) In a QML problem,
we have a dataset (which can either be a quantum mechanical dataset or
classical data encoded in quantum states) and a label symmetry group,
denoted as G. The first step is to define the input and output representa-
tion of G at each layer, which can be natural, faithful, non-faithful, etc.
We will then provide various methods for constructing EQNN layers and
controlling features such as gate locality. b) Dashed lines in the archi-
tecture separate the representation of the symmetry group G at specific
stages in the EQNN, which may change between layers. At the begin-
ning, the input state ρin is transformed by the representation Rin. The
lth layer of the EQNN, N l

θl
, must be (G,Rl, Rl+1)-equivariant. Overall,

the full architecture, ϕ = NL
θL
◦ · · · ◦ N 1

θ1
, is (G,Rin, Rout)-equivariant.

The (G, ,Rout)-equivariant measurement operator O is in the commu-
tant of the output representation Rout. If we only want the EQNN to
produce an output state equivariantly or invariantly (e.g. in generative
models), we can omit the measurements.
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can be visually rendered via the following commutative diagram

Bin Bin

B1 B1

... ...

Bout Bout

AdRin(g)

N 1
θ1 N 1

θ1
AdR1(g)

N 2
θ2

N 2
θ2

N L
θL

N L
θL

AdRout(g)

.

It is straightforward to conclude from this graph that the sequence N = N L
θL
◦

· · · ◦ N 1
θ1 ends up being a (G,Rin, Rout)-equivariant QNN. Thus, if we follow

such EQNN with (G,Rout)-equivariant measurements, we achieve aG-invariant
model.

Notice how in practice, while the input representation Rin is fixed by the
physical action of the symmetry group on the input data, everything that hap-
pens next, i.e. the intermediate and final (output) representations acting on
the spaces Bl are not. This means there exists freedom in choosing a sequence
of representations (Rin, R1, . . . , Rout) under which the layers are equivariant.
While we address the reader to Appendix D for an analysis of the effect the
choice of intermediate representations, we now introduce a distinction between
(G,Rl, Rl+1)-equivariant quantum layers based on the relative properties of Rl

and Rl+1.

Definition 8 (Equivariant layers: standard, embedding and pooling). Let
Φl

θl
: Bl−1 → Bl be an (G,Rl−1, Rl)-equivariant layer. We say that Φl

θl
is

a pooling layer if dim(Bl) < dim(Bl−1), an embedding layer if dim(Bl) >
dim(Bl−1), and a standard layer if dim(Bl) = dim(Bl−1).

Since we are considering EQNNs working on a quantum computer, if the in-
put register has n qubits and the output one has m, we can restate definition 8
as

• Pooling layers: they decrease the number of active qubits, m < n.

• Standard layers: they keep the size of the quantum register unaltered,
m = n.

• Embedding layers: they enlarge the qubit register, m > n.

with these prototypical layers, whose names and roles are inspired by their
classical counterparts [119, 130], a general EQNN architecture can be sketched
as we present in Fig. 6.3.
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Figure 6.3: Different types of equivariant layers in a general architecture of
EQNNs [116]. A standard layer maps data between spaces of the same
dimension. An embedding (pooling) layer maps the data to a higher-
dimensional (smaller-dimensional) space.

We can finally answer the question that the reader is probably asking:
how do I explicitly build an equivariant quantum layer? One of the main
achievement of our work [116] is the formalization of three different avenues to
craft the quantum gates and channels that can be stacked up to build EQNNs.
Here, we will discuss the first two of these methods, leaving the last one for
Appendix E, and then show how to parameterize the found quantum maps to
allow for their training.

6.3.1 Thinking in terms of superoperators
From Definition 5 it follows that any linear map ϕ that wants to be G-

equivariant must satisfy the superoperator equation

ϕ ◦ AdRin(g) − AdRout(g) ◦ ϕ = 0, ∀g ∈ G . (6.10)

This condition, by linearity, defines a vector space. Thus, if we can find a basis
of such space we can characterize all of the equivariant maps, and although it
may seem that one needs to solve Eq. (6.10) for every element g of the group
G, we will demonstrate that it is often sufficient to solve this equation only for
a selected subset of elements within the group or its Lie algebra for Lie groups
of symmetries.

Finite groups

In the case whenG is a finite group, we can use a generating set to efficiently
represent and work with the group. A generating set is a subset S = g1, . . . , g|S|
of G such that every element in G can be expressed as a product of elements
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in S. The closure of S, denoted as ⟨S⟩, is the set of all possible products of
elements in S. A generating set S generates G if ⟨S⟩ = G. For instance, the
symmetric group Sn can be generated by the set of transpositions. It has been
shown that a finite group can be generated using a subset S of size at most
log2(|G|) [158]. This means that even large groups can be efficiently repre-
sented and manipulated through their generating set. In particular, finding
equivariant maps can be simplified using the following theorem.

Theorem 1 (Finite group equivariance). Given a finite group G with gener-
ating set S, a linear map ϕ is (G,Rin, Rout)-equivariant if and only if

ϕ ◦ AdRin(g) − AdRout(g) ◦ ϕ = 0, ∀g ∈ S . (6.11)

Lie groups

Theorem 1 turns out to be useful for groups G that are finitely generated,
but many important groups, such as the Lie group U(d), are not. However,
we can still use generating sets, but now at the Lie algebra level. Ref. [138]
presents a method for imposing equivariance under Lie groups, in which the
equivariance constraint is applied to a basis of the Lie algebra. However, this
becomes impractical for large Lie groups because the method scales linearly
with their dimension. Instead, we prove that it is sufficient to impose the
constraint only over a generating set. This means we can consider a subset
s = a1, . . . , a|s| of the Lie algebra g to be a generating set if its Lie closure
⟨s⟩Lie, which is the set of all possible nested commutators of elements in s,
spans the entire Lie algebra. With these concepts in mind, we can now impose
equivariance at the algebra level.

Theorem 2 (Lie group equivariance). Given a compact Lie group G with a
Lie algebra g generated by s such that exponentiation is surjective, a linear
map ϕ is (G,Rin, Rout)-equivariant if and only if

adrout(a) ◦ ϕ− ϕ ◦ adrin(a) = 0, ∀a ∈ s , (6.12)

where rin, rout are the representations of G induced by Rin, Rout.

6.3.2 Nullspace and twirling
Having simplified the task of finding equivariant maps, since we can now

think in terms of linear superoperators and only need to worry about finding
a basis of equivariant operations, we are ready to illustrate the two methods
to solve this task.
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Nullspace method

The nullspace method involves expressing the equivariance constraints of
Eq. (6.10) as a system of matrix equations and finding a basis for the vector
space of the solutions. Notice that the basis elements that we may find need not
to be acceptable CPTP maps, we will later have to impose this constraint. For
a finite group, that we will assume to be the case in the rest of this section, we
can solve the equations with respect to a set of generators. A similar approach
can be used for Lie groups by working at the Lie algebra level.

Our method generalizes those in [138, 197] and is composed by the following
steps.

• Express the superoperators appearing in Eq. (6.11) as matrices by us-
ing the following map ϕ 7→ ϕ = ∑

i,j ϕi,j |Pi⟩⟩⟨⟨Pj|, where Pj and Pi
are Pauli operators acting over the input and output Hilbert spaces, re-
spectively [198], and |·⟩⟩ denotes the vectorized version of an operator.
Namely, once a basis of the operators space has been chosen, |A⟩⟩ is
just the vector of components of any operator A w.r.t. it. Here, ϕ is a
dim(Bout)× dim(Bin) matrix. Substituting this expression in Eq. (6.11),
turns the latter into a matrix multiplication equation of the form

ϕ · AdRin(g) − AdRout(g) · ϕ = 0 , ∀g ∈ S . (6.13)

• Perform a vectorization [199], mapping a matrices to column vectors and
allowing us to write Eq. (6.13) as

Mg · vec(ϕ) = 0 . (6.14)

Here, vec(ϕ) is a dim(Bin) dim(Bout)-dimensional column vector and

Mg = (AdRin(g))⊤ ⊗ 1dim(Bout) − 1dim(Bin) ⊗AdRout(g) , (6.15)

is a dim(Bin) dim(Bout)× dim(Bin) dim(Bout) matrix.

• Obtain the sought equivariant maps by computing the intersection of the
nullspaces of each Mg, i.e.,

vec(ϕ) ∈
⋂
g∈S

Null(Mg) . (6.16)

for example by Gaussian elimination [200].

In Fig. 6.4 a prototypical application of the nullspace method is shown.
Before moving on to the next methods, let us point out some important

remarks about the nullspace method we just outlined. First, this procedure
is bound to quickly become computationally expensive. Indeed, looking for
equivariant quantum maps from n to m qubits by solving the nullspaces
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Figure 6.4: Example of the nullspace method [116]. The nullspace method
is used to identify the set of 1-to-1-qubit quantum channels that are
(G,Rin,Rout)-equivariant. In this case, G is the group Z2 = e, σ, Rin is
the group of transformations represented by id, X, and Rout is the group
of transformations represented by id, Z. a) The matrix representation
of the adjoint representation of the symmetry group for both input and
output. b) A basis for the 8-dimensional solution space, as well as two
specific quantum channels that are equivariant with respect to this sym-
metry group: one obtained from the solution in red, and one obtained
by combining the solutions in green.
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through Gaussian elimination [201] requires an exponential amount of re-
sources, as its complexity scales as O(26(m+n)). Second, let us stress again
that solving Eq. (6.16) only leads to a basis for the space of all possible equiv-
ariant linear maps, without any physical constraint to ensure that they are
also valid quantum maps. Thus, additional steps must be taken to extract
the realizable operations (see Sec. 6.3.3). For instance, to single out the trace-
preserving maps (TP) ϕ, one needs to make sure that ϕ contains the term
dim(Hin)
dim(Hout)

∣∣∣1dim(Hout)
〉
⟩⟨
〈
1dim(Hin)

∣∣∣ and no other terms mapping to
∣∣∣1dim(Hout)

〉
⟩.

In practice however, if one can restrict the set of Pauli operators that appear
in the input and output spaces decompositions, the computational complexity
of the nullspace method can be significantly lowered. This is particularly useful
for inner symmetries 3, where the action of the group can be locally studied.
For example, consider the following lemma:

Lemma 1 (Global equivariance via local equivariance). Let Bin (out) be com-
posite input (output) spaces of the form Bin (out) = ⊗

j B
in (out)
j . Then, as-

sume that the representations acting on each of these space takes a tensor
product structure over subsystems as Rin (out)(g) = ⊗

j R
in (out)
j (g). For lo-

cal equivariant channels mapping between each pair of in-and-out subsystems
ϕj : Bin

j → Bout
j that are (G,Rin

j , R
out
j )-equivariant, we have that ⊗j ϕj is

(G,Rin, Rout)-equivariant.

