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Abstract 

Mass media are a new and important source of information for any natural disaster, mass emergency, 

pandemic, economic or political event, or extreme weather event affecting one or more communities 

in a country. Mass media is usually the first and primary source of information about hazards for the 

public, providing a relatively high temporal and spatial resolution. Various studies have shown that 

mass media have a quick degree of observation and publication of the event in a relatively short period. 

The use of data mining techniques is advancing in different ways. The news publication about a natural 

disaster on newspaper or crowdsourcing platforms allows a faster observation, survey, and 

classification of these phenomena. This source of information allows continuous feedback from the 

real world, and news concerning natural events can be rapidly collected.  

The major goal of this research is to show how useful and capable social media is for detecting events 

in places without actual sensors that could immediately identify a natural hazard. For the entire Italian 

area, many analytical techniques have been used to determine the spatial and chronological 

distribution of newspaper articles about floods and in particular on landslide events. This analysis made 

it possible to identify the areas with greater user interaction concerning a natural event. User 

interaction can identify active social behaviour, inclined to information (transmitting and/or receiving 

it) and consequently resilient to the event. The procedures that can be taken to manage the data and 

show what can be derived are discussed below in great detail. In the first step, news of landslides and 

floods was analysed using as source the Multi-risk Information Gateway or MIG platform, which 

collected articles about natural events (landslides and floods) at the national scale from Google News. 

The newspaper articles about landslides and floods in Italy are automatically collected by an existing 

data mining algorithm based on a semantic engine and archived within multi-risk information gateway 

platform. In total, 32.525 landslide news items and 34.560 flood news items were collected. The 

datasets are classified into classes based on the thematic, temporal and spatial relevance of the news. 

This classification makes it possible to outline the temporal and spatial distribution of the events, their 

media impact and also to outline a hazard map on a regional and provincial scale. There are three 

classes in total, class 1 with high temporal and spatial reliability, class 2 has a medium temporal and 

spatial resolution, while class 3 identifies incorrect news. These dataset feature inventories of events 

from 2010 to 2019. The integration of natural hazard information and social media data could improve 

warning systems to enhance the awareness of disaster managers and citizens about emergency events. 

Currently, few studies have been produced on the combination of social media data and traditional 

sensors. This gap indicates that it is unclear how their integration can effectively provide emergency 

managers with appropriate knowledge. A landslide and flood inventory derived from social media was 
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used as a base proxy to correlate rainfall data and impacts of events in terms of victims (POLARIS) and 

earmarked funds (ReNDIS). However, more emphasis was placed on the problems of landslide events 

by considering maps of landslide hazard percentages, population at risk and buildings at risk (from 

ISPRA). This can attempt to show how social media, combined with other sources, can assist 

government authorities with a better knowledge of the hazard of a territory. These data have been 

used to identify the areas and the periods most affected by natural hazards. In another hand, it was 

possible to outline the resilience of communities/regions considering the number of published news 

with respect to natural hazards. Landslide news, with its associated media impact and number of 

victims, is mainly concentrated in the northern regions and Campania and Sicilia. A similar trend was 

found in the distribution of rain events. Conversely, the distribution of funds is more concentrated in 

the South rather than in Northern Italy. This trend was justified by the large percentages of landslide 

hazard areas and buildings at risk that characterise them. Whereas, the regions most affected by floods 

were mainly central and central-southern Italy. This trend agrees with the distribution of rainfall, the 

number of victims and the funds allocated for soil protection. Considering the temporal distribution, 

in general, both landslide and flood events have increased since 2015, in contrast to the rainfall data 

and allocated funds, while casualties remain stable.  

According to the results, data mining is helpful for creating databases where the day and the 

approximate location (municipality) of the possible events are known. This database can be used for 

proper land use or risk mitigation planning since the most event-prone municipalities can be defined. 

In the second step of this work, a new data mining technique in Twitter was applied using appropriate 

keywords extracted from newspaper headlines. Several techniques have been developed for data 

mining in social media for many natural events, but they have rarely been applied to the automatic 

extraction of landslide events. Currently, several systems to set up landslide inventories exist, although 

they rarely rely on automated or real-time updates. For these reasons, this work focused on landslide 

events. This makes it possible to fill the gap in the literature with respect to landslide events. One script 

was set to obtain the database from Twitter. Tweets were collected through the Twitter academic API2 

with an academic licence. The Twitter dataset comprises various slots with different temporal 

distributions. The main purpose is not to recreate the same inventory of landslide phenomena as with 

newspaper reports but rather to apply classification techniques. Hence, the dataset from Twitter is 

considered neither complete nor exhaustive for the 2011-2019 period. The dataset features by 13.349 

data, it was classified manually, providing a solid base for applying deep learning. Exploring the dataset, 

some case studies were analysed. An interesting case involved the landslide event of 24/11/19 in 

Liguria.  For this event, possible alert maps were created at municipal scale and by alert zone 

considering the count of tweets. The alert maps demonstrated how the data, from social media, at the 

municipal scale is still comprehensive in the civil protection phases. In addition, the timing of user 
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interaction with the event was demonstrated compared to the slower publication of newspaper 

articles. As a result of these analyses, a possible contribution to the implementation of specific 

guidelines for communication and alerting about natural events such as landslides was proposed. 

Creating a simple, uniform language can facilitate communication between decision-makers and 

citizens, and also between decision-makers and data analysts. 

In the third step of this project, it was applied deep learning model for classifying the dataset on the 

basis of landslide information. A script with transformer architecture and the BERT method was 

created to classify the data. “Bert For Information on Landslide Events”, or BEFILE, allows the 

classification of text into two classes (0 and 1) based on landslide information in the Italian language. 

The Italian-language classified dataset for landslide events fills the gap in analysing natural events using 

Twitter, which has not yet been exploited to a great extent for landslide events. BEFILE makes possible 

the detection of landslide events within tweets and brings state-of-the-art integration in NLP 

technology of text classification. At the same time, several problems may arise due to the nature of 

big social media data analysis and some limitations of this research. These problems should not be 

ignored when translating the research results into practice. However, it was demonstrated that Twitter 

can be utilized as a source of rapid information and detection for landslide events. A possible 

contribution about implementation of specific communication and warning guidelines with respect to 

natural events such as landslides has been proposed. Creating a simple homogeneous language can 

available the communication between decision-makers and citizens, but also decision-makers and data 

analysis-makers.  Moreover, from a practical perspective, this study provides useful perspectives for 

decision-makers to consider when using social media as an additional information resource for rapid 

damage assessment. 
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Riassunto 

I mass media sono una nuova e importante sorgente di informazione per i disastri naturali, emergenze 

di massa, eventi politici o eventi meteo estremi che coinvolgono ona o più comunità di un paese, 

fornendo un’alta risoluzione temporale e spaziale. L’uso di tecniche di data mining, applicato a diverse 

sorgenti (Google News o piattaforme social) si sta diffondendo in diversi campi. La pubblicazione di 

una notizia o di un post da un utente all’interno di una piattaforma crowdsourcing permette una veloce 

osservazione e classificazione del fenomeno. L’accesso a queste informazioni permette di ottenere un 

feedback continuo, dal mondo reale. Tale accesso aumenta notevolmente la risposta degli organi 

competenti di Protezione Civile ad assistere all’emergenza. 

In questo lavoro diverse fasi e analisi sono susseguite per dimostrare l’utilità e l’efficacia di utilizzare 

anche i dati dai social media per rilevare eventi naturali e determinare la resilienza di un’area.  

Nella prima fase sono state analizzate le notizie di frane e alluvioni utilizzando la piattaforma Multi risk 

Information Gateway o MIG. Questa piattaforma è stata sviluppata all’interno del Dipartimento di 

Scienze della Terra dell’Università degli Studi di Firenze. Un algoritmo semantico filtra, raccoglie e 

cataloga le notizie provenienti da Google News. In totale sono stati collezionati 32.525 notizie di frana 

e 34.560 notizie di alluvione. I datasets sono classificati in classi sulla base della rilevanza tematica, 

temporale e spaziale della notizia. Le classi in totale sono 3, la classe 1 delinea un’alta affidabilità 

temporale e spaziale, la classe 2 presenta una media risoluzione, mentre la classe 3 identifica le notizie 

errate. Per distinguere i vari prodotti generati dalla classificazione, una nuova nomenclatura è stata 

creata delineando gli eventi, la pericolosità da frana in un’area e l’impatto mediatico o l’impatto 

dell’evento. Tale classificazione, quindi, permette di determinare i relativi prodotti sotto forma di 

distribuzione temporale e spaziale. Nella distribuzione temporale sono stati considerati la distribuzione 

annuale, mensile e giornaliera, mentre sono state studiate tre risoluzioni spaziali: regionale, 

provinciale e di zona di allerta. In conclusione, datasets così classificato vanno a formare degli inventari 

rispettivamente di frane e alluvioni per tutto il territorio italiano dal 2010 al 2019. In special modo, le 

analisi di distribuzione spaziale del dato ha permesso di stimare la resilienza in funzione degli articoli 

pubblicati per ogni regione. Per convalidare tale analisi, l’attenzione successiva si è rivolta ad integrare 

i dati dai social media con ulteriori informazioni sui rischi naturali provenienti dai sensori tradizionali o 

da altri fonti di dati disponibili. I precedenti inventari sono stati utilizzati come proxy di base per 

correlare differenti dati: pluviometrici ed effetti dell’evento in termini di perdite di vite umane 

(POLARIS) ed economiche (ReNDIS). Una maggior analisi è stata posta sulle problematiche degli eventi 

di frana considerando anche le mappe delle percentuali di pericolosità da frana, popolazione a rischio 

e edifici a rischio (da ISPRA).  
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Le notizie di frana, con il relativo impatto mediatico e numero di vittime si concentrano principalmente 

nelle regioni settentrionali e in Campania e in Sicilia. Tendenza simile è stata riscontrata nella 

distribuzione degli eventi di pioggia. Al contrario, la distribuzione dei fondi si concentra maggiormente 

al Sud rispetto al Nord Italia. Tale trend è stato giustificato dalle notevoli percentuali di aree a 

pericolosità da frana ed edifici a rischio che li caratterizzano.  Mentre, le regioni più colpite dalle 

alluvioni sono state soprattutto l'Italia centrale e centro-meridionale. Questa tendenza concorda con 

la distribuzione delle precipitazioni, il numero di vittime e dei fondi stanziati per la protezione del suolo.  

Considerando la distribuzione temporale, in generale sia gli eventi franosi che alluvionali aumentano 

dal 2015, in contrasto con i dati di pioggia e i fondi stanziati, mentre le vittime rimangono costanti. 

Data l'attuale letteratura sul data mining per gli eventi alluvionali e l'assenza di studi sugli eventi 

franosi, le analisi successive si sono concentrate su quest’ ultimi. Questo ha permesso di approfondire 

e analizzare un tema non realmente affrontato nelle analisi dei dati dalle piattaforme di crowdsourcing. 

Nella seconda fase, di questo progetto, è stato utilizzato Twitter come fonte di dati. La tecnica di data 

mining, finora applicata alle notizie dei giornali, è stata applicata alla piattaforma crowdsourcing 

usando un script e parole chiavi appropriate. All’interno della pagina per sviluppatori di Twitter è stato 

creato un progetto con accesso accademico. Il progetto è supportato da una applicazione 

appositamente creata per ottenere le credenziali, le quali consentono di estrarre il dato dalla 

piattaforma utilizzando Python. Lo script di estrazione preesistente è stato settato considerando 5 

mirate parole chiavi afferenti all’evento frana. Le parole chiavi sono state scelte sulla base di un’analisi 

semantica all’interno dei titoli di giornali afferenti agli eventi di frana. Mentre i periodi temporali di 

estrazione sono stati basati sulla distribuzione temporale delle notizie. Nove slots sono stati estratti 

con differente risoluzione temporale, per un totale di 13.350 tweets. Il dataset è stato classificato 

manualmente considerando la rilevanza e la presenza di coordinate specifiche sul testo. Esplorando il 

set di dati, sono stati analizzati alcuni casi di studio. Caso interessante è riguardato l’evento di frana 

del 24/11/19 in Liguria.  Per questo evento sono state create delle possibili mappe di allerta a scala 

comunale e per zona di allerta considerando il conteggio dei tweets. Le mappe di allerta hanno 

dimostrato come i dati, dai social media, a scala comunale siano comunque esaustivi nelle fasi di 

protezione civile. Inoltre, è stato dimostrato la tempistica di interazione degli utenti all’evento rispetto 

alla più lenta pubblicazione di articoli di giornale. A seguito di queste analisi è stato proposto un 

possibile contributo per l'implementazione di linee guida specifiche per la comunicazione e l'allerta in 

relazione a eventi naturali come le frane. La creazione di un linguaggio semplice e omogeneo può 

favorire la comunicazione tra decisori e cittadini, ma anche tra decisori e addetti all'analisi dei dati.  

Tuttavia, occorre tenere conto di alcune limitazioni: le parole chiavi utilizzate possono essere non 

esaustive e di conseguenza il dataset può essere non completo, inoltre, Twitter limita il numero di 

estrazioni per unità temporale; infine, la mancanza spesso di geolocalizzazione del dato.  
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Il terzo step di questo lavoro è stato caratterizzato dalla applicazione di tecniche di deep learning. Il 

dataset classificato ha fornito una solida base per l'applicazione di deep learning supervisionato. 

Inoltre, il dataset classificato in lingua italiana per gli eventi franosi colma l'attuale lacuna nell'analisi 

degli eventi naturali. Infatti, Twitter allo stato attuale non è ancora stato sfruttato per questa tipologia 

di evento. Uno script è stato creato per la classificazione del testo, utilizzando un'architettura a 

trasformatori con il metodo BERT. "Bert For Information on Landslide Events" o BEFILE permette di 

classificare il testo in due classi (0 e 1) in base alle informazioni sulle frane in lingua italiana. Questa 

analisi porta a un notevole avanzamento del classificatore BERT, che finora era stato utilizzato spesso 

per analizzare dati in lingua inglese in diversi settori. BEFILE senza preelaborazione ha mostrato risultati 

significativi di accuratezza, pari al 96% e un'AUC di 0,95; posizionandosi tra l'implementazione di 

modelli con CNN. BEFILE ha mostrato risultati promettenti nella classificazione e quindi 

nell'individuazione di informazioni su eventi franosi.  

Nonostante i limiti noti e dimostrati dei dati dei social media, questo studio conferma che informazioni 

rilevanti e statisticamente significative sulla pericolosità delle frane e delle alluvioni possono essere 

ottenute attraverso il data-mining dei social network durante le emergenze. Tali dati, opportunamente 

filtrati e classificati, possono essere di notevole aiuto per aumentare la nostra attuale capacità di 

calibrare e validare i modelli di allerta precoce, con particolare riferimento alle aree con scarsità di 

dati. Inoltre, alcune valutazioni possono rappresentare uno strumento utile per comprendere e 

valutare l'impatto dei disastri naturali, nonché per pianificare le migliori strategie di riduzione del 

rischio su scala regionale o nazionale. 
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1 INTRODUCTION 

The vulnerability of the population and the effects of natural hazards depend on the geological and 

geomorphological settings of an area even on the level of socioeconomic development. A recent report 

from US National Academy of Science recognizes a growing threat in relatively wealthy municipalities 

in the United States, with higher risk to populations with less protection from insurance or social safety 

net (National Academies of Sciences & Medicine, 2019). Production growth and accelerated 

urbanization, as well as the concentration of the population and enterprises in hazardous zones, are 

the main factors of the increase in risk (Crozier, 2010; World Conference on Disaster Risk Reduction, 

2015; Porfiriev, 2016). Climate change is expected to make these conditions even worse (Kundzewicz 

et al., 2014; Hirabayashi et al., 2013). As result of global climate changes, extreme weather events are 

predicted to increase in frequency and severity at regional and local scales (IPCC, 2012). Kiely (1999) 

affirmed that the rainfalls with heavy intensity rate are increasing and the probability of the return 

period of relevant events are shortening from 30 to 10 years. Consequently, the frequency and severity 

of natural disasters on the economy are growing. Estimating the economic impact and the human 

losses outline as consequences of natural disasters is a necessary tool to evaluate and develop 

measures for risk reduction. Several research projects have examined the economic impact of specific 

disaster events (Cavallo and Noy, 2009). The wealthier the country affected, the greater the economic 

losses from natural disasters (Neumayer et al., 2014). The natural hazard propensity and the possible 

involvement of urbanized areas are issues faced by governments and private actors in undertaking 

measures that will prevent, or at least mitigate economic losses. Countries of larger economic size will 

have more wealth potentially destroyable and are therefore expected to experience larger losses. Also, 

disaster prevention and damage mitigation measures are costly and both private actors and 

governments can more easily finance the in richer countries rather than in low social capital countries 

(Neumayer et al., 2014). Hurricane Katrina was the costliest natural disaster ever with an estimate 

economic loss between 82 billion (Knabb et al., 2005) and 150 billion US$ (Burton and Hicks, 2005), 

and 986 victims (Brunkard et al., 2008). In Italy, in October 2014, one flash flood caused several 

landslides and mud flows in Genova, causing 1 dead, 300 million euros of damage and 250 people 

homeless (Faccini et al., 2015; Paliaga et al., 2020).  

https://www.wordreference.com/enit/heavy%20rain
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Landslides in Italy are the most frequent and diffuse natural hazards causing the greatest number of 

fatalities and damage to urban areas and infrastructure (Forli and Guida, 2009; Campobasso et al., 

2013). Landslides are an illustrative example of multi-hazard, which can be caused by earthquakes, 

rainfalls and human activity among other reasons. Detection of landslides presents a significant 

challenge since there are no physical sensors that would detect landslide directly (Musaev et al., 2015). 

The retrieval of data, using specific data mining algorithms, from technical reports and/or newspapers 

can further extend the exploitable data. Mass media are a new and important source of information 

for any natural disaster, mass emergency, pandemic, economic or political event, extreme weather 

event affecting one or more communities in a country. Various studies have shown that mass media 

have a quick degree of observation and publication of the event in a relatively short time span. The 

use of social media in detecting natural hazard has shown promising results (Holderness et al. 2015; 

Wang et al., 2018). The joint analysis of data from different social media can help to capture disaster 

situations with a relatively high temporal and spatial resolution to map different events, such as 

landslides, across various locations (Fan et al., 2018; Rachunok et al., 2019; Saltelli et al., 2020). 

Currently, systems using automated or real-time updates are still uncommon and only used for some 

types of natural hazards (Battistini et al. 2013, Battistini et al. 2017; Calvello and Pecoraro 2018), mainly 

earthquakes, floods and wildfire, while creating a complete and updated database is more difficult for 

landslide (Galli et al., 2008; Santangelo et al., 2010).  Only a small part of the data is used for database 

creation. Landslide events are completely missing from this list. Battistini et al., (2013, 2017) and 

Kreuzer et al., (2020) created systems for automatic real-time updating of landslide inventories using 

data mining techniques within newspaper articles. 

Social media data have often served as proxies for a variable of interest and correlated with 

conventional data sources, such as physical sensors and survey data (De Andrade et al., 2021). 

Although, currently, few studies on the combination of social media and other data sources have been 

produced. It thus remains unclear how social media data can be effectively integrated with hazard-

monitoring data to provide emergency managers with appropriate info for better land use planning 

and early warning support (Shoyama et al., 2021). Filling the gap would allow us to also outline the 

resilience of the population using social media as source and validate it to other available datasets that 

describe the territory (hazard maps, rainfall distribution and earmarked funds). Some scholars have 

demonstrated as social media can be an assessment component of resilience developed by individuals 

(Zhang & Shay, 2019). Current literature presents hundreds of definitions of the term resilience (Aburn 

et al., 2016; Reich et al., 2010). It is usually defined as the capacities or processes that assist the entity 

to prepared for upcoming disasters or cope with efficiently (by responding and withstanding) to 

emergency and to recover and bounce back from disasters and change (Leykin et al., 2018). Dufty et 

al., (2012) and Leykin et al., (2018) propose social media as base to evaluate build community resilience 
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to disasters through risk reduction, emergency management, and post-hazard development. Such 

analysis confirmed that communities with higher resilience capacity, which are characterized by better 

social–environmental conditions, tend to have higher social media or crowdsourcing platforms use 

(Wang et al., 2021). Reports about stressful events in social media news sites trigger various appraisals 

among social media users. Some of these appraisals are translated into textual expressions and offer 

a unique opportunity to observe how the public “digests” and copes with the changing reality (Leykin 

et al., 2018). These results imply that social media, such as Twitter, use during disasters could be 

improved to increase the resilience of affected communities (Wang et al., 2021).  

The main aim of this work is to demonstrate the utility and capability of social media to detect events 

in areas without physical sensors and in consequence based on publications number defining the 

region most resilient. Different steps of analyses have been applied to define the spatial and temporal 

distribution of events considering newspaper articles for whole Italian territory. Below many steps are 

described for demonstrating how it is possible to manage the data and what it is possible to derive. 

In the first section of this work was to fill the gap between social media and traditional sensors. 

Newspapers from Google News were collected by Semantic Engine to Classify and Geotagging News 

(SECAGN) system developed by Battistini et al., 2013,2017 were exploited and studied. In particular, 

landslide and flood events from 2010 to 2019 were considered for the entire Italian territory. The 

disadvantage created by this type of data is heterogeneity. Many textual data are congruent with the 

event, but some texts with incorrect word associations manage to evade the filtering system. In this 

case, a manual classification was carried out to further facilitate the analysis. The dataset will later 

form the basis for multiple statistical. A landslide and flood inventory derived from social media was 

used as a base proxy to correlate rainfall data and impacts of landslides in an attempt to show how 

social media in combination with other sources can be utilized to assist government authorities with a 

better knowledge of the landslide hazard of a territory. Such analysis, further, allowed to outline the 

resilience at regional scale, considering the number of articles published respect to natural event. 

Methods and results of this part have been illustrated respectively in Chapter 3.1, 3.2 and Chapter 4.1. 

In the second section of this work, a new data mining technique within Twitter has been applied. 

Crowdsourcing platforms such as Twitter, Instagram, Facebook or YouTube are widely used to detect 

different types of events. In America, as in Asia automatic data mining systems are applied for 

earthquake, flood, hurricane and fire events. Specifically, Twitter is an excellent resource for event 

detection. People share opinions and information about the situation. Especially with Twitter being 

used as a medium of communication every day, the amount of various information about different 

events that can be found is overwhelming (Madichetty and Sridevi, 2020). Having easy access to tweets 
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coming from people would afford new possibilities for emergency response, such as a contribution to 

the real-time assessment of impacts, criticalities and needs. In this project, appropriate keywords have 

been extracted from newspaper headlines. Given the present literature on data mining for flood events 

and the absence of studies on landslide events, the analysis focused on the latter events to deepen 

and analyse a topic not truly addressed in social media analyses and crowdsourcing platforms. This 

makes it possible to fill the gap in the literature with respect to this hazard event. Over 13.000 data 

were extracted within Twitter using keywords about landslides. The dataset was classified manually, 

using two classes (0 and 1), based on subject relevance. Exploring the dataset, some case studies have 

been analysed. Based on tweet count possible Alert system maps were created. These demonstrated 

how the data on a municipal scale is in any case exhaustive in the civil protection phases. However, 

the dataset can be considered not exhaustive mainly for two reasons and in different fields: i) the 

limitation of Twitter during extractions and ii) the lack of geo-localization of data sometimes not 

provided. However, it was demonstrated as also Twitter can be utilized as a source of rapid information 

and detection for landslide events. From a practical perspective, this study can provide useful 

perspectives for decision-makers to consider when using social media as an additional information 

resource for rapid damage assessment. At the end, it was proposed a possible contribution about to 

the implementation of specific communication and warning guidelines with respect to natural events 

such as landslides. Creating a simple homogeneous language can available communication between 

decision-makers and citizens, but also decision-makers and data analysis-makers. Methods and results 

of this section have been illustrated respectively in Chapter 3.3 and Chapter 4.2. 

Using tweets has become one of the most important tools for natural language processing (NLP) tasks. 

In the third section of this project, the main aim is to obtain an automatic classification based on 

information about landslide events. Disaster tweet classification study can be considered a natural 

language processing task. The dataset from Twitter, classified manually, provided a solid base for 

applying deep learning. The use of a deep learning model has started to become more common for 

natural language processing tasks. Moreover, the Italian-language classified dataset for landslide 

events fills the present gap in analysing natural events using Twitter, not yet exploited to a great extent 

for landslide events. The transformer architecture has been chosen for text classification within deep 

learning with the method BERT. “Bert For Information on Landslide Events” or BEFILE is the script 

created to classify text into two classes (0 and 1) based on landslide information in Italian language. 

This analysis leads to a considerable advancement of the BERT classifier, which until now was very 

often only used for a variety of analyses in English. BEFILE without preprocessing showed important 

values of accuracy, equal to 96% and AUC of 0,95; located between implementing models with CNN. 
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Some validations were applied considering the distribution of news and tweets during the events. 

Methods and results of this section have been illustrated respectively in Chapter 3.4 and Chapter 4.3. 

1.1 Mass media for natural disasters 

Mass media is generally the first and primary source of information about hazards for the public 

(Fischer, 1994). The use of social media in detecting natural hazards has shown promising results 

(Holderness et al. 2015; Wang et al. 2018). Studies indicate that social sensors in terms of social media 

report a natural disaster much faster than do observatories (Goswami et al., 2018). Such characteristics 

provide a unique opportunity to capture disaster situations with a relatively high temporal and spatial 

resolution. Furthermore, different events can be mapped across various locations (Fan et al., 2018; 

Rachunok et al., 2019). Systems using automated or real-time updates are still uncommon and only 

utilized for some types of natural hazards (Battistini et al., 2013, Battistini et al., 2017), mainly 

earthquakes, floods, hurricanes and wildfires. Social networking sites have multiple roles. The creation 

of databases about natural disasters is an application undertaken for hurricanes (Miles et al., 2007) or 

flood (Du et al., 2015) events, forecasting disasters (Huang et al.,2010), and focusing on warnings (Acar 

& Muraki, 2011) and postcrisis activities (Olteanu et al.,2015). Creating a complete and updated 

database is more difficult for landslides (Galli et al., 2008, Santangelo et al., 2010). Landslide research 

chiefly relies on landslide inventories for a multitude of spatial, temporal or process analyses (Van Den 

Eeckhaut and Hervás, 2011; Kirschbaum et al., 2015; Klose et al., 2015). The forecasting and 

displacement monitoring of landslides are being increasingly characterized as a problem of “big data”. 

Different data sources can be employed to support decision-making: satellites (Soeters and Van 

Westen, 1996; McKean and Roering, 2003; Lu et al., 2012; Bianchini et al., 2018; Montalti et al., 2019; 

Solari et al., 2020; Confuorto et al., 2021; Nava et al., 2022), rainfall gauges (Lagomarsino et al.,2013; 

Segoni et al., 2018, Rosi et al., 2021) and hydrological networks (Horita et al., 2017). The retrieval of 

data from technical reports and/or newspapers, using specific data mining algorithms, further extends 

exploitable data. The methodology of Battistini et al., (2013, 2017) and Kreuzer et al., (2020) allows us 

to update the landslide inventory in near real-time using the data mining technique of online 

newspaper articles.  

Most of the empirical literature that employs social media data has focused on investigating the 

relationships between social media data and real-world phenomena. This approach involves extracting 

aggregated, thematic, spatiotemporal patterns from social media activity. Social media data have often 

served as proxies for a variable of interest and correlated with conventional data sources, such as 

physical sensors and survey data (De Andrade et al., 2021). Baranowski et al., 2020 and Fitriany et al., 
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2021 combined social media information about floods and forest fires with rainfall data and satellite 

and wind velocity data. The authors have demonstrated how an additional source of information can 

be utilized for near-real-time forecasting. However, currently, only a few studies on the combination 

of social media and other data sources have been produced. It thus remains unclear how social media 

data can be effectively integrated with hazard-monitoring data to provide emergency managers with 

appropriate early warnings (Shoyama et al., 2021). 

Crowdsourcing platform - Twitter 

Social media with crowdsourcing functions, such as Twitter, Facebook or Instagram, are increasingly 

being utilized as sources in mainstream news coverage. Crowdsourcing platforms have become an 

indispensable part of people’s everyday lives and a powerful tool of communication during emergency 

situations, such as during natural disasters. Many research papers about the use of social platforms in 

difficult circumstances have been published (Dragović et al., 2019). Among the different crowdsourcing 

platforms, Twitter has been extensively used for detecting natural disasters. The reason for this use of 

Twitter is that information appears promptly and can be effectively accessed and processed (Alam et 

al., 2019). Twitter had more than 321 million active users in 2020 (TIZ, 2020). Tweet features such as 

short messages (maximum of 280 characters) published in real-time, the ability to attach pictures and 

to share GPS geolocation, and the provision of a free streaming application programming interface 

(API) make it possible to automate monitoring tasks (Fayjaloun et al., 2021) for different events 

(elections, humanitarian crises such as pandemics or wars, natural disasters, etc.). People post 

situation-sensitive information on social media related to what they are experiencing, witnessing, 

and/or hearing from other sources (Hughes & Palen, 2009). With an average rate of 0,85%-3% of 

tweets being geo-tagged, approximately 7.000.000 geo-tagged tweets are posted per day (Huang, Li & 

Shan, 2018). Researchers have observed a strong and immediate spread of tweets when a significant 

event happens (Comunello et al., 2016; Kryvasheyeu et al., 2016). Large crises often generate an 

explosion of social media activity. The earliest known cases of people using the microblogging service 

Twitter in an emergency occurred during severe wildfires near San Diego, California (United States) in 

2007 (Imran et al., 2015). Among the largest documented peaks of tweets per minute observed during 

disasters are 20.000 tweets per minute during Hurricane Sandy in 2012 (United State) (Castillo, 2016), 

approximately 17.000 tweets per minute during the Notre Dame fire in 2019 (Kozlowski et al., 2020), 

almost 13.000 tweets per minute immediately after the Californian Ridgecrest earthquake of July 6, 

2019 (BRGM dataset), and more than 150.000 tweets in the first 48 h after the Mw 6,2 Amatrice 

earthquake (Italy, August 2016) (Francalanci et al., 2017). The data flow sent during the event is not 

constant but experienced drastic variations.  
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Twitter is now considered a social sensor for natural hazards by allowing shared access to live data 

streams. Social networking sites have multiple roles. These roles are significant in the preparation 

phase for a natural disaster (Table 1), during the disaster (Table 2) and after the event (Houston J.B. et 

al., 2015; Kim J. et al., 2018) (Table 3). In the predisaster phase or preparation phase, users on social 

networking sites can be alerted by certain organizations about natural disaster probability in the 

endangered area. 

