UNIVERSITA DEGLI STUDI DI FIRENZE
Dipartimento di Sistemi e Informatica
Dottorato di Ricerca in Informatica e Applicazioni
XXII Ciclo
Settore Disciplinare INF/01

CRITICAL INFRASTRUCTURES:
A CONCEPTUAL FRAMEWORK FOR DIAGNOSIS,
SOME APPLICATIONS AND
THEIR QUANTITATIVE ANALYSIS

ALESSANDRO DAIDONE

Supervisor: prof. Andrea Bondavalli

PhD Coordinator: prof. Rocco De Nicola

December, 2009

Alessandro Daidone: Critical infrastructures: a conceptual framework for diagnosis,
some applications and their quantitative analysis, Dottorato di Ricerca in Informa-
tica e Applicazioni, © December, 2009

To Tiziana
...and Arianna/Gabriele

CONTENTS

[LIST OF FIGURESI vii
[LIST OF TABLESI xi
[ABSTRACT] xiii
XV

7

[1.1 Basic concepts of dependability| 0. 7
[1.1.1 Diagnosis framework| 11

[r.2 Traditional diagnosis| 13
[1.2.1 An heuristic approach for on-line diagnosis| 15

[1.2.2 A probabilistic approach for on-line diagnosis|. 17

[1.3 Newtools| 23
[1.3.1 On-line monitoring| 24

[1.3.2 Diagnosis based on simple event correlation| 25

P ADTAGNOSIS FRAMEWORK| 29
[2.1 Requirements and Specifications| 29
[2.2 The proposed diagnosis framework| 31
[2.2.1 Local Diagnosis| 33

[2.2.2 Private Diagnosis|{00 0L 34

[.2.3 Distributed Diagnosis| 35

[2.3 The proposed conceptual schemaf. 38
[2.4 Solutions proposed to extend the diagnosis based on HMM| . . . 42

[3 CRITICAL INFRASTRUCTURE PROTECTION] 45
[3.1 The protection of an ICT infrastructure controlling the power grid| 46
[3.2 CRUTIAL Architecture Overview|. 47
[3.2.1 CIS Resilience Overview|. 52

[3.3 Diagnosisin CRUTIAL}. 54
[3.3.1 CIS self-diagnosis (local view)| 55

[3.3.2 CIS LAN diagnosis (private view) 59

[3.3.3 CIS distributed diagnosis (distributed view) 60

[3.4 Quantitative evaluation of the CIS recovery strategy|. 61
[3.4.1 Fault Model and Assumptions| 61

[3.4.2 The PRRW Strategy| 63

[3.4.3 Quantitative Analysis| 65

[3.4.4 Direction for Improvements/Refinements|. 85

[3.5 The FOREVER service| 88
[3.5.1 Introducing Diversity| 89

[3.6 Quantitative Evaluation of the FOREVER service| 93

[3.6.1 Evaluationresults|. 99

[3.7 Concluding remarks| 103
I SOLUTIONS FOR ADAPTIVE OPERATION] 105
l4.1 HIDENETS objectives and requirements|. 105
l4.2 HIDENETS architecture| 106
l4.2.1 The Diagnostic Manager service| 108

l4.2.2 The Reconfiguration Manager service| 110

l4.3 Platooning testbed| L oL 112
l4.3.1 Diagnostic and Reconfiguration Managers in Platooning |

[testbed|. 115
l4.4 Quantitative evaluation of service access with replicated servers| 121
l4.4.1 Fault model and assumptions|. 123

l4.4.2 Failure detection and reconfiguration strategies| 124

l4.4.3 Quantitative analysis|. 125

l4.4.4 Concluding remarks| 138

[SECURITY IN CRITICAL INFRASTRUCTURES]| 141
[5.1 INSPIRE architecture overview| 141
[5.2 Probabilistic diagnosis of sinkhole attacks to the CTP protocol|. . 143
[5.2.1 Scenario description] Lo 143

[5.2.2 Fault model and assumptions|. 144

[5.2.3 The diagnostic mechanism| 146

[5.2.4 Futurework 147

6 CONCLUSIONS| 149
[BIBLTOGRATHY)| 153
165

Vi

LIST OF FIGURES

[Figure 1.1 The chain of threats: a fault in component A activates and |
| generates an error; errors propagate until component A |
| fails; the failure of A appears as an external faulttoB| . . 9
[Figure 1.2 The diagnosis framework identifying the chain constituted |
| by the monitored component (MC), the error detection |
| mechanism (DD) and the diagnostic mechanism (SD).| . . 11
[Figure 2.1 Architectural view of the local diagnosis scenario|. 33
[Figure 2.2 Architectural view of the private diagnosis scenario.| . . . 34
[Figure 2.3 Architectural view of the distributed diagnosis scenario.|. 36
[Figure 2.4 Conceptual schema of information correlation for diag- |
| nostic purposes.. o 40
[Figure 3.1 The CRUTIAL architecture: a WAN of LANs.| 50
[Figure 3.2 The CIS architecture 51
[Figure 3.3 The hybrid and replicated (with diversity) architecture of |
[the CIS,. o o o 53
[Figure 3.4 Detection scenarios for LAN diagnosis| 59
[Figure 3.5 The scheduling of recoveries in the PRRW strategy| 64
[Figure 3.6 The phase net of the PRRW model; the phase net models |
| the scheduling of the recovery sub-slots.| 69
[Figure 3.7 The subnet of the system net modeling failures and recov- |
| eries of replica 1 and the election of the leader|. 70
[Figure 3.8 The subnet of the system net modeling the system failure| 72
[Figure 3.9 System failure probability Pr(f) and system unavailability |
| Py (0, t) over mission time f for different valuesof p1.| . . . 75
[Figure 3.10 Impact of detection coverage cy; on both Pri(t) and Pro(t) |
| for different valuesof pr.|. oL 76
[Figure 3.11 Impact of detection coverage cy; on system failure proba- |
| bility Pg(t) and system unavailability Py (0,) for difterent |
| valuesofpr.| L 77
[Figure 3.12 Impact of attack (intrusion) rate A" over system failure |
| probability Pr(t) and system unavailability Py(0,t) (with |
| the impact of leader omissions) for different values of p;.|. 78
[Figure 3.13 Impact of omission rate A® over system tailure probability |
| Pr(t) and system unavailability Py(0,t) (with the impact |
| of leader omissions) for different valuesof py.| 80
[Figure 3.14 System failure probability Pg(t) and system unavailability |
| Py (0, t) for ditferent system configurations (f = 10512) . . 81

vii

[Figure 3.15

System failure probability Pg(t) and system unavailability |

Py(0,t) at varying the number of replicas for different re- |

| covery strategies| oo oL 83
[Figure 3.16 The hybrid and replicated FOREVER architecture,| 89
[Figure 3.17 The phase net of the FOREVER model | 95
[Figure 3.18 The subnet of the system net modeling failures and recov- |
| eriesof replicaz| 96
[Figure 3.19 The subnet of the system net modeling the system failure| 97
[Figure 3.20 System failure probability Pg(f) over mission time ¢ at |
| varying the waiting time Ty between two consecutive re- |
| covery actions; no penalty applied (05 = 0), no diversity |
| applied (0x =0) 100
[Figure 3.21 System failure probability Pg(f) over mission time ¢ at |
| varying the “aging penalty” 6, (with 6, =0.8)| 100
[Figure 3.22 System failure probability Pg(f) over mission time ¢ at [

varying the probability of common fault 65| 101

[Figure 3.23 System failure probability Pr(f) over mission time f at |

varying the mean effectiveness 0, of the configuration di- |

versity rules (b, =2E-5)). oo oL 102

[Figure 4.1

Application domains addressed in HIDENETS: the ad—hoc |

domain (e.g. a communinicating vehicular network) and |

the infrastructure domain (e.g. a back-bone IP network)| . . 106

[Figure 4.2

The hybrid architecture of a HIDENETS node.|. 107

[Figure 4.3

An overview of a platooning scenario, where some vehi-

|
cles drive as a platoon with the help of a GPS system (for |
position and clock) and some proximity sensors (for de- [

tecting physical obstacles).| 113

[Figure 4.4

Architectural view of the HIDENETS node as customized |

for the platooning testbed| 115

[Figure 4.5

Interface of the emulator controlling both the driving of |

the emulated vehicle (top-most part with the arrows and |

the “start button”) and some environmental aspects (bot- |

tom part including check-boxes and radio buttons).| . .. 116

[Figure 4.6

Network architecture of the replicated server application: |

clients send SIP requests to the server chosen based on the |

reports received from the RFD; the RED refreshes reports |

based on heartbeats exchanged with the servers.| 122

[Figure 4.7

Composed model of the replicated server architecture: each |

leaf corresponds to a sub-model modeling a different sys- |

tem entity; internal nodes are used to join or replicate |

theirsons) 128

[Figure 4.8

Atomic model of the remote failure detector| 129

[Figure 4.9

Atomic model ofaserver|. 130

viii

[Figure 4.10 Atomic model ofaclient| 131
[Figure 4.11 Atomic model of a SIP pending report| 132
[Figure 4.12 Dependability at varying the number of servers in the pool i34
[Figure 4.13 Service Access Time (SAT) at varying the number of servers |
| mmthepool| 0. 135
[Figure 4.14 Load at varying the number of servers in the pool| 136
[Figure 4.15 Dependability at varying the failure detection strategy at |
[clientside] 137
[Figure 4.16 Service Access Time (SAT) at varying the failure detection |
| strategy at clientside.| 00 138
[Figure 4.17 Load at varying the failure detection strategy at client side.[139
[Figure 5.1 The architecture of a SCADA system.| 142
[Figure 5.2 An example of a routing tree betore (left) and after (right) |

node 4 has successfully launched a sinkhole attack,. . . . 145

ix

LIST OF TABLES

[Iable 3.1 Model parameters, their default values and their descrip- |
[flonJ.o 68
[Iable 3.2 Contiguration rules for diversifying the deployment of an |
| O.S. or an application. Abbreviations: (W)hite—, (B)lack-, |
| (G)ray-box; (C)onfidentiality, (I)ntegrity, (A)vailability| . . 91
[Table 3.3 Operating Systems” reported vulnerabilities (from NVD |
[[Bessani o8bl)) between 1999 and 2007.. 98
[Iable 3.4 Probability of common faults among all the couples of |
| O.S.considered.|. Lo L 98
(Iable 3.5 Values assigned to the evaluation parameters for each study |
L evaluated; the values for 6y are those listed in Table[3.4}| . 99
[Table 4.1 Reconfiguration strategy implemented by the DM+RecM |
| service; the faulty condition encompasses crash, omission |
[and valuefaults.| 119
[Iable 4.2 Storyboard 1: no faults injected.| 120
[Iable 4.3 Storyboard 2: crash of GPS, at timet=6/. 120
(Table 4.4 Storyboard 3: crash of GPS; at time ¢ = 6 and omission of |
| GPS, attimest=/,8,9.| 120
[Iable 4.5 Storyboard 4: value faults in GPS, at timest =7,8,9,10 . 121
[Table 4.6 Storyboard 5: value faults in both GPS; and GPS, starting |
[attimet=4l. oo o000 oo 121
[Iable 4.7 Combinations of values assigned to the environmental pa- |
[rameters). o o oo 126
[Table 4.8 Combinations of values assigned to the controllable fault— |
| tolerance parameters| 126
[Iable 4.9 Model parameters, their default values and their descrip- |

tlon.|. L

133

xi

ABSTRACT

Critical infrastructures are becoming more and more open and pervasive, in-
creasing their complexity and incorporating previously disjoint systems to pro-
vide critical services; these infrastructures are often composed of unstable
components or old legacy machinery, which were designed without consider-
ing their possible growth, the possible use of new technologies and their inter-
connectedness. All this elements expose critical infrastructures to risk of mis-
management errors caused both by accidental faults and by malicious attacks
and intrusions, so it is necessary to find methods and solutions for assuring
their resiliency.

Traditional diagnostic solutions are based on static assumptions about sys-
tem behavior, fault model and detection mechanism (the “unusual” component
behavior can be defined a-priori and assumed due to faults in the component
itself). Critical infrastructures comprise more dynamic scenarios, where failure
definitions and/or system specifications change over time, so that traditional
diagnostic solutions cannot be applied as they are.

This work proposes a conceptual framework for on-line system diagnosis,
taking into account both the local and the global point of view: each system
node diagnoses both itself (local diagnosis) and remote nodes (private diagno-
sis) based on the local perception of their behavior; when some relevant events
happen, distributed diagnosis is run to reach consensus about the diagnosis
of a remote node. Diagnosis is based on the observation of system behavior
over time (monitoring), collecting information at different architectural levels
and correlating together diagnostic judgments inferred from lower architectural
levels and relevant events observed somewhere in the system. The proposed
framework is then instanced within the design of two different architectures:
the architecture, devoted to the protection of a[SCADA}-based criti-
cal infrastructure, and the architecture, devoted to the provision of
distributed services for adaptive operation.

Some evaluation work is then presented, aiming to analyze some of the di-
agnosis and reconfiguration strategies adopted in the selected architectures. A
quantitative analysis of the redundant architecture of the nodes protecting the
system is presented; those nodes are rejuvenated by proactive and
reactive recoveries: the objective of the analysis is to identify the relevant pa-
rameters of the architecture, to evaluate how effective is the trade-off between
proactive and reactive recoveries, and to find the best parameter setup. Another
quantitative analysis is presented, aiming to sustain a fundamental assump-
tion of the recovery operations: not-increasing probability of intrusion over
time. Then a quantitative analysis of a few failure detection and reconfigura-

xiii

tion strategies for the management of a replicated server pool is presented; the
objective is to understand the impact of the parameters of the strategies and to
obtain the optimal parameter configuration for a selected set of fault scenarios.

Finally an ongoing work for enhancing the security in[SCADA|infrastructures
is presented; this work is performed in the context of the project and
focuses on security at communication layer. An on-line diagnostic mechanism
is sketched for the detection of sinkhole attacks to the routing protocol of a
wireless sensor network in a island.

Xiv

ACKNOWLEDGMENTS

The first person I would like to thank is my tutor prof. Andrea Bondavalli;
it was a great experience working with him, both from the professional and
personal point of view.

Then I would like to thank all the other people that helped me, in may ways,
to conclude my PhD experience: all the members of the RCL research group,
people at the DSI department of the University of Florence (especially the PhD
students), people from the DCL group at the ISTI institute of CNR (especially
Felicita di Giandomenico), some of the visiting students the RCL group invited
in the last years (especially Thibault Renier).

I would also like to thank the reviewers of this thesis, prof. Luigi Romano
(Universita degli Studi di Napoli Parthenope) and prof. Hans Peter Schwefel
(Aalborg University), for their precious comments and suggestions.

Last, but not least, an enormous thank goes to my wife Tiziana, with whom
I'm dividing all the greatest experiences of my life.

This work has been partially supported by the European Community through
the following research actions: the FP’6 IST project CRUTIAL (contract n. 27513),
the FP6 IST project HIDENETS (contract n. 26979), the FP6 IST network of
excellence RESIST (contract n. 26764) through the FOREVER project, and the
FP7 ICT-SEC Project INSPIRE (contract n. 225553).

XV

INTRODUCTION

Modern society has reached a point where everyday life heavily relies on the What CIs are
reliable operation and intelligent management of infrastructures such as elec-

tric power systems, telecommunication networks, water distribution networks,
transportation systems, etc. Those infrastructures are actually critical infrastruc-

tures (Clk): people expects that the services provided by those infrastructures

are always available (24/7) and relies on those services.

Critical infrastructures are large-scale, complex, interconnected and distri-
buted systems. The interconnectedness of critical infrastructures makes them
vulnerable to failures, which may be caused by natural disasters, accidental
failures, human errors or malicious attacks; the consequences of those failures
could be tremendous on several perspectives: societal consequences, health haz-
ards, economic effects. On the other hand, their interconnectedness also allows
a level of operational redundancy for fault tolerance, provided it can be ex-
ploited effectively!

Just to give an idea of the consequences of failures in critical infrastructures,
two incidents involving the electric power grid are reported hereafter.

On 4™ November 2006 a local fault in Germany’s power grid cascaded through The European
several countries in Europe, resulting in parts of six countries left without elec- blackout in 2006
tric power for a couple of hours: Germany, France, Austria, Italy, Belgium, and
Spain (about 10 million people). The fault cascaded through several countries
because the European electricity grid is an interconnected network encompass-
ing the European countries, with each sub network being managed and con-
trolled by the respective national [TSOJ'.

The fault originated from northern Germany, where a high—voltage line had
to be switched off by the local to let a ship pass underneath the line
through the Ems river; this event lead to the overloading of the neighbor lines
and finally to the splitting of the interconnected network into three
zones: west, east and south—east. The western zone lacked power, while the
eastern zones had too much power: to cope with this lack of power the auto-
matic devices in the western zone had to switch the power off in the above
mentioned countries.

After the incident the was delegated to produce a report about the
incident; the report [UCTE 06] identified two main causes for the incident:

1 Transmission System Operator
2 Union for the Coordination of Transmission of Electricity

The north—east
UsS blackout in
2003

How ClIs were
developed

1. Non fulfillment of the n — 1 criterion3: the German grid was not fulfilling
the n — 1 criterion after the manual disconnection of the high-voltage line.

2. Insufficient inter{TSO| coordination: the initial planning for switching—off
the high-voltage line was correctly prepared among the involved [TSOk,
but the last minute change in the time for the maneuver was communi-
cated too late from the German operator.

The European blackout in 2006 was hence caused by a bad management of the
infrastructure, especially taking into account that the beginning of the cascad-
ing failure was provoked by a planned event, not an unexpected one!

Another incident involving the electric power grid which had even more
serious consequences than the above mentioned one was the blackout in the
US in 2003.

On August 14" 2003 an electric power blackout occurred in large portions
of the mid-west and north—east United States and Ontario (Canada), affecting
about 50 million people; the power grid was restored after a week, causing
tremendous social and economic consequences (e.g. failure of traffic lights, peo-
ple trapped in lifts and underground railways, dead refrigerators, social panic).

Immediately after the blackout, the US-Canada Power System Outage Task
Force was established to investigate the causes of the blackout and to recom-
mend actions that would minimize the possibility of similar, future events;
the result was a report [Task Force o4] which identified that the incident was
caused by the concurrent occurrence of the following factors:

1. Increment in energy demand due to the use of air conditioners (the tem-
peratures were above the average in that period); the increment in energy
demand was considered manageable;

2. Unexpected loss of some generating and transmission capacity;
3. Inadequate tree trimming;

4. Poor information awareness due, in part, to computer and network mal-
functions at the operator controlling the grid in northern Ohio.

The report underlined that the malfunction of some critical equipment (possi-
bly as a result of inadequate diagnostic support) and the behavior of protective
devices complicated the management of the events; moreover, the analysis sug-
gested that the blackout was not only due to the negligence of one company,
but also to more pervasive structural and technical problems.

Most of the large—scale infrastructures have been developed connecting pre-
viously stand-alone systems, usually developed from proprietary architectures

The n — 1 criterion deals with the ability of the transmission system to lose a linkage without
causing an overload failure elsewhere.

where ad hoc solutions were chosen and several (electronic) components were
developed independently [Simoncini o4, [Egan o07].

Components of the infrastructure were usually ad-hoc components which
were designed having in mind the entire infrastructure; this approach has the
following positive and negative aspects.

Positive aspects are related to the fact that the system designer has the com-
plete knowledge about the system and there are no third—party components
which could make harder the procurement and the validation of parts of the
system (which is mandatory for a safety—critical system); system re—design and
updates do not depend on third—parties and are easier to validate.

Negative aspects derive from the fact that several components may be soon
obsolete, given the rapid evolution of technologies, and there could be the need
for upgrading some of them, specially if the operational life of the system is
rather extended. Another disadvantage derives from the strict dependence be-
tween components and the system itself (through the design), which makes the
system rather inflexible and not adaptable to different contexts or to be inter-
faced to other systems. Moreover, when an upgrade or a revision is needed, a
new validation activity needs to be performed.

Due to technological advances, deregulations and market liberalizations, crit- How CIs are
ical infrastructures are progressively becoming larger in scale and more com- changing
plex, making their management more challenging: critical infrastructures were
not designed to become so large, they evolved due to growing demand, but
the way in which they are now operated is often beyond the original design
parameters [Johnson o07].

Moreover it’s harder than before to understand how these infrastructures
work and which are the interactions between all the components [Egan o7].
Critical infrastructures are also becoming more heterogeneous and distributed,
given that they are growing often integrating previously disjoint systems, which
were not designed to be interconnected: this makes it more difficult to secure
reliable operation.

As technology advances, the interactions in the reliable operation and man-
agement between different infrastructures are becoming increasingly more im-
portant. For example, there are strong links between the reliable operation of
the electrical power grid and the communication networks, as well as between
the electrical power grid and the water networks.

Critical infrastructures have many common characteristics and requirements,
they share the underlying dynamics and suffer similar impacts from failures.
All this elements naturally point to the need for a common methodological
framework for modeling their behavior and for designing intelligent monitor-
ing and diagnostic mechanisms able to detect and diagnose both accidental and
malicious faults, triggering the proper recovery actions.

Critical infrastructures should be designed /updated so that they could have How CIs should
the following characteristics [Simoncini o4]: be designed

Recent research
activity in CIs

4
5
6

7
8

9
10
11
12
13
14
15

e Shift (part of) the reliability and safety properties from the components
toward the architectural design: techniques for monitoring, diagnosis and
recovery should be as most as possible independent from the specific
components.

¢ Use of generic components (possibly [COTS}): generic components can
be easily substituted (e.g. to follow technological evolution) without re-
design or re-validation of the entire infrastructure.

* Use of a hierarchical approach for functional and non functional proper-
ties: this approach tends to ease the validation of the system.

* Make the system adaptive to unforeseen changes that can occur at run—
time: the system should be able to adapt to natural system’s evolution,
to the occurrence of fault patterns different from those foreseen at design
time, or the change of application’s dependability requirements during
the operational lifetime.

The interest in research about critical infrastructures is currently very active
worldwide; focusing just on research funded by the European commission on
thematics, there are several examples to cite. The European community
has recently funded the and is currently funding the @7 framework pro-
grammes for research and technological development in several areas, among
which our interest is in the and [SECP thematic priorities.

Recent examples of research projects dealing with [SCADAJ" infrastructures
related to the electrical power grid are the following: [CRUTIAL}" (ISTHEP6]
ended in 2008), which addressed new networked systems for the manage-
ment of the electric power grid, and [IRRIIS}"? ended in 2009), which
worked for increasing the availability, survivability and resilience of critical
power and communication infrastructures.

Other examples of research actions related to power infrastructures are[GRID]'3
(ISTHEP6} ended in 2008), which worked for increasing the understanding of the
vulnerability of the integrated power system and the controlling systems,
and [IntelliCIS (COST}">, from May 2009 to May 2013), which will develop in-
novative intelligent monitoring, control and safety methodologies for critical

Commercial Off-The-Shelf

Information and Communications Technology

Sixth Framework Programme

Seventh Framework Programme

Information Society Technologies

Security

Supervisory Control And Data Acquisition

CRitical UTility InfrastructurAL Resilience

Integrated Risk Reduction of Information-based Infrastructure Systems
GRID is a coordination action funded by the IST-FP6

Intelligent Monitoring, Control and Security of Critical Infrastructure Systems
European Co-Operation in Science and Technology

infrastructure systems, such as electric power systems, telecommunication net-
works, and water distribution systems.

Examples of research activity not directly related to electric power infras-
tructures, but still related to critical infrastructures, are [INSPIRE}"® (ICTHSEC}-
ongoing), which is addressing the problem of increasing the security and
the protection of [SCADA}based infrastructures at communication layer, and
[HIDENETS]'” ended in 2008), which developed resilient architectural
solutions for adaptive operation in automotive communications (both car—to—
car and car—to-infrastructure scenarios).

In this context, we focus our analysis on i) monitoring and diagnosis and ii)
analysis and evaluation of the resiliency and dependability achieved.

Diagnostic solutions should take into account that critical infrastructures, as CI characteristics

they are evolving, are: affecting
diagnosis

¢ Large, open and pervasive, so individual parts of the infrastructure could
not even be aware of the entire infrastructure;

¢ Highly dynamic, time-varying and uncertain; wireless context exacerbate
these characteristics (e.g. some wireless entities can suddenly join or leave
the infrastructure);

* Non homogeneous, so different parts of the infrastructure may be very
diverse one from the other for several reasons: e.g. because of hardware,
software, performance levels, resiliency levels, services provided, connec-
tions or synchronization mechanisms;

e Made up of and legacy sub-systems, so the system designer has
limited knowledge and control over them (goodness of these large grained
components could be related to the quality of the service provided, rather
than to the absence of faults).

¢ Data-rich environments, so methods are necessary to collect and filter
information relevant for diagnosis purposes.

All this makes diagnosis a very difficult activity, because system observation
and monitoring need to be performed through detection devices with unknown
characteristics related to coverage, false positive probabilities etc. Moreover it is
not always possible to introduce new detection/monitoring devices within the
system to feed diagnosis, e.g. when old legacy sub-system are integrated in the
infrastructure.

In a wider perspective, diagnosis needs to assess the suitability of component- Not only
/sub-system/infrastructure to provide services with adequate quality, which faults...
may dynamically change over time. In this view, the goodness of a component

16 INcreasing Security and Protection through Infrastructure REsilience
17 Hlghly DEpendable ip—basedNETworks and Services

is not strictly tied to the absence or presence of faults which may impair its func-
tionality; rather, it is the overall quality of service which determines whether
a component is useful and contributes to the system activities or it is better to
keep it out. Actually, this more general framework allows to capture several
possible scenarios, such as:

1. The component [QoS{® decreases because of malfunctions affecting the
component itself;

2. The application using the component changes its requirements in
such a way that they do not match anymore with the specification of the
component under utilization;

3. Changes in the environment (e.g., system load) may lead to a change in
the provided.

Component obsolescence is a typical example of case 2, while classical exam-
ples of case 1 can be taken from the system fault tolerance area.

18 Quality of Service

STATE OF THE ART AND OPEN PROBLEMS

This chapter introduces the concept of diagnosis in dependable systems, de-
scribing the complete chain starting from the observation of the behavior of the
monitored component to the definition of a diagnostic judgment.

An overview of the basic concepts of dependability is first presented, so that
all the terms related to the diagnosis problem are defined. Then the definition of
diagnosis is given, and the properties of a diagnostic mechanism are presented.
A general framework to model over—time diagnosis scenarios is then presented;
this framework takes into account all the involved system aspects (the moni-
tored component, the deviation detection mechanism and the state-diagnosis
mechanism) accounting for them separately.

An overview of the traditional diagnostic mechanisms is presented, discussing
the differences between off-line and on-line mechanisms, and between heuris-
tic and probabilistic approaches. The most promising on-line mechanisms are
described: a—count among the heuristic approaches and the diagnosis based on
hidden Markov models among the probabilistic approaches. A short discussion
about advantages and disadvantages between the two approaches is presented.

The last part of the chapter introduces the need for new diagnostic tools able
to run in more dynamic scenarios, where the amount of indicators to observe
is very large and information correlation becomes a key activity. An overview
of some monitoring tools is presented, and the rationale behind a diagnostic
mechanism based on event correlation is described.

1.1 BASIC CONCEPTS OF DEPENDABILITY

This section presents a basic set of definitions that will be used throughout the
entire thesis; these definitions are related to the basic concepts of dependability
and security applied to computer-based systems.

When dealing with dependability and security of computing and commu-
nication systems, the reference taxonomy and definitions are those given in
[AviZienis o4]: this work is the result of a work originated in 1980, when a
joint committee on “Fundamental Concepts and Terminology” was formed by

the on Fault-Tolerant Computing of the [[EEE and the [[FIP| WG 104

This is the technical committee (TC) on Fault-Tolerant Computing of the Institute of Electrical
and Electronic Engineers (IEEE) Computer Society; IEEE is an international non-profit, profes-
sional organization for the advancement of technology related to electricity.

A system and its
functionalities

”2

“Dependable Computing and Fault Tolerance”? with the intent of merging the
distinct but convergent paths of the dependability and security communities.

Let’s start our overview about the basic concepts of dependability by defin-
ing what a computer-based systems is. [AviZienis 04] defines a system as an
entity that interacts with other entities, i.e., other systems, including hardware,
software, humans, and the physical world with its natural phenomena. From
a structural viewpoint, a system is composed of a set of components bound
together in order to interact, where each component is another system, etc. The
recursion stops when a component is considered to be atomic. The function of
such a system is what the system is intended to do3, whilst the behavior of a
system is what the system does to implement its function*. The service delivered
by system S is its behavior as it is perceived by its user(s); a user is another
system that receives service from system S. Correct service is delivered when the
service implements the system function.

Threats to A service failure, abbreviated here to failure, is an event that occurs when
dependability the delivered service deviates from correct service. The deviation from correct

Chain of threats

service may assume different forms, which are called service failure modes and
which are ranked according to failure severities (e.g. minor vs. catastrophic
failures). Since a service is a sequence of system’s external states, a service
failure means that at least one (or more) external state of the system deviates
from the correct service state: the deviation is called error. The adjudged or
hypothesized cause of an error is called fault>; a fault is active when it causes
an error, otherwise it is dormant. When the functional specification of a system
includes a set of several functions, the failure of one or more of the services
implementing the functions may leave the system in a degraded mode, which
still offers a subset of needed services to the user.

The creation and manifestation mechanisms of faults, errors, and failures, de-
picted in figure[1.1} is called “chain of threats”. The chain of threats summarizes
the causality relationship between faults, errors and failures. A fault activates
in component A® and generates an error; this error is successively transformed
into other errors (error propagation) within the component (internal propagation)
because of the computation process. When some error reaches the service inter-
face of component A, it generates a failure, so that the service delivered by A
to component B becomes incorrect. The ensuing service failure of component A
appears as an external fault to component B.

2 The International Federation for Information Processing (IFIP) is an umbrella organization for
national societies working in the field of information technology; the 10.4 working group (WG)
is part of the technical committee about “Computer Systems Technology”.

3 The function of a system is described by the functional specification in terms of functionality
and performance.

4 The system behavior is described by a sequence of states.

5 Faults can be internal or external to the system.

6 The fault could be 1) an internal fault that was previously dormant and that has been activated
by the computation process or environmental conditions, or 2) an external fault.

Component A | Component B |

| |
Internal 4 Service Service
Dormant c”i'e . Interface Interface
Faul &

Service status

of component A Correct . Incorrect — — — - Boundary
Service FallureT Service

?ervice Sh‘l-llse Correct _ Incorrect
of component Service Failure Y service

Figure 1.1: The chain of threats: a fault in component A activates and generates an
error; errors propagate until component A fails; the failure of A appears as
an external fault to B.

After having defined what is a system, its correct service and the threats
which can affect the service, it is time to give the definition of dependability.
The original definition of dependability is the following: “dependability is the
ability to deliver service that can justifiably be trusted”; given that this def-
inition stresses the need for justification of “trust”, an alternate definition is
given in [AviZienis o4]: “dependability of a system is the ability to avoid ser-
vice failures that are more frequent and more severe than is acceptable”. This
last definition has a twofold role, because in addition to the definition itself it
also provides the criterion for deciding whether the service is dependable or
not.

Dependability is an integrating concept which encompasses the following
attributes:

AVAILABILITY: readiness for correct service.
RELIABILITY: continuity of correct service.
MAINTAINABILITY: ability to undergo modifications and repairs.

SAFETY: absence of catastrophic consequences on the user(s) and on the envi-
ronment.

INTEGRITY: absence of improper system state alterations.

When addressing security, an additional attribute need to be considered: confi-

dentiality, which is the absence of unauthorized disclosure of information.
Based on the above definitions, security is defined as the composition of the

following attributes: confidentiality, integrity, and availability; security requires

What is
dependability

Dependability
attributes

Means to attain
dependability

Fault tolerance

Diagnosis

Properties of
diagnostic
mechanisms

in effect the concurrent existence of availability for authorized actions only,
confidentiality, and integrity (with “improper” meaning “unauthorized”).

The means to attain dependability and security are grouped into four major
categories:

FAULT PREVENTION: means to prevent the occurrence or introduction of faults.
FAULT TOLERANCE: means to avoid service failures in the presence of faults.
FAULT REMOVAL: means to reduce the number and severity of faults.

FAULT FORECASTING: means to estimate the present number, the future inci-
dence, and the likely consequences of faults.

The focus here is mainly on fault tolerance.

[AviZienis o4]] explains that fault tolerance is carried out via error detection
and system recovery, that is by first identifying the presence of an error (error
detection), and then transforming a system state containing one or more errors
and (possibly) faults into a state without detected errors and without faults that
can be activated again (fault handling).

Fault handling involves in turn fault diagnosis, that is the identification of the
cause(s) of error(s) in terms of both location and type. Fault diagnosis is the
key activity to perform isolation? of the faulty component from further partic-
ipation in service delivery and reconfiguration, which either switches in spare
components or reassigns tasks among the not failed components.

Diagnostic mechanisms can be evaluated analyzing some of their properties,
which are presented hereafter. Some of the above properties are defined in
terms of probabilistic formulas, using the following notations: let I be the event
“the component is identified as faulty” and F be the event “the component is
really faulty”.

COMPLETENESS: the capability of identifying that the component is faulty,
given that the component is really faulty; completeness is expressed by
the following formula: p(I|F).

ACCURACY: a diagnostic mechanism is accurate if the component identified
as faulty is really faulty; accuracy is expressed by the following formula:
p(FI). If the diagnostic mechanism is accurate, it does not identify a com-
ponent as faulty when the component is not faulty.

PROMPTNESS: a measure on how quickly the diagnostic mechanism is able to
identify a faulty component, given that the component is faulty.

ROBUSTNESS: the capability to correctly take into account the incompleteness
of detection observation.

Isolation can be physical or logical.

10

An ideal diagnostic mechanism should both identify all the faulty components
(completeness) and do not accuse healthy components (accuracy), doing it in
the shortest time (promptness). The properties of the diagnostic mechanisms
are used to choose at design time which diagnostic approach could be the best
for a specific task.

1.1.1 Diagnosis framework

This section presents the general diagnostic framework proposed in [Daidone 06| Diagnosis
for modeling over-time diagnostic scenarios. The diagnostic framework, de- framework

I
I
L

MC "hidden" internal state
Monitored "observable" external
Components behavior

observation of external behavior

DD Incomplete coverage
Deviation Imperfect accuracy
Detection

symbols describing the
perceived MC external behavior

SD judgement about the
State MC internal state based
Diagnosis on imperfect information

Figure 1.2: The diagnosis framework identifying the chain constituted by the moni-
tored component (MC), the error detection mechanism (DD) and the diag-
nostic mechanism (SD).

picted in figure [1.2] involves the following actors:

MONITORED COMPONENT (MC). Itis the system component under diagnosis.
During system lifetime, the monitored component is affected by faults
that might compromise its functional behavior.

DEVIATION DETECTION (DD). It is the entity which observes the external be-
havior of the monitored component and judges whether it is suitable
or not. If the deviation detection mechanism has incomplete coverage
and/or imperfect accuracy, it can raise false positives (when inexistent de-
viation is detected) and false negatives (when an existent deviation is not
detected).

11

STATE DIAGNOSIS (sD). It is the entity that judges which is the internal state
of the monitored component, based on information coming from the devi-
ation detection mechanism. The state-diagnosis mechanism has to decide
whether the services delivered by the monitored component continue to
be beneficial or not for the rest of the system, deviations notwithstanding.

The external behavior of the monitored component is “observable”, but the
same observed unsuitable behavior could be caused by different faults, so
the internal state of the monitored component® remains in some way “hid-
den”; moreover, unsuitable component behavior could also be determined by
a change in the requirements of the user of the services delivered by the moni-
tored component.

The diagnosis of the internal state of the monitored component is hence the
result of the interpretation of deviation (error) detection information, which
is in turn affected by incomplete coverage and imperfect accuracy. Whenever
the diagnostic mechanism identifies that the monitored component deviates
too much from its “appropriate behavior” (so that it could be no more useful
for the system), specific alarms are raised in order to possibly trigger proper
reconfiguration actions. For example, if the component is diagnosed as faulty,
it is isolated and substituted by a spare backup; in this sense it is clear that
false positives and false negatives are both undesired: false positives led to an
early depletion of system resources, while false negatives drastically decrease
the system dependability.

The diagnosis activity involves two information flows:

MC—DD: the deviation detection mechanism observes the external behavior of
the monitored component;

pD—sD: the state-diagnosis mechanism collects deviation detections performed
by the deviation detection mechanism

Each of the above information flows can be managed following either a proac-
tive or a reactive schema: in the proactive schema, the entity that generates
information sends it to the entity interested in it, whilst in the reactive schema
the entity interested in fresh information explicitly asks for it.

[Romano 02]] proposes three interaction patterns to manage the DD — SD
information flow; the main differences between the alternative solutions are
the granularity and frequency of the interactions:

CONTINUOUS MONITORING: there is an interaction every time the DD per-
forms some detection.

The “internal state” is something related to the component situation with respect to faults; there
is no relationship between this “internal state” and the possible component states related to the
functionalities performed by the component itself.

12

\e]

BUFFERED ASYNCHRONOUS MONITORING: information about deviation de-
tection is buffered by the DD and sent to the SD in chunks (the objective
is to decrease interaction overhead).

FAILURE TRIGGERED SYNCHRONOUS MONITORING: the information about
deviation detection is sent only when deviations are detected (so there
is no interaction as long as no deviations are detected); after the detec-
tion of some deviation, the interaction becomes continuous for some time,
until the SD judges that it is necessary.

The above solutions have different balances in terms of QoS vs. cost of feed-
ing the data to the SD mechanism: “continuous monitoring” is the most costly
and probably too aggressive in terms of the overhead it induces on the system;
“buffered asynchronous monitoring” is cheaper than “continuous monitoring”
for the interaction cost, but it requires storing capabilities in the DD mech-
anism and it negatively affects the promptness of the SD; “failure triggered
synchronous monitoring” combines the advantages of “continuous monitoring”
(timeliness of the input data and no need for storage) and of “buffered asyn-
chronous monitoring” (reduction in communication cost), but can be impaired
by omission faults in the DD.

1.2 TRADITIONAL DIAGNOSIS

The first proposals for defining design guidelines for fault-tolerant systems
date back to the late sixties: a significant example is [AviZienis 67], where the
author introduced the concept of “fault-tolerant system”, presented a classifi-
cation of faults, and outlined techniques for masking, detection, diagnosis, and
recovery. The author illustrated also the application of fault-tolerant criteria to
the design of the experimental fault-tolerant JPL-STAR computer?.

A large amount of literature has been produced since the late sixties on the
classical problem of diagnosis in multiprocessors or embedded systems, where
the target of diagnosis were sets of homogeneous, fine grained components;
deep knowledge was usually available about the monitored components, allow-
ing the assumption of simple fault models and failure semantics. Some relevant
examples are described in the following.

[Preparata 67] is the first work which discussed the problem of system-level
diagnosis, that is the problem of diagnosing systems composed of homoge-
neous units (e.g. a multi-processor system) connected by point-to—point, bidi-
rectional links; the paper assumed the system was affected by multiple faults
and proposed an automatic fault diagnostic mechanism based on a suitable set
of tests between units (the collection of test results was called “syndrome” for

JPL-STAR is a spacecraft computer with long life and autonomy requirements and with strict
weight and power constraints.

13

the system). [Preparata 67]] introduced a simple graph-theoretic model for fault
diagnosis, called “PMC model” (acronym derived from the surnames of the
authors), which is still the subject of a lot of research work (e.g. [Manik og]).

[Barsi 76] is another seminal work which is based on many premises of the
PMC model; the “BGM model” (acronym again derived from the surnames of
the authors) differs from the PMC model because of the interpretation of test
results, simplifying the diagnostic procedure. Also the BGM model is still the
subject of a lot of research work (e.g. [Vedeshenkov 02]).

In the above mentioned works diagnosis is based on the so called “one-shot
diagnosis of a collected syndrome”, so that the component is diagnosed as
“failed” as soon as an error is observed, immediately triggering reconfiguration
operations devoted to isolate, repair or replace the failed component.

Off-lineand ~ For those cases in which one—shot diagnosis is not suitable several diagnostic
on-line methods have been proposed, which can be broadly classified into two groups:
approaches

off-line analysis procedures, and on-line mechanisms. On-line approaches re-
quire that part of system resources (e.g. time) are dedicated to the diagnos-
ing activity and, most important, require the use of not—-destructive detection
mechanisms; sometimes these requirements cannot be met. On the other hand,
off-line approaches require that the monitored components are temporarily
isolated from the system, this way depriving the system of some resources.
[Coccoli 03] analyses the problem of choosing between an on-line or off-line
approach for implementing the diagnostic mechanism in a control systems for

critical applications.

The category of off-line analysis procedures includes more or less sophisti-
cated procedures which analyze system error logs to derive trend analysis and
predictions of future permanent faults, as proposed in [Lin 9o, [Iyer 9o].

Heuristicand ~ On-line mechanisms work while the monitored system is working, so the di-
probabilistic aenostic judgments can be used at run—time to act on the system configuration,
approaches aiming to tolerate the diagnosed faults. On-line diagnostic mechanisms include
a variety of threshold-based over-time diagnostic mechanisms [Spainhower 92,
Mongardi 93, Bondavalli 0o, Bondavalli o4a, Daidone 06, Serafini o7, Nickelsen og],
using either heuristic or probabilistic approaches [Spainhower 92, Mongardi 93,
Bondavalli oo, Bondavalli o4a, Daidone 06, Serafini 07, |Nickelsen og].

Heuristic approaches are typically simple mechanisms suggested by intuitive
reasoning and then validated by experiments or modeling; for example, they
count errors, and when the count crosses a pre-set threshold a permanent fault
is diagnosed. An example of heuristic mechanism for the discrimination be-
tween transient and permanent faults is the a«—count mechanism [Bondavalli oo]
presented in section

Probabilistic approaches are tailored to evaluate the probabilities of the mon-
itored component being faulty, based on monitoring information collected. An

14

example of diagnostic mechanism which follows the probabilistic approach is
the mechanism based on[HMM]" [Daidone 06] presented in Section

A good reason to use a diagnostic mechanism based on a probabilistic ap- How to choose
proach is that a probabilistic approach uses the available knowledge about the the more
system in the best way in order to improve diagnosis accuracy [Pizza 9§]. It ZZZ :ZZ Z;Zate
is worth noting that a trade—off exists between diagnosis accuracy and diag-
nosis promptness so that, in order to get better the first, the second could get
worse and vice versa; moreover, heuristic approaches tend to be computation-
ally lighter than the probabilistic ones.

