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Abstract

Motor abilities may be reduced in different conditions, such as neuromotor diseases, the
physiological aging, or work-related musculoskeletal disorders. In the clinical realm, motor
assessment is useful to measure the severity level, thus supporting physicians’ decision for
diagnostic, prognostic, and rehabilitative purposes; on the other hand, an objective evaluation
of the motor performance could allow for recording the exertion perceived by the subject
while executing an industrial task.

However, the clinical scales may suffer from subjectivity, since they are observation-
based and related to the specific background of different clinicians; the perceived exertion
is conventionally estimated by self-ratings, which may be biased by the user’s psychology.
Therefore, quantitative and objective measurement of motor abilities are needed to pursue
more generalizable outcomes in both clinical and occupational applications.

The purpose of this Ph.D. thesis is to illustrate the research works carried out during the
conceptualization, design, implementation, and validation of frameworks for the quantitative
assessment of motor capabilities by means of innovative interfaces based on serious game,
deep-learning methods, and robotic exoskeletons.

Serious games promote the engagement of the experimental subjects, thus keeping them
motivated during the execution of multiple repetitions of the experimental tasks. Deep-
Learning models allow for the automatic recognition of motor patterns from raw data for a
variety of applications, including human activity recognition and pathological gait recognition.
Robotic exoskeletons can support humans in the execution of repetitive and exhausting motor
tasks, thus preventing the injuries connected with work-related musculoskeletal disorders.

The applications considered span from visuomotor adaptation to activity recognition and
power augmentation. Tasks under consideration concerned the locomotion on a treadmill
while controlling a virtual avatar, the execution of activities of daily living, as well as static
and dynamic lifting tasks that are typical of an industrial scenario.

A paucity has been found in the different domains of the scientific literature to which
the works presented in this thesis belong. As regards visuomotor adaptation, a few works
implemented SGs to elicit sensorimotor learning in children during a walking task; therefore,
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more investigations are needed to perform a SG-aided evaluation of visuomotor adaptation
capabilities of people in developmental age during locomotion tasks. With regards to human
activity recognition, a minority of studies trained DL models with inertial data related to a
separate execution of human motor actions and tested them with data acquired during an
uninterrupted execution of the same activities; furthermore, there exist a few works exploiting
simulated gait disorders to train DL models for recognizing pathological gaits. In the field
of occupational exoskeletons, a gap has been found about the validation of such robotic
devices with motor tasks resembling those of an industrial scenario with both conventional
electromyographic measures and innovative methods based on graph theory.

Therefore, the technical contributions of this thesis include the conceptualization of
a locomotor task for the evaluation of visuomotor adaptation based on serious game; the
validation of a framework based on deep-learning for the recognition of human activities
executed in an uninterrupted sequence; the preliminary validation of a similar workflow
addressing the recognition of mimicked gait disorders; the validation of an occupational
exoskeleton assisting humans during industrial-like motor tasks by means of both traditional
electromyographic measures and innovative approaches based on muscle networks.

This thesis work is organized into two parts, each of which is divided in sections including
an introduction and the works belonging to the specific context. More in detail, Chapter 1
is focused on applications for clinical purposes, giving an introduction of the objective and
the technical contribution of the thesis in such context. Therefore, Section 1.2 describes the
contributions proposed in the context of visuomotor adaptation assessment based on serious
game, together with the related state-of-the-art. Sections 1.3 and 1.4 present the scientific
literature and the contributions proposed in the context of activity recognition, concerning
the classification of human motor actions performed continuously and pathological walking
patterns simulated by healthy subjects, respectively. On the other hand, Chapter 2 is focused
on applications for occupational purposes, giving an introduction of the objective and the
technical contribution of the thesis in such context. Hence, Sections 2.2 and 2.3 report the
state-of-art and the contributions proposed in the realm of the validation of occupational ex-
oskeleton with conventional electromyographic metrics and functional connectivity analysis
based on muscle networks, respectively. Lastly, final remarks and considerations are drawn
in Chapter 3.
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Chapter 1

Applications for clinical purposes

1.1 Introduction

Motor abilities have been found to be reduced in case of such pathologies as Parkinson’s
disease (PD) and Alzheimer’s disease (AD), as well as the physiological aging, due to high
concentration of iron in brain subregions (e.g., subthalamic nucleus, substantia nigra, red
nucleus) [1].

Clinical measures are widely utilized for the assessment of pathology severity, but they
suffer from different drawbacks, starting from the subjectivity of their outcomes, since they
are typically based on observations [2, 3] and face-to-face questioning [4]; moreover, the
different clinicians’ backgrounds and experiences might lead to different interpretations of
the used scale [5]. This issue is even exacerbated in specific cases, such as cognitive skills
like the Sense of Agency (SoA), which is the ability to recognize oneself as the agent of an
action (e.g., a motor action) [6]. In fact, due to the retrospective nature of SoA, a cognitive
bias occurs and leads to its overestimation when participants are asked to self-quantify this
awareness in an explicit way [7]. This could negatively impact in the assessment of the
severity of pathologies, such as the cerebral palsy, which is associated to the SoA [8, 9].
Hence, quantitative evaluation of motor abilities aims at a higher outcome generalizability
and supports clinicians by saving the time for data collection and consequently prioritizing
the decision-making process [1].

Remarkably, the assessment of the subject’s performance can benefit from the develop-
ment of an effective framework oriented to the recognition of the executed motor actions,
which lies in the field of human activity recognition (HAR) [10]. For this purpose, the ex-
ploitation of Deep Learning (DL) models allows for the automatic learning of patterns from
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raw data, thus avoiding time-demanding feature engineering operations on domain-specific
knowledge [11].

1.1.1 Objective and Research Question

Innovative interfaces integrating either SGs or DL methods have allowed for the design of
objective evaluations for clinical applications [2, 3, 8].

Despite the advances of these systems, some research questions still remain to be ad-
dressed.

A few SGs have been developed to stimulate sensorimotor learning during a locomotion
task and extract metrics to draw conclusions about the motor performance [12], which
could be associated with the cognitive evaluations in children with cerebral palsy. DL has
been little used to perform either continuous HAR (CHAR) through kinematic data [10]
or pathological gait recognition (PGR) with inertial data related to normal and simulated
pathological walking patterns [13].

Based on the prior discussion concerning opportunities and difficulties of interfaces for
motor assessment, the main objective of the research conducted for this thesis has regarded
the conceptualization, development, and implementation of frameworks to advance the state-
of-the-art in this field. The workflows have been developed with the aim of pursuing their
feasibility and usability in clinical scenarios.

The applications considered mainly lies in the field of rehabilitation. Tasks under consid-
eration concerned HAR and performance evaluation. Data under consideration were provided
by clinical structures.

1.1.2 Contribution

In the aforementioned scenario, the main purpose of this thesis is to develop new frameworks
based on either serious games [12] or Deep Learning for recognizing motor actions prior to
their assessment [10, 13].

As regards frameworks for VMA, the majority of works have entailed the upper limbs
in order to execute either a reaching or a drawing task. Some researchers have employed a
screen and a mirror to project the virtual scenario on a plane that is parallel to the physical
workspace, in which an external grabbed object, e.g., a joystick, a stylus, or a robotic
manipulandum, is exploited to control the cursor correspondent to the hand motion [14–18].
Alternatively, other studies have displayed directly on a screen the trajectory followed by a
cursor, which is utilized for allowing the subject to visualize the path they trace in the real
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world on a tablet through a stylus [19, 20]. To introduce the visual perturbation eliciting
adaptation, the cursor moving direction has been rotated [16–18, 21, 22] or even gained
[15]. However, such VR-based frameworks can be made more motivating by representing
the human body in a more realistic way. For this purpose, Lin et al. have mapped real
movements as those of two hand-held controllers, which are exploited to interact within the
VE that is shown through a HMD; in addition, they included either a consistent or a reverted
mapping between the real and virtual paths followed during a reaching task [23]. On the other
hand, Cristella and colleagues have proposed three SGs requiring the participant to perform
trunk inclination, elbow flexion/extension, and forearm supination/pronation; they have also
implemented a coherent or reversed correspondence between the motor command in the real
world and the visual feedback [8]. These are only some of the several studies targeting VMA
during upper-limb motor tasks, whereas a few works have proposed workflows stimulating
VMA during locomotion activity. As instance, Kannape and colleagues have set up a motion
tracking area in which subjects have to perform a reaching walking task; besides, a screen
has been employed to show a whole-body avatar in a virtual room and an angular deviation
has been applied to the captured position to stimulate VMA [24, 25]. The work presented
in Section 1.2 offers an addition to the state-of-art in the extent that the proposed SG-based
framework addresses VMA in a locomotion activity by controlling a full-body moving avatar
in a custom VR environment [12].

As regards human activity recognition, the majority of workflows adddressing HAR
based on DL test classifiers on inertial data that are related to a separate execution of ADLs.
Only a few works test the DL architecture on data that come from an uninterrupted sequence
of activities and are previously trained on IMU signals corresponding to stand-alone activities
[26–30]. Most related works proposed a CHAR-oriented approach with a setup based only on
radar sensors [26–29]; however, their applicability to outdoor environments is limited by their
measurement area [28]. Furthermore, it has been found only one work that performs CHAR
with DL methods based only on kinematic data: Jaramillo et al. measured the evolution of
the hip joint angle by means of inertial sensors and encoders integrated in an exoskeleton,
and included both separate and continuous acquisition protocols [30]. The work presented in
Section 1.3 differs from the related literature to the extent that it entails the implementation
of a DL algorithm that is fed by inertial measures and is capable of recognizing ADLs
executed in a continuous way [10]. Pathological gait recognition is a subfield of HAR aimed
to recognize whether a walking pattern is healthy or pathological. In this realm, there exist a
few studies that simulate pathological walking patterns to train PGR-oriented AI algorithms,
whether ML or DL models, by acquiring inertial data. For instance, Robles et al. [31]
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utilized Artificial Neural Networks (ANNs) to classify simulated gait disorders (those of
Parkinsonian, ataxic, and hemiplegic) by analyzing accelerations of the center of mass of
healthy subjects. Ghobadi et al. [32] discriminated normal gait from mimicked foot drop
(FD) by training a support vector machine (SVM) with the data coming from a single IMU
placed on the subject’s right leg. Yin et al. [33] exploited two accelerometers to feed DL
architectures, such as a CNN, with the aim of automatically classifying pathological gaits
(e.g., hemiplegic, diplegic, and Parkinsonian), which were emulated by healthy participants.
Consequently, the work in Section 1.4 address the limitations of the related works by means of
the implementation of a frameworks exploiting the simulation of abnormal walking patterns
to train DL-based models for the final aim of recognizing actual pathological gaits [13].

Ultimately, the technical contributions can be summarized as follows: innovative frame-
works based on SG and DL have been developed for respectively evaluating VMA and
recognizing lower-limb motor actions, whether normal or abnormal.

1.1.3 Chapter Outline

This chapter is organized into the following sections. This chapter introduces the objective
and the technical contribution of the clinical-oriented applications of this thesis.

Section 1.2 describes the state-of-art and the contributions proposed in the field of SG-
based frameworks for the evaluation of visuomotor adaptation; Sections 1.3 and 1.4 present
the scientific literature and the contributions in the field of human activity recognition and
pathological gait recognition, respectively.

1.2 A Serious Game for the Assessment of Visuomotor
Adaptation Capabilities during Locomotion Tasks Em-
ploying an Embodied Avatar in Virtual Reality

The study of visuomotor adaptation (VMA) capabilities has been encompassed in various
experimental protocols aimed at investigating human motor control strategies and/or cog-
nitive functions. VMA-oriented frameworks can have clinical applications, primarily in
the investigation and assessment of neuro-motor impairments caused by conditions such
as Parkinson’s disease or post-stroke, which affect the lives of tens of thousands of people
worldwide. Therefore, it could enhance the understanding of the specific mechanisms of
such neuromotor disorders, thus being a potential biomarker for recovery with the aim of
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integrating conventional rehabilitative programs. Virtual Reality (VR) can be entailed in a
framework targeting VMA, since it allows the development of visual perturbations in a more
customizable and realistic way. Moreover, as it has been demonstrated in previous works, a
serious game (SG) can further increase the engagement also thanks to the use of full-body
embodied avatars.

Most studies implementing VMA frameworks have focused on upper limb tasks and
utilized a cursor as visual feedback for the user. Hence, there is a paucity in the literature
about VMA-oriented frameworks based on serious game and targeting locomotion tasks.

This chapter presents the design, development, and test of a SG-based framework that
addresses VMA in a locomotion activity by controlling a full-body moving avatar in a
custom VR environment. This workflow includes a set of metrics to quantitatively assess
the participants’ performance. Thirteen healthy children have been recruited to evaluate
the framework. Several quantitative comparisons and analyses have been run to validate
the different types of introduced visuomotor perturbation, and to evaluate the ability of
the proposed metrics in describing the difficulty caused by such perturbations. During the
experimental sessions, it emerged that the system is safe, easy to use, and practical in a
clinical setting.

This section is organized as follows: Subsection 1.2.1 illustrates the state-of-art regarding
frameworks oriented to visuomotor adaptation and Subsection 1.2.2 describes materials,
i.e., the VMA-oriented framework that includes a body tracking system for data acquisition,
a treadmill for performing locomotion, a SG for promoting the participant’s engagement,
and a calibration stage for coping with inter-session spatial modifications of the setup and
inter-subject differences in gait characteristics; Subsection 1.2.2 also exposes the methodol-
ogy adopted in this work, which comprises metric extraction and statistical analysis. The
outcomes of the experimental study are provided in Subsection 1.2.3 and discussed in Sub-
section 1.2.4. Ultimately, Subsection 1.2.5 draws the final remarks about the conducted study
and delineates ideas for future works.

1.2.1 Related Works

Visuomotor adaptation is a form of sensorimotor learning that allows humans to learn how
to adapt, or correct for, an external visual perturbation [34]. Learning how to compensate
for the effects of external perturbations relies on the formation of an internal model that
computes the difference between anticipated errors of the intended movement and actual
errors from sensory feedback, which is then used to plan the next motor action.
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A number of studies have proposed different experimental protocols with the aim to
evaluate visuomotor adaptation abilities in a large variety of tasks, such as drawing [35–
37], target reaching [14, 38] and walking [39–41]. Since VMA mainly deals with the
learning of the motor adjustment to be executed for reducing the visual perturbation effects
to accomplish the given task [34], visual perturbations eliciting VMA may be included in
experimental protocols to investigate motor learning and motor control abilities of healthy
subjects [42–49]. Moreover, several studies have investigated how to integrate the VMA
evaluation in cognitive assessment protocols. In fact, visuomotor adaptation has been found
to be correlated with cognitive functions, e.g., working memory, executive functions, and
processing speed [16, 19, 21, 50–53], and also related to motion awareness and cognitive
load [24, 25].

Experimental setups for VMA capability evaluation have been also largely employed
in clinical scenarios for multiple purposes, such as, to evaluate the aging effect on motor
skills, e.g., human balance, gait parameters, or adaptive processes [39, 54, 55], or to verify
the relationship between the decline in adaptation and age-related deterioration of cognitive
functions [20, 56–58]. Experiments entailing VMA have been also proposed to investigate
and assess the capabilities of subjects affected by neuro-motor disorders, such as: people with
cerebellar degeneration [59], children with autism spectrum and developmental coordination
disorder [60, 61], teenagers with cerebral palsy [8], patients affected by Parkinson’s disease
[15, 62, 63], hemispheric lateralization of stroke survivors [18], multiple sclerosis patients
[64], dystonic subjects [17], autistic individuals [65] and people affected by essential tremor
[66].

A typical VMA experimental protocol encompasses a phase in which the subject under
evaluation is asked to perform a motor task in a scenario featuring an altered condition. A
framework targeting VMA is mainly composed of three fundamental elements: the scenario,
or the environment, in which the goal-oriented task is executed; the motor command input
system, which is necessary to detect the performed motor action in the real world and encode
it in an action within the scenario/environment; and a set of possible perturbations used to
alter the “normal” mapping between the real world and the scenario/environment. These
aspects have to be tailored to the research purpose, as well as to the human body part that
is involved during the requested motor task. VMA may be evaluated in a real scenario
by interposing prism lenses between the subject’s view and the workspace [67]; on the
other hand, the motor task can be visualized in a virtual environment (VE), which can be
provided to the user by means of either a screen [14–18, 38–41, 47, 51, 55, 68] that is
optionally combined with a mirror projecting computer-generated images on the workspace
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[14–18, 38, 47, 51, 55], or a head-mounted display (HMD) [49, 54, 69–72]. Hence, while the
visual feedback given to the user is altered, the activity to execute might consist in reaching
a target through a cursor [14–18, 38, 47, 51, 73], or in keeping balance [39–41, 54, 69, 70].
Moreover, the motor actions performed by the subject can be guided in different ways,
such as: by recording the position of a device mediating the interaction, e.g., a joystick
[8, 14, 38, 60], a stylus [19–22, 35, 37, 42, 44, 53, 55, 61], or a robotic manipulator [17, 74];
by tracking the motion performed by the human body [24, 25, 39–41, 54, 69, 70]; or even
by measuring the force exerted on a handle or acquiring the myoelectric muscle activations
[68, 75, 76]. The VMA-directed discrepancy between the expected and the visually perceived
outcome can be introduced by altering the input action in the form of a translation [42, 69, 77],
a rotation [14, 16, 19, 21, 24, 25, 37, 42, 50, 55, 60, 68, 78, 79], or a reversal [8, 35, 51, 52]
of the path that is traced, or even a set of sinusoidal oscillations on the visual field that is
presented [39–41, 49, 54, 70].

The employment of virtual reality (VR) leads to more adaptable and customizable
synthetic scenarios/environments. In fact, a virtual scenario simplifies the integration between
the task that has to be done in the environment and the subject’s motor command. On the
other hand, a fully virtual scenario allows the design of a large variety of perturbation types
that can be also modulated and changed without any restriction during the experimental
protocol [54]. Furthermore, it is well known that a VR-based serious game (SG) amplifies
the individuals’ engagement, which should be ensured since participants could stop feeling
motivated because of the repetitiveness that is typical of scientific experiments [80, 81].
VR can also provide a greater sense of embodiment by mapping human body parts more
realistically [82] and this feeling may be even increased by recurring to a full-body avatar
representation [83].

1.2.2 Materials and Methods

This subsection is articulated in the description of the framework utilized for VMA assessment
(Subsubsection 1.2.2.1) and in its experimental test (Subsubsection 1.2.2.2).

1.2.2.1 The proposed framework

The framework that is proposed for experiments eliciting and evaluating VMA is made up
of three main components (see Figure 1.1), which are: a human skeleton tracking system, a
treadmill, and a fully-customizable VR-based serious game.
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The technical requirements and the features of the presented framework have been
discussed and defined during a number of meetings with the clinical staff of the IRCCS
Fondazione Don Carlo Gnocchi ONLUS (Florence, Italy), who expressed the need of a
customizable VR-based serious game to evaluate the visuomotor adaptation capabilities of
children with neuromotor disorders during locomotion tasks. In particular, the following
requirements have been defined and used for the design and implementation phases of the
presented framework:

• the subject has to control the position of an embodied avatar in a custom virtual
environment during a locomotion task;

• the subject has to collect pseudo-random objects that are located on the virtual ground
along a path - the avatar can collect objects by hitting them;

• the subject has to walk on a treadmill while collecting the virtual objects, and the
treadmill must allow the mediolateral (ML) movement of the entire body to pick up
objects that are positioned on the sides of the path;

• the subject must also experience two kinds of perturbation that alter the position
mapping between the real ML position of the subject and the ML position of the
avatar in the VE, i.e., GAIN and REVERSAL, that aim at amplifying and reverting the
avatar’s movement (respectively);

• the use of a marker-less solution to track the human skeleton body should be preferred
to speed up the experimental setup phase;

• motivating soundtracks should be used.
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Fig. 1.1 The experimental setup.

The subject skeleton tracking system The first subsystem of the proposed framework is a
real-time body tracking system that is used to let the participant control the avatar’s position
within the virtual environment and the modeled articulation joints. In this study, a 3D Azure
Kinect that has been positioned 0.5 m away from the subject in order to acquire the scene
and the whole front part of the subject’s body. In particular, the Azure Kinect Body Tracking
SDK has been used to automatically extract the human skeleton, i.e., the poses of all modeled
joints and links of the skeleton (see Figure 1.2), with a frame rate of 50 Hz [84]. It is worth
mentioning that the large use of the Microsoft Kinect in clinical setups during the last decade
is mainly motivated by the low price and its high accuracy considering the cost [85–88].
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0. PELVIS

Fig. 1.2 Skeleton tracked by the Azure Kinect SDK.

The treadmill A treadmill has been chosen as a locomotion surface since it allows walking
continuously, thus keeping subjects focused on the task to execute. The treadmill width has
to be such that a comfortable walking area allows mediolateral movements to the participants
during the whole session. In this specific study, the employed treadmill is the C-Mill VR (by
Motek®, Amserdam NL). It is equipped with a safety frame and two adjustable handrails to
prevent subjects from the risk of falling (e.g., due to loss of balance) and also provides the
possibility to measure some gait parameters that can be exploited to tailor the locomotion
to the individual characteristics. It is worth mentioning that the proposed framework is
independent of the type of adopted treadmill. Therefore, even a simple cheap treadmill that
is not able to compute the position of the subject’s center of gravity and make it available in
real-time can be employed.

The serious game According to the defined requirements, the designed and developed SG
allows a subject that is walking on a treadmill to control the position of an embodied avatar
with the aim at collecting objects along a path. Specifically, the subject can pick up an object,
which may be located either at the center or at the sides of the virtual road, by controlling
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the ML position of the avatar. The subject can thus translate the avatar along the ML axis
by moving his/her body on the treadmill along the real ML plane within a feasible range
of motion (RoM). More in detail, the ML position of the subject’s pelvis is used to directly
control the ML position of the avatar’s pelvis.

The SG, which has been developed using the Unity3D framework (Release 2020.3.27f1,
Unity Technologies, San Francisco, CA, USA), implements also the link between the human
joints tracked by the Kinect Azure SDK and the corresponding avatar’s joints by using a
Unity 3D demo available on the Microsoft GitHub webpage [89].

The game permits placing a series of rewarding objects (e.g., candy) on a straight virtual
road in any position. The software also enables collecting these targets by moving a full-body
avatar on the virtual endless walkway while walking on the treadmill. Besides, a trial has
been associated with each object, whose collection entails the game score update. Any object
is rendered one at a time and stays visible until it is collected or surpassed by the avatar
while advancing in the scene. Subsequently, in order to adapt the difficulty of the task to the
specific anthropometric characteristics of each subject, the distance in the real world between
two subsequent objects has been set equal to eight strides. In addition, the SG continuously
regenerates the virtual road with the aim of rendering the endless walkway that corresponds
to the treadmill in the real world. It also makes the avatar advance in the scene along the
locomotion direction by linearly incrementing the avatar’s position of a quantity that depends
on the subject’s velocity.

In this work the virtual environment has been shown on a 2D monitor that is positioned
in front of the subject. The screenshots in Figure 1.3 depict the avatar moving on the virtual
road and the target to be picked that are shown within the VE.
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Fig. 1.3 Different screenshots of the main scenario of the serious game.

Furthermore, a proper mapping between real and virtual displacements enables that the
boundaries in the virtual space correspond to those of the real workspace, which is defined
by the participant’s range of motion along the ML axis. Such a basic mapping constitutes the
game functioning in the absence of perturbations.

Concerning the possible visual perturbations that might characterize a single trial, it has
been decided to allow the manipulation of the mapping between the ML position of the
avatar on the virtual road and the ML position of the subject on the treadmill. In particular,
four possible mapping conditions between the real and virtual environments have been
implemented (see Figure 1.4) and listed below:

• No Perturbations: the mapping is not altered - the avatar moves as the subject - when
the subject reaches the side of the treadmill the avatar is on the side of the virtual road;

• Gain: the mapping is altered - the avatar moves following the same sense of the
subject’s movement - the avatar’s movements on the ML plane are amplified by a
specific gain factor;

• Reversal: the mapping is altered - the avatar moves following the opposite sense of
the subject’s movement (i.e., when the subject moves to the right, the mapping leads
the avatar to the left, and vice versa) - when the subject reaches the left side of the
treadmill the avatar is on the right side of the virtual road and vice versa;
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• Reversal+Gain: the mapping is altered - the above-mentioned perturbations are si-
multaneously applied, thus amplifying and reverting the avatar’s position at the same
time.
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Fig. 1.4 Graphical representation of the effects of the four positional mapping conditions.
Vertical continuous lines indicate the boundaries of the treadmill and the virtual road, whereas
the dashed lines refer to the sides of the reduced real space due to the gain factor.

Note that, due to the gained mapping, the avatar may go beyond the limits of the road
when the subject reaches the treadmill boundaries. Hence, the SG guarantees that the avatar
is always visible thanks to a saturation that is imposed on its lateral position. The SG
has been implemented as a sequence of several scenes, each of which is provided with a
soundtrack that aims to keep subjects motivated and prevents them from getting bored or
loosing motivation. Finally, it is worth reporting that the implemented SG also provides a
user-friendly form allowing the clinical staff to build a customized experimental protocol,
i.e., the specific sequence of objects to collect and the type of perturbation that can be applied
within specific phases of the protocol.
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Fig. 1.5 A processed frame acquired by the Azure Kinect that shows the two ArUco markers
positioned on the lateral handrails of the treadmill and a 2D representation of both the
markers and the treadmill reference frames.