Natural disasters year City/region/country Social media Authors 

Hurricane Sandy 2012 United States Facebook, Twitter, 

YouTube 

Bernier et al., 

2013 

Floods 2010/11 Queensland 

(Australia) 

Facebook, Twitter, 

YouTube 

Ehnis et al., 2012; 

Magro, 2012 

Mount Merapi 

Eruption; 

Mentawai 

Earthquake and 

Tsunami; Singkil 

earthquake; 

Simeulue 

earthquake 

2010/11/12 Japan Twitter Chatfield et  al., 

2013; Nugroho, 

2011 

Table 1: Case studies from the predisaster phase (Dragović et al., 2019). 

The second phase, during a natural disaster, is often the most important. At that moment, help is 

needed for people who are endangered, and to succeed in this phase, it is important to support the 

spread of information (Dragović et al., 2019). Social media provides an innovative way to observe 

human attitudes and responses, especially during disasters.  
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Natural disasters year City/region/country Social media Authors 

Fire  2007 San Diego, California Twitter Fraustino et al., 2012; Mills  

et al.,2009 

Blizzard 2010 Bornholm, Denmark Facebook Birkbak et al., 2012 

Earthquake and 

tsunami 

2011 Tohoku region 

(Japan) 

Twitter Acar et al., 2011; Reuter C. 

et al., 2018 

Hurricane 2012 East Coast, United 

States 

Twitter, 

Instagram, 

Twitter 

Fraustino et al., 2012; 

Huffington Post, 2012; 

Mashable, 2012; 

Kryvasheyeu et al., 2016 

Bushfire 2013 Tasmania Facebook Irons et al., 2014 

Tornado 2013 Moore, Oklahoma Twitter Blanford et al., 2014 

Typhoon 2013 Philippines Twitter Mav Social, 2013 

Snowstorm 2015 North America Twitter Teodorescu H.N., 2015 

Earthquakes 2016 Rieti, Italy 

Vrancea, Romania 

Twitter Pirnau, 2017 

Flood 2016 Louisiana Facebook, 

Twitter 

Kim et al., 2018; CNN, 2016  

Table 2: Case studies from the response phase (Dragović et al., 2019). 

In the recovery phase after a natural disaster, information is shared about who needs help, the 

locations of vulnerable people, and the regions with substantial damage (Dragović et al., 2019). For 

example, volunteers from Tufts University after the earthquake in Haiti created a map that has helped 

survivors and volunteers sent rescue information via messages on Twitter. Within 15 days, more than 

2.500 messages were received (Fraustino J.D. et al., 2012; Gao H. et al., 2011). 

Natural disasters year City/region/country Social media Authors 

Earthquake 2010 Haiti, Caribbean Twitter Lobb et al., 2012 

Hurricane 2011 Fairfax County, 

Virginia 

Twitter, 

Facebook, 

YouTube 

Fraustino et al., 2012; 

Slide Share, 2012 

Flood and 

Landslide 

2014 Kashmir, Indonesia Twitter Chaturvedi et al., 2015 

Table 3: Case studies from recovery phase (Dragović et al., 2019). 
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The use of tweets as an indication of the spatial footprint of a phenomenon is also possible. For 

example, Acar and Muraki, (2011) examine the use of Twitter during an earthquake in Japan. They 

observed that tweets from affected areas include requests for help and warnings. Tweets from other 

areas far from the disaster epicentre tended to include other types of information, such as messages 

of concern and condolences. Moreover, messages are highly heterogeneous, with multiple sources 

(e.g., institutional accounts, media, eyewitness accounts, influencers, and bots) and varying levels of 

quality (Imran et al., 2015). Additionally, different languages can be utilized in the same crisis, 

particularly if there are events impacting several geographic contexts, such as transborder areas. 

Most disastrous event detection systems are confined to detecting whether a tweet is related to a 

disaster based on textual content (Singh et al., 2019). Event detection is usually performed by 

discovering unusual activity patterns focused on a particular geographic area or on a given topic 

(usually specified by means of keywords). Recently, there has been growing interest in machine 

learning natural language processing (NLP). Several research communities realize many labelled 

datasets for different events and tasks, such as text analysis about sentiment analysis (SA), opinion 

mining or topic modelling. The following resources are made available to help researchers and 

technologists advance research on humanitarian and crisis computing by developing new 

computational models and innovative techniques. Therefore, analysing the content of micro-posts 

may be useful in the selection of only those that are relevant to a determined task. In the case of 

disaster management, identifying posts that indicate a situation of danger, worry or generic alarm may 

suggest important (Buscaldi et al., 2015).  
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2 MATERIAL  

This chapter provides a detailed description of the different data sources for mapping Italy. The 

datasets cover 10 years, from 2010 to 2019, for the entire Italian territory. Each database identifies 

one or more effects as a consequence of an event from published articles in real-time, data rainfall, 

human lives and earmarked funds. Greater importance was placed on the collection of landslide event 

information considering three hazard maps (ISPRA). 

Finally, a step forward, with a data mining technique within Twitter, is described. The data from Twitter 

combined with the deep learning of information for text classification represent further exploitable 

data that is available during natural disasters. Data mining, natural language processing, deep learning 

and statistical analyses have been carried out using Python programming, to which a brief part of this 

paper has been dedicated. 

2.1 Study area 

Italy is almost 300.000 km2, and it is divided into 20 regions (Figure 1A), with 107 provinces and 7926 

municipalities. Furthermore, 158 Warning hydrological zones (WHZs) have been outlined on the basis 

of morphology, catchment boundaries and administrative limits. Much of Italy consists of hilly and 

mountainous terrain subject to landslides of different types and sizes (Guzzetti, 2000). The main 

mountain chains are the Alps in North Italy and the Apennines (Figure 1B), which span from north to 

south. In the alpine area, which is formed mainly of metamorphic rocks (Vai & Martini, 2001, Salvatici 

et al., 2018), the most frequent phenomena are rock falls and debris avalanches (Agliardi & Crosta, 

2003; Panizza et al.,2011), while in the Apennines, which are formed mainly of arenaceous flysch (Vai 

& Martini, 2001; Agostini et al., 2014; Rosi et al., 2018, 2020), the most common landslides are 

represented by rotational and translational landslides, both surficial and deep-seated. The climate of 

Italy is mainly Mediterranean, with dry and warm summers and mild and wet winters; during winter, 

snowfall is frequent both on the Alps and on the Apennines, and the consequent snowmelt in the 

spring often leads to the mobilization of landslides. 
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Italy is the European country with the widest area distribution and the highest recurrence of large 

landslides, causing severe losses of lives and goods (Salvati et al., 2010; Avvisati et al., 2019). Currently, 

the IFFI database (Italian Inventory of Landslides; Trigila et al., 2007) includes more than 600.000 

landslides affecting an area of 23.700 km2, representing 7,9% of the national territory (Trigila and 

Ladanza, 2018). Every year, thousands of landslides occur in the national territory, and a few hundred 

of these create victims, casualties, evacuations and damage to buildings, cultural heritage, and the 

primary transportation infrastructure. For example, in 2017 172 events were reported and there were 

146 in the previous year (Trigila and Ladanza, 2018). Legambiente, (2021) surveyed 1181 extreme 

weather events from 2010 to the present that caused damage in Italy. A total of 637 municipalities (8% 

of the total) recorded events with relevant impacts. In terms of human lives and injuries, 264 people 

have been victims of natural disasters. The CNR (National Research Council) recorded the evacuation 

of over 27.000 people due to events such as landslides and floods between 2016 and 2020, which 

becomes 320.000 when counting the events that have occurred since 1971. The regions most affected 

by extreme events since 2010 are Sicilia and Lombardia, with 144 and 124 events, respectively 

(Franceschini et al., 2022a and b). 

 

Figure 1: A Regions of Italy. B Image from the satellite of Italy and its main mountain chain. The maps were 
generated using ESRI ArcMap 10.8.1 
(https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8). 
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2.2 Preliminary data sources 

Different sources of information have been analysed in this work. Several organizations create reports 

or datasets describing many different aspects of natural disasters. In the beginning, newspaper articles 

were analysed and correlated with other available source data. 

In this work, four 10-year-long datasets (2010-2019) of landslide events and flood events in Italy were 

analysed. The analysis was carried out to obtain information and to determine the spatial, regional and 

temporal correlations of the available data. Furthermore, additional informational maps from ISPRA 

have been utilized for landslide events. 

Below, several datasets are used to obtain information about landslide and flood events: 

1. Newspapers can be used to create a landslide inventory, which, in turn, can be analysed for 

landslide hazard assessments (e.g., landslide distribution, frequency and intensity). 

2. Rainfall data allow us to obtain the number and frequency of rainfall events; 

3. Populations at risk from landslides and floods in Italy (Polaris) identifies the event effects in terms 

of human lives and involved regions; 

4. The National Repository of Soil Defence interventions (ReNDiS) inventory outlines earmarked 

funds for soil protection; 

5. Maps of the percentage of landslide hazard areas, percentage of people at risk and percentage of 

buildings at risk (ISPRA); 

Polaris and ReNDiS identify the event effects in terms of human lives, involved regions and earmarked 

funds for remediation and risk mitigation works. 

For flood events, only the first four points were utilized. For landslide events, a more detailed focus 

has been applied using all the oversized points also to check and/or validate the data. 

Some parts of the statistical approach were carried out using MATLAB R2021b and Python. ArcMap 

and ArcGISPro provided by ESRI have been utilized to create several maps.  

Newspaper articles dataset  

The data research took place within one main news aggregation platform (Google News), harvesting 

184.322 articles about landslide events (Figure 2A) and 246.338 about flood events (Figure 2B) from 

2010 to 2019. The retrieved articles have been grouped based on the event they refer to. In this way, 

32.525 landslide and 34.560 flood event news items were identified. The news database was classified 

into three classes on the basis of news relevance, localization accuracy and time of publication. 
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Figure 2: General distribution of the news used in Italy for Landslide (A) and Flood events (B). The maps were 
generated using ESRI ArcMap 10.8.1 
(https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8). 

Rainfall dataset 

A dense network of spatially distributed rain gauges over Italy provides continuous direct observations 

of the rain measurements for several specific locations (Colle et al., 1999). This network is made up of 

over 4500 rain stations, which provide rainfall measurements approximately every 15 minutes (Figure 

3A). This network was deeply analysed by Del Soldato et al., (2021). Each pluviometer was analysed to 

select only the rain gauges recording data for more than 20 h per day (to remove the data with low 

representativeness) and to remove noisy data (e.g., negative rainfall values or higher than 400 mm/h). 

In this way, a robust database from a statistical point of view was set. The analysis was carried out 

from data covering the period 2010-2019. The same authors divided the rainfall events into five classes 

(in accordance with the classification used by the Italian Civil Protection Department) based on their 

average intensity (as mm/day). For each class, the number of events over the analysed period was 

calculated (Figure 3B). 
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Figure 3: A Rain gauges across the Italian territory and in B Rainfall data between 2010 and 2019 (from Del 
Soldato et al., 2021). For each class, the number of occurrences was calculated (event count). The map was 
generated using ESRI ArcMap 10.8.1 
(https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8). The panel was 
generated using MATLAB R2021b. 

Populations at risk from landslides and floods in Italy Polaris  

Polaris (Popolazione a Rischio da Frana e da Inondazione in Italia - Populations at risk from landslides 

and floods in Italy) is a website managed by the Research Institute for Hydrogeological Protection (IRPI) 

of the National Research Council (CNR) of Perugia (Italy). In the attempt to assess the geo-hydrological 

risk to the Italian population, for years, IRPI collected and processed historical information on 

landslides and floods that have caused damage to the population. Every year, Polaris produces a report 

with various statistics on the distribution of the fatalities and casualties due to these natural events. 

For each considered event (landslide and flood), the database provides information about the 

involvement of municipalities, provinces, regions, victims, casualties and people who are missing and 

evacuated. The dataset has information from 2011, the year in which the project started, and no 

information was collected for 2010. 

The National Repository of Soil Defence interventions -ReNDiS 

ReNDiS is a database of remediation works planned to repair the damages derived from natural events 

such as landslides and floods; it was founded by the Italian government (Campobasso et al., 2013). 

https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8
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Data are collected through continuous contact between ISPRA (Istituto Superiore per la Protezione e la 

Ricerca Ambientale - Italian Institute for Environmental Protection and Research) technicians and the 

local authorities managing the works in the Italian territory. Therefore, through the ReNDiS database, 

the Italian government can be informed in real-time of how their funds for risk mitigation work are 

being spent and how they are distributed across the country (Campobasso et al., 2013). The ReNDiS 

dataset starts in 2000 and covers the period until 2020. The years refer to the financed interventions. 

Overall, more than 2,7 billion euros were allocated as funding to remediate the structural damage and 

economic losses. For the analysis conducted in this work, the year of intervention funding, from 2010 

to 2019, the involved region, the landslide event (Figure 4A) and flood event (Figure 4B), and the 

incurred expenses were considered. 

 

Figure 4: A ReNDiS data for landslide events and B ReNDiS data for flood events. The maps were generated using 
ESRI ArcMap 10.8.1 (https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8). 

Hazard maps 

Hydrogeological instability is an issue of particular relevance for Italy because of the impacts on the 

population, environment and infrastructure. Italy is a strongly anthropized country with a natural 

propensity to instability, linked to its climatic, topographic, morphological and geological 

characteristics. A landslide hazard represents the probability of occurrence of a potentially destructive 

phenomenon of a given intensity in a given period and a given area (Varnes, 1984). The landslide 

hazard areas of Piano Assetto Idrogeologico (PAI) include, in addition to the landslides that have 
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already occurred, the areas of possible evolution of the phenomena and the areas potentially 

susceptible to new landslide phenomena (Trigila et al., 2021). ISPRA instituted new maps (2020-2021), 

collecting several analyses of landslide hazards from different institutions (regions, autonomous 

provinces and catchment authorities). ISPRA uses 5 classes to classify (very high hazard P4, high hazard 

P3, medium hazard P2, moderate hazard P1 and attention areas AA) the landslide hazard and creates 

PAI maps for the entire national territory. In this work, the sum of the percentages of P3 and P4 was 

considered (Figure 5A). In particular, we highlight the importance of high landslide hazards in some 

areas. The hazard landslide area P4 is approximately 9595 km2 (3,1%), and that in P3 is almost 16.891 

km2 (5,6%). 

The population at risk is defined as the population living in landslide hazard areas exposed to the risk 

of personal injury (dead, missing, injured, evacuated). A total of 500.000 people live in very heavy 

hazard areas (P4), and almost 804.000 live in high-hazard areas (P3) (Figure 5B). Hence, 1,3 million 

people live in areas with high hazard levels, approximately 2,2% of the total (59 million). 

The buildings at risk in P3 and P4 are 565.000 and are almost 3,9% of the total (12 million buildings in 

Italy) (Figure 5C). 
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Figure 5: Piano Assetto Idrogeologico (PAI) landslide hazard areas on a regional basis classified areas into four 
labels (A). Percentage of people at risk on a regional basis classified areas into four labels in B; Percentage of 
buildings at risk on a regional basis classified areas into four labels in C. The maps were generated using ESRI 
ArcMap 10.8.1 (https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8). 

 

 

https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8
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2.3 Data from Twitter 

This section includes a step forward with the data mining technique within Twitter. 

Twitter now has almost 400 million active monthly users, meaning a huge volume of data is available 

to collect, most of which is public. 

The data mining technique has been applied only to landslide events. The results from a newspaper 

landslide analysis allowed us to obtain the main keywords. The keywords have been utilized to get 

tweets from Twitter during specific periods. The 5 keywords utilized for data mining are shown in Table 

4. 

Keywords 
frana OR smottamento OR scivolamento OR 

crollo OR dissesto 

Table 4: Requests used to collect tweets from the Twitter academic API2. 

The Tweets were collected through the Twitter academic API2 with an academic licence. Overall, 

13.349 tweets were harvested. The periods have been considered based on the temporal distribution 

of news. The dataset obtained can represent: 

• a landslide inventory from which to obtain information about some landslide events; 

• a point of comparison between news and tweets; 

• a solid base to apply deep learning analysis. 

Table 5 shows slots for 10 years and the relative extracted tweet number. 
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year from to data 

2011 

 

22/03/2011 22/03/2011 1 

01/10/2011 30/11/2011 420 

2012 01/09/2012 31/12/2012 693 

2013 01/01/2013 31/05/2013 1028 

2014 
01/01/2014 31/05/2014 1747 

01/07/2014 30/11/2014 1319 

2015 22/02/2015 26/02/2015 1626 

2016 24/11/2016 28/11/2016 1656 

2017 05/08/2017 08/08/2017 486 

2018 28/10/2018 31/10/2018 2273 

2019 24/11/2019 25/11/2019 2100 

Table 5: Many slots over 10 years have been extracted using five words. The periods were chosen on the basis 
of the temporal distribution of newspaper articles. 

From Twitter it is possible to obtain different metadata such as User object, Tweet Object and Place 

objects. The User object contains Twitter user account metadata describing the referenced user. Below 

many fields are listed and considered significant during data mining: 

• fid: Field identity. The format is a string. 

• author_id: The unique identifier of the User who posted this Tweet. The format is a string 

("author_id": "2244994945"). 

• name: The name of the user, as they’ve defined it on their profile. Not necessarily a person’s name. 

Typically capped at 50 characters, but subject to change. The format is a string ("name": "Twitter 

Dev"). 

• username: The Twitter screen name, handle, or alias that this user identifies themselves with. 

Usernames are unique but subject to change. Typically a maximum of 15 characters long, but some 

historical accounts may exist with longer names. The format is a string ("username": "TwitterDev"). 

• author_created_at: The UTC datetime that the user account was created on Twitter. Can be used 

to determine how long a someone has been using Twitter. The format is a date (ISO 8601) 

("created_at": "2013-12-14T04:35:55.000Z").  

• author_description: The text of this user's profile description (also known as bio), if the user 

provided one. The format is a string ("description": "The voice of Twitter's #DevRel team, and your 

official source for updates, news, & events about Twitter's API. \n\n#BlackLivesMatter").  
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• author_entities: Contains details about text that has a special meaning in the user's description.  

Entities are JSON objects that provide additional information about hashtags, urls, user mentions, 

and hashtags associated with the description. Reference each respective entity for further details. 

All users start indices are inclusive, while all user end indices are exclusive. Contains details about 

text that has a special meaning in the user's description. The format is object. 

• author_location: The location specified in the user's profile, if the user provided one. As this is a 

freeform value, it may not indicate a valid location, but it may be fuzzily evaluated when 

performing searches with location queries. The format is a string ("location": "127.0.0.1") 

• public metrics: author_followers, author_following, author_tweet_count and 

author_listed_count. Contains details about activity for this user. Can potentially be used to 

determine a Twitter user’s reach or influence, quantify the user’s range of interests, and the user’s 

level of engagement on Twitter. The format is object ("public_metrics": { "followers_count": 

507902,  "following_count": 1863, "tweet_count": 3561, "listed_count": 1550 }).  

• author_url: The URL specified in the user's profile, if present. A URL provided by a Twitter user in 

their profile. This could be a homepage, but is not always the case. The format is a string ("url": 

"https://t.co/3ZX3TNiZCY")  

• author_verified: Indicates if this user is a verified Twitter User. Indicates whether or not this 

Twitter user has a verified account. A verified account lets people know that an account of public 

interest is authentic. The format is boolean ("verified": true).  

The Tweet object has a long list of ‘root-level’ fields, such as id, text, and created_at. Below only some 

parameters have been listed and in consequence considered for extracting and relevance for 

describing tweet text: 

• id_text: The unique identifier of the requested Tweet. Use this to programmatically retrieve a 

specific Tweet. The format is a string ("id": "1050118621198921728"). 

• text: The actual UTF-8 text of the Tweet. Keyword extraction and sentiment analysis/classification. 

The format is a string. 

• created_at: Creation time of the Tweet. This field can be used to understand when a Tweet was 

created and used for time-series analysis etc. The format is date (ISO 8601) ("created_at": "2019-

06-04T23:12:08.000Z"). 

• lang: Language of the Tweet, if detected by Twitter. Returned as a BCP47 language tag. Classify 

Tweets by spoken language. The format is a string ("lang": "en"). 

• entities: Entities that have been parsed out of the text of the Tweet. Entities are JSON objects that 

provide additional information about hashtags, urls, user mentions, and hashtags associated with 

a Tweet. Reference each respective entity for further details. All start indices are inclusive. The 
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majority of end indices are exclusive, except for entities.annotations.end, which is currently 

inclusive. The format is object. 

• public_metrics: retweets, replies, likes and quote_count.   

Public engagement metrics for the Tweet at the time of the request. Use this to measure Tweet 

engagement. The format is an object ("public_metrics":{ "retweet_count": 8, 

  "reply_count":2, "like_count":39,  "quote_count": 1 }) 

• in_reply_to_user_id: If the represented Tweet is a reply, this field will contain the original Tweet’s 

author ID. This will not necessarily always be the user directly mentioned in the Tweet. Use this to 

determine if this Tweet was in reply to another Tweet. The format is a string 

("in_reply_to_user_id": "2244994945"). 

• source:  The name of the app the user Tweeted from. Determine if a Twitter user posted from the 

web, mobile device, or other app. The format is a string ("source": "Twitter Web App"). 

The Place objetcs tagged in a Tweet are not a primary object on any endpoint, but can be found and 

expanded in the Tweet resource. In this sense, only field have been examined: 

• Geo: Contains place details in GeoJSON format. The format is an object ("geo": { "type": 

"Feature", "bbox":[ -74.026675, 40.683935,  -73.910408,  40.877483], "properties": {}}). 
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3 METHODS 

Different methods have been applied to obtain information about natural events from different data 

sources. The workflow can be split into three parts: i) state-of-the-art analysis; ii) upgrade, processing 

and analysis data from Twitter; and iii) results made up of spatial information and temporal 

distributions (Figure 6). 

In the first part of the state-of-the-art, newspaper articles from Google News were considered the 

starting point for several analyses. A dataset of newspaper articles was classified manually and then 

used as a proxy for landslide and flood hazard estimation. Three other datasets were used to obtain 

information about events: rainfall data, affected people and the reported expenses on the soil 

protection measures. The analysis allowed us to obtain spatial and temporal information about the 

natural events (Figure 6 in blue) and their effects in terms of human losses and the earmarked funds 

for the entire Italian territory. Subsequently, in the second step using the headlines, a Natural 

Language Processing (NLP) technique (Liddy, 2001) was applied to obtain the word frequency. The 

word frequency technique has been used with the intention of identifying the most common 

associations of words for all the news. 

Given the present literature on data mining for flood events and the absence of studies on landslide 

events, the following passages focus on the latter events to deepen and analyse a topic not truly 

addressed in social media analyses and crowdsourcing platforms. The first five words most frequently 

identified were keywords. The five keywords from the headlines have been used to apply the data 

mining technique within Twitter. The period was chosen on the basis of temporal analysis in the first 

step. The achieved dataset has been manually classified to create a solid basis for the deep learning 

techniques. The transformer architecture has been chosen for text classification within deep learning 

(Figure 6 in orange). The method that has been chosen is the XLM-RoBERTa with model "xlm-roberta-

base". 

Finally, the results are shown throughout panels and maps, outlining the spatial and temporal 

distribution of natural events from newspaper articles, their effects, and their correlation with hazard 

maps and Twitter for the entire Italian territory for 10 years (Figure 6 in green). 
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Figure 6: The workflow split in three ways: in orange, the first path with several analyses about state of art within 
the paper article; in blue, the second path with an upgrade for the data mining inside the crowdsourcing platform 
during a natural disaster in a particular landslide event. Both paths were analysed to obtain information about 
the spatial and temporal distribution of the entire Italian territory for 10 years (2010-2019). 

3.1 Newspaper articles 

The Semantic Engine to Classify and Geotagging News-SECaGN is an algorithm based on a mechanism 

of acquisition, management and publishing of online articles related to natural hazards (landslides, 

floods and earthquakes). It aims to obtain information about the spatial and temporal distribution of 

the events. An automatic search for newspaper articles is performed combining primary words, 

synonyms, singular and plural forms (keywords) in the Italian language related to the landslide 

argument. Data mining is applied inside Google News. After the acquisition process, a data filtering 

procedure is applied to separate the nonrelevant information from the pertinent items. Data filtering 

takes place through geotagging and cataloguing the articles using three scores (Battistini et al., 2013): 
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• Place score: A score value is assigned to evaluate the reliability of the geotag; 

• Event score: Index of the probability that the news item actually concerns the topic event; 

• Time score: Estimated days between the time of occurrence of the event and the time of 

publication of the article. 

All the newspaper articles that reach a minimum score are then filed in a geodatabase, and their 

location can be viewed in a dedicated WebGIS. The whole process is repeated every 15 minutes. 

This data mining methodology was calibrated and tested in Italy during a test period of 2 years 

(November 2009 – November 2011). The process is completely automated and scalable. It can also be 

applied in other countries after a specific tuning of the keywords used by the data-mining algorithm. 

In this work, the news database underwent manual classification based on news relevance, localization 

accuracy and time of publication. This classification allows us to identify the most relevant news in 

terms of the temporal and spatial accuracy of the landslide event identification. 

For the classification, 3 classes have been defined (Table 6): 

Class 1: “Near real-time news”. In this category, all the news referring to the ongoing or very recent 

landslide and flood events (same day or a couple of days before) are classified. This news is 

also characterized by a high level of spatial accuracy (at least the municipality must be 

identified), with an approximation of a few kilometres. Some news, with high temporal 

precision but low spatial accuracy, have been manually modified (if possible) based on article 

text to reach the required level of approximation. The news in this class can be used for 

further analyses or modelling (Battistini et al., 2017). 

Class 2: “News generically referring  to an event”. In this category, the news referring to past landslide 

or flood events with unknown triggering dates (e.g., the initiation (or finishing) of works 

aimed at risk reduction or landslide remediation) is stored. News with low spatial accuracy 

(referring to provinces/cities or geographical areas) is classified in Class 2 as well. This kind of 

news is useful for identifying those areas that have been affected by landslides or floods in 

the past, and for risk zoning. 

“News not related to event”. News not related to the landslide or flood argument but whose semantic 

association leads to a misclassification. After this work, these news items were removed from the 

database. 
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Class Time Localization Title example 

1 Near real-time Municipality 

or village 

“Gallivaggio landslide, the video” 

“Piemonte, floods in Alessandria Province” 

2 The date of the 

event cannot be 

defined 

City, region, 

lake, river 

“The funds for securing the landslides are now 

available, the works will start soon” 

“Flood emergency, work to reopen the 

Bulagaio.” 

3 - - Italy’s economy doesn’t grow up, the South 

slide down 

Table 6: Description of the 3 classes used to group the news. 

3.2 Newspaper articles and traditional sensors 

Four datasets were analysed and compared to each other to assess the distribution and evolution of 

the landslide and flood hazards and their effects in the Italian territory (Figure 7). Each dataset was 

analysed, filtered and homogenized to obtain possible correlations. The output has been made up of 

panels and maps, which describe the temporal and spatial distribution of landslide events in Italy over 

10 years. 

 

Figure 7: Workflow of the work. The output corresponds to panels and maps to obtain information on 
approximately 10 years of landslides for the whole Italian territory. 
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Each dataset provides specific kinds of data, which are organized as described below: 

• “Landslide news” and “Flood news” - The social media database contains two pieces of 

information: (i) “Landslide news”, “Flood news” and (ii) “Newspaper articles” for each event. 

Landslide news and flood news refer to articles considering the same event and grouped into a 

single data item. This information can outline the hazard of a certain area; thus, the higher the 

number of “Landslide news” or “Flood news” items, the higher the propensity to hazard an area. 

“Newspaper articles” is the sum of several articles published for each event from different 

newspapers. The number of contributions outlines the media impact of the event; the higher the 

number of publications, the higher the intensity and the impact of the event. 

The summarized targets and relative nomenclature are in Table 7. Each target identified a meanly and 

in consequence parallel considerations. 

Target Identified Parallel results 

Class 1 Landslide event 

Flood event 

Landslide day 

Flood day 

Class 1+2 Landslide news 

Flood news 

Estimate Landslide hazard 

Estimate Flood hazard 

Total articles Newspaper articles Media impact 

Table 7: Nomenclature of each target.  

• Rainfall data - they have been classified by Del Soldato et al., 2021 into five classes based on daily 

intensity. Among these classes, “High intensity” (60-100 mm/day), “Very high intensity” (100-150 

mm/day) and “Heavy rain” (> 150 mm/day) show a clearer spatial distribution with respect to 

“Medium intensity” (20-60 mm/day) and “Low intensity” (5-20 mm/day). For this reason, the 

frequencies of the rainfall events of these classes have been considered (named “relevant rainfalls” 

hereafter), obtaining two databases, the frequency of each class of intensity and the count of the 

rainfall events. 

• Polaris - two ranks of affected people were distinguishing human involvement for the spatial and 

temporal distributions: (i) Injured, Deaths, Evacuated and Missing people (IDEMs) used for the 

temporal distribution analyses of human involvement and (ii) Injured, Deaths and Missing 

personnel used for the spatial distribution investigation. The difference between these two groups 

is due to the lack of spatial information for the evacuated people. 
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The first step of the analysis aims to outline the temporal evolution of each dataset from 2010 to 2019. 

Then, each dataset was analysed to obtain its spatial distribution at the regional and WHZ (Warning 

Hazard Zone) scales. 

Regional scale analysis attempts to provide an overview of the spatial distribution of the considered 

variables: (i) ”Landslide news” and “Flood news”, (ii) “Newspaper articles” for each event, (iii) rainfall 

intensity, (iv) rainfall events, (v) IDMs, and (vi) funds. Then, the percentage of hazardous landslide 

areas and the percentage of buildings at risk (ISPRA, 2021) in each region were correlated with the 

earmarked funds for soil protection. The percentages have been scaled on the basis of the regional 

size with respect to the Italian territory (300.000 km2) and to the building numbers for the entire 

national territory (12.187.698 buildings according to the National Institute of Statistics) to 

proportionate the results with the size and urbanisation of the region. 

At the WHZ scale, a more detailed analysis of the landslide news and the rainfall events has been made. 

Regarding rainfall data, the frequency of the 3 intensity classes, “high”, “very high” and “heavy rain”, 

and the number of events of each class (event count) were correlated. 

3.2.1 Keyword extractions inside headline newspaper articles 

A preliminary processing of the data for the semantic analysis was conducted to check and assess, 

inside the headlines, the frequency of words that describe the landslide events. In this way, the most 

common association of words both for “good” and “bad” news is identified and can be used to improve 

the system. The headlines of each article have been analysed using the Natural Language Processing 

(NLP) technique (Liddy, 2001). NLP is a computerized approach to textual analysis, and it provides 

several techniques to model textual data. In this work, the word frequency technique has been used 

with the intention of identifying the most common associations of words both for “good” and “bad” 

news. The results of this analysis can help to improve the data mining algorithm. 

3.3 Data mining within Twitter 

Crisis situations, such as natural disasters, generate a situation that is rife with questions, uncertainties, 

and the need to make quick decisions, often with minimal information (Imran et al., 2015). In regard 

to information scarcity, research in recent years has uncovered the increasingly important role of social 

media communications in disaster situations and has shown that information broadcast via social 

media can enhance situational awareness during a crisis situation (Vieweg, 2012). There is a 
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recognition that social media communications are a valid and useful source of information throughout 

the disaster lifecycle (preparation, impact, response and recovery) (Imran et al., 2015). 

