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Abstract

This doctoral thesis investigates competition dynamics within complex
systems, particularly within the framework of network science. It ad-
dresses the interplay between cooperation and competition in various
domains, such as optimization problems and social complex systems.
The research explores the role of competition within cooperative frame-
works, aiming to understand its significance in achieving optimal solu-
tions. Three interconnected research lines were developed, each employ-
ing agent-based models. The first line developed an Ant Colony Opti-
mization algorithm for dynamic networks, showing that strategic com-
petition can enhance algorithm efficiency. The second line focused on
collective behaviors, revealing that a balanced mix of cooperation and
competition in crowds yields better outcomes. The third line examined
trust dynamics in multi-agent systems, finding that trusting a robot, es-
pecially with higher efficiency, enhances agent performance. Overall, the
research highlights the intricate dynamics of cooperation and competition
in complex systems, shedding light on their combined impact on system
behavior and performance.
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Introduction

Observing various systems in the surrounding world reveals fundamental
similarities despite their apparent differences. For instance, when consid-
ering society, its functioning results from a delicate process of interac-
tion and optimization involving individuals and various infrastructures
simultaneously. From the Earth’s global climate to ecosystems, from
infrastructures like the power grid to transportation or communication
systems, and from social and economic organizations to the spread of
epidemics. What characterizes these systems is the challenge of extrap-
olating models from them and understanding their evolution over time
due to dependencies, relationships, or other types of interactions between
their parts or between the entire system and the environment.

The study of these systems falls under Network Science, a discipline
rooted in graph theory and sociology. The birth of Network Science can
be attributed to two key scientific works, particularly the 1959 study by
Paul Erdős and Alfréd Rényi on random networks [29] and Mark Gra-
novetter’s 1973 work on weak ties in social networks [34]. While these
works were initially confined to their specific domains and remained a
form of abstract mathematics, the 21st century marked the true emer-
gence of Network Science as a field. Historically, understanding and
studying the behavior of those systems, which are composed of hundreds
to billions of interacting components, involved creating detailed maps of
their elements and interactions. However, the technological revolution
has shifted this paradigm, introducing a new approach where systems
are viewed as networks. In this framework, nodes represent the system’s
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elements and links are the relationships between them. In this way, it has
been possible to identify a common denominator among vastly different
networks: the nodes of a metabolic network are molecules, and the links
represent the chemical reactions between them, governed by the laws of
chemistry; the nodes of the Web represent documents, and the links be-
tween them are URLs regulated by appropriate algorithms; the nodes of
social networks represent individuals, and the links between them rep-
resent familial, professional, friendship, or acquaintance connections; the
nodes in transportation networks represent locations (physical and other-
wise), and the links represent roads or other routes [58]. In essence, this
abstraction allows for examining diverse systems, using a common set of
mathematical tools and a complex system to be identified as a complex
network.

In network science, challenges often revolve around identifying op-
timal solutions from a multitude of possibilities, collectively referred to
as optimization problems. These encompass a wide range of scenarios,
spanning from planning strategies to combat climate change and preserve
ecosystems, to optimizing traffic flow and routing, and even developing
strategies to combat the spread of epidemics. For instance, in addressing
Earth’s global climate change, the objective is to minimize greenhouse gas
emissions. This involves tasks such as determining optimal locations for
installing renewable energy facilities [8] and devising cost-effective strate-
gies for transitioning to renewable energy, considering the economic and
geographic contexts of different countries [73]. Similarly, in ecosystems,
the goal is to protect biodiversity while accounting for economic and so-
cial factors. Optimization techniques can help identify key conservation
areas [56], manage timber harvesting to maintain forest health [44], and
establish sustainable fishing quotas to prevent overexploitation while en-
suring economic viability and ecosystem longevity [7]. In transportation
systems, optimization problems often focus on designing efficient pub-
lic transportation routes that minimize travel time for passengers [37].
Flow optimization is crucial for alleviating traffic congestion by adjust-
ing traffic light timings and routes, ensuring smooth traffic flow within
city networks. In emergency response planning, determining the fastest
ambulance routes considering traffic conditions and road closures is es-
sential [16]. Furthermore, routing problems encountered in ride-sharing
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platforms and delivery services aim to match users with drivers or op-
timize paths while considering route efficiency, availability, and passen-
ger preferences [50]. In the context of combating epidemics, optimization
plays a vital role in developing data-driven strategies to contain outbreaks
and protect populations. This includes designing effective social distanc-
ing measures that balance the need to control the spread of disease with
minimizing economic and social disruption [32]. In essence, through the
lens of network science, these optimization efforts contribute to enhanc-
ing the efficiency, fairness, and sustainability of various systems, thereby
exerting a profound influence on multiple aspects of daily life.

Traditionally, these problems were tackled using exact methods capa-
ble of finding the optimal solution to the problem. However, applying
these methods is not always the most suitable choice. Firstly, because the
networks being tested have sizes that are gradually increasing over the
years, making exact methods computationally expensive. Secondly, real-
world systems’ networks [69, 70, 36, 82] present non-trivial topological
characteristics, such as a power-law degree distribution, a high cluster-
ing coefficient, evolving over time, and generally having properties and
structures that are not typical of regular or random networks [6, 94]. This
is why approximate methods are now preferred. Networks of this type
are called dynamic networks and are studied in the realm of Network
Dynamics, a relatively recent field that explores networks with evolving
structures and properties.

Within Network Dynamics, approximate methods, particularly those
rooted in Swarm Intelligence algorithms, emerged as viable alternatives.
Swarm Intelligence refers to the collective behavior of decentralized, self-
organized systems, where the group’s intelligence surpasses that of indi-
vidual members. These algorithms are thus inspired by nature and can
be categorized as insect-based, bacteria-based, or bird-based, depending
on their source of inspiration [10]. Their efficacy, especially in the opti-
mization of dynamic networks, highlights the potential of nature-inspired
approaches in problem-solving. Nature, particularly Darwinian evolu-
tion, serves as a rich source of inspiration for developing algorithms that
adapt and optimize in complex environments. This adaptation is mod-
eled by viewing solutions as individuals in a population, evolving based
on principles of variation, adaptation, and heredity [1].
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The ability of these systems, both in reality and in their algorithmic
version, to arrive at a solution lies in the fact that by being composed
of numerous elements interacting with each other and the environment,
they give rise to emergent behaviors—macroscopic and global properties
of the system that cannot be deduced from the characteristics of indivi-
dual elements [26]. In detail, the result arises from the cooperation among
elements of the group, where no predefined leader is coordinating the
group. Cooperation is the manifestation of an emergent behavior stem-
ming from interactions between group elements. Such systems, because
of their features, are called Complex Adaptive Systems (CAS) and some
examples are observed in various contexts such as climate [5], traffic flows
[88], financial markets [92], and social networks [52] but also ant colonies
and bee swarms [2].

A deeper analysis of these systems reveals the presence of not only
cooperative dynamics but also competitive ones. For instance, insect so-
cieties, typically regarded as cohesive groups of individuals who collabo-
rate for the collective benefit, have recently been investigated, uncovering
conflicts of interest among group members [38]. The range of interactions
within these societies spans from aggressive conflicts to mutual tolerance
and cooperation among spatially separate groups [67].

In more complex animal species, like mammals, group members may
cooperate to defend resources against neighboring groups or to detect
and deter predators [41]. Nevertheless, it has been observed that female
mammals engage in competition, striving for both resources and mates
to secure reproductive benefits [75].

Shifting the focus to the workplace, a similar coexistence of coopera-
tive and competitive dynamics is observed, where employees collaborate
to achieve shared objectives while simultaneously competing for promo-
tions [57]. Additionally, in sports, the simultaneous presence of coop-
erative and competitive elements is evident. Game sports, for instance,
demand both elements as competition fuels the cooperative aspect, high-
lighting the intricate interplay between these dynamics [59].

In summary, the acknowledged effectiveness of cooperation in achiev-
ing better results is counterbalanced by the inherent presence of com-
petition within the same systems, as illustrated in the examples men-
tioned. The recognition that cooperation and competition are inseparable
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prompts a pivotal question: What role does competition play within complex
systems that also rely on cooperation?

The pursuit of answering this question guided the unfolding of the
presented doctoral project along three interconnected research lines. These
lines evolved from the initial question, delving into diverse domains, with
each analyzed in a distinct research line.

In the first research line, the primary question addressed was: Could
competition contribute to the optimization of outcomes in the context of opti-
mization problems? This question led to the development of a tailored Ant
Colony Optimization algorithm (ACO) for dynamic networks. The algo-
rithm was implemented through an agent-based model where coopera-
tive and competitive ant colonies navigate virtual environments, assess-
ing whether the introduction of competitive dynamics could enhance the
efficiency of the ACO algorithm. This research line resulted in two pub-
lished works: [25] and [23] and a third work, [14] about group dynamics
in memory-enhanced ants.

Concurrently, the second research line delved into the social aspects
of collective behaviors by posing the question: What is the interplay be-
tween cooperation and competition in social complex systems? This inquiry
not only prompted the need for a social model but also led to a subse-
quent research question: Can the principles of the ACO algorithm be applied
to simulate social dynamics? Through a process of abstraction, a coher-
ent mapping of the ACO algorithm’s rules into conceptual frameworks
rooted in social dynamics was proposed. Subsequently, an agent-based
model was implemented to analyze collective dynamics within crowds,
with various investigations conducted to comprehend the impacts of dis-
tinct behavioral strategies, particularly focusing on cooperation and de-
fection, within crowd contexts. This research line resulted in four pub-
lished works, [21], [20], [19], [24] and one in press [22].

The third research line, undertaken in collaboration with Professor
Angelo Cangelosi from the University of Manchester and Marta Romeo,
Assistant Professor in the Computer Science department at Heriot-Watt
University, introduced a distinct perspective. Leveraging the agent-based
model developed in the second research line for collective behaviors, an
adaptation was implemented to simulate social behaviors associated with
trust. This adjustment aimed to align the research with the research in-
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terests of Professors Cangelosi and Romeo, leading to a shift in focus
towards a different research question: What are the effects of trust dynamics
in multi-agent systems? In addressing this question, the model was used
to comprehend the impacts of distinct behavioral strategies, here with a
specific emphasis on trust and skepticism, particularly in the context of a
robot assisting in navigation through unfamiliar environments. This re-
search line resulted in a submitted work to The Genetic and Evolutionary
Computation Conference (GECCO 2024).

The upcoming chapters will thoroughly explore the three research
lines. Specifically, the structure of this thesis is as follows: the initial
chapter will delve into the field of agent-based models, discussing the
chosen technique for researching and analyzing themes. Subsequently,
the second chapter will address the first research line, focusing on opti-
mization problems. The third chapter will cover the second research line,
i.e. the study of collective behaviors. Lastly, the fourth chapter will exten-
sively examine the third and final research line, centered on the theory of
trust.

Each of these chapters devoted to the diverse research lines follows
a consistent structure. Beginning with an introduction to the respective
theme, the chapters present the models, a thorough exploration of con-
ducted research along with its results and conclusions, and a comprehen-
sive chapter conclusion that ties together the threads of exploration.

A comprehensive summary of my published research is presented in
Table 1 . The table outlines the details of each publication, including
the year of publication, authors, title, venue, and the research line it falls
under. It’s important to note that some of the work presented in this
thesis is either in submission, submitted, or in-press, as indicated in the
’In’ column of the table.
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Chapter 1
Agent-based models

1.1 Theoretical Background

An agent-based model (ABM) is a computational framework designed
to simulate the actions and interactions of autonomous agents, whether
individual or collective entities. Its purpose is to comprehend the beha-
vior of these agents and the factors influencing their outcomes. A stan-
dard ABM generally consists of three key components [17] as depicted in
Fig 1.1 which are a set of agents, each distinguished by their attributes
and behaviors; a set of relationships defined by specific rules, governing
how agents interact with one another and their environment and the envi-
ronment, that represents the space where interactions occur among agents
and between agents and their surroundings.

Widely applied in various scientific fields such as biology, ecology, and
social science, ABM employs a "bottom-up" approach. By examining in-
teractions among individual elements within a system, the model seeks to
reveal emergent properties resulting from these interactions. These emer-
gent characteristics aren’t explicitly predetermined for the entire system;
instead, they arise from the independent actions of the agent group. This
phenomenon is often described as "the whole is greater than the sum
of its parts," where simple agent behaviors, or rules they follow, give
rise to complex behaviors and state changes at the system level. In re-
cent years, an increasing adoption of agent-based modeling (ABM) has

9



10 CHAPTER 1. AGENT-BASED MODELS

Figure 1.1: Schematic representation of the main components of an ABM
[79].

been observed. This trend can be attributed to several reasons[53]. First
of all, ABM is highly effective in addressing nonlinear individual beha-
vior, agent interactions, and situations where traditional modeling, like
differential equations, struggles with complexity and unpredictability.
Additionally, it offers a natural description of systems with behavioral en-
tities, representing better reality when modeling, for instance, traffic jams,
stock markets, voters, or organizational dynamics. Furthermore, ABM’s
flexibility allows for easy incorporation of more agents, tuning agent com-
plexity, and adjusting levels of description and aggregation, making it
suitable for scenarios where the appropriate complexity level is uncertain
[11]. Moreover, the rising complexity of contemporary systems sets limi-
tations of traditional modeling tools in addressing this complexity. ABM,
with its ability to model at micro levels and leverage advancements in
computational power, emerged as a well-suited solution to navigate the
complexities presented by modern systems. Several simulation software
options are available for creating Agent-Based Models (ABMs), including
AnyLogic, GAMA, Pathfinder, and NetLogo.
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For the project implementation it has been used NetLogo, which is also
one of the most used [72]. It was developed by Uri Wilensky in 1999 and
demonstrates its full potential in creating simulation models for dynamic
and complex systems. Indeed, it allows for the replication of numerous
characteristics of a complex system, enabling the study of its evolution
and real-time visualization within a virtual laboratory. NetLogo’s deve-
lopment environment interprets code directly, eliminating the need for
compilation. This feature facilitates interaction with the system through
buttons and sliders for adjusting control parameters, visualizing graphs
related to the simulation, and conducting experiments by varying initial
conditions or control parameters.

Figure 1.2: In a NetLogo environment, the interface is structured with an
array of buttons and sliders on the left, facilitating the adjustment of pa-
rameters and the initiation of model runs. Positioned at the center is the
world—the environment where agents navigate and interact according to
specific relationships. On the right side, the output window displays the
printed values of variables of interest. The specific elements, including
buttons and sliders and their positions, vary depending on the model
being studied, although a setup and a go button are typically constants
across all models.

NetLogo was selected as the platform for developing the model of
this research project due to its status as both a programming language
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and an Integrated Development Environment (IDE). This duality allows
for seamless transitions between modeling and simulation perspectives.
The familiarity with NetLogo, stemming from previous utilization during
the presentation of the master’s thesis project, played a significant role in
this decision. Consequently, the implementation of the model in each
version is intended for NetLogo.

1.2 The model

The model is based on the Ant Colony Optimization (ACO) algorithm, a
procedure initially introduced in the 1990s by Marco Dorigo [28] that be-
longs to the Swarm Intelligence class. Taking inspiration from natural ant
colonies’ foraging patterns, which can find the shortest path between their
nest and food using chemical pheromones, this algorithm has proven to
be effective in solving different kinds of combinatorial optimization prob-
lems [63] among which scheduling [27], routing [42], coloring [18, 30],
robot path planning [4, 12, 100], transportation [43], and feature selection
[62].

From the mathematical point of view, the environment in which the
ants move is generally represented as a graph G = (V, E, w), where V
is the set of vertices, E is the set of edges and w : V × V → R+ is the
weighted function that assigns a positive cost to each edge of the graph.
The weight indicates how difficult is to cross a particular edge.

The algorithmic procedure consists of three main rules. The propor-
tional transition rule defines the probability pk

ij(t) that ant k on a vertex
i selects vertex j as its destination at time t and is expressed as:

pk
ij(t) =

⎧⎪⎨⎪⎩
τij(t)α·ηβ

ij

∑l∈Jk
i

τil(t)α·ηβ
il

if j ∈ Jk
i

0 otherwise,
(1.1)

where Jk
i is the potential neighboring vertices of ant k from vertex i,

τij(t) represents the pheromone intensity on edge (i, j), and ηij(t) denotes
the visibility of edge (i, j) at time t (typically defined as the reciprocal
of the distance between nodes). The parameters α and β regulate the
influence of pheromone intensity versus edge visibility.
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The reinforcement rule defines the amount of pheromone deposited
by ant k on a crossed edge and is expressed as:

∆τk
ij(t) =

{︄ Q
Lk(t) if (i, j) ∈ Tk(t)

0 otherwise
(1.2)

where Tk(t) represents the path taken by ant k at time t, Lk(t) denotes
the length of the path, and Q stands as a constant.

The global updating rule defines how pheromones evaporate in time
and is expressed as:

τij(t + 1) = (1 − ρ) · τij(t) +
m

∑
k=1

∆τk
ij(t) (1.3)

where τij(t) is the pheromone quantity on edge (i, j) from the prece-
ding step, ρ is the pheromone decay parameter and m denotes the number
of ants.

In the first research line, the model was employed to investigate the
impact of competitive dynamics on optimization algorithms, by using
the Ant Colony Optimization algorithm for this purpose. This involved
different kinds of analyses of how introducing elements of competition
could influence the overall efficiency and outcomes of optimization pro-
cesses. The goal was to gain a deeper understanding of how competitive
dynamics, when integrated into established algorithms like Ant Colony
Optimization, could potentially yield positive results in the field of problem-
solving and optimization.

In the second research line, the same model was employed to exam-
ine collective behaviors by translating ACO principles into the context
of crowd dynamics. The objective was to analyze the effects of differ-
ent behavioral strategies, with a particular emphasis on cooperation and
defection, within a crowd context, contributing to the development of a
new framework for crowd models. This approach leveraged the inherent
adaptability and scalability of ACO-based models, aiming to deepen un-
derstanding and provide a comprehensive, adaptable simulation of crowd
dynamics.

In the third research line, the model developed in the second research
line for collective behaviors was adapted to understand the impacts of
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distinct behavioral strategies, placing particular emphasis on trust and
skepticism. Specifically, the model was utilized to analyze how agents’
trust and skepticism toward a robot influence various path-planning sit-
uations in different environmental scenarios



Chapter 2
Optimization Problems

2.1 Introduction

The primary focus of the initial research centers on the fundamental ques-
tion: Could competition play a role in optimizing outcomes within the
context of optimization problems? Before delving into the specifics of
the research, it is crucial to establish the necessary context for this explo-
ration.

Optimization problems concerning networks fall under the category
of combinatorial optimization and involve a discrete set of feasible so-
lutions. They are typically defined by a quadruple (I, f , m, g), where I
represents a set of instances, f (x) denotes the feasible solutions for a spe-
cific instance x in I, m(x, y) quantifies a particularly feasible solution y,
and g is the function to be optimized. The primary objective in these
problems is to find an optimal solution for a given instance x, such that
m(x, y) equals the optimal value of g among all feasible solutions in f (x),
as expressed in equation 2.1.

m(x, y) = g{m(x, y′) | y′ ∈ f (x)} (2.1)

Numerous examples of combinatorial optimization problems fit within
this framework, including the shortest path problem, vehicle routing prob-
lem, knapsack problem, flow and circulation problems, and supply chain
optimization. Over time, various optimization techniques have been de-

15
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veloped to tackle a wide range of practical issues. Some methods, such
as exact methods, can provide optimal solutions for smaller problems,
while others, like heuristic and metaheuristic techniques, are capable of
offering nearly optimal solutions for large-scale problems [40], [76]. In
cases where the number of feasible solutions is finite, optimization prob-
lems can be addressed using exact methods such as branch and bound or
dynamic programming. However, these methods may not always be prac-
tical, especially for complex problems like the traveling salesman problem
(TSP), which can become computationally infeasible as the problem size
increases [87]. The limitations of exact methods become more apparent
when dealing with real-world networks that are dynamic and uncertain.
In such cases, it’s important to quickly adapt to changing conditions and
find good solutions within reasonable time frames. This leads to the use
of approximate methods, which make random choices and can provide
valuable results in situations with a high degree of uncertainty.

A specific class of approximate methods is known as metaheuristics,
which are not problem-specific and can be used as black-box tools. More-
over, they are generally non-greedy and can tolerate temporary degra-
dation in solution quality, allowing for deeper exploration of the search
space and often resulting in improved solutions (which may coincide with
the global optimum).

There is a wide variety of metaheuristic techniques with different clas-
sification criteria [10]. One way to classify them is based on the type
of search they perform, resulting in local search and global search algo-
rithms [76]. Local search algorithms may not always find the optimal
solution if one exists, while global search algorithms will eventually find
the optimal solution given enough time. However, the computational
cost of these methods should also be considered. Another classification
is based on how the solution is searched, leading to single-solution and
population-based algorithms. Single-solution approaches focus on modi-
fying and improving a single candidate solution, whereas population-
based approaches maintain and enhance multiple candidate solutions,
using population characteristics to guide the search. The most interest-
ing and efficient algorithms, especially for optimization in static and dy-
namic networks, are undoubtedly the population-based ones (which are
also of the "global search" type), and in particular, those belonging to
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Swarm Intelligence. SI is defined as the collective behavior of decentral-
ized and self-organized systems in which the group exhibits a form of
intelligence greater than that of each individual element. Direct observa-
tions of such systems have revealed that a swarm is capable of solving
complex problems that a single individual with simple (whether physical
or computational) capabilities cannot. As the name suggests, it is com-
posed of numerous elements, some of which may be lost or damaged
without affecting the overall group performance. This is because individ-
uals perceive information only at a local level, perform simple actions,
have little or no memory, and do not know the global state of the system
or its purpose [26].

The Swarm Intelligence (SI) class includes a series of algorithms that
can be classified based on their sources of inspiration. There are "insect-
based" algorithms (such as ABC and ACO), which are based on the
behavior of insects like bees and ants, "bacteria-based" algorithms (like
BFOA) inspired by the behavior of bacteria, and even "bird-based" al-
gorithms (like PSO and BA) based on the behavior of birds. What unites
these algorithms is their common source of inspiration, which is the natu-
ral world and the principles of Darwinian evolution. This is why they
are often referred to as "bio-inspired algorithms." Despite differences in
names and methods, they share a common dynamic: initializing with
a random population of solutions, evaluating them in a loop, selecting
some for creating better solutions, and terminating based on a chosen
criterion[1].