1.2.1 An heuristic approach for on-line diagnosis

Heuristic approaches to diagnosis are typically based on simple mechanisms
suggested by intuitive reasoning and then validated by experiments; for exam-
ple, the so called “count-and—threshold” mechanisms count (in some way) error
messages collected over time, raising alarms when the counter passes a given
threshold. These approaches emerged in those application fields where compo-
nents oscillate between faulty and correct behavior because a large fraction of
faults are transient in nature; in those application fields one-shot diagnosis is
not effective, because the cost for treating a transient fault as a permanent one
is very disadvantageous.

The idea of thresholding the number of errors accumulated in a time window
has long been exploited in IBM mainframes: in the earlier examples, as in IBM
3081 [Tendolkar 82], the automatic diagnostics mechanism uses the above crite-
ria to trigger the intervention of a maintenance crew; in later examples, as in
ES/9000 Model goo [Spainhower 92], a retry—and-threshold scheme is adopted
to deal with transient errors.

In the [TMR]"* MODIAC railway interlocking system by Ansaldo, the archi-
tecture proposed in [Mongardi 93], two failures experienced in two consecutive
operating cycles by the same hardware component, which is part of a redun-
dant structure, make the other redundant components consider it as definitively
faulty.

In [Sosnowski 94] big attention is given to the error detection and error-
handling strategies to tolerate transient faults: a fault is labeled as transient
if it occurs less than k times in a given time window.

The most sophisticate representative of the heuristic mechanisms is a—count
[Bondavalli 00|, an heuristic proposed for the discrimination between transient
and permanent faults. The c—count mechanism is so general that all the heuris-
tic presented above can be easily obtained as a—count instances by properly

10 Hidden Markov Model
11 Triple Modular Redundancy

15

settings its internal parameters. The details about the a—count mechanisms are
given hereafter.

The a—count mechanism

The a—count heuristic, proposed for the first time in [Bondavalli 97], was con-
ceived for solving the problem of the discrimination between transient, inter-
mittent and permanent faults, taking into account that “components should be
kept in the system until the throughput benefit of keeping the faulty compo-
nent on-line is offset by the greater probability of multiple (hence, catastrophic)
faults” (citation from [Bondavalli oo]).

The faults and failure modes assumed for the monitored component are the
following:

PERMANENT FAULTS: internal faults which lead the component to fail every
time the component is activated.

INTERMITTENT FAULTS: internal faults which show a high occurrence rate
and which eventually might turn into permanent faults.

TRANSIENT FAULTS: external faults which have an uncorrelated occurrence
rate and should not determine the exclusion of the monitored component.

The a—count heuristic implements the “count-and-threshold” criteria, so the
rationale behind the a—count is the following: many repeated errors within a
little time window are easily evidence for a permanent or an intermittent fault;
some isolated errors collected over time could be evidence for transient faults.
a—count hence counts error signals collected over time, raising an alarm when
the counter passes a predefined threshold, and decreasing the counter when
not-error signals are collected.

We may assume that all fault-related events occur at discrete points in time
and that two successive points in time differ by a (constant) time unit or step;
we may assume also that the deviation detection mechanism evaluates at each
step i whether the component is behaving correctly or not, issuing a boolean
deviation detection information J(*) toward the diagnostic mechanism. We may
assume J(V) is defined as follows:

(1.1)

) = { 0 if correct behavior is detected at step i

1 if incorrect behavior detected at step 1

a—count collects over time the signals coming from the deviation detection
mechanism in a score variable « associated with the monitored component; at
each step the score variable « is updated and compared with a threshold value
ot: if the current score value exceeds the given threshold a1 (x > o), the
component is diagnosed as affected by a permanent or an intermittent fault,
otherwise it is considered healthy or hit by a transient fault.

16

12

13
14

The score variable « is evaluated at each step i by using the following for-
mula:

«© =0
L etk i JE =0 (0<K<) (1.2)
B UL DTS BT (O

where K is an internal parameter representing the ratio in which « is decreased
after a step without error signals, thus setting the time window where memory
of previous errors is retained.

Extended studies about the tuning of the internal parameters (K and «t) are
described in [Bondavalli oo], where the trade—off between promptness and ac-
curacy is evaluated. Applications and variants (e.g. the double-threshold vari-
ant’?) are described in [Bondavalli o4a) Serafini o7].

Practical applications of the a—count heuristic can be found also in the follow-
ing works: [Powell 98], where x—count has been implemented in the[GUARDS]'3
architecture for assessing the extend of the damage in the individual channels
of a redundant architecture; [Romano 02l], where a—count is used in a [COTS
based replicated system to diagnose replica failures based on the result of some
voting on the replica output results.

1.2.2 A probabilistic approach for on-line diagnosis

Diagnostic mechanisms following a probabilistic approach are tailored to eval-
uate over time the probability of the monitored component being faulty.

Probabilistic approaches for on-line diagnosis can be based on different un-
derlying models: [Pizza 98] tackles optimal discrimination between transient
and permanent faults applying the Bayesian inference to the observed events'4;
[Daidone 06] shares the same probabilistic view of [Pizza 98], but accounts for
higher modularity and relies on a richer framework to solve diagnostic prob-
lems (more details about this probabilistic approach are described in section
[1.2.2); [Nickelsen og] applies Bayesian Networks for probabilistic end-
node driven fault diagnosis of TCP end-to—end connections both in the wireless
and wired domain.

The core idea behind the probabilistic approach to diagnosis presented in
[Pizza 98] is to use the Bayesian inference, which is expressed as follows: let us
suppose to have a conjecture x about which there is uncertainty, and let p(x)

The double-threshold mechanism temporarily excludes the monitored component after the first
threshold is exceeded, giving an opportunity to be reintegrated; the monitored component is
definitely excluded as soon as the second threshold is exceeded.

Generic Upgradable Architecture for Real-time Dependable Systems

This approach describes how the assessed probability that a component is permanently faulty
varies with observed symptoms, taking into account the coverage of the deviation detection
mechanism.

17

The Bayesian
inference

Diagnosis and
the Bayesian
inference

be the degree of belief in conjecture x being true; after observing some new
relevant evidence e it is desirable to update the belief p(x) in a rational way.
Both the evidence e and the conjecture x are described as events, that is subsets
of the set of all possible outcomes of some experiment.

The similarity between the diagnosis problem and the Bayesian inference is
based on mapping conjecture x with the fact that the monitored component
is affected by a certain fault (listed in the fault assumptions), and mapping
evidence e with the result of a deviation (error) detection information. The
diagnostic mechanism is going hence to evaluate the probability p(x) of the
monitored component being affected by a certain fault (conjecture x), updating
this probability when new detection information (evidence e) comes from the
deviation detection mechanism. The diagnostic mechanism then exploits the
evaluated probabilities in order to judge whether a proper alarm has to be
raised, triggering this way the reconfiguration mechanism.

The Bayesian inference is exploited for diagnostic reasoning as described
hereafter. The Bayes’ theorem states the following;:

plelx) -p(X).

ple) (t3)

p(xle) =

The elements involved in equation |1.3|can be interpreted as follows:

p(x|e) is the degree of belief in conjecture x after observing the new evidence
e (let’s call it “posterior” probability of conjecture x).

Reasoning in diagnostic terms, p(x|e) is the probability that the compo-
nent is affected by a certain fault (information related with conjecture x)
given that a certain deviation detection information was collected (evi-
dence e).

p(x) is the degree of belief in conjecture x before observing the new evidence
e (let’s call it “prior” probability of conjecture x).

Reasoning in diagnostic terms, p(x) is the probability that the component
was affected by a certain fault (conjecture x) before collecting the last
deviation detection information (evidence e).

plelx) is the probability of observing some evidence e, given that the conjec-
ture x is true.

Reasoning in diagnostic terms, p(e|x) is the probability of the deviation
detection mechanism emitting some detection information (evidence e),
given that the monitored component is affected by a certain fault (con-
jecture x); this in some sense related to the imperfection of the deviation
detection mechanism.

We may assume that C is the universe of all the possible conjectures c (e.g. all
the faults listed in the fault model); the probability of conjecture x being true

18

given that evidence e was observed can be updated exploiting formula [1.3|in
the following way:

pprior(x) -plelx)
ceC pprior(c) : p(elc)

pposterior(x|e) = Z (14)

We may now assume that all fault-related events occur at discrete points in
time and that two successive points in time differ by a (constant) time unit or
step. Moreover we may assume that the deviation detection mechanism evalu-
ates at each step whether the component is behaving correctly or not, emitting
a deviation detection information toward the diagnostic mechanism.

It is worth noting that the prior probability of a conjecture c at step i can be
obtained as the posterior probability of the same conjecture c at the previous
step i — 1, adjusted based on the evidence observed in the meanwhile. The
probability of the monitored component being affected by a certain fault at step
i is hence obtained based both on the probability values evaluated at round
i—1 and the deviation detection information collected in the meanwhile:

Pi—1(x) - plelx)
cec Pi—1(c)-plelc)

pi(x) = p(xle) 5 (1.5)

If the fault model of the component lists n faults, then formula can be
rewritten in order to deal with an n-component vector p; formed by the single
values pi(x) at varying x; this way the formula describes how the probability of
the monitored component being failed can be updated over time based on the
deviation detection information collected over time.

The diagnostic mechanism based on HMM

This section presents the diagnostic mechanism based on Hidden Markov Mod-
els as it was originally proposed in [Daidone 06], giving some details
about the rationale behind the mechanism and showing some features of the
mechanism itself. Some extensions to the diagnostic mechanism will be pro-
posed in this work and will be described in section

This section refers to the diagnosis problem and its actors by using general
terms, like “monitored component”, “deviation detection mechanism”, “fault”,
without entering into many details, because the diagnostic mechanism is gen-
eral and applicable to several problems with different specifications (e.g. diag-
nosis of an hardware fault or a malicious intrusion).

The use of the formalism allows both the definition of a framework
through which the diagnosis problem can be approached, and the definition of
a diagnostic mechanism. The above mentioned framework allows to tune the
diagnostic mechanism on the base of the peculiarities of the system in which is
implemented (basically the fault model of the monitored component) and the

19

What is an
HMM

15

16

17

peculiarities of the deviation detection mechanism (e.g. probabilities of false
positive and false negatives).

The diagnostic mechanism based on[HMM]follows the probabilistic approach
presented in section taking advantage of the peculiarities of the hidden
Markov models in order to give an intuitive but formal way of solving the
diagnosis problem. The diagnostic mechanism evaluates the probability of the
monitored component being faulty, based on the observation of the results of
a deviation (error) detection mechanism which has incomplete coverage and
accuracy. The diagnostic mechanism is flexible enough to take into account the
uncertainty of both observed events and observers, so that it can also be used to
diagnose malicious attacks: literature shows e.g. that the theory is used
to implement an anomaly-based intrusion detection system (e.g. [Jecheva 06]).

In order to better comprehend the rationale behind the diagnostic framework
based on some basic information about the formalism is presented here-
after.

A hidden Markov model is a formalism able to represent probability distri-
butions over sequences of observations; an is basically a Markov chain
whose state is “not observable” (the state is indeed “hidden”) which emits “ob-
servable” symbols depending on a probabilistic function of the state. A good
tutorial about and its use can be found in [Rabiner 9o].

Let Q) be the finite discrete set of states and I be the finite discrete set of
observable symbols; an M can be expressed by the following quintuple:

M= (Q/A/ﬁ(])/Z/B) (16)
The elements of the quintuple are detailed hereafter:

Q, A and 7(1) are the basic elements describing a first-order'> time-homoge-

neous™® [DTMC['7 [Bolch o5], that is:

e the discrete set of (hidden) states Q = {w1,..., wn};

* the n x n state transition probability matrix A, where A (i,j) = ayj is
the conditional probability that the model moves to state w; given
that it is in state w; at time t;

e the initial state probability vector 7 (1).

L ={o1,...,0m}is the set of distinct (observable) symbols emitted by the HMM]
(the so—called alphabet of the model).

A first-order Markov chain is a chain in which the state at time t depends only state at time t — 1
only.

A time-homogeneous Markov chain is a chain where the over—time behavior does not depend
on the actual value of time t.

Discrete Time Markov Chain

20

B is the n x m observable symbol probability matrix, where the element B (i, k) =
bi (o) is the conditional probability that the model emits the symbol oy
at time t given that the model is in state w;.

It is worth noticing that the probability of emitting oy at time t depends
only on the state at time t (which in turn depends on the state at time
t —1) and not on the symbol emitted at time t — 1.

The description of the diagnostic mechanism based on[HMM]bases on the as- Assumptions
sumptions described hereafter (some of them are made only for simplifying the
description); section [2.4) will describe how some of the following assumptions
can be lightened or even relaxed at all. The following assumptions are made:

1. All fault-related events occur at discrete points in time and two successive
points in time differ by a (constant) time unit or step.

2. There is only one deviation detection mechanism, which evaluates whether
the component is behaving correctly or not, issuing a deviation detection
information toward the diagnostic mechanism at each step.

3. The fault model for the monitored component is known and does not
change over time; this means that the system designer knows both which
faults affect the monitored component and the probability value that a
certain fault can activate.

4. The characteristics of the deviation detection mechanism (completeness
and accuracy) are known, so that the system designer knows which is
the probability of the deviation detection mechanism detecting (or not) a
fault. This holds for each fault in the fault model.

The fault model for the monitored component is used to initialize the[DTMC| Setting up the
underlying the meaning that: diagnostic

mechanism
¢ The faults listed in the fault model are associated with different states
in set (); usually one state is associated with the “no active fault” situa-
tion, sometimes some states are defined to be associated with particular
combinations of faults.

¢ The probability values related to the occurrence of faults are used to ini-
tialize both the initial state probability vector 7 (1) and the state transition
probability matrix A.

The characteristics of the deviation detection mechanism are used to initialize
both set £ and matrix B; in order to take into account the possible imperfections
of the detection mechanism (e.g. the occurrence of false positives and false
negatives) matrix E and G are introduced. X, E, B and G are initialized as
follows:

21

Using the

1. Each error message that can be raised by the deviation detection mecha-

nism is linked with a different symbol in %;

. The probability values of the monitored component showing errors given

that it is faulty (for each fault in the fault model and for each error mes-
sage in X) are used to initialize the elements of matrix E; please, note that
matrix E is similar to the observable symbol probability matrix B, but it
is not the same: the difference is that E is related to an ideal deviation
detection mechanism, B to the real one.

. If the deviation detection mechanism were perfect, than it would raise

an error signal exactly when the monitored component shows an error;
in this case the probability of raising a certain error message given that
a certain fault is active in the monitored component is the same as the
probability of the component showing that error when affected by that
fault, and hence B = E.

When this is not the case, that is when the deviation detection mecha-
nisms is not an ideal one, a square matrix G called translation probability
matrix is used: rows and columns of the G matrix are indexed with sym-
bols in X so that the generic element G[i,j] = gi; corresponds to the
probability that the ideal emission of symbol i is translated in the actual
emission of symbol j. If the deviation detection mechanism is ideal, the G
matrix is the identity matrix. The observable symbol probability matrix B
is obtained as the row—column product between E and G: B = EG.

The basic information used by the over-time diagnostic mechanism in or-

diagnostic der to take decisions and trigger alarms is the state probability vector f(t) =

mechanism (fw] (t)

. fw, (t))T, which contains the probability values of the monitored

component being affected by each one of the faults listed in the fault model.

-

The state probability vector f(t) is evaluated at each step based on the state

—

probability vector f(t — 1) evaluated at the previous step and the deviation de-
tection symbol o observed at time t; f(t) is defined by the following formula®:

> Ldiag (B°) (1 ift=1
fo=l ® iag (B°") 7i(2 i (1)
Sltdiag (BOOATf(t—1) ift>1

The computational cost for evaluating f(t) at each step is O (n?).

—

The over-time diagnostic mechanism uses the probability values in f(t) to

take decisions about the alarms to trigger (if any); several criteria can be used
for taking decisions, let’s give some ideas in the following:

18 Please note the following:s; is a scaling factor used to normalize f(t), diag(V) is a diagonal
matrix built from vector v, and B€ is the column of matrix B corresponding to symbol o.

22

1. A threshold vector d = (dy ... dn)7 is defined, where d; € [0, 1] repre-
sents the threshold probability for the corresponding value f,. (t) in f(t):
d; is the threshold for the probability of the monitored component being
affected by the fault associated with state w;. Some thresholds are upper
thresholds, meaning that the alarm has to be raised when f,, (t) > di, oth-
ers are lower ones (e.g. the threshold related with the “no fault” state). In
case (at least) one of the thresholds is violated, the diagnostic mechanism

raises a specific alarm toward the reconfiguration mechanism.

2. () is partitioned in subsets and the above idea of the threshold vector is
applied on subsets of Q) instead on single elements wj; this is the typical
case in discriminating permanent and intermittent faults against transient
faults, where the states in Q are partitioned in two sets: {No-Fault, Tran-
sient} and {Intermittent, Permanent} and a threshold value needs to be set
on the latter partition only.

Of course, variations are possible in a number of directions; in general, the
setting of the threshold criterion depends on the requirements of the specific
application using the services delivered by the monitored component.

The diagnostic framework based on is very general, as underlying
models are not bound to particular components or fault detection mechanisms;
furthermore, it takes into account all the aspects involved in component’s state
diagnosis, keeping them separated in modular way. The high accuracy of the
mechanism is demonstrable through the comparison with the existing optimal
solution relying on the Bayesian inference theory.

The formal approach beside the diagnostic framework can also be a support
at design time for studying different combinations of fault models and for eval-
uating the impact of different deviation detection mechanisms; it can also be
used to tune the internal parameters of heuristic techniques that could be im-
plemented in place of a probabilistic mechanism due to lack of computational
resources.

1.3 NEW TOOLS

Diagnostic mechanisms used for traditional systems are chosen and tuned
based on static assumptions about system behavior, fault model and detec-
tion mechanism; all those basic assumptions derive from contexts where the
“strange” component behavior can be defined a-priori and assumed due to
faults in the component itself. Nowadays we need to enlarge those context and
consider more dynamic scenarios, where, for example, failure definitions or
system specifications change over—time.

Old diagnostic machineries are not more good for the job: given the amount
of indicators to observe they become ineffective; another element is the need

23

Advantages and
disadvantages

for information correlation, which the old mechanisms do not support. It is
clear that the new scenarios require new diagnostic tools, because the informa-
tion source for modern diagnosis is going to be monitoring instead of error
detection.

The following problems arise:

¢ Which event to collect, given that failure definitions and system specifica-
tions can change over—time.

* How to define streams of relevant data, given the amount of data that can
be monitored.

¢ Which inference rules to apply on streams of data in order to perform
diagnosis.

Some ideas about how to solve these problems will be given in chapter [2| by
making combined use of some existing tools (on-line monitoring and simple—
event—correlation) which will be presented in the following sections.

1.3.1 On-line monitoring

On-line monitoring aims at the observation of system events, from several per-
spectives (faults, attacks, vulnerabilities), while the system is in operation. Sev-
eral proposals exist where monitoring tools and facilities are proposed with
slightly different aims and capabilities. Some examples of automatic on-line
monitoring tools are the following:

¢ SWATCH (Simple WATCHer.) [Hansen 93]: it generates alerts based of
the recognition of specific patterns while on-line scanning log files; its
main drawback is that it doesn’t support means to correlate recognized
events. Swatch is written in PERL.

* Logsurfer [Thompson o4]): it is based on SWATCH, but it offers some ad-
vanced features which are not supported by SWATCH: for example, it can
group related log entries together and it can dynamically change its rules
based on events or time. Logsurfer is written in C: this makes it extremely
efficient from a computational point of view.

¢ LoGS [Prewett 04]: LoGS’rule set is dynamic and rules are written in Lisp
(as the tool itself): this provides more flexibility in designing rules than
other tools, but it requires programming experience on the part of the
rule designers. LoGS is still immature: a beta release is available only.

e SEC (Simple Event Correlator) [Vaarandi 02, Rouillard o4]: it recognizes
specific patterns based on predefined rules; SEC is able to correlate ob-
served events and to trigger specific alarms. SEC is written in PERL.

24

Monitoring mechanisms in critical infrastructures are required to filter the
events observed so to understand the nature of errors occurring in the system,
with respect to multiple classes of faults, and so feeding the diagnostic facilities.

1.3.2 Diagnosis based on simple event correlation

This section presents an on-line diagnostic mechanism based on the use of
simple event correlation. The monitoring information is extracted over-time
reading system log files, filtering all the available information in order to iden-
tify only information relevant for monitoring purposes (the so called “events”);
the diagnostic engine then processes over-time the flow of the observed events,
identifying alarming situations both from the observation of alarming events
(events that directly notify an alarming condition) and from the correlation of
specific simple not-alarming events. The goal is in fact to recognize not only
malfunctions on top of self-evident error events, but also alarming situations
on top of observed (possibly not alarming) events.

The proposed approach is general enough to be used for the identification
of different kinds of alarming situations, e.g. hardware faults (e.g. a “stuck at”
error message), software faults (e.g. an exception message) or malicious attacks
(e.g. several messages about a failed attempt to login as root).

Log files contain a lot of information related to both functional and not func-
tional actions occurring in the system; they contain information related to sev-
eral components in the system, possibly components belonging to different
architectural levels, and all this information is mixed together. Among all this
information, there is some information that is relevant for the diagnosis process:
for sure there are self-evident errors notifications, but also other not alarming
information could be useful;, sometimes in fact error notifications are hidden
among various status events indicating normal operations or borderline situa-
tions, which, considered altogether, are alarming symptoms. Log files are some-
times the only way to monitor COTS components, which cannot be modified
to incorporate specific probes and hence need to be monitored as black-boxes.

Automatic tools are needed to scan on the fly log files, in order to:

1. Filter information and identify the “events” relevant for the diagnosis
process: events are both self-evident deviation detection messages and
system status events which could be symptoms of malfunctions.

2. Correlate the filtered events in order to identify sets of not-alarming
events which observed altogether are signals for higher-level problems.

The rationale behind the event correlation engine is a set of rules which define
how basic events are correlated in composite events. Event correlation is a good
opportunity to exploit the occurrence of different symptoms as a “prediction”
for a certain fault to generate a failure.

25

The diagnostic
approach

The following phases need to be performed at design time in order to set-up

the diagnostic mechanism based on simple event correlation:

26

1. Event categorization: events are classified in a hierarchical set of event cate-

gories.

The top level category usually corresponds to a discrimination between
“relevant” and “not relevant” events, where the “relevance” is related to
the identification of faults. Relevant events should include, in addition to
critical events, also “not critical” events related to some data measured in
the system or to periodic system actions; these “not critical” events could
be used to identify system malfunctions which are not signaled by explicit
messages.

. Event filtering (“optional” step): events are filtered in order to remove re-

dundant information and reduce the amount of information to be pro-
cessed by the diagnostic engine (mainly for performance reasons).

An ideal filter should have the maximum compression rate and no loss
in terms of semantics of relevant information, but the issue here is to dis-
criminate which events are redundant and which information is relevant.
Typically redundancy is both on the time scale (e.g. repeated error mes-
sages related to the same fault) and on the space scale (e.g. more than
one deviation detection mechanism detects the same error on the same
monitored component).

. Association rule definition: rules are defined to correlate the events iden-

tified (and possibly filtered) in the previous phases; mining rules are
used both to execute matches among observed events and to generate
the proper diagnostic judgments/alarms.

The knowledge of the diagnosed system lets the system designer to create
matching rules; examples of matching criteria are the following:

a) In the time domain: two (or more) events are observed within a tem-
poral window, and hence they are correlated; based on the specific re-
quirements, the temporal window is defined either as a fixed length
window (e.g. to search for a missing event) or by a pair of begin/end
events.

b) For causal reasons: two (or more) events are observed in a given
order and hence they are correlated; the reason for the correlation is
the event causality: the first observed event is the cause for the next
one (which is the effect).

¢) For localization reasons: two (or more) events, generated by the same
source (system component), are observed and hence correlated as
symptoms for the same malfunction (e.g. repeated application errors

raised by the same process could be interpreted as manifestation of
software aging).

The identification of the mining rules can be partially automated by using
specific techniques (something similar to the “association rule learning” in data
mining), but this is out of the scope of this study.

The monitoring tool that can be used as a support for modern diagnosis
(as it will be proposed in chapter2) is SEC. SEC is an open—source rule-based
event correlation tool, created in an academic context, and has interesting char-
acteristics in terms of portability (is PERL based) and updatability (the rule set
can be updated on the fly). Details about the mechanism itself and its use in
conjunction with system log files can be found in [Rouillard o4].

SEC can be seen as a complex, context-aware filter which selects and cor-
relates relevant detection information based on matching rules defined using
regular expressions; rather complex matching patterns can be defined in a com-
pact way, that would otherwise be quite awkward to express. SEC self-learning
capabilities are masked, but existing: rules are defined in specific configuration
files (text format) called rule files, which can be refreshed at run—time keeping
the status of the ongoing correlations. Rule files are refreshed when the SEC
process is requested to perform a “soft restart” from the hosting operating sys-
tem through specific inter—process signals (SIGABRT or SIGTERM). In particular, a
soft restart consists of the following steps:

1. Rule files are reopened (new files can be opened too).

2. Event correlation operations started from rule files that have been modi-
fied or removed after the previous configuration load are canceled.

3. Other operations and other event correlation entities (contexts, variables,
child processes, etc.) remain intact.

SEC rule sets are defined based on nine rule types, which can be classified
into two groups: basic rules, which perform actions and do not start an active
correlation, and complex rules, which start a multi-part operation that lasts for
some time after the initial event and which perform the actual correlation.

Basic rules are the following;:

SUPPRESS: this rule suppresses the matching input event, so that the event is
not matched by other following rules.

SINGLE: this rule executes an action list | if the input event is matched.
CALENDAR: this rule executes an action list | at specific times.

Complex rules are the following;:

27

Using the event
correlation for
diagnosis
purposes

SINGLEWITHSCRIPT: this is an extension of the “single” rule, so it executes an
action list 1 if the input event is matched and -this is the difference- if also
an external script returns a certain output value.

SINGLEWITHSUPPRESS: this is an extension of the “single” rule, so it executes
an action list 1 if the input event is matched, but -this is the difference- it
ignores the following matching events for the next t seconds.

PAIR: this rule executes an action list 1; if the input event is matched, then
it ignores the following matching events until some other input event is
matched; on the matching of the second input event, another action list 1,
is executed.

PAIRWITHWINDOW: this rule executes an action list 17 if the input event is
matched, then it waits for t seconds for a second input event to be matched:
if the second input event is not observed within the time window;, it exe-
cutes an action list 1,, otherwise (the second input event arrived on time)
it executes another action list 13.

SINGLEWITHTHRESHOLD: this rule counts how many times the input event
is matched within a time window of t seconds; if a given threshold is
exceeded within the given time window, it executes an action list | and
ignores all matching events during the rest of the time window.

SINGLEWITH2THRESHOLDS: this rule counts how many times the input event
is matched within a first time window (duration t; seconds); if a given
threshold is exceeded within the given time window, it executes an ac-
tion list 1. Then it restarts counting how many times the input event
is matched within a second time window (duration t, seconds); if the
counter is below a second threshold, it executes another action list 1,.

SEC reads streams of information about events occurring in the system and
triggers the execution of both internal actions and external processes (e.g. shell
commands); input is read on the fly from both log files and system pipes on a
line-by-line fashion. Rules are used in particular to:

e Create and delete contexts, which are used to discriminate whether a
given rule has to be applied or not in a certain scenario;

* Associate collected events with a single context and report collected events
at a later time;

* Generate new (intermediate) events that will be input for other rules;

* Reset correlation operations that have been started by other rules.

Combining several rules and contexts together, complex event correlation
schemes are defined.

28

A DIAGNOSIS FRAMEWORK

This chapter proposes both a diagnosis framework and a conceptual schema
which together aim to cope with the growing complexity of the problem of
diagnosis in modern critical infrastructures. The objective is to perform mon-
itoring and diagnosis activities, trying to correlate monitored information for
diagnosis purposes.

The diagnosis framework suggests that system diagnosis is performed at
run-time in a distributed way, taking into account both the local and the global
point of view: each node has to diagnose both itself (local diagnosis) and other
nodes (private diagnosis) based on the local perception of their behavior; in
certain moments of time (e.g. when a serious malfunction is detected inside a
set of collaborating nodes) distributed diagnosis is performed, in order to reach
consensus about the healthy status of that part of the system (possibly of the
entire system).

The conceptual schema aims to make advanced use of available monitoring
tools by means of a new variety of on-line diagnostic mechanisms. The goal is
to build an evolutionary collection of detectable effects of the problems affect-
ing the system (e.g. faults, intrusions), to enable early recognition of intricate
space/time malfunction patterns.

Some problems have to be considered: i) the existence of wrong detections,
due both to the imperfection of detection mechanisms themselves and to the
deviated perception of remote activities (e.g. because of communication prob-
lems); ii) the presence of malicious faults, aimed to distort the perception of the
various system parts (e.g. a node tries to persuade other nodes that a certain
server is congested in order to be the sole to gain its services); iii) the cost of
distributed diagnosis (despite of the use of an authentication mechanism).

2.1 REQUIREMENTS AND SPECIFICATIONS

The modern critical infrastructures considered in this work have specifications
and requirements' that pose some issues from the viewpoint of assuring sys-
tem resilience. Let’s present the main diagnostic issues by recalling the main
infrastructure specifications in the following list:

* Infrastructures are made by connecting previously stand-alone systems,
usually developed from proprietary architectures, where ad—hoc solutions

The discussion about current status and future trends of critical infrastructures can be found in
the introduction.

29

On-line

diagnosis

Fine—or

large—grained?

Information
correlation

2

were chosen and several components were developed independently; ad—
hoc mechanisms for detection, diagnosis and reconfiguration were used,
which now need to be coordinated. The original mechanisms were de-
signed in strict dependence with the proprietary stand-alone system only,
not considering the following integration in some infrastructures, so those
mechanisms could now act “against” the infrastructure’s interests.

¢ Sub-systems composing the infrastructure were not designed to be widely
distributed and remotely accessed, and they do not cover security issues;
the interactions among those sub—systems need to be treated in some way,
adding the necessary coordination support for the management both of
fault tolerance and security (treating e.g. both hardware and malicious
faults).

* Large—grained components are used, which have a lot interactions among
them and their sub—components; it is hence difficult to link a single error
appearing within the infrastructure with a well focused fault in a specific
bounded component. Moreover, the goodness of a component could be re-
lated to the quality of the service provided, rather than to the absence of
faults, affecting this way diagnostic judgments and reconfiguration strate-
gies.

¢ The environment in which diagnosis is performed is heterogeneous; many
different entities coexist in the infrastructure: this requires each of them
having specific solutions for assuring resilience.

* The infrastructure is distributed by its very nature and hence communi-
cation and coordination problems need to be solved.

Diagnosis in critical infrastructures is required to assure the resilience of the
infrastructure itself, performing on-line activities tailored to assess the status
of the monitored components and the extent of the faults which can possibly
affect them.

Diagnosis activity has to be performed at different granularity levels (FRUk?),
depending on the controllability of the monitored components (e.g. when deal-
ing with COTS and legacy sub-systems) and on the cost/efficacy ratio of the
detection—diagnosis-reconfiguration operations. On one side, fine—grained di-
agnosis is very helpful, since it allows replacement of smaller parts of the sys-
tem, avoiding wasting still useful subparts of the components under diagnosis.
On the other side, fine-grained diagnosis incurs in higher costs from the point
of view of setting up diagnosis activities. Opposite trends are instead shown by
a large—grained approach.

In large, well designed and tested systems, with hardware components far

Fault Replacement Units

30

from their wear out age, crude faults or malfunctions, easily and rapidly rec-
ognizable as such, tend to be rare events; while subtle borderline conditions
may still occur, whose very presence is difficult to detect, not to mention ac-
curate recognition and treatment. Another difficulty derives from the observa-
tion that, in the less—than—simple systems, a binary (faulty /not-faulty, go/not-
go) schematization of the error behavior is insufficient and possibly counter—
effective on the availability of the component.

More often, in a mature system non-fatal malfunctions occur which, although
far from downing the entire affected (sub)system, nevertheless require correc-
tive action. Also from this point of view, then, finer recognition of borderline
situations is needed, to enable flexible reaction.

Even if a binary decision scheme is considered good enough, an approach
more knowledgeable than just waiting for a single, unambiguous error signal
would have a positive impact on system dependability.

2.2 THE PROPOSED DIAGNOSIS FRAMEWORK

Given the geographical extension of critical infrastructures it is not practical A distributed
to have a centralized diagnostic entity that has to gather and analyze all the approach
information about the detected deviations in order to diagnose the system; this

kind of centralized state diagnosis should be ultra—reliable and communication

links to all the parts of the system should be guaranteed. The fact that the

critical infrastructure is formed by several interconnected sub-systems leads

the infrastructure to be logically decomposable in a set of interconnected is-

lands (nodes), each one endowed with its own monitoring and diagnostic tools.
Therefore methods for distributed diagnosis (and reconfiguration) are manda-

tory, where each node decides independently about the system (e.g. which are

the healthy nodes and which the faulty ones). Then, reasoning top—down in

a hierarchical way, we can apply the same rationale (if necessary) within each

system node (island).

Considering a distributed system comprised by completely connected nodes, Local vs. global
the hybrid fault-effect model [Walter 97] can be assumed, so that all fault classi- classification of
fication is based on a local classification of fault effects (to the extent permitted fault effects
by the deviation detection mechanism of the node itself) and on a global classi-
fication, thus developing a global opinion on the fault effect. Diagnosis is thus
performed using a two—phase approach on a concurrent, on-line and continual
basis:

1. Local detection and diagnosis, based on the local perception of the node
about the faulty status of other nodes.

2. Global information collection and global diagnosis, obtained through ex-
change of local diagnosis.

31

Since each node may have a different perception of the errors created by other
nodes, each node has some private values (the results of local diagnosis on
remote nodes) and the goal is to ensure consistent information exchange and
agreement against Byzantine behavior. The above approach can hence be ex-
tended by considering the following three diagnostic scenarios:

LOCAL DIAGNOSIS: the node judges the status of its internal components/ser-
vices, based on information available in the node itself.

PRIVATE DIAGNOSIS: the nodejudges the local perception of remote nodes/ser-
vices, based on information collected by the node itself.

DISTRIBUTED DIAGNOSIS: the node participates and contributes to the build-
ing of a common view about the status of remote services in the system.

Diagnosis ~ Based on the diagnosis scenario identified above, which will be detailed in
strategy the following sections, the general diagnosis strategy turns out to be the follow-

mg:

1. Every node diagnoses itself over time, in order to judge the healthy /faulty
status of its resources/services; this step determines the local status of the
node, which is used primarily for local reconfiguration aims.

2. Every node builds a private judgment about the other nodes and the ser-
vices they provide, based on the perceived behavior observed through
direct functional relationships with them or through specific challenge—
response tests; this step produces the so—called perceived status of a certain
node, which is used to discriminate whether the remote node is trustable
or not.

3. Every node, when asked for, declares its local status (everything, only
relevant parts or a signature of them); since nodes are not completely
trusted by other nodes, they do not completely trust the declared status.

4. When necessary, (groups of) nodes exchange among them their perceived
status of a certain node, in order to reach an agreement about the trust-
worthiness of that node. This step is affected by the fact that the perceived
status and the declared status of a certain node could be conflicting (e.g.
because of communication problems or because of deliberate and ma-
licious causes); moreover, two different nodes could perceive the same
remote node in different ways.

Hybrid The critical infrastructure is distributed in its very nature, and it is hence ex-
architecture posed to communication and coordination problems, as well as to those caused
by hardware or operating system; it is not possible to manage these problems

at the component level, but it is necessary to do that at a higher architectural

32

level. From an architectural point of view, it seems that the more suitable way
to integrate diagnostic mechanisms in the system is to integrate them at mid-
dleware level and take advantage of hybrid architectures in order to provide
the basic services with certain guarantees.

Hybrid architectures are system architectures where distinct parts of the sys-
tem have different properties and are based on different sets of assumptions (in-
cluding e.g. faults and synchrony properties). The literature about distributed
systems, in particular referring to timing properties of systems, includes an hy-
brid architectural paradigm based on the so—called wormholes [Verissimo o6a],
which are special components having stronger properties than the other sys-
tem components and that provide services (e.g. temporal references) with cer-
tain guarantees. System resilience can be enforced in design phases by us-
ing an hybrid architecture: relevant examples are the architecture
[Powell 03], the architecture [Verissimo 08]] and the ar-

chitecture [Casimiro o7].

2.2.1 Local Diagnosis

Local diagnosis aims to determine the local status of a node; local diagnosis
is performed internally on local resources/services, so the monitored compo-
nents, the deviation detection mechanisms and the diagnostic mechanism are
all inside the node (as depicted in figure [2.1).

Node
MC
MC Monitored Component: “hidden” internal state, “observable”
| - DD external behavior.
: sD DD Deviation Detection mechanism: imperfect coverage and accu-
-
racy.

SD State-Diagnosis mechanism: judgment about MC internal state
based on imperfect information.

> observation of external MC behavior.

> information about perceived MC behavior.

Figure 2.1: Architectural view of the local diagnosis scenario.

The accuracy of the diagnostic mechanism in the local scenario is affected
primarily by the characteristics of the deviation detection mechanism. Devia-
tion detection mechanisms, deeply studied in the literature of fault tolerance
[Siewiorek 98], are characterized by a level of accuracy and a level of com-
pleteness (coverage); very often, neither the accuracy nor the completeness are
100%, leading deviation (error) messages to do not perfectly reflect the internal
healthy state of the monitored components (false positives and false negatives

3 Malicious—and Accidental-Fault Tolerance for Internet Applications

33

exist). The diagnostic mechanism has therefore to filter error (deviation detec-
tion) messages in order to judge whether the monitored component is still ben-
eficial for the node or it is better to signal it as “suspect” (possibly triggering
some reconfiguration/maintenance on it).

The diagnosis of a single component can be performed by implementing
heuristic or probabilistic mechanisms as those described in section|[1.2] If several
monitored components at different architectural levels need to be diagnosed at
the same time, then the combined use of both traditional diagnostic mecha-
nisms and traditional correlation information tools (described in section
is recommended: all the available monitored information can be processed over
time in order to recognize symptomatic situations which generate errors. The
full details about the rationale behind the correlation of monitored information
for diagnosis purposes will be proposed in section

In those cases in which the hybrid architecture is implemented, the diagnos-
tic mechanism can exploit deviation detection information collected from the
services running in the wormhole as trustable detection information.

2.2.2 Private Diagnosis

Private diagnosis is performed by a node on a remote node (or service), based
on its perception of the behavior of the remote node (or quality of the ser-
vices provided); the connection between the local node and the remote node
is the first source of uncertainty about the collected deviation information. The
detection of the remote service/node should be done exploiting both the func-
tional messages exchanged between the two nodes (as shown in [Walter 97])
and some tests explicitly designed for the job. The detection based on observa-
tion of functional behavior requires that a functional relation holds between the
two involved entities in order to collect information; explicit test can be instead
triggered on-demand or on a periodic base.

Node 1
> DD,
(remote) Nodj ______ > SD1
MG Node 2

\W\/r DD,
| SD;

Figure 2.2: Architectural view of the private diagnosis scenario where Node 1 and Node
2 are diagnosing the remote Node 3.

34

Figure [2.2| shows the private diagnosis framework, where two nodes (Node
1 and Node 2) are observing the remote Node 3; communication between the
tester node (e.g. Node 1) and the tested node (e.g. Node 2) is an element that
could (negatively) affect the perception of the remote node’s services, leading to
incorrect judgments. Two nodes could privately diagnose the same remote node
in different ways, possibly in a conflicting way, due to diverse communication
relationships!

Examples of elements that can be observed on the behavior of a remote node
are the following;:

1. Errors on existing communications between the local and the remote
node:

* the tester node performs parity checks, checksums, message fram-
ing checks, range checks, sanity checks, comparison techniques on
messages received from the remote node;

¢ the tester node detects whether early/delayed messages come from
the remote node.

2. Quality of services that the tester node requires from the remote node.

3. Ad-hoc tests requested by the tester node to the tested node; these tests
are similar to “challenge-response” tests used in cryptography for authen-
tication purposes. “Challenge-response” tests are useful in order to stim-
ulate all the system parts of the tested unit, trying to excite latent faults
(the observation of common message traffic is less effective for this issue).

Private diagnosis is used as long as the local node needs to use the service
provided by the remote node and hence the private diagnosis results can af-
fect the local node only; there are cases in which some nodes need to reach
an agreement about the same remote node: in this cases, given the available
and possibly conflicting information about the perception of the remote node,
the private diagnosis is not enough and the distributed diagnosis needs to be
performed.

2.2.3 Distributed Diagnosis

Distributed diagnosis is performed in a distributed way, among a set of col-
laborating nodes, in order to reach an agreement (Byzantine resilient) about
the healthy status of a remote node; figure [2.3|shows the distributed diagnosis
scenario in which some nodes (Node 1, ..., Node n) have each different private
perceptions of the same remote node and hence need to collectively reach an
agreement about the remote node.

A consensus algorithm [Walter 97] ensures that the following properties are
fulfilled:

35

What to detect

Node 1
Node W DD, | s | SD; [%
MC |- Distributed
% . / Diagnosis
B DD, e > | SD, |=

Figure 2.3: Architectural view of the distributed diagnosis scenario.

AGREEMENT: if Node A and Node B are non-faulty, then they agree on the value
ascribed to any other node.

VALIDITY: if node Node A and Node B are non—faulty, then the value ascribed
to Node A by Node B is indeed the private value of Node A.

In the general case, the necessary conditions to achieve consensus in spite of
up to f arbitrarily faulty nodes are:

1. at least 3f+ 1 nodes in the system;
2. atleast f+ 1 rounds of message exchange.

Under the assumption of authenticated messages, which can be copied and
forwarded but not altered without detection, the condition on the minimal num-
ber of nodes can be relaxed to f+ 2 [Gong 95].

Distributed diagnosis is an interactive consistency problem where nodes,
broadcasting their private diagnosis about the monitored component, want to
reach an agreement about the system— (group-) level diagnosis of the moni-
tored component (that is the status of a specific node). The above idea can be
extended diagnosing the status of all the nodes in the system (group).

Deviation detection data about the specific monitored node is collected over
time in the system (each node collects a part of that data): distributed diagnosis
is a sort of data mining technique aimed to identify patterns related to faults.

Several existing protocols are available in order to implement distributed
diagnosis [Barborak 93| Powell 98], but most of them require a lot of commu-
nication resources ([Martin 06] being the cheapest one in the common case);
the first step in order to save resources is to try to limit the number of nodes
involved in the distributed protocol. Since some activities not always have to
involve the entire system, groups of nodes can be defined. The existence of
groups of nodes raises the problem of the membership management (e.g. how
to deal with group partitioning?), but every solution should be performed in a
distributed way (group leadership should be avoided).

