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ABSTRACT

The rapid growth of the global population has significantly increased

the demand for food, necessitating improvements in the efficiency and

sustainability of livestock farming systems. Traditional intensive farm-

ing practices, marked by high stocking densities and poor living con-

ditions, often cause substantial stress to animals, making them more

susceptible to diseases. This scenario raises ethical concerns and af-

fects the long-term sustainability of food production systems. Recent

societal and regulatory shifts, particularly within the European Union,

have emphasized the importance of animal welfare and sustainable

agricultural practices. The European Green Deal and Farm to Fork

Strategy highlight the need for innovative food systems that reduce

resource use, lower greenhouse gas emissions, and protect biodiversity

while maintaining high animal welfare standards. In response to these

challenges, this dissertation explores the potential of automated moni-

toring technologies, such as Internet of Things (IoT) devices and Arti-

ficial Intelligence (AI), to transform livestock management. Through

the deployment of miniaturized IoT devices, advanced camera sys-

tems, and sophisticated AI algorithms, it is possible to achieve con-
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tinuous monitoring of animal health, early disease detection, welfare

assessment, behavioral observation, and individual animal identifica-

tion with minimal human intervention. These technologies not only

improve compliance with EU regulations but also address the ethical

and environmental issues associated with traditional livestock farm-

ing methods. The thesis begins with a thorough overview of sensor-

based automatic monitoring systems, focusing on their application in

extensive farming environments. It details the current technological

landscape, including various device types and data processing tech-

niques. Subsequently, the thesis presents a series of case studies based

on experimental trials conducted during the PhD program, offering

practical insights into the real-world application of these technologies.

This section also examines the ongoing challenges in the field, such as

optimizing energy efficiency, ensuring data accuracy, and enhancing

network reliability, while suggesting potential avenues for future re-

search. In the final part, the focus shifts to indoor livestock farming,

exploring the increasing use of monitoring systems based on computer

vision techniques. This part investigates the application of Continual

Learning methods to video data for action recognition, proposing inno-

vative adaptations of these methods, traditionally employed in image

classification, for video analysis. Overall, this dissertation advances

the field of livestock monitoring by integrating cutting-edge technolo-

gies with methodological approaches. It provides a solid foundation

for developing more effective, reliable, and scalable solutions in the

agricultural sector, supporting the transition to more sustainable and

welfare-focused farming practices.
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CHAPTER

ONE

MOTIVATIONS AND OBJECTIVES

The escalating global population has precipitated a commensurate

surge in food demand, necessitating enhanced efficiency within live-

stock farming systems. The preponderance of animal-derived products

available in mass retail outlets originates from intensive farming envi-

ronments characterized by overcrowding and sub-optimal conditions,

which induce significant animal stress. A wealth of research under-

scores the heightened susceptibility of stressed livestock to disease,

emphasizing the imperative for proactive health monitoring to facili-

tate early disease detection and welfare improvements. Furthermore,

the ethical and environmental implications of livestock farming have

come under increasing scrutiny, driving a need for more responsible

and sustainable practices. The welfare of animals in farming systems

has become a central concern, with society demanding higher stan-

dards of care and transparency. At the same time, the environmental

impact of livestock production, particularly in terms of resource use,
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greenhouse gas emissions, and land degradation, has raised significant

questions about the long-term viability of current farming practices.

In this context The EU has been at the forefront of promoting higher

standards for animal welfare and sustainable agricultural practices,

reflecting a growing societal concern for the ethical and environmen-

tal impacts of livestock production. This commitment is evident in

various EU policies and regulations that aim to ensure the humane

treatment of animals, reduce environmental degradation, and promote

sustainable farming methods.The European Green Deal and the Farm

to Fork Strategy, both central to the EU’s agenda, emphasize the

need for sustainable food systems that minimize resource use, reduce

emissions, and protect biodiversity.

Traditionally, monitoring animal health and welfare has relied

heavily on direct human observation and manual data collection.

While these methods can provide valuable insights, they are often

limited by their labor-intensive nature, the potential for human error,

and the sporadic nature of observations. To circumvent the limita-

tions of traditional labor-intensive monitoring practices, automated

analysis of livestock has emerged as a pivotal technology. Aligned

with the European Animal Welfare Quality Project’s emphasis on

minimizing human-animal interaction to mitigate disease transmis-

sion, automated livestock monitoring encompasses a broad spectrum

of applications including health assessment, early disease diagnosis,

welfare evaluation, behavioral observation, and animal identification.

Leveraging advancements in miniaturized IoT devices, Cameras, and

Artificial Intelligence, the landscape of livestock monitoring has been

revolutionized through the development of innovative systems. The

integration of these technologies into livestock farming not only sup-
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ports compliance with EU regulations but also represents a proactive

response to the ethical and environmental challenges facing the indus-

try.

This dissertation is structured into two main parts, reflecting the

activities and projects undertaken during this PhD. The first part fo-

cuses on automatic monitoring systems based on sensors, with the

study and results stemming from two years of work on the PRIN

project ’Smart Dairy Farming’ coordinated by Prof. Simona M.C.

Porto. It begins with an overview of the state-of-the-art monitor-

ing systems for extensive livestock farming, emphasizing the devices

and data processing methods employed. Following this, several case

studies conducted during the Ph.D. period are presented, featuring

experimental field trials. The conclusion of this part addresses the

unresolved challenges in the field and discusses potential future trends.

The second part of the dissertation shifts the focus to monitor-

ing systems for indoor livestock farming, with a particular empha-

sis on systems based on computer vision techniques. In this part,

the application of Continual Learning methods on video data is ex-

plored for action recognition. Additionally, techniques are proposed

to adapt Continual Learning methods, traditionally used for image

classification, to video analysis. The studies and results obtained in

the application of Continual Learning on videos are the outcome of

activities carried out as part of the Rehastart project (Grant identi-

fier: PO FESR 2014-2020, Azione 1.1.5., n. 08ME6201000222- CUP

G79J18000610007) coordinated by prof. Concetto Spampinato.

In conclusion, this dissertation not only contributes to the exist-

ing body of knowledge in the field of livestock monitoring systems

but also opens up new possibilities for future advancements. By ad-
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dressing both current technologies and emerging techniques, it lays

the groundwork for developing more efficient, reliable, and scalable

solutions in the agricultural industry.



Part I

Sensor-based cow automatic

monitoring systems

5
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Effective animal monitoring is critical for ensuring the health, well-

being, and productivity of livestock, as well as for advancing research

in wildlife management and conservation. Traditional monitoring

methods, often reliant on manual observation, can be labor-intensive

and prone to human error. As such, there has been a growing inter-

est in leveraging technology to automate and enhance the monitoring

process.

In this chapter, we will focus on the use of sensors for monitoring

animal behavior and health. These sensors, including accelerometers

and GPS, provide continuous, objective data that can be analyzed to

detect changes in movement patterns, health status, and other vital

behaviors.

Chapter 2 will introduce the various monitoring systems available,

highlighting the motivations behind their adoption, the most com-

monly used devices, and the specific behaviors that are typically mon-

itored in current research and industry practices. Furthermore, we

will delve into the systems proposed in the literature, with a par-

ticular focus on the technologies employed, sampling rates, and the

methods used for data collection and processing. This analysis will

be conducted separately for accelerometers and GPS, exploring how

each technology contributes to a more effective and reliable animal

monitoring system.

By understanding the strengths and limitations of these technolo-

gies, we aim to provide insights into how sensor-based monitoring can

be optimized for different animal species and environments.
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CHAPTER

TWO

COW BEHAVIOURAL ACTIVITIES IN

EXTENSIVE FARMS

Animal welfare has emerged as a paramount global concern in re-

cent years, as highlighted by the 2004 OIE World Conference on An-

imal Welfare. The international scientific community is persistently

working towards developing a unified and shared definition of animal

welfare, and is conducting extensive research to improve conditions

throughout the production cycle, from breeding to transportation and

slaughter. In particular, significant efforts are underway to develop

and validate automated systems for monitoring animal welfare dur-

ing the breeding phase. Recently, Information and Communication

Technology (ICT)-based monitoring systems have been introduced to

assess animal welfare at the farm level. These systems offer a wide

range of applications, including the certification of welfare levels, the

evaluation of housing systems, the diagnosis of individual animal wel-

9
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fare problems, and assistance to farmers in identifying, preventing, and

resolving herd-level welfare issues. Consumers, increasingly aware of

and attentive to ethical food-related issues, place great importance on

animal welfare[36, 29, 45]. Studies have shown that the public views

allowing dairy cows to express natural behaviors in natural settings as

essential. Understanding the relationship between dairy cattle social

behavior and their health, productivity, and welfare, alongside farm

managers’ and consumers’ perspectives on dairy cattle welfare and

behavior, is crucial. This knowledge is essential for developing rele-

vant indicators for farmers’ decision-support systems and for directing

communication about ”natural” animal behavior towards downstream

chain actors, including consumers. Animal behavior is a clear indi-

cator of an animal’s physiological and physical state. Major activi-

ties for cows, such as feeding, rumination, lying, and walking, require

daily monitoring to evaluate welfare conditions. While visual exam-

ination by operators can directly assess cows’ behavioral activities,

this method is time-consuming and labor-intensive, especially on ex-

tensive farms[99]. In precision livestock farming (PLF), ICT-based

solutions are being developed and validated to enhance the efficiency

of livestock monitoring and management [107]. These modern ICT-

based solutions are increasingly effective at collecting vast amounts of

data, which, when processed using optimized algorithms, can signif-

icantly enhance farmers’ ability to efficiently and profitably monitor

their herds. he Fourth Industrial Revolution has irrevocably trans-

formed industries and economic landscapes by forging interconnected

networks of machines, devices, and humans through cutting-edge tech-

nologies. This convergence has laid the foundation for intelligent au-

tomation, progressively automating repetitive tasks and redefining the
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role of human labor. Key components of this revolution include the

Internet of Things (IoT), big data and analytics, autonomous robots,

and cloud computing [122]. The convergence of IoT systems and ad-

vanced AI techniques has accelerated significantly in recent times.

Sophisticated AI algorithms are increasingly adept at extracting in-

valuable insights from voluminous sensor data, unlocking knowledge

previously unattainable through traditional analysis. [86, 4]. IoT is

rapidly advancing in PLF. IoT-based systems connect computing de-

vices, mechanical and digital equipment, items, animals, or humans to

a network, facilitating data transfer without needing human-to-human

or human-to-computer interaction [1]. The primary components of an

IoT-based system include object identification, sensing, communica-

tion, computation, service, and semantics, as depicted in 2.1.

Figure 2.1: Main elements of an IoT system [1]

The cattle breeding sector is characterized by high management
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complexity, attributable to operational protocols that imply a consid-

erable commitment in terms of time, human and economic resources.

The assessment of animal welfare and health is traditionally entrusted

to visual observation by the staff, although in many production con-

texts there are high workloads per worker. The three main challenges

in efficiently monitoring cow welfare are cost, validity, and timeliness

of insights [87]. IoT-based sensors enable the early detection of cow

illnesses, allowing farmers to intervene promptly and optimize antibi-

otic usage, milk production, and veterinary care costs [66]. Conse-

quently, wearable sensors are becoming essential tools for monitoring

cows’ health and well-being in housed systems. These technologies

typically comprise sensor devices that collect data on specific param-

eters. This data is then processed by software to generate insights,

alerts, and recommendations for the livestock producer.[107]. Moni-

toring changes in cow behavior with IoT-based wearable sensors offers

unique insights into the animal’s condition and well-being, detecting

health and welfare issues, environmental dangers, and changes [42].

Farmers can monitor vital signs, including blood pressure, heart rate,

and hormonal levels, along with behaviors like feeding, standing, ru-

mination, and walking [7], and abnormal food and water consumption

behaviors [90]. Geo-location data can also be captured and analyzed

[28] and by quantifying the duration of specific behaviors, insights into

animal health can be derived. During the years, a lots of IoT-based

solutions for monitoring cow behavior have been developed, but the

focus on intensive housing systems, therefore few research projects

have focused on extensive livestock systems. Monitoring grazing ani-

mals is challenging due to extensive grazing areas and animals’ natural

behaviors. The limited human presence in these systems hinders the
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observation and analysis of atypical behaviors.

This chapter aims to illuminate the technological landscape for

monitoring grazing cattle in extensive farming systems. A comprehen-

sive literature review has identified critical challenges, including device

battery life, data collection frequency, network coverage, transmission

range, and the efficacy of IoT system algorithms in terms of detec-

tion accuracy and computational efficiency.[108, 46, 104]. Among the

reviewed studies on cattle behavior monitoring, about 80% involved

Holsteins, 10% unspecified crosses, Japanese Black Beef Cattle, and

Angus, with the remaining 10% unspecified breeds. The average num-

ber of animals per study was around 30, though this varied across

studies.

2.1 Behavioral Activities Monitoring

Precision Livestock Farming (PLF) offers a potential solution to the

challenges inherent in traditional livestock management. PLF, with

its focus on ICT-based technologies, provides a means to continuously

monitor animals, capturing data on a range of behaviors and phys-

iological parameters. This is particularly advantageous in extensive

grazing systems where direct farmer observation is often limited by

the vastness of the grazing areas and reduced human-animal interac-

tion. The literature reveals that by leveraging wearable sensors and

advanced analytics, various cow behaviors have been monitored, in-

cluding:

• Locomotion: This is useful for identifying cow fertility, which is

indicated by an increase in walking activity [117, 101].
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• Feeding: This serves as a good indicator of cow well-being, as

unhealthy cows tend to eat less [92]

• Rumination: This is a vital part of the digestive process [43],

characterized by continuous rhythmic chewing. This chewing

action helps maintain the rumen pH at levels optimal for micro-

bial activity [43].

• Lying: Monitoring the duration of lying can help detect limb ab-

normalities, as cows that lie down for extended periods without

movement may have such issues [6].

Therefore PLF can bridge the gap between traditional management

practices and the demands of modern, data-driven agriculture.

2.2 Devices

With the advancement of effective IoT-based technologies, deploying

sensor networks in challenging environments, such as barns charac-

terized by dust, lack of power, and internet connectivity, has become

feasible. The literature indicates various ICT-based monitoring sys-

tems for cows in indoor settings, but their application in extensive

grazing farms remains limited. This limitation is likely due to the

challenges of using ICT-based monitoring systems in rural areas with

typically poor telecommunication network coverage. Moreover, the use

of battery-powered wearable sensors can incur significant management

and maintenance costs for farmers if the systems are not optimized for

energy efficiency [117].
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Wearable sensors can collect extensive data, analyze raw data, and

alert farmers if cattle behavior deviates from normal ranges [66]. Sen-

sor technologies employed in PLF encompass both invasive and non-

invasive approaches[87]. Invasive sensors, often implanted or ingested,

capture critical physiological data such as internal temperature. Con-

versely, non-invasive sensors, attached externally via collars or other

devices, monitor animal behavior and environmental conditions in-

cluding air temperature, humidity, and ventilation.

Invasive sensors provide more accurate data by directly measuring

animal health factors but are less commonly used due to their higher

cost and potential to stress animals. Non-invasive sensors are more

widely used because they are easy to attach, cost-effective, reusable,

and cause less stress to animals. Table 2.1 lists major non-invasive

sensors used in PLF applications and the aspects of animal behav-

ior they monitor. Cameras and accelerometers are the most common

non-invasive sensors for monitoring cow behavior in indoor environ-

ments. Video-recording systems offer a low-cost solution to observe the

behavior of multiple animals simultaneously with few cameras. How-

ever, identifying individual animals remains challenging, even with

advanced computer vision methods.

In extensive farms, installing efficient video surveillance systems is

impractical due to large grazing areas and unreliable energy sources.

Recently, efficient unmanned aerial vehicles (UAVs) equipped with

cameras have been proposed for animal monitoring in extensive pas-

tures [76]. However, these UAV-based systems require further devel-

opment, particularly concerning their short battery life.

GPS and accelerometers are the most prevalent non-invasive sen-

sors employed for monitoring cattle in extensive farming systems. Ex-



16 Chapter 2. Cow behavioural activities in extensive farms

Figure 2.2: Example of pedometer and collar worn by cows [26, 93]

amples of GPS-based and accelerometer-based monitoring systems are

detailed in Table 2. Accelerometer-based systems are highly versatile

and affordable. They can be attached to an animal’s leg or neck to

monitor behavioral activity (2.2). Pedometers, typically attached to

the hind leg, quantify step count, while neck-mounted collars mea-

sure head movements. GPS sensors are employed to track grazing

animals in extensive breeding systems, similar to accelerometers, by

using collars. GPS is particularly useful in situations where the vast

expanse of grazing grounds makes frequent and precise herd manage-

ment challenging. For instance, GPS devices can help reduce the risk

of theft, prevent animal trespassing, and assist in rescuing injured an-

imals that are unable to move. However, the primary limitation to
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Sensor/Device Aspect of Animal Disease/Used for

GPRS,

GPS,transponders,

accelerometers

Cattle’s position, in-

side the barn or out-

side the barn. Motion

changes

Grazing, feeding, lying, be-

haviour and welfare moni-

toring Lameness, oestrus

Pressure - Feeding and drinking moni-

toring

Microphone, UHF

sensors

Monitor sound levels

in barns

Mooing, pain and wel-

fare conditions, rumination,

breathing disease

Temperature Temperature monitor Fever, ovarian cysts, pneu-

monia, retained placenta,

mastitis

Thermal infrared

camera, 2D cameras,

3D cameras

- Behaviour monitoring,

lameness, oestrus

Load sensor Weight distribution Lameness

Gas sensor Breathe ketones,

methane emission

Displaced abomasum, keto-

sis

Radio-frequency iden-

tification

Identification Behaviour and welfare mon-

itoring

Table 2.1: Non-invasive sensors in PLF applications.

the broader application of GPS technology is the short battery life of

GPS-equipped devices, which currently confines their use mainly to

experimental settings.
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Device No.

cows

Sampling

Rate/

Time In-

terval

Data Col-

lection and

Storage

Aim Period Refe.

GPS 10 20 min Sigfox/On

Cloud

Position track-

ing

45d [93]

GPS 6 10 min Sigfox/On

Cloud

Position track-

ing

45d [33]

GPS 7 30 min Sigfox/On

Cloud

Position track-

ing

5mth [57]

GPS 180 5/10/15

min

On Device Position track-

ing

1–4mth [82]

GPS 5 - GSM Virtual fencing 4mth [118]

GPS 50 30 min Sigfox and

Bluetooth/

On Cloud

Position and

tracking

5mth [77]

Accel. 12 25 Hz On Device Detect licking

behaviour

28d [113]

Accel. 10 10 Hz On Device Detect feeding

and rumination

5d [21]

IMU

sensor

3 20 Hz Bluetooth/

External PC

Classify feed-

ing, rumina-

tion, lying, and

standing

7d [92]

Accel. 4 4 Hz GSM/On

Cloud

Classify feed-

ing, rumina-

tion, walking,

and lying

7d [94,

32]

Accel. 86 59.5 Hz On Device Classify six be-

haviours

3–4d [101]

Accel. 24 Acc. 10 Hz On Device Monitor cows’

behavioural ac-

tivities

14d [114]

GPS

+ Ac-

celerom-

eter

5 Acc. 12

Hz/GPS 1

min

On Device Monitor cows’

behavioural

activities and

tracking

3mth [28]

GPS

+ Ac-

celerom-

eter

26 Acc. 59.5

Hz/GPS 1

Hz

On Device Understand re-

lation between

behaviour and

pasture charac-

teristics

5d [100]

GPS

+ Ac-

celerom-

eter

24 Acc. 10

Hz/GPS 4

Hz

On Device Classify an-

imals’ be-

haviours

12d [44]

GPS

+ Ac-

celerom-

eter

14 Acc. 10

Hz/GPS 4

Hz

On Device Monitor cows’

location and

behavioural

activities

12-14d [56]

GPS

+ Ac-

celerom-

eter

30 Acc. 10

Hz/GPS 5

min

On Cloud Monitor track-

ing movement

and tracking lo-

cation

2-3mth [56]

Table 2.2: Example of State-of-the-art IoT systems designed to per-

form animal monitoring.
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2.3 Accelerometer-based automatic

monitoring systems

Recent advancements in precision livestock farming (PLF) have seen

the development of automated monitoring systems employing ac-

celerometer technology. As outlined in 2.2 of previous chapter, several

studies have explored this approach.

Simanungkalit et al. [113] examined an ear tag accelerometer’s

ability to detect licking behavior at a block supplement in grazing

cattle. They validated the duration of individual licking behavior

predicted by the accelerometer and a radio frequency identification

(RFID) system. Four Angus steers were equipped with an ear tag

containing a three-axis accelerometer.

Riaboff et al. [101] aimed to develop a framework to predict be-

haviors such as grazing, walking, lying and standing rumination, and

lying rest using three-axis accelerometer data. The experimental trial

involved 86 cows across four different farms.

An example of an animal monitoring system that used a new de-

cision tree algorithm for real-time classification of feeding and rumi-

nating behaviors in dairy cows was provided by Benaissa et al. [21]

. Data for the model were collected using a neck-mounted accelerom-

eter. Each cow wore two devices: a RumiWatch halter, intended for

automated ruminant health monitoring, and an accelerometer.

A recurrent neural network (RNN) model to detect and recog-

nize calving-related behaviors was developed by Peng et al. [92].

This model utilizes inertial measurement unit (IMU) sensors, includ-

ing a three-axis accelerometer, gyroscope, magnetometer, and a wire-
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less Bluetooth connection. Data were collected from three expectant

Japanese Black Beef Cattle, paired in two barns, with IMU sensors

attached to their collars. The RNN classified behaviors such as feed-

ing, lying and standing rumination, lying, and standing. Additionally,

it monitored lying and standing behaviors during the 24 hours before

calving, as these behaviors typically change as calving approaches.

Monitoring calving is crucial in extensive systems, where the high-

est calf mortality rates occur due to the lack of immediate assistance

during difficult births. Smith et al. [114] used behavior monitoring col-

lars equipped with a 20-channel GPS, a 915 MHz microprocessor and

transmitter, a 4 GB micro-SD card for data storage, and a Honeywell

compass module HMC6343 with a three-axis MEMS accelerometer

and a three-axis magnetoresistive sensor on dairy cows. The inertial

measuring unit was the compass module of the behavior monitoring

collars (IMU), which measured acceleration in a three-axis system: x-

axis (forward-reverse), y-axis (left-right), and z-axis (up-down). The

device proposed by Smith et al. [114] performed behavior classification

using only accelerometer data.

2.3.1 Sampling Rate and Data Collection

The sampling rate of accelerometers in devices used to monitor an-

imal behavioral activities significantly impacts both battery life and

the accuracy of behavior detection. High sampling rates allow for the

collection of extensive information, resulting in more samples, but they

reduce battery life. Conversely, low sampling rates extend battery life

but may not provide data of sufficient quality for accurate behavior

classification, as shown by Benaissa et al. [21]. In the literature, ac-
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celerometer sampling rates for monitoring animal behavior range from

1 Hz [43] to 100 Hz [5]. Most studies focus on a sampling frequency

between 10 Hz and 25 Hz. A common sampling frequency is 20 Hz,

as demonstrated by Y. Peng et al. [92]. They used IMU sensors with

a wireless Bluetooth connection to a computer, set to collect 9-axis

data points and transmit them at 20 Hz. The battery life of the IMU

sensors was approximately one week. Riaboff et al. [101] used a sam-

pling frequency of 59.5 Hz, with the observation period lasting around

3-4 days. In Simanungkalit et al. [113], the battery life was slightly

longer. They used four 3-dimensional accelerometers with a sampling

rate of 25 Hz, embedded in ear tags. These tags were removed at

the trial’s end, and data were downloaded using proprietary software.

The expected battery life was about 28 days. Smith et al. [114] set

collars to collect accelerometer data at 10 Hz. The data were stored

on an onboard 4 GB micro-SD card and downloaded after the trial.