As previously highlighted, the effectiveness of both real and algo-
rithmic systems in problem-solving stems from the essential coopera-
tion among group elements. This collaborative aspect is vital, generating
advantages that individual entities cannot achieve in isolation. Interest-
ingly, studies on the role of competition reveal a paradoxical phenomenon
where the presence of competition can enhance cooperation, resulting in
improved optimization outcomes.

For instance, in [33], the authors introduced an approach that com-
bines competitive and cooperative mechanisms to address multiobjective
optimization problems in dynamic environments. Allowing subpopula-
tions to both compete and cooperate enables the algorithm to adapt to
changing optimization requirements over time. Similarly, the Imperialist
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Competitive Algorithm (ICA), initially introduced by [90], draws inspira-
tion from socio-political behaviors, involving imperialist competition and
simulating empires competing for colonies. This competition leads to the
convergence of power, with countries representing individuals forming
empires that compete globally. Additionally, the Competitive Swarm Op-
timizer (CSO) proposed in [35] incorporates a learning mechanism where
particles learn from randomly selected competitors, fostering pairwise
competitions within randomly divided groups. Winners advance to the
next iteration, influencing the loser particles to update their position and
velocity based on the winner’s behavior. More recently, the Competi-
tive Search Algorithm (CSA) proposed in [91] introduces a competitive
mechanism that creates an environment where solutions compete, pre-
venting stagnation in local optima and promoting diverse exploration of
the solution space. Overall, CSA enhances search capabilities through
competition, facilitating comprehensive exploration of the solution space.

In existing literature, competitive and cooperative mechanisms imple-
mentations often involve algorithms with preset parameters, designed
and tested for specific instances. This research line, however, introduces
a distinctive approach. Using the well-established Ant Colony Optimiza-
tion Algorithm as a foundation, the study explores the impact of compet-
itive dynamics through an agent-based model featuring two distinct ant
colonies—one acting competitively and the other cooperatively.

A key innovation in this research lies in the model’s high customiz-
ability and adaptability, allowing not only the variation of the percentage
of competitive elements within the colony but also the incorporation of
different degrees of competition across instances of varying complexity.
This flexibility allows an exploration of the algorithm efficiency across a
spectrum of different scenarios, adding a new dimension to the evalua-
tion process. Furthermore, the real-time visualization of the simulated
dynamics allows an immediate insight into the interactions between co-
operative and competitive elements.

This approach sets the stage for two investigations conducted using
the same agent-based model with minor variations. Each study addresses
different aspects of the research question, employing two ant colonies,
one exhibiting competitive behavior, introducing disruptions at specific
path points, while the other demonstrated cooperative behavior, rectify-
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ing these disruptions. The colonies compete to navigate an unfamiliar
environment, contending with disruptions introduced by one and rec-
tified by the other. The first ant model evaluates the consequences of
this interplay on colony efficiency using the earned resources metric and
assesses algorithm performance through the Success Rate (SR). Subse-
quently, the second ant model expands upon the initial model, incor-
porating novel components into ant behavior and conducting additional
rounds of data analysis. This extension includes the evaluation of met-
rics such as the number of ants successfully reaching the exit, exit timing,
and path-related costs. Together, these investigations provide a compre-
hensive exploration of the implications of competitive dynamics in opti-
mization algorithms. In the following sections, both models will be eluci-
dated, the experimental procedures detailed, and the resulting outcomes
presented.

2.2 The first ant model

In the first study [25], an existing model [74] was adapted to generate the
labyrinth. This model employed an iterative technique known as the Re-
cursive Backtracker, a modified version of depth-first search. Initially de-
signed to create simple and random labyrinths based on specific parame-
ter values, the model was modified by fixing the seed of random numbers.
This ensured consistent simulations and allowed the same labyrinth to be
regenerated for each run.

Next, a network was established beneath the labyrinth to create more
intricate mazes. This altered approach facilitated additional connections
between nodes, each having at least two immediate neighbors. This deli-
berate choice aimed to prevent the removal of dead ends. An entrance
and an exit were designated at opposite edges of the labyrinth, with re-
sources positioned at the exit for the ants of the colony to gather. As
previously mentioned, the colony consists of:

• Competitive ants: They consistently act competitively, obstructing a
random node upon reaching the exit. They only acquire a resource
when they identify the shortest path.
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• Cooperative ants: They always demonstrate cooperative behavior.
When encountering a damaged node along their route, they repair
it and collect a resource only upon identifying the shortest path.

Both colonies aim to solve the labyrinth and accumulate the highest
number of resources placed at the exit that can be collected if and only
if both types of ants reach the exit via the shortest path. The number of
ants that act cooperatively is defined by the cooperation factor f ∈ [0, 1]. f
represents the proportion of cooperative ants with respect to the colony.
The remaining ants automatically adopt a competitive approach once the
cooperative proportion is established.

The ACO rules were also adjusted to suit the problem being studied.
Here, for simplicity, the visibility ηij of a node is not considered (β =
0). Consequently, the transition probability of an ant k from node i to
node j described in the proportional transition rule in Eq. 1.1 depends
solely on the pheromone τij present on link (i, j) with α = 1. About the
reinforcement rule in Eq. 1.2, the amount of pheromone left by an ant
k after crossing an edge (i, j) was set to a fixed value ∆τk

ij(t) = 1.5 with
the condition that it is placed only by the first ant of each iteration to
reach the exit. Subsequently, ants of the same type expire, initiating a
new generation. Finally, the global updating rule is incorporated into a
process that updates pheromone levels at the end of each successful ant’s
tour and it is the same as in Eq. 1.3. Additionally, to prevent stagnation
of the algorithm and enable continuous exploration of the labyrinth, the
pheromone trail on a link cannot drop below a certain nonzero threshold.

2.2.1 Experiments and results

Two distinct analyses were undertaken, focusing on the performance as-
pects of both the ant colony and the algorithm employed. The first ana-
lysis aimed to gauge the colony’s efficacy, assessing the quantity of re-
sources earned by the ants. Meanwhile, the second analysis aimed to
evaluate the algorithm’s performance, centering on its success rate (SR).
These evaluations were conducted within the context of two separate
labyrinths, each consisting of an identical number of nodes (|V| = 77) and
links (|E| = 128), albeit with varying link distributions. These labyrinths
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were designated as Type A, featuring a less uniform link distribution,
and Type B, characterized by a more uniform distribution of links. The
experiments involved a colony of N = 100 ants, where the cooperation
factor f ranged from f = 0.0 (indicating a colony comprised entirely of
competitive ants) to f = 1.0 (representing a colony consisting solely of
cooperative ants), with incremental steps of 0.05. The initial pheromone
level on the links was uniformly set to τij(0) = 1.0, while the evaporation
rate α was consistently maintained at 0.1. All simulations were capped
at a maximum of 100 generations throughout the 1000 conducted simu-
lations.

Performance of the colony

The plots in Fig.2.1a and Fig.2.1b provide insights into the average re-
sources accumulated by the two categories of ants (cooperative and com-
petitive) as well as the overall colony. These averages were computed
across 1000 simulation runs. The observed trends in the data align with
initial expectations, as higher values of cooperation factor ( f ) correlate
positively with increased resource acquisition. Interestingly, while it might
be anticipated that maximal resource gain would occur at f = 1.0, the
actual data reveals a different pattern. Notably, the pinnacle of earned
resources is not reached at the highest cooperation value, but rather at
intermediate f values.
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Figure 2.1: Average of the resources earned by the colony on network A
(a) and network B (b) calculated over 1000 simulations.
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Figure 2.2: Success rate of the colony on network A (a) and network B (b)
calculated over 1000 simulations.

Performance of the algorithm

Turning attention to Fig.2.2a and Fig.2.2b, these plots present the success
rate of the colony in a distinct light. Here, the success rate signifies how
often the colony manages to identify the shortest path across 1000 simu-
lations. Echoing earlier findings, it becomes clear that the highest success
rates are not achieved when f = 10.. This seemingly counterintuitive
observation occurs in scenarios where all colony ants exhibit cooperative
behavior.

2.2.2 Conclusions

The analysis of the data reveals a noteworthy insight – the introduction
of a small proportion of competitive agents brings advantages to the en-
tire colony. Addressing the research question of whether competition can
contribute to the optimization of outcomes in the context of optimization
problems, the results demonstrate that relying solely on cooperative ants
does not lead to optimal outcomes. Instead, the presence of certain ants
exhibiting competitive behavior proves crucial for achieving superior re-
sults. This seemingly counterintuitive finding can be attributed to the
behavior of competitive ants reaching the exit, obstructing a path node,
and thereby prompting the rest of the colony to adapt and explore alter-
native paths.
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2.3 The second ant model

In the second study [23], a new procedure was employed to create more
intricate and varied environments. The environment in which the ants
navigate is now a weighted network represented as G = (V, E, w) where
V is the set of vertices, E is the set of edges, and w : V ×V → R+ functions
as the weighted operation, assigning a positive cost to each edge within
the graph. The weight indicates the level of challenge associated with
traversing a specific edge. A starting point is randomly selected from
one side of the graph, such as the left side, while an exit point is also
randomly chosen on the opposite side, like the right side. It’s important
to note that every link is traversable in both directions.

As previously mentioned, novel components were introduced to mod-
ify the behaviors of the ants in relation to the first study. In this context,
the ant colony is comprised of two distinct types of ants:

• High Performing Ants (HPAs): These ants consistently demonstrate
high levels of performance. When encountering a damaged edge
and/or vertex, they possess the ability to repair it, and this repair
is influenced by a probability range of 0 ≤ ρe,v ≤ 1. Furthermore,
HPAs contribute two distinct forms of information concerning their
path: They deposit the conventional pheromone τij(t) upon success-
fully traversing an edge (i, j) and a more intricate form of informa-
tion referred to as ηij(t) = 1/wij(t). In this context, wij(t) represents
the weight of the edge (i, j) at a specific time t, and ηij(t) serves to
communicate to the rest of the ant colony the level of difficulty as-
sociated with that particular path.

• Low Performing Ants (LPAs): These ants consistently exhibit subop-
timal performance. Their functionality is compromised, leading to
the potential destruction of certain edges and/or vertex within the
network. This destruction occurs with a specific probability range
of 0 ≤ ρe,v ≤ 1. Notably, LPAs leave the classical pheromone τij(t)
after crossing an edge but do not leave any piece of information
ηij(t) behind after traversing an edge (i, j) along their designated
path.
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It is noteworthy that the act of destroying an edge or node renders it
unfeasible for traversal. Conversely, repairing an edge or node restores
its practicability. Both actions contribute to the network’s dynamism. In
this context, the second study can be viewed as an extension of the prece-
ding general shortest path problem of the first study. This perspective led
to the decision to exclude the shortest path as an evaluative metric due
to the network’s dynamic nature. Consequently, in this scenario, both
categories of ants are tasked with locating the exit point of the network
from a designated entrance. Their objective, however, is to optimize the
number of ants reaching the exit while minimizing path cost and reso-
lution time. The quantity of High-Performing Ants (HPAs) within the
colony is determined by the parameter denoted as the performing factor
(p f ), which lies in the interval [0, 1]. Consequently, once is fixed, the re-
maining ants (namely, 1 − p f fraction) constitute Low-Performing Ants
(LPAs). It should be noted that the situation where p f = 1.0 corresponds
to the complete presence of HPAs, resulting in the classical version of
ACO. Let be Ai = {j ∈ V : (i, j) ∈ E} the set of vertices adjacent to ver-
tex i and πk(t) = (π1, π2, . . . , πt) a non-empty sequence of vertices, with
repetitions, visited by an agent k at the time-step t, where (πi, πi+1) ∈ E
for i = 1, . . . , t − 1. Due to the influence of HPAs, which possess the ca-
pability to restore damaged nodes and/or links, the path πk(t) becomes
more intricate than a straightforward path. This complexity arises from
the possibility of an ant revisiting a vertex through a back-tracking opera-
tion.

Also in this second study, the ACO rules were tailored to suit the
current problem being examined. The probability pk

ij(t) of an ant k po-
sitioned on a vertex i selecting one of its neighboring vertices j as its
destination at time t is determined using the proportional transition rule
defined in Eq. 1.1. Here, Jk

i = Ai \ πk
t represents all feasible movements

of ant k from vertex i while the visibility ηij(t) is called desirability and
establishes how much an edge (i, j) is promising. In particular and it is
defined as ηji(t)) = 1

wij(t)
. This information is released by each ant as

the trace, however, it does not depend on the ant itself, but only on the
edge (i, j). Each ant leaves an amount of pheromone K after crossing an
edge (i, j) according to the reinforcement rule as defined in Eq. 1.2. For
contextual clarity within the scenario, the term pheromone will be sub-
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stituted with the term trace. Pheromones evaporate in time every T ticks
1 according to the global updating rule as defined in 1.3.

The goal of the ants is to explore the network and find the most eco-
nomical path from the starting point to the endpoint in the least amount
of time. They achieve this by using the amount of traces on paths and the
exchanged information about desirability. Simultaneously, the aim is to
maximize the number of ants reaching the endpoint. This entails the op-
timization of three distinct objective functions: minimizing the path cost
function and the exit time function, and maximizing the exit function,
indicating the number of ants that successfully reach the endpoint. To
streamline the optimization process, the path cost function and the time
cost function have been combined into the following unified objective
function:

min
t−1

∑
i=1

w(πk
i , πk

i+1) + |πk|. (2.2)

Finally, the exit function is defined as:

max ∑
g∈G

∑
k∈N

kg. (2.3)

It represents the maximization of the number of ants that must reach the
exit, where G is the total number of groups, g is the index of the group to
which the ant k belongs, kg is the ant k that belongs to g group and N is
the set of ants.

2.3.1 Experiments and results

The simulations have been conducted using two distinct types of scena-
rios, each corresponding to networks of increasing complexity. In each
scenario, two model parameters have been adjusted. Specifically, the
quantity K of pheromone deposited by the ants on the links, and the pa-
rameter β,’ which gauges the importance of information ηij(t) in relation
to the actual pheromone quantity. The two scenarios are:

• Scenario B1: a 15x15 network with |V| = 225 nodes and |E| = 348
links.

1Each tick corresponds to an ant displacement and movement.
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• Scenario B2: a 15x15 network with |V| = 225 nodes but |E| = 495
links.

The general experimental setup is as follows. For each scenario, a total of
N = 1000 ants have been utilized, distributed across G = 10 groups. This
implies that each group comprises Ng = 100 ants, commencing their jour-
ney from the initial point at regular intervals calculated by multiplying
row and column values, resulting in Tl = 225 ticks. As previously men-
tioned, the ant colony consists of two distinct types: high-performing ants
(HPAs) and low-performing ants (LPAs). The proportion of HPAs and
LPAs is governed by a performance factor p f ," determining the ratio of
the former to the latter. This factor ranges from p f = 0.0 (representing a
colony exclusively composed of LPAs) to p f = 1.0 (constituting a colony
solely comprising HPAs, analogous to the classical ACO version), with
increments of p f = 0.10. The goal for the ants is to find the exit within
a certain time frame Tmax calculated as 2 × G × Tl, where G is the group
count, Tl is the launch interval, and 2 adjusts the value. Initially, the links
have a trace intensity of 1.0, which diminishes over time every Td = 50
by 10% (ρ = 0.10). In scenarios labeled as "High Trace", both α and β

parameters are set to 1.0. Additionally, each ant releases an amount of
pheromone K = 0.1. For scenarios classified as "Low Trace," α remains
1.0, while β is adjusted to 0.5. In this case, each ant leaves less trace on
its path, with an amount of K = 0.001. The parameter β influences the
balance between the impact of information ηij and trace τij. By decrea-
sing both β and K, the colony’s behavior is expected to rely more on the
acquired path information and less on the trace left behind. The prob-
abilities for edge destruction-repair (ρe = 0.02) and vertex destruction-
repair (ρv = 0.02) are consistent across both configurations. A series of
10 independent simulations have been conducted, ranging from an initial
performance factor value of p f = 0.0 up to f = 1.0, in increments of 0.1.
Finally, two analysis types have been carried out:

• Group Analysis: This examines the number of ants that successfully
reach the exit. It considers the performing factor value and the
group count.

• Overall Analysis: This assesses the following aspects: The cost of
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the path determined by the ant colony; the time taken by the ants
to find the path and the number of ants that reach the exit.

In the forthcoming results, the term High Trace corresponds to a K
value of 0.1 and a β value of 1.0". On the other hand, the label Low Trace
corresponds to a K value of 0.001 and a β value of 0.5.

Group Analysis

In this initial analysis, the number of ants reaching the exit is evaluated
based on the performing factor and the number of groups. A heatmap
illustrates the results, with lighter shades of blue indicating higher ant
numbers, and darker shades indicating lower numbers. The absence of
color means no ants reached the exit for specific performing factor or
group values. The results for scenario B1 are presented in Fig. 2.3, where
Fig. 2.3a shows ants per tick with a high-level trace, and Fig. 2.3b de-
picts the same with a low-level trace. The comparison between Fig.2.3a
and Fig.2.3b reveals significant differences in optimal outcomes for ant
colonies under varying conditions. Specifically, with a high-level trace,
the most favorable ant colony performance is achieved by the later groups
when the performing factor is approximately p f = 0.9. Conversely, in the
presence of a low-level trace, optimal results are seen with the last groups
not only at p f = 0.9 but also at p f = 1.0. This suggests that the influence
LPAs is more pronounced when the trace level is high. This effect is es-
pecially noticeable when comparing ant exit rates at performing factors
around f = 0.9 or slightly lower, regardless of group differences. These
findings are attributed to the ants’ tendency to be misled by the strong
trace in high-level scenarios, prompting them to follow incorrect paths.
Furthermore, analysis of Fig. 2.3 reveals that a high-level trace leads to a
greater number of ants reaching the exit compared to a low-level trace.
This underscores the critical role of LPAs in optimizing ant colony per-
formance under high-level trace conditions, as indicated by the poorer
colony outcomes at p f = 1.0. Fig.2.4 presents an analysis analogous to
that conducted for scenario B2, showcasing a pattern reminiscent of the
previous heatmaps in scenario B1, albeit with some distinctions. In the
instance of a high-level trace, illustrated in Fig.2.4a, the overall count of
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Figure 2.3: The heatmap illustrates the number of ants reaching the exit
per tick in scenario B1. The colony’s performance varies based on the
trace amount released by the ants. In (a), the best results occur for the
final group (g = 10) with a performing factor of p f = 0.9 when a high-
level trace is present. A similar trend is seen in (b) for a low-level trace,
where good performance persists up to a performing factor of p f = 1.0

ants reaching the exit tends to be lower than that observed under the
same configuration in scenario B1. Notably, the most favorable outcomes
occur when the initial colony groups exhibit a performing factor around
p f = 0.5, which includes a portion LPAs. Conversely, when confronted
with a low-level trace, as seen in Fig. 2.4b, the optimal result is achieved
by the first group when the colony is predominantly composed of HPAs
(p f = 1.0). This observation reinforces the idea wherein a high trace level
leads to colony confusion, and simultaneously, a minor presence of LPAs
prompts behavioral shifts within the rest of the group.

Overall Analysis

This analysis focuses solely on how colony performance changes with
the performing factor, without considering the number of ant groups. It
examines different colony performances under high-level and low-level
traces. The study looks at the number of ants reaching the exit, path cost,
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Figure 2.4: The heatmap depicts ant behavior in scenario B2, measuring
the number of ants reaching the exit per time unit. For a high-level trace
(Fig.2.4a), optimal colony performance is achieved by the first groups
when the performing factor is around p f = 0.5. In contrast, a low-level
trace (Fig.2.4b) leads to better results with higher-performing factor va-
lues, exceeding p f > 0.7, and extending the favorable outcomes to more
groups beyond the initial ones.

and resolution time, aiming to maximize ant count while minimizing path
cost and resolution time. In scenario B1, Fig.2.5 displays the ants reaching
the exit. Fig.2.5a shows that LPAs are more effective when there’s more
trace, resulting in better outcomes when only a small percentage of LPAs
exist (best at p f = 0.9). Yet, under a low-level trace in Fig. 2.5b, LPAs don’t
significantly improve colony performance; ant count at exit remains simi-
lar for p f = 0.9 and p f = 1.0. The results for scenario B2 are presented
in Fig.2.6. When there is a high-level trace, Fig.2.6a displays the number
of ants reaching the exit. The maximum ant count occurs at a perfor-
ming factor of p f = 0.5. Conversely, Fig. 2.6b illustrates this count for a
low-level trace, with optimal colony performance at p f = 1.0. Just like
in the previous case, the presence of LPAs appears more impactful when
an excess trace is released on the path. This suggests improved colony
performance with mixed ant types rather than just HPAs. Interestingly,
scenario B2 yields lower average ant numbers compared to scenario B1,
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Figure 2.5: Overall number of ants that have reached the exit in scenario
B1. In (a) the values obtained for a high-level trace; in (b) the ones ob-
tained for a low-level trace. The presence of LPAs is much more important
and useful when there is a high-level trace, leading the colony to better
performances. The best values are obtained for p f = 0.9 when there is a
high-level trace and for p f = 1.0 when there is a low-level trace.

possibly due to network complexity: higher complexity corresponds to
poorer colony performance. The resolution time and path cost, both to
be minimized, are shown together in a single plot. The main graph il-
lustrates the resolution time, while the inset graph depicts the path cost.
This kind of presentation is applied to both scenario B1 (Fig.2.7) and sce-
nario B2 (Fig.2.8). Specifically, Fig.2.7a displays resolution time and path
cost with respect to the performing factor in scenario B1 with a high-level
trace. Similarly, Fig.2.7b shows these quantities under the same scenario
with a low-level trace. Optimal values are the lowest ones, reflecting su-
perior colony performance. By comparing these outcomes with the ant
count results in Fig.2.5a, it becomes apparent that in scenario B1 with a
high-level trace, the colony performs best with a small fraction of LPAs.
This is evident because the maximum ant count reaching the exit, the
minimum resolution time, and the minimum path cost are achieved when
the performing factor is p f = 0.9. Similarly, when examining Fig.2.7b
alongside Fig. 2.5b, it becomes clear that in the presence of a low-level
trace, LPAs neither positively impact the number of ants reaching the exit
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Figure 2.6: Overall number of ants that have reached the exit in scenario
B1. In (a) the values obtained for a high-level trace; in (b) the ones ob-
tained for a low-level trace. As in Fig. 2.5, the presence of LPAs is much
more helpful when there is a high-level trace. The best values are ob-
tained for p f = 0.5 when there is a high-level trace and for p f = 1.0 when
there is a low-level trace.

nor the resolution time and path cost determined by the colony. In this
case, optimal results are attained when the colony comprises only HPAs,
further supporting the hypothesis that LPAs are valuable in regulating
actions during trace excess. The study found consistent results for sce-
nario B2, as depicted in Fig. reffig:B2-resolution-time-path-cost. In this
scenario, the impact of LPAs on the colony’s performance is evident, par-
ticularly when high-level traces are present. When the performing factor
is p f = 0.9, the colony’s path cost is significantly improved compared
to p f = 1.0, as shown in the inset plot. This performance difference is
also reflected in resolution time and the number of ants, displayed in
Fig. reffig:B2-ants-high-trace. However, for low-level traces, LPAs do not
enhance colony performance; instead, colonies composed solely of HPAs
perform better. Fig. reffig:B2-resolution-time-path-cost confirms that the
optimal values for resolution time and path cost occur at p f = 1.0.



