
UNIVERSITÀ DEGLI STUDI DI CATANIA

Dipartimento di Matematica e Informatica

Dottorato di ricerca in informatica (Internazionale) XXXVI Ciclo

Alessandro Midolo

ReFrame: A Refactoring Framework to Support Developers

in Improving and Optimising their Source Code

Ph.D. Thesis

Supervisor: Prof. Emiliano Tramontana

Anno Accademico 2022 - 2023

i

Declaration of Authorship

I, Alessandro Midolo, certify that I have written this thesis independently and have

not used any sources, resources or technical tools other than those specified. All

statements that were taken from other publications, either literally or analogously,

are marked. I have not submitted the work in the same or a similar form to any other

examination authority. I agree that this work may be checked with anti-plagiarism

software. Parts of this thesis have been published in conferences, and journals.

In particular, Chapter 3 is described in an ICCCM-2022 paper [87] and Future

Internet journal paper [88], Chapter 4 in a CSSE-2022 paper [90] and SaTToSE-

2023 paper [86], Chapter 5 in a WETICE-2020 [41] paper and ICSE-2023 paper [89].

These chapters have been extended and revised when writing this dissertation.

ii

Abstract

In order to better employ the computational power of modern hardware, many

sequential programs can be changed to encapsulate parallel instructions. Concur-

rent executions have the potential to significantly enhance overall application per-

formance, reducing both the execution time and the resource requirements. Nev-

ertheless, manually transforming a sequential application to a parallel version is a

complex undertaking, involving a meticulous inspection of several lines of code which

could be tedious and time-consuming, an in-depth analysis of the data dependencies

to preserve the correctness of the transformations and a balance of the workload

among threads to optimise the performance boost. In this context, I propose four

distinct refactoring approaches to support developers in this complex task, provid-

ing a set of fully automatic tools tailored to different scenarios, encompassing data

and control dependence analysis, parallelisation of method calls, transformation of

for loops to stream pipelines and matching of algorithms for parallel optimisations.

An efficacious test suite is necessary to preserve the source code from inadvertent

changes during refactoring. Such changes may involve the editing, addition or dele-

tion of code fragments, resulting in poor consistency between the refactored code

and the testing suite. To address this issue, I additionally propose two automatic

approaches to generate test cases, catering to both classes and methods. All six

proposals are integrated into a framework named ReFrame, which serves the dual

purpose of validating these approaches with real word scenarios, and providing a

unified, modular interface for developers. Extensive testing has been conducted to

demonstrate the correctness and efficiency of these approaches, revealing optimal

results in each of the related tasks.

iii

Contents

Declaration of Authorship i

Abstract ii

1 Introduction 1

1.1 Refactoring for Software Optimisation 1

1.2 Testing for Validation . 5

1.3 Proposed Framework . 7

1.4 Organisation . 12

2 Related Works 14

2.1 Concurrent Refactoring . 15

2.2 Loops Refactoring . 21

2.3 Matching Algorithm . 26

2.4 Automatic Test Generation . 29

3 Automatic Parallelisation of Methods Calls 33

3.1 An API for Analysing and Classifying Data Dependence in View of

Parallelism . 34

3.1.1 Classifying methods based on data dependence analysis 36

3.1.2 API of the developed library 40

3.1.3 Summary . 44

iv

3.2 An Automatic Transformer from Sequential to Parallel Java Code . . 45

3.2.1 Proposed Approach . 48

3.2.2 Method Call Analysis . 49

3.2.3 Data Dependence Analysis . 53

3.2.4 Control Flow Graph Analysis 56

3.2.5 Summary . 63

4 Loops To Stream and Matching Algorithms 65

4.1 Refactoring Java Loops to Streams Automatically 66

4.1.1 Refactoring Templates . 67

4.1.2 Tool for Refactoring Loops . 73

4.1.3 Summary . 76

4.2 A Robust and Automatic Approach for Matching Algorithms 77

4.2.1 Proposed Approach . 79

4.2.2 Evaluation . 86

4.2.3 Refactoring for Energy Efficiency 92

4.2.4 Summary . 94

5 Automatic Test Generation 96

5.1 Automatic Generation of Effective Unit Tests based on Code Behaviour 97

5.1.1 Analysis of Software Systems 99

5.1.2 Test Generation . 105

5.1.3 Summary . 107

5.2 Automatic Generation of Accurate Test Templates based on JUnit

Asserts . 108

5.2.1 Analysis of Software Systems 111

v

5.2.2 Test Template Generation . 114

5.2.3 Summary . 116

6 Experiments and Results 117

6.1 Data Dependence API . 117

6.1.1 Discussion . 123

6.2 From Sequential to Parallel . 125

6.2.1 Discussion . 130

6.3 Java Loops to Stream . 133

6.3.1 Discussion . 135

6.4 Matching Algorithms . 139

6.4.1 Discussion . 139

6.5 Unit Tests based on Code Behaviour 141

6.5.1 Discussion . 143

6.6 Test Template Generation . 146

6.6.1 Discussion . 148

7 Conclusion 152

7.1 Future Works . 154

Bibliography 155

1

Chapter 1

Introduction

1.1 Refactoring for Software Optimisation

In the realm of software development, it is common to encounter errors in the deliv-

ered product, necessitating subsequent correction upon discovery. It is important to

note that these maintenance activities are not driven by wear and tear, but rather by

the need to both rectify concealed defects and optimise obsolete or poorly perform-

ing features. Over the entire lifespan of a software system, a substantial portion of

the budget is allocated to its maintenance rather than its initial development [143].

Refactoring stands as a practical and constructive course of action to guide de-

velopers in improving program functionalities while preserving its behaviour, thus

reducing the resources needed for software maintenance. The term ”restructur-

ing” is employed as a general reference to any form of code base reorganisation or

cleanup, with ”refactoring” representing a specific type of restructuring. The con-

cept of refactoring was initially introduced in Opdyke’s doctoral thesis to address

code-level restructuring [96]. Fowler provides a formal definition of refactoring: ”A

change made to the internal structure of software to make it easier to understand

Chapter 1. Introduction 2

and cheaper to modify without changing its observable behaviour” [42]. Refactor-

ing has been employed in the realm of software evolution to augment the quality

of object-oriented software, including aspects like flexibility, availability, reliability,

and maintainability [53]. Ongoing refactoring efforts support the notion that code

restructuring reduces developer time by 60% [27].

The focus of most refactoring efforts has predominantly been on enhancing in-

ternal structure, with limited emphasis on performance improvement [153]. With

the proliferation of multi-core and many-core processors, concurrent programming

has gained prominence. A growing number of researchers have begun applying soft-

ware refactoring to concurrent programming, optimising the concurrent structure to

improve performance. Concurrent-oriented software refactoring has thus garnered

increased attention. Nevertheless, experienced developers do not always possess the

knowledge required to optimise concurrent programs effectively.

While manual refactoring is feasible, tool support is considered indispensable. In

today’s landscape, a wide array of tools exists to automate various facets of refac-

toring. Automation offers the advantage of reducing costs and enhancing efficiency.

The primary benefit of an automated approach is its independence from direct hu-

man intervention, which can be error-prone and exceptionally time-consuming. The

automatic transformation of sequential programs to perform operations in a parallel

fashion is still an open issue since it requires an in-depth data dependence analysis,

which could be significantly complex. Moreover, the transformation into a parallel

version should be guided by some strategies that could likely bring performance

gains once the parallel version executes.

The state of the art shows some notable approaches that can automatically

Chapter 1. Introduction 3

change applications into parallel versions. Some approaches propose intrusive trans-

formations, failing to consider the number of changes required to refactor code, fo-

cusing solely on inserting concurrent operation within the code, irrespective of the

cost of change [21, 20, 64, 34, 152]. Consequently, applying a particular refactoring

may entail a substantial overhaul of the system or even necessitate a complete reim-

plementation. To aid developers in understanding the proposed modifications and

their functionality, it is imperative that the changes are syntactically coherent and

minimal [97].

Previous approaches solely focus on specific types of instructions, i.e. recursive

algorithms and Collections [64, 34], Array [35] and streams [69]. Other approaches

treat just some categories of statements [74, 49], or optimise concurrent instructions

without introducing further parallelism [148, 120, 98, 156, 155, 6].

Concurrent libraries are made available to developers for supporting parallel

programming [67, 57], however it is up to the developers to determine which code

snippets are prone to parallelism and how APIs can be used. Several other ap-

proaches perform automatic parallel transformation in the executable code [70, 68,

37]. Although the performance gain is superb, the parallel version is hidden from the

developer who cannot further modify it, e.g., to solve further requirements, improve

some parts, etc.

To address these limitations, I propose a set of automatic approaches to support

developers in transforming programs from sequential to parallel. These approaches

provide developers with a set of APIs and tools to analyse, improve and optimise

their code while preserving its structure, modularity and clarity. The main strengths

of these works are the following.

• The proposed refactorings do not alter the structure of the code, indeed the

Chapter 1. Introduction 4

changes done are minor and syntactically coherent with the overall codebase.

This preserves the readability and comprehensibility of the source code.

• The applicability of the approaches includes a wider spectrum of instructions,

increasing the number of refactoring opportunities, hence the suitability for

different software applications.

• The code is automatically analysed and some portions are selected for the

refactoring. This frees the developer from the choice of which code snippet

could be prone to parallelism.

• The analysis undertaken by the approaches is complex, detailed, and satisfies

all the conditions required to safely run a code in parallel. This guarantees

the generation of accurate and reliable code.

• An a priori assessment is performed to evaluate the potential advantages of

introducing new threads, by analysing execution paths, and optimising the

performance boost gained by the parallelisation.

Chapters 3 and 4 broadly describe the aforementioned approaches, giving details

of how the analyses are performed and the methodology behind each approach.

One of the defining attributes of refactoring is its preservation of the program’s

observable behaviour. Achieving this goal necessitates the capability to execute

a comprehensive test suite swiftly, enabling frequent testing without hindrance.

Therefore, in most scenarios, the presence of self-testing code is essential for suc-

cessful refactoring. Frequent test runs result in a minimal code differential, greatly

simplifying the bug detection process. Consequently, this dissertation addresses con-

cerns about the potential risks of introducing bugs during refactoring, underscoring

the pivotal role of robust testing practices.

Chapter 1. Introduction 5

1.2 Testing for Validation

Refactorings are typically conceived as small and relatively straightforward adjust-

ments, designed to minimise the likelihood of introducing issues. However, unit

tests serve as a protective barrier against the inadvertent introduction of regressions

during the refactoring process [146]. Unit tests not only act as a safety net but,

owing to their compact size, they also enable rapid evaluation of code modifications,

providing prompt feedback to developers.

It becomes necessary to devise new test cases to encompass the modified API,

while also debugging existing tests post-refactoring. Refactorings may also entail

the relocation of functionality implementations, leading to a situation where test

code for a specific functionality may now reside in a test associated with a different

program unit. The preservation of test suite quality in the context of refactoring is

a pivotal concern in application development [103].

During a refactoring operation, existing code can be restructured into new pro-

gram units. This can disrupt the consistency between the source code and the

corresponding unit tests [85]. For instance, relocating a method from class A to

class B introduces incongruity between the structure of the refactored code and the

corresponding unit tests, where the test code for the moved method might still reside

in class A’s test. In essence, the challenge of maintaining consistency between refac-

tored code and tests remains an unsolved issue and calls for tool-supported solutions.

Furthermore, empirical evidence suggests that refactorings are often inadequately

tested [110].

For assisting developers in generating the code of a test suite, many tools have

been proposed. Certain tools are designed to randomly generate sequences of calls

and corresponding values to form a test case [15, 36, 99, 119]. Typically, these

Chapter 1. Introduction 6

random testing tools produce numerous test cases, leading to a significant increase

in execution time. Consequently, developers require specific criteria and tools to sift

through this extensive set of test cases and select a more manageable subset [4, 66].

Additionally, test cases generated through random approaches often exhibit various

test smells, diminishing the effectiveness and quality of the overall test suite [102].

One notably effective test generation tool is Evosuite [46, 145], which employs

a search-based approach, utilising evolutionary search to automatically generate

test suites with the goal of maximising code coverage [101]. Despite Evosuite’s

superior coverage and accuracy compared to other generation tools, the process of

test generation is time-consuming. Furthermore, successful execution of Evosuite

demands a substantial amount of computational resources and time [145].

Recognising the importance of improving the usability and readability of gener-

ated tests, it has been noted that such tests are generally less readable than manually

implemented ones [51, 115].

The proposed approaches aim to support developers with tools specifically de-

signed to generate test cases for classes and methods. The primary contributions of

these approaches include: (i) the generation is targeted to those classes and meth-

ods that have not been previously tested. This reduces the number of redundant

test cases, which could negatively affect execution times, forcing developers to se-

lect a smaller set of test cases [4, 66]; (ii) the generated test cases increase the code

coverage of the existing test suite, thereby enhancing its overall effectiveness; (iii)

the generation is fully automatic and it allows to select the classes and methods for

which generates the tests. This guarantees the possibility to generate tests for refac-

tored code, preserving the consistency of the test suite; (iv) the approaches use a

static analysis to get the data needed for the generations. As a result, the execution

Chapter 1. Introduction 7

time is directly associated with the number of lines of code analysed. This approach

eliminates the need for multiple iterations, thereby avoiding time-consuming and

resource-intensive processes [145].

These approaches are presented in chapter 5, where methodologies and imple-

mentations are widely discussed.

1.3 Proposed Framework

Most of the refactoring approaches assume that developers either already possess a

test suite or must manually generate one or use an external tool to ensure that the

applied refactorings have not altered their application’s behaviour.

While these automated refactoring approaches simplify the application of com-

plex refactoring techniques to enhance code quality, they also impose the burden of

updating and maintaining test suites. This can be a demanding and time-consuming

task for developers, as they must understand how to properly test the refactored

sections and update existing tests to guarantee code consistency and correctness.

Consequently, while these tools provide valuable capabilities, they also present a

challenge in terms of maintaining test suites, which can be complex and labour-

intensive.

Another noteworthy consideration is that many of these approaches focus on

individual refactoring techniques. To apply multiple refactorings, developers may

need to use various tools, each with its own set of requirements and dependencies.

These tools can sometimes be complex to use, necessitating a significant learning

curve to master their operation.

Chapter 1. Introduction 8

The combination of these factors can potentially increase the complexity of a

developer’s tasks and even slow down the development process [42]. Inexperienced

developers might be hesitant to use these tools due to the challenges they pose in en-

suring code consistency and correctness, which could result in missed opportunities

for optimising and refactoring their code.

In order to provide a unified interface for the approaches introduced in the pre-

vious sections, I propose a Java framework called ReFrame. The creation of this

framework is motivated by several factors: (i) the framework serves as an infras-

tructure for experimenting with and validating the introduced approaches; (ii) since

all the approaches rely on static analysis to collect the necessary data, the frame-

work can perform a single parsing of the source code, making the data available to

each approach. This optimisation minimises the execution time of each module; (iii)

providing developers with a unified interface both for refactoring and testing during

the development process of their application; (iv) by offering a consolidated plat-

form, the framework streamlines the development processes related to refactoring

and testing, ensuring the efficacy and accuracy of the proposed methods.

The framework has two main components: the first one is a refactoring unit

which provides three different modules to apply concurrent refactoring to source

code; the second one is a testing unit with two modules to generate a test suite.

The modules provided by the framework are entirely automatic, reducing the time

required for the processes and improving the effectiveness of the generations. Figure

1.1 shows an overview of the proposed framework. The first unit is composed by

three different modules:

• Methods Parallelisation: it provides a library that automatically refactor se-

quential method calls to a parallel version. The module offers an automated

Chapter 1. Introduction 9

Figure 1.1: Overview of the proposed framework

method to boost code performance by analysing source code. The approach

uses control flow analysis, data dependence analysis, and a control flow graph

to identify code fragments suitable for parallel execution. The process involves

three steps: (i) initial code analysis to find parallelisable sequences of state-

ments; (ii) evaluating data dependencies among statements; (iii) identifying

paths with potential for performance improvement based on statement count

in a control flow graph. Once a suitable path is found, it is automatically refac-

tored, creating a new thread and inserting synchronisation points as needed.

Developers can modify or execute the resulting code

• Loops to Stream: this module introduces an innovative approach to refactor

for loops into Java stream APIs by establishing templates designed to facilitate

code analysis and transformation. Five innovative templates have been intro-

duced that encompass various common loop use cases, encompassing a wide

range of statements within their body, including but not limited to condi-

tionals, temporary assignments, secondary pathways, and return statements.

Chapter 1. Introduction 10

In this module, we have meticulously accounted for the translation of con-

ventional loops to ensure a secure transition from imperative to functional

programming, while preserving the original behaviour of the code. Notably,

these templates exhibit a higher level of generality compared to prior method-

ologies, enabling their automatic application. The transformations within

stream pipelines facilitate significantly the parallelisation of these function-

alities thanks to the APIs provided by the Stream class itself

• Matching Algorithm: this module centres on algorithm recognition and in-

troduces an innovative method for automatically identifying algorithms by

inspecting their source code. This approach utilises static analysis to extract

data from the source code and calculate a similarity score by comparing it

with templates of well-known algorithms, facilitating the precise identification

of the correct algorithm. The utilisation of templates ensures several advan-

tages: the seamless inclusion of new algorithms in the recognition process,

the potential utilisation of multiple versions of the same algorithm to enhance

identification accuracy, and the ability to recognise a wide array of algorithm

categories (e.g., sorting, searching, traversing, etc.). Once an algorithm is

identified, suggestions of different versions of the same algorithm can be made

in order to propose code that can better satisfy the conditions required for

parallelisation

The second unit is organised in two different modules, one to generate test mainly

for classes and the other one for methods:

• The first module automates the generation of test cases that are finely tuned to

the behaviour of the target class. This method accomplishes this by utilising

Chapter 1. Introduction 11

static analysis to understand the functionality of the class under examination.

Subsequently, this identified functionality is compared with data regarding the

operational characteristics obtained from other classes. As a result, tests are

automatically generated by expanding upon existing tests related to classes

displaying comparable traits. These generated tests are tailored to the code

under examination, rendering them exceptionally effective in improving both

code coverage and bug identification

• The second module automates the creation of a set of test case templates

for untested methods within an application. Each template encompasses the

specific method to be invoked, a corresponding JUnit assertion, and an ar-

ray of input parameters. The proposed approach relies on statistical data

derived from extensive static analyses of software repositories, encompassing

test suites. These statistics pertain to the most commonly used JUnit asser-

tions for each return type associated with a given method. Notably, we have

gathered statistics for the return types of a significant portion of standard Java

library methods. Consequently, when tasked with generating (additional) test

cases for an application, the module crafts personalised test case templates for

each method. These templates are curated by selecting the assertion that sta-

tistically aligns most closely with the return type of the method to be invoked.

The proposed framework offers developers a versatile and user-friendly tool for

enhancing and optimising their source code. In contrast to other approaches in

the current body of literature, our refactoring unit presents a range of refactoring

techniques that yield numerous benefits, including enhanced performance, improved

code readability, and increased code quality. The integration of diverse refactoring

Chapter 1. Introduction 12

approaches within a single tool empowers developers with a consolidated solution,

eliminating the need to configure and navigate various distinct tools.

The testing unit provides the capability to validate the alterations made by

the refactoring unit or to create a new test suite if necessary. The test generation

module for methods facilitates the generation of test templates for methods that have

undergone refactoring via the refactoring unit. This not only delivers developers a

comprehensive package of refactored code but also provides associated tests to verify

its correctness. Furthermore, developers have the flexibility to fully customise the

generated code to align with their specific requirements and characteristics.

The framework is modular, allowing each module to function as a standalone

library or be employed as an integrated unit. This empowers developers to make

informed decisions about which modules to utilise based on their unique needs and

software specifications. For instance, if an application already has an existing test

suite, developers can opt to exclusively employ the refactoring framework and val-

idate the transformations using their current test suite. Another scenario is when

an application already incorporates Java Stream APIs, rendering the module for

transforming loops to streams unnecessary.

1.4 Organisation

The rest of this dissertation is organised as follows: In Chapter 2, the existing state

of the art is explored, alongside a comprehensive comparison with the approaches

detailed in each module. Chapter 3 delves into the Methods parallelisation mod-

ule, with the first segment focusing on data dependency analysis, followed by an

in-depth examination of the tool designed to identify and transform methods from

Chapter 1. Introduction 13

a sequential to a parallel paradigm. Chapter 4 unfolds in two parts: the initial part

introduces the Loop to Stream module, while the latter part delves into the Match-

ing Algorithm module. Chapter 5 is dedicated to the Testing Unit, encompassing

two modules. The chapter initiates with a description of the class test generation,

followed by the presentation of the methods test generation. Chapter 6 accentuates

the array of experiments executed to validate the correctness and efficacy of the

proposed approaches. Each module has been rigorously assessed in real-world sce-

narios, with all results meticulously presented and discussed. Ultimately, Chapter 7

draws together the conclusions derived from the preceding chapters.

14

Chapter 2

Related Works

This dissertation delves into multiple facets of software engineering, with a par-

ticular focus on streamlining developers’ tasks through the automation of various

refactoring and testing techniques. While numerous integrated development envi-

ronments (IDEs) like Eclipse, IntelliJ, and Visual Studio offer hints for applying

refactoring during code development, they typically feature the most commonplace

and straightforward refactorings. These include actions such as removing deprecated

functions, relocating methods, and substituting temporary variables with queries.

One widely-used refactoring tool, SonarLint, is an open-source IDE plugin de-

signed to perform real-time analysis of source code during coding1. It supplies a

default rule set for identifying vulnerabilities, errors, and bugs in the code. Devel-

opers have the flexibility to craft their custom rules and integrate them with the

default ones. Despite offering certain refactoring capabilities, such as code clone de-

tection, its primary emphasis lies in pinpointing vulnerabilities like potential stack

overflow errors and null pointer exceptions.

To execute more intricate refactorings, certain prerequisites must be met to pre-

vent unintended alterations in the system’s behaviour. For instance, transforming

1https://docs.sonarsource.com/sonarlint/intellij/

Chapter 2. Related Works 15

a for loop into a Java stream necessitates a series of checks to confirm that the loop

meets specific criteria, including the condition that all variables within it are locally

scoped and not defined beyond the loop’s boundaries. Another scenario involves

converting sequential code into a parallel one, necessitating a thorough examination

of data dependencies among statements before proceeding with the refactoring.

Analysing code for potential refactoring can pose considerable challenges, often

leaving developers uncertain about its suitability for improvement. The cutting-

edge landscape presents a range of methodologies designed to automatically enact

distinct refactorings across various domains. In Section 2.1, we explore several

approaches dedicated to transforming sequential programs into concurrent ones.

Section 2.2 delves into various works that revolve around the refactoring of loops

into streams. Section 2.3 provides insights into approaches employed for identifying

algorithms within source code. Lastly, Section 2.4 highlights methodologies tailored

for automated testing.

2.1 Concurrent Refactoring

Many approaches provide tools to ease developers’ work to achieve parallelism in

their program. In [67], a new Java library for parallel programming is presented;

these APIs provide many features to ensure multicore parallel programming, cluster

parallel programming, GPU accelerated parallel programming and big data parallel

programming. Developers should manually integrate its code with the appropriate

construct to apply parallelism. Moreover, an approach that makes use of annotations

to guide parallelism is presented in [144]; the author’s custom annotations for C guide

the tool to determine which code fragments could be run in parallel. In addition,

Chapter 2. Related Works 16

in [52] the author presents a programming model to ensure parallelism for C/C++

programs by taking advantage of GPU hardware; similarly, in [57], the authors built

a programming model that is portable across different hardware architectures. These

techniques provide parallel features to developers if they know which code snippet is

prone to parallelism. Our proposal analyses the entire source code, identifying and

refactoring code fragments that are suitable for concurrency. This frees the developer

from the identification of proper statements, which could be time consuming and

error-prone since a manual data dependence analysis could miss some dependencies,

leading to an expected behaviour of the system.

Many papers have proposed automated tools designed to efficiently refactor se-

quential code into its parallel version. In [21], the authors outline an automatic

approach to refactor sequential programs into parallel procedures and validate these

changes with appropriate test suites using combinatorial testing [14]. They use the

JSCAN tool[38] to identify a pair of statements within the same method that could

be executed in parallel. The authors use Bernstein conditions [11] to find parallelisa-

tion opportunities. Once identified all the pairs of feasible parallel statements, they

use ASM [16], a tool for manipulating Java bytecode, to inspect the source code

and select the identified statements; then, the statements are moved in two different

methods and their instructions are replaced with the method call created injected

with the thread call to execute in parallel the two instructions. Additionally, in [20],

the authors present an automatic approach to apply parallelism using the mutation

testing technique. A mutant operator is defined using MUSIC [105], a mutation

testing tool that allows developers to define and operate with custom mutant oper-

ators, hence a mutant operator is defined that will take as input a portion of code

and it encapsulates it in a proper thread of execution. To properly identify the right

Chapter 2. Related Works 17

group of statements, a set of precondition is defined to check whether the set of

statements selected is feasible for parallelisation; finally, the code is mutated to its

parallel version. A test case is automatically generated to validate the mutation.

The MUSIC tool produces a source code for each mutant operator identified, leading

to a fragmented code across multiple files, therefore the developer should manually

merge all the files to rebuild the code.

Our work distinguishes itself from these approaches in two fundamental ways.

Firstly, they establish their data dependence analysis to determine whether two

distinct statements share the same data, whereas our study delves deeper into the

analysis, scrutinising both internal and external method calls as well as variables.

This comprehensive examination ensures that method calls do not share any global

state. Secondly, our approach applies a less intrusive transformation. In fact, we

perform the transformation directly on the same source code without the need to

relocate or insert numerous lines of code within the method. The only additional

statement is the one employed for synchronisation, which amounts to just a single

line. The code produced by our approach is ready for compilation and execution

without necessitating further efforts from the developer.

In [64, 34], the authors presented two approaches to apply Atomic refactoring and

Collection refactoring [33] to refactor synchronised statements. They proposed the

following transformations: converting Int to AtomicInteger, Long to AtomicLong,

HashMap to ConcurrentHashMap, WeakHashMap to ConcurrentWeakHashMap,

and HashSet to ConcurrentHashSet. The authors focused on modernising exist-

ing parallel code by using the new libraries provided since Java 5. They carried

out an effectiveness test to check the correctness of their modifications. In addition,

Chapter 2. Related Works 18

Dig et al. [34] proposed a refactoring approach changing sequential recursive algo-

rithms into a parallel version using ForkJoinTask; they assessed popular recursive

algorithms to show the benefits in execution time. Moreover, in [152], the authors

presented a tool to substitute the Thread class with the Executor class to allow the

use of a thread pool at runtime.

Conversely, our approach proposes several innovative aspects: (i) the applica-

tion of a concrete refactoring opportunity from sequential to parallel, injecting new

threads into the execution; in comparison, the transformations discussed by the

aforementioned approaches just update some class types; (ii) the transformation

shown by our approach is definitely less invasive than the one proposed with the

ForkJoinTask; indeed, our approach requires the update of the instruction that calls

a method with the use of a CompletableFuture and the addition of synchronisa-

tion statements with the join() call; (iii) the applicability of our approach accepts

all method calls that meet the shown preconditions, while the aforementioned ap-

proaches are relevant for recursive algorithms, primitive variables, some collections,

and Java synchronised blocks.

Another refactoring approach was presented in [120], where the authors pro-

posed a Lock refactoring approach to automatically refactor built-in monitor locks

for Java’s synchronised blocks, with the locks provided by the java.util.concurre

nt.locks library: ReentrantLock and ReadWriteLock types. An analysis was per-

formed to check whether the transformations preserved the behaviour of the appli-

cation and if the updated locks guaranteed a performance boost. A similar approach

was presented in [156, 152], where a tool was developed to automatically transform

synchronised locks to reentrant locks. In [154], the authors presented an automated

approach to convert a synchronised statement lock into a StampedLock. In [155],

java.util.concurrent.locks
java.util.concurrent.locks

Chapter 2. Related Works 19

the authors proposed a prototype to automatically convert a coarse-grained lock into

a fine-grained lock to reduce lock contention and, hence, improve performance and

scalability. These approaches focus on modernising and optimising existing parallel

code; hence, the developer has to decide which part of the code should be run in

parallel. Differently, our approach takes a sequential code as input and finds and

introduces parallel constructs to boost performance and scalability.

A practical eclipse-based tool was presented in [148], which replaced the global

mutable state with a thread-local state, and introduced a thread to run the refac-

tored code in parallel. The aim of the tool is to reduce the number of executions

that share the same input and, hence, increase the parallelisation opportunities.

This approach involves invasive changes in the source code since global states are

removed/moved, and the boilerplate code is inserted to create a thread. Conversely,

our approach fits the code analysed, inserting the synchronisation in the proper

position, without moving fields or variables; in addition, as stated before, the use

of CompletableFuture widely reduces the number of instructions required to handle

threads.

In [69], the authors presented an approach to analyse Java streams; their pro-

posed tool statically analyses a stream pipeline and verifies whether to run the

stream in parallel or not. This approach is strictly related to Java streams, while

our tool covers a wider set of possible optimisations, since any method call could

be evaluated for parallel execution. Other examples of refactoring activities for spe-

cific instructions are available in the literature: in [35], Java arrays and their loops

were refactored to ParallelArray by using anonymous classes; in [71], an optimised

compiler was proposed for the automatic parallelisation of loops; in [83], a refactor-

ing tool for the X10 programming language was presented to introduce additional

Chapter 2. Related Works 20

concurrency within loops.

In [67, 57], the authors proposed two different libraries, for Java and C++,

respectively. These APIs provide many features to ensure multicore parallel pro-

gramming, cluster parallel programming, GPU-accelerated, and big data parallel

programming. Developers can manually integrate code with these features to change

it from sequential to parallel. However, one of the main difficulties that developers

face when developing parallel applications is to understand which code fragment

can be suitable for parallel execution [1] and which concurrent APIs could better

fit a particular instruction [34]; instead, our proposal aims to solve these issues au-

tomatically. Indeed, the needed statements were selected according to an accurate

analysis and a refactored parallel version generated via appropriate APIs.

Many approaches focus on the optimisation of the compiled code to achieve

parallelism [70, 68, 37]. These approaches automatically analyse executable code

to identify coarse grain tasks, such as the iteration of a large loop, and execute

them in parallel. These approaches prove that the performance gain is considerable;

however, the optimisation process is not visible to the developer. We propose a tool

that shows the changes made to the source code, providing a clear view of which

sections are selected and how they are properly refactored to achieve parallelism;

moreover, the generated code is available to developers, who can add, modify, or

remove it according to their will.

Asynchronous programming is widely used in Android applications, because of UI

access and I/O operations [32]. In [74], a tool was proposed to automatically detect

long-running operations and refactor them into asynchronous operations. Moreover,

in [98], a tool was described to identify the improper use of asynchronous constructs

and change them. Unlike our approach, the previously mentioned approach focused

Chapter 2. Related Works 21

on analysing code that was already parallel, aiming to identify defects. Moreover,

JavaScript ecosystems provide synchronous and asynchronous calls to handle several

I/O operations. In [49], the authors proposed a refactoring approach to assist devel-

opers in transforming operations from synchronous to asynchronous. Our approach

is more comprehensive, as it is not just focused on I/O operations, which can be

handled as well as other instructions.

Arteca et al. [6] presented an approach to reorder asynchronous calls to be ex-

ecuted as early as possible, yielding significant performance benefits. For this ap-

proach, the input code is parallel, and the developer chooses the parts that can run

in parallel, unlike our more automated approach.

2.2 Loops Refactoring

Lambda expressions are used as parameters in most Java stream APIs, they are

a key construct for functional programming and can be used for different tasks.

E.g. in [140], the authors proposed an approach to ensure clone refactoring using

lambda expressions. For this, it analyses whether a pair of clone fragments can be

refactored [139]. Once it was ensured that two fragments can be unified in a common

function, an appropriate functional interface containing the common method was

created. As they employ lambda expressions to merge code fragments with similar

behaviour in a common functional interface, their work differs from ours that instead

uses lambda expressions to replace traditional for loops with proper expressions.