The use of social media to communicate timely information has become a common practice in recent 

years. In particular, the one-to-many nature of Twitter has created an opportunity for stakeholders to 

disseminate crisis-relevant messages (Olteanu et al., 2015). 

In general, crowdsourcing platforms provide application programming interfaces or APIs. An 

Application Programming Interface is a software intermediary that allows two applications to 

communicate with each other to access data (Figure 8). Essentially, developers plug into APIs to access 

certain assets for the end users. Twitter provides two Application Programming Interfaces (APIs): i) 

Search APIs allow us to obtain queries of an archive of past messages; ii) Streaming or filtering APIs 

allow data collectors to subscribe to a real-time data feed. Both types of APIs typically allow data 

collectors to express an information need, that includes one or several of the following constraints: (i) 

a time period; (ii) a geographical region for messages that have GPS coordinates (which are currently 

the minority); or (iii) a set of keywords that must be present in the messages, which requires the use 

of a query language whose expressiveness varies across platforms. In the case of archive/search APIs, 

messages are returned sorted by relevance (a combination of several factors, including recency) or just 

by recency. In the case of real-time/streaming/filtering APIs, the messages are returned in the order 

of their posting time (Imran et al., 2015). In general, the Twitter API enables programmers to access 

Twitter in advanced ways. It can be used to analyse and interact with tweets. 

In the second half of 2020, the Twitter developer team rebuilt the Twitter API, releasing Twitter API 

v2. 

 

Figure 8: A web-based API that takes in a client’s request and returns data in response. 

In this work, tweets were collected through the Twitter academic API2 with an academic license. On 

the developer portal of Twitter, consumer keys with the API Key and Secret and authentication tokens 

with Bearer Token and Access Token and Secret were acquired for access. At the same time, an 

academic project has been created with the name “Data mining during natural disasters”. Such a 
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project is supported by an application named “Data mining for landslides”. Academic access allows us 

to obtain 10 million tweets per month. 

Data mining was carried out using Python programming. Python is a programming language. It has 

syntax rules for writing one code, which will be considered valid by Python interpretation software 

that will read and run instructions. It allows one to work quickly and integrate systems more effectively. 

This work environment has a wide range of syntactical constructions, standard library functions and 

interactive development environment features. Currently, Python is the most widely utilized language 

in scientific computing. 

3.4 Machine learning for text analysis 

Machine learning is a method of data analysis; it is part of artificial intelligence (AI) that is based on 

the idea that systems can learn from data, outline correlations and make decisions with minimal 

human involvement. 

Three widely adopted machine learning methods are supervised learning, unsupervised learning and 

semi-supervised learning. 

Supervised learning (SL)  

Supervised learning, during training, uses labelled data to learn. These datasets are designed to train 

algorithms into classifying data or accurately predicting outcomes accurately. Using labelled inputs and 

outputs the model can measure its accuracy and learn over time.  

SL can be split into two different models: 

• Regression uses an algorithm to understand the relationship between dependent and independent 

variables. Regression is most often used to predict numerical values based on previous data 

observations. Popular regression algorithms include linear regression, logistic regression and 

polynomial regression; 

• Classification uses an algorithm to accurately assign test data into specific categories, such as 

separating dogs from cats. Common types of classification algorithms are linear classifiers, support 

vector machines, decision trees and random forests. 
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Unsupervised learning (UL)  

Unsupervised learning uses machine learning algorithms to analyse and cluster unlabelled datasets. 

These algorithms extract hidden patterns in data without the need for human assistance. 

UL can be split into three different models: 

• Clustering is a data mining technique for grouping unlabelled data based on their similarities or 

differences. For example, K-means clustering algorithms group similar data points, where the K 

value is the size of the grouping. This technique is helpful for market segmentation, image 

compression, etc. (International Business Machines Corporation-IBM); 

• Association uses different rules to determine the relationship between two variables in a dataset; 

• Dimensionality reduction is applied when the number of features in a dataset is too high. Reducing 

the number of data inputs allows better management and preservation of the data integrity. This 

technique is employed in the data preprocessing stage, as autoencoders remove noise from visual 

data to improve picture quality (IBM).  

Semisupervised learning 

Semisupervised learning falls between SL and UL; it involves a small portion of labelled examples and 

many unlabelled examples from which a model must learn and make predictions on new examples. 

This type of learning can be utilized for classification, regression and prediction.  

Integrated into the theme of artificial intelligence between machine learning and deep learning are 

natural language processing and text analytics. Both use machine learning algorithms to understand 

the meaning of text documents and speech. The role of natural language is to improve, accelerate and 

automate the functions, modifying unstructured text into useable data. 

3.4.1 Natural Language Processing 

Natural language processing is an interdisciplinary area within artificial intelligence among machine 

learning-deep learning, text analysis and computational linguistics (Figure 9).  
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Figure 9: Interdisciplinary natural language processing activity within artificial intelligence, involving techniques 
of machine learning and deep learning. 

Natural language processing helps machines read, understand, replicate and derive meaning from 

human languages. On the other hand, NLP is aimed at understanding the linguistic use and context 

behind the text, analysing grammatical structures and semantics (Figure 10). In general, natural 

language processing is utilized to analyse large volumes of text data, such as social media, comments, 

reviews, and news reports. Despite the success of neural models for NLP tasks, the performance 

improvement may be less significant compared with the computer vision (CV) field (Qiu et al., 2020). 

NLP is an integral part of technology such as Google Translate, voice assistants (Alexa, Siri, etc.), 

chatbots, Google searches, and voice-operated GPS. 
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Figure 10: Venn diagram showing the intersection of text analysis (or text mining) with six related fields: statistics, 
AI and machine learning, computational linguistics, library and information services, databases and data mining 
Miner et al., (2012). 

A typical workflow of text analysis and thus of the application of natural language processing is 

depicted in Figure 11. The collected data can derive from various sources, as long as they are textual 

data. Data can be internal if they derive from emails, chats, and surveys, while external data are 

obtained from social media, news, and online reviews.  

Preprocessing represents the first processing step, which allows qualitative and quantitative 

information to be obtained from textual data. Preprocessing allows unstructured (textual) data to be 

transformed into ordered data, i.e., into a sequence of numbers. 

 

Figure 11: Classical NLP approach (Image credit: https://s3.amazonaws.com/aylien-main/misc/blog/images/nlp-
language-dependence-small.png). 

https://s3.amazonaws.com/aylien-main/misc/blog/images/nlp-language-dependence-small.png
https://s3.amazonaws.com/aylien-main/misc/blog/images/nlp-language-dependence-small.png
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Subsequently, text analysis is applied as a modelling or machine/deep learning technique. The model 

allows us to understand text data as tweets or other surveys. Text analysis delivers qualitative and 

quantitative results with graphs, reports, and tables. Furthermore, from the text analysis, it is possible 

to extract and obtain specific information, such as keywords, and to categorize survey responses by 

sentiment (positive, neutral or negative) or specific topic. Based on this aim, the results allow us to 

obtain trends and patterns. 

Text analysis has shown certain advantages: 

• Scalable: Several tools allow us to obtain a vast quantity of information from different information 

surveys (email, news, chats, tweets, comments, social media, etc.) 

• Real-time detection: different fields use information by customers or stakeholders or eyewitnesses 

of specific events. Text analysis is a game-changer in regard to detecting urgent matters 24/7 and 

in real-time. By training text analysis models to detect expressions and sentiments that imply 

negativity or urgency, relevant departments can automatically flag tweets, videos, etc., and take 

action sooner rather than later. 

• Consistent Criteria: humans make errors. Training the text analysis model, the algorithms are able 

to analyse, understand, and sort data much more accurately than humans. 

Today, the use of natural language processing is increasing due to substantial improvements in access 

to data and the increase in computational power. Such an increment allowed practitioners to achieve 

meaningful results in different fields, such as health care, media, finance, natural disasters mitigation, 

and human resources. Once natural language processing tools can understand the meaning of a piece 

of text, and even measure relevant things, several departments can start to prioritize and organize 

their data in a way that suits their needs. 

3.4.1.1 Preprocessing 

Some fundamental NLP preprocessing tasks need to be performed before NLP tools can decipher 

human language. The main drawbacks are the ambiguity and disorganization of the human language. 

The process of understanding and manipulating involves different steps. A significant number of 

techniques are applied to reduce the noise of text and to obtain quantitative representation. In natural 

language processing, the human language is separated into fragments so that the grammatical 

structure of sentences and the meaning of words can be analysed and understood in context. The 

result of preprocessing is the transformation of the text into a numeric and organized character. When 

the text is featured, by number it is possible to apply any traditional statistical or forecasting model. 
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Convert to lowercase 

Within text, the same words can exist with different layouts. To avoid word duplication, such as the 

different interpretations of the words “Cat” and “cat”, all words change into lower case or upper case 

characters. 

Stemming and Lemmatization 

Both techniques standardize words, reducing them to their root forms, but they can remove 

information. 

Stemming refers to cutting the ends of words to correctly achieve this goal most of the time and often 

involves the removal of derivational units. The final element is known as the stem. Stemming is often 

used for information retrieval to expand search criteria and to reduce the word number for use inside 

machine/deep learning algorithms.  

For instance: “people” = ”people”; “says” = ”say”; “troubling” = “trouble”. 

Lemmatization considers the context using a vocabulary and morphological analysis of words to bring 

the word back to base form. The final element is known as the lemma. Lemmatization is often 

employed for information retrieval to expand search criteria and to reduce the dimensionality of 

problems in text classification, sentiment analysis and/or topic modelling. 

For instance: “payed” = “pay”; “building has floors” = “build have floor” 

I take one cat                           I t one cat    Stem 

I take one cat                           I took one cat     Lemma 

Remove stopwords and words from documents 

“Stopwords” are common words or irrelevant characters used in a language, such as articles, 

prepositions, adverbs, etc. (“the”, ”a”, “to”, etc.), and punctuation or special characters ([!”#$%&’()*+,-

./:;<=>?@[\]^_`{|}~]). These words or figures do not add information or meaning and are usually 

removed from texts. After performing all required processes in text processing, some noise is present 

in the text: too many words with lengths less than 2 or 3 characters. These words should be removed. 

Tokenization 

Tokenization is a common and fundamental step within natural language processing. Tokenization is a 

tool for both traditional NLP methods and advanced deep learning within of architectures such as 
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Transformers. Tokenization is the foremost step when modelling text data, is the process of 

segmenting text into sentences and is the task of cutting a text into pieces referred tokens. Tokens are 

the building blocks of natural language and the most common way of processing raw text. Tokens can 

be either words, characters, or subwords. The following elements can be unique words or words most 

frequently used and are then used to prepare a vocabulary. Creating a vocabulary is the ultimate goal 

of tokenization. 

For example, this text string: “There is a landslide, along the way” = There-is-a-landslide-along-the-

way. 

There are 3 types of tokenization: word, character and subword (n-gram characters): 

• Word tokenization: it is the most commonly employed algorithm. Word tokenization splits a piece 

of text into individual words based on a certain delimiter (whitespace, comma, etc.). Based on the 

delimiter, different word-level tokens are formed. There are a few inconveniences, such as out-of-

vocabulary words (OVVs), which refer to the new words that are encountered during testing.  

• Character tokenization: the text is split into a set of characters. Character tokenization overcomes 

the inconveniences of word tokenization. The OVV problem is resolved, but the length of the input 

and output sentences rapidly increases as we are representing a sentence as a sequence of 

characters, which makes it very difficult to learn the relationship between two characters to form 

meaningful words. This aspect creates another type of tokenization that falls in between word 

tokenization and character tokenization. 

• Subword tokenization: text is split into subwords (or n-gram characters); for example, the word 

lower can be segmented as low-er, and the word smartest can be segmented as smart-est, etc. 

Text encoding 

Text encoding is a process in which text is changed into a number/vector representation to preserve 

the context and relationship between words and sentences (Figure 12). This process allows the 

machine to understand the pattern associated with any text and can determine the context of 

sentences. 

There are many methods to convert text into numerical vectors: 

• Index-Based Encoding: assigns a unique index to all words. All sentences must have the same 

length. If the sentences do not have the same length, one or more 0s will be added to the end of 

the shortest sentence. 
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• Bag of Words: it is the simplest form of text representation in numbers. A sentence can be 

represented as a bag of words vector or as a string of numbers. First, it is useful for building a 

vocabulary from all the unique words in the sentence and each word will be marked on the basis 

of their occurrence. 

• TF-IDF encoding: Term frequency–inverse document frequency. Term frequency is the occurrence 

of the current word in the current sentence with respect to the total number of words in the 

current sentence. 

 

𝑡𝑓𝑡,𝑑 =
𝑛𝑡,𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 

 

𝑛𝑡,𝑑 = number of times “t” appears in document “d” 

Thus, each document and term would have its own term frequency value. Inverse data frequency 

is the log of the total number of words in the whole data corpus with respect to the total number 

of sentences containing the current word. 

 

𝑖𝑑𝑓𝑡 = 𝑙𝑜𝑔
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 ′𝑡′
 

 

With IDF, the frequency of each word for that particular sentence is included as depending on the 

number of times a word occurs in a sentence, the TF value can change, whereas the IDF value 

remains constant, until and unless new sentences are added. 

• Word2Vector Encoding: it is a shallow, two-layer artificial neural network that elaborates the text 

by converting them to numeric “vectorized” words. The input is a word corpus, and the output is 

a vector space. Therefore, each unique word in the corpus is represented with the generated 

vector space. Word2Vector encoding is used to reconstruct linguistic contexts of words into 

numbers. This model captures both syntactic similarities and semantic similarities between two 

words. 

• Transformer Architecture: “Transformer” means the standard encoder and decoder architecture. 

Their difference is that the decoder part uses masked self-attention with a triangular matrix to 

prevent tokens from attending their future (right) positions (Qiu et al., 2020).  



37 
 

 

Figure 12: Evolution of text encoding from the inception of bag-of-words until the modern transformer models, 
such as BERT, XLM, Roberta etc, that are used today. 

3.4.1.2 Modelling-Deep Learning 

Deep learning refers to multilayer neural networks in contrast to shallow machine learning (decision 

trees and support vector machine-SVM). In processing data (Figure 13), deep learning imitates the 

human brain’s neural pathways, building artificial neural networks. The lowest common multiple is the 

neuron. Traditional machine learning programs linearly work with data analysis, and deep learning’s 

hierarchical function enables a machine to process data using a nonlinear approach. 

Currently, advances in learning algorithms and computational performance make deep learning 

feasible for many complex prediction tasks. In specific fields such as natural language processing, deep 

learning has shown superior performance with respect to other alternatives of machine learning. 

 

 

 

Figure 13: Deep learning approach for NLP (Image credit: https://s3.amazonaws.com/aylien-
main/misc/blog/images/nlp-language-dependence-small.png). Deep learning is based on a completely different 
approach. After an initial preprocessing of raw data, the input is embedded in dense vectors, which can be 
generated by different techniques, such as word2vec, GloVe and doc2vec. This becomes the new input of the 
neural network that feeds the hidden layers. Through these layers, the network learns how to reach the goal of 
the task. It is possible to not specify the language of documents. 

With the development of deep learning, various neural networks, such as convolutional neural 

networks (CNNs) (Kalchbrenner et al., 2014; Kim et al., 2014; Gehring et al., 2017), recurrent neural 
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networks (RNNs) (Sutskever et al., 2014; Liu et al., 2016), graph-based neural networks (GNNs) (Socher 

et al., 2013; Tai et al., 2015; Marcheggiani et al., 2018) and attention mechanisms (Bahdanau et al., 

2015; Vaswani et al., 2017) have been widely utilized to solve natural language processing tasks, and 

of consequence, the number of model parameters has rapidly increased. With the development of 

computational power and deep models, such as Transformers by Vaswani et al., 2017, and the constant 

enhancement of training skills, the architecture of pretraining has been advanced from shallow to 

deep. Recently, it has been shown that pretrained models on a large corpus can learn universal 

language representations. Such evolution is beneficial for NLP tasks and can avoid training a new model 

from scratch.  

Transformers 

In 2017, researchers at Google proposed a novel neural network architecture for sequence modelling. 

Dubbed the transformer, this architecture outperformed recurrent neural networks (RNNs) on 

machine translation tasks, in terms of both quality and training cost. In parallel, an effective transfer 

learning method named ULMFiT showed that training long short-term memory (LSTM) networks on a 

very large and diverse corpus could produce state-of-the-art text classifiers with minimal labelled data 

(Howard et al., 2018). These advances were the catalysts for two of today’s most well-known 

transformers: the generative pretrained transformer (GPT) and bidirectional encoder representations 

from transformers (BERT) (Devlin et al., 2018). By combining the transformer architecture with 

unsupervised learning, these models removed the need to train task-specific architectures from 

scratch and broke almost every benchmark in NLP by a significant margin. Since the release of GPT and 

BERT, many transformer models have emerged (Figure 14). 

 

Figure 14: Transformers timeline. 

Transformers provide APIs to easily download and train state-of-the-art pretrained models. Using 

pretrained models can reduce computational costs and save the time involved in training a model from 

scratch.  
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Pretraining for transformers model 

Pretraining is the act of training a model from scratch: the weights are randomly initialized, and the 

training starts without any prior knowledge. Pretraining has always been an effective strategy for 

learning the parameters of deep neural networks, which are fine-tuned on downstream tasks (Qiu et 

al., 2020). The advantages of pretraining are listed as follows: on large text corpus, it can learn universal 

language representations; it provides a better model initialization, which usually leads to a better 

generalization performance and accelerates convergence on the target task; and it can be regarded as 

a kind of regularization to avoid overfitting on small data (Erhan et al., 2010). 

In NLP, pretraining on a large corpus has also been proven to be beneficial for downstream NLP tasks, 

from shallow word embedding to deep neural models (Qiu et al., 2020). There are two different 

generations: 

1. The first generation of pretraining models is pretrained word embeddings. These words 

represented as dense vectors have a long history (Hinton et al., 1990). The “modern” word 

embedding was introduced by Bengio et al., (2003) in the pioneering work of the neural network 

language model. 

2. The second generation of pretraining models is pretrained contextual encoders. NLP tasks are 

beyond the word level, and it is important to pre-train the neural encoders on the sentence level 

or higher. The output vectors of neural encoders are also referred to contextual word embeddings 

since they represent the word semantics depending on their context (Qiu et al., 2020). Modern 

pretraining models are usually trained with large-scale corpora and more powerful or deeper 

architectures (e.g., transformer). Currently, very deep pretraining models have shown their 

powerful ability in learning universal language representations e.g., OpenAI SPT (Generative 

Pretraining) (Radford et al., 2018) and Bidirectional Encoder Representation from Transformed 

(BERT) (Devlin et al., 2018). BERT has become the mainstream approach to adapt pretraining. 

Model analysis  

The premise is to obtain the implicit linguistic rules and commons sense knowledge hiding in text data, 

such as lexical meanings, syntactic structures, semantic roles and even pragmatics. The main aim is to 

describe the meaning of a piece of text in vectors. There are two kinds of word embeddings: 

• Non contextual embeddings: Mikolov et al., (2013) demonstrated that words can be represented 

by a vector. Mikolov et al., (2013), in another analogy study demonstrated that word vectors 
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produced by Skyp-gram model can capture both syntactic word relationships and semantic word 

relationships;  

for example: vec(“China”) − vec(“Beijing”) ≈ vec(“Japan”) − vec(“Tokyo”). 

The authors determine the compositionality property of word vectors;  

for example: vec(“Germany”) + vec(“capital”) is similar to vec(“Berlin”). 

• Contextual embeddings: it considers the context-dependent nature of words, and consequently, it 

is possible to distinguish the semantics of words in different contexts. Given a text x1, x2, · · · , xT 

where each token xt ∈ V is a word or subword, the contextual representation of xt depends on the 

whole text. 

 

[ℎ1, ℎ2,· · · , ℎ𝑇 ]  =  𝑓𝑒𝑛𝑐(𝑥1, 𝑥2,· · · , 𝑥𝑇 )  

 

where fenc(·) is the neural encoder, and hT is referred to as the contextual embedding or 

dynamical embedding of token xt because of the contextual information included (Qiu et al., 2020). 

With this category, BERT is the main task. 

Architectures   

The transformer architecture follows an encoder-decoder structure (Figure 15) but does not rely on 

recurrence and convolutions to generate an output. 

Transformer encoder: The neural contextual encoders can be classified into two categories: 

• Sequence models: they capture the local context of a word in sequential order. Sequential models 

learn the contextual representation of the word with locality bias and find it difficult to capture 

the long-range interactions between two words. Sequence models are usually easy to train and 

obtain good results for various NLP tasks (Qiu et al., 2020). Convolutional and recurrent models 

are mainly employed. Inside the recurrent model, there is bidirectional long short-term memory 

(LSTM), which is used to collect information from both sides of a word. However, its performance 

is often affected by the long-term dependency problem. 

• Non sequence models: they learn the contextual representation with a predefined tree or graph 

structure between two words (syntactic structure and semantic relation). A fully connected self-

attention model is mainly utilized. A successful example of this model is the transformer; it can 
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directly model the dependency between every two words in a sequence, which is more powerful 

and suitable for modelling the long-range dependency of language. This model usually requires a 

large training corpus and is easy to overfit on small or modest datasets (Radford et al., 2018; Guo 

et al., 2019).  

Currently, the transformer has become the mainstream architecture of pretraining models due to its 

powerful capacity (Qiu et al., 2020) with transformer encoders and decoders. The encoder receives an 

input and builds a representation of it (its features), which means that the model is optimized to 

acquire understanding from the input. These models are often characterized as having “bidirectional” 

attention and are often referred to as autoencoding models. Once the sentence is transformed into a 

list of word embeddings, it is fed to the transformer’s encoder module. The transformer does not 

receive one input at a time; it can receive an entire sentence’s worth of embedding values and process 

them in parallel. This approach makes transformers more compute-efficient than their predecessors 

and enables them to examine the context of the text in both forward and backward sequences. To 

preserve the sequential nature of the words in a sentence, the transformer applies “positional 

encoding,” which means that it modifies the values of each embedding vector to represent its location 

in the text. Next, the input is passed to the first encoder block, which processes it through an “attention 

layer” (Figure 15 on the left). The attention layer tries to capture the relations between two words in 

the sentence. The attention layer receives a list of word embeddings that represent the values of 

individual words and produces a list of vectors that represent both individual words and their relations 

to each other. The output of the attention layer is fed to a feed-forward neural network that transforms 

it into a vector representation and sends it to the next attention layer. Transformers contain several 

blocks of attention and feed-forward layers to gradually capture more complicated relationships. 

Encoder models are best suited for tasks requiring an understanding of the full sentence, such as 

sentence classification, named entity recognition (and more general word classification), and 

extractive question answering. 

Transformer decoder: The task of the decoder module is to translate the encoder’s attention vector 

into the output data. The decoder uses the encoder’s representation to generate a target sequence, 

which means that the model is optimized for generating outputs (Figure 15 on the right). At each stage, 

for a given word, the attention layers can only access the words positioned before it in the sentence. 

These models are often referred to as autoregressive models and are best suited for tasks involving 

text generation. 
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Figure 15: Transformer architecture with an encoder on the left and a decoder on the right. 

Each of these parts can be independently used, depending on the task: 

• Encoder-only models: Good for tasks that require understanding of the input, such as sentence 

classification and named entity recognition. 

• Decoder-only models: Good for generative tasks such as text generation. 

• Encoder-decoder models or sequence-to-sequence models: Good for generative tasks that require 

an input, such as translation or summarization. 

The attention mask can also be utilized in the encoder/decoder to prevent the model from paying 

attention to certain special words, for instance, the special padding word used to make all the inputs 

the same length when batching sentences. 
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3.4.2 Outputs 

The outputs of a transformer model (Figure 16), for an analysis of NLP, make it possible to represent 

and extract information from text in manner a qualitative and quantitative manner. On the basis of 

data sources, it is possible to obtain specific information:  

• Text: text classification, information extraction, question answering, summarization, translation, 

and text generation in more than 100 languages. 

• Images: image classification, object detection, and segmentation. 

• Audio: speech recognition and audio classification. 

• Multimodal: table question answering, optical character recognition, information extraction from 

scanned documents, video classification, and visual question answering. 

 

Figure 16: Different outputs can be obtained using transformer architecture. Possible outputs can be: text 
summarization, entity recognition or name entity recognition (NER), text generation, translation from one 
language to another language, language modelling, question answering and text classification. 

A wide range of NLP use cases exist, and some examples of algorithms are presented as follows: 

Classification: This is the process of assigning predefined tags or categories to unstructured text. 

Classification is versatile and can organize, structure and categorize any form of text to deliver 

meaningful data and solve problems. This process is considered one of the most useful natural 
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language processing techniques. The most common text classification tasks are sentiment analysis, 

topic modelling, language detection and intent detection. 

• Sentiment analysis: consists of the automated processing of texts to identify and classify subjective 

information related to sentiments. This information might be an opinion, a judgement, or a feeling 

about a particular topic or product feature. The common type of sentiment analysis is ‘polarity 

detection’ and involves classifying statements as positive, negative or neutral.  

• Topic modelling: common example of text classification that organizes text by subject or theme. 

One example is the latent Dirichlet allocation (LDA) model. This relatively new algorithm (invented 

less than 20 years ago) works as an unsupervised learning method that discovers different topics 

underlying a collection of documents. In unsupervised learning methods such as this method, 

there is no output variable to guide the learning process, and data are explored by algorithms to 

identify patterns. 

Text extraction: Text analysis techniques extract pieces of data that already exist within any given text. 

It is possible to obtain several pieces of information, such as keywords and entities. 

• Keywords: they are the most used and most relevant terms within a text, words and phrases that 

summarize the contents of the text. 

• Word frequency: this is a text analysis technique that measures the most frequently occurring 

words in a given text using numerical statistics.  

• Co-occurrence: Given a corpus of documents, a co-occurrence network is an undirected graph, 

with nodes corresponding to unique words in a vocabulary and edges corresponding to the 

frequency of words co-occurring in a document. You can use a co-occurrence network to discover 

which words commonly appear with a specified word. A word cloud is a similar approach. Both are 

methods of qualitative representation.  

• Name Entities Recognition (NER): the entities are the most important objects of a particular 

sentence, as noun phrases, verbs or both. NER can automatically scan entire articles and to obtain 

more fundamental entities in a text and classify them into specific categories. The categories can 

be people’s name, company name, geographic locations, dates and times, names of events and 

organizations. 
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3.4.3 Bidirectional Encoder Representations from Transformers (BERT) 

The Transformer Architecture was released in December 2017 in a Google machine translation paper 

titled “Attention Is All You Need” (Vaswani et al., 2017). That paper tried to obtain models that could 

automatically translate multilingual text. The attention mechanism, which highlights the important 

information from the contextual information by setting different weights, has also been applied to 

improve accuracy (Zhang et al., 2018). The more important event is the introduction of bidirectional 

transformers for language understanding (Devlin et al., 2018). Bidirectional Encoder Representations 

from Transformers (BERT) was first released in October 2018 in “Pre-Training of Deep Bidirectional 

Transformer for Language Understanding”. BERT was pretrained on a massive unlabelled text corpus 

comprising whole Wikipedia (~2.5B words) text data and Google’s BooksCorpus (~800 M words). 

BERT’s training was made possible due to the novel transformer architecture and accelerated by using 

tensor processing units (TPUs - Google’s custom circuit built specifically for large ML models). Sixty-

four TPUs trained BERT over the course of 4 days. BERT utilizes a transformer to create the vector 

representation (Dharma et al., 2022). The attention mechanism of the transformer architecture allows 

models such as BERT to bidirectionally process text by: 

1. Allowing parallel processing: Transformer based models can process text in parallel, avoiding the 

sequential processing of text. 

2. Storing the position of the input: the transformer architecture directly encodes the position of the 

word into the embedding. This is a “marker” that lets attention layers in the model identify the 

location of the word or text sequence that they are viewing. This trick means that these models 

can keep processing sequences of text in parallel, in large volumes with different lengths, and still 

know exactly in what order they occur in the sentence.  

3. Making lookup easy: Transformer based models can simply look up any word in a sentence at any 

time. 

BERT does not use the decoder of the transformer architecture (Figure 17).  

https://arxiv.org/pdf/1706.03762.pdf
https://link.springer.com/article/10.1007/s11069-021-05081-1#ref-CR50
https://link.springer.com/article/10.1007/s11069-021-05081-1#ref-CR18
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://ieeexplore.ieee.org/author/37089369817
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Figure 17: Transformer architecture within BERT. Only the encoder part is present. 

BERT uses the encoder part of the transformer. As a result, using the encoder enables BERT to encode 

the semantic and syntactic information in the embedding, which is needed for a wide range of tasks. 

Using only the encoder BERT is not designed for tasks such as text generation or translations. BERT can 

be trained on multiple languages, but it is not a machine translation model. Therefore, the output of 

BERT is an embedding, not a textual output. In contrast, if the decoder is employed, the output would 

be a text, which could be directly applied without needing to perform any further actions. BERT takes 

the output of the encoder and uses it with training layers that perform two innovative training 

techniques. First, BERT proposes a masked language model (MLM) inspired by the Cloze task (Taylor, 

1953), in which 15% of the input tokens are randomly masked by a special label [mask] and then those 

masked tokens are predicted. Second, BERT introduces next sentence prediction (NSP) to the training 

process (Zhou et al., 2022). These are ways to unlock the information contained in the BERT 

embeddings to obtain the models to learn more information from the input. In this way, BERT forces 

the encoder to try and “learn” more information about the surrounding text to better predict the 

https://www.sciencedirect.com/science/article/pii/S0198971522000680?via=ihub#bb0185
https://www.sciencedirect.com/science/article/pii/S0198971522000680?via=ihub#bb0185
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hidden or “masked” word. Then, for the second training technique, it obtains the encoder to predict 

an entire sentence given the preceding sentence. 

BERT can be employed on a wide variety of common language tasks: sentiment analysis, question 

answering, text prediction, text generation, summarization etc. 

BERT is available in two sizes: BERT-BASE (containing 12 transformer layers and 768 hidden layers) and 

BERT-LARGE (containing 24 transformer layers and 1024 hidden layers) (Lee et al., 2022). Table 8 shows 

the architecture of each. 

 Transformer 

Layers 

Hidden 

Size 

Attention 

heads 

Parameters Processing Length of 

training 

BERT-BASE 12 768 12 110 M 4 TPUs 4 days 

BERT-LARGE 24 1024 16 340 M 16 TPUs 4 days 

Table 8: Transformer Layers: Number of transformer blocks. A transformer block transforms a sequence of word 
representations into a sequence of contextualized words (numbered representations); Hidden Size: Layers of 
mathematical functions, located between input and output, that assign weights (to words) to produce a desired 
result; Attention Heads: the size of a transformer block; Parameters: Number of learnable variables/values 
available for the model; Processing: Type of processing unit used to train the model; Length of Training: Time it 
took to train the model. 