32 CHAPTER 2. OPTIMIZATION PROBLEMS

 0

 20

 40

 60

 80

 100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
e

s
o

lu
ti
o

n
 t

im
e

Performing factor

Resolution time vs Path Cost in Scenario B1 - High Trace

 0

 50

 100

 150

 200

 250

 300

P
a

th
 c

o
s
t

(a)

 0

 10

 20

 30

 40

 50

 60

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
e

s
o

lu
ti
o

n
 t

im
e

Performing factor

Resolution time vs Path Cost in Scenario B1 - Low Trace

 0

 50

 100

 150

 200

 250

P
a

th
 c

o
s
t

(b)

Figure 2.7: Overall resolution time (principal plot) and path cost (inset
plot) of the colony for scenario B1. In (a) the values obtained for a high-
level trace; in (b) the ones obtained for a low level trace. As in Fig. 2.5, the
presence of LPAs is much more helpful when there is a high-level trace.
The best values are obtained for p f = 0.9 when there is a high-level trace
and for p f = 1.0 when there is a low-level trace.

2.3.2 Conclusions

In this second study within the optimization research line, the findings
reveal that LPAs provide notable benefits (particularly in scenarios with
high levels of trace), disrupting typical path choices and prompting ants
to explore alternative routes, fostering information sharing among colony
groups. This effect holds even when considering overall colony objectives.
LPAs play a crucial role when there is an abundance of traces shared by
ants in the environment. Too much trace can hinder the colony’s effec-
tiveness by causing ants to repeatedly choose the same path due to their
actions being influenced by excessive trace. LPAs counteract this by com-
pelling the colony to alter its behavior, encouraging the exploration of
more productive paths. This observation resonates with the conclusions
drawn from the first study, where introducing a small proportion of com-
petitive agents demonstrated advantages in optimizing outcomes. The
collective impact of LPAs altering the colony’s behavior to explore more
productive paths aligns with the contribution of competition highlighted
in the first work.



2.4. CONCLUSIONS 33

 0

 10

 20

 30

 40

 50

 60

 70

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
e

s
o

lu
ti
o

n
 t

im
e

Performing factor

Resolution time vs Path Cost in Scenario B2 - High Trace

 40

 60

 80

 100

 120

 140

 160

 180

 200

P
a

th
 c

o
s
t

(a)

 0

 5

 10

 15

 20

 25

 30

 35

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
e

s
o

lu
ti
o

n
 t

im
e

Performing factor

Resolution time vs Path Cost in Scenario B2 - Low Trace

 0

 20

 40

 60

 80

 100

 120

 140

P
a

th
 c

o
s
t

(b)

Figure 2.8: Overall resolution time (principal plot) and path cost (inset
plot) of the colony for scenario B1. In (a) the values obtained for a high-
level trace; in (b) the ones obtained for a low-level trace. As in Fig. 2.6, the
presence of LPAs is much more helpful when there is a high-level trace.
When there is a high-level trace, the best value of the resolution time is
for p f = 0.6 and the one for the path cost is for p f = 0.5. When there is a
low-level trace the same bests are obtained for p f = 1.0.

2.4 Conclusions

In summary, the primary objective of the first research line was to inves-
tigate the influence of competitive dynamics on optimization algorithms,
specifically focusing on the Ant Colony Optimization algorithm. To com-
prehensively explore this impact, two distinct ant models were devel-
oped, employing an agent-based model approach. The overarching ques-
tion guiding this investigation was:

1. Could competition contribute to the optimization of outcomes in the context
of optimization problems?

Yes, competition, when strategically integrated, can enhance algo-
rithmic efficiency.

In the initial ant model, the introduction of competitive ants re-
sulted in positive effects, notably enhancing the algorithm’s success
rate. Their strategic blocking actions at crucial nodes prompted the
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colony to adapt, explore alternative paths, and ultimately improve
overall performance.

Likewise, in the second ant model, the presence of LPAs (competi-
tive ants) positively influenced efficiency, especially in environments
rich with trace information. However, this also highlighted the intri-
cate interplay between cooperative and competitive dynamics, par-
ticularly emphasized in scenarios with high trace information levels.
This insight emphasizes the importance of competition, especially
in environments where the algorithm can strategically adapt and
optimize its performance based on environmental characteristics.

Challenging the traditional approach, the proposed models revealed
that, on the one hand, competition, when strategically integrated,
can enhance algorithmic efficiency, and on the other hand, the agent-
based approach can be a powerful tool that enables the easy explo-
ration of algorithm efficiency across a variety of scenarios.



Chapter 3
Collective Behaviors

3.1 Introduction

The second research line directed its attention toward dissecting the com-
plexities inherent in collective behaviors within social complex systems.
This research was driven by a fundamental question: How do cooperation
and competition interact in the dynamics of social complex systems? To
explore the complexities of social interactions, the study turned to crowd
simulations, acknowledging them as a valuable tool. However, before
delving into the detailed investigations and contributions, it is essential
to lay down the foundational context for a more profound exploration of
this second research line.

Crowd simulations have gained increasing attention in recent years
due to their numerous applications, such as emergency management
[51, 71], sociology [60, 83], computer games [99], and path planning [85]
among many others. This has led to a wide range of models and tech-
niques being developed in the field, with significant progress made pos-
sible by advancements in computer hardware and software. Despite the
increasing literature available, creating crowd models is still challenging
for several reasons. Firstly, there is a lack of data available for modeling
crowd behavior, which can limit the accuracy of models [61, 72]. Sec-
ondly, crowd behavior is a complex and dynamic phenomenon, that may
be influenced by a wide range of factors such as age, environment, and

35
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personality [80, 48]. These factors can significantly shape individual and
collective behavior because interactions and dynamics among individuals
become more complex due to the simultaneous presence and interaction
of such factors. For example, in [78] the authors propose an agent-based
model of emergency evacuation that takes into account panic behaviors.
In [3] are considered the physical characteristics of pedestrians while in
[49] a specific emergency is taken into account. In [101], the authors
employ a game-theoretical model to elucidate the interactions between
cooperative and competitive agents within a crowd. It follows that there
exist various crowd behavior models, and each one brings its own set
of assumptions, methodologies, and theoretical perspectives, leading to
different interpretations and insights into crowd behavior. Due to the in-
tricate nature of crowd behavior, no single model can fully capture all its
aspects.

Reviews and surveys [72, 93] have attempted to categorize these mo-
dels into three main types: microscopic, macroscopic, and mesoscopic.
Microscopic models [81, 102] consider individuals as distinct entities with
unique traits whose interactions may produce unexpected collective beha-
viors, while macroscopic models [98, 54] view individuals as a continuous
flow generally governed by adequate physical dynamics. Although mi-
croscopic models are adept at studying collective behavior, they are com-
putationally expensive and not well-suited for modeling large-scale sce-
narios. This is primarily because of their inherent computational com-
plexity and memory requirements. Conversely, macroscopic models strug-
gle to capture individual interactions but can simulate thousands of indi-
viduals. Mesoscopic models aim to combine the strengths of both macro
and micro techniques [95].

Building upon existing literature on crowd simulation, the primary
objective was to develop a model capable of analyzing the effects of vari-
ous behavioral strategies within a crowd context, with a particular focus
on cooperation and defection. In pursuit of this objective, a secondary
question emerged: can principles from the Ant Colony Optimization (ACO)
algorithm, previously utilized in the first research line, be effectively applied to
simulate social dynamics? This inquiry stems from the demonstrated utility
of swarm intelligence algorithms, not only for optimization purposes but
also in modeling crowd dynamics [39, 103, 86]. Leveraging insights from
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the ACO algorithm, the initial phase of establishing this second research
line involved identifying an appropriate abstraction process to map its
rules onto conceptual frameworks rooted in social dynamics and agent-
based simulations. The ACO principles offer several advantages for this
endeavor: they facilitate the emergence of complex behaviors from sim-
ple interactions, adaptively model dynamic decision-making processes
through pheromone-based communication and reinforcement learning,
and ensure scalability to accurately represent large-scale crowd simu-
lations. This mapping process represents a novel contribution to this
research line, laying the foundation for subsequent investigations into
crowd behaviors.

By examining the core principles of the ACO algorithm, particularly
its proportional transition rule, reinforcement rule, and global updating
rule, a parallel framework for modeling decision-making and environ-
mental interaction within crowd simulations was established. In de-
tail, given that the proportional transition rule 1.1 of ACO governs how
ants make path choices based on factors such as the concentration of
pheromones τij(t) along a route and the visibility ηij of a node, a parallel
approach was adopted to model how agents or evacuees make decisions
regarding their routes in an unfamiliar environment. The main differ-
ence lay in the interpretation of pheromones as traces inadvertently left
behind by the agents during their movements, and visibility as a measure
of desirability associated with a path. This desirability is intentionally
communicated to neighboring paths to assist others in identifying opti-
mal routes. Similarly, just as the reinforcement rule 1.2 governs the quan-
tity of pheromone deposited by an ant upon traversing an edge, the same
rule is employed in this context to depict the interaction between agents
and their environment. In this scenario, agents leave inadvertent traces
as they navigate a path. These traces reflect the frequency with which
an edge along the path has been traversed, but they lack a physical in-
terpretation. Instead, they represent information about the prior actions
of agents and the state of the environment. In simpler terms, think of it
as agents leaving behind footprints as they cross a path. These footprints
tell where agents have been and how often they’ve been there, giving in-
sights into their actions and the conditions of their surroundings. Lastly,
within the framework of the ACO algorithm, the global updating rule 1.3



38 CHAPTER 3. COLLECTIVE BEHAVIORS

governs the gradual evaporation of pheromones on the edges over time.
In the model, this rule simulates the impact of time on the environment.
Specifically, it controls the gradual reduction of the traces left by agents as
time elapses, thereby influencing how the information about the environ-
ment undergoes alteration. To elaborate further, it dictates how the marks
left by agents diminish over time, mirroring the way knowledge about the
environment evolves as it interacts with the temporal dimension.

To summarize, the mapping process consists of the following phases,
also outlined for clarity in Table 3.1: pheromones are interpreted as traces,
and node visibility as path desirability. The proportional transition rule
mirrors how agents make decisions, while the reinforcement rule depicts
their interaction with the environment through traces. The global up-
dating rule simulates how time influences traces and the evolution of
environmental knowledge.

Table 3.1: Comparison of ACO Rules and Crowd Model

ACO Rule Crowd Model Explanation
Proportional
Transition Rule
(1.1)

Decision-making in
an unfamiliar envi-
ronment

Agents make deci-
sions about paths
based on trace in-
tensity and path
desirability

Reinforcement
Rule (1.2)

Interaction between
agents and environ-
ment

Agents leave traces
(footprints) reflecting
path traversal fre-
quency

Global Updat-
ing Rule (1.3)

Gradual degradation
of traces

Simulates the impact
of time on the envi-
ronment, controlling
the reduction of
agent traces over
time

After establishing the mapping, the second phase of this research line
involved the development of the model, which will henceforth be referred
to as the crowd model. This phase involved the creation of three versions
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of the crowd model, each with similarities but also marked distinctions.
These versions are presented in the order of their evolutionary progres-
sion. Despite these variations, the core model revolves around two dis-
tinct types of agents navigating a virtual environment from a predeter-
mined starting point to an exit. These agents demonstrate contrasting
behaviors: collaborative agents proceed cautiously toward the exit while
assisting others, whereas defectors pursue individual and often reckless
paths.

In detail, the first study delved into a generic evacuation process from
a game theory perspective, analyzing the path choices of agents using a
specific profit function. This profit function, within the context of game
theory, attributes value to the emotional or economic gain associated with
an agent’s strategy adoption. In the second, third, and fourth studies, the
research evolved to encompass a broader array of crowd scenarios. Eval-
uation criteria were expanded to include metrics such as the number of
agents successfully exiting the environment, path costs, and exit times
assessments. Analyses evolved to consider not only the performance of
the two agent types but also the various groups they were divided into,
the collective behavior of the entire crowd, and detailed sensitivity anal-
ysis of the parameters utilized. Finally, in the fifth study, the agents were
endowed with a form of memory, enabling them to incorporate past ex-
periences into their decision-making processes. This addition introduced
a new layer of complexity to the evaluations but the same set of evalua-
tion metrics was applied to conduct analyses, ensuring uniformity and
comparability across all studies.

Overall, in all crowd models, the decision-making processes of the
agents, their interactions with the environment, the temporal aspect, and
its influence on the environment were all modeled using the aforemen-
tioned mapping.

3.2 The first crowd model

The initial model, published in [21], considered a hypothetical high-risk
scenario where an unspecified group of agents is assigned the challenging
task of navigating an unfamiliar environment, represented as a graph
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denoted as G = (V, L) with V representing the set of vertices and L the
set of links. Their ultimate objective is to reach a secure location for their
survival. This secure location, referred to as the "shelter," comes with a
capacity that diminishes as each agent arrives. If the shelter reaches its
capacity, meaning it is fully occupied, the exit relocates to another edge
node within the graph. This dynamic scenario necessitates not only the
agents’ ability to find the exit through the shortest path but also their
capacity to adapt periodically to new objectives. In adopting a game
theory approach, this high-risk scenario is framed as a game involving
N players (evacuees), with N being greater than or equal to 2. In this
context, players assumed to be rational and intelligent, seek to maximize
their profit function which represents the benefits of adopting specific
strategies. Within the model, agents can choose between two distinct
strategies:

• The Non-Cooperative Strategy: Agents have the option to disrupt a
randomly selected node along their path, rendering it impassable.

• The Cooperative Strategy: Agents can choose to repair a damaged
node located near their path.

In simpler terms, the non-cooperative strategy reflects agents acting
urgently, as if they are in a state of panic, potentially posing risks to them-
selves and the environment. Conversely, the cooperative strategy encour-
ages agents to act more cautiously, considering their well-being and that
of the environment, and taking corrective actions when necessary. Safety
for both types of agents is guaranteed only if they successfully reach the
exit.

One of the key insights gained during the development of this ini-
tial model was the importance of finding a balance between realism and
simplicity in crowd modeling, a realization drawn from extensive litera-
ture research. While real-world crowd behavior is influenced by diverse
factors such as intentions, knowledge, and motivations, attempting to in-
corporate every aspect into a model can lead to computational complexity
and challenges. Hence, the collaborative and non-collaborative strategies
were implemented straightforwardly, serving as abstractions to represent
a spectrum of behaviors realistic within a crowd.
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Formally, each player’s payoff function is defined, mapping strategy
profiles to numerical values. In this case, two payoff functions are de-
fined, one for each strategy. The payoff function for an agent who chooses
the cooperative strategy (aC

k ) is represented as follows:

uk(aC
k , a−k) =

f · ∑i,j τij

n
, 0 < f ≤ 1. (3.1)

The payoff function for an agent who chooses the non-cooperative strat-
egy (aNC

k ) is defined as:

uk(aNC
k , a−k) =

(1 − f ) · ∑i,j τij

n
, 0 ≤ f < 1. (3.2)

Here, τij represents the trace intensity on an edge (i, j), and ∑i,j τij is the
sum of the trace on the links of the agent’s path. Moreover, f denotes the
percentage of cooperative players and is a user-defined parameter. Once
it is defined, the other 1 − f agents will adopt a non-cooperative strat-
egy. Finally, n is the number of evacuees in a group, and ak denotes a
generic strategy that agent k can choose from (C) or (NC), with a−k rep-
resenting the strategies of all agents except agent k. The payoff functions
for all cooperative (C) and non-cooperative players (NC) are obtained by
aggregating for all k as follows:

uC = f · ∑
i,j

τij, 0 < f ≤ 1; uNC = (1 − f ) · ∑
i,j

τij, 0 ≤ f < 1.

Ultimately, the profit function of the game is the sum of the payoff of
all cooperative ants plus the payoff of all non-cooperative ants, i.e., U =
uC + uNC.

3.2.1 Experiments and results

A population of n = 100 agents was utilized, distributed across g = 10
groups. Consequently, each group comprises 10 agents, and the explo-
ration begins once the first agent of the group arrives at the shelter. It’s
important to note that priority is exclusively granted to the first agent
from each group upon their arrival at the shelter, and the other agents
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within the same group do not have the option to share the same shelter.
The prioritization of the first agent from each group upon reaching the
shelter serves as an abstraction to model a strategic approach aimed at
optimizing and maintaining order in scenarios characterized by limited
resources. In situations such as emergencies or when shelter capacity
is restricted, this approach ensures that all groups are provided with an
equitable opportunity to access critical resources, including space, sup-
plies, and assistance. The environment in which the agents move is a
graph with (|V| = 77) nodes and (|E| = 128) links. For simplicity in this
first study, the agents choose their next path taking into account only the
amount of trace τij present on the edges and not the visibility ηij. For-
mally, this means that the β parameter in the proportional transition rule
1.1 is set to zero while α = 1.0. The amount of trace left by the agents
after they cross an edge is expressed by the reinforcement rule 1.2 and
in this case, it has a fixed value ∆τij = 1.5 while τij(0) the initial amount
of trace is set to τij(0) = 1.0. Finally, the evaporation rate in the 1.3 is
ρ = 0.1. With these defined parameters, a series of 10 independent simu-
lations were conducted, encompassing a range of values for f . This range
goes from 0.0 to 1.0, with increments of 0.20 introduced at regular inter-
vals. The primary objective was to analyze how the profit functions of
the two types of agents evolved concerning the groups that explored the
environment. To do this, two kinds of analysis were carried out:

• Generation type analysis: To examine how the average profit func-
tion of cooperative and non-cooperative agents changed over genera-
tions.

• Overall type Analysis: to assess how the average profit functions of
both cooperative and non-cooperative agents changed with respect
to the cooperative factor f .

Generation type analysis

In this analysis, the primary focus was on understanding how the average
profit function of the two types of agents varied across generations. The
aim was to provide insights into the temporal evolution of agent beha-
vior within the simulation. Fig. 3.1 shows a comparison of profit function
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(a) (b)

Figure 3.1: Comparison of the average profit obtained by cooperative
agents (plot (a)), compared to obtained one by non-cooperatives (plot
(b)).

values relative to the percentage of cooperative agents f . The horizontal
axis represents the generation number or the number of groups. It is ob-
served that as the number of cooperative agents increases, there is a linear
increase in the profit function value. Notably, for f = 0.8 and f = 1.0, the
average profit function exhibits similar growth patterns, ultimately con-
verging to the same value after 10 generations. This suggests that even
when the group is composed of mainly but not totally of cooperative
agents, the can contribute to enhancing the profits of others. Similarly,
the plot in Fig. 3.1b demonstrates that a non-cooperative strategy proves
effective only when a substantial number of agents opt for it. In this case,
as well, the average profit function reaches optimal values for f = 0.2 and
f = 0.4, explaining why the presence of a few non-cooperative agents
leads to better results.

In Fig. 3.2, a comparison of the average profit function is presented
for different scenarios considering both cooperative and non-cooperative
evacuees. Fig. 3.2a focuses on the situation with 2 cooperative evacuees
and 8 non-cooperative evacuees, while Fig. 3.2e examines the symmetric
scenario with 8 cooperative evacuees and 2 non-cooperative evacuees. A
similar distinction exists in Fig. 3.2 for f = 0.4, represented in Fig. 3.2b,
and for f = 0.6, depicted in Fig. 3.2d, each with 4 and 6 evacuees of
each kind in two symmetric situations. These plots reveal that the av-
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Figure 3.2: Average profit function comparison obtained by the coopera-
tive and non-cooperative agents, at different values of f and (1 − f ).

erage profit function tends to be higher for larger groups, specifically
non-cooperative groups for f < 0.5 and cooperative groups for f > 0.5.
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Figure 3.3: Average profit function comparison over 10 simulations and
over 10 generations for cooperative and non-cooperative evacuees.

This behavior is driven by the fact that these plots are calculated for a co-
operation percentage less than f = 0.5. However, a significant transition
occurs at f = 0.5. In Fig. 3.2c, it can be observed that the trend of the
average profit function for cooperative evacuees starts to dip below that
of non-cooperative evacuees. Yet, as the generations progress, these two
functions gradually converge toward the same value.

Overall type Analysis

To gain a deeper understanding of the data, a different kind of analysis
was conducted to provide a comprehensive view of how the choice of
cooperation percentage influenced the agents’ performance. The results
are depicted in Fig. 3.3 in which average values of the profit function were
computed. It is evident that as the percentage of f increases, two distinct
trends emerge.

For cooperative evacuees, the average profit function increases with
the rise in f . Conversely, for non-cooperative evacuees, the average profit
function decreases as f increases. Specifically, the average profit func-
tion for f ≥ 0.50 surpasses that for f ≤ 0.50, underscoring the non-
equivalence of average values between two opposing and symmetric con-
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figurations.
The asymmetry in the curves is a consequence of the differing dynamics
between cooperative and non-cooperative agents. Furthermore, these
effects are significantly influenced by the ratio of cooperative to non-
cooperative agents, with higher values of the profit function (u) associated
with larger values of the parameter f .

