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A B S T R A C T

High-pressure hydrogen is of paramount importance in several fields,
including planetary science, condensed matter physics, and energy
production applications. Despite its significance, many properties of
this system are still not fully understood, due to the difficulty of real-
izing the required extreme conditions in the laboratory and probing
the compressed samples. Numerical results are thus extremely valu-
able. Quantum Monte Carlo (QMC) algorithms have been proven to
be among the most effective methods for describing the physics and
properties of high-pressure hydrogen, although their large computa-
tional cost limits their applicability to small systems. In this thesis,
we discuss techniques that aim at combining the accuracy of QMC

methods with the efficiency of machine learning potentials (MLPs).
In particular, we employ the ∆-learning framework together with ker-
nel ridge regression, and train models on the difference between QMC

reference calculations and a computationally cheaper "baseline poten-
tial", which in our case was obtained with the density functional the-
ory (DFT) method. This approach allows us to reach a higher accuracy
with relatively small datasets, a crucial feature for resource-heavy al-
gorithms like QMC. We also analyze the bias affecting both forces and
pressures within the variational Monte Carlo (VMC) method when
the wave function employed is not fully optimized, and propose a
suitable correction.

We present two applications of our framework to high-pressure hy-
drogen. In the first one, we determined the deuterium Hugoniot with
MLPs trained on both variational and diffusion Monte Carlo. We find
a good agreement with experiments, even though our results sug-
gest a slightly more compressible system for large pressures. In the
second application, we study the hydrogen liquid-liquid phase tran-
sition (LLPT). We discuss results obtained with two MLPs trained on
VMC and DFT data, respectively. For the latter, we employed MACE, a
message passing neural network, to study the order of the transition
in the thermodynamic limit. Our results predict a first-order transi-
tion between a defective molecular solid and an atomic liquid close
to the melting line, and a liquid-liquid crossover at higher tempera-
tures.
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1
I N T R O D U C T I O N

Hydrogen is the most abundant element in the universe, constituting
about 75% of the mass of ordinary matter, and the first one to form
after the Big Bang. It also has the simplest structure and its properties
have been studied since the very beginning of quantum mechanics [1].
Already in 1935, Wigner and Huntington postulated that hydrogen
in a metallic solid state may exist at high pressure [2]. Since then, the
interest in hydrogen phase diagram has never stopped, stimulating
countless experimental and theoretical studies.

One of the main drivers for hydrogen research is represented by as-
trophysical applications such as modeling giant gas planets or brown
dwarfs. The internal structure of these celestial objects is inferred
indirectly by gathering data from space probes, like the one of the
Juno mission studying Jupiter [3–6] or the Cassini mission studying
Saturn [7–9], and then using models and other assumptions to de-
termine the core mass, extension, and composition. These quantities
are extremely sensitive to the accuracy of the hydrogen equation of
state, and even a discrepancy as small as a few percent can produce
very different predictions [10, 11]. Accurate results of hydrogen prop-
erties are also crucial for technological applications, such as inertial
confinement fusion [12–14] or green energy production [15]. Last but
not least, the high-pressure physics of this element is relevant for the
understanding of a large class of hydrogen-rich high-temperature su-
perconductors, which display a record-breaking critical temperature
but are only stable at very high pressures [16–18]. Solid metallic hy-
drogen itself was indicated as a possible high-temperature supercon-
ductor by Ashcroft already in 1968 [19].

It may then sound surprising that, despite their relevance, many of
the questions regarding the hydrogen phase diagram are not fully un-
derstood, even at the qualitative level. The reason for this lies in the
difficulty of realizing the necessary physical conditions in a labora-
tory, even considering modern-day equipment. Two main experimen-
tal techniques have been used to study high-pressure hydrogen: static
compression methods and shock experiments. In the first approach,
a sample of material is squeezed inside diamon anvil cells (DAC) [20,
21], to achieve extreme pressures. The temperature is controlled us-
ing either a resistor or lasers, and the properties of the system are
studied using optical measurements such as Raman, IR spectroscopy,
or x-ray scattering. This technique allows for good control of the sam-
ple conditions while it can achieve temperatures up to ∼ 1000 K and
pressures up to 500 GPa, with the possibility of reaching even larger

1
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compression as new improvements of the apparatus are made [22].
The second approach is represented by dynamic compression tech-
niques [23]. These experiments use shock waves to achieve higher
pressures and temperatures than those obtained with static compres-
sion methods, namely p ∼ 1 TPa and T ∼ 50000 K. Both static and
dynamic experiments are challenging for a variety of reasons. In DAC

methods, chemical reactions between the container and the sample
are enhanced with pressure and can thus contaminate the latter. More-
over, hydrogen can easily escape by penetrating into cracks and favor
the growth of fractures in the anvils. On the other hand, dynamic
compression measurements have to be performed very rapidly and
are in general less accurate than DAC ones. Quantities such as temper-
ature are not directly measured and have to be inferred using models,
giving rise to further uncertainties.

Because of all of this, available experimental data on high-pressure
hydrogen are often accompanied by large error bars or even pro-
vide contrasting results, making their interpretation hard. One of
the topics that are still intensely debated is the aforementioned
Wigner-Huntington insulator to metal transition in solid hydrogen;
even though different groups have claimed its experimental real-
ization [24–26], a general consensus is still missing [27] and lots
of details are unclear to this day, such as the exact symmetries of
the different solid phases or if the transition coincides with the
stabilization of the atomic crystal. Similar uncertainties are present
in the liquid part of the phase diagram where yet another metal-
insulator transition is predicted between an atomic and a molecular
fluid. Also in this case an experimental agreement on the location
of this transition or its specific character (i.e., if it is first-order or a
crossover) cannot be definitively established.

Because of the difficulty of obtaining reliable experimental data,
computer simulations have been extremely valuable in this context.
Indeed, numerical approaches can provide the physical properties of
the system without being restricted by any experimental constraint,
allowing for an extensive study of the phase diagram. Thanks to
its simple structure, hydrogen systems have been used as a testing
ground for a large variety of algorithms, assessing their relative ac-
curacy and stimulating new developments in the field [28]. Models
based on effective interactions were among the first to be applied.
These "chemical models" [29–33], which can be constructed using
general physical considerations or fitted in order to reproduce avail-
able data, are fast but usually have poor transferability and/or ac-
curacy. Much better results can be achieved with "first-principles"
approaches, which directly solve the quantum mechanical problem
of the system. One of the most popular of such methods is ab ini-
tio molecular dynamics (AIMD), where at each time step the physical
properties of the system are calculated by using electronic structure



introduction 3

methods such as density functional theory (DFT) [34]. Performing a
DFT calculation is several orders of magnitude more computationally
expensive than the evaluation of simpler atomistic potentials, limit-
ing the applicability of AIMD to small/medium-sized systems and
short simulations. Moreover, DFT calculations depend on the choice
of the exchange-correlation functional of the effective one-body prob-
lem. Many of the properties of high-pressure hydrogen, such as the
location of the liquid-liquid transition or the solid part of the phase
diagram, strongly depend on the functional, which, together with
the large uncertainty of experimental measures, makes it very hard
to determine which choice is the most accurate [35]. A better descrip-
tion of electronic many-body correlations is given by quantum Monte
Carlo (QMC) techniques [36]. These algorithms, which include meth-
ods such as variational Monte Carlo (VMC), diffusion Monte Carlo
(DMC), coupled electron-ion Monte Carlo (CEIMC), and path integral
Monte Carlo (PIMC), have been proven to be extremely effective in
describing hydrogen [28, 35]. Although more accurate, QMC methods
have an even higher cost than DFT, thus further reducing the possible
system sizes that can be realistically simulated.

In the past decade, a big revolution took place in the field of
molecular dynamics (MD) simulations with the introduction of
machine learning (ML) techniques. In particular, ML models aimed
at reproducing the potential energy surface of a given system, also
called machine learning potentials (MLPs), have made it possible to
bridge the accuracy of AIMD with the efficiency of atomistic poten-
tials [37, 38]. If properly constructed (said, trained), MLPs provide
results almost indistinguishable from the electronic structure method
used to build them at a drastically cheaper computational cost, while
also showing good transferability across multiple thermodynamic
conditions. Most MLPs in the literature are trained on DFT reference
calculations, since within this method one can generate relatively
large datasets, necessary to obtain accurate potentials. These models
are very effective in describing the properties of several systems, but,
as previously mentioned, DFT is often unsatisfactory for hydrogen.
The study and development of accurate MLPs trained on QMC
data and their application to high-pressure hydrogen will be the
main topic of this work. As we will see, several reasons make
this a complex task, and this type of approach was explored only
recently [39–44]. This thesis is structured as follows. In Chap. 2,
the main electronic structure methods we used are discussed, with
a particular focus on the QMC approach. A procedure to correct
the self-consistency error in VMC forces and pressures is also
presented, following Ref.[45]. Chap. 3 includes a description of
sampling methods such as classical MD and path integral molecular
dynamics (PIMD). We will also introduce MLPs, such as kernel ridge
regression and MACE models. Chap. 4 contains an application of an
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MLP trained on QMC data for studying the principal Hugoniot curve
of deuterium, as published in Ref.[41]. The correction introduced in
Chap. 2 was also applied to the dataset of this Hugoniot model, as
shown in Chap. 5. Finally, Chap. 6 contains another application of
QMC-based MLPs on the liquid-liquid transition, following Ref. [39].
Here, we also discuss a recently obtained MLP trained with DFT data
which we used to clarify the recent debate on the first-order character
of the transition.

Before going further, we will briefly summarize the main features
of the high-pressure hydrogen phase diagram.

hydrogen phase diagram : a quick overview

Our current understanding of the hydrogen phase diagram derives
from the combination of a large number of experimental measures
and numerical predictions. Here, we will focus on temperatures be-
low 105 K and pressures below 1 TPa, roughly corresponding to the
thermodynamic range studied in this thesis. The phase diagram is
shown in Fig.1. At ambient conditions hydrogen is a molecular gas;
the H2 molecule is among the most stable, with a bonding energy
of 4.52 eV and an interatomic distance of approximately 0.74 Å [46].
On the contrary, the intermolecular interaction is very weak, and
the low-pressure phase diagram is characterized by very cold boil-
ing and melting temperatures, with the gas-liquid critical point being
at about 33K and 13 bar, and a gas-liquid-solid triple point at 13.8K
and 0.07 bar [47].

Solid hydrogen exists in several different phases. At temperatures
above 100 K and pressures up to 160 GPa, hydrogen is in phase I, a
solid with spherically disordered molecules in an hcp structure [48,
49]. At lower temperatures and upon compression, phase I transforms
into phase II, or broken symmetry phase. This transition has a large
isotope dependence, happening at ∼ 60 GPa and ∼ 25 GPa for hydro-
gen and deuterium respectively, signaling the crucial importance of
nuclear quantum effects. Candidate symmetries for this phase, ob-
tained with the ab initio random structure search (AIRSS) [50], are
Pca21-8, P63/m-16, and P21/c-24. At higher pressures and for tem-
peratures lower than 300 K, solid hydrogen transitions into phase III,
which is believed to have a monoclinic C2/c-24 symmetry [50–53],
also confirmed by a recent study including nuclear quantum effects
within the stochastic self-consistent harmonic approximation (SSCHA),
and QMC energies [54]. The same study also supported the transi-
tion at ∼ 410 GPa to the conductive phase VI found in DAC experi-
ments [26], with probable Cmca-12 symmetry, and the transition to
the long-sought atomic hydrogen at ∼ 570 GPa, in a pressure range
not yet explored by experiments. At temperatures above 300 K, other
phases have been proposed, namely phase I’ [55, 56], isostructural
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Figure 1: Hydrogen phase diagram. Experimental phase boundaries are
taken from Refs.[59, 67] and indicated with solid black lines, while
the melting line follows the results of Ref.[63]. Vertical dashed
lines between phase III and phase VI and the transition to metallic
atomic hydrogen are taken from Ref.[54]. The LLPT location is in
qualitative agreement with QMC results [39, 68–70].

to phase III and whose existence is debated [57], phase IV [58–60],
a layered molecular structure stable approximately between 200 and
325 GPa, and phase V [61, 62], which is thought to be another precur-
sor of atomic hydrogen.

The hydrogen melting line was recently measured up to 300 GPa
using Raman spectroscopy [63]. Similar to other alkali metals, the
curve presents a maximum in the p − T diagram at around p =

70 GPa and T = 820 K, even though recent numerical results using an
MLP trained on QMC data have questioned its location [40]. Above the
melting temperature, fluid hydrogen undergoes a liquid-liquid phase
transition (LLPT) between a molecular insulator and an atomic metal.
The location and character of the transition have been studied both
experimentally and numerically, but large uncertainties still remain.
Most numerical results indicate this transition to be weakly first order
with a critical endpoint located at ∼ 2000 K, even though the nature
of the LLPT was recently debated [64–66].





2
A B I N I T I O E L E C T R O N I C S T R U C T U R E M E T H O D S

Electronic structure methods are aimed at solving, either exactly or
approximately, the many-body Schrödinger equation

i h
d

dt
|Ψ⟩ = Ĥ |Ψ⟩ ,

where Ĥ is the system Hamiltonian and |Ψ⟩ is the many-body wave-
function. From now on we will restrict ourselves to collections of N
nuclei, with positions RI, mass MI, and atomic numbers ZI (I =

1, . . . ,N), and Ne electrons, with positions ri, mass m, and spins σi
(i = 1, . . . ,Ne). We can write the (non-relativistic) Hamiltonian in no
external fields as

Ĥ =T̂n + T̂e + V̂nn + V̂ee + V̂en,

T̂n =−

N∑
I=1

 h2

2MI
∇2I ,

T̂e =−

Ne∑
i=1

 h2

2m
∇2i ,

V̂nn =
∑
I<J

ZIZJe
2

|RI − RJ|
,

V̂ee =
∑
i<j

e2∣∣ri − rj
∣∣ ,

V̂en =−

Ne∑
i=1

N∑
I=1

ZIe
2

|ri − RI|
,

where T̂n, T̂e are the (total) kinetic energy of ions and electrons, and
V̂nn,V̂ee and V̂en are the ion-ion, electron-electron, and electron-ion
electrostatic potentials, respectively. For pure hydrogen systems, ZI =
1, Ne = N, and MI is equal to the hydrogen or deuterium mass.

Owing to their large mass difference (i.e., MI ≫ m), one can of-
ten adiabatically decouple electronic and ionic degrees of freedom by
performing the Born-Oppenheimer (BO) approximation [71]. In par-
ticular, one considers the ions to move inside an effective potential
given by the solution of the electronic Schrodinger equation

Ĥel (R) |Ψel,n (R)⟩ = En (R) |Ψel,n (R)⟩, (1)

Ĥel = T̂e + V̂ee + V̂nn + V̂en,

where the ionic coordinates R ≡ (R1, . . . , RN) are now fixed param-
eters, and Ψel,n is the electronic wavefunction corresponding to the

7
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n-th energy level En (R). Moreover, for temperatures smaller than the
Fermi temperature TF, one can effectively discard the excited states in
the electronic part and consider only the ground state. In particular
Eq.(1), becomes

Ĥ|Φ0 (R)⟩ = E0 (R) |Φ0 (R)⟩, (2)

where Φ0 ≡ Ψel,0 and E0 (R) are the ground state wave function
and energy, and we indicated Ĥel as simply Ĥ. As we will see in
Chap. 3, once the electronic problem is solved, the motion of the ions
can be treated using either classical or quantum mechanics. In this
Chapter, we will present the electronic structure methods we used
for the calculations presented in the thesis. This will also allow us to
introduce most of the notation in the next Chapters. A more complete
discussion on the topics covered here can be found in Ref. [34] and
Ref. [36].

The density functional theory method will be briefly described
in Sec. 2.1. We will then discuss the quantum Monte Carlo (QMC)
approach (Sec. 2.2). The contents of this section include the varia-
tion Monte Carlo method (Sec. 2.2.1), wave function optimization
techniques (Sec. 2.2.2), a description of different types of variational
ansatz (Sec. 2.2.3), the lattice regularized diffusion Monte Carlo
method (Sec. 2.2.4), the fixed-node approximation (Sec. 2.2.5), and a
summary of the typical workflow for a QMC calculation (Sec. 2.2.6).

Finally, in Sec.2.3, the problem of the self-consistency error in QMC

forces and pressures will be discussed, following Ref. [45]. In par-
ticular, the bias correction will be introduced in Sec. 2.3.1, followed
by some simple applications on dimers (Sec. 2.3.2) and cubic boron
nitride (Sec. 2.3.3). The contents of this Chapter are summarized in
Sec. 2.4.

2.1 density functional theory

A widely used approach to solve the electronic problem in Eq.(1) is
density functional theory (DFT). This method, originally introduced
by Hohenberg, Kohn and Sham in two seminal papers [72, 73], maps
the original interacting many-body problem, into a simpler, mean-
field effective system that can be solved self-consistently. In particular,
this "auxiliary" system is constructed to have the same ground-state
electronic density, n(r), as the many-body one. This mapping results
in the Kohn-Sham energy functional

E [n] = −
 h2

2m

Ne∑
i=1

|∇ψi(r)|2 +
1

2

∫
d3rd3r ′

e2n(r)n(r ′)
|r − r ′|

+ Vnn + Exc [n] ,

(3)

where ψi(r) are the eigenstates of the mean-field problem, Vnn is
the nuclear interaction, and Exc [n] is the exchange-correlation func-
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tional. The explicit form of Exc [n] is not known and several approx-
imations have been developed over the years. These range from sim-
pler forms, like the local density approximation (LDA) [74] and the
generalized gradient approximation (GGA) [75] to more refined ones,
such as metaGGA, hybrid functionals, or those incorporating long-
range van der Waals interactions. As a consequence, both the accu-
racy and the efficiency of DFT calculations strongly depend on the
specific choice of the functional.

To represent the one particle orbitals ψi(r), the plane-wave basis
set is often employed due to its effectiveness in describing delocal-
ized states in bulk systems. In practice, the number of basis functions
is determined by fixing an energy cutoff Ecut, and considering only
wave vectors G with  h2

2m |G|2 < Ecut. Alternatively, a localized basis of
Gaussian type orbitals (GTOs) can be used, which can also be general-
ized for periodic systems (see, for example, the CRYSTAL basis [76]).

In order to get a smooth density around the nuclei, the ion-electron
interaction is renormalized by means of pseudopotentials. This ap-
proach is standard even for hydrogen atoms (where only one electron
is present), to deal with the Coulomb interaction.

Finally, within periodic boundary conditions (PBC), Bloch’s theo-
rem for non-interacting particles can be applied, and the thermody-
namic limit is simulated by considering k-points integration with a
sufficiently dense grid.

For high temperatures, i. e., T ∼ TF, the approximation of Eq.(2),
where we considered electrons to be in their ground state, does not
hold anymore. DFT can consider the effect of finite temperature elec-
trons thanks to Mermin’s extension of the Hohenberg and Kohn the-
orems to non-zero temperature [77]. In particular, this is done by oc-
cupying the bands of the system according to the Fermi-Dirac distri-
bution and minimizing the Helmholtz free energy A [n] = E− TS [n],
where S [n] is the entropy functional, given by

S [n] = −
∑
i

fi log fi +
∑
i

(1− fi) log (1− fi) ,

where fi is the occupation of the state ψi(r). Explicitly temperature-
dependent DFT functionals are often used in this case to reach a higher
accuracy [78–80].