In [112], three templates have been defined to characterise loops [8]: accumu-

lating loops, searching loops and selecting loops. A loop is frequently employed

to aggregate specific elements from a collection into a singular value through the

Chapter 2. Related Works 22

application of various accumulation operators, such as addition, multiplication, and

concatenation. This particular usage of loops is encapsulated by the Accumulating

pattern. Typically, the type of the resulting value, in other words, the accumulated

value, aligns with the type of the elements within the collection that the loop is

iterating over. The loop’s intended function is established by referencing the ac-

cumulated value, the criteria for element selection, and the iterator used to access

the collection’s elements; loops are frequently employed for element retrieval within

a collection, such as locating the maximum value in an array of numbers. The

Searching pattern encapsulates this specific utilisation of loops, where the loop iter-

ates through collection elements to find a particular element or seek one that fulfils

specific criteria. Typically, the outcome of such a loop is the identified element.

However, other potential outcomes include the position or index of the located el-

ement and a flag that signifies whether the element has been found or not. The

intended purpose of the loop is established by referencing the search criteria and

the iterator employed to access the collection’s elements; lastly, loops are commonly

employed to extract or filter specific elements from a collection, and the Selecting

pattern documents this particular application of while loops. The element type of

the resulting collection matches that of the original input collection. The loop’s

intended purpose is delineated by examining the input and output collections, along

with their respective iterators, and the criteria governing the selection of elements.

Iterators serve as the means to access and store collection elements. Loops are anal-

ysed and labelled according to the three templates. The proposed approach does

not provide any transformation of the source code, indeed they simply discuss what

are the difficulties in trying to transform a loop into a stream pipeline.

Chapter 2. Related Works 23

The definition of these three templates could help the analysis for the transforma-

tion, trying to define a custom transformation for each specific pattern. However,

loops within the same pattern could have different characteristics, leading to dif-

ferent types of transformations; e.g., the accumulating pattern could be identified

with a stream pipeline whose final operation could be a count, or a reduce, or even

a max/min for numeric Streams. Ultimately, the definition of these patterns has

more of an educational and clarifying purpose instead of giving hints for possible

transformations.

In our approach we propose a concrete and effective way to transform the loops

into appropriate Stream pipelines. The templates defined by our approach are all

presented with a corresponding transformation, indeed if a loop matches one of

the patterns, it can be automatically converted to a stream pipeline following the

template guidelines.

An approach and tool to refactor loops to stream code was proposed in [45,

56]. The approach is structured as follows: firstly, a loop is checked on a set of

preconditions to ensure whether it can be refactored to a stream pipeline without

violating the java language constraints; hence, the code of the loop is broken in a set

of potential operations in order to annotate the accesses to variables; accordingly,

the operations are merged maintaining the access to the needed references; finally,

the operations are chained and the pipeline is formed. The main proposed categories

to transform loops into streams are: one that comprises a condition to check whether

an element having some property is in a list; one that generates a new list; and one

updating an accumulator after evaluating a condition.

For the first category the only return value admitted is boolean, indeed they have

defined a precondition (precondition P5 at page 6 of [56]), which literally states:

Chapter 2. Related Works 24

”The body of the initial for loop does not contain more than one return statement.

LambdaFicator can deal with loops with only one return statement as long as they

return a boolean literal and LambdaFicator can infer that they can be refactored to

an anyMatch or noneMatch operation.” [56]. This precondition is partially true,

since the Stream API provides the findAny() and findFirst() methods which returns

an Optional value which encapsulated type is the type of the stream; accordingly,

for loops with a non boolean return statement can be refactored with one of the

two above methods. In order to properly select the right method between the two,

a further analysis is needed to check whether the return needs the first element

encountered in the stream or any one. Moreover, a for loop with two or more return

statements could be refactored using a new stream pipeline for each return statement

encountered, indeed hence removing the limit proposed by their approach.

For the second category the refactoring proposed still uses the imperative style

(i.e. operation add() on a list, instead of collect() on a stream). In the example 3

in figure 4 [56], they show a for loop that after two if statement, it adds an element

to a list of String ; the refactoring proposed by their approach is to use the forEach

method provided by the Stream API to refactor the loop, keeping the if statement

and the add like the original for loop. However, the use of the forEach construct

has strong similarities with the original for loop, indeed this refactoring has just

partially refactored the loop.

In our approach, we have identified five further categories, and the most similar

among these is more general than the one previously proposed (in our first template

we handle any type of return value). Hence, thanks to our identified templates and

transformations many more loops could be refactored and take the advantages of

functional programming. An in-depth comparison with the examples shown in [56]

Chapter 2. Related Works 25

is discussed in section 6.3.1.

One of the advantages of streams is the possibility to easily make it parallel.

However, several factors should be considered that could negatively influence par-

allel execution. In [109], a tool using functional programming was proposed to

ensure deterministic parallel dataflow computations that are lock-free and linearis-

able. In [132], an approach was proposed to analyse accesses in stream-based code

to check if they are thread safe. In [69], stream operations were analysed in order

to determine whether they could be parallel. A set of conditions were defined to

ensure that the mutation to parallel operations improves performance. They assume

that the original code analysed uses streams. This work can be integrated with our

approach, therefore we can refactor loops into accurate stream pipelines, hence their

approach can check whether the generated stream can be run in parallel or not. The

combination of these two works would bring both an improvement in the readability

and the structure of the code, and a boost of the performance of the application if the

generated stream will be optimised for a parallel execution. In [24], an approach was

proposed to check the proper use of classes. The above approaches are complemen-

tary to ours, and it could be advantageous to combine them with ours, in order to

gain parallelism for code not using stream APIs. In [12], an approach was proposed

to extend Stream APIs with new operations, without changing the library code, in

order to achieve high performance and highly-optimised computations. They have

implemented an alternative stream library for Java.

Chapter 2. Related Works 26

2.3 Matching Algorithm

Algorithm recognition has been tackled by several approaches in the state of the

art, both for the software engineering industry and for academic settings. In [123],

the authors present a solution for automatic algorithm recognition using machine-

learning techniques; they extract a dataset of source code containing algorithms,

then a feature extraction is carried out to collect all the characteristic data (e.g.

count-vars, operators, constructs etc.), finally a tag updating is done to remove

redundant tags. They have trained the dataset and built a group of classifiers to

identify the algorithm. In order to add a new algorithm or category of algorithms

to the classification, all the previous steps have to be executed again in order to

properly train the new dataset, which it could be time consuming; conversely, since

our approach uses static analysis to match templates, a new template can be added

to the collection without the need for further operations. The approach is proposed

for an educational environment, where the codes submitted by the students are

analysed to check if the approach is able to recognise a specific algorithm. However,

the presented approach uses a ”black-box” classifier to perform the identification,

hiding the entire recognition process to students or developers. Conversely, our

approach highlights all the steps followed, giving a clear view of the entire process.

In [134], the authors propose an algorithm recognition method that detects sort-

ing algorithmic schemas; these schemas consist in a set of loops, features, operations

etc. They present two different contributions. Firstly, a unified approach that initi-

ates by extracting the models associated with the target algorithm. Subsequently, it

calculates software metrics and various features by leveraging these schemas for clas-

sification purposes. This integrated approach segregates application code, which is

code unrelated to the target algorithms, from the algorithmic code. Consequently,

Chapter 2. Related Works 27

it exclusively refines the algorithmic code, ensuring that irrelevant code does not

influence the computation of features and indicators. Secondly, they address the

utilisation of student-developed algorithm implementations in constructing a clas-

sification tree. They encompass the inclusion of challenging solutions created by

students. This approach facilitates instructors in recognising these problematic so-

lutions, enabling them to provide feedback. Simultaneously, it empowers students

to gain insights into their misconceptions and receive assistance from the system

when they encounter difficulties during their implementations.

Another approach discussing sorting algorithms is presented in [135, 133], where

numerical (number of blocks, number of loops etc.) and descriptive (iterative, recur-

sive) characteristics are extracted from the source code. The recognition process in-

volves two key aspects: firstly, the calculation of the frequency of numerical features

within an algorithm, and secondly, the examination of the descriptive attributes of

that algorithm. When a new algorithm is submitted, it begins by tabulating its

numerical features and scrutinising its descriptive attributes. Subsequently, a com-

parative analysis is conducted on this information against the corresponding data

from algorithms stored in the database. If a match is detected between the charac-

teristics of the algorithm to be recognised and one retrieved from the database, the

recognised algorithm is categorised under the type of the matched algorithm, and

its information is then recorded within the databases. A C4.5 decision tree classifier

is builded to guide the detection process.

These approaches focus on sorting algorithms under some assumptions such as

algorithms are expected to be implemented in a well-established way, e.g. quick-

sort algorithm should be implemented in a recursive way since it is more common.

Chapter 2. Related Works 28

Moreover, they define a set of characteristics that are mostly related to sorting al-

gorithms, indeed their approach is suitable just for sorting algorithms, in particular

just five sorting algorithms. Furthermore, since the approach is mostly based on

the numerical characteristics of the source code, it’s highly sensitive to differences

in terms of number of statements, statements types etc.

In contrast, our approach can identify a wider spectrum of algorithms since the

static analysis can be performed to any Java source code, and we consider different

versions of the same algorithm to increase the identification ability. Moreover, our

approach is able to identify a source code with a specific algorithm even if there

are differences in terms of numerical characteristics because the similarity score

computed takes into account both numerical and descriptive characteristics, without

depending exclusively on one of them in particular.

Many tools have been presented to measure source code similarity. Most of these

approaches address problems such as code clone detection, software licensing vio-

lation and software plagiarism [111]. The Levenshtein distance is often used for

clone detection. In [126], a hybrid technique is presented where source code is lexi-

cally analysed to detect and extract sub-blocks, then similar blocks are grouped and

hashed, finally the Levenshtein similarity and the Cosine Similarity are used to com-

pute similarity between blocks and find Type-3 clones. In [5], the authors propose a

cross-language clone detector for C, C++ and Java, the input code is tokenized to

obtain the keywords of the corresponding language, then these keywords are com-

pared with the Levenshtein distance and finally the clone types are classified based

on similarity of keywords match. In [63], the authors present a tool to detect clones

of a faulty code fragment, a Normalised Compression Distance is defined to detect

duplicate code fragments. The above said approaches use the Levenshtein distance

Chapter 2. Related Works 29

to detect code clone fragments, whereas our proposal defines a tailored distance to

match methods with algorithm templates in order to achieve algorithm recognition.

Furthermore, these tools are sensitive to differences in term of statements between

code fragments, because the presence or absence of multiple statements can lead to

a misidentification of a code similarity; whereas our approach proposes a similarity

score which, despite the statements differences, is able to define a matching grade

for all templates, where the highest one is the most similar to the implemented

algorithm.

Another difference between our approach and these clone detection algorithms is

the level of abstraction used to characterise the statements. As illustrated in figure

1, page 3 in [126], the first step performs a lexical analysis to remove information

like variable names from the source code; this differs from our approach because

they keep the variables types and the names of methods, whereas we extract just

the type of the statement analysed.

2.4 Automatic Test Generation

Automatic test generation has been tackled by several approaches in the state of the

art, since developers and companies can benefit from it during software development.

Random, search-based and symbolic execution are the main approaches employed.

Starting from random generation, Randoop [99], with its current optimisations [77,

94], is one of the first and most popular random testing generators. It generates se-

quence of method calls by incrementally finding and executing random input values;

feedbacks are collected by executions to properly tune the next generations to avoid

Chapter 2. Related Works 30

generating redundant and illegal inputs. JPF-Doop [36] is a tool that combines ran-

dom testing with concolic execution, a formal technique that interleaves symbolic

and concrete execution: it defines symbolic path constraints by repeatedly executing

the application, to reduce the search space over input parameters. Random genera-

tion aims at producing many test cases, where the input values are chosen randomly.

Our proposed approach aims at generating accurate test cases that are tailored to

tested classes and methods, based on the method itself. Moreover, the generation is

based on optimising the test suite, covering classes and methods that have not been

previously tested, reducing redundant test cases or even impractical ones.

Search-based approaches handle test generation as a search problem: actual

solutions are found by using a heuristic approach guided by a fitness function. Evo-

suite [46] is a search-based generation tool that uses an evolutionary algorithm called

DynaMOSA [101] to optimise the generation of test cases based on code coverage.

A many-objective optimisation problem is formulated where one fitness function is

defined for each target (e.g a statement) to cover. The multiobjective algorithm

performs test generation by executing the target system several times to check the

fitness of each test sequence; indeed, the greater the number of runs, the greater the

coverage of the generated test suite. SUSHI [15] is a combination of search-based

and symbolic execution approaches that symbolically executes the target application

to define the best paths covering the structure of the inputs, then the search-based

process aims at optimising paths by generating test cases that correspond to each

path retrieved. In [119], the authors propose a search-based approach for test-data

generation, where static analysis determines the set of methods reaching the path

of the test target. The above approaches need executing the system several times

to obtain a level of coverage that suffices.

Chapter 2. Related Works 31

In contrast, our approach relies just on static analysis to generate the templates,

hence our tool is executed once, and its execution time depends on the number of

lines of code analysed. Furthermore, we look for methods that have not been previ-

ously covered, and generate tests for them, increasing code coverage. Although the

above approaches can produce test cases that automatically run on an application,

they cannot ensure a very high code coverage and are computationally demanding

during the test generation. Moreover, generated tests are often redundant when a

high code coverage has been set as a parameter during generation; therefore running

such generated tests can be also computationally costly. Our approach is very quick

to find methods that need to be tested, as well as to generate test case templates.

Moreover, the generated templates have a clean code that can be easily read by

developers and customised when needed.

COFFEe [14] is a comprehensive framework for Combinatorial Interaction Test-

ing and Fault Characterisation. It is based on Junit5 and can model input param-

eters, generate and execute tests and make a fault characterisation. To properly

configure the framework, the developer should provide the model for generating the

combinations and a unit test describing the steps to be followed for every given

parameter combination. Our approach can provide the artefact needed for the exe-

cution of this tool since we generate tests for uncovered classes and methods.

In [95], test cases are generated in order to cover as many paths as possible.

Moreover, the number of test cases are reduced by finding paths covered by more

than one test case. Their approach is computationally expensive, compared to ours,

since it requires the execution of each test case. Moreover, it could be advantageously

complemented by ours, in order to reduce computation time: along the lines we

introduced, one could select pairs of classes with similar behaviour, pass only one

Chapter 2. Related Works 32

class of the pair to the tool of [95] to generate test cases, and then enlarge these.

Other approaches have been proposed to reduce the number of test cases, e.g. once

they have been generated automatically, in order to reduce execution time, or when

considering that code coverage has not been increased [50, 65]. In our approach, by

analysing the test code and the application code, we can reveal which classes have

not been tested and generate proper test cases selectively.

33

Chapter 3

Automatic Parallelisation of

Methods Calls

To fully harness the capabilities of modern processors, which often feature multiple

cores, achieving parallel execution is a paramount objective. While developers can

attain finely tuned parallelism, the effort required becomes overwhelming for very

large applications due to the intricacies of their components and control flow [7,

125]. Nonetheless, numerous software systems can enhance their execution speed

by initiating new threads at various points. However, to ensure proper execution,

access to shared data among these threads must be meticulously protected.

Concurrent programming, on one hand, can significantly boost performance

when handling extensive data sets. On the other hand, developers encounter various

challenges, including ensuring thread safety, program correctness, and optimising

performance [1, 108]. To maintain program integrity, multiple threads must be ap-

propriately synchronised to prevent uncontrolled concurrent access to shared data.

Additionally, the overhead associated with initiating and managing several threads

needs to be scrutinised to ensure a net performance gain [43].

The automatic transformation of sequential programs into parallel ones remains

Chapter 3. Automatic Parallelisation of Methods Calls 34

an open issue, as it necessitates an in-depth analysis of data dependencies, which can

be notably complex. Furthermore, the transformation into a parallel version should

be guided by strategies that have the potential to yield performance improvements

once the parallel version is operational.

The subsequent sections are organised as follows: Section 3.1 outlines an API

for analysing data dependencies among variables and methods, while Section 3.2

presents an automated approach to refactor method calls from the sequential version

into a parallel one.

3.1 An API for Analysing and Classifying Data

Dependence in View of Parallelism

Parallel computing is a powerful technique that leverages modern processors to en-

hance software performance. However, incorporating parallelism into large legacy

applications can be an arduous challenge for developers. One of the primary difficul-

ties lies in identifying shared data that require protection against concurrent access.

According to data dependence theory, two statements exhibit data flow dependence

when the output set (i.e., the variables being written) of the first statement con-

tains data that are also present in the input set (i.e., the variables being read) of

the second statement [84, 104, 149].

To address this challenge, we propose an automated approach for identifying

data dependencies within methods, which proves invaluable for developers tasked

with introducing statements to enable parallel execution. Our method involves con-

ducting data dependence analysis on all statements within a method. Additionally,

we determine whether each variable used within the method has a local or external

Chapter 3. Automatic Parallelisation of Methods Calls 35

scope and whether it belongs to the output set or the input set. This information

helps identify the operations (read or write) a method performs on each variable.

When executing multiple methods in parallel, special attention is required for

operations performed on variables with external scope. Failure to properly syn-

chronise such operations could lead to race conditions. Automatic parallelisation

of large-grained portions of code remains a complex challenge, demanding in-depth

data dependence analysis. While several approaches have been proposed to au-

tomatically transform sequential code fragments into appropriate parallel versions

while ensuring correctness [20, 43, 68, 81], it remains a significant challenge.

In our approach, we provide a high-level library that allows developers to assess

opportunities for parallelism by analysing the usage of variables with external scope

across multiple methods. Our analysis involves parsing the static source code to

extract information related to classes and methods, including variables, parameters,

method calls, and attributes. Subsequently, our library offers an intuitive API for

developers to identify data dependence (i.e., dependencies on external variables) and

control dependence (i.e., dependencies on called methods) for each method. More-

over, it categorises methods to facilitate the evaluation of safe parallel execution.

Armed with this information, developers can then make informed code modi-

fications, such as reducing external variable dependencies or implementing access

safeguards when executing selected methods in parallel

This Section is organised as follows. Section 3.1.1 describes the proposed clas-

sification of methods based on data and control dependence analysis performed by

our tool. Section 3.1.2 presents the proposed API that developers can use to find

opportunities for parallelism. Finally, Section 6.1 shows our experiments to several

open source projects and their results.

Chapter 3. Automatic Parallelisation of Methods Calls 36

3.1.1 Classifying methods based on data dependence anal-

ysis

Our proposed approach conducts both data and control dependence analyses for

each method. Subsequently, each method is categorised into one of three groups:

stateless (indicating no usage of external data), read (denoting the use of external

data exclusively in the input set), or write (signifying the presence of external data

in the output set). This categorisation is based on a thorough examination of all

the variables used and all the methods called within the code.

For variables, our tool determines whether they are local or external and whether

they belong to the input set or the output set. The method is assigned a category

based on the operations it performs on these variables and the categories of the

methods it calls.

The initial step of the analysis involves inspecting all variables used in the state-

ments within each method to identify external (non-local) variables. Subsequently,

based on the operations performed, we determine whether they belong to the input

or output set. We also identify the set containing all local variables, i.e., those with

scope confined to the method’s body. This encompasses all variables declared within

the method and parameters of primitive data types. Notably, in Java, certain classes

(e.g., Integer, Double, Long) wrap primitive types, but they are passed by value to

method parameters; hence, we treat them as local.

Furthermore, we identify the set of external variables, i.e., those declared outside

the method and accessible by other methods. Additional cases considered include:

firstly, local variables holding elements of a collection accessed via an external vari-

able, where changes to these local variables affect the collection; secondly, variables

Chapter 3. Automatic Parallelisation of Methods Calls 37

referenced using ’this’ or ’super’ keywords, where ’this’ refers to fields and meth-

ods of the class and ’super’ to fields and methods of the parent class; thirdly, local

variables with non-primitive types assigned the return value of a method call, which

makes the instance a shared one.

This analysis yields two sets for each method: local variables and external vari-

ables. The latter is used to categorise the method based on the operations performed

on them, with the category also influenced by the methods called.

To evaluate the global state effects of a method calling other methods, we must

consider the effects of the called methods. If our analysis labels the called method as

a write method, the caller method is likewise labelled as a write method, regardless

of other operations. Similarly, if the called method is labelled as a read method,

caller methods that would otherwise be stateless are categorised as read methods.

Figure 3.1 illustrates a state machine encompassing the three categories a method

can belong to and the transitions between these tentative categories, which are

temporarily assigned when not all statements have been analysed. This creates a

priority hierarchy, with ’write’ being the highest priority; once this state is entered

due to a write operation, it cannot be exited regardless of other operations. ’Read’

is the intermediate category, while ’stateless’ has the lowest priority.

After determining the label for each called method, we check for any method

calls within the method body with a higher priority label than the temporary one

assigned. If found, the method is assigned the higher-priority label.

In cases where our tool lacks access to the source code for analysing libraries,

we rely on developer-provided classifications. To facilitate this process, we offer:

(i) a manually curated classification for the most commonly used methods in the

standard Java library; (ii) a generated list of methods found within the analysed

Chapter 3. Automatic Parallelisation of Methods Calls 38

Figure 3.1: The state machine representing the three possible categories for a method

code.

The developer’s responsibility is to decide whether each method should be cate-

gorised as ’write,’ ’read,’ or ’stateless’.

In Figure 3.1, we present an illustrative example of the analysis performed by

our approach. The left portion of the figure displays the method under analysis,

while the right side exhibits the output generated by our analysis. The analysis

reveals that the method’s input set is empty, while the output set (refer to ’External

write variables’) includes only the ’counter’ variable. Consequently, the method is

categorised as ’WRITE.’

Furthermore, the control dependence analysis identifies two method calls within

this method. The first call is to ’Math.round()’ from the ’java.lang’ library, which our

tool categorises as a ’STATELESS’ method. The second call is to ’Example.logger()’,

a method within the same class as the one under analysis, classified by our tool as

a ’READ’ method.

To obtain the displayed output on the right side, you can utilise the provided API.

Chapter 3. Automatic Parallelisation of Methods Calls 39

Specifically, the ’getMethod(String qualifiedName)’ function within the ’Method-

Analyzer’ class returns a ’ContainerMethod’ instance that encapsulates the anal-

ysed method, along with all the extracted data. You can access category informa-

tion, variables, method calls, and external methods by invoking the ’getCategory(),’

’getVariables(),’ ’getMethodCalls(),’ and ’getExternalMethods()’ functions, respec-

tively, on the ’ContainerMethod’ instance.

Regarding parallelisation, since the output set (’External write variables’) is

not empty and includes the ’counter’ variable, it should be locked when the ’foo()’

method is executed in its own thread, as well as when another method that ac-

cesses the same variable runs concurrently. To identify all variables requiring a lock,

you can simply find the intersection of the common external variables, adhering to

Bernstein’s conditions [11]. For locking purposes, you can use a data type like ’Atom-

icReference¡V¿’ from the ’java.util.concurrent.atomic’ package to automatically syn-

chronise concurrent accesses. To initiate the execution of the ’foo()’ method in its

own thread, you can employ a construct like ′CompletableFuture.runAsync(()− >

o.foo(tmp))′.

Chapter 3. Automatic Parallelisation of Methods Calls 40

Listing 3.1: At the top, an example method foo(Double tmp), at the bottom, all the data

extracted by our library. Method’s category is given by a write operation on the external

variable counter

public void foo(Double tmp){

Double bar = Math.round(tmp);

counter += bar;

logger("Counter updated with tmp value: " + tmp);

}

Qualified name: Example.foo

Category: WRITE

External write variables: [counter]

Read Method Calls: Example.logger

External read methods: java.lang.Math.round

3.1.2 API of the developed library

We have developed a Java library to facilitate the dependence analysis described

above, providing developers with comprehensive insights extracted from their ap-

plications and categorisation of methods based on the dependence analysis. To

accomplish this, we leveraged the Javaparser library [129] for parsing the source

code and extracting essential data. Javaparser offers robust APIs for parsing source

code and generating an Abstract Syntax Tree, granting developers the tools needed

to navigate and modify the tree structure.

Our tool comprises seven classes, with five serving as the core for code parsing and

dependence analysis, while the remaining two house the API accessible to developers

for initiating the analysis and accessing the obtained data. To commence the analysis

and gather methods classified according to dependence analysis, developers need to

instantiate the ’MethodAnalyzer’ class. Each analysed method is stored as an object

Chapter 3. Automatic Parallelisation of Methods Calls 41

of the ’ContainerMethod’ class, encapsulating all the extracted dependence data.

The enumeration ’Category’ defines the three possible categories that a method can

fall into.

The ContainerMethod class encapsulates a method along with all the data col-

lected during the dependence analysis. We provide developers with both the cate-

gorisation of each method, according to the previously defined three categories, and

the data extracted during the analysis. Table 3.1 presents a list of available methods

along with their descriptions. Each method identified during the analysis is uniquely

identified by its qualified name, retrievable using the ’getQualifiedName()’ method.

In this context, the qualified name consists of the type followed by the method name.

For instance, the qualified name of the ’length()’ method in the ’String’ Java class

is ’java.lang.String.length’.

The method’s category is obtainable through the ’getCategory()’ method. Ad-

ditionally, we offer several other methods to empower developers with a deeper

understanding of the code. The ’getVariables()’ and ’getExternalMethods()’ meth-

ods return a hashmap where each key-value pair consists of the variable name or

the qualified name of the external method as the key and its corresponding category

as the value. For variables, the category is determined by the operation applied to

them, with ’write’ indicating data updates and ’read’ indicating data retrieval.

Moreover, the ’getMethodCalls()’ method returns a hashset containing the re-

spective ’ContainerMethod’ instances of all methods called within the current method’s

body. The ’getCallers()’ method provides the ’ContainerMethod’ instances of all

methods that contain a call to the current method within their bodies. Finally, the

’getSharedVariables()’ method offers a hashmap where keys represent the intersec-

tion of the output set of the current method with the output set of another method,

Chapter 3. Automatic Parallelisation of Methods Calls 42

Table 3.1: Methods provided by the ContainerMethod class

Name Description
getQualifiedName Return the qualified name of the wrapped method
getCategory Return the category of the method
getVariables Return a map of external variables labelled as READ or WRITE
getExternalMethods Return a map of external method calls labelled as STATELESS, READ or WRITE
getMethodCalls Return the internal methods called by the wrapped one
getCallers Return the methods that contain a method call of the wrapped method
getSharedVariables Returns a map containing write variables shared among methods

as indicated in the value of the respective pair. Each pair in the map highlights data

shared by two or more methods.

The MethodAnalyzer class serves as the entry point for our API, allowing you

to initiate the analysis and gather all labelled methods. To instantiate this class,

you need to provide the source path of the project to be analysed. This source path

corresponds to the root of the package structure containing the source files. For a

comprehensive list of methods offered by ’MethodAnalyzer,’ please refer to Table

3.2.

To begin the analysis, call the ’startAnalysis()’ method. This function parses

the source code based on the provided source path. Subsequently, other methods

within the class can be invoked. However, please note that invoking these methods

before ’startAnalysis()’ may result in empty values.

The first four getter methods return methods categorised according to the labels

established through the earlier analysis. The ’getMethod(QualifiedName: String)’

method returns the method specified by its qualified name.

The following five methods require further explanation. A method can contain

multiple read and write operations on different external variables, as well as method

calls to stateless, read, or write methods. As indicated by the state machine in Figure

3.1, the initially suggested category may change during the analysis of subsequent

lines. When all lines have been considered, the method is assigned a final label. This

Chapter 3. Automatic Parallelisation of Methods Calls 43

Table 3.2: Methods provided by the MethodAnalyzer class

Name Description
startAnalysis Starts the analysis for the specified directory (project root directory).
getSlessMethods Return all methods labelled as STATELESS
getReadMethods Return all methods labelled as READ
getWriteMethods Return all methods labelled as WRITE
getAllMethods Return all analysed methods
getMethod Return a specified method
getVarMethods Return all methods having at least an external variable
getMethCallMethods Return all methods having at least a method call
getExternalMethods Return all methods having at least an external method call
getMethExclMethods Return all methods whose category is due to method calls only
getVarExclMethods Return all methods whose category is due to external variables only
estimateWriteVars Return a map containing all methods with n write variables

label is determined by the highest category of operations or method calls encountered

within the method’s body. For example, if a method includes a read operation on

an external variable, its category will be updated from ’STATELESS’ to ’READ.’ If

a subsequent method call is found within the same method, and the called method

is categorised as ’WRITE,’ the label of the analysed method will be updated to

’WRITE,’ as method calls with higher priority categories take precedence over read

operations.

Lastly, the ’estimateWriteVars()’ method returns a map where keys range from

1 to 7, each corresponding to a list of methods. These keys represent the size of the

output set for each method within the respective list. Therefore, methods with only

one write variable are categorised under key 1, methods with two write variables

under key 2, and so on. We provide this mapping to assist in understanding the

synchronisation requirements for parallelising the method. The larger the size of

the shared data, the greater the effort required to ensure proper synchronisation.

All methods retrieved through this function are encapsulated within the ’Contain-

erMethod’ class.

Chapter 3. Automatic Parallelisation of Methods Calls 44

3.1.3 Summary

This study introduces a library that equips developers with a versatile API for con-

ducting data dependence and control dependence analysis within software systems.

Each method under examination is enriched with valuable data that developers can

readily access via the provided API. Our data dependence analysis encompasses

variables, while we also perform control dependence analysis.

The proposed API is designed to be user-friendly and high-level, simplifying its

utilisation. It can be applied, for instance, to automatically assess the feasibility

of parallel execution for a given method. Our custom library and API have been

applied to analyse various open-source systems, ranging in code complexity. The

results of these experiments have validated the precision of our method classifica-

tions, demonstrating our capability to accurately identify data dependencies among

methods. Dependency analysis is a pivotal step towards enabling parallel execution

of code, potentially enhancing software performance without introducing unforeseen

issues.

Understanding the interplay between variables and methods is of primary impor-

tance when considering parallel execution of specific code segments. The subsequent

phase of this module involves leveraging this analysis to pinpoint method calls that

can be transformed into parallel versions, provided their context, data dependencies,

and computational complexity align favourably with parallelisation goals.

Chapter 3. Automatic Parallelisation of Methods Calls 45

3.2 An Automatic Transformer from Sequential

to Parallel Java Code

Sequential programs can benefit from parallel execution to enhance their perfor-

mance. When developing a parallel application, various techniques are employed to

achieve the desired behaviour, such as identifying segments suitable for parallelism,

synchronising access to shared data, and optimising performance. However, man-

ually transforming a sequential application into a parallel one can be a daunting

task due to several challenges. These include the need to inspect a large volume of

code, the potential for errors resulting from inaccurate data dependence analysis,

which can lead to unpredictable behaviour, and addressing imbalances in workload

distribution between parallel threads.

The current state of the art offers some noteworthy approaches that can auto-

matically convert applications into parallel versions [153]. However, many of these

approaches have limitations. Some exclusively focus on recursive algorithms, which

represent only a narrow category of algorithms [64, 34]. Others concentrate on spe-

cific data structures, like arrays and streams, limiting their applicability [35, 69].

In contrast, our proposed approach offers a broader spectrum of parallel execution

opportunities. While prior approaches often focus solely on identifying specific cat-

egories of statements [74, 49], or refrain from introducing parallelism [148, 6, 120,

98, 156, 155]; our analysis is more comprehensive in scope.

Furthermore, most existing approaches rely on concurrent libraries that predate

Java 8, whereas our work leverages the latest Java libraries for concurrent compu-

tations. This integration offers the added benefit of incorporating high-level API

calls into the resulting source code, ensuring minimal overhead when initiating new

Chapter 3. Automatic Parallelisation of Methods Calls 46

threads. Our fine-grained transformation only modifies a small portion of the initial

source code, providing developers with a clear and readable new version. While

libraries for parallel programming exist for Java and C++ [57, 67], developers must

manually determine which code segments are amenable to parallelism and how APIs

can be utilised. In contrast, our approach automatically generates a parallel version

of the source code.

Several other approaches perform automatic parallel transformation directly in

the executable code [37, 70, 68]. While these approaches achieve impressive per-

formance gains, they hide the parallel version from the developer, limiting their

ability to modify it to meet additional requirements or make improvements. In con-

trast, our approach generates the modified source code, making the transformations

transparent and the code amenable to further changes.

We propose an automated approach that statically analyses source codes to look

for fragments of code that can be safely run in parallel to provide performance gain.