36

Distributed diagnosis should be performed periodically (the period should
be clearly tuned), but some events could request for a specific distributed diag-
nosis run, e.g. the membership algorithm signals a new node entering in or ex-
iting from the group, or some nodes locally detect a specific malfunction whose
negative effects could not be limited to their local environment. The request for
periodic diagnosis could lead to DoS attacks, so specific countermeasures need
to be applied.

The agreement algorithms reach an agreement about one of the values pro-
posed by at least one member of the group; in the case of distributed diagnosis,
the values exchanged are the different diagnostic judgments. Since we have also
private diagnostic judgments, the final agreed value could be something “in the
middle”: in this sense the agreement becomes an algorithm for “information fu-
sion” (e.g. the final agreed value is a weighted mean where the weight derives
from the private diagnosis of the proposer).

This proposal poses the following problems:

¢ How to assign the weight to the singe contributions;
* How to evaluate the Byzantinism of a node.

The costs of a distributed diagnosis run is defined in terms of i) time and
ii) communications (how many message exchanges are necessary to complete
diagnosis).

When it is proper to perform diagnosis inside a group of nodes:

1. Membership algorithm signals some node entering in or exiting from the
group:
¢ the group needs to know who is the new member,

* the group needs to reorganize the group knowledge.

2. Some node locally detects a specific malfunction whose negative effects
could not be limited to the local environment.

3. Periodically (the period has to be lower than the MTBF of nodes)
¢ periodic diagnosis is demanded by the group leader (if any),
e periodic diagnosis request could lead to attacks.

[Powell 99] presents an example of a distributed diagnosis algorithm in the
scope of the project; the algorithm is a distributed version of the
heuristic «—count where some numeric values, being o—scores, are exchanged
and voted among system nodes; the same basic criteria can be reused using
probabilistic distributions instead of x-scores, defining this way a distributed
probabilistic diagnostic mechanism.

4 Denial of Service

37

Cost

When

Processes and
data sets for
information

correlation

Poly—events

2.3 THE PROPOSED CONCEPTUAL SCHEMA

We aim to identify symptomatic situations which require an intervention before
an error fully develops; we aim also to find new error patterns deriving from
changes of the system (e.g. evolution), of the environment, or even of the way
the system is used.

The treatment of “simple” errors is already incorporated within sub-systems;
we aim to analyze situations requiring more complex tools. We aim to recog-
nize and catalog symptoms of several types coming from different sub—systems
in order to be able to associate a name and a diagnosis to patterns of those
symptoms (syndromes). Diagnosis is hence seen as the identification of a mal-
function that can lead to the collected set of symptoms, which by themselves
can be either already known or requiring to be classified as dangerous.

The monitoring activity on a certain system component is based on the ob-
servation of error signals occurring during the component lifetime; simple mal-
functions, directly detected by component error detection mechanisms, are self
evident error events. Each diagnostic approach can in fact be mapped on the
framework described in section (and depicted in figure [1.2): the moni-
tored component, which is affected by faults (a fault model is assumed) and
hence could behave incorrectly, is observed by a deviation detection mechanism,
which periodically checks (with incomplete coverage and imperfect accuracy)
whether the component behaves correctly or not. The check results produced
by the deviation detection mechanism are then filtered by a state diagnosis
mechanism, which is in charge of judging which fault (if any) is active in the
monitored component, possibly rising appropriate alarm signals.

When diagnosis is performed on-line, streams of data on component behav-
ior are collected and filtered over time; the filtering function could use an heuris-
tic approach (e.g. the a—count mechanism presented in section or a prob-
abilistic approach (e.g. the diagnostic mechanism based on presented in
section [1.2.2).

When dealing with more than one component, or more than one deviation
detection mechanism, the above diagnosis framework need to be instantiated
accordingly. If the number and the complexity of monitored components grows
up and the interdependencies among components behavior become larger, sub-
tle malfunctions at component level can possibly give rise to erroneous man-
ifestations elsewhere in the system, with patterns (set of symptoms) not im-
mediately pointing to the actually faulty component. Moreover, system level
improper conditions may arise from unexpected combinations of otherwise le-
gal component behaviors, obviously signaled as correct events.

In order to recognize those situations, it is necessary to look not only for
single events, but also for sets of correlated events that altogether lead to system
malfunction; we will refer to those sets as “poly—events”.

38

The conceptual schema describing the operations of monitoring and informa-
tion correlation for diagnostic purposes is presented hereafter. We assume that
the information about the nature and effects of relevant events is recorded in a
number of event sets ({SG}, {B}, {G}) and processed by some processes (Collector,
Normalizer, Aggregator, Recognizer). The event sets are the following:

{SG} is the repository of events occurred in the system, which are not yet
associated to known poly—events; each event is kept in {SG} until an event—
specific deadline (possibly infinite) is reached.

{B} is the set of “bad” poly—events, those which have been recognized as sys-
tem malfunction syndromes; a NYE (Not Yet Established) flag is initially
set for poly—events whose negative connotation is still to be confirmed.

{G} is the set of “good” poly—events which represent normal situations; for the
sake of efficiency, in the implementation only “good” poly—-events that
include several events found in {B} need possibly to be stored.

The conceptual schema, depicted in figure manages the monitored infor-
mation by using the processes described hereafter.

A Collector process collects information streams about events occurring in the
system (e.g. events could be read from application— or system-log files); each
event is characterized by several attributes (which are application— or system—
dependent), some of which are the following;:

1. Timestamp, to have a temporal reference;
2. Type, to classify the event from a high level point of view;
3. Severity, to be able to give priority to severe events;

4. Architectural level and localization, to be able to correlate events based on
localization;

5. TTL (Time To Live), to know how much time the event must be taken into
account;

6. Resettable (or not), to know whether a subsequent event can cancel it or
not.

The amount of events occurring in the system could be huge, so a pre-
filtering function could be used to select the relevant events that the Collector
should process. This step should at the same time i) cut (or compress) some
events to reduce the number of processed event and speed—up the subsequent
steps, and ii) do not cut the events that could be relevant for the subsequent
steps; this trade—off is argument of current research (e.g. see [Liang o5]]).

The format of the events collected by the Collector is source-dependent, so a

39

Collector

Normalizer

Aggregator

Log 1

Legenda:

event

i poly-event

normalized event log file
i \ process “X”
alarm signal 1 P

Figure 2.4: Conceptual schema of information correlation for diagnostic purposes.

Normalizer process works together with the Collector in order to translate events
in records having a uniform format. For easiness of presentation, let’s use the
same word “event” for both the source-formatted event collected by the Collec-
tor and the corresponding normalized event (record) translated by the Normal-
izer. Normalized events are stored in the {SG} set.

The next step is to search {SG} for anomalous conditions. An Aggregator pro-
cess searches {SG} for sub-sets of events that partially of fully match poly-
events in {G} and {B} (i.e. making use of previous knowledge). The search cri-
teria is the following: upon the notification of an event e, the Aggregator first
checks its severity, to ascertain if an immediate action has to be taken - in that
case it rushes over the proper action request; next, event e is matched against a
number of event sets:

1. Poly-events already open, waiting for further matches; add the event to
all the open poly—events where a match is found: if a poly—event is now
fully matched, the Aggregator generates the proper diagnostic result.

2. Poly-events already known as symptoms of malfunction, collected in {B};
a matching poly—event is opened.

3. Poly-events known as signs of normal operation, collected in {G}; a match-
ing poly—event is opened.

Several matching criteria may be used; to start, events in {SG} obviously exhibit
correlation in time, to some degree. The Aggregator process picks up a tentative

40

poly—event, and looks for other correlations among events, trying to consolidate
a more significant poly—event out of it, i.e. it associates other events, possibly
taken from other elements in {B}, according to several rules, to extract a var-
iegate picture of the system behavior. The rules used to correlate event e with
other events are the following:

1. t-rule: events occurred in the last t time units wrt event ¢;

2. s-rule: events occurred in a set S of physical enclosures (circuit board, sub-
assembly, rack, room) in which event e has occurred;

3. p-rule: permanent events, always correlated until the system is reset;

4. a-rule: events occurred as part of, or alongside to, an activity a affected by
event e.

A distance function is defined for each rule; the distance between two events
is defined as a function (e.g. the) of the distances computed by each
rule. The definition of the distance function is relevant to prevent the tendency
of poly—events to grow without bounds, because small poly—events tend to
be gobbled up by larger ones, while often small poly—events, possibly single
events, may be very significant! The tentative poly—-event P; is aggregated to
poly—event Ps if:

1. the number of events in P; is lower than the number of events in Ps;

2. for each event ¢; in P; it is possible to find a corresponding event e; in Ps
such that the distance between ¢; and e is lower than a given threshold.

If P; cannot be aggregated to any pre—existent poly—event, it is set as a new
element in {G}, with a confidence parameter set to “low”.

If none of the above matches succeeds, the Aggregator appends e to a time-
ordered sequence which is being built up; this sequence will be truncated upon
the occurrence of a “trigger” event is reached (such as a bus error, an applica-
tion crash, a network link down, an interval time expiring, a “max event count”).
The list of triggers is initially populated with known adverse events, and can
be updated by the Aggregator, whenever a new error condition is shaped up.
The events belonging to the truncated sequence are boxed into a tentative poly—
event set, which is then inserted in {B} with the NYE flag set. The collection of
a new sequence is started afterwards.

The Recognizer process is in charge of recognizing if a tentative poly—event, or
a subset thereof, or even a superset thereof, is to be signaled to the error process-
ing sub—system. It draws from previous knowledge of positively acknowledged
malfunctions, but also from direct signals from higher levels, notifying out-of-
spec behaviors possibly escaped to the monitoring sub—system. So, while the

5 Root Mean Square

41

Recognizer

Missing setup
information

Collector and the Aggregator operate in a strict bottom-up fashion, the Recognizer
acts both bottom-up and top—down, helping in this way to fill detection gaps.

2.4 SOLUTIONS PROPOSED TO EXTEND THE DIAGNOSIS BASED ON HMM

This section proposes some extensions to the probabilistic diagnosis mechanism
proposed in [Daidone 06] and described in section the original contribu-
tion presented hereafter deals in particular with the assumptions described in
section explaining how they can be lightened or even relaxed at all.

The diagnostic mechanism described in section assumes that the follow-
ing parameters are known in order to setup the mechanism:

1. Which faults can affect the monitored component; this information is nec-
essary to define set Q.

2. The probability values related to the occurrence of the assumed faults, in
particular the status of the component at the beginning of its operational
life; this information is necessary to initialize vector 7(1) and to fill all the
entries of matrix A.

3. Which error messages can be raised by the deviation detection mecha-
nism; this information is necessary to define set L.

4. The probability values related to the emission of the deviation detection
messages given the faults active in the monitored component; this infor-
mation is necessary to fill all the entries of matrix B.

Whilst some of the above information is usually easy to find, e.g. which faults
can affect the monitored component or which error messages can be observed,
other can be tricky to find, e.g. the probability values related to the occurrence
of faults or to the emission of deviation detection messages. Transposing this
consideration in terms, whilst Q, £ and 7(1) can be easily identified, A
and B can be problematic to setup.

Literature about proposes a solution for setting up A and B, given
that (O, ~ and 7(1) are known: the Baum-Welch algorithm [Rabiner 9o|]. The
idea is to give the parameters an initial temporary value, then to use some
“learning sequences” Si,...,S; (relevant sequences of observed symbols) to
refine the model parameters A and B in order to maximize the probability of
the model emitting (recognizing) those learning sequences. The best result is
obtained when each learning sequence S; = (o1, ..., o) is provided with the
corresponding state sequence O; = (w7, ..., wg), so that the algorithm knows
that symbol o7 was emitted while in state w;, etc. .

Thinking in diagnostic terms, this solution requires the existence of a proto-
type for both the monitored component and the deviation detection mechanism

42

to generate the learning sequences. A learning sequence S; is a sequence of devi-
ation detection messages; the corresponding state sequence O; is the sequence
of healthy/faulty states the monitored component was while S; was observed.

The solution provided by the Baum-Welch algorithm is more accurate if the
following conditions hold: i) the initial temporary values are close to the real
ones, ii) the number and relevance of learning sequences is high, and iii) the
learning sequences are used with the corresponding state sequences.

The diagnostic mechanism described in section assumes that a devia-
tion detection information (o) is available at each time step, so that the state

-

probability vector f(t) is evaluated using the following formula (which is the
same as Formula [1.7] presented in section [1.2.2):

i) — { Ldiag (B) ﬁmz ift=1 21)
+diag (BO)ATf(t—1) ift>1

Formula [2.1| refreshes the probability vector f(t) at each step based on both the

state transitions probability values (information enclosed in matrix A) and the

probability values related to the emission of the observed symbol o from each

state in the model (information enclosed in matrix B). What if the observed

symbol o is missing?

An is basically a with some extra features related to the ob-
served symbols, so when the observed symbol is lacking we can think as we
are dealing with a DTMC: we can update f(t) by using the transition state
probability matrix only: f(t) = ATf(t —1). The new formula for updating ft)
at each step is hence the following:

AT7(1) ift=1A—30q
1 : = .

. L diag (Bo) 7(1 ft=1A3

f(t)=4 iag(Ay ' o1 (2.2)
ATf(t—1) ift>1A—30q

+diag (BO)ATf{t—1) ift>1A30,

The diagnostic framework based on presented in section uses
deviation detection information emitted by a single deviation detection mecha-
nism; the same diagnostic framework can be exploited to deal with more than
one deviation detection mechanism by applying the idea presented hereafter.

The idea is to slightly modify the way of using the set of symbols X and the
associated observable symbol probability matrix B: instead of mapping each
deviation detection message with a different symbol in £, we map each combi-
nation of deviation detection messages coming from different mechanisms with
a different symbol.

Let’s present the scenario in which two deviation detection mechanisms are
used at the same time, X and Y. This scenario can be easily extended to encom-
pass more than two deviation detection mechanisms. Let assume the following:

43

Missing

deviation
detection
messages

Using more than
one deviation
detection
mechanism

Dealing with
fault probability
values changing

over time

* X raises the following deviation detection messages: {x1, ..., Xn},
* Y raises the following deviation detection messages: {y1, ..., Yk}

For each pair of deviation detection messages (xi,y;) (for alli = 1,...,h
j =1,...,k) we define the symbol 0y ; € Z; if some pairs cannot hold because of
intrinsic characteristics of the deviation detection mechanisms, no correspond-
ing symbol need to be defined.

The new interpretation of set slightly modifies the interpretation of matrix
B, but the rationale and the formulas behind the diagnostic mechanisms are
still valid. All the other extensions to the HMM diagnosis presented in this
section are still applicable.

One of the assumptions behind the fault model used to describe the diagnos-
tic mechanism based on presented in section is that the probability
values related to the occurrences of faults do not change over time. This assump-
tion is well suited when dealing with the discrimination between transient and
permanent hardware faults, but it is not well suited when the unpredictable
behavior of a malicious attacker is considered.

Ideas to cope with this unpredictability go in the following directions:

1. Adapt over time the criteria used to take decisions after refreshing the
state probability vector; this is a way to dynamically adapt the decision
criteria, it is not a way to modify the evaluation criteria. This method
requires the diagnostic mechanism to receive some (trusted) information
from the system (e.g. from the reconfiguration sub-system) which can
guide the adaptation of the decision criteria.

For example, if the method of the threshold vector d is used (see sec-
tion|1.2.2), some information coming from the reconfiguration sub-system
(during a reconfiguration action it emerged that the triggering diagnostic
alarm was a false alarm) can be used to adjust some threshold values
within d.

2. Apply the learning algorithm (see above) at some point in time, triggered
by some trusted request which the diagnostic mechanism receives from
the rest of the system. This method actually modifies the evaluation crite-
ria used by the diagnostic mechanism when refreshing the state probabil-
ity vector, but poses the problem of identifying which learning sequences
have to be used for the setup of the internal parameter of the diagnostic
mechanism.

44

W N

CRITICAL INFRASTRUCTURE PROTECTION

This chapter describes the application of the principles described in chapter[2]to
the protection of a critical infrastructure: the critical infrastructure used as a ref-
erence is the infrastructure, which is a[SCADAlbased infrastructure
underlying the power production and distribution grid.

The architecture of the infrastructure is presented [Verissimo 08],
where an implementation of the diagnosis framework proposed in section
was adopted. The architecture encompasses the definition of infor-
mation switches, the so—called [CISsf, where all the dependability—related ac-
tivities are performed. The resilience is achieved thanks to replication for
intrusion tolerance and replica recovery for self-healing.

A quantitative analysis of the redundant architecture of the is presented
(part of this evaluation is in [Daidone o8]]) with the objective of: i) identifying
the relevant parameters of the architecture, ii) evaluating how effective is the
trade—off between proactive and reactive recoveries, and iii) finding the best
parameter setup.

The definition of the bases on the assumption that the probability of
intruding a replica does not increase over time, which means that the at-
tacker cannot acquire enough knowledge during its intrusive attempts in order
to break the replica. This assumption can be supported by the extensive applica-
tion of diversity during the recovery actions [Obelheiro 06|], which is argument
of the final part of this chapter.

The final part of the chapter presents the service [Bessani o8al,
which is a service that can be used in systems replicated with diversity and
rejuvenated by periodic replica recoveries in order to sustain a fundamental
assumption: not-increasing probability of intrusion over time. The
architecture is a typical example of replicated architecture where the
service can be implemented.

The service introduces the use of a set of operating systems’ and
applications’ reconfiguration rules which can be used to modify the state of a
system replica prior to deployment or in between recoveries, and hence increase
the replicas chance of a longer intrusion—free operation.

CRUTIAL is a recent project funded by the programme of the European Commission (Con-
tract IST-2004-27513). |http://crutial.erse-web.it/

CRUTIAL Information Switches

FOREVER is a recent project funded by the EU through the RESIST NoE (Contract IST-2004-
26764). http://forever.di.fc.ul.pt/

45

http://crutial.erse-web.it/
http://forever.di.fc.ul.pt/

CRUTIAL
project
presentation

Project solutions

A quantitative analysis of the service is presented, aiming to quan-
tify how much the service enhances the resilience of the system in
which it is implemented; the analysis evaluates the probability of system failure
through variation of i) time between recoveries, ii) penalty due when diversity
is not applied, iii) probability of common vulnerabilities, and iv) mean effec-
tiveness of configuration diversity rules applied.

3.1 THE PROTECTION OF AN ICT INFRASTRUCTURE CONTROLLING THE
POWER GRID

Critical infrastructures as the power grid are basically physical processes con-
trolled by computers interconnected by networks [Madani o5]]. Some years ago
those systems were highly isolated and hence secure against most security
threats. During the last years the [CT|part of those critical infrastructures evolved
in several aspects: i) hardware and software devices (station computers, net-
works, protocols, ...) are no longer ad-hoc and proprietary, instead standard
components are used; ii) most of the station computers are connected
to corporate networks and to the Internet.

These infrastructures are nowadays greatly exposed to cyber—attacks coming
from the Internet (e.g. as documented in [Dawson 06] and [Wilson 06]), so they
have a level of vulnerability similar to other systems connected to the Inter-
net, but the socio—economic impact of their failure can be huge. This scenario,
reinforced by several recent incidents (see the Introduction for a couple of exam-
ples), is generating a great concern about the security of these infrastructures,
especially at government level (as shown in [Gordon 06]).

Recently the project, funded by the programme of the Eu-
ropean Commission, addressed the problem of the protection of the electric
power grid; the project, which was active from the beginning of 2006 to the end
of 2008, proposed new networked systems for the management of the elec-
tric power grid, in which artifacts controlling the physical process of electricity
generation and distribution need to be connected with information infrastruc-
tures, through corporate networks (intranets), which are in turn connected to
the Internet.

The project proposed an architecture encompassing trusted com-
ponents in key places, which a priori induce prevention of some faults and
of certain attack and vulnerability combinations; the remaining faults and in-
trusions are automatically tolerated by middleware devices supplying trusted
services out of non-trustworthy components. Trustworthiness monitoring mech-
anisms are used for detecting situations not predicted and/or beyond assump-
tions made, and adaptation mechanisms are used to survive those situations.
Finally the architecture secures information flows with different crit-

46

icality within/in/out of the critical infrastructure by using organization—level
security policies and access control models.

3.2 CRUTIAL ARCHITECTURE OVERVIEW

This section describes in summary the architecture [Verissimo o8],
which is a significant extension of previous intrusion—-tolerant reference ar-
chitectures (e.g. [MAFTIA}) defined in order to deal with the specific chal-
lenges of the critical information infrastructure problem: use of legacy sub-
systems, grant to global access control, requirement for non-stop operation
and resilience.

The definition of the architecture bases on the requirements of the
power control system and on the assumptions about the malfunctions affecting
the [CT|part of the infrastructure which could “cascade” on the physical process
controlled by the infrastructure itself.

The power system is spread over a wide geographical area and requires some Power controls
interconnection among a variety of information subsystem which are in charge
of implementing quite sophisticated controls on the physical process; power
controls are typically arranged in the following hierarchical structure:

PRIMARY CONTROL: it concerns the local control of generators, implemented
by special-purpose electronics and programmable controllers. The pri-
mary control could be performed without the need of communication
with the rest of the power system, just seeking to maintain equilibrium
on local electrical and mechanical parameters.

SECONDARY CONTROL: itaims to regulate the power production/distribution
inside a given area, according to some strategy; each strategy dynamically
sets some local parameters about power generation to be commanded to
the primary control. The secondary control needs relatively fast commu-
nications among area’s substations, and it is vital for the power system.

TERTIARY CONTROL: it aims to optimize energy losses and marketing aspects,
so it does need communications. The tertiary control is not vital for the
power system management; in fact, if it were inactive, the power grid
would be still operative, albeit in a sub—optimal condition.

The part of the power infrastructure is affected by malfunctions classified ICT malfunctions
as follows:

HARDWARE FAULTS: they occur in different physical components leading to
the following problems:

4 Malicious—and Accidental-Fault Tolerance for Internet Applications

47

* Problems as undue tripping> or missing action in the devices directly
related to the primary control of the power system (SCADA|devices);

* At communication level, leading to lost packets (packet lost on a
dying link) or late packets (some packets could be routed on too
long paths);

* In the computers performing the secondary (and the tertiary) con-
trol or supporting corporate networks; those faults can lead to the
crash of a part of the information system or to erroneous command
sequences (value faults).

COMMUNICATION RELATED FAULTS: omitted messages, burst losses (due to
intermittent physical disconnections), late messages, unexpected messages,
wrong values, Byzantine faults, network partitioning.

SOFTWARE RELATED FAULTS IN THE INFORMATION NODES: most faults at
this level can manifest as application/system crashes, but the possibility
of a less favorable behavior is not ruled out (e.g. issuing wrong and/or
inconsistent messages just before crashing). Examples of software faults
are application errors, O.S. related errors, resources exhaustion, late ser-
vices. ..

MALICIOUS FAULTS: these malfunctions can be further classified as follows:

* Attack: malicious interaction fault through which an attacker aims to
deliberately violate one or more security properties (an attack is an
intrusion attempt); an example of malicious attack is the

* Vulnerability: a security hole left out during the development of the
system or opened during operation.

* Intrusion: a malicious, externally-induced fault resulting from an at-
tack that has been successful in exploiting a vulnerability; examples
of intrusions are Trojan horses, worms, viruses. ..

A security failure at one level of decomposition of the system may be in-
terpreted as an intrusion at the next upper level (e.g. the failure of an au-
thentication and authorization mechanism to prevent system penetration
by a malicious user is an intrusion as seen from the containing system).
The concept of “Intrusion tolerance” can be introduced (how to provide
correct service in the presence of intrusions): Intrusion Containment Re-
gions (ICRk) could be introduced by analogy with the notion of Fault
Containment Regions (FCRk) in order to guarantee certain security prop-
erties despite of the fact that some components could be compromised.

WAN-of-LANs ~ The definition of the overall (CRUTIAL]architecture bases on the observation

5 Tripping is the action of opening a breaker; this action is often a local protection action used to
isolate a faulty grid segment from the rest of the grid.

48

that (i) all the devices necessary for the control of the whole power grid
are logically grouped in substations and finally 6, and (ii) are inter-
connected by a global interconnection network, calledWAN}, which is a logical
entity owned and operated by the operator companies of the critical informa-
tion infrastructure. Those companies may or not use parts of public networks
(e.g. Internet) as physical support, so relevant is the problem of attacks®,
which would negatively affect the remote control of industrial applications (e.g.
the secondary and tertiary control of the power grid).

Since all the traffic originates from and goes to a [LAN] the [CRUTIAL] archi-
tecture represents facilities as protected interconnected by a (see
figure ; using such an architecture, the problem of protecting the power
grid (and similar critical infrastructures) is reduced to the problem of protect-
ing from the or other LANE.

Each is connected to the through a special interconnection and CRUTIAL
filtering device, the Information Switch (CIS), which ensures that Information
both the incoming and outgoing traffic satisfies the security policy? defined to Switch (C15)
protect the infrastructure. The rationale behind the commitment of the protec-
tion to the is the requirement of minimizing the updates of/modifications
to the existing legacy machinery. Using the the only update required in
a station computer is the use the [[Psed® protocol (instead of [[P['*) in order to
force the station computer to accept only traffic forwarded by its

A is a kind of improved firewall that works at the application layer and
that is required to be intrusion tolerant in order to guarantee continual opera-
tion to the power grid.

The WAN-of-LANSs architecture allows the definition of areas with different
levels of trustworthiness: considering how it is easy to define a[LANJ* in today’
architectures (e.g. by using Virtual switched [LANE), the rationale behind
the WAN-of-LANs can be hierarchically re-iterated, so there is virtually no
restriction to the level of granularity for the definition of the protected areas.
In consequence, the architecture allows to deal with both outsider
threats (protecting a facility from the Internet) and insider threats (protecting a
critical host from other hosts in the same facility by locating them in different

LANE).

6 Some examples are the administrative clients and the servers [LANE, the operational
clients and servers [LANE, the engineering clients and servers [LANE, the Public Switched Tele-
phone Network (PSTN) modem access , the Internet and extranet access , etc.

7 Wide Area Network

8 attacks are nowadays one of the most serious security threats to the Internet.

9 A security policy is defined by the Common Criteria as the set of laws, rules, and practices that
regulate how an organization manages, protects, and distributes sensitive information.
http://www.commoncriteriaportal.org/

10 Internet Protocol Security
11 Internet Protocol
12 Local Area Network

49

http://www.commoncriteriaportal.org/

The distributed
system made up
by CISs

CIS architecture

Site B

Control _
Network Control
Network

Figure 3.1: The CRUTIAL architecture: a WAN of LANs, where each LAN (e.g. an
entire site) is connected to the WAN through a special device called CIS.

collectively act as a set of servers providing distributed services aimed
to control both the command and information flow among the parts of
the critical infrastructure, securing a set of necessary system-level properties.
This set of cooperating servers must be intrusion—tolerant, prevent resource
exhaustion providing perpetual operation, and be resilient against assumption
coverage uncertainty, providing graceful degradation or survivability.

The architecture closely follows the node structuring principles for intru-
sion—tolerant systems presented in [Verissimo 06b]; the architecture, shown
in figure is composed by the architectural (macro-) levels described in the
following.

The Hardware level encompasses the node and networking devices that make
up the physical distributed system; hardware is divided into two parts, a trusted
and an untrusted one. The assumption is that most of the node’s operations run
on untrusted hardware (e.g. the usual machinery of a personal computer), con-
nected through the normal networking infrastructure (which is called payload
channel). The trusted part is formed by an appliance board with a processor and
(possibly) a network adapter connected to a control channel; this part is trusted,
for example, because intruders do not have direct access to it by construction.

50

The Local Support level encompasses the following components: a Trusted Soft-
ware component, which executes a few critical functions correctly (the rest being
subjected to malicious faults), the Operating System, and a Run—Time Environ-
ment, which offers both trusted and untrusted software and operating system
services in a homogeneous way. This level encompasses the Proactive—Reactive
Recovery Wormhole service, which manages the periodic and event trig-
gered recovery actions on the replicas. The PRRW service will be detailed
in the following sections.

The third macro-level is Distributed Software, where the distributed software
provided by is running; the distributed software is divided into a
middleware layer on top of which distributed applications run, even in the
presence of malicious faults.

Run-Time
Environment

Untrusted
Hardware

yoddng
UO[JB2IUNWILLIOD)

Operating System

yoddng Aoy

SuoMIaN Juiodiiniy

Control
Channel

Trusted
Hardware

Trusted Software Monitoring and

Failure Detection

Phisical dimension

. ——
Hardware Local Support Middleware
Redundancy Distributed Software

Architectural level

Figure 3.2: The CIS architecture.

The intrusion—tolerant middleware encompasses four modules (see the right— Middleware
most part of figure [3.2), each one providing services to other modules or di- services
rectly to the applications:

MULTIPOINT NETWORK: this is the lowest module within the[CRUTIALls mid-
dleware, and features an abstraction of basic communication services (e.g.

[Psed, [TCP} SSLY/[TLS).

COMMUNICATION SUPPORT: this module comprises basic cryptographic prim-
itives, Byzantine agreement, consensus, group communication and other
core services; in particular the following services are provided.

The Randomized Intrusion-Tolerant Services (RITAS), which are organized
as a stack of randomized intrusion-tolerant protocols, support applica-
tions which depend on intrusion-tolerant broadcast and agreement; these
protocols, being randomized, overcome the impossibility result in asyn-
chronous settings established in [Fischer 85] (also called the FLP result),

51

Replication with
diversity

13

but present a significant performance improvement over previous proto-
cols of the same class.

The Communication Service supports secure communication between [CIS
and, ultimately, between |LANE; it provides secure channels, multicast
primitives, and probabilistic gossip—based information diffusion between

CIS]

The Fosel Service mitigates attacks by using an overlay protection layer
on top of the normal infrastructure.

ACTIVITY SUPPORT: this module comprises the following services:

The Protection Service protects areas from one another, i.e. a from
another or from the thus allowing the treatment of both out-
sider and insider threats; in particular the Protection Service protects the
station computers by filtering the messages directed to them.

The Access Control and Authorization Service defines the rules for collabora-
tion and information exchange between sub—modules of the architecture,
corresponding in fact to different facilities of the critical infrastructure;
this service defines the security policy’3 for the infrastructure.

MONITORING AND FAILURE DETECTION: this module implements function-
alities related to monitoring and failure detection. This module assesses
the connectivity and correctness of remote nodes, and the liveness of local
processes; trustworthiness monitoring and dependable adaptation mech-
anisms also reside in this module, and have interactions with all the mid-
dleware modules (both the Activity Support and Communication Service
modules depend on those mechanisms).

3.2.1 CIS Resilience Overview

CIS| resilience is achieved thanks to replication for intrusion tolerance and
replica recovery for self-healing [Sousa 06, [Sousa 07]: replication is used in
order to guarantee system correct operation when some replicas are compro-
mised, rejuvenation is instead used primarily to remove the effects of malicious
attacks aiming to compromise some replicas and to break the system.

The is replicated (with diversity) in n machines and follows its specifica-
tion as long as at most f of these machines are attacked and behave maliciously,
both toward other replicas and toward the station computers in the protected
Given that the replicated accepts (and forwards) a message if the
message is accepted by at least f 4 1 replicas, at least n > 2f 4 1 replicas are re-
quired. Replicas are diverse in order to substantiate the following, fundamental

The security policy is managed by using PolyOrBAC, the web-services-based version of OrBAC
(Organization Based Access Control) presented in [Abou El Kalam o7].

52

assumption: fault independence for the replicas. Each replica uses a different
operating system (e.g. Linux, FreeBSD, Windows XP), and all the operating sys-
tems are configured to use different passwords and different internal firewalls
(e.g. IPtables, IPF, Windows firewall). More discussion about how to support
diversity among replicas is given in section

Each replica is connected to the and to the through two Traffic
Replication Devices (as shown in figure which behave like Ethernet hubs:
when they receive a packet from a port, they broadcast it to all the other ports.
Looking at the traffic directed toward the station computers in the the
side traffic replication device spreads the packets received from the
to all the replicas, whilst the side traffic replication devices spreads the
traffic generated by each replica to all the other replicas and to the station com-
puter in the There is a distinguished payload replica, the so—called leader
replica, which is in charge of forwarding messages to the station computers: this
avoids unnecessary traffic multiplication on[LAN]|side (e.g. n copies of the same
message forwarder to the destination node).

WAN LAN

Traffic replicaticV"’;= Traffic replication
device @
®— —o—&

Station computer

Secure
channel

CIS replicas
Figure 3.3: The hybrid and replicated (with diversity) architecture of the CIS.

CIS|intrusion tolerance is enhanced by rejuvenating replicas through re- Replica recoveries
coveries, as presented in [Sousa o7]; the replica rejuvenation strategy, called
PRRW/'4, is based both on periodic (proactive) recoveries and on event triggered
(reactive) recoveries, seeking perpetual unattended correct operation. The key
property of the strategy is that, as long as the fault exhibited by the
replica is detectable, this replica will be recovered as soon as possible, ensuring
that there is always an amount of replicas available to sustain correct operation
[Sousa o7]]. In order to guarantee system availability despite the unavailability

14 Proactive-Reactive Recovery Wormhole

53

Hybrid
architecture

Diagnosis
scenarios

Monitoring and
failure detection
strategy

of recovering replicas, the number of replicas has to be n > 2f+ 1+ k, where
k is the maximum number of replicas allowed to recover in parallel; this way
the system is able to tolerate at most f Byzantine replicas and recover k replicas
simultaneously.

Recoveries have beneficial effects (e.g. reactive recoveries rejuvenate replicas
detected as incorrect), but also negative effects (e.g. the proactive recovery of
a correct replica makes the replica unavailable for the whole duration of the
recovery); this issues are some of the arguments of the analysis about the re-
silience of the redundant architecture presented in section

The is implemented using an hybrid architecture, so it is composed by
two parts: the payload and the wormhole [Verissimo o6al]. The payload is an asyn-
chronous system where applications and protocols are executed; the wormhole
is a secure and synchronous system providing services to the payload part
through a well-defined interface (e.g. it triggers replica recoveries, it executes a
simple voting protocol). The wormhole part of each replica, called local worm-
hole, is connected to the other local wormholes through a synchronous and
secure control channel, isolated from other networks.

3.3 DIAGNOSIS IN CRUTIAL

This section describes how the diagnosis activity was designed in

The infrastructure is organized as a WAN-of-LANs, where each
is connected to the by adding a new machinery to the infrastruc-
ture: the given that the computers inside the cannot be modified /up-
dated, all the diagnosis activity related to the infrastructure has to be performed
inside the

Diagnosis in is implemented at middleware level and follows the
diagnosis framework presented in section so that the following diagnosis
scenarios arise [Verissimo o8]:

CIS SELF-DIAGNOSIS (local view): this is the diagnosis activity performed lo-
cally to each aiming to monitor the itself (e.g. to diagnose hard-

ware faults, intrusions. . .).

LAN DIAGNOSIS (private view): this is the diagnosis activity performed locally

to each[CIS, aiming to monitor the nodes that are inside the and that
are protected by the itself (e.g. to “measure” the trustworthiness level
of a certain node).

CIS DISTRIBUTED DIAGNOSIS (global view): the in the construct
a common view about the state of a certain in the infrastructure (e.g.
the liveness and trustworthiness of a specific [CIS).

From a system-level viewpoint, the monitoring and failure detection strategy
is organized as follows:

54

¢ Every diagnoses itself over time, in order to judge the healthy/faulty
status of its resources/services, primarily for local reconfiguration aims;
this step is the result of the activity of a Self-Diagnosis service imple-
mented in the middleware.

e Every (when asked for) declares its “health status” (full report, only
relevant parts or a signature of them). Since are not completely
trusted by the other|[CISs} they do not completely trust the declared “health
status”, so they also try to build a private perception of the other bas-
ing on the possible direct relationships with them. The “declared status”
and the “perceived statuses” could be conflicting (e.g. because of commu-
nication problems or because of deliberate and malicious causes).

When CIS4 needs to use some remote resources/services on CISc, but
CIS4 has no private perception of CISc, gossip can be applied: if CISa
trusts CISp and CISp has a private perception of CISc, the private percep-
tion of CISc as seen by CIS4 can inherit the private perception of CISc as
seen by CISg.

* When necessary, e.g. when the private perception is not enough for some
reason, (pertinent groups of) exchange among them their own pri-
vate perceptions of a certain resource, in order to reach an agreement
about that. The result of the agreement overrides the result of the private
diagnosis.

3.3.1 CIS self-diagnosis (local view)

From a local viewpoint the[CIS)is a sophisticated application level firewall, com-
bined with equally sophisticated intrusion detectors; the is hence required
to be intrusion tolerant, to prevent resource exhaustion providing perpetual
operation and to be resilient against fault assumption coverage uncertainty pro-
viding survivability. In order to comply with all the above requirements, the
has a hybrid architecture and is replicated (with diversity) in n replicas
(more details in [Bessani o7]). Each replica is built using a synchronous
and secure local wormhole and an asynchronous and insecure payload.
Two monitoring/failure detection scenarios arise:

INTERNAL MONITORING: monitoring performed inside a single replica, try-
ing to detect local failures (e.g. an intrusion).

EXTERNAL MONITORING: monitoring performed on the perceived behavior
of the other replicas (e.g. to detect a replica crash).

The internal monitoring, given the information system malfunctions intro-
duced in section has to be done on the following components/services:

55

Internal
monitoring

External
monitoring

How to deal with
diversity

¢ Hardware components (e.g. network interfaces, processing units, memory
modules. . .) which are supporting the replica. The monitoring activity on
these components makes sense only when physical replication is used;
in case of logical replication, these components need to be monitored in
the host system running the replicas and hence outside the
middleware.

¢ Software components belonging to several architectural levels in the pay-
load or in the operating system.

Several signals coming from many architectural levels are collected and pro-
cessed over time: an example of signal coming from low architectural levels
(O.S.) is related to a CPU fan that is working too slow or a temperature sen-
sor that is signaling the CPU is too warm. An example of signal coming from a
higher architectural level is an application-generated exceptions or error return
code.

The internal monitoring activity has hence to identify compound system con-
ditions which could require diverse corrective actions; for example, repeated
application errors could be interpreted as manifestation of software aging re-
quiring rejuvenation, or could be correlated with lower level signals (the CPU
is too warm because the CPU fan is working too slow), requiring another kind
of reconfiguration (e.g. replacing the CPU fan). The rationale behind internal
monitoring and failure detection is to try to stop and repair the faulty replica
before it starts to behave incorrectly.

The external monitoring is performed by each replica on the perceived be-
havior of the other replicas, given that a replica is not guaranteed to always
behave correctly. The monitoring activity is performed at service level, so that
each service is in charge of detecting whether its peers running in the other
replicas seems correct or not. An example of middleware service monitoring its
peers on other replicas is the Protection Service.

How to use SEC for CIS Internal Self-diagnosis

CIS| internal self-diagnosis was implemented using SEC (see section and
the conceptual schema described in section this subsection reports consid-
erations about this implementation.

The is replicated with diversity, including a different operating systems
for each replica: SEC is written in PERL, so it can be executed on several op-
erating system platforms by using the specific PERL interpreter. SEC requires
text—formatted streams of detection information as input: this is feasible, espe-
cially for system logs, which are typically text based. For example, Linux based
operating systems support the “syslog” log file; for other non—text systems log

56

files, free tools are available to support the same logging system™. In order to
speed—up the recognition of urgent signals, a special stream can be created ad-
hoc (let’s call it emergency log) and the sensor driver can be forced to generate a
log event not only in the log of the operating system, but also in the emergency
log.

SEC performs the following activities:

e It processes streams of information about events occurring in the system
by reading log files on the fly (as the Collector is supposed to do);

e It triggers actions when specific events are recognized based on some
rules (as the Aggregator is supposed to do);

* It correlates events on the base of some (originally static) rules. Rules are
defined in specific configuration files (text format) called rule files; rules
can be based on several properties of events, e.g.:

a relative timing;

b localization: each physical event generator is cataloged in a parallel-
hierarchic data structure, reflecting the physical position - e.g. a CPU
is located on a circuit board, which is in a card cage, which is in
a server rack, which is in a room, etc. The distance between two
elements is defined by traversing the structure along a path joining
these elements.

¢ architectural levels: a structure similar to b) above, where the neigh-
borhood is in general expressed in terms of interactions: two com-
ponents directly interacting are neighbor, if their interaction is medi-
ated through 3 levels of other components their distance is propor-
tional to 3, and so on.

SEC contexts are used to implement the recognition of the poly—events
introduced in section

SEC is self-learning, because configuration files can be refreshed at run—time, How to self-learn
keeping the status of the ongoing correlations. SEC can in fact be restarted from
the hosting operating system using specific inter—process signals (e.g. SIGABRT
or SIGTERM), possibly performing a “soft” reset, so that configuration files (rule
files) are reloaded, and the status of the ongoing correlations is restored. In
particular, a SEC soft restart consists of the following steps:

1. Rule files are reopened (new files can be opened too);

2. Event correlation operations started from rule files that have been modi-
fied or removed after the previous configuration load are canceled;

15 For example, the freely available “Snare for Windows” tool (from Intersect Alliance) can be used
to convert Microsoft event logs to “syslog” messages.

57

Protection
Service

Monitoring

Diagnosis

3. Other operations and other event correlation entities (contexts, variables,
child processes, etc.) remain intact.

External monitoring: diagnosis through the Protection Service

The Protection Service (PS) introduced in section is the middleware service
performing egress/ingress access control in the implementing an instance
of the global security policy. The PS works on the traffic crossing the in
both directions: from the to the protected and from the protected
[LAN]to the[WAN](and finally to a remote ; the focus of this work is in the
first direction, the WAN—-to-LAN one, which is the most critical out of the two.

The PS verifies whether the messages received by the from the
side comply with the security policy, forwarding those satisfying the security
policy to their destination node in the protected messages not satisfying
the security policy are discarded. The PS instance running in a replica is
executed in the payload; as soon as it receives an incoming message, it notifies
its (positive) approval to its local wormhole. The wormhole collects message ap-
provals coming from the local wormholes and decides whether each message is
valid or not: an incoming message m is considered valid if and only if the worm-
hole collects at least f+ 1 different (positive) approvals for m. Valid messages
are forwarded to their destination by a distinguished payload replica only, the
so—called leader replica, in order to avoid unnecessary traffic multiplication on
side. The management of the leader replica is performed by the
service with the support of the wormhole.

Monitoring is performed at payload level, where each instance of the PS
checks whether other replicas behave correctly, triggering specific accusations
when necessary. Each payload replica has in fact to verify whether all the signed
messages are forwarded to the protected by the leader replica, and to
check whether invalid messages are sent toward the protected Each (cor-
rect) replica i expresses accusations about replica j by using the following func-
tion calls of the local wormhole:

e W_detect(j): replica i detects that replica j is faulty; this is the case in
which replica i receives a message m sent by replica j and verifies whether
m is illegal.

e W_suspect(j): replica i suspects that replica j is faulty; this is the case in
which replica i verifies whether replica j, being the leader, is not forward-
ing a legal message to the protected

Fault diagnosis is performed at wormhole level, where accusations raised by
the replicas are collected and interpreted on the basis of the following quorums:

* Replica j is diagnosed to be maliciously faulty as soon as f+ 1 detections
about j are collected (that is at least f+ 1 local wormholes received a

58

W_detect(j) function call); in this case, at least one correct replica detected
replica j to be maliciously faulty.