The effective battery life was approximately 14 days.

Recently, studies have reported using frequencies of 4 Hz [93, 32].

These studies will be described in the following chapters, because they

are the study case of this thesis.

2.3.2 Data Analysis

The data needed to study animal behavioral activities were collected

during experimental trials using the sensors described previous sec-

tions and subsequently processed. The main phases of data processing

are as follows:

Pre-processing, which typically includes:

• Filtering: To remove noise or minor behaviors.
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• Data augmentation: Techniques to artificially increase the

amount of data by adding slightly modified copies of the original

data.

• Grouping samples in windows: To extract more significant in-

formation from groups of samples rather than single samples.

• Feature selection and computation: To select and compute the

subset of relevant features used in model building.

• Dataset splitting into subsets: To determine which portion of

the dataset to use for training and which for testing the model’s

performance.

• Recognition: Involves classifying the behaviors of the subjects

using the information from the previous steps. This process is

performed by a specific model or method. State-of-the-art appli-

cations use various methods, including threshold identification,

statistical analyses, and more recently, machine and deep learn-

ing techniques.

Over time, various techniques have been employed to process the

acquired data and extract knowledge. Most studies focus on using

accelerometers, which collect time series data representing acceleration

values at each instant. Several methods exist for processing time series

data, but the most commonly used in PLF research can be categorized

into six main groups [102] (Summarized in Table 2.3):

• Statistical Model (SM): Provides a set of statistical assumptions

about how sample data are generated, defining a mathematical

relationship between random and non-random variables.
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• Manual Thresholding (MT): Widely used for its simplicity, cru-

cial for devices with limited computational capabilities and

energy-saving requirements. Thresholds are determined using

descriptive statistics such as medians, means, maximum, and

minimum values from the dataset.

• Machine Learning (ML): A subset of AI focused on creating

systems that learn or improve performance based on data. It

includes:

– Supervised Machine Learning (SML): Uses labeled data as

input for tasks like classification.

– Unsupervised Machine Learning (UML): Uses unlabeled

data to reclassify and organize inputs based on common

features, extracting unknown information.

– Supervised Ensemble Machine Learning (SEML): Com-

bines predictions from multiple models to improve overall

performance.

• Deep Learning (DL): A type of ML based on artificial neural

networks (ANN), which use multiple processing layers to ex-

tract progressively higher-level features from data. Popular DL

algorithms include:

– Multi-layer perceptron (MLP): A feedforward ANN with

an input layer, one or more hidden layers, and an output

layer, fully connected between layers.

– CNN, also known as ConvNet, is a type of feed forward neu-

ral network that excels at processing input with a grid-like
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architecture, such as images. To summarize the process,

neurons in a CNN receive inputs, perform scalar products

using weights learned throughout the training, and then

apply a non-linearity function to the created result. The

CNN’s distinctive aspect is the convolution layer, which

divides the input into several little parts and then superim-

poses a filter called the kernel. As a result, each component

can be used to extract features, or the main characteristics

of the input data.

– Recurrent Neural Network (RNN): this type of artificial

neural network (ANN) differs from other networks by in-

corporating cycles within its architecture. In RNNs, the

output from certain layers is fed back as input to the same

layer or lower layers, creating feedback loops. This inter-

connection enables one layer to function as state memory,

allowing the network to model dynamic temporal behaviors.

By providing a temporal sequence of values as input, RNNs

can utilize information from previous time points to influ-

ence current processing, effectively capturing dependencies

over time.
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Technique Sub-Type Methods References

Threshold meth-

ods

Logistic Regression (LR), Hidden

Markov Models (HMM), Linear

Mixed Models

[93, 9]

Statistical mod-

els

- Linear Discriminant Analysis

(LDA), Quadratic Discriminant

Analysis (QDA), Support Vec-

tor Machine (SVM), k-Nearest

Neighbour (k-NN), Näıve Bayes

models (NB), Decision Trees

(DT)

[114, 78]

Machine learning

Supervised Linear Discriminant Analysis

(LDA), Quadratic Discriminant

Analysis (QDA), Support Vec-

tor Machine (SVM), k-Nearest

Neighbour (k-NN), Näıve Bayes

models (NB), Decision Trees

(DT)

[112, 119]

Unsupervised k-means [62]

Ensemble Random Forest (RF), Extreme

Gradient Boosting (XGB), Ad-

aboost (ADA)

[101, 17]

Deep learning Multilayer Perceptions (MLP),

Convolutional Neural Networks

(CNN), Recurrent Neural Net-

works (RNN), Long short-term

memory (LSTM)

[22, 89]

Table 2.3: Methods used for the processing of data acquired through

accelerometers to detect cow behaviour.
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2.4 GPS-based automatic monitoring

systems

As reported in section 2.1, one of the most used devices to monitor

cows on extensive farms are GPS. In the state-of-the, GPS devices

have been utilized to prevent cattle theft. For instance, in one study,

a GPS collar connected to the Global Mobile Communication System

(GSM) was used to monitor animals via a software application. This

application notified the farmer when an animal crossed a virtual fence

representing its grazing area [104]. Porto et al. [93] introduced a tech-

nique for tracking cows in a cow-calf operation using GPS, collecting

data at 20-minute intervals.The goal was to identify the animals’ lo-

cations and determine the agricultural land regions where they spend

the most time. The designed system will be described in the next

chapter. Monitoring cow positions is vital for understanding the en-

vironmental impact of grazing and enhancing routine farm manage-

ment. Additionally, GPS-based devices can identify a cow’s estrus

period, marked by increased walking activity, and address the issue of

animal theft in real-time. Hassan-Vàsquez et al. [57] examined the

environmental impact of livestock production, focusing on the capabil-

ity of commercial GPS collar data, combined with farm characteristics

and meteorological conditions, to map the distribution of cow dung in

paddocks. In this study, seven animals were tracked using commer-

cial GPS collars equipped with a GPS unit, a lithium battery pack,

and a Sigfox communications module. These collars transmitted the

animals’ positions to a server in near real-time, with location fixes

obtained every 30 minutes when Sigfox coverage was available. Mili-
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ward et al. [82] investigated cattle distribution across the landscape

using a GPS tracking-based system. The study aimed to evaluate

the suitability of guidelines proposed by Holecheck et al. [60], which

are designed to assist farmers in managing stocking rates. A critical

issue in such applications is the communication network, as many ru-

ral areas worldwide still lack efficient and reliable telecommunication

infrastructure [93].

2.4.1 Sampling Rate and Data Collection

In GPS-based monitoring systems, the time acquisition interval sig-

nificantly affects the precision of the distance traveled by cows, the

battery life, and the responsiveness of farmers to theft and trespass-

ing incidents [79]. Long intervals between data transmissions increase

the risk of data loss, which can undermine the efficiency of the device.

Typically, GPS-based devices use sampling intervals ranging from 1

to 60 minutes. The system developed by Porto et al.[93] enabled long-

term monitoring of animals by collecting waypoints (latitude and lon-

gitude), the date and time of the survey, and the distance traveled

by each cow. The data acquisition interval was set at 20 minutes to

balance battery life and the ability to conduct further analyses in a Ge-

ographical Information Systems (GIS) environment, such as applying

Kernel Density Estimation (KDE) algorithms. The device transmit-

ted position information to a cloud server via the Sigfox telecommu-

nication network. Tangorra et al. [118] utilized a GPS/GSM collar

prototype with commercial hardware and customized software to track

animal movements beyond their grazing area and provide alerts when

animals trespassed virtual boundaries. The system featured a stan-
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dard customizable embedded firmware layer supporting the hardware

components, allowing GPS acquisition intervals to be set between 1

second and 1 hour. Maroto-Molina et al. [77] created a low-cost

IoT-based system for monitoring herd locations, using GPS collars

connected to a Sigfox network and low-cost Bluetooth tags. To con-

serve battery life, collars transmitted data at 30-minute intervals. In

contrast, Millward et al. [82] set GPS sensors to acquire and send

animal locations at 5, 10, or 15-minute intervals.

2.4.2 Data Analysis

The data collected by GPS sensors are primarily analyzed using sta-

tistical and geospatial tools, such as GIS tools, which facilitated data

processing and visualization at the territorial level. Recently, cluster-

ing methods from the unsupervised machine learning (UML) category

have been applied to process data acquired through GPS sensors. Xu

et al. [129] used unsupervised machine learning algorithms to ana-

lyze location data to understand the social structure of a small cattle

group and individual social behaviors. K-means clustering, based on

logical and physical distance, was employed. By comparing clustering

results based on logical and physical distances, the study identified

leader animals and their influence on individuals within a cattle herd,

providing valuable insights into animal herd behavior.
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2.5 GPS and Accelerometer Combined

Systems

GPS technology alone is inadequate for comprehending the behav-

ioral patterns of grazing livestock. Consequently, researchers have ex-

plored the integration of GPS sensors with accelerometers to develop

more comprehensive monitoring systems. By incorporating motion

sensors into GPS devices, it is possible to effectively assess key be-

havioral parameters, such as feeding, walking, and lying, in relation

to the grazing conditions. As reported by Bailey [16] the combined

application of GPS tracking and accelerometer data can facilitate the

identification of behavioral alterations associated with animal health

issues and welfare concerns. Such integrated systems possess the po-

tential to support farmers in making informed agricultural manage-

ment decisions, such as feed supplementation. Brennan et al. [28]

undertook a study to assess the efficacy of a low-cost, experimentally

developed GPS collar equipped with a high-frequency three-axis ac-

celerometer in predicting routine cattle behavior. To understand the

correlation between bovine behavior and pasture attributes Riaboff et

al. [100] conducted a study by employing a combination of accelerom-

eter and GPS data collected through a collar-mounted RF-Track 3D

accelerometer and GPS sensor. Dutta et al [44] employed various ma-

chine learning algorithms to classify cattle behavior patterns derived

from collar-mounted systems incorporating a three-axis accelerome-

ter, magnetometer, and GPS. Their findings indicate that supervised

machine learning methods can accurately categorize bovine behaviors

based on these data.
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2.5.1 Sampling Rate and Data Collection

As reported several research studies have highlighted the development

of integrated systems. For instance, González et al. [56] utilized col-

lars to track the location and behavioral activities of cows. In their

study, GPS data were collected at a frequency of 4 Hz (resulting in

approximately 345,000 data points per day), while accelerometer data

were recorded at 10 Hz (about 862,500 data points per day). These

data were stored on a memory card embedded in the devices and were

downloaded at the end of the experiment, with the battery life of the

device lasting around 12 to 14 days. Continuing in this vein, Dutta

et al. [44] used similar collars for tracking both location and behav-

ior, which included a GPS, a 3-axis accelerometer, a 3-axis magneto-

resistive sensor, and a 4 GB micro-SD card for data storage. In their

study, GPS data were also collected at 4 Hz, while accelerometer data

were captured at 10 Hz. Additionally, grazing behavior was moni-

tored using the WhatISee digital application. After the experiment,

data were stored on an SD card and later downloaded, with the de-

vice’s battery life lasting around 12 days. Similarly, Brennan et al. [28]

fitted tracking collars with a GPS data logger and a high-frequency

accelerometer. In this study, the GPS logger was configured to record

a location fix (latitude/longitude) every minute, while the accelerom-

eters captured data at a rate of 12 Hz. The accelerometer data were

stored on an onboard 8 GB micro-SD card and were downloaded at the

end of the trial. Notably, the battery life of these devices, supported

by two independent batteries, extended to around 50 days.
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2.5.2 Data Analysis

The studies documented in the literature primarily employed statis-

tical models and machine learning methods to analyze data collected

from devices equipped with GPS and accelerometer sensors, as pre-

viously mentioned in the sections discussing GPS and accelerometer

technologies.

For instance, Gonzàlez L. et al. [56] developed an algorithm to

classify data from collars into five distinct behavioral activities, with

the objective of determining the proportion of daily time that individ-

ual animals spent on each activity. Their approach involved using two

different datasets during the experimental trial. Initially, data from

accelerometers and GPS were aggregated by calculating the mean and

standard deviation (SD) over 10-second intervals. The first dataset,

which included a subset of data where behavioral activities were iden-

tified based on visual observations, was utilized to identify differences

between activities using sensor data, to analyze frequency distribu-

tions (histograms) of data across different activities, to select variables

appropriate for decision tree models, and to construct conceptual de-

cision trees. The second dataset, encompassing all data related to

unknown behavioral activities, was employed to fit probability den-

sity functions within mixture models, enabling the determination of

threshold values to distinguish between different populations of data

points.

Building on this, Cabezas et al. [31] aimed to create a general

methodology for recognizing various activities using data from ac-

celerometers and GPS sensors. In their study, accelerometer signals

were collected and analyzed for each axis individually, resulting in
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the extraction of 108 temporal and frequency domain features. They

matched a total of 238 activity patterns, such as grazing, ruminat-

ing, lying down, and standing still, with raw accelerometer data cap-

tured on video. These accelerometer signal features were then used

to train a Random Forest (RF) algorithm for categorizing behavioral

patterns, while GPS position data were analyzed using an Unsuper-

vised Machine Learning (UML) technique to detect abnormal activity

patterns. For this purpose, they opted for the k-medoids clustering

method instead of k-means, due to its greater stability in the presence

of outliers.

Similarly, Dutta et al. [43] proposed the integration of a temper-

ature sensor, a GPS module, and a 3-axis accelerometer. In their

study, datasets from all the animals were utilized daily, and all the

acquired data were integrated without applying any filtering. After

the data collection phase, the most relevant attributes were selectively

extracted to enhance data interpretation. Each dataset included sen-

sor readings for temperature, walking speed, and acceleration along

the X, Y, and Z axes. The researchers employed Extreme Gradient

Boosting (XGBoost) and Random Forest classifiers to categorize be-

haviors such as ’standing’, ’lying’, ’standing and ruminating’, ’lying

and ruminating’, ’walking’, and ’walking and grazing’.

In another study, Brennan et al. [28] chose four classification algo-

rithms—Random Forest (RF), Linear Discriminant Analysis (LDA),

Quadratic Discriminant Analysis (QDA), and Support Vector Ma-

chines (SVM)—to predict livestock behavior. The response variable

was livestock behavior, and the predictors were metrics derived from

accelerometer and GPS data. The datasets used to build these models

comprised data that included observational, GPS, and accelerometer
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information. The algorithms were employed to classify behavior as

either grazing or non-grazing. To validate the accuracy of each model,

a validation set technique was used, which involved randomly parti-

tioning each dataset for train and test set.

Lastly, Riaboff et al. [100] focused on exploring the relationship

between cows’ behaviors and pasture characteristics. Their study was

divided into two phases: first, the classification of cows’ behaviors,

and second, the calculation of time budgets spent in each zone by each

cow per day and behavior. Behavior prediction was conducted across

six different classes using Extreme Gradient Boosting (XGB), as pro-

posed in a previous study [101]. The classification involved grouping

accelerometer data into windows, after which predicted behaviors in

successive windows for the same cow were smoothed using the Hidden

Markov Model (HMM)-based Viterbi algorithm. These predicted be-

haviors were then combined with GPS data to calculate time budgets

in each zone. To further investigate the relationship between time

budgets and pasture characteristics, a Linear Mixed Model (LMM)

was applied.

2.6 Conclusions

This chapter reviewed ICT technologies for monitoring cattle welfare

in extensive farming systems. IoT-based sensors, such as GPS and ac-

celerometers, enable continuous and automated monitoring of animal

behavior, providing valuable data on activities like feeding, rumina-

tion, walking, and resting. These data, processed with advanced algo-

rithms, can significantly enhance farm management while reducing the
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need for manual observations. Despite the advancements, challenges

remain in applying these technologies to extensive environments, in-

cluding battery life, network coverage, and data collection frequency.

Further research is needed to optimize these solutions, improve device

energy efficiency, and refine behavioral algorithms. In the next chap-

ters, case studies will be described that represent animal monitoring

solutions in extensive farming, paying attention to the challenges still

present in the field of grazing monitoring. In summary, integrating

advanced ICT technologies with precision livestock farming presents

a significant opportunity to enhance animal welfare monitoring and

farm management in extensive systems.
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CASE STUDIES OF SENSOR-BASED

MONITORING SYSTEMS

In the previous chapter, we explored sensor-based automatic cow

monitoring systems, as presented over the years in the state of the art.

In this section, we describe case studies focused on cow monitor-

ing, divided into two categories: accelerometer-based and GPS-based

systems. Chapters 3, 4, 5, and 6 present accelerometer-based case

studies, while chapters 8, 7, and 9 cover GPS-based case studies.
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CHAPTER

THREE

COW BEHAVIOURAL ANALYSIS BY

DETERMINATION OF

STATISTICAL ACCELERATION

THRESHOLDS

3.1 Overview

As reported in Chapter 2, in recent years the use of wearable sensors

have proven to be valuable tools in livestock farming. Therefore,the

use of non-invasive IoT sensors in precision livestock farming has in-

creased, enabling the collection of large data volumes and automa-

tion of animal health and welfare monitoring, especially in extensive

farms. Accelerometers, popular for monitoring livestock movements,

were used in this study to establish acceleration thresholds for auto-

matic detection of cow behaviours, aiming to reduce human interven-

37
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statistical acceleration thresholds

tion and improve livestock management.

3.2 Materials and Method

3.2.1 The herd considered in the research study

The experimental trial was carried out in an existing 180 hectares

semi-natural pasture characterized by good availability of meadow and

cultivated grazing areas. The breeding system adopted is that of the

cow-calf line, that involves keeping calves with mothers during the lac-

tation period until weaning (6/8 months). It can take place entirely

outdoors, with cows living in pastures all year. During the summer,

from 7:00 to 18:00, cows stayed near the farmer house in a large en-

closure of about 2 ha 3.1 where there are several watering tanks while

in the rest of the day and night they are moved to the pasture. In this

study a 19-month-old cow, which is part of a group of 10 Limousines,

was monitored.

3.2.2 Device and data acquisition

A customized device (Fig. 3.2) was built to carry out the experimen-

tal activities of this research study and it was equipped with: tri-

axial MEMS accelerometers, omnidirectional antennas, 32-bit Cortex

Microcontroller, GSM/GPRS quad band modules, Li-SOCL2 high-

capacity battery and flash memories. This device, protected by a rigid

case, was put to the collar of the monitored cow ( Fig. 3.2) adopting a

leather-reinforced mesh collar. The case containing the electronic de-

vice was fixed to the collar by using electrical clamps and duct tape.
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Figure 3.1: Large enclosure near the farmer house where cows stayed

during the day

To limit the rotation of the device around the cow’s neck, a weight

of 1 kg was attached into the collar. The distance of the device from

the weight was chosen to detect the accelerations coming from the jaw

oscillations during the rumination phase.The acceleration components

along the x, y, and z axes were acquired with a frequency of 4 Hz and

recorded in the internal memory of the devices. Through the GSM

communication module, the data collected were sent to a cloud, one

time an hour, for their processing and display through a Web App,

as depicted in Fig. 3.3 developed for the management of the dataset

used in the subsequent labeling phase.

3.2.3 Dataset and labeling

The behavioral activities analyzed in the present study were rumina-

tion in standing position (R), lying (L), lying with rumination (L-R),
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Figure 3.2: a) Customized device equipped with triaxial accelerome-

ters b) Device attached to the cow collar.

walking (W), feeding (F), feeding and walking (F-W), feeding to the

manger (FM) and drinking (D). These behavioral activities of the

monitored cow were observed in two different time intervals: the first

in May 2021, for 5 days and the second in June 2021 for 4 days. It

was not possible to extend the duration of data acquisition for each

time interval because the battery was discharged. The device used in

this study is an experimental prototype that use the GSM network,

which is highly energy-intensive in the phase of sending accelerometer

data to the cloud. The acquired acceleration data were labeled by us-

ing video-labeling technique, that is the recognition of the behavioral

activities carried out by the cow through the analysis of video record-

ings acquired during the observation periods. Video recordings of the

monitored cow were taken daily in the coolest hours of the day, in the

morning from 6:00 to 09:59 and in the afternoon from 18:00 to 21:00.

To increase battery life the device entered in sleep mode from 10:00

to 17:59 (Fig. 3.3). A free third-part app was used to apply times-
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Figure 3.3: Graph of acquired data. To increase battery life the

device entered in sleep mode from 10:00 a.m. to 17:59.

tamp in each frame. This made it possible to synchronize the video

recordings with the accelerometer data that the device periodically

sent to the cloud.By carrying out the visual analysis of the acquired

video recordings, it was possible to label the accelerometer data by

indicating the observed behavioral activities of the cow ( Fig. 3.4).

During the visual analysis of the video recordings, and the related la-

beling phase, occurrences of minor behavioral activities were observed

such as brusque movements of the ears to ward off flies, brusque move-

ments of the head backwards to scratch or lick itself, sniff the ground

before positioning itself in lying. Therefore, to reduce the incidence

of outliers in the acceleration dataset, it was necessary to delete the
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acceleration values related to these minor behavioral activities.

Figure 3.4: Example of the acquired dataset. In the first column

there is the timestamp, in the next three columns there are the ac-

celerometer data (mg) measured along the three axes and then the label

such as W (Walking), F (Feeding), R (Rumination) etc. The behavior

label is associated for each sample.

3.2.4 Data analysis

Data analysis began with descriptive statistics, such as the mean, max-

imum, minimum, and standard deviation values of the accelerations

detected along the x, y, and z axes, grouped by behavioral activities

and observation days. These statistics provided a foundational un-

derstanding of the data distribution and variability for each activity

and helped identify initial patterns or anomalies in the acceleration

data. Subsequently, an Analysis of Variance (ANOVA) test was con-

ducted. The ANOVA test is a statistical method used to compare

means across multiple groups to determine if there are any statisti-

cally significant differences between them. The goal was to identify

statistically significant differences in the accelerations detected along
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each axis (x, y, z) for different behaviors. By performing the ANOVA

test, researchers were able to define the range of accelerations for each

axis and ascertain whether the observed variations between the behav-

iors were greater than what could be expected due to random chance.

The ANOVA test compared the medians of accelerations acquired per

second (with a sampling frequency of 4 Hz) for each behavior. This

approach provided a robust measure, mitigating the impact of outliers

and extreme values. The ANOVA test evaluates the null hypothesis

that the group medians are equal for each axis, using the F-statistic

calculated as follows:

Median(Xij) = median({Xij1, Xij2, Xij3, Xij4}) ∀i ∈ {1, . . . , 8}, j ∈ {x, y, z}

F =

∑︁8
i=1 ni(X̄i−X̄)2

k−1∑︁8
i=1

∑︁ni
j=1(Xij−X̄i)2

N−k

where:

X̄ =
1

N

8∑︂
i=1

ni∑︂
j=1

Xij,

X̄ i =
1

ni

ni∑︂
j=1

Xij,

N =
8∑︂

i=1

ni, k = 8.

After identifying significant differences with the ANOVA test,

Tukey’s Honest Significant Difference (HSD) test was performed for
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pairwise comparisons between the behavioral groups. The Tukey test,

a post-hoc analysis, determines exactly which group means differ from

each other and controls the family-wise error rate, reducing the like-

lihood of falsely identifying a significant difference. In this study, the

Tukey test was applied separately for each axis (x, y, z) to identify any

overlaps between the behavioral groups and to determine which axes

could effectively discriminate between the different behaviors. This

analysis was crucial in understanding which directions of movement

were most indicative of specific activities, thereby providing insights

into how each behavior could be characterized and differentiated based

on the acceleration data. The Tukey HSD test calculates the critical

value for significant differences between group means:

HSD = qα,k,N−k ·
√︃

MSW

n

where:

• qα,k,N−k is the Studentized range distribution critical value for

the significance level α, with k = 8 groups and N − k degrees of

freedom,

• MSW is the Mean Square Within (from ANOVA),

• n is the number of observations per group.

For each pair of groups i, j, if the absolute difference of their means

|X̄ i − X̄j| exceeds the HSD, the difference is considered statistically

significant:

|X̄ i − X̄j| > HSD.
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These statistical analyses provided insights into which directions

of movement were most indicative of specific activities, helping to

characterize and differentiate behaviors based on acceleration data

effectively.

