
UNIVERSITY OF CATANIA

Department of Electrical, Electronic and Computer Engineering

Ph.D. in “Systems, Energy, Computer and Telecommunications

Engineering”

CONTROL OF MULTICONSENSUS AND SYNCHRONIZATION
IN MULTI-AGENT SYSTEMS: FROM THEORY TO ROBOTIC

IMPLEMENTATION

Candidate:

Cinzia Tomaselli
Supervisors:

Prof. Mattia Frasca
Prof. Lucia V. Gambuzza

Cycle XXXVII

Acknowledgements

For this thesis, I would like to acknowledge several people. First, I would like
to express my deepest gratitude to Professor Mattia Frasca and Professor
Lucia Valentina Gambuzza for believing in me and allowing me to broaden
my knowledge in the field of complex systems. They provided me with
the opportunity not only to design theoretical models but also to conduct
experiments with a team of Elisa-3 robots.

I am also thankful to Professor Sorrentino for his contributions to the
development of the mathematical models for multiconsensus. I would like
to extend a special thanks to Giuseppe Avon and Dario Calogero Guastella
who assisted me with programming the Elisa-3 robots at the beginning of
this project.

Part of this thesis was conducted at the University of Namur in collabo-
ration with Professor Timoteo Carletti, to whom I am sincerely grateful. In
this context, I also thank Professor Elio Tuci for the opportunity to work
with the e-puck2 robots, and Gonzalo Marcelo Ramirez Avila for the three
months spent together doing research.

Furthermore, I wish to acknowledge my coauthors Professor Stefano Boc-
caletti, Professor Ludovico Minati and Professor Giovanni Muscato, for their
valuable contributions to works discussed here.

I would like to express a special thanks to my partner, Giuseppe, whose
belief in me has been a constant source of strength. I hope that one day he
will find fulfillment and will recognize his worth. I am also deeply grateful to
my friends Bruno, Marco, Francesco, Roberto, and Lorenzo for their support
along these years (and not only).

I extend my acknowledgement to my Lab-1 colleagues, including Minoo,
Claudio, the Etnamatica company, the Robsys group, Luca, and Federico.

2

A special mention goes to Alessandra and Chiara, with whom I form the
”Superchicche” trio. I feel incredibly lucky to have had such wonderful
colleagues, and together we’ve built unforgettable memories. From Namur,
I would also like to thank Riccardo and Cédric for the pleasant conversations.

Lastly, I want to express my profound gratitude to my family for their
unwavering support throughout this journey.

3

Contents

1 Introduction 7
1.1 Background and state of the art 7
1.2 Research contributions . 11
1.3 Thesis structure . 13

2 Mathematical preliminaries 16
2.1 Notation . 16
2.2 Graphs . 18
2.3 The Perron-Frobenius theorem and other useful results 20
2.4 The Master Stability Function 21

I Theoretical results 24

3 Multiconsensus induced by network symmetries 25
3.1 Symmetries in a graph . 25
3.2 Multiconsensus protocol . 27
3.3 Control of the multiconsensus state 29
3.4 Multiconsensus in perturbed multi-agent systems 32

3.4.1 Revisiting the notion of quasi-symmetries 38
3.5 Application to the rendezvous problem 39

4 Control of multiconsensus in multi-agent systems based on
eigenvector centrality 43
4.1 Problem statement . 44
4.2 Leaderless multiconsensus . 47
4.3 Leader multiconsensus . 52

4

5 Taming Cluster Synchronization 59
5.1 Spectral block and MSF for cluster synchronization 59
5.2 Problem statement . 61
5.3 Methods for the solution to the control problems 62
5.4 Creation of spectral blocks . 64
5.5 Controlling cluster synchronizability 65
5.6 Shaping the synchronization/desynchronization sequence . . . 69

II Robotic implementation 76

6 Robotic platforms: Elisa-3 and e-puck2 77
6.1 Elisa-3 . 77
6.2 E-puck2 . 80

6.2.1 E-puck2 main board 80
6.2.2 Range & bearing board 81
6.2.3 Pi-puck . 82

6.3 Comparison between Elisa-3 and e-puck2 robots 83

7 Robotic implementation of multiconsensus 86
7.1 Multiconsensus induced by network symmetries 86
7.2 Robotic implementation . 88
7.3 Results . 91

8 A multi-robot system for the study of face-to-face interac-
tion dynamics 94
8.1 The attractiveness-based model for face-to-face interaction

networks . 94
8.2 Robotic implementation . 96
8.3 Experimental results . 101

9 Synchronization of moving chaotic robots 110
9.1 Synchronization in networks of mobile oscillators 110
9.2 Experimental setup . 114
9.3 Communication among robots 115

9.3.1 Local communication system 116
9.3.2 Virtual inter-robot communication system 117

5

9.4 Results . 118
9.4.1 Experiments with the local communication system . . 119
9.4.2 Experiments with the virtual inter-robot communica-

tion system . 123

10 Response to synchronization in a robot team 128
10.1 Response to synchronization in fireflies 128
10.2 Robotic implementation . 132
10.3 Results . 137

11 Conclusions 142

6

Chapter 1

Introduction

1.1 Background and state of the art

Multi-agent systems are of great interest within the scientific community
for their ability to model systems across various domains, including biol-
ogy, physics, economics, and engineering. In a multi-agent system, many
agents, that can model diverse entities, from biological to robotic ones, in-
teract and collaborate to achieve common goals or coordinate their actions.
Due to their distributed nature, these systems ensure the achievement of
collective behaviors that are both efficient and robust. In this context, a
key phenomenon is consensus.

Consensus is achieved when the states of all units converge to a common
value. This value may represent the position where robots of a team meet,
the average value of a distributed measure, the temperature set point for
a building with a centralized heating and conditioning system, and so on
[68, 60]. It has been extensively studied across different agent dynamics.
In particular, consensus has been first investigated for agents with single-
integrator dynamics [83] and then extended to higher-order linear dynam-
ics [81, 46, 117]. Protocols for consensus have been designed by using both
undirected [83, 111, 110] and directed networks [82, 43]. Many of these works
rely on algorithms based on the Laplacian matrix of the graph, hence char-
acterizing the spectrum of this matrix is crucial [2]. Consensus dynamics has
been also studied in the case of interaction networks that change in time or
are affected by delays [59, 115, 69]. Other works have addressed fundamen-

7

tal issues such as actuator saturation [81, 98], robustness to uncertainties
[49], and finite-time convergence [48]. In general, reaching a consensus in the
shortest possible time is an important problem that has also been addressed
by incorporating clustering techniques into the distributed algorithm used
to control the agents [47].

While consensus requires all agents to converge to a single common value,
more complex scenarios often require that different subgroups of agents each
reach their consensus, leading to the concept of multiconsensus. This phe-
nomenon is useful in all applications of multi-agent systems where the dy-
namics of the units is required to be differentiated into small subgroups. For
instance, a team of robots may be split into smaller groups that perform
several tasks, multiple rendezvous points may be assigned in an extended
rendezvous problem, decision-making problems with groups adopting mul-
tiple solutions may be solved, and multiple distributed measurements with
averaging restricted to subsets of sensors can be carried out using proto-
cols for multiconsensus [4, 114, 109]. The first important question that
has been investigated regards the conditions on the interaction network
to achieve multiconsensus and the number and composition of groups. It
has been found that diverse structural properties may yield multiconsensus.
For instance, it occurs in graphs satisfying the in-degree balanced condition
[114, 109, 79, 35, 55], admitting an external equitable partition [63, 29], or
displaying symmetries [42, 52, 92]. Furthermore, multiconsensus can also be
observed in special cases of graphs, such as signed and k-partite signed net-
works, when cooperative and antagonistic interactions are simultaneously
present [17, 18], or conditions for interactive or structural balancing exist
[120, 122]. Finally, in [71] the conditions for the emergence of multicon-
sensus are derived for varying structures networks characterized either by a
finite or infinite set of possible configurations.

The understanding of the conditions for multiconsensus has enabled the
development of control techniques to either modify the equilibrium value
reached by each group or, in cases where the uncontrolled system does not
display any multiconsensus, to affect the structure of the interactions to en-
force one of the topological properties guaranteeing multiconsensus. Many
techniques within the first class consider the application of control laws to a
subset of the agents of the network. In more detail, they require to control,

8

i.e. to pin, at least one node for each group of agents [54, 55]. The same
approach can be adopted also for the control of multiconsensus in switching
topologies [99, 79, 36, 39, 45], and extended to event-triggered or impulsive
controllers which are useful in reducing the amount of communication re-
quired by the agents [112, 113]. Lastly, when the agents have no direct access
to the state of the other units, then observer-based approaches can be used
[38]. Instead, among the techniques acting on the structure of interactions,
we find, for instance, the approach of [29], where, by using distributed con-
trollers, the structure of interaction is modified with a minimum number of
changes so that in the resulting graph the nodes can be clustered according
to a desired external equitable partition.

Another very important and widespread phenomenon in multi-agent sys-
tems is synchronization, which refers to the alignment of internal states
such as phase, frequency, amplitude, or even the complete trajectories of
units, enabling them to operate in unison. Unlike consensus, typically as-
sociated with linear systems, synchronization encompasses a broader range
of behaviors, applying also to nonlinear dynamics, including chaotic sys-
tems [78, 10, 11]. This phenomenon can be observed in natural systems,
such as the coordinated flashing of fireflies [12]. But it also finds application
in many engineered systems, such as the power grids in which the generators
should be synchronized to guarantee a consistent energy supply [67].

Similarly to multiconsensus, cluster synchronization is a state wherein
specific clusters of nodes within the network synchronize internally while
exhibiting distinct dynamics from other clusters [91, 66, 41, 108, 75, 93].
The phenomenon is particularly relevant in systems that rely on parallel
processing, such as brain networks [119]. It also finds application in engi-
neered systems such as power grids, where different sections may operate in
synchronized but distinct modes. Therefore, achieving full control of cluster
synchronization is crucial for optimizing the performance of such systems.
Despite the recognized importance of cluster synchronization, the develop-
ment of control methods tailored for taming and regulating clustered states
is currently lagging compared to techniques for controlling global synchro-
nization. Several control strategies exist, indeed, for promoting or suppress-
ing synchronization in entire networks [51, 118, 84, 116, 121]. In contrast,
cluster synchronization approaches typically rely on determining the com-

9

position of the clusters based on the group of symmetries [30, 50, 24, 31],
or the equitable partitions of the network nodes [28, 1, 88]. However, these
approaches have not yet been extended to handle more generic or complex
cluster-level dynamics.

Besides these phenomena, there are other complex dynamic behaviors
of interest. Indeed, dynamics such as the face-to-face interaction and the
response to synchronization provide additional understandings of the differ-
ent ways in which collective behavior can emerge. However, these models
often lack direct experimental validation, which is crucial as simulations
frequently overlook real-world factors. Recent works have filled this gap by
using robotic platforms, which not only allow for the validation of mathemat-
ical models but also enable experiments in settings where some parameters
that are typically non-controllable can be tuned [107, 100, 77, 76, 19, 5, 6].
A pioneer work in this direction focuses on a special type of consensus dy-
namics, i.e., the naming game, and implements it on the Kilobot robotic
platform [107]. The authors of the study analyze the effects of physical
interference on the concurrent execution of the games and experimentally
demonstrate the emergence of consensus in the naming process. Consensus
dynamics has also been used to find the best-of-n solution through voter
models using kilobot robots [15, 100]; interestingly, the robots can better
adapt to environment changes when communication is constrained [100].
Nonequilibrium self-organization phenomena have also been studied with
the help of robotic platforms, for instance, to test a predictive theory based
on rattling [14]. Instead, in [77, 76] a swarm of e-puck robots is used to
study the different regimes of synchronization that can appear in a system
of mobile pulse-coupled oscillators as a function of agent speed, angle, and
range of interaction. Real robot experiments have also been used to study
the search efficiency and the ability to spread information within a swarm of
random walkers [19]. The theoretical model of swarmalators that combines
the synchronization and swarming dynamics has also been implemented in a
robotic platform, in particular by using both small robots and drones [5, 6].

These works show how robotics can be useful for the study of complex
systems. In fact, it provides a natural embodiment for theoretical mod-
els of complex systems [23, 96], and enables the experimental validation
of the assumptions on the mechanisms underlying the system dynamical

10

behavior, including the possibility of physical investigations with tunable
parameters. However, the cross-fertilization between robotics and complex-
ity [3] can also be beneficial for robotics, as algorithms drawn from the
elementary principles of interactions unveiled in complex systems can be
particularly useful for the control of multi-agent systems, where typically
centralized methods are used instead [34]. An example is the distributed
control of agents that sense and react to virtual forces inspired by natural
physical laws in a framework enabling self-organization, fault-tolerance, and
self-repair [94]. Another example is provided by the distributed control law
introduced in [33]. This control law exploits agent elementary interactions
and adaptation to design a strategy for geometric pattern formation that
avoids the need for communication between agents, relying instead on the
calculation of the displacement between the units that can be carried out
with low sensor requirements. A third example is the self-organized and
decentralized decision-making method that, being able to reach consensus
on the fastest action, allows a swarm of robots to select the shortest of two
paths [89].

1.2 Research contributions

In an increasingly interconnected world, coordinating large groups of units,
such as robots, vehicles, or even biological entities, becomes crucial. This
work is motivated by the need to develop robust, distributed, and practically
implementable solutions for systems where agents interact through graphs of
different natures, including undirected, directed, time-constant, and time-
varying. Specifically, this thesis explores the role of agent interactions as
a foundation for both controlled and emergent coordination in multi-agent
systems.

In this context, the spectral properties of the interaction network are cru-
cial, acting as tools for developing control strategies for the emergence of col-
lective behaviors such as multiconsensus and synchronization through agent
communication. In particular, the concept of eigenvector centrality forms
the basis of our two communication protocols, which, unlike the traditional
protocol relying on diffusive coupling, guide the system towards a subspace
spanned by the leading eigenvector of the graph’s adjacency matrix. This en-

11

sures that nodes with the same eigenvector centrality asymptotically achieve
the same state. The main advantage of such protocols is that they provide
a simple strategy to drive the whole multi-agent system to a desired multi-
consensus solution. Indeed, to guide the system towards a specific solution,
it is required a single control input acting on just a single node. Our first
protocol leverages network symmetries, as symmetric nodes share the same
eigenvector centrality, allowing multiconsensus to be achieved based on the
inherent properties of the interaction network. Additionally, our approach,
combined with [31], enables shaping cluster formations. However, while we
can control the composition of each cluster, the multiconsensus solution re-
mains constrained by the leading eigenvector of the adjacency matrix. Our
second protocol addresses this limitation by allowing adjustments of interac-
tion weights. This flexibility enables the selection of the leading eigenvector
of the adjacency matrix, and thus, the eigenvector centralities of the nodes,
broadening the range of achievable states for the system. Furthermore, we
demonstrate that the spectral properties of the interaction network can be
used to shape cluster synchronization dynamics. Specifically, through the
introduction of additive control links, we can induce spectral blocks or shape
the spectral properties of the groups of nodes associated with them. This
approach not only allows the achievement of synchronization among clus-
ters but also the control over the synchronizability of each cluster, which
provides a significant impact on the system’s collective dynamics.

We go beyond providing theoretical control strategies to induce collec-
tive behavior as we demonstrate the applicability of one of our mathemat-
ical models in a scenario that incorporates real-world factors. Specifically,
we employed a team of robots (Elisa-3 and e-puck2 robots) to achieve a
multiconsensus driven by the symmetries of the interaction graph through
which they interact. These robotic platforms not only enable the valida-
tion of the theoretical models but also provide a controlled, scalable, and
cost-effective platform for investigating collective behaviors, offering valu-
able insights into natural and engineered systems. In this context, scenarios
in which coordination emerges from the local interactions among agents can
be explored, emphasizing that phenomena such as aggregation or synchro-
nization are driven by these interactions. For example, agents can form some
group aggregation based on their reciprocal attractiveness, or agents carry-

12

ing chaotic oscillators can achieve synchronization through local exchanges
of state variables when close to each other, illustrating how local interaction
can be leveraged to achieve coordination in complex settings. On the other
hand, local interactions not only facilitate induced coordination but also
allow investigation of the boundaries and possibilities of such phenomena.
For instance, in scenarios where some agents cannot achieve synchronization
due to their dynamics, introducing agents capable of synchronizing into the
system can induce synchronization in others, highlighting the concept of the
response to synchronization. In this context, the employment of the robotic
platform allows the control of parameters like agent density to influence
these emergent behaviors without directly altering the underlying dynamics
or interaction networks.

Thus, integrating theoretical insights with robotic experimentation high-
lights the importance of multi-agent interactions in achieving both controlled
and emergent coordination, demonstrating how local interactions can be ex-
ploited to influence collective behaviors in multi-agent systems.

1.3 Thesis structure

This thesis begins with the mathematical preliminaries, presented in Chap-
ter 2, which introduces the notation and provides the definitions, lemmas,
and theorems that are used throughout the thesis.

The rest of this thesis work is divided into two main parts. In the first
part, constituted by Chapters 3−5, we focus on the mathematical models
inducing multiconsensus and cluster synchronization, examining both the
underlying theories and the associated control techniques.

The second part, covering Chapters 6−10, discusses the practical val-
idation of mathematical models through experiments on robotic systems.
Here, we begin with the validation of the multiconsensus, and then we ex-
tend the analysis to other models, such as the face-to-face interaction dy-
namics, the synchronization of moving chaotic agents, and the response to
synchronization. The objective is to demonstrate how the developed theo-
ries can be implemented in real-world contexts, verifying their applicability
and robustness.

Specifically, in Chapter 3, based on [101], we propose a communica-

13

tion protocol for multiconsensus that guides a system of agents with single-
integrator dynamics, interacting through an undirected and connected graph,
to reach a final state that reflects the symmetries of the interaction network.
Similarly to [42], multiconsensus is induced by network symmetries. How-
ever, we use a different interaction protocol that ensures the convergence of
the state variables of the multi-agent system to a vector parallel to the lead-
ing eigenvector of the graph adjacency matrix, allowing symmetric nodes to
asymptotically converge to the same value. Nevertheless, this communica-
tion protocol does not allow reaching every possible multiconsensus solution,
as its solution is constrained by the leading eigenvector.

In Chapter 4, derived from [102], we introduce a further communication
protocol for multiconsensus which is applied to a second-order dynamics
system where the agents interact through a directed and strongly connected
graph. Specifically, this model drives the system to reach trajectories parallel
to an arbitrary vector v. To achieve this, we first assign weights to the
interaction network such that the adjacency matrix has a target eigenvector
centrality v, enabling the formation of clusters of nodes sharing the same
eigenvector centrality. Then, we adjust the gains to ensure the stability of
the multiconsensus solution.