Initial calibration procedures A set of initial calibration procedures has been also de-
signed both for adapting the task to the specific anthropometric characteristics of the subject
and for managing the unknown pose of the Azure Kinect reference frame and treadmill
reference frame. As a first step, the following three parameters are acquired with dedicated
tests and inserted within a specific form of the SG concerning the subject data:

• the preferred walking speed (PWS): the treadmill speed is kept fixed and equal to the
PWS during the entire experimental session - such speed is also used to translate the
avatar’s center of mass along the locomotion direction - this speed is experimentally
found with the help of the clinical staff by gradually increasing the belt speed until the
participants reported that they were walking at their PWS [90, 91];

• the mean step length: the parameter that is used to define the distance between
two subsequent objects to collect - in this specific work the step length has been
automatically extracted by the C-Mill software, even though any other solution based
on the skeleton data processing can be used;

• the range of motion of the subject’s pelvis on the treadmill along the mediolateral axis
- such measure is used to adapt the real subject’s RoM to the avatar’s RoM.

As a second step, a procedure that is able to define the relative pose between the Azure Kinect
camera and the treadmill is executed, since it is necessary to correctly map the real and virtual
worlds. ArUco, an open-source library that allows to define and track 2D markers [92], is
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exploited. As shown in Figure 1.5, two different ArUco markers have been positioned on the
two lateral handrails of the treadmill so that they can be both visible to the Azure Kinect that
is capturing the entire scene. For each marker, the ArUco library is able to compute the pose
of the relative reference system with respect to the camera reference system. Finally, the
final reference system of the treadmill is defined as follows: it is positioned at the midpoint
of the origins of the two marker reference systems, and its x-axis is oriented as the line that
crosses the two origins, whereas the y-axis is oriented as the gravity vector.

Performance metrics Besides the system that has been presented above, the proposed
framework also considers a set of metrics that can be used to quantitatively evaluate the
performance of each subject. The percentage of collected targets (CT) is an obvious metric
that has been examined to evaluate the visuomotor adaptation capability. However, the CT
metric does not encode any information concerning the trajectory that the subject followed
for each target. Hence, for each object to be collected, three metrics have been computed to
quantify three different characteristics of the 2D trajectory of the avatar’s pelvis. More in
detail, considering the avatar trajectory between its 2D position at the end of the previous
trial and its 2D position at the end of the current trial, i.e., when the avatar either hits or
surpasses the object:

• Normalized Path Length (NPL): the length of the actual path divided by the length
of the minimum length path (MLP), which is the straight line that passes through 2D
points, i.e., start and end positions;

• Normalized Area (NA): the area between the actual path and MLP, divided by MLP
length;

• Initial Angle Error (IAE): the angle between MLP and the segment joining the avatar’s
initial position with the point of the real path that corresponds to the first peak of the
distance from the MLP.

In view of the definition of the trajectory-based features, it is inferable that the higher their
value the worse the performance. The meaning of the extracted kinematic-based metrics is
graphically explained in Figure 1.6.
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Fig. 1.6 Kinematic-based features selected for assessing difficulty modification: NPL is the
ratio between the length of the actual path and the one of the MLP; NA measures the area
between the actual path and the MLP, divided by the length of the MLP; IAE is the angle
between the MLP and the segment joining the avatar’s initial position with the point of the
actual path that corresponds to the first peak of the distance from the MLP.

BLOCK TEMPLATE

NO
PERTURBATIONS

CONCORDANT MOVEMENT DISCORDANT MOVEMENT

BLOCK 1

GAIN

BLOCK 2

REVERSAL

BLOCK 3

GAIN+REVERSAL

BLOCK 4

A)

B)

Fig. 1.7 A) Arrangement of the targets (e.g., candy) in each block. Sixteen objects are placed
on the virtual road such that their number on the right side is the same as those on the left
side, thus preventing the avatar from direct movements between the two extremities. B)
Sequence of the four blocks defined by the experimental protocol and associated with the
mapping conditions explained in Subsection 1.2.2.1.
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1.2.2.2 Framework test

The framework test is intended to prove the quality of the game development and the features
extracted within the post-processing phase in terms of capturing the task difficulty related
to the mapping perturbations. Moreover, the proposed workflow has been tested from
the point of view of usability and safety, which are important requirements to be met in
a clinical-oriented context. For this purpose, this work has involved healthy subjects as
participants and has included an experimental protocol to be followed for a correct task
execution. Furthermore, the proposed features, which encode the outcomes obtained in the
different mapping conditions, have been compared and statistically analyzed.

Participants Thirteen healthy children (10.2±1.7 years old, six males) have been recruited
from the IRCCS “Don Carlo Gnocchi”. Inclusion criteria were: 1) children that exhibit
neither neurological nor cognitive disorders (such conditions have been verified through
two batteries of neuropsychological tests, which are WISC-IV and NEPSY-II [93, 94]), 2)
children that usually spend between one and three hours a week playing video games. Each
subject has been informed about the task execution and the game details, without mentioning
any information about the visual perturbations to prevent results from being influenced by
this awareness.

Experimental protocol The experimental protocol has been arranged with the clinicians
in such a way as to make the SG suit the subject’s characteristics, thus being more realistic
in terms of gait simulation. Hence, prior to the game session, subjects’ parameters, which
are the preferred walking speed, the step length, and the range of motion along the ML axis,
have been measured by means of the sensors embedded in an instrumented treadmill (C-Mill
VR by Motek®). It is worth noting that if the setup is based on a standard non-instrumented
treadmill, such subject’s parameters can be derived by analyzing the 3D data of the human
skeleton extracted by the Kinect Azure.

A customized experimental protocol is proposed to test the presented framework that will
be detailed just below; however, multiple experimental protocols featuring a different target
sequence, different target positions, or a different sequence of perturbations might be used
according to the specific needs. In this specific test study, a template block (see Figure 1.8A)
is defined considering a predefined sequence of targets that are positioned at the center or the
sides of the virtual road. The used sequence has been chosen to ensure that the number of
targets on the right side is equal to the number of the ones on the left side, and the avatar
must not directly move between the two road sides. It is worth reminding that the targets
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Straight (STR) Center-to-Side (C-S) Side-to-Center (S-C)

Fig. 1.8 Three directions can be recognized for the line connecting two consecutive targets:
for accomplishing the collection task, the avatar can either keep the direction in the straight
(STR) case, or move from the center to one of the sides in the center-to-side (C-S) case, as
well as from one of the sides to the center in the side-to-center (S-C) case.

are rendered one by one so that the subject is fully focused on just one target at a time, thus
avoiding any anticipatory effect.

Given the definition of a block, the experimental protocol consisted of four subsequent
blocks, each of which is characterized by a different mapping condition. As shown in
Figure 1.8B, the defined sequence of the conditions is as follows: 1) No Perturbations, 2)
Gain, 3) Reversal and 4) Reversal+Gain. The fixed order of succession of the conditions
does have an impact on the results due to the learning effect and that the specific tested
experimental protocol has not been properly designed for a standard motor control/learning
study. In fact, the objective of the study is to propose a system that can be used to assess
visuo-motor adaptation capabilities and verify that the introduced perturbations produce
some effects that can be captured by the performance metrics. More specifically, the avatar’s
motion on the ML plane occurs in the same sense (concordant) as the real one in the first two
blocks, whereas its lateral movements occur in the opposite sense (discordant) with respect
to the participant’s ones in the last two blocks. In the first block no perturbation is included,
thus making the lateral movement of the virtual character occur in the same direction and
with no amplification with respect to the real displacement; in the second block the avatar’s
position along the ML axis is amplified such that the needed real range of motion is reduced
by 25%. The third block is characterized by the Reversal condition, and, finally, in the last
block the Reversal+Gain condition has been applied using the same gain factor of the second
block.

Comparisons and Statistical analysis The metrics extracted in the different conditions
have been compared to ascertain whether they are able to capture the differences among
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the defined mapping conditions. Moreover, the direction of the minimum length path (i.e.,
the straight line that passes through the initial avatar position and the target position) is
believed to be an important factor that can be analyzed, since it might have an impact on the
performance. In detail, as shown in Figure 1.8, three directions may be recognized: straight
(STR), center-to-side (C-S), and side-to-center (S-C), where the side may be either left or
right. Therefore, the following comparisons are performed considering all subjects:

• Comparison 1 - among mapping conditions;

• Comparison 2 - among mapping conditions grouped by directions;

• Comparison 3 - among directions grouped by mapping conditions.

Concerning comparison 1, for each subject, the mean of kinematic features and the
percentage of collected objects have been computed within the mapping condition; regard-
ing comparison 2, for each subject, the mean of kinematic features and the percentage
of collected objects have been computed within the mapping condition considering each
direction independently; in addition, as regards comparison 3, for each subject, the mean
of kinematic features and the percentage of collected objects have been computed within
the direction considering each mapping condition independently. These comparisons are
pictorially depicted in the boxplots reported in Figures 1.9-1.13.

After that, statistical comparisons have been performed with the non-parametric Fried-
man’s test, since the hypothesis of Gaussian distribution is excluded by the limited number
of children involved in this study. When finding a significant difference in this way, a deeper
analysis has been performed through a pairwise post-hoc test with Bonferroni’s correction,
whose significant level has been set to p < .05. All the analysis has been conducted by using
Matlab 2021b.

1.2.3 Results

This subsection presents the results of the twofold test that have been performed for the
proposed framework: the outcomes concerning the usability, safety, and feasibility in a
clinical context are reported in Subsubsection 1.2.3.1, whilst the results about the efficacy of
the designed features in capturing the difficulty modification due to mapping perturbations
are described in Subsubsection 1.2.3.2.
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1.2.3.1 Feasibility in a clinical context

The proposed framework targeting VMA has met different feasibility requirements such that
it is usable in a clinical context. At first, setting up an experimental session is not excessively
time-consuming since very few and fast calibration procedures are needed and, particularly,
a marker-less human-skeleton tracking system has been employed. It is well known that
clinical experimental sessions should be characterized by fast procedures also because it
is important to keep participants interested and motivated during the entire experimental
procedure.

Moreover, the user-friendliness of the software has been guaranteed by offering a protocol
that is simple to follow for clinicians. Another aspect that played an important role is
related to the possibility to define protocols that are tailored to the individual anthropometric
characteristics, thus aiming to adapt the game difficulty to the specific subject and allowing
for inter-subject comparisons.

Finally, the proposed framework has proved to ensure children’s safety, since neither
forms of sickness (e.g., vertigo) nor losses of balance have been reported by participants;
nevertheless, the risk of falls coming from the potential loss of balance is prevented by means
of the supporting components with which the used treadmill is equipped.

1.2.3.2 Quantitative metric validation

This subsubsection describes the obtained results concerning the comparisons listed in
Paragraph 1.2.2.2. More in detail, mapping conditions, mapping conditions grouped by
directions, and directions grouped by mapping conditions have been compared. Such
comparisons are illustrated in the boxplots reported in Figures 1.9-1.13.

Differences among mapping conditions Statistically significant differences have been
revealed for each feature when comparing mapping conditions regardless of the direction.
The outcomes of the proposed metrics for evaluating difficulty alteration among mapping
conditions are pictorially depicted in the boxplots reported in Figure 1.9.

CT (Collected Targets) is the percentage of the objects collected by the avatar. In
this regard, Friedman’s test has revealed that the CT significantly differs among mapping
conditions with p < .001. Besides, according to post-hoc tests the CT in the conditions
with reverted mapping is significantly lower than the CT in both mappings without reversal;
instead, no statistically significant differences have been found in the CT between the two
conditions without reversal, as well as between the two mappings including reversal. In fact,
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Fig. 1.9 The boxplot of the distribution of the chosen features computed in each mapping
condition with * representing statistically significant comparisons with p < .05, ** repre-
senting statistically significant comparisons with p < .01, and *** representing statistically
significant comparisons with p < .001.

the CT in Reversal is significantly lower than the one in No Perturbations with p < .001 and
the one in Gain with p < .01. Similarly, the CT in Reversal+Gain is significantly lower than
the one in No Perturbations and the one in Gain, with p < .001 in both cases.

Reminding that NA (Normalized Path Integral Error) is a normalized measure of the
area between the actual path and the length of the MLP, Friedman’s test has shown statis-
tically significant differences in NA among mapping conditions with p < .001. Post-hoc
tests have revealed the mapping without perturbations is significantly different from the
mappings including either one or two perturbations: in particular, the NA in No Perturba-

tions is significantly lower than the one in Gain and Reversal with p < .01, and the one in
Reversal+Gain with p < .001.In addition, the NA in Gain is significantly lower than the NA
in Reversal+Gain with p < .05.

As concerns NPL (Normalized Path Length), which is the length of the path actually
covered by the avatar divided by the length of the MLP, Friedman’s test has led to statistically
significant differences in NPL with p < .001 among mapping conditions. Remarkably, in the
mapping conditions characterized by the Gain the NPL is significantly higher than the NPL
observed within the conditions without Gain: in fact, the NPL in Gain is significantly higher
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than the one in No Perturbations, as well as the one in Reversal+Gain is significantly higher
than the one in Reversal, with p < .001 in both cases. The NPL in Reversal+Gain is also
significantly higher than the one in No Perturbations with p < .001, whilst no statistically
significant differences have been reported between the NPL in Gain and the one in Reversal.

With regards to IAE (Initial Angle Error), which indicates the initial angular deviation
from the MLP direction, Friedman’s test has revealed that the IAE significantly differs among
all conditions with p < .001. The IAE trend among the tested conditions is very similar to
the NPL trend. The IAE measured in the mapping conditions characterized by the Gain

is higher than the IAE observed within the conditions without the Gain: the IAE in Gain

is significantly higher than the one in No perturbations, and the IAE in Reversal+Gain is
significantly higher than the one in Reversal, with p < .01 in both cases. Besides, the IAE in
Reversal is significantly lower than the one in Gain with p < .001.

Differences among mapping conditions grouped by directions The comparisons that
have been presented above are useful to provide a general overview of the differences that
have been observed among the different mapping conditions. However, a deeper analysis
is necessary and has been performed to investigate the role of the different MLP directions
(see Figure 1.8). In particular, this Subsection presents the results obtained when comparing
the different conditions focusing on each of the three possible directions: straight (STR),
center-to-side (C-S), and side-to-center (S-C). The results of these comparisons are pictorially
depicted in the boxplots reported in Figure 1.10-1.11.

Friedman’s test has revealed that CT significantly differs among mapping conditions
within all directions with p < .01. Within each direction the trend of differences among
the mapping conditions is almost similar both to each other and to the differences observed
in the general comparison (Subsubsection 1.2.3.2). In fact, it turned out that the CT in No

Perturbations is higher than CT in Reversal+Gain in all directions, but this difference is
statistically significant only within the STR and the S-C directions with p < .01. Similarly,
the CT in Gain is higher than the one in Reversal+Gain, but this comparison is statistically
significant only in the STR and S-C directions with p < .01 and p < .001 respectively. On
the other hand, the CT in Reversal is lower than the one in Gain in all directions, but this
relation is statistically significant only in the S-C direction with p < .05. Moreover, the CT
in Reversal always lessens the one in No perturbations, but this is statistically significant
only in the C-S direction with p < .05.

Concerning the NPL, it is worth noting that within each direction the relative differences
among the mapping conditions are almost identical both to each other and to the differences
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Fig. 1.10 The boxplot of the distribution of the chosen features computed in each mapping
conditions grouped by directions with * representing statistically significant comparisons
with p < .05, ** representing statistically significant comparisons with p < .01, and ***
representing statistically significant comparisons with p < .001.
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observed in the general comparison (Subsubsection 1.2.3.2). Friedman’s test has proved
that this metric is significantly different among mapping conditions with p < .001 within all
directions. More specifically, within all directions the NPL in No Perturbations has proved to
be significantly lower than the one in Gain, and the NPL in Reversal significantly lower the
one in Reversal+Gain, with p < .001 in both cases. In addition, post-hoc tests also revealed
that the NPL in No Perturbations is significantly lower than the one in Reversal+Gain with
p < .001 within all directions. On the other hand, the NPL in Reversal is higher than the
one in No Perturbations within all directions, but this relation has not resulted statistically
significant in any direction. Similarly, the NPL in Gain is higher than the one Reversal within
all directions, but significant differences have been yielded only within the C-S and S-C
directions with p < .05 in both cases.

Concerning NA, Friedman’s test has shown significant differences in NA among mapping
conditions within all directions with p < .001. The relative differences among conditions
of No Perturbations, Gain and Reversal+Gain are similar both to each other and to the
differences observed in the general comparison (Subsubsection 1.2.3.2). The main observed
difference concerns the NA values measured during the Reversal: in S-C and STR the values
are comparable to the No Perturbations ones, whereas in C-S the NA values are higher
than both No Perturbations and Gain values. More in detail, the NA in No Perturbations

is significantly lower than the one in Reversal+Gain within all directions with p < .001;
the NA in No Perturbations also lower the one in Gain in all directions, but this difference
is statistically significant only within the C-S and S-C directions with p < .05 and p < .01
respectively. Furthermore, the NA in Reversal is significantly higher than the one in No

Perturbations only within the C-S direction with p < .001, whilst their medians are almost
the same in the remaining directions. However, the NA in Reversal is always lower than
the one obtained in Reversal+Gain, although this difference is statistically significant only
within the S-C and STR directions, with p < .01 and p < .05 respectively.

Ultimately, regarding the IAE values, it is worth noting that the relative difference among
the conditions in the S-C and STR directions are analogous both between these two directions
and with respect to the general comparison (Subsubsection 1.2.3.2). Differently, the IAE
values of Reversal and Reversal+Gain registered in C-S are comparable with values acquired
in No Perturbations and Gain. According to Friedman’s test, the IAE significantly differs
among mapping conditions within all directions with p < .001. Nonetheless, post-hoc tests
have led to statistically significant differences only within the C-S and S-C directions. In
fact, the IAE in No Perturbations is always lower than the one in Gain, but this difference
is statistically significant only within the C-S direction with p < .01. On the other hand,
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Fig. 1.11 The boxplot of the distribution of the chosen features computed in each mapping
conditions grouped by directions with * representing statistically significant comparisons
with p < .05, ** representing statistically significant comparisons with p < .01, and ***
representing statistically significant comparisons with p < .001.
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the IAE in Reversal always lessens the one in Reversal+Gain, but a statistically significant
difference has been yielded only within the S-C direction with p < .05. Furthermore, the IAE
in Gain is higher than the one in Reversal within the S-C direction with p < .001, whereas no
statistically significant differences have resulted within the remaining directions. Similarly,
the IAE in No Perturbations is either significantly lower or higher than the one in Reversal

within the C-S and S-C directions, with p < .01 and p < .001 respectively.

Differences among directions grouped by mapping conditions In this subsection the
results related to the comparisons among the three directions for each specific mapping
condition are presented (see the Figure 1.12-1.13). The comparisons presented in the
previous subsection allowed for scrutinizing the dependence between the differences among
the mapping conditions and the directions. The comparisons presented in this section allow
for directly investigating the role of the direction given a specific mapping condition.

Friedman’s test has revealed that CT does not significantly differ among the directions
within Reversal+Gain, whereas it has happened for all the remaining conditions with p < .05.
Furthermore, the CT in the C-S direction is always lower than the one in the STR direction
within all conditions, but this relation is statistically significant only within No Perturbations

and Gain, with p < .05 and p < .01 respectively. On the other hand, the CT in the STR
direction is higher, but not significantly, than the one in the S-C direction only within No

Perturbations and Reversal+Gain, whilst the CT median in the STR direction is either
equal or lower than the one in the S-C direction within the Gain and Reversal respectively.
Similarly, the CT in the C-S direction significantly lessens the one in the S-C direction within
Gain and Reversal, with p < .05 in both cases, whereas the medians in the C-S and S-C
directions are the same within No Perturbations and Reversal+Gain.

When focusing on the NPL, it mainly emerges that this feature does not depend on the
direction with very few not marked exceptions. In fact, the only significant findings are: the
NPL in the S-C direction is significantly higher than both the one in the C-S direction within
No Perturbations and than the STR direction within Gain, with p < .05 in both cases.

With regard to NA Friedman’s test has reported statistically significant differences
among directions within all conditions with p < .001. Two different behaviors emerged
when comparing the mapping conditions without reversal with the mapping conditions
characterized by the reversal. Specifically, the NA values measured in S-C are higher than
the values acquired in the other two directions in both No Perturbations and Gain. For
what concerns the Reversal and Reversal+Gain, it turned out that the NA values in C-S are
higher than the NA values in S-C, which in turn are higher than the NA values acquired in
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Fig. 1.12 The boxplot of the distribution of the chosen features computed in each direction
grouped by mapping conditions with * representing statistically significant comparisons with
p < .05, and ** representing statistically significant comparisons with p < .01
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Fig. 1.13 The boxplot of the distribution of the chosen features computed in each direction
grouped by mapping conditions with * representing statistically significant comparisons
with p < .05, ** representing statistically significant comparisons with p < .01, and ***
representing statistically significant comparisons with p < .001.
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STR. More in detail, the NA in the C-S direction is higher than the one in the STR direction
within all conditions, even if this relation has proven to be statistically significant only within
Reversal and Reversal+Gain, with p < .001 and p < .01 respectively. Analogously, the NA
in the STR direction lessens the one in the S-C direction within all conditions, although this
difference is statistically significant only within No Perturbations and Gain with p < .001,
as well as within Reversal+Gain with p < .05. The NA in the S-C direction is also higher
than the one in the C-S direction within No Perturbations with p < .05 and Gain with no
statistically significant differences; instead the NA in the S-C direction significantly lessens
the one in the C-S direction within Reversal with p < .01, and within Reversal+Gain though
with no statistically significant differences.

Ultimately, the IAE has proved by Friedman’s test to be significantly different among
directions only within No Perturbations with p < .001; post-hoc analysis has revealed
statistically significant differences among directions within No Perturbations. In particular,
the IAE values in the C-S direction are lower than the ones in the S-C direction within
No Perturbations with p < .001, and within Gain though with no statistically significant
differences; on the other hand, the median in the C-S direction is either slightly higher
or equal with respect to the one of the S-C direction within Reversal and Reversal+Gain,
respectively. Similarly, the IAE in the C-S direction is lower than the one in the STR direction
within No Perturbations and Gain, although not significantly, whereas the IAE median in the
C-S direction is either slightly higher or equal with respect to the IAE median in the STR
direction within Reversal and Reversal+Gain respectively. Furthermore, the IAE in the STR
direction is lower than the one in the S-C direction within No Perturbations with p < .05, as
well as within Reversal although with no statistically significant differences; on the other
side, the IAE median in the STR direction is equal to the IAE median in the STR direction
within Gain and Reversal+Gain respectively.

1.2.4 Discussion

This work presents a VR-based framework that has been designed and implemented to
evaluate the visuomotor adaptation capabilities during locomotion tasks. The experimental
protocol considers a subject who is asked to directly control the position of an embodied
avatar in a custom virtual world with the goal of collecting random objects that appear
along a predefined path. The real locomotion task is performed on a treadmill, which allows
a translation of the subject’s pelvis along the mediolateral axis. The positional mapping
between the subject and the avatar can be altered in specific phases of the game to assess the
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adaptation abilities of the subject by introducing two kinds of perturbation: the amplified and
reversed movement of the avatar with respect to the subject’s one. The proposed framework
integrates also a set of scores/metrics that can be used to quantitatively evaluate how well
the task has been performed in each phase of the game. Such metrics are the percentage
of collected targets (CT), and three variables extracted from the trajectories covered by
the avatar during the game: the normalized path length (NPL), the Normalized Area (NA),
and the Initial Angle Error (IAE). It is worth mentioning that the more the value of any
trajectory-based feature, the worse the performance and the more challenging the exploration
task.

Thirteen healthy children were recruited to preliminary test the proposed system and
validate the designed set of metrics. Each subject was asked to collect 64 objects placed in a
pseudo-random position along the path. As described in Paragraph 1.2.2.2, four different
kinds of mapping have been tested during each session: No perturbations, Gain, Reversal,
and Reversal+Gain. During the experimental sessions, the framework proved to be safe, since
participants neither have reported any forms of sickness nor have risked falling. Besides,
subjects’ motivation has been preserved through a quick initial calibration procedure, a
markerless tracking configuration, an intuitive interface for clinicians, and a realistic gait
simulation that is tailored to individual motor abilities and anthropometric characteristics.

Concerning the tested experimental protocol, the virtual objects have been placed so that
the avatar should ideally move in three directions within the virtual road to ensure a path
variability, i.e., straight (STR), center-to-side (C-S), and side-to-center (S-C), under the four
mapping conditions. In order to evaluate the capability of the visuomotor perturbations in
making the task more difficult and validate the relevance of the proposed features, a set of
comparisons has been performed and here listed:

• Comparison 1 - among mapping conditions;

• Comparison 2 - among mapping conditions grouped by directions;

• Comparison 3 - among directions grouped by mapping conditions.

The quantitative results related to all comparisons and metrics have been presented
and reported in detail in the previous subsection. The results have surely shown that there
are statistically significant differences among both the proposed mapping conditions and
the different considered directions for all computed metrics. Even though the presented
work is not a proper/traditional motor control or motor learning study, the obtained results
have been deeply analyzed and the related discussion are reported below. The proposed
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comparisons and the corresponding argumentations might be useful to analyze the results that
would be observed in a study designed to examine human motor control under visuomotor
perturbations in either healthy or pathological subjects. Before running all the experimental
sessions, the following hypotheses were made:

• the Reversal is more challenging than the Gain, and Reversal+Gain is more difficult
than Reversal and Gain;

• the targets positioned along the STR direction are easy to pick, since no movement
along the ML axis is required if the previous object has been collected.

Visual perturbations have effectively made the exploration task more complicated (see
Subsubsection 1.2.3.2). Analyzing the comparisons among the mapping conditions, it turned
out that the “reversal factor” (see Reversal and Reversal+Gain) had a higher influence on the
percentage of collected targets and the normalized area, whereas the “gain factor” worsened
the values of normalized path length and initial angle error. These results indicate that the
reversal actually makes the target difficult to collect, whereas the gain produces several
corrections of the trajectory, i.e., higher NPL values, and an initial bigger deviation, i.e.,
higher IAE values.