The approach and corresponding tool use control flow analysis, data dependence

analysis, and a control flow graph to identify execution paths that can be safely

run in parallel (safety is checked according to Bernstein’s conditions [11]), showing

that such paths require considerable computational efforts before synchronisation is

needed, so that a performance gain is expected. Firstly, code is analysed to find

sequences of statements that could run in parallel, while adhering to some syntactic

constraints (e.g., blocks of code in the same conditional branch, etc.). Secondly,

data dependence analysis and control dependence analysis are carried out to check

data dependencies among statements that could run in parallel. Two statements

have a data flow dependence when the output set (i.e., the set of variables written)

of the first statement contains data that are in the input set (i.e., the set of variables

Chapter 3. Automatic Parallelisation of Methods Calls 47

read) of the second statement [149, 84, 11]. Thirdly, a control flow graph (CFG) [3]

is built, which represents all the paths that could be executed by a program. Such

a CFG is then used to determine the two paths that might execute in parallel and

to evaluate whether the statement numbers in each path are sufficiently large to

possibly improve execution time. Finally, once a path that has passed all previous

analysis steps has been found, the source code is refactored to run a new thread

and insert synchronisation points where needed. The code of the new version is

generated automatically for developers to further modify or simply run it.

Our primary original contributions are as follows. We present a comprehensive

approach that (i) automatically transforms sequential Java source code into paral-

lel code (in previous literature, the authors mainly tackled executable code); (ii)

undertakes a detailed static analysis of the source code, comprising control flow,

data dependence analysis, evaluation of Bernstein’s conditions, and the assessment

of the computational effort required; (iii) employs an a priori evaluation of the po-

tential benefits of new threads by computing execution paths; and (iv) evaluates the

benefits performed according to the context of the instructions that are potential

candidates for parallel execution and the estimated computational effort required by

such instructions. We performed several experiments to assess the benefits and cor-

rectness of our approach. We report on an experiment where the analysis steps were

automatically executed on an application; the results of several tests executed on

the refactored parallel version show that our transformation preserves correctness.

The subsequent sections are organised as follows: Section 3.2.1 introduces the

general approach and provides a high-level algorithm for code analysis. Sections

3.2.2 and 3.2.3 delve into the static code analysis, elucidating method call context

and data dependence. Section 3.2.4 details the construction of the CFG for the

Chapter 3. Automatic Parallelisation of Methods Calls 48

analysed method and the evaluation of instructions for potential parallel execution.

Finally, Section 3.2.5 sums up the proposed approach and concludes the module.

3.2.1 Proposed Approach

The proposed approach employs static analysis to extract data from the source code

of the analysed software. Parsing activities rely on the JavaParser library, which

serves as an automatic parser. It takes one or more .java files as input, generates

an abstract syntax tree (AST) for each file, and offers functionality for various

operations on ASTs, such as reading, inserting, deleting, and updating [129].

Algorithm 1 provides a high-level pseudo-code representation of our analysis.

The procedure takes the source code of the analysed application as input, parses it,

and returns instances of CompilationUnit for the application. A CompilationUnit

represents a single Java file in the form of an AST. Subsequently, the method decla-

rations are extracted from each CompilationUnit instance to create a list containing

all the methods implemented in the source code. While a method body generally

contains numerous instructions, our analysis focuses on method calls since they are

the instructions evaluated for potential parallel execution.

Each method call undergoes analysis based on its context, data dependence, and

the number of instructions it involves. All three aspects are covered in the following

three sections. Once a method call successfully passes all the checks, it is trans-

formed into a parallel version, and the method is updated with the appropriate

synchronisation statement, based on the identified data-dependent statement. Fi-

nally, all compilation units containing at least one transformed method are written

to new Java files.

Chapter 3. Automatic Parallelisation of Methods Calls 49

Algorithm 1 The algorithm of the proposed approach

procedure TransformSequentialToParallel(Sc)
compilationUnits← parseAllPaths(Sc)
for cu, compilationUnits do

methods← visitMethods(cu)
end for
for m, methods do

methodCalls← m.getMethodCalls()
for mCall, methodCalls do

if ContextAnalysis(mCall) then
ddStatement← DataDependenceAnalysis(m,mCall)
if CFGAnalysis(m, mCall, ddStatement) then

mCall← transformToParallel(mCall, ddStatement)
end if

end if
end for

end for
printParallelCu()

end procedure

3.2.2 Method Call Analysis

Executing methods can consume significant time, especially if they contain a large

number of instructions or encapsulate nested method calls. To enhance execution

speed, certain methods can be executed in dedicated threads. We conducted three

distinct analyses to ensure that our proposed automatic source transformation into

a parallel version preserves the behaviour and correctness of the original version.

Firstly, we analyse the method call’s context to assess the safety and suitability

of inserting a parallel construct. Secondly, we examine data dependencies between

concurrent instructions to prevent race conditions. Thirdly, we evaluate the number

of instructions that threads would execute before requiring synchronisation. This

evaluation helps determine whether the workload is balanced between threads and

if there are enough instructions to achieve a performance gain.

Chapter 3. Automatic Parallelisation of Methods Calls 50

The context of the method call is critically important when assessing the po-

tential benefits of running the method call in parallel. The context refers to the

statement in which the method call is located. This statement could either be the

method call itself or a more complex statement containing it. In the former case,

further analysis of the same statement is unnecessary since the method call is the

only instruction in the statement. Therefore, we can directly check additional condi-

tions to determine the feasibility and desirability of parallel execution. Conversely,

in the latter cases where the method call is within another statement, there may

be situations where parallel execution is unsuitable. In such cases, we avoid further

analysis aimed at parallelisation.

Algorithm 2 outlines the steps performed when analysing the context of a method

call. The context is extracted by identifying the ancestor of the method call.

Algorithm 2 The instructions performed by the context analysis

function ContextAnalysis(mCall)
context← getAncestor(mCall)
suitableContexts← defineSuitableContext()
return suitableContexts.contains(context)

end function

The ancestor corresponds to the parent node on the AST (Abstract Syntax Tree)

of the node containing the analysed method call. If the method call is within a more

complex statement, the ancestor will be the instruction containing it. Otherwise, the

ancestor will be the statement containing the block of instructions with the method

call. For example, it could be the body of a method declaration or the body of a

for statement. Once the ancestor is retrieved, it is compared to a predefined set of

feasible contexts. The function returns true if the context of the method call passed

as input is included in the feasible ones, false otherwise.

Chapter 3. Automatic Parallelisation of Methods Calls 51

Listing 3.2 provides examples of method calls that are unsuitable for parallel

execution. These include method calls that are part of the condition expression in if,

while, and do constructs (examples 1 and 2 in Listing 3.2), as well as statements such

as switch, for, throw, assert, and synchronised (example 3). In such cases, parallel

execution is unsuitable because the method call’s return value is immediately used

to determine whether to execute the following statements. Similarly, method calls

within a return statement are not advantageous for parallel execution since the need

for the return value would cause the calling thread to wait for the result.

Listing 3.2: Method calls whose context is such that parallelisation is unsuitable. The

method call is part of: (i) an if condition, (ii) a while condition, and (iii) a for loop

iterable.

// Method call in a condition statement

1. if (checkForFileAndPatternCollisions()) {

addError("File property collides with fileNamePattern. Aborting.");

addError(MORE_INFO_PREFIX + COLLISION_URL);

return;

}

// Method call in a while statement

2. while (isRunning() != state) {

runningCondition.await(delay , TimeUnit.MILLISECONDS);

}

// Method call passed as iterable for a foreach statement

3. for (StatusListener sl : sm.getCopyOfStatusListenerList()) {

if (!sl.isResetResistant ()) {

sm.remove(sl);

}

}

Listing 3.3 shows six examples of method calls that can be transformed to run

Chapter 3. Automatic Parallelisation of Methods Calls 52

in parallel. Line 1 shows a method call used as the value for an assignment expres-

sion; line 2 shows a method call used as the value for an assignment in a variable

declaration expression; line 3 shows a method call chained with other calls; line 4

shows a method call passed as the argument for other method calls; line 5 shows a

method call without any other instruction; and line 6 shows a method call passed

as the argument for an object creation expression. In such cases, the result of the

method call is not used to determine whether to execute the following statements.

Indeed, our aim is to evaluate whether the whole statement (which could consist

of several expressions) could run in a thread parallel to the thread that runs the

following statements.

Chapter 3. Automatic Parallelisation of Methods Calls 53

Listing 3.3: Method calls whose context is such that parallelisation is suitable. The method

call is: (i) part of an assign expression, (ii) part of a variable declaration expression, (iii)

chained with other method calls, (iv) passed as argument for a method call, (v) called

without other instructions and (vi) passed as argument for an object creation expression.

// Assign Expression

1. le = makeLoggingEvent(aMessage, null);

// Variable Declaration Expression

2. BufferedReader in2 = gzFileToBufferedReader(file2);

// Chained method calls

3. context. getStatusManager() .getCount ();

// Method call passed as argument for another method call

4. buf.append(tp. getClassName());

// A simple method call

5. implicitModel. markAsSkipped() ;

// Method call passed as argument for an object creation

6. new Parser(tokenizer. tokenize());

3.2.3 Data Dependence Analysis

To ensure proper guarding of shared data among threads, we employed the method-

ology detailed in section 3.1, which offers a collection of APIs for extracting data

dependence within methods. This approach scrutinises both variables and method

calls within a method to establish its input set (i.e., the set of variables read) and

output set (i.e., the set of variables written). Algorithm 3 outlines the steps exe-

cuted during the data dependence analysis. Initially, the method call statement is

Chapter 3. Automatic Parallelisation of Methods Calls 54

retrieved, allowing us to define the input and output sets of the statement. Subse-

quently, for each subsequent statement, we compute the intersection between sets.

If the intersection contains at least one element, the statement is identified as the

data-dependent statement requiring synchronisation; otherwise, we proceed to the

next statement. In the absence of a data-dependent statement, the last statement

of the method is returned.

Algorithm 3 The instructions performed by the data dependence analysis

function DataDependenceAnalysis(m, mCall, ddStatement)
s1 ← getStatement(m,mCall)
inSetS1 ← getInputSet(s1)
outSetS1 ← getOutputSet(s1)
index← indexOf(m, s1)
for i← index+ 1,m.getStatements().length()− 1 do

s2 ← m.getStatements().get(i)
inSetS2 ← getInputSet(s2)
outSetS2 ← getOutputSet(s2)
if checkIntersections(inSetS1, outSetS1, inSetS2, outSetS2) then

return s2
end if

end for
lastStatement← getLastStatement(m)
return lastStatement

end function

Listing 3.3 illustrates various statements. In the case of lines involving assign-

ments, such as lines 1 and 2, the output set encompasses the variable being assigned

and any variables modified by the called method, as determined by analysing the

called method itself. For example, in line 1, the output set comprises the variable

le, while in line 2, it includes the variable in2. We will assume that no variables are

written in the called methods for the sake of this explanation.

On the other hand, the input set consists of all variables passed to the called

method and those read within the called method. Thus, in line 1, the input set

Chapter 3. Automatic Parallelisation of Methods Calls 55

includes the variable aMessage, and in line 2, it contains the variable file2. Again,

let’s assume that no variables are read in the called methods for this illustration.

In cases where methods are called on an instance using a variable that holds the

reference, like the calls in lines 3, 4, 5, and 6, the variable holding the reference

is part of the input set. This is because when executing the method call, such a

variable is read to properly dispatch the message. As a result, variables buf and tp

constitute the input sets for line 4, while variables implicitModel and tokenizer are

the input sets for lines 5 and 6, respectively. For lines 3, 4, 5, and 6, their respective

output sets will include all the variables written in the called method, in addition

to the variables used to call the method (e.g., context for line 3, tp and buf for line

4, etc.), if the called method writes some of the attributes within the same instance.

Once these two sets are defined for the relevant statement, the analysis is reiter-

ated for each subsequent statement to identify any data dependencies. Listing 3.4

provides an example of the data dependence analysis. In this instance, for line 74, we

are analysing the method getRandomlyNamedLoggerContextVO(), and the method

call is located within a variable declaration expression. As previously mentioned, we

consider this instruction feasible. Subsequently, commencing from line 75, the data

dependence analysis is executed to pinpoint a data-dependent statement, which is

found on line 79 where the variable lcVO is assigned to the e.loggerContextVO field.

This data-dependent statement signifies the point at which the main thread will

need to wait for the forked thread to complete before resuming its execution.

Chapter 3. Automatic Parallelisation of Methods Calls 56

Listing 3.4: Data dependence analysis: lcV0 is declared at line 74 (the statement has it in

its output set) and is used at line 79 (the statement has it in its input set), hence the two

statements are data dependent as the intersection between their output and input sets is

not empty.

74 LoggerContextVO lcVO = corpusModel. getRandomlyNamedLoggerContextVO() ;

75 PubLoggingEventVO [] plevoArray = new PubLoggingEventVO[n];

76 for (int i = 0; i < n; i++) {

77 PubLoggingEventVO e = new PubLoggingEventVO ();

78 plevoArray[i] = e;

79 e.loggerContextVO = lcVO ;

80 e.timeStamp = corpusModel.getRandomTimeStamp ();

....

}

3.2.4 Control Flow Graph Analysis

Once all data dependencies among statements have been identified, the analysis

proceeds to pinpoint the potential paths that can be executed in parallel. These

parallelisable paths are primarily identified by scrutinising the control flow graph

(CFG), a graph-based representation that encompasses all possible program exe-

cution paths [3]. Subsequently, a comprehensive evaluation is conducted to assess

whether introducing parallelism would indeed lead to performance enhancements.

This final aspect of the analysis determines whether the workload allocated to both

threads is both balanced and substantial enough to justify the overhead associated

with starting a new thread.

Numerous studies have underscored the significance of the number of statements

when evaluating the computational complexity of an algorithm [54, 128]. Our ap-

proach leverages control flow graph theory to inspect execution paths and evaluate

Chapter 3. Automatic Parallelisation of Methods Calls 57

the number of instructions encompassed by each path. For the CFG analysis, we

employed the JGraphT library (https://jgrapht.org, accessed on July 21, 2023).

Algorithm 4 outlines the steps undertaken during CFG analysis.

To begin, the CFG is constructed, and special attention is given to conditional

and loop branches to ensure the graph’s acyclicity. Next, the nodes containing the

method call that could be executed in parallel and the data-dependent statement (as

previously defined) are gathered. Finally, the paths amenable to parallel execution

are computed and compared. The function returns true if these two paths are

deemed suitable for parallelisation and false otherwise.

Algorithm 4 The instructions performed by the control flow graph analysis

function CfgAnalysis(m, mCall, ddStatement)
cfg ← BuildCfg(m)
cfg ← handleConditionalAndLoops(cfg)
node1 ← getGraphNode(cfg,m)
node2 ← getGraphNode(cfg, ddStatement)
return comparePaths(node1, node2)

end function

A CFG represents the set of instructions that form a program and all the inter-

actions that intervene. In a CFG, each node corresponds to a basic block, which is

a line of code encompassing a specific statement, while edges depict the transitions

from one instruction to another. CFGs can include nodes with multiple incoming or

outgoing edges, such as those found in conditional statements. Additionally, they

may contain cycles, often arising from loop statements like ”for” and ”while” loops

or recursive method calls.

Listing 3.5 showcases the source code of a method named ”start(),” and Figure

3.2 illustrates its corresponding CFG. This method is part of the ”LevelChange-

Propagator” class within the Lombok library (https://github.com/projectlo

https://github.com/projectlombok/lombok
https://github.com/projectlombok/lombok

Chapter 3. Automatic Parallelisation of Methods Calls 58

mbok/lombok, accessed on April 17, 2023). During the analysis, since this method

contains two method calls, each with its own CFG, the CFG of ”start()” was con-

structed with four nodes in addition to all the nodes from the CFGs of the called

methods, denoted as CFG96 and CFG98. In cases where a single node is found to

have multiple method calls during the analysis, the CFGs of the called methods are

interconnected in the order of execution.

Figure 3.2: Control Flow Graph of the code shown in Listing 3.5.

Listing 3.5: Method start() has two method calls, one at line 96 and the other at line 98.

The method is part of the lombok library.

public void start() {

95 if (resetJUL) {

96 resetJULLevels ();

97 }

98 propagateExistingLoggerLevels ();

99

100 isStarted = true;

}

Algorithm 5 provides a step-by-step outline of the instructions followed to build

a CFG based on a method declaration. Our approach constructs a CFG for a given

method, and for each method call identified within the method, its CFG is integrated

with the main CFG of the caller. These identified method calls can either correspond

https://github.com/projectlombok/lombok
https://github.com/projectlombok/lombok

Chapter 3. Automatic Parallelisation of Methods Calls 59

to methods implemented within the analysed application, in which case they are

analysed, or they can be methods from external libraries without accompanying

source code, which are not analysed. Consequently, when a method’s body includes

a call to a library-implemented method, we represent it as a single node within

the CFG. The first and last nodes are preserved to facilitate the merging process

between CFGs.

Algorithm 5 The algorithm used to build the control flow graph analysis for a
method

procedure BuildCFG(m)
cfg ← createEmptyCfg()
for statement← m.getStatements() do

node← createNode(statement)
if firstNode = null then

firstNode← node
end if
cfg.addNode(node)
if previousStmt ̸= null then

cfg.addEdge(previousStmt, node)
end if
if statement.contains(MethodCall) then

mCall← statement.getMethodCall()
if mCall.getCfg() = null then

buildCfg(mCall)
end if
cfg.addEdge(node,mCall.getCfg().getF irstNode())
previousStmt← mCall.getCfg().getLastNode()
if statement.next() = null then

lastNode← previousStmt
end if

else
previousStmt← node

end if
if statement.next() = null then

lastNode← node
end if

end for
end procedure

Chapter 3. Automatic Parallelisation of Methods Calls 60

To accurately assess the workload assigned to each thread, it’s crucial to establish

clear and unambiguous execution paths within the Control Flow Graph (CFG). This

requirement necessitates that between any pair of nodes in the graph, only a single

path should exist connecting them. This condition must hold true for all nodes

in the CFG. To achieve this, we need to handle conditional branches and loops

appropriately.

For conditional statements with two alternative paths, we employ the worst-case

execution time (WCET) approach [55]. This approach involves selecting the branch

with the highest number of instructions, as it is likely to have the lengthiest execution

time. The other branch is then disconnected from the graph. Consequently, pruned

nodes are no longer connected to any other node in the graph. However, we retain

these pruned nodes within our representation, as they may need to be reconnected

to the graph for further analysis.

Listing 3.6 provides an example of a conditional statement with method calls

in each branch. If the analysis determines that the method call within the ”then”

branch (line 79) should be parallelised due to the higher WCET, the ”else” branch

will be removed from the graph. The resulting CFG is shown on the left side of

Figure 3.3. Conversely, if the ”else” branch is selected, the ”then” branch will be

removed, as depicted on the right side of Figure 3.3. In the example from Listing 3.5,

even though there is no ”else” branch, the corresponding CFG will still be modified

by removing the edge connecting node 95 to node 98. This is done because the

branch 95→96→CFG96→98 is longer, with more instructions and a higher WCET

value, than the branch 95→98.

Regarding loop management, some approaches aim to statically estimate the im-

pact of loops on program execution [79, 78]. In our approach, to maintain efficiency

Chapter 3. Automatic Parallelisation of Methods Calls 61

while keeping the analysis manageable, we treat loops as simple block statements.

We analyse them without estimating the number of iterations that could be executed.

Such a detailed analysis of loops is outside the scope of our proposal. However, we

do keep track of these occurrences when evaluating the workload of a branch.

Finally, we consider cases where a chain of method calls introduces cycles, mean-

ing a method can call a previous method in the chain, creating a loop. When we

insert the corresponding CFGs into the main CFG, this can disrupt the assumption

of a single path between any pair of nodes. However, such occurrences are very rare,

and if encountered, we simply remove the edge that creates the loop in the graph.

Listing 3.6: A code fragment of a if/else statement with a method call (apply(...)) in both

blocks. Both method calls are in the context of a Variable Declaration Expression (line

79 and 81).

78 if (ruleEntry.type == RuleEntry.TYPE_TEST_RULE) {

79 result = ((TestRule) ruleEntry.rule).apply(result , description);

80 } else {

81 result = ((MethodRule) ruleEntry.rule).apply(result , method , target);

82 }

83 return result;

Figure 3.3: Control Flow Graphs of the code with conditions shown in Listing 3.6.

The final step in our approach involves evaluating the instructions that make up

Chapter 3. Automatic Parallelisation of Methods Calls 62

the two paths, each of which can be assigned to a separate thread. The first path

extends from the node containing the instruction we wish to execute in parallel to

the subsequent instruction. The other path extends from this subsequent instruction

to the data-dependent statement. Algorithm 6 outlines the procedure carried out

in this step.

The paths are determined using Dijkstra’s shortest path algorithm, utilising the

API provided by the third-party library JGraphT. By design, the shortest path is the

only path between two given nodes in the graph. The length of a path corresponds to

the number of nodes (instructions) within it. Therefore, we examine the lengths of

both paths, filtering out paths with short lengths and paths with length differences

exceeding a predefined threshold. The function returns true if both paths meet these

two criteria, and false otherwise.

Figure 3.2 illustrates the CFG of the method in Listing 3.5. In this example,

node 96 is earmarked for parallel execution, while node 100 represents the data-

dependent instruction. The first path extends from node 96 to node 98, while the

second path extends from node 98 to node 100. The length of the first path is 17,

whereas the length of the second path is 42 (accounting for the instructions within

the called methods). When the main thread reaches the instruction at line 100, it

will pause until the other thread completes its execution. Given that both paths

contain a sufficiently large number of instructions, the method call is refactored to

execute in parallel.

Listing 6 displays the code of the method refactored for parallel execution, util-

ising CompletableFuture to enable the execution of the method at line 96 asyn-

chronously (using runAsync()). The instruction at line 99, future.join(), denotes

the point at which the main thread awaits the completion of the task defined at line

Chapter 3. Automatic Parallelisation of Methods Calls 63

96.

Algorithm 6 The algorithm used to define and compare two parallel paths

function ComparePaths(node1, node2)
m← node1.getStatement().getMethodCall()
cfgm ← m.getCfg()
lastNode← cfgm.getLastNode()
nextNode← lastNode.getNext()
path1 ← DijkstraShortestPath.findPathBetween(node1, lastNode)
path2 ← DijkstraShortestPath.findPathBetween(nextNode, node2)
if path1.getLength() ≥ 5 ∧ path2.getLength() ≥ 5 then

if |path1.length()− path2.length()| < 10 then
return true

end if
end if
return false

end function

Listing 3.7: Method start() updated with a CompletableFuture executing the method

called at line 96, where future is initialised, and for line 99, where future.join() waits for

its completion.

public void start() {

94 CompletableFuture <Void > future;

95 if (resetJUL) {

96 future = CompletableFuture.runAsync (() -> resetJULLevels ());

97 }

98 propagateExistingLoggerLevels ();

99 future.join();

100 isStarted = true;

}

3.2.5 Summary

This study introduces an approach and a corresponding tool designed to perform

static analysis of an application’s source code in order to identify opportunities for

Chapter 3. Automatic Parallelisation of Methods Calls 64

parallel execution. The approach is grounded in the analysis of control flow and data

dependence, allowing us to assess the feasibility of executing certain statements in

parallel while maintaining program correctness.

In this proposed approach, we automatically acquire the control flow graph of

the target application under analysis. This graph serves as the foundation for iden-

tifying potential parallel paths and estimating potential performance enhancements.

Subsequently, we generate a transformed parallel version of the application, where

selected methods are executed in new threads through the use of Java Completable-

Future. The modifications made to the source code are minimal, ensuring a clean

and effective transformation process.

To evaluate the effectiveness and correctness of both the approach and the de-

veloped tool, we conducted a series of experiments. The resulting parallel version

consistently executes in a fraction of the time required by the sequential version.

Furthermore, we rigorously assessed the transformation’s correctness by subjecting

it to multiple tests. Our comprehensive test suite provided coverage for 94% of the

code, and the execution of these tests consistently confirmed that the transforma-

tions preserved the results of the executed methods.

These two studies, discussed in this chapter, comprise the first module of our

refactoring framework. They provide developers with the opportunity to enhance

their application’s performance by executing computationally intensive methods in

parallel. The subsequent chapter will delve into the remaining two modules of our

proposed framework: ”Loop to Stream” and ”Matching Algorithm.”

65

Chapter 4

Loops To Stream and Matching

Algorithms

Modern software applications can have millions of lines of code. Moreover, while

several developers collaborate to develop code, each of them could have their own

coding style, e.g. follow a personal code convention, prefer some data structures,

etc. Having a large amount of code and several coding styles can negatively affect

the readability of the code, especially when this has not been documented properly.

A somewhat incorrect version of an algorithm would lead, besides to the presence

of bugs, an involute, complex and inefficient code.

Furthermore, Java 8 introduced the functional programming paradigm into Java

language. This allows developers to implement more expressive and concise code,

and at the same time reduces the possibility to introduce defects, such as e.g. off-by-

one errors, etc. Java 8 streams and lambda expressions cater for higher-level state-

ments, expressing some goal, while the underlying library takes care of lower-level

details [142]. Since lambda expressions allow further parameterisation, refactoring

techniques can be leveraged to handle e.g. clone fragments [140].

In this chapter, we introduce two different modules to enhance the readability

Chapter 4. Loops To Stream and Matching Algorithms 66

and the efficiency of source code by analysing the structure of the code in order to

suggest improvements. We propose a module that automatically refactor for loops

into Java Streams (Section 4.1) and a module that perform a similarity analysis to

identify known algorithms within the code and suggest optimised versions (Section

4.2).

4.1 Refactoring Java Loops to Streams Automat-

ically

Java, starting from version 8, adopted the functional paradigm, comprising lambda

expressions, streams, functional interfaces, etc. Java stream APIs provide devel-

opers with the possibility to parallelise the stream-based fragment just by calling

the parallel() operation (or by replacing stream() operation with parallelStream()).

Of course, it should be checked whether the parallel version changes the expected

behaviour [69], avoid performance drop due to thread contention [132] and dead-

locks [109]. Therefore, stream APIs can be effectively applied to Big Data in order

to achieve scalability [25].

Despite Java 8 being released in 2014, a large amount of code available presents

traditional for loops, and some developers have not fully embraced the functional

paradigm (as it would require a shift in the reasoning). This paper aims at assisting

the conversion of for loops into stream-based fragments. The literature suggests two

main approaches for refactoring for loops into appropriate stream code [45, 112].

The first approach presents an automatic tool that checks whether a few proposed

transformations can be performed. However, we identify several additional and

novel transformations that, while can be handled automatically, are applicable to

Chapter 4. Loops To Stream and Matching Algorithms 67

widespread fragments of code. In the second approach, practical rules to transform

loops have not been given.

The aim of this paper is twofold: (i) guiding the developer to use Java stream

APIs by devising several formats and their equivalence to loops; (ii) providing an

automatic tool supporting the analysis, identification, and refactoring of loops to

streams. Aiding the developer could make the newer paradigm mainstream, and

automatic conversion gives higher quality code.

This section is structured in the following way. Section 4.1.1 presents the pro-

posed templates that guide the subsequent transformations. Section 4.1.2 reports

our approach for parsing, analysing, matching and converting loops. Section 4.1.3

draws the conclusion.

4.1.1 Refactoring Templates

We have identified five templates for recognising loop occurrences and proposed

the transformations to refactor them to suitable stream-based code. The following

subsections describe the templates.

The first template handles for loops that contain a conditional statement and

one or more return statements giving back a primitive value or an object. For such

a template the equivalent stream-based version comprises a filter() and a findFirst()

operation. The latter is a terminal operation that performs short-circuiting, i.e.

blocks evaluations, and gives the first value that satisfies the predicate in filter().

Once an element has been found, or no more elements in the input stream exist,

findFirst() returns an Optional¡T¿, where T is the type of the elements in the stream.

For performing the transformation, the conditional expression in the original code

constitutes the predicate for filter(). An Optional variable is assigned with the value

Chapter 4. Loops To Stream and Matching Algorithms 68

extracted by findFirst(). Finally, a check is performed on the optional value in order

to call the return statement with the proper value. Figure 4.1 shows a sample code

in both versions.

Listing 4.1: For loop having a conditional statement and a return statement.

// original code before refactoring

for (Marker m : markers) {

if (getLineOfOffset(m.getPosition ()) == line)

return m;

}

// code after refactoring

Optional <Marker > mark = markers.stream ()

.filter(m -> getLineOfOffset(m.getPosition ()) == line)

.findFirst ();

if (mark.isPresent ()) return mark.get();

The second identified template is a for loop whose body has a temp variable

declaration and assignment, then a conditional statement whose expression uses the

assigned variable and a return statement using the assigned variable. Note that

after the first assignment, the current value of the iteration is not used anymore.

The stream-based version of it has a map() operation whose mapper function is the

right part of the assignment in the original statement. Though, after a map() has

been called the current element of the stream cannot be referenced anymore, it is

appropriate in this case as the subsequent statements need not use it. The remaining

statements in the for loop are handled analogously as in the first conversion template.

Figure 4.2 shows a sample code using the traditional loop and its equivalent stream-

based version.

Chapter 4. Loops To Stream and Matching Algorithms 69

Listing 4.2: For loop having an assignment, a conditional and a return statement.

// original code before refactoring

for (Matchable m : getMatchTypes(startCharacter)) {

SymbolMatch match = matcher.makeMatch(m);

if (match.isMatch ()) return match;

}

// code after refactoring

Optional <SymbolMatch > tmpMatch = getMatchTypes(startCharacter).stream ()

.map(candidate -> matcher.makeMatch(candidate))

.filter(match -> match.isMatch ())

.findFirst ();

if (tmpMatch.isPresent ()) return tmpMatch.get();

The third identified template is a for loop having in its body a temp variable and

some other statements, such as a conditional statement using the current value of the

iteration, and a method call. Note that the main difference with the second template

is that the current value of the iteration is needed in the assignment statement and

in the subsequent statements, hence a map() operation cannot be used as it would

consume the current value.

Before transforming this loop, we apply the Replace temp with query refactoring

technique [42] to get rid of the temp in the loop body. This technique extracts the

expression on the right side of the assignment into a method, in order to make the

temp no longer local to a method.

Now, we transform the loop body into a stream-based code by using a filter()

corresponding to the conditional statement, and a forEach() to perform the method

call on each value of the stream. We avoided using map() that would have made it

impossible to further operations to reference the current element of the stream, and

Chapter 4. Loops To Stream and Matching Algorithms 70

at the same time we have no fragment repetitions as it would have been by replacing

each occurrence where the variable is read with the right side of the assignment.

Figure 4.3 shows a code sample of this template and its transformation.

Listing 4.3: For loop having a temp and a condition on the current value.

// original code before refactoring

for (Map.Entry <String , Integer > e:rawPackCount.entrySet ()){

String packageName = e.getKey ();

if (e.getValue () > 5) {

System.out.printf("%5d %s%n",e.getValue (),packageName);

}

// proposed code after refactoring

rawPackCount.entrySet ().stream ()

.filter(e -> e.getValue () > 5)

.forEach(e -> System.out.printf("%5d %s%n", e.getValue (), packName(e)));

// method obtained after applying refactoring Replace temp with query

String packName(Map.Entry <String , Integer > e){

return e.getKey ();

}

}

The fourth template consists of for loops where some operation is called on each

element of the iteration to create a new value, then such a new value is inserted

into a collection. Hence, there is an assignment to a temp variable holding the

created value resulting from a method call using as a parameter the current value

of the iteration. The transformation into a stream-based code consists in calling: a

map() for obtaining a newly created value (as the current value of the iteration is not

needed in subsequent statements), then a collect() to convert the output stream into

a collection. Figure 4.4 shows an example of code and its transformation. Operation

map() creates an object of type DetectorNode, then operation collect() makes all

Chapter 4. Loops To Stream and Matching Algorithms 71

the resulting values available as a HashSet. Of course, the result could be e.g. a

List if needed in the original code.

Listing 4.4: For loop having a temp and producing a collection.

// original code before refactoring

HashSet <DetectorNode > result = new HashSet <DetectorNode >();

for (DetectorFactory factory : chosenSet) {

DetectorNode node = addOrCreateDetectorNode(factory , nodeMap , constraintGraph);

result.add(node);

}

// proposed code after refactoring

HashSet <DetectorNode > result = chosenSet.stream ()

.map(factory -> addOrCreateDetectorNode(factory , nodeMap , constraintGraph))

.collect(Collectors.toCollection(HashSet ::new));

The fifth template consists of an if-then-else statement, hence a secondary path

of execution exists, followed when the condition evaluates false. We transform a

conditional statement in a filter(), however since no secondary path can be executed

in the same stream, we use two different streams, having complementary conditions.

Therefore, the conditional statement is replaced with a filter(), and the condition is

used as a predicate, then we handle the transformation of statements on the primary

path of execution as in the above templates. Additionally, another stream is created

having a filter() using the complementary condition. Figure 4.5 shows an example

of code having a stream for each path, and a further condition for the secondary

path of execution, i.e. a if-then-else-if statement. Here, the effect of the assignment

operations, start = node and end = node is obtained using findFirst() operations,

then by extracting a value, if it exists, from the Optional variables.