3.3 Results and discussion

From the analysis conducted it was possible to identify the accelera-

tion components required in order to define thresholds to be able to

discriminate cow behavioral activities. Table 3.1 shows, for the x-axis,

the results of the ANOVA test conducted for each behavior. Table 3.4

and Fig.3.5 a show the results of Tukey’s test for the x axis, and as

it can be observed, when considering only the x axis, some behavioral

classes overlap, such as: rumination (R) and feeding to manger (FM),

lying with rumination (L-R) and walking (W), drinking (D) and ly-

ing (L). Acceleration along x-axis made it possible to discriminate

only the feeding activity, either in standing or walking position. The

ANOVA test results for the y-axis are shown in Table 3.2 while Table

3.4 and Fig. 3.5b show the results of Tukey’s test for y-axis. Unlike x-

axis component, there are no overlapping areas among the behavioral

activities. The same analysis was carried out for the z-axis. Table

3.3 shows the results of to the ANOVA test, while the results of the

Tukey test are shown in the Table 3.4 and in the Fig. 3.5c. Similarly,

to the case of the x-axis, there are some overlapping values among the

behavioral classes when considering only the z-axis and this occurred

for lying with rumination (L-R) and rumination (R) and feeding to

manger (FM), walking (W) and drinking (D). Acceleration along z-
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axis made it possible to discriminate lying (L) and the feeding activity,

either in standing(F) or walking position (F-W). The Table 3.5 sum-

marize the analysis carried out and it does not show the drinking (D)

behavior because the number of samples (N) of these behavioral activ-

ities in the whole dataset is strongly unbalanced with respect to the

other behaviors. The study showed ( Tab.3.5) that the components

to be considered in terms of accelerations for the detection of cattle

behavior are: x and y axes for rumination(R), y for feeding to manger

(FM), y and z (uncertain) for lying with rumination (L-R), y and z

for walking (W), all three axes for lying (L), feeding (F) and feeding

with walking (F-W). The results of this experimental activity are a

first step forward the determination of acceleration thresholds for the

automatic detection of the behavioral activities of grazing livestock.

Table 3.1: Results of the Anova test for x-axis, grouped by behavior

Median label N Mean StDev 95% CI

L 977 907.10 115.07 (902.05; 912.15)

L-R 1408 934.31 51.01 (930.10; 938.52)

D 94 908.39 43.62 (892.11; 924.66)

F 1504 803.96 103.85 (799.89; 808.03)

FM 1234 952.31 39.77 (947.82; 956.80)

R 2127 956.875 30.309 (953.45; 960.29)

W-F 4073 782.31 93.00 (779.83; 784.78)

W 1540 933.18 87.76 (929.15; 937.20)
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Table 3.2: Results of the Anova test for y-axis, grouped by behavior

Median label N Mean StDev 95% CI

L 977 -103.06 194.07 (-122.58; -93.55)

L-R 1408 -40.12 174.94 (-48.50; -32.30)

D 94 -322.6 141.0 (-353.30; -291.90)

F 1504 -538.20 163.71 (-545.87; -530.53)

FM 1234 17.32 143.26 (8.85; 25.78)

R 2127 -6.15 112.68 (-12.60; 0.30)

F-W 4073 -585.11 121.33 (-589.77; -580.45)

W 1540 -151.12 203.91 (-158.70; -143.54)

Table 3.3: Results of the Anova test for z-axis, grouped by behavior

Median label N Mean StDev 95% CI

L 977 169.91 232.18 (162.41; 177.41)

L-R 1408 196.06 131.22 (189.82; 202.31)

D 94 119.82 93.90 (95.64; 144.00)

F 1504 -72.15 129.37 (-78.19; -66.10)

FM 1234 192.78 77.84 (186.10; 199.45)

R 2127 195.67 66.95 (190.58; 200.75)

F-W 4073 -105.62 98.16 (-109.29; -101.95)

W 1540 152.60 130.39 (146.63; 158.58)
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Table 3.4: Results of the Tukey test for all axes

Median label Grouping X Grouping Y Grouping Z

R A A A

FM A B A

L-R B C A

W B D B

D B C E C

L C F C

F D G D

F-W E H E

Table 3.5: Accelerometer axes to be considered for the detection of

cattle behavior

Behavior Acceleration component

x y z

R Required Required Not required

L-R Not required Required Uncertain

W Not required Required Required

L Required Required Required

F Required Required Required

F-W Required Required Required

FM Not required Required Not required
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Figure 3.5: Interval plot of medians for x-axis (a), y-axis (b), z-axis

(c), grouped by behavior.

3.4 Conclusions

Indicators based on cow behavioral activities are relevant to evaluate

physiological and physical status of animals, especially in the case of

extensive farms where there is an infrequent farmer-to-animal contact.

Feeding, rumination, lying and walking are the main daily activities

of grazing cattle that should be monitored to ensure the maintenance

of animal welfare as well as to improve herd management. The use
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of motion sensors can provide a valuable method for monitoring ani-

mal activities and determining the time budget spent in daily activi-

ties, such as for example the evaluation of the feeding and ruminating

period, the early detection of abnormalities in walking, the onset of

oestrus. Given the promising results of this work, future developments

will regard the analyses of multiple data coming from a larger group

of animals and the use of machine and deep learning techniques to be

able to establish, in a completely automatic process, the thresholds

for the discrimination of cow behavioral activities.
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CHAPTER

FOUR

COW BEHAVIORAL CLASSIFICATION BY

CONVOLUTIONAL NEURAL NETWORKS

4.1 Overview

In the previous chapter the topic of determining acceloremetric thresh-

olds was addressed, in order to determine the behavior of cows on

pasture, through statistical analysis. In this chapter we will deal with

automatic behavior detection using Deep Learning, in particular Con-

volutional Neural Networks.
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4.2 Materials and Method

4.2.1 Data acquisition

The data required to classify grazing cow behaviors were acquired by

a customized device equipped with tri-axial MEMS accelerometers,

described in Chapter 3. This study monitors two 19-month-old cows,

which are part of a group of 10 Limousines replacement heifers. The

experimental site and the data acquisition period are the same as the

previous case study.

4.2.2 Pre-processing

Collected data are pre-processed to normalize the statistical distribu-

tion and to remove samples or sequences of samples that clearly repre-

sent outliers. Examples of outlier values, in the acquired dataset, were

determined by minor cow behaviors, such as ear movement or chasing

flies; they acted as an interruption of the observed behavioral activities

and therefore introduced noise into the dataset. Sometimes between

the end of one video (used for manual labeling) and the beginning of

the next, there were discontinuities in labeling. If such discontinuities

are shorter than 2 seconds (8 samples at 4 Hz), they were corrected,

and the corresponding labels replaced by the one identified by the op-

erator before and after the discontinuity. Data are provided to the

classification model in windows of 20 samples (5 seconds) with con-

sistent labels, so that each window can be assigned a single behavior

class. After splitting the dataset into training, validation, and test

sets (described in the next section), Z-score normalization is carried

out for each axis.
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4.2.3 Model and training procedures

The developed model is a Convolutional Neural Network with 1D

convolutions. One-dimensional Convolutional Neural Networks (1D

CNNs) are a type of neural network architecture particularly suited

for processing sequential data. Unlike traditional 2D CNNs, which

operate on two-dimensional input data (e.g., images), 1D CNNs apply

convolutional operations across one dimension, making them ideal for

analyzing time series, audio signals, and other sequential data.

A typical 1D CNN architecture consists of:

• Convolutional layers: These layers apply 1D convolutional fil-

ters (kernels) to the input data. The output of a 1D convolution

operation for an input sequence x = [x1, x2, . . . , xn] with a filter

w = [w1, w2, . . . , wk] is given by:

(x ∗ w)i =
k∑︂

j=1

xi+j−1 · wj

where i ranges over the valid positions in the input sequence,

and ∗ denotes the convolution operation.

• Pooling layers: Pooling layers, such as max-pooling, are used

to reduce the dimensionality of the feature maps while preserving

the most important features. For max-pooling with a pool size

p, the operation is defined as:

yi = max(xi·p, xi·p+1, . . . , xi·p+p−1)

where yi is the pooled output.
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• Fully connected layers: After several convolutional and pool-

ing layers, the network may include fully connected (dense) lay-

ers. These layers flatten the input and connect every neuron

to the previous layer’s neurons, enabling the network to make

final predictions. The output of a fully connected layer can be

represented as:

z = W · a+ b

where W is the weight matrix, a is the input vector from the

previous layer, and b is the bias vector.

1D CNNs are widely used in applications such as time-series fore-

casting, speech recognition, and biological sequence analysis, where

understanding patterns in sequential data is crucial.

The developed model was designed to process input data sequences

using several parallel branches, each of which analyzed different com-

binations of axial measurements (see Fig. 4.1). These branches were

organized as input feature channels, allowing the model to simultane-

ously learn from multiple perspectives of the data. The fundamental

idea behind this design is to encourage the model to learn meaning-

ful and distinct features from each axis of measurement (x, y, z) by

implementing an inhibition mechanism. This mechanism selectively

excludes data from certain subsets of axes during the training pro-

cess, effectively forcing the model to become robust in recognizing

patterns even when information from some axes is missing. This ap-

proach was motivated by the findings from preliminary experiments

described in Chapter 3. These experiments demonstrated that for cer-

tain behavioral activities, the accelerations along all three axes were

not necessary for accurate recognition. In some cases, the model was
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able to achieve high performance using only data from two of the three

axes, suggesting that not all axes contribute equally to the recognition

of specific behaviors. Based on this insight, the model was designed to

ensure that part of the features it extracts are dependent on specific

inputs from selected axes only, rather than requiring all three axes. To

implement this, the model architecture included multiple branches of

1D convolutional layers, each tailored to process input samples from

specific subsets of axes. For all possible combinations that included

at least two axes, a separate branch was constructed. For example,

one branch might process only the x and y axes, another might handle

the y and z axes, and so on. This design allows the model to learn

localized patterns from these specific subsets, enhancing its ability

to recognize behaviors that might be predominantly characterized by

movement along particular axes. Additionally, to account for features

that might be associated with individual channels, the model incor-

porated a branch where the convolutional kernels were shared across

all channels. This branch was designed to capture global relation-

ships that span all three axes, thereby enabling the model to learn

axis-agnostic features that are invariant to the choice of axes. This

is particularly useful for recognizing behaviors that are not specific to

any single direction of movement but rather involve a combination of

movements across all axes. The model also included a final branch

that processed the entire input data, using all three channels (x, y,

and z) simultaneously. This branch aimed to learn the most com-

prehensive feature representations by considering the full spectrum of

input data without any exclusions. By integrating this branch, the

model can capture complex patterns that require information from all

three axes to be accurately understood. After the initial processing
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in these parallel branches, the features extracted from each branch

were concatenated to form a unified feature representation. This com-

bined feature vector was then further processed by a sequence of addi-

tional convolutional layers, which were interleaved with max pooling

blocks to progressively reduce the dimensionality of the feature space.

The max pooling layers help in down-sampling the data, preserving

only the most salient features and thereby reducing the computational

complexity of the model. Finally, the features were flattened into a

one-dimensional vector and fed into a linear classifier for the final pre-

diction. This classifier, typically a fully connected dense layer, takes

the high-level features produced by the convolutional layers and maps

them to the output classes corresponding to the recognized behav-

ioral activities. The overall architecture of the model, including the

structure and connectivity of each convolutional layer, is illustrated in

Figure 4.1, which provides a visual representation of how the various

components are integrated to work together in processing the input

data sequences.

Each convolutional layer was followed by batch normalization and

hyperbolic tangent as activation function. As a regularization method,

Dropout is employed before the classification layer. The model was

trained for 70 epochs with AdamW (Loshchilov and Hutter, 2019) op-

timizer with a learning rate of 10-5 and 5×10-3 weight decay. As a

classification loss function, cross-entropy was employed. In order to

deal with class imbalance, weighted random sampling was performed

at training time, so that the model received on average the same num-

ber of inputs from each class, with repetitions.
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Figure 4.1: Architecture of the proposed model to classify cow be-

havioral activities

4.3 Results and Discussion

Due to the different time spent by cows in each monitored behavioral

activity during the time intervals of observation, samples related to

the behavioral classes were unbalanced (Tab.4.1). Therefore, we re-

port results in terms of average precision, recall and F1 score over

classes, weighted by number of samples in each class, employing 10-

fold stratified cross validation. At each cross-validation iteration, 10%

of the training data are used as a held-out set to perform model se-
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lection among instances at different epochs. Results were reported in

terms of mean and standard deviation over the 10 folds.

Table 4.1: Behavior samples and their percentages

Behavior Samples Percentage (%)

Feeding in standing position (F-s) 12185 15.17

Walking (W) 15498 19.30

Feeding while walking (F-W) 16222 20.19

Lying (L) 9194 11.45

Rumination in lying (R-L) 27220 33.89

Total 80319 100.00

Two different experiments were carried out, considering two sets

of different classes: in the first, all classes are included (5-class sce-

nario); in the second, activities related to feeding (feeding in standing

position and feeding while walking) were merged into a single class

(4-class scenario). In this study, the proposed model was compared

with two baseline neural network architectures: a 1D CNN model that

process data from all axes and consists of a variant of the proposed

model when only a single branch is used (the bottom one in Fig. 4.1);

a Multi-layer Perceptron (MLP). Results of the experiments of the

two scenarios were reported, respectively, in Table 4.2, showing that

the proposed architecture significantly outperforms the baselines and

is at least on par, if not better, than state-of-the-art approaches (al-

though a direct comparison is not possible, due to the usage of different

datasets and the lack of released implementations). It is interesting



4.3. Results and Discussion 59

to note that all models performed better in the 4-class scenario than

in 5-class scenario (Tab. 4.2). In particular, the performance of the

branched model was lower for the feeding activities in the 5-class sce-

nario (Tab. 4.3). This could be partially attributed to the similarity

of the acceleration values recorded for the two behavioral classes. The

confusion matrix illustrated in Figure 4.2 confirms that the source of

indecision for the model is associated to the feeding while walking

and feeding in standing position classes: when the two classes were

merged, the accuracy of the model in recognizing the feeding activity

was very high (Tab. 4.4).

Table 4.2: Performance comparison of different models

Model Scenario F1 Score (%) Precision (%) Recall (%)

Branched model 5-class 81.50 ± 1.29 81.00 ± 0.81 80.75 ± 0.95

Simple 1D CNN 5-class 78.96 ± 0.97 79.01 ± 1.02 78.93 ± 1.06

MLP 5-class 74.76 ± 1.26 75.11 ± 1.14 74.42 ± 1.32

Branched model 4-class 90.01 ± 1.49 90.10 ± 1.20 89.89 ± 0.91

Simple 1D CNN 4-class 87.26 ± 0.35 87.21 ± 0.75 87.32 ± 0.62

MLP 4-class 84.79 ± 0.65 85.13 ± 1.10 84.45 ± 1.36
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Table 4.3: Test performance of the branched model in the 5-class

scenario

Behavioural class F1 Score (%) Precision (%) Recall (%)

F-S 62.00 ± 6.87 65.75 ± 7.08 58.75 ± 7.50

W 84.20 ± 2.38 83.75 ± 2.21 85.75 ± 3.40

F-W 76.75 ± 4.11 73.75 ± 4.01 80.25 ± 3.94

L) 78.50 ± 5.32 74.00 ± 8.60 83.75 ± 1.50

R-L 86.25 ± 3.50 92.50 ± 2.08 88.75 ± 2.50

Weighted average 81.50 ± 1.29 81.00 ± 0.81 80.75 ± 0.95

Table 4.4: Test performance of branched model in the 4-class sce-

nario.

Behavioural class F1 Score (%) Precision (%) Recall (%)

Feeding (F) 95.25 ± 0.50 95.50 ± 0.57 95.00 ± 0.81

W 85.00 ± 3.70 84.75 ± 3.60 85.00 ± 4.01

L 81.25 ± 4.00 79.25 ± 2.50 83.25 ± 4.50

R-L 90.25 ± 2.75 91.50 ± 3.02 90.00 ± 2.16

Weighted average 90.01 ± 1.49 90.10 ± 1.20 89.89 ± 0.91

4.4 Conclusions

The results obtained in this study seem promising and the comparison

with other neural network models shows that input processing through
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Figure 4.2: Confusion matrix of branched model for the 5-class sce-

nario (a) and for the 4-class scenario (b). Accuracies are normalized

per class

parallel branches, analyzing different axes combinations, can be a valid

approach for the classification of behavioral activity in cows using ac-

celerometer data. The results obtained in this study are preliminary as

the dataset used is small. The performance obtained when considering

the 5-class scenario can be increased by acquiring more data, in differ-

ent periods and considering a larger group of animals. However, the

merging of the two classes related to feeding activity made it possible

to increase the values of F1 score, precision and recall by about 8.51,

9.10 and 9.14 percent points, respectively. Taking into account the

relevance for the farmer of the feeding activity, regardless of position

assumed by the cows, i.e., standing or while walking, further experi-

ments will regard the optimization in terms of computational cost of

the 4-class branched model with the final aim to be implemented in a
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device to be worn by the cows.
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FIVE

COMPARATIVE ANALYSIS OF STATISTICAL

AND AI-BASED METHODS FOR COW

MONITORING

5.1 Overview

The aim of this work is to compare three different data analysis meth-

ods for identifying the behavioral activities of grazing cows, ranging

from Statistical to Deep Learning-based methods, applied to the same

data collection device, highlighting their strengths and weaknesses in

relation to the possible application of LPWANs.

5.2 Materials and Method

The device and data collection system used for this analysis are the

same reported in Chapters 3 and 4.
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monitoring

5.2.1 Method I

As previously reported the study conducted in Chapter 3, employed

descriptive statistics for data analysis, grouped by behavior and obser-

vation day. An ANOVA test was then applied to identify significant

differences and define acceleration ranges for each axis. Median accel-

erations per second (sampled at 4Hz) were compared across behavioral

classes. The Tukey test further compared behaviors, identifying over-

laps in acceleration ranges and useful axes for distinguishing activities.

This analysis established thresholds for differentiating cow behaviors

based on acceleration data. Therefore the Method I consist in the

application of established thresholds, in order to classify the cows’

behavior.

5.2.2 Method II

Instead in the study conducted in Chapter 4 a one-dimensional (1D)

convolutional neural network (CNN) was used to classify cow behav-

ioral activities using data from triaxial accelerometers installed in col-

lars. The Branched Model, as it is called, processes input data se-

quences through multiple parallel branches, each analyzing different

combinations of axial measurements. This approach enables the model

to learn significant features from all axes by selectively excluding data

from certain axes, inspired by preliminary experiments showing that

not all three axes are necessary for recognizing some behaviors.



5.3. Results and discussions 65

5.2.3 Method III

The method III employs Decision Trees to establish accelerometric

thresholds for the identification of cow behaviors. Decision Trees,

known for their effectiveness in machine learning, use a hierarchical

structure to facilitate decision-making. Each node in the Tree poses a

question based on a data feature, and each branch represents a possible

answer leading to either another question or a final decision at the

leaf nodes. In this particular study, the input features for the decision

tree are medians calculated from 5-second sample windows acquired

at 4Hz. The dataset obtained using the device described earlier was

pre-processed. This pre-processing phase involved removing outliers

and minor behaviors, grouping samples into 5-second windows, and

calculating the median for each axis (x, y, z). Through Grid Search

analysis, it was determined that a Decision Tree depth of 10 offered

the best compromise between model performance and the number of

comparisons needed for implementation in the device firmware. Given

the class imbalances in the dataset, the SMOTE technique was utilized

to over-sample the less represented classes.

5.3 Results and discussions

5.3.1 Method I

In the study presented in Chapter 3, ANOVA and Tukey tests were

conducted to identify which acceleration components could effectively

discriminate specific cow behaviors. The ANOVA test provided de-

tails on the number of samples, mean value, standard deviation, and
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95% confidence interval for each acceleration component. These pa-

rameters were determined for each axis and associated with particu-

lar behaviors. The accelerometer thresholds for each behavioral class

were derived from their respective confidence intervals. Figure 5.1 il-

lustrates the average acceleration values along the three axes for each

behavioral group. The ANOVA test revealed some overlap between

behavioral classes along the x-axis, such as lying with rumination (L-

R) and walking (W). It was found that the x-axis acceleration could

only distinguish between feeding activities while standing (F-S) and

walking (F-W). The z-axis acceleration, on the other hand, effectively

differentiated lying (L) from feeding activities, whether standing or

walking. The study determined specific acceleration components for

identifying cow behaviors as follows: x and y axes for rumination (R);

y and z axes for lying with rumination (R-L); y and z axes for walking

(W); and all three axes for lying (L), feeding while standing (F-S),

and feeding while walking (F-W) (Tables 5.1 -5.2). This approach has

been validated directly in the field on a group of 3 cows. The overall

accuracy found is 64%. As reported in Table 5.3 with the thresholds

computed in Porto et al. (2021) is possible to recognize Feeding and

Rumination in Lying with an accuracy respectively of 74% and 70%.

The accuracy for Walking and Lying behaviors is low, respectively

42% and 50%.

5.3.2 Method II

Instead, regarding method II, as reported in the study presented in

Chapter 4, two trials were conducted: one involving all classes (5-

class scenario) and another combining feeding activities into a single
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Figure 5.1: Mean values of acceleration along x, y, z axes as the

behavioral group changes from ANOVA test

Table 5.1: 95% CI for each axis, grouped by behavior group, from

ANOVA test (Porto et al., 2021)

x-axis y-axis z-axis

F − S 799.89 – 808.03 -545.87 – -530.53 -78.19 – -66.10

F −W 779.83 – 784.78 -589.77 – -580.45 -109.29 – -101.95

W 929.15 – 937.20 -158.70 – -143.54 146.63 – 158.58

L 902.05 – 912.15 -122.58 – -93.55 162.41 – 177.41

R− L 930.10 – 938.52 -48.50 – -32.30 189.82 – 202.31
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Table 5.2: Tukey test outcomes (Porto et al., 2021)

Acceleration components

x-axis y-axis z-axis

F-S required required required

F-W required required required

W not required required required

L required required required

R-L not required required uncertain

Table 5.3: Results obtained in the field with thresholds computed in

(Porto et al., 2021)

Behavioral Activity Accuracy

F 74.78%

W 42.00%

L 50.00%

R-L 70.00%

Weighted 64.00%

class (4-class scenario). The Branched Model was compared to two

basic neural network architectures: a one-dimensional CNN model

that processes data from all axes and a multi-layer perceptron (MLP).

The results indicated that all models performed better in the 4-class

scenario than in the 5-class scenario. The Branched Model performed

worse for feeding activities in the 5-class scenario, likely due to the

similarity in acceleration values for the two feeding behavior classes

(Tables 5.5 and 5.4 ). The confusion matrix revealed that the model’s
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indecision was primarily between feeding while walking and feeding

while standing. The model’s accuracy in recognizing feeding activities

increased significantly when these two classes were combined (Figure

5.2).

Table 5.4: Test performance of the branched model in the 5-class

scenario

Behavioural class F1 Score (%) Precision (%) Recall (%)

F-S 62.00 ± 6.87 65.75 ± 7.08 58.75 ± 7.50

W 84.20 ± 2.38 83.75 ± 2.21 85.75 ± 3.40

F-W 76.75 ± 4.11 73.75 ± 4.01 80.25 ± 3.94

L) 78.50 ± 5.32 74.00 ± 8.60 83.75 ± 1.50

R-L 86.25 ± 3.50 92.50 ± 2.08 88.75 ± 2.50

Weighted average 81.50 ± 1.29 81.00 ± 0.81 80.75 ± 0.95

Table 5.5: Test performance of branched model in the 4-class sce-

nario.