3.2.2 Conclusions

In this initial study, cooperative and competitive dynamics were analyzed
within a generic evacuation process from a game theory perspective. The
model consisted of a set of agents distributed across different groups
aiming to reach a secure location for survival, where the shelter’s capac-
ity decreased as agents arrived. If the shelter reached full capacity, it
relocated to another environment position. Agents could choose between
two strategies: Non-Cooperative, disrupting a randomly selected node,
or Cooperative, repairing a damaged node. The proportion of coopera-
tive and non-cooperative agents was controlled by the cooperative factor
( f ), ranging from 0.0 to 1.0 in increments of 0.20. Two types of analyses,
the Generation type analysis and the Overall type analysis, were conducted
to examine cooperation levels’ influence on agent behavior and average
profit functions.

In the Generation type analysis, it was noted that as the proportion of
cooperative agents ( f ) and the number of generations increased, the aver-
age profit function exhibited a corresponding increase. Specifically, it dis-
played a linear growth pattern with the increment of cooperative agents,
showing similar trends for f = 0.8 and f = 1.0, eventually converg-
ing to a consistent value after 10 generations. This observation indicates
that even in groups primarily composed of cooperatives but not entirely
so agents, favorable average profit outcomes were achievable. Conse-
quently, the non-cooperative behavior of a few agents could positively
impact the profits of others. A detailed comparison of the average profit
function across different scenarios, ranging from predominantly cooper-
ative to predominantly non-cooperative groups, demonstrated a consis-
tent tendency: higher average profit functions for non-cooperative groups
when f < 0.5, and for cooperative groups when f > 0.5. However, a
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notable transition occurred at f = 0.5, where cooperative evacuees dis-
played lower average profit functions than non-cooperative ones. Despite
this, across successive generations, these functions gradually converged,
suggesting the influence of temporal dynamics in aligning outcomes.

In the Overall type Analysis, two clear trends emerged when assess-
ing the impact of the cooperation percentage ( f ) on agent performance.
Cooperative evacuees demonstrated a consistent increase in the average
profit function with higher values of f . Conversely, non-cooperative evac-
uees exhibited a decreasing trend in the average profit function as f in-
creased. However, it’s noteworthy that the average profit function for
cooperative agents doesn’t peak when f = 1.0, indicating that having
the group entirely composed of collaborative agents doesn’t necessarily
maximize profit.

This observation served as the basis for subsequent analyses in the
evolution of this agent-based model. Recognizing the significance of the
ratio between cooperative and non-cooperative agents, further investiga-
tions were conducted to understand how the interaction between coop-
erative and non-cooperative dynamics could shape the complexities of
social systems.

3.3 The second crowd model

The second version of the model, as documented in [20, 19, 24], was built
upon the insights garnered from its predecessor. This updated version
transitioned the model into a more generalized crowd simulation frame-
work. To elaborate, it consisted of a situation that was modeled in which a
population of N agents, divided into Γ groups, explores the environment
and attempts to reach the destination as quickly as possible using the path
with the lowest cost. In this scenario, permission is granted for all agents
to reach the exit, and each group begins its exploration at regular fixed
intervals. The environment is here modeled as a weighted undirected
graph G = (V, E, w), where V is the set of vertices, E ⊆ V × V is the set
of edges, and w : V × V → R+ is a weighted function that assigns to each
edge of the graph a positive cost. The weighted function indicates how
difficult is for the agents to cross an edge. Let be Ai = {j ∈ V : (i, j) ∈ E}
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the set of vertices adjacent to vertex i and πk(t) = (π1, π2, . . . , πt) a non-
empty sequence of vertices, with repetitions, visited by an agent k at the
time-step t, where (πi, πi+1) ∈ E for i = {1, . . . , t − 1}. Lastly, the beha-
vioral strategies of the agents were expanded to encompass a broader
range of possibilities. The behavioral strategies for each agent have been
altered as follows:

1. collaborators C: they leave a piece of information ηij(t) after cros-
sing an edge (j, i) to help other agents to choose promising paths;
further, they may repair a destroyed edge and/or an uncrossable
vertex (due to the defector’s action) with a probability PC

e and PC
v

respectively;

2. defectors D: they do not leave any information after crossing an edge
and may accidentally destroy an edge and/or damage a vertex just
after crossing it, with probability PD

e and PD
v respectively. Note that

a destroyed edge is no longer crossable, while a damaged node can
be reached but not crossed (as if it were a wall).

In detail, collaborators primarily perform actions that benefit all other
agents in reaching the exit point as swiftly as possible. It can be as-
sumed that they traverse edges and vertices cautiously, taking care not
only to avoid damaging them but also to fix them if they are damaged.
Additionally, they leave information about edge costs (ηij(t)) for other
agents to use when making decisions. To depict a real-world situation,
this information could be imagined as written notes, directional signs,
color markers, or any other form of hints that can be left behind. On the
other hand, defectors predominantly behave hastily, engaging in actions
that have the potential to disrupt the environment. After traversing a
node or an edge, they may inadvertently damage it, reducing the chances
of other agents successfully exploring the environment. This behavior
may not only affect collaborative agents but also have consequences for
the defectors themselves, particularly if the disrupted path is critical for
reaching the exit. This behavior of defectors can be attributed to panic,
fear, stress, and negligence, similar to situations where agents, like real
humans, may act without full awareness of their actions. They simply
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try to find a viable path by following others and without communicating
their discoveries to the rest of the group.

Similarly to the first model, the cooperative and defector strategies
in this second model were implemented straightforwardly. However, a
key distinction from the previous model was the incorporation of user-
defined probabilities for destruction and repair within the behaviors of
both collaborators and defectors. This addition allowed for adjusting the
intensity of these behaviors across the agents, emphasizing the signifi-
cance of considering a diverse crowd composition encompassing individ-
uals with varied behavioral tendencies.

Three evaluation metrics were simultaneously compared to under-
stand how collaborative and/or defector strategies affect the two types
of agents and the crowd’s overall behavior. This included the number of
agents reaching the exit (Success Rate or SR), exit times, and path costs
for reaching the exit. The analysis involved normalizing exit times and
path costs relative to the Success Rate. Various kinds of analyses were
conducted, involving different parameter values and scenarios:

• Type Analysis: This analysis focused on comparing the perfor-
mance of the two types of agents, namely collaborators and de-
fectors. It aimed to understand how they influenced each other in
different situations.

• Group Analysis: In this analysis, the performance of the groups
into which the crowd was divided was compared. The goal was to
analyze the behavior of different groups.

• Overall Analysis: This broader analysis considered the performance
of the entire crowd as a whole. It aimed to provide a comprehensive
view of how the collective behavior of all agents, both collaborators
and defectors, influenced the outcomes.

• Sensitivity Analysis: A sensitivity analysis was conducted to eva-
luate the robustness of the previous analyses with respect to specific
parameters. This involved varying a particular parameter and ex-
amining how it affected the results obtained. Such an analysis helps
in understanding the degree to which the model’s outcomes are in-
fluenced by changes in specific factors.
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3.3.1 Experiments and results

For all the analyses (except for the sensitivity one), a total of N = 1000
agents were considered, grouped into Γ = 10 distinct groups, with each
group comprising 100 agents. Within each group, the composition of
agents was determined by a user-defined parameter denoted as the "col-
laborative factor," denoted as f ∈ [0, 1]. Depending on the value of f ,
a group could consist of both collaborative and defector agents, or of
just one type. Specifically, if f = 0.0, only groups composed entirely of
defectors were analyzed. If f = 0.5, each group was equally split be-
tween collaborative and defector agents, while if f = 1.0, only groups
composed entirely of collaborators were examined. In terms of the ex-
ploration timeline, except for the initial group, which logically started
at time Te = 0, each subsequent group commenced its exploration at
a specific time Te = |V| after the previous group. Generally, the i-th
group initiated its exploration at Te × (i − 1). A time limit, Tmax, was
imposed on all agents, calculated as follows: Tmax = 2 × Γ × Te, where
Γ represents the number of groups, and 2 is a fixed parameter. The time
frame within which each agent had to reach the exit extended from the
commencement of its exploration to the overall maximum time Tmax (i.e.,
Tmax − (Te × (i − 1))). This time allocation mechanism meant that the ini-
tial groups had more time to explore the environment compared to later
groups. The model permitted groups to commence their exploration even
if agents from earlier groups were still present in the environment. Con-
sequently, agents within the same group could exit at different times,
always within their designated time range. Agents in the initial group
consistently had more time available to reach the exit. Regarding the
trace release and deterioration process, the trace left along the path de-
cayed over time, with the global updating rule applied every Td = 50
ticks. The evaporation rate for the trace was set to ρ = 0.10. Initially, the
trace was set to τij(t = 0) = 1.0 for all edges (i, j) ∈ E. The parameters
α and β, which regulated the importance of the trace and desirability in
the transition probability equation, were both set to 1.0. Concerning the
destruction and repair probabilities, the probabilities of a vertex and/or
an edge being destroyed were specifically set to PC

e = PD
e = 0.02 for edge

destruction and PC
v = PD

v = 0.02 for both types of agents. Lastly, the
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analysis involved running a total of 10 independent simulations for each
value of f , ranging from 0.0 to 1.0 in steps of 0.1, using, depending on the
analysis made, the following scenarios of increasing complexity:

• scenario A1, with |V| = 100; |E| = 153; and generated by setting
p1 = 0.6, p2 = 0.0;

• scenario A2, with |V| = 100; |E| = 213; and generated by setting
p1 = 0.6, p2 = 0.2;

• scenario B1, with |V| = 225; |E| = 348; and generated by setting
p1 = 0.6, p2 = 0.0;

• scenario B2, with |V| = 225; |E| = 495; and generated by setting
p1 = 0.6, p2 = 0.2;

• scenario C1, with |V| = 400; |E| = 642; and generated by setting
p1 = 0.6, p2 = 0.0;

• scenario C2, with |V| = 400; |E| = 889; and generated by setting
p1 = 0.6, p2 = 0.2.

The two parameters p1 and pe control a node’s connectedness with its
neighbors. In detail, 0 ≤ p1 ≤ 1 represents the probability of creating
horizontal and vertical edges, and 0 ≤ p2 ≤ 1 represents the proba-
bility of creating oblique edges. In this way, Type 1 scenarios featured
solely vertical and horizontal edges, while Type 2 scenarios incorporated
oblique edges.

Type Analysis

For the type analysis, the following scenarios A2, B2, and C2 were con-
sidered. Fig. 3.4 displays the absolute agent counts for scenarios A2, B2,
and C2 over various collaborative factor ( f ) values. Both collaborative
and defector agents are included in the analysis, with coral indicating
collaborative agents and turquoise representing defectors. When asses-
sing the collective behavior, it becomes apparent that crowd performance
improves as f increases, reaching a peak and subsequently declining in
all three scenarios.
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The highest number of exited agents is achieved at different f values
for each scenario: in scenario A2, the peak occurs at f = 0.7, with nearly
650 agents exiting (see Fig. 3.4a); in scenario B2, the maximum is at f =
0.6, with almost 180 agents exiting (see Fig. 3.4b); and in scenario C2,
the peak occurs at f = 0.7, with approximately 360 agents exiting (see
Fig. 3.4c). Analyzing these peak values suggests that crowd performance
is best in scenario A2, followed by scenario C2, and lastly, scenario B2.
This variation in performance could be attributed to the complexity of the
scenario and the presence of specific node and edge configurations.

When f = 1.0, indicating the presence of only collaborative agents,
overall performance is at its worst. Similarly, the same unfavorable per-
formance results are observed when f = 0.0, signifying the presence of
only defector agents. This outcome is unsurprising, as defector agents
obstruct and block parts of their pathways with a certain probability, ren-
dering them physically incapable of progressing toward the exit. Fig. 3.5
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Figure 3.4: Absolute counts for (a) scenario A2, (b) scenario B2, and (c)
scenario C2.

presents the relative counts, which differ from the previous plots as they
illustrate the percentage of agents, both collaborators and defectors, that
successfully reach the exit. This percentage is calculated based on the
total number of agents, denoted as N (where N = 1000). In this context,
it is evident that agent performance improves as f increases, but varia-
tions exist depending on the agent type and the specific scenario under
consideration.
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Figure 3.5: Relative count for (a) scenario A2, (b) scenario B2 and (c)
scenario C2.

In scenario A2 (Fig. 3.5a), both collaborators and defectors achieve
their highest exit percentages at f = 0.7. Beyond this threshold, their
performance declines, though defectors maintain relatively good perfor-
mance even when outnumbered ( f = 0.9). Collaborators improve as f
increases, peaking before dropping at f = 1.0, where only 10% of them
reach the exit. Similar trends apply to defectors, but their performance
drop is less steep. Scenario B2 (Fig. 3.5b) shows peak exit percentages
at f = 0.6 for collaborators (20%) and f = 0.7 for defectors (16%). Col-
laborators consistently outperform defectors, even when they are scarce
( f < 0.5). Collaborator performance decreases as f rises, while defectors
maintain decent performance. In scenario C2 (Fig. 3.5c), both collabora-
tors and defectors achieve their highest exit percentages at f = 0.7, with
collaborator performance at almost 37% and defectors at almost 32%.
Above this point, exit percentages decline with increasing f . Scenario
C2 generally has lower exit percentages than scenario A2 but higher than
scenario B2. Collaborators consistently outperform defectors when they
are in the minority ( f < 0.5). Defectors improve performance when out-
numbered ( f > 0.5), but it decreases beyond that point. In all scenarios,
when f = 1.0, indicating a fully collaborative crowd," the percentage of
collaborators reaching the exit is significantly lower than for lower f val-
ues.

In conclusion, the results (Fig. 3.4) indicate that not all 1000 agents
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reach the exit. Performance varies depending on the scenario complexity
and agents’ limited time. Having defectors in mixed crowds (0.0 < f <
1.0) increases exit percentages compared to fully collaborative crowds
( f = 1.0). Fig. 3.5 shows that when collaborators outnumber defectors
( f > 0.5), defectors leverage collaborators’ information to achieve high
exit percentages.
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Figure 3.6: The path cost for (a) scenario A2, (b) scenario B2 and (c)
scenario C2.

In Fig. 3.6 and Fig. 3.7, both path costs and exit times are normalized
with respect to the agents’ success rate (SR). This normalization makes
these evaluation metrics more statistically meaningful, as it considers
both cost and speed in conjunction with the number of agents reaching
the exit. Regarding path costs in scenario A2 (Fig. 3.6a), collaborators
and defectors exhibit opposing trends as f varies. Defectors significantly
reduce their path costs as f increases, reaching a minimum at f = 0.7.
Collaborators gradually reduce their path costs with increasing f , achie-
ving the minimum at f = 0.7 but experiencing a sharp cost increase at
f = 1.0. In scenario B2 (Fig. 3.6b), defectors’ path costs increase with
higher f , while collaborators’ costs worsen. Defectors notably improve
their performance with a cost minimum at f = 0.6, whereas collaborators
find an optimal path at f = 0.3 but worsen as f increases, with the worst
performance at f = 1.0. Scenario C2 (Fig. 3.6c) follows a similar pattern.
Defectors and collaborators both find their optimal path at f = 0.7, with
defectors continuing to improve with higher f . Collaborators gradually
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improve but experience a sudden cost increase at f = 1.0.
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Figure 3.7: The exit time for (a) scenario A2, (b) scenario B2 and (c) sce-
nario C2.

In scenario A2 (Fig. 3.7a), the exit times for defectors are initially
slower at f = 0.0 compared to f = 0.1. However, as f increases be-
yond 0.1, defectors improve their exit times, reaching the quickest time
at f = 0.8. A slight increase in exit time occurs at f = 0.9. Collabora-
tors also gradually improve their exit times, achieving the minimum at
f = 0.8, coinciding with defectors. Strangely, the worst exit times for
both collaborators and defectors occur at f = 1.0, when the crowd con-
sists solely of collaborators. In scenario B2 (Fig. 3.7b), similar patterns
emerge. Defectors perform poorly at f = 0.1 but improve their exit times
beyond this point, reaching the minimum at f = 0.7. Collaborators show
improvement until f = 0.6, after which their exit times worsen.
Interestingly, the worst exit times for both groups occur at f = 1.0. Sce-
nario C2 (Fig. 3.7c) follows a similar trend. Both collaborators and de-
fectors achieve their minimum exit times at f = 0.7. Collaborators exit
slowly at f = 1.0, but unlike the previous scenarios, their performance at
this value is better than at f = 0.1.

Group Analysis

For the group analysis, the following scenarios A2 and B1 were consi-
dered.
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Figure 3.8: The exit time for (a) scenario A and (b) scenario B.

The exit time (Fig. 3.8) and path cost (Fig. 3.9) plots have been nor-
malized with respect to the group success rate, that is the percentage
of agents in a group, which successfully reach the exit point. The bet-
ter the agents perform, the lower these values are. In both scenarios,
exit time improves as the collaborative factor increases, suggesting that
more cooperation leads to faster exits. However, this trend breaks at
f = 1.0, where all agents collaborate, resulting in worse performance
for each group compared to previous collaboration levels. Groups are
represented by differently colored lines, and it appears that exit time de-
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creases as the group number increases. This suggests that even groups
leaving later somehow use information left by those who evacuated ear-
lier, even if they have less time. For example, Group 1 performs poorly at
low collaboration levels but excels at high collaboration, indicating that
this group can better use path information, especially when most agents
are collaborative. Don’t be misled by the fact that the same group per-
forms well even at the lowest collaboration level ( f ). Later, it will be
demonstrated that at this level, only a few agents manage to find the
exit. Considering both exit time and the number of agents who success-
fully exit, it can concluded that this result is not particularly significant.
Conversely, examining Group 10 in both scenarios reveals improved per-
formance with increasing collaboration ( f ), except when collaboration is
at its maximum ( f = 1.0). This suggests that the final group can utilize
path information more effectively when the crowd is predominantly, but
not entirely, composed of collaborative agents. Similar conclusions can be
extended to the path cost depicted in Fig. 3.9, which decreases in relation
to both the collaborative factor and group number. This holds true for
every f value except for f = 1.0. It indicates, as mentioned earlier, that
heightened collaboration among agents leads to better pathfinding, but if
collaboration is absolute, it appears to be ineffective.

The heat maps in Fig. 3.10 illustrate the number of agents reaching
the exit, normalized according to the exit time available for each group.
They show the rate at which agents are evacuated per unit of time (or at
each tick). A higher value here indicates better agent performance. Intere-
stingly, a pattern opposite in value to the trends observed in exit time and
path cost is evident. It appears that the number of agents exiting increases
with the collaborative factor, except, once again, for f = 1.0, where only
a few agents manage to reach the exit. Surprisingly, the agents’ perfor-
mance isn’t better when all of them collaborate; instead, it seems more
effective when some act as defectors. Additionally, this quantity appears
to increase concerning the group number, suggesting that later groups
benefit from the actions of earlier groups, particularly in scenario A.
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Figure 3.9: The path cost for (a) scenario A and (b) scenario B.

Overall Analysis

Also for the group analysis, the following scenarios A2 and B1 were consi-
dered.

In Fig. 3.11, the total number of exited agents is shown for both sce-
nario A and scenario B. Regardless of the group number, similar conclu-
sions can be drawn as mentioned earlier: the number of agents reaching
the exit increases with the collaborative factor, providing a clearer view
of the collective behavior of the simulated crowd. The highest number of
exited agents occurs at f = 0.7 for scenario A and at f = 0.9 for scenario
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Figure 3.10: The number of exited agents per tick for scenarios A and B.
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Figure 3.11: The number of exited agents for scenarios A and B.

B.
Analyzing the overall trend of the metrics used (number of agents

reaching the exit, path cost, and exit time), it becomes apparent that
the agents’ best performances don’t occur when the entire group is en-
tirely collaborative but rather when some act as defectors. Essentially, the
crowd seems to perform optimally when there’s a mix of collaborative
and non-collaborative agents, suggesting the effectiveness of a diverse
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strategy among the agents.

Sensitivity Analysis

In the context of the sensitivity analysis, all six scenarios, namely A1, A2,
B1, B2, C1, and C2, were taken into consideration. The comparison of
collaborators and defectors was conducted across various combinations
of K, α, and β. Each figure is composed of two lines representing trace
values of K = 0.001 and K = 0.1, and three columns representing different
configurations of α and β parameters. Each plot provides insights into
the results corresponding to a specific K value and a particular α and β

configuration. The x-axes depict the collaborative factor f , while the y-
axes showcase the evaluated metric. The discussion will refer to terms
like α < β for α = 0.5 and β = 1.0, α > β for α = 1.0 and β = 0.5, and
α = β for α = β = 1.0. The condition when K = 0.001 will be denoted as
the "low-trace condition,” and when K = 0.1, it will be referred to as the
"high-trace condition”. The purpose of the parameter K is to represent
scenarios where information about other agents’ actions is either more
visible (high-trace) or less visible (low-trace). For each K value, if α < β,
agents prioritize the trace τij over the information ηij in selecting the next
path. Conversely, if α > β, they assign more weight to the information. If
α = β, equal importance is given to both the trace and the information.

The absolute count bar charts represent how many agents, of both
types, have reached the exit. The defectors’ bars are under the collab-
orators’ ones. In scenario A1, Fig. 3.12, we have that:

• when K = 0.001, i.e. when the trace is low, collaborators and de-
fectors reach the exit more or less equally, regardless of the values
configurations of α and β. In particular, defectors exit more as the
collaborative factor increases and reach the maximum when f = 0.6.
Collaborators exit more as the collaborative factor increases, rea-
ching the maximum when f = 1.0;

• when K = 0.1, defectors exit more as f increases and reach the
maximum when f = 0.6 for α < β and α > β, and when f = 0.7 for
α = β. Collaborators exit more when f = 1.0 only if α < β. If α > β

and α = β they reach the maximum when f = 0.9.
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Figure 3.12: Number of exited agents per type for scenario A1.