In Chapter 5 we move from multiconsensus to the broader concept of
cluster synchronization. This chapter is built on the work presented in [103],
where we leverage the concept of spectral blocks [7] to design controllers that
shape the dynamics of clusters. Specifically, we introduce a control action
able to induce the formation of such structures in networks where they do
not naturally occur, thereby providing precise control over the synchroniz-
ability of individual clusters [103]. This approach also enables setting the
sequence in which each cluster enters or exits the synchronization region as
the coupling strength varies.

The second part begins with Chapter 6, where we describe the robotic
platform used to perform our experimental investigation: the Elisa-3 and
the e-puck2 robots.

In Chapter 7 we validate the mathematical model introduced in Chap-
ter 3. Specifically, we apply the communication protocol to a team of Elisa-3
robots to address the rendezvous problem. Through the experimental re-
sults, we show that our model can be applied to a real-world system.

14

In Chapter 8, based on [104], we validate the mathematical model intro-
duced in [95] which describes the social interaction occurring during human
gatherings. Indeed, models devoted to the analysis of social systems can
very often be validated against real data, but not compared with the results
of controlled experiments. Therefore we propose our multi-robot system to
facilitate experimental investigations in settings where the parameters can
be tuned. In particular, the control action that we propose here is fully
distributed as it relies solely on the local communication system onboard
the robots.

In addition to local communication, Chapter 9 introduces another com-
munication system based on virtual interaction to overcome the limitations
due to this communication system. Specifically, we use both communica-
tion systems to validate with a team of robots the model discussed in [23]
which studies the synchronization among units in motion, each provided
by a chaotic oscillator and interacting through a time-varying graph as
connections are established only when units are close. This validation is
particularly significant because, although there are numerous experimental
studies on synchronization—often involving mechanical systems, lasers, or
electronic circuits [72, 75, 57, 61, 90, 27], most of these investigations deal
with systems where the network topology remains fixed over time. This
validation is also discussed in [105].

We conclude the second part with Chapter 10 which shows the experi-
mental validation of the model describing the response to synchronization in
fireflies [80]. Assessing the practical applicability of the model is crucial, as
it demonstrates how units that typically cannot achieve synchronization on
their own can synchronize through interaction with other units that, on the
contrary, possess the capability to synchronize. Therefore, it can be applied
to induce synchronization among units that normally cannot synchronize.
The results shown in this chapter are derived from [106].

15

Chapter 2

Mathematical preliminaries

This chapter introduces the notation as well as some useful lemmas, def-
initions, and theorems that are used throughout this thesis. Additional
theorems and definitions are provided in the chapters where they are rel-
evant. We also introduce the concept of Master Stability Function (MSF)
which is a useful tool to assess the stability of the synchronous solution in
a multi-agent system.

2.1 Notation

Throughout this thesis, we adopt the following notation:

Vectors

Vectors are indicated in boldface. Commonly used symbols related to vectors
include:

0N N -dimensional column vector with entries that are equal to zero.
When clear from the context, the subscript N is omitted

1N N -dimensional column vector with entries that are equal to one

v > 0 every element of the vector v is positive

v ≥ 0 every element of the vector v is non-negative

⟨v, w⟩ scalar product between the vectors v and w, i.e., ⟨v, w⟩ = vT w

16

Matrices

Matrices are indicated in roman text. Commonly used symbols related to
matrices include:

IN N × N identity matrix

0N,M N × M matrix with each element equal to zero

ρ(A) spectral radius of matrix A

A > 0 every element of the matrix A is positive

A ≥ 0 every element of the matrix A is non-negative

Matrix operations

A ◦ B Hadamard product of the N × M matrices A and B, i.e.,
(A ◦ B)ij = aijbij , where aij and bij , for i = 1, . . . , N and
j = 1, . . . , M , are the entries of the matrices A and B, respec-
tively

A ⊗ B Kronecker product of an N × M matrix A and a P × Q matrix
B, resulting in an NP ×MQ block matrix with each block being
(A ⊗ B)ij = aijB, namely:

A ⊗ B =


a11B . . . a1M B

...

aN1B . . . aNM B


vec(A) vectorization of the N × M matrix A obtained by stack-

ing the columns of A into a single column as follows:

vec(A) = [a11, . . . , aN1, a12, . . . , aN2, . . . , a1M , . . . , aNM]T

diag(A) function that returns an N × N matrix having in the diagonal
the elements of the diagonal of A and zero elsewhere

17

2.2 Graphs

Here we introduce the concept of graph and some related definitions [44].

Definition 2.2.1 (Graph) A graph is a mathematical structure described
by the pair G = (V, E), where V(G) = {1, 2, . . . , N} is the set of the ver-
tices/nodes, and E(G) ⊆ V × V the set of edges, which are ordered pairs of
vertices.

To represent a graph G, the adjacency matrix A can be used.

Definition 2.2.2 (Adjacency matrix) It is an N × N matrix with ele-
ments aij such that aij > 0 if there is a link between the vertices i and j,
and aij = 0 otherwise.

Definition 2.2.3 (Laplacian matrix) Given the adjacency matrix A, the
Laplacian matrix L is a N × N zero-row sum matrix with entries lij = −aij

if i ̸= j and lii =
∑N

i=1 aij. This matrix is positive semidefinite.

Definition 2.2.4 (Weighted graph) A weighted graph is a graph where
each edge is assigned a numerical value, known as a weight. If no weights
are assigned to the edges, the graph is said unweighted.

The adjacency matrix of an unweighted graph is binary: aij = 1 if there
is a link between the vertices i and j, and aij = 0 otherwise.

Definition 2.2.5 (Undirected graph) A graph is said to be undirected
when for any (i, j) ∈ E, then (j, i) ∈ E. Otherwise, the graph is said directed
(or digraph).

The adjacency matrix of an undirected graph is symmetric: aij = aji

∀i, j = 1, . . . , N .

Definition 2.2.6 (Simple graph) A simple graph is a graph that does not
contain multiple edges between any pair of nodes and does not contain self-
loops.

Definition 2.2.7 (Neighborhood of a vertex) The neighborhood of a ver-
tex i ∈ V, denoted as Ni, is the set of all vertices that are adjacent to i. In
other words, it is the set of vertices that are connected to i by an edge.

18

Definition 2.2.8 (Path in a graph) A path between two nodes, n0 and
nk, is an alternating sequence of nodes and edges n0, e1, n1,..., el, nl, that
begins with n0 and ends with nl, such that ej = (nj−1, nj) ∈ E for j =
1, 2, . . . , l, and no node is visited more than once (i.e, nh ̸= nj for all
h = 0, 1, . . . , l and j = 0, 1, . . . , l, with h ̸= j).

Definition 2.2.9 (Connected graph) An undirected graph is said to be
connected if, for any pair of vertices, there is a path between them.

If the graph is connected, then its adjacency matrix A is irreducible, that
is, there is not a permutation matrix P such that PAP−1 is in block upper
triangular form.

Definition 2.2.10 (Weakly connected digraph) A digraph is weakly con-
nected if there is a path between every pair of nodes, regardless of the direction
of the edges.

Definition 2.2.11 (Strongly connected digraph) A digraph is strongly
connected if, for every pair of vertices, there is a path between them.

If the digraph is strongly connected, then its adjacency matrix A is
irreducible.

Definition 2.2.12 (Graph partition [28]) A partition π of a graph G =
(V, E) is a map of the vertices that groups them into Q distinct cells, C1, C2,

. . . , CQ, with
Q⋃

k=1
Ck = V and Ci ∩ Cj = ∅ for i ̸= j.

Definition 2.2.13 (Quotient graph) Given a graph G = (V, E) and a
partition π of the vertex set V into subsets C1, C2, . . . , CQ, the quotient
graph G/π is a graph having the following properties:

• its vertices correspond to the subsets C1, C2, . . . , CQ

• an edge between two vertices Ci and Cj exists if, in the graph G, there
is at least one edge in E connecting a vertex in Ci to a vertex in Cj.

19

2.3 The Perron-Frobenius theorem and other use-
ful results

Some useful lemmas and definitions are here briefly recalled.

Theorem 2.3.1 (Perron-Frobenius [44]) If A is an N×N , non-negative,
irreducible matrix, then one of its eigenvalues is positive and greater than or
equal to all other eigenvalues, this eigenvalue is a simple root of the charac-
teristic equation of A, and there is a positive eigenvector corresponding to
it.

Definition 2.3.2 (Metzler matrix [21]) A matrix A ∈ RN×N is Metzler
if all its off-diagonal coefficients are non-negative.

Definition 2.3.3 (M-matrix [8]) A matrix A ∈ RN×N is said to be an
M -matrix, if it can be expressed as A = sIN −B where B is a Metzler matrix
and s is at least as large as the spectral radius of B.

Lemma 2.3.4 ([21]) A Metzler matrix A is Hurwitz stable if and only if
the leading minors of −A are positive.

Lemma 2.3.5 ([8]) Suppose that A is a singular matrix that has a simple
zero eigenvalue, and let v ̸= 0 and w ̸= 0 be the associated left and right
eigenvector of A, respectively, i.e., vT A = 0 and Aw = 0. Then, A+xyT is
non-singular if and only if the following inequality, called non-zero projection
(NZP) condition, is satisfied:

(vT x)(yT w) ̸= 0 (2.1)

Lemma 2.3.6 ([8]) Suppose that A ∈ RN×N is a singular, irreducible M -
matrix that has a simple zero eigenvalue with associated left and right eigen-
vectors v > 0 and w > 0, and let x, y ∈ RN such that x ≥ 0, y ≥ 0 and
(vT x)(yT w) ̸= 0. Then, the matrix A+xyT has all positive leading minors.

Lemma 2.3.7 (Farka’s lemma I [26]) Let A ∈ RN×M and b ∈ RN , then
only one of the following two assertions is true:

• there exists x ∈ RM such that Ax = b and x ≥ 0;

20

• there exists y ∈ RN such that AT y ≥ 0 and yT b < 0.

Lemma 2.3.8 (Farka’s lemma II [58]) Let A ∈ Rm×n and b ∈ Rm,
then only one of the following statements is true:

• There exists x ≥ 0 such that Ax ≤ b.

• There exists y ≥ 0 such that AT y ≥ 0 and bT y > 0.

2.4 The Master Stability Function

Let us consider a network of N coupled oscillators described by the following
dynamics:

ẋi = f(xi) + σ
N∑

j=1
aij (h(xj) − h(xi)) (2.2)

where xi ∈ Rn, i = 1, . . . , N , f is the uncoupled dynamics, σ is the cou-
pling strength, aij are the entries of the adjacency matrix describing the
interaction graph G, and h is the inner coupling function.

Eq. (2.2) is such that the synchronization manifold, that is defined by
x1 = x2 = . . . = xN = xs, always exists and has dynamics described by the
following equation:

ẋs = f(xs) (2.3)

The stability analysis of this state has been subject of extensive study in
the literature. A pioneer work in this context is [25], which introduces key
concepts that form the foundation for analyzing the stability of synchroniza-
tion in coupled-oscillator systems. Here, we follow the approach introduced
in [74], which starts by considering a small perturbation δxi = xi − xs

around the synchronization manifold, and by linearizing the system dynam-
ics around the synchronization manifold:

˙δx = [I ⊗ Df |xs − σL ⊗ Dh|xs] δx (2.4)

where δx = [δxT
1 , δx2,T . . . , δxT

N]T . Here, Df |xs and Dh|xs are the Jaco-
bian matrix of f and h computed around the synchronous manifold xs,
respectively. Let us suppose that L is diagonalizable, then Eq. (2.4) is
block-diagonalized, resulting in a new set of equations where each block has

21

the form ξ̇i = [Df |xs − σλi(L)Dh|xs] ξi. Since the blocks only differ for the
eigenvalue appearing in it, by introducing the parameter ν = σλi(L), a sin-
gle Master Stability Equation (MSE), namely ζ̇ = [Df |xs − νDh|xs] ζ, can
be considered. This is an important step, as it allows to separate the role of
the unit dynamics (namely f and h) from that of the structure of interac-
tions (the eigenvalues of the Laplacian matrix) in the variational equation.
From the MSE, the maximum Lyapunov exponent λmax is calculated as
a function of ν, thus obtaining the Master Stability Function (MSF), i.e.,
λmax = λmax(ν). The condition on stability of synchronization is then ex-
pressed as λmax(ν) = λmax(σλi(L)) < 0 ∀i = 2, . . . , N . Note that, although
we assumed L to be diagonalizable, this is not a necessary condition. Indeed,
the Jordan decomposition can be applied to block-diagonalize Eq. (2.4),
leading to a similar stability analysis [67, 20]. Thus, the MSF provides a
necessary condition for the stability of the synchronization manifold that
is effective and easy to check, unveiling how network topology affects the
property of synchronization stability.

In [9], three classes of MFSs have been identified for chaotic systems:
type I MSF, type II MSF, and type III MSF that we now illustrate with ref-
erence to a network having a Laplacian with real eigenvalues (all undirected
networks satisfy this property). In systems with type I MFS, λmax(ν) > 0
for any value of ν, making the synchronization manifold unstable ∀σ. In
systems with type II MSF, λmax(ν) turns from positive to negative values at
the critical value ν∗, yielding a scenario where a transition from instability to
stability of the synchronization manifold can be observed when the coupling
strength is increased from zero. In this case, synchronization stability can
be achieved if σλ2(L) > ν∗. For systems with type III MSF, λmax(ν) < 0 for
ν ∈ [ν∗

1 , ν∗
2], where ν∗

1 and ν∗
2 are two threshold values. This yields the possi-

bility of observing two transitions when the coupling strength is varied from
zero: from instability to stability and from stability to instability. Also for
systems with type III MSF, synchronization stability depends on the spec-
trum of L; more specifically, it requires that dλi ∈ [ν∗

1 , ν∗
2] ∀i = 2, . . . , N .

This condition can be achieved only if λN (L)
λ2(L) <

ν∗
2

ν∗
1
. Fig. 2.1 summarizes the

three classes of MSF that can be observed.

22

Figure 2.1: Possible classes of MSF.

23

Part I

Theoretical results

24

Chapter 3

Multiconsensus induced by
network symmetries

In this chapter, we introduce a communication protocol for multiconsensus
that induces a system of units with single integrator dynamics to achieve
a state reflecting the interaction network’s symmetries. In particular, this
communication protocol leads the system to reach a state that is parallel to
the leading eigenvector of the adjacency matrix representing the interaction
network, such that symmetric nodes reach the same state. We also show
that, by pinning just a single arbitrary node, it is possible to control the
system such that it reaches a specific vector of the subspace spanned by
the leading eigenvector, independently from the agents’ initial conditions.
Furthermore, we analyze the protocol in the presence of perturbations of
the adjacency matrix describing the interaction network and provide an
estimate for the difference between the final state reached by the nominal
and perturbed systems. With this result, we revisit the notion of quasi-
symmetries and propose a quantitative criterion for their definition. As an
application, we use our protocol to address the rendezvous problem in a
bi-dimensional space.

3.1 Symmetries in a graph

Before introducing our communication protocol, we discuss the concept of
symmetries in a graph, including a lemma that is crucial for our technique.

25

Graphs are said to have a symmetry if there exists a permutation of
the nodes that preserves the connectivity pattern. The symmetries of a
graph form a mathematical group, denoted by G, where each element is
represented as a square permutation matrix Rg with Rg

ij = 1 if node j is
mapped to node i under the permutation, and Rg

ij = 0 otherwise. Any
permutation matrix of the group commutes with the adjacency matrix A of
the graph, i.e., RgA = ARg.

The symmetry group induces a partition of the nodes into disjoint sets
called orbits, which include all nodes that are mapped into each other after
the application of all symmetries of the group.

The following Lemma expresses an important property related to sym-
metries (see for instance [87]).

Lemma 3.1.1 Let A be the adjacency matrix of a connected graph and let
G be the symmetry group of the graph. Assume thar A is irreducible. Then,
for each permutation matrix Rg ∈ G, the eigenvector v1 associated to the
maximum eigenvalue of A satisfies:

Rgv1 = v1 (3.1)

Proof. By the Perron-Frobenius theorem, the maximum eigenvalue of A,
namely ρ(A), is simple. The associated eigenvector v1 is such that Av1 =
ρ(A)v1. Left-multiplying this relationship by Rg, one has that RgAv1 =
ρ(A)Rgv1. Since RgA = ARg, it follows that ARgv1 = ρ(A)Rgv1, hence
Rgv1 belongs to the subspace generated by v1 and so can be expressed in
a basis of v1: Rgv1 = av1. Now, since Rg is a permutation matrix, the
transformation Rv1 only permutes the elements of v1, and thus a = 1.
Consequently, Rgv1 = v1. □

Since the property of Lemma 3.1.1 holds for any permutation matrix of
the symmetry group G of A, we can associate to G a partition πG that is
formed by the cells that group together the nodes of the same orbit, such
that, for nodes of the same cell, the component in v1 is the same. Since
the leading eigenvector v1 represents the eigenvector centrality of the graph
[44], nodes of the same cell have the same eigenvector centrality value.

26

3.2 Multiconsensus protocol

Let us consider a multi-agent system formed by N agents with first-order
integrator dynamics

ẋi = vi (3.2)

where i = 1, . . . , N and xi ∈ R. Here, we study the control protocol vi =
1

ρ(A)
∑N

j=1 aijxj−xi+ui, where aij are the coefficients of the adjacency matrix
A = {aij} of the interaction graph modeling how agents interact with each
other, and ui a further (additive) control signal. With this control protocol,
the dynamics of the agents is given by:

ẋi = 1
ρ(A)

N∑
j=1

aijxj − xi + ui (3.3)

with i = 1, . . . , N .
In the rest of the chapter, we always assume that the graph is simple,

undirected, and connected so that the adjacency matrix is symmetric, non-
negative, with zero diagonal entries, and irreducible.

Eqs. (3.3) are rewritten in compact notation as:

ẋ =
(1

ρ(A)
A − IN

)
x + u (3.4)

where x = [x1, x2, . . . , xN]T and u = [u1, u2, . . . , uN]T .

Definition 3.2.1 Given a multi-agent system (3.3) and a partition π =
{C1, C2, . . . , CQ} of the agents, the multiconsensus manifold is defined as
MC(π) = {x : xi = xj , ∀i, j ∈ Ch, h = 1, . . . , Q}.

Definition 3.2.2 A multi-agent system (3.3) is said to reach the multicon-
sensus associated with the cell partition π if

lim
t→+∞

x(t) = x̄ (3.5)

with x̄ ∈ MC(π) or, equivalently, if

lim
t→+∞

(xi(t) − xj(t)) = 0, ∀i, j ∈ Ch, h = 1, . . . , Q (3.6)

We begin with the analysis of the behavior for u = 0. The next lemma
illustrates that, under this condition, the multi-agent system converges to a
solution that belongs to the multiconsensus manifold.

27

Lemma 3.2.3 Consider the multi-agent system

ẋ =
(1

ρ(A)
A − IN

)
x (3.7)

with A the adjacency matrix of the interaction graph, assumed to be simple,
undirected and connected, and let G be the group of symmetries of A.