When comparing the different mapping conditions within each specific direction (see
Paragraph 1.2.3.2), it emerged that the observed differences for the percentage of collected
targets and the normalized path length are similar to the general differences among the
values averaged among the directions. Such similarity in terms of relative differences is also
confirmed for the normalized area and initial angle error with the exception of the Center-
to-Side direction. In fact, in this specific direction, the relation between the metric values
acquired during the “reversed” mappings and the ones acquired during the “not reversed”
mappings is different if compared with the general comparison (see Subsubsection 1.2.3.2). In
particular, the Center-to-Side direction seems to require more effort than the other directions.
The following motivation could explain such results: if the avatar is at the center of the
virtual road and the target is on the side, the subject has a higher chance to choose the wrong
direction since he/she can physically move either on the left or on the right; on the contrary, if
the avatar is on the side of the road (this means that the subject is on the side of the treadmill)
and the target is at the center of the road, the movement allowed to the subject can only be in
one sense because of the physical boundaries, i.e from the side on the center of the treadmill.

This work also focused on the direct comparison of the values acquired in each direction
for each specific mapping condition (see Paragraph 1.2.3.2). The normalized path length
is a metric that is almost independent of the direction of the path towards the target. More
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specifically, Straight has proved to be the direction in which picking up objects is easier than
in the other directions, since both CT and NA values in the STR direction are better than
the ones acquired in both the C-S or S-C directions within almost all mapping conditions.
On the other hand, the collection task was more complicated in the C-S direction than in
the S-C direction when a reversal is introduced, since the CT, NA, and IAE in the C-S
direction are worse than the ones in the S-C direction within Reversal. Interestingly, the
angular error obtained in the S-C direction is worse than in either the STR direction or the
C-S direction when no reversal is applied, as IAE in the S-C direction is higher than the one
in the remaining directions within No Perturbations and Gain. This may be due to the fact
that subjects tend to align as soon as possible the avatar to the target location, i.e., the center
of the road, thus increasing the angular error at the beginning of the trial.

1.2.5 Conclusions

This work presents a framework based on serious games in virtual reality for the evaluation
of visuomotor adaptation (VMA) capabilities during a motor task. This latter consists in the
control of a whole-body avatar in a visually perturbed virtual scenario while walking on a
treadmill. Besides, the serious game has ensured participants’ motivation during experimental
sessions by means of quick calibrations and a realistic gait simulation of the avatar, which is
supposed to collect virtual targets pseudo-randomly positioned along the virtual path. All
the performed experimental sessions have qualitatively proved the feasibility of using the
framework in a clinical context, due to the setup safety and the software user-friendliness.
In addition, it effectively stimulated visuomotor adaptation through the mapping alterations
(e.g., gain and reversal of the avatar’s position along the ML axis), as encoded by a set of
metrics that is made up of the percentage of collected targets and three features extracted by
the avatar’s trajectory. The comparison of the computed metrics in different game conditions
has demonstrated the efficacy of the implemented visuomotor perturbations and the validity
of the introduced metrics in describing the quality of the performed task. Most notably, the
results indicate that the reversal increases the difficulty of the object collection, whereas
the gain leads to correct the trajectory many times and to deviate with a higher angle at the
beginning of the trajectory. The main limitation of the study is related to the experimental
sample size, which is unarguably small. Such a limitation could be the beginning of a
further recruitment campaign aimed to perform future investigations in the field of either
motor control or motor learning. Another important limitation of the study is represented
by the fixed succession of the mapping conditions, since the results might be biased by the
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learning effect. Furthermore, the proposed system may be exploited in practical clinical
settings since it might offer novel insights into the quantitative assessment of neuro-motor
disorders. Several objective parameters can be measured and exploited for analyzing gait, as
well as to corroborate studies that are focused on human upper districts. In addition, new
proposed biomarkers may be correlated with traditional clinical scores that are associated
with pathological conditions of either a cognitive or a motor nature. Such deep study could be
used to better cluster the patients with the aim at proposing customized and targeted therapies.
Therefore, the proposed feature-based approach can pave the way for clinical assessments
of pathologies that determine either motor or cognitive impairments: for instance, VMA
capabilities can be assessed to study the alteration of the sense of agency in children with
cerebral palsy. In so doing, it would be possible to integrate and enhance the conventional
rehabilitative programs by giving additional biomarkers and thus propose new solutions to
integrate the existing clinical pathways [95]. In addition, a HMD may be used to design
balance experiments while offering an even higher sense of embodiment through a more
immersive experience and allowing for the simulation of high-fidelity in a safe manner
[96–99]. However, specific feasibility tests must be run since an excessive mismatch between
real and virtual movements with an HMD might cause cyber-sickness effects [100, 101]
and serious losses of balance [102]. Ultimately, another important challenge that might be
addressed concerns the possibility of using artificial intelligence to automatically adapt the
game difficulty to the specific capabilities of the subject by the real-time analysis of the
variables and metrics recorded by the system [103].

1.3 A Novel Framework Based on Deep Learning Architec-
ture for Continuous Human Activity Recognition with
Inertial Sensors

Frameworks for human activity recognition (HAR) can be applied in the clinical environment
for monitoring patients’ motor and functional abilities either remotely or within a rehabili-
tation program. Deep Learning (DL) models can be exploited to perform HAR by means
of raw data, thus avoiding time-demanding feature engineering operations. Most works
targeting HAR with DL-based architectures have tested the workflow performance on data
related to a separate execution of the tasks. Hence, a paucity in the literature has been found
with regard to frameworks aimed at recognizing continuously executed motor actions.
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This section presents the design, development, and testing of a DL-based workflow
targeting continuous human activity recognition (CHAR). The model was trained on the data
recorded from ten healthy subjects and tested on eight different subjects.

This section is organized as follows: Subsection 1.3.1 illustrates the related works in the
context of human activity recognition; Subsection 1.3.2 describes materials, which includes
the system for collecting inertial data during the execution of ADLs, and the methodology
adopted in this work, which comprises a preprocessing phase, a DL architecture based on a
custom CNN, and statistical analysis. The outcomes of the ADLs classification are provided
and discussed in Section 1.3.3 and discussed in Subsection 1.3.4. Ultimately, Subsection 1.3.5
draws the final remarks about the conducted study and delineates ideas for future works.

1.3.1 Related Works

The recent advances in medicine have improved life conditions and increased life expectancy
so that healthcare systems have to cope with the aging of the global population [104, 105].
In addition, there are multiple categories of people experiencing motor disorders, from
Parkinson’s patients [106] to post-stroke individuals [107]. The psycho-motor frailty of
these subjects can result in sedentary lifestyle choices that may aggravate their condition,
thus raising the impact on the health system [108]. On the contrary, to pursue safety and
well-being, the degeneration of their motor skills ought to be prevented by stimulating
beneficial motor behaviors like an active lifestyle; therefore, recognizing activities of daily
living (ADLs) can help monitor human habits and assess motor actions [109].

The scientific literature has given more and more attention to the field of human activity
recognition (HAR), which aims to classify human actions by exploiting sensor data [110].
HAR has covered various contexts, from industry [111, 112] to sport [113], but a wider
application lies in the medical field [110, 113–117]: in this realm, subjects’ activities can
be remotely registered outside the clinic [118] and clinicians can evaluate their functional
abilities after treatment [119, 120]. HAR can also enhance a rehabilitative program inside
the clinic for the sake of an assist-as-needed approach: in particular, recognizing the motor
actions performed by patients (e.g., post-stroke individuals or people with psychomotor
dysfunction) can allow for correcting motions or encouraging further exercise when required
[121].

In addition, even patients with mental disorders (e.g., children with autism spectrum
disorder) can be continuously monitored so that stereotypical actions (e.g., arm flapping) that
are symptoms of anxiety may be identified and promptly counteracted [122].
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A typical HAR experimental protocol encompasses a set of activities that the subject is
asked to perform. These motor tasks may involve mainly upper body [112, 123], or lower
body (e.g., walking or climbing/descending stairs) [118, 120, 124, 125], or even require
the individual to drive upper- and lower-extremities in a proper combination (e.g., lying
in bed) [126–132]. Furthermore, the protocol to collect data for HAR purposes tends to
be designed such that ADLs are performed separately, i.e., a batch of repetitions of one
of the activities to be recognized is asked to be executed by every subject [28]. However,
this separate execution does not account for the continuous nature of human activities,
which are more likely made successively [27]; therefore, the data collection should entail
the recognition of uninterruptedly performed ADLs, namely continuous human activity
recognition (CHAR) [30]. Such workflow can address the natural transition from one activity
to another that humans execute in daily life, thus making the recognition system more
spendable in the field of remote health monitoring [27].

A framework targeting HAR comprises two main components: the acquisition system,
which collects several signals that are descriptive of the movement performed by the subject,
and the classification pipeline, which processes the collected data and returns the type of
activity [132].

The acquisition system may differ in the type of adopted sensors and the modality
employed to acquire the signal describing human movement. There exist two main categories
in which to classify the type of sensors: fixed sensors (e.g., videocameras, proximity and
light sensors) are installed at specific locations of the environment and monitor activities in
a confined area, whereas wearable sensors are directly worn by the subject, as in the case
of inertial measurement units (IMUs), pressure and heart rate sensors [108]. Though being
previously utilized to accurately label activities [109, 118], fixed sensors like cameras are
not very suitable when ADLs execution requires subjects to move outside the area covered
by them [127]; besides, cameras suffer from variable illumination, occlusion occurrence,
presence of shadows, and time-varying contrast, especially in outdoor environments; such
disadvantages, together with privacy issues and their lack of portability prevent them from
continuously monitoring human activities [133]. In light of these limitations, most of the
research in the HAR field, especially for remote monitoring, has preferably adopted wearable
sensors because of their low cost and higher flexibility in providing continuous monitoring
[134].

The number of types of sensors comprised in a HAR-oriented setup leads to distinguishing
two approaches for data acquisition, which are unimodal and multimodal approaches. The
unimodal approach refers to the use of only one modality (i.e., type of sensor) [111, 129–
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131, 135], whereas the multimodal approach aims to integrate data from different sources by
using multiple types of sensors, e.g., wearables like electromyography (EMG) sensors [125].
However, EMG signals are not widely used in HAR frameworks since their measurement
are affected by electrical noise and motion artifacts due to human sweat [136]. Therefore,
most of the frameworks addressing HAR have focused on the unimodal approach, thanks
to which information from different sensors of the same type (e.g., IMU sensors) can be
integrated [105, 137–139]. Ultimately, the acquisition paradigm of a HAR system exploiting
IMUs may change according to the configuration of the sensors, which is given by both their
number and their location on the human body. The amount of sensors in a HAR-targeting
setup depends on the activities to be recognized: the exploitation of a single sensor may
be enough when ADLs require to drive only one degree of freedom of one human joint
(e.g., wrist flexion/extension in case of upper-limb driven actions [123] or leg extension from
sitting position and leg flexion from standing position for lower-limb tasks [140]); on the
other hand, a higher number of sensors is needed in case of more complex ADLs that target
multiple joints (e.g., walking, sitting on a chair, lying-down on a surface). The activities to be
classified have an impact on the sensor placement, which may be determined starting from
anatomical landmarks which are body areas that are close to anatomical points of interest
(e.g., lower-limb joints for recording human locomotion).

The recognition of human actions in a workflow targeting HAR requires a pipeline
entailing a sequence of steps that may include data processing, feature extraction and
artificial intelligence (AI) techniques to perform classification: at first, the signals acquired
from sensors are processed to reduce noise [141], cope with missing values and remove
possible artifacts [112, 142]; secondly, data are segmented to identify the portion of the
preprocessed signals that are informative of the executed activities [143]; signals can be
optionally converted into images as well [118, 120, 123, 131, 144, 145]; afterward, features
are extracted for each segment from either images or time-series data [104, 105, 138, 146]
to capture meaningful characteristics of the performed activities; ultimately, these features
and their corresponding ground truth labels are used as input to train a classifier, whose
performance is evaluated based on quantitative criteria, such as accuracy [11].

The HAR-oriented pipeline may differ according to the AI model used to discriminate
ADLs. On the one hand, Machine Learning (ML) procedures are trained on hand-crafted
features [127, 132], but implies a manual extraction based on domain knowledge that can be
increasingly time-consuming as the dataset dimensionality enlarges due to the need for the
high amount of repetitions and subjects for the sake of generalizability [131]. On the other
side, Deep Learning (DL) architectures can be directly fed by raw data and automatically
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learn patterns through the process of backpropagation without any prior knowledge of the
signals [11].

Convolutional Neural Networks (CNNs) are the most widely employed among the
DL architectures proposed in the studies addressing HAR [30, 111, 125, 126, 130, 138,
143, 146]. CNNs usually work on images by means of two-dimensional convolutions for
practical problems as defect detection [11, 147]; notwithstanding, their one-dimensional
variant is preferred because it allows working directly on time-series signals instead of
their corresponding images, thus reducing the computational cost [30]. Furthermore, CNNs
employed in HAR frameworks may have either a sequential or a multi-branch structure: in
the former case, layers process all the IMU signals of the input dataset [126], whereas in the
latter case each branch, which may be fed by one of the IMUs included in the experimental
setup, is computed in parallel with the others [111, 130].

1.3.2 Materials and Methods

The framework that is proposed to address continuous human activity recognition is com-
prised of two main stages, which are a data collection stage explained in Subsubsec-
tion 1.3.2.1, and a classification pipeline reported in Subsubsection 1.3.2.2.

The acquisition of inertial data is accomplished by means of four IMU sensors, whose
components are given in input to a DL-based model. For the sake of performing CHAR,
this architecture is trained on IMU signals coming from multiple separate executions of four
ADLs before being tested on the inertial data that are related to a multiple uninterrupted
execution of motor tasks. This framework targeting CHAR is depicted in Figure 1.14.
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Fig. 1.14 The framework oriented to CHAR: inertial data are collected from four sensors
placed on the human body; each component of the IMU sensors is used to feed a multi-branch
DL-based architecture; this model is trained on the data related to a separate execution of
four ADLs that are Lying-down (LD), Sit-to-stand (S2S), Walking (W), and Turning (TN);
then, it is tested on the signals coming from motor actions that are performed uninterruptedly.

1.3.2.1 Data Collection

Participants Eighteen healthy subjects (34.94±11.58 years old, eight males) are recruited
from the staff of the IRCCS Maugeri (Bari, Italy). These participants differ in age, weight,
height, and anthropometric characteristics (e.g., length of body segments) for the sake of
higher data heterogeneity.

All subjects are right-handed with no motor or cognitive pathologies. Each subject is
informed about the execution of the required activities prior to the experimental session.
Besides, they were asked to perform tasks freely (i.e., with no restrictions on their body
movements) to resemble a daily life situation.

Activities The activities to be executed were defined in accordance with the clinical staff
of the IRCCS Maugeri. Four ADLs were selected among the ones identified as the most
frequently performed in everyday life in a survey about ADL occurrence in HAR datasets
[148].

The ADLs of this study differ in their biomechanical characteristics and can be described
as follows.
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- Walking on a surface with no asperities mainly requires alternating flexion-extension
movements of the three lower limb joints (i.e., hip, knee, ankle) and may be combined
with arm swinging. Note, that leg motion during walking is often associated with arm
swinging to provide increased balance.

- Turning while walking typically requires the coordination of various movements,
including the intra- and extra-rotation of both lower-limb joints (mainly hips) and
trunk.

- Sit-to-stand transition, i.e., rising from a chair, principally entails hip and knee ex-
tension, as well as trunk rotation to bend/straighten the torso for keeping balance; it
possibly involves additional leverage on arms or hands when the individual needs them
for a lift that is both greater and safer.

- Lying-down on a surface (e.g., a couch), consists of two phases: the subject first
reaches a sitting position, and then moves to the lying position through motor actions
that mostly include hip and knee flexion/extension, trunk rotation and hip and knee
abduction/adduction. In addition, this transition from the standing to the lying position
can be supported by recruiting the wrist to lean hands on the couch for the sake of either
a safer or a more comfortable motion. Subsequently, this motor action is completed by
fully relaxing the body with the flexion/extension of the hip, knee, and trunk, as well
as by resting their hands and arms on the bed.

IMU Sensors The number and placement of IMUs must be properly designed since they
can have an impact on the performance of a HAR pipeline.

Hence, four sensors have been chosen and placed on the two sides of the human pelvis,
the right wrist (i.e., the wrist of the dominant arm), and the sternum (see Figure 1.15), since
they are anatomically close to the human joints that are driven during the execution of
the selected ADLs. More in detail, the bilateral placement on the pelvis enables accurate
monitoring of the pelvis movements; the sensor on the right wrist is essential for recording
the arm swing that assists walking, as well as the use of hands to support lying-down action;
the sensor placed on the sternum is useful to monitor the trunk, which mainly contributes in
sit-to-stand and lying-down activities.

These sensors are attached to the subjects by straps because they are easy to wear and
adaptable to the different body sizes of the subjects.
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Fig. 1.15 The placement chosen for the sensor in the proposed framework: two IMUs are
located on the two sides of the human pelvis to monitor motor actions driving the lower
limbs (e.g., walking, sit-to-stand, lying-down); one sensor on the sternum serves to register
the trunk contribution to accomplishing sit-to-stand and lying-down activities; the sensor
on the right wrist (i.e., the wrist of the dominant arm) aims at acquiring the possible use of
hands during lying-down, as well as the arm swing while walking.

The experimental data are collected with the Motion Studio system by APDM (APDM
Inc, Portland, OR, USA, https://apdm.com (accessed on 15 January 2024). The system (see
Figure 1.16) consists of the following three main components:

- a set of wireless body-worn IMUs, called OpalTM sensors, measuring 43.7 × 39.7 ×
13.7 mm (LxWxH), each with a docking station;

- an Access Point for wireless data transmission and synchronization of the independent
sensors;

- the Motion Studio software to manage the acquisitions of the recorded data.

https://apdm.com
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Access Point Docking Station

Fig. 1.16 Motion Studio system with IMU sensors, Access Point, Docking Station, and PC.

Each Opal sensor is wireless connected by Bluetooth communication protocol to a remote
PC, and includes a 3-axis 14-bit accelerometer to measure linear acceleration, a 3-axis 16-bit
gyroscope to record angular velocity, and a 3-axis 16-bit magnetometer for magnetic field
intensity [149].

The Motion Studio software was used to record data in real time with a sampling rate
of 128 Hz. Each recording session returns signals from the accelerometer, gyroscope,
and magnetometer, whose combination has already proven to outperform a subset of IMU
components in related works about HAR [150].

Experimental Protocol The experimental sessions are performed in the MARLab—Movement
Analysis and Robotic Lab—of the IRCCS Maugeri in Bari (Italy). The protocol took approx-
imately 40 minutes to be completed by each subject. A twofold experimental protocol ix
proposed in order to entail the separate execution of ADLs for training and seamless ADLs
for testing the proposed model. As a result, two datasets have been acquired to accomplish
CHAR with the DL-based classifier.

One dataset, which is used for training the model, used 10 subjects (four males and
six females) who performed each activity multiple times and separately, i.e., each subject
repeated the three previously defined tasks one by one and repeated each of them 10 times.
This dataset contains a total of 300 acquisitions, each corresponding to a specific activity.
The experimental protocol for the training dataset has included three tasks (see Figure 1.17a)
that are aimed at acquiring data related to the chosen ADLs. These motor actions have been
conducted as follows.

- Walking+Turning task: the subject stands quietly for 30 seconds, walks for 7 m, turns
180 degrees counterclockwise around a pin, and walks back to the start point. In the
end, the subject has to stand quietly for 5 s [149].
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- Sit-to-Stand task: the subject sits on a chair with their heels at a reasonable distance for
a comfortable execution of the task and keeps this position for 5 s. Next, the subject
rises from the chair to reach a standing position, which they keep for another 5 s.

- Lying-down task: the subject keeps standing with heels at a reasonable distance from
the bed for a comfortable execution of the task and keeps this pose for 5 s. After that,
the subject lies down such that he/she feels comfortable, and keeps this lying position
for 5 s.

A reasonable waiting time was allowed between two subsequent repetitions of each
activity to prevent the subject’s fatigue, which can alter the results [151, 152].

On the other hand, the other dataset, which is employed for testing the model used
eight subjects (four males) who executed the above-mentioned activities continuously in a
specific order, i.e., each subject performed tasks with no interruption in a predefined circuitry
resembling a daily life scenario. Therefore, the experimental protocol for the test dataset is
made up of the same ADLs as those of the training dataset, but such motor actions have been
conducted in order to follow a predefined circuit (see Figure 1.17b): each participant starts
from a sitting position and stands quite for 5 s; next, he/she gets up from the sitting position,
walks for 7 m, turns clockwise 180 degrees, and then walks back for 7 m to reach the couch;
after that, he/she turns in the preferred direction, lies down and keeps lying for about 5 s.
After completing one execution of the circuit, subjects were instructed to wait a fair amount
of time before the next repetition to prevent fatigue [151, 152]. Each recording of the test
dataset is repeated five times per subject, for a total of 40 acquisitions.
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(a)
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Fig. 1.17 The two experimental protocols encompassed in the study with the aim of contin-
uous HAR: (a) the protocol for acquiring the training dataset encompasses an interrupted
execution of motor tasks, which are Lying-down, Sit-to-stand, and Walking+Turning; (b)
the protocol for collecting the test dataset requires subject to perform the same tasks without
interruptions on a predefined path.

1.3.2.2 Classification Pipeline

This Subsubsection elucidates the CHAR-addressing pipeline, which includes a preprocessing
stage (Paragraph 1.3.2.2), the details about the architecture and the training of the custom
CNN classifying ADLs (Paragraph 1.3.2.2). Furthermore, the strategy for achieving the final
prediction of activities is described in Paragraph 1.3.2.2, whereas the metrics used to evaluate
the classification performance for all sensor combinations are reported in Paragraph 1.3.2.2
and compared in Paragraph 1.3.2.2.

Preprocessing The physical variable measured by the IMUs (see Paragraph 1.3.2.1) makes
the values of one IMU component stay within a different range with respect to the values
of the other components. This may result in extreme differences among input data and can
worsen the capability of recognizing ADLs, as it is more complex to detect patterns in the data
[153]. Therefore, a normalization operation is needed to achieve a uniform representation of
the data. More specifically, the data of each IMU component have been normalized to lie in
the range [−1,1], as conducted in other related works about CHAR [27].

Signals coming from the IMUs used in a HAR workflow may comprise data that are not
related to the motor tasks of interest, especially when some static periods (e.g., keeping a
standing/standing/lying position) or transitions between two ADLs (e.g., stand-to-walk and
walk-to-stand) are included in the dataset. Therefore, a data segmentation phase is needed to
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identify the time frames in which data streams might contain relevant information about the
target ADLs. Indeed, data were manually segmented by means of a signal inspection both
for training and test datasets. These segments are then associated with a label representing
the ground truth for the recorded activity for the sake of a supervised learning strategy [11].

A windowing procedure is applied both for training and test datasets to obtain an even
higher amount of data to feed the proposed CHAR model. The window width must be
informative enough to capture the performed activity [120]; nonetheless, an excessively wide
window must be avoided to prevent a high computational cost and a classification delay that
is not apt for the specific application [143]. As a consequence, it has been decided to adopt a
step size of 128 samples, corresponding to 1 s, and an overlap of 64 samples, corresponding
to 0.5 s. Such windows may be part of a longer window for which to classify ADLs [154].

The duration of one activity execution may change depending on the subject’s character-
istics, considering that an individual with motor disorders needs more time than a healthy
one to accomplish the same task [155–157]; this results in a different number of windows
that could not cover the entire length of the signal, thus causing a loss of information for the
network. Therefore, IMU data are resampled such that the new signal length is an integer
multiple of the window width to ensure that the windowing procedure keeps the whole signal.

Several factors can influence inertial data recorded for a CHAR experiment, thus making
the ones related to a continuous protocol—i.e., related to a seamless execution of human
activities—differ from those of a discontinuous protocol, i.e., related to a separate execution of
ADLs. For instance, the structural characteristics of the environment may lead to rearranging
the starting point of one motor action in order to keep the continuous nature of the protocol.
As an instance, the starting point may swap with the ending point, thus changing the motion
direction of the path related to the continuous protocol with respect to that of the discontinuous
protocol, i.e., the subject turns counterclockwise in the former, but clockwise in the latter one.
This gap in the operation condition is reflected in some components of the inertial signals
from which the DL-based model learns patterns, thus potentially worsening the performance
of the activity recognition [11].

Hence, for each subject of the training dataset, signals have been treated with a conven-
tional data augmentation technique by flipping to reproduce the operational condition of
the test dataset and improve the classifier robustness [158]. More specifically, Figure 1.18
visually reports the normalized magnetometer signal of the IMU sensor located at the left
hip during the execution of sit-to-stand and turning tasks related to the test dataset (i.e.,
continuous execution), and to the training dataset (i.e., separated execution) before and after
data augmentation. The operational discrepancy leads the magnetometer signal to be flipped
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along the x-axis and z-axis for the turning action and along the x-axis and y-axis for the
sit-to-stand task. Hence, such components of the training dataset have been flipped to make
the magnetometer components of the training dataset resemble those of the test dataset.

On the other hand, the operational discrepancy is not reflected in accelerometer and
gyroscope signals because, differently from the magnetometer data, linear acceleration, and
angular velocity do not change according to the subject’s position with respect to the position
of the magnetic north. Hence, such components of the IMU sensors are not affected by the
change in motion direction and they have not been flipped.
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Fig. 1.18 Data augmentation technique to cope with operational differences.

In addition, the time needed to perform ADLs can be different for intrinsic characteristics
of the task included in the protocol, since motor actions such as walking for seven meters
last far more than standing from a chair. This difference in activity duration results in a
different number of samples (i.e., windows) that feed the classifier; consequently, the dataset
of IMU signals would be unbalanced towards the majority class (i.e., the motor action with
the highest number of windows), thus leading to reduced classification performance [11].
Therefore, another conventional data augmentation technique for time series data is applied
to compensate for the imbalance [158]. In particular, the signals of the minority classes
(e.g., sit-to-stand, turning, lying-down) are scaled by a factor that can be either amplified or
attenuated so as to simulate slight magnitude differences among the repetitions made by one
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subject [4]. The number of trials of the above-mentioned activities has been increased, thus
enlarging the volume of the collected data.