Behavioural class F1 Score (%) Precision (%) Recall (%)

Feeding (F) 95.25 ± 0.50 95.50 ± 0.57 95.00 ± 0.81

W 85.00 ± 3.70 84.75 ± 3.60 85.00 ± 4.01

L 81.25 ± 4.00 79.25 ± 2.50 83.25 ± 4.50

R-L 90.25 ± 2.75 91.50 ± 3.02 90.00 ± 2.16

Weighted average 90.01 ± 1.49 90.10 ± 1.20 89.89 ± 0.91
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Figure 5.2: Confusion matrix for Branched Model in 5-class sce-

nario and 4- class scenario (Castagnolo G. et al., 2022)

5.3.3 Method III

The data processed using the Decision Tree are the same as in the

previous section. Similar to the previous analysis, a 10-fold cross-

validation was performed. Additionally, two scenarios were consid-

ered: a 5-class scenario and a 4-class scenario. The results are shown

in Tables 5.6 and 5.7. In the 5-class scenario, the Decision Tree demon-

strated high precision for the F-S group, indicating that most predic-

tions for this class were correct. However, the slightly lower recall

suggests that some F-S examples were not identified. Overall, high

precision balanced by moderate recall reflects an accurate but not ex-

haustive classification of this group. The precision for the F-W group

was significantly low, indicating many false predictions for this class.

The higher recall suggests that the model identified a good portion of

the F-W examples but at the cost of numerous false positives. The
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metrics for the W group showed moderate performance, with bal-

anced precision and recall, suggesting reasonable but not outstanding

classification ability. The moderate F1 score indicates room for im-

provement. For the L group, the recall was relatively high, indicating

that most examples of this class were identified, but the lower precision

pointed to many false positives, reflecting good sensitivity but needing

improved specificity. The R-L group showed high precision and good

recall, indicating the model was very effective in correctly classifying

this class. The high F1 score reflects a positive balance between pre-

cision and recall, indicating solid performance for this group. In the

4-class scenario, the Decision Tree achieved better results in discrim-

inating Feeding compared to the previous case, suggesting the model

was very effective at recognizing this combined class, reducing errors

that occurred when the classes were separated. The metrics for class

W slightly decreased compared to the 5-class scenario, with an F1

score of 55.88%, precision of 48.56%, and recall of 65.80%, indicating

that the model continued to have moderate difficulty with this class.

For the L and R-L groups, the model maintained good performance,

with results comparable to the previous scenario. Similar to method

II, combining the two Feeding classes led to significant improvements

(Figure 5.3).

5.3.4 Discussion

This study examined three distinct methodologies for classifying graz-

ing cattle behaviors: statistical methods, neural networks, and deci-

sion trees. Each method presents unique advantages and disadvan-

tages, which must be carefully considered, especially regarding the
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Table 5.6: Test performance, per class, of both scenarios proposed

considering 10-fold for Decision Tree

Behav. groups 5-class scenario 4-class scenario

F1 score (%) Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%)

F-S 79.80±0.02 90.28±0.01 71.02±0.01 93.39±0.06 96.37±0.06 90.61±0.02

F-W 47.53±0.02 36.20±0.02 69.17±0.02 - - -

W 57.56±0.02 51.01±0.02 66.15±0.03 55.88±0.04 48.56±0.02 65.80±0.03

L 62.66±0.02 54.76±0.04 73.61±0.05 61.39±0.04 54.05±0.03 71.25±0.04

R-L 78.56±0.01 86.96±0.02 71.71±0.03 78.73±0.02 85.35±0.01 73.08±0.02

Weighted average 72.83±0.01 77.39±0.01 71.02±0.01 82.47±0.02 84.28±0.01 81.53±0.01

Table 5.7: Test performance of both scenarios proposed considering

10-fold for Decision Tree

Models Scenarios F1 score (%) Precision (%) Recall (%)

Decision Tree 5-class 72.83±0.01 77.39±0.01 71.02±0.01

Decision Tree 4-class 82.47±0.02 84.28±0.01 81.53±0.01

technological and energy constraints typical of rural environments.

Deep Neural Networks are well-known for their high accuracy in

classifying animal behaviors. Their ability to learn complex data rep-

resentations allows them to effectively distinguish between various ac-

tivities such as walking, feeding, and lying. However, implementing

neural networks on micro-controllers necessitates advanced hardware

with higher computational power and memory, significantly increasing

costs. Additionally, neural networks require high energy consumption

due to the large number of computational operations needed for in-

ference. This is problematic in rural settings where frequent battery
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Figure 5.3: Confusion matrix for Decision Tree in 5-class scenario

and 4- class scenario

recharging is impractical. Therefore, although neural networks could

achieve higher accuracy in recognizing different behaviors, the need to

transfer a large amount of raw data to a processing unit limits their

practical application. Performing edge computing of classification al-

gorithms in wearable devices also increases energy consumption due

to the computational costs of neural networks, reducing battery life.

An alternative approach involves transmitting raw acceleromet-

ric data to an external server for remote processing. This method

leverages cloud computing power to execute complex machine learn-

ing algorithms, including deep learning. However, continuous data

transmission requires high-bandwidth telecommunications networks,

resulting in high energy consumption to maintain connectivity. Fur-

thermore, 4G and 5G network coverage may be insufficient or entirely

lacking in grazing areas, limiting this approach’s reliability and fea-
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sibility. Arcidiacono et al. (2021) found that using Bluetooth Low

Energy (BLE) communication to transmit raw data from a triaxial

accelerometer resulted in acceptable power consumption. Operating

at a 10 Hz sending frequency, the power consumption was about 160

µA, and reducing the frequency to 0.2 Hz lowered the consumption

to 10 µA. However, as Mancuso et al. (2023) noted, BLE has a short

range, making it unsuitable for large grazing areas typical of exten-

sive livestock systems. While repeaters, gateways, and antennas can

extend the range, the feasibility of using BLE depends on the area’s

size and the availability of a reliable electrical network.

Low-Power Wide-Area Networks (LPWANs) could overcome the

limitations of short-range communication systems for monitoring an-

imal behavior in extensive farms, covering large grazing areas (up to

10 km) with a single repeater while preserving battery life. However,

due to reduced bandwidth, neural network-based classification models

are impractical because of the large data transmission requirements.

In contrast, using accelerometric thresholds, calculable with sta-

tistical methods and machine learning algorithms like decision trees,

offers a more practical and sustainable solution. These methods can be

directly implemented in the firmware of microcontrollers, drastically

reducing the need for real-time data transmission and significantly

lowering energy consumption, thus extending device battery life. De-

cision trees, for instance, require fewer computational operations than

neural networks, allowing for efficient classification with less powerful,

energy-efficient hardware. According to the authors’ research, sta-

tistical methods with classifiers implemented within wearable devices

are compatible with LPWANs. Preliminary tests with a cow behav-

ior monitoring system prototype operating through a LoRa network



5.3. Results and discussions 75

demonstrated feasibility due to low energy consumption. At a 4 Hz

frequency, energy consumption was about 180 µA, and with a high-

capacity 6600 mAh Li-SOCL2 battery, this should ensure a battery

life of at least two years.

However, accelerometric threshold methods have limitations com-

pared to neural networks. Their behavior classification accuracy can

be lower, relying on less complex data features. They may not cap-

ture the variability and complexity of animal behaviors as effectively

as neural networks, which model nonlinear relationships between data

features. Additionally, developing robust accelerometric thresholds re-

quires access to diverse data, which is not always guaranteed, limiting

model generalizability across different grazing conditions and behav-

iors.

In summary, while neural networks offer the highest accuracy for

classifying grazing cattle behaviors, technological and energy con-

straints make their implementation challenging in rural contexts.

Methods based on accelerometric thresholds and machine learning,

though less accurate, provide a better balance between energy effi-

ciency, cost, and practicality, making them more suitable for analyz-

ing animal behavior in resource-limited environments. Choosing the

most appropriate method should consider specific operational condi-

tions, available technological resources, and sufficiently diverse and

representative data to train robust models.
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5.4 Conclusions

The introduction of IoT into Precision Livestock Farming (PLF) faces

challenges like limited battery life and unreliable signals. This study

examined three methods for identifying grazing cow behaviors using

accelerometer data: Statistical, Deep Learning, and Machine Learn-

ing. Neural networks offer high accuracy but require extensive data

transfer and high computational power, making them impractical for

LPWAN networks. In contrast, the statistical method based on ac-

celerometer thresholds is more suitable for LPWANs, combining mod-

erate energy consumption with a low bit rate, making it ideal for large,

connectivity-challenged areas. In summary, while neural networks

provide greater accuracy, the statistical method using accelerometer

thresholds is more practical for real-time behavior monitoring in ex-

tensive grazing systems with LPWANs.

5.5 Publication

Mancuso, D., Bonfanti, M., Castagnolo, G., and Porto, S.M.C. (2024)

“Comparative Analysis of Statistical and AI-based methods for Live-

stock Monitoring in Extensive Systems”, Computers and Electronics

in Agriculture (submitted)



CHAPTER

SIX

PRELIMINARY OUTCOMES OF A

LOW-POWER COW ESTRUS

DETECTION SYSTEM IN DAIRY FARMS

6.1 Overview

In livestock management, monitoring the behavior of animals is essen-

tial for ensuring their well-being and optimizing production systems.

Specifically, in the case of dairy cows, the detection of estrus is of

paramount importance. Estrus monitoring not only serves as a crit-

ical indicator of the animal’s welfare but also represents a significant

economic factor for farmers. Timely and accurate detection of estrus

allows for better reproductive management, leading to improved con-

ception rates and reduced calving intervals. Consequently, effective

estrus detection systems can enhance productivity and profitability in

dairy farming. This study focuses on advancing the technology used

77
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for estrus detection by integrating a moving mean-based algorithm

into a standalone smart pedometer (SASP), designed to provide real-

time monitoring through Low-power wide-area networks (LPWAN).

The implementation of such a system aims to offer farmers a reliable

and efficient tool for managing the reproductive health of their herds,

ultimately contributing to both animal welfare and economic gains.

6.2 Introduction

Since the second half of the last century, it was understood that the

accurate detection of estrus in dairy cows is an essential step for the

improvement of production systems and, therefore, of livestock man-

agement. The first automatic systems for the electronic recording of

milk production were implemented in the 70s, while for the first at-

tempts to automatically detect estrus it was necessary to wait until

the 80s [83]. During estrus, many biological parameters of dairy cows

(e.g., skin temperature, milk yield, milk conductivity, and motor ac-

tivity) [64, 25, 109] can undergo more or less evident alterations and,

therefore, the early detection of such modifications allows the timely

recognition of estrus. The increase in motor activity during the es-

trous phase [125] suggested the use of electronic devices to monitor

restlessness embedded in collars or pedometers. In a previous study

[9], a moving mean-based algorithm for dairy cow’s estrus detection

from uniaxial-accelerometer data acquired in a free-stall barn was de-

veloped. The algorithm was specifically designed to provide farmers

with a real-time tool able to detect the ‘standing to be mounted’ be-

havior by a specifically oestrus index. In this study that algorithm
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was implemented in the firmware of a standalone smart pedometer

(SASP) which is a customized electronic device designed to use Low-

power wide-area networks (LPWAN). After a testing period carried

out during the year 2020, six SASPs were installed in a free-stall barn

during the summer 2021. The farmer selected six cows among those

at thirty days distance on average from calving and six SAPSs were

attached to the cow forelegs. Data coming from the SASPs were used

to develop a model based on pre-estrus window, technically called pro

estrus. The novelty consisted in the possibility of identifying changes

in motor activity preceding this physiological event, characterized by

the development of follicles and the production of estrogen, which will

reach its maximum in the true estrus phase. Moreover, this study

makes a new step forward to develop livestock monitoring systems

based on LPWAN (e.g., Sigfox, and LoRa).

6.3 Materials and Methods

6.3.1 Stand-alone smart pedometer

The designed SASP was equipped with an accelerometer, which ac-

quired data at 4 Hz, a Sigfox communication module, a micro-

controller which calculated the moving-means by using equation 6.1,

and a power supply system. The electronic device was sheltered into

a customized case and then attached to the cow’s leg (Fig. 6.1a).

To build the moving mean from uniaxial-accelerometer data (Eq.6.1),

an algorithm implemented in the firmware computed the variables re-

ported in Table 6.1. Since there are 96 intervals of 15 minutes in a

day, the moving mean over 24 hours (mov meanh) was computed by
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using the following relation:

mov meanh =

∑︁h
j=h−95 sum 15minj

96
(6.1)

The SASP sent the moving means computed by Eq.6.1 to a cloud

server at 15 min-intervals. A WebApp was specifically developed to

monitor the estrus status by producing a graph of the estrus index

(Fig. 6.1b).

6.3.2 The pro-estrus window based model

To develop a model based on pre-estrus window, technically called pro-

estrus, during the summer 2021 (period between 17 July – 31 August),

the breeder selected six cows among those at thirty days distance on

average from calving and one SASP for each cow was attached to cow’s

foreleg. All cow estrus onsets were detected through a WebApp specif-

ically developed and then validated by the breeder, through the visual

and direct identification of all the typical signs of the estrus phase (i.e.,

frequent bellowing, reflex at the mount, and presence of mucous dis-

charge), and by the veterinarian, through the milk analyses. During

the trial, six estrus events occurred. The analysis of the accelerometer

curve during estrus (Figure 6.2) allowed the identification of recur-

ring alternation of ‘standing’ behavior (corresponding to an increase

in the accelerometer values) and ‘walking’ behavior (corresponding to

a plateau of the accelerometer curve). During the standing phase, the

cow exhibits the willingness to be mounted, as it is ready for insemi-

nation. Failure to mount favors the walking phase, since the restless

cow tends to move more in search of the bull. The two behaviors al-

ternate until the estrus occurs, and the maximum value (peak) in the
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accelerometer curve is reached. When the estrus event ends, there is a

continuous decrease in the acceleration values detected by the SASP,

corresponding to the rest of the animal in the lying posture.

Figure 6.1: a) SAPS attached to cow’s leg. b) Typical trend of the

accelerometer curve 96 including the peak due to estrus (testing phase

during summer 2020).

Table 6.1: Variable definitions

Variable Definition

accx Acceleration along x axis, acquired at a 4Hz frequency.

smax = |accx| Signal Magnitude Area (sma) along x axis computed at

4Hz frequency.

smax Mean value of sma x in one second (1Hz).

sum 15minj =
∑︁900

i=1 smaxi
Sum 15minj is the sum of smax in each j-th 15-min time

interval (900 s).
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Data coming from the SASPs were used to develop a model based

on a moving window whose duration is equal to pro-estrus time inter-

val. As suggested in the literature [3], the width of the pro-estrus time

interval considered in this study was 3 days before estrus event.The

analysis of the acceleration curve 6.2 was performed by identifying the

following parameters:

• mean value of the acceleration in the three days of the moving

window (MV3-days);

• value of the local minimum (MIN) and value of the maximum

(MAX) found during estrus event;

• mean value of the slope of each single standing phase (SMS)

From the computation of these parameters, it was possible to define

the following estrus indicators:

• width of the estrus window (W) expressed in hours (duration of

estrus event)

• mean value of the estrus slope (MS) expressed in mg/h

• increase of the peak compared to the local minimum (I%) ex-

pressed in percentage as follows:

I% =
MAX−MIN

MIN
· 100 (6.2)

It has to be noted that the fluctuations in the curve with respect to

the average trend in the short term were considered, freeing the anal-

ysis from changes in behavior due to seasonality that have nothing
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Figure 6.2: Main parameters in the acceleration curve related to an

estrus event detected for one of the six cows.

to do with estrus event (MV3-days could also differ significantly from

the average value in the long term). Based on the previous observa-

tions, the proposed model for identifying estrus can establish whether

a given increase in the acceleration curve represents an estrus event

and, if so, what is the probability related to it. This model included

an algorithm developed starting from the mean values and standard

deviations calculated for the indicators chosen within the set of the

six estruses taken as sample. In detail, for each i-th indicator (W, MS,

I%), the error range (Ei), expressing the measure of the uncertainty

associated with the quantity, was defined as the difference between

the highest and lowest error values computed as follows:

Ei = x̄i ± σi (6.3)

where x–l is the mean value of the i-th indicator and ”i is the related

standard deviation. An increase in the acceleration curve is associated

with estrus if, from the analysis of the main parameters of Figure

6.2, at least two of the three indicators fall within the corresponding
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error ranges. In this case, the algorithm of the pro-estrus detection

model generates the following alert: ‘Estrus detected’. Conversely,

when no indicator falls within the error range, the algorithm does not

generate any alert. When only one indicator falls within the error

range, the procedure must be repeated by widening the error range by

an additional half standard deviation (extended error range Eext):

Eext,i = x̄i ± 1.5σi (6.4)

In this case, if at least two of the three indicators fall within the

extended error range, the algorithm generates the ‘Probable Estrus’

alert. The algorithm can scan and update the computation about the

estrus indicators until the conditions of estrus detection are achieved.

6.4 Results and discussion

To assess the reliability of the proposed method, a statistical analysis

of the data from acceleration curves of the sample (Figure 6.3) was

carried out. As can be seen, in the observation time interval (from

17th July to 31st August), one estrus event per cow was identified in

cows n. 1, 2, 3, 5; in cow n. 4 two estruses occurred; and no estrus was

detected in cow n. 6. The acceleration mean values and the maximum

values over that period were the following, respectively: 535.8 mg and

745.1 mg (cow n. 1), 534.6 mg and 690.2 mg (cow n. 2), 421.2 mg and

628.9 mg (cow n. 3), 523.4 mg and 615.0 mg (cow n. 4), 521.2 mg

and 712.3 mg (cow n. 5). Table 6.2 shows the values of the indicators

(W, MS, I%) computed for each estrus event detected by the SASP

and successively validated by both the breeder and veterinary. Mean
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values and standard deviations of the indicators computed for the six

estrus events were found to be:

• width of the estrus window: W = 16.8 h; ’w = 2.5 h

• mean value of the estrus slope: M = 9.2 mg/h;”’MS = 2.7 mg/h

• increase of the maximum: = 29.3 %; ’I% = 6.8 %

In accordance with the proposed pro estrus detection model, four

estruses could be considered as ‘detected’ (estruses 1, 3, 4 and 6).

Among the remaining two estruses, one could be classified as ‘proba-

ble’ (estrus 2). The event 5 was not recognized as estrus. From this

statistical analysis, it can be inferred that the proposed pro-estrus de-

tection model is 67% reliable in recognizing an estrous event (4 events

over 6) and 83% reliable in recognizing a probable estrus (5 events

over 6). By adding new data input such as milk production and milk

conductibility, the model could improve the detection accuracy. The

proposed pro-estrus detection model represents an advancement of

knowledge compared to the previous studies [7, 8, 9] as it overcomes

the limitation due to the analysis of the absolute values of the moving

mean over 24 hours.Indeed, these absolute values could be influenced

by practices performed by the breeder altering the natural behavior of

livestock. As already highlighted in Arcidiacono et al.[9] the breeder,

once the first signs of estrus were identified, moves the cow from the

barn to a special separate box in order to practice artificial insemi-

nation, which can be carried out several hours after such movement.

Since the animal is moved from the resting area, once the estrus phase

is over, it cannot express the physiological lying behavior, resulting in

an increase in the acceleration curve. The pro-estrus detection model,
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based on the computation of the indicators, ensures the determination

of estrus event as independent from the effects of the aforementioned

artificial insemination practice.

Table 6.2: Estrus indicator values for different estrus events

Estrus indicator Symbol Unit 1 2 3 4 5 6

Duration window (W) [h] 17.8 18.8 19.0 16.8 12.3 16.0

Mean slope (MS) [mg/h] 8.2 6.4 6.7 10.2 13.6 10.1

Increase percentage (I%) [%] 24.2 21.1 26.0 31.4 38.9 34.4

The mean value found for the indicator W fits well with the typical

duration of estrus event in dairy cows, that ranges from 3 to 28 h with

a higher probability around 16 h [3, 53]. With regard to the assessment

of the remaining two indicators, since they were introduced for the first

time and constitute the main novelty of this study, a greater number

of estrus events (that can be determined using the acceleration curve

provided by the SASP) should be analyzed. It could be performed

by applying a higher number of devices to monitor the whole herd.

This further task will be useful in refining the error ranges and, thus,

experimentally validating the model proposed in this work. However,

despite the small number of samples tested, a good repeatability of

the proposed model was achieved, and it was proved by the low values

of the standard deviation compared to the mean values for all the in-

dicators. In addition, in the estrus windows related to each validated

estrus event, the indicators (Tab. 6.2) tend to settle on values close to

the mean values calculated in the six estruses. This evidence encour-
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Figure 6.3: Acceleration curves of tested cows with estrus events.

The dates indicate when the estrus was detected. SASP malfunctioning

intervals are highlighted in grey.

ages future experimental validation. All the three indicators (W, MS,

I%) can be implemented in the customized WebApp of the SASPs,
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i.e., in devices not requiring any installation in the barn (as Personal

Computers or wired communication and/or power supply networks).

Indeed, such devices make use of wireless communication network in-

frastructures of the LPWAN type to allow long-range communications

with a low bit rate between the various connected pedometers. The

latter feature is important in rural areas where coverage of GSM/G-

PRS networks or wired networks (ADSL) is often missing. In this way,

besides displaying the acceleration curve, the WebApp will provide the

breeder with the early recognition of oestrus events and the relative

probability of occurrence.

6.5 Conclusions

In the present study, a new pro-estrus detection model for dairy cows

was proposed. This model relies on analyzing the acceleration curve

provided by the SASP device, which does not require barn installa-

tion. A specially developed algorithm scans the curve and updates the

computation of estrus indicators until detection conditions are met,

excluding influences unrelated to estrus. The model, considering only

motor activity, was 67% reliable in detecting an estrus event and 83%

reliable in detecting probable estrus. Incorporating additional data

such as milk production and conductibility could enhance detection

accuracy.
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CHAPTER

SEVEN

KERNEL DENSITY ESTIMATION ANALYSES

BASED ON A LOW POWER GPS FOR

CATTLE MONITORING

7.1 Overview

In livestock management, accelerometers are vital tools for monitor-

ing animal behavior, providing detailed insights into activities such as

feeding, walking, and resting. However, while accelerometers are ex-

cellent for behavior tracking, they do not provide information about

the animal’s location. This limitation becomes crucial in extensive

farming systems, where knowing the precise location of the cattle is

essential. In extensive farming, the ability to determine the physical

location of each cow is vital not only for managing the herd but also

for making informed decisions about grazing patterns and pasture use.

Knowing where the cows are allows farmers to assess what they have

91
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consumed, monitor the impact on the grazing areas, and make nec-

essary adjustments to prevent overgrazing and soil degradation. The

aim of this study was to demonstrate the feasibility of a new automatic

system for locating and tracking cows in extensive livestock systems

using space-time data from a low-power global positioning system (LP-

GPS). This information was utilized to analyze how the herd utilizes

the pasture, aiding in the modeling of the environmental impacts of

extensive livestock systems through geographical information systems

(GIS).

7.2 Materials and Method

7.2.1 Experimental trial

In Sicily, the largest island in the Mediterranean Sea, summer transhu-

mance to highland pastures remains common, particularly in inland

areas characterized by a continental climate with moderately cold win-

ters and hot summers. The breed considered in this study typically

migrates from the Nebrodi mountains in the province of Messina to the

Margilupo district in the municipality of Melilli, within the province

of Syracuse, at an altitude of 200 meters above sea level (Figure 7.1).

The experimental activity took place in December 2019. The cows

grazed in an area of approximately 100 hectares, enclosed by an elec-

trified fence to prevent trespassing. The herd comprised 90 animals:

one Limousine breed bull, 70 suckler cows aged 5 to 10 years, 13 heifers

aged 1 to 4 years, and 10 calves under one year old.