By constructing equivariant maps locally and taking their tensor product, it
is possible to create a global equivariant layer in a computationally efficient
way (e.g., solving for 2-to-1 qubit maps only requires working with 64 × 64
matrices). However, this approach may not be as expressive as a general
equivariant global channel, as the composition of local equivariant channels
may have limited action [190].

This holds also for outer symmetry groups 3 such as the permutation group
Sn, as one can express all the possible permutations in terms of local ones,
which involve only two-qubit operations.

Twirling method

The second method that can be used to look for equivariant quantum layers
is based on twirling and was first proposed in [152] where it was used to find
equivariant unitary channels. We extended this framework to general non-
unitary quantum maps, allowing also for the change of representations from
input to output spaces.

The twirl over a finite symmetry group G of a channel ϕ : Bin → Bout is
defined as

TG[ϕ] = 1
|G|

∑
g∈G

AdRout(g) ◦ ϕ ◦ Ad†

Rin(g) . (6.17)
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If G is a Lie group instead, it suffices to replace the summation with an integral
over the Haar measure

TG[ϕ] =
∫
G
dµ(g)AdRout(g) ◦ ϕ ◦ Ad†

Rin(g) . (6.18)

TG[ϕ] is no other than the projection of the map ϕ onto the equivariant sub-
space. Indeed, applying any group element Ad†

Rin(g̃) on the right corresponds
to the rescaling g → gg̃. Then, by the properties of the Haar measure, we
can change the integration variable g → g′ = gg̃. This makes so that in the
left operator AdRout(g) in Eq. (6.18) the group element changes into g → g̃−1g′.
Now, we can use the fact that AdR(g−1) = Ad†

R(g) to extract Ad†

Rout(g̃) on the
left of the twirling integral, thus proving that the twirled channel is indeed
equivariant. Moreover, if ϕ is (G,Rin, Rout)-equivariant TG[ϕ] = ϕ since the
action of the group elements commute with it and annihilate each other in the
integral, leaving ϕ unchanged. The same clearly holds for the finite group case
too. This means that any channel ϕ admits a decomposition

ϕ = TG[ϕ] + ϕA , (6.19)

where ϕA is the “anti-symmetric” part of ϕ, i.e., the part satisfying TG[ϕA] = 0.
As such, any measure of the form ∥ϕA∥ can be used to quantify the degree of
equivariance of ϕ. As for the nullspace approach, we sketched an example of
the application of the twirling method in figure 6.5).

Twirling is relatively simple to implement for small groups, as it is possible
to efficiently compute the summation in Eq. (6.17). However, if the group is
large or even worse if it is a Lie group, directly implementing twirling becomes
more complex and may require more advanced techniques. In [116] we tack-
led this problem in several ways, one can for example resort to Weingarten
calculus [202, 203] for analytically computing twirled operators, use experi-
mental methods such as approximate twirling[204] or in-circuit twirling via
the methods b) and c) shown in Fig. 6.5).

For comparison, it is worth noting that one of the main benefits of twirling
is that it guarantees that, if the starting map ϕ is a valid quantum channel,
the resulting map will in turn be completely positive and trace preserving,
unlike the results of the nullspace method. However, the latter can identify
all equivariant maps, while twirling is applied to each map individually, which
could make it more difficult to find a complete basis for the space of equivariant
maps. It may even happen that upon an unfortunate choice of gates and maps,
after twirling via Eqs. (6.17,6.18) the result is the null map [152]. Therefore, if
one is looking for a single equivariant channel, twirling is a good choice, but if
one wants to find the complete set of equivariant maps, the nullspace method
may be more suitable.
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Figure 6.5: Example of the twirling method [116]. We demonstrate how to use
the twirling method to determine the space of 1-to-1 qubit (G,Rin,Rout)-
equivariant quantum channels, with G = Z2 = {e, σ}, Rin = {1, X} and
Rout = {1, Z}. a) Explicit calculation using the twirling formula of
Eq. (6.17). b) Ancilla-based scheme for in-circuit twirling. c) Classical-
randomness scheme for in-circuit twirling.

6.3.3 Parametrizing the layers of an EQNN
Since we ultimately want to use equivariant maps to build quantum learning

models, we are interested in not only identifying such channels but also in
parameterizing and optimizing them. In this section, we will demonstrate
how to parameterize the layers of an EQNN. We will begin by considering the
case of unitary channels and then extend the discussion to general maps. A
summary of the methods that we are now going to discuss is given in Fig. 6.6.

Parametrizing equivariant unitaries

Let us start by considering the case of a unitary EQNN layer with the
same input and output representations. That is, Hin = Hout, Rin = Rout = R
and N l

θl
(ρ) = Ul(θl)ρUl(θl)†. Notice that this task has already been considered

in [151, 152, 205].
As discussed in section 3.3, a common way to parameterize a unitary is

to express it as the exponential of a Hermitian operator, called its generator,
i.e. Ul(θl) = e−iθlHl , where θl is a trainable parameter. To obtain (G,R)-
equivariant parametric unitaries, we can then use equivariant generators, i.e.
Hl ∈ comm(R), which can be found using the nullspace or twirling methods
previously discussed. These techniques were originally presented for superop-
erators, but they can also be applied to operators.
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Figure 6.6: Procedure to parametrize and optimize equivariant quantum
neural networks [116]. a) We present methods for parametrizing
equivariant QNN layers, be those unitaries or channels. b) Once we
parametrize equivariant quantum neural network (EQNN), we can train
it by feeding in training data and using the outputs to calculate the
loss function. We can then use a classical optimizer to find updates
for the EQNN parameters, possibly projecting the updated map onto
the feasible completely positive trace-preserving (CPTP) region. This
process is repeated until convergence is achieved.
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Parametrizing equivariant channels

Lastly, let us now describe how to parameterize and optimize over equivari-
ant channels. We will assume that a basis of equivariant maps (or a subset of
this basis) has already been identified using the nullspace method. Although
it is relatively easy to find equivariant maps, remember that they may not
necessarily be physical channels because they may not be trace preserving,
completely positive, or both. However, it is still possible to parameterize a
set of non-CPTP equivariant maps and optimize over them by appropriately
constraining the parameters to ensure that the final map is CPTP.

Say that, after having used the nullspace approach, one has managed to
identify a basis set {ϕj} of equivariant maps. Any equivariant layer can then
be expressed as a linear combination of those N = ∑

j xjϕj. Now, to impose
the conditions that we want on N we just need to derive how those translate to
the parameter space. First of all, we can check if among the basis elements ϕj
there are any prohibited operations, such as maps that non-trivially change the
trace of the operators they act on. We can then prune the basis by dropping
them, remaining with only either trace-preserving or trace-annihilating maps.
Then, to make the composite map N trace-preserving, it suffices to make sure
that the parameters associated with trace-preserving basis elements add up to
one. Coming to the CP condition, one can start noticing that it translates to
the Choi operator JN as JN ⩾ 0. Thus we can impose a further condition
on the parameters xj to make the eigenvalues of JN (x) non-negative. This
way, we will be left with a region of feasible equivariant quantum channels,
see Section 6.4 for an example. During the optimization of x, the update rule
may take us outside of the feasible space, in which case we need to project
back onto it. It is worth noting that although it may not be immediately clear
how to implement the resulting channel, it can be transformed into a sequence
of implementable gates acting on a potentially larger space using compilation
techniques [206–209] that allow to transform general maps into a sequence of
gates, acting on extended registers as per Eq. (2.27), that can be implemented
on a quantum device. In some cases, particularly when the maps operate on
large-dimensional spaces, it may be challenging to find the eigenvalues of JN ).
In these situations, we can optimize over a subset of equivariant channels (i.e.,
maps that are already CPTP) that can be found through twirling. We are
guaranteed that any convex combination of equivariant channels will be in the
feasible region because CPTP channels form a convex set [185].

An alternative approach to constructing equivariant channels is via the
Stinespring dilation picture [210]. Recall from Section 2.2.2 that any channel
can be written as the result of observing only a part of an unitary operation
on a larger space, i.e.

ϕ(ρ) = TrE[U(ρ⊗ |ω⟩⟨ω|)U †] , (6.20)

where |ω⟩ ∈ HE is a fixed reference state on an environment Hilbert space
HE, and where TrE denotes the trace over HE. If U(Rin(g) ⊗ 1dim(HE)) =
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(Rout(g) ⊗ R(E)(g))U, ∀g ∈ G, then ϕ is a (G,Rin, Rout)-equivariant channel.
Here we can use any of the tools previously discussed to find and parametrize
U . This approach has the advantage that by fixing the dimension of the
environment, we can look for channels of small Kraus rank which are easier to
implement in practice.

6.4 A case study: EQCNN for quantum phase
classification

The classification of quantum phases of matter is an important topic in con-
densed matter physics [211], the field that studies the physical properties of
matter on the macroscopic scale that emerge from its microscopic description.
In this context, a phase of matter refers to a distinct state of the macroscopic
system at hand that exhibits certain characteristic properties, such as its den-
sity, magnetization, and electrical conductivity. Note that, when discussing
about phases of matter, we usually refer to the phases that the ground state
|ψ⟩Jg of a family of Hamiltonians H(J), depending on some parameters J ,
belongs to. The values of the couplings J , e.g. some external magnetic fields,
determine the ground state properties of the Hamiltonian family. Values of
the couplings at which the system changes its global properties are called crit-
ical, and constitute the boundaries of the different phases of the system when
these are sketched down in a so-called phase diagram, a plot whose axes are
the parameters J . For simplicity, we will assume that the systems at hand
are at zero temperature. Moreover, since phases are properties of macroscopic
systems, they are meant to be studied in the so called thermodynamic limit
where the number of microscopic constituents of the system tend to infinity.
However, when analytical methods cannot (or are too hard to) be applied, and
the thermodynamic limit cannot be solved, studying the behaviour of finite
size systems, as we will do in the following, can still lead to grasping intuition
about the different phases of matter.

An example of an approach to classifying quantum phases is looking at the
topological properties of the system. A topological phase is a state of matter
that exhibits certain properties that are robust against small perturbations
and changes in the system, and can be characterized by topological invariants.
Examples of topological phases include the quantum Hall effect and topologi-
cal insulators [212, 213]. Topological phases are of particular interest because
they can exhibit exotic properties, such as the ability to conduct electricity
on their surface while remaining insulating in the bulk. These properties are
thought to have potential applications in the development of new technologies,
such as quantum computers and sensors [214].
Overall, the classification of quantum phases of matter is a complex and active
area of research that has important implications for understanding the behav-
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ior of materials and the development of new technologies.

We do not need to delve deeper into the theory underlying the study of
quantum phases or of the transitions between them [212], as this is way above
the scope of this work. What is important to us is that quantum phases can
be thought of as labels that describe the global properties of quantum ground
states, and as such one can tackle phase classification as a learning problem.
Indeed, we can embed quantum phase classification in the QML framework
by noticing that it boils down to learning a hidden relation between the space
of ground states of the model being considered and the space of labels with
which we distinguish the different phases. Thus, we aim at building a quantum
classifier that, once trained on a dataset D = {(|ψ⟩J i

g , yi)} of ground states
with their associated phase label, is able to predict which phase a previously
unseen ground state belongs to.
We chose to study the following one-dimensional model.