* Replica j is suspected of being faulty as soon as f+ 1 accusations (de-
tections and/or suspects) are collected; in this case, at least one correct
replica raised a suspect about replica j being faulty.

The reconfiguration strategy is executed by the service triggering an Reconfiguration
immediate reactive recovery in case of a replica diagnosed maliciously faulty
and planning a delayed reactive recovery in case of suspect.

3.3.2 CIS LAN diagnosis (private view)

The monitors over time the nodes in its protected in order to evaluate
their trustworthiness; the evaluated trustworthiness level is then used to apply
the proper reconfiguration action on the protected untrusted nodes (e.g. for
replacing hardware, refreshing the software, changing passwords, ...).

Case 2. I {I

N, CIS, cIs, N,
Figure 3.4: Detection scenarios for LAN diagnosis.

A trustworthiness indicator for each node N, protected by CIS, is defined The
(it could be could be multi-dimensional). The trustworthiness indicator is mod- trustworthiness
ified based on the following detections: indicator

1. The instance of the security policy applied within CIS4 to the traffic orig-
inated from the protected detects that message m, sent by node Ny,
violates the security policy (e.g. node N4 is trying to send a command to a

59

remote station computer node Np without being allowed to do it). In this
scenario, depicted in figure as “Case 1.”, the trustworthiness indicator
for N4 is updated accordingly and CIS4 drops message m.

2. The instance of the security policy running on the remote CISp detects
that message m, sent by node N4 to node Np, violates the security policy.
CISp notifies CIS4 this violation and drops message m (this scenario is
depicted in figure 3.4/ as “Case 2.”).

CISp discriminates whether the incoming message m really comes from
a station computer (instead from an hacker in the by using the
Traffic Labeling service (the message must be signed by CIS 4, which
protects the source node N4). The signed label is hence a proof of the
source of the message.

The diagnosis service collects over time the above detections in order to
evaluate the trustworthiness indicator of each protected node. If the trustwor-
thiness indicator of a protected node N4 exceeds a given threshold, the
diagnosis service alerts its peers about node N, being untrusted, so that ade-
quate countermeasures can be taken.

3.3.3 CIS distributed diagnosis (distributed view)

The several replicas that made up a single are required to perform the same
operations; this simplifies somewhat the task of checking their correctness on
the run. Each single as seen from the is a different logical entity, in
terms of actions, services and requests toward other In the ordinary infor-
mation flux there is no simple comparison rule check that can be performed, to
catch on the fly a mischievous partner. On the other hand, if a[CISbecomes com-
promised, internal redundancy and resilient architecture notwithstanding, then
necessarily the basic hypothesis on the fault occurrence has been broken: more
than f replicas are out of order together. Of course, this is the catastrophic case,
whose probability has to be lowered down to a target level by choosing proper
redundancy figures. However, a local catastrophe (regarding a single con-
trolled by a compromised not necessarily should imply the downing of the
entire system. In fact, on the side, all attempt to maintain a common
view of two parametric descriptors of the health of their partners: liveness and
trustworthiness.

LIVENESS: it is checked in two ways: i) passively, by monitoring normal net-
work traffic from the target; ii) actively (when the former is not frequent
enough), by exerting a form of resilient ping, by means of a simple chal-
lenge/response protocol.

60

TRUSTWORTHINESS: it is built up by checking the formal correctness of the

messages coming from the target, as well as from any access violation
detected by the Protection Service.

3.4 QUANTITATIVE EVALUATION OF THE CIS RECOVERY STRATEGY

This section presents the quantitative analysis of the redundant architecture of
the (part of this analysis is in [Daidone 08]); the objectives of the analysis
were the following: i) evaluate how effective is the trade—off between proactive
and reactive recoveries, ii) identify the relevant parameters of the architecture,
and iii) find the best parameter setup.

Two dependability and availability measures of interest were identified; a
model of the recovery strategy was constructed in order to analyze the quanti-
tative behavior of the recovery strategy. The impact of the detection coverage,
of the intrusions and of the number of replicas on the measures of interest
was analyzed and discussed, aiming to evaluate how effective is the trade—off
between proactive and reactive recoveries.

The analysis showed that the increment of the detection coverage of intru-
sions has conflicting effects on both dependability and availability measures,
and that these effects depend also on the behavior of invalid or omissive intru-
sions. The analysis results suggested some directions for refining and improv-
ing the recovery strategy.

3.4.1 Fault Model and Assumptions

This section describes the fault model and the assumptions on which the fault
model is based on; all this information was extracted from the description of
the recovery strategy given in [Sousa o7].

Station computers are assumed to only accept messages signed by the worm-
hole (a symmetric key K is shared between the station computer(s) and the [CIS|
wormbhole).

The following faults are considered:

f1) The faults related to communication involve both the traffic replication
devices and the communication channels among them and the replicas
(except the control channel connecting local wormholes). Traffic replica-
tion devices can lose messages coming from a port or delay the traffic
forwarding on some ports (for an unbounded time); traffic replication
devices cannot generate spurious messages or alter messages. Commu-
nication channels can lose messages or unpredictably delay the traffic
forwarding.

61

Faults

Failure modes

f2) A payload replica can be intruded, and hence can be affected by Byzantine
faults.

f3) A local wormhole can only fail by crash; at most f, < f local wormholes
are assumed to fail by crash. The crash of a local wormhole is detected by
a perfect failure detector. When a local wormhole crashes, the correspond-
ing payload is forced to crash together.

f4) Fault-independence is assumed for payload replicas, i.e. the probability
of a replica being faulty is independent of the occurrence of faults in
other replicas; this assumption can be substantiated in practice through
the extensive use of several kinds of diversity [Obelheiro 06], as presented
in section [3.5

f5) The same attack on the same replica has always the same probability of
success; also this assumption can be substantiated in practice through the
extensive use of several kinds of diversity [Obelheiro 06], as presented in

section [3.5]

t6) Station computers cannot be compromised (it is the trusted network that
we aim to protect, exactly in the sense of preventing it from being com-
promised).

f7) Replicas are correct after their recovery.

f8) The security policy verified by the [CISis assumed to be perfect; this means
that a correct replica applies perfectly the policy verification and there are
no policy inconsistencies between replicas (i.e. all correct replicas verify
the same policy).

Given the faults described above, the corresponding failure modes for a pay-
load replica are the following;:

CRASH: the payload replica crashes because of the crash of the corresponding
local wormhole (f3) or as the effect of an intrusion (f2).

oMISSION: the payload replica is subjected to a transient omission because
of communication problems (f1) or as the effect of an intrusion (f2). For
example, a transient omission occurs when the leader payload is not for-
warding a signed message because it never received it from the traffic
replication device (f1).

INVALID: the payload replica is failing by value as the effect of an intrusion
(f2), e.g., it is sending illegal messages toward the or it is flooding
the and the aiming to delay the forwarding of legal messages.

62

For ease of modeling, we assume that a replica, as soon as it is successfully
intruded, explicitly manifest failures (of any kind); this assumption is justified
by the fact that until the replica behaves correctly (and hence it is not failing)
despite of the undetected intrusion, the overall system behaves correctly. We
assume also that a failure caused by an intrusion is permanent.

The system is unavailable if the number of correct working replicas is less System
than f+ 1 (so quorums cannot be reached) or if there are more than f+ 1 correct unavailability
replicas, but the leader is omitting (so legal messages are not forwarded).

The system fails if the number of invalid replicas exceeds f (the correctness of = System failure
the system cannot be guaranteed) or if the necessary resources are unavailable
for a fixed duration™® 1 seeks perpetual operation).

3.4.2 The PRRW Strategy

This section describes the PRRW]7 strategy as originally defined in [Sousa o7].
The quantitative analysis presented in the following sections analyzes mainly
the strategy, but also some variants derived from the descrip-
tion of the variants considered will be given in section where the
evaluation results are presented.

The strategy manages the [CIS|replica recoveries using a mix of proac- Strategy
tive and reactive recoveries, and it is characterized by the following parameters: parameters

¢ Tp, the maximum time interval (cycle or recovery period) between con-
secutive recoveries on the same replica (each replica is hence recovered at
most after Tp).

¢ Tp, the (worst case) execution time of a recovery.
¢ k, the maximum number of replicas that may recover simultaneously.

¢ f, the maximum number of simultaneously corrupted replicas that the
system can tolerate.

The [PRRW]| strategy is scheduled as shown in figure time is divided in Recovery
[n/k] different time slots that are cyclically repeated. Each slot is divided as scheduling
follows: sub-slots S;;, grouped under the unique name A, and sub-slot R; (i =
1, ..., [n/k],j=1,..., [f/k]).

Proactive (periodic) recoveries are executed during sub-slot R; only; up to Proactive
k replicas recover simultaneously in each sub-slot R;, according to the replica recoveries
index. Replica i, with i = 1, ..., k, are recovered in sub-slot R,, replica i, with
i=k+1,...,2k, are recovered in sub-slot R, and so on. Sub-slot R; lasts for (at
most) Tp and it is executed again after a period Tp.

Two types of reactive (a-periodic) recoveries can be triggered on replica i: Reactive
recoveries

16 Let T be the duration of the mentioned time interval.
17 Proactive-Reactive Recovery Wormhole

63

Su| - IsgRi|~[8s] - [spy[R
TS ([N T o T+ T T (4T,

Siq| Ry

Figure 3.5: The scheduling of recoveries in the PRRW strategy; proactive recoveries are
executed during the R; sub-slots, reactive delayed recoveries are executed
during the S;; sub-slots.

1. Immediate reactive recovery, triggered if a quorum of f+ 1 accusations
exists about i sending illegal messages; in this scenario replica i is detected
of being compromised, because at least one correct replica detected that
replica i is failed.

2. Delayed reactive recovery, triggered if a quorum of at least f+ 1 accusations
exists about the current leader i, some about i sending illegal messages,
other about i not forwarding a signed message (the signed messages was
not forwarded for more then O; times). In this scenario the leader replica
i is suspected of being compromised, because at least one correct replica
raised an accusation about leader replica i, but the wormhole is not able
to identify which accuser replica is correct, so it is not able to identify
which kind of accusation is correct about leader replica i.

Immediate reactive recoveries are immediately triggered on replica i as soon
as the replica is detected of being compromised.

Delayed reactive recoveries are triggered on the leader replica only, are ex-
ecuted during the sub-slots belonging to group A and are coordinated with
proactive recoveries. If no immediate reactive recovery is already triggered for
replica i, the strategy finds the closest recovery sub-slot where the re-
covery of replica i does not endanger the availability of the If the found
sub-slot is located in the slot where replica i will be proactively recovered, the
delayed reactive recovery is not performed. Each group A is divided into [f/k]
recovery sub-slots, identified as S;;, and up to k replicas can be recovered simul-
taneously in each of these sub-slots. Group A lasts for (at most) [f/k|Tp.

Each slot lasts hence for up to ([f/k] + 1)Tp with period Tp. After each R;
sub-slot has been executed once, each replica has been proactively recovered
once.

A new leader is elected by the wormhole if the current leader is recovering or
if the local wormhole of the current leader is detected to be crashed. The new

64

leader is chosen as the (currently not crashed) replica more recently recovered
by a proactive recovery.

3.4.3 Quantitative Analysis

This section presents a quantitative analysis of the strategy and of some
PRRW| variants. The relevant measures of interest are identified and the rele-
vant parameters are described; the model representing the strategy is
described and finally the results of the performed simulations are presented
and discussed.

The quantitative analysis of the[PRRW]strategy aims to evaluate how effective Proactive vs.

is the trade—off between proactive and reactive recoveries. Proactive recoveries reactive
rejuvenate the replicas in predefined instants of time, without being based on """
any fault detection. This means that proactive recoveries treat all the faults,
including also the latent and hidden ones, which cannot be treated in other way,
but they recover also correct replicas, weakening the availability of the system.
On the other side, reactive recoveries are triggered only on replicas detected or
suspected of being faulty; replicas not detected or suspected of being faulty are
never recovered, even if they are actually faulty, weakening the dependability
of the system.

Recoveries determine a discontinuity in the configuration caused by the A multiple
temporary unavailability of the replicas subjected to a recovery. Therefore it phased system
is possible to represent the entire operational life split into different periods
of deterministic duration called phases. This feature allows a reconfiguration
strategy to belong to the [MPSf® class for which a modeling and evaluation
methodology exist [Mura o1]], supported by the DEEM[' tool [Bondavalli o4b].

Different studies were performed on the modeled system at varying several Parameters
parameters; the relevant parameters are the following:

1. Mission time t.

2. Number 7 of replicas in the system; this parameter impacts on the recov-
ery strategy mainly because it determines how time sub-slots for recover-
ies are defined. It also put constrains on the values for f and k.

3. Probability p; of intrusion within a replica manifesting as a permanent
invalid behavior; intrusions can manifest themselves as permanent omis-
sions with probability 1 — p;. Parameter p; impacts on the recovery strat-
egy because invalid and omission failures are treated in different ways.

18 Multiple Phased System
19 DEpendability Evaluation of Multiple-phased systems

65

System failure
probability

System
unavailability

4. Detection coverage cyv of malicious behavior of a replica. Parameter cy
impacts on the recovery strategy because only detectable faults can trigger
reactive recoveries.

5. Successful attack (intrusion) rate A?; this parameter impacts on the re-
covery strategy because the detection of invalid failures triggers reactive
recoveries.

6. Transient omission rate A°; this parameter impacts on the recovery strat-
egy because the detection of omissive leader replicas triggers reactive re-
coveries.

The quantitative analysis aims to evaluate how these parameters impact on the
measures of interest defined in the following section.

Measures of Interest

We are interested in measuring both the system failure probability Pg(t) and the
system unavailability Py(0, t) at time ¢; moreover, we are interested in assessing
the impact of leader’s omission over the above mentioned measures, given that
the strategy triggers a delayed reactive recovery on the omissive leader
replica only.

The system fails at time ¢ if at least one of the following conditions holds:

1. the number of invalid replicas gets over f;
2. the system is unavailable for an interval of time longer then To.

Let Pgi(t) be the probability of the system being failed at time t because of
condition 1, given that it was correctly functioning at time ¢ = 0. Let Pro(t) be
the probability of the system being failed at time ¢ because of condition 2, given
that it was correctly functioning at time t = 0. System failure probability Pg(t)
is defined as the probability of the system being failed at time ¢, given that it
was not failed at time t = 0; system failure probability is hence obtained as:

Pg(t) = Pri(t) 4+ Pro(t). (3-1)

The system is unavailable at time ¢ if at least one of the following conditions
holds:

1. the number of correct replicas is less than f+ 1 (quorums cannot be
reached);

2. there are more than f+ 1 correct replicas, but the leader is omitting (legal
messages are not forwarded).

66

Let Ty(0,t) be the total time the system is not failed but unavailable within

[0, t] because of one of the above conditions. Let TA(0,f) be the total time the

system is not failed within [0, ¢]. System unavailability Py(0,t) is defined as the

probability of the system being unavailable within TA(0, t), given that it was

correctly working at time t = 0; system unavailability is hence obtained as:
Py(0, 1) = —=— (3-2)

The leader replica - beyond its role of system replica - has the special task Leader

of forwarding legal messages toward the the impact of leader’s omission contribution on

over the system measures of interest is hence based only on the omission about igj Z:Zlability

its special task. Let Ty (0, t) be the total time the system is not failed but un-

available within [0, {] because of leader’s omission. The contribution of leader’s

omission over system unavailability, denoted with Py (0, t), is obtained as:

Tur(0, t)

Pyr(0, t) = TA0,)

(3-3)

The PRRW Model

The model presented in this section is an extension of the model proposed and
evaluated in [Daidone 08]]; the main differences are the following: i) this model
triggers an immediate reactive recovery action as soon as the invalid behavior
is detected, instead of waiting for the beginning of a recovery sub-slot;*° ii) this
model corrects a bug of the original strategy, where the detection of an
omissive leader was not triggering the election of a new leader?".

The modeling formalism used to define the model is the [DSPNP?. DSPN
models extend [GSPNf? and [SRNP4, allowing for the exact modeling of
events having deterministic occurrence times. Using such a formalism and as-
sociated features, the treatment of the dependencies among phases is moved
from the low level of the Markov chains to the more abstract, easier to handle
level of the [DSPN] A [DEEM| model may thus include immediate transitions
(represented by a thin line), transitions with exponentially distributed firing
times (represented by empty rectangles), and transitions with deterministic fir-
ing times (represented by filled rectangles). Moreover arbitrary functions of
the model marking may be employed to define i) firing times (rates or deter-
ministic times) of timed transitions, ii) probabilities associated with immediate

20 This modification leads the model to better represent the reality.

21 The election of a new leader was triggered in the original PRRW by the fact that the current
leader was recovering; the bug here appears when the leader is detected omissive and hence
a delayed recovery is booked, but a new leader is elected only when the delayed recovery is
actually started (which could happen some sub-slots after the detection).

22 Deterministic and Stochastic Petri Net

23 Generalized Stochastic Petri Nets

24 Stochastic Reward Nets

67

Table 3.1: Model parameters, their default values and their description.

Name | Default Value | Meaning
t 2628 | Mission time (sec)
n 4 | Number of replicas in the system
k 1 | Maximum number of replicas recovering simulta-
neously

f 1 | Maximum number of corrupted replicas tolerated
by the system

Tp 146 | Time duration of a recovery operation (sec)

To 60 | Duration of system omission before considering
the system failed (sec)

AS | [1.9E-7, 3.8E-7] | Crash rate of replica i (sec). Each replica has a di-
verse crash rate (from 1 per 60 days to 1 per 30
days)

A? | [1.9E-6, 3.8E-6] | Transient omission rate of replica i (sec). Each
replica has a diverse rate (from 1 per 6 days to
1 per 3 days)

ASC 3.3E-2 | Omission duration rate of a replica (sec). A tran-
sient omission lasts for 30 seconds (on average)

A? | [5.8E-5, 1.2E-5] | Successful attack (intrusion) rate of replica i (sec).
Each replica has a diverse rate (from 5 per day to
1 per day)

p1 0.5 | Probability of intrusion within a replica manifest-
ing as a permanent invalid behavior (if p; = 0 all
intrusions manifest as permanent omissions)

M 0.7 | Probability of detecting malicious behavior of a

replica (if cpr = 1 all detectable events are actually
detected)

68

CountWin CountSlot
™ | ™
| Nexyin 7
//—/ tmﬁ:]\
NextSij Sij EndSubSlot NextRi Ri
O === |

tSij Q ubSlot tToRi O tRi O Ri
@CountSubSlot l

Q QEndSlot

tNextSlot

Figure 3.6: The phase net of the PRRW model; the phase net models the scheduling of
the recovery sub-slots.

transitions, iii) enabling conditions (named guards) of the transitions, iv) arc
multiplicities, and v) rewards.

The model is split into two logically distinct sub—nets: the Phase Net (PhN)
representing the schedule of the various phases, each one of deterministic du-
ration, and the System Net (SN) representing the behavior of the system. Each
net is made dependent on the others by marking—dependent predicates that
modify transition rates, enabling conditions, reward rates etc.

Reward measures are defined as Boolean expressions, functions of the net
marking. Both the analytic [Mura o1] and simulation solutions [Moretto o4]
can be used in order to exercise the models; the measures of interest defined
in our quantitative analysis were evaluated by simulation. All the parameters
(and their values) cited during the description of the model are collected and
described in Table

The phase net (figure models the scheduling shown in figure Phase Net (PhN)
The deterministic transitions TsubSlot and TRi model the times to perform
the sub-slots S;; (those grouped in the A group) and R;, respectively. Place Sij
contains a token during the sub—slots belonging to group A (a-periodic recovery
phase) and Ri contains a token during sub-slot R; (periodic recovery phase).
The marking of CountSubSlot counts the number of the current recovery sub-
slot (S;;) within the current recovery slot. The marking of CountSlot counts the
number of the current recovery slot within the current cycle. The marking of
CountWin counts the number of the current cycle. The immediate transition
tNextSlot fires when a periodic recovery slot ends, resetting the marking of
CountSubSlot to 1. The immediate transition tNextWin fires when a new cycle is
started, resetting the marking of CountSlot to 1. The immediate transitions of the
phase net have priority lower than the priorities of the immediate transitions of
the system net.

The system net of the model is composed by n < 6 similar subnets System Net (SN)
(one subnet for each replica), a subnet to keep track of system failures and

69

Replica failures

SetOK1 tRecovered]

u_ derC1

— tNoNewLeader] L

NewLeader|

\V tnvalidU1 2 dovalid
Q 7 - @ Qder

validiU 1

Figure 3.7: The subnet of the system net modeling failures and recoveries of replica 1
and the election of the leader (lower right part).

a subnet to initialize the model (the description of this last subnet is omitted
without affecting the comprehension of the model).

Figure[3.7/shows the subnet modeling failures and recoveries of replica 1. The
left-most part of the subnet models the replica failures, while the right-most
part of the subnet models the replica recovery and the leader election. Places
which name ends with digit “1” model replica 1, while the other places (Leader
and kRec) are shared by all the sub-nets associated with the other replicas.

Replica failures are modeled as follows. As long as both OK_O1 and OK_Iz
contain one token each, replica 1 is correctly working. One token in places
Crash1 or Omission1 represents the crash of the replica or an omissive behavior
as a consequence of a transient omission, respectively. The exponential transi-
tions Tcrash1 and Tcrashb1 represent the time to the crash with rate AS; when
the replica crashes, place OK_I1 is emptied (the replica cannot be intruded any
more). TtempOmission1 represents the time to a transient omission exponentially
distributed with rate A?. A transient omission disappears after a time modeled
by the exponential transition TomissionD1 with rate A°.

The exponential transition Tintrusion1 represents the time to intrusion with
rate A; the effect of the intrusion is modeled by the following immediate tran-
sitions (enabled in the same marking) and the associated places:

* TomissionIU1 for an undetectable omission failure, with probability (1 —

em)(1—pyp),

* Tomissionl1 for a detectable omission failure, with probability cm(1 —p;),

70

* TinvalidIU1 for an undetectable invalid failure, with probability (1 —cm)py,
* Tinvalidl1 for a detectable invalid failure, with probability cvpy,

where p; and ¢y are the probability of an intrusion manifesting as a permanent
invalid behavior and the detection coverage of malicious behavior, respectively.

The replica recovery is modeled as follows. Place PRec1 contains a token as
long as replica 1 is not recovering, while place Recovering1 contains one token as
long as the replica is recovering. Place DRecovering1 contains a token during an
immediate reactive recovery. Place kRec is used to count the number of replicas
currently recovering. Place RRecoverySuspect1 contains a token if a crash, an
omission or a malicious omission occurs.

Recoveries are triggered by one of the following immediate transitions (or-
dered by increasing priorities): tRRecoverySuspect1 (delayed reactive recovery
triggered by suspects), tRRecoveryDetect1 (immediate reactive recovery triggered
by detections) or tPRecovery1 (proactive recovery). The immediate transition {R-
RecoverySuspect1 fires if a new a-periodic recovery sub-slot is starting (NextSij
contains a token) and less than k replicas are recovering (kRec contains less than
k tokens) and the replica is not going to be proactively recovered in the next peri-
odic slot (the index of the replica is not in the interval [(Mark(CountSlot) — 1)k +
1, Mark(CountSlot)k]). The immediate transition tRRecoveryDetect1 fires inde-
pendently from the marking of the phase net. The immediate transition tPRecov-
ery1 fires if a periodic recovery slot is starting (NextRi contains a token) and less
than k replicas are recovering (kRec contains less than k tokens) and the index
of the replica is in the interval [(Mark(CountSlot) — 1)k + 1, Mark(CountSlot)k].

When a recovery action starts, all the immediate transitions which name
starts with tEmpty fire, emptying the following places: OK_O1, OK_I1, Crashi,
Omission1, InvalidlU1, Invalidlz, OmissionlU1, Omissionlt and OKLeadO (OK-
LeadO will be presented hereafter). When the recovery action ends, the imme-
diate transitions tRecovered1 or tDRecovered1 fire, resetting the replica subnet.

The election of the leader replica is managed as follows. The marking of
place Leader corresponds to the index of the current leader; one token is added
in place NewL1 when one of the following events occurs: replica 1 is going to
be recovered (periodic or “immediate reactive recovery), replica 1 is crashed,
replica 1 is the current leader and is detected to be omissive (either benign or
malicious omission). tNewLeader1 fires if replica 1 is the current leader, trig-
gering the mechanism of election of a new leader, otherwise tNoNewLeader
fires. The arc from place Leader to place tNewLeader1 has multiplicity equal to
Mark(Leader), while the arc from place tNewLeader1 to place Leader has multi-
plicity equal to the index of the replica that will be elected as the new leader.
The new leader should be the last (not crashed) replica proactively recovered,
that is replica with index j = ((n + (Mark(CountSlot) — 2)k)mod n) + k. If replica
j is currently crashed, the next attempt is made on replica j — 1, until a not
crashed replica is found.

71

Replica recoveries

Reward
Structures

Pg(t), Pgg(t),
Pro(t)

Py1(0,t)

| Q SysFailurel
tSysFailurel

| tSysFailurelb

SysFailureO
| O
OKSysN OKSysO To%0
—_— | — >
@ | tSysOmission Q% OKLeadO
AN | Ol
tEmptyOKLeadO

tLeadOmission

tOKSysN

Figure 3.8: The subnet of the system net modeling the system failure.

The subnet shown in figure [3.8{models the system failure. Place OKSysN con-
tains a token as long as the system is not failed and it is not omitting (there are
more than f correct replicas and the leader is not crashed or omitting). Place
OKSysO contains a token when the system is not failed but it is omitting. Place
OKLeadO contains a token when the system is not failed, but it is omitting be-
cause the leader replica is omitting. Place SysFailurel contains a token when the
system is failed because of invalid behavior (there are at least f+ 1 invalid repli-
cas). Place SysFailureO contains a token when the system is failed because the
resource unavailability lasted for an unacceptable period of time represented
by the exponential transition TSysO with rate 1/To.

Different priorities are associated with the immediate transitions of SN, when
no probabilistic choices are required. For example, all the immediate transitions
of replica i have priorities lower than those of replica j, if i < j.

The evaluation of the measures of interest in involves specifying a
performance (reward) variable and determining a reward structure for the per-
formance variable, i.e. a reward structure which associates reward rates with
state occupancies and reward impulses with state transitions [Sanders 91].

The measures of interest related to system failure probability (Pg(t), Pri(t) and
Pro(t)) were evaluated in terms of three “instant of time” performance variables
based on the following reward structures respectively:

if (Mark(OKSys0)=0 and Mark(OKSysN)=0) then (1) else (0)
if (Mark(SysFailureI)=1) then (1) else (0)
if (Mark(SysFailureQ)=1) then (1) else (0)

System unavailability Py(0,t) was evaluated as Py (0, t) = %.

Ty(0,t) was evaluated defining an “interval of time” performance variable which
reward structure is the following;:

if (Mark(OKSys0)=1) then (1) else (0)

72

Ta(0,t) was evaluated defining an “interval of time” performance variable which
reward structure is the following;:

if (Mark(0KSys0)=1 or Mark(0OKSysN)=1) then (1) else (0)

The contribution of leader’s omission over system unavailability Py, (0, t) was
_ TuL(0,1)
evaluated as Pyr,(0, t) = INOOR

TuL(0,t) was evaluated defining an “interval of time” performance variable
which reward structure is the following:

if (Mark(OKLead0)=1) then (1) else (0)

Model Evaluation and System Analysis

This section presents the results of the evaluation of the measures of interest
performed mainly on the model presented above and on some vari-
ants modeling the variants considered. The measures of interest were
evaluated by simulation [Moretto o4] with a confidence level of 95% and a half-
length confidence interval of 1%.

All the model parameters and the default values used for the evaluations
are shown in Table (pag. |68); the relevant parameters are described in the
following:

1. Mission time ¢. This is the time during which the system is exercised since
it starts working. ¢ varies in [2628, 42048] sec.

2. Number 7 of system replicas in the system, maximum number f of cor-
rupted replicas tolerated by the system itself and maximum number k of
system replicas recovering simultaneously, with n = 2f+ 1+ k.

3. Time duration Tp of a recovery action; the value assigned to Tp derives
from experiments described in [Sousa o7].

4. Time duration To of system omission before considering the system failed;
the value assigned to To derives from the temporal requirements of the
secondary control in the power grid.

5. Probability p; of intrusion within a replica manifesting as a permanent
invalid behavior. p; varies in [0, 1].

This parameter is used to quantify how much the dependability mea-
sures vary based on the behavior of intrusions. In fact, if p; = 0 then all
intrusions manifest as a permanent omissive behavior; in this case, only
delayed reactive recoveries (on the leader replica) can be triggered. If in-
stead p; = 1 then all intrusions manifest as a permanent invalid behavior;

73

Pur(0,t)

Model
parameters

The basic system
configuration

Study at varying
mission time t

Pg(t)

in this case, intrusions on each replica can only trigger immediate reactive
recoveries.

6. Detection coverage cy of malicious behavior of a replica. ¢y is the proba-
bility of detecting an intruded replica, and hence the probability of reac-
tively recovering an intruded replica. cy varies in [0, 1].

This parameter is used to quantify how much the dependability measures
vary based on the capability of detecting/diagnosing faults. If in fact cyr =
0 then no intrusions are detected; in this case, all intrusions are treated
by proactive recoveries and reactive recoveries are only triggered by crash
or communication omissions. If instead ¢y = 1 then all intrusions are
detected and treated by reactive recoveries.

7. Successful attack (intrusion) rate A?. The basic value used for the rate is
A* = 1.2E-5; each replica has a diverse rate obtained as the basic rate
multiplied by some values depending on the index replica: e.g. replica 1
has rate A4 = 5A?, replica 2 has rate AJ = 4A?, etc.

8. Transient omission rate A°. The basic value used for the rate is A° = T1E-6;
each replica has a diverse rate obtained as the basic rate multiplied by
some values depending on the index replica: e.g. replica 1 has rate A =
1.93\°, replica 2 has rate AJ = 2.31A°, etc.

Several studies were conducted, setting the values for the parameters using
this approach: a basic system configuration was selected and used as starting
point for varying different sets of parameters for each study (e.g. a study vary-
ing only time ¢, another study varying only the number of replicas 7). The ba-
sic system configuration follows the strategy presented in section
studied at time t = 2628, encompasses n = 4 replicas with probability of intru-
sion set to p; = 0.5 and detection coverage set to cyy = 0.7; the fault rate are
those listed in table

A first study was performed observing both system failure probability Pg(t)
and system unavailability Py(0, t) over mission time f for three different values
of p1. This study shows that Pg(t) increases over time as a geometric random
variable, whilst Py(0, t) seems to have an upper bound.

Figure shows how Pgi(t) and Pro(t) change over mission time ¢, with
Pr(t) = Pri(t) + Pro(t). Pr(t) increases exponentially over time for all the values
of p1; Pr(t) behaves in fact like a geometric random variable for the following
reasons: system failure probability is not null during each recovery period (cy-
cle); the system is rejuvenated after each cycle, so we can assume that the system
failure probability during the following cycle is the same as the previous one.
System failure probability Pr(t) cumulates hence over the recovery periods as a
geometric random variable.

74

2.5E-04 -

£ 15E01 =
o SA
2 o> 20E-04
2 2
g 1.0E-01 S 15E-04 |
5 =
© g
5 8 1.0E-04 |
T 5.0E-02 | 2
£ & 5.0E-05 1
= 4
& LOE-02 | @
0.0E+00 -
2628 5256 10512 21024 42048 2628 5256 10512 21024 42048
t (sec) t (sec)
(a) System failure probability Pg(t) (b) System unavailability P(0, t)

Figure 3.9: System failure probability Pg(t) and system unavailability Py(0, f) over mis-
sion time t for different values of py.

The values of Pg(t) are over 0.01 because of the very pessimistic values as-
signed to the system parameters. As p; varies from o to 1, Pg(t) increases of
about 30% for low values of t and increases of about 17% for high values of ¢.
For p; =0, p; = 0.5 and p; = 1 the value of Pg(t) is about 0%, 17% and 50% of
the value of Pg(t), respectively, independently on the values of ¢.

If p, = 0 then Pg(t) = 0, because there is no invalid behavior, and hence
Pk(t) = Pro(t). As p; varies from O to 1, Pro(f) changes from 100% of Pg(t) to 17%
of Pg(t); the number of intrusions does not change, but the effect of intrusions
changes. In fact, the value of Pro(t) depends on the time during which replicas
are unavailable, which for p; = 0 is given by the sum of the following durations:

* the time spent waiting for a delayed reactive recovery of the omissive
leader;

¢ the time spent during the recovery on the omissive leader;

* the time spent waiting for proactive recoveries of (not leader) omissive
replicas;

¢ the time spent for proactive recoveries (not varying for the different values
of pI)

If p; = 1 then the time during which replicas are unavailable is given by the
sum of the following durations:

¢ the time spent during immediate reactive recoveries on replicas detected
as intruded; the number of these recoveries is about n times the number
of delayed reactive recoveries performed for p; = 0;

* the time spent for proactive recoveries.

75

Pu(o, t)

Study at varying
detection
coverage

Ppp(t)

Pro(t)

Therefore, the value of Pro(t) for p; = 1 mainly represents the impact of recov-
eries (both proactive and reactive) on Pg(t) (crashes and transient omissions are
still present, but have lower rates than intrusions). The value of Pro(t) for p; = 1
shows that the impact of recoveries on Pg(t) is low (about 17%).

Figure shows how Py(0, t) changes over mission time ¢. Py(0,) seems to
have an upper bound, although Py(0,f) increases over time for all the values
of pr: for p; = 0.5 and p; = 1 the value of Py(0,) is about 53% and 10% of the
value of Py(0, t) for p; = 0, respectively, independently on the values of ¢.

The trend of Py(0,t) for varying p; is similar to the trend of Pro(t) shown in
figure for p; = 1 the value of Py(0, t) is mainly due to the recoveries, for
p; = 0 and p; = 0.5 the value of Py(0,t) is negatively affected by the fact that
the number of recoveries decreases but the number of omission increases.

Another study was devoted to evaluate both system failure probability Pg(t)
and system unavailability Py(0,t) at varying both the detection coverage cu
and the probability p; of intrusions manifesting as invalid behavior. This study
shows how reactive recoveries improve the measures of interest with regard to
treating intrusions with proactive recoveries only.

€ 16£02 O 16E-02] Pl —v— |
o p=05 —o—
; 1.4E-02 2 1.4E-02] p=0 —a 3
5 Ll2E02 5 1.2E-02 |
S 1.0E-02 S 1.0E-02 1 .
S 80E03 S gop0zA—A—4—4 41
S 6.0E-03 2 6.0E-03 CRS\S\SSGH@\;
(] “
o 40E-03 o 40E-03 :
S 2.0E-03 8 2.0E-03 1 :
= e v v v vV
0.0E+00 S 0.0E+00 ‘ ‘ ‘ ‘
0 02 04 06 08 1 0 02 04 06 08 1
Cm Cm
(a) Invalid failure probability Pgy(t) (b) Omissive failure probability Pro(t)

Figure 3.10: Impact of detection coverage cy; on both Ppi(f) and Ppo(t) for different
values of pr.

Figures|3.10a|and [3.10b|show how Pri(t) and Pro(t), respectively, change over
detection coverage cy for different values of py; in order to make easier their
comparison, the same scale for the y—axis is used.

Pri(t) decreases as cy increases from 0 to 1 for all the values of p;. Pgi(t) takes
larger values for p; = 1 than for p; = 0. If p; = 0 then the values of Pg(t) for
different values of ¢y are 0 and are not shown in figure Pri(t) takes the
smallest values for p; = 0.2 and is almost constant. The curve corresponding to
p; = 1 decreases quicker than the other curves (it decreases for about one order
of magnitude) as cy increases.

Pro(t) shows a different behavior with respect to Pg(t), given that Pro(t) takes
larger values for lower values of py. Pro(t) is almost constant for p;=1 (the value

76

£ 16E-02 = 3
a S 2.0e-04 ;*/k_’k_/A——A——A’/“,
z Ll4E02 2 P=0 —a—
5 12602 2 15004 P05 —o— 1|
8 1.0E-02 5 Pt =
s K<
o 80E-03 S 1.0e-04 | S
2 6.0E-03 S
£ 40E-03 5 50e05 |
g 20E-03 2 v v S—
@ 0.0E+00 + ‘ ‘ ; ; ‘ 0.0e+00 ‘ ‘ ; ;
0 02 04 06 08 1 0 02 04 06 08 1
Cm Cm
(a) System failure probability Pg(t) (b) System unavailability Py(0,t)

Figure 3.11: Impact of detection coverage cy; on system failure probability Pp(t) and
system unavailability Py;(0,t) for different values of py.

for cm=1 is about 6% larger than the value for c\=0); it decreases for p;=0.5 as
cM increases from o to 1 (the value for cpy=1 is about 40% of the value for c\=0);
it slightly increases for pi=o0 as cy increases from o to 1 (the value for cy=1 is
about 10% larger than the value for c\=0).

The values of Pgi(t) and Pro(t) for cpp = O correspond to the system configu-
ration in which all the intrusions are treated only by proactive recoveries. The
difference between the values of Pgi(t) (and Pro(t)) for cpf = 0 and o = 1 is
due to the effect of treating all the intrusions by reactive recoveries: Pgy(f) de-
creases, because invalid replicas reactively recovered are no longer weakening
the system; Pro(t) is almost constant, because there are k “extra” replicas which
contribute to system operation while the intruded replicas are recovering. The
overall effect, shown in figure is that, when most of the intrusions behave
as invalid (p; > 0.5), system failure probability Pr(t) decreases as detection cov-
erage ¢y increases. On the contrary, when most of the intrusions behave as
omissions (p; < 0.5), the impact of cyp; on Pg(t) is negligible. This stresses that,
in order to reduce system failure probability (that is improve the value of Pg(t)),
it is useful to trigger reactive recoveries and hence to set the value for cy as
higher as possible.

Figure shows how system unavailability Py(0, t) changes over detection
coverage cy for different values of p;. The trend of Py(0,t) at varying cyv is
similar to the trend of Pro(t) shown in figure Again, Py(0, t) takes larger
values for lower values of pr. Py(0, t) is almost constant for p;=1 (the value for
cv=1 is about 4% larger than the value for c\=0); it decreases for pr=0.5 as cm
increases from o to 1 (the value for cyp=1 is about 40% of the value for cp=0); it
slightly increases for pr=0.5 as cy increases from o to 1 (the value for cy=1 is
about 10% larger than the value for c\=0).

The results of this study show that increasing the detection coverage of in-
trusions cy has positive effects on system failure probability Pg(t), particularly

77

P(0,8)

Study at varying
intrusion rate

Pg(t) and
Pyy(0,1)

when the invalid behavior is dominant, and has no negative effect on system
unavailability Py(0, t).

A study was devoted to evaluate the impact of successful attack (intrusion)
rate A* over system failure probability Pr(f) and system unavailability Py(0,t)
for different values of py; the percentage impact of leader omissions over system
unavailability was also evaluated. The system configuration evaluated in this
study is the basic system configuration where A® varies in {1E-6, 1E-5, 5E-5, 1E-4,
5E-4} and py varies in {0, 0.5, 1}.

s 1.0E+00 1 ﬁ_% o - 1.0E-01 4
& 280 et S Lo
- LT =) =} [
= 1.0E-01 - == & 1.0E-02 - =
e} >
= 2
g 3
S 1.0E-02 { = 1.0E-03 1
[>
3 g
= S
‘= 10E-03 4 E 1.0E-04 4
Q

3 %
2 @
? 1.0E-04 - 1.0E-05 -

1E-06 1E-05 5E-05 1E-04 5E-04 1E-06 1E-05 5E-05 1E-04 5E-04

a a
A A
(a) System failure probability Pg(t) (y-axis is (b) System unavailability Py;(0, t) (y-axis is log-
log-scale) scale)

S
=]
[
S
=]
=)
o
1E-06 1E-05 5E-05 1E-04 5E-04
)\a
(c) Impact of leader omissions on system un-
availability Pyy(0, t)

Figure 3.12: Impact of attack (intrusion) rate A* over system failure probability Pg(t)
and system unavailability Py(0,t) (with the impact of leader omissions)
for different values of py.

Figures [3.12a| and [3.12b| show that both system failure probability Pg(t) and
system unavailability Py(0,) increase exponentially as attack rate A* increases
(the y—axis of both figures uses a log scale); in particular the increment is about
four orders of magnitudes for both the measures of interest. The behavior of
the two measures of interest with respect to varying the p; is in general the
following: the value of the measure of interest decreases as p; increases.

78

In particular, looking at the values of Pg(t) for the smallest A?, figure
shows that the values for p; = 1 and p; = 0.5 are, respectively, 92% and 98% of
the value for p; = 0. The above percentages have the following trend for varying
A?: the values of Pg(t) for p; = 1 are 92%, 65%, 67%, 71% and 97% of the values
of Pg(t) for p; = 0; the values of Pg(t) for p; = 0.5 are about 98% of those of Pg(t)
for p; = 0.

Looking at the values of Py(0, t) for the smallest A?, figure shows that
the values for p; = 0 and p; = 0.5 are, respectively, 85% and 93% of the value
for p; = 1. The above percentages have the following trend for varying A%: 85%,
13%, 5%, 5% and 8% if p; = 0, 93%, 24%, 10%, 10% and 13% if p; = 0.5.

Figure plots the percentage impact of leader omissions Pyt (0,) on sys-
tem unavailability Py(0,t); the impact of the leader omission decreases as suc-
cessful attack (intrusion) rate A* increases. The shape of Py (0, t) for varying pr
changes as successful attack (intrusion) rate A? increases: for lower values of A?
Py1(0, t) has the largest value if p; = 0, whilst the opposite happens for larger
values of A%

Figures [3.12al and [3.12b| confirm the intuition that the attack rate deeply im-
pacts on the system measures of interest and that the larger number of reactive
recoveries triggered for increasing values of p; positively impact on both the
measures of interest. Figure confirm that for increasing attack rate the im-
pact of leader omission on system unavailability decreases, and hence that the
main cause of system omission is the incapability of reaching quorums.

A study was devoted to evaluate the impact of omission rate A° over system
failure probability Pg(f) and system unavailability Py(0,t) for different values
of pr; the percentage impact of leader omissions over system unavailability was
also evaluated. The system configuration evaluated in this study is the basic
system configuration where the A° varies in {1E-7, 1E-6, 1E-5} and p; varies
in {0, 0.5, 1}. This study aims to better understand the impact of performing
delayed reactive recoveries on the leader replica only.