Sensor configuration, which is given by the number and placement of the IMUs adopted
in the setup, can have a significant impact on the performance of the HAR system [139,
146, 153, 159]. Therefore, it might be useful to evaluate the different combinations of the
sensors from which the inertial data feeding the model come. More specifically, this work is
focused on those combinations involving two and three sensors, as well as all the four IMUs
explained in Paragraph 1.3.2.1.

In light of this, each window of the pre-processed dataset is an array of size Wl ×Nc,
where Wl is the window width and Nc is the number of sensor channels, which differs
according to the combination of sensors to be evaluated: it is six for any sensor pair, nine for
any sensor triple, and twelve for the combination with four sensors.

Custom Convolutional Neural Network In this work, a one-dimensional CNN for clas-
sifying ADLs has been employed, since they were successfully applied in related works
about HAR [111, 125, 126, 130, 143, 146] and CHAR [30]. Specifically, the chosen archi-
tecture (see Figure 1.19) employs three distinct parallel branches to process signals from the
accelerometer, gyroscope, and magnetometer simultaneously. This structure automatically
extracts features from signals that have different physical meanings, thus allowing it to
leverage all the data recorded by each sensor at the same time.

The input layer is fed by a multidimensional array whose shape is (Nw,Wl,Nc), where Nw

is the number of windows in the input dataset, which may change across subjects and trials,
Wl is the window length, which is fixed, and Nc is the number of sensor channels, which
differs according to the combination of sensors to be evaluated (e.g., it is six for any sensor
pair, nine for any sensor triple, and twelve for the combination with four sensors).

A grid-search method is employed to optimize the architectural characteristic of the
1D-CNN, i.e., determine the number of convolutional and dense layers, as well as the number
of neurons that maximize validation accuracy [112, 138]. Therefore, each branch consists
of two 1D convolutional layers using 128 filters and kernels of size 5 for the first and 3
for the second one, and one max-pooling layer. Next, two 1D convolutional layers use 64
filters and kernels of size 5 and 3, respectively, followed by a max-pooling layer. Then, a
flattened layer reshapes data into a linear vector. All convolution layers are characterized by a
ReLu nonlinear activation functions. Subsequently, all three branch outputs are concatenated
in one linear vector, thus gathering the smaller previous outputs. This composite feature
vector is then fed through two fully connected layers, each with 128 neurons, for learning
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Fig. 1.19 The custom multi-branch CNN addressing CHAR.

more abstract representations of the data. The first one is followed by a dropout layer that
switches off 20% of the neurons to prevent overfitting. Finally, an output layer with a softmax
activation function is included to classify tasks into one of the four defined classes. This
layer is responsible for the final prediction of activity labels, based on the representations
learned from the input data.

The same heuristic on validation accuracy is used to select the model hyper-parameters,
such as the optimizer, the learning rate, the batch size, and the number of epochs. The best
performance is obtained by using a number of epochs of 200, a batch size of 64, and the
Adam optimizer with a learning rate of 0.001. An early stop criterion monitoring the loss
value on the validation set during the training is exploited; however, criteria accounting for
other metrics (e.g., validation recall) can be used. Consequently, the value of the patience is
set to 10 to stop the learning process prematurely if the value increases for 10 consecutive
iterations on the validation batches.

For each combination of sensors, the dataset of the separate execution of ADLs was
split into ten stratified folds, 75% of which is assigned for training and the remaining 25%
for validation. Afterward, a 10-fold-cross-validation methodology is employed to ensure
a fair and unbiased evaluation of the model [147]. All investigations in this study are
conducted on the Google Colab-Pro framework to train the model on a Tesla T4. Tensorflow,
Sklearn, Pandas, and Numpy libraries have been exploited for training and inferencing the
CHAR-targeting architecture.



1.3 A Novel Framework Based on Deep Learning Architecture for Continuous Human
Activity Recognition with Inertial Sensors 48

Classification Strategy Human activities are usually classified by applying a sliding-
window technique on the input data, meaning that the prediction is given for each of the
windows in which the signal is divided [120]. However, signal duration within a trial can
differ across subjects, because people with motor impairment may need a higher amount of
time to accomplish the task [155–157]. In light of this, monitoring ADLs for pathological
individuals could admit a slightly slower classification by means of wider windows to enhance
the accuracy of the final prediction of the performed motor action.

Hence, for each activity, it has been decided to propose a classification strategy that
entails the combination of predictions coming from sub-windows of a single trial to achieve
the model prediction related to a grouped window that lasts as in the trial [154]. Ultimately,
the classification of the grouped window is given by the average of the predictions made on
the sub-windows.

Performance Metrics The efficacy of the CHAR-oriented framework has been evaluated
by means of two metrics. On the one hand, classification performance is measured through
accuracy, since the input dataset has been rebalanced by means of data augmentation. The
formula of this performance index is given below:

ACC =
T P+T N

T P+T N +FP+FN
(1.1)

In such equations, TP, TN, FP, and FN represent true positives, true negatives, false positives,
and false negatives, respectively.

On the other hand, the feasibility of the framework in a real-time clinical application is
investigated by computing inference time [30]. For each ADL, this metric is calculated both
for the sub-windows and grouped windows of each trial as follows:

- sub-windows inference time is the time that is necessary for returning the prediction
from a single sub-window;

- grouped-window inference time is the time needed for returning the prediction from
the single trial of the activity.

Hence, this metric is mathematically defined as follows:

IT [s] = tend − tstart (1.2)
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In such equations tstart is when the inference procedure is started by giving the data in
input, whilst tend is when the inference process differs depending on the window type. More
specifically, given a single trial of each ADL, tend may be:

- the time in which the model returns a classification label for a single sub-window, in
the case of sub-windows inference time;

- the time in which the model gives the classification output as the average prediction
across sub-windows in the case of grouped-window inference time.

The proposed metrics are computed for each test fold to obtain a confidence interval
distribution for each index [147].

Comparisons and Statistics Sensor placement can be impactful on the model performance
of a workflow for recognizing human activities [139, 146, 153, 159]. Hence, the model has
been tested on all the combinations entailing at least two of them, which are detailed in the
following.

1. Combinations with two sensors:

- Right Pelvis + Left Pelvis (RP+LP);

- Left Pelvis + Sternum (LP+S);

- Right Wrist + Left Pelvis (RW+LP);

- Right Pelvis + Sternum (RP+S);

- Right Wrist + Right Pelvis (RW+RP);

- Right Wrist + Sternum (RW+S);

2. Combinations with three sensors:

- Right Pelvis + Left Pelvis + Sternum (RP+LP+S);

- Right Wrist + Right Pelvis + Left Pelvis (RW+RP+LP);

- Right Wrist + Left Pelvis + Sternum (RW+LP+S);

- Right Wrist + Right Pelvis + Sternum (RW+RP+S);

3. Combination with all the four sensors:

- Right Wrist + Right Pelvis + Left Pelvis + Sternum (RW+RP+LP+S).
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Such combinations have been statistically compared with the non-parametric Friedman’s
test since the hypothesis of a Gaussian distribution is excluded due to the limited number of
tests. Besides, a pairwise post-hoc test with Bonferroni’s correction was performed with a
significance level set to p < 0.05. These analyses were conducted using MATLAB 2022b.

1.3.3 Results

This subsection presents the results of the continuous human activity recognition performed
with the proposed DL-based framework: the outcomes of the efficacy of the classification
strategy are reported in Subsubsection 1.3.3.1, whereas the results concerning the investiga-
tion of the optimal sensor configuration are described in Section 1.3.3.2.

1.3.3.1 Differences between Window Types

The classification performance of the CNN-based framework addressing CHAR has been
evaluated in each fold for all combinations of sensors. Hence, many distributions have been
obtained for the two window types described in Paragraph 1.3.2.2, i.e., sub-windows of a
single repetition of the ADL and grouped window lasting the repetition itself, and for all
metrics mentioned in Paragraph 1.3.2.2, which are accuracy and inference time.

Since two classification strategies have been applied, i.e., without and with averaging, the
distributions of accuracy and inference time have been compared to investigate the impact of
the averaging technique on both these metrics.

Table 1.1 contains the average accuracy of the CHAR-oriented model computed on
ten-fold testing sets for each combination of sensors before and after averaging predictions.
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Table 1.1 Average accuracy [%] on ten-fold testing sets for each combination of sensors
with the two window types (e.g., sub-windows and grouped windows). The corresponding
p-values are specified with a significance level set to p < 0.05 as well.

Combination
Test Accuracy [%]

p Value
Sub-Windows Grouped Window

RP+LP 75.42 88.75 0.0001
LP+S 65.94 81.44 0.0001

RW+LP 79.59 95.00 0.0001
RP+S 78.01 83.31 0.0298

RW+RP 79.64 82.31 0.1569
RW+S 77.74 89.88 0.0001

RP+LP+S 74.90 86.12 0.0018
RW+RP+LP 83.83 96.69 0.0001
RW+LP+S 80.33 95.75 0.0001
RW+RP+S 79.16 81.38 0.4212

RW+RP+LP+S 84.88 96.06 0.0001

The accuracy of the DL-based classification has been significantly boosted for almost all
combinations of sensors passing from sub-windows to a grouped window, with an increment
of about 15% for RW+LP and RW+LP+S with p < 0.001; however, the model tested with
data related to RW+RP+LP outperforms the outcome corresponding to any other combination
for both window types, since the classifier accuracy has significantly raised to 96.69% with
p < 0.001.

Moreover, the average and standard deviation of inference time for 10 testing sets of each
combination of sensors for each window type are reported in Table 1.2.
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Table 1.2 Average and standard deviation inference time in seconds needed for the inference
related to ten-fold testing sets of each window type with the two window types (e.g., sub-
windows and grouped window). The corresponding p Values are specified with significance
level set to p < 0.05 as well.

Combination
Inference Time [s]

p Value
Sub-Windows Grouped Window

RP+LP 0.21±0.04 0.25±0.07 0.1901
LP+S 0.22±0.02 0.22±0.02 0.3565

RW+LP 0.22±0.02 0.24±0.03 0.1820
RP+S 0.23±0.01 0.25±0.03 0.0684

RW+RP 0.23±0.07 0.25±0.03 0.4002
RW+S 0.23±0.03 0.26±0.07 0.1660

RP+LP+S 0.23±0.03 0.25±0.03 0.1678
RW+RP+LP 0.24±0.07 0.26±0.02 0.4601
RW+LP+S 0.24±0.03 0.28±0.07 0.1206
RW+RP+S 0.26±0.05 0.29±0.08 0.2706

RW+RP+LP+S 0.30±0.09 0.33±0.10 0.3803

The proposed 1D-CNN needs almost 300 milliseconds on average with a low standard
deviation to recognize one activity performed with no interruption with the other ones.
Furthermore, the average inference time has incremented, but not significantly (p > 0.05),
for all combinations of sensors. Notwithstanding, such time stays in the order of magnitude
of a few milliseconds.

1.3.3.2 Differences in Accuracy Among Sensor Combinations

Statistically significant differences were revealed for each performance index when compar-
ing sensor combinations. The outcomes of the proposed metric for evaluating the efficacy of
the proposed framework to address CHAR are pictorially depicted in the boxplot reported in
Figure 1.20.
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Fig. 1.20 Boxplots of accuracy distributions on the test set for each sensor combination, with
*, **, and *** representing statistically significant comparisons with p < 0.05, p < 0.01, and
p < 0.001, respectively.

Friedman’s test revealed that ACC significantly differs among sensor combinations, with
p < 0.01.

Regarding the comparisons among sensor configurations with two sensors, according to
post-hoc tests, the ACC in the RW+LP combination is significantly greater than the ACC
in both LP+S (p < 0.01) and RP+S combinations with p < 0.05, as well as than the ACC
in RW+RP combination with p < 0.01. Instead, no statistically significant differences were
found in the values of ACC between the RW+LP combinations and any other combination
with two sensors. However, the RW+LP combination was revealed to be the best configuration
with two IMUs placed at the Right Wrist (RW) and the Left Pelvis (LP). Similarly, slightly
worse performance can be observed for the RP+LP and the RW+S combinations.
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Fig. 1.21 Confusion matrices of the proposed model for continuous human activity recogni-
tion for three sensor configurations: (a) RW+LP+S means that inertial sensors are placed
at the right wrist, the left pelvis, and the sternum; (b) LP+S means that inertial sensors are
placed at the left pelvis and the sternum; (c) RW+S means that inertial sensors are placed at
the right wrist and the sternum; (d) RW+RP+LP means that inertial sensors are placed at the
right wrist, and the right and left pelvises; (e) RP+LP means that inertial sensors are placed
at the right pelvis and left pelvis; (f) RW+RP means that inertial sensors are placed at the
right wrist and the right pelvis; (g) RW+RP+LP+S means that inertial sensors are placed at
the right wrist, the right and left pelvises, and the sternum; (h) RW+RP+S means that inertial
sensors are placed at the right wrist, the right pelvis, and the sternum; (i) RP+LP+S means
that inertial sensors are placed at the right and left pelvises and the sternum. The activities to
be recognized are Lying-down (LD), Sit-to-stand (S2S), Turning (TN), and Walking (W).
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Concerning the comparisons between each configuration with two sensors and each one
with three sensors, posthoc tests showed that ACC in the RP+LP+S combination revealed
no statistically significant difference with any sensor pair On the other hand, ACC in the
RW+RP+LP combination is significantly higher than ACC in the LP+S combination with
p < 0.001, as well as ACC in RP+S and RW+RP combinations with p < 0.01. Secondly,
ACC in the RW+LP+S proved to be better than ACC in both RP+S with p < 0.01, as well
as higher than ACC in LP+S and RW+RP with p < 0.001. Besides, ACC in the RW+RP+S
combination significantly lessens ACC in the RW+LP combination with p < 0.05, but no
other significant differences were found with any other sensor pair.

As for the comparisons among sensor triples, posthoc tests revealed that ACC in the
RW+RP+S combination is the lowest one among sensor triples. More in detail, it significantly
lessens ACC in the RW+RP+LP and RW+LP+S combinations with p < 0.01; ACC in the
RW+RP+S combination is also slightly worse, though not significantly, than ACC in the
RP+LP+S triple.

Considering the comparisons between the sensor quadruple and any sensor triple, ac-
cording to the post-hoc test, the ACC median in the RW+RP+LP+S combination is almost
comparable with ACC in the RW+RP+LP and RW+LP+S triples; on the other side, ACC
in the sensor quadruple is higher than the one in RP+LP+S, though with no statistically
differences; in addition, the RW+RP+LP+S combination outperforms the RW+RP+S one in
terms of accuracy with p < 0.01.

Besides, this sensor quadruple is better than both LP+S and RP+S combinations with
p < 0.001 and p < 0.01, respectively, as well as RW+RP with p < 0.001. The ACC median
in the RW+RP+LP+S combination is even higher, but not significantly, than the one in any
other sensor pair.

The outcomes depicted in the boxplots can be further investigated by means of the
confusion matrices of the ten-fold testing sets. More in detail, the confusion matrices of
the predicted activities against ground truth using RW+LP+S, LP+S, RW+S, RW+RP+LP,
RP+LP, RW+RP, RW+RP+LP+S, RW+RP+S, and RP+LP+S combinations are shown in
Figure 1.21.

Regarding the confusion matrix related to the LP+S combination, a misclassification
can be observed between sit-to-stand (S2S) and lying-down (LD): besides, walking (W) is
confused with both turning (TN) and S2S. Similarly, the confusion matrix related to the
RW+S configuration shows that S2S is still confused with LD, and W is misclassified with
TN in an even worse way. On the contrary, The confusion matrix related to the RW+LP+S
combination decreases such misclassifications and improves the overall accuracy.
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The confusion matrix related to the RP+LP combination reveals a misclassification be-
tween S2S and LD, as well as walking W is confused with either turning TN or S2S. Similarly,
the confusion matrix related to the RW+RP combination shows that this configuration leads
to confusing S2S with LD, as well as worsening the misclassification between W and TN.
On the other side, The confusion matrix related to the RW+RP+LP triple reduces the number
of false positives and false negatives, thus leading to enhanced overall accuracy.

As for the confusion matrix of the RW+RP+S triple, S2S is confused with LD, whilst
TN is misclassified with W; furthermore, the confusion matrix of the RP+LP+S combination
reveals a comparable misclassification between S2S and LD, whereas W is slightly confused
only with S2S. Instead, according to the confusion matrix related to the RW+RP+LP+S
configuration, a decrease in false positives and negatives is produced when using all sensors,
thus ensuring a better performance in terms of accuracy.

1.3.3.3 Differences in Inference Time Among Sensor Combinations

This Subsection presents the results in terms of inference time compared among sensor com-
binations. Such comparisons are pictorially depicted in the boxplots reported in Figure 1.22.
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Fig. 1.22 Boxplots of inference time distributions on the test set for each sensor combination,
with * and ** representing statistically significant comparisons with p < 0.05 and p < 0.01,
respectively.
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Friedman’s test leads to statistically significant differences in IT among sensor combina-
tions. Besides, post-hoc tests revealed that IT in the RP+S combination is significantly lower
than IT in both RW+LP+S and RW+RP+S triples with p < 0.05, as well as inferior than
IT in the RW+RP+LP+S configuration with p < 0.01. Inference time stays below 300 ms
in almost all sensor combinations, except for IT in the RW+RP+LP+S combination whose
distribution reached the highest values (almost 450 ms), but less than 1 s.

1.3.4 Discussion

This work presents a DL-based framework that is aimed to perform continuous human
activity recognition (CHAR), i.e., the classification of activities of daily living (ADLs) with a
custom convolutional neural network (CNN) that is fed by data acquired by means of inertial
measurement units (IMUs) located at four body parts, which are the left pelvis (LP), right
pelvis (RP), sternum (S), and right wrist (RW). The experimental protocol requires the subject
to perform four ADLs, which are Walking (W), Turning (T) while walking, Sit-to-stand

(S2S) and Lying-down (LD) on a surface, in two ways: On the one hand, ADLs are executed
separately (i.e., every subject performs multiple repetitions of one of the motor actions before
passing to the each of the other ADLs) to collect data for training the model; on the other side,
the execution of motor tasks lies within a circuit (i.e., ADLs are performed uninterruptedly) to
record signals for testing the workflow. Moreover, the CHAR is addressed first by employing
a sliding-window procedure on the pre-processed IMU signals to predict the ADL in each
of these sub-windows, and then by combining these outcomes to obtain the final prediction
related to a wider window, i.e., grouped window. This classification strategy has already
been proposed in one related work, but it was not tested on a dataset of human activities
performed in a continuous way [154]. Two metrics are exploited to quantitatively evaluate
the performance of the proposed framework: accuracy (ACC) serves to assess the capability
of the model to perform CHAR, whereas inference time (IT) is aimed at ascertaining its
feasibility in a real-time monitoring scenario. As described in Paragraph 1.3.2.2, all possible
combinations of sensors made up of at least two IMUs were considered in order to determine
the optimal sensor configuration, i.e., the number and location and sensors leading to a good
compromise between classification accuracy and inference time.

The quantitative outcome related to metrics and comparisons are reported in detail in the
previous subsections. Such results show that the classification strategy effectively increased
accuracy for all combinations; remarkably, the exploitation of IMUs both at the right wrist and
the two pelvises (e.g., RW+RP+LP combination) led to the highest boost in accuracy. This
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proves the efficacy of the proposed averaging strategy in enabling more accurate predictions
of continuously performed human actions. Furthermore, even though employing grouped

windows delayed the final prediction of the model targeting CHAR, the time needed to
recognize one activity performed in a seamless way stayed beneath 500 milliseconds for all
combinations. Hence, inference time on a single data sample is coherent with a real-time
scenario of health monitoring impaired subjects, whose execution of ADLs lasts more than
2 s [155–157]. In light of this, one may infer that the exploitation of grouped windows

effectively increases the classification performance without excessively enlarging inference
time for all combinations, especially the RW+RP+LP combination that is revealed to be
the optimal sensor configuration as a good trade-off between accuracy and computational
cost; indeed, albeit the average time needed to inference on the test dataset becomes slightly
higher, such increment is not significant and the average accuracy of the model using all
sensors gains from 83.83% to 96.69% after combining predictions of sub-windows.

When comparing sensor combinations (see Subsubsections 1.3.3.2 and 1.3.3.3), it
emerged that configuration with two sensors located at the right wrist and the left pelvis, i.e.,
RW+LP is the best among sensor pairs, arguably because it integrates information regarding
the motion of both upper and lower limbs, respectively. On the contrary, placing IMUs either
at the left pelvis and the sternum (LP+S) or at the two sides of the pelvis (RP+LP) slightly
decreases classification performance. This results in misclassification between S2S and LD
(Figure 1.21), which may be due to the absence of information about the movement of the
right wrist that is recruited to support the lying-down action. Indeed, integrating wrist-related
information into either LP+S or RP+LP combinations (i.e., RW+LP+S and RW+RP+LP,
respectively) can reduce misclassifications and ensure a more accurate CHAR-targeting
framework.

On the other hand, pairing the sensor at the right pelvis with the one at the right wrist (i.e.,
RW+RP combination) may lead the model to fail in recognizing turning, which is confused
with walking, and sit-to-stand, which is misclassified as lying-down; the sensor configuration
with IMUs at the two sides of human pelvises reduces misclassifications between TN and W,
keeping them between S2S and LD. On the contrary, feeding the model with data coming
from both pelvises and the right wrist (i.e., RW+RP+LP triple) enhances accuracy.

Such outcomes can be explained with the following motivation: the sensor at the left
pelvis captures relevant information about the turning action, whereas the one at the right
wrist is crucial in recognizing the lying-down motor pattern. Hence, either using this
sensor pair (i.e., RW+LP) or integrating it with one (i.e., RW+RP+LP) or more sensors
(i.e., RW+RP+LP+S) allows for classifying continuously executed ADLs with a satisfying
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accuracy (close to 100%); however, the RW+RP+LP triple is the optimal configuration of
sensors in the proposed workflow for CHAR, since it does not lead to an excessive increase
in the inference time with respect to using two sensors.

1.3.5 Conclusions

This work presents a framework based on Deep Learning (DL) for classifying activities of
daily living (ADLs) that are executed uninterruptedly by means of data coming from inertial
sensors placed at different parts of the human body. Comparison of the computed metrics for
different sensor configurations proved the efficacy of the proposed workflow in accurately
recognizing motor actions with temporal performance that are acceptable in a real-time
clinical scenario. Most notably, the outcomes indicate that the integration of sensors located
at the right wrist and the two pelvises offered a good compromise between accuracy and
computational cost.

The main limitation of the study is related to the size of the experimental sample. This could
be addressed either by recruiting new subjects with different characteristics or by exploiting
DL-based data augmentation algorithms, such as generative adversarial networks [160]. Besides,
the investigation may be pushed forward by implementing explainable artificial intelligence
methods (e.g., attention mechanism) to improve interpretability [4, 161–164].

In addition, the dataset of activities to be recognized can be enlarged so as to include other
clinically relevant transitional motor actions (e.g., stand-to-walk, stand-to-sit, walk-to-sit, or
lying-to-sit). In so doing the proposed framework could be even addressed for evaluations of
either motor or cognitive impact, such as motion intent recognition [165–167]. Furthermore,
acquiring inertial signals during stair ambulation would offer the possibility to investigate
another motor pattern in which some patients would exhibit an abnormal execution of the
task due to the fear of falling [118].

1.4 A Deep Learning-based framework oriented to patho-
logical gait recognition with inertial sensors

Abnormal locomotor patterns may occur in case of either motor damages or neurological
conditions, thus potentially jeopardizing the individual’s safety. Pathological gait recognition
(PGR) is a research field aimed to discriminate among different walking patterns. A PGR-
oriented system may benefit from the simulation of gait disorders by healthy subjects, since
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the acquisition of actual pathological gaits would require either a higher experimental time
or a larger sample size.

This section presents a workflow based on convolutional neural networks to recognize
normal and pathological locomotor behaviors by means of inertial data related to nineteen
healthy subjects.

The remainder of this section is as follows. At first, Subsection 1.4.1 describes the
scientific literature regarding pathological gait recognition. Secondly, materials (i.e., the
system and protocol for data collection) and methods (i.e., preprocessing operations, CNN-
based architectures, and statistical analysis) are discussed in Subsection 1.4.2. Then, the
results are shown and discussed in Subsection 1.4.3. Ultimately, Subsection 1.4.4 draws
conclusions about the conducted study and suggests ideas for future works.

1.4.1 Related Works

Human locomotion is a symmetric motor action [168] that requires the involvement of the
central and peripheral nervous systems actuating mechanisms to control limb movements,
posture, and muscle tone. When this neuromotor process is compromised by either the
physiological decline due to aging or such pathological conditions as Parkinson’s disease
(PD), abnormal walking patterns may be exhibited [31]. Therefore, monitoring locomotor
behaviors is needed to evaluate whether and how the individuals’ motor state deviates from a
healthy gait [10], and such difference may be an indicator of gait disorders [169, 170].

In the context of healthcare, the employment of systems for monitoring and recognizing
gait allows to record the motor execution, identify a possible gait disorder, and provide feed-
back for the patients’ assistance [32, 171–174]. In light of this, walking pattern recognition
has even the potential to support clinicians for both rehabilitative and remote-monitoring
purposes [175] aiming at the treatment of neuromotor pathologies, such as PD [176–180],
cerebellar ataxia [181], stroke [182, 183], and cerebral palsy patients [184].