6.4.1 Bond-Alternating XXX Model
The 1-D bond-alternating XXX Heisenberg model is a mathematical model

used to describe the behavior of a one-dimensional chain of spin-1/2 parti-
cles coupled through a Heisenberg exchange interaction. In this model, the
strength of the interaction between nearest-neighbor spins alternates between
two different values, known as bond alternation. The Heisenberg exchange
interaction is a type of interaction between two spins that depends on their
relative orientation. It is described by the following Hamiltonian:

H =
∑

k=x,y,z
JkS

k
i S

k
j , (6.21)

where J is the exchange coupling constant, Si and Sj are the spin operators
for the i-th and j-th spins that are interacting, reading S = (Sx, Sy, Sz) =
1
2(σx, σy, σz). Standard Heisenberg models describe lattices of spins where
nearest-neighbors interact through the term in Eq. (6.21). In the XXX Heisen-
berg model, the interaction is isotropic, meaning that it is the same in all
directions, i.e. Jx = Jy = Jz = J .

The bond-alternating XXX Heisenberg model is a generalization of the
regular XXX Heisenberg model, in which the exchange coupling constant J
is allowed to alternate between two different values J1 and J2. This results
in a periodic modulation of the strength of the exchange interaction along
the chain, with the interaction between every other pair of nearest-neighbor
spins being stronger or weaker than the interaction between the other pairs.
The bond-alternating XXX Heisenberg model can thus be represented by the
following Hamiltonian:

H = J1
∑
i even

Si · Si+1 + J2
∑
i odd

Si · Si+1 . (6.22)
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Figure 6.7: Schematic representation of the 1-D Alternating Bond XXX
Heisenberg Model (Eq. (6.22)). Above: the 1-D chain with alternat-
ing coupling constants J1,2. Each couple of spins interacts via the term
in Eq. (6.21) with the corresponding J value. Below: The model’s phase
diagram for the configuration of interest J1,2 > 0.

The behavior of the 1-D bond-alternating XXX Heisenberg model can be
studied using a variety of techniques, including exact diagonalization [215],
quantum Monte Carlo simulations [216], and perturbation theory [217]. The
model has been shown to exhibit a variety of interesting behaviors, including
antiferromagnetic order, dimerization, and quantum phase transitions [218].
Antiferromagnetic order refers to a state in which the spins on the chain are
arranged in an alternating pattern, with adjacent spins pointing in opposite
directions. This can occur when the exchange coupling constants J1 and J2
are both antiferromagnetic (AFM), i.e. J1,2 < 0, meaning that they favor the
alignment of spins in opposite directions. Dimerization refers to the formation
of spin dimers, which are pairs of spins that are strongly coupled to each
other. As opposed to antiferromagnetic ordering, dimerization needs both J1
and J2 to be ferromagnetic (FM), i.e. J1,2 > 0, since it is in this case that the
alignment of spins along the same direction is favoured. We will consider the
model described by Eq. (6.22) with open boundary conditions and with both
the couplings in the ferromagnetic regime. This means that the spin chain
does not close to form a circle, and the first and last spin only interact with
one neighbor. In this case, it is possible for a quantum phase transition to
occur between a trivial phase and a topologically protected phase. A trivial
phase is a phase of matter that can be described by a local order parameter
and exhibits no topological properties. In contrast, a topologically protected
phase is a phase of matter that exhibits non-local properties and is protected
against certain types of perturbations [219].

In the case of the 1-D bond-alternating XXX Heisenberg model, the topo-
logically protected phase is characterized by a non-trivial ground state degen-
eracy and the presence of end states that are protected against local perturba-
tions. These end states, also known as boundary modes, are a characteristic
feature of topologically protected phases and are not present in the trivial
phase [220]. The quantum phase transition between the trivial and topolog-
ically protected phases in the 1-D bond-alternating XXX Heisenberg model
occurs at a critical value of the bond alternation parameter α = J2/J1, which
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determines the relative strength of the exchange interaction between nearest-
neighbor spins. When the bond alternation parameter is below the critical
value α = 1, the system is in the trivial phase. When the bond alternation
parameter is above the critical value, the system is in the topologically pro-
tected phase. The topologically protected phase in the 1-D bond-alternating
XXX Heisenberg model has been studied extensively in recent years due to its
potential applications in the field of quantum computing. In particular, the
boundary modes of the topologically protected phase have been proposed as
a platform for the realization of topological qubits, which are a type of qubit
that is protected against certain types of noise [214].

Looking at the Heisenberg interaction (6.21) one can readily check that
the term Si · Sj possesses an SU(2) symmetry. Indeed, consider the total spin
operator of the interacting couple of spins, which is defined as

Stot = Si + Sj = (Sxi + Sxj , S
y
i + Syj , S

z
i + Szj ) . (6.23)

The spin operators of Stot form an su(2) algebra, since they satisfy the usual
spin operator commutation relation [Satot, S

b
tot] = iϵabcS

c
tot, where Einstein sum-

mation rule is assumed. Now, we can check that

[H,Stot] = 0 , (6.24)

which would imply the SU(2) symmetry of the interaction term. Let us show
that for one component

[H,Sxtot] = [(Sxi ⊗ Sxj + Syi ⊗ S
y
j + Szi ⊗ Szj ), Sxi + Sxj ]

= [Syi ⊗ S
y
j + Szi ⊗ Szj , Sxi + Sxj ]

= [Syi , Sxi ]⊗ Syj + Syi ⊗ [Syj , Sxj ] + (y → z)
= −iSzi ⊗ S

y
j − iS

y
i ⊗ Szj + iSyi ⊗ Szj + iSzi ⊗ S

y
j = 0

, (6.25)

where we used the commutation relations stated above and the fact that oper-
ators on different sites commute. It is immediate to check that this holds for
the y and z components of Stot as well.

Since all the qubits in the chain interact through that term, the symmetry
extends to the whole model through the tensor product representationRin(g) =
Rtens(g) = g⊗n. This is of course a symmetry of the phase labels too, as
quantum phases are global properties of the groundstates of the model, and
symmetries of the Hamiltonian are also symmetries of the groundstates. Indeed
if [H,Ug] = 0 and |ψ⟩ is a groundstate, i.e. H |ψ⟩ = E0 |ψ⟩ with E0 being the
minimal energy of the system, then Ug |ψ⟩ is still a groundstate, as it is easy to
check. Thus, our quantum phase classifier can be endowed with this inductive
bias, meaning that we can search for an SU(2)-equivariant quantum learning
model.

Lastly, let us comment on another inductive bias that we can exploit. When
a system is translationally invariant, meaning that an homogeneous shift of the
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positions of its constituents leaves its Hamiltonian unchanged, we can further
build our equivariant layers in such a way to not alter this feature. The way
to do so is to carefully arrange the equivariant gates and channels that we
found with respect to the other symmetries of the model such that the result-
ing layers act in the same way on every subsystem. Since the quantum maps
considered have to be parametric in order to compose a meaningful learning
model, the translational equivariance condition implies that we need to use
parameter sharing. With this term we refer to the sharing of the same free
parameter between all the identical gates that build a layer of an EQNN. For
example, say that the GQML machinery has spotted two equivariant genera-
tors G1 and G2, respectively a single and two-qubit operators. Then we would
apply exp[−iθ1G1] to every qubit, followed by exp[−iθ2G2] acting on every
possible qubit pair, arranged in such a way to be translationally invariant.
The result is a huge reduction in the complexity of the learning model, as the
number of parameters no longer scale with the system size, but only with the
number of equivariant generators, and with the number of layers we decide to
stack to comprise the EQNN.
Now, the alternating model in Eq. (6.22), which we recall to have open bound-
ary conditions, is clearly not translationally invariant. However, for large
enough number of sites N , away from the boundaries any translation of the
chain by two nodes leaves the model invariant, as every even (odd) node sees
the same odd (even) nodes surrounding it and interacts with them through
the same values of the alternating coupling constant. We can consider this
as a partial symmetry of the alternating model, and exploit it to reduce the
complexity of the resulting EQNN by adopting a weaker form of translational
equivariance, especially in the large system size limits where boundary effects
become less important. In our case, we decide to enforce parameter sharing,
and we will discuss the details once we have laid down the SU(2)-equivariant
learning model in the next section.

6.4.2 SU(2)-equivariant QCNN

Now that the task has been dissected, and that the symmetry underlying it
has been identified, we can move to the step where we build our quantum learn-
ing model. Phase classification tasks, much like classical image classification
ones, are best tackled via quantum convolutional neural networks. Classical
convolutional neural networks (CNNs) [117, 221, 222] are a class of deep learn-
ing models specifically designed to process visual data. They are composed of
multiple layers of interconnected nodes, each of which applies a combination
of convolutional and pooling operations, akin to the ones we have described
for EQNNs which in fact are inspired by CNNs, to the input data. Convolu-
tional layers use learnable filters to extract relevant features from the input,
such as edges, corners, and textures, while pooling layers reduce the size and
complexity of the data by down-sampling the output of the convolutional lay-
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Figure 6.8: SU(2)-equivariant QCNN [116]. a) The task at hand is construct-
ing 2-to-2 standard equivariant channels and 2-to-1 equivariant pooling
channels. The input and output Hilbert spaces and the input and out-
put representations for these channels are shown in the figure. b) In an
SU(2)-equivariant QCNN, the strategy is to alternate between applying
2-to-2 channels to adjacent qubits and using 2-to-1 equivariant pooling
channels to reduce the dimensionality of the feature space.
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ers. CNNs are trained on large datasets of labeled examples and can learn to
recognize patterns and features in images, such as objects, faces, and texts.
They have achieved state-of-the-art performance on many benchmarks and are
widely used in applications such as image classification, object detection, and
segmentation. CNNs are particularly well-suited for tasks that require learn-
ing from large amounts of unstructured data and are capable of learning from
data with multiple channels, such as color images.

In QML, a quantum version of classical convolutional neural networks has
been introduced in the seminal paper [223]. The architecture presented there
takes inspiration from classical CNNs [117] and relies on error-correction tech-
niques and tensor network description of quantum states [43], but equivariance,
although present, is never mentioned.
QCNNs have been successfully implemented for error correction, quantum
phase detection [223, 224], image recognition [225], and entanglement detec-
tion [150]. QCNNs exhibit several key features that make them promising
architecture for the near-term, such as having a shallow depth or not exhibit
barren plateaus [226].
Despite all the beneficial properties we just discussed, standard QCNNs need
not respect the symmetries of a given task. In what follows, we will show
how one can design equivariant layers for QCNNs, thus promoting them to
group-equivariant QCNNs, that we will dub EQCNNs.