Multilingual Pretraining Using BERT  

However, most of these BERT-based models are based on an English-centric design; consequently, 

researchers have attempted to develop models based on languages other than English (Lee et al., 

2022). 

Multilingual BERT (Yang et al., 2019) retains the model structures of BERT but replaces the pretrained 

corpus attributes with those that include more than 100 languages. This approach results in significant 

performance improvements over the original BERT in natural language comprehension tasks. 

However, this finding that its vocabulary size is large and that its size inefficiently increases owing to 

the processing of more than 100 languages, which consequently restricts memory efficiency (Lee et 

al., 2022).  

Cross-lingual modelling (Lample et al., 2019) trains a model via unsupervised-learning-based 

pretraining, where continuous learning in English and other languages is simultaneously applied. BERT 

was pretrained using a dataset containing 100 languages. This method significantly improves symbolic 

performance in multilingual tasks other than those in English. However, cross-lingual modelling is not 

comparable to well-preprocessed models in English in terms of accuracy (Lee et al., 2022). 

RoBERTa is a novel and improved recipe for training BERT models that can match or surpass many post-

BERT methods (Liu et al., 2019). RoBERTa optimizes the training process and offers the training process 

https://sciprofiles.com/profile/author/Rm52MXRQVTdGR2cyNzIrWVd3b2FxVEE0RXlVQkZvTEJWL0V6eTYvdzB6UT0=
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more time, with larger batch sizes and more data (Zhou et al., 2022). RoBERTa is an unsupervised 

model that relies only on monolingual data.  

A further step forward is the development of transformer multilingual. XLM-RoBERTa is a multilingual 

version of RoBERTa, where XLM is an acronym for the cross-lingual language model. XLM-RoBERTa is 

pretrained as a masked language model on 100 languages and 2.5 TB of filtered common crawl data 

(Conneau et al., 2020). 

3.4.3.1 BERT for Text Classification 

Text classification is referred to as extracting features from raw text data and predicting the categories 

of text data based on such features. The general architecture of deep learning is shown in Figure 18. 

BERT takes an input of a sequence with a maximum of 512 tokens and outputs the representation of 

the sequence (Figure 18 -Tokenization). The sequence has one or two segments in which the first token 

of the sequence is always [CLS] which contains the special classification embedding and another special 

token [SEP] is used for separating segments (Sun et al., 2019) (Figure 18 - Deep Learning). Each token 

is converted into fixed-size word vector, also known as word embedding. Within Deep learning is 

applied the Droupt layer. Droupt is a technique used to ignore the randomly selected neurons from 

deep learning models and it reduces over-fitting (Madichetty et al., 2021).  

For text classification tasks, BERT takes the final hidden state Tn of the first token [CLS] as the 

representation of the whole sequence. A simple softmax classifier is added to the top of BERT to 

predict the probability of class label (Figure 18 - Prediction).  
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Figure 18: Illustrations of Fine-tuning BERT by Devlin et al., 2018, modified with specifics about tokenization, 
deep learning with an embedding part and the class label prediction. Word embedding is the conversion of words 
in a document to vectors in which values assigned to them are closer in the vector space. 

Literature review 

Most studios used the English language for applying deep learning techniques. Numerous deep 

learning models with BERT architecture have been proposed in these few years for text classification 

of tweet text, as shown in Table 9.  

Studios were placed in chronological order and the topics of application range from sentiment analysis 

techniques (Alaparthi et al., 2020; Geetha et al., 2021) to event detection (Jain et al., 2019; Madichetty 

et al., 2020; Yumeng Hu et al., 2021; Liu et al., 2021; Huang et al., 2022; Dharma et al., 2022; Zhou et 

al., 2022) using different languages.  

Alaparthi et al., (2020) and Geetha et al., (2021) use the BERT classifier to determine the sentiment 

positive or negative of users. Alaparthi et al., (2020) used film reviews as dataset for the classification 

of sentiment. They demonstrated the remarkable classification accuracy of the BERT method, reaching 

92%. Geetha et al., (2021) performed the same sentiment analysis using Amazon product dataset. They 

compared the BERT model to other machine learning models such as Naevi Bayesian and Support 

Vector Machine (SVM). The results demonstrated the remarkable classification capability of a 

transformer architecture. The accuracy was 88,48%. Textual analysis of vocabulary, words, grammar, 

and other features such as text sentiment provide information that can be leveraged in the post-event 

environment (Li et al., 2021). Such textual analysis is now widely used in sociology, psychology, 

marketing, and elsewhere to draw conclusions from what appears to be relatively descriptive and 

qualitative information (Das et al., 2019; Mahoney et al., 2019; Majumdar & Bose, 2019; Osorio-Arjona 

& García-Palomares, 2019; Plunz et al., 2019; Reboredo & Ugolini, 2018). 

https://www.sciencedirect.com/topics/social-sciences/sociology
https://www.sciencedirect.com/science/article/pii/S0268401221000712#bib0040
https://www.sciencedirect.com/science/article/pii/S0268401221000712#bib0135
https://www.sciencedirect.com/science/article/pii/S0268401221000712#bib0140
https://www.sciencedirect.com/science/article/pii/S0268401221000712#bib0170
https://www.sciencedirect.com/science/article/pii/S0268401221000712#bib0170
https://www.sciencedirect.com/science/article/pii/S0268401221000712#bib0185
https://www.sciencedirect.com/science/article/pii/S0268401221000712#bib0215
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Much of the recent research on social media and disasters capturing textual analysis converges on 

themes of early warning, emergency response, and behaviour analysis (Li et al., 2021). Spruce et al., 

(2020) leveraged sentiment analysis to measure the impact of storms and other extreme weather 

events. Disaster tweet classification study can be considered as a Natural Language Processing (NLP) 

task. The use of a deep learning model has started to become more common for natural language 

processing tasks. Various methodologies were applied for classifying crises, either using the BERT 

classifier alone or incorporating the classifier with other deep-learning techniques. Jain et al., (2019), 

Liu et al., (2021), and Zhou et al., (2022) used the BERT method alone to check whether the text 

describes a crisis or not. The first two authors demonstrated the effectiveness of the classifier for flood, 

hurricane and earthquake events. Both studies used a binary classification (0 and 1) estimating a 

maximum accuracy of 95% with Liu et al., (2021).  Zhou et al., (2022), use the BERT method for recovery 

activities after a natural event, classifying text according to aid information, complete interridge and 

victims. They chose original English tweets containing the 5-digit zip code of coastal Texas as potential 

rescue request tweets. This study for each label compares a different model, also implementing other 

deep learning techniques such as convolutional neural networks (CNN), or Long short-term memory 

(LSTM) in the BERT model.  

Madichetty et al., (2020), Yumeng Hu et al., (2021), Huang et al., (2022) and Dharma et al., (2022) 

implemented other deep learning models to the BERT model to improve text classification. In 

particular, the implementation of CNN with BERT embedding is predominant. Madichetty et al (2020) 

used this combination to delineate whether the text is informative with respect to a crisis or not. The 

datasets used for analysis were part of different events that occurred in certain parts of the world: the 

typhoon in Hagupit (Philippines), explosion in Hyderabad (southern India) and the shooting at Sandy 

Hook (Connecticut-USA). The dataset features tweets in Hind and English language. Different 

embedding models were used, reaching a maximum accuracy of 96%. Similar analysis was conducted 

by Dharma et al., (2022). This study uses extracted Twitter data for different natural events: 

earthquake, flood, pyroclastic flows, eruption, tsunami, drought, landslide, typhoon and others. These 

data constitute a single dataset in Indonesian language. The data were manually classified with a 

Boolean value in which the value 1 is distributed to the data with disaster and a non-disaster was 

classified with 0. CNN with pre-trained BERT embedding was able to get the best result (Dharma et al., 

2022). The accuracy was 97,16%. At the same time, Huang et al., (2022) proposed an integrated 

approach to detect all four kinds of emergency events early, including natural disasters, man-made 

accidents, public health events (COVID-19), and social security events. For text classification, massive 

Weibo posts in Chinese language were used to train different models. The classification phase uses the 

integrated approach combining BERT and an attention-based bidirectional long short-term memory 

model (BERT-Att-BiLSTM) to detect emergency-related posts. The highest accuracy was of 90,58%. 
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Yumeng Hu et al., (2021) conducted a more complex study on the use of deep learning techniques for 

seismic P-wave detection (positive or negative). TransQuake is an advanced deep learning approach 

from Transformer. TransQuake exploits the STA/LTA algorithm to fit the three-component structure of 

seismic waves as input and exploits the multi-headed attention mechanism to conduct pattern learning 

(Yumeng Hu et al., 2021). At the same time, Sánchez et al., (2022) introduced a new multilingual and 

multi-domain crisis dataset, containing 53 crisis events and more than 160.000 messages. They 

proposed an empirical transfer learning, using crisis data from high resource language (as English) to 

classify data from other languages (as Italian, Spanish and French). The authors used different model 

for binary classification of tweets that are related and unrelated to crisis. Considering Italian language, 

the authors considered data from flood events (on Sardinia and Genova events) and earthquake events 

(on L’Aquila events). Both datasets come from SoSItalyT4 by Cresci et al., (2015). The best 

performance, for flood event, was archived in the Cross-lingual & Multi-domain scenario, using XLM-

RoBERTa model. In this scenario, the training was featured by multiple domains in one language (e.g. 

floods, earthquakes and hurricane in English) while the test set was characterized by a new event in 

another language (e.g. flood in Italian). The highest F1 value was of 0,84.  

A high performance was achieved using Multilingual & Multi-domain scenario with Machine 

Translation (MT)+BERT for earthquake event. In this case the model was trained with English and 

Italian tweets about floods, earthquakes and hurricanes to then classify earthquake-related messages 

in Italian. The best value of F1 was of 0.82. 

Authors Target Event Language Model Results 

Jain et al., 

(2019) 

Relevant to 

crisis or no 

Earthquake English BERT P 0,83 

Flood R 0,76 

Hurricane F1 0,78 

A 0,76 

Alaparthi et 

al., (2020) 

Sentiment IMDB film 

reviews 

English BERT P 0,92 

R 0,92 

F1 0,92 

A 0,92 

Madichetty 

et al., (2020) 

 

Relevant to 

crisis or no 

Hurricane English CNN+BERT 

embedding-Large 

P 0,95 

R 0,98 

Explosion CNN+BERT 

embedding-Base 

F1 0,97 

A 96% 

Liu et al., 

(2021) 

Relevant to 

crisis or no 

Crisislex English DistilBERT F1 0,95 

A 95% 

Hu et al., 

(2021) 

Positive or 

Negative 

Waves P  Transoformer+CNN+

STA/LTA 

P 0,71 

R 0,67 

F1 0,68 

A 0,95 
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Geetha et 

al., (2021) 

Sentiment Review from 

Amazon 

English BERT-Base-Uncased 

model 

P 0,88 

R 0,86 

F1 0,89 

A 0,88 

Huang et al., 

(2022) 

Crisis 

classification 

Natural 

disaster, 

accident, 

public health 

event, social 

security 

event 

English BERT P 0,84 

R 0,89 

F1 0,86 

A 0,90 

BERT-Att-BiLSTM P 0,85 

R 0,93 

F1 0,89 

A 0,90 

Dharma et 

al., (2022) 

Disaster yes 

or no 

Earthquake, 

Flood, 

Pyroclastic 

flow, 

Drought, 

Typhoon, 

Tsunami, 

Landslide, 

Eruption 

Indonesian CNN+BERT 

embedding 

P 0,97 

R 0,96 

F1 0,97 

A 0,97 

Zhou et al., 

(2022) 

Help or no 

help 

Hurricane English BERT-CNN P 0,89 

R 0,93 

F1 0,9 

Sánchez et 

al., (2022) 

Relevant to 

crisis or no 

Flood  Italian XLM-RoBERTa F1 0,84 

Earthquake MT-BERT F1 0,82 

Table 9: State-of-the-art applications of BERT for text classification tasks. Different aims have been presented 
from sentiment analysis to crisis classification, or consequently, with help messages or victim information. The 
best results of the classification test, combining two or more methods, such as CNN+BERT, have been shown. 
Results are rappresented as metrics, P= precision, R= recall, F1= F1 and A= accuracy. 

3.4.4 Methodological BERT for landslide events 

In this work, the tweet database underwent manual classification based on relevance and localization. 

This classification allows us to identify the most relevant tweets in terms of the temporal and spatial 

accuracy of landslide event identification. Furthermore, different coordinates have been attributed to 

tweets on the basis of text and then checked in the real location. The classification features by 2 classes 

for each label: landslide 0 and 1 (“tweet text no describes or describes one landslide event”); 

coordinate 0 and 1 (“tweet text no identifying or identifying one location”) (Table 10). 
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Table 10: Examples of manual classification for tweet text considering information about landslide and 
coordinated. 

Figure 19 shows several steps to obtain the classification for each tweet text using deep learning with 

architecture transformers to obtain information about landslide events. 

The manually classified database was preprocessed to remove special characters. By applying a 

supervised deep learning technique, it is possible, in this case, to obtain labelled results 0 and 1. 

Recently, transformer-based pretrained language models have demonstrated stellar performance in 

natural language tasks. Bidirectional encoder representations from transformers (BERT) have achieved 

outstanding performance (Lee et al.,2022). 

In this work, XLM-RoBERTa (a Cross Lingual Model) was chosen as the method with architecture 

transformers (Table 11) applied to tweet data with Bayesian classification (or binary classification 0 

and 1). XLM-RoBERTa is a multilingual model trained on 100 different languages. Unlike some XLM 

multilingual models, it does not require language tensors to understand which language is used and 

should be able to determine the correct language from the input ids. XLM-R has been chosen for two 

reasons: i) multilingual models can outperform their monolingual BERT counterparts (Conneau et al., 

2019); ii) there is a proliferation of non-English models, and the multilingual models are a helpful 

compromise to classify text in non-English language. 

The complete database was preprocessed, and the model ‘m-polignano-uniba/bert_uncased_L-12_H-

768_A-12_italian_alb3rt0’ (Polignano et al., 2019) was chosen for tokenization. 

Finally, the XLMRobertaForSequenceClassification method was applied with the ‘xlm-roberta-base’ 

model to predict 2 number labels (0 and 1). Table 11 shows several aspects of the XLM-RoBERTa 

method and its linked parameters. 

 

Tweet text Landslide 

yes or not 

Coordinate 

#SanremoNews Frana sulla Statale 20 ad Airole: questa mattina 

riunione tra i Sindaci in Prefettura http://t.co/B1mwrMLq 

1 1 

passati un pò prima del disastro nelle zone colpite dall'alluvione..e 

nel tratto della frana..circa un'ora prima..Ho i brividi.#alluvione 

1 0 

Vodafone avvisa: "Servizio ripristinato, disagi per maltempo e 

crollo viadotto" https://t.co/YA6a9ydDPQ 

0 0 

https://sciprofiles.com/profile/author/Rm52MXRQVTdGR2cyNzIrWVd3b2FxVEE0RXlVQkZvTEJWL0V6eTYvdzB6UT0=
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Table 11: Transformer Layers: Number of transformer blocks. A transformer block transforms a sequence of 
word representations into a sequence of contextualized words (numbered representations); Hidden Size: Layers 
of mathematical functions, located between the input and output, that assign weights (to words) to produce a 
desired result; Attention Heads: The size of a transformer block; Parameters: Number of learnable 
variables/values available for the model; Vocab size: vocabulary for text analysis in many languages. 

Three types of preprocessing were applied to obtain the best results with XLM-RoBERTa. The first 

preprocessing considered the dataset without cleaning; the second considered all possible parameters 

for removing, and the third only removed some parameters within the text. Figure 19 illustrates the 

workflow of the work. From the database without labels, preprocessing was applied before deep 

learning for classification. The result is to obtain a text classification on the basis of landslide 

information.  

 

Figure 19: Workflow of tweet analysis with preprocessing, deep learning and result with one tag, 0 or 1 for each 
tweet text. 

Parameter setting 

The datasets were randomly divided into 80% training and 20% testing. The training dataset was 

further randomly divided by 20%, resulting in the validation dataset. This operation was carried out 
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for each of the three tests, so only the test set was kept constant, changing the training and validation 

datasets each time. 

The three tests maintained the following parameters (Table 12): 

• Maximum length: text beyond which it is truncated; 

• Batch size: the number of samples processed before updating the model; 

• Epoch: Epoch indicates the number of passes of the entire training dataset the deep 

learning algorithm has completed. An epoch comprises one or more batches; 

• Seed: the randomness of an artificial neural network (ANN) is when the same neural network is 

trained on the same data, and it produces different results. This randomness in the results makes 

the neural network unstable and unreliable. To make the randomness predictable, we use the 

concept of seed. Seed helps obtain predictable, repeatable results every time; 

• Learning rate (Adam): Adam is an adaptive learning rate optimization algorithm that has been 

designed specifically for training deep neural networks. The first value is referred to as the learning 

rate or step size. Larger values (e.g., 0,3) result in faster initial learning before the rate is updated. 

Smaller values (e.g., 1,0e-5) slow learning right down during training. The second value, Epsilon, is 

a very small number to prevent any division by zero in the implementation (e.g., 10e-8). 

• Early stopping: to avoid continuous iterations, an early stopping has been set. Hence, if the model 

does not improve after total tries, it stops. 

Max length Batch size epoch seed Learning rate epsilon Early stopping 

128 32 100 45 2e-5 1e-8 15 

Table 12: Table with parameter settings for the model. Some values have been retrieved from the state-of-the-
art and retained constants (such as Seed, Learning rate, and Epsilon). 

The metrics used to evaluate the performance of the model were accuracy, confusion matrix, 

precision, recall, F1 score and the calculation of the AUC with the rock curve. 

• Accuracy is the ratio of the number of correct predictions to the total number of input samples. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
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• The confusion matrix describes the complete performance of the model. TruePositive (TP) and 

TrueNegative (TN) are data predicted correctly, in contrast to FalseNegative (FN) and FalsePositive 

(FP). 

Real: no or 0 TN FP 

Real: yes or 1 FN TP 

 Predicted: no or 0 Predicted: yes or 1 

 

• Precision is the number of correct positive results divided by the number of positive results 

predicted by the classifier. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑟𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

• Recall is the number of correct positive results divided by the number of all relevant samples. 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑟𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

• The F1 score is the harmonic mean between precision and recall. The range is [0, 1]. This parameter 

describes the precision of the classification and its robustness. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
1

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑟𝑒𝑐𝑎𝑙𝑙

 

• The receiver operating characteristic (ROC) and area under the curve (AUC) of a classifier is equal 

to the probability that the classifier will rank a randomly chosen positive example higher than a 

randomly chosen negative example. ROC is a probability curve, and AUC represents the degree of 

separability. The higher the AUC is, the better the model is at predicting. The ROC curve is plotted 

with TruePositiveRate (TPR) or sensitivity against FalsePositiveRate (FPR). 

   

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

 

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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Library for Python for deep learning  

To apply deep learning, some libraries have been used inside Python. The combination of libraries and 

the many tools for NLP analysis, such as PyTorch, has made Python one of the most preferred 

programming languages for performing text analysis. 

Below, two main libraries are listed. 

PyTorch is a new entry within a deep learning framework based on Torch. It was developed by 

Facebook’s AI research group and open-sourced on GitHub in 2017. It is utilized for natural language 

processing applications. PyTorch is simple, easy to use, flexible and efficient for memory usage and a 

dynamic computational graph. It has a complex architecture, and its readability is lower than that of 

other packages (e.g., Keras). 

Transformer architecture was introduced in June 2017. The focus of the original research was on 

translation tasks. All transformer models were trained as language models. This means they have been 

trained on large amounts of raw text in a self-supervised fashion. This type of model develops a 

statistical understanding of the language it has been trained on but it is not very useful for specific 

practical tasks. Its goal is to provide a single API through which any transformer model can be loaded, 

trained and saved. The library’s main features are as follows: 

• Ease of use: downloading, loading and using a state-of-the-art NLP model for inference can be 

done in just two lines of code. 

• Flexibility: at their core, all models are simple PyTorch nn.Module classes and can be handled as 

with any other model in their respective machine learning (ML) frameworks. 

• Simplicity: hardly any abstractions are made across the library. The “all in one file” is a core 

concept: a model’s forward pass is entirely defined in a single file so that the code itself is 

understandable and hackable. 

Transformers provide several models already pretrained, such as XLM-RoBERTaTokenization, XLM-

RobertaModel and XLM-RoBERTaForSequenceClassification. 

 

 

 

 

 

https://arxiv.org/abs/1706.03762
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4 RESULTS 

The results are shown below. The first analyses were carried out within the state-of-the-art of data 

mining. The state-of-the-art involved the classification of two datasets from the multi-risk information 

gateway (MIG) platform developed by Battistini et al., 2013,2018. Two datasets harvested newspaper 

articles from Google News for two types of events, landslides and floods. The period of analysis started 

from 2010 until 2019. The classified datasets constitute a valid and additional inventory of landslide 

and flood phenomena throughout Italy. From the classification, various analyses were carried out to 

determine the spatial and temporal distribution of the events. Moreover, the different nomenclature 

attributed to the different subdivisions of the dataset made it possible to make further considerations 

in terms of hazard, media impact and temporal distribution. Due to the different manipulations, 

various correlations with other existing data sources (rainfall data, ReNDiS and Polaris) were applied. 

More targeted analyses have been carried out for landslide events, also considering three types of 

hazard maps (landslide hazard, building at risk and people at risk) from ISPRA. 

In parallel, the classified database was subjected to some natural language processing techniques to 

obtain various information, including keywords. The keywords allowed us to take that extra step in the 

data mining technique. The data mining technique has thus far been applied to newspaper news, but 

now, with the appropriate use of keywords, also within the Twitter dashboard. Various data slots, 

which form a single database, were extracted from 2011 to 2019. The choice of periods was based on 

the temporal distribution of landslide events from newspaper reports. As before, this database was 

manually classified according to the landslide information and the presence of text and the actual 

coordinates of the event. 

In addition, to validate the tweet dataset, several slots have been compared to classified news. 

Some case studies of landslide events are presented considering different triggers (riverbank erosion 

and subsequent heavy rainfall) or the presence of victims. More analysis has been applied to the 

landslide event in Liguria that occurred in November 2019. Tweets were compared with rainfall data. 

The first landslide tweets were recorded 19 minutes after the event. The timeliness and spread of the 

publications demonstrated that Twitter is a valuable source of information for natural events. 

The binary classified dataset based on landslide information provided a solid basis for applying deep 

learning techniques. Three different preprocessing steps were applied. Multiple tests allowed us to 
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obtain a model that better interprets and classifies the textual data. Moreover, to validate the 

capability of the model, it has been tested on the new 2020 slot. This dataset has been compared with 

the classified news dataset. Another validation has been applied considering the case study of Liguria. 

4.1 Newspaper article about landslides and floods 

The news database was classified into three classes based on news relevance, localization accuracy 

and time of publication to distinguish “News referred to recent events” (Class 1) from “News 

generically referred to events” (Class 2) and “News not related to event” (Class 3). This classification 

allowed us to define, at the national scale, the areas and periods mainly involved in landslide and flood 

events. Figure 20A shows the three classes within the Landslide database, while Figure 20B shows two 

classes in the Flood database. Within flood database were not detected articles in class three. 

 

Figure 20: General distribution with the classification of the news used in Italy for landslides in A and flood events 
in B. The maps were generated using ESRI ArcMap 10.8.1 
(https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8). 

 

https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8
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4.1.1 Landslide news 

Spatial distribution 

The data mining algorithm used cannot identify the exact location of a landslide, since it is not usually 

reported in newspapers; therefore, the data have been grouped on a regional base (Figure 21A) and 

on a provincial base (Figure 21B) to identify the areas with a higher number of landslide news. Class 2 

news has been used only on a regional scale aggregation since some of them do not provide adequate 

localization accuracy for a more detailed analysis. According to the spatial distribution of the news, 

during the last 10 years, 41,7% of the municipalities suffered at least one landslide. 

The regions most affected by landslides are mainly in the northern part of the country. Liguria and 

Lombardia are the regions with the highest number of news (classes 1 and 2) and therefore of article 

publication (articles referring to the same landslide event are grouped into a single “Landslide news”). 

For example, Liguria has 36.451 articles referring to 4318 landslide news (classes 1 and 2, Figure 21A); 

among them, 19.844 articles refer to 1174 recent “Landslide events”, and in particular, Genova is the 

province most affected by landslides (Figure 21B). 

In addition to the alpine area, several other provinces over the country showed a relevant number of 

news (Salerno, Messina, Savona and Sondrio), and they are mainly located along the western coast 

(Tyrrhenian seacoast) and along the Apennines mountain belt (Figure 21B), which is historically 

affected by landslides because of its geological origin and the high frequency of clayey slopes. 

The Puglia region (Figure 21A) and the provinces along the northeast coast (Figure 21B) show a lower 

number of landslide news because they are mainly flat areas, and fewer landslides are obviously 

expected (Figure 21A); this is true as well for the southern part of Lombardia and Veneto and the north-

eastern part of the Emilia-Romagna region. 
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Figure 21: Spatial distribution of landslide news: A) Regional and in B) Province aggregation with overall news 
(classes 1, 2). Genova is the province most affected by landslides, followed by Salerno, Messina, Savona and 
Sondrio. The Puglia region and the provinces along the northeast coast show a lower number of landslide events. 
The maps were generated using ESRI ArcMap 10.8.1 
(https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8). 

To analyse the landslide event distribution in detail, the counting of “Landslide events” and the sum of 

published news for each event were considered. 

Figure 22 shows the distribution of only the Class 1 news (referring to recent “Landslide events”) at 

the regional scale. Liguria is the region with the highest number of both articles and “Landslide events”. 

Lombardia is the second region, regarding the number of “Landslide events” but with a lower number 

of articles. Toscana and Sicilia are the second and third regions, respectively, in terms of published 

articles. Valle d’Aosta, Friuli Venezia Giulia, Molise and Basilicata exhibit inferior media impact in 

agreement with the low trend of the “Landslide event”. 
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Figure 22: Regional distribution with a comparison between the number of published articles in Class 1 (media 
impact) and of “Landslide events”. The panel was generated using  MATLAB R2021b. 

The number of days with at least 1 reported landslide event (landslide day) is higher in the northern 

regions than in the southern ones, except for Sicilia, the southernmost region, where a high number 

of landslide days is present (Figure 23A). Overall, 5 regions out of 20 had at least 450 days with landslide 

events in the analysed period. Lombardia, Liguria, Campania, Sicilia and Toscana are the regions with 

the highest number of days characterized by landslides. In particular, 677 days with landslides were 

identified in Lombardia, 572 in Liguria, 545 in Campania, 475 in Sicilia and 451 in Toscana (Figure 23A). 

The Puglia region has the lowest number of landslide days; in this region, 72 landslide events, 

distributed over 49 days, are present. 

On a more detailed scale (Figure 23B), 4 provinces out of 107 have a high number of days with landslide 

events (180-301), while the average value is 23 days with landslides every year. For example, Genova 

Province is characterized by 915 landslide events, reported in 12.942 articles, distributed over 301 

days. The provinces that have fewer days with at least one landslide event are located along the 

northeast coast, such as Venezia, Rovigo, Ferrara and Ravenna. 

In general, the results show that Liguria, Lombardia, Campania, Toscana and Sicilia are the regions with 

the highest number of both “landslide events” and “landslide days”. 
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Figure 23: Spatial distribution of days with reported landslides. A Regional distribution, and B Provincial 
distribution. The maps were generated using ESRI ArcMap 10.8.1 
(https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8). 

Temporal distribution 

From a temporal point of view, the year with the highest number of landslide events showed a very 

sharp increase from 2017 (1243 events) to 2019 (2901 events) (Figure 24A), while the number of 

landslide-related articles was 2014 (Figure 24B). 

Once a general overview of the spatial and temporal distribution of news has been accomplished, a 

more detailed analysis of only the Class 1 news has been carried out. 

Figure 24C displays a monthly distribution of the landslide events identified by the Class 1 data; it 

shows that November, March and February are the months more involved with landslides. 

November, indeed, for 10 years reported 2093 landslide events with 20142 published articles (multiple 

articles can refer to the same landslide event, as described in the previous section). July, June and 

September are the months with fewer events. For instance, in July, 597 “Landslide events” were 

reported by newspapers. 

Class 1 news has been further analysed to identify the number of days with at least 1 landslide 

reported. The annual distribution (Figure 24D) follows a gradual increase of days with at least 1 

landside from 2015 to 2019; in this period, 8103 landslide events have been collected, distributed over 

1378 days, with an average of almost 5 landslides each day, while from 2010 to 2014, 5172 landslide 

events, distributed over 1236 days, were reported. 
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Figure 24: Temporal distribution of Class 1 news. A “Landslide events” annual distribution; B “Newspaper article” 
annual distribution; C monthly distribution of “landslides events”; D The number of days with at least 1 landslide 
reported from 2010 to 2019. Panels were generated using  MATLAB R2021b.  

4.1.1.1 Correlation with traditional sensors 

Several organizations create reports or datasets for describing many different aspects of natural 

disasters. In this work, four 10-year databases (2010-2019) were analysed for landslide events in Italy. 

The analysis was carried out to obtain information and determine the spatial, regional and WHZ scales 

and the temporal correlations of the available data. Overall, the analysed data are divided as follows: 

31.878 “Landslide news” with 174.616 “Newspaper articles”, 2040 rain gauges with 35.299 rainfall 

events, 198 data from Polaris and 1539 data from ReNDiS. All the datasets cover the period 2010-2019, 

except the Polaris dataset, since it starts from 2011. 
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Spatial distribution 

The “Landslide news” cannot identify the exact location of a landslide, and the maximum spatial result 

that can be obtained is the municipality. For this reason, the data have been grouped on regional and 

WHZ bases to outline the areas with a higher number of published articles. The number of ”Landslide 

news” was used as a proxy to identify those areas more affected by landslides in the observed period, 

hence the most hazardous areas, while the number of ”Newspaper articles” was used as an estimator 

for landslide intensity, since severe landslides can lead to more catastrophic effects and have a higher 

media echo (hence, a higher number of referencing articles) 

The regions most affected by “Landslide events” were mainly in the northern portion of the country. 

Liguria and Lombardia have been the regions with the highest amount of “Landslide news” (Figure 

25A). A similar spatial distribution was achieved considering the rainfall data (Figure 25B), relevant 

rainfall distribution (Figure 25C) and IDMs (Figure 25D). Indeed, the Northern Regions registered the 

highest mean annual rainfall and relevant rainfalls with respect to the Central or Southern Regions, 

except for Campania and Calabria. Friuli Venezia Giulia, Lombardia and Piemonte were the rainiest 

regions of Italy. The distribution of IDMs was more even across the country but it also reveals that the 

northern area experienced a higher number of IDMs. For example, Trentino Alto Adige, Lombardia and 

Liguria were the three regions with the highest IDM numbers, 31, 30 and 27, respectively. 