Gait recognition (GR) is a human activity recognition problem that is directed to dif-
ferentiate locomotion from other motor actions [10], whilst pathological gait recognition
(PGR) may be regarded as a subfield of GR that is used to discriminate motor patterns
between healthy and pathological in case of binary classification [169] or among different
gait disorders [31, 33, 171, 175, 185–187]. Though a binary classification is easier to accom-
plish due to the high deviation of pathological motor patterns with respect to normal gait
[177, 179, 182], a PGR including different gait disorders allows to discriminate even similar
walking patterns [170], such as those of foot drop and hemiplegia.
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The recognition of pathological gaits needs a high amount of data related to patients to
be accurate, which implies to make the experimental subjects execute multiple repetitions of
several motor actions [10, 168]. However, this may be a high-demanding motor task in the
case of actually impaired subjects due to their condition; for this reason, such individuals
could perform the target motor pattern only a limited number of times or with longer breaks
[173]. As a consequence, a dataset imbalance between healthy and pathological individuals
would arise, thus introducing a bias in the classification; since this worsens the performance of
automatic recognition, a higher amount of patients is needed to be involved [188]. Moreover,
the specific disease severity influences the number of recruitable patients, which could be
seriously restricted in case of non-autonomous locomotion, and a constant supervision of
clinicians is still required for the patients’ safety. Hence, the simulation of abnormal walking
patterns by healthy individuals may provide a benefit to the performance of a PGR framework,
considering their possibility to perform different trials of various walking actions. In so doing,
the efficacy of a classification pipeline can be evaluated prior to any investigations on actual
pathological individuals [31]; this is similar to the concept of cross-subject domain adaptation
[189], meaning that the model is pre-trained on abnormal walking patterns simulated by
healthy controls before being finally tested on actual pathological data. Besides, the PGR
system could then carry out an early detection of abnormal walking patterns [170, 190].

A pathological motor pattern may be replicated in different ways, such as fixing lower
limb joints [169] or making the subject wear a shoe unilaterally [172]; however, such
methodology could result in the individual’s discomfort during the execution, thus potentially
leading to involuntary compensations that alter the simulation, and would require a complex
setup to mimic various gait disorders. Therefore, experimental protocols addressing PGR are
typically based on the simulation of such impaired motor behaviors without any physical
constraint on the lower limbs [31, 32, 185].

Walking patterns for PGR can be recorded by means of such fixed sensors as optical
motion capture systems [171], which provide experimenters with high-fidelity data on
movement patterns during the gait cycle [191]. Among these devices, RGBD cameras
have obtained comparable performance with respect to Vicon systems [171], which have a
limited application due to their expensiveness [169]. RGBD cameras recognized activities
of daily living (ADLs) with performance that are similar or even higher to inertial wearable
devices [192]. However, these devices are influenced by illumination and occlusions and
are characterized by a limited coverage area [193]; in addition, their need for an extensive
preprocessing to prepare data for the actual classification pipeline [171] could be in contrast
with real-time requirements of remote-monitoring applications [10]. Hence, such wearable
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sensors as inertial measurement units (IMUs) could be preferred for their portability, which
allows for their usage in both outdoor and indoor environments [10, 175].

Subsequently, motor behaviors can be recognized by Machine Learning (ML) models,
which were trained on data related to either actual pathological individuals or locomotor
disorders simulated by healthy subjects. For instance, Dolatabadi et al. [188] fed such
ML models as a k-nearest neighbor (kNN) with the data coming from Kinect sensors to
automatically discriminate walking patterns of healthy subjects and individuals affected by
either stroke or acquired brain injury. Ghobadi [32] trained a support vector machine (SVM)
with IMU data to recognize a simulated foot drop behavior.

Notwithstanding, these pipelines needed a complex and time-demanding feature engi-
neering stage prior to the actual classification [10, 172]. On the other hand, Deep Learning
(DL) architectures, such as convolutional neural networks (CNNs) [171, 173, 194], can be
trained directly on raw data, thus avoiding manual feature extraction [10, 185]. For instance,
Oh et al. [173] exploited a 1D-CNN to recognize the activities of daily living performed by
hemiparetic stroke patients and healthy controls, who wore IMUs on the wrist, forearm, upper
arm, trunk, and ankle. However, such ADLs did not entail locomotor patterns, since they
were conceived for investigating the asymmetry of upper limb motions of stroke individuals.

1.4.2 Materials and Methods

The proposed framework for pathological gait recognition is reported in Figure 1.23. Herein,
inertial data are first collected from five sensors placed on the human body during the
execution of walking patterns, and then used to feed each of three different DL-based
classifiers, which differ in terms of architecture.
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Fig. 1.23 The presented framework is based on the acquisition of inertial data by means of
five IMU sensors, whose components are given as input to each of three DL-based models,
which return the label associated with the walking pattern.

1.4.2.1 Data Collection

This sububsection reports the individuals recruited in the experiments, the walking behaviors
to be simulated, the IMU sensors used to acquire kinematic data, and the experimental
protocol to be followed.

Participants Nineteen healthy subjects are recruited among the physiatrists and physio-
therapists of IRCCS Maugeri (Bari, Italy) to guarantee a plausible simulation of pathological
gaits. A proper balancing among males and females has been guaranteed (i.e., 9 males and
10 females) to prevent the model from being biased by sex [194]. These participants have no
motor or cognitive disorders, and differ in age (37.6±13.0 years old), weight (72.9±12.7
kg), height (170.7±6.8 cm), and anthropometric characteristics for the sake of a higher data
heterogeneity. Prior to the beginning of the experimental session, participants have been
informed about the execution of the motor tasks.

Walking actions The activities to be performed have been chosen among the motor
disorders that had been treated the most in the IRCCS Maugeri in Bari, Italy. In light of this,
in addition to normal walking, four pathological gaits have been considered and they are
ataxic, equine (foot drop), hemiplegic, and parkinsonian gaits [195]. The description of these
walking patterns is provided in the following.
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- Normal gait mainly requires alternating flexion-extension movements of the lower
limb joints (i.e., hip, knee, and ankle), possibly supported by arm swinging to increase
balance.

- Hemiplegic gait is the result of a poor control of the flexor muscles during the swing
phase, as well as the spasticity of the extensor muscles involved in the extension of the
paretic leg [31]. The knee does not flex normally during swinging, thus causing the leg
circumduction [191]. On the paretic side, the hemiplegic patient is prone to raise the
shoulder and to keep the arm close to the trunk, flexed, adducted, and with the wrist
internally rotated.

- Equine gait (foot drop) can be induced by abnormal activity of the plantar muscles in
the swing phase, thus resulting in the weakness in foot dorsiflexion and an abnormal
ankle position for which knee flexion or hyperextension during the stance phase of
locomotion are used as compensation [196].

- Ataxic-cerebellar gait is characterized by a wide base of support and a low cadence of
steps that leads to an impaired balance and generates instability [31].

- Parkinsonian gait determines the presence of bradykinesia (delayed movement) with
short and slow steps, as well as issues in detaching the forefoot [31, 197]. The
Parkinsonian patient has even a forward flexed trunk because of muscle rigidity in this
body part and tremor in the hands [4, 194].

IMU sensors Wearable IMU sensors (OPALTM, Portland, OR, USA) have been utilized to
acquire data from each subject. These devices are automatically calibrated by the Motion
Studio system by APDM and are worn by means of such elastic bands as Velcro straps
to avoid direct contact with the skin and consequent motion artifacts due to friction. Five
sensors have been selected (see Figure 1.23) and worn by each participant on both sides of
the human pelvis (RP and LP), on the right and left wrists (RW and LW), and on the sternum
(S). This distributed placement has been preferred with respect to the tendency by many
PGR studies to promote the subject’s comfort in daily life by exploiting the potentiality of
e-textiles [198]: more specifically, the sensor on the sternum can be embedded into a smart
T-shirt, those on the wrists can be part of on a smart bracelet, and those at the pelvises might
be inserted in a smart belt. In addition, placing sensors on different body parts is useful
to detect a wider myriad of motor actions that involve the upper and lower limbs, whether
separately or simultaneously [10, 199].
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The sensor configuration is almost the same as in a previous work about human activity
recognition [10], with the only difference of an additional IMU on the left wrist. Furthermore,
this placement enables the detection of pathological behaviors: in fact, the IMUs on the
pelvises may carry the lower-limb movements compensating for either hemiplegia or foot
drop; on the other hand, the sensor on the sternum allows for detecting Parkinsonian trunk
flexion; sensors on the wrists are essential to record the presence/absence of arm movements
corresponding to the dominant and/or pathological side (hemiplegia), or the presence of
Parkinson tremor. This sensor placement can capture the characteristics of a normal gait too,
as already mentioned in a previous work [10].

The experimental data are recorded with a sampling rate of 128 Hz from a 3-axis 14-bit
accelerometer to measure linear acceleration, a 3-axis 16-bit gyroscope to acquire angular
velocity, and a 3-axis 16-bit magnetometer for magnetic field intensity [200].

Experimental Protocol The protocol took place at the Laboratory of Movement Analysis
of IRCCS Maugeri in Bari, Italy; it encompasses the execution of multiple repetitions of
both normal locomotion and the simulation of pathological gaits, meaning that each subject
is asked to perform four repetitions for each task. The mimicking quality is qualitatively
ensured by a prior familiarization stage, whose duration was not excessively high since
physiatrists and physiotherapists executed the tasks. Besides, the verisimilitude is further
allowed by an expert in the realm of neurorehabilitation, who gave instructions in a video
that is taken as a further reference together with the Standford Medicine guidelines [201]. A
total of 28 repetitions have been recorded for each subject, since hemiplegic and equine gaits
have been mimicked at each side of the human body to increase the model generalizability in
recognizing the pathology. In fact, in these cases the asymmetry of motor patterns can be
relevant not only for activity classification, but also for an effective rehabilitation [173].

Each repetition begins with a standing phase of 15 s, proceeds with an overground
walking on a linear traced path of 7 m, and ends with another standing stage of 5 s, as shown
in Figure 1.23. Note that this path has been followed in different directions for the sake of a
higher data variability. Each subject is told to wait a reasonable time between contiguous
repetitions [10]. In view of this, the protocol required a total of almost 45 min for each
individual.

1.4.2.2 Classification Pipeline

The pipeline for classifying walking patterns is made up of two parts, which are a preliminary
set of preprocessing operations and the implementation of different models for PGR.
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Preprocessing Data from the inertial sensors are initially acquired for each subject and
repetition as a matrix of size Ns × (5 · 9), where Ns is the number of samples in a single
repetition, 5 is the total number of IMU sensors, and 9 is the total number of IMU components
(3 for the accelerometer, 3 for the gyroscope, and 3 for the magnetometer). Afterwards,
they have been processed first with a segmentation by visual inspection to exclude both the
static period (initial and final standing phases) and the transitional movements (stand-to-walk,
walking, and walk-to-stand), isolating the walking patterns of interest.

Accelerometer, gyroscope, and magnetometer values have been then normalized for
each walking pattern in the range [−1,1] to obtain a uniform representation of the data [10].
Subsequently, a windowing procedure has been applied to enlarge the dataset dimensionality
by dividing the signal into windows of 128 samples (1 s) with 50% overlap (0.5 s); this
window width is chosen so as to capture enough motor patterns without excessively increasing
the computational cost [202].

IMU data have been resampled both to achieve a uniform sample size and to exploit the
whole informative content of the signal [10]. Additionally, different combinations of sensors
have been examined to verify the influence of sensor configurations on the classification
performance [10].

Classification models In this work, the pipeline for classifying normal and abnormal
walking patterns includes three DL-based models:

1. mCNN-1D: a multi-branch one-dimensional convolutional neural network that was
already exploited for continuous HAR in a previous work [10];

2. smCNN-1D: a simplified multi-branch one-dimensional convolutional neural network;

3. sCNN-1D: a sequential one-dimensional convolutional neural network.

CNN-based architectures have been chosen in view of their successful application in related
works about PGR [33, 186, 187], together with their efficacy in HAR [10, 203].

The mCNN-1D model (Figure 1.24a) is characterized by the same architecture and hyper
parameters as the one used in the previous work [10], with the only difference that the
early-stop criterion herein monitors the recall on the validation set to avoid overfitting.

The smCNN-1D model (Figure 1.24b) differs from mCNN-1D model from the architec-
tural point of view, since it adopts only one 1D convolutional layer, which uses 128 filters
with a kernel size of 5, and one fully connected layer with 128 neurons; moreover, the hyper
parameters are the same, except for the batch size that is 256.
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The sCNN-1D architecture (Figure 1.24c) is inspired by that of the smCNN-1D model.
Since it is a sequential CNN, it is not made up of parallel branches, but only of a unique set of
layers. Therefore, input data are not split into the different IMU channels (i.e., accelerometer,
gyroscope, and magnetometer); on the other hand, such IMU components can be given as
input to the model either combined or separately.
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Fig. 1.24 The classification models addressing PGR: a) a multi-branch one-dimensional
convolutional neural network; b) a simplified multi-branch one-dimensional convolutional
neural network; c) a sequential one-dimensional convolutional neural network. Note that Nw
is the number of windows in the input dataset, which differs with both subjects and trials; Wl
is the window length, which is fixed; and Nch is the number of sensor channels.
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For all architectures, to aggregate the data from multiple sensors into one single input, the
input layer is fed by a multidimensional array whose shape is (Nw,Wl,Nch), where: Nw is the
number of windows in the input dataset, which may change across subjects and trials; Wl is
the window length, which is fixed; and Nch is the number of sensor channels, which is equal
to the quantity Nc ·Ns, given Ns the number of sensors in the combination to be evaluated
and Nc the number of IMU components to be examined. Note that Nc can be one for the
sCNN-1D when only a single IMU component is used as input to the model, otherwise it is
three.

The classification has been designed to recognize five walking patterns, since both
hemiplegic and equine walks have not been distinguished based on the affected side.

The data splitting method is the same across all models: the dataset is randomly split
across subjects [204, 205] such that the data of the 60% of them (11 subjects) are assigned to
the training set, the data of the 20% of them (4 different subjects) to the validation set, and
the data of the 20% (further different 4 subjects) to the testing set. This splitting strategy has
already been employed in other studies that are oriented to fall detection [206] and human
activity recognition [207], as well as conceived for diagnostic purposes in either the medical
field [208, 209] or the energetic context [210]. To ensure a fair and unbiased evaluation of
each model, the above-mentioned partition is applied ten times the dataset is split ten times,
each of which different subjects are randomly extracted to constitute the three sets [10, 211].

All investigations of the models have been conducted on the Google Colab-Pro framework
such that each model is trained on a Tesla T4. All the architectures have been trained and
inferences by means of Tensorflow, Sklearn, Pandas, and Numpy libraries.

1.4.2.3 Metrics and Statistics

Different metrics have been used to evaluate the model performance for each sensor combina-
tion reported in Figure 1.25. At first, the test dataset has been evaluated in terms of accuracy
and recall, whose formulas are reported as follows.

Accuracy =
T P+T N

T P+T N +FP+FN
(1.3)

Recall =
T P

T P+FN
(1.4)

where T P, T N, FP, and FN represent true positives, true negatives, false positives, and false
negatives, respectively.
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On the other hand, the feasibility of the framework in real-time clinical application has
been investigated by computing the inference time, which is the instant when the data is
given as input to the model the one in which the result classification label is obtained [212].

The normality distribution of these indexes has been checked by means of Shapiro-Wilk
test with a significance level of p = 0.05. Consequently, for pair-wise comparisons, their
values have been statistically compared through a non-parametric Wilcoxon signed-rank test
for non-normally distributed sets and with a paired t-test (p < 0.05) for normally distributed
ones.

These analyses have been conducted using Matlab 2022b platform.
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Fig. 1.25 Sensor combinations grouped by the number of sensors, which can be placed at the
sternum (S), the left pelvis (LP), the right pelvis (RP), the left wrist (LW), or the right wrist
(RW).

1.4.3 Results and Discussion

This work presents a framework based on deep learning aiming at performing pathological
gait recognition (PGR) - i.e., recognizing healthy and simulated pathological gaits. For this
purpose, various architectures based on convolutional neural networks (CNNs) have been
implemented, and they are a multi-branch one-dimensional CNN (mCNN-1D), a simplified
multi-branch one-dimensional CNN (smCNN-1D), and a sequential one-dimensional CNN
(sCNN-1D). Such models have been trained and tested with the data coming from inertial
measurement units (IMUs) placed at five body parts, which are the left pelvis (LP), the right
pelvis (RP), the left wrist (LW), the right wrist (RW), and the sternum (S). The experimental
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protocol followed by the subjects entails both the execution of normal gait (WN) and the
simulation of four abnormal walking patterns, which are hemiplegic (WH), equine (WF),
ataxic (WA), and Parkinsonian (WP) gaits. Three indexes have been employed to evaluate
the performance of the proposed workflow: accuracy and recall are aimed to ascertain the
capability to perform PGR, whilst inference time serves to assess its feasibility in a real-time
clinical scenario. Note that the classification speed is needed to ensure a prompt assistance to
any patients; for instance, when they are assisted by a robotic device, the supporting torque
provided by the controller should be properly tailored to their disorder [213–219], which is
the one recognized by the classifier. Furthermore, since the self-detection of gait patterns
may be difficult, a real-time classification allows for correcting abnormal behaviors [197]
or adapting to the patient’s improvements [199] that would occur during a rehabilitation
program. The model is tested for different sensor combinations to establish the optimal
configuration in light of the given metrics.

The radar plots reported in Figure 1.26 compares the results of the mCNN-1D and
smCNN-1D architectures, each of which is fed with all the three components of the IMU
sensors (accelerometer, gyroscope, and magnetometer).

Fig. 1.26 Radar plot comparing metrics computed on the test set for the multi-branch CNN
and its simplified version, with ** and *** representing statistically significant comparisons
with p < 0.01 and p < 0.001, respectively.

The median of accuracy and recall for the two models is 100% in almost all sensor
configurations, despite the dataset imbalance. This could be due to the fact that applying
segmentation before normalization allows for excluding all the possible motion artifacts
that would worsen the classification performance. However, as for the mCNN-1D model,
such satisfying results in terms of accuracy are not accompanied by an equally acceptable
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inference time, since its value approaches 600 ± 100 ms for some combinations, which can
be excessive for a real-time application, since it is close to the 30% of the execution time of
overground walking by impaired subjects [220].

Consequently, the model architecture has been simplified, thus reaching with the smCNN-
1D model a test inference time that is significantly lower than the one of the mCNN-1D
model in almost all combinations; besides, the maximum time decreases from approximately
700 ms to about 400 ms for the LP+LW and S+LP+RW sensor pairs. This computational
time is even lower than 300 ms for some combinations with either a single IMU or sensor
pairs for the simplified multi-branch CNN.

In light of this, the simplified architecture has been adopted for the sequential CNN
(Figure 1.24c) as well. The performance achieved with the smCNN-1D and sCNN-1D
models, whose input data are the three channels of the IMU sensors, are pictorially depicted
in Figure 1.27.

Fig. 1.27 Radar plot comparing metrics computed on the test set for the simplified multi-
branch and the sequential CNNs, with *, **, and *** representing statistically significant
comparisons with p < 0.01, p < 0.05, and p < 0.001, respectively.

To parity of accuracy and recall, the inference time does not seem to improve when
passing from the smCNN-1D to the sCNN-1D model, except for the sensor on the sternum,
in which case the test inference time is about 100 ms. This is presumably due to the use
of unnecessary input data; therefore, the sCNN-1D model has been tested for all sensor
combinations by separately giving as input each IMU component to the model, with the aim
of evaluating which channel (i.e., accelerometer, gyroscope, and magnetometer) leads to the
best model performance. The consequent results in terms of accuracy, recall, and inference
time are pictorially shown with the radar plots reported in Figure 1.28.
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Fig. 1.28 Radar plot of the accuracy, recall, and inference time computed on the test set by
feeding the sequential CNN with each IMU component separately.

The outcomes show better performance in both accuracy and recall for the accelerometer
and gyroscope, whereas the outcome worsens when passing the magnetometer entry as input
to the model, since the recall is about 80% only in three combinations (i.e., S+LW+RW,
S+LP+LW+RW, S+RP+LW+RW). Moreover, the lowest values of accuracy are achieved for
the combinations with one sensor placed at either the sternum or the right pelvis; instead, the
accuracy for the LW+RW pair is higher than the one related to the LP+RP pair. Hence, it can
be argued that the information carried by the magnetometer placed on the wrist raises the
performance with respect to the magnetometers of the IMU located at the sternum and pelvis,
which are not equally discriminative. In fact, the motor behavior of human wrists is different
for each type of walking action: it is stationary on the affected side in the hemiplegic close to
the sternum, it follows hand tremor in the Parkinsonian gait and arm sway in normal walking.

The outcome of the above-mentioned model in terms of inference time lies in the range
[100,200] ms for almost all the three components, except for some combinations in which it
slightly exceeds 200 ms in the case of the accelerometer and gyroscope. This outcome is
more compliant to real-time requirements, since it at most equals the 10% of the execution
time of a pathological walking [220]. Therefore, the sequential CNN model using either
the accelerometer or the gyroscope seems to provide the best compromise among all the
above-mentioned metrics.

Figure 1.29 and Table 1.3 report the average accuracy in distinguishing normal and
simulated pathological gaits to compare the proposed framework with similar studies in the
literature: all walking patterns have been classified with an average accuracy of 100%, thus
outperforming related works.
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Table 1.3 Relevant features from related works, reported for comparisons among workflows.

Ghobadi et al.
[32]

Verlekar et al.
[186]

Eshefani et al.
[175]

Guo et al.
[171]

Yin et al.
[33]

Albuquerque et al.
[187]

Robles et al.
[31]

Proposed
framework

Subjects 10 5 11 16 15 21 10 19

Input
Data

IMU signals
Data from
images

Data from
smart textiles

Data from
images

IMU signals
Data from
images

Data from
accelerometer

IMU signals

Classifier type
ML DL ML

ML
DL

DL DL ML DL

Classifier SVM CNN kNN, LDA, SVM, ANN
SVM
BiLSTM

ANN, LSTM, CNN CNN ANN CNN

Normal 99.6% 94.0% 99.6% 81.24% 89.0% 99.0% 99.8% 100%

Hemiplegia
ND 87% 99.4% ND 91.3% 89.0% 90.3% 100%

Ataxia ND ND ND ND ND ND 97.0% 100%

Foot
drop

98.7% 94.0% ND 92.9% ND 97.0% ND 100%

Parkinsonian
ND 98.0% ND ND 78.6% 95.0% 98.1% 100%

For instance, Robles et al. [31] utilized Artificial Neural Networks (ANNs) to classify
simulated gait disorders (those of Parkinsonian, ataxic, and hemiplegic subjects) by analyzing
accelerations of the center of mass of ten healthy subjects. An average accuracy of 99.8%,
90.3%, 97.3%, and 98.1% was obtained for the classification of normal, hemiplegic, ataxic,
and Parkinsonian gaits, respectively. Ghobadi et al. [32] discriminated normal gait from
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abnormal foot drop (FD) patterns, which were mimicked by ten healthy subjects, with an
average accuracy of 99.6% and 98.7% (respectively) by training a SVM with Mahalanobis
distance-based features extracted from the IMU signals of the subject’s right leg. Esfahani et
al. [175] employed various ML-based algorithms (e.g., ANNs, SVM, and kNN), which were
fed with the data of eleven healthy subjects coming from a smart textile system, thus being
able to differentiate between normal and hemiplegic gaits with an average accuracy of 99.6%
and 99.4%, respectively.

However, such studies performed the actual classification after a time-consuming feature
engineering procedure. On the other hand, other related works relied upon DL architectures
to automatically extract features instead of handcrafting them [11]. For example, Guo et al.
[171] exploited not only SVM, but also Bidirectional Long-Short Term Memory (BiLSTM)
networks to classify normal and mimicked foot-drop walking patterns based on the images
acquired with a single RGB-D camera; in so doing, averages accuracies of 81.24% and
92.9% were respectively achieved for the normal and the pathological gaits, which were
simulated by sixteen healthy subjects. Albuquerque et al. [187] recruited twenty-one healthy
subjects and developed a remote pathological gait classification system for discriminating
normal, hemiplegic, foot-drop, and Parkinsonian gaits, thus achieving average accuracies
of 99%, 89%, 97%, and 95%, respectively. The performance of these two works are almost
comparable with the presented study except for the recognition of one class (i.e., normal and
hemiplegic gait, respectively) which is mainly confused with similar walking patterns that are
not entailed the focus of this work though. Verlekar et al. [186] trained CNN-based models
with gait energy images, which were determined from a dataset of five healthy subjects; in so
doing, it was possible to distinguish normal from hemiplegic, foot-drop, and Parkinsonian
gait sequences with an average accuracy of 94%, 87%, 94%, and 98%, respectively.

Moreover, these latter studies addressed PGR with data coming from optical trackers,
which may be limited in real-world scenarios. Only one work has been found to employ IMU
data to recognize simulated pathological gaits by means of DL architectures. Yin et al. [33]
utilized two accelerometers mounted on the lower limbs to classify normal and simulated
pathological gaits through both ML (i.e., ANN) and DL models (LSTM and CNN); in so
doing, normal, hemiplegic, and Parkinsonian motor patterns were discriminated with average
accuracies of 89%, 91.3%, and 78.6%, respectively. Despite the promising performance,
they are yet lessened by the proposed workflow, arguably due to the order of preprocessing
operations (i.e., normalizing signals before segmenting) that may introduce motion artifacts
worsening classification performance; in addition, that investigation was conducted on a
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lower sample size (i.e., number of participants) with the same sensor type (i.e., inertial
measurement units) and did not consider the same walking patterns as in this work.

1.4.4 Conclusions

This work presents a Deep Learning-based framework aimed at the classification of normal
and abnormal walking patterns by means of multiple convolutional neural networks, which
are fed with the data coming from inertial sensors worn at different locations of the human
body.

Given the promising performance of the exploited models in terms of accuracy and
inference time, the proposed workflow is claimed to be effective in discriminating motor
patterns. The instructions of an expert clinician for a realistic gait disorder simulation
contributed to the quality of classification results. However, the framework has been tested
only on data related to locomotor actions, both normal and abnormal, performed by healthy
subjects, since this work has been conceived as a feasibility study before the application
on actual pathological gaits. Therefore, the proposed workflow should be evaluated by
exploiting data coming from people actually affected by gait disorders to test its usefulness
in a clinical scenario. In so doing, even the severity rating of such neuromotor disorders
as Parkinson’s disease [176–180] and ataxia [181] can be explored. Furthermore, since the
motor actions have been performed by people with advanced clinical knowledge, a successive
experimental campaign could include subjects with no expertise in gait disorders for the sake
of an even higher data variability [221].