For ease of implementation on quantum hardware we restrict ourselves to
channels with locality constraints (see Lemma 1). That is, as illustrated in
Fig. 6.8 we want to build an equivariant QCNN that is hardware friendly,
only implementing 2-to-2 standard equivariant unitary channels on adjacent
qubits, that we will then stack in a brick-layered fashion as per usual, and
2-to-1 equivariant pooling maps. This choice of architecture sacrifices some
expressibility in favor of locality, as there may be more general equivariant
channels that operate on multiple or even on all of the qubits. However,
previous research [223, 226] has shown that models with locality constraints can
be successful, suggesting that this may be a worthwhile approach to explore.

2-to-2 standard layers

In the special case of 2-to-2 equivariant unitary layers, whereN l
θl

: (C2)⊗2 →
(C2)⊗2 and N l

θl
(ρ) = Ul(θl)ρUl(θl)†, we know that if Ul(θl) = e−iθlHl , it suf-

fices to use equivariant generators, that is, such that [Hl, g
⊗2] = 0 for all

g ∈ SU(2). Now, SU(2) being a continuous Lie group, we should embark in
the arguably difficult quest of, say, twirling by performing an Haar integration
as in Eq. (6.18). However, much more conveniently, we can resort to a famous
result of representation theory, the Schur-Weyl duality [151, 227], which states
that the only possible equivariant operators with respect to the tensor prod-
uct representation of SU(2) over two qubits are 1 and the SWAP operator
that we defined in Eq. (2.38), which correspond to the two elements of the
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qubit-permutational representation of S2. Thus, without loss of generality, we
can set Hl = SWAP so that our equivariant standard layers will consist of
unitaries of the form Ul(θl) = e−iθlSWAP. Following Lemma 1, we know that if
we compose these two-qubit equivariant unitaries as in Fig. 6.8, the result will
be an n-qubit equivariant unitary.

2-to-1 pooling layers

Next, we look for 2-to-1-qubit equivariant channels using the nullspace ap-
proach. Since SU(2) is a Lie group, we can work at the level of the generators
of its Lie algebra, su(2) = span{X, Y, Z}. Given the representations g⊗2 (the
input representation) and g (the output one), the associated basis represen-
tations of the algebra are {1 ⊗ X + X ⊗ 1,1 ⊗ Y + Y ⊗ 1,1 ⊗ Z + Z ⊗ 1}
and {X, Y, Z}. Plugging this in the nullspace machinery that we described in
sec. 6.3.2, we arrive at having to simultaneously solve for the nullspace of the
following matrices

MX = adIX+XI
⊤ ⊗ 12 − 14 ⊗ adX ,

MY = adIY+YI
⊤ ⊗ 13 − 14 ⊗ adY ,

MZ = adIZ+ZI
⊤ ⊗ 13 − 14 ⊗ adZ .

(6.26)

The solution comprises five superoperators that form a basis for 2-to-1
qubit (SU(2), g⊗2, g)-equivariant maps. These are

ϕ1(ρ) = Tr[ρ]12 , ϕ2(ρ) = Tr[ρSWAP]12 ,

ϕ3(ρ) = TrA[ρ] , ϕ4(ρ) = TrB[ρ] ,

ϕ5(ρ) =
3∑

ijk=1
Tr[ρσiσj]ϵijkσk .

(6.27)

Notice how the first two channels ϕ1,2 are just equivariant measurements,
since as we discussed the commutant of the tensor product representation of
SU(2) is just {1, SWAP}, followed by setting the output state to the completely
mixed one. The third and fourth solutions ϕ3,4 are simple to interpret as well,
as they correspond to tracing out either one of the two input qubits. The
last solution ϕ5 is more interesting, and unexpected. We dubbed it the cross-
product map as it act just like it w.r.t. the components X, Y, Z. Note that
ϕ1, ϕ3, and ϕ4 are trace preserving while ϕ5 is trace-annihilating. One can also
verify that ϕ2 may non-trivially alter trace. As the only map that may do so,
we can drop it from our basis set for being non-physical. To continue and find
the set of equivariant quantum channels, we first make a modification to our
basis set. In the Pauli basis we have ϕ1 ↔ 2 |1⟩⟩⟨⟨1,1|, and it is easy to see
that both ϕ3 and ϕ4 also contain this term. Thus, we can remove it, leaving
trace-annihilating versions of partial trace, which we will denote by ϕ′

3 and ϕ′
4.
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6.4 A case study: EQCNN for quantum phase classification

Figure 6.9: Region of parameter space leading to CPTP channels [116]. Us-
ing the nullspace method we can find a basis for all 2-to-1 (SU(2), g⊗2, g)-
equivariant pooling maps. These can then be linearly combined to form
a general parametrized equivariant map as in Eq. (6.28), and we find
in Eq. (6.30) the region in parameters space leading to CPTP channels.
Here we depict said region as the volume of the hyperbole (red) below
the plane (green).
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Thus, any TP map must take the form

ϕ(x, y, z) = ϕ1 + xϕ5 + yϕ′
3 + zϕ′

4 , (6.28)

where the coefficients are real numbers. It remains to find the region such that
this channel is CP. This can be done via the Choi operators of these channels.
That is, we would like to find

{x, y, z ∈ R : Jϕ1 + xJϕ5 + yJϕ
′
3 + zJϕ

′
4 ⩾ 0} . (6.29)

Note that, since the Choi operators in the sum are linearly independent, the
coefficients here must be real numbers for the Choi operator of the sum to
be positive. Requiring the eigenvalues of this linear combination to be non-
negative yields the feasible region

x, y, z : y + z ⩽ 1 , and

y + z ⩾
√

3x2 + 4(y2 − yz + z2)− 1 .
(6.30)

This region is illustrated in Fig. 6.9. Here we note that as the set of equivariant
channels is convex, this feasible parameter region is a convex subset of R3.

When training a SU(2)-equivariant quantum convolutional neural network
(QCNN), it is possible to directly optimize the coefficients x, y, and z of each
pooling channel ϕ(x, y, z) (as defined in Eq. (6.28)). This is done using methods
such as gradient descent, which updates the parameters (x(t+1), y(t+1), z(t+1))←
(x(t), y(t), z(t)) − αDt((x(t), y(t), z(t))) at each iteration t. To ensure that the
resulting operations are physically allowed, we must continuously solve the
projection problem at each iteration. This can be expressed as a convex opti-
mization problem

min
x,y,z
∥(x(t+1), y(t+1), z(t+1))− (x, y, z)∥2 ,

subject to Eq. (6.30) ,
(6.31)

over a convex domain [116].

6.4.3 Preliminary Numerics
In this final section we are going to showcase the power of GQML, com-

paring the performance of the SU(2)-equivariant QCNN we just found the
ingredients of against a problem-agnostic QCNN for the phase classification
task at hand. Let us start by setting up the learning problem. Looking at
Fig. 6.7, we see that ground states of the Bond-Alternating Heisenberg XXX
model of Eq. (6.22) can either be found in a trivial J2 < J1 or topologically
protected J2 > J1 phase. Thus, we want to train a quantum classifier yθ to
distinguish between these two phases. Conveniently, the alternating model, we
will call it this way from now on, can be straightforwardly implemented on a
quantum computer by associating a qubit to each of the spins Si, thus, if the
model is N qubits large the classifier must be a map yθ : B((C2)⊗N)→ {0, 1},
where we arbitrarily labeled 0 the trivial phase and 1 the topological one.
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6.4 A case study: EQCNN for quantum phase classification

Defining the learning models

In the previous section we have built the equivariant 2-to-2 and 2-to-1
quantum maps that we can compose to craft our EQCNN, thus the only thing
that is left to completely specify an equivariant classifier yθ is to compose those
maps and pick an appropriate measurement at the end.
In order for yθ(|ψ⟩J2/J1

g ) to be an invariant prediction of the phase which
|ψ⟩J2/J1

g belongs to, we need to pick an equivariant observable operator Ô to
measure at the end of the EQCNN. As we discussed in the previous sections,
equivariant operators are those belonging to the commutant of the output rep-
resentation Rout of the last layer of the EQCNN. We will not change the nature
of the representation between layers, meaning that we will stick to the natural
tensor product one acting on the physical system Rtens(g) = g⊗n = Rn, where
n will start from n = N and change layer after layer as we perform pooling
operations to reduce the size of the register. This means that in the output
layer the representation will be Rout(g) = g⊗m, with m being the number of
qubits that survived the pooling layers. Now, since we need two outputs to
label the two phases ytrivial = 1 and ytopological = 0, one might think that it
is convenient to go all the way up to m = 1, since the lowest-dimensional
operator with two distinct eigenvalues obviously belong to B(C2). However,
from the discussion in Sec. 6.4.2 we know that the commutant of the natural
representation of SU(2) over a single qubit is just comm(Rnatural) = {1}, and
that would not allow to classify anything. The best we can do is then going
to m = 2, where as we have already seen when looking for 2-to-2 equivari-
ant unitaries, the commutant contains SWAP as the only non-trivial element.
Conveniently, SWAP has two eigenvalues ±1 so that we can bind, say, the +1
outcome to ytrivial and the -1 one to ytopological. We adopt this strategy, with a
little modification to have the output of the EQCNN, that we will indicate as
fθ(ρ), take values in [0, 1]. Namely, we define

fθ(ρ) = Tr[ϕθ(ρ)SWAP ] + 1
2 . (6.32)

Where ϕθ is the equivariant quantum neural network. Then, we can assign the
predicted phase label to any input state ρ as

yθ(ρ) =
{

trivial if fθ(ρ) > τ

topological if fθ(ρ) < τ
, (6.33)

for some threshold value τ , that can be taken to be τ = 0.5 at the beginning
of the learning loop.

To test this architecture against one that has no inductive biases, we will
choose a QCNN whose standard layers are PQCs inspired by the hardware
efficient ansatz discussed in Sec. 3.3 and depicted on the left of Fig. 3.2, whereas
the pooling layers will consist of simple alternate partial traces, i.e. at each
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pooling operation we discard half of the qubits. The classification will then
proceed as for the EQCNN, with a SWAP measurement and the assigning of
the phases described in Eq. (6.33). To summarize, the general architecture of
the QCNNs that we will compare is the one depicted in Fig. 6.8, the EQCNN
will use standard and pooling layers described in Sec. 6.4.2, whereas the non-
equivariant uses the hardware efficient ansatz circuits shown on the left of
Fig. 3.2 as standard layers and simple partial traces as pooling ones. For this
reasons, we dub the non-equivariant QCNN as the HEA-QCNN.
Lastly, in the spirit of wanting to test the full power of equivariance, we enable
parameter sharing in the EQCNN. Given the brick-layered structure of the
standard layers, composed of two qubit operations acting on alternate even-
odd pairs, we can use the same parameter for all the gates applied to qubit
pairs with the same parity. Looking at Fig. 6.8, this means that in each
standard layer, each of the two columns of 2-to-2 gates is controlled by a single
parameter. This leads to having two parameters for each standard layer. If
needed, we can repeat the standard layers more than once before applying
the pooling layer. Parameter sharing is easily enforced in the latter too, as it
suffices to use the same parameters x = (x, y, z) in each of the 2-to-1 channels.