2.2 quantum monte carlo methods

An alternative to DFT is represented by quantum Monte Carlo (QMC)
methods [81], a vast class of algorithms that better describe highly
correlated materials and depend on more controllable approxima-
tions. Here we will describe two QMC approaches: variational Monte
Carlo (VMC) and lattice regularized diffusion Monte Carlo (LRDMC).
Both algorithms are implemented in the TurboRVB package [82].
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2.2.1 Variational Monte Carlo

As the name suggests, variational Monte Carlo is based on the quan-
tum variational principle, which states that, for any wave function
(WF) ψ, the expectation value of the Hamiltonian on ψ cannot be
lower than the ground state E0:

⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

⩾ E0, ∀ψ, (4)

where the equal sign holds only if ψ = Φ0. An approximation of the
ground state can thus be obtained by considering an ansatz ψ({α}),
which depends on Np variational parameters {α} = α1, . . . ,αNp , and
by minimizing the left-hand side of Eq.(4):

E ≡ min
α1,...αNp

E({α}) = min
α1,...αNp

⟨ψ({α})|Ĥ|ψ({α})⟩
⟨ψ({α})|ψ({α})⟩

. (5)

For given parameters, the variational energy E({α}) in Eq. (5) can be
written as:

E({α}) =

∫
dxπ(x, {α})EL(x, {α}) (6)

where x = (x1, ..., xNe), with xi = (ri,σi), is the collection of all spacial
and spin coordinates of the electrons, and we defined the probability
distribution π and the local energy EL as

π(x, {α}) =
|ψ(x, {α})|2

⟨ψ({α})|ψ({α})⟩
,

EL(x, {α}) =
Ĥψ(x, {α})
ψ(x, {α})

,

respectively. In VMC, the expectation value in Eq.(6) is computed
stochastically by generating a series of configurations x1, . . . , xM, e.g.,
through the Metropolis-Hastings algorithm [83, 84], which are dis-
tributed according to π:

E({α}) = ⟨EL({α})⟩π({α}) ≈
1

M

M∑
j=1

EL(xj, {α}). (7)

Notice how, contrary to deterministic methods, this statistical average
will have an associated noise σE ∼ M−1/2, which can be reduced
by increasing the number of independent samples M. Remarkably,
if ψ({α}) = Φ0, the local energy is identically equal to the ground
state energy, EL ≡ E0, and σE = 0 ( zero variance property). Notice
that an expression equivalent to Eq.(7) can also be obtained for the
expectation value of any local operator Ô on the wave function ψ:

⟨Ô⟩ ≈ 1

M

∑
j=1

OL(xj), (8)

with OL(x) ≡ ⟨x|Ô|ψ⟩
ψ(x) .
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2.2.2 Wave function optimization

Finding the optimal wave function that minimizes E({α}) is not a triv-
ial task. The number of parameters {α} is often large (∼ 104-105), thus
creating an energy landscape with several local minima. Moreover,
within VMC, the generalized forces fαk = −

∂E({α})
∂αk

also have an asso-
ciated noise, which further complicates the optimization. In particu-
lar,

fαk ≈ −2ℜ

 1
M

M∑
j=1

E∗L
(
xj
) (

Ok(xj) −Ok)
) ,

where we defined the operator Ôk such that ⟨x ′|Ôk|x⟩ = Ok(x)δ(x −

x ′), with Ok(x) =
∂ lnψ(x,{α})

∂αk
and Ok = ⟨Ôk⟩. The logarithmic deriva-

tive in Ok(x) can be efficiently computed using the adjoint algorith-
mic differentiantion (AAD) method [85].

Two of the most effective schemes for WF optimization are the
stochastic reconfiguration (SR) and the linear method (LM). In the SR

approach [86], the generalized forces f{α} = (fα1 , . . . , fαNp ) are modi-
fied using a stochastic positive-defined preconditioning matrix S, and
then used to update the parameters

αk → αk +∆
(
S−1f{α}

)
k

, (9)

Sk,k ′ ≈ ℜ

 1
M

M∑
j=1

(
Ok(xj) −Ok)

)∗ (
Ok ′(xj) −Ok ′)

) .

In practice, the S matrix is often ill-conditioned and needs to be reg-
ularized by shifting its diagonal elements [87], e.g., Skk → Skk(1+

ε) + ε ′, with ε, ε ′ > 0. The SR approach can be intuitively understood
by interpreting S as the metric on the space of variational parameters
which measures the distance of the underlying WFs [88]. In particular,
parameters that weakly affect the variational energy will be moved
"faster" than those that have a stronger impact on the WF, improv-
ing the optimization. Notice how, in this way, the SR method can be
interpreted as a noisy natural gradient descent.

An alternative approach to the SR is the linear method [89–91].
Within the LM, the WF is first expanded up to linear order in the
variation of the parameters {α} → {α+ δα}, which can be done using
the semi-orthogonal basis:

|ψ({α + δα})⟩ ≈ z0|ψ̃({α})⟩+
Np∑
k=1

zk

(
Ôk −Ok

)
|ψ̃({α})⟩, (10)

with |ψ̃({α})⟩ ≡ |ψ({α})⟩
||ψ({α})|| . The expectation value of the energy E on

the WF in Eq.(10) is then minimized with respect to the Np+ 1 dimen-
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sional vector z = (z0, . . . , zNp), which gives rise to the generalized
eigenvalue equation:

Hz = ESz, (11)

where the two matrices S and H can be estimated stochastically as

Sk,k ′ ≈ 1

M

M∑
j=1

(
Ok(xj) −Ok)

)∗ (
Ok ′(xj) −Ok ′)

)
Hk,k ′ ≈ 1

M

M∑
j=1

(
Ok(xj) −Ok)

)∗ · ∂EL(xj, {α})
∂αk ′

When solving Eq.(11) the eigenvector that maximizes |z0| is chosen to
have a more stable optimization. Finally, the parameters are updated
according to

αk → αk +∆
zk
z0

,

with a value of ∆ ∼ 1. The linear method is generally slower (for a
single optimization step) than the SR one and might be unstable for
large numbers of parameters, but the full optimization is often faster
because of the reduced number of steps necessary to converge to the
variational minimum. To improve its efficiency, the LM can also be
applied to a restricted space of parameters, by considering only αk
with a large signal-to-noise ratio, and/or a fixed number of natural
gradient directions [87] (see Eq.(9)).

A key quantity for both approaches is the dimension of the sam-
ple M, also called "batch size", used to compute all the quantities
used in the minimization. In principle, to have a meaningful accu-
racy, M should be much larger than the number of parameters, e.g.,
M ≳ 10×Np. However, for large systems, this is often impractical,
and a smaller number has to be used. This is made possible by the
regularization of the preconditioning matrix S previously introduced,
and the resulting optimization is reminiscent of the stochastic gradi-
ent technique used in the machine learning community [92].

2.2.3 Variational wave functions

The explicit form of the variational ansatzψ is a key ingredient, which
determines the accuracy and performance of the VMC method. Here
we will describe the types of WF implemented in the TurboRVB pack-
age [82] that we used to generate all the QMC data in this work. We
start by expressing ψ as the product of a (bosonic) function exp (J),
symmetric under particle exchange, also called Jastrow part, and an
antisymmetric (fermionic) part ΦAS, necessary to have the correct to-
tal symmetry:

ψ = exp (J)×ΦAS. (12)
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The Jastrow factor J effectively describes the correlation effects be-
tween the electrons. In particular, J is decomposed into one-, two-,
and three-/four- body terms

J = J1 + J2 + J3/4.

The one-body Jastrow is further written as a sum of a homogeneous
Jh1 and an inhomogeneous Jinh

1 term. The former is used to satisfy the
electron-ion Kato cusp conditions [93], and can be expressed as

Jh1 (r1, . . . , rN) =
Ne∑
i=1

N∑
a=1

(
−(2Za)

3/4ua

(
(2Za)

1/4
|ri − Ra|

))
,

where ua(r) is a short-range function containing a parameter ba, i.e.,
ua (r) =

ba
2

(
1− e−r/ba

)
, which can be independently optimized for

each different atomic species. The latter is

Jinh
1 (x1, . . . , xN) =

Ne∑
i=1

N∑
a=1

(∑
l

Mσi
a,lχa,l (ri)

)
,

where l runs over the atomic orbitals (AOs) χa,l centered around the
atom a and {M} are variational parameters. Within TurboRVB, the
AOs can be either of Gaussian or Slater type [82].

The two body Jastrow describes correlation effects between pairs of
electrons and it is defined as

J2 (x1, . . . , xN) =
∑
i<j

vσi,σj
(∣∣ri − rj

∣∣).
Several choices of the function v are possible; in our applications, the
following spin-independent form has been used:

v (r) =
1

2
r · (1− F · r)−1

with F being another variational parameter. Notice how J2 also
automatically satisfies the electron-electron cusp conditions. Finally,
further correlations (e.g. ion-electron-electron or ion-ion-electron-
electron) are included within J3/4:

J3/4 (x1, . . . , xN) =
∑
i<j

∑
a,l

∑
b,m

M̃
σi,σj
{a,l},{b,m}

χa,l (ri)χb,m
(
rj
) ,

where we again introduced the variational parameters
{
M̃

}
. In the

above equation, a,b run over the atomic indices and l,m run over the
basis set elements. In practice, we can often disregard the coefficients
corresponding to different atoms (i.e. those for which a ̸= b), since
this rarely affects the variational energy while significantly reducing
the number of parameters to optimize.
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Similarly to the Jastrow factor, also the antisymmetric part of WF

ΦAS can be chosen in several ways. The most common and simple
choice is to use a Slater determinant obtained with mean-field meth-
ods such as Hartree-Fock or DFT, i.e., ΦAS = ΦSD, and to optimize
only the variational parameters in the Jastrow. In this case the WF ψ
is called the Jastrow correlated Slater determinant (JSD) wave function.
For many applications, the JSD ansatz might not be accurate enough,
and an improved WF is thus necessary. One way to do this is by using
an antisymmetrized geminal power (AGP) [94]

ΦAGP (x) = Â [g (x1, x2)g (x3, x4) · · ·g (xNe−1, xNe)] , (13)

where we supposed for simplicity an even number of electrons Ne
and indicated with Â the antisymmetrization operator. The function
g is called the pairing function, and for spin unpolarized systems it
can be taken as

g
(
xi, xj

)
= f

(
ri, rj

) | ↑↓⟩− | ↓↑⟩√
2

δσi,−σj . (14)

The resulting WF, ψ = exp (J)×ΦAGP, is called the Jastrow correlated
AGP (JAGP). Notice that, with the use of different pairing functions,
including, for example, other spin terms, the expression in Eq.(13) can
also describe other types of WFs, such as the Pfaffian [95]. The spatial
part of g is expanded in terms of AOs as

f
(
ri, rj

)
=

∑
a,l

∑
b,m

λ{a,l},{b,m}ϕa,l (ri)ϕb,m(rj), (15)

where the indices l,m run over the atomic orbitals ϕa,l,ϕb,m belong-
ing to the AGP basis set (in general, different from the Jastrow one)
centered around the a-th and b-th atoms, respectively. For periodic
systems, ϕa,l is generalized to fulfill periodic or twisted boundary
conditions [82]. We can recast the previous equation in a more com-
pact form

f
(
ri, rj

)
=

L∑
µ=1

L∑
ν=1

λµ,νϕµ (ri)ϕν(rj), (16)

where the indices µ,ν = 1, . . . ,L run over the entire set of AOs of di-
mension L. The full (or partial) optimization of the AGP variational
parameters {λ} is often a formidable task and requires a good ini-
tialization. Notice how Eq.(16) can be formally written in terms of L
molecular orbitals (MOs) as

f
(
ri, rj

)
=

L∑
k=1

λk
(
ΦMOk (ri)

)∗
ΦMOk

(
rj
)

, (17)

where

ΦMOk (r) =
L∑
µ=1

cµ,kϕµ (r) , (18)
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with coefficients cµ,k. When expressed in this way, it is apparent
how the simpler single Slater determinant case can be recovered from
Eq.(17) when we only consider Ne/2 MOs in the expansion, i. e., λk =

1 for 1 ⩽ k ⩽ Ne/2 and λk = 0 elsewhere. This formal equivalence
can be exploited to initialize the variational parameters in Eq.(16)
from the MOs obtained with a DFT calculation. Moreover, the AGP can
also be projected at each optimization step into a given number n of
MOs, with Ne/2 ⩽ n ≪ L [96]. This restricted optimization is more
stable than the original "unrestricted" one and can be effectively used
to improve on the JSD solution. We call this WF JAGPn, which in the
case of n = Ne/2 reduces to an optimized JSD (opt-JSD), i.e., where
both the antisymmetric part and the Jastrow factor are optimized.
Thus, in our notation, the opt-JSD differs from the JSD WF for the VMC

optimization of the Slater determinant.
Other types of partial optimization can also be employed. For exam-

ple, an efficient way to improve the variational energy while keeping
the number of variational parameters tractable consists of optimizing
only a subset of the λ{a,l},{b,m} in Eq.(15), namely those correspond-
ing to atoms a and b which are closer than a given cutoff radius
("locality approach").

A complementary approach for making the optimization of Eq.(16)
more feasible is to reduce the dimension of the basis set L, using
geminal embedded orbitals (GEOs) [97]. Notice that the pairing func-
tion in Eq.(16) can be decomposed into atom-projected contributions
UIproj:

f
(
ri, rj

)
=

N∑
I=1

UIproj
(
ri, rj

)
=

N∑
I=1

∑
µ,ν

AIµ,νϕµ (ri)ϕν(rj),

where AIµ,ν = 0 when µ does not refer to the I-th atom. In practice,
theAIµ,ν can be obtained with DFT, i. e., through Eq.(17). The projected
pairing function for atom I can be then truncated and expressed in
terms of p orthonormal GEOs ϕ̃I,β(ri)

ŨIproj =

p∑
β=1

σIβϕ̃I,β(ri)ψ
env
I,β(rj),

where we also introduced the orbitals ψenv
β (rj) describing the environ-

ment surrounding the I-th atom. Each GEO is defined in terms of the
AOs

ϕ̃I,β(ri) =
L∑
l=1

µGEO
I,l ϕI,l(ri). (19)

The coefficients µGEO
a,l are finally obtained by minimizing the

Euclidean distance between the truncated ŨIproj and the original
UIproj [82, 97]. By appropriately choosing p, this new basis set signifi-
cantly reduces the number of variational parameters in Eq. (16), with
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the λµ,ν matrix size lowered from L× L to pN× pN, while retaining
an accuracy comparable to the original AOs basis.

The locality approach can be combined with the GEO contraction
for an efficient optimization of the WF determinant.

2.2.4 Lattice regularized diffusion Monte Carlo

The optimal variational WF, corresponding to the minimum of Eq.(5),
might already be an excellent approximation of the true system
ground state |Φ0⟩, but a further improvement can be achieved
using a projection technique. Lattice regularized diffusion Monte
Carlo (LRDMC) [98] is one of these methods, based on Green’s
function Monte Carlo (GFMC) [99]. In the GFMC approach, the ground
state is filtered out from a given state ψ by repeatedly applying the
operator

Ĝ =
(
Λ̂− Ĥ

)
, (20)

where Λ̂ = λ1 for some large number λ. In particular, if we write |ψ⟩
in the basis of eigenstates |Φn⟩ of the Hamiltonian Ĥ with eigenvalue
En, i.e., |ψ⟩ =

∑
n an|Φn⟩, we have that

lim
m→+∞Ĝm|ψ⟩ =

= lim
m→+∞ (λ− E0)

m

a0|Φ0⟩+ ∑
n ̸=0

an

(
λ− En
λ− E0

)m
|Φn⟩

 ∝ |Φ0⟩,

(21)

with the requirement that λ−Enλ−E0
< 1 for n ̸= 0 and a0 ̸= 0. Notice

that, in the λ → +∞ limit, a continuous time formulation can be
derived from Eq.(21) [100]. To apply the GFMC method to the ab initio
Hamiltonian in Eq.(1), within the LRDMC we define a discretized Ĥa,
defined on a lattice with spacing a. This can be done by replacing the
kinetic and potential terms with

∇2i,af(xi,yi, zi) ≡
1

a2
{[f (xi + a) + f (xi − a) − 2f (xi)]}+ . . .

+ {↔ yi}+ {↔ zi} ,

Va(x) ≡ V(x) + 1
2

∑N
i=1

(
∇2i,a −∇2i

)
ψG(x)

ψG(x)

 ,

where ψG(x) is a guiding function, usually equal to the optimal VMC

wave function. For further details on how to construct the discretized
Hamiltonian Ĥa, we refer the reader to Refs. [94] and [36]. Finally, the
WF evolution

ψn+1(x ′) =
∑

x

Gx ′,xψn(x)
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is simulated through a Markow chain. In practice, the importance
sampling technique is used in order to reduce statistical fluctuations
and improve the efficiency of the algorithm:

ψG(x ′)ψn+1(x ′) =
∑

x

G̃x ′,xψG(x)ψn(x), (22)

where we defined the operator G̃x ′,x = Gx ′,x
ψG(x ′)
ψG(x) , using the guiding

function ψG. The LRDMC algorithm implements Eq.(22) by statisti-
cally evolving a "walker", with initial position x0 and weight w0 =

1, according to a transition probability px ′,x = G̃x ′,x/bx, with bx =∑
x ′ G̃x ′,x. By using the discretized Hamiltonian Ĥa, there are (6Ne +

1) configurations that can be reached from a given x, including x it-
self1, thus allowing the calculation of bx even in a continuous model.
At each step, the weight is also updated according to wn+1 = bxnwn.
In practice, we can perform a simulation of length Nsim, much larger
than the equilibration time needed to project the ground state, and
compute an accumulated weight Gpn corresponding to a projection of
length p:

Gpn =

p∏
j=1

bxn−j .

The ground state energy is then computed using

E0 ≈
∑
nG

p
nẼL (xn)∑
nG

p
n

, (23)

where ẼL (x) =
∑

x ′ Hax ′,x
ψG(x ′)
ψG(x) is the local energy within importance

sampling. In particular, Eq.(23) satisfy the zero variance property
when ψG = Φ0. Ground state expectation values of other operators Ô
can also be estimated with LRDMC [36]. An approximate expression
is given by the mixed average

OMA =
⟨ψG|Ô|Φ0⟩
⟨ψG|Φ0⟩

≈
∑
nG

p
nÕL (xn)∑
nG

p
n

,

where Õ (x) =
∑

x ′ Ox ′,x
ψG(x ′)
ψG(x) . This approximation is exact when

Φ0 is an eigenstate of Ô. In the other cases, a good estimate of the
ground state expectation value is obtained with 2OMA − OVMC. A
many-walker approach, together with the branching (reconfiguration)
scheme [101] can also be implemented to further increase the effi-
ciency of the computation of Eq.(23), as done in the TurboRVB pack-
age.

Finally, notice how the results in the LRDMC approach will depend
on the lattice constant a used for the discretized Hamiltonian, and

1 Notice that, in the λ → +∞ continuous time limit, x is excluded from the config-
urations that can be reached after one step because a "residency" time on x can be
estimated a priori.
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an extrapolation to the a → 0 limit must be performed [98]. This is
similar to the τ→ 0 limit done in the standard DMC approach, with τ
being the imaginary time step of the Suzuki-Trotter expansion. Within
the LRDMC method, the extrapolation in a is usually very smooth and
reliable, and often a single small value of a is sufficient.

2.2.5 Fixed-node approximation

For fermions, the G operator in Eq.(20) cannot be made positive ev-
erywhere and thus cannot be used to define the transition probability
px ′,x. In the QMC community, this is referred to as the sign problem.
An effective solution is given by the fixed-node (FN) approximation.
On the lattice, this is equivalent to considering a modified Hamilto-
nian ĤFN such that the new operator ĜFN is strictly positive. In par-
ticular, the new transition probability keeps the walkers inside the
nodal pockets of the WF ψG used for the approximation. As a conse-
quence, the FN projected WF ΦFN

0 will have the same nodal surface as
ψG. Moreover, it can be shown [102] that the FN energy is bounded
by the true ground state energy, i.e.

E0 ⩽ E
FN
0 ⩽ EG

with EG being the variational energy of ψG. The FN approach strongly
benefits from a good guiding function ψG and yields exactly E0 when
ψG has the correct nodal structure.

2.2.6 Typical workflow

We end this section by summarizing the typical workflow for a VMC

and LRDMC calculation using the TurboRVB package.

1. Once the basis sets for both the Jastrow factor and antisymmet-
ric part are chosen, the WF is initialized by running a DFT calcu-
lation.

2. The variational parameters of the WF are optimized using meth-
ods such as the SR or the LM, or a combination of the two. Those
may include only the Jastrow factor parameters, as in the JSD WF,
or also those relative to the antisymmetric part (JAGP). In prac-
tice, the final "optimal" parameters are obtained by averaging
each αi after convergence.

3. The optimized WF ψVMC is used to compute energy and other
observables using Eq.(7) or Eq.(8).

4. Finally, the LRDMC method, using ψVMC as the guiding function,
can be used to improve on the VMC results. By running the
calculations at different lattice sizes a, the a → 0 result can
be extrapolated.
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Besides the energy, the workflow just described can output ionic
forces and virial pressure, which are needed to perform QMC-driven
geometry relaxation or molecular dynamics. These quantities are also
important to generate accurate machine learning potentials, as we
will discuss in Chap. 3.

2.3 unbiased forces and pressure in vmc

The ionic forces and virial stress are obtained by differentiating the
total energy E of the system with respect to the atomic coordinates R
or the cell parameters, respectively. Since we know how to obtain E
in QMC, an unbiased value of both quantities can be calculated using
the finite-differences method (FDM), i.e., by running simulations with
displaced variables and computing the derivative numerically. This is
impractical for several reasons. First, the FDM requires multiple ∼ N

independent QMC calculations to compute forces and virials, which
makes this approach computationally expensive. Second, estimating
the derivative may not be trivial due to the statistical noise associated
with each point. A better fit may be obtained by computing more
displacements, with a further increase in computing time.