Secondly, only five walking patterns have been considered, since the samples of the
hemiplegic and equine gaits have not been distinguished according to the emulated affected
side; hence, a 7-class classification may be pursued to investigate whether the framework
effectively performs PGR even in case of unilateral gait disorders, which may be useful for
the corresponding rehabilitation [173].

The type of abnormal walking patterns considered in this work, though being in line with
most of related works, is restricted to evident motor behaviors. Therefore, for the sake of an
even higher usefulness in a clinical scenario, such less obvious motor patterns as walking
tremor [222] should be considered in the future. Another example is given by the Parkinsonian
tremor, which could be further addressed in view of its previous successful simulation by
healthy subjects with slight amplitude differences with respect to actual pathological subjects
[223]. This may be done by conceiving some indexes to measure the deviation of an
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individual’s gait pattern from the range typical of a healthy subject, thus tracking the patients’
rehabilitative progress and the effectiveness of therapies [12, 191, 194, 224].

Future research could also aim to develop an integrated explainable framework that
combines the strengths of attention mechanisms [4, 204, 225] and Layer-wise Relevance
Propagation [226]. These methods helps in understanding which parts of the input data (i.e.,
IMU component) contribute the most to the model predictions.

With this in mind, the proposed gait recognition system can be enhanced to pursue its
seamless integration into either the clinical realm or a home application [199]. This may be
achieved by embedding the inertial sensors within e-textiles to increase the subject’s comfort
either in a rehabilitative path or in a remote-monitoring application.



Chapter 2

Applications for occupational purposes

2.1 Introduction

High productivity requirements demanded by industrial and manufacturing scenarios force
human operators to daily perform repetitive and exhausting actions with awkward body
postures exposing them to injuries. This process, if excessively prolonged over time, may
lead to medical conditions known as work-related musculoskeletal disorders (WMSDs).
WMSDs are the first cause of occupational diseases in industrialized countries: they account
for 15% of total healthcare costs in the EU-28, affecting 60% workers and concurring in
billions of dollars of lost production for the industry sector [227]. Since WMSDs mostly
concern neck, shoulders, and back [228], the demand for direct upper body assistance in the
workplace has been increasing in the past years.

A major asset for the prevention of WMSDs in such complex environments is occupa-
tional exoskeletons (OEs) designed for upper limbs. By means of actuation systems, these
exoskeletons are able to provide torque to the user’s arms, thus sustaining the upper limbs
and relieving the local musculature during arm elevation and weight lifting movements [229].
Industrial and logistic companies have increasingly shown interest in deploying OEs inside
the workplace [230], with long-term expectations of reducing the occurrence of WMSDs
and hence improving the related productivity of the human workforce by decreasing absence
rate [231]. Moreover, the use of OEs has been demonstrated to reduce the required energy
expenditure for completing a series of tasks, concurring in an overall redistribution of the
latter among a reduced number of workers and thus resulting in a general decrease in costs
[232].

Subjective evaluations derived from questionnaires are widely employed within the
validation of OEs as a measure of the perceived exertion [233–236]; however, even such
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self-ratings can be biased by the user’s psychology, which may be influenced by the personal
experience with robotic interfaces on its part [237]. Therefore, new methods of human
performance evaluation should be integrated into the conventional ones in order to achieve
unbiased instruments.

2.1.1 Objective and Research Question

Innovative interfaces integrating OEs have allowed for the design of objective evaluations for
industrial purposes [218, 233–235].

Despite the advances of these systems, some research questions still remain to be ad-
dressed.

A gap regards the validation of active OEs by means of realistic static and dynamic tasks
[238]. In the same context, the impact of a robotic interface on muscle connectivity has not
been clarified yet [239].

Based on the prior discussion concerning opportunities and difficulties of interfaces for
motor assessment, the main objective of the research conducted for this thesis has regarded
the conceptualization, development, and implementation of frameworks to advance the state-
of-the-art in this field. The workflows have been developed with the aim of pursuing their
feasibility and usability in industrial scenarios.

The applications considered mainly belong to the realm of robot-aided power augmenta-
tion. Tasks under consideration concerned performance evaluation. Data under consideration
were collected in laboratory.

2.1.2 Contribution

In the aforementioned scenario, the main purpose of this thesis is to develop new frameworks
based on exoskeletons to quantify motor performance [238, 239].

In the context of active occupational exoskeletons, the majority of portable upper-limb
exoskeletons for workers has found to undergo an in-lab assessment that is mainly based
on static tasks either over the head [234, 240, 241] or under the head [242]. There are
some minor exceptions featuring the dynamic lifting [243, 244] and carrying of loads of
various weights [245, 246]; nonetheless, passive devices are mostly employed in these cases.
Therefore, the work presented in Section 2.2 filled a research gap regarding both the design
of active OEs to support humans in lifting weights and their in-lab assessment through static
and dynamic tasks resembling daily activities in an industrial scenario [238]. Moreover, most
of works employ traditional electromyographic metrics to validate OEs, whereas there exist
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almost no previous works analyzing functional connectivity between muscles to investigate
the impact of robotic devices for supporting the execution of human motor tasks. For instance,
Cancrini et al. exploited a planar robot for challenging motor control of healthy subjects
during several sessions of upper-limb training [247]. The same team studied the differences
between healthy and stroke subjects in the execution of reaching tasks [248]. Nevertheless,
both studies limited the analysis to the extraction of muscle synergies rather than determining
the inter-muscular coordination. All the remaining related works employing muscle networks
have not included robotic devices. Hence, the work presented in Section 2.3 contributes
to the state-of-art by means of a muscle network analysis of healthy subjects during the
execution of isometric tasks with and without an occupational exoskeleton. This has been
revealed to be the first study investigating the influence of an upper-limb exoskeleton on
human motion features by means of muscle network [239].

Ultimately, the technical contributions can be summarized as follows: an occupational
exoskeleton has been validated by means of metrics derived from both conventional EMG
measures and intermuscular couplings based on network theory.

2.1.3 Chapter Outline

This chapter is organized into the following sections. This chapter introduces the objective
and the technical contribution of of the occupational-oriented applications of this thesis.

Sections 2.2 and 2.3 contain the related works and the contributions in terms of validation
of occupational exoskeletons conceived for supporting humans in static and dynamic tasks.

2.2 Flexos: a Bilateral, Active and Portable Shoulder Ex-
oskeleton Reduces Muscular Effort in Real World Weight
Lifting Task

Work-related musculoskeletal disorders affect a high percentage of operators performing
repeated weight lifting and moving in industrial scenarios. Since upper limb muscles are
affected in the process, upper body assistance is increasingly needed to prevent WMDs
and their consequent cost to the health system. Occupational exoskeletons (OEs) can be
employed in industries with the final aim of decreasing energy expenditure and reducing
WMD occurrence.
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This section presents Flexos, a portable bilateral shoulder exoskeleton designed to assist
logistic and industrial operators in performing weight-lifting tasks to prevent the insurgence
of WMDs. The device has been designed to be worn as a backpack and with ergonomic-
shaped 3D-printed interfaces to maximize the wearer’s comfort. It provides only one series
elastic actuated joint for each shoulder for both compensating the arms’ weight - together
with additional lifted weight - and taking into account the user’s intentions. An in-lab
assessment, designed to be close to real-life workplace use cases, was conducted on nine
healthy right-handed subjects to evaluate Flexos capability in assisting the user during the
execution of isometric, dynamic, and carrying-load tasks. Different metrics were extracted
from time-series signals to assess the effort related to five targeted muscles surrounding the
shoulder complex.

The outline of this section is organized as follows: Subsection 2.2.1 contains the state-
of-art of occupational exoskeletons assisting humans in industrial-like motor tasks; Subsec-
tion 2.2.2 describes the mechanical design and the control system of the proposed device;
Subsection 2.2.3 explains the experiments conducted for evaluating Flexos assistive efficacy;
the outcomes of the data analysis carried out for this latter validation are provided in Sub-
section 2.2.4 and discussed in Subsection 2.2.5, wherein liimtations and future works are
explored in Subsubsections 2.2.5.3 and 2.2.5.4 as well.

2.2.1 Related Works

Depending on their design, OEs for the upper body parts can be rigid [249] or soft [250, 251].
A rigid device is characterized by the presence of a kinematic chain made of rigid links
and linear/rotary joints, which act in parallel to the human upper limbs. These devices
often struggle with joint misalignments, arising at the interfaces between human and robotic
joints. These issues become challenging particularly when dealing with the shoulder complex,
consisting of a total of 5 Degrees Of Freedom (DOF). On the opposite side, a soft exoskeleton
only consists of wearable garments equipped with soft actuation systems, such as cable
tendons or pneumatic muscles. These devices tend to be lightweight and capable of preventing
discomforts caused by joint misalignments since they do not feature a kinematic chain
[252]. However, employing soft garments, which are characterized by specific structural
performances, prevents these devices from providing more than a limited amount of torque
[253]. So far, this issue has strongly limited the use of soft exoskeletons in industrial scenarios
[254].
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Fig. 2.1 The proposed Flexos exoskeleton for the shoulder.

Another crucial factor involves the exoskeleton actuation system, where predominant
solutions to date mainly rely on passive energy storage systems, such as springs [255–258].
Despite being extremely light and simple, these devices do not provide real-time adjustable
torque, as their estimates only depend on the arm elevation angle and fixed design parameters,
such as the selected spring stiffness. On the contrary, active solutions can provide any
desired amount of torque at any time, since they are usually based on electric motors whose
limitations are only related to their structural configuration and absorbed power [233]. A
great design candidate for active systems is Series Elastic Actuators (SEAs), which offer
an estimation of the interaction torque by measuring the angular displacement of the series
elastic joint. This facilitates the retrieving of feedback torque data, enabling real-time closed-
loop torque control and thereby ensuring safety in physical Human-Robot Interaction (pHRI)
[259].

Additionally, active systems facilitate the integration of assistance strategies driven by
intelligent algorithms that draw insights from data of various types, such as signals related to
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Fig. 2.2 (a) Flexos design overview. (b) Schematic diagram of the implemented torque
controller.

inertial measurement units (IMUs) or muscular activities measured with electromyography
(EMG) sensors [260, 261]. However, these systems are frequently more complex and bulkier
if compared to their passive counterparts [262]. For this reason, minimizing the number of
active joints could provide a good compromise between the higher controllability of active
exoskeletons and the device’s ergonomics.

2.2.2 System Description

2.2.2.1 Mechanical design

Flexos main subsystems are shown in Fig. 2.2 (a). The device is mainly made up of rigid
custom parts, most of which are produced using 3D printing technology, with additional soft
interfaces that are hand-sewn to the rigid surfaces, thus the whole system is still considered a
prototype.

The device interfaces with the human body through both a primary rigid part located
at the back - Fig. 2.2 (a), 2 - and one arm interface - Fig. 2.2 (a), 4 - for each side. These
arm interfaces can be secured around the upper limbs using two Velcro strap bands. Flexos
also utilizes a kinematic chain - Fig. 2.2 (a), 1 - that operates in parallel to each human arm,
linking the two primary human-robot interfaces (back and arm) together. This flexible link
[263] enables the user to maneuver the arm around the internal/external rotation axis and
shift the shoulder center of rotation around the acromioclavicular joint. It has one extremity
fixed to the back interface, whilst the other one is connected to the SEA - Fig. 2.2 (a), 3
-. Each SEA features an actuator in series with an elastic joint: the actuator is comprised
of a brushless DC motor, specifically the T-Motor AK80-9, capable of delivering a rated
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torque of up to 9 Nm and featuring an integrated driver circuit that enables operations via the
controller area network (CAN) protocol; the series elastic joint axis is perpendicular to all of
the flexible link’s joints axis because it lies on a horizontal plane while being incident to the
shoulder center of rotation. The SEA internal rotation is mapped to the user’s arm rotation
over the sagittal plane (i.e. the arm elevation plane). Moreover, the SEA output is rigidly
linked to the arm interface, thus it transmits the applied torque to the human arm aiding
the user in executing elevation motions. This emphasizes the critical structural role of the
flexible link: being mounted on the SEA input, the flexible link is capable of withstanding
the torque exerted by the SEA and safely redistributing it to the back interface. This specific
design offers two key benefits: first, the SEA consistently assists arm elevation; secondly, the
underactuated kinematic chain can structurally transmit the assistance torque from the SEA
to the back at any point within the exoskeleton workspace. However, the kinematic chain of
the exoskeleton is not compatible with the typical abduction/adduction motion performed
with the arms positioned alongside the body. Nevertheless, the user is allowed to reach a
comparable posture by combining the other compatible movements of flexion/extension and
internal/external rotation.

2.2.2.2 Control & Communication Systems

All essential components for control and communication are housed inside a box that is
embedded in Flexos backpack, making the device completely portable. These include the
power storage system - a 24 V, 10 Ah LiFePO4 battery weighing 1 kg - the control unit, and
the wireless communication system. The system is capable of continuous operation for at
least 6 hours without the need for battery recharge.

The main control unit of the system is represented by a Teensy 4.1 board, which is
integrated into a printed circuit board (PCB) that hosts all the connectors for power, sensors,
and actuators. The control logic is written in C++ code, compiled, and deployed to the
Teensy. The microcontroller operates at a rate of 1 KHz and manages bidirectional CAN
communication with both actuators, configuring the desired current value and retrieving
measurements of the angle, the speed, and the current of the motors. Furthermore, it handles
the Synchronous Serial Interface (SSI) communication protocol through which the encoders
embedded in the SEA transmit their measured angular displacements, thus allowing the
computation of the corresponding joint torque values. Additionally, the microcontroller
manages I2C communication with the IMUs. There are three BNO055 IMU boards mounted
on Flexos: the first one is placed on the back interface and serves as the main reference
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Table 2.1 Control parameters

Parameter Value
Joint stiffness k j 72.4 Nm/rad

Motor torque constant KT 0.75 Nm/A
Max. system output torque τmax 9 Nm rated, 18 Nm max

Proportional gain Kp 1.5
Derivative gain Kv 0.015 s

Integral gain Ki 0.50 s−1

Velocity contribution gain Kimu 0.01 Nm∗ s/rad

for the other two IMUs that are located on each arm interface and measure the arms’ Euler
angles and angular velocities.

The control unit facilitates data exchange with an external device using the UDP network
protocol through the Teensy Ethernet interface. This interface is linked to a multi-port router
switch with four Ethernet ports and a wireless LAN interface, enabling WiFi communication
between the control unit and an external PC. The external PC, which operates at a 500 Hz,
can dynamically adjust control parameters (e.g., maximum desired torque, control gains, and
operating mode), while also retrieving all the relevant data gathered by the Teensy board.

2.2.2.3 Torque controller

Flexos is torque-controlled to ensure safe pHRI. The SEA has an encoder sensor embedded
in the series elastic joint measuring the joint’s elastic displacement, which has been already
characterized and mapped to the correspondent joint torque value in a previous work [264].
These values are subsequently used to implement a precise closed-loop torque controller,
whose scheme is described in Fig. 2.2 (b). The primary goal of this controller is to partially
compensate for the gravity torque that arises from the arm weight - either alone or eventually
with a lifted object - during the elevation motion. However, the system output torque is
saturated by the control to 5 Nm, since previous experimental evaluations revealed that higher
torque values could lead to localized deformations in the 3D-printed parts the current Flexos
version uses. Such deformations could compromise the structural integrity of the device and,
consequently, its performance in assisting the user.

Key control parameters concerning the torque controller are detailed in Tab. 2.1.
The SEA provides an estimate of the joint torque based on Eqn. 2.1:

τ j = k j sin
(︂

γ

2

)︂
(2.1)
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where the estimated joint torque τ j is computed in relation to the angular displacement γ ,
and the first-order joint stiffness k j was experimentally evaluated in [264] and is reported in
Tab. 2.1. This estimate results is a feedforward component that is combined together with the
feedback control law u. The latter is based on a PID controller, whose gains are tuned with
the Ziegler-Nichols method and reported in Tab. 2.1. The resulting motor torque command
τm is converted into a current value and sent to the motors.

The desired torque reference τdes for the closed-loop controller is obtained by the Gravity
Compensation Model plus an additional velocity contribution as shown in Eqn. 2.2:

τdes = τmax sin(q−φ)+Kimuω (2.2)

where τmax represents the maximum system output torque. As shown in Fig. 2.2 (b), the
arm elevation angle q is obtained by subtracting the series elastic joint angular displacement
γ by the motor angular position θ , both measured by their respective encoders. The IMU
located on the back interface measures the misalignment between its vertical axis - parallel
to the user’s back plane and thus to the longitudinal axis - and Earth’s gravity vector. The
resulting angle φ is subtracted to q and the obtained assistance becomes proportional to the
difference between the two antagonist angles. Additionally, the desired torque reference
τdes is proportional to the shoulder flexion speed ω , which is measured by the IMUs located
on each arm interface and then scaled by a constant value Kimu. By taking into account the
flexion/extensions angular speed, an additional contribution is aimed to be provided to the
controller reference generation that takes into account the user’s intentions.

2.2.3 Experiments

2.2.3.1 Participants

A series of in-lab experiments were performed on nine healthy subjects (27.64 ± 2.46 years
old, all males), with only one left-handed - with neither previous history of neuromotor
disorders nor a former familiarity with occupational exoskeletons. The experimental protocol
conformed to the ethical standards laid down in the 1964 Declaration of Helsinki. Ethical
approval for the study was granted by the Scuola Superiore Sant’Anna Review Board, ID
152021, and before commencing the experiments, written informed consent was obtained
from each participant.
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Fig. 2.3 Experimental setup. The room for the experiments is shown in (a): the subject’s
motion path includes a starting platform where the package is lifted from and a final shelving
unit where the package is shelved. Three different shelf heights, which are labeled as e, f ,
and g, are encompassed in this experiment. The base stations are located at the four corners
of the room such that there is no occlusion among them and each marker is always tracked by
at least two base stations. The base stations generate an absolute coordinates system (XY Z)B
that serves as a reference for the individual coordinates system (XY Z)t of the three used
trackers (b). One tracker is positioned at the top-center of the box, whereas the other two
trackers are located at the user’s wrists. (c) EMG Trigno sensor positioning. Each sensor is
located along the longitudinal midline of each targeted muscle, thus the sensor midline is
parallel to the muscle fiber direction.

2.2.3.2 Experimental Setup

The in-lab assessment of Flexos aims to evaluate how effective the exoskeleton is in support-
ing the user during repeated activities requiring upper limb elevation. This efficacy is tested
by focusing on two main aspects: on the one hand, the achievable ROM is measured and the
movements of the upper limbs are tracked inside the workspace; on the other hand, both the
perceived exertion and the muscular effort that is required to perform each task are evaluated
to assess whether the exoskeleton manages to reduce them.

ROM is computed through the IMUs located on each arm interface, which are also used
for motion tracking together with a virtual reality tracking system [265]. This latter consists
of four HTC SteamVR Base Station 2.0, located at the four corners of the experiments room
(Fig. 2.3 a), and three VIVE Tracker 3.0, two of which are positioned on each subject’s wrist
and the third of which is located on the target box (Fig. 2.3 b). Trackers and base stations are
managed by SteamVR which acquires linear and angular positions and speeds at 250 Hz.

Muscular effort evaluation involves measuring the electromyography (EMG) activity of
five specific muscles - biceps brachii (lBIC), anterior deltoid (aDEL), medial deltoid (mDEL),
pectoralis major (mPEC), and upper trapezius (uTRA) - during the experiments tasks, each
of which will be repeated in two different conditions: with (w. Exo) and without (w.o. Exo)
the exoskeleton worn and powered on. EMG signals have been recorded using a Trigno



2.2 Flexos: a Bilateral, Active and Portable Shoulder Exoskeleton Reduces Muscular Effort
in Real World Weight Lifting Task 87

Table 2.2 Experiments - room dimensions and distances

Parameter Value [m]
Distance between base stations ⊥ path a 5.70
Distance between base stations // path b 8.60

Path length c 3.20
Starting table height d 0.82

Shelving unit, lower shelf height e 0.69
Shelving unit, middle shelf height f 1.20

Shelving unit, top shelf height g 1.59

Wireless Biofeedback System (Delsys, Natick Massachusetts, USA), which comprises a
main base station and two types of wireless EMG sensors - Trigno Avanti and Trigno Quattro
EMG Sensors - as shown in Fig. 2.3 (c). Each targeted muscle is monitored with one EMG
sensor unit carefully placed by following the SENIAM recommendations [266]. A Delsys
Trigger Module is used for synchronizing the EMG data with the trackers and exoskeletons
data, acquired by the main control unit. The recorded data are then exported and processed
using MATLAB. The raw EMG data undergoes band-pass filtering (35-450 Hz), full-wave
rectification, and a low-pass filtering (6 Hz) via a zero-phase second-order Butterworth filter.
The EMG activity is then normalized using the maximum voluntary contraction (MVC) value
of each different subject. Furthermore, EMG signals have been segmented by taking the
linear position of the object as a visual reference.

2.2.3.3 Experimental Protocol

Flexos experimental protocol is based on four main tasks, structured as follows:

• Range of Motion (ROM) task: the participant is instructed to perform free movements
with both upper limbs, with the purpose of reaching the limits of the shoulders’ range
of motion.

• Isometric task: the participant is asked to hold a box with both hands while keeping
both arms elevated - horizontal, at 90 ◦ elevation on the sagittal plane - until either
voluntary exhaustion [267] or for a maximum of 2 minutes.

• Dynamic task: the participant is asked to stay in front of a shelving unit that is made
up of three shelves in total. Note that the shelf, whose characteristics are depicted in
Fig. 2.3 (a) and numerically reported in Table 2.2, is the same for all subjects. Such
characteristics should have been tailored to the subject’s anthropometric characteristics
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(height, arm length) for the sake of a fair comparison. However, it has not been
modified since the inter-subject variability in terms of height is low (183.4± 3.1).
Each participant is then asked to stay at a reference distance of 70 cm from the shelf
unit before starting to perform the dynamic task. The task is divided into two main
motor actions, that combined together form a whole trial.

1. Upwards motion: The participant is instructed to grab with both hands a box
located at the middle shelf and shelve it onto the top shelf; then, he brings both
arms back in the resting position - parallel to the trunk.

2. Downwards motion: The participant grabs with both hands the box, now located
at the top shelf, and he shelves it back onto the middle shelf. After that, he brings
both arms to the resting position.

Each transition - up, down, rest - is performed between two consecutive beats of a
metronome set at 20 bpm. The task is performed for a maximum of 2 minutes.

• Carrying-Load task: This task is inspired by the experiments of Theurel et al. [245]
and it is divided into three main motor actions as shown in Fig. 2.4.

1. Pickup: The participant is asked to stand in front of the table where the box
is located, then grab the box with both hands and lift it performing a flexion
movement until the arm elevation on the sagittal plane reaches 90 ◦.

2. Carrying: The participant turns around and walks towards the shelving unit in
front of him. While walking, he keeps carrying the box with arms at 90 ◦ elevation
on the sagittal plane. The participant is asked to synchronize each step with the
beat coming from a metronome set at 80 bpm.

3. Release: The participant reaches the shelving unit and leaves the box on one of
the three shelves.

The three actions are then repeated in the opposite direction, meaning that the subject
lifts the box from the shelving unit and carries it towards the table where he will leave
it, thus completing a whole cycle, namely trial. At each subsequent cycle, the subject
is asked to shelve the box in a different layer of the shelving unit (in order, middle, top,
middle, lower). The metronome also supports an additional paced action: each phase is
preceded by a brief pause where the subject is requested to stand still while holding the
box for three consecutive beats. This will help identify motor actions while inspecting
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Fig. 2.4 The three phases of the Carrying-Load Task. (a)-(b) Pickup, (c) Carrying, (d)
Release.

signals in post-processing. The whole task is executed until voluntary exhaustion or
for a maximum of 10 minutes.

Isometric and dynamic tasks are performed twice, each time with a box of different
masses - 3 kg and 5 kg -. The masses order is pseudo-randomized each time. The carrying
load task is only performed with the 3 kg box, in order to prevent the subject from excessive
fatigue since this task is the longest one. Every task has been repeated both with Exo (w. Exo)
- torque controller powered on - and without (w.o. Exo). The task order has been randomized
to be different for each participant. Only the ROM task is not randomized and always
executed before all the others since it is only performed w. Exo but with torque controller
powered off. The participant is required to rest for a minimum of ten minutes between two
subsequent executions of each task, to allow muscle relaxation before proceeding to the next
task, thus preventing fatigue from altering the results [268]. Note that the maximum duration
of dynamic and carrying-load tasks was chosen to both optimize the global experimental time
and attempt to acquire a sufficient amount of data to assess the influence of the exoskeleton
[269]. After each task, to collect a qualitative assessment of the task load, the participants
filled the 20-point scale NASA Task Load Index (NASA-TLX) questionnaire made up of 6
items, mental demand (MD), physical demand (PD), temporal demand (TD), performance
(P), effort (E), and frustration (F) [270]. In addition, the Borg CR-10 [271] questionnaire has
been included to qualitatively evaluate the rate of perceived exertion (RPE) as well.

2.2.3.4 Metrics and statistical analysis

Different metrics have been extracted from the processed data in both w. and w.o. Exo
conditions to quantitatively verify the efficacy of Flexos in supporting the subject. More
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in detail, the execution time has been evaluated only for the isometric time, whereas two
EMG-based indexes have been considered for all the tasks. The endurance time (ET), which
is the duration of the isometric task, is computed as the time elapsed from the first to the
last instant in which the subject kept the shoulder flexed of 90 ◦. The muscular effort (ME)
has been defined as the root mean squared (RMS) of each processed EMG signal and its
computation varies with each task. In fact, the ME values may be biased from a delay of the
fatigue onset, since subjects could reach fatigue at different times with and without support.
Hence, for the sake of a fair comparison, the minimum time between the w.o. Exo and w.
Exo conditions have been considered for each task. Afterward, the RMS is computed on the
length of the whole signal for the isometric task, whereas it is calculated within all the phases
or subphases of the dynamic and carrying-load tasks, respectively.