Then, given an arbitrary initial condition x(0), the trajectory of the
multi-agent system asymptotically converges to the multiconsensus manifold
MC(πG), where πG is the partition induced by G, that is:

lim
t→+∞

x(t) = x̄, (3.8)

where x̄ is a vector of the multiconsensus manifold, namely x̄ ∈ MC(πG),
that depends on the initial condition x(0).

Proof. Let Aρ = 1
ρ(A)A − IN . Since the graph is connected and undi-

rected, then the matrix 1
ρ(A)A is symmetric, diagonalizable and has all

real eigenvalues with their maximum being equal to one. It follows that
Aρ = 1

ρ(A)A − IN is negative semidefinite and always has one zero eigen-
value. Let v0 be the eigenvector associated with this eigenvalue. Since(

1
ρ(A)A − IN

)
v0 = 0, and so Av0 = ρ(A)v0, we get that v0 = v1, where

v1 is the eigenvector associated to the largest eigenvalue of A, namely λ1.
Since by Lemma 3.1.1, for any permutation matrix R ∈ G, we have that
Rv1 = v1, then v1 ∈ MC(πG) and v1,i = v1,j for all nodes i and j that are
symmetric.

The solution of Eqs. (3.7) is given by:

x(t) = eAρtx(0) (3.9)

Taking into account that Aρ is diagonalizable, x(t) can be written as:

x(t) =
(
eλ1tv1vT

1 + eλ2tv2vT
2 + . . . + eλN tvN vT

N

)
x(0) (3.10)

where λi, i = 1, . . . , N are the eigenvalues of Aρ, with λ1 = 0.
Since Aρ is negative semidefinite and, by the Perron-Frobenius theorem,

λ1 is simple, then

lim
t→+∞

x(t) = v1vT
1 x(0) (3.11)

28

It follows that x̄ = cv1 where c = vT
1 x(0). Since v1 ∈ MC(πG), then

also x̄ ∈ MC(πG). □
Lemma 3.2.3 shows that a group of agents interacting through the pro-

tocol (3.7) asymptotically converges towards a multiconsensus solution that
is parallel to the eigenvector v1, so that symmetric agents approach the
same steady-state value. The constant of proportionality between the mul-
ticonsensus solution x̄ and the eigenvector v1, namely the parameter c in
the proof of the theorem, depends on the initial conditions of the agents.
The next example illustrates the application of Lemma 3.2.3 to a network
of N = 16 agents.

Example 3.2.4 Let us consider the multi-agent system (3.7) with N =
16 agents interacting according to the network shown in Fig. 3.1(a). The
symmetries of the adjacency matrix A induce the following partition of the
network nodes:

πG =
{
C1, C2, C3, C4, C5, C6, C7

}
=

{
{1, 2, 5, 6}, {3}, {4}, {7, 8}, {9, 10}, {11, 12}, {13, 14, 15, 16}

}
The leading eigenvector v1 of A is:

v1 = [0.18, 0.18, 0.34, 0.40, 0.18, 0.18, 0.45, 0.45,

0.14, 0.14, 0.24, 0.24, 0.10, 0.10, 0.10, 0.10]T

As expected from Lemma 3.1.1, we find that v1,i = v1,j if nodes i and j

belong to the same cell of the partition π.
An example of the time evolution of the state variables of the multi-agent

system is shown in Fig. 3.1(b). The variables asymptotically approach the
equilibrium point:

x̄ = [0.40, 0.40, 0.75, 0.88, 0.40, 0.40, 0.99, 0.99,

0.30, 0.30, 0.53, 0.53, 0.22, 0.22, 0.22, 0.22]T

which is indeed parallel to v1 as x̄T v1
∥x̄∥∥v1∥ = 1.

3.3 Control of the multiconsensus state

As shown in Sec. 3.2, for u = 0 the multi-agent system (3.4) converges to
a multiconsensus solution x̄ that is parallel to the leading eigenvector v1

29

(a) (b)

Figure 3.1: Multiconsensus in the multi-agent system (3.7). (a) Network of
interactions among agents with symmetrical nodes indicated with the same
color. (b) Time evolution of the state variables of the multi-agent system
(3.7), showing that symmetric nodes converge to the same value.

of A, with the constant of proportionality c being a function of the initial
conditions of the system. Here, we address the problem of controlling, via a
non-zero input u, the multi-agent system to converge to a predefined vector
v̄ ∈ span(v1), independently from the initial condition of the agents. We
show that this control problem can be solved by acting on a single (arbitrary)
node of any cell of the partition of A.

Theorem 3.3.1 Consider the multi-agent system described by the following
equations

ẋi = 1
ρ(A)

N∑
j=1

aijxj − xi + ui (3.12)

with i = 1, . . . , N and A being the adjacency matrix of the interaction graph,
assumed to be simple, undirected and connected. Let Ch̄ be an arbitrary cell
of the partition associated to the symmetry group of A, ī an arbitrary node of
this cell Ch̄, and v̄ ∈ span(v1) a target multiconsensus solution. In addition,
let c̄ = ⟨v̄, v1⟩, that is, v̄ = c̄v1. Then, it is possible to control system (3.12)
so that x(t) converges to v̄ by selecting as control input:

ui = kξi(xref − xi) (3.13)

where k is an arbitrary positive constant, ξi = 1 if i = ī, and ξi = 0,
otherwise, and xref = c̄v1,̄i.

30

Proof. We start from the compact form of system (3.12)

ẋ =
(1

ρ(A)
A − IN

)
x + u (3.14)

and note that [ξ1, . . . , ξN]T = ēi, namely it is the ī-th canonical vector, so
that we can write

ẋ =
(1

ρ(A)
A − IN

)
x + k(xref ēi − ēiēi

T x) (3.15)

As the target of the control is to reach the steady-state v̄, i.e., to obtain
that lim

t→+∞
x(t) = v̄, we define the control error as z = x − v̄ and study its

dynamics:

ż =
(1

ρ(A)
A − IN − kēiēi

T
)

(z + v̄) + kxref ēi (3.16)

Taking into account that
(

1
ρ(A)A − IN

)
v̄ = 0 and that v̄ = c̄v1, Eq.

(3.16) becomes

ż =
(1

ρ(A)
A − IN − kēiēi

T
)

z − kēiēi
T c̄v1 + kxref ēi (3.17)

Since ēiēi
T c̄v1 − xref ēi = 0, the error dynamics is:

ż =
(1

ρ(A)
A − IN − kēiēi

T
)

z (3.18)

Now, we demonstrate that 1
ρ(A)A − IN − kēiēi

T is negative definite. To
show this, we notice that, since A is an irreducible non-negative matrix,
then 1

ρ(A)A − IN is an irreducible Metzler matrix with 0 as dominant eigen-
value. Consequently, 1

ρ(A)A − IN − kēiēi
T is also an irreducible Metzler

matrix. Since 1
ρ(A)A− IN ≥ 1

ρ(A)A− IN −kēiēi
T , then λmax

(
1

ρ(A)A − IN

)
>

λmax

(
1

ρ(A)A − IN − kēiēi
T

)
. This yields that all eigenvalues of 1

ρ(A)A−IN −
kēiēi

T are strictly negative.
Taking into account that

(
1

ρ(A)A − IN − kēiēi
T

)
is negative definite,

then lim
t→+∞

z(t) = 0, and hence lim
t→+∞

x(t) = c̄v1. □
Notice that the multi-agent system (3.12) with the control law (3.13) can

also be viewed as a leader-follower scheme where the agents i = 1, . . . , N are
the followers and there is a single leader l that is connected to unit ī of the
cell Ch̄ and has dynamics ẋl = 0 with initial condition xl(0) = xref .

31

Following [31], it becomes possible to change the set of symmetries of a
network by perturbing its structure, e.g., adding and/or removing a min-
imum number of edges, then the characteristics of the multiconsensus so-
lution can be fully controlled, first applying the techniques of Ref. [31] to
control the network symmetries and, then, the results of Theorem 3.3.1 to
steer the network towards a specific vector of the multiconsensus manifold.

Next, we show a numerical example of application of the control law of
Theorem 3.3.1.

Example 3.3.2 Let us consider again the multi-agent system analyzed in
Example 3.2.4 and a target multiconsensus solution v̄ = c̄v1 with c̄ = 2.
Control is applied as in Eq. (3.15), selecting without any lack of generality
k = 2 and ī = 11. Hence, ξ11 = 1 and ξi = 0 for i = {1, . . . , 10, 12, . . . , 16}.
This yields a non-zero control input effectively applied only to node 11
(Fig. 3.2(a)), whereas for all the other nodes the control input is zero. A
typical time evolution of the system is reported in Fig. 3.2(b) which shows
convergence of the variables to

v̄ = [0.36, 0.36, 0.68, 0.80, 0.36, 0.36, 0.89, 0.89,

0.27, 0.27, 0.48, 0.48, 0.20, 0.20, 0.20, 0.20]T

The controlled system reaches the control goal as ⟨v̄, v1⟩ = 2.

3.4 Multiconsensus in perturbed multi-agent sys-
tems

In this section, we study the behavior of the multi-agent system in the
presence of a perturbation δA = {δaij} of the adjacency matrix A. We start
with the case when u = 0, i.e., Eqs. (3.7), to move then to the case when
u ̸= 0, as in Eqs. (3.4). We refer to the multi-agent system with connectivity
A as the unperturbed or nominal multi-agent system (Eq. (3.7)), and to
the system with connectivity A + δA as the perturbed multi-agent system.
In the following we always make two assumptions: i) the perturbations
are small enough to preserve the property that the graph is connected; ii)
δaij = δaji, which represents symmetric perturbations, as for instance it
occurs for reciprocal interactions among agents. Under these conditions,

32

(a) (b)

Figure 3.2: Multiconsensus in the controlled multi-agent system (3.15). (a)
Network of interactions among agents with symmetric nodes indicated with
the same color and the controlled node indicated with an arrow (̄i = 11).
(b) Time evolution of the state variables of the multi-agent system (3.15),
showing convergence to the target multiconsensus solution v̄ = c̄v1.

we can assume that the matrix A + δA is symmetric with all nonnegative
coefficients. Notice, however, that in general even the introduction of small
perturbations changes the group of symmetries of the interaction network,
with one or more of the existing symmetries that can eventually be removed
from the group. With these positions, the perturbed multi-agent system is
described by:

ẋp =
(1

ρ(A + δA)
(A + δA) − IN

)
xp (3.19)

In addition, let x̄ be the multiconsensus solution reached by the nominal
system (δA = 0) and x̄p the steady state solution of the perturbed multi-
agent system. Then, assuming that the two systems start from the same
initial condition x ̸= 0, these two states will differ by a quantity δx = x̄− x̄p

with norm:
∥δx∥ = ∥v1vT

1 x(0) − ṽ1ṽT
1 x(0)∥ (3.20)

where ṽ1 is the leading eigenvector of A + δA. From Eq. (3.20), using
consistent norms, one gets that:

∥δx∥ ≤ ∥v1vT
1 − ṽ1ṽT

1 ∥∥x(0)∥ (3.21)

Using matrix perturbation theory [97], we can write a first-order approx-

33

imation of ṽ1:

ṽ1 ≈ v1 +
N∑

j=2

vT
j δAv1

λ1 − λj
vj , (3.22)

which can be plugged into (3.21) to obtain an approximate expression for
∥δx∥:

∥δx∥ ≈
∣∣∣∣∣
∣∣∣∣∣ N∑
j=2

N∑
k=2

vT
j δAv1vT

k δAv1
(λ1−λj)(λ1−λk)vjvT

k x(0)

+
N∑

j=2

vT
j δAv1
λ1−λj

v1vT
j x(0) +

N∑
j=2

vT
j δAv1
λ1−λj

vjvT
1 x(0)

∣∣∣∣∣
∣∣∣∣∣≜ ∥δx∥approx

(3.23)
Despite our approach being general, for simplicity here we only focus on

numerical examples where the perturbations that are applied keep the inter-
action networks undirected and unweighted, considering the removal/addi-
tion of an increasing number of links. As a first example, we study multicon-
sensus in the presence of perturbations of the connectivity for systems with
a number of agents N ranging from 50 to 200. For each N we consider 150
graphs. These networks have been generated with the following algorithm.
We start from a random Erdös-Renyi model with N = 200 nodes, average
degree equal to 11, and a symmetry group inducing a partition of the nodes
into Q = 50 cells. We, then, progressively decrease the number of nodes by
eliminating randomly selected vertices. The nodes are also removed from
the original partition, thus obtaining a new partition which can eventually
have a smaller number of cells. The final step consists of adding/removing
links to the structure to obtain a graph with the symmetry group associ-
ated to the novel partition. This step is accomplished by readapting the
connectivity preserving method of Ref. [31] where a minimum number of
links is changed. For each of the graphs analysed, we have then considered
a number M = 200 of perturbed networks obtained from the original graph
by either removing a randomly selected link or adding a link between ran-
domly chosen nodes. In the first case (removal of a link), only links that can
be removed without disconnecting the graph are considered. In both cases,
since the network is undirected, ∥δA∥ =

√
2.

For each perturbed multi-agent system, we have calculated the error
between the multiconsensus solution reached by the nominal multi-agent

34

system and that reached by the perturbed multi-agent system either us-
ing the exact expression (3.20), i.e., ∥δx∥, or the approximation provided
by Eq. (3.23), i.e., ∥δx∥approx. The results are shown in Fig. 3.3(a) which
prompts some interesting considerations. First, we find that the state reached
by the perturbed multi-agent system differs by a small quantity ∥δx∥ from
that of the nominal multi-agent system. In these conditions, therefore,
one can conclude that the perturbed multi-agent system reaches a quasi-
multiconsensus state, where the nodes of the same cell do not display exactly
the same steady-state value but converge to very close values. Second, the
approximation of Eq. (3.23) provides a good estimation of the exact error.
Additionally, we analyzed the relationship between the exact and approxi-
mated values of δx and found a linear trend with a slope of 0.8999 and an
intercept of 0.0027, as illustrated in Fig. 3.3(b).

We now study the multiconsensus state obtained for increasing values
of the perturbation ∥δA∥, considering a multi-agent system described by
Eq. (3.7) with N = 200 nodes and average degree equal to 11, and compar-
ing the multiconsensus solution reached by the nominal system with that
obtained by the perturbed system. The results are presented in Fig. 3.4
which shows how the multiconsensus error ∥δx∥ varies with ∥δA∥. As the
number of links added to or removed from the original network is increased,
and so is ∥δA∥, the difference between the nominal and perturbed multi-
consensus solution increases as well. At the same time, the accuracy of the
error estimate, via Eq. (3.23), decreases.

35

Figure 3.3: (a) Exact and approximated multiconsensus error ∥δx∥, calcu-
lated using Eq. (3.20) and Eq. (3.23), respectively, for a set of graphs with
increasing size N . For each graph, M = 200 different perturbed networks
with ∥δA∥ =

√
2 have been considered and the results have been averaged

over these perturbation instances. (b) Relationship between ∥δx∥exact and
∥δx∥approx, revealing a linear trend with a slope of 0.8999 and an intercept
of 0.0027.

Figure 3.4: (a) Exact and approximated multiconsensus error ∥δx∥, calcu-
lated using Eq. (3.20) and Eq. (3.23), respectively, for a perturbed multi-
agent systems with N = 200. The system is perturbed through a perturba-
tion matrix having an increasing norm.

The considerations discussed above also apply to the multi-agent system

36

(3.4). In this case, the perturbed multi-agent system is described by this
equation:

ẋp =
(1

ρ(A + δA)
(A + δA) − IN

)
xp + u (3.24)

Let us indicate with v̄p the target solution for the perturbed multi-
agent system, then the input u can be selected according to Theorem 3.3.1.
Considering again the difference between the final states of the nominal and
perturbed multi-agent system, in this case we obtain:

∥δx∥ = ∥⟨v̄, v1⟩v1 − ⟨v̄p, ṽ1⟩ṽ1∥ (3.25)

which is no longer a function of the system initial conditions.
Next, we show an example of the effects of small perturbations affecting

the interaction network on the multi-consensus dynamics.

Example 3.4.1 Consider a multi-agent system (3.4) with N = 50 units,
connected by a network with an average degree ⟨k⟩ = 4 (Fig. 3.5(a)). In
the absence of perturbations, the multi-agent system converges to the multi-
consensus state of Fig. 3.5(b), where we observe seven different clusters that
reflect the symmetries of the network.

We then consider a perturbed network as in Fig. 3.5(c), obtained by
adding to the original configuration the two links represented in green. The
perturbed multi-agent system reaches a steady-state solution close to that of
the nominal system (Fig. 3.5(d)), with ∥δx∥ = 0.087. This also provides an
indication that the addition of the two links does not completely destroy the
symmetry of the nominal network, as the difference between the steady-state
solutions of the nominal and perturbed system is small.

37

(a) (b)

(c) (d)

Figure 3.5: Multiconsensus and quasi-multiconsensus in a multi-agent sys-
tem. Unperturbed graph (a) and perturbed graph (b). Dynamic behaviour
of the unperturbed (c) and perturbed multi-agent system (d).

3.4.1 Revisiting the notion of quasi-symmetries

Quasi-symmetries or nearly symmetries naturally arise when networks are
reconstructed from data that is noisy or inaccurate [64]. In such circum-
stances, it may happen that, when one swaps two or more links with similar
weights (and the nodes connected to them), the resulting structure is almost
the same as the original network. Similarly, it may happen that two or more
nodes are not symmetric because of a single link (either missing or in ex-
cess), so that adding or removing an edge generates a network with an exact
symmetry. Despite the importance of the notion of quasi-symmetries, it is
not straightforward to provide a formal definition. As proposed in Ref. [64],

38

recalling that a network admits an exact symmetry if its adjacency matrix
A commutes with the permutation matrix R associated to the symmetry,
i.e., when AR = RA, a possibility is to say that a quasi-symmetry exists if
∥AR − RA∥ < ϵ, where ϵ is a small quantity. Similarly, the Authors of Ref.
[65] define a correction cost associated with the perturbation that needs to
be added to A to obtain an exact symmetry. However, in these definitions,
the selection of the threshold value ϵ remains somewhat arbitrary. Tak-
ing into account the results of the previous section, it is possible to revisit
the notion of quasi-symmetries and solve the ambiguity in the selection of
this threshold. In fact, the relationship (3.21) links the perturbation on the
agent interaction network, i.e., δA, and the difference between the steady-
states reached by the multi-agent system with unperturbed connectivity and
that with perturbed connectivity. This relationship prompts a definition of
quasi-symmetries that originates from their effect on the dynamics of the
multi-agent system (3.3). In other words, in this way, one may recast the
problem of defining a threshold for quasi-symmetries in the more practical
terms of defining a bound for the deviation of the perturbed multiconsensus
solution from the nominal case. In particular, from (3.21) it follows that

∥δx∥
∥x(0)∥

≤ ∥v1vT
1 − ṽ1ṽT

1 ∥ (3.26)

The previous inequality relates the difference in the steady-states of nom-
inal and perturbed multi-agent system with a term, ∥v1vT

1 − ṽ1ṽT
1 ∥, that

only depends on the topology of interaction. This allows us to define quasi-
symmetries from their effect on the dynamical behavior of the multi-agent
system (3.3). Suppose, in fact, that one can accept deviations from the nom-
inal behavior bounded by ∥δx∥

∥x(0)∥ < ϵx, then one can say that each symmetry
of A is a quasi-symmetry for A + δA if δA is such that ∥v1vT

1 − ṽ1ṽT
1 ∥ < ϵx.