Training loop

To train the quantum learning models we just finished describing, we use
the standard ML pipeline of supervised learning.

1. We collect a training dataset DNT
train, where NT is the size of the dataset,

by choosing some representative values of the parameter J2 while al-
ways keeping J1 = 1 and then analytically computing the ground states
|ψ⟩J2/J1

g of the Hamiltonian in Eq, (6.22). Knowing the phase diagram
of the alternating model, which is shown in Fig. 6.7, especially that the
critical value at which the transition happens α = J2/J1 = 1, we can
then associate these states with their true labels y ∈ {0, 1}. Particularly,
we try training dataset made of NT = (2, 4, 6, 8, 10, 12) ground states, al-
ways distributed homogeneously in the range J2/J1 ∈ [0, 1]. For example
for NT = 2 we use D2

train = {(|ψ⟩0.25
g , 1), (|ψ⟩0.75

g , 0)}.

2. We initialize the learning model at hand, equivariant or not, with random
parameters θ.

3. We select an optimizer for the learning model. In our case we always use
ADAM [87], the golden standard of gradient-based optimization in ML.

4. For a number of epochs E, we divide the training dataset DNT
train in batches

of size nbatch = 2. For each batch, the training states |ψi⟩ are processed
by the model to output the predicted label yθ(|ψ⟩) and the minimum
squared error loss function of Eq. (1.2) is computed by comparing the
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predictions to the real labels yi

Lθ = 1
nbatch

nbatch∑
i=1

(yθ(|ψi⟩)− yi)2 . (6.34)

We then compute the gradient of Lθ and use the optimizer to update the
model’s parameters. The goal is to minimize Lθ, as it would mean that
the model correctly labels the training points.

5. The QCNN outputs for the training states are used to update the thresh-
old τ . Particularly, only the two training points that are closer to the
critical value α = 1 are considered, and the the threshold value is set to
the average of the corresponding outputs.

6. As an additional figure of merit for the training we keep track of the
accuracy of the model’s predictions. The accuracy of a learning model is
a common metric used to rate the model’s performance [1, 2]. It is simply
defined as the ratio of correct predictions over the size of the dataset

Accuracy = # correct predictions
# correct predictions + # wrong predictions . (6.35)

If the dataset is well balanced, meaning that all of the classes are rep-
resented equally, accuracy is a good indicator of the behaviour of the
model.

7. During training, we test if the model is actually learning or just over-
fitting to the training data by computing loss and accuracy for a set of
states randomly picked from a test dataset Dtest that the model has not
access to during the optimization. The size of this set is chosen to be
equal to the size of the training batches.

8. At the end of the last epoch, we let the model predict the labels of the
whole test dataset, and we compute its final accuracy as a measure of
the goodness of the training. Then, we also plot the predicted phase
diagram to get a visual proof of the performance of the model.

Performance comparison

We are now ready to illustrate the results of our numerics. First thing first,
we must state that we have still not been able to fruitfully train the EQCNN
when using the general 2-to-1 pooling layers described in Sec. 6.4.2, as the
required projection onto the feasible CPTP region seems to inject instability
in the optimizing procedure. We leave this to the full numerical analysis that
we are soon to compile into a manuscript, and here focus on the more sim-
ple tracing pooling operations. That is, the EQCNN architecture is still that
depicted in Fig. 6.8, but the pooling operations are just partial traces. With
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this being said, the results of training EQCNN and standard HEA-QCNN are
illustrated in Figs.6.10,6.11.
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Figure 6.10: Predicted Phase Diagrams. The four panels show the phase di-
agram of the 1D Bond Alternating XXX Model for system sizes of
N = 12 and N = 13 qubits as reconstructed by a trained EQCNN or
HEA-QCNN. Particularly, each panel shows the QCNN output when
it is tested against dataset of 500 homogeneously distributed ground
states. States whose output is above (below) the optimal threshold τ
(green dashed line) are colored in blue (red) and classified as belong-
ing to the trivial (topological) phase. The training points are shown
as black crosses. The vertical solid black line is the theoretical criti-
cal value J2/J1 = 1. The configurations leading to the panels are the
following. (a): EQCNN, N = 12, 60 trainable parameters, 12 training
points; (b): HEA-QCNN, N = 12, 63 trainable parameters, 12 training
points; (c): EQCNN, N = 13, 66 trainable parameters, 12 training
points; (d): HEA-QCNN, N = 13, 66 trainable parameters, 12 training
points. Details about the training procedure are given in the main text.

We considered system sizes ranging from N = 6 to N = 13, and trained
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both the EQCNN and the HEA-QCNN according to the training loop de-
scribed in Section 6.4.3 for a fixed number of training epochs E = 750. Since
the two architectures are very different, and the EQCNN, as opposed to the
HEA-QCNN, uses parameter sharing, in order to have a fair comparison we de-
cided to stack multiple standard layers before each pooling one in the EQCNN,
in such a way to have a similar amount of training parameters for both the
learning models. In Fig. 6.10 we show the predicted phase diagrams for N = 12
and N = 13. The thing that immediately stands out is the (d) panel of that
figure. Indeed, while the other three basically show the same behaviour, with
the QCNN at hand being able to efficiently separate the two phases of the al-
ternating model, the last one showcases a cloudy behaviour of the HEA-QCNN
predictions, as it randomly assigned phases even for really close states in the
values of the parameter α. This is not an artifact of the training, and we did
not handpick a poor trained HEA-QCNN, rather it is a feature of it and, when
comparing this behaviour with the analogous one of the EQCNN (panel (c)),
it explains the real power of equivariant quantum learning models. Indeed, the
fact that for N = 12 (panels (a) and (b)) the equivariant QCNN does not out-
perform the non-informed one is due to the fact that there is actually no need
for equivariance in that case. Indeed, equivariance is meant to enhance the
performance of learning models that deal with invariant, under some symmetry
group G, labels, but this invariance should not come from the invariance of the
input states themselves. Think yet again of the classical problem of classifying
images of cats and dogs, the labels, i.e. the semantic meaning of the images,
are invariant if we translate the images, but the latter are obviously not. How-
ever, if we translate images that are completely black and white, instead of
showing cats and dogs, the labels (the colors) are invariant simply because the
images do not change. This is what is happening in our case. We have already
discussed that if an Hamiltonian H is symmetric under a group G, any unitary
representation of it UG leaves the energy of groundstates unchanged and thus
maps groundstates into groundstates. However, if the groundstate is unique,
the action of UG on it can at most modify its global phase UG |ψg⟩ = eiϕ |ψg⟩.
For quantum states, this is the same as not changing at all, hence phase clas-
sification when groundstates of the system are unique in every phase does not
require equivariance. However, this does not hold for degenerate groundstates,
i.e. when the Hamiltonian symmetry is broken, as in that case groundstates
are not unique but rather populate a degenerate eigenspace, and the action of
the symmetry group can move us through this space. Degenerate groundstates
are akin to images of cats and dogs just like unique ones can be paired with
black or white images, and as such equivariance can finally shine. Interestingly,
the alternating model is degenerate for odd system sizes, while for even ones
its groundstates are unique. This explains the different behaviours shown in
Fig. 6.10.

This also motivates the analysis shown in Fig. 6.11. There, we show a
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Figure 6.11: The actual power of equivariance. The two panels show the mean
and variance of the testing accuracy reached by trained QCNNs on al-
ternating XXX models of even (a) and odd (b) sizes. The average is
conducted on both the chosen sizes, (6, 8, 10, 12) for the even case and
(7, 9, 11, 13) for the odd one, and on 10 different, randomly initialized
training runs for each problem size. The results are plotted against
the number of training datapoints NT . The blue circles refer to the
EQCNN with a similar number of parameters as the HEA-QCNN (or-
ange stars), whereas the green circles describe the EQCNN with the
minimum number of parameters possible.
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6.4 A case study: EQCNN for quantum phase classification

statistical study of the performances of EQCNN and HEA-QCNN when tack-
ling even and odd system sizes. As is evident from the left panel, enforcing
equivariance when it is not needed can be more detrimental than beneficial.
Indeed, the reduced expressibility of the learning model is not compensated by
any benefit and training instabilities emerge, as evidenced by the large error
bars in panel (a). However, when equivariance has a reason to be used, as
it is for the odd size states studied in panel (b), the advantage of using the
EQCNN against a non-informed one is clear. Already with only two training
points the equivariant QCNN performs greatly, while the HEA-QCNN needs
more training data to generalize well. Interestingly, even with the minimum
number of trainable parameters, that for the system sizes studied ranges from
4 to 6, the EQCNN seems to perform better than the non-equivariant one.

As stated in the beginning, this is only a preliminary analysis, and as such
we postpone any strong conclusion until we have studied the performance
of equivariant quantum learning models on more complex systems, against
different non-equivariant architectures, and for different symmetry groups.
Nonetheless, we think that the results shown in this section hint at confirming
that injecting inductive biases into quantum neural networks boosts their per-
formance, paving the way to the design of new, shallower and more efficiently
implementable quantum circuits that could be more suitable for the current
era of quantum machine learning.
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Conclusions

In this thesis we have dealt with the challenge of finding efficient designs
and training strategies for quantum machine learning models. Particularly, the
first part of this work has been devoted to the particular framework of quan-
tum generative adversarial learning. Quantum generative adversarial networks
(QGANs) are a promising avenue for QML, but in the literature they had been
studied only with pure states. Since at this stage of quantum technologies, the
so-called NISQ era, quantum processors are expected to be noisy,the restriction
to pure states could lead to undesirable surprises once the QGAN is trained in a
real device. Thus, we decided to tackle mixed states learning in the adversarial
framework (Chapter 4). In Section 4.3, we showed that alternative approaches
to parameterized quantum circuit (PQC) modeled generator and discriminator,
which we dubbed ConvexQGAN, achieve very good performance in learning
mixed states, and have the benefit of having a nice physical interpretation. We
also discussed a way to devise these convex methods on a quantum processor
by using quantum circuits, however implementing these circuits on a real de-
vice would be costly. In contrast, the standard QML approach using PQCs
with no predetermined structure revealed that basic gradient descent optimiza-
tion strategies incur in limit-cycles-like behaviors (Section 4.2.2), making the
QGAN game unstable and effectively making it so that mixed states cannot
be learned. The convergence problems we have experienced are thought to
be caused by the bilinear structure of QGAN’s score function. It has indeed
been noted in previous research about classical GANs that optimizing these
types of score functions can lead to exact limit cycles, in which the generator
gets trapped, repeatedly approaching but never reaching the desired solution.
We faced this challenge in Section 4.2.3 and found an optimizing protocol, the
Optimistic Gradient Descent algorithm, i.e. a gradient-based technique allow-
ing provable convergence with bilinear score functions, that is able to solve
the instability issues of mixed states QGAN, reopening the quest for a fully
operative quantum generative adversarial learning framework.
According to our theoretical and numerical analysis, the proposed algorithms
should be more effective at training QGANs, particularly when highly mixed
states are involved, compared to previously used techniques. By developing
effective training strategies for mixed states, we can take advantage of their
higher representation power and study noisy quantum maps. Analysing the
performance of QGANs in the presence of noise is mandatory if we want to ef-
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ficiently devise them on NISQ processor. Encouragingly, as was demonstrated
in [228], adversarial schemes exhibit the same noise robustness as other hybrid
quantum-classical variational algorithms [229–232]. It is currently an open
question whether adversarial strategies could potentially replace some current
metrology schemes [112] by providing faster and more efficient techniques for
sensing and system certification. An immediate future direction in this line of
work about QGANs is assessing what kind of performance enhancement can
be reached by processing entangled copies of the target state, if accessible.