Furthermore, the first two regions have been the regions most involved for 10 years (Figure 25E). No 

region showed 0 IDM after a landslide. Basilicata, Molise and Puglia showed only one IDM in agreement 

with the low values of the landslide events and rainfall data. Nonetheless, Figure 25F shows the 

earmarked funds for each region, in which the Campania, Sicilia and Puglia regions stand out for the 

highest funds allocation of the country. Other Southern Regions, such as Basilicata and Calabria, have 

shown strong investments following landslide events. 
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Figure 25: Spatial distribution with different information: A “Landslide news” and “Newspaper articles” from 
Social Media; B Rainfall data with mm/y and in C event counts; D Polaris with IDEMs (injured, death, evacuated 
and missing) number; E involved Region; F earmarked funds for the soil protection (euro – ReNDiS with a focus 
for better vision). ABR: Abruzzo, BAS: Basilicata, CAL: Calabria, CAM: Campania, EMR: Emilia-Romagna, FVG: 
Friuli-Venezia Giulia, LAZ: Lazio, LIG: Liguria, LOM: Lombardia, MAR: Marche, MOL: Molise, PIE: Piemonte, PUG: 
Puglia, SAR: Sardegna, SIC: Sicilia, TOS: Toscana, TAA: Trentino-Alto Adige, UMB: Umbria, VDA: Valle d’Aosta, 
VEN: Veneto. The arrow indicates the increasing direction of the allocated funds. Panels were generated using  
MATLAB R2021b. 

In general, the distribution of “Landslide news” (Figure 26A) and “Newspaper articles” (Figure 26B) 

agreed with the number of relevant rainfalls (Figure 26C-D) and IDMs (Figure 26E) but in some cases, 

it was in contrast with earmarked funds (Figure 26F). In fact, the earmarked funds for soil protection 

outlined an inverse distribution, showing more investments in southern Italy than in northern Italy. 
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Valle d’Aosta, Molise and Abruzzo have been the regions that showed the best coherence between 

the variables. In this sense, the morphology of the territory, the climatic conditions, the size of the 

region and the density of the people and buildings at risk can bias the distribution of landslide events. 

In conclusion, Valle d’Aosta, Piemonte, Liguria, Lombardia, Veneto, Emilia-Romagna, Toscana, Marche, 

Abruzzo, Lazio, Molise, Campania and Sardegna have been the regions that showed a higher coherence 

between the datasets. Conversely, Friuli Venezia Giulia, Trentino Alto Adige, Umbria, Puglia, Basilicata, 

Calabria and Sicilia have been the regions with lower coherence. 
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Figure 26: A Regional aggregation with “Landslide news”, estimating landslide hazard; B Regional aggregation 
with mediatic impact, estimating the landslide intensity; C Regional distribution with rainfall data for 10 years 
(mm/10 years); D Regional aggregation of relevant rainfall event counts. Events display relevant differences in 
spatial distribution. E Regional aggregation with IDMs from the Polaris dataset. The period covers only 9 years, 
from 2011 to 2019. F Regional aggregation with earmarked funds for soil protection from the ReNDiS (euro/10 
years) for 10 years, considering landslide events. The maps were generated using ESRI ArcMap 10.8.1 
(https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8). 
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“Newspaper articles”, rainfall distribution and earmarked funds have been normalized on the basis of 

the annual maximum to analyse and compare the variation of their values over time for each region. 

Figure 27 shows the trend of each variable for each region over 10 years. Regarding the Northern 

Regions, Trentino Alto Adige, Valle d’Aosta and Veneto did not show variations in earmarked fund 

distributions. Friuli Venezia Giulia, Lombardia and Piemonte reveal the same distribution of earmarked 

money during 2015 (Figure 27FVG and LOM). The Piemonte Region showed a sharp increase in 

investment in soil protection in 2018. The regions Lombardia, Piemonte, Trentino alto Adige, Valle 

d’Aosta and Veneto showed the same trend between “Newspaper articles” and rainfall distribution; 

the lowest rainfall corresponded to the lowest media impact on landslide events (Figure 27LOM, PIE, 

TAA, VDA and VEN). In contrast, for Friuli Venezia Giulia, it was possible to recognize high values of 

rainfall but very low values of the media impact of the landslide events (Figure 27FVG). 

Abruzzo, Emilia Romagna, Lazio, Marche, Sardegna, Toscana and Umbria have been the regions with a 

good correlation with the annual distribution of the variables. In fact, the “Newspaper articles” number 

increases or decreases as a consequence of rainfall data, and the earmarked funds increase in the same 

year or in the following years (e.g., Abruzzo in 2012 and 2015 (Figure 27ABR), Emilia Romagna in 2010, 

2013, 2015, 2016 and 2017 (Figure 27EMR), Lazio in 2010, 2014, 2015 and 2018 (Figure 27LAZ), Marche 

in 2013, 2014, 2015 and 2017 (Figure 27MAR), Sardegna in 2013 and 2015 (Figure 27SAR), Toscana in 

2010, 2013, 2015 and 2016 (Figure 27TOS), Umbria in 2013, 2015 and 2017 (Figure 27UMB)). 

Basilicata, Calabria, Campania, Molise, Puglia and Sicilia showed a good correlation between variables 

for 10 years. Basilicata and Puglia evinced similar trends for each variable. All of them revealed low 

values of “Newspaper articles” but a good correlation between rainfall data and earmarked funds. In 

fact, high values of rainfall were measured during 2013, 2015 and 2018 and the distribution of 

earmarked funds in the same year (e.g., Puglia in 2015, Figure 27PUG) or in the next year (Basilicata in 

2016 and 2019 and Puglia in 2017 in Figure 27BAS and PUG). Calabria, Campania, Molise and Sicilia 

presented similar distributions for each variable. For example, during 2010, “Newspaper articles”, 

rainfall data and earmarked funds revealed high values in each region except for the Molise; during 

2013, the increase in “Newspaper articles” coincided with the increase in rainfall data but 

corresponded to low values of earmarked funds (fund increments started from 2014 in Sicilia and only 

in 2015 in the other regions). 2015 and 2018 showed the most coherence; in fact, all the southern 

regions featured high values of rainfall data and “Newspaper articles”. 
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Figure 27: “Newspaper articles”, rainfall distribution and earmarked funds have been normalized and correlated 
for each region for 10 years. ABR: Abruzzo, BAS: Basilicata, CAL: Calabria, CAM: Campania, EMR: Emilia-
Romagna, FVG: Friuli-Venezia Giulia, LAZ: Lazio, LIG: Liguria, LOM: Lombardia, MAR: Marche, MOL: Molise, PIE: 
Piemonte, PUG: Puglia, SAR: Sardegna, SIC: Sicilia, TOS: Toscana, TAA: Trentino-Alto Adige, UMB: Umbria, VDA: 
Valle d’Aosta, VEN: Veneto. Panels were generated using MATLAB R2021b. 

Correlation with hazard maps 

To validate the quality of the results, mainly of the spatial distribution of “Landslide news”, a 

comparison with existing datasets about landslides has been made. The landslide hazard map of Italy 

(Trigila et al., 2018), the map of populations living in landslide-risk areas (Trigila et al., 2018) and the 

map of building at risk (Trigila et al., 2018) have been used. These 2 maps were processed to extract 

the percentage with respect to the total Italian territory (300.000 km2) and the number of inhabitants 

(59 million). The percentage of area of each region affected by landslide hazards (Figure 28B) and the 

percentage of the population of each region living in zones affected by landslide risk (Figure 28C) were 

calculated. This operation was needed to account for the differences in size and population of the 
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different regions, which can vary greatly. Some large regions (e.g., Lombardia and Emilia-Romagna) 

are characterized by a high percentage of landslide hazards but a low percentage of people at risk. This 

trend is because Lombardia and Emilia Romagna feature wide plain areas with significant urbanization. 

The comparison between the three maps in Figure 28 shows good agreement between the 

distributions of “Landslide news”, landslide hazard or people at risk, but some anomalies can be 

identified. For instance, Valle d’Aosta shows a lower number of “Landslide news” but a very high 

portion of the territory is subject to landslide hazard. Another example, Sicilia, which has an important 

amount of news and a low percentage of its territory subject to landslide hazards, but a significant 

number of people live in hazard areas. The distribution of building at risk (Figure 28D) shows import 

values of percentage in P3 and P4 in Campania and in Toscana with corresponding with all variables. 

Lombardia shows trend inverse of percentage of building at risk respect to “Landslide news” and 

landslide hazard. Puglia, Basilicata and Calabria present opposite trend with low values of “Landslide 

news”, but with significant percentage of building at risk.     
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Figure 28: Comparison between the distribution of landslide news (classes 1 and 2, Panel A), landslide hazard 
(Panel B), people at risk (Panel C) and building at risk (Panel D). The maps were generated using ESRI ArcMap 
10.8.1 (https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8). 

The number of “Landslide news” items has been correlated with the aforementioned percentages to 

better verify the existence of a correspondence between “Landslide news”, landslide hazard and 

population at risk. Figure 29A shows a general correlation between the number of news items (Class 

1+2) and the areas affected by landslide hazards for each region (with nonparametric correlation of 

Kendal= 0,24 , Spearman= 0,32 and R= 0,29), and Figure 29B shows the population living at risk (with 

nonparametric correlation of Kendal= 0,51 , Spearman= 0,67 and R= 0,55). The distribution of the data 

shows some anomalies that are due to the morphology of the territory and the involvement of 

habituated areas. Toscana, Emilia-Romagna, Campania, Lombardia, Sicilia and Liguria are characterized 
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by significant values of landslide hazard similar to the published articles. The correlation between 

“Landslide news” and the percentage of people at risk is even more marked. This relationship can be 

related to the fact that the greater the urbanisation, the greater the number of articles published on 

the landslide event. (Campania, Toscana, Sicilia and Liguria). The number of “Landslide news” has been 

furthermore correlated with the percentages of building at risk (Figure 29C). The correlation presents 

a general correlation between the number of news (Class 1+2) and building in hazard areas for each 

region. In this case nonparametric correlation have been calculate and results are respectively with 

Kendal almost 0,42 , Spearman of 0,60 and R of 0,58. Table 13 lists for each correlation between 

“Landslide news” and the percentage of landslide hazard area, people at risk and building at risk, non 

parametric coefficients Kendall, Spearman and Pearson.  

Landslide news (Class1+2) VS Kendal-K Spearman-S Pearson-R 

Percentage of landslide hazard area 0,24 0,32 0,29 

Percentage of people at risk 0,51 0,67 0,55 

Percentage of building at risk 0,42 0,60 0,58 

Table 13: Non paremetric coefficients, Kendal, Spearman and Pearson, for each correlation have showed. 
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Figure 29: Correlation between the number of “Landslide news” (Class 1+2 and the percentage of the landslide 
hazard area (A) and the percentage of people at risk (B). ABR: Abruzzo, BAS: Basilicata, CAL: Calabria, CAM: 
Campania, EMR: Emilia-Romagna, FVG: Friuli-Venezia Giulia, LAZ: Lazio, LIG: Liguria, LOM: Lombardia, MAR: 
Marche, MOL: Molise, PIE: Piemonte, PUG: Puglia, SAR: Sardegna, SIC: Sicilia, TOS: Toscana, TAA: Trentino-Alto 
Adige, UMB: Umbria, VDA: Valle d’Aosta, VEN: Veneto. Panels were generated using MATLAB R2021b. 
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Subsequently, the correlation between the earmarked funds and the percentages of hazardous areas 

and buildings at risk of each region was analysed (Figure 30). Since the extent of the Italian regions 

varies greatly, the percentages of hazardous areas and buildings at risk have been scaled with respect 

to the area of the Italian territory and to the total number of buildings. 

The analysis has been carried out considering the distribution of funds at the regional scale. The 

distribution of funds allowed outlining which regions showed a higher percentage of both territories 

subject to landslide hazard and buildings at risk compared with the funds allocated for soil protection. 

For these analyses, the Italian regions were split according to their geographical distribution (north, 

central and south). 

In some cases, low values of allocated funds were in agreement with the percentages of hazardous 

areas and buildings at risk, such as for Veneto and Friuli Venezia Giulia. These regions have been mainly 

involved in other natural events, such as floods and earthquakes. The trend was the opposite for the 

Valle d’Aosta and Liguria regions (Figure 30A-B in blue), both having a high portion of their territory 

subject to landslide hazards but few earmarked funds. Instead, Lombardia and Piemonte (both partially 

plain areas) showed high values of funds, with intermediate values of the percentage of landslide 

hazard areas and buildings at risk. This may be linked to the urbanisation and the population density 

spread in the floodplain in southern Lombardia and Piemonte, while landslides are concentrated in the 

northern part of the region along the Alpine arc, where they caused many fatalities. 

In Central Italy, a more homogeneous distribution can be recognized, with values ranging from 15 to 

54 million €. The percentage of hazardous areas ranged from 0,16% in Umbria to 1,2% in Toscana, 

while the percentage of buildings at risk was 0,05% and 0,51% in the same regions (Figure 30A in 

green). Emilia Romagna and Abruzzo follow the Toscana Region, showing high values of landslide 

hazard (approximately 1% for the first and approximately 0,55% for the second). In these regions, the 

high percentage of hazard entailed a high percentage of buildings at risk, 0,43% and 0,28%, 

respectively. The high percentages of the Emilia Romagna Region were in agreement with the higher 

values of allocated funds 32.6 million (Figure 30A in green). 

Southern Italy has been, in general, the portion of Italy with the most earmarked funds (Figure 30 in 

light blue). The earmarked funds were in agreement with the highest percentage of landslide hazards 

in the Campania Region. In general, the percentage of landslide hazard areas varied from a minimum 

of almost 0,11% in Calabria to a maximum of 0,88% in Campania. Campania, Molise and Basilicata have 

been the regions with the highest percentage of landslide hazard areas between the southern regions. 

Furthermore, the allocated funds concurred with the percentage of buildings at risk in all the southern 

regions. The Calabria, Sicilia and Campania regions showed the highest percentages of buildings at risk, 

0,29%, 0,39% and 0,70%, respectively. 
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This analysis revealed that the southern regions had, in the observed periods, more funds for soil 

defence, even if the number of news items related to landslides and the percentages of territory 

subject to landslides and of buildings at risk were sensibly lower than those of other parts of Italy. 

 

Figure 30: Validate data between earmarked funds in A with the percentage of landslide hazard areas for each 
region; in B, the percentage of buildings at risk for each region. Each percentage was provided by ISPRA and 
normalized on the basis of regional size. ABR: Abruzzo, BAS: Basilicata, CAL: Calabria, CAM: Campania, EMR: 
Emilia-Romagna, FVG: Friuli-Venezia Giulia, LAZ: Lazio, LIG: Liguria, LOM: Lombardia, MAR: Marche, MOL: 
Molise, PIE: Piemonte, PUG: Puglia, SAR: Sardegna, SIC: Sicilia, TOS: Toscana, TAA: Trentino-Alto Adige, UMB: 
Umbria, VDA: Valle d’Aosta, VEN: Veneto. The arrow indicates the increasing direction of the allocated funds. 
Panels were generated using MATLAB R2021b. 
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Warning hydrological zones (WHZs) 

For civil protection purposes, knowledge of the rain distribution is fundamental when preparing 

national weather bulletins. The combination of rain distribution data with "Landslide news" and 

"Newspaper articles", at the WHZ scale, can provide helpful outcomes for those involved in landslide 

management and prevention. “Landslide news” and “Newspaper articles” were mainly located in the 

northern part of Italy and along the Apennines (Figure 31A-B). In general, the number of “Landslide 

news” articles showed a direct correlation with the number of “Newspaper articles” for each WHZ. An 

exception can be recognized for one WHZ in the Puglia Region (area north), where a low number of 

“Landslide news” was associated with a relatively higher number of ”Newspaper articles”, meaning 

that landslide events had a high media echo in this area. 

The areas less involved with landslides were located along the northeast coast and in Puglia, and a 

similar distribution was recognized by Del Soldato et al. (2021) considering the rainfall frequency. 

Indeed, North Italy showed a very good correspondence between the variable “Newspaper articles” 

and rainfall data, with an emphasis on the Liguria Region, north-western portion of the Alps (Valle 

d’Aosta and Piemonte) and the northeast (Trentino Alto Adige, Veneto and in part of Friuli Venezia 

Giulia). 

Central Italy was the portion where the main differences were recognized between the different 

intensities of rainfall (Figure 31C-D-E). In fact, the rainfall with “High” intensity has shown the most 

distribution than “Very high” and “Heavy rain”, which has concentrated the most in Liguria and in the 

most north Toscana Region. A correspondence has been highlighted between “Newspaper articles” 

and the intensity classes “High”, “Very high”, “Heavy rain”, as well as between “Newspaper articles” 

and “events count” (Figure 31F) in the northern WHZs of the Toscana and Emilia Romagna Regions and 

in Central Italy with Marche, Abruzzo and Lazio. 

In southern Italy, the highest values of “Landslide news”, “Newspaper articles” and rainfall data have 

been located along the Ionian seacoast, in the WHZs of the Calabria Region and in one WHZ of the 

Basilicata Region (south-eastern area). The Puglia Region did not show high values of “Landslide news”; 

however, in one area, a high mediatic impact (“Newspaper articles”) was revealed, even when 

associated with low frequencies of relevant rainfall events. 
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Figure 31: Italy is divided into 158 Warning hydrological zones (WHZs). In A the distribution of “Landslide news”; 
B the distribution of media impact with “Newspaper articles”; C-D-E the rain frequency “High”, “Very high” and 
“Heavy rain”; F the events sum of three classes or events count. The maps were generated using ESRI ArcMap 
10.8.1 (https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8). 
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Figure 32 shows the correlation between “Newspaper articles” and several rainfall intensities (Figure 

32A-B-C) and the event count (Figure 32D) for each WHZ. Although low values of media impact (as 

“Newspaper articles”) sometimes corresponded to low values of rainfall intensity and vice versa, it was 

not possible to outline a clear correlation. 

Since the data do not follow a Gaussian distribution, two nonparametric correlation indices were used 

to verify the rate of correlation between the analysed parameters. The Kendall’s and Spearman rank 

correlation coefficients resulted in low values, as reported in Table 14, confirming the presence of a 

slight correlation between the parameters. 

 Kendall Spearman 

Newspaper articles – High Intensity rainfall 0,15 0,22 

Newspaper articles – Very high Intensity rainfall 0,09 0,14 

Newspaper articles – Heavy rain 0,13 0,19 

Newspaper articles – Events count 0,20 0,29 

Table 14: Kendall and Spearman coefficient rank for each correlation between variables. 
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Figure 32: Distribution of “Newspaper articles” with different frequencies of rainfall intensity for each WHZ. In A 
“Newspaper articles” and “High” intensity; B “Newspaper articles” and “Very high” intensity; C “Newspaper 
articles” and “Heavy rain”; D the correlation between “Newspaper articles” and the events count. Panels were 
generated using MATLAB R2021b. 

Temporal distribution 

From a temporal point of view, each Italian region experienced some landslides in the investigated 

period, with approximately 1477 IDEMs per year. 

“Landslide news” showed an increasing trend from 2010 to 2014, which repeats in the period from 

2015-2019. At the end of the first quinquennium, 2014 featured the highest number of “Landslide 

news” (2988), with a mean rainfall of 1007,6 mm/year (Figure 33A-B). 2014, with 4706 rain events, 

was also the year with the highest number of relevant rainfall events (Figure 33C). In this year, 19 

regions out of 20 were involved in landslides with 3406 IDEMs (Figure 33D-E) as consequences. In 

contrast, 2014 was the second year with less earmarked funds for soil protection, with almost 8 million 

euros, second only to 2012, with only 227 thousand euros (Figure 33F). 

In the second quinquennium, the year with the highest number of “Landslide news”, with 6775 data, 

was 2019. Although the rainfall data were constant with respect to the previous year, 2019 was also 
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the second year with a higher event count, with 4529 relevant rain events (Figure 33A-B-C). In the 

same year, 16 regions were affected by landslides with 2775 IDEMs (Figure 33D-E). 2019, in these five 

years, showed the highest values of earmarked funds, with almost 109 million euros (Figure 33F). 

In general, the “Landslide news” showed an increase from 12.083 news items in the period 2010-2014 

to 19.795 in 2015-2019, while for the rainfall events, the trend was the inverse. The count of relevant 

rainfall events decreased from 18.858 for 2010-2014 to 16.441 for 2015-2019, passing from an average 

of 3771 events/year to 3288 events/year, and the rainfall data passed from 4451 mm/5 years to 3910 

mm/5 years. The same decrease distribution was observed in “Newspaper articles”, IDEMs and 

reported expenses between the periods 2010-2014 and 2015-2019. “Newspaper articles” featured 

91.439 articles for the first quinquennium to 83.177 in the second, while the IDEMs distribution 

showed a small decrease from 7402 to 7372. 
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Figure 33: Temporal distribution with different information: A “Landslide news” and “Newspaper articles” from 
Social Media; B Rainfall data with mm/y and in C event counts; D Polaris with IDEMs (injured, death, evacuated 
and missing) number; E involved region; F earmarked funds for the soil protection (euro – ReNDiS with a focus 
for better vision). Panels were generated using MATLAB R2021b. 

4.1.1.2 Text analysis and word distribution 

From 2010 to 2019, 32.525 news items were gathered by the data mining algorithm. 

The dataset provides the headline as the only textual source. In the beginning, the text was 

preprocessed by removing all textual parameters lacking literary meaning within the sentences; this 
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included articles, punctuation, special characters, number of words with less than 2 letters, and low 

word frequency. Once the text was cleaned, two analyses were applied, a qualitative analysis with a 

word cloud (Figure 34A) and a quantitative analysis with a word frequency count (Figure 34B). 

 

Figure 34: Qualitative representation using a word cloud in A, and in B a quantitative representation with the 
word frequency with the first ten words. Panels were generated using Python. Below the translation for each 
word; frana: landslide, frane: landslides, maltempo: bad weather, strada: road, chiusa: close, meteo: weather, 
rischio: risk, lavori: jobs, Corriere: newspaper name, provincial: province. 

Among them, 13.275 news items had useful information about the geo-localization and the date of the 

landslide event; 1400 news items have been corrected, attributing a more appropriate localization 

based on the text to the article. According to the adopted classification criteria, the identified news 

has been classified as follows: 

• Class 1: 13.275 news items (41%). 

• Class 2: 18.603 news items (57%). 

• Class 3: 647 news items (2%). 

This classification allowed us to identify the “true news” (classes 1 and 2) and to reject the data that 

were not appropriate (Class 3), reducing the data to be processed. Approximately 41% of news 

reported information relative to recent landslides, and only a minimum percentage of the database is 

made up by wrong news (2%) (Figure 35A). A textual analysis was conducted to retrieve the frequency 

of words inside the headlines. In Figure 35B-C-D, the most frequent words of the headlines of the Class 

1, 2 and 3 news are reported, respectively. The term “landslide” is present in all categories as the first 

word widely used; indeed, in Class 1, the word “landslide” is present 8021 times, 10.457 times in class 

2 and 271 times in class 3. 



84 
 

 

Figure 35: A Overall landside news classification. B Word frequency in the headlines inside Class 1, C Word 
frequency in the headlines inside Class 2, and D Word frequency in the headlines inside Class 3. Panels were 
generated using Python. Below the translation for each word; frana: landslide, frane: landslides, maltempo: bad 
weather, strada: road, chiusa: locked, meteo: weather, allagamenti: flooding, smottamenti: landslips, 
provinciale: provincial, rischio: risk, lavori: works, regione: region, Corriere: newspaper name, smottamento: 
landslip, provincial: province, Italia: Italy, roma: roma, sera: evening, milano: Milano, sicilia: Sicilia, repubblica: 
repubblic. 
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4.1.2 Flood news 

Spatial distribution 

The regions most involved are mainly in the Central area of the Country. Liguria and Toscana are the 

regions with the highest number of news (class 1 and 2) and therefore of “Newspaper articles” (articles 

referred to the same flood event are grouped into a single “Flood news”). For example, Liguria has 

55.666 articles referring to 4977 “Flood news” (classes 1 and 2, Figure 36A), among them 11.157 

articles refer to 490 recent “Flood events” (class 1) and in particular, Genova is the most affected 

province (Figure 36B).  

Provinces showed a relevant number of news (Roma and L’Aquila) and they are mainly located along 

Tyrrhenian Sea coast and mains alluvial planes as in Emilia Romagna, Veneto and internal flat areas in 

Toscana, Piemonte and Campania regions (Figure 36B). 

The Northern region (Valle d’Aosta, Trentino Alto Adige and Friuli Venezia Giulia) (Figure 36A) and the 

provinces along the South-East coast along Ionian Sea coast (Figure 36B) showed a lower number of 

flood news because they are mainly mountain or hill areas and fewer floods are obviously expected 

(Figure 36A). 

 

Figure 36: Spatial distribution of “Flood news”: A) Regional and in B) Province aggregation with overall news 
(classes 1, 2). Genova is the province most affected by floods, followed by Roma and L’Aquila. Valle d’Aosta, 
Trentino Alto Adige and Friuli Venezia Giulia and the provinces along the South-East coast along Ionian Sea coast 
show a lower number of flood events. The maps were generated using ESRI ArcMap 10.8.1 
(https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8).     
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Figure 37 regards the relation between the news published near real-time (in class 1) or “Flood event” 

and the media impact or “Newspaper articles”, for each region.   

Liguria is the first Region with important publication of articles for each flood event. Sicilia was the 

region with the highest number of “Flood events”. Lazio is the second region, regarding the number of 

“Flood events” and number of articles (“Newspaper articles”). While Toscana is the third in terms of 

“Flood events”, even if with important number of published articles. Molise, Basilicata and Valle 

d’Aosta are the last Regions with less data regarded flood events in agreement with the released 

articles. 

 

Figure 37: Regional distribution with comparison between the number of published articles or media impact 
respect to “Flood event”. The panel was generated using MATLAB R2021b. 

The number of days with at least 1 reported flood event (“Flood day”) is higher in the western regions 

rather than in the eastern ones and in Sicilia the southernmost Region (Figure 38A). Overall, 5 regions 

out of 20 had at least 205 days with flood events, in the analysed period. Toscana, Lombardia, Lazio, 

Sicilia and Campania are the regions with the highest number of days characterized by floods. In 

particular, 247 days have been identified in Toscana, 238 in Lombardia, 234 in Lazio, 224 in Sicilia and 

211 in Campania (Figure 38A). The Valle d’Aosta Region has shown the lowest number of days with 

flood: in this Region 10 events, distributed over 8 days, were present. 
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In a more detailed scale (Figure 38B), 7 provinces out of 107 have significant number of days with 

“Flood events” (56-193). For example, the Roma Province is characterized by 468 flood events, 

reported in 6398 articles, distributed over 193 days. The provinces that have less days with at least one 

flood event are located along north Italy in Valle d’Aosta Region and also in the northern in Piemonte. 

 

Figure 38: Spatial distribution of days with reported floods. A Regional distribution, B Provincial distribution. The 
maps were generated using ESRI ArcMap 10.8.1 
(https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8).     

Temporal distribution 

From a temporal point of view, the number of events showed a very sharp increase from 2016 (544 

events) to 2018 (1125 events) (Figure 39A). The year with the highest number of floods-related articles 

was the 2014 with 12.588 media impact (Figure 39B).  

Figure 39C displays a monthly distribution of the flood events identified by the class 1 data. November, 

October and September were the months more involved by floods. Indeed, November, in 10 years, 

reported 763 “Flood events” with 14.382 published articles (multiple articles can refer to the same 

“Flood event”, as described in the previous section).  

April, December and January were months with less events. For instance, in April 175 “Flood events” 

were reported by newspapers. 

The number of days with at least 1 flood reported have been analysed (Figure 39D). The annual 

distribution follows a gradual increase of days with at least one flood from 2011 to 2014 with 1823 
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“Flood events” distributed over 516 days. From 2015 to 2018, 2932 “Flood events” have been 

collected, distributed over 727 days. The average increased passing to almost 3 days with flood to 4. 

 

Figure 39: Temporal distribution of class 1 news. A “Flood events” annual distribution; B “Newspaper article” 
annual distribution; C monthly distribution of “Flood events”; D The number of days with at least 1 flood reported 
from 2010 to 2019. Panels were generated using MATLAB R2021b. 

4.1.2.1 Correlation with traditional sensors 

“Flood news”, as well as “Landslide news” have been correlated with four datasets to get information 

about spatial and temporal distribution. Overall, the analysed data have been thus divided: 34.561 

“Flood news” with 246.338 “Newspaper articles”, 2040 rain gauges with 35.299 rainfall events, 99 data 

from Polaris and 1431 data from ReNDiS. All datasets cover the period 2010-2019, except the Polaris 

dataset, since it starts from 2011. 

Spatial distribution 

The “Flood news”, as well as “Landslide news”, cannot identify the exact location of an event, the 

maximum spatial results that can be obtained is the municipality. For this reason, the data have been 

grouped on regional base. The number of ”Flood news” was used as a proxy to identify those areas 



89 
 

more affected by floods in the observed period, hence the most hazardous areas, while the number of 

”Newspaper articles” was used as an estimator of intensity. 

The most involved regions by flood news were mainly in the Central portion of the Country. Liguria and 

Toscana have been the Regions with the highest amount of “Flood news” (Figure 40A). Liguria and 

Toscana have been also the Regions with the highest correlation between variables, considering 

relevant rainfalls distribution (Figure 40C), IDMS (Figure 40D),  affecting region (Figure 40E) and 

earmarked funds (Figure 40F), but not rainfall data (Figure 40B). Friuli Venezia Giulia, Lombardia and 

Piemonte resulted to be the rainiest Region of Italy. IDMs distribution resulted more fragmented 

across the Country. For example, Calabria, Toscana, Veneto, Sardegna and Sicilia were the Regions with 

significant IDMs number, respectively 27, 27, 26, 24 and 24. Only Molise and Valle d’Aosta showed 0 

IDM after a flood. 
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Figure 40: Spatial distribution with different information: A “Flood news” and “Newspaper articles” from Social 
Media; B Rainfall data with mm/y and in C events count; D Polaris with IDEMs (injured, death, evacuated and 
missing) number; E involved Region; F earmarked funds for the soil protection (euro – ReNDiS with focus for 
better vision). ABR: Abruzzo, BAS: Basilicata, CAL: Calabria, CAM: Campania, EMR: Emilia-Romagna, FVG: Friuli-
Venezia Giulia, LAZ: Lazio, LIG: Liguria, LOM: Lombardia, MAR: Marche, MOL: Molise, PIE: Piemonte, PUG: Puglia, 
SAR: Sardegna, SIC: Sicilia, TOS: Toscana, TAA: Trentino-Alto Adige, UMB: Umbria, VDA: Valle d’Aosta, VEN: 
Veneto. The arrow indicates the increasing direction of allocated funds. Panels were generated using MATLAB 
R2021b. 