Inspecting scenario A2, which is displayed in Fig. 3.13, it is possible
to assert that:

• when K = 0.001, defectors exit more when f = 0.5 if α < β and
α = β. If α > β they reach the maximum when f = 0.6. Collabo-
rators exit more as the collaborative factor increases, reaching the
maximum when f = 1.0 but only when α < β and α > β. If α = β

they exit more when f = 0.9;

• when K = 0.1, the behavior of both defectors and collaborators is
similar to the previous case. We have, indeed, that defectors exit
more for the same values configurations. Collaborators reach the
maximum when f = 0.9 for α < β, when f = 0.7 for α > β, and
α = β.

In scenario A1 (Fig. 3.12), the number of outgoing agents, both collabo-
rators and defectors, decreases from the top left plot to the bottom right
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Figure 3.13: Number of exited agents per type for scenario A2.

plot—transitioning from K = 0.001 and α < β to K = 0.1 and α = β.
For K = 0.001, when the trace is low, collaborators and defectors perform
almost identically across different α and β values. This suggests that, with
a low trace, the agents exit in similar quantities, regardless of whether
they give more weight to the discovered information η (α < β), to the
trace (α > β), or equal weight to both parameters (α = β). Specifically,
collaborators show higher numbers when f = 1.0, while defectors excel
at f = 0.6.

This trend becomes more pronounced with a higher trace value, i.e.,
K = 0.1. In this case, the number of outgoing agents decreases from
the left plot to the right, indicating that more agents leave when they
prioritize the discovered information η (α < β) compared to giving equal
weight to trace and information (α = β). Collaborators shift from a peak
at f = 1.0 when α < β to a maximum at f = 0.9 when α > β and α =
β. This implies that the presence of defectors is beneficial for the entire



3.3. THE SECOND CROWD MODEL 63

crowd only under specific conditions—when the trace is high, and agents
assign equal weight to trace and information. Under these conditions,
more agents exit than when the crowd consists entirely of collaborative
agents.

In scenario A2 (Fig. 3.13), the agents exhibit a similar behavior to that
discussed for A1, with slightly worse performance. Again, the number of
exited agents decreases from the upper left plot to the lower right plot,
signifying a deterioration in performance when transitioning from low
trace with greater weight to information to high trace with equal weight
to trace and information.

It’s crucial to note that this trend is not exclusive to scenarios A1 and
A2 but applies to the remaining scenarios (B1, B2, C1, and C2) and all
evaluation metrics (relative counts, path costs, and exit times). There-
fore, the discussion will focus on scenarios A1 and A2 for each metric, as
similar conclusions can be drawn for the others.

Indeed, in scenario B1, Fig. 3.14, we have that:

• when K = 0.001, i.e. in a low-trace condition, defectors exit more
when f = 0.7 for α < β and α > β. When α = β they reach instead
the maximum peak when f = 0.8. Regarding the collaborators,
instead, if α < β more come out when f = 1.0, while for α > β and
especially α = β they exit more when f = 0.9;

• when K = 0.1, we have that defectors exit more for f = 0.9 if α < β

and α = β. If α > β, they exit more for f = 0.8. Collaborators reach
the maximum value for α < β when f = 1.0; on the other hand, for
α > β and α = β they reach the maximum peak for f = 0.9.

In scenario B2, Fig. 3.15, we have that:

• setting K = 0.001, defectors exit more when f = 0.6 independently
on the configuration values of α and β; while collaborators exit more
for f = 1.0 when α < β and α > β, and for f = 0.8 when α = β;

• setting K = 0.1, defectors exit more for f = 0.6 when α < β and
α > β, and f = 0.4 when α = β. Collaborators instead reach the
maximum number of exited agents at f = 1.0 only when α < β;
when α > β and α = β, they reach the maximum values for f = 0.8
and for f = 0.6 respectively.
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Figure 3.14: Number of exited agents per type for scenario B1.

Inspecting the outcomes obtained in scenario C1, displayed in Fig. 3.16,
is possible to assert that:

• when K = 0.001, defectors exit more when f = 0.7 for α < β and
α = β, while for f = 0.8 when α > β. Collaborators exit more for
f = 1.0 only when α < β; instead, for α > β and α = β they exit
more when f = 0.9;

• when K = 0.1, defectors exit more for f = 0.7 if α < β and α > β. If
α = β, they exit more for f = 0.6. Collaborators reach the maximum
when f = 1.0 but only for α < β. If α > β and α = β, they reach the
maximum respectively for f = 0.9 and for f = 0.8.

From the outcomes in scenario C2, reported in Fig. 3.17, we have that:

• when K = 0.001, which means the trace is low, defectors exit more
when f = 0.7 if α < β and α > β, and when f = 0.6 if α = β.
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Figure 3.15: Number of exited agents per type for scenario B2.

Collaborators, instead, exit more when f = 1.0 if α < β; f = 0.9
when α > β; and f = 0.8 when α = β;

• when K = 0.1, defectors exit more for f = 0.6 if α < β and α = β. If
α > β, they exit more for f = 0.7. Collaborators reach the maximum
when f = 1.0 but only for α < β. If α > β and α = β, they exit more
f = 0.7.

In real-life scenarios, this finding implies that there may be situations
where incorporating individuals who deviate from collaborative behavior
(defectors) can improve the overall exit process. These conditions may
arise when there is a significant presence of trace (e.g., clear evacuation
signage, marked pathways) and when individuals appropriately balance
the information provided by the trace with other available information
(such as instructions from authorities or real-time updates). The observed
trends in the number of outgoing agents, both collaborators and defec-



66 CHAPTER 3. COLLECTIVE BEHAVIORS

α = 0.5

β = 1.0

α = 1.0

β = 0.5

α = 1.0

β = 1.0

K
=

0.0
01

K
=

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

0

200

400

600

800

Collaborative Factor

N
u
m
b
er

of
A
ge
n
ts

Collaborators Defectors

Number of exited agents per type - C1

Figure 3.16: Number of exited agents per type for scenario C1.

tors, provide insights into the behavior of individuals within crowds. The
decrease in the number of outgoing agents as the trace value increases
and as the weight on information becomes more or equal to the trace
suggests that crowd behavior is influenced by the interplay between ac-
cumulated trace and the information individuals discover.

The relative count plots represent the percentage of agents, of both
types, that have reached the exit, with respect to their total number. Let
be NC

e (ND
e ) the number of exited collaborators (defectors), we define the

Exit Rate (ER) as follows:

ER = NC
e /NC (ND

e /ND), (3.3)

where NC (ND) is the total number of collaborative (defector) agents. Un-
like the absolute count plots, the relative ones give a piece of more de-
tailed information. They can be considered as the exit rate of the agents.

In scenario A1, Fig. 3.18, we have that:



3.3. THE SECOND CROWD MODEL 67

α = 0.5

β = 1.0

α = 1.0

β = 0.5

α = 1.0

β = 1.0
K

=
0.0

01
K

=
0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

250

500

750

0

250

500

750

Collaborative Factor

N
u
m
b
er

of
A
ge
n
ts

Collaborators Defectors

Number of exited agents per type - C2

Figure 3.17: Number of exited agents per type for scenario C2.

• when K = 0.001, i.e. when the trace is low, the ER of both defectors
and collaborators increases with f , independently of the values con-
figurations of α and β, and is maximum for f = 0.9 for the former,
and for f = 1.0 for the latter;

• when K = 0.1, the ER of defectors is, as in the previous case, the
maximum for f = 0.9 independently of the values configurations of
α and β. The ER of collaborators is maximum for f = 1.0 if α < β,
whilst for α > β and α = β it is f = 0.9.

In scenario A2, Fig. 3.19, we have that:

• when K = 0.001, the ER of defectors increases with f , independently
of the values configurations of α and β and is maximum for f = 0.9.
The ER of collaborators is maximum when f = 1.0 only if α < β

and α > β. If α = β the maximum is for f = 0.9;
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Figure 3.18: Percentage of exited agents per type for scenario A1.

• when K = 0.1, the ER of defectors is maximum for f = 0.9 if α < β;
otherwise for f = 0.7 if α > β and α = β. The ER of collaborators is
maximum at f = 1.0 if α < β, and at f = 0.7 if α > β and if α = β.

In the overall, in scenario A1 (Fig. 3.18) the exit rate of all agents decreases
moving from the top left plot to the bottom right plot. Therefore, moving
from a configuration with K = 0.001 and α < β to a configuration with
K = 0.1 and α = β. As one has seen for the absolute count plots, for K =
0.001, i.e. in a low-trace condition, the performance of both collaborators
and defectors is almost identical regardless of the values of α and β. It
follows that when the trace value is low, the ER of both types of agents
is more or less the same regardless of whether, during their decision-
making process, they give more weight to the discovered information
η (α < β), or to the trace (α > β) or equal weight to both parameters
(α = β). In particular, the percentage of outgoing collaborators is 100%
when f = 1.0, while the percentage of the defectors is slightly less with
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Figure 3.19: Percentage of exited agents per type for scenario A2.

respect to one of the collaborators. Also for the exit rate, this behavior
is more pronounced when the trace value is higher, i.e. when K = 0.1
and it can be seen that the exit rate of both types of agents decreases
moving from the plot on the left to the one on the right. Therefore the
percentage of outgoing agents is higher if, during their decision-making
process, they give more weight to the discovered information η (α < β),
than the same weight to information and trace (α = β). In this case,
indeed, collaborators go from a maximum exit rate of agents reached for
f = 1.0 when α < β to a maximum of outgoing agents reached for f = 0.9
when α > β and α = β. As asserted before, the presence of defectors is
useful for the entire crowd only under certain conditions, i.e. when the
trace released is high and, at the same time, the agents give equal weight
to the trace and to the information because the exit rate of the agents is
higher than when the crowd is composed entirely of collaborative agents.
In scenario A2 (Fig. 3.19), the behavior of the agents is very similar to that
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discussed for A1, with slightly worse performance than the latter. Again,
the exit rate of both types of agents decreases when moving from the
upper left plot to the lower right plot. Therefore, the agents’ performance
deteriorates when one passes from a condition of low trace and greater
weight to information to a condition of high trace and equal weight to
trace and information.
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Figure 3.20: Percentage of exited agents per type for scenario B1.

In scenario B1, Fig. 3.20, we have that:

• when K = 0.001, the ER of defectors increases with f , independently
of the values configurations of α and β, and is maximum for f = 0.9.
The ER of collaborators is maximum when f = 1.0 if α < β, whilst
for α > β and α = β it is when f = 0.9;

• when K = 0.1, we have the same results as above.
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Figure 3.21: Percentage of exited agents per type for scenario B2.

Also analyzing the outcomes in scenario B2, reported Fig. 3.21, we
have that:

• when K = 0.001, i.e. when the trace is low, the ER of defectors
increases with f , independently of the values configurations of α

and β, and is maximum for f = 0.9. The ER of collaborators is
maximum when f = 1.0 if α < β and if α > β. If α = β the
maximum is for f = 0.8;

• when K = 0.1, the ER of defectors is maximum when f = 0.9 if
α < β, when f = 0.8 if α > β and when f = 0.7 when α = β.
The ER of collaborators, is maximum when f = 1.0 if α < β, when
f = 0.8 if α > β and when f = 0.6 when α = β

From scenario C1, displayed in Fig. 3.22, it is possible to observe that:

• when K = 0.001, the ER of defectors also here increases with f ,
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Figure 3.22: Percentage of exited agents per type for scenario C1.

independently of the values configurations of α and β, and is maxi-
mum for f = 0.9. The ER of collaborators is maximum for f = 1.0
when α < β, and for f = 0.9 when α > β and α = β;

• when K = 0.1, the defectors reflect the same behavior as above. The
ER of collaborators instead is maximum for f = 1.0 when α < β,
and for f = 0.8 when α > β and α = β.

In scenario C2, shown in Fig. 3.23, we have that:

• when K = 0.001, i.e. in a low-trace condition, the ER of defectors is
maximum for f = 0.9 if α < β and if α > β. If α = β is maximum
for f = 0.8. The ER of collaborators is maximum when f = 1.0 only
if α < β. If α > β and if α = β the maximum is respectively for
f = 0.9 and f = 0.8;

• when K = 0.1, the ER of defectors is maximum for f = 0.9 but only
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Figure 3.23: Percentage of exited agents per type for scenario C2.

if α < β. If α > β and α = β, the maximum is for f = 0.7.The ER of
collaborators is maximum when f = 1.0 only if α < β. If α > β and
if α = β the maximum is for f = 0.7.

These findings highlight the significance of the interplay between trace
value, weight on information, and the composition of agent types within
a crowd. By manipulating the trace value and the weight assigned to
information, crowd managers and policymakers can potentially influence
the exit rate of agents, thereby shaping crowd behavior and achieving
desired objectives.

The paths costs plots represent, for both types of agents, the cost of
their paths, from the start to the endpoint of the environment. All the
plots are normalized with respect to the ER.

Beginning with the inspection of the scenario A1, reported in Fig. 3.24,
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Figure 3.24: Average path cost per agent type for scenario A1.

it is possible to assert that:

• when K = 0.001, i.e. low trace, collaborators and defectors find
cheaper and cheaper paths for all values of f , independently of the
configurations of α and β, and their best tracks are for f = 1.0 and
f = 0.9, respectively;

• when K = 0.1, i.e. high trace, only defectors improve their perfor-
mance for all values of f , independently of the configurations of α

and β, and their best paths are for f = 0.9. Best paths of the collab-
orators are instead for f = 1.0 when α < β, and for f = 0.9 when
α > β and α = β.

In the scenario A2, Fig. 3.25, we may observe that:
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Figure 3.25: Average path cost per agent type for scenario A2.

• when K = 0.001, collaborators and defectors find cheaper and cheaper
paths for all values of f only for α > β, and, in particular, their best
paths are, respectively, for f = 1.0 and f = 0.9. When α < β, both
defectors’ and collaborators’ best paths are obtained at f = 0.6, and
f = 0.7 for α = β;

• when K = 0.1, the best paths are obtained at f = 0.7 for both
defectors and collaborators, independently of the configurations of
α and β. However, it is noted an accentuated worse performance of
collaborators for f = 1.0, especially when α = β.

In scenario A1, Fig. 3.24, the path cost of both types of agents increases
moving from the top left plot to the bottom right plot. So, moving from a
configuration with K = 0.001 and α < β to a configuration with K = 0.1
and α = β. We recall that the agents aim to minimize their paths’ costs.
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As one has seen for the absolute and relative count plots, for K = 0.001,
i.e., when the trace value is low, the path cost of both types of agents
is more or less the same regardless of whether, during their decision-
making process, they give more weight to the discovered information η

(α < β), to the trace (α > β) or equal weight to both parameters (α = β).
In particular, collaborators find their best paths when f = 1.0, while
defectors when f = 0.9. This behavior is more pronounced when the
trace value is higher, i.e. when K = 0.1 and it can be seen that the path
costs of both types of agents increase moving from the plot on the left
to the one on the right. The path costs of the agents are lower if, during
their decision-making process, they give more weight to the discovered
information η (α < β) than the same weight to information and trace
(α = β). Collaborators’ paths’ costs go from a minimum reached for
f = 1.0 when α < β to a minimum reached for f = 0.9 when α > β and
α = β. Also for the path costs, we can say that the presence of defectors is
useful only under certain conditions, i.e. when the trace released is high
and, at the same time, the agents give equal weight to the trace and to the
information because, in these conditions, the path cost of collaborators is
lower than when the crowd is composed entirely of collaborative agents.
In scenario A2 (Fig. 3.25) the behavior of the agents is very similar to
that discussed for A1, with slightly worse performance than the latter,
especially when K = 0.1 and α = β. In this case, is very clear to note
the positive influence of defectors agents since collaborators’ path costs
are better when f = 0.9, i.e. when the crowd is mainly but not totally
collaborative. In general, also here, the performance of the agents worsens
when moving from the upper left plot to the lower right plot, that is
when one passes from a condition of low trace and greater weight to
information to a condition of high trace and equal weight to trace and
information.

In scenario B1, Fig. 3.26, we have that:

• when K = 0.001, only defectors find cheaper and cheaper paths for
all values of f , independently of the configurations of α and β, and
their best paths are respectively for f = 0.9. Collaborators instead
improve their performance for all values of f only when α < β and
α > β. In these cases, their best path is for f = 1.0. In the last case,
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Figure 3.26: Average path cost per agent type for scenario B1.

when α = β, their best path is for f = 0.9;

• when K = 0.1, also in this case, only defectors improve their perfor-
mance for all values of f , independently of the configurations of α

and β, and their best paths are for f = 0.9. Collaborators’ best paths
are for f = 1.0 when α < β, for f = 0.9 when α > β and α = β. Also
here is noted an accentuated worse performance of collaborators for
f = 1.0.

For the scenario B2, Fig. 3.27, also in this case emerges that:

• when K = 0.001, only defectors find cheaper and cheaper paths for
all values of f , independently of the configurations of α and β and
their best paths are for f = 0.9. Collaborators’ best paths are for
f = 1.0 when α < β and α > β, and for f = 0.6 when α = β;
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Figure 3.27: Average path cost per agent type for scenario B2.

• when K = 0.1, both defectors and collaborators find cheaper and
cheaper paths for all values of f only when α < β and their best
paths are respectively for f = 0.9 and f = 1.0. If α > β, collabora-
tors’ best paths are for f = 0.3, defectors’ ones for f = 0.8. Finally,
when α = β, collaborators’ best paths are for f = 0.1 and defectors
ones for f = 0.6.

Inspecting scenario C1, Fig. 3.28, we have that:

• when K = 0.001, i.e. when the trace is low, only defectors find
cheaper and cheaper paths for all values of f , independently of the
configurations of α and β, and, specifically, their best paths are re-
spectively for f = 0.9. Collaborators’ best paths are for f = 1.0 if
α < β, and for f = 0.9 if α > β and α = β;
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Figure 3.28: Average path cost per agent type for scenario C1.

• when K = 0.1, also here, only defectors improve their performance
for all values of f regardless of the configurations of α and β, and
their best paths are for f = 0.9. Collaborators’ best paths are for
f = 1.0 when α < β, for f = 0.9 when α > β and for f = 0.6
when α = β. Here is noted an accentuated worse performance of
collaborators for f = 1.0.

Finally, analyzing the outcomes of scenario C2, shown in Fig. 3.29, it
is possible to assert also in this scenario that:

• when K = 0.001, only defectors find cheaper and cheaper paths for
all values of f , independently of the configurations of α and β and
their best paths are for f = 0.9 if α < β and α > β. In this last
case, however, we mention a small worse in their performance for
f = 0.8. When α = β, their best paths are for f = 0.8. Collaborators’
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Figure 3.29: Average path cost per agent type for scenario C2.

best paths are for f = 1.0 when α < β, for f = 0.9 if α > β, and for
f = 0.8 when α = β;

• when K = 0.1, both defectors and collaborators find cheaper and
cheaper paths for all values of f only when α < β and their best
paths are respectively for f = 0.9 and f = 1.0. Also, in this case, we
mention a small worse in collaborators’ performance for f = 0.3. If
α > β, both collaborators’ and defectors’ best paths are for f = 0.7.
We have the same findings if α = β.

In real-life scenarios, the path cost may represent the effort or re-
sources expended by agents to navigate through the crowd and reach
their destinations. Minimizing path costs is a desirable objective for both
crowd managers and individuals within the crowd. The presence of de-
fectors can have a positive influence on collaborative agents by poten-
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tially improving their path costs, particularly when the trace value is high
and the weight on information is balanced. This phenomenon can be ex-
plained by considering the role of defectors in diversifying the decision-
making process within the crowd. Understanding the implications of
these findings is crucial for crowd management and decision-making in
real-life scenarios because they can leverage this knowledge not only to
optimize crowd behavior and decision-making, but also to design crowd
management strategies in different scenarios such as large events, trans-
portation systems, or emergency evacuations.

The exit times represent how fast both types of agents have reached
the exit. All reported plots are normalized with respect to the ER, already
defined before.
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Figure 3.30: Average exit time per agent type for scenario A1.

Inspecting scenario A1, Fig. 3.30, we have that:

• when K = 0.001, collaborators and defectors exit faster and faster
for all values of f , independently of the configurations of α and β,
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and their best performances are respectively for f = 1.0 and for
f = 0.9;

• when K = 0.1, only defectors exit faster and faster for all values of
f , independently of the configurations of α and β, and their best
performances are for f = 0.9. Collaborators, however, improve their
performance only if α < β and their best performance is for f = 1.0.
If α > β and α = β they exit faster for f = 0.9 and worse their
performance for f = 1.0.
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Figure 3.31: Average exit time per agent type for scenario A2.

For the scenario A2, displayed in Fig. 3.31, we have that:

• when K = 0.001, collaborators and defectors exit faster and faster
for all values of f only if α > β, and their best performances are
respectively for f = 1.0 and for f = 0.9. If α < β their best perfor-
mances are both for f = 0.6, whilst for α = β, are both at f = 0.7;
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• when K = 0.1, defectors’ and cooperators’ best performance are at
f = 0.7, independently of the configurations of α and β. It is noted
a worse in collaborators’ performance especially when f = 1.0 and
α = β.

In the overall, in scenario A1 (Fig. 3.30) as for the path cost, the agents
aim to minimize the exit time and the one of both types, increases mo-
ving from the top left plot to the bottom right plot. So, moving from a
configuration with K = 0.001 and α < β to a configuration with K = 0.1
and α = β. As one has seen for the absolute and relative count plots,
and for the path cost, for K = 0.001, i.e., when the trace value is low,
the exit time of both types of agents is more or less the same regardless
of whether, during their decision-making process, they give more weight
to the discovered information η (α < β), to the trace (α > β) or equal
weight to both parameters (α = β). In particular, collaborators exit faster
when f = 1.0, while defectors do when f = 0.9. This behavior is more
pronounced when the trace value is higher, i.e. when K = 0.1 and it can
be seen that the exit time of both types of agents increases moving from
the plot on the left to the one on the right. The exit times of the agents
are lower if, during their decision-making process, they give more weight
to the discovered information η (α < β) than the same weight to infor-
mation and trace (α = β). Collaborators’ exit times go from a minimum
reached for f = 1.0 when α < β to a minimum reached for f = 0.9 when
α = β. Also for this metric, we can say that the presence of defectors is
useful only under certain conditions, i.e. when the trace released is high
and, at the same time, the agents give equal weight to the trace and to
the information because, in these conditions, the exit times of collabora-
tors are lower than when the crowd is composed entirely of collaborative
agents. In scenario A2, in Fig. 3.31, the behavior of the agents is very si-
milar to that discussed for A1, with slightly worse performance than the
latter, especially when K = 0.1 and α = β. In this case, as we have seen
for the path cost, is very clear to note the positive influence of defectors
agents since collaborators’ exit times are better when f = 0.9, i.e. when
the crowd is mainly but not totally collaborative. In general, also here,
the performance of the agents worsens when moving from the upper left
plot to the lower right plot, that is when one passes from a condition of
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low trace and greater weight to information to a condition of high trace
and equal weight to the trace and information.
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Figure 3.32: Average exit time per agent type for scenario B1.