Motivated by the ability of the optimistic training strategy to make the
generative adversarial game converge even when mixed states are involved, in
Chapter 5 we introduced a new learning scheme, that we dubbed SuperQ-
GANs for reproducing, and hence characterizing, noisy quantum maps. Specif-
ically, we focused on Pauli channels and showed that SuperQGANs can ef-
fectively learn and reproduce this kind of maps, even when they have different
types and amounts of correlations. The method also easily extends to more
general random unitary maps. SuperQGANs use parameterized quantum
circuits to model generative and discriminative agents that compete until the
generator learns to accurately reproduce the target quantum map and fools
the discriminator. The ability to separately tackle temporal or spatial corre-
lations allows us to better classify the unwanted couplings that unavoidably
spoil nowadays quantum computations in the NISQ devices. As shown in Ref.
[233], noise affecting quantum processors can be controlled in such a way to be
effectively described by Pauli channels via the implementation of randomized
compiling. Thus, having automatic methods such as SuperQGANs to charac-
terize the latter could help devise optimal error mitigation protocols. Without
any constraints, the SuperQGAN implements full quantum process tomogra-
phy, which is bound to scale exponentially with n, be it the number of probes
in a spatially correlated configuration or the number of successive uses for a
temporal one. However, more interestingly, the analysis that led to Fig. 5.7
shows that when the noise model is constrained to a given form, such as when
we already have some insight on the type of correlations affecting the device at
hand, the SuperQGAN method is efficient and the resources it needs do not
scale with n. In addition, following the analysis of the teleportation-induced
correlated quantum channels in Ref. [234], once our new protocol learns the
probabilities p(n)

k of the Pauli channels, one can also analytically calculate the
corresponding quantum capacities (known only in a very few cases) and the
distillable entanglement of a generic bipartite quantum state being exploited
to implement a teleportation protocol that can be always mapped to a cor-
related Pauli channel. Indeed all these quantities are very simple analytical
functions of the probabilities p(n)

k [234, 235]. Therefore, these results are ex-
pected to find applications also in other fields other than quantum computing,
as quantum communication and quantum cryptography. Notice, for instance,
that quantum error correction and quantum teleportation are indeed the cru-
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cial building blocks towards the feasible realization of the so-called Quantum
Internet [236]. Lastly, we also showed how the SuperQGAN machinery fits
the problem of quantum metrology, i.e. the estimation of a parameter upon
which a certain quantum map depends. We applied it to the estimation of the
phase shift induced by a Mach-Zehnder interferometer, and found the optimal
setup under which the phase can be faithfully reconstructed. We believe that
quantum metrology via SuperQGANs will be particularly useful for those
scenarios when the theoretically optimal entangled input state is not known,
since our method has the ability to cleverly combine input preparation and
final measurement to find the best discrimination policy.

In the last part of this thesis we left the generative adversarial learning
paradigm to tackle the design of quantum learning models from a more general
point of view. Indeed, in Chapter 6 we introduced the framework of Geometric
Quantum Machine Learning (GQML), a new and exciting field that aims at
encoding helpful inductive biases derived from the symmetries of the problem
at hand into the architecture of the learning models we want to train. This en-
coding is achieved by constructing quantum circuits that “commute” with the
unitary representations of the symmetry group at hand, and this property is
called equivariance. The field of GQML had already begun to be tackled [151–
156], but these early contribution to the literature mainly dealt with unitary
PQCs which maintain the same symmetry group representation throughout
the computation. We showed how to generalize these previous results and
presented a theoretical framework to understand, design, and optimize over
general equivariant channels, which we have referred to as Equivariant Quan-
tum Neural Networks (EQNNs). While presented in the setting of supervised
learning, the framework is readily applicable to other contexts such as unsuper-
vised learning [166, 167], generative modeling [70, 168–170] or reinforcement
learning [171, 172].
The main result of the first part of Chapter 6 is the establishment of practi-
cal methods to construct EQNN layers. The first method, referred to as the
nullspace method, vectorizes the equivariance constraints turning them into a
system of linear matrix equations, which is then solved for the common null
space. The second method uses the process of twirling across a group, which
allows projecting any given channel onto the space of equivariant maps. We
have left a third method for Appendix E, since it relies on more advanced
representation theory tools that did not fit the flow of this work. We then
proceeded to show how the found equivariant layers can be parameterized and
in the last section of Chapter 6 we presented a preliminary numerical inves-
tigation on the benefits of using equivariant learning models as opposed to
problem-agnostic ones. Particularly, we tackled the QML task of classifying
phases of matter in a 1-D condensed matter model known as the Alternating
Bond XXX Heisenberg model. To do so, we assessed that the problem has a
SU(2) symmetry, and applied our techniques to promote standard Quantum
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Convolutional Neural Networks (QCNNs) to group-equivariant QCNNs (EQC-
NNs). The results we obtained, although preliminary and yet to be backed
up by further analyses, show that when the symmetry is such that the labels
(phases) are invariant while the input datapoints (quantum groundstates) are
not, the EQCNN is able to top a more general QCNN, already when using
very few training points. On the other hand, when equivariance is not justi-
fied, i.e. when the symmetry makes the inputs invariant and as a consequence
any learning model would output invariant labels, the reduced expressibility
of the EQCNN hinders its performance as compared to standard QCNN.
The field of Geometric Quantum Machine Learning is bound to experience
significant growth in the near future, as it offers methods for designing archi-
tectures and inductive biases that are well-suited for a given problem, allowing
for the deployment of hopefully shallower and more NISQ-friendly quantum
circuits. As already discussed, an immediate avenue of future research is that
of extensively studying the performance of QML ansätze that are tailored to
specific symmetries relative to problem-agnostic ones and classical learning
models. Additionally, it would be valuable to investigate the implications of
approximate equivariance, as near-term quantum hardware is subject to noise.
One could study how noise affects equivariance and the performance of equiv-
ariant models, and develop a measure of equivariance breaking. Notably, it has
been observed in the classical machine learning literature that relaxing strict
equivariance can result in improved performance on certain tasks [237].
Another crucial application of this framework will be the development of ap-
propriate techniques for embedding classical data into quantum states. At
present, many existing methods for dealing with classical data use embedding
architectures that fail to take into account or even destroy symmetries featured
by the input data, as highlighted in recent literature [162, 238, 239]. Therefore,
it is essential to design embedding schemes that preserve and promote these
symmetries from the classical to the quantum realm. These will be the topics
of our future works.
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Appendix A

Basics of game theory

Game theory [21, 240, 241] is a branch of mathematics that deals with the
strategic behavior of multiple independent players who have different objec-
tives, and try to reach the best outcome for themselves. This is opposed to
cooperative game theory, where players alliances are allowed, that we will not
discuss here. At its core, game theory is concerned with modeling and analyz-
ing the decision-making of the players. John Nash’s results are used everyday
to analyze the strategic possibilities of chess and poker players [242, 243] and
has also numerous applications in fields such as economics and risk manage-
ment [244]. It can also even be useful in the field of cybersecurity [245].

A game can be formalized as a tuple G = (N,S, u), where N is the set
of players, S = S1 × S2 × ... × Sn is the set of strategies for each player,
and u = (u1, u2, ..., un) is the utility function that maps a strategy profile
s = (s1, s2, ..., sn) ∈ S to a utility vector u(s) = (u1(s), u2(s), ..., un(s)) ∈ Rn,
representing the utility or payoff that each player receives for a given strategy
profile. A strategy for player i is a function si : N \ i → Si that specifies the
action that player i will take for every possible strategy profile of the other
players. Strategies can be either pure, in which case a player always chooses the
same action, or mixed, which is a probabilistic combination of pure strategies.
The strategy profile s = (s1, s2, ..., sn) of a game is a complete specification of
the strategies for all players.

In this context, a Nash equilibrium [21] is a preferred strategy profile s∗ =
(s,1s,2..., s∗

n) such that, for every player i

ui(s∗
i , s

∗
−i) ⩾ ui(si, s∗

−i) (A.1)

for all si ∈ Si, where s−i = (s1, s2, ..., si−1, si+1, ..., sn) is the strategy profile of
all players except player i. That is, a Nash equilibrium is a strategy profile in
which no player has an incentive to change their strategy, given the strategies
of the other players.

Examples explain more than raw theory, and a classic example of a non-
cooperative game is the prisoner’s dilemma [246]. In this scenario, two crimi-
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nals are held in separate cells and offered a deal by the police. If one prisoner
confesses and provides evidence against their partner, they will enter a wit-
ness protection program and avoid prison, while their partner will serve a
five-year sentence. If both prisoners confess, they will both serve a slightly re-
duced three-year sentence. However, if neither confesses, they will only serve
a one-year sentence each. The game is represented in table A.1, with the rows

P2

P1 Confess Conceal

Confess (3,3) (0,5)
Conceal (5,0) (1,1)

Table A.1: The Prisoner’s Dilemma utility table.

representing the first player’s strategies, the columns representing those of the
second player, and the cells containing the number of years each player will
serve in prison. In this game, the optimal solution for both players would be
to make a binding agreement not to confess and only serve one year in prison.
However, since this is not possible in a non-cooperative game, both players
must watch out for betrayal and try to minimize their prison sentence. As a
result, the solution to the game is for both prisoners to confess and serve three
years in prison.