The pasture mainly consists of permanent natural fodder typical

of the Mediterranean climate, with no cultivation. This vegetation
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results from the interaction of climatic, soil, and species adaptation

factors. Direct surveys and visual inspections revealed that the soil’s

vegetation cover includes many thorny shrubs and various species of

cruciferous and composite grasses, which are not consumed by animals

due to their thorny stems. These conditions, combined with the lack

of water resources, contribute to the pasture’s medium-low production

potential.

The main soil characteristics—slope, exposure, and geomorphol-

ogy—were analyzed using GIS software. Spatial data sets were ob-

tained from the National Geographic Portal via the Download Service.

Data related to slope, geomorphology, and exposure were downloaded

using a web feature service (WFS) and analyzed in GIS software. Sta-

tistical analyses were conducted to extract the mean, maximum, mini-

mum, and standard deviation of basic terrain morphology parameters

(altitude, slope, and exposure) to correlate these features with animal

locations.

The cattle breeds in this study are rustic and not accustomed to

wearing equipment. Therefore, the breeder selected 10 tame animals

for the experiment, which were generally accustomed to wearing collars

with cowbells. The collars, made from durable plastic material, can be

molded to fit the required shape. Each collar is equipped with a bell

that sounds when the animal moves, aiding the breeder in tracking

the animal (Figure 7.2).
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Figure 7.1: The territorial area by the localisation of the grazing

area (red box).

The bells are specifically shaped and sized to suit animals of dif-

ferent ages and can emit different sounds to help the breeder identify

and locate the animals. In the Nebrodi mountains area, this ancient

method of tracking animals is still widely used by breeders.

7.2.2 Data collection

The low-power GPS-based system (LP-GPS system) developed in this

study comprises wearable devices capable of receiving position infor-

mation from up to three global navigation satellite systems (NAVS-

TAR/GPS, Galileo, GLONASS), although only NAVSTAR/GPS was

used in this research. After receiving position information, the wear-

able devices transmit it to a cloud server via the SigFox telecommuni-
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cation network, as illustrated in Figure 7.3. The SigFox antenna was

placed near Monte Lauro in the province of Syracuse, approximately

25 km from the study area.

Figure 7.2: Low power-global positioning system device attached to

the cow’s collar.

This system, designed for long-term animal tracking, collected way-

points (latitude and longitude), detection date and time, and the dis-

tance traveled by each cow. The data acquisition interval was set at

20 minutes to ensure long-term data collection suitable for GIS analy-

ses, such as KDE algorithms, while maintaining battery life [65, 116].

According to the literature, both trajectories and behaviors can be es-

timated accurately with GPS sensors at a high sampling rate of ¡0.016

Hz [49, 39]. In this study, the LP-GPS collars were equipped solely

with GPS sensors, which are energy-consuming, but future phases

will integrate additional sensors (e.g., accelerometers at 4 Hz) to study
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Figure 7.3: Scheme of the proposed low power GPS-based system

(LPGPS).

cow behavior in extensive systems, following methods used in previous

studies [10, 7, 9, 100]. Raizman et al. [97] noted that limited battery

life in some studies necessitated hourly or less frequent position de-

tection, reducing the efficiency of grazing animal monitoring. This

study prioritized investigating battery life and the suitability of the

SigFox communication network, demonstrating that the adopted low

sampling rate and LP telecommunication network allowed for longer

battery life than those reported in the literature [97, 15, 120]. The

device developed in this study featured an omnidirectional GPS an-

tenna and receiver with -167 dBm sensitivity and 72 channels, an

ultra-low-power microcontroller, a SigFox radio module (868 MHz, 14

dBm E.R.P.), an omnidirectional SigFox antenna, and was powered
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H]

Figure 7.4: Low-power global positioning system device and the IP

case.

by high-capacity Li-SOCL2 batteries (ExtraCell 3.6 V C ER - 2 ×
6500 mA). The device can operate in temperatures ranging from -20

to 50°C and is housed in a small commercial case (119×66×43 mm)

with IP68 protection (Figure 6). The LP-GPS devices’ location ac-

curacy in a static position was about 4-5 meters, tested by hanging

the collars on a perch and recording positions over 24 hours. Ten

devices were attached to the collars (Figure 7.4) of ten female cows,

differing in age and number of births, selected for their approach abil-

ity by the breeder. The device weight (0.3 kg) represented less than

0.1% of the animals’ weight, eliminating the need for habituation [48].

Table 7.1 details the selected cows and their associated devices, in-

cluding specific physiological and pathological events during the trial.

The analysis began on December 27, 2019, with collar and device in-

stallation. Data recording started on January 1, 2020, due to the

Christmas holidays, and continued until January 21, 2020, when the

GPS devices were removed from the collars for technical reasons, de-

spite residual battery life. The devices began detaching due to weak
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anchor points, prompting their removal and reattachment with a safer

system. However, due to the lockdown, it was not possible to return

to the company before the animals moved to the Nebrodi mountains

in June 2020. Despite this, the collected data are deemed sufficient to

describe the system’s functionality and potential applications for herd

management and land use analysis. Data were recorded for 21 days

at 20-minute intervals, subdivided into three 7-day periods: January

1-7, January 8-14, and January 15-21. Data from Cow 5 were unavail-

able due to a collar attachment issue. All information collect was sent

to an AppWeb. Data were then imported for further statistical and

geospatial analysis.

7.2.3 Data analysis

Geospatial analysis was conducted using Quantum GIS (QGIS) soft-

ware (v.3.10.11), a free tool provided by the Open-Source Geospatial

Foundation (Chicago, USA). QGIS facilitates the organization, analy-

sis, and visualization of spatial data at the territorial level, allowing for

a deeper understanding of the relationship between livestock and the

environment. By applying the Kernel Density Estimation (KDE) tool

in QGIS, land use analyses were performed based on the positional

data of each animal equipped with tracking devices.

Kernel Density Estimation (KDE) is a non-parametric method

used to estimate the probability density function (PDF) of a random

variable. Unlike histograms, which can be discrete and depend on bin

width, KDE provides a smooth, continuous estimate of the PDF, mak-

ing it particularly useful for visualizing the underlying distribution of

data.
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In biological studies, KDE is commonly employed to calculate the

home range of a species, defined as the area of agricultural land or

natural habitat where a species lives and conducts its daily activities.

KDE analysis offers a density estimation of territory use, highlighting

areas frequently occupied by the species.

Given a set of location data points {x1, x2, . . . , xn}, the KDE at a

point x is defined as:

f̂(x) =
1

nh

n∑︂
i=1

K

(︃
x− xi

h

)︃
,

where:

• n is the number of data points (e.g., locations of the species),

• h > 0 is the bandwidth parameter, which controls the smooth-

ness of the estimate,

• K(·) is the kernel function, a symmetric, non-negative function

that integrates to one.

Common choices for the kernel function K include:

• Gaussian (normal) kernel:

K(u) =
1√
2π

e−
u2

2 ,

• Epanechnikov kernel:

K(u) =
3

4
(1− u2) for |u| ≤ 1.
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The KDE analysis results in maps (either raster or vector images)

that represent the most frequently used areas by animals. These maps

typically display density levels at 95% (home range, HR) and 50%

(core home range, CHR). The home range (HR) represents the area

with a 95% probability of finding the monitored species, indicating the

broader territory used by the species. The core home range (CHR)

represents the area with a 50% probability, highlighting the core areas

where the species spends most of its time. Maps were generated for

each sample animal and all selected cows to classify preferred areas.

7.3 Results and discussion

7.3.1 Vegetation cover detection and geomorpho-

logical analyses of the study area

In the study area, the floristic composition of the field was investi-

gated, revealing a homogeneous pasture with consistent soil charac-

teristics in terms of morphology (slope and exposure), geology, hy-

drology (geomorphological analysis), and climatic conditions. These

analyses took place between late December and the first ten days of

January, a period known for medium-low production due to climatic

conditions. Following this initial in-field analysis, the pasture was di-

vided into ten distinct areas (1 through 10) (Figure 7.5). The grazing

areas 3, 4, 5, and 6, located near the road network, were classified as

polyphote pastures. These areas had thin soil coverage with various

pabulary species of legumes, cruciferous, and composite grasses, as

well as thorny species that animals avoid eating. The sparse vegeta-

tion cover in these areas resulted from land exploitation by animals,
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which inhibited the growth of palatable species and promoted the de-

velopment of thorny shrubs.

Figure 7.5: Grazing area subdivided into ten different areas

Grazing areas 1, 8, 9, and 10, situated far from the road net-

work, were richer in forage due to their proximity to a dam, which

served as a water source for the animals. These areas, along with

area 7, were relatively homogeneous, characterized by grasses and

pabulary legumes, including composites, asteraceae, umbelliferae, and

chenopodiaceae. Dominant grasses included Bromus sp., Avena sp.,

and Hordeum sp. Dominant legumes included Trifolium subterra-

neum, Trifolium campestre, and Medicago arabica and hispida. The
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Table 7.1: Main characteristics of the ten cows.

ID cow Device Age (year) Birth Gender Calf age Note

1 0039D0AA 6 3 F - -

2 0039D1D9 2 0 F - -

3 0039D4B8 10 6 F 30 days -

4 0039D7AE 6 2 F - -

5 0039D35F 4 1 F - -

6 0039D56D 2 0 F - Estrus

7 0039D883 8 5 F - -

8 003911EC 8 5 F - Estrus

9 00391A1 4 1 F - Lameness

10 0036718F 6 3 F 30 days -

Mediterranean scrub dominated the vegetation, featuring carob, olive,

and citrus trees, along with dwarf shrubs and herbaceous plants such

as Calicotome villosa, Sarcopoterium spinosum, and Cynara cardun-

culus altilis. The prevalence of these species indicated high land ex-

ploitation by animals, leading to the sparsity of palatable species and

the takeover of non-palatable species. Using the QGIS software tool,

slope and exposure data of the study area were analyzed (Figure 7.6).

The slope of the land ranged from 0% to a maximum of 12% across

different areas of the extensive breeding grounds. Specifically, areas

1, 2, 3, and 5 had slopes of about 0%, areas 4, 7, and 9 had slopes

ranging from 6% to 12%, and area 10 had a slope of about 20% due

to an artificial dam on the northern side of the pasture. The entire

grazing area had an eastern exposure, providing good solar radiation

for the animals, especially during winter (Figure 7.6B). The geomor-

phological characteristics, as reported in Figure 7.6C, indicated that
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the area is mostly hilly and crisscrossed by several small waterways,

which enhance animal well-being, particularly during occasional hot

spring conditions before the animals are moved to the mountains.

Figure 7.6: Exposure and slope terrain analyses: A) slope; B) expo-

sure; C) geomorphology.

7.3.2 Analyses of data acquired

During a 22-day monitoring period, data were collected to locate and

track ten cows equipped with LP-GPS collars. The Kernel Density

Estimation (KDE) algorithm was applied to the collected data, gen-

erating nine thematic maps using QGIS software, each representing

one of the monitored cows. These maps show the perimeter of the

overall grazing area, a dirt road that divides the area into two parts,

and indicate the ”home range” (HR) and ”core home range” (CHR)

areas defined by the KDE algorithm, along with the subdivision of

the pasture into ten previously described classes. The resulting heat
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maps highlighted the grazing areas most frequently used by the an-

imals throughout the data collection period. Table 7.2 reports the

results obtained by these analyses for each animal. The cows gener-

ally preferred flat areas, with an average slope of 4.7% and a maximum

of 6.5%, facing northeast, and located at an average altitude of about

260 meters above sea level. Analysis of the maps (Figure 7.7) revealed

that the HR areas (in green) were on average 84% larger than the

CHR areas (in red), as reported in Table 7.2 with mean areas of 56.00

hectares and 8.70 hectares, respectively. Specifically, for cows 1, 3, and

10, the HR areas, where the probability of finding the animals is 95%,

were similar, averaging around 76.00 hectares, and significantly larger

than those of other cows, such as cow 8, which recorded an HR area

of 19.95 hectares. Considering the CHR areas, where the probability

of finding the animals is 50%, cow 8 had the smallest area (about 3.00

hectares), while cow 3 recorded the largest CHR area (about 14.00

hectares). The processing of data recorded through the developed

Web application allowed for the definition of a behavioral profile for

each animal. For instance, cow 1 traveled approximately 43 km during

the entire observation period (Table 7.3), with an average of 2 km per

day, varying between a maximum of 3.5 km and a minimum of 1.3 km.

During the first 7-day monitoring interval, the cow traveled about 12

km, registering an increase of 4 km in the second interval due to the

need to move in search of better forage, mainly in areas 2, 9, and 10.

Cow 2 traveled about 50 km in total (Table 7.3), with an average

of 2.4 km per day and a maximum and minimum distance of 3.6 km

and 1.6 km, respectively. In the first 7-day interval, it covered about

18.5 km, but recorded a decrease of 3 km in the second interval.
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Table 7.2: Statistical analyses.

ID Cow GPS-altitude Slope (%) Exposure (degree) HR (ha) CHR (ha)

0039D0AA (ID Cow 1)

Mean 232.0 5.2 104.9 76.71 11.18

Max 284.0 10.4 348.8 102.6 23.0

Min 171.0 0.9 1.0 30.9 0.5

Dev. 20.9 1.9 102.6 27.1 8.2

0039D1D9 (ID Cow 2)

Mean 260.7 4.9 121.6 59.69 10.05

Max 318.0 15.4 353.3 107.3 22.9

Min 215.0 0.9 0.9 9.7 0.2

Dev. 22.9 2.7 107.3 26.2 9.0

0039D4B8 (ID Cow 3)

Mean 239.2 4.4 115.9 74.49 14.34

Max 295.0 13.6 348.8 149.0 36.0

Min 180.0 0.4 0.9 30.6 0.5

Dev. 29.7 2.4 106.4 28.4 10.8

0039D7AE (ID Cow 4)

Mean 238.3 3.4 101.1 49.32 7.03

Max 390.0 9.5 348.8 85.8 23.0

Min 168.0 0.8 0.9 10.2 0.4

Dev. 28.4 1.6 85.8 21.2 9.2

0039D56D (ID Cow 6)

Mean 260.4 4.5 104.0 35.77 4.93

Max 348.8 11.6 348.8 95.3 19.6

Min 166.0 1.2 19.9 1.0 0.1

Dev. 25.6 1.8 95.3 28.2 7.8

0039D883 (ID Cow 7)

Mean 225.2 3.7 114.7 55.41 8.94

Max 288.0 12.9 352.0 95.3 28.2

Min 166.0 0.7 4.8 9.5 0.4

Dev. 27.4 2.0 95.3 23.4 9.3

003911EC (ID Cow 8)

Mean 194.1 3.9 104.9 19.05 3.27

Max 246.0 13.8 353.2 55.4 16.1

Min 144.0 0.2 1.0 1.2 0.1

Dev. 29.7 2.3 106.4 17.4 5.9

00391A1 (ID Cow 9)

Mean 200.0 6.5 112.8 61.66 7.43

Max 290.0 21.0 353.3 108.1 22.3

Min 151.0 0.4 1.0 14.5 0.2

Dev. 29.4 3.8 98.4 26.2 8.3

0036718F (ID Cow 10)

Mean 230.2 5.2 118.6 76.71 11.48

Max 273.0 10.4 352.0 142.7 28.0

Min 188.0 0.9 1.0 30.9 0.5

Dev. 20.9 2.5 100.1 27.1 8.2

ALL Cows

Mean 231.1 4.7 118.6 - -

Max 171.4 1.9 15.0 - -

Min 158.0 2.5 100.1 - -

Dev. 24.4 2.0 76.8 - -



106
Chapter 7. Kernel density estimation analyses based on a low power GPS for

cattle monitoring

Figure 7.7: Kernel density estimation (KDE) analyses of the ten

cows: A) Cow 1; B) Cow 2; C) Cow 3; D) Cow 4; E) Cow 6; F) Cow

7;G) Cow 8; H) Cow 9; I) Cow 10. HR, home range; CHR, core home

range.

Comparing the heat maps of cows 1 and 2, it emerged that cow 2

frequented areas 1 and 10 more, while cow 1 preferred to stay longer

in areas close to the road (i.e., areas 4, 6, 3). This difference is at-

tributed to the fact that cow 2, being younger, preferred group life.
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Similarly to cow 2, cow 3 traveled about 50 km, with an average of

2.4 km per day and a maximum and minimum distance of 3.2 km and

1.3 km, respectively. The heat map of cow 3 showed behavior similar

to that of cow 2, highlighting an HR area far from the central graz-

ing area, possibly due to the need to move to areas richer in forage

and closer to a natural water source (i.e., area 1 and areas 10). This

movement occurred mainly in the second observation interval, during

which the distance traveled was greater than in the other two periods

(18.77 km) (Table 7.3). Cow 4 traveled approximately 48 km, with an

average of 2.3 km per day and a maximum and minimum distance of

3.0 km and 1.7 km, respectively (Table 7.3). The heat map showed few

HR areas near the road network, with a preference for areas farther

from human presence, consistent with its rustic behavior. A similar

behavior profile was observed for cow 8, which traveled about 45 km

in 21 days. Similar daily travel distances were recorded during the

first observation interval, while during the second interval, an increase

of about 4 km was recorded on January 10, attributed to the cow’s

estrus state, as confirmed by the farmer. The heat map shows that

the CHR and HR areas are both far from the crossing road, located

within the inner part of the grazing area, due to the cow’s solitary

and rustic nature. Cow 6 traveled approximately 47 km, with an av-

erage daily distance of 2.2 km and a maximum and minimum of 4.0

km and 1.1 km, respectively. The heat map shows HR areas along

the road, mainly within area 4. As reported by the farmer, the cow

entered estrus during the second time interval, with an increase in

daily distance traveled on January 12 (4.02 km). Cow 7, compared

to the others, showed different travel distances during the three-time

intervals considered. It traveled about 54 km, with an average of 2.6
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km per day and a maximum and minimum distance of about 4.4 km

and 0.86 km (Table 7.3), respectively. An increase of about 2 km in

traveled distance was recorded in the third time interval. The CHR

and HR areas show that the cow preferred to stay mainly in areas

1, 2, and 3, where most of the HR areas are located, as with cows 1

and 4. Cow 9 traveled the shortest total distance, about 36 km, with

a daily average of less than 2 km (1.7 km). In the first observation

interval, cow 9 traveled about 14 km, similarly to other cows (i.e., cow

4, cow 8, cow 10); however, both in the second and third intervals,

the traveled distance drastically decreased to about 11 km and 10 km,

respectively. Observing this sudden reduction in traveled distance, the

farmer promptly recognized lameness in cow 9’s right front limb, lead-

ing to its transfer for medical treatment. The heat map shows that the

CHR areas are widely distributed throughout the entire grazing area;

instead, the largest HR area indicates that the animal remained there

for an extended period, representing the equipped shelter area where

the animal was transferred for medical treatment due to lameness (be-

tween areas 1 and 10). Cow 10 traveled one of the longest distances,

about 52 km, with a daily average of about 2.5 km and a maximum

and minimum of 4.7 km and 0.9 km, respectively. Through the heat

maps, it was possible to identify the widest HR area, located in area

2, where the cow stayed from January 6 to January 7, 2020, when a

drastic decrease in daily traveled distances was registered, similar to

what was observed for cow 9. However, during the second and third

intervals, the traveled distances increased again due to the need to find

new grazing areas richer in forage. Therefore, cow 10 spent more time

in area 10, located near the dam. Monitoring the animals’ behavioral

profiles can be useful for understanding and analyzing the interaction
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between animals and the environment.

In this regard, through Kernel Density Estimation, it was possible

to create heat maps aimed at evaluating the most preferred territorial

areas by all the cows considered. The analysis was conducted by

closely examining the time intervals within the daytime observation

period during which the cows moved from one occupied territorial area

to another. Specifically, the analysis was carried out by observing four-

time intervals considered most representative of these cows’ activities,

i.e., from 08:00 a.m. to 10:00 a.m., from 10:00 a.m. to 12:00 p.m.,

from 12:00 p.m. to 02:00 p.m., from 02:00 p.m. to 04:00 p.m., and

from 04:00 p.m. to 06:00 p.m. A heat map was created for each of the

selected time intervals, as reported in Figure 7.8.

By analyzing Figures 7.87.8A and 7.8E, obtained by carrying out

KDE analyses at 8:00 a.m. and 4:00 p.m., respectively, it is possible

to observe similar HR areas (i.e., 96.97 ha and 118.31 ha, respec-

tively), larger than those obtained for Figures 7.8B, 7.8C, and 7.8D

(i.e., 68.30 ha, 61.68 ha, 86.28 ha), carried out at 10:00 a.m., 12:00

p.m., and 2:00 p.m., respectively. The similarity between these two

HR areas could be explained by the fact that at 8:00 a.m., the animals

are still scattered within the grazing area, as they are known to pre-

fer being alone and not grouped during the night hours. Then, after

sunrise, the cows began their daily activities (e.g., walking, feeding,

ruminating, drinking) before dispersing again throughout the terri-

tory to spend the night (4:00 p.m.). As seen from Figures 7.8B, 7.8C,

and 7.8D, which show KDE analyses carried out at 10:00 a.m., 12:00

p.m., and 2:00 p.m., respectively, the reported HR areas are smaller

than the previously mentioned ones and similar to each other, as the

cows grouped together and carried out the same daily activities. To
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evaluate the territorial areas most visited by all the cows during the

entire observation period, the heat map reported in Figure 7.8 was

developed. It was built by merging all the HR areas obtained from

the previous KDE analyses (Figure 7.7). From Figure 7.9, it is pos-

sible to see that, among the six obtained areas (i.e., A, B, C, D, E,

F), ”area D” was the most frequented by the animals, about 63.00 ha.

Furthermore, ”area D” registered an HR area more than 80% larger

than the others, i.e., 3.90 ha, 0.78 ha, 0.23 ha, 6.90 ha, and 2.40 ha,

recorded for ”area A”, ”area B”, ”area C”, ”area E”, and ”area F”,

respectively. ”Area D” was preferred because it was the flattest, near

the dam, far from the road network and human presence, and had a

great supply of forage, as observed during the visual inspection. The

cows’ activities influenced the soil cover of this area by removing plants

and seeds and returning nutrients through manure. Additionally, an-

imal trampling modifies the natural form of the soil; in fact, it was

possible to observe the presence of well-established paths leading to

the few watering points. The data obtained from the LP-GPS collars

could allow farmers to assess feeding areas and grazing conditions and,

if necessary, improve herd management by evaluating possible nutri-

tional supplements or seeking other pastures. The behavioral profiles

obtained using data acquired by the LP-GPS collars could represent a

crucial aspect of livestock management, as they could enable prompt

actions to preserve animal welfare. For instance, by observing the re-

duction in daily distance traveled by cow 9, the farmer immediately

discovered right limb lameness and quickly transferred the cow for

medical treatment, preventing further diseases.
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Figure 7.8: Kernel density estimation (KDE) analyses: home range

(HR) of all considered cows during the whole observation period: A)

time 08:00 a.m.; B) time 10:00 a.m.; C) time 00:00 p.m.; D) time

02:00 p.m.; E) time 04:00 p.m.
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Figure 7.9: Overlay of home range (HR) areas obtained by Kernel

density estimation (KDE) analyses carried out for each herd animal.

As Frost et al. [49] indicated, since animal behavioral activities are

clear indicators of cows’ physiological and physical status, particular

attention will be paid to further improving the developed automated

locating system by implementing additional sensors capable of moni-

toring the daily activities of grazing cows. In this context, data from

LP-GPS collars combined with land use data in a GIS environment

could allow the monitoring of significant variations in vegetation struc-

ture and the composition and variety of plant species that may arise

due to the selection of food essences, trampling, and manure release.

Through these actions, the animals modify habitats and populations
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of invertebrates and other organisms [37].