Chapter 4. Loops To Stream and Matching Algorithms 72

Listing 4.5: For loop having a if-then-else-if statement.

// original code before refactoring

for (Node node : nodeList){

if(startNode.compareTo(node.name) == 0) start = node;

else if(endNode.compareTo(node.name) == 0) end = node;

}

// proposed code after refactoring

Optional <Node > tmpstart = nodelist.stream ()

.filter(node -> startNode.compareTo(node.name) == 0)

.findFirst ();

Optional <Node > tmpend = nodelist.stream ()

.filter(node -> endNode.compareTo(node.name) == 0)

.findFirst ();

if(tmpstart.isPresent ()) start = tmpstart.get();

if(tmpend.isPresent ()) end = tmpend.get();

Figure 4.6 shows a further code sample having a if-then-else statement. Here,

the statements on each path are transformed using operation forEach().

Chapter 4. Loops To Stream and Matching Algorithms 73

Listing 4.6: For loop having a if-then-else statement.

// original code before refactoring

for (String attribute : attrs) {

if(isChecked(request , attribute))

data.setAttribute(attribute);

else

data.removeAttribute(attribute);

}

// proposed code after refactoring

attrs.stream ()

.filter(attribute -> isChecked(request , attribute))

.forEach(attribute -> data.setAttribute(attribute));

attrs.stream ()

.filter(attribute -> !(isChecked(request , attribute)))

.forEach(attribute -> data.removeAttribute(attribute));

4.1.2 Tool for Refactoring Loops

We perform static analysis, by means of JavaParser library, in order to analyse

the code and gain knowledge necessary for the proposed replacements. JavaParser

represents the source code as an abstract syntax tree (AST) and allows performing

operations on it [129]. The main four steps followed in our approach to refactor for

loops to stream-based code are: (i) parsing the original source code to gather all the

data needed for the following analysis; (ii) check whether for loops satisfy all our

defined preconditions; (iii) match loops with templates and then build the stream-

based code; (iv) replace each loop with the appropriate stream-based statements.

Firstly, we search all the method declarations present in each class file, we extract

the name of the class that contains the methods, and finally search all the for loops

within them. We consider the two versions: standard, i.e. for loops with indexes,

Chapter 4. Loops To Stream and Matching Algorithms 74

as in for (int i = 0; i¡n; i++), and advanced, i.e. having the format for (T item:

list), to iterate lists, sets, etc. This classification is necessary in order to recognise

the loop and perform its replacement. Loops are checked to determine whether they

iterate over an instance conforming to Collection, since the transformation would

convert the object into a stream by using default method stream(). Moreover, a

check is performed to verify that in standard loops, the index is only used to access

the list. In the standard for loop, it is necessary to analyse both the initialisation

of the index variable and the condition. The straightforward case is when the index

is given initial value 0 and iterations scan the list sequentially till the last element.

Conversely, when the index is given initial value as the maximum size then iterations

start from the last value and the stop condition occurs when the index reaches value

0; then a reconstruction would be needed to access the elements in reverse order,

before using them in a stream.

The analysis of the for statement consists in verifying whether it has all the

functional requisites for becoming a stream and whether operations using lambda

expressions can be performed on it. The checked preconditions are the following.

• The number of statements inside the body of the loop has to be at most

five, where in an if-then-else statement both paths are considered as a single

statement. More than five statements likely means the functional style is not

appropriate for such a loop.

• The body of the loop cannot contain another for loop, a switch, or a while loop.

These three types of statements are excluded since it would not be possible to

replace them using streams.

Chapter 4. Loops To Stream and Matching Algorithms 75

• The body of the loop cannot contain more than one reference to non-effectively

final variables defined outside the loop; indeed we previously have shown an

example of a loop with a single non-effectively final variable converted to an

appropriate stream.

• The body of the loop cannot contain any break statement; this statement

is characteristic of imperative programming, indeed there is not a functional

construct in Java streams which closely mimic such a behaviour.

Once the loops satisfying the above preconditions have been selected, then

matching and conversion steps can be executed. The matching step follows a top-

down approach: it analyses the body of a loop starting from the first expression,

and it continues till the end. The approach compares each expression with the ex-

pression in the same position in the templates available: if there is no match, the

template is discarded and a match to another will be attempted until all templates

are checked. Conversely, if all statements inside the loop match a template, then

the conversion step will be performed. This step firstly extracts needed data, i.e.

the name of the collection in the iteration, the name of the current element, all the

expressions inside the loop body together with variable names, etc. Therefore, the

template can be filled with all data extracted and the new compound statement

created.

Once the replacement expression has been created, we move on to the actual

replacement. For each loop, the replace() method provided by JavaParser is used,

which allows us to replace a node of the AST with a new node passed as a parameter.

Thanks to this operation it is possible to insert the new expression in the same

place as the original loop, so as not to modify other parts, keeping indentation

and lexical correctness. For inserting additional expressions, such as the check of

Chapter 4. Loops To Stream and Matching Algorithms 76

Optional variables, then it suffices to have the position of the loop and insert the

new expression in the next position using the add() method provided by JavaParser.

4.1.3 Summary

This study presents an innovative approach to refactor for loops to Java stream

APIs by defining templates to guide code analysis and transformation. We have

proposed five novel templates that consider some of the most typical uses of loops,

and include in their body several categories of statements, such as conditionals,

assignments to temp, secondary paths, return statements, etc. We have handled

the correspondence to traditional loops in order to safely transform the code from

imperative to functional without changing the behaviour. Our templates are more

general than some previous approaches and can be automatically applied.

When analysing existing code, the significant number of template occurrences

found has confirmed the validity of our approach, showing that the definition of such

templates could help to transform actual code used in popular repositories from the

imperative version into the functional one. The use of Java stream APIs makes the

source code more readable. Besides the possibility to parallelise stream pipelines

could lead to an increase in the software performance itself.

The following Section describes the last module of the refactoring framework, the

Matching Algorithm, an approach to identify and suggest optimised versions of the

same algorithm to improve readability, performances, and reusability of the source

code.

Chapter 4. Loops To Stream and Matching Algorithms 77

4.2 A Robust and Automatic Approach for Match-

ing Algorithms

The bigger the repositories the greater the demanding effort for developers when try-

ing to understand code implemented by their colleagues. Visually inspecting source

code to understand its structure and the functionalities could be time consuming

and error-prone, since developers could misidentify some code behaviour. Generally,

this occurs when the source code documentation is poor, or missing, and when many

developers contribute to the same project.

Automatic Program Comprehension (PC) tries to solve these issues by propos-

ing several approaches that automatically assist developers to understand source

code [127, 80]. Several applications of the PC have been presented: source code

classification according to specific categories [137, 141, 131], code clone detection,

and algorithm recognition.

The state of the art shows several techniques to automatically identify algo-

rithms. Machine learning approaches have been presented [123, 29], where different

classifiers are used to label code fragments. Other proposals use a hybrid approach,

mixing static analysis to extract data from the code and machine learning classifiers

to identify the algorithm [135, 133, 134]; their classifier is based on a set of struc-

tural and truth value characteristics that are strictly related to sorting algorithms,

therefore new beacons should be defined for different categories of algorithms. Fur-

thermore, these approaches require a new training of the dataset if new labels are

included in the classification, which can be time consuming and complex.

This study focuses on algorithm recognition and presents an innovative approach

that automatically matches algorithms by inspecting the source code. Our approach

Chapter 4. Loops To Stream and Matching Algorithms 78

uses static analysis to collect data from the source code and compute a similarity

score with templates of known algorithms to identify the correct one. The use of

templates guarantees that: new algorithms can be easily added for the recognition

step; multiple versions of the same algorithm can be used to improve the accuracy

of the identification; many, if not all, categories of algorithms can be recognised

(sorting, searching, traversing, etc.). The proposed approach consists in four main

phases: firstly, a code parsing tool collects all the statements of the algorithm anal-

ysed; secondly, a statement transformation is performed to extract the data required

for the similarity match; thirdly, the Levenshtein distance is computed to attribute

a similarity score between the algorithm and a set of known templates, representing

other algorithms; finally, the template with the highest similarity score is selected.

Levenshtein distance has been widely used in program analysis, especially for

code clone detection when evaluating the similarity between code fragments [126,

63, 5]. However, such approaches are strictly related to detecting clone fragments.

Such approaches focus on detecting type-3 clones that are portions of code that

differ in terms of whitespaces, comments, layouts and identifiers, and can have some

modifications like addition or removal of statements [2]. Conversely, we propose

another approach in which different statements of the algorithms under analysis

are reflected on the matching score, hence having a varying degree of matching;

moreover, the above said approaches refer to types and names (e.g. methods and

fields names) to detect clones, whereas our approach focuses on the statements freed

from the developer chosen names, providing a more generalised identification.

This section is structured as follows. Section 4.2.1 describes the proposed ap-

proach with all the steps followed by the analysis. Section 4.2.2 shows three examples

of the use of the approach and how the similarity score is computed in real scenarios.

Chapter 4. Loops To Stream and Matching Algorithms 79

Section 4.2.4 sums up the presented approach.

4.2.1 Proposed Approach

We propose an approach that gathers data by parsing the source code and then

evaluates the similarity score of an algorithm and a set of known algorithms. The

proposed approach makes a proper generalisation of the algorithms to avoid depend-

ing on naming conventions or on statements that are not contributing to the main

goal of the analysed algorithm. We make use of the static analysis of the source

code, hence executable files are not needed for the analysis. Algorithm 7 shows the

main steps, as pseudo-instructions, followed by the proposed approach to match al-

gorithms. The procedure takes as input the source code, variable SC, and parses it,

extracting the compilation units. Then, method declarations are extracted and, for

each, all the statement types are collected and compared to the algorithm templates

to compute the similarity score. The approach can be structured in four steps: (i)

parsing the source code by means of a tailored Visitor to gather all the data needed

for the following analysis; (ii) selecting and transforming the most relevant state-

ments; (iii) computing an adapted Levenshtein distance to determine the similarity

score; (iv) evaluating the matching degree of the algorithms.

We perform code parsing, by means of the Javaparser library, to extract all the

data required to evaluate the similarity score. Javaparser is an automatic parser

that generates an abstract syntax tree (AST) from source code and provides a set

of APIs to perform operations on it [129].

The root of the AST is the CompilationUnit (representing a Java file) to which

all code elements are connected, e.g. package declaration, class and methods decla-

rations, etc. Code inspection has been performed by using the VoidVisitorAdapter

Chapter 4. Loops To Stream and Matching Algorithms 80

Algorithm 7 The algorithm of the proposed approach

procedure MatchingAlgorithm(SC)
compilationUnits← parseAllPaths(SC)
for cu, compilationUnits do

methods← visitMethods(cu)
end for
for mDecl, methods do

stmts← mDecl.getStatementsType()
for tmp, templates do

Tstmts← tmp.getStatementsType()
score← computeLV D(stmts, Tstmts)
mDecl.collectScore(tmp, score)

end for
end for

end procedure

class, which lets us define a Visitor class to search for a specific property. In the Visi-

tor class, the method visit() was implemented, which takes as parameters the type of

object being searched (e.g. method declaration, statement, field), and the container

in which data are stored; the body of the method contains all the instructions that

are executed for every object found of the type specified as a parameter.

We have defined a Visitor which looks for MDs (method declarations); once a

MD is found, the visit() method extracts from its body all the statements, and stores

them in a List preserving the order. The list of statements provided by Javaparser

is further expanded, as it would otherwise miss: (i) nested statements (e.g. all

the statements present in the body of a for loop, defined as ForStmt), and (ii)

expressions, such as assignments, method calls, variable declarations, etc. (defined

as ExpressionStmt).

The statements initially gathered by Javaparser are transformed to better serve

the following analysis. Javaparser provides a function, getStatements(), to get the

statements contained in the body of a method declaration; nested statements, e.g.

Chapter 4. Loops To Stream and Matching Algorithms 81

statements contained in a for loop, are omitted be the said getStatements(), and

just the parent statement is inserted in the list. To collect all the statements inside

the method, we further extract nested statements and we place them in the list of

statements right after their parent, preserving the order of the block. Whereupon,

for each statement in the list, we extract the class type, avoiding collecting other

parts such as names, types, comments and expressions, to better generalise the

approach, so as to recognise different versions of the same algorithm; e.g. statement

for(int i=0; i¡size; i++) is represented in Javaparser by a ForStmt type, whereas

all the other parts, such as the variable declaration (int i=0), the binary expression

(i¡size) and the unary expression (i++) are omitted.

For all the statements that can contain nested statements in their body, e.g.

for, if, while, a custom statement is inserted at the end of the nested statements;

its name is given by the concatenation of the ”End” prefix with the type of the

statement containing the nested ones, e.g. EndIf, EndFor, EndWhile. This custom

statement allows us to identify which statements are nested, thus improving the

precision of the approach when comparing algorithms.

The extracted types are defined by the Javaparser library1. Table 4.1 shows

some examples of statement types: the column Statement Type represents the type

defined by the library, and the column Code shows an example of the code associ-

ated with the type; further types can be found in the documentation. The Expres-

sionStmt type does not have a code example because it can represent any type of

expression: AssignExpr (a = b +c;), MethodCallExpr (method();), VariableDecla-

rationExpr (int a = 0;) etc. This class type is too generic, hence we select and insert

in the statement list the type of the expression contained in the statement. If there

are nested expressions, e.g. a method call with argument an ObjectCreationExpr

Chapter 4. Loops To Stream and Matching Algorithms 82

Table 4.1: Some examples of statement types defined in the Javaparser library (see the
documentation for the complete list0). The ExpressionsStmt is handled differently from
others, since it can represent more types of expressions (method calls, assignments, dec-
larations, etc.).

Statement Type Code
BreakStmt break;
ContinueStmt continue;
DoStmt do{...}while(a > 0);
ExpressionStmt *
ForEachStmt for(Object : objects){...}
ForStmt for(a = 3; a < 99; a++){...}
IfStmt if(a == 0){...}
ReturnStmt return a;

(e.g. method(a, new object())), we select the parent expression, in this example the

MethodCallExpr.

Listing 4.7 shows an example of data extracted from a method: the code on

top shows the method bubbleSort(); the bottom part displays the list of statements

extracted by our visitor. The statement list extracted by Javaparser contains just a

ForStmt because all the other instructions are nested into it, whereas our approach

has properly handled this occurrence and the statement list is defined as follows:

the first two instructions are for statements, the third is a if statement, the fourth

is a variable declaration expression and the last two are assign expressions.

Chapter 4. Loops To Stream and Matching Algorithms 83

Listing 4.7: The upper part shows an iterative version of the bubblesort algorithm imple-

mented in Java, whereas the bottom part displays the list of statements extracted by our

approach, using the class types defined in Javaparser.

public static void bubblesort(int [] sort_arr , int size){

for (int i=0;i<size -1;++i){

for (int j=0;j<size -i-1; ++j){

if (sort_arr[j+1]< sort_arr[j]){

int tmp = sort_arr[j];

sort_arr[j] = sort_arr[j+1];

sort_arr[j+1] = tmp;

}

}

}

}

Statements Type:

ForStmt ,

ForStmt ,

IfStmt ,

VariableDeclarationExpr ,

AssignExpr ,

AssignExpr

EndIf

EndFor

EndFor

The Levenshtein distance is a string metric for measuring the difference between

two sequences [19]. It is defined as the minimum number of operations (replace,

insert and delete) required to change a sequence into the other. A string can be

seen as a list of single characters; the Levenshtein algorithm iteratively compares

all the characters and finds the minimum number of operations (insertion, deletion

or substitution) required to make the two sequences equal. We have implemented

a custom version of the algorithm where two lists of statements are the compared

Chapter 4. Loops To Stream and Matching Algorithms 84

sequences, and every character represents a single statement. Once defined the

number of minimum instructions, the similarity score is computed as [20]:

Similarity(S1, S2) = 1− levDist(S1, S2)

max(size(S1), size(S2))

where S1 and S2 are the two sequences of statements, levDist() gives as output the

Levenshtein distance, and size() gives the number of elements in a sequence.

Once all the data needed for the analysis have been obtained, we can compute

the similarity scores according to the extracted list of statements, i.e. the analysed

method is compared with a set of known algorithms that have been gathered and

parsed beforehand. We have created a set of Java files containing the source code of

several known algorithms, and for each one at least two versions are stored: iterative

and recursive. For some algorithms, more versions have been implemented as the

aim is to improve the accuracy of our analysis. E.g., the bubblesort algorithm has

two different versions, besides the iterative and recursive versions: the one shown in

Listing 1, and an optimised version where a boolean flag breaks the execution if no

elements are swapped in the inner loop.

Listing 4.8 shows one of the templates of the iterative version for the bubblesort

algorithm used in our analysis: the code on top displays the implementation of the

algorithm, while the list below represents the statements extracted by our approach.

We show this template because, according to our approach, it is the most similar to

the code shown in Listing 4.7. However, the two methods have several textual differ-

ences: firstly, the name of some variables is different, e.g. the variable representing

number of elements, size and length, the array containing the elements, sortarr and

list, and the variable used for the swap, tmp and swap; secondly, the condition in

the IfStmt is inverted; finally, the template has an additional statement compared

Chapter 4. Loops To Stream and Matching Algorithms 85

to the example, the first statement VariableDeclarationExpr.

Despite these differences, our approach correctly identifies the algorithm imple-

mented. According to the Levenshtein distance, the number of operations needed

to match the two sequences is one (an insertion because the list of statements differ

in only one element). Indeed the similarity score between these two sequences is

computed as Similarity = 1 − (1/7) = 0.857, where the the size of the longest

sequence is 7.

Chapter 4. Loops To Stream and Matching Algorithms 86

Listing 4.8: The upper part shows one iterative version of the bubblesort algorithm stored

in our template db, whereas the bottom part displays the list of statements extracted by

our approach, according to the types defined in Javaparser.

void iterativeBubbleSortTemplate(int list[], int length) {

int length = list.length;

for(int i=0; i < length; i++) {

for(int j=1; j < length -i; j++) {

if(list[j-1] > list[j]){

int swap = list[j-1];

list[j-1] = list[j];

list[j] = swap;

}

}

}

}

Statements Type:

VariableDelcarationExpr ,

ForStmt ,

ForStmt ,

IfStmt ,

VariableDeclarationExpr ,

AssignExpr ,

AssignExpr

EndIf

EndFor

EndFor

4.2.2 Evaluation

We tested our approach on four different algorithms, each implemented as a method.

All the templates used by our approach can be found on a public repository1. The

1https://github.com/AleMidolo/MatchingAlgorithms

Chapter 4. Loops To Stream and Matching Algorithms 87

first example is shown in Listing 1 previously discussed; here, we discuss three other

algorithms: a version of factorial and two versions of quicksort.

Listing 4.9 shows a method implementing the factorial algorithm for an integer

value in a recursive form. The list of statements is as follows: IfStmt, ReturnStmt,

ReturnStmt. The analysis carried out by our approach has identified the method

as the recursive version of the factorial algorithm with a similarity of 1.0. In such a

case, the similarity is the maximum possible value since given the simple structure

of the algorithm, the types of statements used by such a method match 100% the

factorial algorithm template.

Listing 4.9: An example of the recursive factorial algorithm implemented in Java.

public static int factorial(int n) {

if (n == 0 || n == 1)

return 1;

return n * factorial(n - 1);

}

Moreover, two versions of the quicksort algorithm are considered to test the

approach on different versions of the same algorithm; both versions propose an iter-

ative solution. Firstly, Listing 4.10 shows an iterative version of quicksort algorithm

that uses a stack as a support to sort the elements contained in the array passed as

argument. The method consists in twelve statements, in order: two VariableDec-

laration, MethodCall, WhileStmt, VariableDeclaration, AssignExpr, MethodCall,

VariableDeclaration, and two IfStmt with a MethodCall in their body. Therefore,

the method is characterised by such statements, indeed comments, names and types

will be ignored for the purpose of the identification. Our template storage includes

Chapter 4. Loops To Stream and Matching Algorithms 88

an implementation of the quicksort using a stack to sort the elements2; the differ-

ences between the template and this method are: the template has an additional

VariableDeclarationExpression before the first push() call; in the example, the first

instruction after the WhileStmt is a VariableDeclarationExpr, while in the template

it is an AssignExpr; the partition() method call takes one more argument in the

template; types and names of the variables are different. Considering the said dif-

ferences, our analysis has computed a similarity score of 0.85, correctly identifying

the algorithm.

2The templates in the db can be found in the github repository above

Chapter 4. Loops To Stream and Matching Algorithms 89

Listing 4.10: An iterative version of the quicksort algorithm using a stack of objects to

sort the elements.

public void quickSortStack(short [] array) {

// create a stack for storing

// subarray start and end index

Stack <Pair > st = new Stack <>();

short finish = array.length -1;

// push the start and end index

// of the array into the stack

st.push(new Pair(0, finish));

// loop till stack is empty

while (!s.empty ()) {

// remove top pair from the list and get

// subarray starting and ending indices

short begin = st.peek().getX();

finish = st.peek().getY();

st.pop();

// rearrange elements across pivot

short pv = partition(array , begin);

// push subarray indices with elements

// less than the current pivot to stack

if (pv - 1 > begin) {

st.push(new Pair(begin , pv - 1));

}

// push subarray indices with elements

// more than the current pivot to stack

if (pv + 1 < begin) {

st.push(new Pair(pv + 1, begin));

}

}

}

Secondly, Listing 4.11 displays an iterative version of the quicksort algorithm

that uses a supporting array to sort the elements of the array passed as argument.

The method consists in fifteen statements, in order: three VariableDeclaration, two

Chapter 4. Loops To Stream and Matching Algorithms 90

AssignExpr, WhileStmt, three AssignExpr, and two IfStmt with two AssignExpr in

their body. There are two main differences in the structure between the two versions

of the same algorithm: the total number of statements, twelve against fifteen, and

the absence of MethodCall statements in the second version. An iterative version

of the quicksort algorithm is stored in our template storage, and it uses an array

to sort the elements like the method given as an example. The main differences

between the template and the method are the following: the method has three

VariableDeclarationExpr before the WhileStmt, whereas the template has only two;

types and names of variables are different. The analysis has computed a similarity

score of 0.86.

Chapter 4. Loops To Stream and Matching Algorithms 91

Listing 4.11: An iterative version of the quicksort algorithm using an array to handle the

sort of the elements.

public static void quickSortArray(

long arr[], long low , long high) {

// Create an auxiliary stack

long[] list = new long[high - low + 1];

long max = -1;

long pivot = 0;

// push initial values to stack

list [++max] = low;

list [++max] = high;

// Keep popping from stack while not empty

while (max >= 0) {

h = list[max --];

l = list[max --];

// Set pivot element at its correct

// position in sorted array

pivot = partition(arr , low , high);

// If there are elements on left side

// of pivot , push left side to stack

if (pivot - 1 > low) {

list [++max] = low;

list [++max] = pivot - 1;

}

// If there are elements on right side

// of pivot , push right side to stack

if (pivot + 1 < high) {

list [++max] = pivot + 1;

list [++max] = high;

}

}

}

Chapter 4. Loops To Stream and Matching Algorithms 92

Our approach correctly identified both versions because the analysis uses tem-

plates for different versions of the same algorithm, making the recognition more ac-

curate. Still, the storage containing all templates can be updated with more versions

of algorithms to make the approach more sensitive to differences and up-to-date.

4.2.3 Refactoring for Energy Efficiency

Energy efficiency has emerged as a significant concern in modern software engineer-

ing, driven by the necessity to conserve battery life in applications [122]. Further-

more, the growing global awareness of environmental issues due to climate change

and increased global warming has led to a heightened demand for reducing the

power consumption of everyday devices, such as smartphones and laptops. While

the primary focus has been on hardware efficiency, recent research has revealed that

software can also contribute to energy inefficiencies [62].

The advantages of refactoring extend beyond enhancing code comprehensibility,

encompassing aspects like extensibility, reusability, and testability. Surprisingly, one

significant challenge that has received relatively less attention is energy consumption

during software development [107].

Despite the increasing need for developers to optimise the energy efficiency of

their software, they often lack the necessary knowledge to do so [100, 147]. This

is unfortunate for several reasons: firstly, energy efficiency has become a primary

concern for sustainability in computing systems; secondly, with the widespread use

of mobile platforms, battery consumption is a critical factor for evaluating and

adopting mobile applications; and thirdly, energy-efficient applications can result in

reduced cooling costs and less environmental pollution [147].

Chapter 4. Loops To Stream and Matching Algorithms 93

Nevertheless, creating energy-efficient software is a challenging task. Under-

standing where energy is consumed in the code and how it can be restructured to

reduce consumption remains a fundamental issue. Although there are tools for esti-

mating energy consumption (e.g., [58, 73, 76]), they have limitations. They require

an in-depth understanding of low-level implementation details, which is often im-

practical for time-pressed programmers, and they do not offer direct guidance on

energy optimisation, bridging the gap between identifying energy consumption and

code modification. Consequently, programmers often resort to searching for energy-

saving best practices in online forums and blogs, which may lack empirical evidence

and accuracy [106]

Recent research into energy optimisation reveals that incorrect choices made

by programmers during software development can negatively impact application

energy consumption [59]. They investigated the effects of using Java Collections,

demonstrating that selecting the wrong data structure can reduce energy efficiency

by up to 300%.

Other researchers, such as Bunse and colleagues [18, 19], focused on dynamically

adapting systems to use the most energy-efficient sorting algorithms, while Manotas

and colleagues [82] designed a tool to autotune Java applications by selecting energy-

efficient implementations for Collections APIs. There have also been explorations

into the energy impact of design patterns by various researchers [17, 75, 117].

Choosing the right algorithm for a particular task is a crucial consideration, as

emphasised by Schmitt in their 2021 work [121]. An integral component of many

programs is the sorting of data, a task that is well-established. Various studies have

explored the idea of energy conservation within the context of sorting algorithms, as

evidenced by research by Rashid [113] and Chandra [26]. These works mainly focus

Chapter 4. Loops To Stream and Matching Algorithms 94

on battery-powered mobile devices and they consider just sorting algorithms.

Our proposal is to employ the matching algorithm approach (referenced in sub-

section 4.2.1) to detect algorithms within the source code and suggest a refactoring

strategy aimed at choosing the most energy-efficient algorithm. For instance, con-

sider the bubblesort algorithm, which can be implemented in at least three different

variations: iterative, iterative with a flag, and recursive. To evaluate their energy

consumption, a dedicated benchmark would be conducted, ultimately selecting the

most efficient version. To demonstrate the effectiveness of this refactoring, it would

be applied to a set of well-known open-source applications for assessment.

4.2.4 Summary

This module presented an automatic approach to recognise algorithms using static

analysis. By parsing the source code it is possible to identify all the statements

composing a method, transform them according to a specified format, then com-

pute Levenshtein distance for obtaining a similarity score between the method and

several templates of known algorithms. The template having the highest score is

suggested as the algorithm matching the analysed method. We performed an exper-

iment on four methods to test our approach; the results obtained highlight a high

accuracy when recognising the algorithm compared to a textual similarity. The

versatility of the approach allows us to add more templates to widen the spectrum

of recognisable algorithms and to increase the number of different versions of algo-

rithms. This approach can be employed for several goals: program comprehension

purposes on software development, supporting developers in understanding and im-

plementing source code, by proposing alternative versions of the same algorithm;

academic purposes to automatically assess students’ assignments; energy efficiency

Chapter 4. Loops To Stream and Matching Algorithms 95

by proposing the most energy efficient version of the algorithm in order to reduce

the power consumption of the entire application.

96

Chapter 5

Automatic Test Generation

Refactoring aims at improving non-functional attributes of a software system. To

do so, each refactoring should check several preconditions in order to preserve the

original behaviour of the system, indeed for object oriented languages such as Java,

demonstrating that refactorings are semantically equivalent to the original program

is a challenge [92]. Refactoring engines must be reliable, as a bug in a refactoring

engine can silently introduce errors into the refactored program, making debugging

difficult [30]. If a refactored code does not compile unlike the original one, the

refactoring is clearly incorrect and can be easily undone. However, if the refactoring

compiles but it changes the semantics of the application, it could lead to dire con-

sequences. Even refactorings performed by Integrated Development Environments

could be fault-prone [9].

Each refactoring may involve multiple and complex preconditions that are needed

to guarantee behavioural preservation [130]. For example, the refactoring proposed

in Section 3.2 requires a deep data dependence analysis to correctly determine where

the synchronisation statement should be inserted; an erroneous identification could

lead to data race errors.

In order to keep the refactoring reliable, developers can write tests that check

Chapter 5. Automatic Test Generation 97

whether the refactored version of the code has kept the same behaviour of the original

one. However, substantial effort is required when implementing test cases, due to

the knowledge that developers have to acquire on the structure and behaviour of

the system under test, and for the time needed to write many test cases to cover

most of the execution paths.

This chapter presents an automated testing framework that provides two differ-

ent modules for test generation. The first module is the Automatic Generation of

Effective Unit Tests based on Code Behaviour (Section 5.1),This module automati-

cally generates tests for untested classes by analysing the classes of the application

to find similarities between them and adapting existing tests for classes without

tests. The second module, Automatic Generation of Accurate Test Templates based

on JUnit Asserts (Section 5.2), automatically generates templates of test cases for

untested methods by analysing the type returned by the method to select the best

set of assertions to effectively test the method.

5.1 Automatic Generation of Effective Unit Tests

based on Code Behaviour

Producing test cases is an effective way to check the correctness of a software system,

and to check that evolutionary changes aiming at improving functionalities are not

introducing defects to previously correct code [61, 151]. However, developing tests

is a time consuming activity. When designing tests, a developer has to take into

account the behaviour of the component under test to determine the set of inputs

and expected output, which are essential to implement a test case. Moreover, during

Chapter 5. Automatic Test Generation 98

implementation some boilerplate code needs to be added to give the needed context

to the test case.

The existing literature on tests suggests several approaches for assisting the work

of developers. Since one of the tasks of the developers is the selection of input

values to be given to a method, combinatorial approaches for input values can be

very effective and many tools have been implemented to find values among given

validity ranges, as well as outside validity ranges [150, 22]. Another task developers

have to perform is implementing methods calls that check the behaviour of a class,

assistance for it has been given by tools that e.g. randomly generate a sequence

of calls [46, 99, 136]. Moreover, for the task of finding expected output values to

check against the resulting execution behaviour, often the solution is building a

model of the system [23]. Other approaches for producing tests and making them

robust include the generation of code variations to make sure that tests can find

the erroneous behaviour [65]. Moreover, some approaches have been proposed to

automatically generate code that passes all tests [60].

Most of the approaches aim at having and executing as many test cases as pos-

sible, which is worthy for checking a large amount of execution scenarios. However,

given the large number of possible input data and execution paths inside the soft-

ware system under test, execution could take an amount of time larger than the time

frame available to have timely feedback. This is mainly relevant for agile practices,

which prescribe both as many tests as possible, as well as developing components,

integrating and testing the overall system several times a day, to ensure minimal

design and correct execution [10, 47]. For this, during development, test execution

time is curbed, and test cases to be executed have to be selected among available

ones [72, 93, 116].

Chapter 5. Automatic Test Generation 99

This study aims at automatically generating test cases tailored to the behaviour

of the class under test. Our approach provides a class with a test by using static

analysis to determine its behaviour, then such a behaviour is checked against the

behaviour gathered for other classes, finally tests are generated starting from pre-

viously known tests for classes having a similar behaviour. Since generated tests

are tailored to the code to be tested, they are effective for code coverage and for

finding bugs. We have used our approach to generate tests for several software sys-

tems, whose source code is available. According to our experiments, the tests we

have generated manage to extend the amount of code coverage significantly, both

by executing new paths within classes that had some test cases, and by generating

tests for classes that had not been previously tested.

The rest of the module is organised as follows. Section 5.1.1 describes how we

perform the analysis of classes to gather their behaviour. Section 5.1.2 reports our

approach for generating tests according to the knowledge on the behaviour of classes

and other tests used as samples. Section 5.1.3 draws the conclusions.

5.1.1 Analysis of Software Systems

Generally, the developer creates a test case once he has gathered some knowledge

on the expected behaviour of the class to be tested. Then, for each method of the

class, he determines a set of inputs, among valid or invalid ranges for the needed

parameters, and an expected output to be compared with the output provided by

the method execution.