Figures [3.13a| and [3.13b| show that in general both the measures of interest
increase as the omission rate A° increases. The mean increment for Pg(t) when
the omission rate changes from A° = 1E-7 to A° = 1E-6 is about 9%, whilst
the increment when the omission rate changes from A° = 1E-6 to A° = 1E-5 is
about 88%. The mean increment for Py(0,) when the omission rate changes
from A° = 1E-7 to A° = 1E-6 is about 10%, whilst the increment when the
omission rate changes from A® = 1E-6 to A° = T1E-5 is about 89%.

It is worth to recall that this study was performed using the default setting
for the successful attack (intrusion) rate A* (see table [3.1), that is a value of the
order of 1E-5; this means that for one of the scenarios evaluated (the right-most
one in the figures) the amount of not malicious omissions is quite the same of
those of malicious attacks, which can manifest as omissions based on the value
of p1. The behavior of the two measures of interest with respect to varying the

79

Study at varying
omission rate

Study at varying
the number of
replicas

S 18E-02 = 4.0E-04 -
& 16E-02 | 2 S 3.5E-04 | 0
£ 1.4E-02 | = o T 5004 | %
3 L E -
g i'gg'gi] 5 25604 -
5 LOE027 = -04 | i
© 8.0E-03 g 2.0E-04 &
2 6.0E-03 | g 15804
‘e 4.0E-03 | £ LOE-04
£ 2.0E-03 1 3 5.0E-05 |
@ 0.0E+00 ! f @ 0.0E+00 !
1E-07 1E-06 1E-05 1E-07 1E-06 1E-05
A° A°
(a) System failure probability Pg(f) (b) System unavailability P(0, t)

PyL(0,t)/Py(0,t)

1E-07 1E-06 1E-05
A°

(c) Impact of leader omissions on system un-
availability Pyy(0, t)

Figure 3.13: Impact of omission rate A° over system failure probability P(t) and system
unavailability Py(0,t) (with the impact of leader omissions) for different
values of py.

p1 is in general the following: the value of the measure of interest decreases as
p1 increases.

Figure shows the impact Py (0, t) of leader omission over system un-
availability Py(0,t); the impact of leader omission increases as A° increases,
spanning from 17%, 21% and 40% for p; = 0 to 13%, 49% and 71% for p; = 1.
The omissive leader is the only omissive replica to be reactively recovered, so it
seems that the more omissions there are, the less is the benefit of delayed reac-
tive recoveries on the leader. We argue this is due to the fact that a replica can
be omissive due to communication errors, and there is no distinction between
the detection of an omissions caused by the network and an omissions due to
the replica itself: in both cases a delayed replica recovery is requested. On the
contrary in such cases the replica recovery worsen the situation because it lasts
on average for a longer time (Tp = 146 sec vs. A*® = 30 sec).

Another study was devoted to evaluate the impact of the number of replicas
on both system failure probability Pr(f) and system unavailability Py(0, t). The
system configuration evaluated in this study is the basic system configuration

8o

where n varies in {4, 5, 6} (and hence f and k vary accordingly as described
hereafter), and time is set to t = 10512.

When dealing with the number of replicas in the system, three parameters
are relevant: n, the overall number of replicas in the system, f, the maximum
number of corrupted replicas tolerated by the system and k, the maximum num-
ber of replicas simultaneously recovering without endangering the availability
of the system, with n = 2f +1 +k.

The following system configurations were evaluated:

Ci:n =4,f=1,k =1, which is the configuration requiring the minimum
number of system replicas still letting the system simultaneously recover

a replica and tolerate one failed replica.

C,:n =5,f =1,k =2, which is the same as the previous one, but with one
replica more; this configuration lets the system tolerate one faulty replica
while recovering up to 2 other replicas.

C;:n =6, f =1,k = 3, which is the same as the previous one, but with
6 replicas; this configuration lets the system tolerate one faulty replica
while recovering up to 3 other replicas.

C,:n=6,f=2,k=1,which is the configuration requiring the minimum num-
ber of system replicas to tolerate up to two simultaneous faulty replicas
and recover another replica.

- 3.0E-02 - Plgo(? _ 1.2E-04 -
= _ >
Q 25E-02 Al s S 1.0E-04
2 o
S 20E-02 { 2 8.0E-05 -
2 8
o]
S 15E-02 - T 6.0E-05 |
g 3
=]
T 1.0E-02 { 5 4.0E-05
c £
Q
£ 50E03 - b B 2.0E-05 b
ol d n
o H
0.0E+00 ‘ ‘ - L 0.0E+00 - L
n=4 n=5 n=6 n=6 n=4 n=5 n=6 n=6
f=1 f=1 f=1 f=2 f=1 f=1 f=1 f=2
k=1 k=2 k=3 k=1 k=1 k=2 k=3 k=1

System Configuration

(a) System failure probability Pg(t)

System Configuration

(b) System unavailability P;(0, t)

Figure 3.14: System failure probability Pp(f) and system unavailability Py(0,t) for dif-
ferent system configurations (f = 10512).

Figures [3.14a| and [3.14b| show system failure probability Pr(t) (decomposed
in Pgi(t) and Pro(t)) and system unavailability Py(0, t) for the system configura-
tions described above.

Pri(t) decreases as n (and k) increases; the trend of Pg(t) is mainly due to
the trend of Pro(t). For the same value of n = 6 (configuration C; and C,), the

81

Pri(t) and
PFO(t)

higher is f and the lower is Pg(t) (this behavior is shown both for Pgi(t) and
Pro(t)); configuration C,, although having a lower value for k, shows a lower
value for Pgi(f) because it has a more robust intrusion tolerance schema (f = 2);
Pro(t) is lower because the frequency of proactive recoveries is lower (k = 1).
Py0,t) The trend of Py(0,¢) is quite the same of the trend of Pro(t) shown in figure
3.144]
We suppose that the increment of the value of Pro(t) changing from config-
uration C, to C5 is due to the combined effect of a larger number of failures (n
varies from 5 to 6, but f = 1) and a higher frequency for proactive recoveries (k
varies from 2 to 3). This supposition is supported also by comparing C; with C,:
the two configurations share the same number of system replicas (and hence
the same number of failures), but C, shows a more robust intrusion tolerant
schema due to a higher value of f and a lower impact on omissions due to a
lower value for k. It turns out that for the setting used the lower values for Pg(t)
and Py(0,t) are obtained for the system configuration C,, i.e. for higher values
of f, independently of k.
Study at varying The last study was performed by comparing the [PRRW| strategy and some
the strategy and other recovery strategies (which are variants) at varying the number of
the ””mbf,r of replicas in the system. This study aims to better evaluate the role of the different
e recovery actions over the measures of interest (system failure probability Pg(t)
and system unavailability Py(0, t)).
The following recovery strategies were defined and evaluated:

P+R;+Rg: this is exactly the strategy, where the following recovery ac-
tions are performed: proactive (P), reactive immediate (R;) and reactive
delayed (R4). The recovery actions are triggered based on the rationale

presented in section It is worth recalling that PRRW] strategy trig-
gers delayed recovery actions on the leader replica only.

Ri+Rq4: this recovery strategy triggers only immediate and delayed recovery
actions (R; and Ry respectively); proactive recovery actions are not per-
formed. Delayed recovery actions are performed during recovery sub-
slots disciplined as in This strategy does not trigger proactive
recovery actions.

P+R;: this strategy triggers only proactive (P) and immediate reactive (R;) recov-
eries as disciplined as in [PRRW}| delayed recoveries on the leader replica
are not triggered.

P+R.: this strategy is identical to the strategy except for the triggering
of the recovery actions on the omissive leader: this strategy triggers an
immediate reactive recovery, whilst the strategy triggers a delayed
reactive recovery in this case. This strategy hence triggers proactive recov-
eries (P) on all replicas (based on the rationale presented in section

82

and immediate reactive recoveries both on replicas detected of being com-
promised, and on leader replicas suspected of being omissive (R;).

The system configurations evaluated were the same as those evaluated in the
study presented above, i.e. the following;:

Cin=4,f=1k=1.
C:n=>5,f=1k=2
CGgn=6f=1k=3.
Cin=6f=2k=1.

The other parameters had the same values as those assumed in the basic system
configuration, in particular ¢y = 0.7 and p; = 0.5 (all the details in Table [3.1]at

pag. .

1.4E-02 1 P+Ri+Rd mmm 2.0E-04 1
= Ri+Rd —_ 8E-04 4
2 12r0]] i+Rd 2 1.8E-04
: PARI* S 1.6E-04 -
E 1.0E-02 + > 1.4E-04
€ 80E-03 1 g 12604
s = 1.0E-04 1

4 >

5 6.0E-03 & 8.0E-05 A
= >
‘= 4.0E-03 | £ 6.0E-05
8 20e03 g 408081
a ® 2.0E-05 1

0.0E+00 - 0.0E+00 -

= n=5 n=6 n=6 n=4 n=5 n=6 n=6
f=1 k=1 f=1 k=2 f=1 k=3 f=2 k=1 f=1 k=1 f=1 k=2 f=1 k=3 f=2 k=1
System Configuration System Configuration
(a) System failure probability Pg(t) (b) System unavailability Py (0, t)

Figure 3.15: System failure probability Pp(t) and system unavailability Py (0, t) at vary-
ing the number of replicas for different recovery strategies.

Figures [3.15a| and [3.15b| show the values of system failure probability Pg(t)
and system unavailability Py(0, t) at varying the number of system replicas for
all the recovery strategies evaluated.

Figure shows that the general trend for each reconfiguration strategy Pp(t)
is that Pg(t) decreases as n (and k) increases; the only exception to this general
trend is represented by configuration C;. Configuration C; shows in fact, for
each reconfiguration strategy considered, values largest than those assumed
for other system configurations.

The general trend when comparing the different recovery strategies for the
same system configuration is the following: P+R;+Ryq and P+R; are quite similar
in all configurations, P+R; has largest values than all the other strategies in all
configurations, whilst Ri+Rq has the lowest values than all the other strategies
but in C, (where it has quite the same value as P+R;).

83

P(0,t)

Proactive
recoveries

Figure shows quite the same general trends as those observed in fig-
ure relevant exceptions are the following: i) Ri+Rgq shows very small val-
ues in all configurations; ii) the relationships among the values obtained in
configuration C; are different, because P+Ri* is lower than P+R;+Rg.

The exception of configuration C; both in figure [3.15aland [3.15b|is explained
by comparing it both with C, and with C,, following the same rationale dis-
cussed in the study at varying the number of replicas presented above.

Reactive delayed recoveries on the omissive leader show to be not effective
on the measures of interest for the scenarios evaluated: this is demonstrated by
the fact P+Rj+Rq and P+R; shows quite the same values in all the configurations
evaluated, with P+R; showing even slightly lower values than P+Rj+Ry. When
the recoveries on the omissive leader are performed immediately (as in P+R)),
the values for Pg(t) increase in all configurations (in some cases they are even
doubled). We argue that increasing the accuracy of the diagnosis of omission
faults could reduce the penalty due to reactive recovery actions performed on
a correct leader showing omissive behavior because of network omissions (the
network omissions lasts for A** = 30 seconds on the average, whilst the replica
recovery lasts for Tp = 146 seconds).

Proactive recoveries show to be effective, but too many proactive recover-
ies show to have some negative side effects. This is evident when comparing
configurations C;, C, and C5 in all the configurations which involve proactive re-
coveries (all but R;+Ry), so that the best trade-off is for k = 2. This is evident also
by observing that in all the above configurations Rj+Ry shows quite the same
value for Pg(t). For example, the value of system unavailability Py(0, f) for Ri+R4
is 24% of the corrsponding value for P+R;+R4, showing that proactive recovery
actions play a relevant role in negatively impacting on system unavailability
(there are many recovery actions performed on correct replicas).

Discussion about the PRRW Strategy

The intrusion tolerance is currently obtained through a recovery strategy
based on a combination of proactive and reactive recoveries. The use
of both proactive and reactive recoveries shows to be effective since the two
techniques possess complementary characteristics.

Proactive recoveries periodically rejuvenate all the replicas, without any need
of fault detection mechanisms (also latent/hidden faults are treated). The pe-
riod of the proactive recoveries defines a bounded temporal window (between
two recoveries of the same replica) which represents a time limit for an attack
attempt to be successful. In fact, this is the time an attacker has for conquer-
ing a majority of the replicas and thus for taking the control of the entire
On the other hand, being the proactive recovery an “unconditional” recovery,
the proactive recovery is applied also to correct replicas, which hence become
unavailable for the time necessary to perform the recovery. Moreover, if only

84

proactive recovery is used in a system, a replica hit by a fault will be unavail-
able until the end of its next proactive recovery.

On the contrary, a reactive recovery is triggered only when a fault of a replica
is detected, so its effectiveness depends both on the assumed fault model and
on the coverage of the detection/diagnostic mechanism used (latent/hidden
faults are not treated). Reactive recoveries of the faulty replicas contribute to
decrease system failure probability, as shown in figure they are in fact
performed as soon as possible, however within the duration of [f/k|Tp, without
waiting the next periodic recovery on the same replica. In this way, the recovery
and the rejuvenation of a faulty replica is anticipated with respect to its next
proactive recovery, so the (faulty) replica becomes active and correct earlier.

This behavior apparently suggests that the more reactive recoveries are per-
formed, the worse is system availability, as it appears evidently in figure
for p; = 1. In this case, all the intrusions manifest as invalid behavior and all
the detected intrusions trigger a reactive recovery. In reality, what happens is
that the system ability to survive gets increased, whereas for low values of the
coverage (thus less number of reactive recoveries) the system fails as soon as
replicas get affected by faults.

The strategy, as our analysis reveals, makes a significant difference
in the way omission and invalid behaviors are treated. This is made evident
by observing all the curves at varying values for p;. Actually, invalid behaviors
are detected with coverage cy and trigger a reactive recovery, whereas omis-
sive behaviors are essentially not detected: only the omission of the leader is
detected and triggers some action, whilst the omissions of the followers are
removed only with the proactive recovery. Increasing the capability to detect
(and quickly react) to omissive behaviors is a way to improve the overall fault
tolerance strategy.

3.4.4 Direction for Improvements/Refinements

This section identifies the directions for refining and improving the recovery
strategy. An extended fault model is introduced and some modifications to the
recovery schemes are presented.

New Extended Fault Model

The reactive recovery of the [PRRW] strategy is based on distinguishing and

detecting a limited set of faults in replicas, amongst those possible to occur.

Obviously, the remainder faults are treated, thanks to the strategy of proac-

tive recoveries. We analyze this situation, under the light of the evaluation just

performed, and enumerate a possible set of additional faults to be taken into

account, in the sense of improving both system dependability and availability.
In the strategy, the correct replicas detect the following faults:

85

Reactive
recoveries

Treatment of
omissions vs.
invalids

Faults detected
by PRRW

Additional faults
to be detected

LEADER BENIGN FAULT (LBF): The faulty leader omits to send a signed mes-
sage to the A correct replica will suspect the leader to be “silent”
after O; consecutive leader omissions on the same signed message.

REPLICA MALICIOUS FAULT (RMF): The faulty replica (being it either the leader
or a follower) sends an unsigned message to the |[LAN} a correct replica
will immediately detect the faulty replica to be a “malicious sender”.

It comes out that the schema takes into account both omissive and ma-
licious faults in the leader replica, but only malicious faults in the follower
replicas. The idea is that if a follower is going to have an omissive behavior,
the problem will be eventually treated either by the proactive recovery or by
the election of the replica as a leader (the replica will be extensively monitored
in this case). In both cases, the negative effects of the faults will be eventually
eliminated.

An additional set of faults might be considered by the current reactive recov-
ery mechanisms, since detecting such faults and treating them using reactive
recoveries would improve both dependability and availability of the system.
These faults are listed below:

MALICIOUS APPROVAL (MA): a faulty replica approves an illegal message; the
faulty replica is intruded, because all correct replicas verify the same se-
curity policy.

OMITTED APPROVAL (OA): a faulty replica omits to approve a legal message;
the omission could be caused by communication problems (the replica
never received the legal message), but it could also be the effect of an
intrusion.

MALICIOUS SUSPECT (MS): a faulty replica signals the wormhole an accusa-
tion about a correct replica; the faulty replica is intruded, because a correct
replica does not show any incorrect behavior.

OMITTED SUSPECT (OS): a faulty replica does not signal the wormhole any
accusation about a faulty replica; the omission could be caused by com-
munication problems (the replica never received the legal message), but
it could also be the effect of an intrusion.

In the MA and MS cases, the faulty replica is intruded, so it needs to be recov-
ered as soon as possible; if the faulty replica is not detected as such, it is still
considered correct. In the OA and OS cases, faults could be caused either by
communication omissions (no recovery is useful to solve the problem) or as an
effect of intrusions manifesting as omissive behavior (a recovery could solve the
problem). Devising the adequate mechanisms for faithful detection is a subject
of further study, but we underline possible avenues in the next section.

86

Architectural Modifications for the Detection of the Extended set of Faults

This section describes the architecture modifications necessary to detect the
faults described in section and trigger the reactive recoveries. In order to
perform the detection of the above faults it is necessary to allow each payload
replica to be informed about all the approval results and manifested suspects
taken by all the other payload replicas.

A [SVMFP> mechanism [Nitzberg 91, Morin 97] can be implemented as a reli- Use a shared
able repository where each replica posts all its approval results and suspects; virtual menory
a majority of correct replicas is thus able to identify which replicas took the
wrong approval decisions (if any) or manifested the wrong suspect (if any).

Approval results are stored for each incoming message in a data structure
containing i) an identification for the incoming message m, ii) the approval
decisions collected from all the replicas about m, iii) the final vote given by
the wormhole about m. Suspects are stored in a data structure containing the
suspecter(s), the suspected and the kind of suspect. This information is stored
in the shared virtual memory, using it as a circular buffer in order to make room
for newer information; therefore the is used as a queue of dimension g. If
the information to be broadcasted should be too heavy to be managed through
the wormhole, some form of “compression” can be found.

Each message is identified using its [[Psec/|]AHP® [MACP?. Each approval de- How to use the
cision is stored in an array of n elements, where the i-th element represents SVM
approval result of replica i about message m:

ACCEPT: replica i approves m;

REJECT: replica i does not approve m;

null: no approval information still received from replica i about m;
recovering: replica i is currently recovering.

The final vote can be one of the following: LEGAL, ILLEGAL and VOTING.

The follower payload behavior is monitored as follows. When message m How to perform
comes from the each replica decides whether approving it or not, post- fault detection
ing the final decision in the Not all the replicas will receive m in the same
instant, and each replica will need some time in order to take the approval de-
cision and post it in the repository, but a certain number of approval results
about m will be available in the [SVM| at worst within Ty time after the first
post. Replicas that did not take any approval result till that moment and that
were not recovering (those corresponding to the null array elements) will be
suspected of omission (they could not have received m because of communica-
tion faults or they could have omitted maliciously). Given the final vote about

25 Shared Virtual Memory
26 Authentication Header
27 Message Authentication Code

87

Recovery and
evolution

Hybrid model
and architecture

28

m, all the correct replicas (i.e. all the replicas which approval result is in agree-
ment with the final vote) will be able to identify all the faulty ones (i.e. all
the replicas which approval result is in disagreement with the final vote) and
suspect them as malicious faulty replicas.

3.5 THE FOREVER SERVICE

This section presents the service ([Sousa 08, Bessani 08al]), which is
a service that can be used in systems replicated with diversity and rejuvenated
by periodic replica recoveries in order to sustain a fundamental assumption:
not-increasing probability of intrusion over time. The [FOREVER] service has
been recently defined in the scope of the FOREVERP® project.

The main goal of the service is to enhance the resilience of fault/
intrusion—tolerant replicated systems (e.g. the described in section by
allowing these systems to tolerate an arbitrary number of replica failures with-
out increasing the total number of replicas. Such an ambitious goal is achieved
through the combination of two important and complementary mechanisms:
recovery and evolution.

allows an intrusion—tolerant system to recover from past malicious
actions/faults, by cleaning the effects of such actions through periodic and on—
demand recoveries that neutralize the effects of both undetected and detected
faults and intrusions. Moreover, when[FOREVER|triggers a recovery of a certain
replica, it not only cleans the effects of previous malicious actions/faults, but
also evolves the replica, modifying the vulnerabilities that may be exploited
by a malicious adversary, by applying a set of configuration diversity rules
(e.g. changes O.S. access passwords, randomizes open ports, switches between
different authentication methods). These rules ([Bessani og]) are explained in
section

In order to avoid the possibility that itself becomes a victim of
malicious attacks, a fault/intrusion—tolerant system enhanced with
should be built under a hybrid system model and architecture [Verissimo o6al
in which the system is composed of two parts, with distinct properties and as-
sumptions; these two parts are typically called payload and wormbhole (see figure
3.16). The fault/intrusion—tolerant application (and replication library) runs in
the payload part, exposed to arbitrary faults and asynchrony. The
service runs in the wormhole part, that is guaranteed to be secure and timely
by construction. A more detailed description of the service is avail-
able in [Sousa 08].

Fault/intrusiOn REmoVal through Evolution & Recovery

88

Internet
(clients, attackers, ...)

A J

eplica1 eplica “Replica3 (Replica4

| Fault/Intrusion-Tolerant application |

| BFT replication library |
OREVER

[] asynchronous and exposed to arbitrary faults
[l synchronous and secure

Figure 3.16: The hybrid and replicated FOREVER architecture: the fault/intrusion—
tolerant application and replication library run in the payload, the
FOREVER service runs in the wormhole.

3.5.1 Introducing Diversity

The main resilience goal of using any redundancy in an architecture design is
to minimize the probability that a failure/intrusion of one of the components
will lead to a system failure/intrusion.

The designer of a fault-tolerant system can use various forms of diversity in
order to obtain failure/intrusion diversity between components:

SIMPLE SEPARATION OF REDUNDANT EXECUTIONS: thisis the weakest form,
but it may yet tolerate some faults/intrusions. In the database research
community it is well known that many bugs in complex, mature soft-
ware products are “Heisenbugs” [Gray 86|, i.e. they cause apparently non-
deterministic failures. When a database fails, its identical copy may not
fail, even with the same sequence of inputs. The reported phenomena of
Heisenbugs that we are aware of concern non-malicious activity, but may
also be applicable for malicious behavior (e.g., some sort of brute force
attack against a system which only leads to a successful penetration un-
der certain non-deterministic combinations of behaviors in the running
system).

DESIGN DIVERSITY: the typical form of parallel redundancy for fault toler-
ance against design faults (either accidental or intentional); the multiple
replicas of the state of a system are handled by diverse software compo-
nents.

89

Configuration
diversity rules

DATA DIVERSITY: for some systems there may be a natural redundancy in the
input language which allows the demands to the system to be expressed
in syntactically different but logically equivalent forms [Ammann 88]. A
practical example is the SQL language for databases where a sequence of
one or more SQL statements can be “rephrased” into a different but logi-
cally equivalent sequence to produce redundant executions (see [Gashi 06]
for a recent study with SQL database servers).

CONFIGURATION DIVERSITY: this form of diversity can be seen as a special
form of data diversity. Software products often come with many configu-
ration parameters affecting for example the amount of system resources
they can use (amount of RAM, CPU time), port number used for com-
munication, authentication method etc. Given the same software product,
varying these parameters between two installations can produce different
implementations of the data and the operation sequences on them, and
thus decrease the risk of the same bug/vulnerability being triggered in
two installations of the same software.

These precautions can in principle be combined. For instance, data diversity
can be used with diverse software products; diverse software products can be
deployed with configuration diversity of the different software. The choice will
depend on the cost (e.g. purchasing the software), maintenance costs from in-
creased complexity, time to deployment etc.

In what follows we summarize rules of configuration diversity which aim
to enhance the resilience of software in between recoveries (see Table [3.2). Full
details can be found in [Gashi 08], where the types of attacks the rule would
help in alleviating are listed.

The structure of Table [3.2]is as follows:

ID: the rule identifier (the same as in [Gashi o8] for easier traceability).
RULE NAME: a concise description of the rule.

DESIGN IMPLICATIONS: implications on the architectural design of the oper-
ating system (O.S.) or application to which the rule is applied:

IMPLEMENTATION INTRUSIVENESS: is access to the internal implemen-
tation of the O.S. or applications required to apply the rule (white—
box) or can the rule be applied simply through the utilization of
the O.S. or application’s configuration parameters (black-box)? There
might also be gray—box solutions for which the implementation of the
rule may not need to have access to the internal implementation of
the O.S. or application but it can be build on top of its [APIP. This is
especially useful for proprietary operating systems and applications

29 Application Programming Interface

90

D | Rule name Design implication Security
Impl. intru- | Client notifica- | category
siveness tion required?

1 Password change B Yes C

2.1 | Different authentication protocols | W,Bor G | Yes C

2.2 | Different Trusted Third Parties W,BorG No Cand A

3 Different “factors” in n-factor au- | W, B or G Yes C

thentication methods

4.1 | Address Space Layout Random- | W No I

ization (ASLR)

4.1.1| Pointer obfuscation \% No I

4.1.2| Randomization of global vari-| W No I

ables and local variables offsets

4.2 | Address Space Partitioning W,BorG No I

4.3 | Stack Frame Padding W,BorG No I

4.4 | Basic Block reordering W,BorG | No I

5.1 | Instruction set randomization W,BorG No I

5.2 | Instruction set tagging W,BorG | No I

5.3 | Instruction Reordering W,BorG | No I

6.1 | Diverse Linux User IDs (UID) W,BorG No Iand C

7 Change IP addresses of the hosts | B Yes Cand A

8 Changing listening port numbers | W,Bor G | Yes Cand A

9 Adding or deleting non-| W,BorG | No I

functional code

10.1 | Varying dynamic libraries and | W No I

system calls

10.2 | Varying unique names of system | W No I

files

10.3 | Varying magic numbers in certain | W No I

files (e.g., executables)

Table 3.2: Configuration rules for diversifying the deployment of an O.S. or an ap-
plication. Abbreviations: (W)hite—, (B)lack—, (G)ray-box; (C)onfidentiality,
(Dntegrity, (A)vailability.

91

for which access to the implementation is not provided. For some
of the rules, depending on the application or O.S. implementation,
any of these implementation types (white—, black— or gray-box) are
possible; in those cases we list all (or a subset of the options) for a
given rule (see [Gashi 08|] for more details about the scenarios under
which a given implementation solution is possible).

CLIENT NOTIFICATION REQUIRED?: should client applications of the
O.S. or application to which the rule is applied be notified once the
rule is applied?

SECURITY FRAMEWORK CATEGORY: under which CIA (Confidentiality, Integrity,
Availability) category does the rule fall into.

How rules were The configuration diversity rules were generated in the following ways:
generated
BOTTOM-UP: exploring the implementations of operating systems (e.g. Linux

and Windows) and applications (e.g. database servers as PostgreSQL, In-
terbase, Oracle, MS SQL), and identifying the features and interfaces that
can be diversified and configured in different ways.

TOP-DOWN: exploring reported vulnerabilities (such as those reported in the
U.S. National Vulnerability Database (NVD)3°) and defining rules that can
“workaround” or protect against the types of vulnerabilities and attacks
listed in these sources.

LATERAL: reviewing existing literature of configuration rules for protection
against malicious behavior (such as [Forrest 97]).

Which rule may be most effective at improving the security of a given system
will depend on the operational and threat profile of the system. For example,
attacks that exploit memory programming errors (e.g. buffer overflows) are one
of today’s most serious security threats; these attacks require an attacker to have
an in—depth understanding of the internal details of the system being attacked,
including the locations of critical data and/or code. Address obfuscation tech-
niques such as Address Space Layout Randomization (listed as rule 4.1 in Table
randomize the location of program data and code each time a program is
executed. It has been shown that address obfuscation can greatly reduce the
probability of successful attacks [Bhatkar o5, [Pucella 06]. Given that recoveries
force the restart of every program in the system, they are a perfect opportunity
of introducing address obfuscation both at the O.S. and application level.

30 The U.S. NVD is available at http://nvd.nist.gov/

92

http://nvd.nist.gov/

31
32

36 QUANTITATIVE EVALUATION OF THE FOREVER SERVICE

This section presents the quantitative analysis of the service, aiming
to quantify how much this service enhances the resilience of the system in
which it is implemented. The quantitative analysis evaluates the probability of
system failure through variation of the following parameters:

¢ Time between recoveries;
¢ Penalty due when diversity is not applied;
¢ Probability of common vulnerabilities;

* Mean effectiveness of configuration diversity rules applied.

The replicated system used to assess the service is composed by n
replicas and can tolerate up to f failed replicas, with n > 3f+ 1.

We assume a replica suffers arbitrary faults; we assume one single failure
mode for a replica: failed. For ease of modeling, we assume that a replica, as
soon as it is hit by a fault, explicitly manifests a permanent failure. Despite di-
versity, we assume the existence of common faults (e.g. common vulnerabilities)
in pairs of replicas; in particular, we assume that, given that replica i is faulty,
the same fault can affect also replica j at the same time (i, j € {1, ..., n}). The
(overall) system fails if the number of failed replicas is greater than f.

Replicas were diverse both in space (design diversity) and in time (applica-
tion of diversity rules).

Design diversity was modeled assuming that each replica has its own fail-
ure rate A? obtained by multiplying a basic value A, = 107> (about one failure
per day, as in [Daidone 08]]) with a replica—specific multiplier3* obtained from
the results of the study reported in [Bessani o8b]. We pessimistically as-
sumed that A? was increased by an aging penalty value 5, = 107° (10% of the
basic failure rate) when no configuration diversity rule was applied during a
recovery.

We modeled diversity in time domain by updating the basic replica failure
rate A? after each recovery in the following way:

)\?(after) =)\?(before) + 00 (1—8x), (34)

where 6, € {0, 1} is an effectiveness parameter3> obtained as the mean value for
the effectiveness parameters of all the applied rules.

Despite diversity, we assumed the existence of common faults (e.g. common
vulnerabilities) in pairs of replicas. Common faults were modeled taking into

The multipliers used for this analysis were 1.0, 1.8, 1.5 and 1.9.

dx = 0: the rule is not effective at all, e.g. it changes the number of a listening port that is
not used; 6x = 1: the rule has the optimal effect, e.g. it changes the root password after a root
password compromise.

93

Fault
assumptions

Diversity in the
space domain

Diversity in the
time domain

Common faults

Recovery strategy

33

account the conditional probability 6V that replica i is faulty, given that replica
j is hit by the same fault. The basic values for 8 were set based on the results
of the study [Bessani 08b], assuming that a common fault between two
replicas was mainly due to the exploitation of a common vulnerability between
the corresponding operating systems; all details are discussed in section

The modeled recovery strategy managed proactive recoveries only (as in
PBFT [Castro 02] and COCA [Zhou 02]), performed sequentially “one-at-the—
time” on a round robin basis. Each recovery action lasted for T = 120 sec-
onds?3; a waiting time Ty took places between recoveries, so that the recovery
period was Tp = n(Tr + Tw) seconds. The recovery process was assumed fault—
free (a replica is correct after its recovery).

Measure of interest and relevant parameters

We evaluated the (overall) system failure probability Pg(t), that is the probability
of having more than f failed replicas, varying the following parameters:

1. Mission time t. We are interested in investigating how system failure prob-
ability changes over time.

2. Recovery period Tp, acting on the waiting time Tw between the recovery
of replica i and the recovery of replica i+1.

3. Basic value 8, for the penalty on replica failure rate after a recovery action
if diversity is not applied.

4. Probability 6;; of common faults among different replicas; values assigned
to 045 have a direct impact on system failure probability, given that using
n = 4 replicas (so being able to tolerate at most f = 1 failure during
a recovery slot) the overall system fails as soon as one common fault,
affecting a pair of replicas, occurs.

5. Mean value &, for the effectiveness parameters of the configuration diver-
sity rules.

The FOREVER Model

The quantitative evaluation of the service was performed using a
modeling methodology based on the following argument: recovery actions de-
termine a change in the overall system configuration, therefore it is possible to
represent the entire operational life split into different periods of deterministic
duration called phases. This feature allows a reconfiguration strategy to belong

As in the analysis described in section where a prototype of a system replicated with diver-
sity, possible target for the FOREVER|service, is presented.

94

to the [MPSp4 class for which a modeling and evaluation methodology exists
[Mura o1], supported by the tool [Bondavalli o4b].

Using[DEEM] the model is split into two logically distinct sub—nets: the Phase
Net (PhN) representing the schedule of the various phases, each one of deter-
ministic duration, and the System Net (SN) representing the behavior of the
system. Each net is made dependent on the other by marking-dependent pred-
icates that modify transition rates, enabling conditions, reward rates etc. Re-
ward measures are defined as Boolean expressions, functions of the net mark-
ing. Both the analytic [Mura o1] and simulation solutions [Moretto 04] can be
used in order to exercise the models; the measures of interest defined for this
analysis were evaluated using the analytic solver.

The phase net (figure models the scheduling of the recovery actions de- Phase Net
scribed earlier in section The deterministic transition Waiting models the
time Tw between two consecutive recovery actions; the deterministic transition
Recovering models the duration Tr of a recovery action, so place StartRecov-
ery contains a token during a recovery action. The marking of place CountLap
counts the number of recoveries performed since the start, and it is used to
compute the index of the replica currently under recovery.

StartWaiting EndWaiting

R

Continue

EndRecovery Stmrd{ey >
Recovering Q

Figure 3.17: The phase net of the FOREVER model.

The system net of the model is composed by n = 4 similar subnets System Net
modeling failures and recoveries of one replica each, one subnet to keep track of
system failures and one subnet to model the initialization of the overall system
net. The rest of the section presents the subnet modeling failures and recoveries
of replica 1 (the other subnets are similar) and the subnet modeling system fail-
ure; the description of the initialization subnet can be omitted without affecting
the comprehension of the model.
Figure shows the subnet modeling replica 1; the left part of the subnet
models the failure of the replica, while the right part models the replica recov-

ery.
34 Multiple Phased System

95

Replica failures

Replica recoveries

System failure

Kol
—___ Empty_Running! ____ Empty_Recovering]
@ S |
nm.E\ Conl l T T
l s _ | Running1 | Recovering!
— Empty_OKI ___ Empty_KOI .
Tdeltal2
| [T StartingRecoveryl En(hngkeco\erylﬁ
Y Tdelan1 |]'(lel(;|H w

Tdeltal4

Figure 3.18: The subnet of the system net modeling failures and recoveries of replica 1.

The failure of replica 1 is modeled as follows. As long as place OK1 contains
one token, replica 1 is correctly working; one token in place KO1 represents
the failure of the replica. The exponential transition Failure1 represents the time
to failure with rate A} (the value of A}, changes accordingly to formula .
The immediate transitions Tdelta12, Tdelta13 and Tdeltai4 and Tdelta11 fire in
a concurrent way with probabilities 812, 613, 814 and (1 — 812 — 813 — 014) re-
spectively. Transitions Tdelta12, Tdelta13 and Tdelta14 are connected with places
KOz, KO3 and KOg¢ respectively (those places are not represented in figure
for space reasons) and are used to model the common faults between replica 1
and the other replicas. The rationale behind is the following. As soon as replica
1 fails, one token is put in place Corrz; all the four Tdelta* transitions are now
activated, but one and only one of them fires, emptying place Corr1. If Tdelta11
fires then nothing happens, modeling the case in which the fault causing the
failure of replica 1 is not a fault in common with another replica. If instead
Tdelta12 fires, then one token is put in place KO2, emulating this way a com-
mon fault between replica 1 and 2 (place KO1 contains one token also, because
of the firing of Failurez). Similar behavior is captured with the firing of Tdelta13
and Tdelta14.

The recovery of replica 1 is modeled as follows. Place Running1 contains a
token as long as replica 1 is not recovering, whilst place Recovering1 contains
a token as long as replica 1 is recovering. Recoveries are triggered based on
the marking of the phase net: StartingRecoveryi fires based on the marking of
both StartRecovery and CountSlot (to discriminate whether the current round is
the round in which replica 1 has to be recovered); EndingRecovery1 fires when
place EndRecovery contains one token (the firing priority of EndingRecovery1 is
greater then the firing priority of NextLap). As long as replica 1 is recovering,
the immediate transitions Empty_OKz1 and Empty_KO1 can fire, emptying the
places which they are connected to.

The subnet shown in figure[3.19/models the system failure. Place SysNotFailed
contains a token as long as the system is not failed, whilst place SysFailed con-
tains one token when the system fails. The immediate transition SysFailure fires
based on the marking of the places KO1, KOz, KO3 and KO4 (more than f =1
of these places contain one token); the occurrence of a system failure makes all

96

the immediate transitions Empty_* fire, stopping all the activity in the system
net.

SysNotFailed SysFailed

SysFailure

Figure 3.19: The subnet of the system net modeling the system failure.

The evaluation of the measure of interest Pg(t) involves specifying a perfor- Reward
mance (reward) variable and determining a reward structure for the perfor- structures
mance variable, i.e. a reward structure which associates reward rates with state
occupancies and reward impulses with state transitions.

System failure probability Pr(f) was evaluated in terms of an “instant of time”
performance variable which is based on the following reward structure:

4

IF (MARK(SysFailed)=1) THEN (1) ELSE (0)

Evaluation Parameters

This section presents the definition of the evaluation parameters and the values
assigned to those parameters.

We assumed to use n = 4 replicas, which is the minimum number of repli-
cas in order to tolerate f = 1 faulty replicas. Replicas use different operating
systems: FreeBSD, Solaris, Linux and Windows 2000 (shortened to “Win2K”).
In order to set the values of replica failure rates and probabilities of common
faults, the results of the study [Bessani 08b|] were used?>. The information
in [Bessani o8b] relevant for the scope of this analysis is reported in Table
the number of vulnerabilities of the above mentioned operating systems (2"
column) and the number of common vulnerabilities between all the couples of
operating systems (from 3™ to 5™ columns).

The values for the replica failure rates A, were set as follows. The values Replica failure
shown in Table about reported vulnerabilities between 1999 and 2007 docu- "¢
ment that 1424 vulnerabilities were reported in that period, that is an average
of 178 vulnerabilities per year. Given that this was the trend before 2007, we can
assume the same trend after 2007, and hence consider that there are 178 new
vulnerabilities every year. Given that patches are eventually defined to correct
the reported vulnerabilities, and that those patches are eventually installed, we
assume that the mean period during the year in which the reported vulnera-
bilities are uncovered (they exist in the system, but are not patched) is 10% of
the overall year. We assume also that an attacker has the 10% of the overall
knowledge about the uncovered vulnerabilities.

35 The available data encompasses vulnerabilities reported between 1999 and 2007.

97

Penalty for
missing diversity

Common faults

Effectiveness of
diversity rules

common vulns
O.S. vulns
Winz2K | Linux | Solaris
FreeBSD 229 3 11 18
Solaris 411 3 5
Linux 437 3
Win2K 347

Table 3.3: Operating Systems’ reported vulnerabilities (from NVD [Bessani o8b]) be-
tween 1999 and 2007.

All the above considerations lead our replicated system to suffers about 2
successful attacks per year to the brand new vulnerabilities, which corresponds
to a (basic) successful attack rate Aa = 2E-4 (expressed wrt hours). In order
to differ the failure rate of each replica, the basic failure rate was multiplied
by the following values: 1.0 for FreeBSD, 1.8 for Solaris, 1.9 for Win2K and 1.5
for Linux. These multipliers were obtained based on the values in Table
weighting the number of reported vulnerabilities of a specific operating system
using the total number of vulnerabilities.

The basic value for the penalty 5, on replica failure rate Ao when no diversity
is applied during recovery actions was set pessimistically to 6, = 2E-5, that is
10% of the basic failure rate.

Common faults were modeled taking into account the conditional probability
§Y that replica i is faulty, given that replica j is hit by the same fault. The basic
values for 59 were set-up according to the information in Table assuming
that a common fault between two replicas is mainly due to the exploitation of a
common vulnerability between the corresponding operating systems. Table
shows the values used for 6.

)
%y FreeBSD | Solaris | Linux | Win2K
FreeBSD - 0.029 | 0.017 | 0.005
Solaris 0.029 - 0.006 | 0.004
Linux 0.017 0.006 - 0.004
Win2K 0.005 0.004 | 0.004 -

Table 3.4: Probability of common faults among all the couples of O.S. considered.
Twenty diversity rules Ry were considered (see Table [3.2 for a complete list

of them) and applied during each recovery action. The effectiveness oy of a
given rule depends on several factors, so it is very difficult to define its value

98

36

37

precisely; this is the reason why we considered their mean value 0, at their
place and evaluate it for a set of values.

The recovery duration Tr was set3® to Tr = 120 seconds; the duration of the
waiting time between two consecutive recovery actions was set to Tw = 0.

Study | Tw (sec) o (hours) Ox 8y
1 {0, 360, 0 0 b5
480, 840}
2 0 {0, 2E-6, 2E-5, 1E-5} 0.8 dyj
3 0 0 0 {0, 1,5, 10} x 8;
4 0 2E-5 {0, 0.2, 04, b5
0.6, 0.8, 1}

Table 3.5: Values assigned to the evaluation parameters for each study evaluated; the
values for b;; are those listed in Table

3.6.1 Evaluation results

We evaluated the (overall) system failure probability Pg(t) (i.e. the probability of
having more than f failed replicas) over mission time t, varying the following
parameters: i) recovery period Tp (acting on the waiting time Ty), ii) aging
penalty 8, iii) probability 8i; of common faults and iv) mean value 6, for the
effectiveness parameters of the configuration diversity rules.

The measure of interest was evaluated using the analytic solver for all the
studies performed (with e = 1071°, Maxiter = 10%)37. Table summarizes
the values assigned to the model parameters for each study.

The first study was performed to find the optimal configuration for the recov-
ery strategy described above; this means having played with the waiting time
Tw between two consecutive recovery actions. System failure probability Pg(t)
was evaluated over time for four different recovery strategy configurations, cor-
responding to the following values of Tw: {0, 360, 480, 840} (sec). This study
was evaluated in the simplistic case where no penalty is applied on replica
failure rate (55 = 0) and no configuration diversity rules are applied during
recoveries (6x = 0) in order to isolate the impact of Tw on the measure of
interest.

Figure shows that system failure probability Pg(t) increases over time for
all the configurations evaluated, with a bias proportional to the value of Tw;

This value comes from [Daidone 08|, where a prototype of a system replicated with diversity,

possible target for the [FOREVER|service, was studied

€ represents the error tolerance, Maxiter the maximum number of iterations that has to be
considered by the transient solution method

99

Recovery
duration

Study at varying
the waiting time
Tw

Study at varying
the penalty 5

3.0E-04 - r
IT,=840 A

=480 -
2.5E-04 =360 -

1omp

2.0E-04 A

1.5E-04 -

1.0E-04 4

5.0E-05 -

System Failure Probability Pg(t)

0.0E+00 W : : ‘
0 10000 20000 30000 40000

t (hours)

Figure 3.20: System failure probability Pg(t) over mission time ¢ at varying the waiting
time Tw between two consecutive recovery actions; no penalty applied
(55 = 0), no diversity applied (8x = 0).

the best result for Pg(t) is obtained for Tw = 0 (evidenced in figure with a black
filled marker). This is in line with the qualitative perception that the more recov-
ery actions are performed in a certain time window, the less the probability of
system failure is. Based on this result, all the rest of the evaluations (described
in the rest of this section) were performed by setting Tw = 0.