The normality distribution of these metrics is checked by means of a Shapiro-Wilk test
with a significance level of α = 0.05. Consequently, the value of these metrics in the w.
Exo condition is statistically compared with the one in the w.o. Exo condition through a
non-parametric Wilcoxon signed-rank test for non-normally distributed sets and with a paired
t-test (α = 0.05) for normally distributed ones.

2.2.4 Results

2.2.4.1 Tasks overview

The outcome of the ROM task is determined by the Euler angles measured with the IMUs lo-
cated on each arm interface. The kinematic model for ROM measurements is compliant with
the Thorax coordinate system recommended by the International Society of Biomechanics
(ISB) [272]. Table 2.3 presents the results for shoulder flexion/extension and internal/external
rotation. To ensure consistency with the literature, these results are compared with the
normal values of forward flexion, backward extension, and inward/outward rotation stated
by Boone et al. (1979) [273]. The results show how Flexos facilitates extensive coverage of
human ROM, achieving an average of 89.2% for flexion/extension motion and 88.4% for
internal/external rotation.

Considering a representative subject of the collected dataset, Figure 2.5 (a) shows the
temporal evolution of the vertical position of the object that is moved upwards (i.e., from
the middle to the upper shelf) and downwards (i.e., from the upper to the middle shelf) in
the dynamic task, using the reference system that is shown in Fig. 2.3 (a). Moreover, the
processed EMG signal of the right aDEL is shown, reflecting the corresponding muscular
activation. For both signals, the inter-trials mean has been included and the time axis has
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Fig. 2.5 (a) Position of the target box and muscular activation of the right anterior deltoid
during the dynamic task. The gray lines are related to single trials, while the colored lines
represent the inter-trial mean among corresponding signals. (b) Inter-trials mean velocity
during the dynamic task.

been normalized. Both phases (upwards and downwards motions) can be divided into three
subphases, which are: a) a reaching subphase that lasts 25% of the whole time cycle on
average, b) a moving phase that lasts from the 25% to the 70% of the whole time cycle on
average, and c) a release phase that lasts for the remaining 30% of the time cycle on average.

Furthermore, as additional information concerning the outcome of the task, the distri-
bution of the inter-trials mean velocity (ITMV) was computed to demonstrate how each
group of tasks was executed as much as possible at the same speed to exclude the effect of
movement speed on the effort evaluation. The statistical test revealed that the ITMV during
the dynamic task, Figure 2.5 (b), shows no substantial difference between the w. Exo and
w.o. Exo conditions, highlighting how the velocity has not noticeably changed during the
dynamic task.

Considering a representative subject of the collected dataset, Figure 2.6 (a) shows the
temporal evolution of the vertical position of the lifted object during the release and pickup

Table 2.3 Shoulder ROM. Ground truth data for healthy subjects are taken from [273]
and compared to the ROM covered with Flexos. Values are reported in mean ± standard
deviation.

.

w.o. Exo [273] w. Exo
Flexion 166.7◦±4.7◦ 149.2◦±9.24◦

Extension 62.3◦±9.5◦ 55.1◦±9.0◦

Internal Rot. 68.8◦±4.6◦ 66.7◦±4.9◦

External Rot. 103.7◦±8.5◦ 85.7◦±3.4◦
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Fig. 2.6 (a) Position of the target box and muscular activation of the right anterior deltoid
during the carrying-load task. The gray lines are related to single trials, while the colored lines
represent the inter-trial mean among corresponding signals. (b) Inter-trials mean velocity
during the carrying-load task.

subphases of the carrying-load task for each shelf height, as well as the trajectory of the
object (i.e., position on the z-x plane) moved from the platform to the shelving during the
carrying subphase of the same task. These signals trajectories are expressed in the reference
system that is shown in Fig. 2.3 (a). The EMG signal of the right aDEL, reflecting the
muscular activation of the corresponding targeted muscle, is depicted as well. For both
signals, the inter-subject mean has been included and the time axis has been normalized.
The release subphase may be further divided into a reaching stage lasting the first 20% of
the whole time cycle on average, a releasing stage lasting from the 20% to the 60% of the
whole time cycle on average, and a resting stage for the remaining 40% of the time cycle
on average. Similarly, the pickup subphase can be divided into a reaching stage lasting the
first 25% of the whole time cycle on average, a picking stage lasting from the 25% to the
70% of the whole time cycle on average, and a holding stage for the remaining 30% of the
time cycle on average. Moreover, muscular activation increases on average as the height of
the shelf on/from which to release/pick the object is greater. On the other hand, during the
carrying subphase, the EMG signals oscillate around a mean value as the subjects move the
object from the platform to the shelving while walking.

Moreover, the distribution of the ITMV during the carrying-load task is again computed
as for the dynamic task and reported in Figure 2.6 (b). The statistical test revealed that the
ITMV during the carrying-load task does not significantly differ between the w. Exo and w.o.
Exo conditions and, since the difference between the two conditions is small, the velocity
has arguably no notable changes during the execution of the carrying-load task.
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2.2.4.2 Outcomes

Several indexes have been extracted from the processed EMG signals to evaluate whether
Flexos effectively supported the subject in weight-lifting tasks.

Endurance time The endurance time has been quantified for the isometric task, thus
finding that ET differs in each condition and for each mass. As shown in Fig. 2.7 (b), ET in
the Exo condition is higher than in the w.o. Exo condition for both masses. Therefore, the
exoskeleton effectively increased the subject’s endurance during the isometric task.

Muscular effort The distributions of the ME during the isometric task for all subjects is
reported in Fig. 2.7 (a). The median of ME during the isometric task in the w. Exo condition
is lower than the one in the w.o. Exo condition in almost all cases, though without statistical
significance Nonetheless, no muscle was penalized by the introduction of Flexos; hence, from
a general point of view, the ME values underline the benefits of employing an occupational
exoskeleton for isometric tasks.

The distributions of ME during the dynamic task for all subjects are reported in Fig. 2.8.
The median of ME during the dynamic task in the w. Exo condition is higher than in the w.o.
Exo condition only in one case - left lBIC when moving a 5 kg mass, that is a muscle not
directly supported by the exoskeleton -. However, compared to the corresponding one in the
w.o. Exo condition, the reductions are slightly lower than in the previous case (i.e. isometric
task), particularly for the mDEL and aDEL.

The distributions of ME during the carrying-load task for all subjects, divided by sub-
phases (i.e., pickup, carrying, release), is reported in Fig. 2.9. Such outcomes may be

Fig. 2.7 (a) RMS during isometric task. Percentage differences in RMS between w. Exo and
w.o. Exo conditions are reported. (b) Endurance time during isometric task.
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Fig. 2.8 RMS during dynamic task, with * representing statistically significant comparisons
with p < .05. Percentage differences in RMS between w. Exo and w.o. Exo conditions are
reported.

regarded as intermediate between those of the isometric task and those of the dynamic task
in terms of the amount of both statistically significant reductions and variation between the
w. Exo and w.o. Exo conditions. The most relevant reductions concern the carrying phases,
which require to performing isometric contractions for a longer time.

Fig. 2.10 reports the scores of the NASA-TLX and RPE questionnaires related to both
w. Exo and w.o. Exo conditions by means of two different polygons. More in detail, the
scores related to the w. Exo conditions are lower than the ones of the w.o. Exo condition
for all items; notably, this difference is statistically significant for PD with p < .001, as well
as for E and F with p < .01. In addition, the RPE scores related to the w. Exo condition is
significantly lower than the ones of the w.o. Exo condition with p < .01. These outcomes,
although subjective, confirm that the perceived workload is reduced when Flexos support the
subject’s motor actions.

2.2.5 Discussion

This work presented the design and control of the Flexos, a fully portable and active shoulder
exoskeleton for direct assistance in the workplace. The system design and control have
been described in detail, leading to an in-lab experimental assessment performed over nine
healthy subjects to evaluate Flexos’ capabilities in helping the user to perform weight lifting
movements and moving objects tasks, as well as shelving operations. The device performance
is tested both in terms of ROM evaluation and reduction of the muscular effort required to
perform weight lifting, carrying, and shelving tasks.
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2.2.5.1 Flexos’ design features

The adoption of occupational exoskeletons still presents challenges, notably concerning the
comfort and the consequent acceptability of these devices among workers. To address this,
the design of ergonomic human-robot interfaces and the achievement of a broader ROM
were prioritized. The resulting device was pleasantly received by the participants during
the study, as hinted by the generally decreased NASA-TLX scores shown in Fig. 2.10 (a).

Fig. 2.9 RMS during the three main phases of the carrying-load task, with * representing
statistically significant comparisons with p < .05. Percentage differences in RMS between w.
Exo and w.o. Exo conditions are reported.
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Fig. 2.10 Results of NASA-TLX and RPE questionnaires, with ** and *** representing
statistically significant comparisons with p < .01 and p < .001, respectively. (a) The score
distributions are depicted with a different polygon for each condition (i.e., w. Exo and w.o.
Exo), as well as with the median highlighted through a thick line. (b) RPE scores. Moreover,
the percentage differences in questionnaire scores between w. Exo and w.o. Exo conditions
are reported. The darker color refers to w. Exo condition while the lighter color refers to w.o.
Exo.
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Particularly, the reduced level of Mental Demand (MD) and Frustration (F) is possibly due to
multiple factors: the system’s lightweight design and its back-drivability, which allows for
high mobility even with powered-off torque controller; the employment of soft garments at
the human-robot interfaces, facilitating a comfortable load transfer to the human body; the
adoption of the new bi-manual configuration, enabling the user to perform more complex
tasks with both hands, with no reports of discomfort highlighted during the experiments with
respect to a previous work [218] where Flexos was only one-sided.

Moreover, participants did not complain about the impossibility of performing a direct
shoulder abduction/adduction motion when the arm is placed along the body, as the other
available DOF ensured enough mobility to cover most of the shoulder ROM. Percentages -
flexion/extension 89.2%, external/internal rotation 88.4% - show no substantial difference in
the shoulder ROM between w. Exo and w.o. Exo conditions. Additionally, this configuration
has the possible advantage of being underactuated, with the exoskeleton kinematic chain
capable of bearing the actuation torque, contrary to a previous solution [263].

Lastly, participants were positively affected by the modifications in the torque controller,
i.e. the additional torque reference signal depending on the arm velocity, as suggested by
the decreased score of Physical Demand (PD). Indeed, subjects reported feeling increased
assistance when manipulating the target mass in the pick-up/releasing phases, characterized
by less effort in upper arm movements.

2.2.5.2 Comparison in muscular activity

The experimental protocol has been designed to reproduce in a laboratory the targeted use of
the exoskeleton. The new tasks are more complex and more adherent to real-life workplace
activities than in a previous preliminary study [218]. The protocol of the present study is thus
characterized by an additional layer of complexity that makes it different from the majority
of related works, which are usually centered on a reference trajectory to follow. Nonetheless,
the concept and the methodology are promising. Particularly, Fig. 2.11 reports the average
muscular activity reductions obtained with the experiments on the current Flexos system:
average reductions range from 15% to 39%, from 7% to 34%, and from 14% to 32% for the
isometric, dynamic, and carrying-load tasks, respectively. These results are consistent with
similar studies in the literature. Theurel et al. [245] obtained an average reduction of 54% in
the dynamic (lift) task and 40% in the walking task for the anterior deltoid (aDEL) by using a
passive exoskeleton with eight subjects for manipulating a target mass whose weight ranged
from 5 kg to 15 kg depending on both the task type and the participants’ gender. Grazi et al.

[235] managed to obtain average reductions of 33% (aDEL), 41% (mDEL), and 33% (uTRA)
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employing their semi-passive upper-limb exoskeleton H-PULSE during prolonged continuous
overhead activities with nine subjects. Pacifico et al. [274] performed experiments with
the proto-MATE, a passive upper-limb exoskeleton, on fifteen subjects, resulting in average
reductions that lie in the range 18% - 35% and 18% - 38% during dynamic (reaching) and
isometric tasks, respectively. Pinto et al. [275] studied the effects of wearing a passive
shoulder exoskeleton for overhead tasks, resulting in an average reduction of 27% (aDEL),
38% (mDEL) and 33% (uTRA). Missiroli et al. [268] proposed an OE for upper limbs with a
hybrid configuration - the shoulder is passively actuated while the elbow is active - that could
reach average reductions of 31% (aDEL), 22% (mDEL) and 33% (lBIC) during shoulder
abduction in dynamic (tracking) tasks. De Bock et al. [246] assessed the effect of wearing
a passive shoulder exoskeleton prototype for overhead tasks, obtaining average reductions
of 25% (aDEL), 29% (lBIC) and 20% (mPEC). Lee et al. [276] proposed a novel passive
shoulder exoskeleton employing magnetic spring joints and they tested the prototype while
performing overhead drilling and box-lifting tasks, resulting in average reductions of 34%
(aDEL), 25% (mDEL) and 3% (uTRA). It is evident how the majority of exoskeletons with
similar assisting purposes - upper-limbs devices for assisting arms flexion/extension - are
often passive. On the one hand, these devices manage to obtain relevant reductions in the
user’s muscular activity; however, due to their passive actuation system, such exoskeletons do
not allow for modifying in real-time the delivered torque. In a previous work [263], where an
active exoskeleton was designed with bowden cable remote actuation, thus still not portable,
the muscular activity decreased by 32% (aDEL), 57% (mDEL) and 45% (lBIC) for the static
task and by 25% (aDEL), 50%(mDEL) - with lBIC showing a not significant reduction -
for the dynamic task. Finally, the preliminary study conducted with the previous version
of Flexos [218] led to reductions rangin from 11% to 42% and from 2% to 37% for the
static task holding 2 kg and the dynamic task, respectively. These results differ from the ones
obtained with the new experiments, despite being always centered on the Flexos prototype.
This can be mainly due to the bilaterality of the current Flexos instead of the unilaterality of
the old preliminary study; besides, the previous experiments were characterized both by a
lower sample size and thoroughly different (and simpler) tasks.

Other relevant features from related work are reported in Table 2.4 for further compar-
isons.

2.2.5.3 Limitations

Despite the promising results, this study highlighted some issues, starting from the restricted
size of the experimental sample, which could be addressed by recruiting new participants
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Fig. 2.11 Related works employing similar exoskeletons supporting the shoulder flexion.
Changes in muscular effort are reported with circles, whose size and color represent the
sample size and the muscle whose activity, respectively. Acronyms: aDEL - anterior deltoid;
mDEL - medial deltoid; uTRA - upper trapezius; lBIC: biceps brachii; mPEC: pectoralis
major.

Table 2.4 Relevant features from related works, reported for comparisons among prototypes.

Theurel et al.
[245]

Tiseni et al.
[263]

Grazi et al.
[235]

Pacifico et al.
[274]

Pinto et al.
[275]

Missiroli et al.
[268]

De Bock et al.
[246]

Rinaldi et al.
[218]

Lee et al.
[276]

Current System

Mass (kg) 9 2.45 5 3.5 3 6.4 3.8 4.8 1.9 7.6

Actuation
Type

Passive Active Passive Passive Passive Hybrid Passive Active Passive Active

Max Torque
Absolute
(Nm)

assistance at EE
up to 135◦ (flex.) 20 6 5.5 ND ND 3 9 5 9

Max. Torque
Experiments
(Nm)

assistance at EE
9 kg (Males)

5 kg (Females)
up to 90◦

2.5
4.58 (Low)
5.38 (Medium)
5.85 (High)

4 ND ND 3 5 2.5 5

Target Load
Mass (kg)

15 (Males)
8 (Females) 0 0 0 0 1.5

5 (static tasks)
10 (dynamic tasks) 2

1.2 (drilling task)
5 (lifting task)

3, 5 (static task)
3, 5 (dynamic tasks)
3 (carrying-load task)

Body Side Both Right Both Both Both Both Both Right Both Both
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even among females in order to increase inter-subject variability in terms of anthropometric
characteristics and muscular tonicity.

Moreover, the choice of the material still put a limitation over Flexos’ full assistive
potential: all the SEA torque could not be entirely used due to the insufficient stiffness in
the flexible link, which resulted in torsional displacement under load. To better suit Flexos’
future applications, subsequent iterations of the device will provide composite materials
combining plastic and carbon fiber, to fully exploit Flexos’ potential assistance.

The control strategy is another component of the proposed system that can be improved
by compensating for a two-fold lack. At first, the user could benefit from modulating Flexos
assistance for different payloads, which may be done by estimating the target mass that
serves as a reference for the torque controller. In addition, a more advanced control strategy
could be exploited to allow Flexos to exhibit better performance in dynamic tasks.

2.2.5.4 Future works

Most of the limitations mentioned above could be addressed by further developments of
Flexos in the future. As an instance, since one of the main benefits of employing an
active device is the possibility of integrating external sensors in the control loop, the torque
controller could be enhanced by employing the IMUs to collect kinematics data of the user
online, i.e. while wearing Flexos and performing a specific task. This data will be used in
the torque controller to adjust the assistance based on the user’s posture, thus ensuring a
satisfying level of ergonomics to be compliant with the main requirements for a device to be
employed in the workplace.

Secondly, the extra assistive contribution of the torque controller needs further investiga-
tions to fully take into account the user’s intention in future versions of the device.

Furthermore, textile interfaces, which are a set of harnesses worn by the subject instead
of rigid robotic devices, may provide an additional benefit for reducing fatigue: for instance,
Georgarakis et al. used a textile exosuit to delay the onset of fatigue during isometric
contraction of upper limb muscles [250].

Lastly, an in-lab assessment of Flexos is performed as this is the first step towards a
possible final goal which is the adoption of this device inside the workplace. The next step
will be an in-field assessment where real workers are enrolled to perform tasks in a real
industrial scenario.
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2.3 Muscle networks analysis on an active occupational
shoulder exoskeleton

Muscle networks depict the way in which different muscles, controlled by different neural
drives from different areas of the motor cortex, can share the oscillatory input, thus generating
connections. It has been hypothesized that these networks can show how the brain can
achieve coordinated movements with so many degrees of freedom, through neural coherence.
It is worth wondering what happens to these structures when an assistive exoskeleton is
employed. This research investigated the answer to this question by analyzing functional
muscle networks of healthy subjects during isometric and load-carrying tasks with and
without an occupational exoskeleton.

The contribution of this work to the state of the art is the presentation of a full comparative
muscle networks analysis of healthy subjects during the execution of a) a pure bilateral
isometric task and b) a bilateral load-carrying task, with and without Flexos, which is
an occupational upper-limb exoskeleton. This study has been found to be the first one
investigating the influence of an upper-limb exoskeleton on human motion features by means
of muscle networks. Hence, this work presents:

1. an overview of what muscle networks are and how they have been analyzed and used
in literature;

2. a complete description of the methods for computing muscle networks;

3. the comparison of networks and the correspondent features with and without the
support of the upper-limb exoskeleton, together with an extensive discussion of what
networks’ metrics mean in terms of a physiological motion strategy and how the
changes in their value could practically mean for healthy subjects.

This entire analysis also includes a discussion on muscle synergies, which are extracted
on the same dataset about what useful information can be caught on motor strategies by
comparing them with muscle networks.

The hypothesis of this work is that muscle networks can be used to evaluate an exoskeleton
from the point of view of retaining physiological motor patterns while using the device.
Accordingly, if an assistive device does not alter subjects’ physiological movement, muscle
network metrics should not be very different when comparing the two conditions with and
without the exoskeleton.



2.3 Muscle networks analysis on an active occupational shoulder exoskeleton 102

This section is structured as follows: Subsection 2.3.1 provides a description of the
state-of-art of functional connectivity analysis; Subsection 2.3.2 offers an overview of the
robotic device, the experimental setup and protocol followed for acquiring data, and the
operations executed to extract muscle networks from raw data; the outcomes of this data
analysis are reported in Subsection 2.3.3; ultimately, discussions and conclusions of the
conducted study are presented in Subsection 2.3.4.

2.3.1 Related Works

Robotic exoskeletons have increasingly gained popularity in both the scientific and industrial
communities for the possibility of supporting humans in performing motor tasks [243, 277].
Based on the context in which they operate, they can be used as rehabilitation devices
[278, 279] and power augmentation devices [218, 280]. Power-augmentation is referred to
as a way to boost human performance in certain tasks, like carrying or lifting loads, for
military or industrial applications. This usually happens thanks to specific design features and
control strategies that aim to provide more power after detecting the intention of movements
or under specific user commands [230]. Despite the physical relief that these devices can
provide, it has been hypothesized that they can alter users’ movements leading to non-
physiological patterns [281, 282], such as increasing gait variability (e.g., using a lower limb
exoskeleton) or altering the activity of non-assisted muscles. The analysis of motor patterns
can also involve the extraction of muscle synergies, which are motor primitives that have
been hypothesized to be used by the central nervous system for the coordinated activation of
different muscles towards the completion of motor tasks [283].

Muscle synergies, hence, would enable for unveiling human motor patterns with a lower
number of parameters with respect to the number of all the recruited muscles. This has also
a high importance when dealing with brain injury (e.g., hemorrhagic or ischemic stroke
events), in which context abnormal motor patterns and compensation strategies can occur and
be revealed [284, 285]. A few works explored whether a robot-aided motor task may alter
such patterns. Scano et al. investigated the impact of a robotic manipulator on the muscle
synergies related to the execution of reaching tasks by both healthy and post-stroke people
[286]; both subject categories exhibited on average only an amplitude variation of pattern
activations for three execution types (free movements, slow-speed robot, fast-speed robot).

Human muscular coordination can be investigated from a different perspective - i.e.,
highlighting the neural substrate [287] - by evaluating functional connectivity between
muscles. Previous studies investigated the hypothesis that the basis of human cognitive
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dynamics and motor coordination lies in the synchronous oscillations of neurons, leading to
the communication among neuronal groups [288, 289]. In this context, neuronal coherence
is the process during which the rhythmic excitability fluctuations of the activated neurons
produce temporal windows in which they accept coherent inputs from other neurons that are
activated at the same time [288]. Network theory allows to determine the so-called functional
muscle networks, which reflect the mutual synchronization of different muscles [290]. Such
networks are typically arranged among three frequency bands, which are the alpha, the beta,
and the gamma (or Piper) bands [291].

Functional muscle networks have been widely and increasingly utilized in the scientific
literature for plenty of applications. O’Keeffe and colleagues employed this EMG-based
method to investigate the difference in inter-muscle connectivity during the execution of
vocal [290] and dynamic motor tasks [292]. Functional connectivity analysis was applied
also to locomotion tasks performed on a treadmill at different speeds by either walking [293]
or running [294]. Kerkman et al. exploited inter-muscular coherence to assess postural
control on both healthy adults [287] and children in developmental age [295]. Functional
muscle networks were used to explore the mechanism behind fatigue onset as well [296,
297]. Topographical changes of muscle connectivity proved to be even biomarkers of the
development of stroke in individuals performing either upper-limb [298, 299] or stabilometric
tasks [300], as well as an additional tool to investigate the evolution of human locomotor
control [301]. Rehabilitative enhancements of post-stroke individuals were captured through
muscle network analysis either without [302] or with the aid of robotic exoskeletons [248].

2.3.2 Materials and Methods

The exoskeleton used in this work is Flexos, the shoulder occupational exoskeleton which
has been extensively described in all its components in Subsection 2.2.2. Analogously,
the participants and the experimental setup are the same as reported in Subsection 2.2.3,
respectively.

2.3.2.1 Experimental Protocol

Participants have been asked to perform the following motor tasks.

1. Isometric task: the participant has to hold bilaterally a box with both shoulders flexed
of 90 ◦ until voluntary exhaustion [267] or for at most two minutes.
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2. Load-carrying task: In this task, which is inspired by Theurel et al. [245], the subject
is asked to move the box by walking from the table to one shelving unit while keeping
both shoulders flexed of 90 ◦ on the sagittal plane. The beat coming from a metronome
set at 80 bpm has been used to synchronize footsteps. The subject was asked to follow
the path in the opposite direction, or rather carry the object from the shelving unit
to the table. In so doing, one cycle (i.e., trial) of the load-carrying task is completed.
Participants were told to repeat the execution of the load-carrying task for ten minutes
consecutively, or to stop the execution earlier if moderate fatigue was perceived.

A mass of 3 kg has been chosen for all the tasks such that the participant is not excessively
affected by fatigue. Subjects were asked to perform all the tasks without the exoskeleton
(w.o. Exo) and wearing the exoskeleton (w. Exo) with the torque controller powered on.
A pseudo-randomized order for experimental conditions has been adopted to minimize
bias due to any learning effects. A rest of ten minutes has been established between two
subsequent executions of the tasks for allowing muscles to relax and avoiding excessive
fatigue accumulation [268]. The maximum duration of the load-carrying task derives from
a trade-off between the overall experimental time and the need for a highly enough dataset
dimensionality [269].

2.3.2.2 Data processing

EMG data needs a preliminary processing stage to remove any possible sources of noise,
which may be related either to human motion or the electrical grid. Such operations slightly
change depending on whether muscle synergies or functional muscle networks have to be
extracted.

Functional muscle network Therefore, raw EMG signals are processed by means of a
band-pass filtering (5-500 Hz) and a full-wave rectification via a Hilbert transform [303].
These operations have been chosen to remove artifacts while keeping and even strengthening
the information about the neural oscillatory modulations in the range of interest (<100Hz),
considering the observed EMG signals coming from non-uniform motor unit action potentials
[304, 305]. Afterwards, the values of each subject’s maximum voluntary contraction (MVC)
are employed to normalize the EMG data. Ultimately, EMG data are segmented according to
the object linear position.

In addition, coherence matrices have been computed to evaluate the inter-muscular
coherence (IMC), which indicates how muscle activations match each other at each frequency.
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These matrices are computed as follows:

Cxy( f ) =

⃓⃓
Pxy( f )

⃓⃓2
Pxx( f )∗Pyy( f )

(2.3)

where Pxy is the cross-spectrum between the two signals x and y, Pxx and Pyy are the self-
spectra of those signals, f is the frequency, and Cxy is the coherence between the EMG data.
Such matrices are averaged across trials and subjects for the load-carrying tasks, as well as
among subjects for the isometric one.