Several alternatives to the use of the FDM have been proposed for
both diffusion and variational Monte Carlo. Here we will mainly fo-
cus on forces obtained with the latter method; the calculation of forces
within fixed node DMC is a much more complex and debated topic
[103–110]. Within VMC, by directly differentiating Eq.(5) we obtain

Fa = −
dE

dRa
=−

〈
∂EL
∂Ra

〉
(24a)

− 2

〈
(EL − E)

∂ logψ
∂Ra

〉
(24b)

−

Np∑
i=1

∂E

∂αi

dαi
dRa

. (24c)

The three terms in Eq.(24) are called Hellmann-Feynman, Pulay, and
variational terms, respectively. An analogous equation applies for the
(isotropic) virial pressure, where the ionic position is replaced by the
cell volume V . In practice, the term in Eq.(24c) is often discarded,
yielding the following expression for the VMC force

FVMC
a = −

〈
∂EL
∂Ra

〉
− 2

〈
(EL − E)

∂ logψ
∂Ra

〉
. (25)

As it turns out, the application of Eq.(25) is not trivial, and obtaining
efficiently a statistically meaningful FVMC

a with a finite variance
requires the application of techniques such as the zero-variance
zero-bias principle [111], the space warp transformation [112] and
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Figure 2: Schematic illustration of PESs as a function of the dimer bond
length R. (a) The exact PES of the system, which is in practice in-
accessible. (b) VMC PES obtained by a full optimization of all the
variational parameters. (c) VMC PES obtained with the JSD WF, with
the determinant part obtained at each R with a DFT calculation. (d)
VMC PES obtained with the JSD, with a fixed determinant part ob-
tained at R = R ′ with DFT.

reweighting [85, 104, 111, 113–115]. We also note here that a good
estimate for DMC forces can be obtained using the Reynolds approxi-
mation [103], by evaluating Eq.(25) with the mixed average between
ψ and the projected WF Φ0.

Neglecting the variational term is only justified when the WF is
at the variational minimum for all the parameters {α}. In this case
∂E
∂αi

≈ 0 for all i, and Eq. (24c) gives no contribution to the force.
However, for many applications, only the Jastrow part of the WF is
optimized while taking the antisymmetric part equal to a "frozen"
Slater determinant. The advantage of this JSD WF comes from the fact
that the Jastrow term is usually much easier and faster to optimize
reliably than the determinant part. When using Eq. (25) for a JSD WF,
the unoptimized parameters in the Slater determinant cause a bias
in the value of the force, which we indicate as the "self-consistency
error" [115, 116].

In order to illustrate the problem, let us consider as an example the
potential energy surface (PES) of a dimer. In this case, the energy will
only depend on the relative distance between the atoms R. According
to the level of theory, we can identify different potential energy sur-
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faces as illustrated in Fig.2. Every electronic structure method aims,
in principle, to find the exact PES of the system Eexact. This is in prac-
tice impossible, except for very simple nodeless ground states. Within
VMC the best PES we can get is Efullopt, obtained by choosing a varia-
tional ansatz and optimizing all parameters. We have mentioned how
a full optimization can rapidly become infeasible, especially for large
systems. With the JSD WF, a good compromise is achieved by only op-
timizing the Jastrow factor and taking the determinant part equal to
the DFT solution at each bond distance R, resulting in the PES EJSD. In
general we will have EJSD(R) ⩾ Efullopt(R) ⩾ Eexact(R) for all R values,
because of the variational principle. For the JSD WF, the slope given
by FVMC in a given point R = R ′ is, in general, not consistent with
the PES EJSD, but corresponds instead to Ebiased

JSD , obtained by using the
DFT orbitals at R ′ for all the other R values. Notice that because of the
derivative mismatch, in this case, there exist values R ′′, close to R ′,
for which Ebiased

JSD (R ′′) < EJSD(R
′′).

2.3.1 Bias correction

Our aim here is to correct FVMC such that the resulting force is consis-
tent with EJSD(R). In the JSD WF, the only parameters that contribute to
the term in Eq.(24c) are those contained in the Slater determinant. By
using the expansion in terms of the AOs in Eq.(16) the force correction
takes the form

Fca = −

L∑
µ=1

L∑
ν=1

∂E

∂λµ,ν

dλµ,ν

dRa
. (26)

In this case, since the AGP reduces to a Slater determinant, the
λµ,ν are related to the coefficients of the MOs in Eq.(18) , i.e,
λµ,ν =

∑
k c

∗
µ,kcν,k. The first term in Eq.(26) is the generalized force

used in the WF optimization and can be efficiently computed via the
AAD. On the other hand, the second term may be estimated with the
FDM through finite differences, i.e.,

dλµ,ν

dRua
≈ 1

2∆Rua

(
λ
Rua+∆R

u
a

µ,ν − λ
Rua−∆R

u
a

µ,ν

)
(27)

for all three Cartesian coordinates u = x,y, z, with Ra = (Rxa,Rya,Rza).
The coefficients λR

µ,ν are deterministically obtained with DFT so that
the evaluation of Eq.(26) for all ionic forces of the system requires 6N
of such calculations. This is still cheaper than directly using the FDM

to obtain the force, since the cost of DFT is mainly fast Fourier trans-
form bound, with a favorable O(N2 logN) scaling, and thus better
than the VMC one. Notice that the application of the FDM for com-
puting dλµ,ν

dR is only possible thanks to to the gauge invariance of the
λµ,ν, a property inherited from the close relation of the AGP with the
one-body density matrix [117]. In fact, it is trivial to demonstrate that
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those coefficients are invariant under both a phase rotation of the MOs

(ΦMO
k → eiθΦMO

k ) and a possible MOs degeneracy (that can produce
a discontinuous change in R of the cR

µ,k).

The derivatives dλµ,ν
dR can also be obtained without the FDM, by

using linear response theory [118] or solving the coupled perturbed
Kohn-Sham equations [119]. These methods will be possibly faster
and avoid numerical instabilities related to the ionic displacement
∆R, and are currently under implementation in our workflow. Finally,
Eq.(26) can be cast in a suitable form to be computed in VMC:

Fca = −2ℜ


〈
EL

L∑
µ=1

L∑
ν=1

[(
Oµ,ν −Oµ,ν

) dλµ,ν

dRa

]〉 , (28)

where Oµ,ν =
∂ log |ψ|

∂λµ,ν
and Oµ,ν = ⟨Oµ,ν⟩. From Eq.(28), the variance

scaling of the correction with respect toN can also be obtained. Using
the fact that the variance of the local energy EL and the logarithmic
derivative Oµ,ν scale like O(Ne) and O(1) respectively [36, 85], we
can see that Var (Fca) is bound by O(L2Ne), with the L2 term com-
ing from the summation over the AGP variational coefficients. One
can, however, exploit the locality of the λµ,ν to reduce the variance
by a factor of L. In fact, λµ,ν corresponding to pairs of atoms that
are far away, will usually give negligible values of dλµ,ν

dRa
, and may be

effectively discarded from the sum. Given that both L and Ne scale
proportionally with N, we can conclude that the variance of the bias
correction has a O(N2) scaling in the N → +∞ limit, which is N
times larger than the standard VMC force of Eq. (25)[85]. In practice,
for systems of moderate size, we noticed that the variance of the cor-
rected force Fa is often similar to the one of FVMC

a , indicating that
Var (Fa) = Var

(
FVMC
a

)
+ Var (Fca) ≈ O(N) + εO(N2) with a small ϵ.

Before showing some application of Eq. (28), notice that the correc-
tion can also be applied to more general WFs beyond the JSD one, for
which only a subset of parameters are optimized, e.g. those satisfying
the locality condition within a given cutoff radius. In this case, only
the unoptimized coefficients will enter the sum of Eq.(26).

2.3.2 Applications to the H2 and Cl2 molecules

Here we show two simple applications of the force correction to
determine the equilibrium structure of the H2 and Cl2 molecules.
For the calculations, we used the correlation consistent effective
core potentials (ccECPs) [120–123] accompanied with uncontracted
cc-pVDZ basis sets. The DFT MOs were prepared using the PySCF
package [124, 125] with an LDA exchange-correlation functional [74]
and then converted into a format suitable to TurboRVB using the
TurboGenius [126] package via TREX-IO files [127]. The Jastrow
factor (including one-, two-, and three-body terms) was then opti-
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(a) (b)

Figure 3: H2 fitted PESs (solid green lines) with their associated numerical
derivatives (dashed green lines). The regular VMC forces and cor-
rected ones are indicated with red and purple symbols, respec-
tively. The calculations were performed with (a) small [1s] and
(b) large [4s2p1d] Jastrow basis sets. The PESs and forces are com-
puted from R = 0.30 Å to R = 2.00 Å with 18 equally spaced data-
points plus 5 additional datapoints (0.55 Å, 0.65 Å, 0.75 Å, 0.85 Å,
and 0.95 Å). The vertical dashed lines represent equilibrium bond
lengths obtained by fitting the PES (forces) with a 11th (10th) order
polynomial. The plotted forces are Fx acting on the left atom of the
dimer, where the x axis is aligned with the direction of the molec-
ular bond.

mized using the linear method. The coefficients derivatives dλµ,ν
dR

were computed using a displacement ∆R = 0.001.
In the first application, we tested the force correction on the simple

H2 dimer. This is a very special case, for which the JSD solution is
in principle exact if the Jastrow basis is converged. In particular, this
allows us to study different situations, from a poor Jastrow to a re-
fined one. Here we considered two Jastrow basis sets, one consisting
only of a [1s] orbital and the other including [4s2p1d] orbitals. The
results are shown in Fig.3. The equilibrium distance as obtained from
the PES (with the FDM), from the standard VMC force of Eq.(25) and
the corrected force, are reported in Tab.1. Notice how, in the case of
the under-converged Jastrow factor, the correction mitigates the self-
consistency error, while, for the converged one, the Jastrow factor
completely compensates for the DFT determinant and the correction
is negligible. This example demonstrates that the variational term in
Eq.(26) not only removes the bias due to frozen MOs, but also the one
caused by an unconverged Jastrow.

We also applied the correction to the Cl2 dimer. Fig.4 again shows
the PES of the system obtained from VMC, using a JSD WF and a [3s1p]
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Table 1: The equilibrium bond distances r eq (Å) of the H2 and Cl2
molecules obtained from the PESs, the regular VMC force, and the
corrected force. The corresponding PESs are shown in Fig. 3 and
Fig. 4. Experimental results are taken from Ref. [128].

Dimers Source req (Å)

H2 (Jas. [1s])

PES 0.7344(2)

VMC force 0.7392(1)

Corrected force 0.7341(1)

Experiment 0.741

H2 (Jas.[4s2p1d])

PES 0.7418(3)

VMC force 0.7408(6)

Corrected force 0.7408(6)

Experiment 0.741

Cl2 (Jas.[3s1p])

PES 1.987(1)

VMC force 1.9979(1)

Corrected force 1.9864(1)

Experiment 1.987

Jastrow basis set. The equilibrium geometries are also reported in
Tab.1. Here we can see that the self-consistency error is larger, which
is consistent with Ref. [116], reporting that the bias increases with the
effective nuclear charge. The results in Tab.1 illustrate that the pro-
posed force correction also works for molecules with higher atomic
numbers.

2.3.3 Pressure correction for cubic BN

Like the forces, also the virial pressure P = −dEdV suffers from the
self-consistency error and can thus be corrected. The pressure correc-
tion has exactly the same form of Eq.(26) with the derivatives dλµ,ν

dRa
replaced with dλµ,ν

dV . To demonstrate this, we considered cubic boron
nitride (cBN). For the calculations, we used the ccECP with an uncon-
tracted cc-pVDZ basis set. The basis set elements with small expo-
nents (less than 0.20 a.u.) were cut in order to solve the linear depen-
dency of the basis set and suppress the statistical error on forces and
pressures [129]. A 2× 2× 2 supercell (comprising 256 electrons in the
simulation box) at the gamma point k = Γ was used. The molecular
orbitals in the WF were prepared via the built-in DFT code of Tur-
boRVB, using a LDA [74] exchange-correlation functional. For the B
and N atoms, we used a [3s1p] basis for the Jastrow, which we then
optimized with the LM at each volume. The variational coefficients
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Figure 4: Cl2 fitted PES (solid green line) with its numerical derivative
(dashed green line). The regular VMC forces and corrected ones
are indicated with red and purple symbols, respectively. The cal-
culations were performed with a [3s1p] Jastrow basis set. The PES

and forces are computed from R = 0.30 Å to R = 2.00 Å with
18 equally spaced datapoints plus 5 additional datapoints (0.55 Å,
0.65 Å, 0.75 Å, 0.85Å, and 0.95 Å). The vertical dashed lines repre-
sent equilibrium bond lengths obtained by fitting the PES (forces)
with a 11th (10th) order polynomial. The plotted forces are Fx act-
ing on the left atom of the dimer, where the x axis is aligned with
the direction of the molecular bond.
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Table 2: Equilibrium lattice parameters and volumes per atom obtained by
fitting the EOS, and from the regular VMC pressure and the corrected
one. Experimental values are taken from Ref. [128]. Zero-point en-
ergy and temperature effects are not included.

Source Lattice (Å) Volume (Bohr3)

EOS 3.5962(3) 5.814(1)

VMC pressure 3.5800(1) 5.7353(7)

Corrected pressure 3.5943(2) 5.8042(7)

Experiment 3.594

derivatives dλµ,ν
dV were computed with the FDM using relative volume

variations ∆V = ±0.3%. In Fig. 5 the BN EOS and biased/corrected
pressures are shown. In Tab. 2 we also report the equilibrium lattice
parameters and volumes obtained by the different approaches. Notice
how the self-consistency error introduces a pressure shift ∼ 5 GPa on
the whole volume range. Our method gives corrections that bring the
estimated pressure very close to the unbiased values derived from
the EOS.

2.4 wrap-up

This Chapter introduced two first-principles frameworks: DFT and
QMC. Within the latter approach, we described the WF forms used
in this thesis to achieve accurate results in the variational Monte
Carlo (VMC) method. We also showed how these WFs can be further
improved by means of projection techniques such as LRDMC. These
algorithms are implemented in the TurboRVB code [82], which we
used for all the QMC calculations in this thesis. We then addressed
the problem of obtaining unbiased energy derivatives (i. e., forces and
pressures) within the VMC framework, in case of wave functions that
are not fully optimized. This is particularly important, since one of
the most used WFs is the JSD, where the parameters of the Jastrow
part are at the variational minimum, while the Slater determinant
part is taken directly from DFT calculations. We demonstrated the ef-
fectiveness of our correction in both molecular and bulk systems, by
removing the bias in the force and pressures, respectively. As we will
explore in Ch. 5, the availability of unbiased quantities, computed at
a relatively cheap cost given by the combination of the VMC method
and the JSD WF, opens the possibility to generate affordable datasets
for training QMC-based machine learning potentials.
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Figure 5: Cubic BN equation of state (solid green line) and negative deriva-
tive (dashed green line). The regular and corrected VMC pressures
are indicated with red diamonds and purple squares, respectively.
The vertical dashed lines represent equilibrium volumes obtained
by fitting the EOS and pressures with the Vinet forms [130].
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A C C E L E R AT I N G M O L E C U L A R D Y N A M I C S
S I M U L AT I O N S V I A M A C H I N E L E A R N I N G
P O T E N T I A L S

Electronic structure methods, such as DFT or QMC, can be used to
compute the PES of the system, i. e., E0(R) = E0(R1, . . . , RN) in Eq.(2),
for any given R. Once this is done, thermodynamic average quanti-
ties can be obtained by sampling the ionic configurations according
to the desired statistical ensemble. The two most popular sampling
methods are molecular dynamics (MD) and Monte Carlo (MC) sim-
ulations. In this Chapter only the former will be discussed; the lat-
ter method is frequently used in combination with QMC, e. g., in the
CEIMC approach [131].

In Sec. 3.1 and Sec. 3.2, we will introduce the classical MD and path
integral MD approach, respectively. We will then switch our focus to
machine learning potentials (MLPs) and how they can be used to per-
form MD simulation with the accuracy of first-principles methods at
a fraction of the computational cost (Sec. 3.3). The specific features
of MLPs trained on QMC reference data will be discussed in Sec.3.3.1.
Finally, we will describe the two main machine learning models used
in this thesis. The first approach, for which we developed our own
implementation, is based on the kernel ridge regression method (Sec.
3.4) in combination with the ∆-learning technique (Sec. 3.4.1), a sim-
ilarity kernel with the smooth overlap of atomic positions (SOAP) de-
scriptor (Sec. 3.4.2), and a sparsification method to reduce the number
of model parameters (Sec. 3.4.3). The second approach, a recently in-
troduced [132] equivariant neural network called MACE, will be dis-
cussed in Sec. 3.5. A summary of this Chapter is reported in Sec. 3.6.

3.1 classical md simulations

For sufficiently high temperatures and low densities, the motion of
the nuclei is well approximated by classical mechanics, and the equa-
tions of motion can be integrated, e. g., using the velocity Verlet al-
gorithm. This approach can be used to effectively simulate a system
with constant total energy and represents the simplest example of
classical MD. It is often more convenient to work in alternative en-
sembles, such as the isothermal-isocore (NVT) or isothermal-isobaric
(NPT) ones. For NVT simulations, several thermostats are available,
including the Nosé-Hoover one [133–135] and the stochastic veloc-
ity rescaling method [136]. In NPT molecular dynamics, a barostat is
also required to regulate pressure, with the Parrinello-Rahman baro-

29
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stat [137] being a commonly used choice. An alternative approach
for simulating the canonical ensemble is given by Langevin dynam-
ics [138, 139], i. e.,

dP(t)
dt

= F − γP(t) +η(t), (29)

where P ≡ (P1, . . . , PN) with Pa = Ma
dRa
dt , γ is a friction coeffi-

cient and ηa(t) is a random force term. Thanks to the fluctuation-
dissipation theorem [140], the correct canonical distribution at tem-
perature T can be achieved by taking ⟨η(t)⟩ = 0 and ⟨ηi(t)ηj(t ′)⟩ =

2γkBTδ(t− t
′)δij.

Running an MD simulation requires the calculation of the ionic
forces at each time step, which can be done using a variety of ap-
proaches. Fast-to-evaluate atomistic potentials allow for simulations
of a large number of particles and very long trajectories (of the or-
der of several ns or even µs), but their accuracy is usually limited.
On the contrary, electronic structure methods require a much larger
computational time, but they can better capture the physics of the sys-
tem. For example, ionic forces can be computed within DFT by using
the Hellmann-Feynman theorem [141, 142]. This approach is known
as ab initio molecular dynamics (AIMD) or Born-Oppenheimer MD
(BOMD) [143]. A more computationally efficient method, still within
the DFT framework, is represented by Car-Parrinello molecular dy-
namics (CPMD) [144]. In CPMD, a modified Lagrangian is introduced,
containing both ionic and electronic degrees of freedom, and assign-
ing to the latter a fictitious mass parameter µ. For an appropriate
choice of µ, the electronic subsystem "oscillates" around the BO PES

during the dynamics, thus removing the need for a full DFT calcula-
tion at each step.

QMC methods can also be used as a driver for MD, further improv-
ing the accuracy of the results. Notice how, in this case, forces have an
associated noise. This feature can be exploited to include noisy QMC

forces in the Langevin dynamic framework, by appropriately modify-
ing the stochastic term η(t) in Eq.(29) to also include non-diagonal el-
ements describing the correlation between different components [113,
145, 146].

3.2 path integral md

As the temperature of the system is decreased, the classical de-
scription of the ions starts to break down and nuclear quantum
effects (NQEs) have to be considered. For hydrogen, this is particu-
larly important since, due to its light mass, NQEs remain significant
up to relatively high temperatures (T ⩽ 2000K). One of the most com-
mon methods to include quantum effects is the PIMD approach [147].
Within PIMD the original quantum problem is mapped into a clas-
sical system made of M replicas ("beads") of the original system,
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interacting among themselves with a harmonic potential and at a
temperature M × T . In particular, the quantum partition function
Z = Tr

[
exp(−βĤ)

]
is factorized using a Trotter decomposition

Z ≈ 1

(2π h)MN

∫ M∏
j=1

d3NR(j)d3NP(j)

 e−τHM({R},{P}), (30)

where we set τ = β/M and indicated with {R} =
(
R(1), . . . , R(M)

)
and

{P} =
(
P(1), . . . , P(M)

)
the collection of all coordinates and momenta

of the beads. The Hamiltonian of the classical system is given by

HM ({R}, {P}) =
N∑
i=1

M∑
j=1

[
1

2

(
P(j)
i

)2
+
1

2
Miω

2
M

(
R(j)
i − R(j−1)

i

)2]

+

M∑
j=1

V
(

R(j)
)

, (31)

where V is the potential energy of the system, ωM = M/β h

and R(0) ≡ R(M). Once the quantum-to-classical isomorphism is
established, a thermostat can be applied to control the tempera-
ture [147–149]. An efficient choice is given by the path integral
Ornstein-Uhlenbeck dynamics (PIOUD) method [150]. This approach
applies a Trotter breakup on the Liouville operator, separating the
physical modes of the system from the harmonic ones, and explicitly
integrating the latter together with the thermostat, which is done
analytically. This is at variance with the path integral Langevin
equation (PILE) algorithm [147], whose Liouvillian contains an
additional Trotter breakup between the integration of the harmonic
modes and their thermostatting step. Compared to PILE, the PIOUD

method shows better stability in both the simulation time step and
the number of replicas M, while also being able to incorporate noisy
forces directly in the thermostat.