From the analysis of the scenario B1, Fig. 3.32, we have that:

• when K = 0.001, i.e. when the trace is low, defectors exit faster
and faster for all values of f , independently of the configurations
of α and β, and their best exit times are for f = 0.9. Collaborators,
improve their exit times for all values of f but only if α < β and
α > β. In these cases, their best exit times are for f = 1.0. If α = β

they exit faster for f = 0.9;

• when K = 0.1 we have the same results as above. It is worth point-
ing out also here, a worse in collaborators’ performance especially
when f = 1.0 and α = β.

For scenario B2, Fig. 3.33, we observe that:
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Figure 3.33: Average exit time per agent type for scenario B2.

• when K = 0.001, also in this scenario, defectors exit faster and faster
for all values of f , independently of the configurations of α and β,
and their best exit times are for f = 0.9. Collaborators improve their
exit times for all values of f but only if α < β and α > β; in these
cases, their best exit times are for f = 1.0. If α = β instead they exit
faster for f = 0.6;

• when K = 0.1, collaborators and defectors exit faster and faster for
all values of f only if α < β and their best times are respectively for
f = 1.0 and f = 0.9. If α > β, collaborators are faster for f = 0.3,
defectors for f = 0.8. If α = β, collaborators are faster for f = 0.1
while defectors for f = 0.6.

In scenario C1, whose outcomes are shown in Fig. 3.34, it is possible
to observe, also in this case, that:

• when K = 0.001, defectors exit faster and faster for all values of f ,
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Figure 3.34: Average exit time per agent type for scenario C1.

independently of the configurations of α and β, and their best exit
times are for f = 0.9. Collaborators improve their exit times for all
values of f but only when α < β. In this case, the best exit time is
for f = 1.0. If α > β and α = β they exit faster for f = 0.9;

• when K = 0.1 we have more or less the same results as above. De-
fectors exit faster and faster for all values of f , independently of the
configurations of α and β, and their best exit times are for f = 0.9. It
is noted, also here, a worse in collaborators’ performance especially
when f = 1.0. In particular, when α > β their exit times are the best
for f = 0.8. When α = β the best exit times are for f = 0.6

Investigating the last scenario C2, Fig. 3.35, also in this case we have
that:
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Figure 3.35: Average exit time per agent type for scenario C2.

• when K = 0.001, defectors exit faster and faster for all values of f ,
independently of the configurations of α and β, and their best exit
times are for f = 0.9. It is noted, here, a small worse in perfor-
mances for f = 0.8. Collaborators improve their exit times for all
values of f but only if α < β and α > β. In these cases, their best
exit times are for f = 1.0. If α = β they exit faster for f = 0.8;

• when K = 0.1, collaborators and defectors exit faster and faster for
all values of f only for α < β and their best times, are respectively
for f = 1.0 and f = 0.9. If α > β, collaborators are faster for f = 0.7
whilst defectors for f = 0.8. Finally, when α = β, both collaborators
and defectors are faster for f = 0.7.

Exit times play a critical role in optimizing crowd flow and ensuring
smooth and efficient movement. Our findings suggest that the presence
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of defectors in crowd scenarios plays a significant role in shaping the
outcomes, particularly in terms of exit times. In particular, they indi-
cate that under certain conditions, such as high trace value and equal
weight assigned to trace and information, the presence of defectors can
lead to lower exit times for collaborative agents. This highlights the im-
portance of the interplay between trace value, weight on information, exit
times, and composition of the crowd. The utility of defectors is context-
dependent and is most pronounced when there is abundant information
available and when agents give equal weight to trace and information.

3.3.2 Conclusions

In conclusion, the studies conducted with the second version of the model
have contributed to answering the established research question: What is
the interplay between collaboration and competition in social complex
systems? Various kinds of analyses were performed, each focusing on a
specific aspect of the problem.

In detail, the type analysis reveals that the crowd’s performance im-
proves as the collaborative factor but the optimal f value for peak per-
formance varies across scenarios. In general, fully collaborative crowds
( f = 1.0) and fully defector crowds ( f = 0.0) result in the worst perfor-
mance, as expected. The percentage of agents successfully reaching the
exit improves with increasing f , but the trends vary based on agent type
and scenario. Collaborators outperform defectors when in the minor-
ity, but defectors leverage collaborator information when outnumbered.
Path costs reveal varying trends with increasing f . Defectors generally
improve their path costs with higher f , reaching a minimum at opti-
mal f values in all scenarios. Collaborators’ path costs vary, reaching
a minimum at different f values in each scenario, with an increase at
f = 1.0. Exit times show intricate patterns with changing f . Both collab-
orators and defectors improve exit times with increasing f until reaching
optimal values in all scenarios. An unexpected increase in exit times
occurs at f = 1.0, indicating suboptimal performance for fully collabo-
rative crowds. From the Group analysis it appears that the exit time de-
creases with respect to the group number, indicating that later-evacuating
groups somehow benefit from information left by earlier groups. Gener-
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ally, group 1, for instance, demonstrates better performance at higher
f values, suggesting that agents in this group exploit path information
more effectively, especially when the majority of the crowd is collabo-
rative. Group 10, instead, consistently improves its performance with
increasing f, except for f = 1.0. This implies that the last group can uti-
lize path information better when the crowd is predominantly, but not
entirely, collaborative. Similar conclusions are drawn from the path cost
as it decreases with higher collaboration and group number, except for
f = 1.0, where absolute collaboration seems less effective. The heat maps
indicate the number of agents reaching the exit per unit time.
Interestingly, the highest performance is not observed when all agents
are collaborative but when there’s a mix, including defectors. This quan-
tity also increases concerning the group number, highlighting the benefi-
cial influence of earlier-evacuating groups. The overall analysis revealed
that a fully collaborative crowd tends to demonstrate suboptimal perfor-
mance. The complexity of crowd dynamics becomes evident when a com-
bination of collaborators and defectors is present. Interestingly, the dis-
ruptive actions introduced by defectors paradoxically enhance the overall
efficiency of the exit process. While collaborative efforts remain crucial,
the disruptive actions of defectors play an essential role in refining the
crowd’s navigation strategy. In this sense, the destructive actions of the
defectors act as a pruning mechanism, eliminating less favorable paths
and steering the crowd towards more efficient routes. Consequently, the
crowd, despite incorporating non-collaborative elements, collectively at-
tains superior outcomes in exit time, path cost, and the number of agents
reaching the exit point. This interplay between collaborative and non-
collaborative behavior creates a dynamic and adaptable crowd, show-
casing the ability to optimize performance across different conditions.
From the sensitivity analysis, it can be observed that the previous analy-
ses continue to be valid but only under specific circumstances marked by
K = 0.1 and α = β, indicating a scenario where both the trace (τij) and the
information (ηij) carry equal weight, coupled with a high trace value. In
such instances, both collaborators and defectors exhibit suboptimal per-
formance, illuminating the impact of balancing trace and information in
the decision-making process. However, the positive influence of defectors
on collaborators is notable only within this specific configuration. This
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implies that the presence of defectors can be advantageous for collabo-
rators under circumstances where both trace and information are given
equal importance. In contrast, when the trace is at a low value (K = 0.001)
or agents assign greater importance to information (α < β), collaborators
consistently outperform defectors. This highlights the intricate interplay
between trace and information, emphasizing that the performance of both
collaborators and defectors is intricately linked to the specific parameter
values of α and β that govern their decision-making processes. In sce-
narios where the trace is low or information is prioritized, collaborators
demonstrate superior adaptability and effectiveness in navigating the en-
vironment compared to defectors. In essence, the interplay between col-
laboration and competition in social complex systems is revealed to be in-
tricate and nuanced in the studies conducted. Collaboration emerges as a
pivotal factor driving crowd performance, leading to enhanced outcomes
overall. However, maintaining the optimal balance between collabora-
tion and competition is crucial, as extremes of either fully collaborative
or defector-dominated crowds yield suboptimal results. Notably, collab-
orators tend to outperform when they constitute a minority within the
crowd, while defectors strategically exploit collaboration when they form
the majority. Furthermore, the analysis uncovers also the complex dy-
namics of information transfer within crowd behavior. Later-evacuating
groups benefit significantly from the information left behind by earlier-
evacuating groups, underscoring the importance of collective knowledge
sharing. Additionally, the sensitivity analysis highlights the intricate in-
terplay between trace values and information. Collaborators demonstrate
heightened effectiveness when trace values are low or when they weigh
more information in decision-making processes.

In conclusion, the research underscores that collaboration plays a cen-
tral role in shaping crowd behavior and performance in social complex
systems. However, its effectiveness relies on maintaining a balanced
and adaptive approach, considering the interactions between collabora-
tors and defectors and the subtle dynamics of trace and information. In
other words, collaboration drives the dynamic through information shar-
ing, while competition (defection) enhances the dynamic by simplifying
the environment.
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3.4 The third crowd model

In the third model, which will be presented in an upcoming publication
[22], the research question was broadened to address the following: What
impact does group size have on the behavior of collaborative and defector
agents within the overall crowd? Observations of group formation in
pedestrian crowds highlight the considerable influence that groups exert
on crowd dynamics [46], including their effect on evacuation times [89].
Additionally, the mechanism for agent exploration of the environment
underwent refinement to incorporate the agent’s capability to estimate
the weight of an edge when it is not directly visible, as illustrated in Fig.
3.36. Supposed the green circle to be the piece of information present
on the endpoint of an edge (i, j). An agent k placed on the node i sees
the information only if it is present on the nearest endpoint, otherwise,
it doesn’t see it. This modification aimed to make the behavior of agents
more closely resemble human-like reasoning. To do this, adjustments
were made to the desirability ηij(t) in Eq. 1.1, which determines how
much an edge (i, j) is promising at a given time t.

In detail, as it is established in the second crowd model, agents em-
ploy a navigation strategy that combines the use of trace and the calcu-
lated desirability of edges to make informed decisions about where to go.
Traces act as a communication device among agents, directing them to-
wards paths with higher concentrations of traces. Conversely, desirability
is internally determined based on acquired information Iij(t) about edge
weights, achieved through two mechanisms.

The first memory mechanism employed by the agents involves travers-
ing edges and storing the weights in their memory as prior knowledge w̄k

p.
As agents explore the environment, they accumulate information about
the weights of the edges they traverse. The prior knowledge represents the
average weight of the visited edges, computed by summing the weights
along a generic path (π(t)) and dividing by the number of edges in that
path (n). This process, outlined in Equation 3.4, enables the agents to es-
tablish a historical understanding of the environment. The prior knowledge
mechanism allows the agents to form preferences for certain paths based
on their past experiences. In essence, this memory mechanism reflects
the agents’ ability to internalize and use information about previously
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encountered paths, shaping their decision-making in navigating the envi-
ronment.

w̄k
p =

1
n

n

∑
i=1

w(πi, πi+1); (3.4)

The second memory mechanism involves the acquisition of informa-
tion about edge weights at the nearest endpoint, leading to the forma-
tion of their local knowledge w̄k

l . Agents discern information (Iij(t)) about
the weights of edges in their immediate vicinity, considering the num-
ber of neighboring edges (m) at the position where this information is
present. The local knowledge is then determined as the average weight of
these neighboring edges, as expressed in Equation 3.5. This mechanism
allows agents to adapt their decision-making based on real-time infor-
mation acquired from their immediate surroundings. By considering the
specific context at the nearest endpoint, agents enhance their awareness of
the current environment and adjust their desirability calculations accord-
ingly. The combination of prior knowledge and local knowledge mechanisms
enables agents to strike a balance between past experience and current
information, facilitating efficient navigation and adaptation to their dy-
namic surroundings.

w̄k
l =

1
m

m

∑
i=1

w(πi, πi+1), (3.5)

The overall desirability value ηij(t) is then determined using a deci-
sion tree (Equation 3.6), considering the availability of information Iij(t)
and the type of knowledge.

ηij(t) =

⎧⎪⎪⎨⎪⎪⎩
1

wij
if Iij ̸= 0 and T ̸= 0

1
w̄ if Iij = 0 and T ̸= 0
1 if Iij = 0 and T = 0

(3.6)

The global knowledge w̄ is the mean of prior and local knowledge, as
shown in Equation 3.7. When an agent is on a node i, it calculates ηij(t)
considering the edge weight, with higher desirability for lower weights.
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(a) (b)

Figure 3.36: Agent k positioned on node i perceives information Iij(t)
(green dot) regarding the weight of edge (i, s) only when it is located at
the nearest endpoint (Figure 3.36a), otherwise, it remains unaware of it
(Figure 3.36b).

If information Iij(t) is available at either nearest endpoint, the agent in-
versely relates desirability to the edge weight. In scenarios where in-
formation Iij(t) about neighboring edges is absent, the agent estimates
desirability as the inverse of its global knowledge. This estimation is de-
rived by averaging prior and local knowledge. Figure 3.37b illustrates
this.

w̄ =
w̄k

p + w̄k
l

2
. (3.7)

If information about the weight of neighboring edges (i, j) is missing
or not visible but at least one piece of information is available, as repre-
sented in Fig 3.37b, the agent will estimate the desirability ηij(t) as the
inverse of its global knowledge w̄ about the environment. This estima-
tion is obtained by averaging the agent’s prior and local knowledge, as
described in eq. 3.7. However, it’s possible for an agent to have no local
knowledge w̄k

l when no information is available about the weight of the
neighboring edges. In such a scenario, the agent will evaluate the weight
of each edge as the inverse of its prior knowledge w̄k

p. In cases of no
prior and local knowledge, as depicted in Figure 3.37a, the agent assigns
equal desirability value 1 to all edges. Apart from these modifications,
the model largely maintains continuity with the second crowd model,
with minor differences in the code. It still features the same two types
of agents: collaborators and defectors, each exhibiting their respective
behavioral actions. The collaborative factor f remains instrumental, dic-
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(a) (b)

Figure 3.37: In Figure 3.37a, an agent k situated at node i assesses the de-
sirability of adjacent edges as equal to 1 in absence of both prior (wk

p = 0)
and local knowledge (wk

l = 0). In Figure 3.37b, when agent k reaches
node i from node i − 1, it evaluates adjacent edges. If information Iij(t)
on edge weights is either missing or not visible, the desirability is deter-
mined as the inverse of global knowledge. When the information Iij(t) is
visible, the desirability is assessed as the inverse of the weight of the link.

tating the proportion of collaborative agents relative to defectors within
the crowd.

3.4.1 Experiments and results

For the analysis, a graph with |V| = 225 and |E| = 501 was utilized,
where each node connects to up to eight neighbors, and edge weights
are real numbers selected uniformly from the range ]0, 1]. Simulations
involved N = 1000 agents distributed into Γ groups, with Γ varying from
the set 1, 2, 4, 5, 10, 100. The collaborative factor, denoted by f ∈ [0, 1], de-
termined the ratio of collaborative to defector agents in a group. Groups
could consist of one agent type or a mix, with f representing the frac-
tion of collaborative agents and (1 − f ) the fraction of defector agents.
Groups started exploration after a fixed time Te = |V| since the preced-
ing group, and a time limit Tmax was set for the entire population to
reach the exit. This limit is defined as Tmax = c × Γ × |V|, with c set to
5. Agents had individual time windows to reach the exit, determined by
Ti = Tmax − (Te × (i− 1)). Time impact was incorporated by gradual trace
reduction with a fixed degradation interval of Td = |V|. The updating
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rule occurred every Td ticks with an evaporation rate of ρ = 0.001. The
initial trace value was τij(t = 0) = 1.0. Destruction and repair probabili-
ties were equal for both agent types. To assess the impact of group sizes,
experiments were conducted, varying the collaborative factor f from 0.0
to 1.0 in increments of 0.1, with 10 independent simulations for each f
value and all preset Γ values.

Two distinct analyses were conducted: an overall analysis, where the
system’s performance was compared across groups of different sizes, and
a type analysis, where the performance of collaborators and defectors
within the same groups was compared. Both analyses utilized three si-
multaneous evaluation metrics: the count of agents reaching the exit, exit
times, and path costs.

Overall analysis

In the first study, the system was examined as a whole, accounting for the
contributions made by both collaborators and defectors. The purpose was
to figure out how group size affected the entire system. Fig 3.38 shows
the number of exited agents for different group values as the collabora-
tive factor f varies. Each colored tile in the legend indicates the number
of groups Γ that the crowd has been split into. As the number of groups
increases, the number of agents who reach the exit also increases, particu-
larly when the crowd is separated into 50 or 100 groups, almost all of the
agents in the crowd reach the exit when 0.6 ≤ f ≤ 0.9. Crowd perfor-
mance worsens as the Γ decreases, as well as when the crowd is entirely
collaborative ( f = 1.0), with the worst configuration being one in which
all crowd agents belong to a single group. In conclusion, when the crowd
is divided into several small groups that explore the environment at regu-
lar intervals and are separated from one another, many more agents reach
the exit than when the same crowd is divided into a few very large groups
or a single group that contains the entire crowd. The figures, Fig 3.39 and
Fig 3.40 display the exit times and path costs, respectively. These metrics
have been normalized based on the group success rate, which is the per-
centage of agents in a group that reaches the exit point. Interestingly, the
crowd appears to exit faster when divided into a few groups with a large
number of agents, but at the same time appears to find cheaper paths
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Figure 3.38: Overall number of exited agents

(as well as have many more agents that reached the exit) when divided
into a large number of groups with few agents. This indicates that the exit
times are obtained by a small number of agents and, therefore, evaluating
all metrics simultaneously shows that the crowd’s performance cannot be
positively assessed when it is divided into a few groups with a lot of
agents. Indeed, in this case, the path costs are worse and this suggests
that the optimization cost process is driven primarily by the groups rather
than the number of agents itself. Generally, except for the exit times, the
more the number of groups into which the crowd is divided, the better
its performance is. Furthermore, when the crowd is solely composed of
collaborative agents ( f = 1.0), its exit times and path costs are worse for
all values of the groups’ number.

Type analysis

The second study involved examining the system’s performance by sepa-
rately analyzing the performance of collaborators and defectors. The ob-
jective was to identify any disparities between the two types of perfor-
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mance and determine which type of agent would perform better. Fig. 3.41
displays the number of agents that exited, categorized by type, for vari-
ous group values as the collaborative factor, f , changes. The number of
exited collaborators and defectors both increase as the collaborative fac-
tor increases and reaches their maximum at different f values based on Γ.
The most notable difference between the two is that collaborators’ max-
imum is achieved at higher f values, and the trend is nearly linear for
Γ > 10 with a slight drop at f = 1.0. In contrast, the defectors’ maximum
is attained at lower f values, and the trend is also mostly linear for Γ > 10,
but with a decreasing trend. The two figures, Fig 3.42 and Fig 3.43, dis-
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Figure 3.41: Number of exited agents per type C and D

play the exit times and path costs for both agent types at different values
of f and Γ. The results confirm the overall analysis, which suggests that
collaborators and defectors exit faster when there are fewer groups with
many agents, while they find cheaper paths with more groups containing
fewer agents. Collaborators exhibit different best exit times for different
values of Γ, with f = 0.9 for Γ ≥ 50 and f = 0.7 for Γ ≤ 50. When f = 1.0,
the performance worsens, as seen in the previous metric. Defectors show
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smoother behavior, with exit times improving slowly as f increases. It
is worth noting that there is a performance jump between Γ = 50 and
Γ = 10, which may be due to a significant difference in values. These
observations apply to the path costs as well, although the performance
differences are less pronounced. Collaborators and defectors find better
paths as Γ and f increase, and their behavior is more stable as Γ increases.
However, in this case, collaborators do not perform better when f = 1.0
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Figure 3.42: Exit time per type C and D

3.4.2 Conclusions

In conclusion, the study conducted with the third version of the model
contributed to addressing the research question: What impact does group
size have on the behavior of collaborative and defector agents within the overall
crowd? Two kinds of analyses were conducted, each focusing on distinct
aspects of the problem.

The overall analysis revealed that larger groups (Γ = 2, 4) generally
lead to faster exit times. Thus, in situations prioritizing swift evacuation,
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Figure 3.43: Path cost per type C and D

forming larger groups is advisable. Conversely, scenarios with numer-
ous smaller groups (Γ = 50, 100) tend to facilitate a greater number of
successful exits. Additionally, smaller groups excel in exploration, often
discovering more cost-effective paths. Hence, when maximizing the num-
ber of evacuees is paramount, dividing the crowd into smaller groups
can prove advantageous. Overall, the study corroborates that a combina-
tion of collaborative and non-collaborative elements in a crowd ( f ≃ 0.9)
yields superior performance compared to entirely collaborative crowds
( f = 1.0).

The type analysis unveiled consistent trends for both collaborators and
defectors individually. Small groups of both collaborators and defectors
enhance exit success and path cost efficiency (Γ = 50, 100), while larger
groups of both types facilitate faster exits (Γ = 2, 4). Collaborative agents
consistently outperformed defectors in terms of successful exits, with col-
laborators demonstrating optimal performance in predominantly collab-
orative crowds ( f ≃ 0.9). Defectors, on the other hand, excel in finding
cheaper paths and achieving faster exits in predominantly collaborative
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crowds ( f ≃ 0.9), but exhibit enhanced exit success in defector-oriented
crowds ( f ≃ 0.2).