In this simple example we can use brute-force logic to come to understand
that there is a Nash equilibrium, and that it corresponds to the solution we
have outlined. However, more complex games may be difficult to tackle with
brute-force approaches. Kakutani’s fixed point theorem [68] is a fundamental
result in game theory that establishes the existence of Nash equilibria in certain
types of games. The theorem, whose proof we will not give here, states that,
given a compact and convex strategy set Si for each player i and a continuous
utility function ui : S → R, there exists a Nash equilibrium in pure strategies.
In other words, if the strategy sets for each player are compact, i.e. closed
and bounded, and convex, and the utility function is continuous, then there
exists a pure strategy Nash equilibrium in which no player has an incentive
to change their strategy given the strategies of the other players. Kakutani’s
fixed point theorem can be used to prove the existence of Nash equilibria in
a wide range of games, including two-player zero-sum games such as the one
underlying GANs (Sec. 1.4) and QGANS (Chapter 4), and potential games
[247].
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Appendix B

Proof of Theorem 2

The following proof is adapted from [81]. We use the Bloch parametrization
(4.8), which we rewrite for simplicity as S(d, g) = d · (r − g) ignoring the
constant factors. Gradient descent/ascent applied to ming maxd S(d, g) results
in the update rule

dt+1 = dt + η(r − gt), (B.1)
gt+1 = gt − η(−dt), (B.2)

where η is a suitably small “learning rate” and t is the iteration step. The
unique fixed point is with g = r and d = 0, which physically corresponds to
perfect generation ρG = ρR and impossibility to distinguish real from generated
data ΠD ∝ 1. We evaluate the distance from this fixed point as ∆t = ∥dt∥2

2 +
∥r − gt∥2

2, where ∥ · ∥2 is the ℓ2-norm. From (B.1)-(B.2) we get

∥dt+1∥2
2 = ∥dt+1∥2

2 + 2η dt · (r − gt) + η2∥r − gt∥2
2, (B.3)

∥r − gt+1∥2
2 = ∥r − gt∥2

2 − 2η dt · (r − gt) + η2∥dt+1∥2
2, (B.4)

and accordingly
∆t+1 = (1 + η2)∆t , (B.5)

namely the distance from the equilibrium point increases at each iteration.
We point out that the above proof is valid only when we neglect the physical
constraints on the Bloch vectors. The latter are however important for pure
states or for states near the surface of the Bloch sphere.
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Appendix C

Method

C.1 SuperQGAN setup
Here we describe the technicalities of the numerical simulations described

in the main text. First of all let us introduce the building blocks of the para-
metric quantum circuits used in both the spatial and temporal configurations.
These are basically two: a two-qubit generic SU(4) operation, obtained with
the recipe described in [83], and the quantum convolutional neural network
(QCNN) introduced in [223] and illustrated in Fig. C.1. Particularly, the final
PQC controlled by D to implement its POVM is a QCNN, whereas interme-
diate operations are composed by alternating layers of SU(4).

Another aspect that is common to both configurations is gradients evalua-
tion. Indeed, we have always resorted to the parameter shift rule described in
[85, 248].
Lastly, as far as the optimization procedure is concerned, we have used a vari-
ation of the Optimistic Mirror Descent (OMD) introduced in [81] and fruit-
fully tested in [67], namely Optimistic ADAM. This optimization strategy uses
ADAM [87], i.e. a famous gradient descent with momentum optimizer, to
evaluate the parameters increment at step t, i.e. δt, then implements it as in
OMD θ ← θ−2ηδt+ηδt−1, where η is the learning rate and θ is the parameter
being updated.
Hyperparameters such as the agents’ learning rates, the total number of train-
ing turns and the single agents’ number of updating steps are tuned case by
case. There is, however, a rule of thumb: learning rates η are chosen inside
the range 0.01 < η < 0.25 and D’s (and I’s) steps are almost always twenty
times more than G’s ones.

C.1.1 Spatial correlations
The circuits architecture of the SuperQGAN for spatially correlated chan-

nels is shown in Fig. 5.2(a). As discussed before, I is built of staggered layers of
SU(4) blocks and its depth is hand-tuned depending on the number of qubits
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Figure C.1: An example of QCNN. U1 and U2 are elements of SU(2) and SU(4),
respectively, and their circuital realization is explained in Fig. 3 of [67].
Crossed lines stand for forgotten qubits. Notice that the latter do not
get measured, and are to be kept untouched until the end of the network.

it acts on. G simulates the random unitary channel at hand by separately
applying the unitaries defining it and later weighting the discriminator out-
comes with its parametric distribution qk. The discriminator evaluates p(R|·)
applying its QCNN on the output state of the channel being tested, R or G,
and on its ancilla qubit. The role of the QCNN is to filter and encode the
relevant information in the ancilla qubit, so that measuring it D can tell the
difference between real and generated data.

C.1.2 Temporal correlations
When tackling temporal correlations, the SuperQGAN adopts a comb-

like architecture, as shown in Fig. 5.2(b). Now I and D have access to an
extra workspace qubit, which they will use to store information and process
the temporal memory of the channel being tested. Now, after the initial state
preparation implemented by I, whose structure is the same as the previous
setup, D acts after each channel use with a similar PQC, and only after the
last use implements the measurement via a QCNN.

130



Appendix D

A deeper
representation-theoretic look at
EQNNs

In the main text, in chapter 6, we showed how to put inductive biases in
quantum machine learning models in order to make them better at their tasks.
All the machinery we developed there is fundamentally based on representation
theory, of which we gave a brief introduction in section 6.2.1. However, to
keep the exposition more fluid and present the numerical analysis of section 6.4
without introducing unnecessary details, we omitted most of the representation
theory based theoretical results for geometric quantum machine learning [116].
Thus, in this final appendix we are going to showcase a deeper analysis of
the properties of equivariant quantum neural networks. To do so, we start
by defining the key object of representation theory [157, 160], i.e. irreducible
representations

Definition 9. (Irreps) A representation is said to be an irreducible represen-
tation (irrep) if it contains no non-trivial subrepresentations.

Irreps are the fundamental building blocks of representation theory. Finite-
dimensional representations, as the ones we work with that are all acting on
H = CN , admit a particular decomposition of the vector space they act on.
Indeed, the latter can be expressed as a direct sum of irreducible subrepresenta-
tions. Doing so, one obtains the isotypic decomposition of a finite-dimensional
representation

H ∼=
⊕
λ

Hλ ⊗ Cmλ , R(g) ∼=
⊕
λ

Rλ(g)⊗ 1mλ
, (D.1)

where ∼= indicates that there exists a global change of basis matrix W that
simultaneously block-diagonalizes the unitaries R(g) for all g ∈ G. Here, λ
labels the irreps, mλ is the multiplicity of the irrep Rλ, i.e. the number of times
it “appears” in the decomposition, and Rλ(g) ∈ Cdλ×dλ acts on its associated
vector (Hilbert) space Hλ. Note that ∑λ dλmλ = dim(H).
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The isotypic decomposition in Eq. (D.1) allows to understand how equiv-
ariant operations transform the states they act on. Particularly, it allows to
detect which components they can and cannot modify. Thus, in the following
we will show how the choice of the in and out representations of a (G,Rin, Rout)-
equivariant layer can influence the structure and action of it. Especially, we will
be able to count how many degrees of freedom EQNNs have and understand
what is the role of the intermediate representations between their layers.

D.1 Equivariant layers as Fourier space actions
First things first, how do equivariant quantum neural networks transform

the data they process? To keep things simple, we start from layers such as
the standard ones defined in Def. 8, and consider their actions on pure states
of the form ρ = |ψ⟩⟨ψ|. Moreover, we assume the input and output repre-
sentations to be the same, Rin = Rout = R, and the layer to be unitary,
Nθ(ρ) = U(θ)ρU(θ)†. For Nθ to be a (G,R,R)-equivariant channel, U(θ)
must be (G,R)-equivariant operator belonging to the commutant comm(R)
defined in Def. 2. Thus, we can inspect how U(θ) acts on a quantum state |ψ⟩
by studying the structure of the commutant.

Theorem 3 (Structure of commutant, Theorem IX.11.2 in [157]). Let R be a
unitary representation of a finite-dimensional compact group G. Then under
the same change of basis W , which block diagonalizes R as in Eq. (D.1), any
operator H ∈ comm(R) takes the following block-diagonal form

H ∼=
⊕
λ

1dλ
⊗Hλ, (D.2)

where each Hλ is an mλ-dimensional operator that is repeated dλ times.

Theorem 3 implies that any equivariant unitary can be expressed in the
form U(θ) = W † (⊕λ 1dλ

⊗ Uλ(θ))W , meaning that it can only act non-
trivially on the multiplicity space when expressed in the irrep basis. This can
be compared to the classical machine learning literature, where it has been
shown that linear equivariant maps can only act on the group Fourier compo-
nents of the data [121, 122, 131, 135, 136]. Therefore, we can interpret EQNNs
action as the following sequence: (i) the data is transformed to the generalized
Fourier space W |ψ⟩ = ⊕

λ

∣∣∣ψλ〉 ⊗ |ψλ⟩, (ii) each Fourier component |ψλ⟩ is
acted upon by Uλ(θ) whereas their complements

∣∣∣ψλ〉 are left unchanged, and
(iii) the transformed data is transformed back with W †.

U(θ) |ψ⟩ ∼=
⊕
λ

∣∣∣ψλ〉⊗ Uλ(θ) |ψλ⟩ . (D.3)

This workflow can then be extended to general equivariant quantum maps.
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Notably, this also means that the components of the input state that an
EQNN layer has access to are predetermined by the chosen representation of
G. Explicitly, the EQNN cannot manipulate information stored in the com-
ponents

∣∣∣ψλ〉 of the input state. Nonetheless, by using different intermediate
representation, we can avoid this pitfall.

D.2 Intermediate representations as hyperpa-
rameters

Let us now discuss how to exploit intermediate representations to tune how
the EQNN, defined as in Def. 7, steers the quantum state it processes. Since
representations are completely characterized by their irrepsRλ and correspond-
ing multiplicities mλ, we can consider the latter as the hyperparameter that
we can control to change which components of the input state ρ get tackled
layer after layer. From a mathematical standpoint, given a group G there are
no particular criteria to prefer a representation over the others. However, once
physics is brought up one can motivate such choices. The main criterion that
physics allows to put on the table is naturalness. Indeed, although described by
a complex mathematical machinery, symmetries are not abstract entities, but
are instead related to the physical properties of the system at hand. Examples
of natural representations are the tensor-product representation of U(2) over
n-qubits, i.e. R(U) = U⊗n, that acts identically on each qubit, or the rep-
resentation R(gt)⊗n

j=1 |ψj⟩ = ⊗n
j=1 |ψj+t mod n⟩ of the cyclic group Zn, whose

action is to shift qubits cyclically between themselves. The first one is natu-
ral whenever the qubits being considered interact only via Hamiltonian terms
that depend on their relative orientation, such as the model in Eq. (6.22) that
we studied at the end of Ch. 6. Indeed it is clear, even before setting up
any group-theoretical analysis, that rotating each qubit by the same amount
leaves their relative orientations unchanged. The second example is a natural
representation for fully translational invariant systems instead.

Moreover, one should refrain from using equivalent representations be-
tween different layers, as they do not change the information content of the
model [164, 249]. This is proved in the following proposition [116]

Proposition 2 (Insensitivity to equivalent representations). Consider an EQNN
as defined in Definition 7. Then, changing an intermediate representation, Rl,
to another representation equivalent to it, V RlV †, where V is a unitary, does
not change the expressibility of the EQNN.