3.5 Application to the rendezvous problem

As an application of the multi-consensus protocol introduced here, we con-
sider a rendezvous problem in a bi-dimensional space where multiple ren-
dezvous points have to be negotiated by the agents. Agents have single
integrator dynamics and may rely on information on the locations of their
neighbors to find an agreement on the point where to meet with the other

39

units of the same cluster. The problem may be solved by applying, to
each of the two variables describing the agent position, the multiconsensus
protocol (3.7) if the rendezvous point is not given, or the multiconsensus
protocol (3.4) if agents need to converge to a specific rendezvous point (of
the multiconsensus manifold). Accordingly, we can indicate with xi and yi

the coordinates of the position of agent i in the plane and with x and y the
corresponding stack vectors, then the dynamics of the multi-agent system is
written as:

ẋ =
(

1
ρ(A)A − IN

)
x + ux

ẏ =
(

1
ρ(A)A − IN

)
y + uy

(3.27)

As the two variables x and y are independent, Lemma 3.2.3 and Theo-
rem 3.3.1 may be applied to each of Eqs. (3.27), guaranteeing convergence
to a multiconsensus solution.

Example 3.5.1 Let us consider a system of N = 15 mobile agents connected
via the network of Fig. 3.6(a), with ux = uy = 0. The symmetries of
this network induce a partition π = {C1, C2, C3} with three cells: C1 =
{1, 4, 5, 6, 11, 13, 14}, C2 = {2, 3, 7, 10, 15}, and C3 = {8, 9, 12}.

Since the network is connected, for Lemma 3.2.3 the final positions,
towards which the agents will converge, here indicated as x̄ and ȳ, are
determined by the agents initial conditions and the leading eigenvector of
the adjacency matrix, that is: x̄ = c1v1 and ȳ = c2v1, where c1 = vT

1 x(0)
and c2 = vT

1 y(0).
The trajectories described by the agents are illustrated in Fig. 3.6(b),

where, in agreement with Lemma 3.2.3, agents belonging to the same cluster,
converge to the same rendezvous point.

Suppose now that a pair of agents, for instance agents 8 and 14, becomes
disconnected as shown in Fig. 3.6(c). As result of the missing link, the sym-
metry group of the network of interaction varies. However, from Eq. (3.20)
we derive that:

∥δx∥ = ∥v1vT
1 x(0) − ṽ1ṽT

1 x(0)∥ = 0.095

∥δy∥ = ∥v1vT
1 y(0) − ṽ1ṽT

1 y(0)∥ = 0.087

40

indicating that the rendezvous points of the units of the perturbed multi-agent
system are close to those of the nominal multi-agent system:

x̄ = [0.28, 0.55, 0.55, 0.28, 0.28, 0.28, 0.55, 0.76,

0.76, 0.55, 0.28, 0.76, 0.28, 0.28, 0.55]T ;

ȳ = [0.25, 0.49, 0.49, 0.25, 0.25, 0.25, 0.49, 0.69,

0.69, 0.49, 0.25, 0.69, 0.25, 0.25, 0.49]T

This is confirmed by the analysis of the trajectories of the perturbed multi-
agent system shown in Fig. 3.6(d), where agents in the same cluster reach
points that are very close to each other and far from those reached by the
agents belonging to other clusters.

Note that we applied our protocol under the assumption that the units
interact according to a fixed interaction network. The latter does not depend
on the agents’ positions, meaning that it does not change as the agents move.
As a result, our protocol can be applied in scenarios where the units are
capable of communicating over long distances, ensuring that the interaction
topology remains static regardless of the agents’ relative positions.

In this chapter, by leveraging symmetry group theory, we have proved
the convergence of the state variables of the multi-agent system to a steady-
state solution parallel to the leading eigenvector of the graph adjacency
matrix. As the entries of the leading eigenvector are the same for symmetri-
cal nodes, the system splits into clusters formed of nodes that are symmetric
from one to the other and converge to the same consensus value. Although
this technique enables the system to reach multiconsensus, it does not al-
low for reaching a state that is parallel to an arbitrary vector belonging to
the multiconsensus manifold. To address this issue, we have developed the
communication protocol described in the next chapter.

41

(a) (b)

(c) (d)

Figure 3.6: Multiple rendezvous problem addressed by the multiconsensus
protocol (3.5.1). (a) Interaction network of the nominal multi-agent system.
(b) Trajectories followed by the agents of the nominal multi-agent system.
(c) Interaction network of the perturbed multi-agent system. (d) Trajec-
tories followed by the agents of the perturbed multi-agent system. Circles
and squares represent the initial and final points of the agent trajectory,
respectively. Nodes belonging to the same cluster, and therefore symmetric,
are shown with the same color.

42

Chapter 4

Control of multiconsensus in
multi-agent systems based on
eigenvector centrality

Here we focus on directed and weighted interaction graphs, where the units
exhibit second-order dynamics, and we introduce a control strategy that
allows the system to achieve an arbitrary multiconsensus solution. This
strategy relies on a communication protocol for multiconsensus that induces
the system to reach a state reflecting the eigenvector centrality of the nodes.
In particular, our approach consists of two steps. First, the weights of the
interaction network are assigned so that the network adjacency matrix has
a given leading eigenvector, which corresponds to associating given values
of eigenvector centrality to the nodes. This allows the formation of clusters
of nodes that have the same value of eigenvector centrality. Second, the
gains of the communication protocols are selected to guarantee the stabil-
ity of the error dynamics. As in the previous chapter, we study both the
cases of leaderless and leader-follower multiconsensus, providing analytical
conditions for multiconsensus, and discussing a few numerical examples to
illustrate our theoretical results.

43

4.1 Problem statement

Here, unlike in Chapter 3, where a multi-agent system with simple integrator
dynamics is considered, we focus on a more general, yet still linear, configu-
ration with second-order dynamics. This enables the study of more complex
behaviors while preserving the linear nature of the system. The dynamics
of each agent are described in controlled canonical form as follows:

ẋi = vi

v̇i = axi + bvi + k1

 1
ρ(A)

N∑
j=1

aijwijxj − xi

 + k2

 1
ρ(A)

N∑
j=1

aijwijvj − vi

 + ui

(4.1)
where the term ui is an additive input. In the context of vehicle dynamics,
the variables of the model xi and vi may represent, respectively, the position
and the velocity of agent i, and the parameters a and b are the stiffness and
damping factor. Since for a < 0 and b < 0 the isolated system is stable and
the problem of multiconsensus is trivial, in the following we always consider
that a ≥ 0 or b ≥ 0.

We assume that the agents interact according to a weighted graph with
weighted adjacency matrix A′ = A ◦ W, where the matrix A encodes the
topology (i.e., aij = 1 if the information of agent j is used by agent i to
update its status, and aij = 0 otherwise) and wij ≥ 0 represents the weight
of the link (i, j). We suppose that the topology is fixed but the edge weights
wij can be tuned. The parameters k1 and k2 are also assumed to be tunable.

We assume that the agents know with which agents they communicate
and the weights associated with those connections before the control pro-
tocol is implemented. At each step, the agents only need to recover the
information on the status of the other units they are connected to, thus re-
alizing a distributed control law. This approach is suitable for applications
where the interaction graph is fixed and designed before running the control
protocol.

System (4.1) can be equivalently written in matrix-vector form as follows:

ẏi = Asyi + BK

 N∑
j=1

aijwijyj − yi

 + Bui (4.2)

44

where yi =

xi

vi

, As =

0 1

a b

, B =

0

1

 and K =
[
k1 k2

]
.

Finally, system (4.2) is rewritten in compact form:

ẏ = (IN ⊗ As)y + (Aρ ⊗ BK)y + (IN ⊗ B)u (4.3)

where y = [yT
1 , . . . , yT

N]T , u = [u1, . . . , uN]T , and Aρ = 1
ρ(A)(A ◦ W) − IN .

Similarly, we define x = [x1, . . . , xN]T and v = [v1, . . . , vN]T .
The classical notion of multiconsensus applied to the multi-agent system

(4.1) requires that, given a partition π = {C1, . . . , CQ}, ∀i, j ∈ Ch, h =
1, . . . , Q one has that

lim
t→+∞

(xi(t) − xj(t)) = 0

lim
t→+∞

(vi(t) − vj(t)) = 0.

(4.4)

We extend this notion by defining the multiconsensus associated with π

and p̂. Indeed, as discussed in the previous chapter, a partition π can be
associated with the multiconsensus manifold MC(π), defined by Def. 3.2.1.
Here we want that the system reaches a trajectory reflecting a specific vector
p̂ ∈ MC(π), therefore we introduce the concept of (π, p̂)-multiconsensus.

Definition 4.1.1 Given a partition π = {C1, . . . , CQ} and a vector p̂ ∈
MC(π), we say that system (4.1) reaches the multiconsensus associated to
π and p̂, shortly indicated as (π, p̂)-multiconsensus, if ∀i, j = 1, . . . , N we
have that

lim
t→+∞

(xi(t)
p̂i

− xj(t)
p̂j

) = 0

lim
t→+∞

(vi(t)
p̂i

− vj(t)
p̂j

) = 0.

(4.5)

This definition generalizes the notion of scaled consensus introduced in
[86], which proposed a general protocol for consensus, where the aim is
to reach an agreement for scaled variables. The case of multiconsensus is
recovered by selecting equal scaling factors.

By setting p̂i = p̂j ∀i, j ∈ Ch, h = 1, . . . , Q, nodes belonging to the
same cell will asymptotically follow the same trajectory in time as in the
classical multiconsensus. However, in the case of (π, p̂)-multiconsensus it

45

is also required that the system trajectory becomes asymptotically parallel
to the vector p̂. In this way, one can specify not only which agents cluster
together, but also the scaling ratios [86] between trajectories of agents in
different clusters. Note also that both Eqs. (4.4) and (4.5) do not necessarily
require that the system state asymptotically converges to an equilibrium
point, but only that nodes of the same cell asymptotically converge on the
same trajectory.

The first problem that we investigate is the leaderless multiconsensus
problem defined as follows:

Problem 4.1.2 (Leaderless multiconsensus problem) Given a parti-
tion π and a vector p̂ ∈ MC(π), find the edge weights wij and the gains k1

and k2 such that the system (4.1) reaches the (π, p̂)-multiconsensus.

We will show that a proper selection of the weights guarantees the ex-
istence of a solution with the state parallel to p̂, while it is the choice of
k1 and k2 that guarantees that the system state effectively converges to a
solution of this type. In the case of the (π, p̂)-multiconsensus not only two
agents of the same cell will converge to the same trajectory, but, in addition,
if two agents i and j belong to different cells, that is, pi ̸= pj , then they will
converge to different trajectories.

The second problem that we study is the leader multiconsensus problem
for which the goal is to control the multi-agent system to have the agents
within the same cell follow a specific trajectory generated by a leader/refer-
ence extra node.

Problem 4.1.3 Given a partition π, a vector p̂ ∈ MC(π), an arbitrary
scalar constant c̄ ∈ R, and a leader with dynamics expressed by:

ẋref = vref

v̇ref = axref + bvref

(4.6)

find the edge weights wij and the gains k1 and k2 such that

lim
t→+∞

x(t) = c̄xref (t)p̂

lim
t→+∞

v(t) = c̄vref (t)p̂
(4.7)

46

We anticipate that the first problem can be solved using ui = 0, whereas
a non-zero input is required to solve the second problem.

4.2 Leaderless multiconsensus

In this section, we study the problem of leaderless multiconsensus, by which
we mean the case in which ui is set to zero in Eq. (4.1). We will first introduce
a lemma that shows how to set the link weights of a graph in order to achieve
an arbitrary leading eigenvector of the adjacency matrix. When applied to
system (4.1) with zero input, we demonstrate the existence of an invariant
solution that is parallel to this arbitrary eigenvector. For brevity, we refer
to this solution as the multiconsensus solution. We will move then to prove
how to select the gains k1 and k2 such that the system state asymptotically
converges to the multiconsensus solution.

Let us consider a graph G that is unweighted and strongly connected.
Therefore, its adjacency matrix A is non-negative and irreducible, and, for
the Perron-Frobenius theorem (Theorem 2.3.1), it has a leading eigenvector
v1 > 0. Next we prove that it is possible to assign weights to the links of
the graph such that the adjacency matrix of the resulting weighted graph
has an arbitrary leading eigenvector v′

1 > 0.

Lemma 4.2.1 Let A be the adjacency matrix of an unweighted, strongly
connected graph G, ρ(A) its leading eigenvalue, and v′

1 a vector with positive
elements. Then, it is possible to find a matrix W such that the adjacency
matrix A′ = A ◦ W of a weighted graph with the same topology as G has
leading eigenvector equal to v′

1 and leading eivenvalue equal to ρ(A).

Proof. v′
1 is the leading vector of A′ = A◦W, with associated eigenvalue

given by ρ(A), if
(A ◦ W)v′

1 = ρ(A)v′
1 (4.8)

Eq. (4.8) can be recast by vectorization [56] as follows:

(v′
1

T ⊗ IN)(ααα ◦ ωωω) = ρ(A)v′
1 (4.9)

where ααα = vec(A) and ωωω = vec(W). Now, let M = (v′
1

T ⊗ IN). Since ααα

is a binary vector, then M(ααα ◦ ωωω) = M̂ω̂ωω, where M̂ is obtained from M by

47

removing each column whose index i is such that αi = 0, and, similarly, ω̂ωω is
obtained from ωωω by eliminating the coefficients with row index i such that
αi = 0.

Hence, in order to find W such that v′
1 is the leading eigenvector, associ-

ated with ρ(A), the following system of linear equations where the unknowns
are the elements of ω̂ωω must be solved:

M̂ω̂ωω = ρ(A)v′
1 (4.10)

Notice that M̂ ∈ RN×L, where L indicates the number of links. This matrix
has a peculiar structure. In fact, since M = v′

1
T ⊗ IN and since, by the

Perron-Frobenius theorem, v′
1 is a vector of positive elements, then each

column of M has a single non-zero element. Consequently, also M̂ has at
most a single non-zero element in each column and is a non-negative ma-
trix. Then, it follows that, when, by multiplying in Eq. (4.10) each row of
M̂ by the vector ω̂ωω, which contains the unknowns of our problem, we get a
set of independent equations where each of the L unknowns appears only
in one equation. In addition, as L > N the system of equations (4.10) is
underdetermined. Since ρ(A)v′

1 > 0, for Farka’s lemma (Lemma 2.3.7), a
non-negative solution always exists. In particular, the solution with mini-
mum L2 norm is given by:

ω̂ωω = M̂+ρ(A)v′
1 (4.11)

where M̂+ is the Moore-Penrose inverse of the matrix M̂. In addition, since
ω̂ωω > 0, the matrix A′ = A ◦ W is also non-negative and irreducible. □

From Lemma 4.2.1 it follows that y = v′
1 ⊗

c1

c2

, where c1 and c2 are

functions that depend on the initial conditions, is an invariant solution for

Eq. (4.3) with u = 0. In fact, for y = v′
1 ⊗

c1

c2

 the coupling term in Eq.

(4.3) vanishes, as

(Aρ ⊗ BK)

v′
1 ⊗

c1

c2


 =

(
1

ρ(A)(A ◦ W) − IN

)
v′

1 ⊗ BK

c1

c2

 = 0

(4.12)

48

Next, in the following theorem, we provide conditions on k1 and k2 such that
the system state asymptotically converges to the multiconsensus solution.

Theorem 4.2.2 Given an arbitrary (π, p̂)-multiconsensus with p̂ ∈ MC(π),
the multi-agent system (4.3), with W as in Lemma 4.2.1 and u = 0, reaches
the (π, p̂)-multiconsensus, if and only if (k1, k2) ∈ S, where

S = {(k1, k2) ∈ R2 | γj < 0, αjγj + β2
j + βjγjδj < 0, ∀j = 2, . . . , N}

and αj = Re(a + λjk1), βj = Im(a + λjk1), γj = Re(b + λjk2), δj =
Im(b + λjk2), with λj (j = 2, . . . , N) being the ordered non-zero eigenvalues
of Aρ.

Proof. Let R = IN − v′
1v′T

1 and let z be the error variables defined by

z = (R ⊗ I2)y (4.13)

The previous relationship yields that z = y − v′
1 ⊗

c1

c2

, where c1 = v′T
1 x

and c2 = v′T
1 v. Thus, z = 0 if and only if the two vectors x(t) and v(t) are

parallel at any time t to v′
1.

Since Rv′
1 = 0 and Aρv′

1 = 0, then the error dynamics can be expressed
as:

ż = (R ⊗ I2)ẏ = (R ⊗ As)y + (RAρ ⊗ BK)y

= (R ⊗ As)z + (RAρ ⊗ BK)z
(4.14)

For simplicity, let us suppose now that Aρ is diagonalizable. We can define
new variables z̄ = (T−1 ⊗ I2)z, where T ∈ CN×N is the matrix containing,
in each column, the left eigenvectors of Aρ. The error dynamics in the new
variables becomes:

˙̄z = (T−1RT ⊗ As)z̄ + (T−1RAρT ⊗ BK)z̄ (4.15)

Since v1
′ = T[1, 0, 0, . . . , 0]T , it follows that:

T−1RT =

 0 −v̂

0N−1 IN−1

 , T−1RAρT =

 0 −v̂Λ

0N−1 Λ


49

with v̂ = [vT
1 v2, . . . , vT

1 vN] and Λ = diag(λ2, . . . , λN). It is worth noticing
that since these two matrices are lower-triangular, then P = T−1RT ⊗ As +
T−1RAρT ⊗ BK is a block lower-triangular matrix where each block Pj

(j = 1, . . . , N) in the diagonal has the following form:

Pj =

 0 1

a + λjk1 b + λjk2

 (4.16)

In particular, the block P1 is associated to the error dynamics along the
multiconsensus manifold, while the other ones (j = 2, . . . , N) are related to
the error dynamics along the motions which are transverse to this manifold.
Since the target is the multiconsensus, k1 and k2 must be selected so that
all the blocks Pj , except the first one, are Hurwitz stable.