The proposed automatic analysis tool aims at revealing the behaviour of a class

by extracting some characteristics of the static code. Moreover, existing test cases,

implemented by developers, are analysed in order to be later used as templates

Chapter 5. Automatic Test Generation 100

of test cases for some other classes. Figure 5.1 shows the essential components

implementing the stages of the proposed approach: (i) the analysis of classes and

the extraction of their main characteristics; (ii) the computation of similarity scores

through comparison; (iii) the analysis of test cases aiming at finding useful templates,

mainly for untested classes; (iv) the generation of the code implementing new test

cases for selected classes.

Figure 5.1: Main components realised the proposed approach for generating test cases:
analysing classes, analysing test cases, comparing classes, and generating test cases.

For a software system, all the classes are analysed to find their behaviour, this is

summarised starting from all the used APIs (component Class Analyser in Figure

5.1). APIs are classes and methods provided to the application by the underlying

platform. E.g. the standard library APIs of the Java platform provides applica-

tions with useful classes and methods giving many functionalities such as generat-

ing random numbers, accessing the file system, etc. The methods of a class under

analysis will then be marked according to the APIs used. This is a way to recognise

that classes and methods of the APIs are an indication of the intent of the calling

code [40, 39, 138]. E.g. a method using a variable having type List and using

methods isEmpty() and add() on such a variable exhibits, at runtime, a behaviour

comprising the update of the elements on such a list (Java APIs include interface

List, which declares methods isEmpty() and add()).

Therefore, for each analysed class, all declared variables, and method calls are

searched, then a list is created that holds all the APIs that have been found. Once

classes have been characterised by the list of used APIs, they will be checked to

Chapter 5. Automatic Test Generation 101

find out whether they have a comparable behaviour (component Comparator in

Figure 5.1). Listing 5.1 shows the listing of two classes found in the RepoDriller

software system 1. Both classes use Java APIs List and String, hence both have

been characterised by the list of APIs List, String.

1https://github.com/mauricioaniche/repodriller

Chapter 5. Automatic Test Generation 102

Listing 5.1: Classes OnlyDiffsWithFileTypes and OnlyDiffsWithoutFileTypes implemented

in RepoDriller software system, using the same Java APIs, and having the same signature

for their method.

package org.repodriller.filter.diff;

import java.util.List;

import org.repodriller.util.RDFileUtils;

/**

* Only process diffs on files with certain file extensions.

*

* @author Ayaan Kazerouni

*/

public class OnlyDiffsWithFileTypes implements DiffFilter {

private List <String > fileExtensions;

public OnlyDiffsWithFileTypes(List <String > fileExtensions){

this.fileExtensions = fileExtensions;

}

@Override

public boolean accept(String diffEntryPath) {

return RDFileUtils.fileNameHasIsOfType(diffEntryPath , this.fileExtensions);

}

}

package org.repodriller.filter.diff;

import java.util.List;

import org.repodriller.util.RDFileUtils;

/**

* Only process diffs on files without certain file extensions.

*

* @author Ayaan Kazerouni

*/

public class OnlyDiffsWithoutFileTypes implements DiffFilter {

private List <String > fileExtensions;

public OnlyDiffsWithoutFileTypes(List <String > fileExtensions){

this.fileExtensions = fileExtensions;

}

@Override public boolean accept(String diffEntryPath) {

return !RDFileUtils.fileNameHasIsOfType(diffEntryPath ,

this.fileExtensions);

}

}

Chapter 5. Automatic Test Generation 103

In order to reveal whether a pair of classes have a comparable behaviour, we

measure similarity according to Jaccard similarity coefficient. The latter, when

measuring the similarity of two sets, is the ratio between the cardinality of the

intersection and the cardinality of the union of the sets to be compared. For a pair

of classes A and B, we measure the cardinality of the intersection of the two sets of

APIs found in their code, hence used inside the respective classes (given as AAPI and

BAPI , respectively), and the cardinality of the union of the two API sets. Then,

the Jaccard similarity coefficient for the pair of classes is the ratio of the latter

cardinalities.

J(A,B) =
|AAPI

⋂︁
BAPI|

|AAPI
⋃︁
BAPI|

As such, our similarity measure finds whether a class pair has many or few APIs

in common, where 1 is the upper bound and 0 is the lower bound for the measure.

Once a pair of classes has been found to have a high degree of similarity (i.e. Jaccard

similarity coefficient near to 1), a test that could be available for one class will be

used as a template for the other one. For the pair of classes shown in Figure 5.1,

the similarity measured is 1, as they both use the same Java APIs List and String.

The code of test cases is analysed to find the class that is the target of each test

(component Test Case Analyser in Figure 5.1). Moreover, for each tested class, we

reveal the list of the methods that are invoked by the test. Therefore, for a test case

T we will have the list of the tested classes, e.g. A, B, C and the methods invoked on

each class. Then, when a test case uses several classes, in order to determine which

class is under test, we distinguish classes whose instances are used as parameters of

method calls, from classes whose methods are invoked. We associate the test with

the class whose methods are called. Therefore, a test for class A is found when in

Chapter 5. Automatic Test Generation 104

the test code there is at least one method called on an instance of class A. As a

result, the same test case could be associated with more than one class, when its

code calls methods on instances of different classes.

The JavaParser library has been used to perform code inspection of classes and

test cases, for generating tests [129]. JavaParser lets us navigate the source code as

an Abstract Syntax Tree (AST) having a root representing the entire file, to which

all code elements are connected, in particular each class declaration. From this, in

turn, multiple nodes can be reached, which represent the fields or methods of the

class.

Code inspection has been performed by using JavaParser’s classVoidVisitorAdapter,

which lets us define a Visitor class to search for a specific property. In the Visitor

class, a visit() method is implemented, which takes as parameters the type of ob-

ject being searched (class declaration, method declaration, etc.) and the container

where data are saved; the method body will implement the operations to be carried

out each time the element specified in the parameter is found. The Visitor class

works within a CompilationUnit (representing a Java file), therefore it is necessary

to associate the Visitor with a CompilationUnit. This association was carried out

for all the files of the source code.

Additionally, code inspection was performed for each CompilationUnit using

method findAll(Class¡T¿ NodeType), which searches within a CompilationUnit all

the elements that match the NodeType passed as parameter. We searched e.g.

MethodCallExpr that represents method calls. For each expression found, some

operations were performed in order to resolve the type found so as to trace its

origin. This was useful to find all the APIs used within each class.

Chapter 5. Automatic Test Generation 105

5.1.2 Test Generation

This section describes the component Test Generator shown in Figure 5.1.

Suppose that a pair of classes A and B has a high similarity: the idea is to

generate tests for class B by replacing all occurrences of class A in the tests found for

class A, with occurrences of class B. Of course, a test for class A would call methods

implemented in class A. Hence, when using the test for class A as a template for

class B, all the methods called have to be checked, and possibly changed.

Four possible cases have been identified to guide method replacement on a tem-

plate test. Firstly, classes A and B have the same method signatures, this is the

case when e.g. they implement the same interface. Secondly, classes A and B have

methods having the same name but a different signature, i.e. the type and number

of parameters differ. Thirdly, classes A and B have methods having different names

with some resemblance to each other. Method names exhibiting some resemblance

are, e.g., like the following: getNumberOfValues() and getNumberValues(); though

these names differ, a human reader can easily recognise that they could be used

for the same goal. Fourthly, methods having the same (or almost the same) input

parameters, as their expected types, have some resemblance to each other.

To begin with, classes are automatically inspected to find the list of all their

methods, together with each associated signature.

As for the first case, when the methods of the classes in a pair of similar classes

have the same signature, tests are generated by simply replacing the name of class

A with the name of class B. This is also a necessary step for test generation when

the following second case occurs.

For the second case, the methods in the pair of classes have the same name,

however different parameters. Then, parameters will be replaced as follows. When

Chapter 5. Automatic Test Generation 106

the parameters used by the method call on the template test are a superset of

the needed parameters for generating the new test, then the method call will be

rewritten by reducing the number of parameters and selecting those needed, in the

proper position. When new parameters are needed for the method to be called, i.e.

they are not contained within the parameters of the original method call, then a

method call is written that generates new parameters with default values, in order

for the test code to be syntactically correct.

The third case involves a different analysis, it consists in having to call a method

on the generated test that is not in the original template test. In order to find

the method that will replace that occurring in the original method call, a method

with a similar name will be selected. As a general rule, each method name will

be decomposed into its constituting words, according to conventions on the use of

upper cases, to form a bag of words. Hence, e.g. a method getNumberOfValues() will

produce a bag of words consisting of get, number, of, values . Then, set comparisons

will be made to find the possible substitution method, selected among the most

similar ones, on the basis of the Jaccard similarity index for the bag of words of

each method. When computing similarity between the above method and method

getNumberValues(), the intersection set will have cardinality 3 and the union set will

have cardinality 4, hence similarity among methods will be determined as 3/4=0.75.

In this example, the two methods are highly similar, and can be interchanged for

the sake of test generation.

The fourth case consists in finding which pair of methods from two different

classes have a similar set of input parameters according to their type. Here, we

list for each method of the pair the types of its parameters and find the Jaccard

similarity index among the two sets of types.

Chapter 5. Automatic Test Generation 107

For the purpose of generating a new test starting from a template test, the

replacements of class and method names were performed by means of the JavaParser

LexicalPreservingPrinter class, which yields Java code that is formatted correctly

and in a standard style.

When writing code, some elements not meaningful for the compiler are however

important to humans, such as. e.g., indentation and comments, and should be

preserved. The above class provides a method setup(Node node), which prepares

the node to be printed. The node that is passed represents the CompilationUnit,

it is therefore possible to make changes to the nodes (e.g. change the name of the

class, change the name of the methods, insert comments, etc.), hence transforming

the original code. Method setup() indicates the point from which all the changes

will be made, which will then result in an output using method print(Node node).

Printing generates a new Java file containing the transformed code. Code writing

was used for the generation of tests according to the substitutions described above

(see Section 5.1.1).

5.1.3 Summary

This study has proposed a novel and effective approach capable of generating test

cases which takes advantage of the knowledge gathered from the static code of classes

to be tested and from the static code of existing test cases. As such, computation

time for generating test cases is limited (depending on the amount of code to be

analysed, and not on its execution time).

We have shown that the devised strategies for comparing classes and finding the

pairs with similar behaviour, in order to reveal which test templates are applica-

ble, are effective, since many analysed software systems have exhibited numerous

Chapter 5. Automatic Test Generation 108

enough pairs of classes with similarities higher than 0.5 (the mid value was chosen

as a threshold). Moreover, generated test cases were a significant number for the

analysed software systems, showing that the proposed substitutions of class and

method names performed on existing test cases (taken as templates) are a viable

solution. Test cases generation managed to include classes that had not been pre-

viously tested, hence increasing code coverage and enhancing the effectiveness of

tests.

This approach generates tests for classes that have not been previously tested.

In order to generate more comprehensive and effective tests, we have designed an

approach to generate templates of test cases for untested methods. These two ap-

proaches can be used together to provide developers with a complete test generation

framework for Java application. The following Section describes this last module of

the testing framework, highlighting the approach and the results of the experiments.

5.2 Automatic Generation of Accurate Test Tem-

plates based on JUnit Asserts

An effective test suite can validate the correctness of a software system and improve

its maintainability, reusability and robustness over time [118, 61, 124]. Moreover, a

test suite can help developers check that enhancements and refactoring activities do

not introduce defects [103, 13]. However, manually implementing a test suite could

be challenging and time consuming, since the developer should produce at least a test

case executing each method and feature in different scenarios. Conversely, poor test

coverage decreases the effectiveness of a test suite, leading to the misidentification

of defects [91]. The state of the art provides several approaches to assist developers

Chapter 5. Automatic Test Generation 109

during software testing. The selection of proper input values can be a critical task

to fulfil when implementing test cases, indeed a broad and accurate spectrum of

values can improve the quality of the test suite. E.g., a combinatorial approach for

the selection of input values can be very effective [14, 22]; moreover, a solution that

automates the selection of expected output values to check the desired behaviour

could make use of a proper model that represents the desired system [23].

For generating the code of a test suite, many tools have been proposed. Some

tools focus on the random generation of a sequence of calls and values that consti-

tute a test case [15, 36, 99, 119]. Generally, random testing tools generate many test

cases, and consequently their execution time increases significantly, then developers

need some criteria and tools to select among these a smaller set of test cases [66, 4].

Moreover, generated test cases can often carry several test smells, lowering the effec-

tiveness and quality of the test suite [102]. Test cases that have been generated by a

random approach can be improved by removing duplicate and redundant tests while

keeping the same code coverage [114, 94, 77]. One of the most effective test gener-

ation tools is Evosuite [46, 145], which is search-based and uses evolutionary search

to automatically generate test suites aiming at maximising code coverage [101]. Al-

though Evosuite has greater coverage and accuracy than other generation tools, test

generation takes considerable time, i.e. on two time budgets of 30 and 120 seconds,

tests achieve 65.7% and 77.1% of mean line coverage respectively [145]. Moreover,

a large amount of computational resources and time are needed to properly run

it, otherwise several OutOfMemoryException crashes could occur, or the generated

test suite exhibits low coverage [145]. The need to increase usability and readability

of generated tests has been pointed out, as generated tests are less readable than

manually implemented ones [115, 51].

Chapter 5. Automatic Test Generation 110

This study aims at automatically generating a set of test case templates for

methods of an application that have not been previously tested. The template

contains the method to be called, a JUnit assert, and as many input parameters

as possible. Our proposed approach uses statistics on the most used JUnit asserts

for each return type of a method, which have been gained by means of a static

analysis on software repositories including test suites. The statistics on return types

of methods have been collected for most of the standard Java library methods.

Then, for an application that needs to have (more) test cases, our approach (and

corresponding tool) generates a customised test case template for each method,

selecting the assert statistically more relevant for the return type of the method to

be called.

We have used our approach to generate test templates for an open source github

repository. According to our experiments, the templates generated have extended

the amount of code coverage significantly, providing tests for methods not previ-

ously tested, and increasing the number of tested classes, methods and paths. Fur-

thermore, the generated templates are easy to understand and versatile, since the

generated assert directly tests a method, unaffected by boilerplate code, and gives

developers the possibility to easily customise it. As a result, the developer is freed

from the implementation of most portions of test code, as she only needs, in some

cases, inserting input parameters and an expected value, when the provided tool

cannot determine these automatically. In the scenario where our approach is used

to support refactoring activities, as proper tests are needed to check whether code

changes have kept the behaviour unmodified, our corresponding tool generates a

complete test case for every refactored method, when applying the refactoring tech-

nique Extract Method. In such a case, the generated test case will use as expected

Chapter 5. Automatic Test Generation 111

value for the new method the returned value of the original method.

The rest of the paper is organised as follows. Section 5.2.1 describes the analysis

performed to gather the data needed for generating test case templates. Section

5.2.2 reports how the template generation is carried out. Section 5.2.3 wraps up the

presented module.

5.2.1 Analysis of Software Systems

Implementing test cases is an activity that takes some time and some effort from

developers. The more automated test development the better. The proposed ap-

proach assists in test cases implementation, hence obtains automation. Statistics

are gathered from classes and methods found from repositories, and from their test

cases. When parsing all Java files, separating application source code from test one

is possible thanks to the typical project structure (usually the source code is organ-

ised in two directories: main and test). The analysis has been arranged in three

main steps: (i) software systems, selected from repositories, are parsed to determine

how JUnit asserts were used and how they relate to each method called and to the

return types of the method called; for this, test code was separated from application

code by relying on the structure of the software system; and within this analysis,

then (ii) return values for some Java APIs such as Collections and String were fur-

ther characterised as they need a specific check in the used assertion than that of

other types; then, (iii) applications for which tests are needed are parsed to collect

their list of methods (with their signature) and tests are generated for them.

Figure 5.2 shows the steps followed by the proposed approach. Steps 1 and 1.1 are

performed once and data gathered serve for subsequent test generations. However,

when more software repositories become available that are representative of the use

Chapter 5. Automatic Test Generation 112

Figure 5.2: Flowchart representing the main steps followed by the approach generating
test cases.

of asserts the said two steps could be executed again. The other steps (2, 2.1 and 3)

are performed each time new test templates need to be generated for an application.

The following subsection details steps 1 and 1.1; which present similarities with steps

2 and 2.1. Parsing activities detailed below are based on the Javaparser library: an

automatic parser that takes as input one or more .java files and generates an abstract

syntax tree (AST) for each, providing means to perform operations on ASTs, such as

reading, inserting, deleting and updating [129]. Two customised visitors have been

implemented, the first to visit test directories and collect statistics on asserts (step

1 in Figure 5.2); the second to visit main directories for gaining method signatures

for which tests will be generated (step 2 in Figure 5.2).

One of the most used and reliable approaches for unit testing in several program-

ming languages is the use of assertions. An assertion represents the point in the code

where the expected value and the returned value of a method call are compared. A

high assertion coverage, i.e. the percentage of statements directly covered by asser-

tions, has a strong correlation with the effectiveness of a test-suite [157]. An open

source testing framework for Java is JUnit, which provides several APIs for simpli-

fying test case implementation, and includes several types of assertions. Most of the

assertions take two input parameters, the first one is the expected value and the

second one is the value returned at runtime by the called method. There are other

assertions, e.g. the assertTrue(actualValue), which take as input just the returned

value, which in the assertTrue() must be a boolean and the expected value is true.

Chapter 5. Automatic Test Generation 113

We have collected the frequency of each assert (step 1.1 in Figure 5.2) used by test

cases for the types returned by called methods for each assert, e.g. the frequency of

return type String tested with assertEquals(), etc., such frequencies are later used

to guide test generation (step 3 in Figure 5.2). We have found 8058 assertions in six

real-world Java projects having different sizes (see Section 6.6).

Listing 5.2 shows four examples of asserts containing method call expressions or

a variable (they have been found in logback github repository, The first shows an

assertTrue() that checks whether the value returned by the method call checkError()

is true, hence we can easily identify the checkError() method as the one tested by the

test case. The second describes an assertEquals() of a variable; then to understand

whether such a variable is the result of a method call, or the result of a chain of

method calls, we look for the variable declaration and its assignment. The third and

fourth examples show a more complex situation, where the actual value tested is a

compounded expression; hence to correctly extract the return type tested, we have

performed some additional activities.

Listing 5.2: Four examples of asserts with different arguments from the logback repository.

// The argument is a MethodCallExpression

1. Assertions.assertTrue(checkError ())

// The argument is a variable

2. Assertions.assertEquals("c", result)

// The argument is a chain of MethodCallExpression or FieldAccessExpr

3. assertTrue(listAppender.strList.get(0).startsWith("testMethod"))

4. assertEquals (1, listAppender.strList.size())

The last two examples in Listing 5.2 show two asserts whose actual value is a

method call chain. To properly extract the type tested by the assert, we consider

the last two elements of the chain: the method call and its scope. If we considered

just the last element, we would have had types like Integer, Float etc., therefore

Chapter 5. Automatic Test Generation 114

missing some occurrences of types such as String or Collections. The third example

in Listing 5.2 is a chain of FieldAccessExpr and MethodCallExpr ; we select the

startsWith(”testMethod”) method call, and we check the type of its scope, the

method call get(0), which returns a String ; we can then store the triple (assertTrue,

String, startsWith()), where starting from left we have the name of the assert, the

type tested and the chain used. The fourth example is like the third, the only

difference is that the scope of the method call is a variable. According to the above,

we have designed a visitor that automatically parses the code of all test classes inside

the application and looks for test cases. Then, for each test case found, asserts are

collected and stored as a pair composed by the type of the assert (e.g., assertTrue(),

assertEquals(), etc.) and the type tested, i.e. the type returned by the method call

or the variable assigned within the assert.

This approach allows us to better generalise our analysis, gathering more data

for our template generation. We can create more complex templates and guarantee

the generation even for complex types like Collections. We decided to include this

category to our analysis because it is widely used by many projects, unlike other

libraries that can differ according to the project needs [28].

5.2.2 Test Template Generation

This section describes the generation of a test suite (from scratch) for applications,

to increase the number of tests available. Our tool generates a set of test templates

for classes and methods that have not already been tested (step 3 in Figure 5.2). We

combine the analysis of code, described in Section 5.2.1, with the results given by

JaCoCo (www.eclemma.org/jacoco), an open source library for Java that automati-

cally performs code coverage analysis. The output of JaCoCo is a set of html pages

Chapter 5. Automatic Test Generation 115

showing the code coverage of each method’s instructions and branches. We filter the

methods that our code analysis as found as not-tested (i.e. they do not appear in

any test case), with the output given by JaCoCo, to extract just the methods whose

lines of code are not fully covered by any existing test, and generate a template test

for each of them.

To generate the test template, we first determine which assert can be the most

accurate to test that specific method. We base our evaluation on the statistics

gained from the test case analysis on several software repositories (described in

Section 5.2.1). We select the assert with the highest frequency for the type returned

by the method and use it for the generation of the template. If there are asserts

having a close frequency, we will generate as many templates as many close asserts

for the same method.

Then, to make the generated test case complete, the proper input values and

expected values are needed. To help the developer, we have three solutions for the

selection of values. Firstly, our tool can be given a .CSV file where each line is

the triple: method’s signature, input arguments (if any), and the expected value

in the assert; then our tool will automatically generate the template filled with

data. Secondly, when the system is being refactored, we use the original method

(before refactoring) and its test code to gather information regarding the parame-

ters and values used. As for refactoring the behaviour should be unchanged, the

input and the output values remain effective and can be included in our genera-

tion. Thirdly, we integrated our approach with an automatic value generation tool.

We have selected Java Faker (github.com/DiUS/java-faker), which automatically

returns a value for a variable based on its name and type, e.g. String streetAd-

dress = faker.address().streetAddress(); // 60018 Sawayn Brooks Suite 449, where

Chapter 5. Automatic Test Generation 116

the variable streetAddress is associated with the value ”60018 Sawayn Brooks Suite

449”. Therefore, we try to guess proper values needed for test templates according

to names of parameters and methods.

5.2.3 Summary

This module and the one presented in 5.1 form the testing framework. The devel-

opers can use these modules to generate an effective test suite for their application,

significantly reducing the time needed for writing all tests. Moreover, this frame-

work can be used together with the refactoring framework to generate an improved

version of their application.

This module and the one presented in Section 5.1 form a comprehensive test-

ing framework that developers can use to generate an effective test suite for their

Java applications. This can significantly reduce the time needed for writing tests

manually.

In addition, the testing framework can be used in conjunction with the refac-

toring framework presented in Sections 3, 4 to generate an improved version of

the application. For example, the refactoring framework can be used to identify

and refactor methods to a parallel version, which can improve the performance of

the application. The testing framework can then be used to generate tests for the

refactored code, ensuring that it still works as expected.

Overall, the testing framework provides a valuable tool for developers to improve

the quality of their Java applications.

117

Chapter 6

Experiments and Results

6.1 Data Dependence API

We conducted experiments using our custom library on seven open source projects,

selected from among the most popular repositories available on the Maven repository

(mvnrepository.com/popular). The source code for each of these repositories is

accessible on GitHub. The gathered metrics for the seven analysed projects are

presented in Table 6.1.

The first column of the table displays the names of each software system. Mov-

ing from the second column onward, the metrics are as follows: ”Total” represents

the total number of methods analysed; ”Stateless” indicates the number of methods

categorised as ’STATELESS’ at the end of the analysis; ”Read” shows the number

of methods categorised as ’READ’; ”Write” corresponds to the number of meth-

ods categorised as ’WRITE’. The subsequent six columns display metrics for both

’READ’ and ’WRITE’ methods. In the case of ’READ’ methods, the ”Both” col-

umn represents the number of methods categorised based on both factors: ’READ’

method calls and ’READ’ operations on external variables. On the other hand, the

”Method” and ”Variable” columns represent the number of methods categorised

mvnrepository.com/popular

Chapter 6. Experiments and Results 118

based solely on method calls or used variables, respectively. Similar columns are

provided for ’WRITE’ methods.

The metrics reveal that ’READ’ and ’WRITE’ methods account for over 80% of

the total number of methods across most projects. An exception is observed in the

JavaHamcrest project, where ’READ’ methods make up 80% of the total. In many

analysed projects, ’STATELESS’ methods constitute approximately 10% of the total

number of methods, indicating that they can be readily executed in parallel. For

other methods, a synchronisation mechanism is required before they can be run in

parallel due to their method calls or access to shared data.

Methods categorised exclusively based on method calls and external variables

underscore that data dependence is not solely determined by the use of non-local

variables. Instead, method calls also carry significant weight when considering par-

allel execution. The size of the output set may provide an indication of the effort

required to implement synchronisation mechanisms for parallel execution.

Table 6.2 displays the number of methods that write varying numbers of vari-

ables, as indicated at the top of the respective columns. The columns range from

”1” (representing the number of methods with just one external variable written)

to ”7+” (representing the number of methods with 7 or more external variables

written). The analysis indicates that nearly 80% of methods write just one external

variable, with the exception of the Clojure project, where this figure is 64%.

Now, we analyse three methods extracted from the Jackson-Databind project

(available at github.com/FasterXML/Jacksondatabind). In Figure 6.1, you can see

the ’serialize()’ method, categorised as ’WRITE’ due to its inclusion of both a write

operation on the ’ser’ variable and a write method call to ’_findAndAddDynami

c()’ (the left side displays the source code, while the right side exhibits the report

'_findAndAddDynamic()'
'_findAndAddDynamic()'

Chapter 6. Experiments and Results 119

Table 6.1: Metrics for each category of methods in the analysed software systems

category read methods write methods
analysed systems total stateless read write both meth var both meth var
jackson-databind 10726 1214 6770 2742 1622 1327 3821 252 1726 764
joda-time 8242 985 5103 2154 2301 1728 1074 268 1760 126
logback 5420 526 2372 2522 568 366 1438 323 1616 583
junit4 3708 937 1868 903 786 524 558 46 494 363
clojure 2554 330 1511 713 658 140 713 164 418 131
JavaHamcrest 978 102 817 59 338 196 283 1 56 2
repodriller 412 30 232 150 55 15 162 12 81 57

Table 6.2: Number of methods performing write operations to one or more external vari-
ables

systems total 1 2 3 4 5 6 7+
jackson-databind 1016 863 98 32 17 2 1 3
logback 906 746 97 32 16 10 2 3
junit4 409 382 23 0 0 2 2 0
joda-time 394 223 60 79 11 8 1 12
clojure 295 193 57 20 8 5 1 11
repodriller 69 55 6 2 4 0 0 2
JavaHamcrest 3 2 1 0 0 0 0 0

generated by our analysis).

Figure 6.2 presents a method whose category is determined exclusively by a

write operation. Despite containing a call to a method labelled as ’READ’ (i.e.,

’getParent()’), its category is solely influenced by the write operations on the listed

external variables, as explained in Section 2.

Finally, Figure 6.3 showcases a method whose category is determined by the

method calls ’createUsingDefault()’ and ’deserialize()’, both categorised as ’WRITE’

methods. The report also provides information about the ”Callers,” which includes

all methods calling the current method. This detail offers valuable context for

understanding how the method will be executed.

Chapter 6. Experiments and Results 120

Listing 6.1: On the left, the method serialize() from the Jackson Databind project, on the

right, all the information extracted by our library. Method’s category is given by a write

operation on the external variable ser and a write method call findAndAddDynamic()

public void serialize(Object value , JsonGenerator g,

SerializerProvider provider) throws IOException {

Class <?> cls = value.getClass ();

PropertySerializerMap m = _dynamicSerializers;

JsonSerializer <Object > ser = m.serializerFor(cls);

if (ser == null) {

ser = _findAndAddDynamic(m, cls , provider);

}

ser.serialize(value , g, provider);

}

Qualified name:

com.fasterxml.jackson.databind.ser.std.StdKeySerializers .* Dynamic.serialize

Category: WRITE

External read variables: [provider , g, cls , _dynamicSerializers , value]

External write variables: [ser]

Write Method Calls:

com.fasterxml.jackson.databind.ser.std.StdKeySerializers.Dynamic.

_findAndAddDynamic

External read methods:

java.lang.Object.getClass

Callers:

com.fasterxml.jackson.databind.deser.builder.BuilderWithUnwrappedTest.

testWithUnwrappedAndCreatorSingleParameterAtEnd

Chapter 6. Experiments and Results 121

Listing 6.2: On the left, the method nextToken() from the Jackson Databind project, on

the right, all the information extracted by our tools. Method’s category is given by write

operations on three external variables: nodeCursor, currToken, closed

public JsonToken nextToken() throws IOException {

_currToken = _nodeCursor.nextToken ();

if (_currToken == null) {

_closed = true; // if not already set

return null;

}

switch (_currToken) {

case START_OBJECT:

_nodeCursor = _nodeCursor.startObject ();

break;

case START_ARRAY:

_nodeCursor = _nodeCursor.startArray ();

break;

case END_OBJECT:

case END_ARRAY:

_nodeCursor = _nodeCursor.getParent ();

default:

}

return _currToken;

}

Qualified name:

com.fasterxml.jackson.databind.node.TreeTraversingParser.nextToken

Category: WRITE

External read variables: [START_OBJECT , END_ARRAY , END_OBJECT , START_ARRAY]

External write variables: [_nodeCursor , _currToken , _closed]

Read Method Calls:

com.fasterxml.jackson.databind.node.NodeCursor.getParent

Callers:

com.fasterxml.jackson.databind.DeserializationContext._treeAsTokens

com.fasterxml.jackson.databind.cfg.MutableCoercionConfig.

setAcceptBlankAsEmpty

Chapter 6. Experiments and Results 122

Listing 6.3: On the left, the method deserialize() from the Jackson Databind project, on

the right, all the information extracted by our tools. Method’s category is given by write

method calls, createUsingDefault() and deserialize()

public T deserialize(JsonParser p, DeserializationContext ctxt) throws IOException {

if (_valueInstantiator != null) {

@SuppressWarnings("unchecked")

T value = (T) _valueInstantiator.createUsingDefault(ctxt);

return deserialize(p, ctxt , value);

}

Object contents = (_valueTypeDeserializer == null)?

_valueDeserializer.deserialize(p, ctxt):

_valueDeserializer.deserializeWithType(p, ctxt , _valueTypeDeserializer);

return referenceValue(contents);

}

Qualified name:

com.fasterxml.jackson.databind.deser.std.ReferenceTypeDeserializer.

deserialize

Category: WRITE

External read variables: [p, ctxt , _valueTypeDeserializer , _valueInstantiator ,

_valueDeserializer]

Read Method Calls:

com.fasterxml.jackson.databind.JsonDeserializer.deserializeWithType

com.fasterxml.jackson.databindJsonDeserializer.deserialize

Write Method Calls:

com.fasterxml.jackson.databind.deser.ValueInstantiator.createUsingDefault

com.fasterxml.jackson.databind.deser.std.ReferenceTypeDeserializer.

deserialize

Callers:

com.fasterxml.jackson.databind.ser.TestSimpleTypes.testShortArray

Chapter 6. Experiments and Results 123

6.1.1 Discussion

In table 6.1, the number of stateless methods represents just 10% of the methods.

This data highlights how most of the methods in a project have some dependencies,

indeed they share reading or even writing operations with other methods. Therefore

it is necessary to properly check the dependencies of a code fragment before refac-

toring it, e.g. executing the statement in parallel. The proposed API can effectively

help developers in these tasks, which could be complicated and sensitive if done

manually.

Read methods represent the majority in the analysed methods (except for logback

which is the only one where write methods are higher than read methods). The anal-

ysis highlights how the dependencies between methods are not always strict, since if

two methods read the same variable without writing it, they can be easily run in par-

allel without further synchronisation despite having at least one variable in common.

Correctly identifying this kind of dependencies is crucial when developing parallel

architectures, indeed, an error in identifying a read variable in a write variable would

lead to the insertion of a synchronisation process which would not be necessary, it

could burden the code and even worse the performance of the application.

Despite the analysis taking into account both method and variables to detect

all the dependencies, methods defined in external libraries are not analysed since

the source code is not available for the static analysis. We have mitigated this by

creating a .txt file containing all the qualified signatures of the encountered methods,

by manually labelling them as stateless, read or write. Methods that are not inside

the list are reported to the developer in order that he can update the file, broadening

the number of handled methods.

Chapter 6. Experiments and Results 124

The approach uses static analysis to gather all the data required for the depen-

dency analysis. Accordingly, all the types referring to interfaces cannot be inferred

since the actual type will be instantiated during the execution. In order to keep

these cases in our analysis, we select all the methods defined in the subclasses of

the interface, and we assign to the type the worst label found according to the state

machine (figure 3.1. E.g., the approach is analysing a method to understand its

dependencies: a method call defined in an interface is found, we do not know which

class will be instantiated during the execution, therefore we select all the methods

with the same signature defined in the subclasses and select the one with the highest

label.