Subsequently, each averaged coherence matrix is decomposed by means of the non-
negative matrix factorization (NNMF) [306], thus obtaining a r-ranked matrix IMC f∗n

according to the following formula:

IMC f∗n = (Wf∗r ·Hr∗n)+E f∗n (2.4)

where n is the number of muscle pairs, r is the number of frequency components (i.e., the
rank of the matrix), f is the frequency, H and W contains coherence patterns and edge
weights of the muscle networks, respectively; ultimately, E is the residual error matrix of the
NNMF. The variance accounted for (VAF) with a threshold of 90% is exploited to minimize
the number of patterns explaining the total variance of the IMC. VAF has been calculated
considering the Frobenius norms of both the error and coherence matrices.

Afterwards, the muscle edge weight matrices are normalized to attain unit vectors for
each frequency component. Such arrays are then converted into adjacency matrices by a
threshold-based method according to which only weight values that are equal to at least the
30% of their maximum are included.

Functional muscle networks are visualized as a set of nodes, which are related to the
muscles, and edges, whose appearance changes according to the value of a single element
in the adjacency matrix: low, medium, and high connection strengths are defined for a
range of 0%-33%, 34%-66%, and 67%-100% of the maximum of the adjacency matrix;
analogously, the higher the value of a single element in the adjacency matrix, the thicker the
line connecting nodes in the graph depicting the network topology, and viceversa. Note that
each node is characterized by a degree k, which is the number of links connecting that node
with other neighbors in the network.

Muscle synergies As for muscle synergies, raw EMG signals are processed by means of a
50 Hz notch-filter band-pass for power line artifact removal, a band-pass filtering (5-500 Hz)
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and a full-wave rectification, a low-pass filtering (8 Hz) for deriving the envelope [307], and
a normalization by each subject’s MVC. Ultimately, a segmentation is exploited to extract
the portions of interest by inspecting the object linear position.

Muscle synergies approach exploits the time-domain of EMG measurements, working on
data dimensionality reduction to find principal components (i.e. motor primitives). Hence,
the NNMF is employed to decompose processed EMG data into two non-negative matrices
corresponding to the synergies and the activation patterns [287], similarly to the formula
in Eq. 2.4. The number of synergies is computed by means of the variance-accounted-for
(VAF) criterion such that the 90% of the variance [308]. Muscle synergies are reordered by
similarity [287].

2.3.2.3 Metrics and statistics

Different metrics have been employed to compare the conditions w. Exo and w.o. Exo with
the aim of evaluating the potential influence of the exoskeleton on motor patterns during
the task execution. At first, the root mean squared (RMS) is computed for each processed
time-series EMG signal as a measure of the muscular effort (ME) applied by the subject.
More specifically, to cope with inter-subject variability in terms of the temporal occurrence of
the fatigue onset, for each task and subject a single common duration between the conditions
has been set considering the minimum time between the w. Exo and w.o. Exo conditions.
Subsequently, the RMS is calculated considering the whole signal for both the isometric and
the load-carrying task.

Secondly, for each task, the similarity between the corresponding muscle synergies in
w.o. Exo and w. Exo conditions are computed by means of the Pearson correlation coefficient
[309].

Moreover, the RMS of the activation matrix H - namely IMCfreq - is computed for the
three frequency bands of interest, which are the α-band (1Hz-10Hz), the β -band (10Hz-
30Hz), and the γ-band (30Hz-60Hz), to quantify the activation intensity in the muscular
coherence for each task.

Graph theory can be exploited to derive features describing the network topology instead
of local connections between single pairs, thus leading to a higher robustness against noise
affecting EMG channel [292]. Hence, two network metrics have been extracted for each
adjacency matrix. In the one hand, the betweenness centrality (BC) denotes how one node
is central within the network, meaning that the higher the value, the more the importance
of the node in the communication with other nodes [310]. On the other side, the clustering
coefficient (CC) quantifies how the neighbors of one node are neighbors among themselves as
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well [310]. Note that the global measure of betweenness centrality and clustering coefficient
is determined by averaging the BC and CC of each node, thus achieving a scalar value for
each subject, condition, and frequency component. Network metrics have been computed by
recurring to the Brain Connectivity Toolbox [310].

Ultimately, a correlation analysis among these metrics has been performed by means
of the Pearson correlation coefficient. More in detail, the variation of each metric between
the two conditions is computed as the difference between the value in the w. Exo condition
and that of the w.o. Exo condition. Subsequently, the correlation between the values of the
IMCfreq index, considered in each frequency band, and the values of each network metric
(i.e., BC and CC) is computed for each frequency component and task. In addition, the
correlation between the inter-subject mean of the RMS and the inter-subject mean of each
network metric is computed for each frequency component and task.

A Shapiro-Wilk test with a significance level of α = 0.05 is used to check the normality
distribution of these indexes. Therefore, the metric values in the w. Exo and w.o. Exo
conditions are statistically compared with a non-parametric Wilcoxon signed-rank test for
non-normally distributed sets and by means of a paired t-test (α = 0.05) for normally
distributed ones. All the data analysis has been conducted using MATLAB 2022b and its
toolboxes.

2.3.3 Results

2.3.3.1 Task-specific results

The outcomes of muscle network analysis outcomes of the isometric and load-carrying task
are respectively reported in Figures 2.12 and 2.13 for both w.o. Exo and w. Exo conditions
and both frequency components (C1 and C2).

Isometric task Looking at Figure 2.12a, when the subject performs the static isometric
task, the activation function is quite stable in the first component having a high intensity
in the 1-8 Hz band and a very low one in frequencies major than 8 Hz, while exhibiting a
more variable distribution in the second component, showing a medium intensity from 8 Hz
to around 30 Hz; nonetheless, it assumes the highest values in the α-band (1Hz-10Hz) and
decreases as the frequency increases in both cases. Moreover, this pattern is the same in both
w.o. Exo and w. Exo conditions. Accordingly, no statistically significant differences can be
observed between the two conditions in terms of the IMCfreq (Figure 2.12b), except for the
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second component in the α-band (1Hz-10Hz) in which this median of the IMCfreq in the w.
Exo condition is significantly higher than the one in the w.o. Exo condition with p < .05.

For each component, as represented in Figure 2.12a, the network topology in the w. Exo
is nearly unchanged compared to the w.o. Exo condition. More specifically, regarding to
the first component, the right mDEL strengthens its connections with almost all the other
muscles when the task is executed with the exoskeleton. As for the second component, the
right mPEC is connected with all the other ones in the w.o. Exo condition, whereas other
connections appear for the right uTRA in the w. Exo condition. It has to be noted that,
generally, the first component features direct connections between the right and left sides
of the body while the second component highlights indirect connections (the mPECs act as
bridges between the two sides of the body).

Regarding to the network metric in Figure 2.12d, the CC in the w.o. Exo condition is
significantly higher than the one in the w. Exo condition with p < .01 for both the right
and left uTRA only in the second component. On the other hand, the BC in the w.o. Exo
condition is significantly lower than the one in the w. Exo condition only for the left uTRA
in the first component. Unexpectedly, no significant differences are exhibited for any of
the deltoids. As for the averaged BC (Figure 2.12c) and CC (Figure 2.12d), no statistically
significant differences have been found between the two conditions as well. Unlike the BC
and CC for each muscle, for both frequency components, the median of the averaged BC in
the w. Exo condition is lower than the one in the w.o. Exo condition, whereas the median of
the averaged CC in the w. Exo condition is higher than the one in the w.o. Exo condition.

Load-carrying task The activation function and its related RMS distribution in the load-
carrying task exhibit similar patterns as in the static isometric task, given the similarity of
these two tasks.

The network structure in the w.o. Exo condition is also globally unvaried with respect to
the w. Exo condition for each component, as noticeable in Figures 2.13a and 2.12b In fact,
compared to the isometric task, almost the same connections in terms of both number and
intensity can be noticed for the first component; however, regarding to the second component,
the MN of the load-carrying task is slightly different from the one in the isometric one, since
the connections in the w. Exo condition, besides the main ones with the right mPEC, are
almost equally distributed between the right uTRA and left aDEL.

The BC in the two conditions (Figure 2.13c) does not significantly differ each other for
any muscle, whereas the CC in the w. Exo condition significantly lessens the one in the
w. Exo condition with p < .05 for the left mPEC only in the first component, as it can be
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Fig. 2.12 Muscle network analysis outcomes of the isometric task reported for both w.o. Exo
and w. Exo conditions and both frequency components (C1 and C2). There can be found: a)
the frequency components, the adjacency matrices, and the correspondent muscle networks;
b) the RMS of the activation matrix H for the α-band (1Hz-10Hz), the β -band (10Hz-30Hz),
and the γ-band (30Hz-60Hz); c) the betweenness centrality (BC) and d) clustering coefficient
(CC), which are both computed for each muscle and averaged across muscles.

observed in Figure 2.13d. No statistically significant differences have been found for any
deltoids even in this case. The averaged BC (Figure 2.13c) and CC (Figure 2.13d) in the w.
Exo condition do not significantly differ from the ones in the w.o. Exo condition. Unlike the
BC and CC for each muscle, for both frequency components, the median of the averaged
BC in the w. Exo condition lessens the one in the w.o. Exo condition; on the other hand, the
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Fig. 2.13 Muscle network analysis outcomes of the load-carrying task reported for both
w.o. Exo and w. Exo conditions and both frequency components (C1 and C2). There
can be found a) the frequency components, the adjacency matrices, and the correspondent
muscle networks; b) the RMS of the activation matrix H for the α-band (1Hz-10Hz), the
β -band (10Hz-30Hz), and the γ-band (30Hz-60Hz); c) the betweenness centrality (BC) and
d) clustering coefficient (CC), which are both computed for each muscle and averaged across
muscles.

median of the averaged CC in the w. Exo condition is either equal or higher than the one in
the w.o. Exo condition.

Muscle synergies Muscle synergy analysis is included as a benchmark for the functional
connectivity analysis, which is based on muscle networks and proposed as a validation tool
for the presented exoskeleton supporting shoulder movements during static and dynamic
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Fig. 2.14 Muscle synergies analysis outcomes of the two motor tasks and for both w.o. Exo
and w. Exo conditions. From the left side to the right side of the image there are: the
cumulative of the variance explained for each number of synergies; the muscle synergies
extracted with the NNMF algorithm; the similarity between the synergies related to the w.o.
Exo and w. Exo conditions, where * represents a statistically significant correlation with
p < .05.

Table 2.5 Mean reduction of the EMG RMS for each muscle.

Task aDEL lBIC mDEL mPEC uTRA
Isometric -29.5 -10.8 -15.3 -27.9 -3.7

Load-carrying -24.7 -19.1 -31.1 -27.5 -15.8

isometric tasks. Figure 2.14 reports for each task the outcomes of muscle synergy analy-
sis, encompassing the number of synergies computed with the VAF-criterion, the muscle
synergies, and their similarity between the corresponding w.o. Exo and w. Exo conditions.

In the isometric task, the minimum number of synergies reconstructing 90% of the signal
is 6 in both conditions. Such synergies do not vary noticeably, as proved by the similarity
values that are statistically significant for almost all synergies (p < .05), except for the first
and the fifth synergies. As for the load-carrying task, the minimum number of synergies
reconstructing 90% of the signal is 3 in both conditions. All synergies are significantly
similar with (p < .05).

2.3.3.2 Correlation with muscular activation reductions

Table 2.5 reports the average variation of EMG RMS between the w. Exo and the w.o. Exo
conditions for each task. A lower muscular effort has been reached in the former than in the
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Table 2.6 Correlation coefficients between the EMG RMS and the network metrics. Statisti-
cally significant correlations with p < .05 are highlighted in bold.

Network
metric

Isometric task Load-carrying task

First component Second component First component Second component

BC
R = 0.065
p = 0.859

−0.606
0.063

−0.459
0.182

0.652
0.041

CC
R =−0.268
p = 0.454

0.434
0.210

0.149
0.682

0.223
0.535

latter condition, as proved by the reductions in muscular activity that range from 15.3% to
29.5% and from 15.8% to 27.5% for the isometric and load-carrying tasks, respectively.

Table 2.6 reports the correlation coefficients between the variation in EMG RMS and the
variation in each network metric (i.e., BC and CC) between the w. Exo and the w.o. Exo
conditions.

No significant correlation can be observed, except for the difference in EMG RMS and
the difference in BC for the second component with p < .05 considering the load-carrying
task.

Table 2.7 reports the correlation coefficients between the variation in EMG RMS and
the variation in the IMCfreq for each frequency band between the w. Exo and the w.o. Exo
conditions.

The variation in IMCfreq and the difference in EMG RMS between the w. Exo and w.o.
Exo conditions are not significantly correlated with a few exceptions with p < .05. With
regards to the first component, as for the isometric task, the RMS variation of the right uTRA
is positively correlated with the IMCfreq variation in the α-band (1Hz-10Hz), whereas a
negative correlation has been found between the RMS variation of the right lBIC and the
IMCfreq variation in the β -band (1Hz-10Hz), as well as between the RMS variation of
the right mPEC and the IMCfreq variation in the γ-band (30Hz-60Hz). Similarly, as for
the load-carrying task, the RMS difference of the right mDEL and the IMCfreq variation
in the α-band are negatively correlated; furthermore, the RMS variation of the left mDEL
is negatively correlated with the IMCfreq variation in the γ-band. Regarding the second
component, only the RMS difference of the left mDEL is negatively correlated with the
IMCfreq variation in the α-band.
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Table 2.7 Correlation between the EMG RMS and the IMCfreq. Statistically significant
correlations with p < .05 are highlighted in bold.

Task Body
side Muscle First component Second component

α β γ α β γ

Isometric

right

mPEC
R =−0.438
p = 0.238

0.154
0.693

−0.714
0.031

0.460
0.213

−0.384
0.307

−0.228
0.556

mDEL
R =−0.274
p = 0.475

0.057
0.883

−0.228
0.556

−0.212
0.584

0.236
0.541

0.464
0.208

aDEL
R =−0.387
p = 0.304

0.239
0.535

−0.073
0.853

−0.060
0.877

0.041
0.917

0.039
0.920

uTRA
R = 0.716
p = 0.030

−0.663
0.052

0.242
0.531

0.536
0.136

−0.357
0.345

−0.279
0.467

lBIC
R = 0.546
p = 0.128

−0.681
0.044

0.258
0.503

0.192
0.620

0.102
0.794

−0.098
0.802

left

mPEC
R =−0.339
p = 0.372

0.218
0.573

−0.568
0.110

0.154
0.693

−0.160
0.682

−0.132
0.735

mDEL
R =−0.207
p = 0.594

0.564
0.113

−0.367
0.331

−0.673
0.047

−0.455
0.218

0.657
0.055

aDEL
R = 0.041
p = 0.916

0.071
0.857

0.287
0.453

−0.023
0.953

0.018
0.964

0.090
0.817

uTRA
R = 0.538
p = 0.135

0.391
0.298

0.377
0.317

0.338
0.374

−0.321
0.399

0.355
0.349

lBIC
R = 0.057
p = 0.883

−0.398
0.289

−0.091
0.817

0.171
0.659

0.104
0.791

−0.055
0.888

Load-
carrying

right

mPEC
−0.281
0.464

0.469
0.203

−0.257
0.504

−0.599
0.088

−0.030
0.939

0.607
0.083

mDEL
−0.670
0.048

−0.132
0.735

−0.244
0.526

−0.263
0.493

−0.301
0.432

0.248
0.520

aDEL
−0.133
0.732

0.140
0.719

−0.220
0.569

0.422
0.258

−0.239
0.535

−0.271
0.481

uTRA
−0.433
0.244

0.308
0.421

0.395
0.292

−0.505
0.166

0.086
0.826

−0.281
0.464

lBIC
0.479
0.192

−0.148
0.704

−0.030
0.939

−0.414
0.268

0.404
0.281

0.564
0.114

left

mPEC
−0.479
0.192

0.098
0.801

−0.031
0.936

−0.391
0.299

0.032
0.935

0.598
0.089

mDEL
−0.441
0.235

−0.487
0.184

−0.678
0.045

−0.436
0.241

−0.136
0.726

−0.243
0.530

aDEL
0.011
0.978

−0.158
0.684

−0.382
0.311

−0.101
0.796

0.056
0.886

0.334
0.380

uTRA
−0.258
0.502

0.460
0.213

0.585
0.098

0.253
0.511

−0.330
0.385

−0.541
0.132

lBIC
−0.065
0.869

0.109
0.781

0.050
0.898

0.105
0.787

−0.132
0.736

0.129
0.741
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2.3.4 Discussions and Conclusions

This work presents the investigation on muscle networks involved during bilateral isometric
upper limb tasks with and without an assistive exoskeleton, by means of functional connec-
tivity analysis. For this purpose, functional muscle networks are extracted from the EMG
signals of five upper limb muscles (per side) - i.e., biceps brachii (lBIC), anterior deltoid
(aDEL), medial deltoid (mDEL), pectoralis major (mPEC), and upper trapezius (uTRA) - to
visualize whether and how muscles share the descending neural drives in specific frequencies.
Afterwards, a set of metrics is computed to compare the two conditions with (w. Exo) and
without the exoskeleton (w.o. Exo). More specifically, the RMS of the processed EMG
signal, the RMS of their frequency activations (IMCfreq) in α-, β -, and γ-bands, and the
network metrics betweenness centrality (BC) and clustering coefficient (CC) are considered.

In this work, functional muscle network are hypothesized to be a further tool to validate
an assistive device, such as a wearable exoskeleton, to evaluate whether physiological motor
patterns are retained or varied due to the usage of the device itself. Accordingly, the outcomes
reveal that functional connectivity in the w. Exo are mostly unaltered compared to the w.o.
Exo condition from many points of view: first, the same number of components has resulted
from the NNMF algorithm, and second, the consequent muscle networks reveal consistency
between the two conditions in each motor task, having both the network topology and the
frequency activations globally the same for each component. An exception to this regards
the second component in the α-band, in which case a significant difference between the two
conditions has been found for both the isometric and load-carrying tasks; this difference
reveals that the frequency RMS when using the exoskeleton is always higher than the one
without the exoskeleton, even if the second component differs from the first one mainly in
higher frequencies.

Also muscle synergies seem to keep most of their shapes, having 4 similar synergies out
of 6 in the isometric task, and 3 similar synergies out of 3 in the load-carrying task. This
suggests that the muscle coordination is preserved in terms of the temporal motor pattern.
When the box is isometrically held while standing, the biggest differences in synergies
have been detected for the right mPEC and aDEL weights; looking at muscle networks, the
former is also the muscle with the biggest number of connections, but does not exhibit any
differences among conditions. This is in line with muscle effort reductions, which are the
highest ones for both mPEC and aDEL (see Table 2.5). Although synergies and networks
can give precious insights about muscle coordination strategies, they also show different
viewpoints on the same analysis, thus providing complementary information.
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This consistency reflects even on the network metric CC, either computed on each muscle
or averaged across muscles, given that it does not reveal a statistically significant difference
between the w.o. Exo and w. Exo conditions in most of the cases. In the context of muscle
networks, the CC of one muscle indicates the extent to which the neighbors of that muscle
share the common drive also among themselves [311], thus measuring how one muscle
is segregated or aggregated compared to the other ones in the network forming or not a
cluster with them, respectively [310]. As a result, the correspondent drives are synchronized
such that the neighboring muscles can be recruited to support the aggregated muscle as a
compensation measure to accomplish the motor task.

The employment of the exoskeleton has not modified the muscle segregation when an
object is isometrically held while either standing or walking. An exception to this global
pattern is given by the left pectoral for the first component and the upper trapezii for the
second component, in which case the CC in the w. Exo condition is significantly greater
than the one in w.o. condition, with p < .01. This higher aggregation is in line with the
corresponding RMS reduction, which is far lower than that of the anterior deltoid that is
targeted by the supporting torque of the exoskeleton. Therefore, this higher aggregation can
be arguably explained by the need for synchronizing the other muscles (e.g., left aDEL) to
assist the trapezii while statically holding a box.

Conversely, when executing any isometric task with the exoskeleton, both the global
values BC and CC in the first component are slightly lower, though not significantly, than
the one in the second component. This is in line with other related works, since such global
metrics decrease as the frequency increases [287, 293]; nonetheless, such studies did not
involve isometric weight-lifting tasks, whence a direct comparison cannot be made.

The difference in BC between the two conditions is positively and significantly correlated
with the one in EMG RMS only in the second component for the isometric and load-carrying
task, on the trapezius muscles only. From the neural point of view, a central node in one
task is the muscle sharing the common drive with other muscles more than the others; since
one muscle may belong to the left side and share the drive with muscle on the right side, a
high BC makes the former important in the motor coordination in that bilateral task. This
means that the more the reduction in muscle effort the more the muscle loses centrality
(see Tables 2.7 and 2.5), giving the idea that the coordination pattern slightly changes to
accommodate the enter of a "disturb" in the previous physiological pattern. This result is
in line with other studies about muscle synergies, whose number and/or patterns tend to
change in case of a pathology (e.g., stroke) both with [309] and without an exoskeleton [302].
The reduction of a certain muscle activity may lead to a change of motor strategies, since
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that muscle does not join the same previous firing pattern. More investigations are needed
to understand whether prolonged utilization of an occupational exoskeleton may lead to a
deep re-organization of neural structures, highlighting new possibilities to recover motor
capabilities in clinical scenarios, operating on the way in which robots assist human limbs.

In conclusion, functional connectivity analysis has been employed to unveil the impact
of an upper-limb exoskeleton on the muscular synchronization during isometric tasks, being
together with muscle synergies two faces of the same coin. From the muscle networks point
of view, the influence of robotic assistance on muscles seems to reduce their centrality, while
muscle synergies reflect this effect on the change of synergies’ shape. Hence, despite the
limited sample size, investigations based on functional muscle networks are claimed to be a
potential additional tool to evaluate the effect of exoskeletons on motor coordination. This
overall methodology could help in the future to define new design constraints for assistive
devices, thus increasing usability and intuitiveness and, finally, their adoption for the sake of
a better quality of life.



Chapter 3

Conclusions

The research works carried out for this thesis were devoted to the conceptualization, develop-
ment, implementation, and evaluation of innovative interfaces for objective motor assessment
in either clinical or industrial fields.

The proposed pipelines have been addressed to different aims, such as the evaluation of
visuomotor adaptation, the automatic classification of human motor actions with either a
normal or a simulated abnormal execution, and the validation of an occupational exoskeleton
supporting human upper-limb joints during static and dynamic lifting tasks.

The studies included in this thesis employed data provided by local institutitions for the
sake of the verisimilitude of framework validation.

An in-depth study of the state-of-the-art in the considered domains is presented in
Subsections 1.2.1, 1.3.1, 1.4.1, 2.2.1, and 2.3.1, with a focus on visuomotor adaptation,
human activty recognition, and occupational exoskeletons.

The proposed system for evaluating visuomotor adaptation is detailed in Section 1.2. Each
section describes the state-of-art, materials, methods, and results, after which conclusions are
drawn.

The proposed workflows for recognizing human activities of daily living are elucidated in
Sections 1.3- 1.4. Each section describes the state-of-art, materials, methods, and results, after
which conclusions are drawn. A novel framework for continuous human activity recognition
is explained in Section 1.3, whilst Section 1.4 contains a similar workflow addressing the
recognition of human locomotor patterns, which are executed either normally or simulating
gait disorders. These works validate the proposed systems with data collected on healthy
subjects prior to the testing on actual pathological data.

The proposed framework for validating the supportive action of an occupational exoskele-
ton is detailed in Sections 2.2- 2.3. Each section describes the state-of-art, materials, methods,
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and results, after which conclusions are drawn. The traditional validation based on RMS has
been compared with other related works in Section 2.2, whereas a novel validation based on
functional connectivity analysis is included in Section 2.3.

In conclusion, in this thesis, several technical contributions have been proposed. They
include the implementation and preliminary validation on healthy subjects of different
innovative interfaces for motor assessment; for this purpose, data were visualized and
statistically compared among the different conditions. Most of works oriented to VMA
assessment have encompassed upper-limb reaching or drawing tasks and utilized a cursor as
visual feedback for the user; instead, a more motivating framework has been implemented
with the aid of serious game with the aim of addressing the evaluation of VMA capabilities
in children during a locomotion task. This paves the way for the assessment of pathologies
determining motor or cognitive impairments, such as the alteration of the sense of agency in
children with cerebral palsy.

In the context of human activity recognition, only a few studies employed DL-based
workflows that are tested on inertial data coming from a uninterrupted execution of the motor
actions and they cannot be easily applied outdoor due to the usage of radar sensors; whereas
a novel framework for continuous HAR is proposed by training the DL-based classifier with
inertial data correspondent to stand-alone activities before testing it on the signals related to
a continuous sequence of the same activities. Furthermore, a new strategy for the recognition
of simulated gait disorders is proposed as well, thus adding a contribution to the studies
oriented to pathological gait recognition with DL-based models fed by inertial data. Hence,
new strategies have been proposed for the DL-based recognition of activities of daily living
and simulated gait disorders.

Most studies designing upper-limb exoskeletons for workers have assessed the device
in laboratory by means of static tasks, except for a few works entailing dynamic tasks but
executed with the support of passive exoskeletons. Moreover, such occupational exoskeletons
are typically evaluated with traditional electromyographic measures, whilst almost no previ-
ous works have employed inter-muscular functional connectivity as an additional validation
tool. On the other hand, an active occupational exoskeleton has been validated with both such
conventional metrics and an innovative analysis based on muscle network, thus verifying the
influence of a robotic device supporting upper-limb motion during the execution of either
isometric or dynamic tasks that resemble an industrial scenario.

In the future, such data-driven approaches for the assessment of either cognitive or motor
capabilities are hoped to be increasingly exploited in the clinical practice, as well as for the
validation of exoskeleton assisting humans in industrial-like tasks.
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