The second study was performed at varying the basic penalty 6, on the
replica failure rate, in order to quantify how much it affects system failure
probability. System failure probability Pg(f) was evaluated over time for three
values of &, {2E-6, 2E-5, 1E-5} and for the (ideal) case in which 6, = 0. This
study was evaluated in the case in which the mean effectiveness of the configu-
ration diversity rules applied during replica recoveries is &, = 0.8.

4.5E-04 1 r

8\=1E-5 s
o 4.0E-04 &\=2E-5] Al
s O\=2E-6 g
°>-‘ 3.5E-04 - (ideal case) §,=0 () A +
Z 3.0E-04 1 S Bl
®©
Q
S 25E-04 -
o
(0]
£ 208041 AN L
T
& 15E-04 - H
£
S 1.0E-04 - |
"
>
9N 5.0E-05 1 H
0.0E+00 &~ ‘ ‘ ‘
0 10000 20000 30000 40000

t (hours)

Figure 3.21: System failure probability Pg(f) over mission time t at varying the “aging
penalty” 6, (with 5, = 0.8).

100

Figure shows that the impact of 5, on system failure probability Pg(t)
increases as the penalty increases, so that after 40000 hours of service, one
order of magnitude on 8, corresponds to a doubled value for Pg(t). It is worth
to mention that 9, is not a parameter under the control of the system designer,
so here we are making a pessimistic hypothesis.
The third study was performed at varying the probabilities 6i; of common Study at varying

faults between couples of replicas. System failure probability Pr(t) was evalu- the probability
815 of common

1.0E-02 1 . faults
= /NN, VAN
€ 1.0E-03 - e ﬁ & _‘ !
a A |:| =) .y
£ 1.0E-04 | A A
2 g
S 1.0E-05 L - B X 10 ek i
1]
% v gijx 5 o
5 1.0E-06 1 X 1 g L
3 (ideal) 8 X O -
1.0E-07 1 OO OO
g o099 ©
[O
& 10E08{ © i
1.0E-09 O : ‘ ‘
0 10000 20000 30000 40000
t (hours)

Figure 3.22: System failure probability Pp(f) over time at varying the probability of
common fault 835 (with 8) = 0 and dx = 0); y is log—scale.

ated over time for four set of values for &;;. The first set considered contains
null values (no correlations at all), the second set is the basic one (see Table[3.4),
the third set is obtained from the basic one by multiplying each value by 5, the
fourth set by multiplying by 10. This study was evaluated in the simplistic case
where no penalty is applied on replica failure rate (5, = 0) and no configura-
tion diversity rules are applied during recoveries (6x = 0) in order to isolate the
impact of 8i; on the measure of interest.

Figure shows how system failure probability Pg(t) varies over time for
each set of values for 6;;; please note that y—-axis is log-scale. The curve with the
circle marker correspond to the (ideal) scenario in which there are no common
faults between replicas (all 5;; = 0).

The shape of the curves does not change at varying the multiplier used, but
the corresponding values change: between the ideal case (x0) and the basic d;;

(x1) there are three orders of magnitude; four orders of magnitude between
ideal case and worst case considered (x10).

The forth study was performed at varying the mean effectiveness 8, of the Study at varying
configuration diversity rules applied during replica recoveries. System failure the mean
probability Pg(t) was evaluated over time for o, € {0, 0.2, 0.4, 0.6, 0.8, 1}. The g;i::;’:f;sri;‘es
two extreme values have the following interpretation: if 6x = 0 then the effect
is the same as not applying rules at all; if 6x = 1 then the effect is the same as

101

not having the penalty 6, at all (ideal case). This study was evaluated in the
pessimistic case in which the penalty is set to o) = 2E-5.

8.0E-04 4 r

jod)

I I IR

7.0E-04 -

10,0101
cooo
RO BMNO

6.0E-04 -

0=

5.0E-04 | (ideal case)

4.0E-04 +

3.0E-04 -

O 4 X H X >
O 4 X T %

2.0E-04 -

System Failure Probability Pg(t)

1.0E-04 -

0.0E+00 E@u\“\\\\\gﬁ ‘b R | ‘
0

10000 20000 30000 40000
t (hours)

Figure 3.23: System failure probability Pp(f) over mission time ¢ at varying the mean
effectiveness &« of the configuration diversity rules (6, = 2E-5).

Figure shows that the impact of 5 on system failure probability Pg(t)
is such that after 40000 hours of service the difference among the two extreme

values corresponding to x = 0 and 6« = 1 is less then one order of magnitude
(it is about 6E-4).

Analysis outcomes

There is always an increasing trend of the probability of system failure Pg(t) for
every line in every graph presented in this section, even if replicas are recov-
ered and even if diversity rules are applied. This depends both on the system
intrinsic characteristics and on the assumptions made: replicas are inevitably
subjected to fail, so, even if they are recovered, they still do fail; the introduc-
tion of diversity in the time domain was assumed to, at best, maintain constant
the failure rate of a replica, so the failure rate cannot decrease.

The results presented in this section lead to the following considerations.

Proactive recoveries help in keeping down system failure probability (figure
; furthermore, it is better to recover as fast as possible: of course, this is
true unless availability or performability measures of interest are considered
(e.g. there could be a trade—off between system failure probability and system
availability).

Design diversity highly improves the dependability of the system: figure
shows also the difference between cases of no failure correlation and the failure
dependencies between the operating systems which were obtained from the

102

38

INVD|study. The lower is the common failure rate between the replicas deployed
in the system, the lower is the overall system failure rate3®

Another result is that the higher is the effectiveness of the configuration diver-
sity rules, the lower is the system failure probability (figure[3.23), substantiating
the claim that it is better to apply some rule (even a modestly effective one) than
applying no rule at all. Of course, this is only true under the assumption that
rules cannot worsen security.

3.7 CONCLUDING REMARKS

The quantitative analysis described in this chapter has shown that enhancing
the resilience of a redundant system is a matter of trade—offs when both system
failure probability and system availability have to be taken into account.

All starts from the consideration that system failure probability inevitably
increases over—time and cumulates over the recovery periods as a geometric
random variable (see section [3.4.3), so the question is how to keep system fail-
ure probability down as much as possible within each cycle. This chapter has
shown that periodically recovering replicas and introducing diversity both in
the time and space domains are effective and complementary strategies. Some
considerations have to be made.

Proactive recoveries are effective in lowering down system failure probability,
and performing a periodic recovery on the same replica as soon as possible
improves this benefit (as shown in [3.20), but performing too many proactive
recoveries in a given time window shows to have some negative side effects on
system availability (e.g. see the comparison among configurations C,, C, and
G5).

Reactive recoveries help in keeping system failure probability down (see fig-
ures [3.11a} [3.12a] or [3.12b)), but their effectiveness strictly depends on the ca-
pability of correctly detecting and diagnosing faults: see the role of cy and
the effect of performing delayed reactive recoveries on leaders diagnosed to be
omissive (see the results of the study comparing the strategies and the number
of replicas).

Another important parameter to be set up is 1, the number of replicas in
the system. Increasing n not necessarily helps in keeping down the measures
of interest, being an additional replica not only an help for contributing to the
service provided by the system, but also a source of faults (see the study at
varying n).

The introduction of diversity in space and time domains helps in lowering
down the impact of common faults on the measures of interest: see for example

This is an obvious observation, but the analysis performed has given a measures of how much
worse the overall system failure becomes when the common failure rates of the replicas increases.

103

figure or figure (regardless of the effectiveness of the configuration
diversity rules, it is better to apply some rule than applying no rule at all).

104

SOLUTIONS FOR ADAPTIVE OPERATION

This chapter describes the application of the principles presented in chapter
within the scope of the HIDENETS" project. HIDENETS addressed the provi-
sion of available and resilient distributed applications and mobile services with
critical requirements on highly dynamic and possibly unreliable open commu-
nication infrastructures.

The HIDENETS objectives and requirements are presented, focusing in par-
ticular on a practical application taking advantage of the HIDENETS results:
the platooning application. The platooning application is a safety critical ap-
plication requiring timeliness and security. A specific test bed (the platooning
test bed) was defined within the project in order to demonstrate a prototypal
implementation of the platooning application [Marques og].

The architecture of HIDENETS [Casimiro o7] is presented, focusing in partic-
ular on the services devoted to diagnosis and reconfiguration: diagnostic man-
ager and reconfiguration manager. Both the diagnostic manager and the reconfig-
uration manager are defined following the basics of the diagnosis framework
proposed in section Then the implementation of a simple service (named
DM+RecM) performing diagnosis and reconfiguration is presented in the scope
of the platooning test bed.

The last part of the chapter presents a quantitative analysis of some fault
diagnosis and reconfiguration strategies for the management of a replicated
server pool (part of this work is in [Lollini 08]). The focus of the quantitative
evaluation is understanding the impact of the parameters of the reconfiguration
strategies and obtaining the optimal parameter configuration for a selected set
of fault scenarios. The implementation of such a redundancy management in
HIDENETS is enclosed in the middleware service named replication manager.

4.1 HIDENETS OBJECTIVES AND REQUIREMENTS

The overall objective of HIDENETS was to develop the required innovative
technology to enable the design and validation of applications and services in
mobile scenarios that have to satisfy stringent dependability and resilience re-
quirements. Challenges, threats, and resilience requirements were identified by
thinking mainly to car-to-car scenarios with additional infrastructure support.

HIDENETS is a recent STREP (Specific Targeted Research Project) funded by the IST programme
of the European Commission (Contract IST-2004-26979). http://www.hidenets.aau.dk/

105

http://www.hidenets.aau.dk/

An Hybrid
Architecture

request

Ad hoc domain Infrastructure domain

Figure 4.1: Application domains addressed in HIDENETS: the ad-hoc domain (e.g. a
communinicating vehicular network) and the infrastructure domain (e.g. a
back-bone IP network).

HIDENETS distinguished two fundamentally different domains (depicted in
figure [4.1):

AD—HOC DOMAIN: in this domain service access and service deployment are
performed in a (multi-hop) wireless setting; this implies that the prop-
erties of communication links are subjected to large variations, and that
network topologies -and hence reachability relationships- change dynami-
cally. A specific instance of this domain is the car—to—car use case scenario,
where the ad—hoc domain consists of communicating vehicular networks.

INFRASTRUCTURE DOMAIN: this domain consists of a back-bone IP network
connecting both service providers as well as service clients. Parts of the
ad-hoc domain may be connected to the infrastructure domain via cellu-
lar access (GPRS/UMTS) or via WLAN hot-spots.

The challenges faced up by HIDENETS beyond the dynamicity and mobility
of the scenarios considered were the openness of the system, the use of COTS
components, the heterogeinity of the system nodes (different capabilities and
available resources) and the large number of nodes involved.

Fault categories considered encompassed design—-time and run-time faults,
timing (omission, crash) and value faults, transient and persistent faults, with
accidental and malicious causes. Detailed fault models and failure modes de-
pend on application type and technical realization.

Several application were envisioned which could illustrate the potential bene-
fits of the HIDENETS services from the end-to—end perspective; the focus here
is on the platooning application, which will be described in details in section

4.2 HIDENETS ARCHITECTURE

The HIDENETS node was designed using the hybrid architecture proposed in
[Verissimo o6al] and depicted in section two separated parts can be hence

106

identified in the node architecture, one corresponding to the wormhole, the
other one to the payload. The architectural block which realized the architec-
tural hybridization concept in HIDENETS is the resilience kernel [Casimiro oy].
The resilience kernel is represented in figure |4.2| by the white box comprising
both the simple trusted services and the resilience hardware boxes.

Reconfiguration o Platooning
c
QoS Coverage 5 Cod
¢
Replication Q @
Ss Applications
g o
L B @
(3
Cooperative Complex Resilience Middleware Services =t
Data Backup = P (¢}
I .
=
- <
: - U< (" og Optimized Network 8
e Detection BB o Protocols o
allure Detection 9. g Slmple : g
Freshness Det % g _< Trusted g TCP UDP =X
Services —_
(1
Trust & Cooperation o Network / IP
Authentication g Network Drivers
R&SA Clock N ~
ocC!
Resilience HW I
Duration Measurements (GPS, ctrl, ...) Network Interface Cards (COTS) E

Figure 4.2: The hybrid architecture of a HIDENETS node.

The following layers (listed bottom—up) compose the architecture of a generic
HIDENETS node:

THE HARDWARE LAYER: it comprises all the hardware supporting the node,

part of which being

THE COMMUNICATION /NETWORKING SUPPORT: this block runs at operat-
ing system level and includes general communication functions related

to layers 2, 3 and 4 (e.g. Network drivers) on top of which
optimized network protocol are defined.

THE MIDDLEWARE LAYER: this layer provides functions supporting resilience.
The software included within the middleware layer is thought of as trust-
worthy and is allowed to use operating system functions, read variables
and even interact with low level hardware.

THE APPLICATIONS LAYER: regular applications may be installed and run by
users in this layer; even if some resilience functions are built into the
applications themselves, this layer is thought of as potentially untrusted.

107

Simple and
trusted resilience
services

Complex
resilience services

Design
organizations

The resilience services defined within the HIDENETS node were classified
into two categories: simple and trusted vs. complex resilience services.

The simple and trusted resilience services are referred to as timeliness and
trustworthiness oracles, where the term “oracle” was used just to underline the
idea of a service that provides trusted service. Those services are enclosed in
the resilience kernel and were designed as simple/small as possible, since sim-
plicity is fundamental to ensure increased predictability and trust (according to
the design philosophy of wormhole-based systems).

The complex resilience services are enclosed in the middleware, so they are
running on top of a potentially asynchronous model; these services use and
rely on the trusted part if and when required, but essentially for the execution
of critical steps during their operation.

The focus here is on diagnostic manager and reconfiguration manager ser-
vices, both enclosed in the so—called fault tolerance manager block (see the top-
left part of figure[4.2)), which is the subset of complex resilience services directly
related to the management of the fault-tolerant activities.

4.2.1 The Diagnostic Manager service

This section summarizes the design principles of the diagnostic manager (DM)
service; the full details can be found in [Casimiro o7].

The DM is the middleware service in charge of managing all the activities
necessary to judge if the HIDENETS system (or parts of it) is (are) working
properly or not. The DM judgments are sent to the fault removal mechanisms,
which deals with how to prevent the fault to be activated again (reconfigura-
tions in the HIDENETS system are managed by the reconfiguration manager
described in section [4.2.2).

The DM, being part of the Fault Tolerance Manager block (see figure [4.2),
is useful for all applications and use cases where resilience requirements are
relevant. For example, considering the Platooning use case, a failed car must
not flood the platoon with inconsistent information, otherwise the platoon is
forced to stop.

The HIDENETS environment is made up by two different categories of nodes:

¢ Fixed nodes, which belong to the server infrastructure: they are wired
interconnected and can have redundant resources;

* Mobile nodes, which belong to ad-hoc domain: they are |COTS| devices
provided with wireless capabilities in order to be able to connect to fixed
nodes or to other mobile nodes.

Nodes inside the same category can be considered quite similar, but there are
significant differences when comparing a fixed node with a mobile one:

108

¢ High vs. low amount of system resources: fixed nodes can do more and
faster than mobile ones (e.g. they can benefit from redundant/replicated
resources, they do not have power constraints).

* Wired vs. wireless connections: different speed and stability capabilities.

* Fixed nodes are always in the system, mobile ones alternate periods dur-
ing which they can connect to the HIDENETS infrastructure with periods
where they can’t do that, e.g. they are in an ad-hoc island (they can more
easily have connection problems, low battery, etc. or they simply can be
intentionally switched-off).

* Mobile devices should be reasonably cheap, to promote their diffusion.

On the basis of the specific node functionalities and capabilities, different fault
classes can be identified, so it is necessary to develop specific diagnostic solu-
tions able to assess the internal status of such different nodes/entities.

In addition, the specific characteristics of the HIDENETS nodes impose re-
strictions on the realization of the diagnosis service with different trade—off
between accuracy and promptness: fixed nodes may afford diagnosis solutions
taking longer time to gather information and emitting a judgment, while mo-
bile nodes call for quicker, although possibly less accurate, solutions (due to
both lower resources and shorter time an entity may be traceable).

Moreover, HIDENETS system is highly dynamic and distributed, so each
node interacts with a dynamic group of “reachable” nodes (mobile and fixed
ones) along time. It is important for each node to be able to assess the status of
nodes inside its group, because problems inside a node could negatively prop-
agate into other nodes of the group. Hence, the three different design organiza-
tions proposed in section [2.2| were used in HIDENETS to design the diagnosis
activity:

1. Local Diagnosis: diagnosis performed by a node inside the same node on
local resources/services (node auto—control).

2. Private Diagnosis: diagnosis performed by a node on a remote node based
on the private perception of the remote node.

3. Distributed Diagnosis: diagnosis performed in a distributed way among
a set of collaborating nodes when an agreement about the healthy status
of each node (Byzantine resilient) is necessary.

To accomplish its task with reference to a monitored system component, the
DM mainly needs to acquire error/deviation information from error/deviation
detectors related to the monitored component. In principle, any local error/de-
viation detection mechanism, from packet-level CRC to application-level ex-
ception handlers, is an eligible feeder of DM. Which are the relevant sources of

109

Input from other
building blocks

Output to other
building blocks

error/deviation detection information strictly depends on which is the specific
entity to be diagnosed, which are the faults it may be affected by and which
are the consequences of such assumed faults. In order to make such detection
information available to DM, proper interfaces toward DM have to be set up;
alternatively, such signals can be conveyed and stored in a repository, accessed
by DM when necessary.

The complete list of services/oracles of the HIDENETS middleware which
are sources of error/deviation detection information for DM can be found in
[Casimiro o7].

Diagnosis judgments made by the DM component are used by the following
HIDENETS entities:

* Reconfiguration Manager, which will be detailed in section

* QoS Coverage Manager, which performs some probabilistic analysis based
on diagnostic data and performance historical data.

¢ The maintenance center, to take the appropriate actions to physically iso-
late and repair the component diagnosed as faulty (when necessary).

Concerning the relationship between the DM and the applications running in
the HIDENETS node, the DM was designed so that it is transparent to the appli-
cations. This means that DM does not offer functionalities directly exploitable
by applications, but instead it contributes to offer to an application a more
reliable HIDENETS platform to run on.

4.2.2 The Reconfiguration Manager service

This section summarizes the design principles of the reconfiguration manager
(RecM) service; the full details can be found in [Casimiro o7].

The RecM is the middleware service managing system reconfigurations (se-
lecting both the time of reconfiguration and the proper reconfiguration policy
to be applied) and system preventive maintenance on the basis of information
coming from the system (e.g. from diagnostic manager or from QoS coverage
manager) and/or from application needs (e.g. applications organized in several
different operational modes). The RecM aims to:

* Bring back the system to provide correct (although possibly degraded)
services after the occurrence of some malfunctions.

¢ Properly manage system resources in order to provide the required QoS
levels (within unavoidable limits) after the occurrence of some deviations
from expected QoS.

* Decide the application of predefined preventive maintenance policies, pos-
sibly alerting the operator service in order to physically repair/replace

110

modules which fail to satisfy the maintenance tests and, in such a case,
implementing the appropriate reconfiguration of the involved subsystem.

¢ Change system reconfiguration on the basis of operational mode required

by the running application.

Reconfiguration in complex distributed systems is typically approached fol-
lowing a hierarchical approach [Porcarelli o4]; this is appropriate also in the
context of HIDENETS, where node reconfiguration is organized at two levels:

¢ Reconfiguration local to a node, in order to either resist to local diagnosed

faults or to better exploit local available resources.

Reconfiguration at multi-node level, to better manage faults and resources
at system level. Global reconfiguration, possibly performed inside a group
of both fixed and mobile nodes, promotes efficient reorganization of sys-
tem resources, taking into account higher level information on the whole
involved group of components, thus overcoming the restricted vision at
the single node.

The reconfiguration activity involves also the underlying communication lev-
els, thus the RecM interacts also with the communication adaptation manager?.
RecM works on-line, basically performing the following activities:

Gathering information about the status of the entities monitored by the
Diagnostic Manager.

Gathering information about the evaluated levels from the QoS Cov-
erage Manager.

Selecting the proper reconfiguration of components/system (if any) based
on the gathered information; the choice of the reconfiguration action is
guided by the expected benefit of applying it, obtained through a quan-
titative evaluation support. (e.g. with respect to the measure, or
to the time necessary to perform the reconfiguration, or to some more
complex performability measures)

Selecting the current operational mode (if any is defined) and the corre-
sponding configuration.

Triggering the proper actuators to put in place the selected reconfigura-
tion.

2 The communication adaptation manager service is the HIDENETS middleware service responsi-
ble for performing cross-layer optimization.
3 Mean Time To Failure

111

* Triggering efficient preventive maintenance operations on the basis of an
evaluation support to compare several possible alternatives (as suggested
in [Porcarelli o1, Porcarelli o4]).

Staticvs. Reconfiguration is performed according to different approaches; the extremes

Dynamic are described in the following, but intermediate solutions are possible as well:
Approach

STATIC APPROACH: the set of envisioned reconfiguration strategies is defined
at system design time; each envisioned strategy is statically associated
with specific patterns of faults/deviations of a number of system compo-
nents. This association is performed through a look—up table, which is
accessed on-line to retrieve the appropriate reconfiguration strategy.

DYNAMIC APPROACH: many strategies are applicable for the same diagnosed
scenario; the choice of the reconfiguration to be applied is performed on
line through a proper evaluation support, which is fed with the specific
system and environment conditions at the time the reconfiguration action
is triggered by the DM subsystem. This approach is of course more accu-
rate than the previous one, but more costly in terms of time and resources
needed to perform the on-line choice.

Activevs. ~ The RecM component can be defined as a passive or an active component:
Passive behavior
¢ The passive RecM is activated on demand by the system entities requiring

a reconfiguration (e.g. Diagnostic Manager when specific faults are diag-
nosed in specific components, or QoS Coverage Manager when certain
application requirements are no longer satisfied).

* The active RecM is always active; it is in charge of managing the gath-
ering of the necessary information, possibly activating/reactivating spe-
cific diagnostic components. While the active RecM collects information
about diagnosed faults, it estimates whether a reconfiguration strategy
has to be applied and when it has to be applied (if any). After having
triggered a specific reconfiguration, the active RecM could trigger some
post-reconfiguration checks in order to verify whether the desired effects
were obtained (possibly collecting feedback that could be used to guide
reconfiguration selections in the future).

4.3 PLATOONING TEST BED
The objective of the platooning test bed within HIDENETS was to validate a set

of mechanisms that allow to detect and react to violations of timeliness require-
ments, and to malicious intrusions. Those mechanisms were designed to assure

112

safety in the presence of timing uncertainty#, to be able to dependably adapt to
changing environment timings and to handle certain malicious intrusions.

The application chosen within HIDENETS as the more representative for the
platooning test bed was the platooning application [Egel o8]. The objective of
the platooning application is to let a group of cars (the so called platoon) to
drive on a highway as a platoon; the application has to provide both positional
and velocity control of platooners> in order to operate safely as a platoon (that
is, avoiding collisions). In order to implement the platooning application, pla-
tooners mainly need to communicate with each other via an ad-hoc network,
receive coordinates from satellites, and use proximity sensors to identify
obstacles. Figure |4.3| gives an overview of the platooning scenario.

/f:‘?’
GPS %

Ad-hoc network

&8% Sensor @8 Sensor & Sensor

Figure 4.3: An overview of a platooning scenario, where some vehicles drive as a pla-
toon with the help of a GPS system (for position and clock) and some prox-
imity sensors (for detecting physical obstacles).

The platooning application has several requirements, from timeliness to se-
curity, which make it a (safety—)critical application. The main challenges posed
by the platooning application are the following:

¢ Timely communication: if messages containing the position of a platoon
member arrive too late to another platoon member (e.g. just the following
one), this may result in too late reactions to a manoeuvre in the platoon,
leading to safety problems (e.g. car collisions).

* Availability of reliable broadcast or multicast service: it is essential that all
messages sent out by each vehicle in the platoon can reach all addressed

4 The main causes of timing errors in wireless multi-hop communication networks are communi-
cation delay and jitter.

5 Platooners are the vehicles member of a platoon.

6 Global Positioning System

113

Platooning
Application

HIDENETS
implementation
of the platooning
scenario

platoon members; this relates to throughput performance as well as to
transmission errors.

¢ Optimized re—distribution of available radio resources: what happens when
two large platoons meet in the same geographical area and hence need to
use the same radio resources? In this case, the amount of radio resources
required by the two platoons increases and needs to be guaranteed for
each platoon.

* Trustworthy communication: any information exchanged inside the pla-
toon needs to be trustworthy (false messages may negatively affect safety).

¢ Dependable adaptation: the platooning application requires a reasonable
potential for adaptation, by adjusting the behavior of the vehicles in or-
der to cope with specific situations, including possible communication
failures or simple degradation of the communication quality.

The HIDENETS architecture was provided with safety—critical services which
can support the implementation of the platooning application [Marques o9].

Each platooner is an HIDENETS mobile node, and hence it is structured ac-
cording to the HIDENETS reference architecture presented in section [4.2} figure
l4.4] shows the architecture of a HIDENETS node as it was customized for the
platooning test bed.

The platooning test bed assumes that vehicles move in a straight line and
that there are no other obstacles except other vehicles moving ahead or behind.
Moreover, vehicles are moving all in the same and common direction.

Each platooner has a number of components: i) a driver interface encompass-
ing the accelerator, the brake and the platooning activation switch; ii) a general
purpose computing device which hosts the payload and consequently the pla-
tooning decision making algorithm?; iii) a local wormhole, which includes a
simple safety distance control sub-system that is always active whenever the
car is not in platooning mode, and interfaces to several sensors and actuators
(among them, receivers). The payload communicates with other nodes via
ad-hoc networks (based on the IEEE 802.11 standard); the payload communi-
cates with the local wormhole through an internal car connection. The payload
also hosts the middleware resilience services.

Given that both the vehicle and the environment in which the vehicle drives
were emulated in HIDENETSS, the interfaces between the wormhole and the
sensors and actuators of the vehicle were emulated. Figure |4.5[shows the inter-
face through which the vehicle can be driven (the arrows for accelerating and
braking, the “start button” to start the platooning application); this interface

The decision making algorithm collects and processes context information about platooners, and
set the resulting speed control commands to the vehicle.

The emulator used to emulate both platooners and environment is TORCS (The Open Racing
Car Simulator); http://torcs.sourceforge.net/

114

http://torcs.sourceforge.net/

Platooning application

Driver support

4 interface
I\
G Intrusion
o | —»Tolerant Diagnostic|
Decision QoS
" | Agreement| coverage &
makKing | Group Reconfig.
\\algorithm / comm. <
s K
Payload A Communication suppoQ
subsystem
Wormhole and car
ayload-Wgfmhole interface T
subsystem
| info gateway | “TTFD
Authentication Duration
A A Measurement activation
\ switch

iy < R&SA Clock
P E/ﬁ 5 <> —
(O = (T ()

(distance |
/
sensors/actuators @ntry

Figure 4.4: Architectural view of the HIDENETS node as customized for the platooning
test bed: the wormhole, hosting the oracles, is interfaced with sensors and
actuators in the vehicle; the payload hosts the platooning application and
the middleware services.

includes also some check-boxes and radio buttons used to control some envi-
ronmental aspects (e.g. to inject payload timing failures, communication delays
and faults in the receivers). The same interface is also used to perceive the
diagnosed status of the receivers and the corresponding reconfiguration
action in place (if any).

4.3.1 Diagnostic and Reconfiguration Managers in Platooning test bed

This section presents the specialization of the DM and RecM services in the
ad-hoc scenario; in particular, the specialization is customized within the pla-
tooning test bed. The specialization focuses on the local diagnosis and recon-
figuration aspects, where the mobile node monitors its resources and performs
reconfigurations taking into account only the benefit on the node itself.

Each vehicle used in the test bed is assumed to have two |[GPS| receivers; the
DM and RecM services are used to manage the (active) redundancy of
receivers.

For the scope of the test bed, the DM and RecM services were enclosed
together in a single service named DM+RecM. The DM+RecM service is in
charge of diagnosing the receivers and performing their reconfiguration;

115

GPS frames

M Car control EI@IE\

I:‘ Temporal Consistency
[QoS Adaptation
[network Delays

GPS 1 GPS 2
(&) Mo fault (%) Mo fault
O Omission O Omission
O Value O Value
() Crash (O Crash

DmRecM Result:

Figure 4.5: Interface of the emulator controlling both the driving of the emulated vehi-
cle (top-most part with the arrows and the “start button”) and some envi-
ronmental aspects (bottom part including check-boxes and radio buttons).

the duplication-with—comparison technique was used as the un-
derlying criteria: the DM+RecM service filters the information flows produced
by the receivers, dropping information generated by faulty receivers
and constructing a unique consolidated information flow to be made available
to the decision making algorithm of the platooning application.

System description and assumptions

The vehicle running the platooning application is assumed to have two
receivers working in parallel, named as GPS; and GPS,; the receivers can be
identical or diverse. Given that both vehicles and environment were emulated
in the test bed, receivers were emulated also. The rationale behind the
emulation of the receivers follows the basics of the widespread protocols

used to manage receivers (in particular the NMEAb183 protocol?).
Each receiver is assumed to generate frames containing values re-

The NMEA 0183 standard defines a combined electrical and data specification for communica-
tion between electronic devices (e.g. GPS receivers) and other types of instruments.

116

lated to the movement of the vehicle:
1. Time reference ¢.
2. Estimated position at time .
3. Estimated instantaneous speed at time ¢.

Let f;(t) be the frame generated by GPS; at time ¢, and let F; and F, be the
flows of frames generated over time by GPS; and GPS, respectively.
Each receiver is assumed to proactively generate a frame every
second, so each F; is made up by subsequent frames fi(t), fi.,(f), etc. All the
receivers are directly connected to the wormhole, as shown in figure
and hence each receiver proactively sends a flow of frames to the
wormhole.
The faults assumed to affect a receiver are the following: Fault Model

CRASH: the receiver stops sending any information to the wormhole (as
the receiver was disconnected from the wormhole). This is a perma-
nent fault requiring a maintenance operation.

VALUE: the receiver sends wrong values to the wormhole (e.g. due to
multi-path interferences caused by reflected signals arriving at the
receiver, typically as a result of nearby structures or other reflective
surfaces).

OMISSION: the receiver is not able to estimate some (or all the) values
which are part of a frame (e.g. when the vehicle is within a tunnel).
This is a transient fault; there is nothing that the DM+RecM service can
do/request to treat this fault.

If GPS; is not faulty, then the values contained in the frames f;(t) are cor- Failure modes
rect and represent a discrete time approximation of the movement of the vehicle;
this means that those values satisfy some constrains related to the physical laws
describing the movement of the vehicle. The constraints taken into account in
the test bed are related to mean acceleration M4, mean velocity M, and mean
displacement M computed for each time interval [¢, t 4 &;] (with &; = 1). These
constraints will be detailed in the following text.

If GPS; is affected by a value fault at time ¢, some (or all) the values contained
in the frame f;(t) do not satisfy the above mentioned constrains; should
this happen, the f;(t) is considered a “not plausible” frame (the details about
the definition of “plausible” frame are given hereafter). If GPS; is crashed
at time ¢, no frame f;(t) is sent to the wormhole. If GPS; is omitting at time
t, an empty frame f;(t) is sent to the wormhole.

117

Diagnosis

Plausible GPS
frame

Diagnosis and reconfiguration

The DM+RecM service performs the following actions:

1. Diagnosis of the receivers: this step is implemented by inferring the
status of the receivers by monitoring over time the information flows
they generate.

2. Reconfiguration: this step consists in dropping information generated by
faulty receivers and merging the remaining frames in order to
produce the consolidated flow F.

The diagnosis of the GPS; receiver at time t bases on the the frame f£;(t):
if f;(t) does not exist, a crash is diagnosed. If instead f;(t) exists, an omission is
diagnosed if f;(f) contains null values, whilst a value fault is diagnosed if f;(t) is
not plausible.

If the information contained within frame f;(t) is assumed correct, the
information contained in a subsequent frame f;(t+1) is checked to be plau-
sible based on the criteria described hereafter. Each frame f;(t) contains the
following values:

f;(t) =< t,v(t),s(t) >

v(t) is the velocity measured at time ¢, s(t) is the position measured at time ¢.
Considering two subsequent frames received from the same receiver (8;=1),
the following “intermediate” values are computed (acceleration is assumed con-
stant):

=v(t+1)—v(t)
=s(t+1)—s(b)
=v(t)8; + 252

The following checks are performed:

Mean acceleration mg = 5—” < Maxq
Mean velocity m, = B—j < Max,,
Mean displacement 65 = 6, = A%

If all the above checks are satisfied than the f;(t+1) frame is considered plausible,
not plausible otherwise. The settings used for the Max,, Max, and A bounds
are the following;:

Maxq = 95%
Max, = 557
A=1

118

Table 4.1: Reconfiguration strategy implemented by the DM+RecM service; the faulty
condition encompasses crash, omission and value faults.

Diagnosis of GPS,

Reconfiguration action
healthy faulty

1

healthy merge GPS, and GPS, forward GPS;

98]
A
O
G

o

Diagnosis

faulty forward GPS, forward null value

The coverage of the plausibility check is not 100%.
The DM+RecM performs the reconfiguration after having diagnosed the Reconfiguration
receiver; the rationale behind reconfiguration is sketched in Table If both
receivers are diagnosed healthy (that is, f;(t) and f,(f) are both plausible),
then the output frame £(t) is computed as the frame containing the following
values:

Vi (t) +va(t) sq(t) +s2(t)

f(t) =<t, > , 3

If only the GPS; receiver is healthy at time ¢ (either i=1 or i=2), then the output
frame is f(f)=f;(t). If all receivers are faulty at time ¢, then the output frame
f(t) is initialized by sing null values.

Implementation and storyboards

The DM+RecM was implemented as a C++ class and was integrated in the
code used for the platooning test bed. The demonstration of the functionalities
offered by the DM+RecM service was performed by defining some storyboards:
faults were injected through the interface shown in figure |4.5/and the output of
the DM+RecM was saved in the storyboard. Some examples of the storyboards
used are shown hereafter.

Injected faults were represented using the following codes:

¢ - if no fault was injected;
* 0 if an omission was injected;
¢ Vif a value fault was injected;
e Cif a crash was injected.
The output of the DM+RecM was coded as follows:

¢ 0K if the DM+RecM forwarded a proper frame;

119

e <!> if the DM+RecM forwarded a null value.

First storyboard ~ The first storyboard was executed not injecting any fault, with the expectation
that all the data forwarded by the DM+RecM was correct. The results reported
in the storyboard shown in Table 4.2 confirmed the expectations.

Table 4.2: Storyboard 1: no faults injected.

Time | 1 2 3 4 5 6 7 8 9 | 10 | 11 | 12 | 13 | 14 | 15
GPS; | - - - - - - - - - - - - -
GPS, | - - - - - - - - - - - - -
Out OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK

Second The second storyboard planned the crash of GPS, at time t = 6, with the
storyboard expectation that the DM+RecM was able to manage the redundancy of GPS re-
ceivers and forward correct data. The results reported in the storyboard shown

in table |4.3| confirmed the expectations.

Table 4.3: Storyboard 2: crash of GPS; at time t = 6.

Time | 1 2 3 4 5 6 7 8 9 |10 | 11 | 12 | 13 | 14 | 15
GPS; - - - - - C C C C C C C C C C
GPS, | - - - - - - - - - - - - -
Out OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK

Third storyboard ~ The third storyboard planned both the crash of GPS, at time t = 6 and
an omission fault in GPS, at times t = 7,8,9. The expectation was that the
DM+RecM was able to manage the redundancy of GPS receivers and forward
correct data when some data were available from the receivers. The results re-
ported in the following storyboard (Table confirmed the expectations.

Table 4.4: Storyboard 3: crash of GPS; at time t = 6 and omission of GPS, at times
t=7,8,9.

Time | 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
GPS, - - - - - C C C C C C C C C C
GPS, - - - - - - 0 0 0 -
Out OK | OK | OK | OK | OK | OK | <!> | <!> | <!> | OK | OK | OK | OK | OK | OK

Fourth ~ The fourth storyboard planned value faults in GPS, at times t = 7,8,9,10.
storyboard The expectation was that the DM+RecM was able to manage the redundancy
of GPS receivers and forward correct data from the beginning to the end of

120

the experiment. The results reported in the following storyboard (Table
confirmed the expectations.

Table 4.5: Storyboard 4: value faults in GPS, at times t = 7,8, 9, 10.

Time 1 2 3 4 5 6 7 8 9 | 10 | 11 | 12 | 13 | 14 | 15
GPS; - - - - - - \Y v v v
GPS, | - - - - - - -
Out OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK | OK

The fifth storyboard planned value faults in both GPS,; and GPS, starting at Fifth storyboard
time t = 4 and lasting for the rest of the experiment. The expectation was that
the DM+RecM was able to forward correct data at least until time t = 4, and
that it was not forwarding wrong data till the end of the experiment. The results
reported in the following storyboard (Table confirmed all the expectations.

Table 4.6: Storyboard 5: value faults in both GPS; and GPS, starting at time t = 4.

Time | 1 2 3 4 5 6 7 8 9 10 | 11 12 | 13 | 14 | 15
GPS; - - - v \Y v \Y v \Y v v v v \Y v
GPS, - - - \ v v v \ v \ v v v v v
Out | OK | OK | OK | <!> | <I> | <I> | <!> | <I> | <I> | <I> | <I> | <I> | <I> | <!> | <!>

The DM+RecM demonstrated to meet all the expectations made, both in
terms of promptness and accuracy. The demonstration through storyboard did
not cover all the possible combinations of faults, but just some significant one.

4.4 QUANTITATIVE EVALUATION OF SERVICE ACCESS WITH REPLICATED
SERVERS

One of the problems faced up in the HIDENETS project was the problem of
managing a server pool in the infrastructure. In order to minimize the impact
of server failures and communication failures on the clients, diagnosis and re-
configuration activities are involved: diagnosis has to detect whether a server
or a communication link has failed or not (and hence diagnosis in this case is
very close to failure detection), reconfiguration has to make the clients contact
not failed servers of the pool.

This activity, despite involving also diagnosis and reconfiguration, was imple-
mented in HIDENETS as part of the Replication Manager service. Replication
Manager is in fact the middleware service defined to handle replication, hiding

121

Service overview

10

11

12

to the application both the details about the changes of a replica server and
changes in the topology of the system, and trying to optimize the selection of
server replicas in order to optimize the application/user experience.

This section presents a model-based quantitative evaluation of dependability
and performance metrics of this client-server based service. The quantitative
evaluation was applied to obtain the optimal parameter configuration for a
selected set of fault scenarios; the full details of the evaluation can be found in
[Lollini 08].

The service considered was implemented on top of a distributed server pool,
following the major design paradigms of the RSerPool™ architecture [Lei oS].
The scenario considered encompasses multiple clients that want to access a
service provided by a set of replicated servers; the application considered as a
reference was a transaction based, SIP-like**application [Rosenberg o2].

reports

F 3

RFD

client

client
T

server; [+ heartbeats

, server, +
client R

Figure 4.6: Network architecture of the replicated server application: clients send SIP
requests to the server chosen based on the reports received from the RFD;
the RFD refreshes reports based on heartbeats exchanged with the servers.

The client regularly requests the service to a given server by sending it a spe-
cific “SIP request” message; the choice of the server to contact is made by the
client with the help of an additional entity, the Remote Failure Detector (RFD)*>.
The RFD is in charge of managing the registration (and de-registration) of the
servers to the replicated server set, regularly checking the state of every server
by heartbeats, and reporting the server set status to the clients by using spe-
cific messages named “SIP reports”. The details about the strategies used to
check servers, create reports, send reports and choose the server to contact are
described in the following section Figure[4.6|depicts the network architec-

RSerPool (Reliable Server Pooling) is an application-independent set of services and protocols
for building fault-tolerant and highly available client/server applications.

SIP (Session Initiation Protocol) is an application-layer control (signaling) protocol for creating,
modifying, and terminating sessions with one or more participants; these sessions include Inter-
net telephone calls, multimedia distribution, and multimedia conferences.

The RFD is named “Name Server” in the Reliable Server Pooling architecture.

122

13

ture of the scenario considered, showing the clients, the servers, the RFD and
the type of messages exchanged among nodes.

The above management of the redundant servers is an instance of private di-
agnosis and reconfiguration activities from the viewpoint of the client node (see
the “private diagnosis” scenario described in section [2.2): the private diagnosis
step aims to judge whether the monitored servers are available or not; the re-
configuration step consists in requesting retransmissions to the same server to
cope with transient communication faults or in dropping the transaction with a
faulty server (server failover) to pick—up another server and restart the request.

4.4.1 Fault model and assumptions

This section describes the fault model and the assumptions on which the model
is based on. Some parameters are introduced in the following descriptions; the
full list of parameters considered in the evaluation work is shown in table

Servers suffer crash faults; different servers suffer independent faults. When
a server crashes, it is repaired and restored after some time; the server failure
mode follows hence an exponentially distributed ON/OFF model, with mean
time to failure TTF and mean time to repair TTR. The probability that a single
server is ON or OFF can be easily computed from the TTF and TTR values; we
refer to these probabilities as Popr and Pon respectively.

We assume stateless SIP sessions, i.e. servers do not maintain session states
and hence there cannot be inconsistencies (value faults are not considered). We
assume perfect clock synchronization and thus we do not consider the potential
effects of clock drift.

We assume that the RFD is not affected by internal faults; the RFD may have
an inaccurate view of the state of the servers according to the communication
faults (external faults).

Network errors (e.g. router buffer overflow, packet corruptions on wireless
links) are always mapped into packet losses (e.g. via the use of CRC codes). We
assume that heartbeats, reports, and SIP messages consists of only one packet
each'3: therefore, each packet loss is equivalent to the loss of a whole message.
Packet losses occur with the same probability PER (Packet Error Rate) on both
the uplink (from client to server) and the downlink (from server to client).

Communication delays are assumed to be exponentially distributed with
mean value Delay for both the uplink and the downlink. Because of the com-
munication delay distribution (whose variability is mimicking variations in
network congestion levels), some heartbeats and SIP messages may transit in

Many SIP messages, such as INVITE and BYE, as well as typical chat messages do not exceed
a few hundred bytes; heartbeats and report messages can be expected to be smaller than SIP
requests/responses.