The determination of the quantity of writing variables within a method holds

significant importance in assessing the effort needed for parallelising that method.

Specifically, a greater number of writing variables within a method necessitates a

higher count of synchronisation statements to enable the method’s effective paral-

lel execution. Furthermore, it is advisable for developers to steer clear of creating

methods with such dependencies, as this results in increased code coupling, thereby

diminishing its reusability. Table 6.2 illustrates that the majority of methods typi-

cally involve just one external write variable. However, there exist a notable subset

of methods that encompass more than three variables, which may indicate subopti-

mal programming practices and a limited inclination towards parallelisation.

It is essential to comprehend the labelling of a method to effectively charac-

terise its behaviour and dependencies (Figures 6.1,6.2,6.3). Methods categorised by

a variable indicate a data dependency, signifying a connection between two state-

ments that access or modify the same resource. In contrast, methods categorised

Chapter 6. Experiments and Results 125

by another method represent a control dependency, wherein a program instruc-

tion is contingent on the preceding instruction’s evaluation outcome for execution.

Distinguishing between these two types of dependencies is crucial for a compre-

hensive understanding of the method under examination. This distinction aids in

the accurate assessment of synchronisation requirements when considering potential

parallelisation.

6.2 From Sequential to Parallel

Our experiments were designed to automatically analyse and modify an application

while assessing the correctness of the results and measuring performance improve-

ments. We conducted these experiments on a sample application that extracts

data from the Amazon Books Reviews dataset [31] to derive insights on books,

authors, and reviews. The source code of the analysed application is publicly avail-

able in a repository (https://github.com/AleMidolo/BookReviews, accessed on 21

July 2023). This dataset comprises approximately 3 million book reviews, covering

212,404 unique books, with multiple users providing reviews for these books. To

ensure reasonable execution times for testing the correctness of the transformations

and evaluating performance, we selected a subset of 166,667 reviews for analysis.

Among the 44 methods found within the six classes of the application under ex-

amination, our tool automatically identified and refactored five methods into parallel

versions. One of these methods, getUserForAuthor(HashMap¡String, Book¿ books,

List¡Review¿ reviews), is illustrated in Listing 6.4. The automatic analysis of this

method proceeded as follows: the method call getAuthors() at line 2 (Listing 6.4)

was initially selected for analysis. The context of this method call was evaluated,

Chapter 6. Experiments and Results 126

and further assessment was conducted as the context matched one of the feasible

cases outlined in Section 3.2.2; data dependence analysis identified the instruction at

line 4 as data-dependent. This determination was made because the authors list was

populated by the method call at line 2 and subsequently used at line 4; the Control

Flow Graph (CFG), which consisted of statements within the called methods, was

constructed. Conditional branches and loops were analysed to determine whether

any adjustments were needed (see Section 3.2.4). However, in this case, the code

did not contain any if/else statements, resulting in a CFG with no alternative paths.

Additionally, there were no loops present in the CFG; potential parallel execution

paths were identified; finally, the paths, including line 2 (along with the CFG of

the called method) and line 3 (also including the CFG of the called method), were

automatically assessed to count the number of instructions comprising each path.

This evaluation helped determine whether executing these paths in parallel would

yield performance improvements.

Chapter 6. Experiments and Results 127

Listing 6.4: This code extracts the authors from the books and the users from the reviews,

then it assigns to each author all the users that have provided at least one review for the

author’s books.

1 ExtractData extractor = new ExtractData(books , reviews);

2 HashMap <String , Author > authors = extractor.getAuthors ();

3 HashMap <String , User > users = extractor.getUserForAuthor ();

4 authors.values ().forEach(author -> {

5 List <String > usersId = author.getBooks ().stream ().

6 flatMap(b -> b.getReviews ().stream ().

map(r -> r.getUserID ())).

7 collect(Collectors.toList ());

8 usersId.forEach(u -> author.addUser(users.get(u)));

9 });

10 return authors;

}

// parallel version of some instructions above

2 CompletableFuture <HashMap <String , Author >> f =

CompletableFuture.supplyAsync (() -> extractor.getAuthors ());

3 HashMap <String , User > users = extractor.getUserForAuthor ();

4 HashMap <String , Author > authors = f.get();

Figure 6.1 shows a portion of the CFG for the code in Listing 6.4, from line 1

to line 5. The paths that should be executed in parallel are (i) the instruction at

line 2; (ii) the instruction at line 3. Line 4 presents a statement that depends on

the output of line 2. The first path has nine instructions, eight are the instructions

contained in the CFG2, of which, six are inside a loop. The second path has 10

instructions, 11 are the instructions contained in the CFG3, of which, 5 are inside a

loop. The method is suitable for parallel refactoring because the instruction numbers

are sufficiently large and both CFGs found contain a loop. Therefore, a new version

of the method has been generated that contains the constructs for parallel execution.

Chapter 6. Experiments and Results 128

Such a version can be seen in the bottom part of Listing 6.4; the method call was

given as a lambda expression in the CompletableFuture call supplyAsync(); just

after line 3, the get() call was introduced to synchronise the execution and create

the authors HashMap.

Figure 6.1: CFG extracted from the method’s graph getUserForAuthor() shown in Listing
6.4.

We assessed the performance of the generated refactored parallel version by us-

ing Java Microbenchmark Harness (JMH), a standard performance test harness that

provides APIs to write formal performance tests. We configured the library to have

warm-up cycles for performance measurements; each run had five warm-up itera-

tions and five normal iterations. JMH tests are the best indicators of performance

improvements since they isolate the subject that is evaluated, avoiding influences

by other subjects. Table 6.3 shows the resulting benchmarks of the methods that

were automatically refactored by our approach. Method column presents the name

of the refactored method; Time (ms) column displays the execution time in mil-

liseconds for the method; Speed-Up column is the speed-up obtained by the parallel

version (computed as runtimeold/runtimenew); finally, the sub-columns Sequential

Chapter 6. Experiments and Results 129

and Parallel show the respective measured execution times for the sequential (run-

timeold) and parallel (runtimenew) versions. The average overhead measured for

each CompletableFuture call was 7.77 ms, calculated on 10 different runs and after

10 warm-up runs. The overhead represents the time needed for the JVM to create

and execute the new thread that will handle the parallel path; it was computed as

the difference between times for the execution of the parallel and sequential versions.

The measured performance will be further discussed in Section 6.2.1.

Table 6.3: Execution times for all five methods refactored for the sequential and parallel
executions.

Method time (ms) speed-up
sequential parallel

extractFromDataset 36K 17K 2.11
extractMostReviewedAuthor 485 330 1.46
extractLeastReviewedAuthor 522 318 1.64
extractAverageReviewedAuthor 533 317 1.68
getUserForAuthor 700 486 1.44

To validate the accuracy of our analysis and transformation in the case study,

we created a test suite to ensure that the generated parallel version maintained the

same behaviour as the sequential one. We utilised the JUnit framework to write and

execute all the tests. Table 6.4 presents the tests implemented for the five refactored

methods. The Description column provides a concise description of what each test

verifies, while the Result column displays the values returned by both sequential

and parallel executions.

Each test includes an assertion in which the expected value is derived from the

output of the sequential execution of the method, while the actual value comes from

the parallel execution. In all executed tests, the results produced by the parallel ver-

sion matched those of the sequential version. Specifically, for the getUserForAuthor()

Chapter 6. Experiments and Results 130

method, the only one returning a HashMap, all values within the HashMap were

identical in both versions. Similarly, the same consistency holds for the books and

reviews extracted by the extractFromDataset() method.

Table 6.4: Tests executed to validate the correctness of the refactored parallel code.

Description Called method Result
number of books extractFromDataset 212,404
number of reviews extractFromDataset 333,335
all books are equals extractFromDataset true
all reviews are equals extractFromDataset true
most reviewed author extractMostReviewedAuthor Lois Lowry
number of reviews extractMostReviewedAuthor 3822
number of books extractMostReviewedAuthor 8
least reviewed author extractLeastReviewedAuthor John Carver
number of reviews extractLeastReviewedAuthor 0
number of books extractLeastReviewedAuthor 1
average reviewed author extractAvgReviewedAuthor Mark Bando
number of reviews extractAvgReviewedAuthor 14
number of books extractAvgReviewedAuthor 2
number of authors getUserForAuthor 127,279
all authors are equals getUserForAuthor true
all users are equals getUserForAuthor true

6.2.1 Discussion

To comprehensively assess the effectiveness of our approach, we conducted a per-

formance benchmark to measure the actual improvement in execution time, along

with a suite of tests to verify the correctness of the applied transformations.

The average speed-up across all five benchmarked methods was 1.66. This ranged

from the highest speed-up in extractFromDataset() at 2.11 to the lowest in getUser-

ForAuthor() at 1.44. It’s important to note that the performance of the parallel

version, and consequently the achieved speed-up, is significantly influenced by the

workload distribution between the two parallel paths. When the execution times of

Chapter 6. Experiments and Results 131

the two paths are closely aligned, maximum gains are realised as the paths can run

concurrently without waiting for each other.

As elaborated in Section 3.2.4, our analysis constructed a Control Flow Graph

(CFG) to estimate the number of operations for each path. We precisely determined

the number of operations and identified the presence of loops but did not estimate

execution times. Consequently, some disparities in execution times between the two

paths might occur, potentially impacting performance gain when the path with less

work has to wait for the other to complete.

The five benchmarks conducted for the application yielded varying speed-ups (re-

fer to Table 6.3). Notably, for the extractFromDataset() method, the two parallel

threads exhibited closely aligned execution times, resulting in a substantial perfor-

mance gain. Conversely, methods with speed-ups of 1.44 and 1.46 experienced more

significant differences in the execution times of the two parallel paths. Despite these

variations, our transformations were proven effective, as they consistently delivered

substantial performance improvements.

The extractFromDataset() benchmark required a longer execution time compared

to the others due to multiple I/O operations to read data from .csv files. As detailed

in Section 6.2, these files contained over 200,000 records for books and 300,000

records for reviews.

Table 6.4 provides insights into the tests conducted to validate the correctness of

our applied refactoring. The Result column presents values returned by both sequen-

tial and parallel versions, demonstrating that, in each execution, the results remained

consistent. This affirms that the control flow and data dependence analyses (Section

3.2.3) accurately identified dependencies and that synchronisation statements were

correctly inserted. A misidentification could have resulted in desynchronisation and

Chapter 6. Experiments and Results 132

test failures.

We assessed the code coverage of our test suite using JaCoCo (https://www.

eclemma.org/jacoco/, accessed on July 21, 2023), an open-source Java library for

automated code coverage analysis. Our test suite achieved a total code coverage

of 94%, with only catch branches for try statements remaining unexecuted. All

branches executed in both sequential and parallel modes were covered, confirming

the correctness of the transformation. The code coverage analysis output for the

analysed application is available in our GitHub repository.

The measured overhead represented approximately 0.05% of the parallel execu-

tion time for the extractFromDataset() method and between 1.5% and 2.5% for the

other methods, minimally impacting parallel executions.

Our approach focuses on ensuring both the correctness of transformations and

performance enhancements while minimising potential overhead from parallel threads.

However, since our approach relies on static code analysis, there are specific scenarios

that cannot be fully evaluated.

Firstly, if we identify subsequent instructions or blocks of instructions with low

estimated computational efforts and data dependence, we refrain from transforming

the code into a parallel structure. While this prevents unnecessary clutter and

synchronisation in situations where performance gains are uncertain, it’s essential

to note that our analysis relies on estimated computational efforts. These estimates

may be inaccurate in cases involving cycles, unknown repetition numbers, or calls

to methods from external libraries, potentially causing us to miss some performance

improvement opportunities. To address this, we could explore ways to enhance

execution time estimation and consider developer input.

Secondly, static analysis alone cannot predict which method will be executed

https://www.eclemma.org/jacoco/
https://www.eclemma.org/jacoco/

Chapter 6. Experiments and Results 133

at runtime in cases involving polymorphism. In such instances, we err on the side

of caution, assuming the least favourable data dependence and performance gains.

Consequently, there might be instances where potential opportunities for parallel

execution are missed.

Thirdly, when a code fragment involves multiple references to objects of the

same type, distinguishing between different instances can be challenging through

static analysis, especially when a variable is conditionally assigned to one of several

references. This can result in missed opportunities for parallel execution of distinct

objects, potentially limiting performance gains.

Lastly, our approach may overlook scenarios where instruction reordering is pos-

sible, allowing dependent statements to be moved farther apart while maintaining

correctness. These situations represent another area where performance gains could

be missed.

It’s worth emphasising that we have incorporated these limitations into our anal-

ysis and tool to prioritise correctness when executing the transformed code. This

approach may result in a few cases where performance is not maximised but ensures

that the behaviour remains correct.

6.3 Java Loops to Stream

The analysis was performed on a sample of eight software systems, which were

selected from Maven Repository among the most popular ones. Table 6.5 shows,

from the second column: count of for loops that iterate a collection; count of loops

having references to local variables defined outside the loop; count of loops having

more than 5 lines of code (LOC) in their body; count of loops having at most 5 LOC

Chapter 6. Experiments and Results 134

in their body, which will be further analysed; then the five rightmost columns give

the number of loops matching the five proposed templates: column fret represents

for loops having a conditional statement and a return statement; mret shows for

loops having an assignment, a conditional and a return statement; temp represents

for loops having a temp and a condition on the current value; add shows for loops

having a temp and producing a collection; finally, column if&else represents for

loops having a if-then-else-if statement.

For the experiment we have considered only for loops having at most 5 LOC,

because more lines means a greater difference from the above templates. Such loops

represent about 79% of the existing loops, while the loops having more than 5

LOC represent about 4%; the remaining 17% is in the local column. The most

common matching template found was the one creating a new collection (column

collect) being found on average in 18.7% of loops having at most 5 LOC (we can

transform them using the template described in subsection 2.4). The least common

loop template was the one having a if-then-else statement (column if-else, template

in subsection 2.5) found on average in the 2% of loops.

All the matching templates amount to 42.87% of the loops having at most 5

LOC. This means that nearly half of the loops have been successfully refactored.

The remaining 57.13% are loops that: (i) could be handled by implementing an

approach similar to that in [45], however we avoided that as our templates are all

novel contributions, or (ii) cannot be transformed into stream-based code as they

have a complex structure, e.g. loops with multiple statements in their body, which

are far from the functional programming style.

Chapter 6. Experiments and Results 135

systems tot lcl >5 ≤5 fret mret temp add if&else
findbugs 560 98 44 418 41 12 39 56 12
fitnesse 176 18 6 152 17 3 15 46 2

jackson-databind 93 16 9 68 6 4 14 12 1
jedit 112 19 3 90 9 5 9 9 3
junit4 85 9 0 76 10 1 8 18 1
lombok 88 21 4 63 6 2 2 14 1
mockito 81 17 0 64 13 2 2 12 1
tomcat 245 41 13 191 27 1 13 26 6

Table 6.5: Metrics on the analysed software systems

6.3.1 Discussion

Our approach proposed several innovative templates compared to the state of the

art. Figure 6.5 shows an example proposed by the authors in [56] to refactor a for

loop into a stream pipeline. The first fragment is the original code with the for loop.

The loop cycle on an entrySet of a map, and after two conditional statements, add

the value of the entry into an ArrayList. The second fragment shows the refactoring

performed in [56]: they have replaced the for loop with a stream call on the entry set,

then a filter is inserted to replace the first conditional statement, then a forEach is

inserted within which the remaining statements were inserted. They are proposing

a partial refactoring, since the statements from line 5 to line 7 are just copied within

the forEach statement, which represents nothing more than a simple for loop. The

only effective stream operation used by their approach is the filter method to replace

the if condition (isValid(enty)). Conversely, the last fragment shows the refactoring

proposed by our approach: we have inserted another filter operation to replace the

second if statement. The stream APIs do not allow us to declare a variable, indeed

we have removed the statement at line 5 since it’s just a temp variable, indeed the

cl variable can be replaced with its value, entry.getKey(). At this point, in order to

replace the result.add(entry.getValue() operation in the for loop, we have inserted

a map() operation to convert all the elements in the stream to the entry.getValue()

Chapter 6. Experiments and Results 136

value, and through the collect() operations we are able to return a list that will be

assigned to the List< String > result variable. The resulting stream pipeline fully

embraces the functional style keeping the same behaviour of the imperative one.

Table 6.5 highlights how the most common template found in the repositories is the

one that creates a new collection using the collect operation, highlighting that many

for loops are used to fill or generate collections.

Our proposed refactoring stands out for its conciseness and clarity, effectively

minimising the code’s line count when compared to alternative refactoring ap-

proaches. Additionally, it imparts a more coherent structure to the code, enhancing

its intuitiveness and comprehensibility for developers. The amalgamation of func-

tional and imperative styles, as exemplified in the second code fragment, introduces

a potential risk of complicating the code structure, consequently diminishing its

readability and maintainability.

However, it’s important to acknowledge that a complete refactoring of a for loop

into a stream pipeline may not always be feasible. In certain scenarios, a hybrid

solution may be a viable choice. In such instances, the decision to retain the for loop

or employ the hybrid approach lies with the developer. It is worth noting that the

hybrid solution may offer opportunities for parallelisation using the parallelStream()

API, which, when used appropriately, can lead to performance enhancements in the

code.

The applicability of this approach is strictly related to the presence of for loops

within the source code and on their structure. As stated in section 4.1, a for loop

should pass all the preconditions and match one of the template to be refactored.

This highly depends on the statements that comprise the cycle and its dependencies

with external variables. The differences between functional and imperative style

Chapter 6. Experiments and Results 137

fall heavily on the fact that many tasks are most naturally attacked by imperative

means and cannot be represented as readily in a functional manner [44, 48].

Chapter 6. Experiments and Results 138

Listing 6.5: This code is taken from the example 3 in figure 4 in [56], where they show their

refactoring from for loop to stream. The last listing represents the refactoring proposed

by our approach

// The original code of the example proposed by Lambdaficator

1 List <String > findReloadedContextMemoryLeaks() {

2 List <String > result = new ArrayList <String >();

3 for (Map.Entry <ClassLoader ,String > entry : childClassLoaders.entrySet ())

4 if (isValid(entry)) {

5 ClassLoader cl = entry.getKey ();

6 if (!((WebappClassLoader)cl).isStart ())

7 result.add(entry.getValue ());

8 }

}

// Their proposed refactoring

1 List <String > findReloadedContextMemoryLeaks () {

2 List <String > result = new ArrayList <String >();

3 childClassLoaders.entrySet ().stream ()

4 .filter(entry -> isValid(entry))

5 .forEach(entry -> {

6 ClassLoader cl = entry.getKey ();

7 if(!((WebappClassLoader) cl).isStart ())

8 result.add(entry.getValue ());

9 });

}

// Our proposed refactoring

1 List <String > findReloadedContextMemoryLeaks () {

2 List <String > result = childClassLoaders.entrySet ().stream ()

3 .filter(entry -> isValid(entry))

4 .filter(entry -> !((WebappClassLoader) entry.getkey ()).isStart ())

5 .map(entry -> entry.getValue ())

6 .collect(Collectors.toList ());

Chapter 6. Experiments and Results 139

6.4 Matching Algorithms

We have compared our approach to a text-based search approach between methods

and the templates of the algorithms. Table 6.6 shows the metrics obtained for the

four methods previously described: column method displays the method considered

for the analysis, respectively bubblesortV1 (listing 4.7), factorialV1 (listing 4.9),

quicksortStack (listing 4.10) and quicksortArray (listing 4.11). The other five main

columns are the templates used by our approach to match the algorithms: ItBub-

blesort is the bubblesort iterative version (the one displayed in Listing 4.8); Rec-

Factorial is the factorial recursive version; ItQuicksortST is the quicksort iterative

version using a stack to sort the elements; ItQuicksortAr is the quicksort iterative

version using an array to sort the elements; ItMergesort is the mergesort iterative

version. We have also considered the mergesort to show how the analysis is able

to distinguish different algorithms. Each of these columns have two subcolumns:

sim and text are respectively the similarity score of our approach and the similarity

score of the text comparison approach. We have highlighted in bold text the highest

score corresponding to the correct identification of the algorithm in subcolumn sim;

whereas in subcolumn text the maximum score has been highlighted for the text

match. We can see that the score assigned by our approach is much higher in each

case, indicating a higher precision in the identification.

6.4.1 Discussion

For all the five methods shown in Table 6.6, our approach shows a higher identi-

fication score compared to the text similarity approach. Indeed, we have a higher

similarity score that is more than double for the quickSortStack (0.84 compared to

Chapter 6. Experiments and Results 140

Table 6.6: Similarities between the examples shown before and five different known algo-
rithms used by our approach as templates. The first column, method, shows the name of
method analysed, while the other columns displays for each template the similarity score
given by our approach, column sim, and by a text comparison approach, column text.

ItBubblesort RecFactorial ItQuicksortSt ItQuicksortAr ItMergesort
method sim text sim text sim text sim text sim text
bubblesortV1 0.85 0.52 0.16 0.05 0.15 0.28 0.21 0.30 0.16 0.21
factorialV1 0.14 0.07 1.0 0.7 0.07 0.09 0.07 0.05 0.06 0.04
quicksortStack 0.25 0.21 0.08 0.06 0.84 0.37 0.42 0.29 0.23 0.26
quicksortArray 0.26 0.21 0.06 0.02 0.46 0.28 0.86 0.34 0.30 0.33

0.37) and quickSortArray (0.86 and 0.34) methods, and values about 40% greater for

bubblesortV1 (0.85 and 0.52) and factorialV1 (1.0 and 0.7) methods. Our approach

performs better because it can generalise the matching, without considering names

of variables, comments and names of types.

Moreover, the matching scores given by our analysis are clearly greater than the

score of other algorithms, whereas, with a text similarity approach, we can see that

the quicksortArray method has a similarity score of 0.34 for ItQuickSortAr, 0.33 for

ItMergesort and 0.28 for ItQuicksortSt, hence the closeness of such scores can bring

ambiguity in the correct identification of the algorithm.

Finally, our approach can distinctly recognise two different versions of the same

algorithm: the quicksortStack has 0.84 score as ItQuicksortSt and 0.42 as ItQuick-

SortAr, while the quicksortArray method has respectively 0.46 and 0.86. The ac-

curate identification of the version used is crucial when suggesting improvements or

proposing different versions.

The ability to recognise an algorithm is related to the set of templates, which is

not easy to maintain and grow. An algorithm can be matched if a similar template

of the same algorithm is already part of the templates. To handle this, the database

can be populated with the most popular algorithms, and, if an algorithm is not

included, it could be added by a developer using our approach and tool.

Chapter 6. Experiments and Results 141

The approach extracts the statement’s type to evaluate the similarity between

algorithms. On the one hand, two algorithms can have similar statements despite

having a different behaviour, thus showing low accuracy in identifying code’s be-

haviour. On the other hand, the approach can give a degree of generalisation, since

it is not dependent on names and types encountered, therefore it is not based on the

comprehension of how the algorithm was implemented, but on its structure. This

property is the main difference between our approach and type-3 clone approaches.

6.5 Unit Tests based on Code Behaviour

The proposed approach has been employed for analysing several Java software sys-

tems found on repositories. Since we exploit existing tests as templates for the

generation of new tests, we have taken software systems from Maven Repository1,

which lets us quickly check the existence of tests.

Table 6.7 shows a summary of the metrics related to our test generation solution

and produced for the software systems under analysis. For each analysed system,

column classes shows the number of classes; column tests gives the number of ex-

isting tests; column tested gives the number of classes for which at least a test has

been found in the repository; column single gives the number of tests found in the

repository that execute a single class; column gen gives the number of newly gener-

ated tests, thanks to our approach; column incr gives the percentage increment of

available tests accruing from our test generation; column cover gives the number of

classes for which a test has been generated that were not previously tested, hence

increasing code coverage. Moreover, columns max and min give the maximum and

1https://mvnrepository.com

Chapter 6. Experiments and Results 142

minimum values of similarity found among a pair of classes on the project, respec-

tively. Finally, column t > 0.5 gives the number of class pairs found to have a

similarity greater than the threshold set as 0.5.

For the experiments, the minimum similarity threshold among classes has been

set at 0.5, in order to select pairs of classes comparable enough to each other, and

make the test generation effective. Among all software systems, similarity between

pairs of classes was between 0.03 and 1. By setting the similarity threshold to 0.5,

we have found a relatively low number of pairs (typically a bit less than 1%, 0,

9% for RepoDriller) compared to the total number of possible pairs. Still, for the

analysed systems many classes have a comparable behaviour, i.e. between 2 and 495

pairs for the smallest and largest software system, respectively (see column t > 0.5

in Table 6.7).

For each pair of classes whose similarity is greater than the predetermined thresh-

old, test generation was performed according to the four previously defined cases.

The number of test cases generated ranged from 2 to 402 (see column gen in Table

6.7). The percentage increment for tests was between 13% and 72%. Moreover,

column cover shows that between 6 and 63 additional classes were tested. In our

approach, classes that have no test cases in the repository are selected as candidates

for the following analysis finding class similarity and applicable test cases to be used

as templates. Hence, when it is possible to generate tests, code coverage is also

improved.

For test generation, the number of class pairs that matched our third method

substitutions strategy (i.e. method name similarity) were greater than the other

cases (up to 245 for the largest software system). However, sometimes it was not

possible to employ the third method substitution strategy or the fourth (i.e. input

Chapter 6. Experiments and Results 143

Table 6.7: Similarities between the examples shown before and five different known algo-
rithms used by our approach as templates. The first column, method, shows the name of
method analysed, while the other columns displays for each template the similarity score
given by our approach, column sim, and by a text comparison approach, column text.

system classes test tested single gen incr cover max min t > 0.5
argparse4j 60 29 31 3 21 72% 7 1 0.05 23
jrn-unixsocket 17 15 9 0 2 13% 0 0.8 0.06 2
junit4 180 228 94 9 61 27% 19 1 0.03 106
mybatis3 279 572 129 9 402 70% 63 1 0.03 495
plexus-io 50 14 18 2 6 43% 6 1 0.06 20
repodriller 57 33 32 3 26 79% 6 1 0.05 29
vertx-mail-client 38 54 18 8 10 19% 0 1 0.05 11

parameter similarity) either. Several methods (up to 80) were substituted by means

of the first and the second cases. For such matchings a number of new tests were

generated.

6.5.1 Discussion

For the analysed software system RepoDriller, and for the classes shown in Figure

5.1, unit test GenOnlyDiffsWithFileTypesTest was generated by taking as a tem-

plate the existing unit test OnlyDiffsWithFileTypesTest. Figure 6.6 shows the code

of existing and generated unit tests. Following the above considerations on the sim-

ilarity of classes and methods, generated test case GenOnlyDiffsWithFileTypesTest

has been produced by substituting occurrences of class OnlyDiffsWithFileTypes into

occurrences of class OnlyDiffsWithoutFileTypes. The two tests look equal since the

classes used to generate the tests have the same structure (methods, signatures etc.).

Beyond the test structure, the approach replicates the input values used in the test,

which may not always be appropriate for the generated class.

The generated test cases provide a test for classes that were not previously tested,

improving the code coverage of the test suite. Moreover, given the similarity between

Chapter 6. Experiments and Results 144

the classes, frees the developer from having to write similar tests between different

classes.

Chapter 6. Experiments and Results 145

Listing 6.6: Test case OnlyDiffsWithFileTypesTest for class OnlyDiffsWithFileTypes and

generated test case GenOnlyDiffsWithFileTypesTest for class OnlyDiffsWithoutFileTypes,

for RepoDriller software system.

package org.repodriller.filter.diff;

import java.util.Arrays;

import org.junit.Assert;

import org.junit.Test;

public class OnlyDiffsWithFileTypesTest {

@Test

public void shouldAcceptIfFileHasExtensionWithDot() {

Assert.assertTrue(new OnlyDiffsWithFileTypes(Arrays.asList("cpp",

".java")).accept("/dir/File.java"));

}

@Test

public void shouldAcceptIfFileHasExtensionWithoutDot() {

Assert.assertTrue(new OnlyDiffsWithFileTypes(Arrays.asList(".cpp",

"java")).accept("/dir/File.java"));

}

@Test

public void shouldRejectIfFileDoesNotMatchExtensions() {

Assert.assertFalse(new OnlyDiffsWithFileTypes(Arrays.asList("cpp",

".java")).accept("/dir/File.css"));

}

}

package org.repodriller.filter.diff;

import java.util.Arrays;

import org.junit.Assert;

import org.junit.Test;

public class GenOnlyDiffsWithFileTypesTest {

@Test

public void shouldAcceptIfFileHasExtensionWithDot() {

Assert.assertTrue(new OnlyDiffsWithFileTypes(Arrays.asList("cpp",

".java")).accept("/dir/File.java"));

}

@Test

public void shouldAcceptIfFileHasExtensionWithoutDot() {

Assert.assertTrue(new OnlyDiffsWithFileTypes(Arrays.asList(".cpp",

"java")).accept("/dir/File.java"));

}

@Test

public void shouldRejectIfFileDoesNotMatchExtensions() {

Assert.assertFalse(new OnlyDiffsWithFileTypes(Arrays.asList("cpp",

".java")).accept("/dir/File.css"));

}

}

Chapter 6. Experiments and Results 146

The tests that can be generated for a software system depend both on the amount

of classes that are found to have a similar behaviour and the existing tests that can

be taken as a template. However, since the approach takes into account the APIs

used by the class, it may be interesting to try the generation for classes belonging

to different projects.

6.6 Test Template Generation

The tool developed according to the proposed approach has been employed for

analysing several Java software systems. Firstly, we have extracted all test cases

and collected asserts and types, as discussed in the previous analysis (Section 5.2.1).

The analysed repositories have been selected according to the most popular

repositories on Maven Repository, and they are the following: repodriller, commons-

codec, threetenbp, slf4j, logback, and junit4. Since we use existing tests for our anal-

ysis, we have taken software systems from Maven Repository, which lets us quickly

check the existence of tests. Table 6.8 shows some relevant metrics of analysed soft-

ware systems. Column Systems shows the name of the project; Classes shows the

number of classes; Methods displays the total number of methods; Tests gives the

number of test classes; TestCases gives the number of test cases; finally, column

Asserts gives the number of asserts. The projects were selected according to the

high number of tests and test cases, and the increasing number of tests for each.

Table 6.9 displays the metrics extracted from the six repository analysed: first

column, AssertType, displays the most common assert type we have encountered,

the following eight columns, Byte, Boolean, Char, Double, Float, Integer, Long and

String represent, respectively, the number of asserts found for each class type; since

Chapter 6. Experiments and Results 147

Table 6.8: Metrics of the analysed software systems used for gathering statistics.

system classes methods tests testCases asserts
repodriller 59 299 34 100 378
commons-codec 90 768 81 817 2202
threetenbp 121 2126 96 2532 3516
slf4j 146 1240 106 179 373
logback 295 1637 509 1097 1720
junit4 243 1344 1017 1341 1235

Table 6.9: Metrics extracted from six systems: each row shows the occurrences of an
assert, and each column displays the occurrences of a type. Each value is the number of
times that a given assert has been used to test a given type.

AssertType Byte Boolean Char Double Float Integer Long String Collect Ref SUMa
assertEquals 5 543 37 14 1 1635 364 1788 68 1893 6348
assertNotEquals 0 0 0 4 4 14 4 14 0 10 50
assertTrue 0 873 0 0 0 40 4 2 0 8 927
assertFalse 0 295 0 0 0 2 0 0 0 2 299
assertSame 0 0 0 1 1 0 0 2 1 43 48
assertNotSame 0 0 0 0 0 0 0 2 0 6 8
assertNull 0 0 0 0 0 0 0 97 3 82 182
assertNotNull 0 0 0 0 0 0 0 15 11 170 196
SUMt 5 1711 37 19 6 1691 372 1920 83 2214 8058

Java has classes to express primitive values, we have merged them, hence e.g. the

column Integer will contains both the type int and the type java.lang.Integer; the

next two columns, Collect and Ref, show, respectively, the merged interfaces Col-

lection and Map with their all subclasses (e.g. ArrayList, HashMap, HashSet etc.),

and all the other types of external libraries, other Java libraries, and classes of the

system analysed; the column SUMa represents the sum of the occurrences for the

specified assert, whereas row SUMt displays the total count of occurrences for each

type.