In conclusion, the findings from the third model underscore the inter-
play between group size and behavioral strategies. Larger groups prove
advantageous for expediting evacuations, ensuring swift departures in
scenarios prioritizing speed. Conversely, smaller groups emerge as better
for achieving successful exits and uncovering cost-effective paths, partic-
ularly valuable when maximizing evacuee numbers is important. More-
over, the results confirm the interplay between collaboration and defec-
tion strategies, which significantly influences overall outcomes, with a
balanced combination of both yielding superior results. Also, in this
case, the presence of defector agents bolsters the group’s resilience to
uncertainty, facilitating more adaptive navigation in complex or unfore-
seen situations. Indeed, while collaborative agents prioritize information
sharing to explore potential routes, defectors contribute alternative per-
spectives, thereby mitigating the risks of groupthink and ensuring diverse
decision-making within the crowd.

3.5 Conclusions

In summary, the main objective of the second research line was to explore
the interplay between cooperation and competition in social complex sys-
tems by comprehensively investigating this interplay through a coher-
ent mapping of the ACO algorithm’s rules into conceptual frameworks
rooted in social dynamics. Subsequently, three distinct crowd models
were developed, addressing the research questions:

1. What is the interplay between cooperation and competition in social com-
plex systems?

Cooperation and competition interact dynamically in social com-
plex systems.

In the initial study, an increase in the proportion of cooperative
agents was found to correlate with higher average profit functions,
even in groups primarily but not totally composed of cooperatives.
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However, entirely cooperative or defector-dominated groups exhib-
ited suboptimal performance, while a balanced mix of collaborators
and defectors yielded superior outcomes. Collaborators tended to
outperform defectors when in the minority, while defectors strategi-
cally leveraged collaboration when they formed the majority. More-
over, the presence of defectors paradoxically enhanced crowd effi-
ciency, acting as a pruning mechanism and steering the crowd to-
wards more efficient routes.

The second study transitioned into a comprehensive crowd simu-
lation framework. Collaborators shared path cost information and
could repair damage caused by defectors, while defectors did not
share information and may cause harm by destroying edges or dam-
aging vertices. The analysis confirmed that fully collaborative or
fully defector crowds exhibited suboptimal performance, while a
mix of collaborators and defectors yielded superior outcomes. Also
here, collaborators tended to outperform defectors when in the mi-
nority, while defectors strategically leveraged collaboration when
they formed the majority. They also demonstrated superior adapt-
ability and effectiveness in scenarios where trace values were low
or information was prioritized. Moreover, later-evacuating groups
benefited from the information left by earlier groups, emphasizing
the importance of collective knowledge sharing.

In the third study, the model was refined to enhance agents’ abil-
ity to estimate edge weights, mirroring human-like reasoning more
closely. Despite these adjustments, the model retained continuity
with the previous version. Here, the research scope expanded to in-
vestigate how group size impacts the behavior of collaborative and
defector agents within the crowd. Larger groups were found advan-
tageous for expediting evacuations, while smaller groups excelled in
achieving successful exits and identifying cost-effective paths. Ad-
ditionally, it was confirmed also in this case that a balanced combi-
nation of collaboration and defection strategies led to superior out-
comes, with defector agents enhancing the group’s resilience to un-
certainty and promoting adaptive navigation in complex situations.
Collaborative agents prioritized information sharing for route ex-
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ploration, while defectors offered alternative perspectives, mitigat-
ing groupthink risks and ensuring diverse decision-making within
the crowd.

2. Can the principles of the ACO algorithm be applied to simulate social dy-
namics?

Yes, the principles of the ACO algorithm can be applied to simulate
social dynamics.

By examining the core principles of the ACO algorithm, such as
the proportional transition rule, reinforcement rule, and global up-
dating rule, a parallel framework for modeling decision-making
and environmental interaction within crowd simulations was estab-
lished. Specifically, the proportional transition rule, which governs
how ants make path choices based on factors like pheromone con-
centration and node visibility, was adapted to model how agents
or evacuees make decisions regarding their routes in unfamiliar en-
vironments. This adaptation involved interpreting pheromones as
traces left by agents and visibility as a measure of path desirability,
which is communicated to neighboring paths to aid in identifying
optimal routes. Similarly, the reinforcement rule, which governs
the quantity of pheromone deposited by an ant upon traversing an
edge, was employed to depict the interaction between agents and
their environment. Agents leave traces as they navigate paths, re-
flecting the frequency of edge traversal and providing insights into
their actions and the environmental state. Finally, the global up-
dating rule, which dictates the gradual evaporation of pheromones
over time, was utilized to simulate the impact of time on the envi-
ronment. This rule controls the gradual reduction of agent traces
over time, influencing how environmental information evolves with
time. Therefore, by leveraging these principles, the ACO algorithm
can effectively model and simulate various aspects of social dynam-
ics within crowd simulations.



Chapter 4
Trust dynamics in multi-agent
systems

4.1 Introduction

In the third research line, the focus shifted to a new question: What are
the effects of trust dynamics in multi-agent systems? Addressing this, the
agent-based model from the second research line, originally developed
for collective behaviors, was modified to simulate social behaviors linked
to trust. This model was then employed to understand the impacts of
different behavioral strategies, particularly emphasizing trust and skep-
ticism, especially in scenarios involving a robot assisting in navigation
through unfamiliar environments. Before delving into detailed investiga-
tions and contributions, it’s essential to establish the foundational context
for a deeper exploration of this third research line.

Trust and the management of trust are pivotal concepts in establish-
ing and maintaining satisfying relationships, extending beyond humans
to various entities. These encompass relationships between humans and
organizations, organizations and organizations, and even between hu-
mans and robots [45]. In general, entities establish a certain degree of
trust to collectively achieve better results than what might be attainable
individually.

In recent years, the use of robots and automated systems has surged,

104



4.1. INTRODUCTION 105

not only in domestic settings but also in diverse sectors, including the
medical field [77], mechanical engineering [31, 55] and in the study of
human-robot interactions (HRI [9]). This is because robots have been de-
signed not only to replace humans in dangerous tasks but also to assist
them, make decisions in uncertain scenarios, or work as genuine team-
mates [45]. Defining trust unequivocally, however, is a complex task due
to its inherently multidisciplinary nature. Psychologically, it is described
as something an individual learns positively or negatively from experien-
ce, while sociologically, it is defined as the probability that a certain action
corresponds to a benefit. In the economic realm, trust is studied from the
perspective of investors cooperating in risky situations. Moreover, trust
is dynamic, and identifying the factors influencing it depends heavily on
the context considered [15].

Despite the difficulty of defining trust in human-robot interactions, the
most accepted definitions in the field include "the attitude that an agent will
help achieve an individual’s goals in a situation characterized by uncertainty and
vulnerability" [47] and "a belief, held by the trustor, that the trustee will act in
a manner that mitigates the trustor’s risk in a situation in which the trustor has
put its outcomes at risk" [84]. The latter definition recognizes two subjects:
trustor i, who trusts to maximize their interest, and trustee j, who can
impact the truster’s interest [15].

Numerous studies have investigated the role of trust in human-robot
interactions, leading to the development of diverse trust models. In works
such as [68], researchers have aimed to identify the factors influencing
trust in robots, while others, like [66, 65], delve into how trust fluctuates
in response to errors committed by robots. The correlation between trust
and performance in human-robot collaboration has been a focal point,
giving rise to performance-based trust models.

An example of this is found in [96], where the authors reveal that team
trust in robots positively impacts performance, while trust in humans
is more closely tied to personal satisfaction. Additionally, [97] explores
the impact of group identity and social attraction toward robots on team
performance and viability, establishing social attraction as a mediator for
the influence of group identity on these outcomes.

Expanding the perspective, [13] establishes a profound connection be-
tween the concept of trust and multi-agent systems (MAS). MAS, com-
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putational systems with multiple decision-making agents, involves dele-
gation, tasks, cooperation, exploitation, exchange, and teamwork, all in-
tricately tied to trust. Trust emerges as a fundamental concept in MAS,
shaping the dynamics of social interactions in both human and artificial
intelligence realms. This is because, in both cases, the dynamics involve
autonomous components acting and interacting to achieve goals in un-
certain and dynamic environments. Consequently, trust and its ensuing
systems are increasingly conceptualized, designed, and built using agent-
based techniques, advocated as the natural computation model for such
systems [64].

Building upon these foundational definitions and key concepts, this
study draws inspiration from these related works. The proposed agent-
based model aims to study the effects of trust toward robots conside-
ring the properties and dynamics of a multi-agent scenario where agents
have to trust other virtual agents/robots in unknown environments. The
model was built using the same framework as the crowd model defined in
Chapter 3, consisting of a group of agents exploring a virtual environment
to find the exit from a given entrance. In this environment, there is also
an agent defined as a robot that explores the environment and provides
information on the costs of the paths it has traversed. The goal of the
agents is to find the exit in the shortest time possible, through paths
that are as cost-effective as possible, and to exit as much as possible.
To achieve this, they can adopt two strategies: either trust more in the
information released by the robot than in what other agents do or trust
more in what other agents do than in the information released by other
agents. In other words, they can be either trusting or skeptical towards
the robot. In this context, the trustor i is represented by the agents, while
the trustee j is represented by the robot, and the situation of uncertainty
is the exploration of the unknown environment.

The purpose of the model is to analyze whether, in situations chara-
cterized by uncertainty, such as the exploration of an unknown environ-
ment to find the exit, the assistance of a robot can improve the perfor-
mance of the agents, helping them to exit more quickly, in greater num-
bers, and through less costly paths.
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4.2 The trust model

In the model, a set of N agents navigate an environment, aiming to reach
the exit by selecting the most cost-effective path. The environment is
conceptualized as a weighted undirected graph G = (V, E, w), wherein
V represents the set of vertices, E ⊆ V × V signifies the set of edges,
and w colonV × V → R+ functions to assign positive costs to each edge
reflecting the challenge for agents in traversing these specific edges. In
each scenario, agents start at the top-left node, aiming to reach the exit at
the bottom-right. Let Ai = j ∈ V : (i, j) ∈ E denote adjacent vertices to i,
and πk(t) = (π1, π2, . . . , πt) represent the sequence of vertices visited by
agent k at time-step t.

Within this environment, a robot actively assists agents in identifying
optimal paths to the exit that are both economically viable and time-
efficient. The robot accomplishes this by exploring the environment along-
side the agents, strategically choosing paths of varying optimality based
on its efficiency, and subsequently sharing information about the cost of
a path after its traversal. The robot’s efficiency re significantly impacts
its path selections, with heightened efficiency directing the preference to-
wards less costly paths. Agents and the robot spend time proportionate
to the cost of traversing an edge. Consequently, an optimal path not only
minimizes expenses but also requires less time for traversal.

Transitioning to the agents’ behaviors, they may adopt two distinct
strategies to find the exit:

• Trustful T: Agents trust and follow the robot’s path cost informa-
tion.

• Skeptical S: Agents neither trust nor follow the robot’s information.

These strategies are derived from the proportional transition rule 1.1
of the crowd model. This rule shapes decision-making by weighing two
types of information: the trace τij unintentionally left by agents and the
desirability ηij of a path intentionally communicated by the robot. The
trace is weighted by the parameter α, and the desirability is weighted by
the parameter β.
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In other words, under the Trustful Strategy (T), agents exhibit a pre-
disposition to trust and align with the path cost information supplied by
the robot. Characterized by α = 0.5 and β = 1.0, trustful agents prioritize
and heavily rely on the guidance offered by the robot.

On the contrary, the Skeptical Strategy (S) reflects a different scenario.
Agents adopting this strategy neither trust nor follow the information
provided by the robot. With parameters α = 0.5 and β = 0.0, skepti-
cal agents assign more weight to information acquired from other agents
in the environment. In essence, these agents lean towards a more inde-
pendent decision-making process, relying on the collective wisdom and
experiences of their peer agents rather than solely relying on the robot’s
directives.

Essentially, the study aims to explore the influence of a robot’s pres-
ence on the overall performance of a group of agents employing distinct
strategies. Three key evaluation metrics are used to evaluate agent perfor-
mance in this context: the number of exited agents, exit times, and path
costs. Through the application of these evaluation metrics, the study aims
to elucidate how interactions between agents and the robot contribute to
their collective performance. This exploration of trust, skepticism, and
decision-making dynamics forms a comprehensive framework for under-
standing the impact of robotics in the context of navigation within unfa-
miliar environments.

4.3 Experiments and results

For the experiments, three graphs C1, C2, and C3 were utilized, each
comprising |V| = 400 nodes. The respective edge counts for these graphs
are |E| = 511, |E| = 561, and |E| = 599. Within each graph, nodes con-
nect to up to four neighbors, and edge weights are real numbers selected
uniformly from the range ]0, 10]. C1, C2, and C3 environments were pur-
posefully constructed to provide the agents and the robot with various
challenges, progressing from a simpler scenario in C1 to a more intricate
situation in C3. This intentional variation enables a thorough assessment
of the agent’s adaptability and performance across different levels of en-
vironmental complexity.
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The simulations involved a single group, Γ = 1, consisting of N =
100 agents. The trust factor denoted as f ∈ [0, 1], governed the ratio of
trustful (T) to skeptical (S) agents. For these experiments, f = 0.5 was
set, resulting in an equal distribution of NT = 50 trustful and NS = 50
skeptical agents. A trace amount specific to their kind denoted as KT,S =
0.1, was released by each agent, with an initial value set at τT,S(t = 0) =
0.1. It is noteworthy that time impact was not incorporated into this
model.

The robot, on the other hand, releases information ηij =
1

wij
after cros-

sing a path, with wij cost of the crossed path.
For the experiments, different kinds of situations were considered:

• No Robot: Agents independently explore the environment, serving
as a baseline for comparison.

• Immediate Start: The robot starts exploration simultaneously with
agents.

• Early Start: The robot begins exploration before agents.

Due to computational constraints, all agents had limited time to find
the exit, calculated differently depending on the situation under investi-
gation. In the case of No Robot and Immediate Start, it is Tmax = |V| × N

2 ,
while in the case of Early Start, it is Tmax = |V| × N

2 + Rt, where Rt is de-
fined as |V| × N

2 and represents the time the robot has to explore the
environment before agents begin their exploration. This was done to en-
sure that agents had an equal amount of time to navigate the environment
in all three configurations.

To assess the influence of the robot’s presence, experiments were con-
ducted to explore the relationship between agent performance and both
the type of analysis and the efficiency of the robot. Two specific values of
robot efficiency, namely re = 0.2 and re = 0.8, were the focus of this study.
It should be emphasized that the robot’s path selection follows a proba-
bilistic approach, wherein the likelihood of opting for less costly paths
increases with higher efficiency and decreases with lower efficiency. The
selection of these efficiency values—0.2 denoting low efficiency and 0.8



110 CHAPTER 4. TRUST DYNAMICS IN MULTI-AGENT SYSTEMS

denoting high efficiency—was intentional to avoid extreme values, pre-
venting the portrayal of overly specific or unrealistic scenarios. Instead, a
deliberate choice was made to utilize values at the limits, maintaining a
balance for a thorough evaluation without overly complicating the exper-
imental design. This approach aimed to represent plausible real-world
situations. Each efficiency level underwent 100 independent simulations,
contributing to a comprehensive assessment of their impact on the exper-
imental outcomes.

The upcoming visualizations showcase graphs for various evaluation
metrics. Specifically, Fig. 4.1 illustrates the number of exited agents, Fig.
4.2 displays exit times, and Fig. 3.40 represents path costs. These graphs
are thoughtfully grouped to improve clarity and facilitate comparisons
across different scenarios. Each plot consists of five columns: No robot,
Immediate start with robot efficiency re = 0.2, Immediate start with robot
efficiency re = 0.8, Early start with robot efficiency re = 0.2, and Early
start with robot efficiency re = 0.8.

At first glance, it appears that in all three scenarios, both trustful and
skeptical agents exit in nearly equal numbers, exhibiting comparable exit
times and path costs in the absence of a robot. However, a notable shift
occurs when introducing a robot, particularly with an early start and a
robot efficiency value of 0.8, especially evident in scenario C3. To vali-
date the statistical significance of these observations and affirm the im-
pact of a robot’s presence, t-tests were conducted on exit times and path
costs. The t-test is a statistical tool that evaluates observed differences
between group means. It encompasses formulating null and alternative
hypotheses, calculating a t-statistic based on group mean differences, and
determining degrees of freedom. In this context, the means represent
trustful and skeptical agents for each evaluation metric. The null hy-
pothesis posits no differences between the groups, corresponding to the
baseline without a robot. The alternative hypothesis suggests statistically
significant differences between the two group means. Charts displaying
statistically significant results according to the t-test are marked with (*).

Tables 4.1 and 4.2 represent the statistical analysis respectively for the
path costs and the exit times in scenarios C1, C2, and C3. The statistical
measures include t-values (t), degrees of freedom (df), p-values, and 95%
confidence intervals (CI).
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Figure 4.1: Number of exited agents for scenarios C1 (a), C2 (b), and C3
(c).

4.3.1 Results analysis

Considering the path costs, the results reveal consistent patterns across
scenarios, indicating that the presence of a robot, particularly with im-
mediate starts, significantly influences path costs. The extremely low
p-values in scenarios with the robot suggest a highly significant impact
on the measured output, further supported by wide confidence intervals
that do not include zero. In contrast, scenarios without the robot gene-
rally show minimal impact on path costs, as evidenced by higher p-values
and narrower confidence intervals that include zero. This underscores
that in the absence of the robot, the trustful and skeptical agents behave
similarly, confirming the validity of the null hypothesis.
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Figure 4.2: Exit times for scenarios C1 (a), C2 (b), and C3 (c).

The examination of exit times demonstrates distinct trends in response
to various conditions. In C1, the introduction of the robot with different
start modes, especially Immediate start 0.2 and Immediate start 0.8, sig-
nificantly and adversely affects the measured output. Notably, an Early
start of 0.8 has a less pronounced impact. Similarly, for C2, negative ef-
fects are observed with Immediate start conditions, while the influence
of Early start conditions is less conspicuous. Finally, in C3, the inclusion
of robots with Immediate start modes significantly negatively influences
the output, whereas Early start 0.2 and Early start 0.8 appear to have a
positive impact on the measured output.

In summary, the addition of a robot with various start modes has a
significantly positive impact on the measured output especially in sce-
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Figure 4.3: Path cost for scenarios C1 (a), C2 (b), and C3 (c).

nario C3. The differences between the Skepticals and Trustfuls agents are
particularly pronounced when the robot is early initiated (both with 0.2
and 0.8 probabilities). Taking into account even the number of agents
reaching the exit, Scenario C3 appears to exhibit the most favorable per-
formance.

Fig 4.1 represents the number of exited agents across all scenarios. It
can be observed that the presence of a robot with an immediate start does
not seem to significantly improve agent exit rates, especially in scenarios
C1 and C2. This suggests that in such scenarios, trusting the robot may
not be advantageous. In C3, this holds true only when the robot efficiency
is 0.2. When the efficiency rises to 0.8, there is a noticeable improvement
in the performance of trustful agents. This trend becomes more pro-
nounced in the case of an early start with both robot efficiency values, 0.2
and 0.8. Trustful agents significantly outperform skeptical ones when the
robot efficiency is 0.8, reaching the maximum number of exited agents.
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PATH COST
Scenario Metric NR IS 0.2 IS 0.8 ES 0.2 ES 0.8

C1

t 0.36236 26.676 28.797 8.984 15.323
d f 7680.8 2587.1 1477 4951.5 4345.4

p-value 0.7171 < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16

95% CI -22.53 32.74 429.02 497.10 522.65 599.05 109.67 170.89 214.85 277.89

C2

t 0.33418 21.163 21.622 1.9036 0.41572
d f 8458.9 5620.7 5677.4 6955.9 6894.7

p-value 0.7383 < 2.2e−16 < 2.2e−16 0.057 0.6776
95% CI -24.50 34.57 303.30 365.23 311.02 373.04 -0.91 62.15 -24.63 37.88

C3

t 0.85137 23.943 40.731 17.521 25.521
d f 8352.9 6907.9 8147.1 7715 8739.2

p-value 0.3946 < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16

95% CI -18.96 48.08 369.23 435.08 599.40 660.02 272.28 340.88 374.64 436.98

Table 4.1: Path costs for scenarios C1, C2, and C3

EXIT TIME
Scenario Metric NR IS 0.2 IS 0.8 ES 0.2 ES 0.8

C1

t -0.45564 -30.705 -21.297 -6.5318 -2.3728
d f 7675.6 2332.7 1200.3 4703.4 4031.3

p-value 0.6487 ≪ 2.2e-16 ≪ 2.2e-16 7.19E-11 0.0177
95% CI -288.5784 179.7279 -5101.341 -4660.926 -1925.3754 -764.22262 -4488.853 -3874.592 9934.455 10316.566

C2

t 0.17784 -40.482 -35.622 -5.4684 -6.1275
d f 8458.1 5358.1 5329.8 6888.4 6771.8

p-value 0.8589 ≪ 2.2e-16 ≪ 2.2e-16 4.70E-08 9.43E-10
95% CI -197.6513 237.0926 -5123.094 -4614.349 -948.0766 -1040.578 -4649.819 -4132.95 -447.7142 -536.153

C3

t -0.29843 -37.308 -19.432 9.9146 20.944
d f 8343.8 6523.2 8297.3 7502 8170.8

p-value 0.7654 ≪2.2e-16 ≪2.2e-16 ≪2.2e-16 ≪2.2e-16
95% CI -252.8402 186.0260 -4614.826 -2236.198 976.9339 1458.4489 1914.71 2310.14 -4154.074 -1826.373

Table 4.2: Exit times for scenarios C1, C2, and C3

About the exit times, depicted in Fig 4.2, in the case of an immediate
start with robot efficiency values of 0.2 and 0.8, the presence of a robot
does not yield significant improvements in agent exit times across all
three scenarios. This implies that, under this specific immediate start
configuration, even with an increase in robot efficiency, the performance
of agents, especially trustful ones, remains largely unaffected. In the case
of an early start with both robot efficiency values, while the performance
of skeptical agents worsens, trustful agents improve their exit times. In
particular, in scenario C3, trustful agents outperform skeptical ones, exi-
ting faster for both values of robot efficiency.

For the path costs, in Fig 4.3, the presence of a robot significantly im-
proves trustful agents’ path costs in all three scenarios and configurations.
Skeptical performance remains the same or even worsens (compared to
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the no-robot configuration) in the case of an immediate start with robot
efficiency values, while they improve their performance in the case of an
early start with both robot efficiency values. However, their performance
remains worse than the trustful ones.