Changes in grazing intensity or the animal species involved can

have significant consequences on biodiversity [19]. Moreover, from a

social, economic, and cultural perspective, identifying the most ex-

ploited grazing areas can be useful in the context of landscape assess-

ment procedures (relationship between grazing areas and the charac-

teristics of the landscape) [37, 80]. In general, the relationship between

animal husbandry and landscape quality can be positively configured,

as in the case of rationally managed grazing systems, where main-

taining grass in good, clean conditions, along with the presence of

grazing animals, contributes to landscape amenities[68]. On the other

hand, the presence of marginal areas, which may not be used by ani-

mals according to the analyses, could reduce the aesthetic value of the

landscape due to the abandonment that might result[104].

This type of automated monitoring system could be significant

for transhumance, a practice relevant to breeders as it supplements

the normal annual forage and allows access to public economic aids

[131]. Moreover, transhumance has significant economic externalities

because it increases the cultural values of a territory, improving land-

scape quality, promoting local products, such as milk and cheese,

maintaining local tradition[20], and supporting biodiversity through

the conservation of high-value native species[132].

7.4 Conclusions

Real-time monitoring of herds in extensive livestock systems presents

a significant challenge in measuring variables that can promptly alert
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farmers. Quick responses to changes in health, welfare, and production

are essential for minimizing management difficulties and enhancing

animal welfare. The findings of this study demonstrate the practical-

ity of using GIS analyses combined with LP-GPS devices to locate

grazing cattle, as this system can enable long-term tracking of ani-

mals. This technology could assist farmers in monitoring cows within

grazing areas, allowing them to detect important changes in behavior

or to address issues related to animal theft. This research marks an

initial step toward further studies that aim to develop a reliable clas-

sification of grazing cow behavior based on data from additional sen-

sors, validated through farmer observations. Moreover, the proposed

monitoring system could be valuable to local authorities or regional

environmental protection agencies. It could assist stakeholders in as-

sessing the impact of extensive dairy cattle and cow-calf operations on

soil quality.
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CHAPTER

EIGHT

IOT TECHNOLOGIES FOR HERD

MANAGEMENT

8.1 Overview

As demonstrated in previous studies, GPS provides crucial informa-

tion that, when processed, can reveal insights into animal habits. In

this context, IoT-based solutions are considered valuable for enabling

long-distance monitoring of herd positions, thereby aiding in model-

ing the environmental impacts of extensive livestock systems. The

primary objectives of this study were to explore the feasibility of a

locating and tracking system in an extensive cow-calf livestock farm

situated in southern Italy, an area lacking LPWAN network coverage.

This system relied on space-time data provided by a prototype low-

power positioning system (LP-GPS) based on the SigFox network.

The research also aimed to test the battery life of the LP-GPS de-
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vices, with a particular focus on a 10-minute data transmission in-

terval. Additionally, the study sought to evaluate the signal coverage

after installing a SigFox repeater in the grazing area. To analyze the

activities of the animals around the grazing area, the Kernel Density

Estimation and GIS tools were employed.

8.2 Materials and method

8.2.1 Experimental trial

The experimental trial was conducted in an extensive pasture located

in central Sicily, Italy, in the town of Aidone in the province of Enna

(Fig. 8.1a). This area is situated at an altitude of approximately 800

meters above sea level and features a typical Mediterranean climate,

with mild, humid winters and hot, dry summers. The farm spans

about 300 hectares and has an irregular topography. The pasture

is artificially maintained; farmers sow seeds from various species, in-

cluding Trifolium alexandrinum, Vicia sativa, Avena sativa, Triticum

aestivum, and Hordeum vulgare.

Through direct surveys and visual inspections of the study area,

the floristic composition of the field was examined and found to be

homogeneous across the pasture. The area was divided into three dis-

tinct sections (Fig. 8.1b): area 1 is characterized by olive trees and

spontaneous meadow, area 2 is dominated by Trifolium alexandrinum,

and area 3 consists of Triticum stubble, Vicia faba, Vicia sativa, and

various weeds such as Lolium L, Hedysarum coronarium L, Avena

fatua L, Sinapis arvensis and Papaver rhoeas. For the experiment,

the breeder selected 6 female animals from a group of 130 cows in the
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cow-calf line, as reported in Table 8.1. The grazing area was enclosed

with an electrified fence to prevent cattle from trespassing. The ex-

perimental activity took place between July and August 2021, with

air temperatures ranging from 22°C to 42°C. Area 1 (Fig. 8.1b) was

the most comfortable regarding air temperature, as it was equipped

with trees providing shade and protection from solar radiation. Con-

sequently, from 6 AM to 5 PM, the herd typically stayed in Area 1,

where they had access to a hay-filled manger and a watering tank.

During the cooler hours, from 5 PM to 6 AM, the herd was moved to

Areas 2 and 3 (Fig. 8.1b), where the cows were free to graze.

Figure 8.1: (a) Localisation of the grazing area. (b) Grazing area

subdivisions after visual inspection.

Table 8.1: Age and breeds of the considered cows

Cow 1 Cow 2 Cow 3 Cow 4 Cow 5 Cow 6

Age 6 yr. 6 yr. 9 yr. 2 yr. 3 yr. 2 yr.

Breeds Italian Limousine Limousine Limousine Limousine Limousine

”Pezzata Rossa” ”x Pezzata Rossa”
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8.2.2 Data collections system

The developed prototype of a low-power positioning system based on

the SigFox network (LP-GPS) enables the collection of cows’ posi-

tions (latitude and longitude) by receiving information from up to

three global navigation satellite systems (GPS, Galileo, GLONASS).

The proposed system consists of a wearable electronic device, a cloud

server for information storage, a WebApp for data management and

visualization, and a Sigfox repeater to enhance signal strength and

coverage. The wearable electronic device features an omnidirectional

GPS antenna and receiver with -167 dBm sensitivity and 72 channels,

an ultra-low power microcontroller, a SigFox radio module (868MHz,

14dBm E.R.P.), an omnidirectional SigFox antenna, and is powered

by high-capacity Li-SOCL2 batteries. The electronic components are

housed in a compact commercial case measuring 119 x 66 x 43 mm,

with IP68 protection, making it dust and water-resistant. Each se-

lected cow had a device attached to its collar. These collars, crafted

by the breeder from durable plastic material that adapts to the re-

quired shape, were designed to minimize stress on the animals. Each

collar also included a bell that made a sound when the animal moved,

aiding the breeder in tracking the animal. The data acquisition period

spanned from July 2021 to August 2021, with KDE analysis referring

to 38 days (approximately 6 weeks) of observations taken at 10-minute

intervals. For each position detection, along with the longitude and

latitude coordinates, the system also stored the date and time of de-

tection and the distance traveled since the previous position detection.
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8.2.3 Data analysis

Data collected during the observation period were imported into the

QGIS tool for further statistical and geospatial analysis. QGIS enables

data elaboration and visualization at the territorial level to better

understand the relationship between livestock and the environment.

Statistical analysis on the position of each animal in this test was per-

formed using Kernel Density Estimation (KDE), previously explained

in Chapter 7. This technique allowed the calculation of the home range

of the species, which is the area where a species lives, and provided

a density estimation of land use. The results from the KDE analysis

produced maps showing the areas of agricultural land most frequently

used by each animal, expressed in terms of density (95% density level,

or home range - HR). These maps helped identify the areas preferred

by the animals. By knowing these areas and the types of forage avail-

able in different parts of the land, it was possible to assess the forage

most consumed by the animals during the grazing period.

8.3 Results and discussion

By applying KDE algorithm to the dataset acquired through the LP-

GPS prototype, 6 thematic maps were obtained by using QGIS soft-

ware. Each map, one for each cow considered, reports in blue the

perimeter of the whole grazing areas, in yellow the position occupied

for the longest time and in red all the positions occupied during the

observation period. In Table 8.2 the distance travelled per day and

per week by each cow during the grazing timeslot are reported. By

analysing the maps (Fig. 8.2) emerged that all the cows considered
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remain for long time into area 2, i.e., the area where the forage is

Alexandrine clover, maybe because this kind of forage is considered

by cows more palatable than others. Observing the maps, it emerged

that, different from the others, cow 2 and cow 6 spent long time not

only in area 2 but also in area 3. Comparing the distance traveled per

day by each cow (Tab. 2), it emerged that the maximum distance was

reached by cow 6 (6.2 km), while the minimum by cow 4 (3.8 km).

Cow Avg. distance per day Avg. 1st week Avg. 2nd week Average 3rd week Avg. 4th week Avg. 5th week Avg. 6th week

1 4.0 3.8 3.8 5.7 4.3 3.2 3.0

2 4.5 3.5 4.2 5.5 4.8 3.8 3.6

3 4.8 3.5 3.9 5.8 4.7 3.2 3.6

4 3.8 2.8 3.0 4.5 4.7 3.5 3.5

5 4.9 3.6 4.1 5.4 4.9 4.1 4.1

6 6.2 5.3 5.7 7.0 6.5 5.6 5.3

Table 8.2: Average distance (in km) per day traveled by each cow

It is notable that cows 5 and 6 traveled greater distances than

the others, likely due to their younger age, as detailed in Table 8.1.

Although cow 4 is the same age as cow 6, it traveled less due to

lameness during the experiment. Analysis of the weekly distance data

in Table 8.2 revealed that the cows increased their daily travel by about

1.5-2 km during the third week. This distance gradually decreased

during the fifth and sixth weeks, returning to the levels observed in

the first and second weeks. The breeder explained this variation as

a result of pushing the cows towards zone 3 to diversify their forage

intake.

As mentioned in Section 8.2, a SigFox repeater was installed to en-

sure better signal quality. This installation resulted in more consistent

data reception and significantly fewer lost position records compared

to previous experiments by Porto et al. [93]. Although the heatmaps
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Figure 8.2: Heatmaps of the six cows. (a) Cow 1. (b) Cow 2. (c)

Cow 3. (d) Cow 4. (e) Cow 6

were computed using six weeks of data, additional data were collected

to test battery life, which reached four months in this experiment.

This extended battery life was achieved with a 10-minute data mon-

itoring interval. As reported in [97], the limited battery life of some

devices in other studies necessitated position detection only once per

hour or longer, reducing the effectiveness of monitoring grazing ani-

mals. By processing the collected data, it was possible to identify the

areas where the cows spent the most time and understand the types

of forage they consumed. To gain more insights into cow behavior

during grazing and further validate the system, it will be necessary to

revise the LP-GPS prototype hardware to integrate an accelerometer
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and develop software for behavior detection [94, 32]. The heatmaps

generated by analyzing the data from the LP-GPS prototype could be

crucial for livestock management, providing farmers with feedback on

the types of forage consumed and the soil conditions of grazing areas.

The potential applications of the proposed LP-GPS prototype may

also interest stakeholders, local authorities, and regional environmen-

tal protection agencies.
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G. (2023). IoT Technologies for Herd Management. In: Ferro, V.,
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CHAPTER

NINE

LOW-POWER NETWORKS AND GIS

ANALYSES FOR MONITORING

THE SITE USE OF GRAZING CATTLE

9.1 Overview

In Chapter 7 were investigated the effectiveness of an automated sys-

tem for identifying and monitoring cows in extensive livestock op-

erations using space-time data from a low power global positioning

system (LP-GPS). They utilized this data to assess the pasture usage

by the herd and estimate the environmental impacts of extensive live-

stock systems through GIS analysis. Subsequently, in Chapter Y were

tested this system in another case study to evaluate its practicality for

locating and tracking animals in regions with inadequate LPWAN net-

work coverage. Both studies primarily focused on the viability of the

LP-GPS based system for cow monitoring and environmental impact
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assessment, without addressing battery life, data loss and Sigfox sig-

nal strength and coverage. The objective of the current study was to

assess the feasibility of the developed LP-GPS based system for track-

ing and monitoring cows in extensive livestock systems by specifically

testing its battery life and the functionality of the low-power network,

taking into account its signal strength and coverage in rural areas.

The study also compared experimental results presented in Chapters

7 and 8, highlighting improvements in data retention achieved through

the installation of a Sigfox repeater.

9.2 Materials and method

9.2.1 Data collection and analysis

The Low Power GPS-Based System (LP-GPS system), described in

previous chapters, was applied to two different case studies (i.e., Case

I and Case II). The developed system showed that the combination

of a low sampling rate and the Low Power communication network

provided a longer battery life than other systems investigated in the

literature [15]. In detail, the wearable devices, after receiving posi-

tion information (e.g., latitude and longitude, time of detection, and

distance travelled by each animal), send it to a cloud server using

the SigFox telecommunication network for processing and visualiza-

tion through a WebApp. The SigFox antenna located close to Monte

Lauro, within the province of Syracuse, was used for both case studies.

In detail, the wearable device was equipped with an omnidirectional

GPS antenna and receiver with -167 dBm sensitivity and 72 channels,

an ultra-low power microcontroller, a SigFox radio module 868 MHz,
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14 dBm E.R.P., an omnidirectional SigFox antenna, and was powered

by high-capacity Li-SOCL2 batteries.

9.2.2 Case I

In the Case I, described in Chapter 7, the experimental activity was

carried out in the territorial area belonging to the municipality of

Melilli, in the province of Syracuse, for 21 days (Fig. 9.1). Data

were acquired with an acquisition-time interval of 20 min as well as

the time interval for sending messages to the cloud server. The 20

min-time interval was chosen to acquire long-time data for both car-

rying out tailored GIS analyses, such as the application of Kernel

Density Estimation (KDE) tool and guaranteeing long lasting battery

life. KDE tool, available in QGIS software, was applied by considering

the placements of each animal outfitted with the devices.By applying

KDE analysis, the maps (i.e., a raster or a vector image), obtained

both for each animal of the sample and for all the selected cows to

classify the preferred territorial areas, represents the area of the terri-

tory most frequently used by animals, in terms of density. In detail,

the HR represents the area in which the probability of finding the

monitored items is 95 %, while the CHR represents the area in which

the probability is 50 % [93]. Ten different animals out of a herd of 90

animals that differed in age and number of births, but all belonging to

the same breed (i.e., mix breed), were chosen by the farmer to carry

out the experimental activity. Due to a problem with fitting a collar

on a cow (i.e., case I cow 5), the related data could not be analysed

therefore, data from only nine wearable devices were collected and

elaborated. On acquired data, both spatial and statistical analyses
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were carried out by using QGIS software for the first ones and KDE

for the others through which six thematic maps were obtained, one

for each considered cow. Moreover, acquired acquisitions were further

analysed to assess possible devices signal losses for each individual cow

during the entire observation period.

9.2.3 Case II

The second case study (i.e., Case II),described in Chapter 8, was car-

ried out in an extensive farm located in Aidone municipality, belonging

to the province of Enna, for a period of 38 days between (Fig. 9.1).

The herd was grazing in an area of about 300 ha, divided into three

different territorial areas, bounded by electric fence to prevent live-

stock trespassing. In this case study, six animals out of a herd of

130 cows, that differed in age and number of births, were chosen by

the farmer to carry out the experimental activity. The time interval

for data acquisition was set to 10 min with the aim of increasing the

battery life, that reached four month-duration. As well as for Case I

same spatial and statistical analyses were carried out. Following the

results obtained in Case I, a Sigfox repeater was installed in the study

area (Fig. 9.1) aimed at increasing the signal power and coverage of

the telecommunication network, and consequently reducing the data

loss. In order to verify the exact location of the lost data, for each

cow all data, detected before and after the lost one, were localized

based on their GPS coordinated in QGIS software. Then, the Mean

Coordinates plug in available in QGIS, which calculates the mean of

the coordinates of a layer starting from a field of the attribute table,

was applied, by creating a new points layer containing the simulated
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lost data for each of the six selected cow. Based on this new layer,

in order to better understand the link between data losses, the signal

coverage, and the devices, tailored heatmaps, through KDE tool, were

carried out.

Figure 9.1: Localization of the grazing areas in the provinces of

Syracuse (Case I) and Enna (Case II).
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9.3 Results and discussion

9.3.1 Case I

Collected data from the LP-GPS device and acquired from both di-

rect surveys and visual inspections, were combined, and elaborated

for locating and tracking the ten selected cows. By using QGIS, it

was possible to highlight those grazing areas most frequently used by

animals during the whole data collection period. The area, that re-

sulted as the most preferred by the animals, was that one richest in

forage and far from the road. Further analyses and tailored evalu-

ations were carried out on the data acquired through the LP-GPS

device as shown in Table 9.1. In detail, it is possible to highlight that,

by considering the data collection period (i.e., 21 days) and the data

sending time-interval of 20 min (i.e., thus 4 acquisition per hour), the

expected acquisitions for each individual device during the entire ob-

servation period should have been 2,016 instead of, at least, less than

1,800, as reported in Table 9.1. By analysing the recorded data, it

was found that, all devices documented signal losses ranged between

233 and 729 lost samples per cow, with an average of 443 equals to

about 22%. Furthermore, as reported in Table 9.1, the devices that

have lost the highest percentage of points are those ones referred to

the case I cow 1 and case I cow 9, with 32.39% (i. e., 653 samples)

and 36,16% (i.e., 729 samples) of lost data, respectively. Since the

losses were evenly recorded for all the cows it could be due to the low

signal power and coverage in the study area. Therefore, by installing

a repeater, it could be possible to increase the signal coverage of the

telecommunication network and consequently reducing the data loss.
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Table 9.1: Data obtained by the LP-GPS device during the whole

observation period.

Cow ID Num. lost samples Num. obtained samples Num. expected samples % Num. lost samples

case I cow 1 653 1363 2016 32.39

case I cow 2 296 1720 2016 14.68

case I cow 3 276 1740 2016 13.69

case I cow 4 233 1783 2016 11.56

case I cow 6 448 1568 2016 22.22

case I cow 7 422 1594 2016 20.93

case I cow 8 445 1571 2016 22.07

case I cow 9 729 1287 2016 36.16

case I cow 10 481 1535 2016 23.86

Total 3983 14,161 20,160 19.76

9.3.2 Case II

As well as for Case I, by using KDE tool, available in QGIS software

tailored maps for each cow were obtained reporting their most pre-

ferred areas among the three considered different ones. It emerged

that all the considered cows remain for longer time into area 2 (Fig.

9.1). This latter was most preferred by the animals as it was the

richest in forage in particular Trifolium alexandrinum, and because

this kind of forage is considered by cows more palatable than others.

The heatmaps, representing the territorial area of whole grazing area

where the signal coverage most frequently could be lost, were carried

out, through KDE tool, for each considered cow (Fig. 9.2). As shown

in Fig. 9.2 and reported in Table 9.2, the lost data, considering the

increase of the signal coverage by Sigfox repeater installation, were

around 6% of the total recorded data, with a minimum of 23 and

maximum of 1103 lost samples. Moreover, by observing Fig. 9.2, the

heatmaps carried out for case II cow 4, case II cow 3, and case II cow

6, showed the highest concentration of lost data, as confirmed in Table
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9.2. By excluding these three selected cows (i.e., case II cow 3, case

II cow 4, and case II cow 6), the percentage of lost data was drasti-

cally reduced to less than 1%, thanks to the installed Sigfox repeater.

These latter demonstrated that the losses data should be attributed

to the wearable devices not to the low signal coverage, also because

the losses resulted evenly distributed within the whole grazing area,

by highlighting the highest number of losses in area 2, exactly where

the Sigfox repeater was placed. As reported in Table 9.2, considering

the devices embedded to the collars belonging to the case II cow 3

and case II cow 4, the recorded losses were 10.63% and 17.27%, re-

spectively. Finally, by comparing the two analysed case studies, i.e.,

Case I and Case II, it is possible to notice that the installation of the

Sigfox repeater contributed to reduce losses of position-related sam-

ples. In detail, from a total loss of about 22%, recorded for Case I, a

total percentage of lost samples equal to about 5.53% was reached in

Case II. In order to improve the performance of the developed system

by strongly reducing the number of lost samples, it is important to

analyse the behavioural activities of the cows, by combining motion

sensors (i.e., accelerometers) and GPS data to reach the most accurate

way for measuring animal activity on extensive farm.

In this regard, in literature only few research works that combine

GPS data with accelerometers were found, compared to those ones

that instead of use single types of data [28]. Among them, most stud-

ies focused on the use of GPS collars combined with accelerometers

in small pastures and over short time periods [101], therefore, as also

demonstrated by the achieved results, checking this technology in big-

ger pastures and, above all, for longer observation periods is urgently

needed. Another important issue highlighted by the achieved results
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Table 9.2: Data obtained by the LP-GPS device during the whole

observation period within Case II.

Cow ID Num. lost samples Num. obtained samples Num. expected samples % Num. lost samples

case II cow 1 23 6361 6384 0.36

case II cow 2 41 6343 6384 0.64

case II cow 3 679 5705 6384 10.63

case II cow 4 1103 5281 6384 17.27

case II cow 5 56 6328 6384 0.88

case II cow 6 217 6167 6384 3.39

Total 2119 36,185 38,304 5.53

and needed of further improvements is how to increase both battery

life and network performance in combined GPS and accelerometer sys-

tems. In this regard, it is important to highlight that the long battery

life reached in both the analysed case studies, especially in Case II

(i.e., more than 4 months) was reached by using a 10-minutes data

monitoring. Indeed, as stated by [97], due to the limited battery life

of the devices, in some research studies, the animal’s position was

detected only one time per hour, but by reducing the number of de-

tections it is impossible to achieve an efficient monitoring of grazing

animals.

9.4 Conclusions

Several studies have shown that knowing the position of animals within

a defined area provides key information about their feeding habits, soil

consumption, and in some cases, their overall behavior. However, po-

sition data alone is not always sufficient; further processing with GIS

enables the creation of maps that can be crucial for herd management.

Real-time monitoring of herds in extensive livestock systems is chal-
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lenging for tracking variables that can provide timely alerts to farmers.

Additionally, in extensive farms, it is often difficult to monitor animals

due to the lack of telecommunications networks or poor signal cover-

age. In this regard, the results demonstrated that using Low-Power

networks (such as Sigfox) allows for continuous herd monitoring while

preserving the battery life of the devices, unlike non-low-power net-

works. Furthermore, the installation of a Sigfox repeater significantly

reduced data loss. Specifically, sample loss in a system designed to

detect position is a critical issue because most systems proposed in

the literature send position data at intervals ranging from minutes to

hours. The loss of one or more samples can render the monitoring

less useful for both breeders and researchers. Future developments of

the proposed system should consider combining GPS and accelerom-

eters with related behavior detection systems, allowing for even more

precise monitoring of the herd and minimizing data loss.
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Figure 9.2: KDE analyses for each cow representing the area of

the territory where the signal coverage most frequently could be lost in

CASE II.



136
Chapter 9. Low-power networks and GIS analyses for monitoring

the site use of grazing cattle



CHAPTER

TEN

CHALLENGES AND IMPROVEMENTS

The application of Precision Livestock Farming (PLF) technologies to

monitor the behavioral activities of cows in extensive farms has en-

countered several challenges, which make their use more restrictive

compared to indoor environments. Although awareness of the poten-

tial benefits of these tools is still limited, the demand from farmers

and researchers is on the rise, with expectations of positive outcomes

from the spread of PLF in grazing systems, particularly in terms of

improving animal welfare and optimizing labor.

As reported in Chapter 2 several studies in the literature have

adopted GPS for cattle localization, highlighting common challenges

such as miniaturization of sensor technologies and the development of

high energy density batteries. As reported by Raizman et al. [97],

to extend the battery life of the devices, in some research studies,

the position of the animal was detected only once an houre, with the

result that in reducing the number of defections, it is impossible to

137
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achieve an efficient monitoring of the grazing animals. Another strat-

egy to improve battery life, as reported in the case study presented

in the Chapter 3, involves in implementing a standby or sleep modes,

where the device is deactivated when sensors are not in use, as well

as adjusting the alarm rate based on the activity being performed

by the animal. A significant issue with these applications is the re-

liance on telecommunication networks, which are often inadequate in

vast, rural areas where efficient and reliable coverage is lacking [104].

Specifically, mobile tracking systems for livestock require a telecom-

munications network that does not consume excessive power, as this

would further reduce battery life.