Proof. Consider two EQNNs that undergo the same representations except at
one place

N : Rin −→ . . . −→ R1 N 1
−→R N 2

−→ R2 −→ . . . −→ Rout. (D.4)

N ′ : Rin −→ . . . −→ R1 N 1′

−→R′ N 2′

−→ R2 −→ . . . −→ Rout, (D.5)
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where R′ = V RV † for some unitary V .
Observe that the set of (G,R1, R)-equivariant channels is in one-to-one

correspondence to the set of (G,R1, R
′)-equivariant channels. Indeed, for

any (G,R1, R)-equivariant N1, the channel N ′
1 = AdV ◦ N1 is (G,R1, R

′)-
equivariant as we have that

N 1 = AdR ◦ N 1 ◦ AdR†
1

= AdR ◦ (AdV † ◦ (N 1′) ◦ AdR†
1
⇔ N 1′ = AdV RV † ◦ N 1′ ◦ AdR†

1
.

(D.6)

Similarly, we obtain N 2′ = N 2 ◦AdV † . Thus N 2′ ◦ N 1′ = N 2 ◦ N 1. A similar
argument can be made for changing between equivalent output representations,
in which case there is a bijection between the observables that commute with
Rout and those that commute with Rout′.

Lastly, let us note that when intermediate representations in equivariant
neural networks are chosen to be regular representations, namely group actions
on their own group algebra, the resulting networks are known as “homogeneous
ENNs” in the classical literature [130]. In this case, any equivariant map can
be expressed as a group convolution, which can be implemented using quantum
algorithms [250]. Combining this with quantum algorithms for polynomially
transforming quantum states [251, 252] allows classical homogeneous ENNs to
be implemented on a quantum processor as a special case of EQNNs.

D.3 Free parameters in EQNNs
Thanks to the Fourier-space interpretation of EQNNs, we can now under-

stand how many degrees of freedom their layers actually possess.

D.3.1 Unitary layers
For unitary layers of equivariant quantum neural networks the following

holds [116]

Theorem 4 (Free parameters in equivariant unitaries). Under the same setup
as Theorem 3, the unitary operators in comm(R) can be fully parametrized by∑
λm

2
λ real scalars.

Proof. Any unitary U in comm(R) takes the block-diagonal form U = ⊕
λ 1dλ

⊗
Uλ in the Fourier basis. Observe that the operators Uλ must also be unitaries
since U †U = ⊕

λ 1dλ
⊗ U †

λUλ. A unitary in U(mλ) is parametrized by m2
λ

real scalars, hence a total number of ∑λm
2
λ parameters suffice to parametrize

U .

Theorem 4 illustrates the impact that symmetry has on the complexity of
the problem. In particular, it shows that the larger the representations of G,
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Group Representation Free parameters comm(R)
None Rtrivial(g) = 12n 4n C[U(2n)]
U(2n) Rdef(g) = g 1 C[12n ]
U(2) Rtens(g) = g⊗n 1

n+2

(
2n+2
n+1

)
∈ Ω(2n) C[Rqub(Sn)]

Sn
Rqub(g)

⊗n
i=1 |ψi⟩

=
⊗n

i=1
∣∣ψg−1(i)

〉 (
n+3

3

)
∈ Θ(n3) C[Rtens(U(2))]

Table D.1: Free parameters in unitary EQNNs [116]. Different symmetry
groups G and their associated number of free parameters appearing in
a (G,R,R)-equivariant unitary layer. Note that we are indicating as
C[S] ≡ spanC(S) the span of a generating set S.

the smaller the commutant and the fewer parameters required to completely
characterize equivariant unitaries. Table D.1 [116] provides examples of dif-
ferent symmetries that result in a unitary EQNN having either exponentially
many, polynomially many, or a constant number of free parameters.

D.3.2 Equivariant channels
Let us now consider the more general (G,Rin, Rout)-equivariant quantum

maps. Recall from Eqs. (2.28,2.29) that any channel ϕ : Bin → Bout is com-
pletely characterized by its Choi state Jϕ, such that its action upon a state
ρ ∈ Bin can be written as ϕ(ρ) = Trin[Jϕ(ρ⊤ ⊗ 1dim(Hout))].

Equivariance can be expressed in term of Choi states through the following
theorem [116]

Lemma 2 (Lemma 11 in [180] paraphrased). A channel ϕ is (G,Rin, Rout)−equivariant
if and only if Jϕ ∈ comm(Rin∗ ⊗ Rout), where the ∗ symbol denotes complex
conjugate.

Using Lemma 2 and the Theorem 3, we can now count the degrees of
freedom of equivariant channels [116]

Theorem 5 (Free parameters in equivariant channels). Let the irrep decompo-
sition of R := Rin∗⊗Rout be R(g) ∼=

⊕
q Rq(g)⊗1mq . Then any (G,Rin, Rout)-

equivariant CPTP channels can be fully parametrized via ∑qm
2
q−C(Rin, Rout)

real scalars, where C(Rin, Rout) is a positive constant that depends on the con-
sidered representations.

Notice that this is possible thanks to (Rin∗ ⊗Rout) being a valid represen-
tation, since it satisfies Definition 1.

Proof. Let ϕ be a (G,Rin, Rout)-equivariant channel. By Theorem 3 and Lemma
2, the Choi operator Jϕ is decomposed as Jϕ ∼=

⊕Q
q=1 1dq ⊗ Jϕq , where each Jϕq

is an operator in an mq-dimensional subspace corresponding to the irrep de-
composition R := Rin∗ ⊗ Rout. For convenience of notation, we will denote
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as HB ⊗HA the Hilbert space over which Jϕ acts. Imposing Jϕ ⩾ 0 (CP) is
equivalent to imposing Jϕq ⩾ 0 for each irrep q. An mq-dimensional complex
positive semidefinite operator is parametrized by m2

q real scalars, for a total of∑
qm

2
q parameters. Next, we impose TP via TrB[Jϕ] = 1A, where 1A denotes

the identity over HA. Let the change of basis in the irrep decomposition be
W , i.e., Jϕ = W †(⊕Q

q=1 1dq ⊗ Jϕq )W . The TP condition reads

TrB[Jϕ] = 1A =
∑
j

(⟨j|B ⊗ 1A)W †

 Q⊕
q=1

1dq ⊗ Jϕq

W (|j⟩B ⊗ 1A)

=
∑
j

T †
j

 Q⊕
q=1

1dq ⊗ Jϕq

Tj,
(D.7)

where Tj = W (|j⟩B ⊗ 1A). Vectorizing the above equation, we can use the
property vec(M1M2M3) = (M⊤

3 ⊗M1)vec(M2) to obtain

D · vec
 Q⊕
q=1

1dq ⊗ Jϕq

 = vec(1A),

where D :=
∑

j∈dim(HB)
T⊤
j ⊗ T

†
j ∈ Cdim(HA)2×(dim(HA)dim(HB))2

.
(D.8)

Let D̃ be the dim(HA)2 × ∑
qm

2
q matrix whose columns correspond to the

nonzero entries in vec
(⊕Q

q=1 1dq ⊗ Jϕq
)
. Then rank(D̃) = C(Rin, Rout).

It is readily verified that in the non-equivariant case, i.e., W = 1 and Jϕ is
fully parameterized, the matrix D̃ = D is full row-rank, in which case imposing
TP reduces dim(HA)2 free parameters as expected.

A way to characterize how many parameters we are able to save using
equivariant operations as opposed to agnostic ones is to resort to the parameter
utilization metric, that is used in classical machine learning [137]

µ = dim HomCPTP(Rin, Rout)
dim HomCPTP

G (Rin, Rout)
, (D.9)

where HomCPTP(Rin, Rout) denotes the set of CPTP maps between Bin and Bout

and HomCPTP
G (Rin, Rout) its (G,Rin, Rout)-equivariant subspace. Note that,

dim HomCPTP(Rin, Rout) = |Hin|2|Hout|2 − |Hin|2 [210]. That is, the larger
µ, the larger the benefit of using an EQNN is, in the sense that available
parameters are used more effectively.
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Appendix E

Choi operator method

In the main text, we referenced a third method, together with the null
space approach and the twirling technique of Sec. 6.3.2, for finding equivariant
quantum maps. This method requires the advanced representation theoretical
tools that we showed in App. D and we are thus now ready to present it. We
dubbed it the Choi operator method.

In Eq. (2.28) we defined the Choi state of a channel ϕ as Jϕ = ∑
i,j |i⟩ ⟨j|⊗

ϕ(|i⟩ ⟨j|). Then, in Lemma 2 we stated that ϕ is an equivariant map if Jϕ ∈
comm(Rin∗ ⊗Rout),1 but we can rephrase such condition as

Jϕ(Rin(g)∗ ⊗Rout(g))− (Rin(g)∗ ⊗Rout(g))Jϕ = 0 ∀ g ∈ G . (E.1)

Now, we can decompose the representation R = Rin∗⊗Rout in irreps R(g) ∼=⊕
q Rq(g)⊗ 1mq to rewrite the Choi sate as

Jϕ ∼=
⊕
q

1dq ⊗ Jϕq , (E.2)

where the Choi operators Jϕq are the ones associated with each of the irreps.
This enables the crafting of equivariant quantum channels by picking the action
that we want, expressed by the associated Choi states, on each irrep component
of the target state, as exemplified in Fig. E.1

The outputs of this procedure need not satisfy any CPTP condition, indeed,
as those found by the nullspace approach, they are general equivariant maps.
However, imposing such conditions on Choi states is easy. Trace preserving is
enforced by putting Trin[Jϕ] = 1dim(Hout), where the trace is carried out over
the input degrees of freedom. Complete positiveness instead translates into
the Choi state being positive semidefinite, i.e. Jϕ ⩾ 0. This CP condition also
allows us to rewrite Jϕ as [185]

Jϕ ∼=
⊕
q

1dq ⊗ w†
qwq , (E.3)

1Recall that we decided to denote with ∗ the complex conjugate operation and with R∗

the dual representation of R
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Figure E.1: Example of the Choi operator method [116]. We demonstrate
how to use the Choi operator method to determine the space of 1-to-
1 qubit (G,Rin,Rout)-equivariant quantum channels, with G = Z2 =
{e, σ}, Rin = {1, X} and Rout = {1, Z}. a) Isotypic decomposition of
the group representation . b) We show that a specific choice for the
block-diagonal components of Jϕ leads to the map ϕ(ρ) = (XρX +
ZρZ)/2.

with wk ∈ Cmq×mq . Since expanding the TP conditions brings us to the con-
straint ∑q Trin[1dq ⊗ w†

qwq] = 1dim(Hout), we can first obtain a basis of block-
diagonal CP maps as in Eq. (E.3) and later impose the trace-preserving con-
dition.

One drawback of the Choi operator technique is that it can be difficult to
determine the isomorphism in the irrep decomposition of Rin∗ ⊗ Rout. While
this decomposition can be implemented in software packages for common com-
pact Lie groups [253, 254], this method is most suitable for local channels due
to the size of the Choi operator scaling as dim(Hout) dim(Hin). If the product
dim(Hout) dim(Hin) is not too large, it is possible to determine the change of
basis leading to the isotypic decomposition and pick out maps with specific
irrep actions.
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