The characteristic polynomial of Pj is

pj(s) = s2 − (b + λjk2)s − a − λjk1, (4.17)

that can be rewritten as

pj(s) = s2 − (γj + iδj)s − αj − iβj , (4.18)

where αj = Re(a + λjk1), βj = Im(a + λjk1), γj = Re(b + λjk2) and
δj = Im(b + λjk2). As stated in [73], the polynomial (4.18) has negative
roots if and only if the following conditions hold:f1,j(k2) = γj < 0

f2,j(k1, k2) = αjγj + β2
j + βjγjδj < 0

(4.19)

Since f1,j and f2,j depend on k1 and k2, for each j = 1, . . . , N , we can define
the following sets:

Sj = {(k1, k2) ∈ R2 | f1,j < 0, f2,j < 0} (4.20)

Therefore, the system described by equation (4.3) reaches multiconsensus if
and only if (k1, k2) ∈ S, where S is the set defined as:

S =
N⋂

j=2
Sj = {(k1, k2) ∈ R2 | f1,j < 0, f2,j < 0, ∀j = 2, . . . , N} (4.21)

50

In the case when Aρ is not diagonalizable, the same result follows by consid-
ering the Jordan decomposition of Aρ rather than its diagonalization. This
yields a matrix P that is still block triangular, but eventually contains some
blocks of dimension larger than 2. The analysis of stability of the error dy-
namics can then be carried out following arguments similar to those in [67].
□

Example 4.2.3 We consider a multi-agent system as in Eq. (4.1) in the
absence of control, i.e., ui = 0, with a = −0.01 and b = 0. The graph
associated to the adjacency matrix A is shown in Fig. 4.1(a). Consider also
the partition

π = {{1, 2}, {3, 4}, {5, 6}, {7, 8}} (4.22)

and the associated vector:

p̂ = [0.13, 0.13, 0.39, 0.39, 0.52, 0.52, 0.26, 0.26]T (4.23)

Notice that, when all weights are one, i.e., when wij = 1 ∀i, j, the multi-agent
system (4.1) does not reach the multiconsensus associated to π, but instead
converges to a different multiconsensus solution, defined by π′ = {{1, 8},

{2, 7}, {3, 6}, {4, 5}} and induced by the existing symmetries of the interac-
tion graph. In order to ensure the existence of the multiconsensus solution
π, one can act on the weights wij according to Lemma 4.2.1. In more detail,
solving (4.11) yields the weights reported in Fig. 4.1(b).

Notice that, at variance from methods for multiconsensus based on ex-
ternal equitable partitions [63, 29], here only a single eigenvalue is zero.

The next step is to select the values of k1 and k2 such that the sys-
tem state asymptotically converges to the multiconsensus solution. To this
purpose, Theorem 4.2.2 is applied, obtaining the set S of all pairs (k1, k2)
such that the error (4.13) asymptotically converges to zero. Fig. 4.2(a)
shows two regions of the (k1, k2) plane, a stability region in blue where the
conditions (4.19) are satisfied and an instability region in red where the con-
ditions (4.19) are not satisfied. Fig. 4.2(b) shows the temporal evolution
of ∥z(t)∥ (main panel) and of the state variables xi(t) (inset) for a point
P1 = (k1, k2) = (0.24, 3) of the stability region. Here the multi-agent sys-
tem reaches multiconsensus and agents belonging to the same cluster have
oscillations of equal amplitude. Furthermore, once multiconsensus has been

51

reached, the trajectories are at any time parallel to the vector p̂. Finally,
Fig. 4.2(c) shows the system temporal evolution corresponding to the point
P2 = (k1, k2) = (2, 1.4), that lies in the instability region, wherein the system
does not reach multiconsensus. Correspondingly, ∥z(t)∥ increases over time
(main panel of Fig. 4.2(c)) and the state variables xi(t) of agents within
each cluster (inset of Fig. 4.2(c)) display oscillations that are different from
each other and have growing amplitudes.

(a) (b)

Figure 4.1: (a) Unweighted interaction graph of the multi-agent system
(4.1) in Example 4.2.3. (b) Corresponding graph with weights obtained
applying Lemma 4.2.1 to guarantee the existence of multiconsensus solution
associated to π as in (4.22) and p̂ in (4.23).

4.3 Leader multiconsensus

In this section, we consider the problem of leader multiconsensus, namely
the problem of finding the values of the edge weights wij and of the gains k1

and k2 such that Eq. (4.7) holds, where xref and vref are the state variables
of a reference node having dynamics described by (4.6).

Theorem 4.3.1 Consider the multi-agent system (4.2) and assume that the
interaction graph G is strongly connected. Let the reference trajectory (target
of the control) be given by:

ŷ = p̂ ⊗ c̄yref (4.24)

52

(a)

(b) (c)

Figure 4.2: Leaderless multiconsensus in the multi-agent system of Exam-
ple 4.2.3: stability region (a), temporal evolution of ∥z(t)∥ (main panels)
and xi(t) (insets) corresponding to points P1 in the stability region (b) and
P2 in the instability region (c).

where p̂ ∈ MC(π) is a vector associated to the partition π and yref =

xref

vref


with xref and yref being the state variables of a reference node evolving based
on Eq. (4.6). In addition, let the matrix W be chosen as in Lemma 4.2.1,
ī be an arbitrary node of the graph and the control input ui be defined as
follows:

ui = ξi[k1(c̄p̂īxref − xi) + k2(c̄p̂īvref − vi)] (4.25)

where ξi = 1 if i = ī, ξi = 0 otherwise. Then, the error ẑ = y − ŷ

53

asymptotically converges to 0 if and only if (k1, k2) ∈ Ŝ, where:

Ŝ = {(k1, k2) ∈ R2 | γ̂j < 0, α̂jγj + β̂2
j + β̂j γ̂j δ̂j < 0, ∀j = 1, . . . , N}

and α̂j = Re(a + µjk1), β̂j = Im(a + µjk1), γ̂j = Re(b + µjk2), δ̂j =
Im(b + µjk2), with µj (j = 1, . . . , N) being the ordered eigenvalues of Aρ −
diag(ξ1, . . . ξN).

Proof. The control law in Eq. (4.25) can be rewritten as

u = (c̄p̂iēi ⊗ K)yref − (Dc ⊗ K)y (4.26)

where Dc = diag(ξ1, ξ2, . . . , ξN), and ēi = [ξ1, ξ2, . . . , ξN]T that is the ī-th
canonical vector. Consequently, Eq. (4.3) becomes:

ẏ = (IN ⊗ As)y + ((Aρ − Dc) ⊗ BK)y + (c̄p̂īēi ⊗ BK)yref

Substituting y = ẑ + ŷ in the previous expression, we obtain:

˙̂z + ˙̂y = (IN ⊗ As)(ẑ + ŷ) + ((Aρ − Dc) ⊗ BK)(ẑ + ŷ)

+(c̄p̂īēi ⊗ BK)yref

(4.27)

Since (Dc⊗BK)ŷ = (c̄p̂īēi⊗BK)yref , ˙̂y = (IN ⊗As)ŷ, and (Aρ⊗BK)ŷ = 0,
Eq. (4.27) can be written as:

˙̂z = (IN ⊗ As)ẑ + ((Aρ − Dc) ⊗ BK)ẑ (4.28)

This equation represents the error dynamics. We now provide proof of the
stability of this dynamics under the assumption that Aρ − Dc is diagonal-
izable. In this case, we can define new variables z̃ = (T̂−1 ⊗ I2)ẑ, where
T̂ ∈ CN×N is the matrix containing, in each column, the left eigenvectors
of Aρ − Dc, and rewrite the error dynamics as:

˙̃z = (IN ⊗ As)z̃ + (G ⊗ BK)z̃ (4.29)

where G = T̂−1(Aρ −Dc)T̂ is the diagonal matrix containing the eigenvalues
of Aρ − Dc.

We now prove that Aρ − Dc (and so G) is Hurwitz stable. To this aim,
let us introduce an M-matrix, namely Âρ, defined as:

Âρ = ρ(A)IN − (A ◦ W) = −ρ(A)Aρ (4.30)

54

and let us also consider the matrix F:

F = Âρ + ρ(A)ēiēi
T = −ρ(A)(Aρ − ēiēi

T) (4.31)

As A◦W is non-negative and irreducible, the zero eigenvalue of Âρ is associ-
ated with positive right and left eigenvectors, therefore ēi satisfies the NZP
condition (2.1). Therefore, all the hypotheses of Theorem 2.3.6 are verified,
and all the leading minors of F are positive. For Theorem 2.3.4, it follows
that the matrix Aρ − ēiēi

T = Aρ − Dc is Hurwitz stable.
The values of k1 and k2 have to be selected to enforce stability of the

error dynamics. This can be done by finding the conditions guaranteeing
that the matrix J = IN ⊗ As + G ⊗ BK is Hurwitz stable. Since J is block
diagonal, its stability can be studied by considering the eigenvalues of each
block:

Jj =

 0 1

a + µjk1 b + µjk2

 (4.32)

The characteristic polynomial of Jj is

p̂j(s) = s2 − (b + µjk2)s − a − µjk1 (4.33)

that can be rewritten as

p̂j(s) = s2 − (γ̂j + iδ̂j)s − α̂j − iβ̂j (4.34)

where α̂j = a + k1Re(µj), β̂j = a + k1Im(µj), γ̂j = b + k2Re(µj) and
δ̂j = b + k2Im(µj). The polynomial (4.33) has roots with negative real part
if and only if the following conditions hold [73]:f̂1,j(k2) = γ̂j < 0

f̂2,j(k1, k2) = α̂j γ̂j + β̂2
j + β̂j γ̂j δ̂j < 0

(4.35)

Since f̂1,j and f̂2,j depend on k1 and k2, for each j = 1, . . . , N , we can define
the following sets:

Ŝj = {(k1, k2) ∈ R2 | f̂1,j < 0, f̂2,j < 0} (4.36)

We conclude that lim
t→+∞

ẑ(t) = 0 if and only if (k1, k2) ∈ Ŝ, where Ŝ is given
by:

Ŝ =
N⋂

j=1
Ŝj = {(k1, k2) ∈ R2 | f̂1,j < 0, f̂2,j < 0, ∀j = 1, . . . , N} (4.37)

55

□

Example 4.3.2 Let us consider again the multi-agent system of Exam-
ple 4.2.3, with the aim of designing a control action ui to obtain the desired
multiconsensus dynamics given by:

ŷ = p̂ ⊗ c̄

xref

yref

 (4.38)

where c̄ = 1.5, p̂ as in (4.23), and xref and yref are the state variables of a
reference system having dynamics as in (4.6).

To this purpose, we use the control input ui from (4.25). In particular,
we arbitrarily select ī = 1, such that a non-zero control input is applied only
to node 1. The first step is to apply Lemma 4.2.1; as p̂ is the same as in
Example 4.2.3, the same weights of Fig. 4.1(b) are obtained. The next step
is to apply Theorem 4.3.1 to find the region of k1 and k2 where the error
ẑ = y − ŷ asymptotically converges to zero. This yields the region shown
in blue in Fig. 4.3(a). Selecting, for instance, (k1, k2) = (0.2, 3.8) ∈ Ŝ

(point P̂1 in Fig. 4.3(a)) leads to the temporal evolution of Fig. 4.3(b) (main
panel), where ∥ẑ∥ vanishes. Correspondingly, the state variables xi(t) (inset
of Fig. 4.3(b)) follow the reference trajectory with amplitude ratios reflecting
the division in clusters of the nodes, achieving the desired dynamics specified
by Eq. (4.38). On the contrary, if (k1, k2) ∈ R2 \ Ŝ (point P̂2 in Fig. 4.3(a)),
the norm of the multiconsensus error increases over time (main panel of
Fig. 4.3(c)), and the state variables xi(t) (inset of Fig. 4.3(b)) neither follow
the reference nor achieve the desired clustering.

56

(a)

(b) (c)

Figure 4.3: Leader multiconsensus for the multiagent system of Exam-
ple 4.3.2: region of convergence to the desired dynamics (a), temporal evo-
lution of ∥z(t)∥ (main panels) and xi(t) (insets) corresponding to point P̂1

in the region of convergence (b), and to point P̂2, that is outside the region
of convergence (c).

Summing up, in this chapter, we have studied how to control multi-
consensus in a multi-agent system by exploiting a communication protocol
that allows the system states to converge to trajectories parallel to the lead-
ing eigenvector of the adjacency matrix representing the interaction graph.
Multiconsensus is induced by selecting the weights associated to the links,
but without modifying the structure of interactions. This has the advantage
that the set of neighbors of each agent is not altered, which is relevant e.g. in
situations in which the connectivity is constrained by the adopted commu-
nication system. Although we have focused the analysis on agents that have

57

second-order linear dynamics, our results can be generalized to higher-order
dynamics. In fact, this step requires the analysis of the eigenvalues of blocks
Pj of larger size with respect to Eq. (4.16) which can be accomplished using
the generalization of the Routh-Hurwitz criterion to polynomials with com-
plex coefficients [73]. On the one hand, our technique requires a stronger as-
sumption on the connectivity of the underlying graph compared to previous
approaches where multiconsensus is achieved in weakly connected directed
balanced graphs [114, 109, 79, 55]. On the other hand, it presents the strong
advantage that control can be achieved by pinning a single arbitrary node.

We conclude the theoretical part by discussing the more general prob-
lem of cluster synchronization. In particular, in the next chapter, we will
introduce control techniques aiming to tame cluster synchronization in sys-
tems where units interact through networks characterized by the presence
of spectral blocks.

58

Chapter 5

Taming Cluster
Synchronization

In this chapter, we discuss how spectral blocks can be leveraged to design
controllers able to manipulate cluster synchronization. In particular, we
demonstrate how to induce the formation of spectral blocks in networks
where such structures do not exist, and how to control the synchronizabil-
ity of individual clusters, setting also the sequence in which each of them
enters or exits the synchronization stability region as the coupling strength
increases.

5.1 Spectral block and MSF for cluster synchro-
nization

We start by introducing the concept of spectral blocks and describing how
the approach based on the MSF (see Sec. 2.4) can be expanded to study
cluster synchronization in the presence of spectral blocks.

Definition 5.1.1 (Spectral block) A spectral block S localized at nodes
{i1, i2, . . . , iN ′} is a subset of (N ′ − 1) eigenvectors of the Laplacian matrix
L having the following properties [7]: i) all v ∈ S are such that νi = 0
∀i /∈ i1, i2, . . . , i′

N ; ii) all v /∈ S are such that νi = νj ∀i, j ∈ i1, i2, . . . , i′
N .

As shown in [7], a group of nodes C is associated with a spectral block
S if and only if they are equally connected (i.e., with the same weight) to

59

each other node that is not in C, i.e. aik = ajk, ∀i, j ∈ C and ∀k /∈ C.
When a graph is equipped with the spectral blocks S1, S2, . . . , SM , a

partition π = {C1, C2, . . . , CM , CM+1, . . . CNπ } can be considered, where
C1, C2, . . . , CM are the clusters associated with S1, S2, . . . , SM , and CM+1, . . . ,

CNπ are singletons, each containing one of the remaining nodes. This par-
tition can be associated with a quotient graph, denoted by G/π, that has
vertices 1, 2, . . . , Nπ and edges with weights slm = aij connecting nodes l

and m ∀i ∈ Cl, ∀j ∈ Cm. The quotient graph can be represented by its
adjacency matrix S = {slm} with l, m = 1, . . . , Nπ.

The approach based on the MSF can be expanded to encompass the
study of cluster synchronization [7]. Here we consider the case in which the
clusters are induced by the presence of spectral blocks. Specifically, given
a cluster C formed by M nodes, taking into account the defining structural
property of a spectral block, for each node l ∈ C, Eq. (2.2) from Chapter 2
can be rewritten as follows:

ẋl = f(xl) − σ
∑

m∈C

llmh(xm) − σ
∑

m/∈C

llmh(xm) (5.1)

where the coupling term is split into two sums, one including extra-cluster
interactions and one including intra-cluster interactions. Here, for conve-
nience, we formulated the equations using the coefficients lij of the graph
Laplacian matrix. The dynamics of the cluster synchronous solution, defined
by xl = xm = . . . = xC ∀l, m ∈ C, is given by the following equation:

ẋC = f(xC) − σ
∑

m/∈C

llmh(xm) (5.2)

By considering the perturbation around the cluster synchronous state
δxl,C = xl − xC and by performing linearization of Eq. (5.1), we obtain:

˙δxC = [I ⊗ Df |xC − σL ⊗ Dh|xC] δxC (5.3)

with δxC = [δxT
1,C , δxT

2,C , . . . , δxT
N,C]T . Eq. (5.3) is very similar to Eq. (2.4),

with the difference that, in this case, the Jacobians of f and g are evaluated
around the cluster synchronous solution xC , whose dynamics is defined by
Eq. (5.2). In this scenario, the trajectories of the cluster synchronous state
are affected by the last term of Eq. (5.2), therefore they also depend on the
dynamics of the rest of the network. Here, we assume that this term has a

60

negligible effect on the trajectories of the cluster synchronous state, or more
precisely on the maximum transverse Lyapunov exponent that results from
the use of such trajectories in Eq. (5.3). Under this assumption, we can
replace the trajectories followed by the clustered synchronous nodes with
the ones of global synchronization in Eq. (5.3). This allows assessing the
stability of each cluster’s synchronous state by studying the MSF associated
with global synchronization.

5.2 Problem statement

Consider a network G of N identical dynamical systems described by

ẋi = f(xi) + σ
N∑

j=1
aij (h(xj) − h(xi)) + ui (5.4)

Here we focus on the synchronous behavior of the network and, in par-
ticular, on the onset of clusters of synchronous nodes. Specifically, we
consider a scenario where, given a set of M network clusters (denoted by
C1, C2, . . . , CM), one or more of them display synchronous dynamics i.e.,
lim

t→+∞
∥xi(t) − xj(t)∥ = 0 ∀i, j ∈ Cl for some l ∈ {1, . . . , M}. Ref. [7] has

proved rigorously that such clustered states correspond to the presence of
spectral blocks in the structure of G.

Since the nodes associated with spectral blocks receive the same input
from the rest of the network, they form a cluster that can synchronize inde-
pendently on the dynamics of all the other nodes. As discussed in Sec. 5.1,
the stability of the synchronous clustered states associated with spectral
blocks can be assessed with good approximation by using the MSF. In par-
ticular, here we focus on the challenging case of a type III MSF. In this
case, denoting by L′ the Laplacian matrix of the subgraph G′ associated to
the cluster C and calling s the strength through which each node in C is
connected with the rest of the graph, the condition for synchronization is
given by σλi(L′) ∈ [ν∗

1 , ν∗
2] ∀i = 2, . . . , N ′, and λN′ (L′)+s

λ2(L′)+s <
ν∗

2
ν∗

1
. Here ν∗

1 and
ν∗

2 are the two critical values at which the MSF λmax(ν) crosses the x-axis,
namely λmax(ν) < 0 for ν ∈ [ν∗

1 , ν∗
2].