3.3 machine learning potentials

The large computational burden of first-principles methods strongly
limits both the size of the system and the length of the trajectories
that one can realistically simulate with MD. For example, AIMD simu-
lations are only possible for a few thousand atoms and ∼ 100 ps. The
problem is even more severe if one wants to use QMC as an energy
and force driver; in this case, the simulation of hundreds of atoms for
a few pico-seconds is already challenging. For this reason, the range
of applicability and popularity of AIMD have been limited compared
to those of simulations using atomistic potentials.

This situation dramatically changed during the last two decades
with the introduction of machine learning potentials (MLPs) [38]. The
basic goal of an MLP is to approximate the PES E(R) of a given N
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atom configuration, starting from a set of reference electronic struc-
ture data (e.g. energies, forces), called the training set, usually com-
puted with ab initio methods such as DFT or QMC. In practice, an
MLP is a very flexible function containing a large number of parame-
ters to be optimized, such as a neural network (NN), and, contrary
to physical atomistic potentials, does not contain any a priori as-
sumption on the system. When the model is properly trained, i.e.,
its parameters are optimized, an MLP can predict energies and en-
ergy derivatives on unseen configurations, with similar accuracy to
the original ab initio method, but at a computational cost several or-
ders of magnitude smaller. MLPs were first applied in the context of
simulating small molecules, reactive molecular systems, and interac-
tions of molecules with frozen (i. e., with fixed positions) metallic sur-
faces [37, 151]. These "first-generation" MLPs, following the classifica-
tion of Ref. [152], were limited to small systems, since they could only
be applied to configurations with the same number of atoms as the
training ones. A big improvement, in particular regarding the applica-
tion to extended systems and MD, was made in the so-called "second-
generation" MLPs [153]. In these models, the basic assumption is that
E can be expressed as a sum of atomic contribution, each depending
on the relative coordinates of all the other atoms with respect to the
central one:

E =

N∑
i=1

e(Ri) where Ri = (Ri1, . . . , RiN) with Rij ≡ Rj − Ri.

(32)
Here, we will refer to Ri as the local environment around the i-th
atom and to e (Ri) as the local atomic energy, and suppose the min-
imum image convention holds when periodic boundary conditions
are applied. The function e (Ri) in Eq.(32) can often be considered
local, i. e., to only depend on the atoms closer than a certain cutoff
radius rc. Different MLPs can be distinguished by their specific rep-
resentation of the local atomic energy. A wide range of techniques
has been successfully applied during the years, including neural net-
works, gaussian approximation potentials [154, 155] , kernel ridge
regression [39, 156] , message-passing networks [132, 157] and more.
Irrespective of the specific architecture, e (Ri) will usually depend on
a set of parameters {β} to be optimized:

e (Ri) ≡ e (Ri; {β}) . (33)

The vast majority of MLPs implement a functional form that inherently
satisfies some of the symmetries required by physical constraints,
such as permutational and rotational invariance. This is often done
by considering a mapping from the real coordinates R1, . . . , RN into
a set of symmetry-preserving input variables, called descriptors. Like
the ML architectures themselves, nowadays there exists a wide choice
of descriptors such as atom-centered symmetry functions (ACSF) [153],
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smooth overlap of atomic positions (SOAP) [158], atomic cluster expan-
sion (ACE) [159] and more.

The parameters (or weights) in Eq. (33) are optimized by minimiz-
ing the loss function L({β}), which quantifies the error of the predic-
tion with respect to the training data. In particular, we indicate as
R
µ
i ≡ (Rµ1 − Rµi , . . . , RµNµ − Rµi ) the i-th atomic environment belong-

ing to the µ-th configuration of the training set (of total dimension
Nt), with µ = 1, . . . ,Nt, having Nµ atoms and volume Vµ. Moreover
let Eµref, Fµ,j

ref and Pµref be the reference values of the total energy, the
force acting on the j-th atom and the (isotropic) virial pressure of the
configuration. A possible choice of the loss function is then given by

L({β}) = wE
1

Nt

Nt∑
µ=1

[
1

Nµ

(
E
µ
pred ({β}) − E

µ
ref

)]2

+wF
1

Nt

Nt∑
µ=1

1

3Nµ

Nµ∑
j=1

[
Fµ,j

pred ({β}) − Fµ,j
ref

]2
+wP

1

Nt

Nt∑
µ=1

[
P
µ
pred ({β}) − P

µ
ref

]2
, (34)

where the predicted energies, forces, and pressures are computed as

E
µ
pred ({β}) =

Nµ∑
i=1

e(Rµi ; {β}),

Fµ,j
pred ({β}) = −∇j

Nµ∑
i=1

e
(
R
µ
i ; {β}

) , (35a)

P
µ
pred ({β}) = −

∂

∂Vµ

Nµ∑
i=1

e
(
R
µ
i ; {β}

) . (35b)

The three terms in Eq.(34) are the mean squared error (MSE) of the
energy per atom, ionic forces, and virial isotropic pressure, respec-
tively, and wE, wF, and wP are tunable weights multiplying the dif-
ferent MSEs. Other functional forms of the loss function are possible,
which can also include additional physical quantities (e.g., charges,
all 6 independent components of the stress, etc...). The loss function
minimization can be performed with several algorithms, depending
on the specific ML method implemented. For example, within NNs,
the gradient of L({β}) is usually computed using only a small batch
of training configurations, and the parameters are optimized using
stochastic gradient descent. The derivatives of the loss function with
respect to the parameters can be computed with adjoint algorithmic
differentiation, which is often called backpropagation [160] in this
context.
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Figure 6: Schematic flowchart of the active learning scheme used to con-
struct machine learning potentials. The model is initially trained
on a starting set of ab initio data points and then validated using
a validation set. New configurations are iteratively added, filling
the holes in the training set, until a good accuracy of the model is
attained.

The selection of the configurations belonging to the training set is
one of the most crucial tasks in the construction of an MLP. In partic-
ular, an incomplete sampling of the relevant phase space or "holes"
in the dataset can result in incorrect predictions. For this reason, it is
essential to validate the potential by checking its accuracy on another
set of configurations, different from the training one, called validation
or test set. This is often done by computing the root mean squared
error (RMSE), which for a given quantity X reads

RMSEX =

√√√√ 1

Ntest

Ntest∑
µ=1

(
X
µ
pred −Xµref

)2
,

with Ntest being the test set dimension. At this point, if the perfor-
mance of the MLP is not satisfactory, other configurations are added
to the training set, and the whole process is repeated. This iterative
procedure, sketched in Fig.6, is called active learning in the ML com-
munity. The new configurations can be obtained in several ways, e.g.
by using different MLPs trained on the same training set but with
a different random initialization and studying the variance of their
predictions ("query by committee") [161]. In the end, the process is
stopped when the model is considered to be accurate enough, i. e.,
when no more configurations need to be added.
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3.3.1 QMC-based MLPs

Now that we have described some generalities about MLPs and their
construction, let us switch our focus to models trained using QMC

data points. These MLPs represent a very small fraction of those
present in the literature, which are usually trained on DFT datasets.
We can identify three main aspects that differentiate QMC-based
MLPs.

• Contrary to DFT, any dataset generated using QMC is fundamen-
tally noisy. This is not new in the ML community, where noisy
data are commonly encountered. Recent studies and applica-
tions have shown that this "unbiased noise" is not detrimental
and even QMC data with large error bars can be effectively used
to build good quality MLPs [42].

• QMC calculations usually require about 10 − 100 the computa-
tional time of a DFT calculation. This makes the generation of
large datasets (104 − 105 configurations) extremely challenging.
Possible solutions to this problem include selecting only the
most relevant structures in the training set, using particularly
data-efficient ML architectures, or employing techniques such
as ∆-learning (see Sec.3.4.1).

• As discussed in the previous chapter, the calculation of QMC

energy derivatives is not straightforward. Indeed, within VMC,
the usual expression for ionic forces and pressure is affected by
the self-consistency error when the WF is not at the full varia-
tional minimum. Even if an MLP produces energy derivatives
that are by definition consistent, the inclusion of biased data
in the training set translates into a strong model dependence
on the different weights wE, wF and wP in Eq.(34), and can
produce inaccurate models (see Ch. 5). This is particularly im-
portant when the magnitude of the bias approaches that of the
target quantity.

In the rest of this Chapter, we will describe the specific architectures
and techniques we used to construct the MLPs presented in this thesis,
namely kernel ridge regression and MACE.

3.4 kernel ridge regression

The first approach we will explore is a combination of kernel ridge
regression (KRR) and the ∆-learning technique. This method was orig-
inally employed to study the liquid-liquid transition in hydrogen in
Ref. [39] (see Ch. 6). We will also discuss the details of our imple-
mentation of this framework, named TurboML, developed using a
combination of Fortran and Python.
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3.4.1 ∆-learning approach

The ∆-learning method [162] is a strategy that expresses the target
ab initio PES as the sum of a computationally cheaper baseline poten-
tial and a correction given by an MLP. In our applications, the target
method is QMC (variational or diffusion) while the baseline is given
by DFT:

EQMC (R) = EDFT (R) +∆MLP (R) .

The advantage of this approach is based on the observation that con-
structing an MLP that reproduces the correction ∆MLP usually requires
a much smaller training set than learning EQMC directly. This is par-
ticularly useful for expensive electronic structure methods. Indeed, a
sufficiently high accuracy can often be obtained with less than 103

data points.
When running MD simulations within the ∆-learning approach, the

total energy, forces, and pressure are computed at each time step with
both the baseline potential and the MLP giving the correction. Most
of the time this implies that the computational cost of the simulation
will be given by that of the baseline, i. e., DFT. Although expensive,
the resulting dynamics are much faster than an ab initio QMC MD, e. g.,
about three/four orders of magnitude for systems of a few hundred
atoms. This type of approach will be particularly effective when high
accuracy is needed and relatively short simulations are sufficient. Al-
ternatively, a faster framework can be obtained by replacing the DFT

baseline with cheaper methods or even with an MLP trained on DFT

data.

3.4.2 Kernel regression with SOAP

A crucial aspect to consider if one wants to construct an accurate MLP

with limited training points is the choice of the particular architecture
of the model and the description of the local environment around
each atom. In Refs [39, 41], we used KRR, an approach that expresses
the local atomic energy in Eq.(33) as

e (R; {β}) =
Nenv∑
µ=1

βµK (R,Rµ) , (36)

where we indicated with K (R,Rµ) the "normalized kernel" between
the local environment to be predicted R and one of theNenv local envi-
ronments belonging to the training set Rµ. We can interpret K (R,Rµ)
as a measure of the similarity between the two local environments. In
particular, for any pair Ri,Rj, we have that 0 ⩽ K (R,Rµ) ⩽ 1, with
K
(
Ri,Rj

)
= 0 representing "ortogonality", and K

(
Ri,Rj

)
= 1 indi-

cating that Ri and Rj are equivalent. The kernel we used is based
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on the smooth overlap of atomic positions (SOAP) [158, 163]. Within
SOAP, each environment Ri is described by a smooth density

ρ (r,Ri) ∝
∑

|Rij|⩽rc

fc
(∣∣Rij∣∣) exp

(
−

∣∣r − Rij
∣∣2

2σ2

)
, (37)

where fc(r) is a function that goes smoothly to zero for r larger than
the cutoff radius rc and σ is a hyperparameter of the model. Notice
how in Eq.(37) we only considered one atomic species for simplicity.
The similarity kernel between two local environments Ri, Rj is then
written as

K
(
Ri,Rj

)
=

∫
O(3)

dÛ

[∫
d3rρ(r;Ri)ρ(r; ÛRj)

]n
, (38)

where we integrated over all possible rotations Û (including reflec-
tions) the n-th power (n being another hyperparameter) of the over-
lap of the two densities. Evaluating Eq.(38) can be done using the bis-
pectrum [158]. The TurboML code implements an alternative form of
the kernel using only a discrete subgroup of Nsym symmetry opera-
tors Ûk

K̃
(
Ri,Rj

)
=

1

Nsym

Nsym∑
k=1

[∫
d3rρ(r;Ri)ρ(r; ÛkRj)

]n
. (39)

The set of symmetries can, for example, be taken equal to the cubic or
icosahedral symmetry groups, and then Eq.(39) can be evaluated triv-
ially. This approach is reminiscent of the implementation of non-local
pseudopotentials in QMC [164] where a similar angular integration to
the one in Eq.(38) appears. Finally, the normalized kernel K

(
Ri,Rj

)
is given by

K
(
Ri,Rj

)
=

[
K̃
(
Ri,Rj

)
K̃ (Ri,Ri) K̃

(
Rj,Rj

)]η , (40)

with a power η that can be used to tune the selectivity of the kernel.
The training of the model weights {β} in Eq. (36) is performed by

minimizing a loss function like the one in Eq.(34). This is equivalent
to solving the linear system:

Aβ = b, (41)

where A is aNenv ×Nenv matrix. When inverting A a regularization is
necessary to obtain a stable solution for the coefficients {β} and avoid
ill-conditioning.

Our implementation TurboML is parallelized using a hybrid Open-
MP/MPI paradigm to compute the total energy in Eq. (32) and the
kernel in Eq. (39), distributing over the local environments and sym-
metries, respectively. The training uses a parallel implementation of
the conjugate gradients method to invert the matrix in Eq. (41) and
computes local atomic energy derivatives with AAD.
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3.4.3 Local furthest point sampling sparsification

When constructing an MLP using KRR, a careful selection of the ref-
erence points to be included in the training set is crucial. In fact, the
computational cost of both model training and evaluation scales poly-
nomially with the training set dimension Nenv, and discarding "use-
less" local environments can drastically improve the model efficiency.
To do this, a common approach is the so-called sparsification, i.e., the
selection of a representative subset of points S from a larger dataset
X. In our implementation, the furthest point selection (FPS) algorithm
was used, which can be described as follows:

1. In the first iteration, select a random point x ∈ X and add it to
the point selection S.

2. At each iteration, compute the quantity

d(y,S) = max
x∈S

K (x,y) (42)

for each point y ∈ X\S, which measures the maximum similar-
ity of y to the points already selected.

3. Chose a new point ȳ from X\S such that

ȳ = arg min
y∈X\S

d(y,S).

4. Repeat from point 2 until S has the desired dimension Nenv or
d(y,S) ⩾ γ for all y ∈ X\S, where 0 < γ < 1 is a given threshold.

In our code, the evaluation of Eq. (42) is performed in a distributed
way and the allocation of the kernel matrix K(x,y) can be split over
several processes. Notice how, by applying the FPS to a dataset of Nt
configurations, only a subset of nµ ⩽ Nµ local environments will be
selected from the µ-th configuration with Nµ atoms. In Eq.(34) we
will only keep the conditions corresponding to configurations that
have nµ ̸= 0. With this local version of the FPS, we can efficiently
train MLPs on a small subset of local environments, achieving accu-
racy comparable to models trained on the entire dataset. In particular,
a model trained on a sparsified set with Nenv ≃ 5− 10× 103 environ-
ments often has an RMSE on energy and forces only ∼ 5% larger than
a model trained on the full training set, while being ∼ 10 times faster
to evaluate (see Fig.7).

3.5 mace models

MACE [132] is a recently introduced framework combining message
passing neural network (MPNN) [157, 165] and high body-order mes-
sages to construct very accurate MLPs. In the context of atomistic sim-
ulations, an MPNN describes the system as a labeled graph, where
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Figure 7: Comparison of the accuracy of MLPs trained on sparsified datasets
with different numbers of local environments Nenv, measured us-
ing the RMSE relative to energy and forces on the test set. The
training and test sets comprised 400 configurations and 50 config-
urations, respectively, with 128 hydrogen atoms each. The models
were trained on the difference between reference data obtained
within DFT but with two different functionals, namely the Perdew-
Burke-Ernzerhof (PBE) and LDA functionals, respectively. The last
point in each panel (empty symbol) corresponds to the model
trained on the full set of local environments.

each atom i corresponds to a node. The state of each node σi in a
given layer t of the NN is represented by a tuple

σ
(t)
i =

(
Ri,Zi, h(t)

i

)
,

where Ri and Zi denote the position and atomic number of atom i,
h(t)
i is a learnable feature vector and h(1)

i = Zi. In equivariant MPNNs,
the feature vectors h(t)

i transform as

h(t)
i

(
Û (R1, . . . , RN)

)
= D

(
Û
)

h(t)
i (R1, . . . , RN)

for a general rotation Û, where D(Û) is a Wigner D-matrix belonging
to an irreducible representation of the O(3) group. Notice how the
usual "invariance" is obtained in the special case where D(Û) ≡ 1.
The graph’s edges connect nodes corresponding to atoms within the
model cutoff radius rc. A forward pass of the network is performed
by first constructing the messages

m(t)
i =

⊕
|Rij|<rc

Mt

(
σ
(t)
i ,σ(t)j

)
,

where
⊕
j|Rij<rc is a permutational invariant operation over the

neighbours of the i-th atom and Mt is a message function. Both⊕
j|Rij<rc and Mt are learnable. The features of the next layer are

then updated as
h(t+1)
i = Ft

(
σ
(t)
i , m(t)

i

)
,
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where Ft also depends on trainable weights. Finally, after T forward
steps, the local atomic energy of the system is obtained using a set of
learnable "readout" functions Gt

e(Ri) =

T∑
t=1

Gt

(
σ
(t)
i

)
.

In this last step, only invariant features are selected, such that e(Ri)
has the correct transformation property. The training procedure is
performed by minimizing a loss function as the one in Eq. (34).

Within MACE, the messages include many-body interactions be-
tween the nodes up to a given order (ν+ 1), i. e.,

m(t)
i =

∑
j

u1
(
σ
(t)
i ,σ(t)j

)
+

∑
j1,j2

u2
(
σ
(t)
i ,σ(t)j1 ,σ(t)j2

)
+ . . .

+
∑
j1,...jν

uν
(
σ
(t)
i ,σ(t)j1 , . . . σ(t)jν

)
. (43)

The supposedly exponential scaling of Eq. (43) with respect to the
body-order ν is solved by making use of the atomic cluster expan-
sion (ACE) approach [159], which allows for the computation of a
complete set of basis functions of any order at a constant cost, inde-
pendent of ν. This means that Eq. (43) can be effectively evaluated as
a linear combination of features (see Ref. [132]). The ACE approach
has been demonstrated to be complete [166], i. e., to be capable of
describing any (ν+ 1) order equivariant function in the limit of infi-
nite features, and includes as special cases many atomic environment
descriptors, such as ACSF and SOAP. By incorporating higher order
messages, MACE models achieve faster learning rates compared to
other MPNNs, while also needing fewer message-passing steps T to
converge, namely T = 2. As a result, MACE MLPs have been proven
to be extremely accurate, while also showing good scalability and
generalization capabilities.

3.6 wrap-up

In this Chapter, we discussed how machine learning potentials (MLPs)
allow for molecular dynamics (MD) simulations with the accuracy of
first-principles methods but at a fraction of the computational cost.
We introduced the ∆-learning approach, a framework that can be uti-
lized to construct accurate models with a relatively small number of
data points. This is particularly important for QMC-based MLPs, for
which the generation of large datasets is challenging. We also pre-
sented the two architectures employed in our work. The first one is
kernel ridge regression (KRR), for which we developed our own paral-
lel implementation, TurboML, based on a modified SOAP kernel and
a local sparsification approach to reduce the number of model param-
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eters. Applications of this method for studying the deuterium Hugo-
niot curve and the hydrogen liquid-liquid phase transition (LLPT) will
be presented in Chs. 4 and 6, respectively. The second approach,
MACE [132], is an equivariant message passing neural work, which,
thanks to higher-order messages, is able to reach a very high accuracy
compared to other ML architectures. In Ch. 6, we will apply a MACE
model trained on DFT data to study the first-order character of the
LLPT.





4
Q M C C A L C U L AT I O N O F T H E D E U T E R I U M
H U G O N I O T C U RV E

Dynamic compression techniques [23] have been extensively used
during the last decades to study high-pressure hydrogen and have
provided invaluable insights into the physics of this system. These ex-
periments measure the properties of a sample after it is compressed
by one or multiple shock waves, which can be generated using several
methods such as gas guns [167–169], lasers [170–178], magnetically
driven flyer plates [179–181] and explosives [182–186]. If the resulting
wave is sufficiently planar and the process adiabatic, the end state
of the system after one shock will satisfy a set of conservations laws,
called Rankine-Hugoniot (RH) equations [187], that define the prin-
cipal Hugoniot curve. Deuterium is often used, because its higher
density and lower shock impedance with respect to hydrogen allow
for the realization of higher pressures.