The most used assert is the assertEquals, representing the 78% of the total occur-

rences of assert identified by our analysis; conversely, assertNotSame is the lowest

one with less than 0,1%. This outlines how primitive types are often tested by a

comparison of values, except for the boolean type, indeed the assertEquals represents

Chapter 6. Experiments and Results 148

Table 6.10: Metrics extracted for asserts that present a chain to test a specific type. On
the left the assert type followed by the method called on it, while on the right the number
of occurrences found.

Assert Chain Count
assertEquals java.lang.String.contains 23
assertTrue java.lang.String.contains 66
assertTrue java.lang.String.startsWith 24
assertTrue java.lang.String.matches 23
assertTrue java.util.List.contains 138
assertEquals java.util.List.get 62
assertEquals java.util.List.size 195

the 31% of the total occurrences found, whereas the assertTrue and assertFalse are

respectively the 51% and 18%.

Table 6.10 shows the most significant chains for types String and Collection that

are identified by our analysis. Despite the String type is widely directly tested with

1920 occurrences (Listing 5.2), it is also tested with different calls, such as contains,

startsWith and matches ; in particular, the contains method is tested both with

assertTrue and assertEquals. For the Collection type, we found that the most used

collection is List; the most two frequent calls are contains and size, however the list

is also directly accessed with the get call.

6.6.1 Discussion

Our approach automatically generates the template based on the said analysis and

chooses assert types according to the metrics extracted. E.g., a String is mostly

tested with the assertEquals, however if the developer wants to check a specific

character or substring of it, he can follow our tool’s suggestion to use contains or

startsWith, depending on the purpose of the test. We used our tool for analysing

and generating tests for the repodriller toolkit. Table 6.11 shows the metrics of

Chapter 6. Experiments and Results 149

Table 6.11: The metrics obtained by the analysis of the repodriller repository.

system classes tests tc totM testM !testM genC genT
repodriller 56 35 100 371 263 108 17 43

repodriller code: column Classes represents the number of classes; Tests gives the

number of existing tests; Tc shows the number of test cases; TotM gives the number

of methods; TestM displays the number of methods covered by a test according to

Jacoco; !TestM shows the number of method not covered; GenC gives the number

of tests generated; and, GenT gives the number of template test cases generated.

Almost 30% of methods are not covered, therefore it is worth expanding the test

suite. We successfully generated 43 templates of test cases, and the additional

test cases cover almost 40% of methods not tested, whereas the remaining 60%

are methods returning a type that was not suitable, i.e. a return type not in the

standard Java APIs or without statistics. We increased the number of test cases by

43%, giving a greater robustness and coverage to the test suite. We have generated

17 new test cases, and the developer can decide whether to merge these tests with

existing ones or include them inside the test suite.

Figure 6.2 shows an example of a class not entirely covered by the suite; it is

the output of JaCoCo for the BlamedLine class in repodriller. The class presents

six methods that are not covered by any test, i.e. hashCode(), toString(), getLi-

neNumber(), getLine(), getAuthor() and getCommitter(). Our approach has cor-

rectly identified such methods and has generated a test case for each of them. Listing

6.7 shows an example of a template generated for the method hashCode(), which

returns a String. Our tool has selected assertEquals to properly test it, i.e. the

most frequent assert used for that type. We have manually inserted the expected

value based on the other test cases of the application. The test case was correctly

Chapter 6. Experiments and Results 150

compiled and executed.

Figure 6.2: Jacoco’s code coverage output before our templates generation of the class
BlamedLine from repodriller repository.

Listing 6.7: An example of a generated template for the class BlamedLine and the method

hashCode().

@Test

public void hashCodeTest() {

Assert.assertEquals(

new BlamedLine (5, " }", "Mauricio Aniche", "Mauricio Aniche",

"a4ece0762e797d2e2dcbd471115108dd6e05ff58").hashCode (),

blame.get(5).hashCode ());

}

Figure 6.3 displays the output of JaCoCo after the insertion of our templates

inside the test suite: the coverage of the instructions has reached 100% for almost

all not previously tested methods, except for the hashCode() method because it

contains four different ternary operators that are not executed for both conditions.

The total coverage of the instructions has increased by 46% thanks to our test

generation. Summing up, the number of tests generated depends on the number

of methods that have not been previously tested, indeed their return type must be

suitable for our analysis to ensure the generation. Furthermore, according to the

metrics shown in Table 6.9, we generated a template test suite even for applications

that have not been previously tested.

Chapter 6. Experiments and Results 151

Figure 6.3: Jacoco’s code coverage output after our templates generation of the class
BlamedLine from repodriller repository.

One of the main criteria to evaluate the effectiveness of a test suite is code cov-

erage. The larger the portions of code covered, the greater the possibility of finding

defects. Of course, choosing the proper input values can make the test case very

effective. However, writing tests for all the classes and methods is time-consuming,

and developers tend to focus on testing just the most used and complex function-

alities. This study has proposed an innovative approach to generate test templates

for methods that have not been previously covered by any test case. This frees

developers from the effort of writing test code, while at the same time supporting

them as the clean generated code can be further customised. The approach firstly

gathers knowledge from the code of test cases in other software systems, to learn

how to properly generate new ones. The execution time to gather statistics is indeed

limited as it depends on the amount of code analysed, executing code of applications

is not needed. The collected statistics are mainly used to generate proper templates

for other systems having parts that have not been tested. It has been found that

the test generation is effective and accurate, both because there is a significant num-

ber of test templates generated, and because the code coverage has been increased

by generated tests. The greater the number of tests calling different methods, the

greater the coverage and the quality of the test suite.

152

Chapter 7

Conclusion

The relentless progression of both hardware, as encapsulated by Moore’s Law, and

software, governed by Lehman’s Laws, necessitates an ongoing commitment from

developers to maintain and update their applications. This undertaking involves

substantial management costs, extended working hours, and often entails complex

tasks. The integration of automated refactoring and testing tools emerges as a

pivotal solution, significantly alleviating the burden associated with maintenance

and aiding developers in navigating arduous and intricate activities.

This dissertation introduces a set of innovative approaches designed to furnish a

fully automated suite of tools for refactoring and testing software applications. The

refactoring unit encompasses tools for seamlessly transforming sequential code into

parallel structures, refactoring for loops into Java streams, and identifying as well

as refactoring algorithms. Simultaneously, the testing unit provides two tools for

generating tests for classes and methods that lack prior testing. These approaches

are collected under a unified comprehensive framework, denoted as ReFrame. The

modularity of the framework enables the independent or collaborative utilisation of

each feature.

The framework employs static analysis to compile all necessary information for

Chapter 7. Conclusion 153

subsequent analyses, thereby necessitating only the source code of the application to

execute all optimisations. The generated code aligns consistently and semantically

with the existing code in the application, with developers being informed about

alterations made to their source code to facilitate an understanding of the decision-

making process behind the transformations.

Each module of the framework undergoes rigorous testing on real-world scenar-

ios, affirming their correctness and validity. The outcomes from the refactoring

modules underscore the tools’ adeptness in accurately identifying, executing, and

producing refactored code while preserving the application’s behaviour and effect-

ing notable improvements in performance, readability, and quality. The testing tools

exhibit substantial increases in test coverage for analysed applications, encompassing

a greater number of methods and classes. This mitigates the likelihood of encoun-

tering bugs during release phases and ensures that refactored code aligns with the

original intent of the application.

The adoption of a unified tool for both refactoring and testing substantially di-

minishes the time and resources required to configure and operate distinct tools.

Notably, the hindrance often lies in the time spent installing, configuring, and mas-

tering a refactoring or testing tool, surpassing the actual benefits it brings to the

application. This realisation inspired the conception of a singular framework that

integrates various types of refactoring alongside relevant test generation. The tool’s

execution time is limited, contingent on the selected modules for refactoring and

testing, and the volume of analysed code; actual execution of application code is un-

necessary. The tool’s user-friendly design mandates solely the application’s source

code, allowing developers to selectively engage with modules of interest.

Chapter 7. Conclusion 154

7.1 Future Works

On November 30th, the official release of ChatGPT marked a significant milestone,

showcasing the vast capabilities of Artificial Intelligence (AI) in diverse domains,

including text recognition and production, image generation, audio synthesis, and

notably, programming. ChatGPT falls within the broader category of Large Lan-

guage Models (LLMs), distinguished by its proficiency in general-purpose language

comprehension and generation. A language model, within this context, functions as

a probabilistic representation of a natural language, generating probabilities for se-

quences of words based on the textual corpora on which it was trained, encompassing

one or multiple languages.

Over the past year, several LLMs have been introduced, accessible either for

free or through subscription models. Prominent among these models are GPT-

4(https://openai.com/gpt-4), Gemini(https://gemini.google.com/app),

LLama(https://ai.meta.com/llama/), and Bloom(https://bigscience.huggi

ngface.co/blog/bloom).

Current research in the field is focused on investigating the functionality of these

LLMs with programming languages, particularly in the realms of code generation,

code summarisation, and code search. A promising avenue for future exploration

involves examining the potential of these tools in automatic software refactoring and

testing. For instance, one potential application could involve employing an LLM for

concurrent refactoring, assessing its performance, and utilising the transformer from

sequential to parallel, as proposed in Chapter 3. This approach could contribute to

the creation of a labelled dataset wherein pairs of values are represented by sequential

and parallel code. Fine-tuning the LLM with this dataset aims to evaluate its ability

to autonomously propose accurate and effective concurrent refactorings.

https://openai.com/gpt-4
https://gemini.google.com/app
https://ai.meta.com/llama/
https://bigscience.huggingface.co/blog/bloom
https://bigscience.huggingface.co/blog/bloom

155

Bibliography

[1] Syed Ahmed and Mehdi Bagherzadeh. “What Do Concurrency Developers

Ask about? A Large-Scale Study Using Stack Overflow”. In: 12th ACM/IEEE

International Symposium on Empirical Software Engineering and Measure-

ment (ESEM). Oulu, Finland, 2018. isbn: 9781450358231. doi: 10.1145/32

39235.3239524.

[2] Qurat Ul Ain et al. “A Systematic Review on Code Clone Detection”. In:

IEEE Access 7 (2019), pp. 86121–86144. doi: 10.1109/ACCESS.2019.29182

02.

[3] Frances E Allen. “Control flow analysis”. In: ACM Sigplan Notices 5.7 (1970),

pp. 1–19.

[4] M. Moein Almasi et al. “An Industrial Evaluation of Unit Test Genera-

tion: Finding Real Faults in a Financial Application”. In: Proocedings of the

IEEE/ACM 39th International Conference on Software Engineering: Soft-

ware Engineering in Practice Track (ICSE-SEIP). 2017, pp. 263–272. doi:

10.1109/ICSE-SEIP.2017.27.

[5] Sanjay B. Ankali and Latha Parthiban. “Development of Porting Analyzer

to Search Cross-Language Code Clones Using Levenshtein Distance”. In:

https://doi.org/10.1145/3239235.3239524
https://doi.org/10.1145/3239235.3239524
https://doi.org/10.1109/ACCESS.2019.2918202
https://doi.org/10.1109/ACCESS.2019.2918202
https://doi.org/10.1109/ICSE-SEIP.2017.27

Bibliography 156

Proocedings of Fourth International Conference on Smart Computing and In-

formatics (SCI). Springer, 2021, pp. 623–632. isbn: 978-981-16-0878-0. doi:

10.1007/978-981-16-0878-0_60.

[6] Ellen Arteca, Frank Tip, and Max Schäfer. “Enabling Additional Parallelism

in Asynchronous JavaScript Applications”. In: 35th European Conference on

Object-Oriented Programming (ECOOP). 2021. doi: 10.4230/LIPIcs.ECOO

P.2021.7.

[7] Soe Thandar Aung et al. “A proposal of grammar-concept understanding

problem in Java programming learning assistant system”. In: J. Adv. Inform.

Tech.(JAIT) 12.4 (2021), pp. 342–350. doi: 10.12720/jait.12.4.342-350.

[8] Aditi Barua and Yoonsik Cheon. “A catalog of while loop specification pat-

terns”. In: (2014).

[9] Gabriele Bavota et al. “When Does a Refactoring Induce Bugs? An Empirical

Study”. In: 2012 IEEE 12th International Working Conference on Source

Code Analysis and Manipulation. 2012, pp. 104–113. doi: 10.1109/SCAM.20

12.20.

[10] K. Beck. Extreme Programming Explained: Embrace Change. An Alan R. Apt

Book Series. Addison-Wesley, 2000. isbn: 9780201616415.

[11] A. J. Bernstein. “Analysis of Programs for Parallel Processing”. In: IEEE

Transactions on Electronic Computers EC-15.5 (1966), pp. 757–763. issn:

0367-7508. doi: 10.1109/PGEC.1966.264565.

[12] Aggelos Biboudis et al. “Streams à la carte: Extensible pipelines with object

algebras”. In: 29th European Conference on Object-Oriented Programming

https://doi.org/10.1007/978-981-16-0878-0_60
https://doi.org/10.4230/LIPIcs.ECOOP.2021.7
https://doi.org/10.4230/LIPIcs.ECOOP.2021.7
https://doi.org/10.12720/jait.12.4.342-350
https://doi.org/10.1109/SCAM.2012.20
https://doi.org/10.1109/SCAM.2012.20
https://doi.org/10.1109/PGEC.1966.264565

Bibliography 157

(ECOOP 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

doi: 10.4230/DARTS.1.1.9.

[13] Brent van Bladel and Serge Demeyer. “Test Behaviour Detection as a Test

Refactoring Safety”. In: Proceedings of the 2nd International Workshop on

Refactoring (IWoR. Montpellier, France, 2018, pp. 22–25. doi: 10.1145/32

42163.3242168.

[14] Joshua Bonn, Konrad Foegen, and Horst Lichter. “A Framework for Auto-

mated Combinatorial Test Generation, Execution, and Fault Characteriza-

tion”. In: 2019 IEEE International Conference on Software Testing, Verifi-

cation and Validation Workshops (ICSTW). 2019, pp. 224–233. doi: 10.110

9/ICSTW.2019.00057.

[15] Pietro Braione et al. “Combining Symbolic Execution and Search-Based Test-

ing for Programs with Complex Heap Inputs”. In: Proceedings of the 26th

ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA). Santa Barbara, CA, USA, 2017, pp. 90–101. doi: 10.1145/30927

03.3092715.

[16] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. “ASM: a code manip-

ulation tool to implement adaptable systems”. In: Adaptable and extensible

component systems 30.19 (2002).

[17] Christian Bunse and Sebastian Stiemer. “On the energy consumption of de-

sign patterns”. In: (2013). doi: 10.1007/s40568-013-0020-6.

[18] Christian Bunse et al. “Choosing the ”Best” Sorting Algorithm for Optimal

Energy Consumption”. In: International Conference on Software and Data

https://doi.org/10.4230/DARTS.1.1.9
https://doi.org/10.1145/3242163.3242168
https://doi.org/10.1145/3242163.3242168
https://doi.org/10.1109/ICSTW.2019.00057
https://doi.org/10.1109/ICSTW.2019.00057
https://doi.org/10.1145/3092703.3092715
https://doi.org/10.1145/3092703.3092715
https://doi.org/10.1007/s40568-013-0020-6

Bibliography 158

Technologies. 2009. url: https://api.semanticscholar.org/CorpusID:9

874889.

[19] Christian Bunse et al. “Exploring the Energy Consumption of Data Sorting

Algorithms in Embedded and Mobile Environments”. In: 2009 Tenth In-

ternational Conference on Mobile Data Management: Systems, Services and

Middleware. 2009, pp. 600–607. doi: 10.1109/MDM.2009.103.

[20] Salvatore Calanna et al. “A (Reverse) Mutation Testing Approach to Auto-

matically generate parallel C/C++ Code”. In: Proceedings of IEEE Interna-

tional Conference on Enabling Technologies: Infrastructure for Collaborative

Enterprises (WETICE). 2021, pp. 159–164. doi: 10.1109/WETICE53228.20

21.00040.

[21] Salvatore Calanna et al. “Automatic Generation of Parallel Java Programs

and their Validation using Combinatorial Testing Suites”. In: 2021 IEEE 6th

International Conference on Computer and Communication Systems (IC-

CCS). 2021, pp. 1142–1146. doi: 10.1109/ICCCS52626.2021.9449249.

[22] Andrea Calvagna, Andrea Fornaia, and Emiliano Tramontana. “Random ver-

sus Combinatorial Effectiveness in Software Conformance Testing: A Case

Study”. In: Proceedings of the 30th Annual ACM Symposium on Applied

Computing (SAC). Salamanca, Spain, 2015, pp. 1797–1802. isbn: 9781450331968.

doi: 10.1145/2695664.2695905.

[23] Andrea Calvagna and Emiliano Tramontana. “Automated Conformance Test-

ing of Java Virtual Machines”. In: Proocedings of the Seventh International

Conference on Complex, Intelligent, and Software Intensive Systems (CISIS).

2013, pp. 547–552. doi: 10.1109/CISIS.2013.99.

https://api.semanticscholar.org/CorpusID:9874889
https://api.semanticscholar.org/CorpusID:9874889
https://doi.org/10.1109/MDM.2009.103
https://doi.org/10.1109/WETICE53228.2021.00040
https://doi.org/10.1109/WETICE53228.2021.00040
https://doi.org/10.1109/ICCCS52626.2021.9449249
https://doi.org/10.1145/2695664.2695905
https://doi.org/10.1109/CISIS.2013.99

Bibliography 159

[24] Andrea Calvagna and Emiliano Tramontana. “Delivering Dependable Reusable

Components by Expressing and Enforcing Design Decisions”. In: 2013 IEEE

37th International Computer Software and Applications Conference Work-

shops (COMPSACW). Los Alamitos, CA, USA: IEEE Computer Society,

2013, pp. 493–498. doi: 10.1109/COMPSACW.2013.113.

[25] Yu Chan et al. “A distributed stream library for Java 8”. In: IEEE Transac-

tions on Big Data 3.3 (2017), pp. 262–275. doi: 10.1109/TBDATA.2017.266

6201.

[26] Tej Bahadur Chandra, VK Patle, and Sanjay Kumar. “New horizon of energy

efficiency in sorting algorithms: green computing”. In: Proceedings of National

Conference on Recent Trends in Green Computing. School of Studies in Com-

puter in Computer Science & IT, Pt. Ravishankar Shukla University, Raipur,

India. 2013, pp. 24–26.

[27] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen.

Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and

Evolutionary Computation). Berlin, Heidelberg: Springer-Verlag, 2006. isbn:

0387332545.

[28] Diego Costa et al. “Empirical Study of Usage and Performance of Java Col-

lections”. In: Proceedings of the 8th ACM/SPEC on International Conference

on Performance Engineering (ICPE). L’Aquila, Italy, 2017, pp. 389–400. doi:

10.1145/3030207.3030221.

[29] Will Crichton, Georgia Gabriela Sampaio, and Pat Hanrahan. “Automating

Program Structure Classification”. In: Proceedings of 52nd ACM Technical

https://doi.org/10.1109/COMPSACW.2013.113
https://doi.org/10.1109/TBDATA.2017.2666201
https://doi.org/10.1109/TBDATA.2017.2666201
https://doi.org/10.1145/3030207.3030221

Bibliography 160

Symposium on Computer Science Education (SIGCSE). Virtual Event, USA,

2021, pp. 1177–1183. isbn: 9781450380621. doi: 10.1145/3408877.3432358.

[30] Brett Daniel et al. “Automated Testing of Refactoring Engines”. In: Pro-

ceedings of the the 6th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The Foundations of Soft-

ware Engineering (ESEC-FSE). Dubrovnik, Croatia, 2007, pp. 185–194. isbn:

9781595938114. doi: 10.1145/1287624.1287651.

[31] Amazon Book Reviews dataset. https://www.kaggle.com/datasets/moham

edbakhet/amazon-books-reviews. Accessed: 2023-07-21.

[32] Danny Dig. “Refactoring for Asynchronous Execution on Mobile Devices”.

In: IEEE Software 32.6 (2015), pp. 52–61. doi: 10.1109/MS.2015.133.

[33] Danny Dig, John Marrero, and Michael D. Ernst. “How Do Programs Be-

come More Concurrent: A Story of Program Transformations”. In: Proceed-

ings of the 4th International Workshop on Multicore Software Engineering

(IWMSE). Waikiki, Honolulu, HI, USA, 2011, pp. 43–50. isbn: 9781450305778.

doi: 10.1145/1984693.1984700.

[34] Danny Dig, John Marrero, and Michael D. Ernst. “Refactoring Sequential

Java Code for Concurrency via Concurrent Libraries”. In: 31st IEEE Inter-

national Conference on Software Engineering (ICSE). USA, 2009, pp. 397–

407. isbn: 9781424434534. doi: 10.1109/ICSE.2009.5070539.

[35] Danny Dig et al. “Relooper: Refactoring for Loop Parallelism in Java”. In:

24th ACM SIGPLAN Conference Companion on Object Oriented Program-

ming Systems Languages and Applications (OOPSLA). Orlando, Florida,

https://doi.org/10.1145/3408877.3432358
https://doi.org/10.1145/1287624.1287651
https://www.kaggle.com/datasets/mohamedbakhet/amazon-books-reviews
https://www.kaggle.com/datasets/mohamedbakhet/amazon-books-reviews
https://doi.org/10.1109/MS.2015.133
https://doi.org/10.1145/1984693.1984700
https://doi.org/10.1109/ICSE.2009.5070539

Bibliography 161

USA, 2009, pp. 793–794. isbn: 9781605587684. doi: 10.1145/1639950.1

640018.

[36] Marko Dimjaševic and Zvonimir Rakamaric. “JPF-Doop: Combining con-

colic and random testing for Java”. In: Collections (org. apache. commons.

collections) 422.3894 (2013), p. 58470.

[37] Pascal A. Felber. “Semi-automatic Parallelization of Java Applications”. In:

On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and

ODBASE. Springer Berlin Heidelberg, 2003, pp. 1369–1383. isbn: 978-3-540-

39964-3. doi: 0.1007/978-3-540-39964-3_86.

[38] Andrea Fornaia, Stefano Scafiti, and Emiliano Tramontana. “JSCAN: De-

signing an Easy to use LLVM-Based Static Analysis Framework”. In: 2019

IEEE 28th International Conference on Enabling Technologies: Infrastruc-

ture for Collaborative Enterprises (WETICE). 2019, pp. 237–242. doi: 10.1

109/WETICE.2019.00058.

[39] Andrea Fornaia and Emiliano Tramontana. “DeDuCT: A Data Dependence

Based Concern Tagger for Modularity Analysis”. In: IEEE 41st Annual Com-

puter Software and Applications Conference (COMPSAC). Vol. 2. 2017, pp. 463–

468. doi: 10.1109/COMPSAC.2017.98.

[40] Andrea Fornaia and Emiliano Tramontana. “Is My Code Easy to Port? Us-

ing Taint Analysis to Evaluate and Assist Code Portability”. In: IEEE 26th

International Conference on Enabling Technologies: Infrastructure for Collab-

orative Enterprises (WETICE). 2017, pp. 269–274. doi: 10.1109/WETICE.2

017.51.

https://doi.org/10.1145/1639950.1640018
https://doi.org/10.1145/1639950.1640018
https://doi.org/0.1007/978-3-540-39964-3_86
https://doi.org/10.1109/WETICE.2019.00058
https://doi.org/10.1109/WETICE.2019.00058
https://doi.org/10.1109/COMPSAC.2017.98
https://doi.org/10.1109/WETICE.2017.51
https://doi.org/10.1109/WETICE.2017.51

Bibliography 162

[41] Andrea Fornaia et al. “Automatic Generation of Effective Unit Tests based on

Code Behaviour”. In: 2020 IEEE 29th International Conference on Enabling

Technologies: Infrastructure for Collaborative Enterprises (WETICE). 2020,

pp. 213–218. doi: 10.1109/WETICE49692.2020.00049.

[42] Martin Fowler. Refactoring. Addison-Wesley Professional, 2018.

[43] Geoffrey C Fox, Roy D Williams, and Paul C Messina. Parallel computing

works! Elsevier, 2014.

[44] Scott Frame and John W Coffey. “A comparison of functional and imperative

programming techniques for mathematical software development”. In: Jour-

nal of Systemics, Cybernetics and Informatics 12.2 (2014), pp. 49–53. issn:

1690-4524.

[45] Lyle Franklin et al. “LAMBDAFICATOR: from imperative to functional pro-

gramming through automated refactoring”. In: 2013 35th International Con-

ference on Software Engineering (ICSE). IEEE. 2013, pp. 1287–1290. doi:

10.1109/ICSE.2013.6606699.

[46] Gordon Fraser and Andrea Arcuri. “EvoSuite: Automatic Test Suite Gener-

ation for Object-Oriented Software”. In: Proceedings of the 19th ACM SIG-

SOFT Symposium and the 13th European Conference on Foundations of Soft-

ware Engineering (ESEC/FSE). Szeged, Hungary, 2011, pp. 416–419. isbn:

9781450304436. doi: 10.1145/2025113.2025179.

[47] Davide Fucci et al. “A Dissection of the Test-Driven Development Process:

Does It Really Matter to Test-First or to Test-Last?” In: IEEE Transactions

on Software Engineering 43.7 (2017), pp. 597–614. doi: 10.1109/TSE.2016

.2616877.

https://doi.org/10.1109/WETICE49692.2020.00049
https://doi.org/10.1109/ICSE.2013.6606699
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/TSE.2016.2616877
https://doi.org/10.1109/TSE.2016.2616877

Bibliography 163

[48] David K. Gifford and John M. Lucassen. “Integrating Functional and Imper-

ative Programming”. In: Proceedings of the 1986 ACM Conference on LISP

and Functional Programming (LFP). Cambridge, Massachusetts, USA, 1986,

pp. 28–38. isbn: 0897912004. doi: 10.1145/319838.319848.

[49] Satyajit Gokhale, Alexi Turcotte, and Frank Tip. “Automatic Migration from

Synchronous to Asynchronous JavaScript APIs”. In: Proc. ACM Program.

Lang. 5.OOPSLA (2021). doi: 10.1145/3485537.

[50] Arnaud Gotlieb and Dusica Marijan. “FLOWER: Optimal Test Suite Reduc-

tion as a Network Maximum Flow”. In: Proceedings of the 2014 International

Symposium on Software Testing and Analysis (ISSTA). San Jose, CA, USA,

2014, pp. 171–180. isbn: 9781450326452. doi: 10.1145/2610384.2610416.

[51] Giovanni Grano et al. “An Empirical Investigation on the Readability of

Manual and Generated Test Cases”. In: Proceedings of Conference on Pro-

gram Comprehension (ICPC). Gothenburg, Sweden, 2018, pp. 348–351. doi:

10.1145/3196321.3196363.

[52] Kate Gregory and Ade Miller. C++ AMP: accelerated massive parallelism

with Microsoft Visual C++. Microsoft Press, 2012. isbn: 0735664730.

[53] William G. Griswold and William F. Opdyke. “The Birth of Refactoring: A

Retrospective on the Nature of High-Impact Software Engineering Research”.

In: IEEE Software 32.6 (2015), pp. 30–38. doi: 10.1109/MS.2015.107.

[54] Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. “SPEED: Precise

and Efficient Static Estimation of Program Computational Complexity”. In:

SIGPLAN Not. 44.1 (2009), pp. 127–139. issn: 0362-1340. doi: 10.1145/15

94834.1480898.

https://doi.org/10.1145/319838.319848
https://doi.org/10.1145/3485537
https://doi.org/10.1145/2610384.2610416
https://doi.org/10.1145/3196321.3196363
https://doi.org/10.1109/MS.2015.107
https://doi.org/10.1145/1594834.1480898
https://doi.org/10.1145/1594834.1480898

Bibliography 164

[55] Jan Gustafsson et al. “The Mälardalen WCET benchmarks: Past, present

and future”. In: 10th International Workshop on Worst-Case Execution Time

Analysis (WCET). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2010.

doi: 10.4230/OASIcs.WCET.2010.136.

[56] Alex Gyori et al. “Crossing the Gap from Imperative to Functional Program-

ming through Refactoring”. In: Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering (ESEC/FSE). Saint Petersburg, Russia,

2013, pp. 543–553. isbn: 9781450322379. doi: 10.1145/2491411.2491461.

[57] Michael Haidl and Sergei Gorlatch. “PACXX: Towards a Unified Program-

ming Model for Programming Accelerators Using C++14”. In: LLVM Com-

piler Infrastructure in HPC (LLVM-HPC). 2014, pp. 1–11. doi: 10.1109

/LLVM-HPC.2014.9.

[58] Shuai Hao et al. “Estimating mobile application energy consumption using

program analysis”. In: 2013 35th International Conference on Software En-

gineering (ICSE). 2013, pp. 92–101. doi: 10.1109/ICSE.2013.6606555.

[59] Samir Hasan et al. “Energy Profiles of Java Collections Classes”. In: Proceed-

ings of the 38th International Conference on Software Engineering (ICSE).

Austin, Texas, 2016, pp. 225–236. isbn: 9781450339001. doi: 10.1145/2884

781.2884869.

[60] Yoshiki Higo et al. “kGenProg: A High-Performance, High-Extensibility and

High-Portability APR System”. In: Proocedings of the 25th Asia-Pacific Soft-

ware Engineering Conference (APSEC). 2018, pp. 697–698. doi: 10.1109

/APSEC.2018.00094.

https://doi.org/10.4230/OASIcs.WCET.2010.136
https://doi.org/10.1145/2491411.2491461
https://doi.org/10.1109/LLVM-HPC.2014.9
https://doi.org/10.1109/LLVM-HPC.2014.9
https://doi.org/10.1109/ICSE.2013.6606555
https://doi.org/10.1145/2884781.2884869
https://doi.org/10.1145/2884781.2884869
https://doi.org/10.1109/APSEC.2018.00094
https://doi.org/10.1109/APSEC.2018.00094

Bibliography 165

[61] Michael Hilton et al. “Usage, Costs, and Benefits of Continuous Integration in

Open-Source Projects”. In: Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering (ASE). Singapore, Singa-

pore, 2016, pp. 426–437. isbn: 9781450338455. doi: 10.1145/2970276.2970

358.

[62] Abram Hindle. “Green Mining: A Methodology of Relating Software Change

and Configuration to Power Consumption”. In: Empirical Softw. Engg. 20.2

(2015), pp. 374–409. issn: 1382-3256. doi: 10.1007/s10664-013-9276-6.

[63] Takashi Ishio et al. “Cloned Buggy Code Detection in Practice Using Normal-

ized Compression Distance”. In: Proceedings of IEEE International Confer-

ence on Software Maintenance and Evolution (ICSME). 2018, pp. 591–594.

doi: 10.1109/ICSME.2018.00022.

[64] Kazuaki Ishizaki, Shahrokh Daijavad, and Toshio Nakatani. “Refactoring

Java Programs Using Concurrent Libraries”. In: Workshop on Parallel and

Distributed Systems: Testing, Analysis, and Debugging (PADTAD). Toronto,

Ontario, Canada, 2011, pp. 35–44. isbn: 9781450308090. doi: 10.1145/200

2962.2002970.

[65] Nishtha Jatana et al. “Test Suite Reduction by Mutation Testing Mapped to

Set Cover Problem”. In: Proceedings of the Second International Conference

on Information and Communication Technology for Competitive Strategies

(ICTCS). Udaipur, India, 2016. isbn: 9781450339629. doi: 10.1145/29050

55.2905094.

[66] Hojun Jaygarl, Kai-Shin Lu, and Carl K. Chang. “GenRed: A Tool for Gener-

ating and Reducing Object-Oriented Test Cases”. In: Proocedings of the IEEE

https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1007/s10664-013-9276-6
https://doi.org/10.1109/ICSME.2018.00022
https://doi.org/10.1145/2002962.2002970
https://doi.org/10.1145/2002962.2002970
https://doi.org/10.1145/2905055.2905094
https://doi.org/10.1145/2905055.2905094

Bibliography 166

34th Annual Computer Software and Applications Conference (COMPSAC).

2010, pp. 127–136. doi: 10.1109/COMPSAC.2010.19.

[67] Alan Kaminsky. “Parallel Java Library”. In: International Conference for

high performance computing, networking, storage and analysis. 2014.

[68] Hironori Kasahara et al. “Multicore Cache Coherence Control by a Paral-

lelizing Compiler”. In: 41st IEEE Annual Computer Software and Applica-

tions Conference (COMPSAC). Vol. 1. 2017, pp. 492–497. doi: 10.1109

/COMPSAC.2017.174.

[69] Raffi Khatchadourian, Yiming Tang, and Mehdi Bagherzadeh. “Safe auto-

mated refactoring for intelligent parallelization of Java 8 streams”. In: Sci-

ence of Computer Programming 195 (2020), p. 102476. issn: 0167-6423. doi:

10.1016/j.scico.2020.102476.