To overcome the above problems, different Low-Power Wide-Area

Networks (LPWAN) [95] have been proposed, which are types of long-

range wireless telecommunication networks characterized by low power

consumption and low bit rate. Sigfox and LoRa [55, 81] are two of

the most widely used LPWANs in IoT applications in PLF because

they offer real-time and low-power monitoring of animals in extensive

farms.

For example, in Porto et al.[94] and Castagnolo et al.[32], described

in Chapters 7 and 8, the priorities were to study the battery life of

the proposed device and to explore the feasibility of a Sigfox-based

tracking system in extensive farms. By using the Sigfox network, we

achieved a battery life of approximately four months with a 10-minute

interval for data collection. The system was also tested in an area with

poor telecommunications coverage, where the installation of a repeater

allowed continuous monitoring without significant data loss.

The latest advancements, such as LoRaII, offer the potential to

determine the position of objects by triangulating the arrival time
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of packets via highly synchronized base stations. While the position

accuracy of LoRaII (10 to 30 meters) may be sufficient for applica-

tions involving animals confined to specific areas (e.g., locating sick

cows), it may become inadequate when the grazing areas are larger

and unfenced. An interesting application of devices embedding GPS

sensors are virtual fences. These new technologies are aimed at con-

fining grazing animals without physical fences. Virtual fences operate

based on associative learning, using audio signals and a mild electrical

discharge to deter animals from crossing predefined boundaries. Since

these GPS-equipped devices can also provide animal identification,

each animal’s position can be tracked during the monitoring period

and visualized within the grazing farm using GIS-based software [18].

The data acquired through GPS devices are crucial, as knowing the

position of the animal can help reduce the risk of theft or unauthorized

movement. Furthermore, by managing GPS data within GIS tools, as

explored in Chapters 7,8,9, important aspects such as environmental

impact, social factors, and the forage consumed by animals can be an-

alyzed. However, while GPS data can provide insights into the habits

of animals, it is not sufficient to fully understand their behavior during

grazing. Integrating motion sensors with GPS data offers a more com-

prehensive method for determining animal activity in extensive farms,

providing farmers with immediate alerts in case of abnormal behavior,

as reported in [94]. Current research has demonstrated that IoT-based

devices with embedded accelerometers can remotely monitor livestock

behavior and detect activity changes associated with disease or calv-

ing. GPS tracking can also detect calving by monitoring the distance

between a cow and the rest of the herd or identifying when cattle

gather in sensitive areas. Combining GPS and accelerometer data has



140 Chapter 10. Challenges and improvements

proven to be more accurate than using either device alone. One of the

major challenges in monitoring livestock behavior with sensors, partic-

ularly with combined systems, is managing the large volume of data

generated, as noted by [28]. Collecting vast amounts of data poses

problems not only in terms of management but also in processing and

storage, as higher, and therefore more expensive, computational re-

sources are required. Nowadays, most studies focused on the use of

GPS collars or accelerometers, were proved in small pastures over short

periods of time. However, the effectiveness of this technology in larger

pastures and over extended periods remains to be assessed. For exam-

ple, Riaboff et al. [100] tested their system for only five days due to

battery limitations, which, as the authors noted, is insufficient to ex-

plore the relationship between cows and their environment, especially

in herding situations where grazing occurs over long periods. An anal-

ysis of the existing literature reveals that when a new system or data

processing method is proposed, it is often challenging to make direct

comparisons, as the software tools and acquired data are not always

shared. This lack of transparency hinders a full understanding of the

limitations of proposed studies and makes it difficult to replicate re-

sults. Ultimately, the studies discussed highlight the need to improve

both battery life and the reliability of telecommunications networks.

Despite existing technological limitations, solutions to the battery life

issue include using low-power telecommunications networks, develop-

ing highly optimized firmware focused on energy conservation, em-

ploying energy optimization techniques in devices, and reducing the

sampling frequency in devices while utilizing high-efficiency batter-

ies. Although higher acquisition frequencies lead to greater energy

consumption, they offer more precise behavior detection, such as for
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rumination or walking. Therefore, it is essential to find a balance be-

tween precision and energy consumption [101, 9]. Recently, machine

learning (ML) and deep learning (DL) techniques have been proposed

for cow activity detection, offering greater generalizability and requir-

ing less human intervention compared to traditional statistical meth-

ods or threshold-based approaches. However, the increased computa-

tional demands of ML and DL pose a challenge for battery life. To

address this, necessary computations are often carried out on cloud

platforms, with raw data transmitted from sensors via telecommuni-

cations networks. This approach is viable for monitoring cow behavior

in intensive indoor systems, where devices that transfer data to the

cloud can be powered by an electrical network. However, in extensive

grazing systems, this solution is not always feasible, as data transfer

via GSM networks, which are highly energy-consuming for wearable

devices, is required. Although personal area networks (PAN) or local

area networks (LAN) powered by electrical networks could be used

for data collection and transfer, their short communication range may

not be suitable for large grazing areas. Additionally, while LPWANs

can transfer data from sensors, their limited payload capacity may not

support the large data volumes required for ML and DL models.

Given these constraints, threshold-based or machine-learning

based models could be a practical solution for monitoring grazing cows

in rural areas, as they require less computational power and can be

implemented in wearable devices, with data transferred via LPWAN.

However, to tune effective methods for accurate classification, exten-

sive data collection is necessary. Concerning the reliability of LPWAN

telecommunications networks, a potential solution to poor coverage in

rural areas could be the installation of network repeaters equipped



142 Chapter 10. Challenges and improvements

with energy accumulators powered by renewable sources such as wind

or solar energy.
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CHAPTER

ELEVEN

COW AUTOMATIC MONITORING SYSTEMS

IN INDOOR FARMS

The contemporary livestock industry, as reported in previous Chap-

ters, is characterized by a heightened emphasis on animal health, wel-

fare, and productivity. Traditional monitoring practices, reliant on

human observation, are labor-intensive, time-consuming, and suscep-

tible to human error. As agricultural operations expand and precision

management demands increase, a paradigm shift towards advanced

technologies, particularly camera-based systems, has emerged [13].

As reported in Chapter 2 cameras are non-invasive sensors, therefore

Camera-based monitoring offers a non-invasive, continuous method

[87]. This method is very effective for observing animal behavior,

physiological status, and environmental interactions, especially in in-

door context. By capturing real-time visual data, is possible to study

animal movement, feeding patterns, and social dynamics. In indoor
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context the camera-based monitoring systems allow multiple advan-

tages, compared to sensor-based. Above all, the use of cameras not

involve of physical devices mounted on the animal, and do not create

obstacles to the animal movement. Furthermore, a few strategically

placed cameras can effectively monitor large groups of animals simul-

taneously, making this approach not only technologically robust but

also economically efficient [127]. This allows farmers to gain compre-

hensive insights into the behavior and well-being of multiple animals

without the need for extensive equipment or frequent manual checks,

significantly reducing both labor costs and the need for additional

resources. By reducing the need for physical interventions, these sys-

tems contribute to a less stressful environment for animals, promoting

ethical and humane livestock management practices. The integration

of Machine learning and Computer vision algorithms enhances data

analysis, enabling the automated identification of behavioral anoma-

lies indicative of potential health issues or discomfort. Early detec-

tion of these irregularities is crucial for optimizing animal welfare and

preventing disease outbreaks. As the agricultural sector undergoes

digital transformation, camera-based monitoring systems are poised

to become indispensable tools. This chapter explores the application

of these systems across livestock production environments, aiming to

revolutionize the understanding, management, and improvement of

animal health and well-being.
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11.1 Devices

In designing an automatic monitoring system, the fundamental step

is obviously the choice of hardware to use. It is strictly related to the

type of processing of the acquired data to be used in the future and

to the aspects that you want to examine. The selection of an appro-

priate hardware depends on several factors: characteristics, camera

placement, environmental conditions, animal species, intended anal-

ysis, and budgetary constraints. In general, in this type of system

the following types of devices are used: 2D cameras [52], infrared

2D cameras, 3D cameras[52], Thermal cameras [133] and LiDar[124].

Two-dimensional cameras constitute the predominant imaging tech-

nology employed in contemporary livestock monitoring systems, pri-

marily due to their affordability and compatibility with existing stable

surveillance infrastructure. In dairy cattle environments, side-view

position is commonly used, facilitating simultaneous observation of

multiple individuals while enabling assessment of body conformation,

particularly in identifying structural anomalies, and behavior moni-

toring during daily activity. However, 2D cameras exhibit limitations

under sub optimal lighting conditions, a frequent challenge in indoor

farming settings. Factors such as lens contamination due to dust or

insects, lens degradation caused by corrosive atmospheric conditions,

and image quality deterioration associated with low light levels can sig-

nificantly compromise system performance. For this reason, infrared

cameras are finding more and more space in this sector, which allow the

acquisition of images in low-light conditions and are suitable for envi-

ronments where the light conditions are not always stable. Obviously

with 2D cameras it is not possible to have depth information and this
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factor precludes accurate assessment of loco motor system pathologies

and weight estimation [105]. Additionally, with depth information the

segmentation of individual animals from complex background could be

more simple and accurate [124]. To address these shortcomings, three-

dimensional cameras have emerged as a promising alternative. With

3D cameras is also possible to measure distances and reconstruct 3D

models of cows. While offering substantial advantages in terms of

data richness and analytical capabilities, the high acquisition and op-

erational costs of 3D imaging systems have restricted their widespread

adoption within commercial agricultural settings, relegating their ap-

plication primarily to research environments. Other devices used in

research have been LiDAr, which allow to measure precise distances,

penetrate obstacles and allow to perform 3D reconstructions at high

resolution. As for thermal cameras, they are used to monitor the

health of cows by highlighting increases in body temperature and to

study metabolism.

11.2 Animal aspects monitored and tasks

Camera-based monitoring systems have demonstrated significant po-

tential in addressing a wide range of cows husbandry challenges. The

core focus areas for these systems can be categorized as follows:

• Behavior and health monitoring [35, 51, 126]

• Locomotor activity and related anomalies: pose and motion es-

timation [85, 59]

• Reproductions activities: oestrus and mounting [84, 67]
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• Weight Estimation [128, 73]

A primary and more investigated application is the continuous obser-

vation of animal behavior to identify potential health issues or changes

in normal routines. By analyzing visual data, it is possible to detect

early indicators of disease, such as lethargy or changes in appetite.

Moreover, these systems can be employed to assess overall animal wel-

fare by monitoring social interactions, environmental responses, and

resting patterns. The most important behavior monitored are: feed-

ing, lying, rumination and walking. Clearly these types of activities

are carried out differently for animals housed in an indoor farm com-

pared to an outdoor one. As regards the precise analysis of animal

movement, it is crucial for identifying potential lameness issues, mus-

culoskeletal disorders, and reproductive challenges. Through the ap-

plication of computer vision techniques, it is feasible to extract detailed

information regarding animal posture, gait, and locomotion patterns.

These data can be employed to develop early warning systems for de-

tecting abnormalities and to inform targeted intervention strategies.

In this context the most investigated task is the lameness identifica-

tion. Through the camera-based monitoring systems is possible to

perform early lameness detection and therefore and apply the correct

care to the affected animal. The reproduction monitoring is a critical

aspect of livestock management. Camera-based systems can be used

to detect behavioral changes associated with estrus, such as increased

activity, mounting behavior, and changes in social interactions. Es-

trus detection, in the case of animals raised indoors that are artificially

inseminated, is important, since the early identification of estrus al-

lows the breeder to inseminate the cow at the right time, otherwise
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this translates into an economic loss for the breeders. By automat-

ing this process, farmers can optimize breeding programs and improve

reproductive efficiency. “Mounting” in the context of cows refers to

mounting or mating behavior. It is a critical aspect of reproductive

management in cattle herds, especially dairy cows. Understanding

and monitoring this behavior can help breeders determine the optimal

time for insemination, thus improving the chances of conception. The

use of cameras to monitor ”mounting” in cows represents a significant

advancement in the management of bovine reproduction. Thanks to

video analysis, farmers can detect mounting even at times when hu-

man supervision is limited. This technological approach reduces the

margin of error and increases the chances of reproductive success, op-

timizing the productivity and profitability of the farm. While primar-

ily associated with other sensor technologies, camera-based systems

can contribute to weight estimation by analyzing body dimensions

and comparing them to established models. Although not as precise

as direct weighing methods, this approach can provide valuable es-

timates for large animal populations, enabling early identification of

weight loss or gain, which may indicate underlying health issues. The

aforementioned monitoring objectives necessitate the application of a

diverse array of computer vision techniques. Core tasks encompass

object classification, object segmentation, action recognition, pose es-

timation, and object tracking, among others. It is evident that the

acquisition of video data, as opposed to static images, provides a sig-

nificantly richer and more informative dataset for the development

and deployment of robust computer vision algorithms. The temporal

dimension inherent in video sequences enables the capture of dynamic

information essential for understanding animal behavior, interactions,
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and physiological states.

11.3 Cows action recognition from videos

Over the years, various approaches have been developed to classify

cow behavior using data captured by cameras, with a particular focus

on video action recognition techniques.

Nguyen et al. [88] introduced a notable method for monitoring cat-

tle behavior using a video-based system integrated with deep learning

models. This approach involved the use of multiple cameras to record

cattle activities, followed by manual annotation to identify individ-

ual animals and their behaviors. The method employs Cascade R-

CNN for cattle identification and Temporal Segment Networks (TSN)

for action recognition, achieving high accuracy in detecting behaviors

such as drinking and grazing. By integrating these components into a

seamless pipeline, the system offers an automated solution for contin-

uously monitoring cattle welfare on farms, a critical aspect of modern

livestock management.

Building on this, Fuentes et al. [50] presented a deep learning

framework for hierarchical cattle behavior recognition that leverages

spatio-temporal information from video data. Their system combines

YOLOv3 for frame-level detection with 3D Convolutional Neural Net-

works (3D-CNN) to capture temporal context, enabling the identifi-

cation and localization of 15 distinct cattle behaviors, including both

individual and group activities. Designed for real-time operation, this

framework serves as an effective tool for monitoring cattle behavior

across various farm conditions, offering scalability and adaptability
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essential for large-scale farming environments.

Similarly, Qiao et al. [96] developed a framework for automated

cattle identification using video data. Their approach integrates a

Convolutional Neural Network (CNN) for spatial feature extraction

with a Bidirectional Long Short-Term Memory (BiLSTM) network to

capture spatio-temporal information from video sequences. The inclu-

sion of an attention mechanism further enhances accuracy by focusing

on the most relevant features, significantly improving the precision

of cattle identification and enabling more personalized management

strategies within herds.

Further advancing this field, Wang et al.[123] introduced the E3D

(Efficient 3D CNN) network, specifically designed for recognizing ba-

sic motion behaviors of dairy cows using video data. E3D combines

3D convolutional layers with the SandGlass-3D module to effectively

capture spatio-temporal features, while the Efficient Channel Atten-

tion (ECA) mechanism filters out irrelevant background information,

enhancing accuracy. The E3D network has been shown to outper-

form several classical and state-of-the-art models, such as C3D, I3D,

and P3D, in terms of both accuracy and efficiency. This makes it a

robust and lightweight solution suitable for real-time behavior recog-

nition in natural farm environments, addressing the need for efficient

monitoring tools in resource-constrained settings.

In another significant contribution,Li et al. [70] proposed a method

for recognizing basic motion behaviors of dairy cows by combining cow

skeleton data with hybrid convolutional neural networks (CNN). This

approach integrates both 2D and 3D convolutional layers to extract

spatio-temporal features from video data, with skeleton information

incorporated as an attention mechanism. This method demonstrated
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superior accuracy and robustness compared to traditional methods,

particularly in recognizing behaviors like walking, standing, and lying

down. The use of skeleton data also reduces the model’s sensitivity

to environmental variations, such as changes in brightness and noise,

making it a reliable tool for monitoring cow behaviors in real farm

settings.

The study by Hua et al.[63] introduces the PoseC3D model, which

is specifically designed for recognizing typical motion behaviors of

dairy cows based on skeleton features. The method involves two pri-

mary steps: skeleton extraction using a modified YOLOX-Pose model,

followed by action recognition using the PoseC3D model. YOLOX-

Pose efficiently extracts skeletons with high accuracy, while PoseC3D

processes the extracted 3D skeleton information to recognize actions

such as lying, standing, walking, and lameness. The study not only

compares this model against other keypoint extraction and action

recognition algorithms, showing superior performance in terms of ac-

curacy and efficiency, but also explores the impact of various factors

such as brightness and input modalities on the model’s performance.

This confirms the model’s robustness and suitability for real-time mon-

itoring in dairy farms. Finally Bai et al. [14] proposed the X3DFast

model, a lightweight yet effective approach for classifying dairy cow

behaviors using video data. The model employs a two-pathway ar-

chitecture combining X3D and Fast pathways to capture both spatial

and temporal features of cow behaviors. The X3D pathway focuses

on static spatial features, while the Fast pathway emphasizes dynamic

temporal aspects, utilizing R(2+1)D convolutions for enhanced tem-

poral modeling. The model was trained and tested on a dataset re-

flecting real-world farming conditions, including varying illumination
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and occlusion. X3DFast achieved a top-1 accuracy of 98.49%, out-

performing several existing models, and demonstrated robustness in

recognizing behaviors such as walking, standing, lying, and mounting.

The study highlights the model’s potential for real-time application in

dairy farms, contributing to improved animal welfare and farm man-

agement.

Collectively, these studies highlight the significant progress made

in video-based cattle behavior recognition, particularly through the

integration of advanced deep learning models. These advancements

promise to enhance the precision, efficiency, and scalability of live-

stock monitoring systems, which are crucial for improving animal wel-

fare and optimizing farm management practices. As research in this

field continues, future developments are expected to focus on refining

these models further to handle more complex behaviors and diverse en-

vironmental conditions, ensuring their effective deployment in a wide

range of agricultural settings.

11.4 Challenges and improvements

The implementation of camera-based monitoring systems in livestock

farming, while offering significant advantages, presents several chal-

lenges that must be addressed to fully realize their potential. One of

the primary challenges is the variability in environmental conditions

within indoor farming environments. Furthermore, the vast amounts

of data generated by these systems necessitate significant computa-

tional resources for real-time processing and storage, which can be

cost-prohibitive for many farming operations. The initial investment
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in high-quality cameras and the required infrastructure can also be a

barrier, particularly for smaller farms. These challenges highlight the

need for more robust, adaptable, and cost-effective solutions. Looking

ahead, one of the key future trends in this domain is the integration of

advanced machine learning algorithms with camera-based systems to

enhance their robustness and adaptability. Among these, Continual

Learning (CL) stands out as a promising approach. CL techniques

are designed to enable models to learn from continuous streams of

data, adapting to new information without forgetting previously ac-

quired knowledge. This capability is particularly relevant in livestock

monitoring, where animal behavior can change rapidly due to environ-

mental factors or health issues. By applying Continual Learning to

video data, it becomes possible to develop monitoring systems that not

only recognize complex behaviors but also continuously improve their

accuracy over time, even as conditions change. This ability to adapt

to real-world variability without requiring extensive re-training makes

CL a crucial component in the next generation of livestock monitoring

technologies. The application of CL to video action recognition is still

a relatively unexplored area, but it holds great potential for advancing

the precision and reliability of these systems.



156 Chapter 11. Cow automatic monitoring systems in indoor farms



CHAPTER

TWELVE

CONTINUAL LEARNING METHODS FOR

VIDEO ACTION RECOGNITION

12.1 Overview

In recent years, various state-of-the-art methods for action recognition

have been proposed and these approaches have also been applied to

recognizing cattle behavior and monitoring their health. However, this

field presents several challenges, including the need for neural networks

capable of retaining previously learned knowledge. Continual Learning

(CL) addresses the problem of learning from an infinite data stream,

with the goal of gradually extending and utilizing acquired knowledge

for future learning. CL methods aim to train neural networks on non-

i.i.d. samples, alleviating catastrophic forgetting while minimizing

computational costs and memory footprint.

The need for continual learning techniques is especially crucial in
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real-world contexts, such as livestock monitoring, where data is neither

independent nor identically distributed due to sudden changes in ani-

mal behavior. Addressing this variability cannot be achieved through

simple fine-tuning, as it would lead to forgetting what models have

already learned. This study explores the application of Continual

Learning techniques in video analysis, a relatively unexplored area.

The objective is to assess whether state-of-the-art continual learning

methods can be generalized to high-dimensional spatio-temporal data.

To achieve this, an experimental protocol for continual learning in

video action recognition was established, evaluating the performance

of state-of-the-art approaches and proposing two methodological mod-

ifications. The topic of this chapter was approached using a public

human action dataset due to the unavailability of suitable datasets in

the cattle domain. However, the conclusions drawn from this work are

applicable to other contexts, as the focus here is on action recognition

in videos in cL asset.

12.2 Related Work

Video action recognition is a well-known problem in computer vision,

given to its wide range of applications, including surveillance [38], be-

havior understanding [58], content-based retrieval [71]. It is also a

complex problem, due to the difficulty to learn spatio-temporal action

patterns in a high-dimensional space. Recent advances in deep learn-

ing, including attention-based vision transformers [40, 11, 24, 130],

have achieved unprecedented results on video action recognition

benchmarks, pushing performance of automatic methods closer to hu-
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mans’. However, current approaches for supervised video action recog-

nition assume a stationary data distribution, where all dataset classes

and samples are simultaneously available at training time. Recently,

this hypothesis has been put under question, giving rise to a line of re-

search on continual learning methods, designed to deal with changes

in the class distribution (new classes may become available, while

others are replaced) and/or in the intra-class data distribution. The

relaxation of the stationarity assumption introduces several novel chal-

lenges; notably, models trained on sequences of tasks tend to focus on

currently-available classes, degrading performance on previously-seen

classes — a phenomenon known as “catastrophic forgetting”; simi-

larly, in presence of gradual shifts in the data distribution of a certain

class, models become unable to correctly process “older” samples.

While several solutions to continual learning have been proposed,

based on architectural priors [106], knowledge distillation [69], reg-

ularization [110] or experience replay [103], they have been mostly

validated on simple image datasets, such as MNIST, CIFAR10/100

or simplified versions of ImageNet. Hence, it is hard to assess their

suitability to more complex use cases, such as video action recognition.

Continual learning aims to cope with catastrophic forgetting in

this scenario, using different techniques.

Rehearsal methods keep a buffer of samples from previous tasks,

to prevent the model from forgetting past knowledge. Methods in this

category include DER/DER++ [30], ER [103], GSS [2], FDR [23],

HAL [34], GEM [72], AGEM [12] and iCarl [98]. Knowledge distil-

lation approaches employ an earlier version of the model (trained

on previous tasks) to transfer features or to encourage the current

model to emulate past predictions. The pioneering work in this cate-
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gory is LwF [69]; recent approaches have also attempted to integrate

auxiliary knowledge from unrelated tasks [27]. Regularization meth-

ods, e.g., EWC [110], introduce loss terms to counteract modifica-

tion of backbone features in favor of new tasks. Regularization and

knowledge distillation are often employed alongside other techniques:

DER/DER++ [30] regularize a cross-entropy loss by enforcing logit

similarity of buffered past samples. Architectural methods, such as

PackNet [74] and HAT [111], progressively extend a model’s backbone

to cope with new tasks, but require that model capacity must increase

with the number of tasks. Pruning methods [54, 75] may help mitigate

this issue. Unfortunately, the presence of a buffer and the correspond-

ing memory overhead may become significant, if not prohibitive, when

dealing with video sequences, because of the increase introduced by the

temporal dimensions. Finally, it should be mentioned that a related

problem, i.e., class-incremental learning, has already been studied in

video action recognition [91]. However, class-incremental learning —

i.e., progressively showing new classes to a classification model — only

analyzes a portion of the problem (for instance, it does not address

task-incremental performance) and generally applies a pre-training on

a large part (often, half [91, 41, 61]) of the original dataset, which is

not a common procedure in the literature for continual learning.