In general, the distribution of “Flood news” (Figure 41A) and “Newspaper articles” (Figure 41B) were 

resulted not coherence with rainfall data (Figure 41C). Clearer is the case of Friuli Venezia Giulia. Friuli 

Venezia Giulia presented low values of “Flood news” and “Newspaper articles”, but important values 

of rainfall data. The news variable is in agreement with the count event or relevant rainfalls (Figure 

41D), IDMs (Figure 41E) and earmarked funds (Figure 41F).  
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Valle d’Aosta, Molise, Umbria and Marche have been the Regions that shown the best coherence 

between variables. In this sense, as for the landslides, the morphology of the territory, the climatic 

conditions, the density of people and buildings at risk can bias the distribution of flood events.  

In conclusion, Valle d’Aosta, Piemonte, Liguria, Toscana, Emilia Romagna, Umbria, Marche, Abruzzo, 

Lazio, Molise, Basilicata and Trentino Alto Adige have been the Regions that shown higher coherence 

between the datasets. Vice versa, Lombardia, Veneto, Campania, Sicilia, Puglia, Calabria and Sardegna 

have been the Regions with lower coherence. 
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Figure 41: A Regional aggregation with “Flood news”, estimating flood hazard; B Regional aggregation with 
mediatic impact, estimating the flood intensity; C Regional distribution with rainfall data for 10 years (mm/10 
years); D Regional aggregation of relevant rainfall events count. Events display relevant differences about spatial 
distribution; E Regional aggregation with IDMs from Polaris dataset. The period covers only 9 years, from 2011 
to 2019; F Regional aggregation with earmarked funds for the soil protection from ReNDiS (euro/10 years) for 10 
years, considering flood events. The maps were generated using ESRI ArcMap 10.8.1 
(https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8).     
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Temporal distribution 

By a temporal a point of view, each Italian Region experienced some floods in the investigated period, 

with approximately 3821 IDEMs per year.  

As well as “Landslide news”, “Flood news” showed an increasing trend from 2010 to 2014, which 

repeats in the period 2015-2019. At the end of the first quinquennium, the 2014 featured by the 

highest number of “Flood news” (3146) with a mean rainfall of 1007,6 mm/year (Figure 42A-B). In this 

year, 11 regions out of 20 were involved by floods with 4706 IDEMs (Figure 42E-F) as consequences. In 

contrast, the 2014 was the third year with less earmarked funds for soil protection, almost 9 million of 

euro, behind only to 2016 with 8 million of euro (Figure 42F) and to 2012 with absence of funds.   

In the second quinquennium, the year with the highest number of “Flood news”, with 7159 data, was 

the 2019. Although the rainfall data were constants respect to the previous year, the 2019 was also 

the second year with significant events count with 4529 relevant rain events (Figure 42A-B-C). In the 

same year, 11 regions were affected by floods with 4529 IDEMs (Figure 42D-E). The 2019, in these five 

years, it was the second year with important earmarked funds, almost 114 million euros (Figure 42F) 

behind only to 2015 with 319 million of euros. 

In general, the “Flood news” showed an increase from 13.343 news in the period 2010-2014 to 21.217 

in 2015-2019 as well as for IDEMs from 17.355 to 20.855 (Figure 42D). Vice versa for the rainfall events 

(Figure 42B), relevant rainfall events or events count (Figure 42C) and “Newspaper articles” the trend 

resulted inverse. For example, “Newspaper articles” were featured by 134.318 articles for the first 

quinquennium to 112.020 in the second (Figure 42A). 
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Figure 42: Temporal distribution with different information: A “Flood news” and “Newspaper articles” from 
Social Media; B Rainfall data with mm/y and in C events count; D Polaris with IDEMs (injured, death, evacuated 
and missing) number; E involved Region; F earmarked funds for the soil protection (euro – ReNDiS with focus for 
better vision). Panels were generated using MATLAB R2021b. 
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4.1.2.2 Text analysis and word distribution 

From 2010 to 2019, 34.560 news have been gathered by the used data mining algorithm.  

The dataset provides the headline as the only textual source. In the beginning, the text has been pre-

processed by removing all those textual parameters lacking literary meaning within the sentences: 

articles, punctuation, special characters, number of words with below 2 letters, low word frequency. 

Once the text was cleaned, two analyses have been applied: qualitative analysis with word cloud 

(Figure 43A) and quantitative analysis with word frequency count (Figure 43B). 

 

Figure 43: Qualitative representation of LDA using Wordcloud in A and in B a quantitative representation with 
the words frequency with the first ten words. Panels were generated using Python. Below the translation for 
each word; alluvione: flood, allagamenti: flooding, maltempo: bad weather, meteo: weather, alluvioni: floods, 
danni: damage, Genova: Genova, rischio: risk, frane: landslides, ansa: newspaper name ANSA.    

Among them, 5172 news had useful information about the geo-localization and the date of flood 

event. According to the adopted classification criteria, the identified news has been classified as 

follows: 

• Class 1: 5172 news (15%) (Figure 44A). 

• Class 2: 29.388 news (85%) (Figure 44A). 

The Class 3 wasn’t identified. Textual analysis has been conducted to retrieve the frequency of words 

inside the headlines. In Figure 44B-C the most frequent words of the headlines of the class 1 and 2 

news are reported, respectively. The term “flood” is present in all categories, linked often to “bad 

weather”.  
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Figure 44: A Overall landside news classification. B Words’ frequency in the headlines inside Class 1, C Words’ 
frequency in the headlines as inside Class 2. Panels were generated using Python. Below the translation for each 
word; allagamenti: flooding, maltempo: bad weather, alluvione: flood, meteo: weather, nubifragi: storms, disagi: 
inconvenience, frane: landslides, strade: roads, acqua: water, roma: Roma, alluvioni: floods, danni: damage, 
rischio: risk, Genova: Genova, milioni: milions, regione: region. 

4.2 Data mining for tweets dataset 

Tweets from traditional and internet media offer a variety of information types about affected 

individuals and messages of caution and advice. Media are also the most prominent source of 

information regarding infrastructure and utilities (Olteanu et al.,2015). In this project, 9 slots have been 
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harvested using the data mining technique. From Twitter, 13.350 data points were harvested from 

2011 to 2019 (Table 15 and Figure 46). 

year from to data 

2011 
22/03/2011 22/03/2011 1 

01/10/2011 30/11/2011 420 

2012 01/09/2012 31/12/2012 693 

2013 01/01/2013 31/05/2013 1028 

2014 
01/01/2014 31/05/2014 1747 

01/07/2014 30/11/2014 1319 

2015 22/02/2015 26/02/2015 1626 

2016 24/11/2016 28/11/2016 1656 

2017 05/08/2017 08/08/2017 486 

2018 28/10/2018 31/10/2018 2273 

2019 24/11/2019 24/11/2019 2100 

Table 15: Nine slots extracted within Twitter.  

According to the adopted classification criteria, the identified news has been classified as follows: 

• Class 1: 4805 (36%) (Figure 45A and B). Not all landslide-related tweets contained location 

information; there, tweets not referring to a location were not used in the subsequent spatial 

analysis. In total 526 data show no coordinate within the text. 

• Class 0: 8544 (64%) (Figure 45A and B) not providing any information. 

 

Figure 45: Considering only the label describing the landslide event, in A, the distribution of data for each target 
is shown, and in B, the distribution is expressed as a percentage Panels were generated using Python.     

In class 1, 4158 tweets were assigned approximate coordinates based on specifics within the tweet 

text, such as municipality, region, and street. Figure 46 displays the spatial distribution of each 

obtained dataset from Twitter. 
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Figure 46: Nine maps using coordinates from text are shown as follows: in A, data from some days or months 
during 2011; B, data from some months during 2012; C, data from some months during 2013; D, data from some 
months during 2014; E, data from some days during 2015; F, data from some days during 2016; G, data from 
some days during 2017; H, data from some days during 2018; I, data from some days during 2019. The maps 
were generated using ESRI ArcMap 10.8.1 
(https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8). 

Figure 47A presents the total dataset of Twitter using coordinates from the tweet text. The distribution 

of tweets did not continue for 10 years. However, as demonstrating by Wang et al., (2021) Twitter can 

be used to outline which region had the most resilience in terms of tweet publications. 
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Analysing the tweet counting, the Liguria Region presents the highest values, followed by Lazio and 

Calabria. The regions with the lowest counts are Marche and Puglia. Molise does not display user 

interactions (Figure 47B). Considering retweets or the media impact of events, the first five regions 

with significant interactions between users are Liguria, Piemonte, Calabria, Veneto and Trentino Alto 

Adige. Molise and Puglia show the lowest values of retweets (Figure 47C).  

 

Figure 47: Considering only the label describing the landslide event, in A the distribution of data in class 1 is 
shown, in B the distribution of tweet count for each region, and in C the retweet distribution for each region. 
Such a parameter can present the media impact of the event and interaction between users during some events 
within Italian territory. The maps were generated using ESRI ArcMap 10.8.1 
(https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8). 
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Data with further information, such as street number, village or picture information (photo/video), 

allow a significant localization and identification of the landslide event. Summarising this information 

of photointerpretation, it was possible to assign accurate coordinates to the data and, hence, to the 

landslide event. 

Within class 1, 1529 tweets were allocated the right coordinates. (Figure 48A). Considering the tweet 

counting, Liguria, Campania and Emilia Romagna are the regions with significant publication values. 

Molise, Puglia and Umbria did not show tweets (Figure 48B). Regarding the interaction between users 

or retweets, Liguria, Campania and Piemonte were the first three regions with important values. 

Umbria, Abruzzo, Molise and Puglia did not present interactions between users. 
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Figure 48: Considering only the label describing the landslide event, in A, the distribution of data in class 1 using 
the true coordinates of the event is shown. The event can be identified through photo, video, address within 
tweet text, photo interpretation, etc. In B, the distribution of count tweets and Liguria show the highest values 
of tweet publishing. In C, the distribution of retweets is presented, where Liguria and Campania display significant 
values of interaction between users during an event and, consequently, make an important media impact. The 
maps were generated using ESRI ArcMap 10.8.1 
(https://www.arcgis.com/home/item.html?id=33064a20de0c48d2bb61efa8faca93a8). 
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4.2.1 Exploring dataset  

Before applying the deep learning technique, some analyses were applied to obtain information about 

the dataset from Twitter. Natural language processing techniques were adopted to outline the word 

distribution for each target (0 and 1) and, further, at the same time alternating the application of the 

preprocessing or cleaning data. 

News and tweets have been compared to outline similar trends during each period. Targets with 

landslide information (for news class 1+2 and tweets in class 1) and without information have been 

correlated. A satisfactory relationship was verified with the first case (data with landslide information), 

while a poor relationship was verified with the second data (without information), particularly with 

tweet data. 

Finally, three case studies were investigated, in particular Emilia Romagna, Campania and Liguria. One 

focus has been applied to the last case study. The Liguria Region involved intense rainfall in November 

2019, which triggered several landslides in the territory. One landslide caused a fallen viaduct. News 

and rainfall data were correlated to a tweet dataset for this specific event. 

4.2.2 Some analysis of natural language processing 

In the beginning, the tweet text was preprocessed by removing all textual parameters lacking literary 

meaning within the sentences: HTML, stop words, converted @username to AT_USER, tickers, 

number, lowercase, hyperlinks, hashtags, punctuation, number of words with fewer than 3 letters, 

whitespace (including new line characters), and space remaining at the front of the tweet. 

Once the text was cleaned, qualitative analysis was applied to obtain the word cloud (Figure 49A) and 

quantitative analysis for word frequency counting (Figure 49B). 
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Figure 49: In A a qualitative representation of the frequency of words within the tweet text; in B the frequency 
of words. Panels were generated using Python. Below the translation for each word; crollo: collapse, frana: 
landslide, dissesto: instability, maltempo: bad weather, viadotto: viaduct, idrogeologico: hydrogeological, strada: 
road, dopo: next, chiusa: locked. 

There are other basic strategies for text analytics and more advanced techniques that leverage 

machine learning, statistical and linguistic techniques. Some of the techniques can be used to begin 

investing in text analytics. Common text analytics techniques include word frequency. This is a 

technique used to measure the most frequently occurring words and phrases in specific conversations. 

For instance, you could use text analytics and word frequency to determine which features citizens 

mention most often during an event. Collocation and concordance can help to identify the words that 

usually occur at the same time and context of those. The common type of collocation is bigrams (Figure 

50). Bigrams made up two adjacent coexisting words: ‘time table’, ‘air conditioner’ or ‘ice cream’. This 

technique helps to identify semantic structures (semantic means words connected with a meaning), 

and it counts bigrams and trigrams as one word. 
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Figure 50: Two bigrams were used to obtain information about word distribution for each tweet respect target. 
The first two bigrams consider only one word distribution, and the second bigram describes the frequency of co-
occurrence between the two words. This technique was applied after preprocessing. Panels were generated 
using Python. See the Appendix after the bibliography for the translation. 

Creating a “bag-of-words” model it is possible to create a co-occurrence network. A co-occurrence 

network is an undirected graph, with nodes corresponding to unique words in a vocabulary and edges 

corresponding to the frequency of words co-occurring in a document. Use co-occurrence networks to 

visualize and extract information on the relationship between words in a corpus of documents. In 

summary, it is possible to discover which words commonly appear with a specified word. In this case, 

four networks are displayed in Figure 51. Three datasets have been considered: i) generic classified 

dataset; ii) data classified in class 1 (or “Landslide tweets”) and iii) data classified in class 0 (or “No 
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Landslide tweets). To create these networks have been sampled randomly 100 data for each dataset, 

for better to represent the distribution of frequencies. Figure 51A and B display the relationship 

between the words in general for 100 random data in whole dataset. Figure 51A point out the strong 

correlation between “frana”, “crollo”, ”strada”, “maltempo”, “sicurezza”, “morti” and “sfollati” (see 

the Appendix after the bibliography for the translation.). Figure 51B highlights the trend considering 

“frana” the stop point of frequency. Figure 51C and D show the distribution of words around the main 

term “crollo” for class 0 and “frana” for class 1. The words have been chosen on the base of preview 

frequency analysis in Figure 50. The nearest words of “crollo” for the class 0 are “strada” to sign 

damages caused by different accidents (natural, structural etc..) and then there is an equal distribution 

with other terms not useful to identify the landslide event. In fact, often the word “crollo” is associated 

with political/economic situation (“governo” and “borsa”), sentimental (“emotive”, “notte” and 

“domani”) or generic without other specifics (“strada”, “viadotto, “rischio”, “totale”, ”visto” and 

“situazione”) (Figure 51C- see the Appendix after the bibliography for the translation.). While, the 

closest words of “frana” are “maltempo” and its synonyms #maltempo, “provinciale” (referring to the 

street), the synonyms “#frana”, but also “stradale” and “palazzi” to highlight the involvement of 

infrastructure (Figure 51D- see the Appendix after the bibliography for the translation.). 
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Figure 51: Co-occurrence considering 100 random data for all datasets in A. In B, the word 'Landslide' was 
considered as a keyword to obtain the frequency of words related to it. In C, the keyword 'collapse' was chosen 
to obtain co-occurrence. Again, 100 data were considered randomly. 100 data were selected for each analysis 
and thus for each representation for reasons of visualisation and clarity of presentation. In D, 100 pieces of data 
were randomly considered for class 1 or 'Landslide event'. The word 'landslide' was chosen as the linking keyword 
based on the frequency of the words in the previous results. Panels were generated using MATLAB R2021b. See 
the Appendix after the bibliography for the translation of some words. 

A similar procedure was applied to each target 0 (“No Landslide tweets”) and 1 (“Landslide tweets”) 

to determine the word count within tweets and their frequency (Figure 52). The first two panels above 

compare the word count and frequency of the tweets without applying any data cleaning. An even 

distribution of words was found in “Landslide Tweets” compared to “No Landslide tweets”. In the “No 

Landslide tweets”, a greater incoherence and distribution in count and frequency was shown. 

By applying to preprocess, the last two panels of Figure 52 have been derived. The word count 

consequently decreases, but the frequency remains high in “Landslide tweets” compared to “No 

Landslide tweets”. 
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Figure 52: Four panels show the word count per tweet and their frequency per target of “No landslide” tweets 
and landslide tweets. No preprocessing was applied in the first two top panels. Preprocessing was applied in the 
bottom two panels. The distribution of words in the last two cases decreased, but the frequency increased 
accordingly. Both cases show a larger breakdown in the number of words for tweets not describing the landslide 
event than for Landslide tweets reporting the event. Panels were generated using Python.     

4.2.2.1 Comparison between news and tweets 

A comparative analysis was carried out between the news dataset and the many slots of tweets. Plot 

graphs were considered (Figure 53) due to the large extraction radius for 2011, 2012, 2013, and 2014. 

For datasets featuring few days or small slots, daily data were regarded for 2015, 2016, 2017, and 

2018. A separate discussion was carried out for 2019, including single-day data that will be referred to 

in the next chapter. 
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The first analysis concerned the comparison between the news in class 1+2 and the tweets in class 1. 

Class 1 tweets do not consider the temporality of the event, i.e., whether the landslide occurred days 

ago or in real-time. For this reason, they were compared with the news classified into classes 1 and 2. 

Figure 53A, C, E, and G illustrate the predominance of newspaper news publications over tweets. On 

the other hand, there is a good correspondence of publication timing. 

 

Figure 53: In the first column (A, C, E and G), news in class 1+2 compared with tweets in class 1 for each year 
from 2011 to 2014. The time distribution ranged from 5 months to 6 months. In the second column (B, D, F and 
H), news in class 3 and tweets in class 0, data that did not describe landslide events, have been compared. The 
time distribution covers the same year from 2011 to 2014. Panels were generated using MATLAB R2021b. 

Poor correspondence was visible between news in class 3 and tweets in class 0 (Figure 54B, D, F and 

H). Undoubtedly, in previous results, it was already clear that there was a small number of wrong news 

items collected because the news was already filtered by the SECaGN system. Hence, many news items 
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not related to the event were rejected. Conversely, many tweets were classified as incorrect, which 

anticipates the strong heterogeneity of Twitter texts. 

Extractions ranging from 4 to 5 days were carried out from 2015 to 2018. Figure 54A, C, E and G 

represent the inherent landslide data. All years have a very good correlation between news and 

tweets; see 25/02/2015, 27/11/2016, 05/08/2017 and 28/10/2018. On the day after the event, there 

is a clear decrease in the publication of tweets, while the publication of news remains sizeably high 

(e.g., 26/02/2015, 28/11/2016, 06/08/2017 29/10/2018). Figure 54B, D, F and H show the performance 

of the respective 0 classes. As before, there is a clear preponderance of erroneous tweets compared 

to Google News. 

 

Figure 54: In the first column (A, C, E and G) using a bar plot, the time distribution of news in class 1+2 and tweets 
in class 1 from 2015 to 2018 are featured. The time distribution considers a maximum of 5 days to a minimum of 
4 days. In the second column (B, D, F and H), the class without information for each variable (news and tweets) 
has been considered. Panels were generated using MATLAB R2021b. 
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4.2.2.2 Case study within the tweet dataset 

Exploring the tweet dataset, some case studies were considered. The first case examines two landslide 

events that occurred on the same day of February 25, 2015. They had different localizations and 

different triggering mechanisms and consequences in terms of economic losses and human lives. The 

first event is shown in Figure 55A. The Senio River, located in Casola Valsenio in Ravenna Province 

(Emilia Romagna), with bank erosion undermined the embankment at the base, causing an extensive 

landslide involving a football field. The landslide involved surface material characterised by arenaceous 

and arenaceous-marly units from the middle-lower Miocene. No casualties were reported, only 

infrastructure damage. 

On the same day, strong precipitation caused one landslide on the island of Ischia near the coast 

(Figure 55B). One person was swept away by the said landslide. The material involved was purely 

superficial and of volcanic origin, characterised by pyroclastic and ignimbrites. The precipitation event 

was traced within the criticality bulletins issued by the Campania Region. On 24th February 2015 at 

13:15, the Campania Region issued a warning for forecasting adverse weather conditions from 16:00 

until the following 24 hours (25th February 2015). The weather bulletin described the presence of a 

perturbation of Atlantic origin forming short showers or thunderstorms locally of moderate intensity. 
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Figure 55: Two case studios, in red is showed the landslide. A One landslide was triggered by river erosion in 
Emilia Romagna at Casola Valsenio on 25/02/2015. B On the same day, another landslide was triggered by rainfall 
at Ischia in Barano municipality. During this event, one victim was reported. 

Casola Valsenio in Figure 56A shows homogeneous and limited tweet and retweet distributions and 

vice versa for the Ischia event shown in Figure 56B. The first tweet described a landslide event in 

Barano and was posted at 10:45 on February 25, 2015. At 16:02, there was the first tweet with 

“landslide” and “fatality” as word associations. The Tweets peak was reported at almost 17:00. Eighty-

seven tweets were recorded, and 11 were retweets. Then, the record decreased. 
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Figure 56: On the same day, two events occurred in Italy and different parts (Emilia Romagna at Casola Valsenio 
and Campania at Ischia). Panel A shows the tweet distribution and their spread with retweets at Casola Valsenio. 
Panel B shows tweets and retweets at Ischia; during this event, one victim occurred. In both panels, the data are 
shown on an hourly basis. Panels were generated using MATLAB R2021b. 

The second study case is shown in Figure 57. The recent event occurred in the afternoon of the 24th of 

November 2019 in Savona municipality, close to the Madonna del Monte village. 

The landslide occurred via the viaduct and included almost 40 metres of the A6 motorway, which links 

Savona and Torino cities. The landslide involved alluvial and fluvial sediments. The trigger was caused 

by intensity and extended precipitation on previous days. The crown is located in contact with 

underlying units lithostratigraphic (mudstones with sandstones-Permian lower) with almost 180 m 

s.l.m. The landslide was considered a new formation, and the slide was roto-translative. The mobilized 

material included almost 15 thousand m3. 
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Figure 57: Focus on landslide events in Madonna del Monte near Savona. The landslide occurred via the viaduct 
of motorway A6 that comes from Savona to Torino. 

In the Liguria Region, 128 pluviometers were spread. The landslide near the motorway was triggered 

by intense rainfall on the previous days on 24th  November 2019. For this reason, data from 1st October 

2019 to 24th November 2019 were considered for subsequent analyses. 

Rainfall data were interpolated from points to create a raster surface using an inverse distance 

weighted (IDW) technique. The output cell was 300x300. 

From 1/10/2019 to 24/11/2019, a cumulative maximum of almost 1850 mm was measured in northern 

Liguria near the Piemonte region and along the Apennines chain (Figure 58A). Figure 58B shows a focus 

on the area of landslide events (red flag). Based on the rainfall distribution, the event area did not have 

significant precipitation values. In fact, a detailed analysis was carried out for each pluviometer with 

anomaly data. Pluviometers without data feature white anomalies. This aspect is clearer than the four 

rain gains around the event, causing an underestimation of rainfall distribution in the IDW 

interpretation. 
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Figure 58: A and B include the average rainfall from 1/10/2019 to 24/11/2019 in Liguria. The red flag indicates 
the landslide event near Madonna del Monte village, east of Savona. The maps were generated using ESRI 
ArcGISPro. 

Moreover, the temporal distribution of rainfall has been analysed at the regional scale. On the basis of 

rain gauges nearer, data from October until 24 November were regarded. Figure 59A and B display the 

daily mean and cumulative mean daily. Figure 59A shows data for two months, while Figure 59B 

illustrates a focus on November. From the two panels, it is clear that the sizeable distribution of 

precipitation occurred before the 24th. The highest daily mean measured on 23rd November was almost 

84 mm, with a cumulative value of approximately 492 mm. 
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Figure 59: A and B rainfall data distributions with mean daily and cumulated for almost two months in Liguria 
with a focus on November. The point of the event has been signed with a red star and line. Panels were generated 
using MATLAB R2021b. 

Google News has been the second source of information about events to outline the event dimension 

in terms of speed publication and media impact. On the basis of reports, the first article was published 

at 14:37, 19 minutes after the event. Figure 60 shows the first article published by <<Il Messaggero>>, 

and the last article by <<Lo Spiffero>>. This last article was released at 21:29 on 24th November 2019. 
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Figure 60: Two types of articles within Google News were collected. At 14:37 <<Il Messaggero>> and then at 
21:29 <<Lo Spiffero>> published one article about viaduct on A6 with some detail, for example: localisation, 
victims, type event, damages, and data. 

Figure 61A and B show the news distribution during November in Italy and in the Liguria Region. In 

both cases, the peaks of “Newspaper articles” and “Landslide events” are illustrated during the 25th 

November. For the 24th of November, in the whole Italian territory, 66 “Landslide events” were 

harvested and distributed in 89 “Newspaper articles”. Of these, 31 “Landslide events” were reported 

in Liguria in 47 “Newspaper articles” (Figure 61B). 
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Figure 61: In A and B, the distribution of News inside Google News has been demonstrated. In fact, two 
distributions have been considered: in general, in the whole Italian territory and then only for the Liguria region. 
The point of the event has been signed with a red star and line. Panels were generated using MATLAB R2021b. 

Using data mining, 2100 tweets during the 24th of November were harvested. Figure 62 presents some 

tweet examples that describe the landslide event. Tweets from different accounts have been collected, 

for example, by official channels, such as Regione Liguria, but also from official newsletters (as 

<<IlGiornale>>) and citizens or amatorial citizens (such as <<Rete Meteo Amatori>>). To a certain 

extent, tweets provide good information details (such as by users), while others publish photos or 

videos along with the text. 
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Figure 62: Some examples of Tweets about landslide events on the A6 motorway. Different details about events 
are possible to obtain, for example, place, time, feasible victims, damages, photos or videos. Several types of 
users can post specifics of the event: official channel (as Regione Liguria), citizens (Rete Meteo Amatori) or 
newsletters (as ilGiornale). 

It is possible to outline a sequence of events, analysing the dataset: 

1. At 14:26, the first tweet that describes the fallen viaduct has been published; 

2. At 14:36, the landslide-specific tweet (10 minutes later) has been released; 

From this dataset, two panels have been compared, considering general tweets in the whole Italian 

territory (Figure 63A) and tweets with information about events (Figure 63B). Overall, in Italy on 24 

November 2019, 856 of 2100 tweets described landslide events. Retweets were almost 1776. 

Considering only landslide events in the A6 motorway, 390 tweets were posted with retweets or a 

media impact of 1061. The peak was measured at 15:00. The publishing tweets continued in the next 

hours but with a decreasing trend. However, this distribution was considered not to be exhaustive. 
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Figure 63: In A and B, data from Twitter are shown in two drafts: considering all tweets in Italy (A) and only 
tweets that describe the landslide event near motorway A6 (B). Both panels consider only 24 November 2019. 
Panels were generated using MATLAB R2021b. 

To outline a possible spatial distribution, the coordinates have been attributed to some data. Two 

types of coordinates were outlined from the text and effectiveness of the event through 

photointerpretation. Inverse distance weight (IDW) was applied with a resolution of 307x307 to obtain 

data homogeneity for “tweet with text coordinates” and 300x300 (Figure 64A and B) for “tweet true 

coordinates” (Figure 64C and D). Parameters as exponent of distance and the number of points were 

maintained constant, equal to 2 and 10 respectively. The data used to outline the echo media is the 

counting of published tweets. Figure 64A and B show a possible spatial distribution using coordinates 

from the text (yellow point and red flag sign the landslide in the exam). The peak in this case is recorded 

to North-Est of Savona. The data are coherent with the rainfall distribution. Figure 64C and D the true 
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coordinates of events are reported in green. In this case, on the basis of tweet counting, important 

media impact can be measured near Quillano (SV) with possible implications in closed areas. 

 

Figure 64: In A and B, tweets with coordinates from tweet text for the Liguria region have been mapped. From 
the data points of tweets, an IDW was applied to obtain the spatial distribution and, hence, the media impact of 
the event. Tweet data referred to only 24/11/2019. Since the tweet distribution to the northwest of Savona, 
there was a peak of tweets. This is in contrast with C and D, where tweets with true coordinates have been 
mapped. In Quillano, the epicentre and, hence, maximum media impact of the event were reported. The maps 
were generated using ESRI ArcGISPro. 

From counting tweets, it is possible to obtain a map with a possible alert system. Figure 65 shows 

different analyses on the basis of the coordinates utilised. Figure 65A and B display municipalities and 

Alert Zones in the Liguria region considering the coordinates from tweet text. The highest values are 

localised in the central region in closed municipalities around Savona and Genova. It is noted that 

tweets do not cover all municipalities in Liguria. Actually, the tweet volume for some counties was 

pretty low, possibly because of a smaller population or limited interactions by users about events. 

Two alert zones (Figure 65B) present sizeable values of tweet count and are located in the central and 

western regions. Only one does not show significant counting, placed in the northern area. 
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Figure 65C and D present two possible maps using true coordinates of tweets, to municipality and alert 

area scale. Figure 65C shows localized important values of counting in Genova and Savona. The alert 

areas with significant values were concentrated along the sea (Figure 65D). Two alert zones in the 

northern region present low values in contrast with the sizeable rainfall measure (Figure 58A). 

 

Figure 65: Tweet count based on tweets with text coordinates and true coordinates. A Presents the municipality 
scale of the distribution of tweets. Significant values are localized in the central region in closed municipalities 
around Savona and Genova. B The distribution is shown to alert areas with only one not showing significant 
counting. C Displays the tweets counting using the true coordinates of the event on a municipality scale. Savona 
and Genova present sharp values of tweet count. D Considering alert areas, with two alert zones with low tweet 
counts, alert areas with significant values are concentrated along the sea. The maps were generated using ESRI 
ArcGISPro. 

Applicability of the data 

During the classification of the Twitter dataset and subsequent analysis on some relevant landslide 

events, obvious classification difficulties were also noted. The Twitter dataset was found to be 

significantly noisy and uneven in the information provided with respect to the event on-going. For 

example, the phrase:  
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"Collapsed portion of viaduct on A6 Turin-SavonaWe are officially in total and isolated disaster. #A6 

#collapse #Liguria @vlp31 @Agency_Ansa" (translation: “Crollata porzione di viadotto sulla A6 Torino-

SavonaSiamo ufficialmente nel disastro totale e isolati. #A6 #crollo #Liguria @vlp31 @Agenzia_Ansa”).  

It cannot be classified as a natural event. From this example, it is clear that the word "landslide" 

(“frana”) needs to be accompanied by an additional specification. The word "landslide" (“frana”) or 

"collapse" (“crollo”) especially in the Italian language is used for different contexts and the 

specification avoids creating ambiguity with respect to the event considered.   

Changing the meaning to: "Collapsed portion of viaduct on A6 Turin-Savona due to landslide. We are 

officially in total and isolated disaster. #A6 #slide #Liguria @vlp31 @Agency_Ansa" (adding: causato 

da una frana o dovuto da una frana).  

This can actually be considered a hydrogeological hazard event. Furthermore, textual data are very 

lacking in information if the user is simply a witness or an ordinary citizen, while more information can 

be extracted from official channels, such as Fire Department or the Region or amateurs in the field. 