The control input ui in Eq. (5.4) is written as

ui =
N∑

j=1
w′

ij (h(xj) − h(xi)) , (5.5)

61

where w′
ij are the weights of the control links added to the pristine net-

work. The spectral blocks’s properties can be leveraged to design controllers
of the type (5.5) able to shape the synchronous dynamics of the clusters.
More specifically, we will concentrate on three different control tasks. The
first deals with the case in which G does not display spectral blocks in the
absence of control (i.e., when ui = 0), and the controllers yield thus the
formation of new spectral blocks. The second task is related to the prob-
lem of rendering synchronizable the clusters of G (possibly created through
the solution of the first task) for a given, desirable, value of the coupling
strength σ. Finally, the third task involves the control of the entire synchro-
nization/desynchronization sequence, namely the order in which the clusters
synchronize/desynchronize in class III, as the coupling strength σ increases
from zero.

For convenience, in what follows, the weights w′
ij are normalized by σ

(i.e., wij = w′
ij/σ) so that Eq. (5.4) is rewritten as

ẋi = f(xi) + σ
N∑

j=1
aij (h(xj) − h(xi)) + σ

N∑
j=1

wij (h(xj) − h(xi)) (5.6)

with wij being selected such that wij + aij ≥ 0 ∀i, j = 1, . . . , N . The
adjacency matrix of the controlled network is, therefore, given by A′ =
A + W ≥ 0.

5.3 Methods for the solution to the control prob-
lems

The control tasks introduced in the previous section are addressed by find-
ing a set of links achieving the specific goal considered, or equivalently, by
finding a suitable matrix W. In general, multiple choices of these links can
be performed. For this reason, we look for a solution satisfying an optimiza-
tion problem. In more detail, three different optimization objectives can be
considered: minimizing ∥W∥2, preserving the connectedness of the network,
and maximizing the sparsity of the solution. We now briefly discuss the
three techniques.

62

Minimizing the L2 norm of the solution

This method is based on solving the following optimization problem:

min ||ŷ||2 subject to:


z + ŷ ≥ 0

C1ŷ = q1

C2ŷ ≥ q2

(5.7)

where ŷ, z, C1 and C2 depend on the specific control problem under con-
sideration. This problem can be solved through linear programming and
allows to find the solution that requires the least changes in the interaction
network, as measured by the L2 norm of the solution matrix.

Preserving network connectedness

This technique preserves the connectivity of the graph and is based on the
following optimization problem:

min ||ŷ||2 subject to:


ŷ ≥ 0

C1ŷ = q1

C2ŷ ≥ q2

(5.8)

where, also in this case, ŷ, z, C1 and C2 are tailored on the specific con-
trol problem under consideration. The optimization problem can be solved
through linear programming, allowing to find an optimal solution for which
the network remains connected.

Maximizing the sparsity of the solution

This approach consists of adding/removing unweighted links to the network
and is described by the following optimization problem:

min ||ŷ||1 subject to:



ŷ + z ≥ 0

ŷ ∈ Z

C1ŷ = q1

C2ŷ ≥ q2

(5.9)

This algorithm allows to find the solution by adding/removing the minimum
number of control links and can be solved using integer linear programming.

63

5.4 Creation of spectral blocks

Consider the multi-agent system in Eq. (5.6) and suppose that the original
network of interaction has no spectral blocks. Given a number of M arbi-
trary groups of nodes, indicated as C1, C2, . . . , CM , we want the nodes in
these clusters to form spectral blocks in the controlled multi-agent system,
that is, we want to control the interaction network so that it has the spectral
blocks S1, . . . , SM .

To address the problem, we notice that the condition associating nodes
i and j to a spectral block Cl (i.e., aik = ajk ∀k /∈ Cl) is similar to the
condition guaranteeing that two nodes are symmetric, i.e., aik = ajk∀k =
1, . . . , N . Therefore, one can follow the approach described in Ref. [31] for
inducing symmetries in a graph, and apply it to a fictitious network obtained
by neglecting all connections within each cluster. The fictitious network is
described by the N × N adjacency matrix B with entries bij = 0 if i, j ∈ Cl

∀l, and bij = aij otherwise. In order to accomplish the control goal, one can
ultimately select the entries of W such that:

Ri(B + W) − (B + W)Ri = 0 ∀i = 1, 2, . . . , M (5.10)

where Ri is the permutation matrix that maps the nodes of the cluster
Ci = {i1, i2, . . . , iNi} into {i2, i3, . . . , iNi , i1}.

By vectorization, Eq. (5.10) can be rewritten as:

Rivec(W) = vec(RiB − BRi) (5.11)

with Ri = IN ⊗ Ri − RT
i ⊗ IN . To simultaneously satisfy the condition

∀i = 1, . . . , M , we consider the following equation:

Rvec(W) = b (5.12)

where b =
[
(vec(R1B − BR1))T . . . (vec(RM B − BRM))T

]T

and R =[
RT

1 . . . RT
M

]T

. As shown in [31], a solution to (5.12) always exists.
Indeed, it is sufficient to ensure that aik +wik = ajk +wjk = 1 ∀i, j ∈ Cl and
∀k /∈ Cl ∀l = 1, . . . , M . However, this solution is inefficient since it requires
adding many control links. To find the optimal solution, one of the three
algorithms discussed in Sec. 5.3 can be used, with ŷ = vec(W), z = vec(A),
C1 = R, q1 = b, C2 = 0, and q2 = 0.

64

Example 5.4.1 As an illustrative example, we consider the unweighted
graph of Fig. 5.1(a), with N = 35 nodes. The graph has no spectral blocks,
and the task is here to induce two spectral blocks (S1 and S2) formed by the
(arbitrarily chosen) nodes marked as blue squares and orange triangles in
Fig. 5.1(a), respectively. We proceed with the optimization problem aiming
at maximizing the sparsity of the solution. This either adds or removes links
from the pristine network, i.e., −aij ≤ wij ≤ 1 − aij, wij ∈ Z. The resulting
controlled network is depicted in Fig. 5.1(b), where the nodes of S1 and S2

are connected with a bulk of other nodes with strengths s1 + w1 = 1 and
s2 + w2 = 3, respectively.

(a) (b)

Figure 5.1: Creating spectral blocks. (a) A graph with N = 35 nodes
and no spectral blocks. The nodes associated with the spectral blocks S1

and S2 to be induced by the control are marked by blue squares and orange
triangles, respectively. (b) The controlled network. The control is performed
by adding/removing links, and leads to the two desired groups of nodes
connected to a bulk with strengths s1 +w1 = 1 and s2 +w2 = 3, respectively.

5.5 Controlling cluster synchronizability

Consider a graph with M spectral blocks (S1, S2, . . . , SM) associated to the
clusters (C1, C2, . . . , CM), and assume that M ′ ≤ M of such clusters, namely
C1, C2, . . . , CM ′ , cannot synchronize at any value of σ, as they do not sat-

65

isfy the eigenvalue ratio condition. In other terms, taking into account the
properties of synchronization of the spectral blocks, the M ′ ≤ M subgraphs
G1, G2, . . . , GM ′ associated with S1, S2, . . . , SM ′ are such that:

λNl
(Ll) + sl

λ2(Ll) + sl
≥ ν∗

2
ν∗

1
∀l = 1, . . . , M ′ (5.13)

where Nl = |Cl|, Ll is the Laplacian matrix of Gl and sl is the strength
through which each node of the cluster Cl associated with Sl is connected
to the rest of the graph, i.e., sl =

∑
j /∈Cl

aij for i ∈ Cl.

The goal is now rendering such clusters synchronizable. For this purpose,
control links are added to the network in a way that i) the spectral block con-
dition on S1, S2, . . . , SM is preserved, and ii) the criterion on the eigenvalue
ratio becomes fulfilled. In practice, the weights of the control links have to
be selected such that W = WT , wik = wjk ∀i, j ∈ Cl, ∀k /∈ Cl, ∀l = 1, . . . , M ,
and:

λNl
(Ll) + sl + wl

λ2(Ll) + sl + wl
<

ν∗
2

ν∗
1

∀l = 1, . . . , M, (5.14)

with wl being defined as wl =
∑

j /∈Cl

wij for i ∈ Cl. By rearranging the terms

of (5.14), we obtain:

wl +sl −
(

ν∗
2

ν∗
1

− 1
)−1 (

λNl
(Ll) − ν∗

2
ν∗

1
λ2(Ll)

)
> 0, ∀l = 1, . . . , M ′ (5.15)

Next we consider the quotient graph G/π and its associated adjacency
matrix S, and we introduce the matrix X ∈ RNπ×Nπ whose elements are
xlm = wij ∀i ∈ Cl, ∀j ∈ Cm, l ̸= m. Let OK,Ω =

[
IK 0K,Ω−K

]
be a K × Ω

matrix such that the product OK,ΩZ returns the first K rows of Z. Then,
Eqs. (5.15) can be written in compact, matrix-vector form as follows:

OM ′,Nπ (X + S) γ −
(

ν∗
2

ν∗
1

− 1
)−1

OM ′,M

(
ΛN − ν∗

2
ν∗

1
Λ2

)
> 0

X − XT = 0

diag(X) = 0

(5.16)

where γ = [N1, N2, . . . , NNπ]T , Λ2 = [λ2(L1), λ2(L2), . . . , λ2(LM)]T and
ΛN = [λN1(L1), λN2(L2), . . . , λNM

(LM)]T .
Let el be the l-th canonical vector. By vectorization, Eq. (5.16) is rewrit-

ten as: Fx > g

Ex = 0
(5.17)

66

where x = vec (X), g = −OM ′,Nπ Sγ +
(

ν∗
2

ν∗
1

− 1
)−1

OM ′,M

(
ΛN − ν∗

2
ν∗

1
Λ2

)
,

F = γT ⊗ OM ′,Nπ , and E =

E1

E2

 is a block matrix with:

E1 = INπ −



INπ ⊗ e1

INπ ⊗ e2

...

INπ ⊗ eNπ


, E2 =



e1

e2

. . .

eNπ


(5.18)

where el is the l-th canonical vector, the matrix E1 is used to set X = XT ,
whereas E2 to set diag(X) = 0.

We solve (5.17) for the unknowns xlm and then, once we have obtained
them, we compute the entries of W as follows:

wij = xlm ∀i ∈ Cl, ∀j ∈ Cm, ∀l, m = 1, . . . , Nπ (5.19)

Notice that a solution of Eq. (5.17) always exists since

lim
wl→∞

λNl
(Ll) + sl + wl

λ2(Ll) + sl + wl
= 1 <

ν∗
2

ν∗
1

∀l = 1, . . . , M (5.20)

To determine the optimal solution, one of the three algorithms described
in Sec. 5.3 can be used, where ŷ = vec(X), z = vec(S), C1 = E, q1 = 0,
C2 = F, q2 = g + ϵ1, where ϵ > 0 is an arbitrary small number. It is worth
noticing that q2 is not equal to g because the inequality in Eq. (5.17) is
strict, unlike those in the optimization problems in Sec. 5.3.

Example 5.5.1 As an example, we consider the graph of Fig. 5.1(b) i.e.,
the result of the first control task, displaying two spectral blocks (S1, S2) with
associated clusters C1, C2. Without lack of generality, we consider the node
dynamics regulated by the Lorenz system [53]. Therefore Eqs. (5.6) read:

ẋi,1 = a (xi,2 − xi,1) + σ
N∑

j=1
(aij + wij) (xj,2 − xi,2) ,

ẋi,2 = xi,1 (b − xi,3) − xi,2,

ẋi,3 = xi,1xi,2 − cxi,3,

(5.21)

67

where the parameters are a = 10, b = 28, and c = 2, so as the uncou-
pled dynamics is chaotic. The system has a type III MSF with ν∗

1 = 4.173
and ν∗

2 = 22.535 [40]. The smallest and the largest non-zero eigenval-
ues of L1 are λ2(L1) = 0.21 and λ10(L1) = 5.93, whereas those of L2 are
λ2(L2) = 1.38 and λ5(L2) = 4.62 (see SM for all details on L1 and L2).
Furthermore, the clusters C1 and C2 are connected to the rest of the graph
with strengths s1 = 1 and s2 = 3, respectively. Since λ10(L1)+s1

λ2(L1)+s1
>

ν∗
2

ν∗
1
, the

nodes of C1 cannot synchronize at any value of σ. For instance, a large
synchronization error δ = 1

N1

(∑
i∈C1 ||xi − x̄1||2

) 1
2 (with N1 = |C1| and

x̄1 = 1
N1

∑
j∈C1 xj) is obtained for σ = 2, as shown in Fig. 5.2(b). Also

in this case, we adopt the optimization problem that maximizes the sparsity
of the solution. Fig. 5.2(a) shows the controlled network, in which C1 is
connected to the bulk with a strength s1 + w1 = 2. Since λ10(L1)+s1+w1

λ2(L1)+s1+w1
<

ν∗
2

ν∗
1
,

C1 now satisfies the eigenvalue ratio condition and can therefore synchro-
nize for 1.89 = ν∗

1
λ2(L1)+s1+w1

< σ <
ν∗

2
λ10(L1)+s1+w1

= 2.84. Consequently, C1

reaches synchronization for σ = 2, as confirmed from the time evolution of
the error δ(t) shown in Fig. 5.2(c).

68

(a) (b)

(c)

Figure 5.2: Taming cluster synchronizability. (a) Controlled network with
two synchronizable spectral blocks S1 and S2. The nodes where the spectral
blocks are localized are now connected with the bulk with strengths s1+w1 =
2 and s2 + w2 = 3, respectively. (b) Time evolution of the synchronization
error δ(t) within the cluster C1, for σ = 2 in the absence of control (i.e.,
using the network of Fig. 5.1(b)). (c) Time evolution of δ(t) within the
cluster C1, for σ = 2 when control is applied (i.e., using the network of
panel (a)).

5.6 Shaping the synchronization/desynchronization
sequence

Consider a graph equipped with M spectral blocks (S1, S2, . . . , SM) forming
the clusters C1, C2, . . . , CM , and let s1, s2, . . . , sM and L1, L2, . . . , LM be,
respectively, the strengths through which the clusters are connected with
the rest of the graph and the Laplacian matrices of the subgraphs associated
with the clusters. One can define the synchronization sequence I as the set
that contains the cluster indices j, ordered in decreasing order with respect
to the sum of the largest non-zero eigenvalue of Lj and the corresponding sj .
In other words, I = {i1, i2, . . . , iM } if λ2(Li1) + si1 ≥ λ2(Li2) + si2 ≥ . . . ≥
λ2(LiM) + siM . Similarly, one may define the desynchronization sequence

69

D as D = {i1, i2, . . . , iM } if λNi1
(Li1) + si1 ≥ λNi2

(Li2) + si2 ≥ . . . ≥
λNiM

(LiM)+siM , with Ni = |Ci|. Clusters, indeed, will enter (exit) one after
the other the stability region following the order specified in the sequence I
(D).

The goal of the control is to induce synchronization and desynchroniza-
tion sequences arbitrarily chosen, say I ′ = D′ = {1, 2, . . . , M}. To that
purpose, the weights of the control links have to be selected such that:
i) the clusters C1, C2, . . . , CM remain associated with the spectral blocks
S1, S2, . . . , SM , ii) they satisfy the eigenvalue ratio condition, iii) they syn-
chronize and desynchronize according to the desired sequences I ′ and D′.
In practice, the entries of W have to be selected such that Eq. (5.14) holds,
W = WT , wik = wjk ∀i, j ∈ Cl, ∀k /∈ Cl, ∀l = 1, . . . , M , and:

ν∗
1

λ2(Ll) + sl + wl
<

ν∗
1

λ2(Ll+1) + sl+1 + wl+1
ν∗

2
λNl

(Ll) + sl + wl
<

ν∗
2

λNl+1(Ll+1) + sl+1 + wl+1

(5.22)

∀l = 1, . . . , M − 1. By rearranging the terms in Eq. (5.22), we obtain that:sl + wl − sl+1 − wl+1 + λ2(Ll) − λ2(Ll+1) > 0 ∀l = 1, . . . , M − 1

sl + wl − sl+1 − wl+1 + λNl
(Ll) − λNl+1(Ll+1) > 0 ∀l = 1, . . . , M − 1

(5.23)
We now proceed as we did for the control problem illustrated in Sec. 5.5,

rewriting Eqs. (5.23) in compact form via the quotient graph G/π, its adja-
cency matrix S and the matrix X, as follows:

(12 ⊗ Q) OM,Nπ (S + X) γ + (I2 ⊗ Q)

Λ2

ΛN

 > 0

X − XT = 0

diag(X) = 0

(5.24)

70

where

Q =



1 −1

1 −1
.

1 −1


=

[
IM−1 0M−1

]
−

[
0M−1 IM−1

]
(5.25)

We note that the matrix Q ∈ R(M−1)×M has the following property. Given a
M ×K matrix Z, then the i−th row of the product QZ is (QZ)i = Zi −Zi+1,
where Zi denotes the i−th row of Z.

By performing the vectorization of Eq. (5.24) and by considering Eq. (5.17),
which is the vectorization of the condition ii), we obtain the following:

Fx > g

Px > c

Ex = 0

(5.26)

where P =
(
γT ⊗ 12 ⊗ QOM,Nπ

)
,

and c = − (12 ⊗ Q) OM,Nπ Sγ − (I2 ⊗ Q)

Λ2

ΛN

.

Once the entries of X are obtained, we compute the coefficients wij using
Eq. (5.19).

Here we do not provide a formal proof of the existence of a solution x of
Eq. (5.26), such that x + vec(S) ≥ 0, but only sketch the arguments behind
it. Given the vector ĉ = c + (12 ⊗ Q)OM,Nπ Sγ, the second inequality of
Eq. (5.26) is equivalent to P (x + vec(S)) > ĉ. Now, let us consider the
matrix G = PT where T is defined as

T = INπ +



INπ ⊗ e1

INπ ⊗ e2

...

INπ ⊗ eNπ


(5.27)

71

and let us then remove from G the columns that correspond to the elements
xlm with l ≥ m, thus obtaining another matrix that we indicate as Ĝ. By
construction, the matrix Ĝ is such that there is no y ≥ 0 that satisfies
−ĜT y ≥ 0 and −ĉT y > 0. Therefore, for Lemma 2.3.8, Eq. (5.26) always
has a solution x ≥ −vec(S). Finally, we can replace ĉ with ĉ + ϵ1 to obtain
a solution strictly positive.

Analogously to the control problems discussed above, the solution of
Eq. (5.26) can be obtained through one of the three approaches shown in

Sec. 5.3, with ŷ = vec(X), z = vec(S), C1 = E, q1 = 0, C2 =

F

P

, q2 =

g

c

 + ϵ1.

Let us now discuss an example where the optimal solution is obtained
using the method based on minimizing the L2 norm, as in Sec. 5.3.