[70] Keiji Kimura, Gakuho Taguchi, and Hironori Kasahara. “Accelerating Mul-

ticore Architecture Simulation Using Application Profile”. In: 10th IEEE In-

ternational Symposium on Embedded Multicore/Many-core Systems-on-Chip

(MCSOC). 2016, pp. 177–184. doi: 10.1109/MCSoC.2016.16.

[71] Per Larsen et al. “Parallelizing more Loops with Compiler Guided Refactor-

ing”. In: 2012 41st International Conference on Parallel Processing (ICPP).

2012, pp. 410–419. doi: 10.1109/ICPP.2012.48.

[72] Owolabi Legunsen et al. “An Extensive Study of Static Regression Test Selec-

tion in Modern Software Evolution”. In: Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineer-

ing (FSE). Seattle, WA, USA, 2016, pp. 583–594. isbn: 9781450342186. doi:

10.1145/2950290.2950361.

https://doi.org/10.1109/COMPSAC.2010.19
https://doi.org/10.1109/COMPSAC.2017.174
https://doi.org/10.1109/COMPSAC.2017.174
https://doi.org/10.1016/j.scico.2020.102476
https://doi.org/10.1109/MCSoC.2016.16
https://doi.org/10.1109/ICPP.2012.48
https://doi.org/10.1145/2950290.2950361

Bibliography 167

[73] Ding Li et al. “Calculating Source Line Level Energy Information for Android

Applications”. In: Proceedings of the 2013 International Symposium on Soft-

ware Testing and Analysis (ISSTA). Lugano, Switzerland, 2013, pp. 78–89.

isbn: 9781450321594. doi: 10.1145/2483760.2483780.

[74] Yu Lin, Cosmin Radoi, and Danny Dig. “Retrofitting concurrency for an-

droid applications through refactoring”. In: 22nd ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering (FSE). Hong

Kong, China, 2014, pp. 341–352. doi: 10.1145/2635868.2635903.

[75] Andreas Litke et al. “Energy consumption analysis of design patterns”. In:

Proceedings of the International Conference on Machine Learning and Soft-

ware Engineering. 2005, pp. 86–90. doi: 10.5281/zenodo.1057717.

[76] Kenan Liu, Gustavo Pinto, and Yu David Liu. “Data-Oriented Characteriza-

tion of Application-Level Energy Optimization”. In: Fundamental Approaches

to Software Engineering. Ed. by Alexander Egyed and Ina Schaefer. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2015, pp. 316–331. isbn: 978-3-662-

46675-9. doi: 10.1007/978-3-662-46675-9_21.

[77] Xiangjun Liu and Ping Yu. “Randoop-TSR: Random-Based Test Generator

with Test Suite Reduction”. In: Proceedings of the 13th Asia-Pacific Sympo-

sium on Internetware. Hohhot, China, 2022, pp. 221–230. doi: 10.1145/35

45258.3545280.

[78] P. Lokuciejewski et al. “A Fast and Precise Static Loop Analysis Based on

Abstract Interpretation, Program Slicing and Polytope Models”. In: Inter-

national Symposium on Code Generation and Optimization (CGO). 2009,

pp. 136–146. doi: 10.1109/CGO.2009.17.

https://doi.org/10.1145/2483760.2483780
https://doi.org/10.1145/2635868.2635903
https://doi.org/10.5281/zenodo.1057717
https://doi.org/10.1007/978-3-662-46675-9_21
https://doi.org/10.1145/3545258.3545280
https://doi.org/10.1145/3545258.3545280
https://doi.org/10.1109/CGO.2009.17

Bibliography 168

[79] Paul Lokuciejewski and Peter Marwedel. “Combining Worst-Case Timing

Models, Loop Unrolling, and Static Loop Analysis for WCET Minimiza-

tion”. In: 21st Euromicro Conference on Real-Time Systems (ECRTS). 2009,

pp. 35–44. doi: 10.1109/ECRTS.2009.9.

[80] Walid Maalej et al. “On the Comprehension of Program Comprehension”. In:

ACM Transactions on Software Engineering Methodology 23.4 (2014). issn:

1049-331X. doi: 10.1145/2622669.

[81] Birk Martin Magnussen et al. “Performance Evaluation of OSCAR Multi-

Target Automatic Parallelizing Compiler on Intel, AMD, Arm and RISC-V

Multicores”. In: Languages and Compilers for Parallel Computing: 34th In-

ternational Workshop, LCPC 2021, Newark, DE, USA, October 13–14, 2021,

Revised Selected Papers. Newark, DE, USA: Springer-Verlag, 2021, pp. 50–

64. isbn: 978-3-030-99371-9. doi: 10.1007/978-3-030-99372-6_4.

[82] Irene Manotas, Lori Pollock, and James Clause. “SEEDS: A Software En-

gineer’s Energy-Optimization Decision Support Framework”. In: Proceedings

of the 36th International Conference on Software Engineering (ICSE). Hy-

derabad, India, 2014, pp. 503–514. isbn: 9781450327565. doi: 10.1145/256

8225.2568297.

[83] Shane A Markstrum, Robert M Fuhrer, and Todd D Millstein. “Towards con-

currency refactoring for x10”. In: ACM Sigplan Notices 44.4 (2009), pp. 303–

304. doi: 10.1145/1594835.1504226.

[84] Dror E. Maydan, John L. Hennessy, and Monica S. Lam. “Efficient and Exact

Data Dependence Analysis”. In: Proceedings of the ACM SIGPLAN 1991

Conference on Programming Language Design and Implementation (PLDI).

https://doi.org/10.1109/ECRTS.2009.9
https://doi.org/10.1145/2622669
https://doi.org/10.1007/978-3-030-99372-6_4
https://doi.org/10.1145/2568225.2568297
https://doi.org/10.1145/2568225.2568297
https://doi.org/10.1145/1594835.1504226

Bibliography 169

Toronto, Ontario, Canada, 1991, pp. 1–14. isbn: 0897914287. doi: 10.1145

/113445.113447.

[85] T. Mens and T. Tourwe. “A survey of software refactoring”. In: IEEE Trans-

actions on Software Engineering 30.2 (2004), pp. 126–139. doi: 10.1109

/TSE.2004.1265817.

[86] Alessandro Midolo and Emiliano Tramontana. “A Robust and Automatic Ap-

proach for Matching Algorithms”. In: 15th Seminar on Advanced Techniques

and Tools for Software Evolution (SATToSE). Vol. 3483. 2023, pp. 57–65.

[87] Alessandro Midolo and Emiliano Tramontana. “An API for and Classify-

ing Data Dependence in View of Parallelism”. In: Proceedings of the 10th

International Conference on Computer and Communications Management

(ICCCM). Okayama, Japan, 2022, pp. 61–67. isbn: 9781450396349. doi: 10

.1145/3556223.3556232.

[88] Alessandro Midolo and Emiliano Tramontana. “An Automatic Transformer

from Sequential to Parallel Java Code”. In: Future Internet 15.9 (2023). issn:

1999-5903. doi: 10.3390/fi15090306. url: https://www.mdpi.com/1999-

5903/15/9/306.

[89] Alessandro Midolo and Emiliano Tramontana. “Automatic Generation of Ac-

curate Test Templates based on JUnit Asserts”. In: Proceedings of the 7th

International Conference on Algorithms, Computing and Systems (ICACS).

Larissa, Greece, 2023, pp. 125–131. isbn: 9798400709098. doi: 10.1145/363

1908.3631926.

[90] Alessandro Midolo and Emiliano Tramontana. “Refactoring Java Loops to

Streams Automatically”. In: Proceedings of the 4th International Conference

https://doi.org/10.1145/113445.113447
https://doi.org/10.1145/113445.113447
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1145/3556223.3556232
https://doi.org/10.1145/3556223.3556232
https://doi.org/10.3390/fi15090306
https://www.mdpi.com/1999-5903/15/9/306
https://www.mdpi.com/1999-5903/15/9/306
https://doi.org/10.1145/3631908.3631926
https://doi.org/10.1145/3631908.3631926

Bibliography 170

on Computer Science and Software Engineering (CSSE). Singapore, Singa-

pore, 2021, pp. 135–139. isbn: 9781450390675. doi: 10.1145/3494885.3494

910.

[91] Audris Mockus, Nachiappan Nagappan, and Trung T. Dinh-Trong. “Test

coverage and post-verification defects: A multiple case study”. In: 2009 3rd

International Symposium on Empirical Software Engineering and Measure-

ment. 2009, pp. 291–301. doi: 10.1109/ESEM.2009.5315981.

[92] Melina Mongiovi et al. “Making refactoring safer through impact analysis”.

In: Science of Computer Programming 93 (2014). Special Issue with Selected

Papers from the Brazilian Symposium on Programming Languages (SBLP

2011), pp. 39–64. issn: 0167-6423. doi: https://doi.org/10.1016/j.scic

o.2013.11.001.

[93] Misael Mongiovı̀, Andrea Fornaia, and Emiliano Tramontana. “A Network-

Based Approach for Reducing Test Suites While Maintaining Code Cover-

age”. In: Complex Networks and Their Applications VIII. Cham: Springer

International Publishing, 2020, pp. 164–176. isbn: 978-3-030-36683-4. doi:

10.1007/978-3-030-36683-4_14.

[94] Misael Mongiovı̀, Andrea Fornaia, and Emiliano Tramontana. “REDUNET:

reducing test suites by integrating set cover and network-based optimization”.

In: Applied Network Science 5.1 (2020), pp. 1–21. doi: 10.1007/s41109-02

0-00323-w.

[95] Christian Murphy, Zoher Zoomkawalla, and Koichiro Narita. “Automatic test

case generation and test suite reduction for closed-loop controller software”.

In: (2013).

https://doi.org/10.1145/3494885.3494910
https://doi.org/10.1145/3494885.3494910
https://doi.org/10.1109/ESEM.2009.5315981
https://doi.org/https://doi.org/10.1016/j.scico.2013.11.001
https://doi.org/https://doi.org/10.1016/j.scico.2013.11.001
https://doi.org/10.1007/978-3-030-36683-4_14
https://doi.org/10.1007/s41109-020-00323-w
https://doi.org/10.1007/s41109-020-00323-w

Bibliography 171

[96] William F Opdyke. Refactoring object-oriented frameworks. University of Illi-

nois at Urbana-Champaign, 1992.

[97] Ali Ouni et al. “Multi-Criteria Code Refactoring Using Search-Based Soft-

ware Engineering: An Industrial Case Study”. In: ACM Trans. Softw. Eng.

Methodol. 25.3 (2016). issn: 1049-331X. doi: 10.1145/2932631.

[98] Burcu Kulahcioglu Ozkan, Michael Emmi, and Serdar Tasiran. “Systematic

asynchrony bug exploration for android apps”. In: International Conference

on Computer Aided Verification. Springer International Publishing”, 2015,

pp. 455–461. doi: 10.1007/978-3-319-21690-4_28.

[99] Carlos Pacheco and Michael D. Ernst. “Randoop: Feedback-Directed Random

Testing for Java”. In: Proocedings of Object-Oriented Programming Systems

and Applications companion (OOPSLA). Montreal, Quebec, Canada, 2007,

pp. 815–816. doi: 10.1145/1297846.1297902.

[100] Candy Pang et al. “What Do Programmers Know about Software Energy

Consumption?” In: IEEE Software 33.3 (2016), pp. 83–89. doi: 10.1109

/MS.2015.83.

[101] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. “Auto-

mated Test Case Generation as a Many-Objective Optimisation Problem

with Dynamic Selection of the Targets”. In: IEEE Transactions on Software

Engineering 44.2 (2018), pp. 122–158. doi: 10.1109/TSE.2017.2663435.

[102] Annibale Panichella et al. “Revisiting Test Smells in Automatically Gener-

ated Tests: Limitations, Pitfalls, and Opportunities”. In: Proocedings of the

IEEE International Conference on Software Maintenance and Evolution (IC-

SME). 2020, pp. 523–533. doi: 10.1109/ICSME46990.2020.00056.

https://doi.org/10.1145/2932631
https://doi.org/10.1007/978-3-319-21690-4_28
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.1109/TSE.2017.2663435
https://doi.org/10.1109/ICSME46990.2020.00056

Bibliography 172

[103] Harrie Passier, Lex Bijlsma, and Christoph Bockisch. “Maintaining Unit

Tests During Refactoring”. In: Proceedings of the 13th International Con-

ference on Principles and Practices of Programming on the Java Platform:

Virtual Machines, Languages, and Tools (PPPJ). Lugano, Switzerland, 2016.

doi: 10.1145/2972206.2972223.

[104] Mauro Pezzè and Michal Young. Software testing and analysis: process, prin-

ciples, and techniques. John Wiley & Sons, 2008. isbn: 8126517735.

[105] Duy Loc Phan, Yunho Kim, and Moonzoo Kim. “MUSIC: Mutation Analysis

Tool with High Configurability and Extensibility”. In: 2018 IEEE Interna-

tional Conference on Software Testing, Verification and Validation Work-

shops (ICSTW). 2018, pp. 40–46. doi: 10.1109/ICSTW.2018.00026.

[106] Gustavo Pinto, Fernando Castor, and Yu David Liu. “Mining Questions

about Software Energy Consumption”. In: Proceedings of the 11th Work-

ing Conference on Mining Software Repositories (MSR). Hyderabad, India,

2014, pp. 22–31. isbn: 9781450328630. doi: 10.1145/2597073.2597110.

[107] Gustavo Pinto, Francisco Soares-Neto, and Fernando Castor. “Refactoring for

Energy Efficiency: A Reflection on the State of the Art”. In: 2015 IEEE/ACM

4th International Workshop on Green and Sustainable Software. 2015, pp. 29–

35. doi: 10.1109/GREENS.2015.12.

[108] Gustavo Pinto, Weslley Torres, and Fernando Castor. “A Study on the Most

Popular Questions about Concurrent Programming”. In: 6th Workshop on

Evaluation and Usability of Programming Languages and Tools. Pittsburgh,

PA, USA, 2015, pp. 39–46. doi: 10.1145/2846680.2846687.

https://doi.org/10.1145/2972206.2972223
https://doi.org/10.1109/ICSTW.2018.00026
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1109/GREENS.2015.12
https://doi.org/10.1145/2846680.2846687

Bibliography 173

[109] Aleksandar Prokopec et al. “FlowPools: A Lock-Free Deterministic Con-

current Dataflow Abstraction”. In: Languages and Compilers for Parallel

Computing. Ed. by Hironori Kasahara and Keiji Kimura. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, pp. 158–173. isbn: 978-3-642-37658-0. doi:

10.1007/978-3-642-37658-0_11.

[110] Napol Rachatasumrit and Miryung Kim. “An empirical investigation into the

impact of refactoring on regression testing”. In: 2012 28th IEEE International

Conference on Software Maintenance (ICSM). 2012, pp. 357–366. doi: 10.1

109/ICSM.2012.6405293.

[111] Chaiyong Ragkhitwetsagul, Jens Krinke, and David Clark. “A Comparison of

Code Similarity Analysers”. In: Empirical Software Engineering 23.4 (2018),

pp. 2464–2519. issn: 1382-3256. doi: 10.1007/s10664-017-9564-7.

[112] Khandoker Rahad, Zejing Cao, and Yoonsik Cheon. “A Thought on Refac-

toring Java Loops Using Java 8 Streams”. In: (2017).

[113] Mohammad Rashid, Luca Ardito, and Marco Torchiano. “Energy Consump-

tion Analysis of Algorithms Implementations”. In: 2015 ACM/IEEE Inter-

national Symposium on Empirical Software Engineering and Measurement

(ESEM). 2015, pp. 1–4. doi: 10.1109/ESEM.2015.7321198.

[114] Brian Robinson et al. “Scaling up Automated Test Generation: Automatically

Generating Maintainable Regression Unit Tests for Programs”. In: Proceed-

ings of the 26th IEEE/ACM International Conference on Automated Software

Engineering (ASE). 2011, pp. 23–32. doi: 10.1109/ASE.2011.6100059.

[115] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. “Automated Unit

Test Generation during Software Development: A Controlled Experiment

https://doi.org/10.1007/978-3-642-37658-0_11
https://doi.org/10.1109/ICSM.2012.6405293
https://doi.org/10.1109/ICSM.2012.6405293
https://doi.org/10.1007/s10664-017-9564-7
https://doi.org/10.1109/ESEM.2015.7321198
https://doi.org/10.1109/ASE.2011.6100059

Bibliography 174

and Think-Aloud Observations”. In: Proocedings of the International Sympo-

sium on Software Testing and Analysis (ISSTA). Baltimore, MD, USA, 2015,

pp. 338–349. doi: 10.1145/2771783.2771801.

[116] G. Rothermel et al. “Prioritizing test cases for regression testing”. In: IEEE

Transactions on Software Engineering 27.10 (2001), pp. 929–948. doi: 10.1

109/32.962562.

[117] Cagri Sahin et al. “Initial explorations on design pattern energy usage”.

In: 2012 First International Workshop on Green and Sustainable Software

(GREENS). 2012, pp. 55–61. doi: 10.1109/GREENS.2012.6224257.

[118] Nedhal A Al-Saiyd. “The Impact of Reusing Open-Source Software Model in

Software Maintenance”. In: International Journal of Computer Theory and

Engineering 9.1 (2017), p. 6. doi: 10.7763/IJCTE.2017.V9.1101.

[119] Abdelilah Sakti, Gilles Pesant, and Yann-Gaël Guéhéneuc. “Instance Gener-

ator and Problem Representation to Improve Object Oriented Code Cover-

age”. In: IEEE Transactions on Software Engineering 41.3 (2015), pp. 294–

313. doi: 10.1109/TSE.2014.2363479.

[120] Max Schäfer et al. “Refactoring Java Programs for Flexible Locking”. In: 33rd

International Conference on Software Engineering (ICSE). Waikiki, Hon-

olulu, HI, USA, 2011, pp. 71–80. doi: 10.1145/1985793.1985804.

[121] Norbert Schmitt et al. “Energy-Efficiency Comparison of Common Sorting

Algorithms”. In: 2021 29th International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommunication Systems (MASCOTS).

2021, pp. 1–8. doi: 10.1109/MASCOTS53633.2021.9614299.

https://doi.org/10.1145/2771783.2771801
https://doi.org/10.1109/32.962562
https://doi.org/10.1109/32.962562
https://doi.org/10.1109/GREENS.2012.6224257
https://doi.org/10.7763/IJCTE.2017.V9.1101
https://doi.org/10.1109/TSE.2014.2363479
https://doi.org/10.1145/1985793.1985804
https://doi.org/10.1109/MASCOTS53633.2021.9614299

Bibliography 175

[122] Rajni Sehgal et al. “Green software: Refactoring approach”. In: Journal of

King Saud University - Computer and Information Sciences 34.7 (2022),

pp. 4635–4643. issn: 1319-1578. doi: https://doi.org/10.1016/j.jksuci

.2020.10.022.

[123] Maged Shalaby et al. “Automatic Algorithm Recognition of Source-Code

Using Machine Learning”. In: Proceedings of 16th IEEE International Con-

ference on Machine Learning and Applications (ICMLA). 2017, pp. 170–177.

doi: 10.1109/ICMLA.2017.00033.

[124] Shweta Sharma and S Srinivasan. “A Survey on Software Design Based and

Project Based Metrics”. In: International Journal of Computer Theory and

Engineering 14.2 (2022), pp. 54–61. doi: 10.7763/IJCTE.2022.V14.1310.

[125] Mohammed A Shehab et al. “An accumulated cognitive approach to measure

software complexity”. In: Journal of Advances in Information Technology 6.1

(2015), pp. 27–34. doi: 10.12720/jait.6.1.27-33.

[126] Abdullah Sheneamer and Jugal Kalita. “Code clone detection using coarse

and fine-grained hybrid approaches”. In: Proceedings of 7th IEEE Interna-

tional Conference on Intelligent Computing and Information Systems (ICI-

CIS). 2015, pp. 472–480. doi: 10.1109/IntelCIS.2015.7397263.

[127] Janet Siegmund. “Program Comprehension: Past, Present, and Future”. In:

Proceedings of 23rd IEEE International Conference on Software Analysis,

Evolution, and Reengineering (SANER). Vol. 5. 2016, pp. 13–20. doi: 10.1

109/SANER.2016.35.

[128] Moritz Sinn, Florian Zuleger, and Helmut Veith. “A Simple and Scalable

Static Analysis for Bound Analysis and Amortized Complexity Analysis”.

https://doi.org/https://doi.org/10.1016/j.jksuci.2020.10.022
https://doi.org/https://doi.org/10.1016/j.jksuci.2020.10.022
https://doi.org/10.1109/ICMLA.2017.00033
https://doi.org/10.7763/IJCTE.2022.V14.1310
https://doi.org/10.12720/jait.6.1.27-33
https://doi.org/10.1109/IntelCIS.2015.7397263
https://doi.org/10.1109/SANER.2016.35
https://doi.org/10.1109/SANER.2016.35

Bibliography 176

In: International Conference on Computer Aided Verification (CAV). Cham:

Springer International Publishing, 2014, pp. 745–761. isbn: 978-3-319-08867-

9. doi: 10.1007/978-3-319-08867-9_50.

[129] Nicholas Smith, Danny Van Bruggen, and Federico Tomassetti. “Javaparser:

visited”. In: Leanpub, oct. de (2017).

[130] Gustavo Soares, Rohit Gheyi, and Tiago Massoni. “Automated Behavioral

Testing of Refactoring Engines”. In: IEEE Transactions on Software Engi-

neering 39.2 (2013), pp. 147–162. doi: 10.1109/TSE.2012.19.

[131] Shashank Srikant and Varun Aggarwal. “Automatic Grading of Computer

Programs: A Machine Learning Approach”. In: Proceedings of 12th Interna-

tional Conference on Machine Learning and Applications (ICMLA). Vol. 1.

2013, pp. 85–92. doi: 10.1109/ICMLA.2013.22.

[132] Benno Stein et al. “Safe stream-based programming with refinement types”.

In: 2018 33rd IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE. 2018, pp. 565–576. doi: 10.1145/3238147.3238

174.

[133] Ahmad Taherkhani. “Recognizing Sorting Algorithms with the C4.5 Decision

Tree Classifier”. In: Proceedings of 18th IEEE International Conference on

Program Comprehension (ICPC). 2010, pp. 72–75. doi: 10.1109/ICPC.201

0.11.

[134] Ahmad Taherkhani and Lauri Malmi. “Beacon-and Schema-Based Method

for Recognizing Algorithms from Students’ Source Code”. In: Journal of Ed-

ucational Data Mining 5.2 (2013), pp. 69–101. doi: 10.5281/zenodo.35546

35.

https://doi.org/10.1007/978-3-319-08867-9_50
https://doi.org/10.1109/TSE.2012.19
https://doi.org/10.1109/ICMLA.2013.22
https://doi.org/10.1145/3238147.3238174
https://doi.org/10.1145/3238147.3238174
https://doi.org/10.1109/ICPC.2010.11
https://doi.org/10.1109/ICPC.2010.11
https://doi.org/10.5281/zenodo.3554635
https://doi.org/10.5281/zenodo.3554635

Bibliography 177

[135] Ahmad Taherkhani, Lauri Malmi, and Ari Korhonen. “Algorithm Recogni-

tion by Static Analysis and Its Application in Students’ Submissions Assess-

ment”. In: Proceedings of 8th ACM International Conference on Computing

Education Research (ICER). 2008, pp. 88–91. isbn: 9781605583853. doi: 10

.1145/1595356.1595372.

[136] Suresh Thummalapenta et al. “Synthesizing Method Sequences for High-

Coverage Testing”. In: Proceedings of the 2011 ACM International Confer-

ence on Object Oriented Programming Systems Languages and Applications

(OOPSLA). Portland, Oregon, USA, 2011, pp. 189–206. isbn: 9781450309400.

doi: 10.1145/2048066.2048083.

[137] Kai Tian, Meghan Revelle, and Denys Poshyvanyk. “Using Latent Dirichlet

Allocation for automatic categorization of software”. In: Proceedings of 6th

IEEE International Working Conference on Mining Software Repositories

(MSR). 2009, pp. 163–166. doi: 10.1109/MSR.2009.5069496.

[138] Emiliano Tramontana. “Automatically Characterising Components with Con-

cerns and Reducing Tangling”. In: 2013 IEEE 37th Annual Computer Soft-

ware and Applications Conference Workshops. 2013, pp. 499–504. doi: 10.1

109/COMPSACW.2013.114.

[139] Nikolaos Tsantalis, Davood Mazinanian, and Giri Panamoottil Krishnan.

“Assessing the Refactorability of Software Clones”. In: IEEE Transactions

on Software Engineering 41.11 (2015), pp. 1055–1090. doi: 10.1109/TSE.2

015.2448531.

[140] Nikolaos Tsantalis, Davood Mazinanian, and Shahriar Rostami. “Clone Refac-

toring with Lambda Expressions”. In: 2017 IEEE/ACM 39th International

https://doi.org/10.1145/1595356.1595372
https://doi.org/10.1145/1595356.1595372
https://doi.org/10.1145/2048066.2048083
https://doi.org/10.1109/MSR.2009.5069496
https://doi.org/10.1109/COMPSACW.2013.114
https://doi.org/10.1109/COMPSACW.2013.114
https://doi.org/10.1109/TSE.2015.2448531
https://doi.org/10.1109/TSE.2015.2448531

Bibliography 178

Conference on Software Engineering (ICSE). 2017, pp. 60–70. doi: 10.1109

/ICSE.2017.14.

[141] Secil Ugurel, Robert Krovetz, and C. Lee Giles. “What’s the Code? Auto-

matic Classification of Source Code Archives”. In: Proceedings of 8th ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing (KDD). Edmonton, Alberta, Canada, 2002, pp. 632–638. doi: 10.1145

/775047.775141.

[142] Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft. Java 8 in action. Man-

ning publications, 2014. isbn: 1617291994.

[143] Hans Van Vliet, Hans Van Vliet, and JC Van Vliet. Software engineering:

principles and practice. Vol. 13. John Wiley & Sons Hoboken, NJ, 2008.

isbn: 0470031468.

[144] Hans Vandierendonck, Sean Rul, and Koen De Bosschere. “The paralax in-

frastructure: Automatic parallelization with a helping hand”. In: Proceedings

of 19th International Conference on Parallel Architectures and Compilation

Techniques (PACT). IEEE. 2010, pp. 389–399. doi: 10.1145/1854273.185

4322.

[145] Sebastian Vogl et al. “Evosuite at the SBST 2021 Tool Competition”. In:

Proocedings of Workshop on Search-Based Software Testing (SBST). 2021,

pp. 28–29. doi: 10.1109/SBST52555.2021.00012.

[146] Frens Vonken and Andy Zaidman. “Refactoring with Unit Testing: A Match

Made in Heaven?” In: 2012 19th Working Conference on Reverse Engineer-

ing. 2012, pp. 29–38. doi: 10.1109/WCRE.2012.13.

https://doi.org/10.1109/ICSE.2017.14
https://doi.org/10.1109/ICSE.2017.14
https://doi.org/10.1145/775047.775141
https://doi.org/10.1145/775047.775141
https://doi.org/10.1145/1854273.1854322
https://doi.org/10.1145/1854273.1854322
https://doi.org/10.1109/SBST52555.2021.00012
https://doi.org/10.1109/WCRE.2012.13

Bibliography 179

[147] Claas Wilke et al. “Energy Consumption and Efficiency in Mobile Applica-

tions: A User Feedback Study”. In: 2013 IEEE International Conference on

Green Computing and Communications and IEEE Internet of Things and

IEEE Cyber, Physical and Social Computing. 2013, pp. 134–141. doi: 10.11

09/GreenCom-iThings-CPSCom.2013.45.

[148] Jan Wloka, Manu Sridharan, and Frank Tip. “Refactoring for reentrancy”.

In: 7th joint meeting of the European software engineering conference and

the ACM SIGSOFT symposium on the Foundations of Software Engineering

(ESEC/FSE). 2009, pp. 173–182. doi: 10.1145/1595696.1595723.

[149] Michael Wolfe and Utpal Banerjee. “Data dependence and its application to

parallel processing”. In: International Journal of Parallel Programming 16.2

(1987), pp. 137–178. doi: 10.1007/BF01379099.

[150] Shengwei Xu, Huaikou Miao, and Honghao Gao. “Test Suite Reduction Us-

ing Weighted Set Covering Techniques”. In: 13th ACIS International Confer-

ence on Software Engineering, Artificial Intelligence, Networking and Paral-

lel/Distributed Computing (SNPD). 2012, pp. 307–312. doi: 10.1109/SNPD.2

012.87.

[151] S. Yoo and M. Harman. “Regression Testing Minimization, Selection and

Prioritization: A Survey”. In: Software Testing, Verification & Reliability 22.2

(2012), pp. 67–120. issn: 0960-0833. doi: 10.1002/stv.430.

[152] Yang Zhang. “Improving the learning of parallel programming using soft-

ware refactoring”. In: Computer Applications in Engineering Education 25.1

(2017), pp. 112–119. doi: 10.1002/cae.21784.

https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.45
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.45
https://doi.org/10.1145/1595696.1595723
https://doi.org/10.1007/BF01379099
https://doi.org/10.1109/SNPD.2012.87
https://doi.org/10.1109/SNPD.2012.87
https://doi.org/10.1002/stv.430
https://doi.org/10.1002/cae.21784

Bibliography 180

[153] Yang Zhang, Liuxu Li, and Dongwen Zhang. “A survey of concurrency-

oriented refactoring”. In: Concurrent Engineering 28.4 (2020), pp. 319–330.

doi: 10.1177/1063293X20958932.

[154] Yang Zhang et al. “Automated Refactoring for Stampedlock”. In: IEEE Ac-

cess 7 (2019), pp. 104900–104911. doi: 10.1109/ACCESS.2019.2931953.

[155] Yang Zhang et al. “FineLock: automatically refactoring coarse-grained locks

into fine-grained locks”. In: ACM International Symposium on Software Test-

ing and Analysis (ISSTA). 2020, pp. 565–568. doi: 10.1145/3395363.3404

368.

[156] Yang Zhang et al. “Refactoring Java Programs for Customizable Locks Based

on Bytecode Transformation”. In: IEEE Access 7 (2019), pp. 66292–66303.

doi: 10.1109/ACCESS.2019.2919203.

[157] Yucheng Zhang and Ali Mesbah. “Assertions Are Strongly Correlated with

Test Suite Effectiveness”. In: Proocedings of the 10th Joint Meeting on Foun-

dations of Software Engineering (FSE). Bergamo, Italy, 2015, pp. 214–224.

doi: 10.1145/2786805.2786858.

https://doi.org/10.1177/1063293X20958932
https://doi.org/10.1109/ACCESS.2019.2931953
https://doi.org/10.1145/3395363.3404368
https://doi.org/10.1145/3395363.3404368
https://doi.org/10.1109/ACCESS.2019.2919203
https://doi.org/10.1145/2786805.2786858

	Declaration of Authorship
	Abstract
	Introduction
	Refactoring for Software Optimisation
	Testing for Validation
	Proposed Framework
	Organisation

	Related Works
	Concurrent Refactoring
	Loops Refactoring
	Matching Algorithm
	Automatic Test Generation

	Automatic Parallelisation of Methods Calls
	An API for Analysing and Classifying Data Dependence in View of Parallelism
	Classifying methods based on data dependence analysis
	API of the developed library
	Summary

	An Automatic Transformer from Sequential to Parallel Java Code
	Proposed Approach
	Method Call Analysis
	Data Dependence Analysis
	Control Flow Graph Analysis
	Summary

	Loops To Stream and Matching Algorithms
	Refactoring Java Loops to Streams Automatically
	Refactoring Templates
	Tool for Refactoring Loops
	Summary

	A Robust and Automatic Approach for Matching Algorithms
	Proposed Approach
	Evaluation
	Refactoring for Energy Efficiency
	Summary

	Automatic Test Generation
	Automatic Generation of Effective Unit Tests based on Code Behaviour
	Analysis of Software Systems
	Test Generation
	Summary

	Automatic Generation of Accurate Test Templates based on JUnit Asserts
	Analysis of Software Systems
	Test Template Generation
	Summary

	Experiments and Results
	Data Dependence API
	Discussion

	From Sequential to Parallel
	Discussion

	Java Loops to Stream
	Discussion

	Matching Algorithms
	Discussion

	Unit Tests based on Code Behaviour
	Discussion

	Test Template Generation
	Discussion

	Conclusion
	Future Works

	Bibliography