Such aspect can be an advantage, but at the same time, it creates a lack of uniformity in the language 

used by rescue managers. It is the most important and significant challenge to create a homogeneous 

language at least between official channels or organs of Civil Protection. Such cooperation can 

available communication between decision-makers and citizens, but also decision-makers and data 

analysis-makers. Such considerations can bring contribution to the implementation of specific 

communication and warning guidelines with respect to natural events, such as landslide hazards, as in 

this work discussed. A possible example is to create a text with the below specifics:  

• Event entity: “frana terreno”, “frana in roccia”, “frana scivola” (same example with the word 

“smottamento”), “crolla terreno”, “crollo in roccia”, “crollo in roccia staccatosi”; in some cases 

using appropriate articles “frana lungo la strada”, “frana nella strada”, “frana sulla strada”, “crollo 

in roccia lungo la strada”, “crollo di rocce nella strada”, “crollo di rocce sulla strada”, “strada 

coinvolta in crollo di roccia”; while with other terms have to be highlighed further specifics “frana 

porzione di terreno”, “strada scivola causa frana”. 

• Place: where is the event; it should be specified in three possible manners, 1) using words with 

hierarchy sequence, municipality, provincial, regions; 2) geolocation of the event with coordinates 

provided by users; 3) geo-localization of users.  

• Other information: victims, damage, rescues, sentiment, opinion, photo, video etc. 

• Time can be withheld because it is possible to get through the entities of tweet during extraction. 
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In particular, the coordinates extracted from the text can be useful for creating appropriate hazard 

maps, which are useful to the national coordination centre during the task of monitoring and 

surveillance of the national territory in order to identify planned or ongoing emergency situations and 

follow their evolution, as well as to alert and activate the various components and operational 

structures of the National Service of Civil Protection that contribute to the management of 

emergencies. In fact, considering the current warning emergency about weather events it is possible 

to implement these maps considering the spatial distribution of tweets publications or news 

publications. 

Below is shown an example of possible text with all necessary’s information on ongoing landslide 

event: 

“Landslide along SP49 road near the car park of the cemetery in the municipality of Sestino in the 

province of Arezzo (Tuscany). The slide caused damage. There were no victims. Operators are already 

on their way to the area for restoration. #landslide #Tuscany”. 

Translation: “Frana lungo la strada SP49 all’altezza del parcheggio del cimitero nel comune di Sestino 

in provincia di Arezzo (Toscana). Lo scivolamento ha causato danni. Non ci sono state vittime. Gli 

operatori stanno già raggiungendo l’area per il ripristino. #frana #Toscana”.  

4.3 Applying BERT 

The manually classified dataset provides a solid base for applying deep learning using the natural 

language technique. The dataset was utilised as an anchor point for supervised learning of the deep 

learning method to classify tweets. A script was created for text classification, and it is capable of 

distinguishing whether a tweet describes a landslide event. The script is henceforth called “Bert For 

Information on Landslide Events” or BEFILE. BEFILE trained on the aforementioned classified dataset 

in the Italian language. 

Three types of preprocessing were applied to obtain the best results with XLM-RoBERTa as the model. 

The first preprocessing considered the dataset without cleaning; the second considered all possible 

parameters of removing. Finally, in the third proposal, only some parameters have been removed from 

the text. 

Subsequently, the dataset from the newspaper has been correlated to the classified dataset by BIFILE. 

This process allowed for the validation of the classified tweets dataset. Different strategies have been 

utilised, considering three types of results. Temporal distribution was analysed for each target (0: "No 
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Landslide" and 1: "Landslide") and the correlation grade was calculated using nonparametric systems. 

Such action allowed for the outline of the best model. 

Twitter during extraction provided further parameters, such as entities, which provide metadata and 

additional contextual information about content posted on Twitter. The entities section includes an 

array of common things within Tweets: hashtags, user mentions, links, stock tickers (symbols), Twitter 

polls, attached media, location with coordinates, etc. Through entities within tweets, a simple analysis 

has been carried out to find a solution for coordinates. 

4.3.1 Text classifications with deep learning 

Three tests of BEFILE have been carried out to obtain text classification, changing the setup of pre-

processing. Each model showed the loss and accuracy trends of the training and validation datasets. 

Furthermore, each model presents one report with main metrics. Graphically, a confusion matrix and 

receiver operating characteristic with area under the curve were utilised. 

The datasets were randomly divided into 80% training and 20% testing. The training dataset features 

10.679 data spread in 6850 with target 0 (“No Landslide”) and 3829 data with target 1 (“Landslide”). 

This dataset was further randomly divided by 20%, resulting in the validation dataset. This operation 

was carried out for each of the three tests. Only the test set was kept constant. The test set is 

characterized by 2670 data, spread in 1694 with target 0 (“No Landslide”) and 976 with target 1 

(“Landslide”). 

The first model was named “Model without preprocessing” because the text was not cleaned or 

preprocessing was applied. Figure 66A and B show the trend of loss and accuracy of the training and 

validation tests during the training of the model. The model finished 70 epochs because there was no 

improvement after 15 steps (EarlyStopping). Each epoch lasted almost 29 minutes and 40 seconds. 

Overall, 35 hours (1 day and half) were required to train and validate the model. 
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Figure 66: Trend during model training without preprocessing. A Panel shows the Training and Validation Loss 
trend. B Panel with Training Validation Accuracy trend. Panels were generated using Python. 

The model achieved an accuracy maximum of 0,96. Subsequently, it was tested on the test set. The 

results of the testing have been reported using metrics in Table 16. Significant parameters of precision, 

recall and F1 score were recorded for target 0 (coherent with the high distribution of this class). 

Target Precision Recall F1 score Support 

0 0,96 0,97 0,97 1694 

1 0,94 0,94 0,94 976 

Accuracy   0,96 2670 

Macro 0,95 0,95 0,95 2670 

weighted 0,96 0,96 0,96 2670 

Table 16: Metrics used to obtain the accuracy of the model. For each target, the precision, recall and F1 score 
were calculated. For the model without preprocessing, an accuracy of 0,96 has been reported. Significant F1 
scores for each target were recorded. 
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Figure 67A reveals the confusion matrix. In total, 2553 of 2670 data points are between “No Landslide” 

(dark blue in Figure 67A) and “Landslide (light blue in Figure 67A). Only 62 False-Positives and 55 True 

Negatives (white in Figure 67A) were harvested. Figure 67B describes the ROC curve with an area under 

the curve (AUC) of almost 0,95. 

 

Figure 67: After training, the model was tested on the classified dataset. The confusion matrix in A and the ROC 
curve and AUC in B. Panels were generated using Python. 

The second modelling was iterated with extreme cleaning text. During preprocessing, several 

parameters were removed or modified: 

• Remove: HTLM special entities, Italian stop words, tickers, numbers, hyperlinks, hashtags, 

punctuation, special characters, words with 2 or fewer letters, whitespace including new line 

characters, single space remaining at the front of the tweet and emoticons. 

• Modified: @username to AT_USER, lowercase. 
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The BEFILE model was named “Model with extreme preprocessing”. The epochs were 30. Each epoch 

lasted almost 29 minutes for a total of 15 hours (half day). Figure 68A and B illustrate the loss and 

accuracy of training and validation. Compared with the preview model, in this case, the loss is superior, 

and the time of training is reduced by half. 

 

Figure 68: Trend during model training with extreme preprocessing. A Panel shows the Training and Validation 
Loss trend. B Panel Training Validation Accuracy trend. Panels were generated using Python. 

Table 17 illustrates the metrics. In general, the accuracy reached a maximum of 94%. The F1 score 

reported significant values for target 0 with 0,95 and for target 1 with 0.91. 
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Target Precision Recall F1 score Support 

0 0,94 0,96 0,95 1694 

1 0,92 0,90 0,91 976 

Accuracy   0,94 2670 

Macro 0,93 0,93 0,93 2670 

weighted 0,94 0,94 0,94 2670 

Table 17: Metrics used to obtain the accuracy of the model. For each target, the precision, recall and F1 score 
were calculated. For the model with extreme preprocessing, an accuracy of 0.96 has been reported. Good F1 
scores for each target were recorded. 

Figure 69A shows the confusion matrix. Overall, 2503 of 2670 data points have been reported 

correctly, including 1622 “no landslides” (dark blue in Figure 69A) and 877 “landslides” (light blue in 

Figure 69A). 99 False-Positives and 72 True Negatives have been archived (white in Figure 69A). Figure 

69B describes the ROC curve with an AUC of 0,93. 
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Figure 69: After training, the model was tested on the classified dataset. The confusion matrix in the A and Roc 
curves and the AUC in B. Panels were generated using Python. 

Finally, modelling was applied with low and random preprocessing. Only some parameters have been 

removed or modified from the tweet text: 

• Remove: hyperlinks, whitespace including new line characters, single space remaining at the front 

of the tweet and emoticons. 

• Modified: lowercase. 

Consequently, the model with preview setting data was called the “Model with middle preprocessing”. 

The training concluded after 42 epochs. Each epoch lasted almost 31 minutes and 4 seconds, for a total 

of 21 hours (almost one day). With respect to preview models, in this case, the time of iteration for 

each epoch increases. Figure 70A and B illustrate the loss and accuracy trends. 
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Figure 70: Trend during model training with middle preprocessing. A Panel shows the Training and Validation 
Loss. B Panel Training Validation Accuracy trend. Panels were generated using Python. 

Table 18 lists the metrics for outlining the performance of the model with middle preprocessing. The 

model reached an accuracy of 0,95. Important values have been recorded by F1 for both target 0 with 

0,96 and target 1 with 0,93. In contrast with the model with extreme preprocessing, the values 

increased for each considered metric. 
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Target Precision Recall F1 score Support 

0 0,95 0,97 0,96 1694 

1 0,94 0,91 0,93 976 

Accuracy   0,95 2670 

Macro 0,95 0,94 0,94 2670 

weighted 0,95 0,95 0,95 2670 

Table 18: Metrics used to obtain the accuracy of the model. For each target, the precision, recall and F1 score 
were calculated. For the model with extreme preprocessing, an accuracy of 0,96 has been reported. Important 
values of the F1 score for each target were recorded. 

Figure 71A and B display the confusion matrix and ROC curve. A total of 2533 of 2670 data points have 

been archived with good results (Figure 71A). These are spread in 1641 data in “No Landslide” (dark 

blue in Figure 71A) and 892 data in “Landslide” (light blue in Figure 71A). Eighty-four False-Positives 

and 53 True Negatives have been predicted (white in Figure 71A). This iteration showed the best values 

of False Negative (1641) and as a consequence of True Negative (53), in contrast to previous models. 

Hence, it succeeds in classifying better tweets without information about landslides (class 0). 

The ROC curve presents a good area under the curve of 0,94 (Figure 71B). 
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Figure 71: After training, the model was tested on the classified dataset. The confusion matrix in A and the 
receiver operating characteristic curve (ROC) and area under the curve (AUC) in B. Panels were generated using 
Python. 

4.3.2 Validation with news dataset  

Furthermore, validation was carried out using two case studios. The first study considers a comparison 

between newspaper articles and extracting a new dataset from Twitter. The second study includes a 

detailed analysis of the previous case study in the Liguria region. 

One dataset from Google News was archived during 2020. The dataset, similar to previous databases, 

was classified manually into three classes. The classification was based on landslide information, 

localization and time. The dataset is characterised by 3464 in class 1, 9483 in class 2 and 934 in class 3, 

for a total of 13.781 data points. Figure 72 displays the distribution of targets during the year. Within 
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2020, one period was chosen based on important values of article publication. Figure 72 highlights in 

red rectangle the choosing period for data mining within Twitter. The chosen dataset is utilised to 

validate the new dataset from Twitter. 

 

Figure 72: Temporal distribution of news published in Google News for 2020. The chosen period is highlighted in 
red, from 1st August to 31st December. The panel was generated using MATLAB R2021b. 

The dataset from Twitter features 39.780 data points from 1 August 2020 to 31 December 2020. 

The validation dataset was submitted to classification using the BEFILE model with the highest accuracy 

score. The first model of BEFILE without preprocessing achieved the best performance with 96% 

accuracy. Before applying BEFILE, different sets of cleaning were utilised for the validation dataset. 

Three cleaning steps were applied. The first case considers the dataset with all text characteristics 

(without cleaning). In the second case, each arguable interference within the text was removed (HTML 

special entities, stop Italian words, tickers, numbers, hyperlinks, hashtags, punctualization, special 

characters, words with 2 or fewer letters, whitespace (including new line characters and single space 

remaining in front of the tweet were removed). White, @username to AT_USER and lowercase were 

modified). The third case was removed: hyperlinks, whitespace (including new line characters), and 

single space remaining at the front of the tweet were removed. The characters have been modified in 

lowercase. 

Each cleaning was named an unclean tweet (preprocessing not applied), clean tweet (extreme 

preprocessing) or a little clean tweet (some parameters removed) for each model. Table 19 presents 

the results. 
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Model type Target 0 Target 1 

BEFILE – unclean tweet 35.787 3993 

BEFILE – clean tweet 37.284 2506 

BEFILE – little clean tweet 36.339 3441 

Table 19: Each model is illustrated quantitatively for each target. 

The time of classification is approximately one hour and half for each iteration. The model identified 

the highest target number in class 1, and hence, tweets with landslide information were the first 

(BEFILE without preprocessing). The second model with preprocessing identified fewer targets in class 

1. 

To outline which BEFILE found the best distribution, a correlation with newspaper articles published 

within Google News was applied. The correlation considered mainly the temporal distribution and not 

spatial distribution. The temporal distribution of news and each single dataset is shown in Figure 74. 

Two different sections of news have been analysed: news in class 1 and news in class 1+2. 

In the first case, the daily distribution of each variable follows a good trend. (Figure 73) In fact, the 

peak of posted tweets corresponded to the peak of news. The classification of tweets is not based on 

the time of the landslide; for this reason, the sum of news class 1+2 has been considered. Similar 

analysis has been carried out considering even the monthly distribution of data (Figure 74).  
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Figure 73: Daily distribution analysis between news in class 1 from Google News and tweets in class 1; then 
comparison between the distribution of news in classes 1 and 2 and tweets in class 1. Panels were generated 
using MATLAB R2021b.  
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Figure 74: Monthly distribution analysis between news in class 1 from Google News and tweets in class 1; then 
comparison between the distribution of news in classes 1 and 2 and tweets in class 1. Panels were generated 
using MATLAB R2021b. 

The correlation between targets in class 3 for news and class 0 for tweets has not been correlated 

because Twitter shows several noisy news items. 

Subsequently, a more detailed analysis was conducted to obtain the correlation between the news in 

class 1 and in class 1+2 and classified tweets for each model of BEFILE (unclean text, little clean text). 

Figure 75 displays the correlation. Figure 75A, B and C indicate the news in class 1 and tweets in class 
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1 for each model. Figure 75D, E and F display the same correlation but regarding the news in class 1+2. 

Low values of count of news (“Landslide events” in the first three cases and “Landslide news” in the 

last three cases) and tweets corresponded. Sometimes, for low values of news and vice versa, it was 

not possible to outline a clear correlation. 

The data do not follow a Gaussian distribution. For this reason, the R coefficient of Pearson and two 

nonparametric correlation indices were used to verify the rate of correlation between the analysed 

parameters. Kendall’s (K) and Spearman’s (S) rank correlation coefficients resulted in mean values, as 

reported in Figure 75 for each panel. High values have been calculated between news 1+2 and tweets. 

Considering the trend of the Pearson coefficient, Figure 75B and E show the highest point, in contrast 

with Figure 75A and D. The highest values of Kendal and Spearman are shown in Figure 75F. 

Clearly, higher values have been reported for BEFILE with the preprocessing applied and considering 

the sum of classes 1 and 2 for the news. 
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Figure 75: Detailed analysis between news in class 1 and classified tweets for each model. For each panel, the 
Pearson coefficient (R) and nonparametric values Kendal (K) and Spearman (S) were calculated. A, B and C show 
the correlation between news in class 1 and unclean tweets, clean tweets and little clean text. D, E and F display 
the correlation between the sum of classes 1+2 of news and different preprocessing applied to BEFILE. Panels 
were generated using MATLAB R2021b. 

Due to privacy considerations, the geolocations of tweets are not available unless users actively elect 

to publish the information (Li et al., 2021). Twitter during extraction provides the entities from which 

the coordinates have been obtained. The model without preprocessing harvested more data with 

coordinates. To outline the spatial distribution, data from this model have been utilised. 18 data on 

3993 include coordinates. Figure 76 shows the distribution. Each data point was examined to check 

the correct localization. In green, highlighted tweets describe landslide events with the right 

coordinates (in total are 7). In yellow, data are shown with approximate coordinates (in total are 3). 

For example, the coordinates of Basilicata refer to the region centroid. Another example is on Sicilia. 

The tweets on Sicilia published an event that occurred in Valtellina in Lombardia, but the coordinates 
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regarded the word “Ragusa” as localization. In red are tweets classified as useful about landslide 

events, but they include incorrect word associations (in total are 5). 

 

Figure 76: Possible geolocalization of 18 tweets using entities. Tweets with coordinates not related to landslides 
are indicated in red. Tweets with coordinates not specifically of the event are represented in yellow. For example, 
one case in Sicilia showed a corrected classification, but the coordinates were localized on Ragusa (newsletter of 
the tweet). Entities that provided correct coordinates are depicted in green. The maps were generated using ESRI 
ArcGISPro. 

As a second validation, the preview case study in Liguria was further analysed. Previous results consider 

data useful for creating a robust database for deep learning and are not exhaustive for a complete 

analysis. A new extraction was carried out to obtain a more exhaustive analysis. During data mining, 

retweets were regarded, expanding the classification dataset. A total of 6628 tweets were harvested 

on 24 November 2019. More than 4500 data points were extracted with respect to the previous 

database. 
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Figure 77 presents some tweet examples. To a certain extent, tweets provide good information details 

(such as in <<Breaking Italy News>>), while others publish along with text photo or video. Tweets from 

official channels have been collected, such as from firefighters, political branches, official newsletters 

(as <<TGr RAI Piemonte>>) and citizens. The last three types of tweets often present few or poor details 

of events and can be associated with answers or administrative discussion. However, these tweets are 

often after events and take on echo media impact functions. 

 

Figure 77: Some examples of Tweets about landslide events on the A6 motorway. Different types of details about 
events are possible to obtain, for example, place, time, feasible victims, damages, photo or video. Several types 
of users can post specific events: official channels (such as firefighters), citizens, politicians, and newsletters (such 
as TGr Rai Piemonte or BreakingItalyNews). 

Based on the previous performance, the new dataset was subjected to little preprocessing before of 

classify in binary manner by BEFILE. 

From the classified dataset, two panels have been compared, considering general tweets in the whole 

Italian territory (Figure 78A) and tweets with information about events (Figure 78B). Overall, in Italy 

on 24 November 2019, 2269 tweets described landslide events. Retweets were almost 138.397. 

Considering only landslide events in the A6 motorway, 1286 tweets were posted with retweets or a 

media impact of 114.663. The peak was measured at 14:00. The publishing tweets continued in the 
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next hours but with a decreasing trend. Analysing the Tweet datasets, it is possible to outline a 

sequence of events: 

1. At 13:28, the first tweet that describes the fallen viaduct has been published. 

2. At 13:36, the landslide-specific tweet (8 minutes later) has been released. 

3. At 13:52, the tweet with a description of rescues in place was communicated (28 minutes after the 

event). 

 

Figure 78: In A and B, data from Twitter are shown in two drafts: considering all tweets in Italy (A) and only 
tweets that describe the landslide event near motorway A6 (B). Both panels consider only 24 November 2019. 
Panels were generated using MATLAB R2021b. 

The coordinates to the dataset classified by BEFILE were not signed manually. The entities have been 

utilized to obtain the geo-localization of the event. Unfortunately, only one data feature is shown by 
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latitude and longitude. Figure 79 shows the geolocated data in red. On the other hand, considering the 

ambiguity of information provided by entities, in this case, the coordinates present a good localisation 

of the event. 

 

Figure 79: In the new dataset of 24th November 2019, one data provides the coordinates. The localisation of 
tweets using entities is highlighted in red. Considering the event and the point of the user or tweet text, the data 
present good event detection. 
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5 DISCUSSION 

Different data sources were used to obtain information about landslide and flood events and their 

direct consequences in Italy over 10 years (2010-2019). The newspaper articles used were harvested 

by a data mining algorithm called the Semantic Engine to Classify and Geotagging News (SECaGN by 

Battistini et al., 2013). Data mining takes place within Google News, which considers national and local 

newspapers with more completeness (Franceschini et al., 2021). Over 10 years, in Italy, 184.322 

articles related to landslides and 246.338 articles related to flood events were released by online 

newspapers. The retrieved articles were grouped based on the event they referred to. In this way, 

32.525 landslide and 34.560 flood event news items were identified. Each news item was classified to 

create a landslide and flood database. The classification consists of two or three labels. Each label was 

based on relevance and spatial and temporal accuracy. This operation was necessary since each event 

can be reported from 1 or more newspapers based on its impact on the relevance of the affected area. 

For example, small landslides involving a major road or an important city can have a vast media echo. 

Conversely, landslides involving minor roads or small villages are reported only by local newspapers. 

Hence, the publication of one news item and its consequent mediatic impact in different newspapers 

depends on risk elements. 

It is necessary to comment on the spatial resolution of the data used for landslide and flood events 

from Google News. Within newspapers, the exact location of an event is a parameter rarely available 

(Franceschini et al., 2021). Moreover, there is a claim that mass media attention is not uniformly 

distributed across disaster-affected areas (Fan et al., 2020). The presence/absence of news is affected 

by some factors, such as disruption in communication services, sociodemographic factors (the events 

affecting socially vulnerable populations receive less attention), the lack of exposed elements (roads, 

inhabited areas, etc., reporting low media impact) involved in landslides or the continued reactivation 

of one landslide over time (e.g., see La Saxe landslide; for each reactivation, more articles were 

published (Franceschini et al., 2022a)). The publication of one news item and its consequent mediatic 

impact in different newspapers depends on the event. Some areas can be involved with high-intensity 

precipitation that causes landslide phenomena with a low involvement of urbanized areas and 

therefore few published articles. On the other hand, a single rainfall event, even in an area with a low 

frequency of relevant rainfall events, can trigger a landslide with high human involvement. 
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Consequently, many articles can be published, creating a significant media impact. For these reasons, 

the use of newspaper articles may be useful for analyses over large areas but not to create a detailed 

landslide inventory or for detailed analyses (Franceschini et al., 2021). 

For each dataset, a textual analysis was applied to obtain the word frequency. Interestingly, within 

“Landslide news” and “Flood news”, similar and related words are present. For example, the words 

“frana” (landslide) and “allagamento” (flooding) are in both datasets, indicating how two events can 

be complementary or one subsequent to the other. 

In the second step of this study, data mining was carried out within Twitter, and many analyses were 

performed to obtain an overview of tweets and their characteristics with respect to landslide events. 

The decision to extract information on landslide events was based on the lack of a state-of-the-art 

analysis of these natural hazards. A total of 13.350 data points were harvested, spread over 9 slots 

between 2011 and 2019. The dataset was subjected to a binary classification based on landslide 

information. Twitter offers many advantages regarding the speed of interaction between users but 

also some limitations about the spatial distribution and extractable tweet numbers. 

In this work, the supervised deep learning method was used to obtain the data classified automatically. 

Several considerations were made to validate the tweet dataset but also to verify the feasibility of the 

classification model adopted. 

5.1 Spatial and temporal distribution about landslide events 

Landslide inventory from social media was used as a basis to obtain some information in terms of 

spatial and temporal distribution. Much information can be obtained based on the adopted 

classification. Within the landslide dataset, over 40% of the news items report useful information such 

as geolocalization and date (Class 1). Fifty-seven percent of the news items can identify the area 

involved in a landslide but not the date (Class 2). Both targets can be useful for analysing the 

distribution of landslide events and hence for estimating landslide hazards. 

The regions and provinces with the most “Landslide news” (Class 1+2) are mainly located along the 

Alps and the Apennines. The geological, geomorphological context of the Alps, along with permafrost 

melting and frost–thaw cycles, leads every year to several landslides (Giardino et al., 2004; Ratto et al., 

2007; Cignetti et al., 2016). Several areas in the Apennines also are highly involved in landslides. 

Considering only Class 1, the Liguria region demonstrates the highest number of events and daily 

landslides. Its territory is characterized by steep slopes with few flat areas along the coast and in the 

valley. The combination of significant urbanized areas and land use leads to a geomorphological 
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evolution characterized by an important presence of landslide and flood events. Flat areas are most 

likely to be affected by other geohazards, as floods are located along the northeast coast and in Puglia.  

From a temporal point of view, the “Landslide events” increased from 2015 to 2019. The average 

number of days with landslides increased from 3 in the 2010-2014 period to 4 in the 2015-2019 period. 

The trend can be due to several causes. Some authors have related global climate change to the rise 

of global temperatures with a more frequent occurrence of extreme events (Rebetez et al., 1997; 

Easterling et al., 2000; Rosenzweig et al., 2008; Knight and Harrison, 2009; Keiler et al., 2010). In 

addition, inaccurate land use management can lead to an increase in mass movements throughout 

Italy over time (Italian National Institute for Environmental Protection and Research (ISPRA), 2020a). 

Landslide events had a certain seasonal distribution over the 10 years. In the wet season, the events 

were more frequent. Conversely, during the dry season, the frequency was lower. These results are in 

agreement with the literature, particularly for Campania (Cascini et al., 2014) and Toscana (Rosi et al., 

2012) or nationally (Guzzetti et al., 2005; Calvello and Pecoraro 2018). In February and March, many 

landslides were reported. This trend can be associated with snowmelts, which occur as winter ends 

and temperatures rise. Snowmelts are a well-known landslide triggering factor in Italy (Cardinali et al., 

2000). 

The years 2013 and 2014 had an important number of days with landslide events. The reason is that 

over a long time interval, the La Saxe landslide suffered several reactivations. Mont de La Saxe, in Valle 

d’Aosta, had a rock fall-type landslide that caused damages or led to road closures. For each 

reactivation, new articles were published, and more days and high media impacts were recorded. 

Subsequently, the landslide database was used as a proxy to correlate with other data sources. The 

attempt was to show how the combination of different data sources can be used to assist government 

authorities. Such embedding provides additional information for better knowledge of the landslide 

hazard of an area. Overall, four datasets with different information were explored: i) online 

newspapers, ii) rainfall data, iii) populations at risk for landslides and floods in Italy (Polaris database) 

and iv) earmarked funds for remediation work by the National Repository of Soil Defence interventions 

(ReNDiS database). In addition, the total number of published articles for each event was considered 

to outline the media impact or intensity of the landslide event. Finally, several ISPRA maps were used 

to validate the spatial distribution: percentage of hazard area, percentage of people at risk and 

percentage of buildings at risk. 

The identification of factors controlling landslide distribution and occurrence is difficult because the 

relationship between landslides and their causative components varies spatially and temporally (Zhou 

et al., 2002). Nevertheless, a full understanding of these factors is relevant for the assessment of 

https://context.reverso.net/traduzione/inglese-italiano/embedding
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natural hazards (Borgomeo et al., 2014) and their direct effects in terms of human lives and earmarked 

funds for soil protection. For this reason, rainfall data were analysed and correlated at different scales 

to “Landslide news” and “Newspaper articles”. 

The regions most affected by landslides were mainly in northern Italy, along the Alps and in western 

regions, which is in agreement with their rainfall distribution and injure, death and missing (IDMs) 

numbers. Such distribution confirmed the studios by Neumayer et al., 2014 which supports that in 

countries of larger economic size will have more wealth potentially destroyable and are therefore 

expected to experience larger losses. On the other hand, the earmarked funds (by the central 

government) for soil protection outlined an inverse distribution. This appeared to be more widespread 

in southern Italy than in northern Italy. The fund distribution for soil protection depends on different 

variables: local, national and international political scenarios, social capital and investments by private 

actors such as citizens or environmental associations. The trend can be explained by the outcomes of 

the work of the World Bank and the United Nations (2010) and Padli et al. (2018). The authors 

hypothesized that regions with lower social capital (such as the southern regions of Italy) also may 

have weak economic structures. These can experience difficulties in securing adequate resources to 

recover from the damage of natural disasters. Campania, Sicilia, Puglia, Basilicata and Calabria exhibit 

a significantly lower index of economic well-being than the northern regions (Murias et al., 2012). The 

same regions, however, revealed prominent values of their percentages of infrastructure at landslide 

risk (Legambiente, 2021). Therefore, this may have led to a sharp increase in prevention activities for 

soil protection in recent years. For example, Campania exhibited the highest number of buildings at 

risk, in coherence with a high value of hazardous area. As expected, it was the area with the most funds 

allocated for soil protection. Another example, the Basilicata region, revealed low percentages of 

hazard areas, in contrast with its geological characteristics. In fact, it consists of land that is easily 

subject to erosion and runoff. Consequently, the loss of vegetation and land cover has led to serious 

instability phenomena. To address this issue, the region has opted for a policy of prevention and 

rehabilitation and an afforestation and hydraulic–forestry rehabilitation programme (De Stefano 

2002). In both examples, the distribution of earmarked funds for soil protection is coherent with the 

goals of prevention and the recovery of damages caused by landslide events.  

The central regions of Italy presented high values of “Landslide news”, “Newspaper articles” and 

frequency of relevant rainfall events. This aspect has been related to the Apennine chain, which crosses 

the country from north to south and is mainly formed by arenaceous flysch (Rosi et al., 2021; Vai et al., 

2001; Rosi et al., 2018) in areas historically affected by landslides. In general, Liguria, Lombardia, 

Campania, Sicilia, Toscana and Emilia Romagna were the regions with the highest numbers of 

“Landslide news”. Puglia with 202 and Basilicata with 402 were the regions with the fewest 

publications. This trend was in agreement with the elevated values of hazardous areas as a function of 
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regional size, except for Liguria and Sicilia. Furthermore, such analysis confirmed that communities 

with higher resilience capacity, which are characterized by better social–environmental conditions, 

tend to have higher social media or crowdsourcing platforms use (Wang et al., 2021). 

The divergent distribution of some variables in the Friuli Venezia Giulia, Trentino Alto Adige, Umbria, 

Puglia, Basilicata, and Calabria regions is linked to the occurrence of localized and very intense or 

sometimes extreme precipitation. Extreme weather events can trigger landslides in uninhabited areas, 

causing low media impacts and IDMs. Otherwise, as in the case of Umbria, Lombardia and Trentino 

Alto Adige, one single event or a few events can outline high IDMs. Some authors (Easterling et al., 

2000; Rosenzweig et al., 2008; Knight et al., 2009; Keiler et al., 2010) have assumed that the increased 

occurrence of extreme events, even localized events, is caused by climate change. Loayza et al. (2012) 

recently stressed that natural disasters cause significant economic and physical losses, whose effects 

could spread beyond the immediate locality. 

The combination of different data sources at a detailed scale can enhance the awareness of disaster 

managers for the aims of civil protection. There are 158 Warning Hydrogeological Zones (WHZs) that 

divide Italy on the basis of morphology, catchment boundaries and administrative limits. An analysis 

was applied to obtain more details about the spatial distribution of news and relevant rainfall events. 