123

Server faults

Remote Failure
Detector faults

Communication
faults

Application
traffic model

Failure detection
in the RFD

Failure detection
and
reconfiguration
in the client

14

the network longer than their respective timeout allow; we assume that the
responses to these messages are dropped because of timing failures.

The one-way delay and the packet error rate are independent for each pair
of communicating endpoints. Malicious intrusions/message modifications are
not considered.

We assume each client sends a new SIP request some time after the previous
transaction has been successfully completed or dropped (it is dropped when
the maximum number of retransmissions is reached); this assumption implies
that the client never manages multiple transactions in parallel. The time in-
terval between the end of the previous transaction and the begin of next one,
named inter-transaction time, follows an exponential distribution with mean
value InterSIP.

Each message type is assumed to have a deterministic size: an heartbeat is
100 bytes, a report is 200 bytes, a SIP message is 400 bytes.

4.4.2 Failure detection and reconfiguration strategies

This section details the failure detection and reconfiguration strategies evalu-
ated in the following sections. Failure detection is performed both in the RFD
and in the client, whilst reconfiguration is performed in the client only.

The RFD proactively checks servers by sending them heartbeats every In-
terHB seconds. The RFD then collects the check results in a SIP report by ap-
plying the “Maximum Availability Server Selection Policy”, which was demon-
strated in [Bozinovski o7] to be the server selection policy offering the highest
dependability levels for a similar server replication architecture. The SIP re-
port lists the servers ordered based on heartbeat response time: the server that
replied last to the heartbeat request is in first place, the server that replied
second to last is in second place, and so on (as a[LIFO* queue). The RFD proac-
tively sends the report to the clients as soon as the report has been created, that
is after the heartbeat period has expired.

The client sends a SIP request to the first server listed in the last SIP report re-
ceived from the RFD; if a successful response is received until a given timeout,
the transaction is successful. If instead the timeout expires, a failure is detected
and the client reacts by retransmitting again the SIP request to the same server.
These retries last until either a successful response is received (successful trans-
action) or the maximum number MaxRetrans of unsuccessful retransmissions
with the same server is reached; in this last case the client picks the next server
listed in the SIP report and sends it a new request (failover of the old server).
This mechanism is repeated until either the client receives a successful response,
or the number MaxFailOvers of different servers contacted has been reached; in
this latter case, the transaction is dropped. In the more likely case when the

Last In, First Out

124

transaction is successful, all counters are reset and the same server is used
for the next transaction, unless a new SIP report is received during the inter—
transaction time InterSIP and the selected server now appears to be unavailable.

The different instances of the reconfiguration strategies evaluated are ob-
tained by changing the following (internal) parameters/characteristic:

¢ The timeout per request is managed into two different ways: exponential
back—off vs. fixed timeout;

e The value for the MaxRetrans threshold;
e The value for the MaxFailOvers threshold;

The criteria behind managing the timeout per request as an exponential back-
off follows the same criteria behind the timeout management of connection—
oriented protocols at the fourth level of the ISO/OSI model (e.g. [TCP): the
timeout per request duration is increased by a multiplicative factor (here set
to 2) for each subsequent retransmission. The initial timeout for a newly sent
request is T,. By default, the evaluation scenarios assume T, to be set to the
average round trip time RTT. If the response has not been received within T,
the client resends the request and doubles the timeout. In general the timeout
value for the k" retransmissions is given by Ty = T,2%; the overall timeout since
the first request is hence Timeout = To(2K1 —1).

The alternative way of managing the timeout per request is to use the same
fixed timeout for each retransmission. We set the timeout so that it does not
expires on average for the 9o% of the SIP requests/responses, which means
setting it in such a way that the following equation holds (based on the as-
sumption that the round trip time is exponentially distributed with mean value
RTT):

1
~RTT

p (RTT < Tgo3,) = 1—exp < T90%> =0.9

If RTT=100 ms then Tgy9,=230 ms.

4.4.3 Quantitative analysis

This section presents the quantitative analysis of a few failure detection and re-
configuration strategies used to manage the replicated server pool. The relevant
measures of interest are identified and the relevant parameters are described;
the model representing the system is described and finally the results of the
analysis performed are presented and discussed.

The quantitative analysis aims to understand the impact of the parameters
configuring the failure detection and reconfiguration strategy on the measures
of interest. The design choices that are going to be investigated are whether

125

Timeout per
request:
exponential
back—off

Timeout per
request: fixed
timeout

Environmental
parameters

Controllable
fault—tolerance
parameters

favoring retransmission or server failovers, whether using a fixed timeout or an
exponential back—-off, and how much the environmental parameters (e.g. server
failures or communication faults) impact on those choices.

The system was modeled using the [SAN]'> formalism [Meyer 85]] and solved
using the Mobius tool [Daly oo]. This choice was motivated by the flexibility
and power found in (and Mobius) in supporting a hierarchical model-
ing paradigm and a solution technique appropriate for the evaluation to be
performed.

Different studies were performed on the modeled system varying some pa-
rameters; the relevant parameters are briefly explained hereafter.

The parameters related to the fault assumptions are the probability of server
failures Porr and the probability of packet losses PER. They are both expected
to impact on the effectiveness of the reconfiguration strategy, because retrans-
mission are more effective when there are communication failures (PER), whilst
failovers are more effective when servers are more likely to fail (Porr). The sce-
narios evaluated were selected setting the combinations of parameter values
shown in table The values shown in Table 4.7 are overstated with respect to

Table 4.7: Combinations of values assigned to the environmental parameters.

Selected scenarios
L-L|L-H| HL | HH
PER | 1% | 1% | 10% | 10%

POFF 1% 10% 1% 10%

many real systems; they were set overstated for the purpose of the quantitative
analysis, aiming to amplify their effects on the measures of interest.

The parameters related to the tuning of the fault-tolerance strategy are the
MaxRetrans threshold, the MaxFailOvers threshold and the number of servers
in the pool. Three different configurations of the standard reconfiguration strat-
egy were selected; these configurations, detailed in table represent two op-
posite configurations and a trade—off between the two opposites: “ReT” heavily

Table 4.8: Combinations of values assigned to the controllable fault-tolerance parame-

ters.
Reconfiguration strategies
ReT Bal FOvr
MaxFailOvers 1 3 6
MaxRetrans 3 1 0

15 Stochastic Activity Network

126

relies on retransmissions, “Bal” is a compromise between retransmissions and
failovers, “FOvr” only uses failovers. The values listed in table Were chosen
so that the maximum number of requests per transaction, named MaxRequests,
is as close as possible to 7, which is the default value for the standard SIP
setting. The formula linking MaxRequests, MaxRetrans and MaxFailOvers is the
following:

MaxRequests = (MaxRetrans + 1) - (MaxFailOvers + 1)

Each recovery configuration was evaluated for three different pool sizes. The
basic size of the server pool for each configuration was set to MaxFailOvers+1;
in addition to the basic size, two other sizes were considered: MaxFailOvers+3
and MaxFailOvers+5.

The quantitative analysis aimed to evaluate how these parameters impact on
the measures of interest.

Measures of Interest

We are interested in measuring some metrics related to dependability and per-
formance of the service, focusing mainly on the user perception of those service
attributes.

The relevant dependability attributes from the end-user perspective are ser-
vice availability, content integrity and confidentiality. Based on the assumptions
discussed in section faults regarding content integrity and confidentiality
are assumed out of scope, so that only server crash failures and message losses
are considered. Service availability is hence defined based on the perception of
a successfully provided service.

Service availability is defined as the ratio of successful transactions over the
total number of transactions executed; this measure reflects on how well the
fault-tolerance mechanism masks node and network faults.

From a performance perspective, the user is interested in perceiving the short-
est transaction completion time. Node failures and network failures require
request retransmissions, which in turn lead to longer transaction completion
time. Transaction completion time can be minimized if clients ideally contact
an available server every time they send a request; this depends also on the
accuracy of the RFD, which is in charge of suspecting which servers are down
and notifying this information to the clients.

Service Access Time (SAT) is defined as the average time between the time
instant a transaction is started (i.e. when the request is sent for the first time)
and the time instant the transaction is completed (i.e. when the client receives
the response from the server). Only successful transactions are considered for
the evaluation of SAT.

Finally, one operator—centric metric is considered: the network traffic due to
the specific strategy used to manage redundancy. It is important to measure

127

Service
availability
(Dependability)

Service access
time (SAT)

Induced load
(Load)

Replicate/join
formalism

The overall model

how much network traffic is needed, because telecommunication systems in
general, and wireless systems in particular, have limited bandwidth and per-
form worse with heavier loads, which in turn slows down the service execu-
tion and may even lead to service unavailability. Consequently, it is important
to measure how much network traffic a specific fault-tolerance configuration
produces.

The induced load is defined as the overall volume of end—to—end messages
sent during an evaluation run, normalized to one transaction only. The normal-
ization step is required because the application traffic model considered (see
section does not generate the same total number of transactions over a
given simulated time interval.

Model

The Mo6bius framework allows the construction of composed models from pre-
viously defined models, which permits to adopt a hierarchical approach to mod-
eling by creating sub-models as meaningful units and then placing them to-
gether to construct the model of a system. Model composition is accomplished
by state—sharing, which links sub-models together; sub-models can also inter-
act by both reading from and writing to a set of common state variables.

Mobius allows sub—-models be composed by using the replicate/join operators:
the replicate operator is used to construct a model consisting of a number of
identical (indistinguishable) copies of its single child; the join operator is used
to compose two or more sub-models using state—sharing. A special trick is
used in replicated sub—models in order to give each replica a unique identity
(see details in the description of the Server atomic model) and treat them inde-
pendently.

Submodel
Failure_detector

Submodel Join
Server I

Submodel
Client

Clients |reparts
Submodel

Report pending

Figure 4.7: Composed model of the replicated server architecture: each leaf corre-
sponds to a sub-model modeling a different system entity; internal nodes
are used to join or replicate their sons.

The translation of the network architecture shown in figure [4.6] into a

128

composed model is shown in figure each leaf corresponds to a sub—model
modeling a different system entity; internal nodes are used to join or replicate
their children. In the following, we give a high-level description of the
sub—models of the composed composed model; all the details of the model are
in [Lollini o§].

HB_send HB_jstop
stafus FD

atus_temp
® 3

L

HB_timeout_start HE time HB_expire
- Report trigger

Figure 4.8: Atomic model of the remote failure detector.

The RFD is modeled by the Failure_detector atomic model shown in figure
The RFD is in charge of implementing the heartbeat mechanism, manag-
ing the server status information and triggering the report messages; all these
actions are modeled as described hereafter.

The RFD periodically broadcasts an heartbeat (timed activity HB_generator)
to all servers (extended place HB_send, shared with the server models). When
a heartbeat round is started (place HB_timeout_start), the RFD also starts the
heartbeat timeout (timed activity HB_time). Upon expiration of the heartbeat
timeout, the RFD performs the following actions:

1. Discards any pending heartbeat with servers from which a response has
not been received (extended place HB_stop, shared with the server model);

2. Updates its cached status information (extended place Status_FD) with
the information gathered during the heartbeat round (extended place Sta-
tus_temp), and resets the latter;

3. Creates a new report message and sends it to all clients (extended place
Report_trigger, shared with the client model).

The server is modeled by the Server atomic model shown in figure The
top—left subnet shown in the figure allocates a unique ID number (stored as the
marking of place ID_server) to each server at the beginning of the evaluation run.
The top-right subnet shown in the figure models the failure model of the server.
At start up the server is ON: this information is stored in the UP extended place,
in particular in the entry corresponding to the ID of the specific server. The
timed activity TTF (exponentially distributed with rate TTF) models the server
failure (DOWN), whilst the timed activity TTR (exponentially distributed with
rate TTR) models the server repair.

129

RFD

Server

Client

Semnver)
@ - B Bpalr 1TR
ID_start | trigger 'D_alloc

ID_mark UP OWN

failure 11

> |

HB_stop transi Instanlt stop

HB send Load HB Status_temp

Figure 4.9: Atomic model of a server.

The rest of the net shown in figure models the independent heartbeat
communications between the RFD and the server. Once the heartbeat is sent by
the RFD (firing of the timed activity HB_upload), it can either be lost because
of a communication fault, or reach the server, giving the chance to check the
server status (the output gate Server_check reads directly the proper entry of
the UP extended place). If the server is ON, a response is sent back to the RFD
(place HB_response); if not, the subnet stays idle until the current heartbeat is
discarded. If the response is not lost on the downlink, the status information is
updated at RFD (extended place Status_temp, shared with the RFD model). In
case the heartbeat timeout expires before the heartbeat sequence is complete,
a marking change in HB_stop triggers the Instant_stop activity, which in turn
executes the HB_discard output gate, preventing stale pending heartbeats from
updating the status information illegally.

The client is modeled by the Client atomic model shown in figure The
top subnet shown in the figure allocates a unique ID number (stored as the
marking of place ID_client) to each client at the beginning of the evaluation run.
The subnet beneath the top one allocates a dedicated sequence number and
instances a Report_pending sub-model to each new report message generated
and sent by RFD. This mechanism implements multiple concurrent instances
of the communications between RFD and the clients. This is necessary because,
as opposed to heartbeats and SIP requests, there is no timeout for the report
messages: a client does not discard an incoming old report if this report is at
least more recent than the report that the client is currently caching.

130

. N _Client
ID_start \D_trligger ID_alloc
ID_mark

port_send

< { o

Report_trigger trans! |nstant trigger REPOt_alloc Seq_number

-
>

Trans_new |nter trans time 17ans_init

ans_failed

expires Br_retrans

um_failovers

Figure 4.10: Atomic model of a client.

The bottom subnet shown in figure models the SIP traffic generator and
the associated failure detection and recovery schemes. When a new transaction
is started (firing of the timed activity Inter_trans_time), the SIP request is pre-
pared (Req_new) by selecting a server ID (the chosen ID is saved as the marking
of place Server_selected) according to the server selection policy (implemented
in output gate SSP). Then, the request is sent and the SIP timeout-per-request
started (timed activity Timeout). If the request is not lost on the uplink, the
status of the selected server is checked (the UP extended place is shared with
the Server sub—model), and the response is sent back toward the client. In case
the transaction is successful (output gate Trans_success), the client is ready for
the next transaction to start (Trans_new); in this case the following actions are
performed: the timeout is stopped by emptying the place Timeout_start, and the
retransmission and failover counters (modeled by places Number_retrans and
Num_failovers respectively) are reset to zero. Furthermore, the same server is
maintained by the server selection policy for the next transaction, unless dur-

131

SIP report

Reward
structures

ing the time of activity Inter_trans_time a new SIP report is received indicating
that the server is no longer available.

If instead the timeout expires before the transaction has completed, the pend-
ing request is discarded, the retransmission counter (place Number_retrans) is
incremented, and a new request is generated (Req_new). When the counter
of the retransmissions (modeled as the marking of Num_retrans) reaches the
Max_Retrans threshold, a failover is triggered, and the following actions are
performed: place Num_retrans is emptied, the marking of Num_failovers is incre-
mented, the place Server_selected is emptied (so that SSP selects another server),
and a new request is generated.

When both the recovery counters - which are modeled by places Num_retrans
and Num_failovers - reach their thresholds (Max_Retrans and Max_FailOvers re-
spectively), the current transaction is discarded and a new one is prepared by
resetting the recovery counters and the selected server ID to zero.

aa

_sent trans2 Report_upload Rep SUCCESS

trans Report_ready Status_report Status_client

Instant send Load_report Seq_number
Figure 4.11: Atomic model of a SIP pending report.

The SIP report is modeled by the Report pending atomic model shown in
figure This model models the behavior of communication between the
RFD and the specific client instance with which the current report is joined
to in the composed model. Before uploading the report to the client, the RFD
includes the server set status in the message (modeled in the extended place
Status_report, shared with the RFD model). When a report is successfully re-
ceived at the client side, the client updates its cached report (extended place
Status_client) and discards any pending report with a lower sequence number
than the last one received (action performed by the output gate Report_success).

The evaluation of the measures of interest in M&bius involves specifying re-
ward variables and defining a reward structure for each reward variable.

Service availability: every time a new transaction is started, the marking of
place Num_trans is incremented; analogously, when a transaction fails the mark-
ing of Num_trans_failed is incremented. Service availability is hence evaluated
as:

Num_trans_failed — Mark()
Num_trans — Mark()

Service availability =1 —

132

Average response time: the marking of places SAT and SAT_deduct is used to
evaluate the overall time spanned by transactions over the simulation run. The
average transaction time is hence evaluated as:

Time(SAT) — Time(SAT _deduct)

SAT =
Num_trans — Mark() + Num_trans_failed — Mark()

Load induced: each sub-model replica increments its respective load counter
(Load_HB, Load_report, Load_SIP) when it sends a message. The load per trans-
action is hence evaluated as:

Load_HB — Mark() + Load_report — Mark() + Load_SIP — Mark()

Load = Num_trans — Mark()

Model evaluation and System analysis

This section presents the results of the evaluation of the measures of interest per-
formed on the failure detection and reconfiguration strategies presented above.

Table 4.9: Model parameters, their default values and their description.

Name Default Meaning
Value
TTR 10 | Mean value for the exponentially distributed
Time To Repair (sec)
Porg 0.01 | Probability of a server being failed (DOWN)
CL 1000 | Cycle Length (CL=TTF+TTR): mean interval
between crashes at a single server (sec)
InterHB 5 | Time interval between heartbeats sent by the
RFD to check the servers (sec)
PER 1 | Packet Error Rate (%)
Delay 100 | Mean value for the exponentially distributed
communication delay (ms)
RTT 100 | Mean value for the exponentially distributed
Round Trip Time (ms)
To RTT | timeout for the first SIP request (ms)
MaxRetrans 1 | Max number of unsuccessful request retrans-
missions with the same server
MaxFailOvers 3 | Max number of failovers to drop a transaction
Clients 10 | Number of clients in the simulation
InterSIP 5 | Mean value for the exponentially distributed

inter-transaction time (sec)

133

Study at varying
recovery
configuration and
pool size

The measures of interest were evaluated by using the simulation solver in-
stead of a numerical solver; this choice was motivated by the large state-space
description of the model. Each test run was set to last 20 hours (i.e. 72000 sec-
onds) of simulated operation time. All setting scenarios evaluated were run a
minimum of 6 times, converging within 95% probability in a o.1 relative inter-
val. Table |4.9| shows the relevant model parameters and their default values.

The first study analyzes three different recovery configurations of the stan-
dard replicated SIP strategy, all three managing the timeout per request as an
exponential back—off with basic timeout per request set to T,=RTT (i.e. 100 ms).
The three recovery configurations analyzed are “ReT”, “Bal” and “FOvr”; they
differ because of the values assigned to the maximum number of retries MaxRe-
trans and the maximum number of failovers MaxFailOvers, as shown in table
A fourth recovery configuration is considered in order to have a reference
value: the standard SIP strategy without replication, that is a dummy strategy
encompassing only 1 server in the pool. Each recovery configuration is ana-
lyzed at varying the number of servers in the pool and for 4 different scenarios,
each corresponding to different settings of the environmental parameters PER
and Pogr (the details are in table @: “L-L”, “L-H”, “H-L” and “H-H".

Scenario "L-L" (Low PER, Low POff) Scenario "H-L" (High PER, Low POff)
100,00 A 100,00 B = u
L e -
Z 99,95 > 99,95 A
S 99,90 299,901 -
© © A.'
g 99,85 | % 99,85 |
0 99,80 - 0 99,80
0 M
99,75 99,75 w w
1 3 5 7 9 11 1 3 5 7 9 11
Servers Servers
Scenario "L-H" (Low PER, High POff) Scenario "H-H" (High PER, High POff)
100,00 . B.. { yoca00c Aeeeenl 7'\ 100,00 E... Aeeeeee Aveeenne A
'-..“ =.... . - @ ennnn 0. -5,]
£ 99,001 e, Z 99,00 = e °
% * % coegeeres "ReT"
g 98,00 - g 98,00 s flheeee "Bl
QU QL L ey Y "FOvr"
8 97100 r‘ 8 97100 i‘ »4 nStdn
96,00 \ \ \ 96,00 — —
1 3 5 7 9 11 1 3 5 7 9 11
Servers Servers

Figure 4.12: Dependability at varying the number of servers in the pool; three configu-
rations of the SIP strategy (plus the non replicated one) are analyzed in 4
different scenarios each.

Figure shows how dependability changes at varying the number of
servers in the pool: the figure is divided into four sub-figures, one for each

134

scenario considered. Each sub—figure shows three curves, one for each recovery
configuration evaluated, and a black marker, showing the result obtained by
the standard non replicated SIP strategy. Figures and have the same
structure as figure but show SAT and Load respectively.

Figure shows that in general dependability increases when the number
of servers in the pool increases, with the exception of the “FOvr” recovery strat-
egy in the “H-L” scenario, where the more servers there are, the lower is the
resulting dependability. This is due to the combined effect of many servers fail-
ures (Popr is 10%) and a recovery strategy using failovers only (MaxRetrans = 0).
The recovery strategy showing the best compromise across all the scenarios con-
sidered is “Bal”. All the recovery strategies in all scenarios show dependability
values higher than the reference value corresponding to the non replicated strat-
egy, which confirms the intuitive reasoning that is better to have replication in
any case, no matter which is the scenario or the particular reconfiguration strat-
egy in place.

Scenario "L-L" (Low PER, Low POff) Scenario "H-L" (High PER, Low POff)

134,00 188,00 *
132,00 e "RET" 1 i
130,00 E 184,00 "
= 128,00 Fovr | 1 e .
! Std i
B 126,00 4 g % 180,00
124,004 . [| | Y TR u
122,00 - ek 176,00 i |
120,00 — ‘ ' 172.00 ‘ ‘ Ao ,“
1 3 5 7 9 11 Y 3 5 7 9 11
Servers Servers
Scenario "L-H" (Low PER, High POff) Scenario "H-H" (High PER, High POff)
600,00 500,00 "
...... &
500,00 g 400,00 | * e
400,00 X - e \
----------- 300,00 ke
S 30000 | ¢ L = L= P
200,00 | - e 200,00 ,,
100,00t 100,00 -
0,00 : ' 0,00 ‘ ‘ ‘ ‘
1 3 5 7 9 11 1 3 5 7 9 11
Servers Servers

Figure 4.13: Service Access Time (SAT) at varying the number of servers in the pool;
three configurations of the SIP strategy (plus the non replicated one) are
analyzed in 4 different scenarios each.

Figure (page[135) shows that in general an increasing number of servers
leads to higher service access time; with the exception of the “ReT” strategy
in the “H-L” scenario. This is due to the combined effect of a high PER (here
set to 10%) and a strategy recovering mostly via retransmissions. The strategy
showing in general the lower values for SAT is “FOvr”, the one showing the

135

Dependability

SAT

Load

Study at varying
the timeout—per—
request

Dependability

higher values is “ReT”. The reference value is lower than all the reconfiguration
strategies in the “L-H” and “H-H" scenarios, whilst it is larger than “Bal” and
“FOvr” in the “L-L” scenario and it is larger than “FOvr” in the “H-L"” scenario.
This is due to the fact that the more retransmissions are sent to the same server,
the longer is the timeout and hence the service access time.

Scenario "L-L" (Low PER, Low POff)
16,00

Scenario "H-L" (High PER, Low POff)
17,00

A e A
, .-" i ..'. .
15,00 ool u 16,00 - A

g 14,00 1 PURTLY i E 15,00 1 ¢

— 13,00 — 14,00
12,00 | 13,00 1

"
11,00 ™ ‘ ‘ 12,00 | :
1 3 5 7 9 11 1 3 5 7 9 11
Servers Servers

Scenario "L-H" (Low PER, High POff) Scenario "H-H" (High PER, High POff)
17,00 A 18,00 1
16,00 | aem X 17,00 | e
15,00 | @eeeeeer “'ZII::::‘" 16,00 PR ‘;:::w.‘

g 14 00 = 8 15 00 - cesedpeee "ReT"

9 ’ S / ceesl--- "Bal
13,00 14,00 ceedeer "FOVF
12,00, 13,00 p st
11,00 ‘ ‘ : 12,00 : ‘ ‘

1 3 5 7 9 11 1 3 5 7 9 11
Servers Servers

Figure 4.14: Load at varying the number of servers in the pool; three configurations of
the SIP strategy (plus the non replicated one) are analyzed in 4 different
scenarios each.

Figure (page shows that in general an increasing number of servers
leads to a linear increment in the Load for all the recovery strategies considered
in all scenarios. All the recovery strategies considered show a larger Load than
the standard strategy; this is true in all scenarios considered.

The second study analyzes the three reconfiguration strategies “ReT”, “Bal”
and “FOvr” at varying the management of failure detection at the client side.
Two different mechanisms for managing the timeout-per-request are consid-
ered: i) the standard exponential back-off (“EXP”), and ii) the fixed timeout
(“FIX”). The details of both mechanisms are in section The standard non
replicated SIP strategy is also considered and used as reference value (this strat-
egy uses the exponential back—off). Each recovery configuration was analyzed
in 4 different scenarios (the same as those of the first study), each correspond-
ing to different settings of the environmental parameters PER and Porr (the
details are in Table @: “L-L”, “L-H”, “H-L” and “H-H".

Figure shows the values for dependability for both “EXP” and “FIX”.

136

Scenario "L-L" (Low PER, Low POff) Scenario "H-L" (High PER, Low POff)

100,000 100,00
99,998 | 99,98
99,996 = 99,9

4 4
99,994 299
99,92 -
99,992 99.90
99,990 | 99,88 |
99,988 - 99,86 —

Dependability
Dependability

ReT Bal FOvr ReT ‘ Bal FOvr
Scenario "L-H" (Low PER, High POff) Scenario "H-H" (High PER, High POff)
100,00 100,00
99,80 99,80 | Hex
g z W Fx
3 99601 5 99,60
18] © ’
g 0% T 99,40
§ 99,20 - § !
99,00 99,20 I
98,80 99,00 w
ReT Bal FOvr ReT Bal FOvr

Figure 4.15: Dependability at varying the failure detection strategy at client side (exp.
back-off vs. fixed timeout); 3 configurations of the SIP strategy are ana-
lyzed in 4 different scenarios each.

Comparing the values obtained by “EXP” with those obtained in the same set-
tings by “FIX” it emerges that “EXP” has lower dependability when more re-
transmission are used (“ReT”) and instead it has higher (sometimes the same)
dependability when the other two strategies are used (“Bal” and “FOvr”). This
trend is particularly evident for high Porr, when the number of failover in-
creases.

The fixed timeout setting does not help in scenarios favoring retransmis-
sions, because the transaction lifetime per server becomes shorter, lowering
the probability that a server has recovered by the time the last retransmission
is sent to that server. Given the parameter values considered, i.e. To=100 ms
and Tyy%,=230 ms, the transaction lifetime per server is almost the same for the
second retransmission and becomes much shorter from the third retransmis-
sion in the fixed timeout case (920 ms against 1500 ms). When the number of
retransmissions is lower than 3, as in the case of “Bal” and “FOvr”, the trans-
action lifetime per server is actually larger with Tys9,, and hence dependability
increases.

Figure (page shows the values for service access time. Comparing
the values obtained by “EXP” with those obtained in the same settings by “FIX”
it emerges that “EXP” has lower SAT in all the scenarios considered. This is
the positive effect of avoiding some of the retransmissions caused by long com-

137

SAT

Load

Scenario "L-L" (Low PER, Low POff) Scenario "H-L" (High PER, Low POff)

135 190
EXP

130 185 I‘ FIX

125 1 1801 @ 0 | mm==-- Std
S 120 s | B __
[9p] [9p]

115 170

110 1 165 1

105 - 160 - \ \

ReT Bal FOvr ReT Bal FOvr
Scenario "L-H" (Low PER, High POff) Scenario "H-H" (High PER, High POff)

350

300 1 400

250 300
— 200 - [1
& 150 - & 200 __Dm o _F=

100 100

50
O 0 T T
ReT Bal FOvr

Figure 4.16: Service Access Time (SAT) at varying the failure detection strategy at client
side (exp. back—off vs. fixed timeout); 3 configurations of the SIP strategy
(plus the non replicated one) are analyzed in 4 different scenarios each.

munication delays. “EXP” shows also lower SAT than the non-replicated SIP
strategy in those scenarios where Pogr is low (“L-L”, “H-L”).

Figure (page shows the values for Load. Comparing the values
obtained by “EXP” with those obtained in the same settings by “FIX” it emerges
that “EXP” has lower Load in all the scenarios considered. Both “EXP” and
“FIX” show higher Load than the non-replicated SIP strategy in all scenarios
considered.

4.4.4 Concluding remarks

Evaluations performed has demonstrated that, for the given network character-
istics and server fault model, it is in general preferable to favor failovers instead
of retransmissions. Such a strategy has lead to higher dependability levels in
almost all fault scenarios (except in the “H-L” scenario); moreover, the advan-
tage of using many failovers instead of retransmissions toward the same server
has been that the timeout value always stays low despite retransmissions (the
timeout-per-request increases exponentially in this setting), so SAT has became
shorter as well. This behavior has been even emphasized when the number of
servers in the pool is incremented. The only drawback of this reconfiguration
strategy has been that it has the higher Load (the strategy with lower Load is

138

Scenario "L-L" (Low PER, Low POff) Scenario "H-L" (High PER, Low POff)

15 L EXP 16
B X
14 | 15 |
5 2
g 13 < 14
- st |
12] 13 ‘
e 12 L
ReT Bal FOvr ReT Bal FOvr
Scenario "L-H" (Low PER, High POff) Scenario "H-H" (High PER, High POff)
15 16
3 g
- 13 314
12 e 13 . T » e
11 12
ReT Bal FOvr ReT Bal FOvr

Figure 4.17: Load at varying the failure detection strategy at client side (exp. back-
off vs. fixed timeout); 3 configurations of the SIP strategy (plus the non
replicated one) are analyzed in 4 different scenarios each.

“ReT”). If instead Load has to be lowered down, it is in general preferable to
favor retransmissions, at the cost of decreasing dependability and increasing
service access time.

139

SECURITY IN CRITICAL INFRASTRUCTURES

This chapter describes an ongoing work for enhancing the security in
infrastructures; this work is performed in the context of the project?
and focuses on security at communication layer. A[SCADA|system is a common
process—automation system used to gather data from sensors and instruments
located at remote sites, and to transmit and use this data at a central site for
both monitoring and control purposes. This work aims to enhance the reliability
of communications over unreliable and/or insecure links.

The design principles of a diagnostic mechanism for the detection of sink-
hole attacks to the routing protocol of a wireless sensor network in a
island are presented. This diagnostic mechanism is an instance of the private
diagnosis proposed in section|2.2} the diagnostic mechanism works on-line, fed
by monitoring entities, and it is implemented using a probabilistic approach.

Since the reported work is still ongoing, the following steps need to be com-
pleted at the time of writing: the selection of the relevant indicators feeding
the diagnostic mechanism, and the tuning of the internal parameters of the
diagnostic mechanism itself.

5.1 INSPIRE ARCHITECTURE OVERVIEW

This section describes in summary the architecture of the SCADA}based infras-
tructure considered in this work.

Since a system is an industrial measurement and control system, it
is composed by the following components:

SENSORS AND ACTUATORS: sensors measure the status of specific system pa-
rameters; actuators are used to control the industrial process.

REMOTE TERMINAL UNITS: these components, also called [RTUs, convert sen-
sor signals to digital data, and send this data to the Supervisory Station.

SUPERVISORY STATION: (also called Control Room or Operation Control Center)
it takes decisions about the commands that are going to be executed by
the actuators, based on the data gathered from the [RTU.

COMMUNICATION INFRASTRUCTURE: this is the mean through which data
and commands are exchanged among the above components.

1 Supervisory Control And Data Acquisition
2 INSPIRE is an ongoing project funded by the FP7 programme of the European Commission (EC
grant agreement n. 225553). http://www.inspire-strep.eu/

141

http://www.inspire-strep.eu/

National
Centre

S "
Central >4 e HN_H
Supervisor |3 i . . s Station
Regional

Centre LAN C 3
Central H N_|I
Supervisor . tation
LANK : o
WAN (DSL)
Company servers &
J L PC.
Local &
Supervisor - - -
C l I Local
SCADA Company Network w, - Supervisor
LAN

ﬁ §

Figure 5.1: The architecture of a SCADA system: several islands (at different logical
levels) are connected by a WAN; each island has a local supervisor and
some RTUs managing sensors.

Figure [5.1] shows the architecture of a system encompassing the com-
ponents listed above: it is evident the partition of the system in several

islands interconnected by a[WANP. Each island has a local supervisor,
managing the local sensors and actuators through its RTUk, which is in turn su-
pervised by a regional/national supervisor (supervisors are logically organized
in a tree structure).

Data flowing through the communication infrastructure is related both to the
control of the industrial process (e.g. values collected by sensors, commands to
be executed by actuators) and to the monitoring and reconfiguration actions of
the system itself (e.g. alerts, keep-alive messages, reconfiguration re-
quests). Data flows in the following directions: industrial information and mon-
itoring information flows upstream, from sensors to supervisors, commands
and reconfiguration requests flow downstream, from supervisors to actuator.

This work is focused within a island, in particular within the emerg-
ing wireless networks connecting sensors with [RTUE.

3 Wide Area Network

142

5.2 PROBABILISTIC DIAGNOSIS OF SINKHOLE ATTACKS TO THE CTP PRO-
TOCOL

This section presents the on-line diagnostic mechanism, based on (see
section , for the diagnosis of sinkhole attacks in the wireless sensor net-
works (WSNE®) implemented in the islands. After the description of
the scenario in which diagnosis has to be performed, the fault model and the
assumptions are presented. Then the design principles for the monitoring and
diagnosis activities are presented, together with the plan of the future activities
devoted to complete this work.

5.2.1 Scenario description

The scenario considered in this work [Daidone og] encompasses some wireless
sensors that measure some physical parameters of the ambient in which they
are spread; the measured values are then sent through a wireless connection
toward the

This scenario comprises the following components:

* One [RTU|/local supervisor, which is a legacy server;

e One base station for a wireless sensor network®, connected to the
through an USB connection;

¢ Some wireless sensors, connected to the base station through the wireless
network; wireless nodes’” are equipped with a sensor® measuring light
and temperature.

Wireless nodes execute the TinyOS operating system? and use the [CTP["° pro-
tocol [Fonseca 07] as the routing protocol for forwarding the collected measures
from sensors to the

is an open—source best-effort routing protocol; it uses a shortest path The CTP routing
first algorithm, giving priority to routes with the lower cost to the root node. profocol
Sinceis a tree-based collection protocol, the base station advertises itself as
the tree root, so that the wireless nodes form a routing tree to the base station.
Routes are generated by using a routing gradient, implemented as a numeric

4 Hidden Markov Model

5 Wireless Sensor Networks

6 The base station is a CrossBow MIB520; http://www.xbow.com/Products/productdetails.aspx?
s1d=227.

7 The node is an Iris mote; http://www.xbow.com/Products/productdetails.aspx?sid=264.

8 The sensor is a CrossBow MDA100; http://www.xbow.com/Products/productdetails.aspx?
s1d=178.

9 TinyOS is an open-source operating system designed for wireless embedded sensor networks.
http://www.tinyos.net/

10 Control Tree Protocol

143

http://www.xbow.com/Products/productdetails.aspx?sid=227
http://www.xbow.com/Products/productdetails.aspx?sid=227
http://www.xbow.com/Products/productdetails.aspx?sid=264
http://www.xbow.com/Products/productdetails.aspx?sid=178
http://www.xbow.com/Products/productdetails.aspx?sid=178
http://www.tinyos.net/

Parent selection
policy

CTP packet types

11

12

value called ETX, which is associated with each node. Each node chooses the
neighbor which has the lower ETX value (root node has ETX=0) as its parent
node; it then updates its own ETX value, which is defined as the ETX of its
parent plus the ETX of the link to its parent, and then advertises its ETX value
to its neighbors. The ETX value for the communication link between two nodes
is evaluated based on some communication-related values that each node pe-
riodically sends to its neighbors (e.g. and values provided by the
radio of the node'", number of packets successfully received, number of packet
transmitted).
A node changes its parent when one of the following conditions holds:

* There is at least a neighbor which declares an ETX value lower than a
given threshold; the neighbor declaring the lowest ETX value is chosen as
the new parent.

¢ The current parent node is congested and there is at least a neighbor node
which declares an ETX value lower than a given threshold; the neighbor
declaring the lowest ETX value is chosen as the new parent.

Packets routed by the protocol are classified in the following categories:

DATA PACKET: it contains the measures collected by the sensors (light and
temperature);

ROUTING PACKET: it contains routing information used by nodes to update
the values of their routing parameters;

CONTROL PACKET: it contains information about the current status of the sender
node in terms of communication and routing parameters'.

All the packets are generated by the wireless nodes; data and control pack-
ets are forwarded until they are received by the root node, whilst routing pack-
ets are single-hop packets sent by a node to its neighbors.

5.2.2 Fault model and assumptions

The routing protocol suffers the sinkhole attack; the sinkhole attack is launched
by a malicious node, the attacker, in order to exploit the routing and force the
other nodes to use the attacker as their parent (or ancestor) in the route toward
the root. Figure |5.2| shows an example of a routing tree before (left) and after
(right) node 4 has successfully launched a sinkhole attack; arrows represent the

LQI (Link Quality Indication) is a characterization of the strength and/or quality of a received
packet; RSSI (Received Signal Strength Indication) is a measurement of the power present in a
received radio signal.

A control packet contains information about the sender node such as its ETX value, the number
of neighbors, the number of packet sent, the number of packet dropped, etc.

144

parent-son relationship, with the arrow directed to the parent. The effect of the
sinkhole attack is to direct the traffic toward the root through the attacker node.

® © @
N oo

N\

® @

¥

) o3

Figure 5.2: An example of a routing tree before (left) and after (right) node 4 has suc-
cessfully launched a sinkhole attack; arrows represent the parent-son rela-
tionship, with the arrow directed toward the parent.

A successful sinkhole attack gives the attacker the opportunity to compro-
mise the confidentiality of data, the integrity of messages and the availability
of sensors. This is true especially in our scenario, since the protocol does
not implement any security defense. This is a design choice due to the fact that
both traffic authentication and encryption require high CPU work, which in
turn can quickly decrease the lifetime of battery—powered sensors.

When an attacker launches the sinkhole attack, it is assumed to perform the
following actions:

* It sends routing packets with a rate higher than usual;

e It forges fake routing packets in order to advertise itself as an attractive
parent;

¢ It forges data packets so that they report a low ETX value, advertising
itself to be an attractive parent.

The routing protocol suffers the following problems:

Loors: there is a loop in the routing tree when a node selects one of its de-
scendants as a new parent. A loop is detected when a node receives a
data packet containing an ETX value lower than its ETX value. A loop is
eliminated by forcing a refresh of the routing, which in turn corresponds
to an increment of the routing packet rate of the nodes involved in the
loop.

145

Design principles

Implementation
outline

DUPLICATE DATA PACKETS: when a node receives a data packet which has
to be routed toward the root, it send an ACK to the sender; if the sender
does not receive this ACK, it retransmits the data packet. The problem of
duplicate packets is solved thanks to a[THLJ> field in the packet, which is
incremented on each hop; a link-level retransmission has the same
value, while a looped version of the packet is unlikely to do so.

It is assumed that there is at most one attacker in the network, and that
the network cannot be partitioned. Moreover the topology of the network is
assumed to be nearly static.

5.2.3 The diagnostic mechanism

The diagnostic mechanism is implemented in the RTU['%, aiming to diagnose
whether one of the wireless nodes attached to the base station is an attacker
or not; this is an instance of the private diagnosis scenario proposed in section
where the diagnostic mechanism diagnoses a remote entity based on its
perception of the status of the remote entity. The receives all data packets
and control packets generated by the wireless nodes and uses the information
reported within them in order to monitor the network and diagnose an attack.

The design choice of implementing a centralized diagnostic mechanism has
some advantages and drawbacks when compared to a distributed approach.
Advantages are the following: i) the diagnostic mechanism runs on top a ma-
chine and hence it can be extremely complex'5, for example to search for com-
plex correlations; ii) the consistency and control of the state of the sub-
system is easier to reach. Drawbacks are the following: i) the detection latency
is higher; ii) the centralized mechanism can be unable to detect attacks targeting
the routing layer when the attacker is able to prevent packets bringing relevant
information for the diagnostic mechanism to reach the All these draw-
backs will be mitigated in by using the hybrid detection approach
sketched in [Daidone o9|]: each node runs a simple local detection agent which
is in charge of identifying suspicious nodes; suspected nodes are not used for
routing and are temporarily inserted in a black list until a judgment comes
from the centralized diagnostic mechanism. The suspected node can be either
canceled from the black list, not being an attacker, or permanently inserted in
the black list, being an attacker. The integration between the centralized diag-
nostic mechanism and the local detection agents implemented in the wireless
nodes is still an ongoing work and it is not described here.

The diagnostic mechanism is implemented by using the probabilistic ap-

13 Time Has Lived
14 Remote Terminal Unit
15 The machine is assumed to have enough resources (e.g. in terms of memory, computational

power, power supply) to support the mechanism.

146

proach based on[HMM] presented in[1.2.2l An[HMM]is built for each monitored
node, defining the model states as follows: the node can either be an attacker
or not, so at least two states can be identified, namely Healthy and Attacker. If
the monitored node is not an attacker, it can be either a victim of an attack or
not, so it seems effective to define a third healthy state: Victim.

The definition of the symbols observed by the derive from which in-
dicators are going to be monitored over time; since the selection of the relevant
indicators is still an ongoing work, an overview of possible meaningful indica-
tors is given hereafter. The following events can be monitored in the for
each wireless node and used as symptom:s:

1. Node i increments the number of routing packets transmitted; this event
can be a symptom that node i is an attacker, but it can also happen due to
normal activity: the routing needs to be updated due to communication
problems or node i received requests for routing information from a new
neighbor.

2. An increment in the number of routing packets received by node v; this
event can be the a symptom that node v is victim of an attack, but it can
also be due to normal activity: e.g. a loop involving node v is going to be
detected /broken.

3. The ratio between the number of routing packet sent and received for
node v has an anomalously low value: this can be the symptom that node
v is a victim, because the attacker sends a higher number or routing pack-
ets than usual, whilst the other nodes, keeping their normal behavior,
send a low number of routing packets.

4. Node v discovers a new neighbor.

The topology, inferred from the packets received over time by the
is used to correlate over time the diagnosis of each wireless node and detect
possible sinkhole attack scenarios. The definition of the correlation rules is still
coarse and need to be tuned. Here are some general rules:

* Some nodes change their parent during a given time window and all (or
almost all) choose node i as their parent: this can be the trace that node i
is an attacker (and the others are victims), but it can also be the effect of
a not malicious routing update.

¢ Some nodes, diagnosed as victims, share the same parent: the parent is
likely to be an attacker.