12.2.1 Method

In this work, as in most of continual learning literature, we focus on

classification tasks. Hence, let task T (C) ∼ p(T ) be a classification

problem defined on a set of classes C = {y1, . . . , yc}. Given two tasks Ti

and Tj, we assume that the corresponding sets of classes are different,
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i.e., Ci ∩ Cj = ∅: in this context, we define the problem as of either

task-incremental learning (T-IL) or class-incremental learning (C-IL),

based on knowledge of the task at inference time.

A continual learning problem consists in a sequence of T tasks

(T1, . . . , TT ) sampled from p(T ). A model M is allowed to train on

each task Ti, before moving to task Ti+1; at a generic task Ti, data from

any other tasks cannot be accessed (unless previously store by the

model, as in the case of rehearsal methods). Given the task sequence

(T1, . . . , TT ), model M, parameterized by θ, is trained to optimize

a classification objective L (commonly, a cross-entropy loss) on each

task at a time, while attempting to prevent performance decreases on

previous tasks.

12.2.2 Evaluation procedure

Given a source dataset Ds, including videos for a set of class labels Cs,
we emulate a sampling of the p(T ) distribution by splitting the set of

classes into random groups of c classes each. As a result, we obtain

a set of tasks T = {T1, T2, . . . , TN}, with Ti representing a portion of

Ds.

We can sample a continual learning problem {T1, . . . , TT} by se-

lecting a random subset of T tasks from T, and train each of the

methods under analysis on that problem, to guarantee a fair compar-

ison. This procedure is then repeated for E experiments. For each

experiment, a fraction ptest of samples from each class is left out as a

test set.

Evaluation metrics, averaged over the set of E experiments, include

the following:
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• Accuracy in task-incremental learning: for each task, we com-

pute test performance using only predictions for the classes in-

cluded in that task, and average the computed accuracy scores

over the set of tasks.

• Accuracy in class-incremental learning: for each task, we com-

pute test performance using predictions for all classes, and av-

erage the computed accuracy scores over the set of tasks.

• Buffer size: for rehearsal methods, number of elements stored in

the buffer and required memory space.

12.2.3 Memory-efficient variants

Our results (see Sect. 12.3.4) show that, as expected from the lit-

erature, rehearsal methods significantly outperform other paradigms.

However, buffer memory requirements increase significantly for video

sequences. We hereby propose two model-agnostic variants for buffer

management, aimed at reducing the number of elements to store while

preserving classification accuracy.

Confidence-driven rehearsal. High-dimensionality of videos re-

flects on a lower generalization power by a set of random buffered

samples, due to the curse of dimensionality. Hence, rather than at-

tempting to model the entire distributions of a task’s classes, an alter-

native lies in selecting samples on which the model is most confidently

correct : while this may hinder the recognition of under-represented

class modes, it reinforces knowledge on the most discriminant portion

of the distribution, which is also expected to cover the most density

mass. In practice, a sample(x, y) is eligible for buffering if the model’s

prediction for class y is above a threshold δ.
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Information-driven downsampling. Common video classification

models require a fixed input size, making it is necessary to downsam-

ple longer sequences. Usually, such downsampling is agnostic to frame

content; hence, memory efficiency may be achieved through frame se-

lection, so that more informative content is stored in a smaller buffer.

We propose to employ the norm of optical flow [47] as a measure of im-

portance, as it quantifies motion and redundancy between consecutive

frames. Formally, given a video sequence X = {x1, . . . ,xp}, we com-

pute motion vectors {m1, . . . ,mp−1}, such that mi = OF(xi,xi+1),

where OF is the optical flow function. Then, we select the subset

of frames with the largest L2 norm ∥mi∥2, ordered by their original

position in the video.

12.3 Experimental results

12.3.1 Methods

Our benchmark includes state-of-the-art continual learning meth-

ods, covering the range of paradigms from the literature: DER [30],

DER++ [30], ER [103], FDR [23], HAL [34], GSS [2], GEM [72],

AGEM [12], EWC [110] and LwF [69]1. For a fair comparison, all

methods employ the same backbone network, i.e., R(2+1)D [121]: we

excluded architectural methods [74, 111] from our analysis, as model

capacity extension would lead to an unfair comparison. All methods2

1We excluded iCarl [98] due to excessive memory requirements, as the reference

implementation required a concatenation of all samples of a task with the current

buffer.
2https://github.com/aimagelab/mammoth

https://github.com/aimagelab/mammoth
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included in our experiments are agnostic to data modality, and can be

applied to videos without any modifications.

12.3.2 Dataset and task definition

As source dataset Ds, we employ UCF101 [115], a video action recog-

nition dataset featuring 101 categories, with approximately 100-150

videos each; video duration is mostly between 2 and 10 seconds, al-

though longer videos may be present for certain categories. In our

experiments, we employ a subset Cs of 30 classes, by selecting distin-

guishable actions, removing too similar classes and classes with less

than 130 videos. Classes are grouped into pairs (consistently with con-

tinual learning procedures on other datasets, e.g., CIFAR10) to create

the task set T, including N = 15 different tasks. Then, we define a

fixed set of 50 continual learning problems, each being a task sequence

{T1, . . . , TT} of T = 5 tasks randomly sampled from T. To ensure class
balance, for each class we select a subset of 130 videos, with 100 videos

used as a training set and the rest as a test set (ptest = 3/10).

12.3.3 Training details

We normalize each color channel to zero mean and unitary standard

deviation, and resize spatially to 160×160 pixels. Data augmentation

includes random cropping at 128×128, random horizontal flipping, and

temporal cropping by selecting 16 consecutive frames from a random

point. At test time, we apply center-cropping and process all non-

overlapping 16-frame windows from an entire video. The R(2+1)D

backbone is trained from scratch for 80 epochs per task, using the
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RMSProp optimizer (learning rate: 10−5, batch size: 16); in our pre-

liminary experiments, this configuration empirically yielded the most

stable results, compared to standard SGD (which showed slow conver-

gence) or Adam (which, for some methods, led to exploding losses).

Method-specific hyperparameters were set to default values from the

original papers. Training was carried out on a machine with 8-core

Intel Xeon Skylake CPU, 64 GB RAM, NVIDIA V100 GPU.

Table 12.1: Classification accuracy in class-incremental learning

(C-IL) and task-incremental learning (T-IL). Rehearsal methods are

marked with a ✓.

Model Rehars. C-IL T-IL

DER++ [30] ✓ 47.87± 4.31 90.60± 2.21

DER [30] ✓ 39.80± 3.25 88.80± 3.64

ER [103] ✓ 31.80± 6.02 90.21± 1.84

FDR [23] ✓ 29.33± 3.46 80.87± 3.12

HAL [34] ✓ 25.61± 6.35 69.40± 8.26

GSS [2] ✓ 20.60± 2.97 71.86± 3.76

AGEM [12] ✓ 18.53± 2.70 83.40± 1.46

LwF [69] 17.13± 0.99 57.00± 4.14

GEM [72] ✓ 16.13± 4.36 72.33± 9.00

EWC [110] 11.87± 1.71 50.33± 5.20

12.3.4 Results

We first report the results obtained by state-of-the-art methods un-

der comparison. For rehearsal methods, we employ a buffer size of
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200 (a standard value from the literature), corresponding — based

on our pre-processing — to an increase in memory requirements by

940 MB. Table 12.1 shows each method’s performance in terms of

class-incremental and task-incremental classification accuracy; we re-

port mean and standard deviations over the set of continual learning

problems defined by our experimental protocol. Methods employing

experience replay perform significantly better, as expected from previ-

ous literature results on images. It is interesting to note that the top

three methods, i.e., DER++, DER and ER achieve very similar task-

incremental accuracy, showing effectiveness in learning each individual

task, but differ significantly in the capability to retain previous knowl-

edge. In absolute terms, DER++ yields promising accuracy (47.87%

in class-incremental learning), considering that its performance on im-

ages (CIFAR-10) is about 65% [30], with the same buffer size.

We then assess the impact of the proposed memory-efficient vari-

ants on the best-performing methods only, i.e., DER and DER++. Ta-

ble 12.2 shows the effect of the proposed confidence-driven rehearsal

(CDR) technique, for different buffer sizes and values of the δ con-

fidence threshold. In the case of DER, enabling CDR with a 100-

element buffer pushes class-incremental performance closer to those

with buffer size 200; similarly, CDR with a 200-element buffer reaches

similar performance as achieved with a 500-element buffer. On the

other hand, CDR with DER does not have a significant impact when

applied to a 500-element buffer, which may be large enough to com-

pensate for confidence improvements. CDR does not seem to improve

task-incremental accuracy, which is reasonable, since it acts on the

buffer and mainly addresses forgetting. Applying CDR on DER++ is

less effective, though some improvements can be seen, especially with
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buffer size of 200. However, it is reasonable to assume that the stronger

recovery capabilities of DER++ make the contribution of CDR less

important. For both DER and DER++, a general trend shows that

larger δ values lead to better performance; however, we found that

exceeding the δ = 0.8 threshold harms performance: we hypothesize

that the distribution of selected samples excessively narrows the data

distribution, worsening generalization.

We then evaluate how our information-driven downsampling

(IDD), based on optical flow, affects model accuracy. Table 12.3 shows

that enabling IDD has a positive impact on class-incremental accuracy

on DER with small buffers, while it is less effective with larger buffer.

On DER++, IDD positively affects only the usage of a 100-element

buffer, possibly for similar reasons as discussed in the case of CDR.

However, in no case IDD is able to compensate for a smaller buffer

size, showing a superiority by CDR in this respect.

12.4 Conclusions

We presented a benchmark of state-of-the-art continual learning meth-

ods for video action recognition, showing that methods designed for

images are able, to a certain extent, to generalize to videos, achieving

promising performance in class-incremental and task-incremental set-

tings. We also propose two memory-efficient variants for buffer sample

selection, demonstrating that the CDR variant helps to retain (or even

improve) performance even when reducing the buffer size, while the

IDD variant is less effective in this regard.

Future improvements of this work will address two main research
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directions to improve the proposed memory-efficient variants. First,

we mean to explore advances to the proposed confidence-driven re-

hearsal, by integrating mechanisms for automatic and adaptive thresh-

old setting. Second, rather than explicitly defining a measure for

information-driven downsampling (e.g., optical flow norm), we intend

to investigate the employment of attention mechanisms to find mea-

sures of correlation between input and model representations, thus

using the latter as a reference for importance estimation.

12.5 Publications

G. Castagnolo, C. Spampinato, F. Rundo, D. Giordano and S.

Palazzo, ”A Baseline on Continual Learning Methods for Video Ac-

tion Recognition,” 2023 IEEE International Conference on Image Pro-

cessing (ICIP), Kuala Lumpur, Malaysia, 2023, pp. 3240-3244, doi:

10.1109/ICIP49359.2023.10222140.
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Table 12.2: Impact of the proposed confidence-driven rehearsal

(CDR) variant on classification accuracy, for different buffer sizes and

values of the δ threshold.

Buffer δ C-IL T-IL

D
E
R
+
+

[3
0]

500 (2.2 GB)

- 48.20± 2.41 91.90± 1.74

0.6 47.22± 1.39 91.25± 2.21

0.7 47.00± 3.21 92.00± 3.09

0.8 49.22± 4.40 90.89± 2.11

200 (0.9 GB)

- 47.87± 4.31 90.60± 2.21

0.6 46.47± 4.46 89.07± 4.39

0.7 47.80± 5.07 90.20± 3.54

0.8 49.40± 4.92 88.47± 2.19

100 (0.5 GB)

- 42.00± 2.96 88.33± 3.90

0.6 41.00± 4.20 86.25± 2.87

0.7 40.11± 2.50 87.00± 0.58

0.8 40.00± 4.15 88.22± 4.70

D
E
R

[3
0]

500 (2.2 GB)

- 44.93± 4.88 90.00± 1.11

0.6 43.40± 5.15 90.86± 3.11

0.7 43.60± 2.60 91.33± 1.61

0.8 43.65± 5.21 87.33± 3.79

200 (0.9 GB)

- 39.80± 3.25 88.80± 3.64

0.6 40.80± 5.31 85.87± 3.34

0.7 44.20± 4.65 87.53± 3.05

0.8 44.33± 5.10 88.73± 2.30

100 (0.5 GB)

- 33.27± 3.80 84.95± 6.71

0.6 35.33± 5.25 84.67± 5.60

0.7 36.73± 3.47 88.26± 6.52

0.8 37.67± 5.17 86.53± 3.62
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Table 12.3: Impact of the proposed information-driven downsam-

pling (IDD) variant on the performance of DER and DER++, for

different buffer sizes.

Buffer IDD C-IL T-IL

D
E
R
+
+

[3
0]

500 (2.2 GB)
48.20± 2.41 90.90± 1.74

✓ 48.10± 1.80 89.66± 2.01

200 (0.9 GB)
47.87± 4.31 89.60± 2.21

✓ 46.00± 1.11 89.93± 0.76

100 (0.5 GB)
42.00± 2.96 88.33± 3.90

✓ 44.64± 3.64 90.13± 2.50

D
E
R

[3
0]

500 (2.2 GB)
44.93± 4.88 89.00± 1.11

✓ 42.50± 3.82 88.75± 3.11

200 (0.9 GB)
39.80± 3.25 88.80± 3.64

✓ 42.20± 3.58 87.33± 3.81

100 (0.5 GB)
33.27± 3.80 84.95± 6.71

✓ 34.93± 4.12 84.33± 1.66



CHAPTER

THIRTEEN

CONCLUSIONS

This thesis explored and investigated the use of IoT and AI tech-

nologies, with a particular focus on sensors and cameras, in animal

monitoring, highlighting how these emerging technologies, although

already widely used in other contexts, can offer new opportunities for

the management and protection of natural resources. In particular,

continuous and precise livestock monitoring represents a huge poten-

tial to transform the way we manage and protect the environment.

The use of advanced sensors allows for real-time data collection,

reducing the need for manual interventions and minimizing the impact

on animals. This approach ensures greater precision and timeliness in

the detection of anomalous behaviors or conditions, offering significant

advantages both in terms of environmental conservation and livestock

management. The integration of cameras, enhanced by artificial in-

telligence, represents a fundamental step towards the automation of

video analytics. AI, in fact, not only allows processing large amounts

171
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of data in a short time, but also allows identifying and predicting be-

havior patterns with a precision that would be impossible to achieve

through traditional methods.

However, one of the most challenging aspects of this research is

related to the lack of specific and accurate data for training AI-based

recognition models. Data collection in the context of animal moni-

toring is time-consuming and requires considerable resources, as data

must be acquired in variable and often difficult-to-monitor environ-

ments. Furthermore, the need for specialized personnel for data label-

ing represents a significant challenge, as this process is crucial to ensure

the quality and reliability of automated analysis models. Without an

adequate amount of labeled data, the effectiveness of AI in recogniz-

ing animal behaviors may be limited, reducing the positive impact of

these technologies.

Artificial intelligence, in particular through continuous learning

techniques, demonstrates a remarkable ability to constantly adapt and

improve based on new data, making the system flexible and capable of

managing continuously evolving situations. Although in this research

this methodology has been applied to human action recognition, given

the lack of adequate datasets in the field of cow behavior recognition,

the developed framework can easily be extended to video recognition in

general, including that related to animals. This represents a promising

prospect for future applications in animal monitoring, but also high-

lights the urgent need to invest in data collection and management

specific to these contexts.

Furthermore, another key advantage of using AI is the possibil-

ity of developing predictive solutions that can help prevent adverse

events, such as diseases in livestock or threats to wildlife, based on
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proactive analyses of collected data. However, this requires highly

specialized algorithms and an advanced technological infrastructure

that, although promising, can be costly and energy intensive.

Another key challenge that emerged during the research concerns

the need to develop low-cost and energy-efficient solutions. Sustain-

ability is not only about the natural environment, but also about the

efficiency of the technologies we use. In animal monitoring contexts,

often located in remote or difficult-to-access areas, energy efficiency

becomes a determining factor for the viability of operations in the

long term. Furthermore, it is essential that these solutions are af-

fordable, to allow their adoption on a large scale, especially in sectors

such as agriculture or wildlife conservation, where resources may be

limited.

In conclusion, research in this field is complex and challenging, not

only because of the lack of data and the need for specialized person-

nel, but also because of the search for technical solutions that are sus-

tainable, accessible and capable of effectively integrating AI. Despite

these difficulties, IoT technologies and artificial intelligence have the

potential to profoundly transform animal monitoring, with significant

benefits for environmental management and food quality. Addressing

these challenges will require continuous and collaborative efforts, but

the potential results largely justify the effort, paving the way for a

future where technology can truly harmonize with nature.
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puter vision-based pose estimation technique in dairy cows

for objective mobility analysis and scoring system. Com-

puters and Electronics in Agriculture, 217:108573, 2024.

ISSN 0168-1699. doi: https://doi.org/10.1016/j.compag.2023.

108573. URL https://www.sciencedirect.com/science/

article/pii/S0168169923009614.

[60] J.L. Holechek. An approach for setting the stocking rate. Rangel.

Arch., 10:10–14, 1988.

[61] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin. Learning a

unified classifier incrementally via rebalancing. In CVPR, 2019.

[62] S. Hou, X. Cheng, L. Shi, and S. Zhang. Study on individual

behavior of dairy cows based on activity data and clustering.

In Proceedings of the ACM International Conference Proceeding

Series, pages 210–216, 2020.

[63] Zhixin Hua, Zongyao Yu, Zongyi He, Pengfei Zhou, Lei Chen,

and Hongtao Zhang. Posec3d: A skeleton-based method for

dairy cow behavior recognition using modified yolox-pose and

posec3d. Computers and Electronics in Agriculture, 205:107422,

2023. doi: 10.1016/j.compag.2023.107422.

[64] J.F. Hurnik, A.B. Webster, and S. DeBoer. An investigation of

skin temperature differentials in relation to estrus in dairy cattle

https://www.sciencedirect.com/science/article/pii/S0168169923009614
https://www.sciencedirect.com/science/article/pii/S0168169923009614


186 BIBLIOGRAPHY

using a thermal infrared scanning technique. Journal of Animal

Science, 61:1095–1102, 1985.

[65] Z. Jiang, M. Sugita, M. Kitahara, S. Takatsuki, and T. Goto.

Effects of habitat feature, antenna position, movement, and fix

interval on gps radio collar performance in mount fuji, central

japan. Ecological Research, 23:581–588, 2008.

[66] M. Jorquera-Chavez, S. Fuentes, F.R. Dunshea, E.C. Jongman,

and R. Warner. Computer vision and remote sensing to assess

physiological responses of cattle to pre-slaughter stress, and its

impact on beef quality: A review. Meat Sci., 156:11–22, 2019.

doi: 10.1016/j.meatsci.2019.05.014.

[67] Xi Kang, Xu Dong Zhang, and Gang Liu. A review: Devel-

opment of computer vision-based lameness detection for dairy

cows and discussion of the practical applications. Sensors, 21

(3), 2021. ISSN 1424-8220. doi: 10.3390/s21030753. URL

https://www.mdpi.com/1424-8220/21/3/753.

[68] I. Leinonen, A.G. Williams, J. Wiseman, J. Guy, and I. Kyri-

azakis. Predicting the environmental impacts of chicken systems

in the united kingdom through a life cycle assessment: broiler

production systems. Poultry Science, 91:8–25, 2012.

[69] Z. Li and D. Hoiem. Learning without forgetting. IEEE TPAMI,

2018. doi: 10.1109/TPAMI.2017.2773081. URL https://doi.

org/10.1109/TPAMI.2017.2773081.

[70] Zhenyu Li, Xiaoling Xu, Feng Xu, and Xiaoping Yang. A hybrid

deep learning framework for recognizing dairy cow behaviors

https://www.mdpi.com/1424-8220/21/3/753
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1109/TPAMI.2017.2773081


BIBLIOGRAPHY 187

based on cow skeleton data. Computers and Electronics in Agri-

culture, 198:107073, 2023. doi: 10.1016/j.compag.2023.107073.

[71] Y. Liu, K. Wang, L. Liu, H. Lan, and L. Lin. Tcgl: Temporal

contrastive graph for self-supervised video representation learn-

ing. IEEE TIP, 2022.

[72] D. Lopez-Paz and M. A. Ranzato. Gradient episodic memory

for continual learning. In NIPS, 2017.

[73] W. Ma, X. Qi, Y. Sun, R. Gao, L. Ding, R. Wang, C. Peng,

J. Zhang, J. Wu, Z. Xu, et al. Computer vision-based

measurement techniques for livestock body dimension and

weight: A review. Agriculture, 14:306, 2024. doi: 10.3390/

agriculture14020306.

[74] A. Mallya and S. Lazebnik. Packnet: Adding multi-

ple tasks to a single network by iterative pruning. In

CVPR, 2018. doi: 10.1109/CVPR.2018.00810. URL

http://openaccess.thecvf.com/content_cvpr_2018/html/

Mallya_PackNet_Adding_Multiple_CVPR_2018_paper.html.

[75] A. Mallya, D. Davis, and S. Lazebnik. Piggyback: Adapting a

single network to multiple tasks by learning to mask weights. In

ECCV, 2018.

[76] J.T.C. Marcos and S.W. Utete. Animal tracking within a forma-

tion of drones. In Proceedings of the 2021 IEEE 24th Interna-

tional Conference on Information Fusion (FUSION), pages 1–8,

2021.

http://openaccess.thecvf.com/content_cvpr_2018/html/Mallya_PackNet_Adding_Multiple_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Mallya_PackNet_Adding_Multiple_CVPR_2018_paper.html


188 BIBLIOGRAPHY

[77] F. Maroto-Molina, J. Navarro-Garćıa, K. Pŕıncipe-Aguirre,
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[116] Andreas Stache, Petra Löttker, and Marco Heurich. Red deer

telemetry: Dependency of the position acquisition rate and ac-



BIBLIOGRAPHY 195

curacy of gps collars on the structure of a temperate forest dom-

inated by european beech and norway spruce. Silva Gabreta, 18:

45–48, 2012.

[117] T. Tamura, Y. Okubo, Y. Deguchi, S. Koshikawa, M. Taka-

hashi, Y. Chida, and K. Okada. Dairy cattle behavior clas-

sifications based on decision tree learning using 3-axis neck-

mounted accelerometers. Anim. Sci. J., 90:589–596, 2019. doi:

10.1111/asj.13185.

[118] F.M. Tangorra, A. Calcante, G. Marchesi, S. Nava, and M. Laz-

zari. Design and testing of a gps/gsm collar prototype to

combat cattle rustling. J. Agric. Eng., 44:e10, 2013. doi:

10.4081/jae.2013.e10.

[119] F. Tian, J. Wang, B. Xiong, L. Jiang, Z. Song, and F. Li. Real-

time behavioral recognition in dairy cows based on geomag-

netism and acceleration information. IEEE Access, 9:109497–

109509, 2021. doi: 10.1109/ACCESS.2021.3100873.

[120] Colin Tobin, Derek W. Bailey, and Mark G. Trotter. Track-

ing and sensor-based detection of livestock water system failure:

A case study simulation. Rangeland Ecology & Management,

77:9–16, 2021. ISSN 1550-7424. doi: https://doi.org/10.1016/

j.rama.2021.02.013. URL https://www.sciencedirect.com/

science/article/pii/S1550742421000282.

[121] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and

M. Paluri. A closer look at spatiotemporal convolutions for ac-

tion recognition. In CVPR, 2018.

https://www.sciencedirect.com/science/article/pii/S1550742421000282
https://www.sciencedirect.com/science/article/pii/S1550742421000282


196 BIBLIOGRAPHY

[122] S. Vaidya, P. Ambad, and S. Bhosle. Industry 4.0—a glimpse.

Procedia Manuf., 20:233–238, 2018. doi: 10.1016/j.promfg.2018.

02.034.

[123] Jing Wang, Xinyu Liu, Zhiqiang Wang, and Xin Liu. The e3d

network for recognizing basic motion behaviors of dairy cows

using video data. Computers and Electronics in Agriculture,

193:106654, 2022. doi: 10.1016/j.compag.2022.106654.
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