The experimental data for the deuterium Hugoniot have been
used to benchmark the different equations of state (EOSs) obtained
using theoretical or numerical methods. These include EOSs based
on chemical models [29–31, 33] or first-principles methods, such as
DFT [188–197], restricted path integral Monte Carlo (RPIMC) [12, 198]
or CEIMC [199, 200]. However, this comparison is difficult due to the
large uncertainties of the experimental data. In fact, measures on the
sample have to be done extremely quickly and the value of quantities
like density, pressure, and temperature is often inferred using other
observations. This often resulted in discrepancies between different
experiments [201]. Recently, more accurate measures of the Hugoniot
have been made available [170, 178, 180, 181], with a relative error
as small as 2% for the compression peak in the region of ∼ 50 GPa,
which allow for better benchmarks of numerical EOSs.

In this chapter, we will show an application of the KRR and ∆-
learning approach described in Sec. 3.4 to the construction of QMC-
based MLPs for determining the principal Hugoniot curve of deu-
terium [41]. In Sec. 4.1 we will describe the simulations we used
for calculating the Hugoniot. We will then explain how finite tem-
perature effects can be approximately taken into account within the
∆-learning approach (Sec. 4.2). The results obtained with our MLPs

will be presented in Sec. 4.3. Next, we will provide further details
on our calculations, by showing the method we used for computing
the energy of the unshocked state (Sec. 4.4), a comparison with pre-
vious QMC results (Sec. 4.5), a description of the dataset we used to
train our MLPs (Sec. 4.6), and the details of the QMC reference calcu-
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lations (Sec. 4.7). Finally, the accuracy of our models will be assessed
in Sec. 4.8. The results of this Chapter are summarized in Sec. 4.9.

4.1 hugoniot determination : general aspects

To estimate the principal Hugoniot from MD simulations, we made
use of the RH jump equation [187]:

H(v, T) = e (v, T) − e0 +
1

2
(v− v0) [P (v, T) + P0] = 0, (44)

where v, T , e(v, T), p(v, T) and v0, T0, e0, p0 are the volume per atom,
temperature, energy per atom, and pressure of the final and initial
states, respectively.

In particular, we ran molecular dynamic simulations in the NVT
ensemble for a system of N = 128 atoms at several temperatures
and densities, corresponding to the range where the zero of H(v, T)
was expected, accumulating thermodynamic data over trajectories
of a few picoseconds. Following the ∆-learning scheme, these sim-
ulations were performed using MLPs trained on the difference be-
tween QMC (both variational and diffusion) and DFT reference cal-
culations with both the local density approximation (LDA) [74] and
the Perdew-Burke-Ernzerhof (PBE) [75] functionals. At each step, the
energy, forces, and pressure were calculated at the DFT level using the
Quantum Espresso package in its GPU accelerated version [202–204]
with the chosen functional (PBE in most cases), and then summed
with those predicted by the MLP. The resulting dynamics have the
same cost as standard DFT AIMD simulations, which is roughly 103

times smaller than the original QMC one. For the DFT simulations,
a 60 Ry plane-wave cutoff with a projector augmented-wave (PAW)
pseudopotential [205] was used together with a 4× 4× 4 Monkhorst-
Pack k-point grid, while for the dynamics we used a time step of
0.25 fs and a Langevin thermostat [113, 206] with damping γ =

0.13 fs−1. For each temperature T , Eq.(44) was solved to determine
the Hugoniot coordinates (v∗,p∗). This is done by fitting the Hugo-
niot function H(v, T) and the pressure p(v, T) with a spline function,
and by numerically finding v∗ and the corresponding p∗. The ref-
erence state energy, volume, and pressure appearing in Eq.(44) are
fixed by the experimental setup and have to be estimated separately
(see Sec. 4.4). Here we used conditions corresponding to a reference
mass density ρ0 =MD/v0 = 0.167 g/cm3 (MD being the deuterium
atomic mass), i. e., the value used in Refs. [180, 181, 199, 200]. We
decided to perform simulations in the temperature range between
4000 K and 35000 K, which includes the Hugoniot compressibility
maximum and roughly corresponds to the experimental measures
performed in the Z-facility [207] of Ref. [181]. Across these condi-
tions, deuterium goes from a molecular state at low compression,
to an atomic one at higher pressures. From a numerical perspective,
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this range of temperatures justifies treating the nuclei classically (thus
dropping the distinction between deuterium and hydrogen), as it has
been shown [200] that for T ⩾ 4000 K the effect of NQEs starts to
be negligible. Moreover, we verified that converged results can be
obtained with relatively small systems, given that we are far above
the critical temperature of both the proposed liquid-liquid and solid
transitions.

4.2 finite temperature electronic effects

The finite temperature effects on the high-pressure part of the
deuterium Hugoniot have been extensively studied at the DFT

level and led to the development of very accurate T -dependent
exchange-correlation functionals [78–80, 195, 208]. For the Hugoniot
calculation at temperatures above 10 kK, we again took advantage
of the ∆-learning technique to estimate the change in the PES due to
thermalized electrons. In particular, for a given configuration, we can
write the target QMC energy ET=THQMC at temperature TH as

ET=THQMC ≈ ET=THDFT +
(
ET=0QMC − ET=0DFT

)
, (45)

with the assumption that the difference between the values at T = TH
and T = 0 is the same for both methods. Notice that the term in paren-
thesis in Eq.(45) is exactly what has been learned by the model, which
in this way does not need to explicitly depend on temperature. The
resulting dynamics are thus performed by simply adding the correc-
tion to the finite-temperature DFT (FT-DFT) result at each step. Here
we used the zero temperature PBE functional for the simulations; even
if not rigorous, recent FT-DFT calculations of the Hugoniot have shown
that for T ≲ 40 kK this introduces a negligible error with respect to
a an explicitly temperature-dependent GGA functional [195]. There-
fore, in our application, temperature is taken into account through
the thermal occupation of the one-body DFT levels. At T = 10 kK and
T = 15 kK, we considered 120 bands in the calculation, while 150
bands were used for T = 20 kK and T = 35 kK.

We remark that this approach can also be applied when an MLP

trained on DFT is used as the baseline, in place of an ab initio calcu-
lation. Indeed, in this case, finite temperature effects can be directly
estimated from the DFT density of states [209].

4.3 results analysis

Fig. 8 shows the Hugoniot curves obtained with two MLPs, trained on
the VMC-PBE and LRDMC-PBE difference, respectively, together with
several experimental values for pressures below 150 GPa [168, 177,
178, 180, 181]. We also report the FT-DFT results we obtained with the
PBE functional [74] and the DFT points reported in Ref.[181] using the
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Figure 8: Principal Hugoniot in the density-pressure space. Blue and pink
triangles are DFT results obtained with the PBE functional by us,
and the VdW-DF1 functional computed in Ref. [181], respectively.
Black dots are the gas gun results from Ref. [168]. The Hugo-
niot points measured in recent experiments are indicated with di-
amonds of different colors, in particular yellow [180], cyan [181],
blue [177] (ρ0 = 0.173(1) g/cm3), water green [178] (ρ0 = 0.170(1)
g/cm3). CEIMC results of Ref. [199] and [200] based on VMC and
RMC are reported in purple and green squares. Red and orange
circles are the results obtained with our MLPs trained on VMC and
LRDMC datapoints, respectively, and a PBE baseline. The dashed
lines are guides for the eye.



4.3 results analysis 47

15

20

25

30

35

Sh
oc

k 
ve

lo
ci

ty
 U

s (
km

/s
) 

PBE
VdW-DF1
Nellis 1983
Knudson 2017
VMC
LRDMC

10 15 20 25
Particle velocity up (km/s)

0.0
0.5
1.0
1.5

U
s (

km
/s

)

Figure 9: [top panel] Hugoniot in the up–Us space. The black-dashed line is
the re-analyzed gas-gun fit reported in Ref. [181], i. e., the shock ve-
locity extrapolated from measures of molecular deuterium at lower
pressures [168]. [bottom panel] Relative shock velocity with re-
spect to the gas-gun fit. Only the experimental points of Refs. [181]
and [168] are reported. Symbols are the same as in Fig.8.
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VdW-DF1 [210, 211] functional. The CEIMC results of Ref. [199, 200],
at both the VMC and reptation Monte Carlo (RMC) level of theory, are
also shown for comparison. For T larger than 10 kK, our MD simu-
lations employed FT-DFT as previously described. Both the VMC and
LRDMC models give a very similar Hugoniot line, well reproducing
the experiments in the low density-low pressure region. With respect
to the most accurate experimental data of Ref. [181], our estimate of
the relative density ρ/ρ0 at the compressibility peak is ∼ 3− 4% larger,
still within the error bars. For larger pressures, we predict a Hugoniot
in agreement with the experiments but systematically more compress-
ible. However, in this regime, the correspondingly larger uncertain-
ties in the measures prevent a clear-cut assessment of our outcome.
Our results are compatible with the low-temperature CEIMC ones re-
ported in Ref. [200] within the statistical accuracy, while being signif-
icantly less compressible than older results [199]. As discussed later
in Sec. 4.5, the biggest discrepancy between our points and Ref.[200]
at T = 8000 K can be explained by the differences in the equation of
state between the two methods.

Fig. 9 displays the same points in the up − Us space, where up
is the particle velocity and Us is the shock velocity, the two being
calculated using the RH relations

up =

√
(p+ p0)(ρ

−1
0 − ρ−1),

Us = ρ
−1
0

√
p+ p0

ρ−10 − ρ−1
,

where ρ and ρ0 are the mass densities of the final and reference state.
The difference ∆Us between these points and the linear fit on the
gas-gun data re-analyzed in Ref. [181] is also shown (bottom panel
of Fig. 9). Notice that the drop in the slope of Us relative to up co-
incides with the onset of the molecular-atomic transition, while the
magnitude of the ∆Us minimum relates to the position of the relative
compression peak. In particular, the PBE Hugoniot curve manifests
a premature start of the dissociation, while it correctly predicts the
magnitude of the compressibility maximum. Our QMC results cor-
rectly predict the position of the peak and starting slope, while show-
ing some discrepancies for up ≳ 10 km/s with respect to the data of
Ref. [181]. In this regime, DFT, and in particular the result obtained
with the VdW-DF1 functional, seems to be in better agreement with
experiments, thanks to a favorable error cancellation in the Hugo-
niot [212].

Noticed again how, in our results, the discrepancy with the exper-
iments is much milder than the value reported by previous QMC cal-
culations at densities and pressures close to the compressibility peak
[199] (see Fig. 8). This could be due to the direct optimization of
the WF nodal surface used for the QMC calculations on the dataset
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(discussed in Sec.4.7), which reduces the fixed node error mentioned
in Ref. [212], the only approximation left in projective Monte Carlo
methods, such as LRDMC and RMC. We later argue (see Sec. 4.5) that
this discrepancy can be also due to a biased pressure estimate.

The molecular-atomic transition is further investigated in Fig. 10,
where we report the radial distribution function, g(r), calculated on
trajectories obtained with the LRDMC model for several temperatures
at densities close to the Hugoniot curve. The inset of Fig. 10 displays
the value of the molecular fraction m, defined as the percentage of
atoms that stay within a distance of 2 Bohr (roughly corresponding
to the first g(r) minimum after the molecular peak) from another par-
ticle for longer than a characteristic time, here set to 6 fs. The results
indicate a distinct atomic character for T ⩾ 10 kK and a clear molec-
ular peak at lower temperatures. The LRDMC model shows slower
decay of the molecular fraction with temperature than the PBE and
VdW-DF1 ones, being compatible with the latter for temperatures
above 10 kK.

4.4 reference state calculations

A crucial part of the numerical determination of the Hugoniot is to
estimate the reference state energy per atom, e0, and pressure, p0.
In particular, having a precise value of e0 within the target method
is important to take advantage of possible error cancellation effects
and remove biases related to finite basis sets. To estimate the refer-
ence state energy and pressure, we followed a procedure similar to
Ref. [200]. We performed a PIOUD simulation [150] (see Sec. 3.2) on
a system of N = 64 deuterium atoms at T0 = 22 K and ρ0 = 0.167
g/cm−3, in order to account for quantum effects, which are required
because of the light deuterium mass and low temperature. Forces and
energy were calculated with DFT through the Quantum Espresso

package [202–204]. We checked the dependence of thermodynamic
quantities on the number of replicas (or beads) M and on the choice
of the DFT functional, by studying the value of the (average) quantum
kinetic energy T for several values of M using the BLYP [213] and
PBE functionals. In particular, we considered two estimators for the
instantaneous value of T , namely the virial and primitive (or Barker)
estimators, given respectively by

TM,vir =
N

2β
+

1

2M

N∑
i=1

M∑
j=1

(
R(j)
i − Ri

)
· ∂V

∂R(j)
i

, (46)

TM,pri =
3NM

2β
−
mM

2β2 h2

N∑
i=1

M∑
j=1

(
R(j)
i − R(j−1)

i

)2
, (47)

where M is the number of replicas used in the PIOUD simulation,
R(j) =

(
R(j)
1 , . . . , R(j)

N

)
are the coordinates of the system belonging
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LRDMC

Figure 10: g(r) for several temperatures and densities close to the princi-
pal Hugoniot, obtained using the LRDMC model. The molecular
fraction value, m, is reported in the inset for each value of tem-
perature up to 15kK. On the top axis, the corresponding pressure
at the Hugoniot is also shown. The values obtained with AIMD

using the PBE and VdW-DF1 functionals are reported for compar-
ison at the same temperatures (notice that a pressure and density
mismatch between methods can be present in this case due to dif-
ferent equations of state). Figure from [41].
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to the j-th bead, Ri = 1
M

∑M
j=1R(j)

i is the centroid position and
β = kBT0. The results are shown in Fig. 11. We notice that a very large
number of replicas is necessary for having a sufficiently converged re-
sult, while the value obtained with the PBE and BLYP functionals is
extremely similar for all values of P. In the end, we chose to use the
PBE functional and P = 128 replicas to have a reasonable trade-off be-
tween convergence and computational cost. For the DFT calculations,
we used a 60 Ry plane waves cutoff and a 2× 2× 2 Monkhorst-Pack
k-point mesh. For the dynamics, we used a time step of 0.3 fs and let
the system thermalize for 0.3 ps. We then extracted one configuration
from a randomly chosen bead every 10 MD steps, for a total of 170
snapshots. Finally, the potential energy of these configurations was
calculated using the appropriate method (PBE, VMC, or LRDMC). We
then estimated e0 for each method as

e0 =
1

N

(
⟨Epot⟩sample + T

PBE
256,pri

)
, (48)

using the value of the primitive estimator at M = 256 beads as the
best guess for the converged value of the kinetic energy. The approx-
imation for the potential energy has been checked by running PBE

ab initio simulations on this set and confirming that the "true" mean
value (as calculated by averaging over the beads and the trajectory)
is consistent with our model estimate obtained by averaging over the
sample. Results for e0 for the various methods are reported in Tab. 3.
The reference state pressure p0 is not reported, since it is two orders
of magnitude smaller than the shocked pressure, and thus irrelevant
for the Hugoniot determination.

Finally, we studied the effect of varying e0 within its confidence
interval on the Hugoniot density and pressure. In doing so, we also
took into account the possible uncertainty on the energy difference
e(v, T) − e0 originating from the finite batch size we used for estimat-
ing energy gradients in the WF optimization. We estimated this un-
certainty by running optimizations of increasing batch size on three
different 128-atom configurations. The results indicate an error < 0.4
mHa/atom on e(v, T) − e0. Taking everything into account, varying
the energy within a standard deviation leads to shifts in the final prin-
cipal Hugoniot which are smaller than the uncertainty produced by
the MLPs, later estimated in Sec. 4.8.

4.5 comparison with previous qmc calculations

The EOSs at T = 8 kK obtained with our MLPs trained on VMC and
LRDMC data, together with the ones reported in Ref. [200] for both
VMC and RMC, and those computed within DFT using the PBE and
vdW-DF1 functionals are shown in Fig. 12. The differences between
the methods are here more apparent than in the Hugoniot curve,
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epot (Ha/atom) e0 (Ha/atom)

PBE −0.58217(2) −0.58055(2)

VMC −0.58622(2) −0.58460(2)

LRDMC −0.58660(2) −0.58498(2)

VMC + FSC −0.58503(2) −0.58342(2)

LRDMC + FSC −0.58542(2) −0.58380(2)

RMC (Ref. [200]) −0.58570(6) −0.58385(6)

Table 3: Estimated potential (epot) and total (e0) energies per atom of the
reference state at ρ0 = 0.167 g/cm3 and T0 = 22 K for different
methods, with and without finite-size corrections (FSC). RMC results
(with FSC) from Ref. [200] are also reported.
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Figure 11: Convergence of virial and primitive estimators for the quantum
kinetic energy, as computed with Eqs. (46) and (47), respectively,
as a function of the number of replicas (beads) used in the PIOUD

simulations.
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where error cancellation occurs [212], and it is the known cause of
the robustness of the DFT Hugoniot against the choice of the func-
tional. Indeed, from Fig. 12 we can observe a ∼ 10% difference in the
pressure between the VdW-DF1 and PBE functional, even though the
Hugoniot coordinates (ρ∗/ρ0,p∗) predicted by the two methods only
differs by a few percent.

By comparing our results with the QMC data reported in Ref. [200]
we found an excellent agreement in the value of the energy per atom.
In particular, notice how our LRDMC reference energy e0, including
finite-size corrections (FSC), is perfectly compatible with their RMC

value (also including FSC), as shown in Tab. 3. However, both the
VMC and the LRDMC MLPs consistently predict a larger pressure than
the one in Ref. [200] by ∼ 4 GPa, which causes the slightly differ-
ent compression found at T = 8 kK. By shifting the data reported in
Ref. [200] by this amount, we can see an almost perfect match of the
Hugoniot positions (Fig. 13). The origin of this residual discrepancy
might be found in the different methods used to estimate pressure in
the two QMC frameworks. In our case, the VMC and LRDMC pressures,
which we used for training the two models, were calculated using the
adjoint algorithmic differentiation to obtain directly the derivative of
the total energy with respect to the cell parameters. In Ref. [200] a
virial estimator was used, which can in principle produce discrepan-
cies of the order of magnitude observed here, as shown in Ref. [212].
We also point out that both our models and the vdW-DF1 functional
predict pressures slightly larger than those given by the PBE in the
proximity of the Hugoniot position, in contrast with the EOS reported
in Ref. [200], which predicts lower pressures. Although the QMC pres-
sures are consistently lower than PBE ones on a given configuration,
here we found that the MD simulations driven by our MLPs sometimes
yield larger average pressures. This owes to the fact that different dy-
namics sample different distributions in the phase space. To demon-
strate this, we extracted two samples of configurations from an ab ini-
tio PBE and a LRDMC-MLP trajectory, respectively, and then computed
both PBE pressures and MLPs corrections (corresponding to the differ-
ence between LRDMC and PBE). The results shown in Tab. 4 demon-
strate how the increased PBE pressures for the LRDMC-sampled trajec-
tory can compensate, or overtake, the negative contribution given by
the MLP correction.

4.6 mlps dataset construction

The construction of the dataset used in Ref. [41] followed the active
learning scheme described previously. We first performed a first set
of AIMD simulations with the PBE functional on a system of N = 128

atoms for temperatures in the [4kK: 20kK] range and Wigner-Seitz
radii rs (with 4π

3 r
3
sa
3
0 = v) in the [1.80, 2.12] range, from which we
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Figure 12: Equation of state close to the Hugoniot position at T = 8000 K,
as obtained by different methods: DFT results obtained by our
simulations with the PBE and VdW-DF1 functional (blue and pink
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the corresponding density (light blue line).
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Virial pressure (GPa) PBE sample LRDMC sample

PBE 14.6(4) 17.7(4)

LRDMC 11.1(4) 14.5(5)

MLP ∆-correction −3.57(4) −3.17(4)

Table 4: Average value of the virial pressure calculated by DFT-PBE and by the
LRDMC-MLP, on sampled trajectories obtained using the two meth-
ods, at thermodynamic conditions rs = 1.92 and T = 8000 K. The ∆
correction is also reported.

extracted a set of uncorrelated snapshots. New configurations were
added to this initial dataset by monitoring, for each unseen configu-
ration, the quantity

χ =
1

N

N∑
i=1

max
µ∈train set

K(Ri,Rµ).