Examining all three evaluation metrics concurrently, it’s evident that,
in the absence of a robot, trustful and skeptical agents demonstrate simi-
lar performance, exiting with comparable exit times and path costs. No-
tably, the model excels in scenario C3 and the early start 0.8 configuration,
where trustful agents exhibit optimal performance.

The immediate start configuration revealed disparities between exit
times and path costs, which can be attributed to the inherent efficiency-
driven decision-making process of the robot and its initiation timing. The
robot prioritizes path cost optimization and navigation efficiency, indi-
rectly influencing exit times. The efficiency parameter, denoted by va-
lues of 0.2 and 0.8, guides the robot’s path selection strategy. A higher
efficiency setting consistently results in significantly lower path costs, es-
pecially for trustful agents, aligning with the expectation of cost-effective
choices. However, the impact on exit times unfolds differently. Immediate
starts, despite enhancing path costs, adversely affect exit times, particu-
larly for trustful agents. This suggests that the immediate initiation of a
more efficient robot may not necessarily expedite the exit process. On the
contrary, early starts positively influence both path costs and exit times.

In essence, while the robot consistently contributes to reporting eco-
nomical paths through efficient selection, its influence on exit times hinges
on finding the right equilibrium between efficiency and initiation timing.

4.4 Conclusions

In summary, the third research line aimed to investigate the impacts of
trust and skepticism in scenarios where a robot assists in navigating un-
familiar environments. To address this, modifications were made to the
agent-based model from the second research line to simulate social be-
haviors related to trust, tackling the research question:

1. What are the effects of trust dynamics in multi-agent systems?
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Trusting a robot, especially with higher efficiency, enhanced agent per-
formance, leading to expedited exits through more efficient paths.

The effects of trust dynamics in multi-agent systems were investi-
gated using an agent-based model, focusing on how trust and skepti-
cism impacted the performance of virtual agents navigating unfamiliar
environments with robot assistance. The study aimed to assess whether
trusting a robot, with varying levels of efficiency, could enhance over-
all agent performance in uncertain situations. Three scenarios were an-
alyzed: No Robot, where agents explored independently; Immediate
Start, where the robot began exploration simultaneously with agents;
and Early Start, where the robot initiated exploration before agents. Re-
sults showed that trustful agents outperformed skeptical ones, particu-
larly with a high-efficiency robot and an early start. The presence of a
robot significantly improved agent performance, especially in complex
scenarios, with higher robot efficiency leading to quicker exits and im-
proved path costs.



Conclusions

The central inquiry driving this doctoral project has been the role of com-
petition within complex systems that heavily rely on cooperation. This
fundamental question stemmed from the observation that various seem-
ingly disparate systems share fundamental similarities. These systems,
ranging from societal structures to global climates and ecosystems, ex-
hibit complex behaviors driven by interactions among their constituent
elements and with the surrounding environment. Network science has
emerged as a powerful tool for understanding and addressing the chal-
lenges posed by these complex systems, particularly through the frame-
work of optimization problems. In this framework, systems are viewed
as networks where nodes represent the system’s elements and links are
the relationships between them.

Traditionally, exact methods were employed to tackle optimization
problems. However, the exponential growth of network sizes and the
realization that real networks are dynamic and with non-trivial topolog-
ical characteristics have spurred the adoption of approximate methods.
In this context, Swarm Intelligence algorithms have emerged as promis-
ing solutions. Rooted in principles of self-organization and decentralized
control, draw inspiration from various natural phenomena, such as the
foraging behavior of ants, the flocking patterns of birds, and the social
dynamics of bees. By mimicking these collective behaviors, Swarm Intel-
ligence algorithms offer scalable and adaptive solutions to optimization
problems within dynamic networks. Their decentralized nature allows
for robustness against perturbations and dynamic changes, making them

117
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particularly well-suited for addressing real-world challenges across di-
verse domains. Their efficacy lies in the emergence of collective behav-
iors, where macroscopic and global properties of the system cannot be
deduced from individual elements’ characteristics.

However, as the investigation progressed, it became evident that co-
operative and competitive dynamics coexist within these systems. Insect
societies, initially perceived as cohesive groups, were found to harbor
conflicts of interest among members. Similarly, complex animal species
and human contexts exhibit a delicate balance between cooperation and
competition. This realization underscored the inseparable nature of co-
operation and competition, culminating in the central research question:
What role does competition play within complex systems that also rely on
cooperation? This question has guided the development of the research
project into three interconnected lines, each exploring distinct domains
arising from this foundational inquiry.

The first research line addressed the potential contribution of compe-
tition to optimization in the context of optimization problems. This led to
the development of a tailored Ant Colony Optimization algorithm (ACO)
for dynamic networks. By implementing cooperative and competitive ant
colonies in virtual environments, the aim was to assess whether compet-
itive dynamics could enhance the ACO algorithm’s efficiency.

Transitioning to the social aspects of collective behaviors, the second
research line investigated the interplay between cooperation and compe-
tition in social complex systems. This prompted the creation of a crowd
social model, inspired by ACO algorithm principles, to simulate social
dynamics within crowds. Through various analyses, the goal was to un-
derstand the impacts of different behavioral strategies, particularly focus-
ing on cooperation and defection, within crowd contexts.

The third research line introduced a different perspective by adapting
the agent-based model developed in the second research line. This ad-
justment aimed to simulate social behaviors associated with trust. This
led to an investigation into the effects of trust dynamics in multi-agent
systems, emphasizing trust and skepticism, particularly in the context of
a robot aiding navigation through unfamiliar environments.

In each research line, the proposed models were implemented using
an agent-based approach, a computational framework designed to sim-
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ulate the actions and interactions of autonomous agents. This approach
facilitated the exploration of agent behaviors and their outcomes in com-
plex systems. Specifically, NetLogo was chosen as the programming lan-
guage and Integrated Development Environment (IDE) for its suitability
in implementing agent-based models.

Optimization Problems Research Line

In summary, the first research line aimed to explore the impact of compet-
itive dynamics on optimization algorithms, specifically focusing on the
Ant Colony Optimization algorithm. Through the development of two
distinct ant models using an agent-based approach, the overarching ques-
tion guiding this investigation was: could competition contribute to the
optimization of outcomes in the context of optimization problems? The
initial ant model demonstrated that competition, when strategically inte-
grated, can enhance algorithmic efficiency. The introduction of competi-
tive ants led to positive effects, notably improving the algorithm’s success
rate. Their strategic actions prompted the colony to adapt and explore al-
ternative paths, resulting in overall performance enhancement. Similarly,
in the second ant model, the presence of competitive ants positively influ-
enced efficiency, especially in environments rich with trace information.
However, this also highlighted the intricate interplay between coopera-
tive and competitive dynamics, particularly emphasized in scenarios with
high trace information levels. This insight underscores the importance of
competition, especially in environments where the algorithm can strate-
gically adapt and optimize its performance based on environmental char-
acteristics. In challenging the traditional approach, the proposed models
revealed that competition, when strategically integrated, can enhance al-
gorithmic efficiency. Additionally, the agent-based approach proved to
be a powerful tool for exploring algorithm efficiency across various sce-
narios, highlighting the synergistic relationship between competition and
the agent-based approach in optimizing outcomes.
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Collective Behaviors Research Line

In summary, the second research line aimed to explore the interplay be-
tween cooperation and competition in social complex systems by map-
ping the rules of the ACO algorithm into conceptual frameworks rooted
in social dynamics. Three distinct crowd models were developed to ad-
dress the research questions regarding this interplay. The initial study
revealed that an increase in the proportion of cooperative agents corre-
lated with higher average profit functions, leading to superior outcomes
in groups with a balanced mix of collaborators and defectors. Defectors
enhanced crowd efficiency, acting as a pruning mechanism and steering
the crowd towards more efficient routes. Subsequent analyses within a
comprehensive crowd simulation framework reaffirmed the benefits of
a balanced combination of collaboration and defection strategies, with
defector agents enhancing group resilience to uncertainty and promot-
ing adaptive navigation in complex situations. Collaborative agents pri-
oritized information sharing for route exploration, while defectors of-
fered alternative perspectives, mitigating groupthink risks and ensuring
diverse decision-making within the crowd. Furthermore, the research
demonstrated that the principles of the ACO algorithm can effectively
simulate social dynamics by adapting core principles such as the propor-
tional transition rule, reinforcement rule, and global updating rule. This
adaptation provided a parallel framework for modeling decision-making
and environmental interaction within crowd simulations, showcasing the
versatility and applicability of the ACO algorithm in capturing coopera-
tive and competitive behaviors in social complex systems.

Trust dynamics in multi-agent systems research line

In summary, the third research line aimed to investigate the impacts of
trust and skepticism in scenarios where a robot assists in navigating unfa-
miliar environments. Modifications were made to the agent-based model
from the second research line to simulate social behaviors related to trust,
addressing the research question: What are the effects of trust dynam-
ics in multi-agent systems? Trusting a robot, especially with higher effi-
ciency, enhanced agent performance, leading to expedited exits through
more efficient paths. The study employed an agent-based model to ex-
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plore how trust and skepticism influenced the performance of virtual
agents navigating unfamiliar environments with robot assistance. Three
scenarios were analyzed: No Robot, Immediate Start, and Early Start.
Results indicated that trustful agents outperformed skeptical ones, par-
ticularly with a high-efficiency robot and an early start. The presence
of a robot significantly improved agent performance, especially in com-
plex scenarios, with higher robot efficiency leading to quicker exits and
improved path costs.

Limitations, Future Directions, and Practical Applications

While the exploration of optimization in dynamic networks, collective be-
haviors in crowds, and trust in multi-agent systems through agent-based
models provides valuable insights, it’s crucial to recognize its limitations,
delineate future research directions, and contemplate practical applica-
tions.

In the Optimization problems research line, the ant models, while
illustrative, have primarily been evaluated on networks of moderate size
and complexity. Notably, these evaluations involve computer-generated
networks rather than real-world ones. Real networks have large dimen-
sions, follow power-law degree distributions, and possess non-trivial topo-
logical characteristics. The applicability of the findings to diverse real-
world environments, beyond maze-like structures, may influence the gen-
eralizability of results across traditional optimization benchmarks. Ad-
ditionally, while the agent-based approach can be a powerful tool that
enables the easy exploration of algorithm efficiency across a variety of
scenarios, it may not be the ideal tool for analyzing instances of large
dimensions due to the high computational cost inherent in this approach.

In light of this, future directions in this research line include, firstly,
translating the proposed framework into another programming language
and testing it on benchmark instances. Moreover, concerning the dy-
namics of the model, future directions could explore dynamic adaptation
mechanisms by introducing ants capable of adjusting their cooperative or
competitive behaviors in real-time. This dynamic adaptation, inspired by
machine learning concepts, would enable the colony to continuously opti-
mize its strategies in response to evolving challenges. Additionally, prac-
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tical applications could involve applying these models in fields such as
supply chain management, where dynamic environmental changes and
resource allocation are critical factors. Furthermore, exploring hybrid ap-
proaches with other optimization algorithms, such as machine learning or
genetic algorithms, may unlock new avenues for increased efficiency and
adaptability in diverse contexts. This could find applications in logistics,
where optimizing routes and resource utilization are fundamental.

In the Collective behaviors research line, the developed crowd mod-
els, while striving to achieve a balance between realism and simplicity,
may have oversimplified the complexity of real-world scenarios. On one
hand, although the ACO algorithm can effectively model and simulate
various aspects of social dynamics within crowd simulations, its current
implementation considers agents making decisions based solely on ratio-
nal factors, overlooking the emotional and irrational dimensions inherent
in human decision-making. While translating pheromones into traces and
visibility into path desirability captures certain aspects, it may not fully
encompass the richness of human decision-making processes. Addition-
ally, while the obtained results, although partially counterintuitive, align
with expectations derived from the literature, they were obtained with
limited parameter sets. Sensitivity analysis of parameters has revealed
more complex scenarios regarding the effectiveness of competition in so-
cial systems. Furthermore, how collaborators and defectors are modeled
may fall short of representing the full spectrum of crowd behavior vari-
ability in dynamic and unpredictable environments. Future directions in
this research line could first explore other dimensions inherent in human
decision-making, such as elements of democratic, emotional, and irra-
tional decision-making. Additionally, future research might delve into
dynamic adaptation mechanisms, where agents can dynamically adjust
their behaviors in response to real-time environmental changes. Integrat-
ing environmental heterogeneity, such as obstacles or dynamic changes
in the network structure, would further enrich the models, offering in-
sights into how crowds adapt in diverse and challenging environments.
Real-world validation remains a crucial aspect of future research endeav-
ors. Implementing and validating the models in physical environments or
with real crowds would bridge the gap between simulations and practical
applications, ensuring their effectiveness and applicability in real-world
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scenarios. This empirical validation process is essential for refining the
models and gaining confidence in their predictive capabilities. Further-
more, practical applications of these models include, for instance, opti-
mizing evacuation plans in emergency scenarios, urban planning, and
crowd management. By leveraging these models, spaces can be designed
to facilitate smoother crowd movement, contributing to improved city in-
frastructure and enhancing overall safety and efficiency.

In the Trust dynamics in multi-agent systems research line, although
the trust model provides a structured approach and the obtained results
are plausible and in line with common sense expectations, it may not
adequately capture such intricate interactions. First of all, the deliber-
ate selection of robot efficiency values—0.2 representing low efficiency
and 0.8 representing high efficiency—was a strategic decision aimed at
avoiding extreme values and ensuring a realistic portrayal of plausible
scenarios. However, this intentional constraint may restrict the applica-
bility of the model to scenarios with efficiency values beyond this range.
Trust dynamics in real-world scenarios, moreover, can be influenced by a
myriad of factors beyond the efficiency of the robot, such as communica-
tion methods, reliability, and adaptability, while in the model there is a
binary distinction between trusting the robot or fellow agents, that over-
simplifies these dynamics. Future directions in the research line of trust
multi-agent systems could explore the refinement and application of trust
models in increasingly dynamic and unpredictable environments. Inte-
grating real-world factors, such as environmental changes, unexpected
obstacles, varying levels of robots’ reliability or agents’ level of trust
could enhance the realism of the model. The practical applications of
this research extend beyond environmental exploration scenarios. Trust
models developed in this context could be instrumental in shaping trust
dynamics in robots in fields like collaborative manufacturing or health-
care settings, where robots assist medical professionals or interact with
patients. Furthermore, these trust models might find relevance in au-
tonomous vehicles, optimizing the collaboration between human drivers
and automated systems for safer and more efficient transportation. In
essence, future research could focus on adapting the model to diverse
real-world scenarios, ensuring its applicability across various industries
and domains.



124 CHAPTER 4. TRUST DYNAMICS IN MULTI-AGENT SYSTEMS

Concluding Remarks

In conclusion, this doctoral project has delved into the intricate interplay
between cooperation and competition within complex systems, spanning
from optimization problems to collective behaviors. Through the lens of
network science and the utilization of Swarm Intelligence algorithms, par-
ticularly Ant Colony Optimization, the research has elucidated how com-
petition can enhance optimization outcomes in dynamic environments.
Moreover, the exploration of collective behaviors in crowds and the inves-
tigation of trust dynamics in multi-agent systems have provided insights
into the dynamics of collective behaviors. Despite inherent limitations
and challenges, the developed models aim to offer new avenues for fu-
ture research and practical applications, contributing to the advancement
of understanding complex systems.

Personally, embracing this doctoral challenge in computer science has
been one of the biggest challenges of my life so far, especially consider-
ing my background, which is quite different — I graduated in physics.
Engaging with the topics described in this thesis has undoubtedly helped
me grow both as a person and as a researcher. It has provided me with a
deeper understanding of what it truly means to conduct research. Mov-
ing forward, I am grateful for the opportunity to have embarked on this
journey, and I hope to continue exploring new frontiers of knowledge and
contributing to the world of research.



Appendix A
Supporting Materials

In this appendix, supplementary materials are provided in the form of im-
ages depicting various versions of the models presented in each research
line. These visual aids are intended to enhance the comprehension of the
model’s functionality and dynamics discussed throughout the thesis.

Fig. A.1 illustrates the graphical interface of the first Ant Model de-
veloped within the first research line. The model comprises three tabs:
the interface, where the simulation happens, Info, where model-related
information is entered, and Code, containing the model’s code. Within
the Interface tab, on the left side, various buttons and sliders facilitate the
initialization of the simulation environment. Notably, the Setup button
initializes all necessary simulation variables, while the Go button initiates
the simulation. Below these buttons, a series of sliders allow for selecting
the population size, the amount of pheromone deposited by the ants, the
evaporation rate, the number of ant generations, the fraction of coopera-
tive ants, and the number of simulations. In the central part, the network
on which the ants move is visible. Two types of ants are identifiable: red
ones, representing cooperative ants, and blue ones, representing compet-
itive ants. The entrance to the environment is depicted as an orange circle
on the left, while the exit is represented by a blue circle on the right. The
numbers on the links represent the amount of pheromone on that link at
a specific time, while the fire symbols represent nodes blocked by com-
petitive ants. Finally, on the right side, there is an output window where
the number of resources gained by the ants is cumulatively recorded and
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counted only at the end of the simulation.

Figure A.1: Interface of the first ant model

Fig. A.2 represents the graphical interface of the third crowd model
developed within the second research line. Also in this model are rec-
ognizable the setup button to initialize the simulation environment and
the start button initiates the dynamics. Additionally, several elements
are identifiable for inputting parameters defining the population size, the
number of groups to be divided, the value of the trace increment for
agents, the trace evaporation rate, as well as the values of the alpha and
beta parameters. Sliders allow for defining not only the composition of
the crowd, particularly regarding the cooperative factor—how many co-
operative agents and defectors are present in the crowd—but also the
probabilities of node damage and repair within the network. Further-
more, a series of monitors illustrate the scenario name, the current sim-
ulation progress out of the total simulations, as well as the number of
nodes and links. In the central part, there is the environment represent-
ing the simulation’s setting. Two types of agents are recognizable: the
red ones representing defectors and the green ones representing collabo-
rators. They move within the environment to reach the exit, positioned
in the bottom right corner, while the entrance is on a node slightly ob-
scured by a defector above it, located on the left side of the environment.
At the bottom, there is an output window recording the characteristics
of each agent that reaches the exit, along with the time taken to reach
the exit and the path cost. On the far right, there is a panel allowing for
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an investigation into the variables defined for each agent, including the
lists of visited nodes and links, the who identifier, the shape defining the
agent’s form, and the strategy—here denoted as C, indicating in this case
a collaborator.

Figure A.2: Interface and features of the agents of the third crowd model

Finally, fig. A.3 illustrates the interface of the trust model developed
within the third research line. Also here, on the left side, the graphical in-
terface features several elements, including the setup button to initialize
the simulation environment and the start button to begin the simulation.
Sliders are available to adjust parameters such as the number of rows and
columns defining the network. Additionally, sliders for alpha trustful,
beta trustful, alpha skeptical, and beta skeptical enable the modeling of
trustful and skeptical agents, along with another slider defining robot ef-
ficiency. Panels allow for the selection of the total population, the number
of simulations, and traces left by both skeptical and trustful agents. Mon-
itors display the maximum simulation time and the current simulation
progress. In the center, the environment where agents move is presented.
Two types of agents are identifiable: red-colored agents representing the
Skepticals and green-colored agents representing the Trustfuls. The robot,
depicted in blue and labeled with its name, is also visible. The entrance
to the environment is situated at the top left, while the exit is positioned
at the bottom right. Additionally, on the right side, an output window
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records information for each agent reaching the exit, including the iden-
tifier, agent type, and other details such as the arrival time and path cost.
These metrics are the ones used for the proposed analyses.

Figure A.3: Interface of the trust model

In all developed models and for all considered metrics, the analyses
proposed throughout the thesis were conducted following a standardized
procedure. The results obtained from the output windows were saved in
.txt files. Subsequently, all .txt files corresponding to simulations with
a specific configuration underwent preprocessing using a Python script.
This preprocessing generated a single CSV file containing the results of
all simulations conducted with that particular configuration. Finally, this
CSV file was loaded into R software enabling the execution of all pro-
posed analyses.
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modelling. In Bogdan Filipič, Edmondo Minisci, and Massimiliano
Vasile, editors, Bioinspired Optimization Methods and Their Applica-
tions (BIOMA2020), volume 12438 of Lecture Notes in Computer Sci-
ence, pages 228–239, Cham, 2020. Springer.

[22] Carolina Crespi and Mario Pavone. Does a group’s size affect the
behavior of a crowd? Springer, 2024.

[23] Carolina Crespi, Rocco A. Scollo, Georgia Fargetta, and Mario
Pavone. How a different ant behavior affects on the performance
of the whole colony. In Luca Di Gaspero, Paola Festa, Amir Nakib,
and Mario Pavone, editors, Metaheuristics, pages 187–199, Cham,
2023. Springer International Publishing.



132 BIBLIOGRAPHY

[24] Carolina Crespi, Rocco A Scollo, Georgia Fargetta, and Mario
Pavone. A sensitivity analysis of parameters in an agent-based
model for crowd simulations. Applied Soft Computing, 146:110684,
2023.

[25] Carolina Crespi, Rocco A. Scollo, and Mario Pavone. Effects of dif-
ferent dynamics in an ant colony optimization algorithm. In 2020
7th International Conference on Soft Computing Machine Intelligence (IS-
CMI2020), pages 8–11. IEEE, 11 2020.

[26] C. Mattiussi D. Floreano. Companion slides for the book bio-
inspired artificial intelligence: Theories, methods, and technologies,
2008.

[27] Wu Deng, Junjie Xu, and Huimin Zhao. An improved ant colony
optimization algorithm based on hybrid strategies for scheduling
problem. IEEE Access, 7:20281–20292, 2019.

[28] M. Dorigo and G. Di Caro. Ant colony optimization: a new meta-
heuristic. In Proceedings of the 1999 Congress on Evolutionary Compu-
tation (CEC99), volume 2, pages 1470–1477, Washington, DC, USA,
1999. IEEE.

[29] P. Erdös and A. Rényi. On random graphs i. Publicationes Mathe-
maticae Debrecen, 6:290, 1959.
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