A good correlation can be recognized between “Newspaper articles” and event counts but not with 

the frequency of relevant rainfall events. The absence of a correlation can be due to intrinsic 

characteristics in the news publications. 

Each Italian region experienced some landslides in the investigated period, with approximately 1477 

IDEMs per year. According to preview considerations, 2014 also was the year with important amount 

of rainfall, with 1007 mm/year and 3406 IDEMs spread among 19 regions involved in landslides. Based 

on the Polaris 2014 report, 2014 included several landslide phenomena that involved large areas. On 

19-20 January, two different weather perturbations affected several zones of the Liguria and Emilia 

Romagna, causing death, injuries and damages in the railway network. On 3 May, an area in the Marche 

region was affected by intense rainfall, triggering many landslides and causing damage. The same 

scenario occurred on 2 August in some provinces in Veneto. From 3 to 6 September, in the northern 

part of Puglia, approximately 600 mm of rainfall was recorded, triggering several debris flows and mud 

flows. This amount of rain was very significant considering that the mean annual rainfall of these areas 

is approximately 800 mm/year. From 9 to 15 October, many provinces of Liguria, Toscana, Emilia 

Romagna, Piemonte and Friuli Venezia Giulia were affected by the same perturbations. Many 

landslides were triggered, causing damage and human losses. From 10 to 15 November, a similar 

meteorologic event occurred in northern Italy, involving the provinces of Liguria, Lombardia and 

Piemonte and causing more damage. 
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The highest number of “Landslide news” was recorded in 2019 (with an annual average of 904 

mm/year). The mean annual rainfall was 12% higher than the average rainfall of the 1961-2019 climatic 

reference period (ISPRA, 2020b). In the same year, several events with long temporal distributions and 

involving large areas also were reported by the Polaris report (Polaris, 2019). Between 11 and 12 June 

2019 in the Lombardia region, an extreme rainfall event (characterized by 125,6 mm in 12 hours) led 

to the triggering of many landslides. From 19 to 22 October, Lombardia, Liguria and Piemonte were 

involved in a very heavy intensity storm causing many landslides, including debris flows. Consequently, 

there was damage to infrastructure as well as victims and dozens of evacuees. In summary, 2019 can 

be referred to as the second year with the highest values of IDEMs and rainfall events, 2775 and 4529, 

respectively. 

Generally, the temporal distribution of “Landslide news” revealed two increases, from 2010 to 2014 

and then from 2015 until 2019. A similar trend was confirmed by Franceschini et al., (2022) who 

showed that the average number of days with landslides increased from 3 to 5 after 2014. Rainfall data 

followed a different distribution; in fact, rain data recorded a decrease from the first quinquennium to 

the second one. Conversely, the distribution and number of victims remained constant over the 10 

years. These results are partially in accordance with the outcomes of Crozier (2020), the UN (2015) and 

Porfiriev (2016). The authors highlighted an increasing trend in the number of natural disasters and 

significant intensity rainfall events, with a consequent increase in the proportion of natural hazards, 

damages, and losses. These results agree with ReNDiS data, with which it is possible to derive the year 

of the intervention financings. It is reasonable to argue that funds for the events were distributed in 

years after the landslide. For example, the increase of earmarked funds from 2015 to 2017 can be 

referred to previous events (e.g., those happened in 2014, as in Campania, Emilia Romagna, Lazio, 

Liguria, Lombardia, Marche, Piemonte and Toscana). 

Finally, a textual analysis was applied to obtain the frequency of words within headlines. Some words 

in Class 1 refer to synonyms of the “landslide”. In Class 2, the words refer to a hazard, alert, weather 

forecast or past or future event. In Class 3, the words are wrong associations or slang. Some words 

from Class 1 have been used. Given the ambiguity of some words (such as “maltempo”, “strada”, and 

“chiusa”), only some have been used as keywords, such as “frana” and “smottamento”. 

5.2 Spatial and temporal distribution about flood events 

In the flood dataset, over 14% of the news reported useful information (Class 1). Most of the news was 

classified as Class 2. The reason is linked to dilatation during the time and space of the event. This is in 
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contrast with landslide events, which are punctual. In any case, both datasets were used as inventories 

of landslide and flood events in the whole Italian territory during 2010-2019. The lack of Class 3 news 

is because incorrect word associations with “alluvione” or “allagamento” are less frequent than those 

with “frana” and its declinations. 

The regions and provinces with more “Flood news” (Class 1+2) are mainly located along coasts, internal 

alluvial plains and along the main rivers. Considering only Class 1, the Sicilia region showed the highest 

number of events, consequences and days with floods. Its territory is characterized by high variability: 

mountains present a northern and hilly landscape in the north, south and west, and the eastern areas 

feature the widest plain and the large volcanic complex of Mount Etna (3346 m s.l.m) (Grauso et al., 

2008) with poor natural vegetation. Most arable land is nonirrigated and located in hilly, sometimes 

steep areas where support practices are seldom applied. These characteristics make the Sicilian 

territory particularly vulnerable to erosion and soil degradation processes (Giordano et al., 2002). 

As with the landslide database, the flood database was used as a proxy to correlate with other data 

sources. The same data sources were used but aimed to analyse flood events. Other correlations have 

not been carried out because the focus of this work is to obtain further information from landslide 

events. 

The regions most impacted by floods were mainly in central and central-southern Italy. This trend 

agrees with the rainfall distribution, IDM numbers and earmarked funds for soil protection. In general, 

Valle d’Aosta, Piemonte, Liguria, Toscana, Emilia Romagna, Umbria, Marche, Abruzzo, Lazio, Molise, 

Basilicata and Trentino Alto Adige were the regions with good coherence between variables. The 

divergent distribution of some variables in Lombardia, Veneto, Campania, Sicilia, Puglia, Calabria and 

Sardegna is linked to the occurrence of localized and very intense or sometimes extreme precipitation. 

In some regions, the geomorphologic and geologic conditions also influence the event. In fact, 

Campania, Sicilia, Puglia, Calabria and Sardegna show similar conditions: hilly areas with poor 

vegetation. Lombardia and Veneto are regions characterized by wide plain areas in the south and 

important hydrographic networks in the north. 

From a temporal point of view, the “Flood events” increased from 2016 to 2019. The trend can be due 

to several causes, as with increasing landslides. The “Flood events” had a certain seasonal distribution 

for the 10 years, as did the “landslide events” previously analysed. In October and November, many 

floods were reported. The trend can be associated with the autumn season and with a significant 

presence of rainfall. 

The years 2014, 2017 and 2018 had an important number of days with flood events. 

https://link.springer.com/article/10.1007/s00254-007-0809-4#ref-CR30
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According to previous considerations, 2014 was also the year with important measures of rainfall, and 

11 regions were involved in floods, causing almost 6697 IDEMs. The highest number of “Flood news”, 

along with a mean rainfall of 904 mm/year, was recorded in 2019. 

In the same year, several events with long temporal distributions and involving large areas also were 

reported by the Polaris report. Between 11 and 12 June 2019 in the Lombardia region, an extreme 

rainfall event (characterized by 125,6 mm in 12 hours) led to the evacuation of over 1.100 people. 

From 19 to 22 October, Lombardia, Liguria and Piemonte were involved with very heavy intensity. In 

Piemonte, one victim, 3 injured and some evacuees were reported. From 11 to 19 November, central-

southern Italy was affected by several rainfall events. During these events, 655 mm was measured at 

a rain gauge near Udine. Emilia Romagna and Toscana were the regions most involved. Over 3300 

became evacuees. Venezia engaged in a catastrophic flood with a height of 187 cm, creating expensive 

damage to the infrastructure. From 22 to 25 November, intense precipitation fell between Liguria and 

Piemonte, with peaks of 500 mm/36 h and 420 mm/24 h, respectively. On 24 November, the landslide 

that involved motorway A6 was triggered. Three people were overwhelmed on a bridge by the 

Bormida River (Piemonte). After snowmelt, a flood event occurred on the Po River (Polaris, 2019). In 

summary, 2019 can be referred to as the second year with the highest values of rainfall events, 4529. 

Generally, the temporal distribution of “Flood news” revealed two increases, from 2010 to 2014 and 

then from 2015 until 2019. A similar trend also has been evaluated for “Flood news”, and it has been 

reported for IDEMs. In contrast, rainfall and ReNDiS data followed a different distribution that 

recorded a decrease from the first quinquennium to the second one. Rain data can be described with 

an increasing trend of significant intensity rainfall events. The consequences included those reported 

by Crozier (2020), the UN (2015) and Porfiriev (2016) and the increased propension of natural hazards, 

damages, and human losses. Moreover, the spatial distribution issues observed for landslide events 

are the same for flood events. 

Finally, a textual analysis was applied to obtain the frequency of words within headlines. Some words 

in Classes 1 and 2 refer to synonyms of the “flood”. Given the repeatability of some words, it is clear 

that flood events are spread over time and cannot be considered as punctual as landslides. 

5.3 Data mining and BERT for landslide events on Twitter 

The data mining technique allows us to obtain and create datasets for specific events. In this work, 

using Twitter as a data source and Python as a tool, it was able to obtain the tweet text referring to 

landslide events. Twitter is an excellent resource for event detection. People share opinions and 

information about the situation. Detecting situational tweets is a challenging task. The first step is to 
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collect some keywords to apply the data mining technique within Twitter. The keywords and period 

time of extraction were chosen based on the analysis of newspaper articles. However, even with the 

overwhelming amount of data that can be found on Twitter, often it is not enough to use keywords 

alone to obtain useful tweets (Nguyen et al., 2016). 

The Twitter dataset comprises various slots with different temporal distributions. The main purpose is 

not to recreate the same inventory of landslide phenomena as for newspapers but rather to apply 

classification techniques. Therefore, the dataset is considered neither complete nor exhaustive for the 

2011-2019 period. As demonstrated by Zhou et al. (2022), several issues may arise due to the nature 

of big social media data. Tweet analysis tends to favour those who use social media more often. 

Uneven usage of social media may lead to biased consequences. Moreover, social media posts suffer 

from locational bias, temporal bias, and reliability issues. Such issues should be considered while 

further analysing the spatiotemporal patterns of the identified tweets for detecting vulnerable 

communities or assessing disaster damages (Zhou et al., 2022). In this way, tweets can identify the 

most virtuous or resilient region with respect to the hazard event. In fact, user interaction can identify 

active social behaviour, inclined to information (transmitting and/or receiving it) and consequently 

resilient to the event. 

The dataset was subjected to a binary classification based on landslide information. Disaster tweet 

classification studies can be considered natural language processing (NLP) tasks. Furthermore, 4158 

data points were assigned approximate text-based coordinates. As with the previous results from 

news, the point distribution follows the main chain mountains (Alps and Apennines), although the data 

are not complete. The regions most involved in landslides are Liguria, Piemonte, Calabria, Veneto, Friuli 

Venezia Giulia and Trentino Alto Adige. All these regions, except for Friuli Venezia Giulia, also 

presented important values for “landslide new”. Liguria, Piemonte, Calabria and Trentino Alto Adige 

are characterized mainly by chain mountains and hills. Conversely, Veneto and Friuli Venezia Giulia 

feature chain mountains in the northern area and large areas of plains in the southern area. Such result 

is in agreement with studies by Wang et al., (2021), which identified communities with higher resilience 

capacity, which are characterized by better social–environmental conditions (see data from RENDiS), 

tend to have higher Twitter use. 

In the second step, multiple statistical analyses and natural language processing were performed, 

leading to multiple considerations. The high propensity of tweets in Class 0 demonstrates the difficult 

handling and ambiguity that characterize the data from Twitter. Therefore, a strong filtering system 

must be applied to handle these data. From the natural language processing techniques applied, it was 

possible to delineate the occurrence of words and the distribution of the text of tweets by applying 

preprocessing. By applying data cleaning, it is possible to distinguish the preponderance of 

meaningless words in tweets classified in Class 0 from those in Class 1. By applying preprocessing and 
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considering double occurrences, it is possible to see that the word associations are more consistent. 

In fact, tweets classified as more informative note 'frana minaccia','strada chiusa' and 'traffico frana' 

descriptions. These refer to infrastructure and roads, showing that there is indeed more public 

attention. In addition, there is a preponderance of 'landslide traffic' and 'landslide weather'. More 

ambivalence should be attributed to the word 'landslide', which is very present in Class 0. This word is 

often associated with two distinct aspects: i) generic collapse of infrastructure without specification of 

the cause, which therefore is not actually classifiable as a landslide event; and ii) emotional, 

sentimental or situational terms, such as ‘sono una frana in matematica' or la ‘borsa frana' or ‘frana 

l'inter contro la fiorentina'. The same problems were encountered with the synonym 'landslip', which 

should contain more specifics, especially in the first case. This duplicity may be related to the inherent 

characteristic of the tweet text: the speed with which it is published and summarized, which shows a 

lack of information. This can be considered an advantage and a disadvantage. It can be an advantage 

in the sense that the messages are not long and it is easy to see the information they contain, but it 

can be a disadvantage if the user does not express himself or herself accurately in the text (Dragović 

et al., 2019). In this case, the text will be meaningless (Goswami et al., 2018). 

The Tweet dataset was compared with the distribution of newspaper articles by Google News. Tweets 

were not classified on a temporal basis; therefore, Classes 1 and 2 of news were compared with tweets 

in Class 1. The trend showed a good temporal correlation. If the tweets presented a decrease almost 

immediately at the event, the news presented echoes in the next days. The reason can be linked to 

several aspects: 

1. newspaper news needs more steps for publication than a tweet; 

2. the event(s) present an impact distribution over many days, hence articles also are published in 

the following days; 

3. the consequences of the event or the damage caused are felt in the following days, so the articles 

are published repeatedly over time. 

The same procedure was applied to the noninformation data in both databases (Class 3 for news and 

Class 0 for tweets). The few news items in Class 3 verify the effectiveness of the filtering systems 

adopted in the design of SECaGN for newspaper articles and confirm the efficiency and utility of data 

cleaning. However, the tweet trend is clearly the opposite, showing noisy, filthy and useless data. 

When analysing Twitter data for community resilience, tweet content, networks, or metadata are 

used. These data analysis techniques form the basis of social-sensing network (Fan et al., 2020;  

Kryvasheyeu et al., 2016, 2015), in which individuals are used as sensors which contribute to the 

knowledge gained about crisis event (Rachunok et al., 2021). A community or system's ability to sense 

https://www.sciencedirect.com/topics/social-sciences/remote-sensing
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is a critical part of its resilience when coupled with anticipation, learning, and adaptation (Park et al., 

2013). As a result of social media sensing's flexibility, analysis can be aligned with a community's ability 

to learn, anticipate, and adapt. By this point, the interaction by users can allow to obtain the parameter 

of resilience in agreement with the study of Dufty et al., (2012) and Wang et al., (2021). In fact, 

communities with higher resilience capacity, which are characterized by better social–environmental 

conditions, tend to have higher Twitter use.  

To outline the efficiency of Twitter, some case studies were considered within the classified database. 

Within the tweet dataset, there was an event of a viaduct collapse due to a landslide in Liguria. The 

event had an important media echo because it was associated with the collapse of the Morandi Bridge, 

the lack of prevention and the failure of land recovery. There were no victims during the event. A 

number of available data sources were correlated: rainfall, news and tweets. The rainfall distribution 

was based on the analysis of data from the days before the event from the nearest pluviometer. The 

period was chosen based on the fact that the landslide triggering was caused by intense and short 

rainfall. The nearest pluviometer was located north of Savona, and measurements from 1 October 

2019 to 24 November 2019 were considered, showing a considerable accumulation of rainfall. This 

choice is because other neighbours’ pluviometers recorded nothing and most likely were not in 

operation. Such distribution was clear through the IDW. 

The first tweet was recorded at the moment of the collapse at 13:36, and it was followed by many 

others with varying specifications. These data were compared with the publication of news items. The 

first article was published one hour after the event. Such comparison points to the remarkable speed 

of publication and dissemination in the crowdsourcing platform and the actual 'delay' in publishing an 

article. From tweet counts, it is possible to obtain some maps with a possible alert system. Two types 

of maps were analysed using coordinates from text and coordinates of the event. Better results in 

terms of distribution were obtained in the first case. The highest values were localized in the central 

region between Savona and Genova. This trend showed that an event does not have a point effect but 

also repercussions in the areas closest to it. This demonstrates how data on a municipal scale is in any 

case exhaustive in the civil protection phases.  

The manually classified dataset provided a solid base for applying deep learning using the natural 

language technique. “Bert For Information on Landslide Events”, or BEFILE, was created using 

transformer architecture. This script allowed us to classify text into two classes (0 and 1) based on 

landslide information in the Italian language. This analysis led to a considerable advancement of the 

BERT classifier, which until now was very often used for a variety of analyses in the English language 

and different fields. Two advantages resulted from this project: i) the Italian-language classified dataset 

for landslide events fills that present gap of analysing natural events using Twitter, which has not yet 

been exploited to a great extent for landslide events; and ii) BERT was trained to detect this 
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information and proved to be an excellent classifier for the Italian language for landslide events. 

Although such an aspect involves an issue, people using languages other than Italian on social media 

cannot be leveraged. One way to solve the problem is to train a corresponding model for the target 

language or scrutinize whether a unified model can render a reliable performance across numerous 

languages (Zhou et al., 2022). 

Three tests of BEFILE were carried out to obtain text classification, changing the setup of the 

preprocessing. This procedure was necessary to outline the best setting of the data cleaning 

parameters. For each iteration, EarlyStopping was set to 15 to obtain the best performance on 

validation and to avoid useless iterations. Based on the results obtained for each model, the best trade-

off is represented by the BEFILE without preprocessing. In fact, the first BEFILE showed important 

values of accuracy equal to 96% and an AUC of 0,95. To validate BEFILE, two case studies have been 

considered. The first study considers a comparison between newspaper articles and Twitter datasets 

for a part of 2020. The second study regarded a detailed analysis of the motorway falling in the Liguria 

region. In both cases, a new database from Twitter was extracted and classified using the model. 

Before applying BEFILE, different sets of preprocessing were applied to the new database. 

For the first study, 39.780 data points were classified by BEFILE. To define the best detected data, a 

validation to a new Twitter dataset was applied using newspaper articles. A good correlation was found 

between news in Class 1+2 and tweets, also through nonparametric values. In addition, this study 

considered landslide information from the perspective of spatial analysis. Entities were leveraged to 

estimate the localization of events. The geolocations of tweets are not available unless users actively 

elect to publish the information. Although the information of a user’s registration location can be used 

as an alternative, it might not directly connect to the location of an event observation because the 

location where a user posted a tweet can be different from the user’s registration location (Li et al., 

2021). In general, the spatial result reveals that only a small amount of data (18 of 3993) tweets 

presented coordinates associated with landslide events. Such a distribution may not be sufficient to 

support a reliable recovery assessment. For this reason, in the spatial distribution analysis, tweet data 

were not correlated with news. 

The second case study, of the viaduct close to the Madonna del Monte in the Liguria region, was 

utilized as a second validation. Notably, for this event, two existing datasets presented different data 

distributions. Some limitations can be pointed out. In fact, in the first case, within the query of a 

request for the Twitter API, retweets were removed, entering such parameters in the script (“-

is:retweet”). Conversely, in the second case, retweets were considered, removing such requests within 

the query. Moreover, the number of tweets with specific coordinates was small (1 for both datasets). 

In general, all tweet datasets are not exhaustive for a further reason. Twitter provides a rate limit of 

extraction. Every day, many thousands of developers make requests to the Twitter API. To help manage 
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the sheer volume of these requests, limits are placed on the number of requests that can be made. 

The maximum number of requests that are allowed is based on a time interval, some specified period 

or a window of time. The most common request limit interval is fifteen minutes. If an endpoint has a 

rate limit of 900 requests/15 minutes, then up to 900 requests over any 15-minute interval are allowed. 

In this project, Twitter API v2 and OAuth 2.0 Bearer Token granted 300 requests for each 15-minute 

interval. This aspect reduces and limits the analyses and does not allow us to obtain a complete dataset 

for an event. 

Considering the preview results, considerations can be made regarding preprocessing and the number 

of classified data. The nonapplication of preprocessing before the model resulted in a high 

classification of the data but also risked obtaining false data. On the other hand, the application of any 

preprocessing completely undermines the text, risking changing the context and meaning. This results 

in a considerable loss of data. Based on the performance of BEFILE, the model with middle 

preprocessing was chosen to classify the new dataset in a binary manner. This also was found to be a 

good compromise based on studies by Dharma et al. (2022). The author demonstrated that the use of 

stop word removal as an example can decrease the overall performance of the model. This is because 

stop word removal reduces the size of the dataset, and for a text, this often can change the overall 

meaning within the text, even though it reduces the training time. Therefore, the use of stop word 

removal is often not necessary, and having a larger dataset size is better for the model, as it can 

improve the overall performance of the model. Nevertheless, BEFILE is located between the works by 

Madichetty et al. (2020) and Dharma et al. (2022), which use coupling techniques between CNN and 

BERT embedding. However, from a practical point of view, this study provides useful perspectives for 

decision-makers to consider when using social media as an additional information resource for rapid 

damage assessment. BEFILE makes possible the detection of landslide events within tweets and brings 

state-of-the-art integration in NLP technology of text classification. At the same time, several problems 

may arise due to the nature of big social media data analysis and some limitations of this research. 

These problems should not be ignored when translating the research results into practice. 
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6 CONCLUSION  

Mass media is generally the first and primary source of information about hazards for the public 

(Fischer, 1994). The use of data mining techniques is advancing in different ways. The main aim of this 

work is to demonstrate the utility and capability of social media to detect events in areas without 

physical sensors that would detect natural hazard directly. Different steps of analyses have been 

applied to define spatial and temporal distribution of newspaper articles for whole Italian territory. 

Such analysis have allowed to outline a form of resilience in function of number of articles published 

during and after the event. Below many steps are described for demonstrating as it is possible manage 

the data and what it is possible to derive. In this study, different data sources were analysed to obtain 

information about natural events (landslides and floods) at the national scale.  In the first step, news 

of landslides and floods was analysed using as source the Multi-risk Information Gateway or MIG 

platform, which collected articles about natural events (landslides and floods) at the national scale 

from Google News. For both kinds of events, 10 years were analysed. In total, 32.525 landslide news 

items and 34.560 flood news items were collected. The datasets are classified into classes based on 

the thematic, temporal and spatial relevance of the news. This classification makes it possible to 

outline the temporal and spatial distribution of the events, their media impact and also to outline a 

hazard map on a regional and provincial scale. Different aspects of newspaper distribution can be 

obtained: “Landslide and Flood news”, which outlines the hazard areas, and “newspaper articles”, 

which describe the media impact or event impact. The integration of natural hazard information and 

social media could improve warning systems to enhance the awareness of disaster managers and 

citizens about emergency events. To reduce the gap between social media and traditional sensors 

several correlations were applied. News was correlated to rainfall data and event effects in terms of 

victims (POLARIS) and earmarked funds (REnDIS). 

The spatial distribution revealed that there are more “Landslide news”, “Newspaper articles”, and 

IDEMs in the northern regions and in some cases in southern regions (Campania and Calabria). A similar 

trend was found in the frequency of relevant rainfall events. Conversely, the distribution of earmarked 

funds is more concentrated in southern Italy than in northern Italy. The increase in prevention activities 

for soil protection in recent years, in southern Italy and partially in central Italy, can be linked to the 

high percentages of landslide hazards and buildings at risk that characterize them. 
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“Landslide news” showed an increasing trend from 2010 to 2014, and it repeated in the 2015-2019 

period, in contrast with rainfall data, “Newspaper articles” and reported expenses, while the IDEMs 

number remained constant. 

The regions most impacted by floods were mainly central and central-southern Italy. This trend agrees 

with the rainfall distribution, IDM numbers and earmarked funds for soil protection. The Sicilia region 

showed the highest number of events or “Flood events” and days of consequence with floods. From a 

temporal point of view, the “flood news” increased from 2016 to 2019. The trend can be due to several 

causes similar to those with increasing landslides. Other correlations have not been carried out 

because the focus of this work is to obtain further information on landslide events. Given the present 

literature on data mining for flood events and the absence of studies on landslide events, the analysis 

focused on the latter events to deepen and analyse a topic not truly addressed in social media analyses 

and crowdsourcing platforms. 

In the second step of this work, a new data mining technique in Twitter was applied using appropriate 

keywords extracted by newspaper headlines. Several techniques have been developed for data mining 

in social media for many natural events, but they have rarely been applied to the automatic extraction 

of landslide events. This makes it possible to fill the gap in the literature with respect to landslide 

events. One script was set to obtain the database from Twitter. The data mining technique has thus 

far been applied to newspaper news, but now, with the appropriate use of keywords, also within the 

Twitter dashboard. Twitter is an excellent resource for event detection. The dataset, from Twitter, 

features by 13.349 data, was classified manually, providing a solid base for applying deep learning.  

A wide range of natural language processing use cases exist, and disaster tweet classification can be 

considered one of them. Exploring the dataset, some case studies have been analysed. Based on tweet 

counts, possible alert system maps were created. These results demonstrate how the data on a 

municipal scale is in any case exhaustive in the civil protection phases. 

The classification allowed us to identify the most relevant tweets in terms of the temporal and spatial 

accuracy of landslide event identification. The harvested dataset was classified manually, providing a 

solid base for applying deep learning. Moreover, the Italian-language classified dataset for landslide 

events fills that present gap of analysing natural events using Twitter. This method has not yet been 

exploited to a great extent for landslide events. A script was created for text classification using the 

transformer architecture with the BERT method. “Bert For Information on Landslide Events”, or 

BEFILE, allows the classification of text into two classes (0 and 1) based on landslide information in the 

Italian language. This analysis leads to a considerable advancement of the BERT classifier, which until 

now was very often used to analyse data in the English language for different fields. BEFILE without 

preprocessing showed significant accuracy, equal to 96% and an AUC of 0,95, locating itself between 

implementing models with CNN. BEFILE showed promising results in classifying and thus detecting 
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information about landslide events, but some limitations must be considered. Datasets can be 

considered not complete mainly for some respects: i) non-exhaustive keywords, ii) Twitter limits the 

number of extractions per time unit and ii) the lack of geolocation of data.  

Despite the limitations of social media data with respect to validated official reports, this study 

confirms that relevant and statistically significant information on landslide and flood hazards can be 

obtained by data mining of social networks during emergencies. Such data, properly filtered and 

classified, may be of notable help in increasing our present capability of calibrating and validating early 

warning models, with particular reference to data-scarce areas and back-analysis of undocumented 

past events. The information collected from social network whilst an adversity or crisis event recount 

a bottom-up symptom of the effects of a tragedy or crisis as it's felt by the human beings in a 

community. Social network information can bolster community suppleness analyses by functions as an 

information source which is closely aligned with the spatial and temporal scales calamity and crisis 

decision making. Some evaluations can represent a useful tool to understand and assess the impact of 

natural disasters, as well as to plan the best strategies for risk reduction at regional or national scale.  

Furthermore, it was demonstrated as Twitter can be utilized as source of rapid information and 

detection for landslide event. A possible contribution about implementation of specific communication 

and warning guidelines with respect to natural events such as landslides has been proposed. Creating 

a simple homogeneous language can available the communication between decision-makers and 

citizens, but also decision-makers and data analysis-makers. From a practical perspective, this study 

provides useful perspectives for decision-makers to consider when using social media as an additional 

information resource for rapid damage assessment.  
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Appendix 

Translate of some word 

anni: years maltempo genova: bad weather Genova 

borsa (economica): financial manto stradale: road surface 

causa: cause morti: victims 

causa frana: cause landslide minaccia: threat 

chiusa: locked minaccia palazzi: builing threat 

chiusa traffico: traffic locked notte: night 

crollo: collapse nuovo crollo: new collapse 

crollo emotivo: emotional breakdown oggi: Today 

crollo nervosa: mental breakdown palazzi: building 

crollo ponte: bridge collapse persone: people 

crollo sonno: sleep breakdown  ponte: bridge 

crollo viadotto: viaduct collapse prima: before 

dissesto: instabily prima crollo: before collapse 

dissesto finanziario: financial disaster provincial: provincial 

dopo: after quattro morti: four victims 

dopo crollo: after collapse rischio crollo: risk collapse 

dissesto idrogeologico: hydrogeological instability senzo unico: one way 

domani: tomorrow sfollati: displaced people 

dissesto manto: instability road surface sicurezza: security 

frana: landslide  situazione: situation 

frana addosso: close landslide  solo: only 

frana crotonese: landslide on crotonian  strada: road 

frana minaccia: landslide threat  strada chiusa: road locked 

Genova frana: Genova landslide  stradale: road 

governo: government  totale: total 

idrogeologico: Hydrogeological  traffico: traffic 

Italia: Italy  traffico frana: traffic landslide 

maltempo: bad weather  viadotto: viaduct 

maltempo frana: bad weather landslide  unico alternato: one way alternate 
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Acronyms 

AI Artificial intelligence 

ANN  Artificial neural network 

APIs  Application Programming Interfaces  

AUC  Area under the curve 

BERT  Bidirectional Encoder Representations from Transformers 

BEFILE  Bert for information on landslide events 

BRGM Bureau de Recherches Géologiques et Minières 

CLS Classification 

CNN Convolutional neural networsk 

CNR National Research Council 

CV Computer vision 

DL Deep learning 

GPS Global positioning system 

GPT  Generative pretrained transformer 

K Kendall’s 

IBM  International Business Machines Corporation 

IDMs Injured, Deaths and Missing Injured, Deaths and Missing 

IDEMs  Injured, Deaths, Evacuated and Missing 

IDW  Inverse distance weight 

IFFI Italian Inventory of Landslides 

IRPI  Research Institute for Hydrogeological Protection 

ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale - Italian Institute for 

Environmental Protection and Research 

LDA  Latent dirichlet allocation 

LSTM  Long short-term memory 

MIG Multi-risk Information Gateway 

ML Machine learning 

MLM   Masked language model 

MM  Million  

MT   Machine Translation 



179 
 

NER   Name Entities Recognition 

NLP Natural language processing 

NSP   Next sentence prediction 

OVVs  Out-of-vocabulary words  

PAI Piano Assetto Idrogeologico 

POLARIS Popolazione a Rischio da Frana e da Inondazione in Italia - Populations at risk from 

landslides and floods in Italy 

R Pearson coefficent 

ReNDIS National Repository of Soil Defence interventions 

RNNs   Recurrent neural networks  

ROC  Receiver operating characteristic  

S  Spearman 

SA  Sentiment analysis 

SECAGN Semantic Engine to Classify and Geotagging News 

SEP  Separating segments  

SL Supervised learning 

SVM Support vector machine 

TF-IDF Term frequency–inverse document frequency 

TPUs   Tensor processing units 

UL Unsupervised learning 

WHZs  Warning hydrological zones 

XLM Cross-lingual language model 

 

 

 

 