The number χ gives a quantitative measure of "how close" the un-
known configuration is to what is already included in the training set.
In particular, we stopped adding new data points when χ exceeded a
fixed threshold of 0.80 during the dynamics. The final dataset, from
which we extracted both the training and the test set, comprised 561
configurations of 128 atoms in total. The final range of temperatures
and Wigner-Seitz radii rs spanned by these configurations was [4 kK,
20 kK] and [1.80, 2.12], respectively. Their distribution in the rs − T
space is shown in Fig. 14.

4.7 qmc calculations details

For the thermodynamic conditions relevant to the deuterium Hugo-
niot, the self-consistency error in the QMC forces calculation can have
a huge impact (see Ch. 2 and Ch. 5) and thus has to be mitigated.
In Ref. [41] we adopted an alternative strategy to the one described
in Sec.2.3.1, based on an explicit optimization of the antisymmetric
part of the wave function. In this way not only the bias of forces
and pressure is reduced, but, in principle, also the overall accuracy
of these quantities is improved. Here we will describe the details of
the QMC calculations performed on both the dataset used for model
training and validation, and the sample used to estimate the refer-
ence state energy e0. For the simulations, the JAGP WF was used,
with basis sets of [4s2p1d] and [2s2p1d] GTOs for the antisymmetric
part and Jastrow part, respectively. The Gaussian orbital exponents
were optimized beforehand for our particular system and thermody-
namic conditions. The optimal exponents do not vary significantly in
the density and temperature range explored and thus we fixed their
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Figure 14: Distribution in the T − rs space for the dataset used for training
and testing of the Hugoniot MLP. For each temperature and rs the
corresponding number of 128 H atoms configurations extracted
from MD at those conditions is reported. The histograms at the top
and right side represent the distribution in T and rs, respectively.
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value for all the configurations in the dataset. The final basis set em-
ployed is reported in Appendix A. The number of variational parame-
ters in the antisymmetric part was further reduced thanks to geminal
embedded orbitals (GEOs) [97]. In particular, the WF was first initial-
ized with the built-in DFT code of the TurboRVB package at the Γ
point and then projected into a basis of 6 GEOs ϕ̃a,l(x) for each atom
a. Notice that using this basis is essential to perform a reliable WF

optimization, which would be unfeasible otherwise for the exceed-
ingly large number of parameters (∼ 106 without GEOs). The WF in
the new basis was initialized by running a DFT calculation with the
LDA functional and twisted boundary conditions at the Baldereschi
point [214] k = (0.25, 0.25, 0.25) (in crystal units). Both the Jastrow
factor and the antisymmetric part of the WF were optimized using
the LM. Among the variational parameters λ{a,l},{b,m} in Eq.(15), we
only optimized those corresponding to atom pairs closer than a cut-
off rc = 4.0 Bohr. For a stable optimization, we also projected the AGP

into N/2 molecular orbitals at each step, such that the resulting op-
timized WF is an opt-JSD. The details of the constrained optimization
technique are written in Ref. [36]. Finally, total energies and forces
were calculated at the VMC and the LRDMC levels with the optimized
wavefunctions. The LRDMC calculations were performed with a lat-
tice size a = 0.20 Bohr, which is sufficient to obtain converged results.
The improvement of this optimized WF with respect to a standard
JSD (with uncontracted orbitals) can be appreciated by comparing the
VMC energy per atom on the dataset configurations, which is shown
in Fig.15. Notice how the energy of our opt-JSD WF is always lower or
at most equal to the one obtained with the JSD, despite the use of the
GEOs. For VMC forces and pressures a recently proposed regulariza-
tion was used [215] while LRDMC quantities were estimated with the
Reynolds [103] mixed average. Finite-size corrections (FSC) were esti-
mated using the Kwee-Zhang-Krakauer (KZK) DFT functional [216].
We verified that these corrections have a very small effect on the
Hugoniot position (see Sec. 4.8) and we thus applied them only to
the LRDMC quantities. For a given ionic configuration, the final sta-
tistical noise on energies, forces and pressures was of the order of
7× 10−6 Ha/atom, 1× 10−3 Ha/Bohr and 0.05 GPa, for VMC, and
2× 10−5 Ha/atom, 2× 10−3 Ha/Bohr and 0.1 GPa, for LRDMC.

4.8 mlp training and validation

We trained four MLPs on the Hugoniot dataset, of which two were
used to obtain the Hugoniot curve [41] and two were used for testing.
The target method and DFT baseline used for each model, together
with their RMSE on the test set are reported in Tab. 5. For these models,
Eq.(36) was modified by including both a constant energy shift and
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Figure 15: Difference between the VMC energies per atoms on the Hugoniot
dataset as obtained using the JSD ansatz (with uncontracted or-
bitals) and our opt-JSD, respectively, plotted as a function of the
opt-JSD energies. The optimization of the nodal surface results in
an energy gain most of the time, being at least compatible within
three sigmas with the JSD energy.

a pairwise potential inspired by Ref.[217], which is expressed as a
linear combination of spline functions Bν(r):

e (Ri; {β}, {α}, δ) =
Nenv∑
µ=1

βµK (Ri,Rµ) +
∑
j̸=i

Nspline∑
ν=1

αvBν
(∣∣Rij∣∣)+ δ,

where the pairwise term is defined on a grid of points extending
from rmin to rmax. Since the local atomic energy e is still linear in all
the variational weights {β}, {α}, and δ, the training procedure can be
performed in the same way. In particular:

• the cutoff radius for the kernel function has been set to rc =

4.0 Bohr, while in Eqs.(37)-(39)-(40) we used 2σ2 = 1.5 Bohr2

and n = η = 2;

• for the pairwise potential, we used Nspline = 11 spline functions
defined on a grid of 10 equally spaced points between rmin =

0.3 Bohr and rmax = 5.5 Bohr;

• the loss function weightswE,wF andwP in Eq.(34) have been set
to 20× 1282, 10× 3× 128, 107 and 20× 1282, 10× 3× 128, 2× 107
(in the appropriate inverse atomic units) for the VMC and LRDMC

models respectively;

• a regularization of 10−5 was used to solve Eq.(41);
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RMSE

E (mHa/atom) F (mHa/Bohr) P (GPa)

VMC - PBE 0.26 4.9 0.76

LRDMC (+ FSC) - PBE 0.36 5.5 0.72

VMC (+ FSC) - PBE 0.29 5.1 1.1

VMC - LDA 0.35 5.5 0.80

Table 5: Value of the RMSE on different observables as calculated on the test
set for the four MLPs trained on the Hugoniot dataset. Model names
are in the "target-baseline" format. The first two MLPs were used to
obtain the Hugoniot curves in Figs.8 and 9.

• the models were trained on a sparsified dataset containing
6000 local environments taken from ∼ 500 configurations of 128
atoms.

To further validate the accuracy of our MLPs, we studied the vari-
ance of the results obtained with models trained on the same target,
but using different DFT baselines. The Hugoniot function H(rs, T) and
pressure at T = 8 kK, calculated using MLPs trained on the difference
between VMC and two DFT functionals (i.e., PBE and LDA), are shown
in Fig.16. The resulting curve shows a small dependence on the base-
line used; in particular, the VMC-LDA model predicts a H(rs, T) shifted
of ∼ 1 − 2 mHa / atom with respect to the one obtained with the
VMC-PBE potential. This seems to be due to a different value for the
average energy per atom, as the pressure predicted by the two MLPs

is more consistent. Considering both this source of uncertainty and
the prediction error of the models (reported in Tab.5), we can assign
an absolute error-bar of ∆ρ ∼ 0.08 and ∆P ∼ 1 GPa to the Hugoniot
coordinates predicted by our models, which is reflected by the error-
bars in Figs. 8 and 9. These values are obtained by varying the energy
per atom and pressure inside their confidence interval and comput-
ing the corresponding Hugoniot variation for each temperature, as
shown in Fig.17.

We also compared the results of MLPs trained on VMC with and
without finite size corrections, with a PBE baseline. The Hugoniot
functions at three different temperatures are shown in Fig.18. From
this, we can observe that FSC have a small effect on the resulting Hugo-
niot, at least for the cell sizes considered here. Therefore, we decided
to apply them only to the LRDMC dataset.
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Figure 16: Effect of different baselines in the ∆-learning approach on the
deuterium Hugoniot and pressure at T = 8000 K. In this case, we
compared two models trained on the difference between VMC and
two DFT baselines, using the PBE and LDA exchange-correlation
functionals.
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Figure 17: Variation of the Hugoniot function at T = 8000 K, as e(rs, T)
and P(rs, T) are moved within their confidence interval (given by
∆e = ±0.5 mHa/atom and ∆P = ±0.8 GPa). The intersection of
the red shaded area with the y = 0 axis (left panel) gives the un-
certainty on the Hugoniot positions r∗s (represented by the star
symbol), which in turn is reflected on the Hugoniot pressure p∗

(right panel). Notice that the effect on the Hugoniot pressure is
reduced because of error cancellations in Eq.(44). The Hugoniot
in the figure was obtained with the VMC-MLP and a DFT-PBE base-
line.
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Figure 18: Comparison of the Hugoniot curve obtained with two models
trained on VMC reference data points, with and without finite
size corrections for T = 4000 K, 8000 K, and 35000 K. The FSC

were estimated by adding to energies, forces, and pressures the
difference between the values obtained with the LDA functional
and those calculated with the KZK functional [216] at the corre-
sponding size (N = 128 in our case).
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4.9 wrap-up

In this Chapter, we studied the deuterium Hugoniot curve, using
MLPs trained on QMC data points, constructed using a combination
of the ∆-learning approach and KRR. We employed an opt-JSD WF, for
which we optimized both the Jastrow factor and the antisymmetric
part. This not only increases the accuracy of the results, but also cures
the self-consistency error discussed in Ch. 2. In our Hugoniot deter-
mination, we again exploited the ∆-learning approach and utilized a
FT-DFT baseline to approximate the effect of finite temperature elec-
trons, which are relevant for temperatures above T = 10000 K. Both
our models, trained on VMC and LRDMC reference calculations, re-
spectively, give results that are in good agreement with recent experi-
ments [181] and previous QMC calculations [200]. The slightly higher
compressibility of our Hugoniot curve with respect to the experimen-
tal data at higher temperatures can stimulate further investigations
on this part of the phase diagram.



5
B I A S C O R R E C T I O N I N T H E H U G O N I O T D ATA S E T

The possibility to construct accurate machine learning potentials cru-
cially depends on the availability of extended datasets. Techniques
such as ∆-learning can be used to reduce the number of necessary
configurations and obtain reliable models even with relatively small
training sets. However, the generation of thousands of configurations
within expensive electronic structure methods, such as VMC, is still
a formidable task, usually requiring large computational resources.
The efficiency of VMC is largely due to the complexity of the WF em-
ployed in the calculations. One of the simplest WFs is the JSD, where
only the Jastrow factor is optimized and the SD part is taken directly
from DFT calculations (see Sec. 2.2.3). Ideally, the JSD is an appealing
candidate for VMC-based machine learning application, providing an
excellent tradeoff between accuracy and computational cost. Indeed,
the Jastrow optimization is much less demanding than the "full" op-
timization involving also the determinant. However, as discussed in
Sec. 2.3, forces and pressure computed with the JSD WF can have a
bias due to the self-consistency error. Machine learning potentials are
by definition consistent, given that energy derivatives are obtained us-
ing Eq. (35), but a biased training set can nevertheless spoil the final
accuracy of the model. A solution would be to use only the energies
for the training; this approach is often impractical because it usu-
ally increases by orders of magnitude the number of configurations
necessary to reach a given accuracy. As shown in Sec. 2.3, the self-
consistency error can be removed by applying a suitable correction,
adding a relatively cheap computational overhead. The objective of
this Chapter is to demonstrate how this technique can be employed
to generate unbiased datasets with a JSD WF and also to compare
their quality with more refined ones obtained from a fully optimized
ansatz (opt-JSD). In particular, we will apply this approach to a subset
of the configurations we used in Ch. 4 to train the MLPs for studying
the Hugoniot curve. The calculation of the bias correction on the en-
tire dataset is currently ongoing and will be the topic of future work.

The self-consistency error for the Hugoniot configurations will be
analyzed in Sec. 5.1. A comparison between MLPs trained on datasets
with and without bias corrections and on datasets employing an
opt-JSD WF, taken as reference, is reported in Sec. 5.2. Finally, we
summarize the contents of this Chapter in Sec. 5.3.

63
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5.1 self-consistency error for the hugoniot configu-
rations

We will start our discussion by assessing the entity of the self-
consistency error in the Hugoniot dataset. To do this, we used a JSD

WF with a basis set of [4s2p1d] and [2s2p1d] GTOs for the antisym-
metric part and Jastrow, respectively, the same employed in Ch. 4. We
initialized the Slater determinant by running a DFT calculation with
the LDA functional at the Baldereschi point. Contrary to what we did
previously (see Sec. 4.7) here we did not use GEOs and utilized the
full primitive basis. Finally, the Jastrow part was optimized using
the SR method. We dub the dataset obtained in this way as the
"unoptimized" dataset, to distinguish it from the "optimized" one
employed in Sec. 4.1 and discussed in Sec. 4.7. The latter employs
the opt-JSD, where both the nodal surface and the Jastrow factor are
optimized.

We assessed the consistency of the JSD forces and pressures by cal-
culating FVMC

i and PVMC via the combination of two approaches: (i)
using Eq.(25) (along with the analogous expression for pressure) and
(ii) applying the finite-differences method (FDM) by fitting the PES.
The results are shown in Fig. 19 for one of the force components and
the virial pressure.

We can observe a significant bias for both quantities, with a dis-
crepancy ∼ 10% of their value. This clearly highlights the importance
of curing the self-consistency error for the unoptimized dataset. For
this reason, we applied the correction of Eq. (26) to both forces and
pressures. For forces, we computed the numerical derivatives of the

parameters dλ
R
µ,ν
dR with the FDM (i. e., using Eq. (27)), with a displace-

ment ∆Rui = ±0.003 Å. The derivatives with respect to the volume,
entering in the pressure correction, were obtained with the FDM us-
ing relative volume variations of ±0.1%. In Fig. 19 we can observe that
the corrected forces and pressure are perfectly compatible with their
values computed with the FDM. Fig. 20 shows the values of both the
biased and corrected forces components (pressures) versus the forces
(pressures) estimated from the PES, for several configurations. Notice
how the pressure correction acts almost like a rigid shift of ∼ 1 GPa.
The root mean squared error (RMSE) between biased and corrected
quantities is also shown, further demonstrating the effectiveness of
the correction in removing the self-consistency error.

5.2 mlps with corrected training sets

In this Section, we will present some preliminary results illustrating
how the correction can be applied to generate an unbiased JSD dataset
for constructing MLPs. We selected 245 among the 561 configurations
used for training the model in Ch. 4 and applied the correction as
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Figure 19: (Top panel) Comparison between the biased force evaluated with
Eq. (25) (red diamonds), the numerical force calculated by fitting
the PES (dashed green line and green diamond), and the corrected
force obtained by applying Eq. (26) (violet square). The PES of the
system along the atomic displacement is also shown (green dots
and dash-dotted line). (Bottom panel) Comparison between the
biased pressure (red diamonds), the numerical pressure obtained
by fitting the PES (dashed green line and green diamond), and the
corrected pressure (violet square). The PES of the system is also
shown (green dots and dash-dotted line). The calculations have
been performed on a system of 128 atoms.
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Figure 20: (Top panel) Values of the biased (red markers) and corrected (vi-
olet markers) force components as a function of the numerical
force estimated by the PES. The dashed line indicates perfect con-
sistency. (Bottom panel) Value of the biased (red markers) and cor-
rected (violet markers) pressure for 6 different 128-atom config-
urations as a function of the numerical pressure estimated from
the derivative of the PES with respect to the volume.
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Figure 21: Distribution of the standard deviations for the corrected forces.
The vertical line indicates the 3σ threshold chosen in our applica-
tion.

previously described. We noticed that for some force components and
pressures, the correction is sometimes accompanied by a large error
bar. We identified the cause of this phenomenon in our current imple-
mentation, which estimates the parameters derivatives with the FDM

by running several DFT calculations (see Eq. (27)) for the displaced
coordinates. When using a localized basis in DFT, a cutoff is nor-
mally employed to reduce the redundancy of the basis set, by cutting
elements corresponding to eigenvalues of the overlap matrix [129]
smaller than the cutoff. When the ions are displaced, the removed
elements change, thus introducing a dependence of the basis on the
atomic displacement within the FDM. In the future, we plan to replace
this part with more reliable and faster approaches (e. g., using linear
response theory [118]). To deal with these erratic components, for
the forces we kept the biased value whenever the standard deviation
was above a given threshold, here set to 0.015 Ha/Bohr. As shown in
Fig. 21, this corresponds to a "minimum" in the standard deviation
distribution for the corrected forces, which we can interpret as the
onset of the deviation from normality. For pressure, a similar strategy
was applied. In this case, since the correction is nearly constant for all
the configurations, whenever the noise was larger than 3× 10−5 a.u.,
we shifted the biased value by the average correction ∆p ≈ 1 GPa.

The "corrected" dataset was used to train MLPs using KRR and the
∆-learning approach with a DFT PBE baseline potential. The hyperpa-
rameters of these models are equal to the ones described in Sec. 4.8.
Among the 245 configurations of the dataset, we selected 45 configu-
rations for testing. We investigated the effect of varying the training
weights in the loss function (Eq. (34)) on the RMSE computed on the
test set for energy, forces, and pressure. To assess the effect of the cor-
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rection on the models’ performance, we also trained MLPs using the
biased "unoptimized" dataset and the "optimized" one introduced in
Ch. 4, based on the JSD and opt-JSD WFs, respectively. Also in this case,
only 245 configurations (split into training and test set) were consid-
ered for consistency.

When training with different target methods, the value of the
RMSE may not be the best metric to assess the relative accuracy of a
model with respect to the others. To do this we defined the relative
improvement of the model for each system property (X = E, F,P) as:

∆X =
RMSE(Xtest −Xpred) − RMSE(Xtest −Xdummy)

RMSE(Xtest −Xdummy)
, (49)

where Edummy = 1
Ntest

∑
i∈test Ei, Fdummy = 0, and Pdummy = 0.

In other words, ∆X measures the relative improvement of the model
prediction on the quantity X, with respect to a "dummy" model, cor-
responding to a perfectly flat PES equal to the average energy on the
test set for all configurations. Notice how ∆X = −1 indicates that
the model has learned exactly the quantity X, while a value ∆X ⩾ 0

means that the model has an error equal to, or larger than, a flat
model.

Figs. 22 and 23 show the results obtained for ∆E, ∆F and ∆P us-
ing MLPs trained with different values of the training weights wE,
wF, and wP. We can first analyze what happens by progressively in-
creasing the weight on the forces for the different models without
explicitly training on pressures (i. e.,wP = 0). The force bias in the un-
optimized dataset is evident from the larger ∆F of the corresponding
model compared to that of both the optimized and corrected datasets
(see Fig. 22b). Notice how, for small values of wF/wE, ∆F is positive
in the unoptimized case, which in the ∆-lerning framework means
that the correction on forces is detrimental. As the weight on forces
is increased, all models reach a plateau in ∆F, while simultaneously
losing some accuracy on the other quantities. For the energy, this loss
of accuracy is significantly larger in the models trained on the un-
optimized dataset, further demonstrating the effect of the bias. We
observed very similar performances between the optimized and cor-
rected models. For pressure, the models including bias corrections
show the best performances, presenting a minimum atwF/wE ∼ 10−2.
Since the loss does not include the pressure in this case, this is another
indication of consistency. Fig. 23 shows the results obtained by vary-
ing the weight on pressure, keeping wE = 1 and wF = 3/128 fixed.
Remarkably, for the corrected model, including the pressure in the
training step does not significantly improve ∆p. This suggests that
the information from energy and consistent forces alone is sufficient
to "reconstruct" the relative virial pressure.