Example 5.6.1 We consider the weighted interaction network shown in
Fig. 5.3(a), where the width of each link is proportional to its weight. This
network is composed of three spectral blocks, S1, S2, and S3, localized at
the nodes of the clusters C1 = {1, . . . , 5}, C2 = {6, . . . , 10}, and C3 =
{11, . . . , 15}. To show how general the applicability of our method is, this
time we take for each node the dynamics of the Rössler oscillator [85]. The
network evolution is therefore governed by the following equations:

ẋi,1 = −xi,2 − xi,3 + d
N∑

j=1
(aij + wij) (xj,1 − xi,1) ,

ẋi,2 = xi,1 + axi,2,

ẋi,3 = b + xi,3(xi,1 − c),

(5.28)

with a = 0.2, b = 0.2 and c = 7, such that the uncoupled dynamics is
chaotic. System (5.28) has a type III MSF with ν∗

1 = 0.186 and ν∗
2 = 4.614

[40]. The adjacency matrix associated with the quotient graph (in the absence
of control) is:

72

A =



0 0.5 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.5 0 0.5 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0 0.5 0 0.5 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0 0 0.5 0 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0 0 0 0.5 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0 0.5 0.5 0.5 0 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.5 0 0 0 0.5 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.5 0 0 0.5 0.5 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.5 0 0.5 0 0 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0 0.5 0.5 0 0 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0.5 0 0.5 0.5

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0 0.5 0.5 0.5

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0.5 0 0.5 0.5

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0 0.5

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0


The strengths with which the clusters C1, C2, and C3 are connected to the

rest of the graph are s1 = s2 = s3 = 1, since aij = 0.1 ∀i ∈ Cl, j ∈ Cm, l ̸= m.
In addition, the smallest and the largest non-zero eigenvalues of L1, L2, L3

are λ2(L1) = 0.19, λ2(L2) = 0.69, λ2(L3) = 1.51, and λ5(L1) = 1.81,
λ5(L2) = 2.31, λ5(L3) = 2.5. Therefore, since λ2(L1) + s1 < λ2(L2) +
s2 < λ2(L3) + s3 and λ5(L1) + s1 < λ5(L2) + s2 < λ5(L3) + s3, in the
absence of control, the synchronization and desynchronization sequences are
I = D = {3, 2, 1}. This is confirmed by the numerical simulations of the
multi-agent system in Eqs. (9.8) illustrated in Fig. 5.3(c). The time evolution
of the system variables has been computed for a period of time equal to 5T ,
with T = 10. After discarding a transient of 4T , we have calculated the
average value (on a window of time T) of the cluster synchronization error

⟨δh⟩T = ⟨ 1
N ′

(∑
i∈Ch

||xi − x̄h||2
) 1

2 ⟩T , with h = {1, 2, 3}, for each of the three
clusters of the network, namely C1 (blue curve), C2 (orange curve) and C3

(green curve), as function of the coupling strength σ. Fig. 5.3(c) also shows

73

the critical values predicted by the MSF approach marked as blue, orange or
green triangles for the three clusters, C1, C2, and C3.

Next, we apply the control of the multi-agent system, using minimization
of ||W||2 to find a solution of Eq. (5.26) with desired synchronization/desyn-
chronization sequence I ′ = D′ = {1, 2, 3}.

This leads to the following matrix X:

X =


0 0.96 0.4

0.96 0 −0.1

0.4 −0.1 0


The resulting controlled network is shown in Fig. 5.3(b) with the clusters

C1, C2 and C3 being connected to the bulk with strengths s1 + w1 = 7.8,
s2 + w2 = 5.3 and s3 = 2.5, respectively. Consequently, we have that
λ2(L1)+s1+w1 > λ2(L2)+s2+w2 > λ2(L3)+s3+w3 and λ5(L2)+s2+w2 <

λ5(L1)+s1 +w1 < λ5(L3)+s3 +w3, yielding I ′ = D′ = {1, 2, 3}. The curves
of the synchronization error ⟨δh⟩T for the three clusters C1, C2 and C3

(h = {1, 2, 3}) as function of the coupling strength σ, shown in Fig. 5.3(d),
demonstrate that the controlled multi-agent system displays the predicted
synchronization/desynchronization sequence.

With this chapter, we conclude the theoretical part. Now we move to
the experimental one, which deals with the robotic implementations of the
theoretical models discussed in this first part.

74

(a) (b)

(c) (d)

Figure 5.3: Shaping the synchronization/desynchronization sequence. (a)
Pristine weighted network, where the thickness of each edge is proportional
to the edge weight. The network is formed by three spectral blocks S1, S∈, S3

localized at the nodes of the clusters C1 (blue squares), C2 (orange triangles)
and C3 (green diamonds). These clusters are connected with the rest of the
graph with strength s1 = s2 = s3 = 1. (b) Controlled network, where the
clusters are connected with the rest of the graph with strength s1+w1 = 7.8,
s2 + w2 = 5.3, and s3 + w3 = 2.5, respectively. (c,d) ⟨δh⟩T vs. σ for the
uncontrolled (panel c) and controlled (panel d) network for the three clusters
C1 (blue line), C2 (orange line) and C3 (green line). The triangles mark
the transition values for synchronization stability predicted by the MSF
approach. Controlling the multi-agent system makes it possible to change
the synchronization and desynchronization sequence from I = D = {3, 2, 1}
to I ′ = D′ = {1, 2, 3}.

75

Part II

Robotic implementation

76

Chapter 6

Robotic platforms: Elisa-3
and e-puck2

We start the experimental part of this thesis by describing the two robotic
platforms used to perform the experiments: the Elisa-3 and the e-puck2
robots. Both of them are small-sized robots designed by the company GC-
tronic1 and intended for education and research purposes. Since they are
equipped with a local communication system, these robots are well-suited
for experiments that involve distributed models.

6.1 Elisa-3

The Elisa-3 robots2 are small-sized robots with a circular shape, diameter
d = 5 cm, height h = 3 cm, and weight w = 39 g. These robots are
differential drive platforms with two wheels, each driven by a DC motor
with a 25:1 reduction gear and a maximum speed equal to 60 cm/s. The
main features of the robot are shown in Fig. 6.1. Each robot is equipped
with an accelerometer for detecting its relative position via odometry, an IR
receiver for remote control, and three IR emitters, one of which is used for
tracking by an IR camera. Furthermore, each robot has eight IR sensors,
uniformly distributed along the external circumference of the chassis and
able to detect obstacles at a distance up to 5 cm, and four ground sensors,

1https://www.gctronic.com/doc/index.php?title=GCtronic_Wiki
2https://www.gctronic.com/doc/index.php/Elisa-3

77

located on the front side of the robot and used for cliff avoidance. The IR
sensors can also be used for local communication with other robots. As the
maximum distance for this communication system is dM = 5 cm, each robot
can communicate with any other robot that is at a center-to-center distance
between 5 cm and 10 cm. This system has no transmission/reception queue
and provides a throughput of approximately 1 byte/s, allowing robots to
transmit packets of one byte each.

The robots can also communicate with the computer through a 2.4 GHz
radio module that allows them to send/receive data to/from the computer
at a distance of up to 10 m. The radio link bandwidth is Bw = 1 kHz, and
the throughput depends on the number of robots, as the computer sends
and receives packets to and from 4 robots simultaneously. As a result, the
communication period is given by:

td =
⌈

N

4

⌉ 1
Bw

(6.1)

where N is the number of robots and ⌈·⌉ denotes the ceiling function, which
rounds the argument up to the nearest integer.

Each robot is controlled by an onboard 8-bit Atmel ATmega2460 micro-
controller that handles motor control, sensor data acquisition, and commu-
nication with other robots and the PC.

The experimental setup, shown in Fig. 8.1 includes N = 6 robots and an
arena of size Ly1 = 80 cm and Ly2 = 60 cm. An IR and an RGB camera are
positioned above the arena to capture the whole area where the robots move.
Specifically, the IR camera tracks and localizes each robot by detecting the
IR emitter mounted on top. The camera data are acquired, processed, and
recorded by the computer.

78

Figure 6.1: Elisa-3 robot including 8 proximity sensors to detect obstacles
and locally communicate with other units, 3 IR emitters to be detected by
the IR camera, an accelerometer, an IR receiver, and an RF module to
communicate with the computer.

Figure 6.2: Experimental setup including 6 Elisa-3 robots in an arena of
dimensions 80×60 cm. A computer receives data from the robots through a
2.4 GHz radio link and both RGB and IR cameras mounted over the arena
through USB connection.

79

6.2 E-puck2

In this section, we describe the e-puck2 robot3 and two of its extensions: the
range & bearing board4 for interacting with other robots, and the Pi-puck5,
which enables the mounting of a Raspberry Pi Zero single-board computer
on the robot. Besides these extensions, the system also offers additional
modules, including the ground module with 4 ground sensors, the cliff mod-
ule with 2 cliff sensors, and the Omnivision Module V3, which features a
5 Mpixel color camera providing a 360° view around the robot, suitable for
basic image processing tasks such as blob detection, color recognition, and
light detection. However, since these additional extensions will not be used
in our experiments, they will not be further explored. Fig. 6.3 shows the
robot equipped with the extensions mentioned above.

Figure 6.3: E-puck2 and two of its extensions mounted on it: range &
bearing board and Pi-puck.

6.2.1 E-puck2 main board

The e-puck2 robot is a swarm robot characterized by a diameter d = 7 cm,
a height of h = 5.5 cm, and a weight equal to w = 150 g. It moves us-
ing a differential drive system with two wheels powered by stepper motors,

3https://www.gctronic.com/doc/index.php?title=GCtronic_Wiki
4https://www.gctronic.com/doc/index.php?title=Others_Extensions#Range_

and_bearing
5https://www.gctronic.com/doc/index.php?title=Pi-puck

80

allowing control of motion by setting either the speed or the motor steps.
Each robot is equipped with a microcontroller (STM32F4 at 168MHz) that
manages its sensors and actuators, including eight proximity sensors for ob-
stacle avoidance, a time of flight (TOF) sensor, a speaker, an IR receiver to
be remotely controlled, a CMOS camera for onboard image processing, an
IMU (3D accelerometer + 3D gyro + 3D magnetometer) for detecting its
relative position and orientation, and the stepper motors for motion control
allowing a maximum speed of 15.4 cm/s. The proximity sensors enable also
local communication with robots. In addition, the robot is equipped with
a radio module, that handles the wireless communication (WiFi, BLE, BT)
with the computer and controls the RGB LEDs that are connected with this
module due to the limited number of pins in the microcontroller board. The
main components of the e-puck2 main board are highlighted in Fig. 6.4.

Figure 6.4: E-puck2 main board with its main components, including the
speaker, the radio module for communicating with the computer, the IMU
for detecting the relative position and orientation of the robot, the program-
mer and debugger to change the microcontroller firmware, an IR receiver to
be remotely controlled, the CMOS camera to onboard image processing.
The eight proximity sensors are uniformly distributed in the robot’s exter-
nal circumference and the TOF sensor is located in the frontal area of the
robot.

6.2.2 Range & bearing board

Although the e-puck2 can interact with other units through its proximity
sensors, local communication can be enhanced by the range & bearing board.

81

This board features 12 IR emitters and 12 IR receivers uniformly distributed
along its circumference, providing a decentralized communication system
based on infrared technology with frequency modulation. This allows the
robot to send messages of two bytes at a frequency of approximately 40 Hz
and to determine the range and bearing of the transmitter at distances of
up to about dM = 1 m, which can be tuned by adjusting the transmission
power of the IR transmitters.

Given the nature of this communication system, the performance of the
range & bearing board can be influenced by light conditions, as well as
by the proximity sensors and the TOF sensor integrated into the e-puck2
main board. Therefore, in applications requiring a reliable and distributed
communication system, it is recommended to calibrate the range & bear-
ing board’s sensors to account for ambient light conditions and minimize
interference by reducing the sampling frequency of proximity sensors and
deactivating the TOF sensor on the main board.

6.2.3 Pi-puck

The Pi-puck allows the attachment of a Raspberry Pi Zero single-board
computer to the robot, providing Linux support, additional peripherals, and
expanded functionality. The Pi-puck allows the remote control of the robot
from the computer. In particular, there are three different configurations:

1. WiFi for Pi-puck and Bluetooth for e-puck2: The computer connects
to the Pi-puck via WiFi for data processing and to the e-puck2 via
Bluetooth for control. This approach allows the control of a maximum
number of 7 robots, and it is characterized by a double latency (Pi-
puck to PC and PC to robot).

2. WiFi for Pi-puck and e-puck2: The computer connects to both the
Pi-puck and e-puck2 via WiFi. In this case, there is also a double
latency (Pi-puck to PC and PC to robot).

3. WiFi for Pi-puck and I2C for e-puck2: The computer connects to the
Pi-puck via WiFi, which then controls the e-puck2 through I2C. This
is the best approach in terms of latency and simplicity.

82

In the third configuration, the Pi-puck acts as the master device, while
the e-puck2 and the range & bearing board (if used) function as slaves.
The Pi-puck controls the actuators and processes sensor data on the main
board, while on the range & bearing board, it handles incoming messages
(including the range and the bearing of the transmitter), configures outgoing
messages, calibrates the IR sensors, and sets the transmission power. Fig. 6.5
illustrates a schematic of this configuration.

Figure 6.5: The three main modules of the e-puck2: Pi-puck, main board,
and range & bearing board interacting according to the WiFi for Pi-puck
and I2C for e-puck2 configuration. In this setup, the Pi-puck acts as the
master device, controlling both the main board and the range & bearing
board, which function as slaves. Data is exchanged between the master and
its slaves via the I2C protocol, while communication with the computer is
handled over Wi-Fi.

6.3 Comparison between Elisa-3 and e-puck2 robots

Both robotic platforms, Elisa-3 and e-puck2, are well-suited for conducting
experiments that aim to validate and explore complex systems phenomena.
However, they exhibit distinct characteristics and advantages adapted to
different experimental needs, as highlighted in Table 6.1.

The Elisa-3 is designed for tasks requiring less computational complex-
ity and in smaller environments. Its compact size and light weight make

83

it well-suited for experiments that require small space and short-distance
interaction. In addition, due to its drive system, can reach velocities greater
than the one reached by the e-puck2. Despite its hardware limitations, these
can be overcome through the employment of external tools such as an IR
camera that allow to detect the robots’ positions with an high accuracy.

The e-puck2, on the other hand, offers more advanced capabilities, es-
pecially when equipped with its various extensions. These modules, such
as extra sensors and the board for enhanced communication, significantly
expand its range of applications. This makes the e-puck2 a better choice
for experiments that require higher processing power and long-range inter-
action capabilities. Its more powerful microcontroller and its more reliable
odometry system handle a wider variety of tasks.

In summary, both robots are versatile and well-suited for validating coor-
dination phenomena. However, the e-puck2’s potential is greatly enhanced
by its extensions, making it more adaptable to experiments requiring higher
computational complexity and longer communication distances. The Elisa-
3, while simpler, remains a solid option for confined experiments.

Table 6.1: Feature comparison: Elisa-3 vs. e-puck2 robots

Aspect Elisa-3 e-puck2

Diameter 5 cm 7 cm

Height 3 cm 5.5 cm

Weight 39 g 150 g

Drive system Differential drive with
DC motors and 25:1 re-
duction gear

Differential drive with
stepper motors

Maximum speed 60 cm/s 15.4 cm/s

Obstacle avoid-
ance

8 IR sensors distributed
along the circumference

8 IR sensors distributed
along the circumference

84

Aspect Elisa-3 e-puck2

Cliff avoidance 4 ground sensors 4 ground sensors (with
additional ground mod-
ule) and 2 cliff sen-
sors (with additional
cliff module)

Additional com-
ponents

3D accelerometer, an IR
receiver, 3 IR emitters

IMU (3D accelerome-
ter + 3D gyro + 3D
magnetometer), an IR
receiver, TOF sensor,
CMOS camera

Local communi-
cation

IR sensors with a range
of up to 5 cm, 1 byte/s
throughput

IR sensors supporting
communication at dis-
tances of up to 6 cm.
Range & bearing board
with a range of up to 1
m

Long-range com-
munication

2.4 GHz radio module,
1 kHz bandwidth

WiFi, BLE, Bluetooth;
Pi-puck module for ad-
ditional functionality

Processing unit 8-bit Atmel AT-
mega2460 microcon-
troller

STM32F4 microcon-
troller at 168 MHz

Additional mod-
ules

None Range & bearing board,
Pi-puck (Raspberry Pi
Zero), ground module,
cliff module, Omnivi-
sion Module V3

85

Chapter 7

Robotic implementation of
multiconsensus

In this chapter, we focus on the robotic implementation of the multiconsen-
sus protocol introduced in Chapter 3. Specifically, we validate the mathe-
matical model by addressing the rendezvous problem with a team of 6 Elisa-3
robots. We begin with a detailed description of our implementation, cover-
ing the setup, configuration, and operational aspects of the control action.
Then, we present the experimental results, demonstrating the effectiveness
and applicability of the communication protocol.

7.1 Multiconsensus induced by network symme-
tries

Here we briefly recall the communication protocol for multiconsensus intro-
duced in Chapter 3. In particular, we will focus on the case in which there
is no pinner.

Let us consider a system of N agents having single-integrator dynamics
described by the following equation:

ẋi = 1
ρ(A)

N∑
j=1

aijxj − xi (7.1)

for i = 1, . . . , N , where aij are the entries of the adjacency matrix A de-
scribing the interaction network, which is assumed to be undirected and con-
nected. Assume that the interaction graph has a set of symmetries forming

86

the group G and inducing a partition of the vertex set into different clus-
ters (one for each symmetric orbit). Then, according to Lemma 3.1.1, the
leading eigenvector v1 of A satisfies the relation Rgv1 = v1 ∀Rg ∈ G. In
Lemma 3.2.3 we proved that, given the state vector x = [x1, x2, . . . , xN]T ,
the system (7.1) evolves as follows:

lim
t→+∞

x(t) = cv1 (7.2)

where c ∈ R is a scalar depending on the agents’ initial conditions. This
result implies that the system reaches a state that is parallel to the leading
eigenvector of the adjacency matrix describing the interaction network. In
this state, symmetric nodes assume the same value that typically differs
from cluster to cluster, resulting in a multiconsensus.

When the nodes belonging to the same cluster do not display identical
steady-state values but converge to very close values, the system achieves a
quasi-multiconsensus.

In Sec. 3.5 we applied Eq. (7.1) to solve the rendezvous problem involving
different clusters, in which the units belonging to the same group have to
find an agreement on the point where to meet. Specifically, we dealt with
the scenario in which the target points are not given. In the case of a bi-
dimensional space, the problem can be solved by applying Eq. (7.1) to each
of the two variables describing the agent position. Therefore, by indicating
with x and y the vectors containing the x and y coordinates of each agent,
the dynamics of the multi-agent system is the following:

ẋ =
(

1
ρ(A)A − IN

)
x

ẏ =
(

1
ρ(A)A − IN

)
y

(7.3)

As the two variables x and y are independent, Lemma 3.2.3 may be
applied to each of Eqs. (7.3), ensuring the convergence to a multiconsensus
solution. Specifically, let x̄ and ȳ denote the x and y coordinates of the final
positions. The agents will reach positions such that x̄ and ȳ are parallel to
v1, leading to symmetric units converging at the same point.