5.2.4 Future work

This section gives a high-level view of the activities that need still to be com-
pleted. Some of the uncompleted activities need to be adjusted based on prac-

147

Monitored events

tice, but we still lack the feedback from the practice (e.g. the tuning of the

HMME).

The activities that need still to be completed are the following:

1. The identification of the relevant indicators for ongoing attacks; the plan
is to select the relevant indicators by starting from a large set and then
refining it by using the learning algorithm for presented in section

4

2. The tuning of the diagnostic mechanism for the single node; this step will
be performed by using the learning algorithm.

3. The definition of the correlation rules used to infer attack scenarios.

4. Evaluate some dependability and/or performances measures at varying
some internal parameters in order to analyze the trade—off between com-
pleteness and accuracy.

148

CONCLUSIONS

This thesis has described the work done in the last three years on diagnosis in
critical infrastructures.

The work has been motivated by the observation that critical infrastructures
are changing in the last decade. They were originally developed from propri-
etary architectures, where ad hoc solutions were chosen and several compo-
nents were developed independently. Due to technological advances, deregu-
lations and market liberalizations, critical infrastructures are evolving by pro-
gressively becoming larger in scale and more complex. These infrastructures
are growing by incorporating unstable COTS components, old legacy machin-
ery or previously disjoint systems which were not designed considering their
possible growth, the possible integration of new technologies and their inter-
connectedness.

Critical infrastructures are required to be resilient against the risk of mis-
management errors caused by accidental faults, but their growth makes them a
more and more important target for malicious attacks and intrusions. Diagnosis
is hence an essential step to assure the resiliency of the infrastructure, aiming
to identify the faults affecting the system components and hence trigger proper
reconfiguration actions. Reasons have been given to explain why traditional
diagnostic solutions are not well suited as they are: they are based on static as-
sumptions about system behavior, fault model and detection mechanisms (the
“unusual” component behavior can be defined a—priori and assumed due to
faults in the component itself). The direction where searching for new methods
and solutions for diagnosis has been identified, that is the capability of dealing
with dynamic scenarios where failure definitions and/or system specifications
change over time.

This thesis has proposed a new conceptual framework for on-line system
diagnosis; the proposed framework outlines that diagnosis is based on the ob-
servation of system behavior over time (monitoring), collecting information at
different architectural levels and correlating together diagnostic judgments in-
ferred from lower architectural levels and relevant events observed somewhere
in the system. The proposed framework explicitly takes into account both the
local and the global point of view within the infrastructure: each system node
diagnoses both itself (local diagnosis) and remote nodes (private diagnosis)
based on the local perception of the behavior of the remote nodes; moreover
when some relevant events happen, distributed diagnosis is run to reach con-
sensus about the diagnosis of a remote node.

149

The thesis has then explored the instance of the proposed framework in three
different systems, each with a different role.

The first system considered has been the SCADA-based infrastructure stud-
ied in the CRUTIAL project, where the focus has been on enhancing the pro-
tection of the ICT infrastructure underlying the power production and distri-
bution grid. The CRUTIAL architecture has been presented, showing how the
proposed framework has been integrated in it. Then some quantitative analysis
has been presented, aiming to evaluate some dependability properties of the
building blocks protecting the infrastructure.

The second system considered has been the highly dynamic and possibly
unreliable open communication infrastructure object of the HIDENETS project;
this infrastructure has been defined so that it is able to support available and
resilient distributed applications and mobile services with critical requirements.
The HIDENETS architecture has been presented, showing how the basics of the
proposed framework has been integrated in it. Then a quantitative analysis of
some failure detection and reconfigurations strategies for the management of a
replicated server pool in the infrastructure has been presented.

The third system considered has been the SCADA-based infrastructure cur-
rently studied in the INSPIRE project, where the focus is on security at com-
munication layer. The project is still ongoing, so the work within the INSPIRE
infrastructure has not been completed yet. The design principles of a diagnos-
tic mechanism for the detection of sinkhole attacks to the routing protocol of a
wireless sensor network have been presented; this diagnostic mechanisms has
been defined as an instance of the framework proposed in this thesis, but it
still lacks the identification of the relevant information to be monitored and the
tuning of the internal parameters.

The theoretical contribution of the thesis has been therefore a novel concep-
tual framework for diagnosis, in which a conceptual schema for automatic cor-
relation of monitored information is integrated. This is in line with the emerg-
ing role of diagnosis in critical infrastructures, where the classical error de-
tection activity is going to be substituted by system monitoring: this leads to
both an increasing amount of information to be elaborated from the diagno-
sis viewpoint and an increasing complexity in the overall process of diagnosis
(here comes the need for correlation). The proposed approach has been devel-
oped taking into account all the three aspects involved in the diagnosis of a
component (the component itself, the deviation detection mechanism and the
diagnostic mechanism) and treating them in a modular way; this modularity
has favored generality and has widened the applicability of the method.

The conceptual schema has been conceived in the context of the CRUTIAL
project, adopting it for designing the local diagnosis of the CIS. The overall con-
ceptual framework has been then applied in different scenarios with different
aims, so that we have given the possibility to view the diagnosis problem from
several perspectives: from the diagnosis of hardware faults (e.g. faults of GPS

150

receivers within HIDENETS) to the detection of malicious attacks (e.g. sinkhole
attacks to the CTP protocol in INSPIRE). This wide perspective has given the
possibility to enrich the framework and make it more general.

The quantitative evaluations performed have let us estimate the impact of
the overall diagnosis process on the diagnosed system, with the impact being
expressed in terms of dependability measures such as probability of system
failure or unavailability. The impact has been evaluated mainly looking at the
effects of the reconfiguration actions triggered by the diagnosis process, at vary-
ing parameters related to both the effectiveness of detection/diagnosis and the
reconfiguration strategy in place. Evaluations have in general confirmed the
positive impact of good diagnosis and have underlined the strict relationship
between the diagnosis and reconfiguration activities.

We still lack a complete implementation of the framework encompassing al-
together all the characteristics presented in this thesis, which could reinforce
the validation of the framework itself. We plan to work in this direction in the
near future: part of this work is already planned within the INSPIRE project,
where the framework is going to be implemented for the correlation of moni-
toring information devoted to the diagnosis of malicious attacks. Here the plan
is to complete the definition of the relevant indicators to be used during system
monitoring, the consequent tuning the internal parameters of the diagnostic
mechanism (e.g. correlation rules, probability thresholds) and the final evalua-
tion of some dependability and/or performances measures. Other future work
is envisioned in the direction of improving the support for the automatic up-
date of the parameters internal to the diagnostic framework.

151

BIBLIOGRAPHY

[Abou El Kalam o7]

[Ammann 88]

[AviZienis 67]

[Avizienis 04]

[Barborak 93]

[Barsi 76]

[Bessani 07]

[Bessani o8a]

Anas Abou El Kalam, Yves Deswarte, Amine Baina & Mo-
hamed Kaaniche. Access Control for Collaborative Systems: A
Web Services Based Approach. In IEEE International Confer-
ence on Web Services, 2007. ICWS 2007., pages 1064-1071,

July 2007. (Cited on page[52])

Paul E. Ammann & John C. Knight. Data Diversity: An
Approach to Software Fault Tolerance. IEEE Transactions on
Computers, vol. C-37, no. 4, pages 418-425, April 1988.
(Cited on page[gol)

Algirdas AviZienis. Design of fault-tolerant computers. In
AFIPS 67 (Fall): Proceedings of the November 14-16, 1967,
fall joint computer conference, pages 733—743, New York,
NY, USA, 1967. ACM. (Cited on page|[13})

Algirdas AviZienis, Jean C. Laprie, Brian Randell & Carl
Landwehr. Basic concepts and taxonomy of dependable and
secure computing. IEEE Transactions on Dependable and
Secure Computing, vol. 1, no. 1, pages 11-33, January 2004.

(Cited on pages |7} [8} [o} and [10])

Michael Barborak, Anton Dahbura & Miroslaw Malek. The
consensus problem in fault-tolerant computing. ACM Com-
put. Surv., vol. 25, no. 2, pages 171—220, 1993. (Cited on

page[36})

Ferruccio Barsi, Fabrizio. Grandoni & Piero Maestrini. A
Theory of Diagnosability of Digital Systems. IEEE Transac-
tions on Computers, vol. C-25, no. 6, pages 585-593, June

1976. (Cited on page [14})

Alysson Bessani, Paulo Sousa, Miguel Correia, Nuno
Neves & Paulo Verissimo. Intrusion-Tolerant Protection for
Critical Infrastructures. DI/FCUL TR 07-8, Department of
Informatics, University of Lisbon, April 2007. (Cited on

page [55})

Alysson Bessani, Hans P. Reiser, Paulo Sousa, Ilir Gashi,
Vladimir Stankovic, Tobias Distler, Riidiger Kapitza, Ales-
sandro Daidone & Rafael Obelheiro. FOREVER: Fault/in-

153

trusiOn REmoVal through Evolution & Recovery. In Com-
panion '08: Proceedings of the ACM/IFIP/USENIX Mid-
dleware ‘08 Conference Companion, pages 99-101, New
York, NY, USA, 2008. ACM. (Cited on pages[45]|and 88])

[Bessani 08b] Alysson Neves Bessani, Rafael R. Obelheiro, Paulo Sousa
& Ilir Gashi. On the Effects of Diversity on Intrusion Toler-
ance. Technical report 08-30, Dep. of Informatics, Univ.
of Lisbon, December 2008. (Cited on pages
and [o8])

[Bessani 09] Alysson N. Bessani, Alessandro Daidone, Ilir Gashi, Rafael
Obelheiro, Paulo Sousa & Vladimir Stankovic. Enhancing
Fault/Intrusion Tolerance through Design and Configuration
Diversity. In Proceedings of the 3rd Workshop on Recent
Advances on Intrusion-Tolerant Systems (WRAITS 2009),

June 2009. (Cited on page [88])

[Bhatkar o5] Sandeep Bhatkar, Sekar R. & DuVarney Daniel C. Efficient
Techniques for Comprehensive Protection from Memory Error
Exploits. In Proc. of the 14th USENIX Security Symposium,
pages 271-286, August 2005. (Cited on page[92})

[Bolch o5] Gunter Bolch, Stefan Greiner, Hermann de Meer &
Kishor S. Trivedi. Queueing networks and Markov chains.
Wiley-Interscience, 2005. (Cited on page [20])

[Bondavalli 97] Andrea Bondavalli, Silvano Chiaradonna, Felicita Di Gian-
domenico & Fabrizio Grandoni. Discriminating Fault Rate
and Persistency to Improve Fault Treatment. In 2yth IEEE
Int. Symposium on Fault-Tolerant Computing (FTCS-27),
pages 354-362, Seattle, Washington, USA, June 25-27 1997.
(Cited on page[16])

[Bondavalli oo] Andrea Bondavalli, Silvano Chiaradonna, Felicita Di Gian-
domenico & Fabrizio Grandoni. Threshold-Based Mecha-
nisms to Discriminate Transient from Intermittent Faults. IEEE
Transactions on Computers, vol. 49, no. 3, pages 230-245,

2000. (Cited on pages and [17})

[Bondavalli o4a] Andrea Bondavalli, Silvano Chiaradonna, Domenico
Cotroneo & Luigi Romano. Effective Fault Treatment for
Improving the Dependability of COTS and Legacy-Based Ap-
plications. 1EEE Transactions on Dependable and Secure
Computing, vol. 1, no. 4, pages 223-237, 2004. (Cited on

pages|[igland [17)

154

[Bondavalli o4b]

[Bozinovski o07]

[Casimiro o7]

[Castro 02]

[Coccoli 03]

[Daidone 06]

[Daidone 08]

Andrea Bondavalli, Silvano Chiaradonna, Felicita Di Gian-
domenico & Ivan Mura. Dependability Modeling and Evalu-
ation of Multiple-Phased Systems using DEEM. IEEE Trans-
actions on Reliability, vol. 53, no. 4, pages 509—522, 2004.

(Cited on pages [65|and [95])

Marjan Bozinovski, Hans-Peter Schwefel & Ramjee Prasad.
Maximum availability server selection policy for efficient and
reliable session control systems. IEEE/ACM Transactions on
Networking, vol. 15, no. 2, pages 387-399, 2007. (Cited on

page[124})

Antoénio Casimiro, Andrea Bondavalli, Mario Calha, Mar-
ius Clemetsen, Alessandro Daidone, Monica Dixit, Zoltan
Egel, Lorenzo Falai, Felicita Di Giandomenico, Audun F.
Hansen, Gabor Huszerl, Andrdas Kovi, Marc-Olivier Kil-
lijian, Tom Lippmann, Yaoda Liu, Erling V. Matthiesen,
Henrique Moniz, Anders Nickelsen, Jimmy J. Nielsen,
Thibault Renier, Matthieu Roy, José Rufino, Hans-Peter
Schwefel & Inge-Einar Svinnset. Resilient Architecture.
HIDENETS Project Deliverable D2.1.2, December 2007.

(Cited on pages [33} [105} 107} (108} and [110})

Miguel Castro & Barbara Liskov. Practical Byzantine Fault-
Tolerance and Proactive Recovery. ACM TOCS, vol. 20, no. 4,

pages 398-461, 2002. (Cited on page [94})

Andrea Coccoli & Andrea Bondavalli. Amnalysis of Safety
Related Architectures. In WORDS 2003, gth IEEE Inter-
national Workshop on Object-oriented Real-time Depend-
able Systems, Capri, Italy, 2003. IEEE Computer Society

Press. (Cited on page [14})

Alessandro Daidone, Felicita Di Giandomenico, Andrea
Bondavalli & Silvano Chiaradonna. Hidden Markov Mod-
els as a Support for Diagnosis: Formalization of the Problem
and Synthesis of the Solution. In 25th IEEE Symposium on
Reliable Distributed Systems (SRDS 2006), pages 245—256,

Leeds, UK, October 2006. (Cited on pages
and [42])

Alessandro Daidone, Silvano Chiaradonna, Andrea Bon-
davalli & Paulo Verissimo. Analysis of a Redundant Ar-
chitecture for Critical Infrastructure Protection. In Rogério
De Lemos, Felicita Di Giandomenico, Cristina Gacek,

155

156

[Daidone o9]

[Daly oo]

[Dawson 06]

[Egan o7]

[Egel 08]

[Fischer 85]

Henry Muccini & Marlon Vieira, editors, Architecting De-
pendable Systems V, volume 5135 of LNCS, chaper 4,
pages 78—100. Springer Berlin / Heidelberg, August 2008.

(Cited on pages 67 [93} and [o9})

Alessandro Daidone, Andrea Bondavalli, Massimo Ficco,
Simon Pietro Romano, Stefano Avallone, Luigi Coppolino,
Salvatore D’Antonio & Luigi Romano. Techniques for di-
agnosis and recovery of SCADA systems. INSPIRE Project
Deliverable D3.2, November 2009. (Cited on pages

and [146])

David Daly, Daniel D. Deavours, Jay M. Doyle, Patrick G.
Webster & William H. Sanders. Mobius: An Extensible Tool
for Performance and Dependability Modeling. In 11th Interna-
tional Conference, TOOLS 2000, volume Lecture Notes in
Computer Science, pages 332—336, Schaumburg, IL, 2000.
B. R. Haverkort, H. C. Bohnenkamp, and C. U. Smith

(Eds.). (Cited on page [126])

Robert Dawson, Colin Boyd, Ed Dawson & Juan M.
Gonzalez Nieto. SKMA: a key management architecture for
SCADA systems. In ACSW Frontiers "06: Proceedings of
the 2006 Australasian workshops on Grid computing and
e-research, pages 183-192, Darlinghurst, Australia, 2006.
Australian Computer Society, Inc. (Cited on page [416])

Matthew J. Egan. Anticipating Future Vulnerability: Defining
Characteristics of Increasingly Critical Infrastructure-like Sys-
tems. Journal of Contingencies and Crisis Management,
vol. 15, no. 1, pages 4-17, March 2007. (Cited on page[3])

Zoltan Egel, Irene de Bruin, Anténio Casimiro, Madrio
Calha, Geir Egeland, Lorenzo Falai, Bjarke Freund-
Hansen, Sonia Heemstra de Groot, Audun Fosselie
Hansen, Gébor Huszerl, Marc-Olivier Killijian, Andras
Kovi, Tom Lippmann, Luis Marques, Erling V. Matthiesen,
Anders Nickelsen, Gergely Pintér, Matthieu Roy, Hans-
Peter Schwefel, Alessandro Daidone, Gaétan Séverac, Inge-
Einar Svinnset, Christophe Zanon & Manfred Reiten-
spieff. Documentation and Evaluation of the experimental
work. HIDENETS Project Deliverable D6.4, December 2008.

(Cited on page[113})

Michael J. Fischer, Nancy A. Lynch & Michael S. Paterson.
Impossibility of distributed consensus with one faulty process.

[Fonseca 07]

[Forrest 97]

[Gashi 06]

[Gashi 08]

[Gong 95]

[Gordon 06]

[Gray 86]

Journal of the ACM, vol. 32, no. 2, pages 374—382, 1985.
(Cited on page[51})

Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson,
Sukun Kim, Philip Levis & Alec Woo. The Collection Tree
Protocol (CTP). TEP (TinyOS Enhancement Proposal) 123,
Network Working Group of TinyOS Community, February

2007. (Cited on page[143})

Stephanie Forrest, Anil Somayaji & David H. Ackley. Build-
ing Diverse Computer Systems. In HOTOS “97: Proceedings
of the 6th Workshop on Hot Topics in Operating Systems
(HotOS-VI), pages 67—72, Cape Cod, MA, USA, 1997. IEEE
Computer Society Press. (Cited on page|92])

Ilir Gashi & Peter Popov. Rephrasing Rules for Off-The-Shelf
SQL Database Servers. 6th European Dependable Comput-
ing Conference (EDCC-6), vol. o, pages 139-148, October

2006. (Cited on page [90})

Ilir Gashi & Vladimir Stankovic. List of rules for
diversifying operating systems and applications and
their respective runtime environment(s). available at
http:/ /www.csr.city.ac.uk/people/ilir.gashi/ConfigDiv /,

2008. (Cited on pages [go|and [92])

Li Gong, Patrick Lincoln & John Rushby. Byzantine Agree-
ment with Authentication: Observations and Applications in
Tolerating Hybrid and Link Faults. In Dependable Comput-
ing for Critical Applications, volume 10 of Dependable Com-
puting and Fault tolerant Systems, pages 139-157. IEEE Com-

puter Society press, 1995. (Cited on page [36])

Lawrence A. Gordon, Martin P. Loeb, William Lucyshyn
& Robert Richardson. 2006 CSI/FBI computer crime and se-
curity survey, 2006. (Cited on page [46])

Jim Gray. Why Do Computers Stop and What Can be Done
About it? In s5th Symposium on Reliability in Distributed
Software and Database Systems (SRDSDS-5), pages 3-12.
IEEE Computer Society Press, Los Angeles, CA, USA,

1986. (Cited on page 89})

[Hansen 93] Stephen E. Hansen & E. Todd Atkins. Automated Sys-

tem Monitoring and Notification With Swatch. In LISA ’93:
Proceedings of the 7th USENIX conference on System

157

158

[Iyer 9o]

[Jecheva 06]

[Johnson o7]

[Lei 08]

[Liang o5]

[Lin 90]

[Lollini 08]

administration, pages 145-152, Berkeley, CA, USA, 1993.
USENIX Association. (Cited on page [24})

Ravishankar K. Iyer, Luke T. Young & P. V. Krishna Iyer.
Automatic Recognition of Intermittent Failures: An Experimen-
tal Study of Field Data. 1EEE Transactions on Computers,

vol. 39, no. 4, pages 525-537, 1990. (Cited on page [14])

Veselina Jecheva. About Some Applications of Hidden Markov
Model in Intrusion Detection Systems. In International Con-
ference on Computer Systems and Technologies, 2006.

(Cited on page[20])

Chris Johnson & Miroslaw Malek. Progress achieved in the
research area of Critical Information Infrastructure Protection
by the IST-FP6 Projects CRUTIAL, IRRIIS and GRID. Tech-
nical report, EU Report, March 2007. (Cited on page[3])

Peter Lei, Lyndon Ong & Tuexen Michael. An Overview of
Reliable Server Pooling Protocols. Standards track, Internet
Engineering Task Force (IETF), September 2008. (Cited on

page[122])

Yinglung Liang, Yanyong Zhang, Anand Sivasubrama-
niam, Ramendra K. Sahoo, Jose Moreira & Manish Gupta.
Filtering Failure Logs for a BlueGene/L Prototype. In DSN
‘05: Proceedings of the 2005 International Conference on
Dependable Systems and Networks, pages 476—485, Wash-
ington, DC, USA, 2005. IEEE Computer Society. (Cited on

page [39})

Ting-Ting Y. Lin & Daniel P. Siewiorek. Error Log Analysis:
Statistical Modeling and Heuristic Trend Analysis. IEEE Trans-
actions on Reliability, vol. 39, pages 419432, 1990. (Cited

on page[14])

Paolo Lollini, Andrea Bondavalli, Francesco Brancati, An-
drea Ceccarelli, Marius Clemetsen, Ludovic Courtes, Ales-
sandro Daidone, Geir Egeland, Lorenzo Falai, Jesper Gron-
bak, Ossama Hamouda, Audun Fosselie Hansen, Mar-
tin B. Hansen, Mohamed Kaaniche, Marc-Olivier Killi-
jilan, Maté Kovacs, Melinda Magyar, Istvdn Majzik, Er-
ling V. Matthiesen, Leonardo Montecchi, Anders Nick-
elsen, Jimmy J]. Nielsen, David Powell, Jakob G. Ras-
mussen, Thibault Renier & Hans-Peter Schwefel. Applica-
tion of the evaluation framework to the complete scenario (final

[Madani os]

[Manik o9]

[Marques o09]

[Martin 06]

[Meyer 85]

[Mongardi 93]

[Moretto o4]

[Morin 97]

version). HIDENETS Project Deliverable D4.2.2, December
2008. (Cited on pages [105} [122] and [129])

Vahid Madani & Damir Novosel. Getting a grip on the
grid. Spectrum, IEEE, vol. 42, pages 42—47, 2005. (Cited

on page [46])

Miroslav Manik & Elena Gramatova. Diagnosis of faulty
units in regular graphs under the PMC model. In DDECS
'09: Proceedings of the 2009 12th International Symposium
on Design and Diagnostics of Electronic Circuits&Systems,
pages 202—205, Washington, DC, USA, 2009. IEEE Com-

puter Society. (Cited on page[14])

Luis Marques, Anténio Casimiro & Mario Calha. Design
and development of a proof-of-concept platooning application us-
ing the HIDENETS architecture. In Proceedings of the 2009
IEEE/IFIP Conference on Dependable Systems and Net-
works, pages 223-228, Estoril, Lisboa, Portugal, June 2009.

(Cited on pages [105/and [114])

Jean-Philippe Martin & Lorenzo Strigini. Fast Byzantine
Consensus. IEEE Transactions on Dependable and Secure
Computing, vol. 3, no. 3, pages 202—215, 2006. (Cited on

page[36})

John E. Meyer, A. Movaghar & William H. Sanders. Stochas-
tic Activity Networks: Structure, Behavior and Application. In
International Workshop on Timed Petri Nets, pages 106—
115. IEEE Computer Society Press, July 1985. (Cited on

page[126})

Giorgio Mongardi. Dependable computing for railway control
systems. In DCCA-3, pages 255—277, Mondello, Italy, 1993.

(Cited on pages [14]and [15])

Marco Moretto. Progettazione, realizzazione ed utilizzo
di un generatore di simulatori per sistemi a fasi multiple.
Master’s thesis, Universita degli Studi di Pisa, 2004. (Cited

on pages and)

Christine Morin & Isabelle Puaut. A survey of recoverable
distributed shared virtual memory systems. IEEE Transactions
on Parallel and Distributed Systems, vol. 8, no. 9, pages

959-969, 1997. (Cited on page [871)

159

160

[Mura o1]

[Nickelsen o9]

[Nitzberg 91]

[Obelheiro 06]

[Pizza 98]

[Porcarelli o1]

[Porcarelli 04]

[Powell 98]

Ivan Mura & Andrea Bondavalli. Markov Regenerative
Stochastic Petri Nets to Model and Evaluate the Dependabil-
ity of Phased Missions. IEEE Transactions on Computers,
vol. 50, no. 12, pages 1337-1351, 2001. (Cited on pages

[6g} and [o5])

Anders Nickelsen, Jesper Grenbeek, Thibault Renier &
Hans-Peter Schwefel. Probabilistic Network Fault-Diagnosis
Using Cross-Layer Observations. In International Conference
on Advanced Information Networking and Applications,
volume o, pages 225-232, Los Alamitos, CA, USA, 2009.
IEEE Computer Society. (Cited on pages[14]and [17])

Bill Nitzberg & Virginia Lo. Distributed shared memory: a
survey of issues and algorithms. Computer, vol. 24, no. §,

pages 52-60, August 1991. (Cited on page [87})

Rafael Obelheiro, Alysson. Bessani, Lau C. Lung & Miguel
Correia. How Practical Are Intrusion-Tolerant Distributed Sys-
tems? DI/FCUL TR 06-15, Department of Informatics, Uni-
versity of Lisbon, 2006. (Cited on pages[45/and [62])

Michele Pizza, Lorenzo Strigini, Andrea Bondavalli & Feli-
cita Di Giandomenico. Optimal Discrimination between Tran-
sient and Permanent Faults. In 3rd IEEE High Assurance
System Engineering Symposium, pages 214-223, Bethesda,
MD, USA, 1998. (Cited on pages|[15/and [17])

Stefano Porcarelli, Felicita Di Giandomenico, Amine
Chohra & Andrea Bondavalli. Tuning of Database Audits
to Improve Scheduled Maintenance in Communication Systems.
In U. Voges, editor, SAFECOMP 2001, 20th Int. Conference
on Computer Safety, Reliability and Security, pages 238-
248, Budapest, Hungary, 2001. Springer-Verlag. (Cited on
page[112})

Stefano Porcarelli, Marco Castaldi, Felicita Di Giandome-
nico, Andrea Bondavalli & Paola Inverardi. A Framework
for Reconfiguration-based Fault-Tolerance in Distributed Sys-
tems. In R. De Lemos, c. Gacek & A. Romanovsky, editors,
Architecting Dependable Systems, LNCS. Springer-Verlag,

2004. (Cited on pages[111]and [112])

David Powell, Christophe Rabéjac & Andrea Bondavalli.
Alpha-count mechanism and inter-channel diagnosis. Tech-

nical report, ESPRIT Project 20716 GUARDS Report,
N°I1SA1.TN.5009.E, 1998. (Cited on pages[17]and [36})

[Powell 99] David Powell, Jean Arlat, Ljerka Beus-Dukic, Andrea Bon-
davalli, Paolo Coppola, Alessandro Fantechi, Eric Jenn,
Christophe Rabéjac & Andy Wellings. GUARDS: A Generic
Upgradable Architecture for Real-Time Dependable Systems.
IEEE Transactions on Parallel and Distributed Systems,

vol. 10, no. 6, pages 580-599, 1999. (Cited on page[37])

[Powell 03] David Powell & Robert Stroud. Conceptual Model and Ar-
chitecture of MAFTIA. MAFTIA Project Deliverable D21,

January 2003. (Cited on page)

[Preparata 67] Franco P. Preparata, Gernot Metze & Robert T. Chien. On
the Connection Assignment Problem of Diagnosable Systems.
IEEE Transactions on Electronic Computers, vol. EC-16,
no. 6, pages 848-854, December 1967. (Cited on pages
and [14])

[Prewett o4] James E. Prewett. Listening to your cluster with LoGS. In
The s5th LCI International Conference on Linux Clusters:
the HPC revolution 2004, May 2004. (Cited on page [24])

[Pucella 06] Riccardo Pucella & Fred B. Schneider. Independence From
Obfuscation: A Semantic Framework for Diversity. In Proc. of
the 19th IEEE Workshop on Computer Security Founda-
tions, pages 230241, 2006. (Cited on page[92])

[Rabiner go] Lawrence R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition. In Alex Waibel &
Kai-Fu Lee, editors, Readings in speech recognition, pages
267-296. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1990. (Cited on pages [20]and [42])

[Romano 02] Luigi Romano, Andrea Bondavalli, Silvano Chiaradonna
& Domenico Cotroneo. Implementation of Threshold-based
Diagnostic Mechanisms for COTS-based Applications. In
21st IEEE Symposium on Reliable Distributed Systems
(SRDS’02), pages 296—303, Osaka University, Suita, Japan,
October 13-16 2002. (Cited on pages[12]and [17])

[Rosenberg 02] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Ca-
marillo, Alan Johnston, Jon Peterson, Robert Sparks, Mark
Handley & Eve Schooler. SIP: Session Initiation Protocol.

161

162

[Rouillard o4]

[Sanders 91]

[Serafini 07]

[Siewiorek 98]

[Simoncini o4]

[Sosnowski 94]

[Sousa 06]

[Sousa o7]

Standards track, Internet Engineering Task Force (IETF),
June 2002. (Cited on page[122})

John P. Rouillard. Real-time Log File Analysis Using the Sim-
ple Event Correlator (SEC). In LISA "04: Proceedings of the
18th USENIX conference on System administration, pages
133-150, Berkeley, CA, USA, 2004. USENIX Association.

(Cited on pages [24]and [27])

William H. Sanders & J.E. Meyer. A Unified Approach for
Specifying Measures of Performance, Dependability and Per-
formability. In A. Avizienis & J. Laprie, editors, Depend-
able Computing for Critical Applications, Vol. 4 of De-
pendable Computing and Fault-Tolerant Systems, pages

215-237. Springer Verlag, 1991. (Cited on page[72])

Marco Serafini, Andrea Bondavalli & Neeraj Suri. Online
Diagnosis and Recovery: On the Choice and Impact of Tuning
Parameters. IEEE Transactions on Dependable and Secure
Computing, vol. 4, no. 4, pages 295-312, 2007. (Cited on

pages[igland [17])

Daniel P. Siewiorek & Robert S. Swarz. Reliable computer
systems (3rd ed.): design and evaluation. A. K. Peters, Ltd.,
Natick, MA, USA, 1998. (Cited on pages[33|and [116})

Luca Simoncini, Felicita Di Giandomenico, Andrea Bonda-
valli & Silvano Chiaradonna. Architectural Challenges for a
Dependable Information Society. In Building the Information
Society, pages 282—304. Springer Boston, 2004. (Cited on
page[3})

Janusz Sosnowski. Transient Fault Tolerance in Digital Sys-
tems. IEEE Micro, vol. 14, no. 1, pages 24—35, 1994. (Cited

on page|[15])

Paulo Sousa, Nuno Neves, Antonia Lopes & P. Verissimo.
On the Resilience of Intrusion-Tolerant Distributed Systems.
DI/FCUL TR 6-14, Department of Informatics, University
of Lisbon, 2006. (Cited on page[52])

Paulo Sousa, Alysson Bessani, Miguel Correia, Nuno
Neves & Paulo Verissimo. Resilient Intrusion Tolerance
through Proactive and Reactive Recovery. In 13th IEEE Pa-
cific Rim Dependable Computing conference, 2007. (Cited

on pages and)

[Sousa 08]

[Spainhower 92]

[Task Force o4]

[Tendolkar 82]

[Thompson o04]

[UCTE o06]

[Vaarandi o2]

[Vedeshenkov 02]

[Verissimo o6a]

[Verissimo 06b]

Paulo Sousa, Alysson N. Bessani & Rafael R. Obelheiro.
The FOREVER Service for Fault/Intrusion Removal. In 2nd
Workshop on Recent Advances on Intrusion-Tolerant Sys-
tems (WRAITS'08). ACM, April 2008. (Cited on page [88])

Lisa Spainhower, Jack Isenberg, Ram Chillarege & Joseph
Berding. Design for Fault-Tolerance in System ES/9oo0 Model
900. In Twenty-Second International Symposium on Fault-
Tolerant Computing (FTCS-22) Digest of Papers, pages 38—

47, Jul 1992. (Cited on pages|[14|and [15])

Task Force. August 14th blackout: Causes and recommen-
dations. U.S.-Canada Power System Outage Task Force,
April 2004. (Cited on page [2})

Nandakurnar N. Tendolkar & Robert L. Swann. Automated
Diagnostic Methodology for the IBM 3081 Processor Complex.
IBM J. Research and Development, vol. 26, pages 78-88,

1982. (Cited on page[15})

Kerry Thompson. Logsurfer. SysAdmin magazine,
vol. 2004-3, pages —, March 2004. Publication has ceased
in August 2007. (Cited on page [24])

UCTE. Lessons learnt from the disturbance on 4 Novem-
ber 2006. In Marcel Bial, editor, UCTE Annual Report,
chaper 5, pages 22-27. Secretariat of UCTE, 2006. (Cited

on paget})

Risto Vaarandi. SEC - A Lightweight Event Correlation Tool.
In IEEE Workshop on IP Operations and Management,
pages 111-115, 2002. (Cited on page [24])

V. A. Vedeshenkov. On the BGM Model-Based Diagnosis of
Failed Modules and Communication Lines in Digital Systems.
Automation and Remote Control, vol. 63, no. 2, pages 316~
327, February 2002. (Cited on page[14])

Paulo Verissimo. Travelling through wormholes: a new look at
distributed systems models. ACM SIGACT News, vol. 37,

no. 1, pages 66-81, 2006. (Cited on pages
and [106])

Paulo Verissimo, Nuno Neves, Christian Cachin, Jonathan
Poritz, David Powell, Yves Deswarte, Robert Stroud & Ian
Welch. Intrusion-Tolerant Middleware: The Road to Automatic

163

164

Security. IEEE Security and Privacy, vol. 4, no. 4, pages
54-62, Jul./ Aug. 2006. (Cited on page [50})

[Verissimo 08] Paulo Verissimo, Nuno Neves, Miguel Correia, Anas Abou
El Kalam, Yves Deswarte, Andrea Bondavalli & Alessan-
dro Daidone. The CRUTIAL Architecture for Critical In-
formation Infrastructures. In Rogério De Lemos, Felicita
Di Giandomenico, Cristina Gacek, Henry Muccini & Mar-
lon Vieira, editors, Architecting Dependable Systems V,
volume 5135 of LNCS, chaper 1, pages 1—27. Springer
Berlin / Heidelberg, August 2008. (Cited on pages

l47, and [54})

[Walter 97] Chris J. Walter, Patrick Lincoln & Neeraj Suri. Formally
Verified On-Line Diagnosis. IEEE Transactions on Software
Engineering, vol. 23, no. 11, pages 684-721, 1997. (Cited

on pages and)

[Wilson o6] Clay Wilson. Terrorist capabilities for cyber-attack. In Myriam
Dunn & Victor Mauer, editors, Int. CIIP Handbook volume
IT, volume 2 of International CIIP handbook, chaper 2, pages
69-88. CSS, ETH Zurich, 2006. (Cited on page [46])

[Zhou o2] Lidong Zhou, Fred Schneider & Robbert Van Rennesse.
COCA: A Secure Distributed Online Certification Authority.
ACM TOCS, vol. 20, no. 4, pages 329-368, November 2002.

(Cited on page(g4])

ACRONYMS

AH
API
BN
CI
CIS

COST

COTS

Authentication Header.

Application Programming Interface.
Bayesian Network.

Critical Infrastructure.

CRUTIAL Information Switch; a CIS is a special interconnection
and filtering device which connects the WAN to the LANSs in the
CRUTIAL architecture.

European Co-Operation in Science and Technology; it is an
intergovernmental framework for European cooperation in the field
of scientific and technical research.

http://www.cost.esf.org/

Commercial Off-The-Shelf.

CRUTIAL CRitical UTility InfrastructurAL Resilience; it is an IST project

CS
CTP
DEEM

DoS
DSPN
DTMC
FCR

(IST-2004-27513) which addressed new networked ICT systems for
the management of the electric power grid.
http://crutial.erse-web.it/

Computer Society.
Control Tree Protocol.

DEpendability Evaluation of Multiple-phased systems; it is a
dependability modeling and evaluation tool specifically tailored for
the time-dependent analysis of MPS.
http://dcl.isti.cnr.it/DEEM/

Denial of Service.
Deterministic and Stochastic Petri Net.
Discrete Time Markov Chain.

Fault Containment Region.

FOREVER Fault/intrusiOn REmoVal through Evolution & Recovery;

FOREVER is a recent project funded by the EU through the RESIST
NOoE (Contract IST-2004-26764).
http://forever.di.fc.ul.pt/

165

http://www.cost.esf.org/
http://crutial.erse-web.it/
http://dcl.isti.cnr.it/DEEM/
http://forever.di.fc.ul.pt/

FP6

FP7

FRU
GPS

GRID

GSPN

GUARDS

Sixth Framework Programme; it is a framework programme for
research and technological development funded by the European
Commission between 2002 and 2006.

Seventh Framework Programme; it is a framework programme for
research and technological development funded by the European
Commission between 2007 and 2013.

Fault Replacement Unit.

Global Positioning System; it is a U.S. space-based global
navigation satellite system and provides reliable positioning,
navigation, and timing services to worldwide users on a continuous
basis.

GRID is a coordination action funded by the IST-FP6.
http://grid.jrc.it/

Generalized Stochastic Petri Nets.

Generic Upgradable Architecture for Real-time Dependable
Systems; it is an ESPRIT Project (contract n. 20716) which
addressed the development of architectures, methods, techniques,
and tools to support the design, implementation and validation of
critical real-time systems.
http://www.cs.york.ac.uk/rts/projects/guards/guards.html

HIDENETS HIghly DEpendable ip-basedNETworks and Services; it is an IST

HMM
ICR
ICT

IEEE

IFIP

166

project (IST-2004-26979) which developed and analyzed end-to—end
resilience solutions for distributed applications and mobility-aware
services in ubiquitous communication scenarios.
http://www.hidenets.aau.dk/

Hidden Markov Model; it is an extension of Markov models.
Intrusion Containment Region.
Information and Communications Technology.

Institute of Electrical and Electronic Engineers; IEEE is an
international non—profit, professional organization for the
advancement of technology related to electricity.

International Federation for Information Processing; IFIP is an
umbrella organization for national societies working in the field of
information technology.

http://grid.jrc.it/
http://www.cs.york.ac.uk/rts/projects/guards/guards.html
http://www.hidenets.aau.dk/

INSPIRE INcreasing Security and Protection through Infrastructure
REsilience; it is an IST STReP (ICT-SEC-FP7-225553) aiming at
increasing the security and the protection of SCADA-based
infrastructures at communication layer.
http://www.inspire-strep.eu/

IntelliCIS Intelligent Monitoring, Control and Security of Critical
Infrastructure Systems; it is a COST action (ICo806) aiming at
developing innovative intelligent monitoring, control and safety
methodologies for critical infrastructure systems.
http://www.intellicis.eu/

IP Internet Protocol.

IPsec Internet Protocol Security ; it is a protocol suite for securing
Internet Protocol (IP) communications.

IRRIIS Integrated Risk Reduction of Information-based Infrastructure
Systems; it is an IST-FP6 project which worked for increasing the
availability, survivability and resilience of critical power and
communication infrastructures.
http://www.irriis.org/

IST Information Society Technologies; it is one of the thematic priorities
in the research funded by the European Commission.

LAN Local Area Network.

LIFO Last In, First Out.

LQI Link Quality Indication.

MAC Message Authentication Code.

MAFTIA Malicious—and Accidental-Fault Tolerance for Internet
Applications; it is a FP5 research project (IST-1999-11583) which
investigated the dependability of large distributed applications.
http://research.cs.ncl.ac.uk/cabernet/www.laas.research.ec.
org/maftia/

MPS Multiple Phased System.
MTTEF Mean Time To Failure.
NMEA National Marine Electronics Association.

NVD National Vulnerability Database.

167

http://www.inspire-strep.eu/
http://www.intellicis.eu/
http://www.irriis.org/
http://research.cs.ncl.ac.uk/cabernet/www.laas.research.ec.org/maftia/
http://research.cs.ncl.ac.uk/cabernet/www.laas.research.ec.org/maftia/

OsI Open System Interconnection reference model; it is an abstract
description for layered communications and computer network
protocol design.

PRRW Proactive-Reactive Recovery Wormhole; it is a service defined in
the CRUTIAL architecture.

QoS Quality of Service.

RMS Root Mean Square.

RSSI Received Signal Strength Indication.
RTU Remote Terminal Unit.

SAN Stochastic Activity Network.

SCADA Supervisory Control And Data Acquisition; it is a category of
industrial control system.

SEC Security.
SRN Stochastic Reward Nets.
SSL Secure Sockets Layer protocol.

SVM Shared Virtual Memory.

TC Technical Committee.
TCP Transmission Control Protocol.
THL Time Has Lived.

TMR Triple Modular Redundancy.

TLS Transport Layer Security protocol.
TSO Transmission System Operator.
UCTE Union for the Coordination of Transmission of Electricity;

http://www.ucte.org/
WAN Wide Area Network.

WSN Wireless Sensor Network.

168

http://www.ucte.org/

	Contents
	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	State of the art and open problems
	Basic concepts of dependability
	Diagnosis framework

	Traditional diagnosis
	An heuristic approach for on–line diagnosis
	A probabilistic approach for on–line diagnosis

	New tools
	On–line monitoring
	Diagnosis based on simple event correlation

	A diagnosis framework
	Requirements and Specifications
	The proposed diagnosis framework
	Local Diagnosis
	Private Diagnosis
	Distributed Diagnosis

	The proposed conceptual schema
	Solutions proposed to extend the diagnosis based on HMM

	Critical infrastructure protection
	The protection of an ICT infrastructure controlling the power grid
	CRUTIAL Architecture Overview
	CIS Resilience Overview

	Diagnosis in CRUTIAL
	CIS self-diagnosis (local view)
	CIS LAN diagnosis (private view)
	CIS distributed diagnosis (distributed view)

	Quantitative evaluation of the CIS recovery strategy
	Fault Model and Assumptions
	The PRRW Strategy
	Quantitative Analysis
	Direction for Improvements/Refinements

	The FOREVER service
	Introducing Diversity

	Quantitative Evaluation of the FOREVER service
	Evaluation results

	Concluding remarks

	Solutions for adaptive operation
	HIDENETS objectives and requirements
	HIDENETS architecture
	The Diagnostic Manager service
	The Reconfiguration Manager service

	Platooning test bed
	Diagnostic and Reconfiguration Managers in Platooning test bed

	Quantitative evaluation of service access with replicated servers
	Fault model and assumptions
	Failure detection and reconfiguration strategies
	Quantitative analysis
	Concluding remarks

	Security in critical infrastructures
	INSPIRE architecture overview
	Probabilistic diagnosis of sinkhole attacks to the CTP protocol
	Scenario description
	Fault model and assumptions
	The diagnostic mechanism
	Future work

	Conclusions
	Bibliography
	Acronyms