Finally, we ran MD simulation at densities and temperatures corre-
sponding to the Hugoniot curve position using a MLP trained on the
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Figure 22: Relative RMSE variation ∆X (defined in the text) for (a) energy,
(b) forces, and (c) pressure, as a function of the force/energy
weight ratio in the loss function used for training (expressed in
the appropriate inverse atomic units). All datasets (optimized, un-
optimized, and corrected) comprise 245 configurations with 128
atoms each, 200 of which are used for training. The weight on the
pressure was set to zero.
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Figure 23: ∆X (defined in the text) for (a) energy, (b) forces, and (c) pres-
sure, as a function of the pressure/energy weight ratio in the loss
function used for training (expressed in the appropriate inverse
atomic units), for the different models. All datasets (optimized,
unoptimized, and corrected) comprise 245 configurations with
128 atoms each, 200 of which are used for training. The weight
on energy and forces was set to 1 and 3/128, respectively.
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Popt (GPa) Punopt (GPa) Pcorr (GPa)

rs = 2.16, T = 4000 K 17.5(1) 16.2(1) 16.7(1)

rs = 2.02, T = 6000 K 28.9(2) 25.6(2) 27.5(2)

rs = 1.92, T = 8000 K 40.2(2) 37.4(2) 39.1(3)

Table 6: Average pressure from MD simulations obtained with different
MLPs trained on the (full) optimized dataset, the (full) unoptimized
dataset, and a corrected dataset containing 200 configurations. All
models employ the ∆-learning technique with a DFT-PBE baseline.

corrected dataset. For this model, the loss weights were set to wE = 1,
wF = 3/128 and wP = 106/1282, based on the previous analysis. We
compared the results with those of Ch. 4 and those obtained using
the biased JSD dataset. For these simulations, both the optimized and
unoptimized models were trained on the full dataset described in
Sec. 4.6. Moreover, for each model, we selected the training weights
to have a good tradeoff between the RMSE values on energy, forces,
and pressure. A comparison of the equilibrium pressure during the
dynamics for three different temperatures is reported in Tab. 6. No-
tice that, in principle, the optimized dataset and the corrected one
will give different results. Indeed, the optimization of the antisym-
metric part of the WF not only improves the consistency of forces and
pressure, but also modifies the PES of the system. In fact, as already
shown in Fig. 15 the energy significantly changes with the optimiza-
tion. Nevertheless, if compared with the unoptimized model, the MLP

trained on the corrected data gives results that are consistently closer
to the optimized ones. This suggests that, with the bias correction,
the physical description of the system improves considerably. Simi-
lar conclusions can be reached by looking at the radial distribution
function g(r) (Fig. 24). In particular, the g(r) of the corrected model
displays a better agreement with the one obtained in Ref. [41] using
the optimized model.

5.3 wrap-up

In this Chapter, we analyzed the impact of the self-consistency error
(described in Sec. 2.3) on the construction of QMC-based MLPs. We
compared the relative accuracy and physical predictions of several
models, all trained on configurations extracted from the Hugoniot
dataset (introduced in Ch. 4) but with energy, forces, and pressures
computed with three different approaches. In particular, we consid-
ered:

1. an "unoptimized" dataset, using a JSD WF with forces and pres-
sures evaluated with the standard VMC formula (e. g., Eq. (25));
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Figure 24: Radial distribution function g(r) for densities and temperatures
close to the Hugoniot position, obtained with MLPs trained on dif-
ferent datasets. The difference ∆g(r) with respect to the model
trained on the optimized dataset is also shown for both the "un-
optimized" and "corrected" models. The shaded area indicates the
uncertainty in ∆g(r).
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2. an "optimized" dataset, employing the opt-JSD WF described in
Sec. 4.7, where the WF nodal surface is optimized to reduce the
self-consistency error;

3. a "corrected" dataset, utilizing a JSD WF where both forces and
pressure are corrected using the additional term introduced in
Sec. 2.3.1 (see also Eq. (26)).

The comparison highlights the detrimental effect of the self-
consistency error, which is manifested by a large dependence on the
training weights in the loss function for the MLPs using the unopti-
mized dataset. On the contrary, the models trained on the corrected
dataset show performances comparable to, if not better than, the
"optimized" ones, as far as the consistency between energy and
forces/pressure components is concerned. The stark improvement
brought by the correction is also apparent when we compare results
for average thermodynamic quantities obtained from MD, such as the
pressure and radial distribution function. Taking the results yielded
by the opt-JSD datasets as a reference demonstrates that the correction
also improves the physical description of the system. This opens the
possibility of using JSD datasets for ML applications, which are much
cheaper to generate compared to ones employing fully optimized
WFs.





6
L I Q U I D L I Q U I D P H A S E T R A N S I T I O N I N H I G H
P R E S S U R E H Y D R O G E N

While the realization of metallic solid hydrogen is still highly de-
bated [27], a broader consensus exists regarding the transition from a
molecular insulating state to a metallic atomic one in the liquid part
of the phase diagram. This liquid-liquid phase transition (LLPT) has
been extensively studied experimentally [218–228] and by means of
numerical simulations [64, 65, 68, 69, 113, 145, 191, 192, 229–242] given
its relevance for planetary science, in particular for understanding the
interior of giant gas planets [243] and their magnetic fields [244].

As is often the case for hydrogen, experiments based on static and
dynamic compression give contrasting results, with the latter predict-
ing a larger transition pressure. Moreover, a definitive experimental
answer on the order of the LLPT is currently missing. A similar uncer-
tainty is also present in the numerical simulations. Results obtained
with AIMD using DFT show a large variability with respect to the
choice of the exchange-correlation functional. For example, the tran-
sition pressure can vary by 200 GPa when including long-range Van
der Walls corrections [245]. The characterization of the LLPT is also
a very debated topic, with many first-principles simulations results
suggesting a "weak" first-order character [65, 68, 69, 229, 232, 238]
based on the observation of "kinks" in the EOS below a critical tem-
perature Tc in the 1500-2000 K range. Given the large autocorrelation
time expected near the transition, the results obtained with DFT or
QMC have been questioned because of their short time-scale covered
and/or the small size of the systems considered. In particular, recent
large-scale simulations with a DFT MLP [64] have suggested that the
LLPT is a smooth crossover, even though the accuracy of the model
has been criticized [65, 66].

In this Chapter, we will present results obtained with two different
MLPs, applied to study the LLPT. In Sec. 6.1 we will discuss a KRR

model trained on VMC reference data. Details about the dataset con-
struction and model training will be presented in Sec. 6.1.1, followed
by a discussion of the results for the LLPT (Sec. 6.1.2).

In Sec. 6.2 we will consider a new MLP obtained with MACE and
trained on DFT data. Sec. 6.2.1 describes the dataset used to train the
model, with the focus on a modified loss function we employed to
improve the description of the molecular phase. In Sec. 6.2.2 we will
study the order of the LLPT as a function of both temperature and
system size. Results for the Widom line will be shown in Sec. 6.2.3.
Finally, in Sec. 6.2.4 we report a comparison between structural quan-

75
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tities obtained with the MACE MLP and AIMD, in order to validate our
results. Sec. 6.3 contains a summary of the contents of this Chapter.

6.1 vmc-based mlp for the llpt

As discussed previously, the location of the hydrogen LLPT strongly
depends on the underlying approximations of the simulation method,
e. g., in DFT, on the choice of the exchange-correlation functional.
Therefore, if one wants to obtain quantitatively accurate predictions
for this transition, more advanced methods, such as QMC, must be em-
ployed. Similarly to what we did in Chap.4, here we will show how
the techniques described in Sec.3.4 can be applied to train models
on QMC data, allowing for QMC-quality simulations at more tractable
AIMD cost. This application was originally published in Ref. [39].

6.1.1 KRR model dataset and training

We used the ∆-learning approach to construct a KRR model trained
on the difference between VMC and DFT reference calculations.

Our initial dataset comprised 510 liquid configurations with 128

atoms each, extracted from the dataset of Ref. [64] containing dy-
namic snapshots from PBE-MD simulations at T ranging from 800 K
to 1500 K, and with 1.26 ⩽ rs ⩽ 1.60. In particular, we selected con-
figurations to have the same rs distribution as the one of the original
dataset. We then added another set of configurations according to the
active learning scheme described in Sec. 4.6, for a total of 684 data
points. We then split the dataset into training and test sets, and "spar-
sified" the former using the local FPS method described in Sec.3.4.3.

DFT energies, forces, and pressures were calculated using the Quan-
tum Espresso package [202–204] with the PBE exchange-correlation
functional [75]. We employed a PAW pseudopotential [205] with a
plane wave cut-off of 60 Ry, and a 4× 4× 4 Monkhorst-Pack k-points
grid.

For the VMC reference calculations, we used a JSD WF with a [3s] ba-
sis set for both the Jastrow and antisymmetric parts (see Appendix A).
The Jastrow factor was optimized with the SR method for 500 energy
minimization steps. To minimize size effects we used twisted aver-
age boundary conditions on a 4× 4× 4 Monkhorst-Pack mesh of the
Brillouin zone.

The final KRR model was trained using a cutoff rc = 3.5 Bohr and
hyperparameters 2σ2 = 0.5 Bohr2, n = η = 2 (see Eqs. (37)-(39)-
(40)). The weights for training in Eq.(34) were wE = 0.1× 1282, wF =
3× 128, and wP = 102 (in the appropriate inverse atomic units). For
further details on the model performances, see Appendix B.
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(a) (b)

Figure 25: (a) Equation of state of hydrogen at different values of the tem-
perature T , as obtained by our VMC-MLP for a system of N = 256

atoms. The dashed lines at each T indicate the estimated transi-
tion pressure. (b) Value of the molecular fraction (defined in the
main text) as a function of rs, for each temperature.

6.1.2 LLPT results analysis

We performed classical NVT simulations for several values of the den-
sity and temperatures between 1000 K and 1500 K on two systems of
N = 128 and N = 256 H atoms, respectively. At each MD step, we
first computed DFT-PBE forces for the given configuration and then
summed the correction given by the MLP. We used a time step of 10
atomic units (i.e. 0.242 fs) and controlled the temperature using ei-
ther second-order Langevin dynamics [206] or the stochastic velocity
rescaling method [136]. For each density-temperature point, we ran
trajectories of length between 2 ps and 10 ps, over which we averaged
the thermodynamic quantities of interest.

The resulting equations of state forN = 256 are reported in Fig. 25a.
For all temperatures, the results suggest the presence of a pressure
plateau, in agreement with previous works pointing to the first-order
nature of the LLPT in this system [68, 69, 229, 232], even though
the length of our simulations cannot exclude the possibility of a
crossover, in particular for the highest temperatures considered. The
transition pressures and corresponding densities are quantitatively
different from the ones obtained with the underlying PBE baseline
(see Fig.26), further supporting the importance of the VMC correction
for accurately estimating these quantities. We also calculated the
"stable molecular fraction" [233, 238, 246] corresponding to the
densities close to the transition. In particular, we computed the
average number of hydrogen pairs whose constituent atoms remain
within a distance of 2 Bohr for at least a time τ ∼ 70 fs (2280 a.u.)
along the trajectory (see Fig.25b). Across the transition, this quantity
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Figure 26: Proposed transition lines of the LLPT in hydrogen. Results ob-
tained with our VMC-MLP (red circles). Previous (classical) QMC

calculations taken from Refs. [236] and [69] (light green and
dark green squares). DFT results for several functionals as re-
ported in Ref.[69] (black lines). Recent classical results calculated
in Ref. [65] with the PBE functional (black solid lines) and in
Ref. [240] with the SCAN-L functional (dash-dotted black line) are
also shown. DAC experimental data are taken from Refs. [221] and
[224] (pink and orange triangles). Dynamical compression exper-
iments are from Refs.[222] and [227] (blue triangles and violet
stars, respectively).

jumps from small values, corresponding to an atomic liquid, to
values closer to 1, typical of a molecular system.

In Fig. 26 we report the transition line computed with the VMC-MLP,
alongside previous numerical and experimental results. As expected,
our findings are in good agreement with the VMC results of Ref. [236],
which employed the same type of wave function (i.e., the JSD). The
minor discrepancies observed are likely attributable to the higher sta-
tistical noise (roughly an order of magnitude larger) affecting ener-
gies, forces, and pressures in their simulations. With respect to other
QMC-based simulations, we notice that our transition line is approxi-
mately ∼ 30 GPa lower than the ones predicted by the CEIMC method
[69]. This can be explained by the different cell sizes used here (256
vs 54 and 128 in Ref. [69]), and by the different WF, which in their
case included the backflow transformation [247]. Moreover, since we
used the JSD WF, the self-consistency error is, in principle, present
in our calculations of ionic forces and pressures (see Sec. 2.3). Our
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results are in excellent agreement with the DFT ones obtained with
the hybrid Heyd-Scuseria-Ernzerhof (HSE) [248] and the strongly con-
strained and appropriately normed (SCAN-L) [240] functionals, sug-
gesting their accuracy in describing the LLPT.

As already mentioned, our results only considered classical ions.
However, NQEs are significant in this range of temperature, shifting
the transition line by 20-30 GPa towards lower pressures [69]. Taking
this into account, our simulations are close to the DAC experiments of
Refs [221] and [224].

Before proceeding further, we briefly comment on the first-order
character of the LLPT suggested by our results. As previously dis-
cussed, the relatively short length of our simulations prevents a clear
conclusion regarding the nature of the transition. In fact, the pressure
plateaux visible in Fig. 25 are subject to large uncertainties, and dis-
tinguishing between a sharp crossover or a first-order process is not
trivial (see, for example, the EOS at T = 1500K).

Even if our MLP correction is very cheap to evaluate, using DFT as a
baseline limits the capability of our approach to perform simulations
longer than 10 ps with reasonable resources. The simplest solution to
this problem is to replace the ab initio DFT calculation with a cheaper
method. Our experience suggests that this is not trivial, since (within
a fixed training set) the accuracy of the resulting ∆-learning model
rapidly decreases if the baseline is too approximate. To avoid this,
the use of other MLPs trained on DFT data (for which it is possible to
generate extended datasets) as baseline potentials is promising. This
approach was recently applied to study the hydrogen melting line,
using two NN trained on DFT and QMC [40]. Having an accurate DFT-
based MLP is crucial in this case.

6.2 dft mace model

We will now describe results obtained using a MACE model [132]
trained on a DFT-PBE dataset in the LLPT region, which have not been
published yet at the time of writing. This MLP allowed us to carefully
study the character of the transition and how it is affected by the
system size.

6.2.1 MACE model dataset and training

To train the final MACE model, we generated a dataset of 21812 con-
figurations. We extracted ∼ 17000 configurations of N = 128 hydro-
gen atoms from the VMC-MD simulations of Refs. [39] and [41] (see
Fig. 27). An additional set of 3000 configurations with 128 atoms was
selected from a series of AIMD simulations at lower temperatures, i. e.,
T = 800 K and T = 900 K. We also added 500 snapshots with a larger
number of atoms, i. e., N = 256 and N = 512 extracted from MD
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0 1

Figure 27: Distribution of configurations sampled from MD runs of Ref. [39]
to generate part of the dataset of the MACE model. The dimen-
sion of the dot is proportional to the number of configurations
extracted from each MD simulation, while the color indicates the
stable molecular fraction along the trajectory (with τ ∼ 20 fs).

runs with early iterations of our MACE model. Finally, we included
solid structures (see Ref. [54]) and ∼ 100 low-temperature configu-
rations from Ref. [40]. To ensure consistency across the dataset, we
recomputed energies, forces, and pressure within DFT, using the PBE

functional. A PAW pseudopotential together with a 60 Ry plane waves
cutoff was used. A sufficiently dense k-point grid for each system size
was employed to cure finite size effects. For instance, a 4× 4× 4 grid
was used for the configurations with 128 atoms.

We constructed the MACE model with the aim of reaching a good
tradeoff between accuracy and speed. A cutoff radius of rc = 3 Å
was used; notice that within MACE the "effective" radius is twice this
value, because of the message passing step. The model considered 128
equivariant messages and a correlation order of 3. MACE normally
employs a "standard" loss function like the one of Eq.(34), which can
include energy, forces, and virial stress terms. In the first iterations
of the model, we noticed the appearance of rather stable molecular
solid-like structures at high temperatures (T ∼ 1200 K) during the
dynamics. These structures are clearly unphysical because they are
not observed in AIMD simulations. In particular, the models trained
using the "standard" loss function energetically favor these configura-
tions, even after their inclusion in the training set, as shown in Fig. 28.
On the contrary, these models seem to correctly describe the atomic
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phase. With the aim of increasing the accuracy in the molecular phase,
we modified the loss to include a penalty

∆L ({β}) = wE
λ

Nbatch

∣∣∣∣∣∣
∑
µ∈mol

1

Nµ

(
E
µ
pred ({β}) − E

µ
ref

)∣∣∣∣∣∣ , (50)

where λ is a parameter controlling the relative weight of the penalty
with respect to the energy term of the standard loss function, and the
sum only considers "molecular" configurations in a given training set
batch of dimension Nbatch. To perform this classification, we used a
"static" criterion that, contrary to the "dynamical" one described in
Sec. 6.1.2, only depends on the atomic positions of the given config-
uration. In particular, a configuration is classified as molecular if the
first peak of the radial distribution function g(r) (estimated by fitting
the g(r) with a Gaussian function for r ∈ [0, 1.3]Å ) is larger than 1.8.
We observed that the models trained using the "modified" loss L+∆L

have a much smaller energy error for the molecular solid structures
(see Fig. 28), which also do not appear during the dynamics at high
temperature. The penalty slightly alters the error distribution on the
rest of the training set, but shows an overall smaller value of the en-
ergy RMSE and mean absolute error (MAE) (see Fig. 29).

A similar outcome may also be obtained by assigning a larger
weight to these snapshots, even though we have not explored this
possibility.

The training was performed using the Adam optimizer [249] with
a Nbatch = 16 batch size and initial learning rate of 0.01. We extracted
280 configurations for testing from the full dataset; among the re-
maining configurations, 95% of them were used for training, while
5% was taken as the validation set. This last group of configurations
is used during the training to assess the performance of the model.
The loss weights were taken equal to wE = 1, wF = 100, wvirial = 100

for the first 320 epochs (defined asNt/Nbatch optimization steps, with
Nt the training set dimension) and wE = 200, wF = 10, wvirial = 10

for the remaining 130 epochs. In Eq. (50) we set λ = 50. At the end
of the optimization, the best model is selected as the one minimiz-
ing the value of the loss on the validation set. The final accuracy of
our MACE model, measured by the RMSE on energy per atom and
forces computed on the training, validation, and test sets is reported
in Tab. 7. The value of the RMSE on the virial pressure calculated on
the test set was ∼ 1 GPa. Compared to the previous NN MLP proposed
in Ref. [64] our model has an error on energy 6− 7 times smaller and
it is twice as accurate on forces.

6.2.2 LLPT simulations: size scaling

Thanks to our MACE model we were able to study the behavior of the
LLPT as a function of both temperature and system size. To do this,
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Figure 28: Histogram of the difference between the energy per atom pre-
dicted by the model and the reference PBE value for solid-like
molecular configurations that appeared during the dynamics at
high temperature. We reported in orange the results of the MACE
model trained with the standard loss and in blue the ones ob-
tained with a model trained with the modified loss described in
the text.
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RMSEE (meV / atom) RMSEF (meV / Å)

Training 2.2 116

Validation 2.1 118

Test 2.0 116

Table 7: RMSE for the energy per atom (RMSEE) and forces (RMSEF) calcu-
lated on the training, validation, and test sets, respectively, using
the final MACE model.

we ran MD simulations in the NVT ensemble using the LAMMPS
code [250] interfaced with MACE. We considered different systems
with N = 128, N = 256, N = 512, and N = 2048 hydrogen atoms and
cubic supercells. To accurately study the order of the transition we
used a very dense rs grid in the vicinity of the LLPT, and performed
simulations of length in between 0.1 − 0.3 ns, about two orders of
magnitude longer than our previous simulations [39] and what can
be usually achieved with AIMD. In the dynamics, we used a time step
of 0.2 fs and controlled the temperature via the stochastic velocity
rescaling method [136], with a characteristic time τ = 0.1 ps. The
EOSs obtained with our simulations are shown in Figs. 30-33 for four
different temperatures.

From these results, we can identify three distinct regimes for the
LLPT in the temperature range between T = 900 K and T = 1100 K.
At the lowest temperature, i. e.T = 900 K (Fig. 30) the model clearly
predicts a first-order transition, signaled by the presence of hysteresis.
This behavior is present for all the system sizes explored. For T =

950 K and T = 1000 K (Figs. 31 and 32), the EOS in the transition
region has a strong dependence on the system size: the small systems
(i. e., N = 128 and N = 256) again suggest a first-order transition,
while for larger N the pressure plateau and hysteresis are missing.
Finally at T ⩾ 1100 K (Fig. 33), the results indicate a smooth crossover
between the atomic and molecular state, with a relatively small size
dependence.

To investigate the LLPT, the sole observation of the EOS is not suf-
ficient, since it is known that for liquid-liquid transitions the density
is not the correct order parameter [251]. In particular, we computed
the stable molecular fraction of the system, using the dynamic cri-
terion with a cutoff of 1.05 Å and a H2 lifetime of τ ∼ 80 fs. The
results corresponding to values of rs slightly before/after the transi-
tion are also shown in Figs.30-33. In all cases, the molecular fraction
rapidly increases from values ∼ 0.5 to values close to 1. Another quan-
tity that we can use to analyze the structure and spatial correlations
of the system near the transition is the structure factor S(k), where,
in our case, k = 2π

L (n1,n2,n3) , with L being the side of the cu-
bic simulation box and n1,n2,n3 integer numbers. In particular, the
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Figure 30: [Left panel] EOS at T = 900 K for different system sizes. The red-
shaded region indicates the rs range of the first-order transition
predicted by the model, indicated by the presence of hysteresis.
[Right panel] Values for the average maxk S(k) [top] and for the
molecular fraction [bottom] as a function of the number of atoms
N for two different rs values.
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Figure 31: [Left panel] EOS at T = 950 K for different system sizes. [Right
panel] Values for the average maxk S(k) [top] and for the molec-
ular fraction [bottom] as a function of the number of atoms N for
two different rs values.



6.2 dft mace model 85

1.42 1.43 1.44
rs

174

176

178

180

182

184

186
Pr

es
su

re
 (G

Pa
)

128
256
512
2048

0

0.1

0.2

m
ax

 S
(k

) /
 N

rs = 1.425
rs = 1.4425

128 256 512 2048
N

0

0.5

1

M
ol

. f
ra

c.

T = 1000 K

Figure 32: [Left panel] EOS at T = 1000 K for different system sizes. [Right
panel] Values for the average maxk S(k) [top] and for the molec-
ular fraction [bottom] as a function of the number of atoms N for
two different rs values.
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Figure 33: [Left panel] EOS at T = 1100 K for different system sizes. [Right
panel] Values for the average maxk S(k) [top] and for the molec-
ular fraction [bottom] as a function of the number of atoms N for
two different rs values.
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maximum value of S(k) can be used as a proxy for the formation
of crystalline structures. Indeed, in a solid system we expect only a
discrete number of reciprocal k vectors to contribute to the structure
factor, i. e., those corresponding to the particular crystal symmetry, so
that maxk S(k) ∝ N in the thermodynamic limit. On the contrary, in a
liquid, the rotational invariance implies that the contribution of each
k to the S(k) will stay constant for N→ ∞. The time-averaged value
of maxk S(k)/N as a function of the number of particles is reported
in the top right panels of Figs.30-33. Interestingly, here we can real-
ize that the first-order transition observed at T = 900 K is accompa-
nied by a non-vanishing value of maxk S(k)/N in the thermodynamic
limit, revealing a long-range spatial order of the molecular phase at
this temperature. Moreover, for T = 950 K and T = 1000 K, a large
value of maxk S(k)/N is present for N = 128 and N = 256 at values
of the rs after the pressure plateau. This suggests that the first-order
transition seen at these values of N is due to finite-size effects and
it is between a molecular crystal and an atomic liquid. This explana-
tion was already proposed in Ref. [64], even though the persistence
of these solid structures with N and consequent transition at lower
temperatures was not observed there, probably because of the lower
accuracy of their MLP. For the larger systems, i. e., N ⩾ 512, the for-
mation of the solid is not favored anymore. This is shown in Fig.34,
where the behavior of maxk S(k)/N is plotted as a function of the sim-
ulation time, for T = 950 K and rs = 1.43. Notice how the system with
N = 512 occasionally crystallizes, as indicated by the two "jumps" of
the structure factor maximum at the beginning and the end of the MD,
but it mostly remains liquid. On the contrary, the small system with
N = 256 is in a solid-like state for the majority of the time. Fig.34 fur-
ther suggests that ∼ 100 ps long simulations are necessary in order to
have truly converged results near the transition (10 ps are necessary
to melt the crystal for N = 512). To further characterize the structure
at the lowest temperature T = 900 K, we computed the mean squared
displacement (MSD):

MSD(t) =
1

N

N∑
i=1

|Ri(t) − Ri(0)|
2 . (51)

The MSD computed for T = 900 K and T = 1000 K for different val-
ues of rs is shown in Fig. 35. Notice how the "solid-like" structure
(corresponding to T = 900 and rs = 1.43) shows a non-zero diffu-
sivity. In Ref. [65], this observation was used as an indication of the
liquid phase. Here we obtained very similar values of the MSD (see
the supplementary material of Ref. [65]), although our measure of
the maxk S(k)/N clearly indicates the presence of long-range spatial
correlations. A snapshot taken from an MD simulation at T = 900 K
and rs = 1.43 for a 2048 atoms system is shown in Fig. 36. From this,
we can notice the appearance of "planes" formed by the hydrogen
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two systems, with N = 256 and N = 512 atoms, respectively, at
temperature T = 950 K and rs = 1.43.
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Figure 35: MSD as a function of time for (a) T = 900 K and rs = 1.40, rs =

1.43 (b) T = 1000 K and rs = 1.425, rs = 1.4425.

molecules. In summary, our results suggest that the first-order char-
acter observed for T = 900 K can be due to the formation of defective
solid structures, favored by the vicinity of the hydrogen melting line.
It is likely that a proper treatment of the melting, e. g., using non-
cubic simulation boxes, might predict a proper solid-liquid transition
for these temperatures. Regarding this, we noticed that our transition
point at T = 900 K lies exactly on the PBE melting line recently ob-
tained in Ref. [40] using a NN MLP, further confirming this hypothesis
(see Fig. 40).

In the atomic phase, our simulations confirm that the system is
a liquid at all temperatures. A genuine molecular liquid is also ob-
served for all system sizes at temperature T ⩾ 1100 K. Our MACE
model indicates that above the melting line for T ⩾ 950 K the LLPT is
a continuous crossover in the thermodynamic limit (Figs. 32 and 33).
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Figure 36: 2048 atoms structure extracted from an MD simulation at T =

900 K and rs = 1.43. The dashed lines are a guide for the eye
to highlight the intermolecular planes. The image was obtained
using the VESTA visualization program [252].

At this point, a comparison between the physical picture given by
the MACE model and previous AIMD results is necessary. For the PBE

functional, many authors [65, 68, 229, 232, 235, 238] reported a first-
order LLPT below a critical temperature Tc, based on the observation
of "kinks" in the EOS. We have already noted in Sec. 6.1.2, how short
simulations make the identification of the plateaux unclear. This is
reflected by the large variability of the predicted Tc, which varies
from T = 4000 K [235], to T = 1500 K [68, 232]. Recent AIMD PBE

simulations reported in Ref. [238] brought down the estimated Tc to
∼ 1250 K. Our model predicts a first-order transition below a tempera-
ture between 900 K and 950 K, consistently lower than these estimates.
Therefore we cannot entirely attribute the observation of a first-order
LLPT in these previous works to the formation of solid structures.

To analyze the possibility that the plateaux identified in AIMD orig-
inate from the short length of these simulations, we analyzed 0.2 ns
long trajectories obtained with the MACE model for values of rs close
to the transition at different temperatures above T = 900 K. The re-
sults are shown in Fig. 37 for a system of N = 128 atoms at a temper-
ature of T = 1400 K and a system of N = 512 atoms at T = 1000 K.
Using the long trajectory, we computed the running average of the
pressure using a variable size time window τrun, corresponding to
simulations times achievable within AIMD, e. g., τrun ∼ 10 ps. The
variance of the running average gives us an idea of the variability
of the estimated equilibrium pressure that one is expected to have
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(a) (b)

Figure 37: Results for 200 ps long simulations and corresponding confidence
intervals, estimated from a running average with a τrun-long time
window. (a) Results for N = 128, T = 1400 K and τrun = 4 ps. The
AIMD result reported in Ref. [39] is also shown. (b) Results for
N = 512, T = 1000 K and τrun = 10 ps.

when using an MD simulation of length equal to τrun. From Fig. 37,
we can notice that the estimated variance grows in the vicinity of the
transition, and that the presence of plateaux in the pressure can be
understood as an artifact due to the lack of sampling of the phase
space. For the small system (Fig. 37a), we also compared the results
with the PBE AIMD ones reported in Ref. [39] at T = 1400 K for the
same size. The pressure plateau here is within the 3σ uncertainty re-
gion estimated from a running average of 4 ps (slightly longer than
the average length of the AIMD simulations). The results at lower tem-
perature T = 1000 K for a larger system of 512 atoms (Fig. 37b) show
that even a 10 ps long dynamics can, in principle, produce artificial
kinks of the size reported in the literature [232, 238]. Even though,
in principle, this estimation depends on the thermostat used in the
simulations, we do not expect this to change our conclusions.

Before proceeding, we mention that we also ran PIOUD simulations
on a system of N = 512 atoms to see if the inclusion of NQEs changes
our physical picture. The preliminary results of these simulations
again show solid-like molecular structures and a first-order transi-
tion at low temperatures and a continuous LLPT at higher temper-
atures. The transition is shifted toward lower pressures because of
NQEs, consistently with previous results [68, 69, 222].

6.2.3 Results for the Widom line

Both the first-order transition and the crossover above the critical tem-
perature Tc can be further characterized by studying the behavior of
the specific heat cv (i. e., the heat capacity per particle) as a function
of temperature, density, and system dimension. The results for cv
obtained from simulations with N = 2048 hydrogen atoms at temper-
atures up to 1800 K are reported in Fig. 38. For each temperature, we
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estimated the location and value of the maximum. For temperatures
between 900 K and 1100 K, we also studied the size scaling of the
cv maximum, as shown in Fig. 39. In a first-order transition, the cv
peak presents a divergence ∼ N in the thermodynamic limit [253]. As
shown in the figure, linear scaling is observed at T = 900 K, while
the ratio cv/N tends to zero for higher temperatures. This is consis-
tent with the conclusion of the previous section, and further indicates
the location of the critical point between T = 900 K and T = 950 K.
The location of the cv maximum at higher temperatures allows us
to locate the Widom line for the supercritical region. The results are
reported in Fig. 40. Our Widom line shows remarkable agreement
with previous simulations of the LLPT obtained with the PBE func-
tional. In particular, our results well reproduce the ones reported in
Ref. [232] for temperatures up to 1400 K and those of Ref. [65] for
higher temperatures, even though they do not agree on the LLPT first-
order character for T ⩾ 900 K. Since fluctuations are large at the
Widom line, this can further suggest that the EOS plateaux observed
in previous works could be due to short simulation times. As men-
tioned earlier, the first-order transition observed at T = 900 K lies
on the melting line estimated in Ref. [40], supporting the idea that,
below this temperature, the transition could coincide with melting.
This behavior found by our MACE model qualitatively agrees with
the conclusions of Ref. [64], even though their model could not re-
solve the aforementioned low-temperature regime, and predicted a
Widom line (estimated from the isobaric specif heat cp maximum) far
from the AIMD result (see Fig. 40).

6.2.4 Comparison with AIMD

We conclude this Chapter by directly comparing results obtained
with our MACE model and AIMD simulations to validate our MLP

results. Here we report NVT results obtained at values of density
and temperature roughly corresponding to p = 150 GPa that we took
from Ref. [65]. We performed simulations of length ∼ 2 ps with both
AIMD and the MACE model on a system of 512 atoms, and compared
the structural properties of the system. The time-resolved value of
maxk S(k) for each density and temperature is shown in Fig. 41 for
AIMD and Fig. 42 for MACE. The two methods show good agreement
and both predict solid-like structures at T = 1050 K. Notice how
this temperature matches the value of the melting line of Ref. [40]
at p = 150 GPa. A comparison of the radial distribution function is
reported in Fig. 43. At all temperatures, the MACE model shows a re-
markable agreement with the AIMD result, both in the molecular and
atomic phases. This is a further confirmation of the reliability of our
MLP.
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Figure 38: Specific heat per particle vs pressure along the isotherms, for a
system of N = 2048 hydrogen atoms obtained with the MACE
model. The shaded areas indicate the uncertainty in the peak po-
sition.

6.3 wrap-up

To conclude this Chapter, we summarize the main physical outcomes
of our simulations. Using the ∆-learning approach we trained a KRR

model on the difference between VMC and DFT data to study the hy-
drogen liquid-liquid phase transition (LLPT). Our results are in good
agreement with previous ab initio QMC simulations [236], and with
results obtained using advanced DFT exchange-correlation function-
als like HSE and SCAN-L. Shifting our transition line by 20 GPa to-
ward lower pressures, roughly corresponding to the effect of NQEs

estimated in Ref. [69], makes our predictions close to the static com-
pression experiments of Refs. [221, 224]. Our VMC simulations indi-
cate a first-order LLPT, although the limited length of our dynamics
prevents a definitive conclusion regarding the nature of the transition.
To answer this question, the efficiency of the ∆-learning scheme has
to be improved, which can be done, for instance, by using a DFT-MLP

as baseline.
With this in mind, we constructed a DFT MLP using MACE, thanks

to which we studied the transition between molecular and atomic
hydrogen for temperatures between 900 K and 1800 K, running MD

simulations for different systems sizes. At the lowest temperature
(T = 900 K) the model predicts a first-order transition in the thermo-
dynamic limit. The structure factor analysis reveals that long-range
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Figure 39: Scaling of cv/kBN with the number of atoms in the system for
four different temperatures. The scaling confirms a first-order
transition for T = 900 K and a smooth crossover for higher tem-
peratures in the thermodynamic limit.

spatial order is present, thus suggesting that this is a transition be-
tween a molecular solid-like system (frustrated by the cubic cell) and
an atomic liquid. This is also in agreement with recent results for the
PBE melting line [40]. For temperatures above T = 900 K, the MACE
model predicts a proper LLPT in the thermodynamic limit (N ⩾ 512),
which is a smooth crossover, similar to what was reported in Ref. [64].
We observed that up to T = 1000 K, the frustrated crystal structures
appear for small system sizes, giving rise to a first-order transition
that disappears as N is increased. For higher temperatures, all sys-
tem sizes agree on the crossover nature of the LLPT. Our Widom line,
estimated from the maximum of the specific heat cv, shows an excel-
lent agreement with the LLPT location reported by previous PBE AIMD

results [65, 232]. This might explain why a first-order transition was
predicted by these works: being fluctuations important close to the
Widom line, short simulations can incorrectly identify density jump-
s/pressure plateaux in the EOS. Finally, preliminary results obtained
with PIMD suggest that our conclusions remain the same even with
the inclusion of NQEs.
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Figure 40: Classical PBE-LLPT location as computed with different methods.
BOMD results by Ref. [232] (blue dashed line), Ref. [68] (green
dashed line), Ref. [65] (light blue dashed line). The results for
the molecular-to-atomic crossover obtained with an NN MLP by
Ref. [64] are reported with orange and violet markers, corre-
sponding to the maximum of the isobaric specific heat and den-
sity, respectively. The black markers and line indicate the recently
proposed PBE melting line by Ref.[40], obtained with an NN MLP

and the two-phase method. Our MACE model results are indi-
cated with red markers. The filled point at T = 900 K indicates
the first-order character of the transition, while the empty points
correspond to the location of the Widom line given by the cv max-
imum (see Fig. 38).
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tures, obtained from MD simulations using our MACE model for
a system of 512 atoms.
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7
C O N C L U S I O N S A N D P E R S P E C T I V E S

Quantum Monte Carlo (QMC) methods provide accurate and reli-
able results for the properties of high-pressure hydrogen, but their
high computational cost limits their applicability in molecular dy-
namics (MD) simulations. In this thesis, we discussed how, thanks
to the application of machine learning techniques, one can perform
QMC-based MD simulations at a fraction of their original cost.

The construction of these machine learning potentials (MLPs) using
QMC data points is difficult for multiple reasons. First, generat-
ing extended QMC datasets requires a large amount of resources,
orders of magnitude larger than those necessary within density
functional theory (DFT), at least for its simplest local or semi-local
exchange-correlation functional approximations. In our work, we
solved this problem by employing the ∆-learning approach. Thanks
to this technique we obtained accurate models trained on both
variational Monte Carlo (VMC) and lattice regularized diffusion
Monte Carlo (LRDMC) with small and affordable datasets, which
we used to study the liquid part of the hydrogen phase diagram,
namely the Hugoniot curve (Ch. 4) and the liquid-liquid phase
transition (LLPT) (Ch. 6). The downside of the ∆-learning method
resides in the efficiency of the final dynamics, which is not only due
to the MLP correction but also to the cost of evaluating the baseline
potential. In the applications presented here, we always employed a
DFT baseline, meaning that our simulations have the same efficiency
as AIMD. Even though this approach is much faster than computing
QMC energies and forces at each MD step, it is still quite limited in
terms of simulation time. Very accurate DFT-MLP like the MACE
model presented in Ch. 6, may represent the ideal candidate for
replacing the ab initio baseline. A natural follow-up of the work
presented in this thesis is to verify whether the physical outcome on
the LLPT order found with the DFT-MLP is changed by increasing the
level of theory from DFT to QMC. The combination of the ∆-learning
approach with an efficient and accurate MACE DFT baseline allows
such a study, an application we will explore in the near future.

The other aspect that makes the training of QMC-MLP challeng-
ing is that, within QMC, the calculation of energy derivatives is not
trivial, as we have extensively discussed when talking about the self-
consistency error. In Ch.2 we developed an approach to remove the
bias in the VMC forces and pressures originating from a partially op-
timized wave function (WF), such as the Jastrow correlated Slater de-
terminant (JSD) with a frozen antisymmetric part taken from DFT. The
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availability of this correction is crucial, because it allows the utiliza-
tion of the relatively cheap-to-optimize JSD WF for generating large
unbiased training sets for machine learning applications, as demon-
strated in Ch. 5.

In conclusion, QMC-based machine learning potentials represent
one of the most promising approaches for the numerical simulation of
high-pressure hydrogen and potentially other complex systems. This
thesis has introduced and validated a robust set of techniques for
constructing these models reliably and demonstrated their practical
applications. Looking forward, fast and efficient QMC-MLPs capable
of exploring extended phase diagrams, from solid structures to liq-
uid phases, appear to be within closer reach.
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A
L O C A L I Z E D B A S I S S E T S F O R Q M C
C A L C U L AT I O N S

In the following sections, we describe the localized basis sets em-
ployed in the QMC calculations of this thesis.

a.1 hugoniot dataset

The localized basis employed in the QMC calculations for the Hugo-
niot dataset discussed in Sec. 4.7 is reported in Tab. 8. For the Slater
determinant (SD) part we computed the exponents by explicitly opti-
mizing them for a few selected configurations at the conditions rele-
vant to the Hugoniot curve, starting with a cc-pVTZ basis. We verified
that the optimal values do not significantly depend on the density
and temperature in the range explored. For the d-type orbital, we
kept the initial exponent of the cc-pVTZ GEO, since this decreases the
linear dependency of the basis and does not impact the final energy.
We optimized the Jastrow basis exponents for every configuration in
the dataset. In Tab. 8 we thus report only their starting values. The
GTOs labeled s∗ and p∗ have the corresponding (Gaussian) radial part
multiplied by r2 and r, respectively.

a.2 llpt dataset

The VMC calculations on the dataset we used for training the MLP pre-
sented in Sec. 6.1 employed a basis of [3s] GTOs for both the antisym-
metric and Jastrow parts. The exponents of the Gaussian functions
are reported in Tab. 9.

101



102 localized basis sets for qmc calculations

Orbital type GTO exponents

SD

s

2.9727

0.8465

0.2667

0.1027

p
0.2701

0.1530

d 1.057

Jastrow

s 0.2497

s∗ 0.4543

p 0.5878

p∗ 0.5179

d 0.2953

Table 8: Basis set exponents employed for the QMC calculations on the Hugo-
niot dataset. The values relative to the Jastrow factor were opti-
mized for each configuration, starting from the values reported
here.

Orbital type GTO exponents

SD s
1.962

0.4446

0.122

Jastrow s
1.962

0.4446

0.122

Table 9: GTOs exponents employed for the QMC calculations on the LLPT

dataset, for both the Slater determinant part and Jastrow factor.



B
VA L I D AT I O N O F T H E L L P T V M C M O D E L

Here we will give further details on the performances and validation
of the model described in Sec. 6.1.

The RMSE of our MLP measured on the test set is 0.39 mHa / atom
and 2.47 mHa / Bohr for energy and forces respectively. We notice
a significant bias in the VMC pressure in our dataset, caused by the
self-consistency error. This does not spoil much the accuracy of the
model, since the relative weight wP we used in the loss function is
very small compared to that of energy and forces (wP/wE ≈ 0.06).
Notice how a much larger value was employed for the Hugoniot
model (see Sec. 4.8), i. e., wP/wE ≈ 30 for the MLP trained on VMC

data.
To further validate our model, we adopted a similar strategy to the

one shown in Sec. 4.8 for the MLP trained on the Hugoniot dataset.
In particular, we trained a second model on the difference between
VMC and DFT data with the BLYP functional (the MLP used for the
simulations employed the PBE functional). We compare the EOS at
T = 1000 K obtained with the two models for a system of N = 128

hydrogen atoms in Fig. 44. The equations of state predicted by the
two MLPs show good consistency in the entire range of rs explored.
By looking at their maximum discrepancy at rs ∼ 1.4, we can assign
an uncertainty of ∼ 5 GPa to the transition pressure predicted by our
model.

103



104 validation of the llpt vmc model

1.3 1.4 1.5 1.6
rs

100

200

300

400

500

Pr
es

su
re

 (G
Pa

)

PBE
BLYP
VMC-PBE
VMC-BLYP
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