We considered also the case in which the units achieved quasi-multi-
consensus, where the agents within the same cluster reached points very
close to each other and far from those reached by the agents belonging to

87

other clusters. In this scenario, the units reach positions where x̄ and ȳ are
nearly parallel to v1, i.e., 1 − |⟨v1,x̄⟩|

∥v1∥∥x̄∥ < ϵx, and 1 − |⟨v1,ȳ⟩|
∥v1∥∥ȳ∥ < ϵy, with ϵx

and ϵy being small positive scalars.

7.2 Robotic implementation

For the robotic implementation, we use the Elisa-3 robots and the experi-
mental setup detailed in Sec. 6.1.

Given that the implementation of Eq. (7.3) requires the agents commu-
nicate based on a fixed and undirected interaction network, relying on local
communication is not possible. This is because this communication system,
with its maximum communication distance of dM = 10 cm and its limited
throughput, generates a time-varying network where the proximity of agents
regulates the presence or absence of a link. Additionally, the robots need
to continuously share their current positions with the other units, but due
to the absence of a reliable odometry system, this is not feasible. Conse-
quently, due to these hardware limitations, the control action cannot be
fully distributed, and an IR camera for tracking and a computer to man-
age the control via a radio link are employed. To ensure that each robot
properly receives the control directives from the computer at each time step
th = hts (with h = 1, 2, . . .), ts has to be selected such that ts > td, where
td is define in Chapter 6 by Eq. 6.1. Specifically, we select ts = 100 ms.

To properly operate, the tracking system needs calibration. First, a
linear calibration of the 2D vision system is carried out to transform the
robot position from pixel to real-world coordinates [37]. This step needs to
be accomplished only once the setup is established. Instead, at the beginning
of each experimental session, the exposure, brightness, and contrast of the
IR camera are all tuned. Finally, at the beginning of each run, a third
calibration step is performed: each robot spins one at a time so that the
tracking software can associate the moving robot with the corresponding
particle.

Robot motion is controlled in the following way. At each time step
th, the IR camera tracks the current positions of the robots, represented
by the vectors x(P)(th) =

[
x

(P)
1 (th), x

(P)
2 (th), . . . , x

(P)
N (th)

]T
and y(P)(th) =[

y
(P)
1 (th), y

(P)
2 (th), . . . , y

(P)
N (th)

]T
, containing the x and y coordinates of the

88

robots, respectively. The positions of all the robots are recorded in a file
and processed by the computer, which integrates with a discrete-time step
Eqs. (7.1), using the adjacency matrix of the interaction graph to com-
pute the target positions for the robots at the next time step th+1, denoted
by x(T)(th+1) =

[
x

(T)
1 (th+1), x

(T)
2 (th+1), . . . , x

(T)
N (th+1)

]T
and y(T)(th+1) =[

y
(T)
1 (th+1), y

(T)
2 (th+1), . . . , y

(T)
N (th+1)

]T
, as follows:

x(T)(th+1) = x(P)(th) + ts

(
1

ρ(A)A − IN

)
x(P)(th)

y(T)(th+1) = y(P)(th) + ts

(
1

ρ(A)A − IN

)
y(P)(th)

(7.4)

Once the target positions are determined, the computer calculates the
required velocities of both the right and left wheels for each robot. These
velocities are organized into two vectors: vr(th) for the right wheel and vl(th)
for the left wheel. The computer then sends these values to the robots,
enabling them to move toward the calculated target positions. However,
there is no guarantee that the points reached by the robots at time th+1,
represented by the vectors x(P)(th) and y(P)(th), will correspond to the
target points computed at time th, expressed by x(T)(th+1) and y(T)(th+1),
as the robots may not be able to reach the target positions in the time
window ts. Figure 7.1 presents the block diagram that describes the control
process in the robotic implementation.

The control goal is accomplished when the following conditions are ful-
filled:

1 − |⟨v1, x(P)(th)⟩|
∥v1∥ ∥x(P)(th)∥

< ϵx

1 − |⟨v1, y(P)(th)⟩|
∥v1∥ ∥y(P)(th)∥

< ϵy

(7.5)

These conditions imply that the system reaches a quasi-multiconsensus.
Notice that, in contrast to the scenario studied in Sec. 3.5, the system does
not achieve a perfect multiconsensus not due to a perturbation of the inter-
action graph, but because reaching this condition is unfeasible. Specifically,
achieving such a condition would require all robots within the same cluster
to occupy the same position, leading to overlap. However, in other applica-
tions where there are no physical limits, the multiconsensus can be achieved.

89

Once the conditions in Eq. (7.5) are fulfilled, vr and vl are set to 0, resulting
in the robots stopping their motion. Algorithm 1 summarizes all the steps
performed by the computer during the control action.

We emphasize that in a scenario where experiments are conducted with
robots equipped with accurate odometry sensors and a local communication
system that allows for long-distance communication with a larger band-
width, the control action could be distributed. Indeed, with knowledge of
their positions and the ability to exchange this information with their neigh-
bors (based on a fixed interaction network with symmetries), it is possible
to solve the rendezvous problem without employing central tools such as the
computer and the camera.

Algorithm 1: Control action aiming to induce the robots to reach
multiconsensus: central station

Parameter : A, ts, ϵx, ϵy

Initialization : t = getCurrentTime
1 Perform linear calibration
2 while true do
3 if (getCurrentTime − t) ≥ ts then
4 Track the robot positions x(P)

5 Compute the target positions x(T) as in Eq. (7.4)
6 Determine vl and vr to reach x(T)

7 if conditions Eqs. (7.5) holds then
8 vr = 0
9 vl = 0

10 end
11 for i = 1 : N do
12 Send vr,i and vl,i to robot i

13 end
14 t = getCurrentTime
15 end
16 end

90

Figure 7.1: Block diagram describing the control action. At each time step
th the IR camera sends the robots’ positions to the computer, which, using
the control law in Eq. (7.1), computes the velocities required for the robots
to reach their target positions of the next time step th+1.

7.3 Results

Here we show the results of an experiment carried out using the implemen-
tation described in the previous section.

We consider N = 6 units moving in an arena of size Ly1 = 80 cm and
Ly2 = 60 cm and we set ϵx = ϵy = 0.005. The robots interact according to
the graph shown in Fig. 7.2(a), where we can identify three different clusters
induced by the network symmetries: C1 = {1, 2} (in red), C2 = {3} (in
green), and C3 = {4, 5, 6} (in blue). The adjacency matrix describing this
graph has a maximum eigenvalue ρ(A) = 2.51 and an associated leading
eigenvector v1 = [0.43, 0.43, 0.65, 0.26, 0.26, 0.26]T . Notice that, as we
expect from Lemma 3.1.1, the entries corresponding to symmetric nodes
are the same. At the beginning of the experiment, the agents are manually
placed in the following positions:

x(P)(0) = [34.51, 69.66, 68.99, 19.88, 20.39, 59.75]T

y(P)(0) = [45.53, 23.93, 40.79, 34.11, 9.05, 3.18]T
(7.6)

These positions are represented by circles in Fig. 7.2(b). Once the experi-
ment begins, the control action described in the previous section leads the

91

robots to perform the trajectories shown in Fig. 7.2(b). After T = 8 s, the
robots stop their motion at the positions:

x(P)(T) = [44.14, 45.81, 64.38, 22.57, 25.44, 28.4]T

y(P)(T) = [29.43, 32.11, 41.31, 17.6, 13.84, 14.39]T
(7.7)

which are represented by the squares in Fig. 7.2(b). Specifically, the sys-
tem reaches a quasi-multiconsensus, as 1 − |⟨v1,x(P)(T)⟩|

∥v1∥∥x(P)(T)∥ = 0.0013 and 1 −
|⟨v1,y(P)(T)⟩|
∥v1∥∥y(P)(T)∥ = 0.0042. Fig. 7.3 reports five snapshots taken from a video
recorded by the RGB camera placed above the arena at times th = 0 s,
th = 2 s, th = 4 s, th = 6 s, th = T = 8 s, capturing the progression of the
system towards the solution of the rendezvous problem.

(a) (b)

Figure 7.2: Experimental results. (a) Graph describing the interaction
among the robots. (b) Trajectories performed by the robots to achieve the
multiconsensus. The circles represent the initial points, whereas the squares
the final positions.

In this chapter, we have demonstrated the feasibility of applying our
communication protocol introduced in Chapter 3 in a real-world scenario.
Specifically, we have addressed the rendezvous problem using a team of
Elisa-3 robots, showing that they can reach a quasi-multiconsensus in a short
amount of time. Due to the hardware limitation of these robots, our control
strategy is not fully distributed and requires a reference frame to compute
the agent position. However, with robots equipped with accurate odometry

92

(a) (b) (c)

(d) (e)

Figure 7.3: Dynamical evolution of multiconsensus in an experiment made
with N = 6 Elisa-3 robots captured by the RGB camera. The different
snapshots are taken at the following times: (a) th = 0 s, (b) th = 2 s,
(c) th = 4 s, (d) th = 6 s, and (e) th = 8 s. The units interact according
to the graph shown in Fig. 7.2(a). In particular, each robot has an RGB
LED that flashes the same color as the corresponding node in the graph.
At th = 0 s the robots start from different positions. Then, they follow the
trajectories shown in Fig. 7.2(b) with snapshots (b), (c), and (d) capturing
their progression. Finally, the robots reach their final positions at th = 8 s,
achieving the solution of the rendezvous problem.

sensors and a local communication system allowing for long-distance com-
munication with higher bandwidth, a fully distributed control action can be
implemented.. Due to the generality of our communication protocol, it can
also be exploited in other applications requiring multiconsensus.

In the next chapter, we will introduce a distributed control action that
allows the experimental investigation of the face-to-face interaction dynam-
ics in settings where the parameters can be controlled.

93

Chapter 8

A multi-robot system for the
study of face-to-face
interaction dynamics

Here, we leverage the theoretical insights from mathematical models based
on complex networks of face-to-face interaction dynamics to propose a multi-
robot system that facilitates experimental investigations of these dynamics
in settings where the parameters are controllable. Specifically, we consider a
team of Elisa-3 robots and implement a distributed and decentralized control
law that takes into account the key mechanisms of interaction giving rise to
face-to-face dynamics.

8.1 The attractiveness-based model for face-to-face
interaction networks

The attractiveness-based model for face-to-face interaction networks [95]
considers a group of N agents distributed on a plane where they move and
interact according to the following rules. Each agent is characterized by a
parameter ai, representing its attractiveness, namely how likely other agents,
which get in touch with it, will be engaged in a face-to-face interaction with
it. At each time step tk = k∆h with ∆h constant and k = 0, 1, . . . , K, an
agent can either perform a random walk or remain in its previous position
to interact with one or more agents that are attracting its interest. In

94

particular, a stochastic process regulates the action performed by the agent,
such that with probability pi(tk) the agent moves and with probability 1 −
pi(tk) it does not change its position and interacts face-to-face with each of
neighbors. The probability pi(tk) is a function of the attractiveness of the
neighboring agents, namely

pi(tk) = 1 − max
j∈Ni(tk)

aj (8.1)

where Ni(tk) is the neighborhood of agent i at time tk. In more detail, if we
indicate with yi(tk) the position of agent i in the plane at time tk and with r

the sensing radius of each agent, then, Ni(tk) is the set of agents that at time
tk are at a distance smaller than r, i.e., Ni(tk) = {j : ∥yj(tk)−yi(tk)∥2 ≤ r}.

To introduce the motion equations, let us indicate with vi(tk) = veiθ(tk)

the linear velocity of agent i. Here, v denotes the modulus of the velocity
that is maintained constant in time, while θ(tk), the agent heading, is a
quantity that changes randomly at each time step ∆. Then, with probability
pi(tk) agent i performs a random walk and its position is updated as follows

yi(tk+1) = yi(tk) + vi(tk)∆h (8.2)

while with probability 1 − pi(tk) its position yi(tk+1) remains the same of
the previous step, i.e., yi(tk+1) = yi(tk).

In view of a robotic implementation of the model, there are several as-
pects to consider. First of all, notice that pi(tk) changes over time, as the
neighborhood does. In the original model [95], pi is updated with the same
step size, namely ∆h, of the random walk process. However, in a robotic im-
plementation, where agents are no more dimensionless particles, this strat-
egy is not suitable. On the contrary, obstacle avoidance should always be
active in order to avoid collisions with other robots or with the physical
boundaries of the arena where they move. In addition, turning/heading up-
date is not instantaneous (as this would imply an infinite angular velocity),
but requires a finite amount of time. Finally, the third important ingredi-
ent to take into consideration is that the bandwidth of the communication
between agents is limited.

To account for these important factors in the physical implementation,
here we extend the original attractiveness-based model by revisiting some
of the model assumptions and including some further parameters. In the

95

original formulation of the model periodic boundary conditions are consid-
ered; here, for the sake of comparison with the experiments, also in the
mathematical model we consider that at the boundaries of the arena there
are fixed walls. Furthermore, in our numerical simulations, rather than per-
forming the motion step of the random walk in a single time interval, we
consider a smaller step size δh < ∆h and check after each interval of fixed
length δh whether during its motion the agent finds an obstacle or not (the
obstacle can be one of the arena boundaries or another unit). If there are no
encounters, then the full motion step of length v∆h is performed, otherwise
two situations may occur. If the obstacle is one of the arena walls, the robot
stops, rotates in a random direction and, then, continues its random walk.
Otherwise, if the obstacle is another unit of the team, the agent stops at
the position of the encounter, effectively performing a random walk step of
a smaller length. At this point, the agent has to ‘decide’ whether to engage
in an interaction or not, according to the probability pi. To take into ac-
count the limited bandwidth of the communication link between the units,
the agent remains at a fixed position for a time interval equal to tc and up-
dates its decision at intervals of tc. Hence, if an agent decides to engage in
an interaction, then the duration of such an interaction will not be shorter
than tc. Summing up, our model includes two new parameters, δh and tc,
and the additional rules to account for the obstacle avoidance protocol that
needs to be always active in our robotic implementation.

8.2 Robotic implementation

The robotic implementation of the attractiveness-based model for face-to-
face interactions has been developed using a team of Elisa-3 robots, which
are described in Sec. 6.1. Robots move in an arena of size Ly1 and Ly2

as schematically represented in Fig. 8.1, which also illustrates the radius of
local communication, r. This is an important parameter for the dynamics
as interactions can occur only with robots within this radius. On top of
the arena, an RGB camera allowing the recording of robot trajectories is
mounted.

The control of the robot’s autonomous behavior is carried out through
a finite state machine that implements the mechanisms of interaction and

96

Figure 8.1: Schematic representation of the team of Elisa-3 robots imple-
menting attractiveness-based face-to-face dynamics. Robots represented in
green color are communicating with each other through the local commu-
nication system (with dM indicating the maximum distance for such com-
munication), while the other units (in grey color) are not detecting other
robots or obstacles within their communication/sensing radius and, hence,
are moving as random walkers.

movement of the attractiveness-based model for face-to-face dynamics. As
shown in Fig. 8.2, the state machine has four states: ‘Random walk & ob-
stacle avoidance’, ‘Stop & check’, ‘Compute probability’, and ‘Engaged &
listening’. In the first state, the robot moves as a random walker along the
arena, while avoiding potential obstacles and continuously checking whether
a message from other robots is received. When this occurs, the state machine
moves to the ‘Stop & check’ state, where the robot stops at the current po-
sition for a period of time equal to tc, searching for eventual messages from
other robots and retrieving the value of the attractiveness of the neighboring
robots. After that, it moves to the ‘Compute probability’ state where the
robot calculates pi according to Eq. (8.1). At this point, with probability
1 − pi moves to the ‘Engaged & listening’ state, thus starting a face-to-face
interaction, or with probability pi goes back to the ‘Random walk & obstacle
avoidance’ state, thus moving away from the current position as the other
robots (if any) have not raised its interest. The ‘Engaged & listening’ state,
therefore, represents the condition where the robot is effectively interacting

97

face-to-face with other robots, forming a group of two or more units. From
this state, where messages from other robots are also continuously checked,
after a period of time equal to tc, the robot moves back to ‘Compute proba-
bility’ from which the robot decides to continue the face-to-face interaction
(with probability 1−pi) or leave the group (with probability pi). In the two
states ‘Stop & check’ and ‘Engaged & listening’ the robot’s LED turns green
and red respectively, in order to help visually detect in which state the robot
is. The finite state machine is implemented in the robot via Algorithm 2.

Random walk
& obstacle
avoidance

Stop &
check

Engaged
& listening

Compute
probability

no message
received

message
received

wait tc

expired tc
wait tc

expired tc

∼ (1 − pi)

∼ pi

Figure 8.2: Finite state machine used to control the autonomous behavior of
each robot of the team. The finite state machine is initialized in the ‘Random
walk & obstacle avoidance’ state (visually highlighted in the scheme with a
blue contour).

When the robot is not interacting with other units, it moves as a random
walker with obstacle avoidance control always active. Taking into account
that the robots are controlled by differential drive, we implemented the
random walk in two steps. In the first step, we randomly set the direction
of rotation of the robot (left or right) and then rotate it for a time equal
to tr which is randomly drawn with uniform distribution in the interval
[0.1s, 1s]. This results in an in-place rotation of the robot by an angle
randomly drawn with uniform distribution in the interval [−π, π]. Then,
in the second step, the robot moves forward for a period of time equal to
tf (which corresponds to ∆h in Eq. (8.2)) with fixed velocity v. Notice

98

Algorithm 2: Face-to-face dynamics for agent i
Parameter : ai, tc, tf , v

Initialization : State = RandomWalk
1 while true do
2 Broadcast ai

3 Check IR sensors
4 if (messageReceived==true) then
5 Stop moving
6 State = MsgReceived
7 end
8 switch State do
9 case RandomWalk do

10 Move as a random walker with obstacle avoidance
11 end
12 end
13 case MsgReceived do
14 Turn on green light
15 Wait tc

16 State = ComputeProb
17 end
18 case ComputeProb do
19 Compute pi as in Eq. (8.1)
20 Generate a random number ξ ∈ [0, 1]
21 if ξ < pi then
22 State = RandomWalk
23 else
24 State = Engaged
25 end
26 end
27 case Engaged do
28 Turn on red light
29 Wait tc

30 State = ComputeProb
31 end
32 end

99

that, since obstacle avoidance is always active, vtf represents the maximum
distance of the random walk step, while it is the exact distance only when no
obstacles (either the arena walls or other robots) are encountered during this
motion step. Obstacle avoidance is implemented by continuously checking
eventual obstacles via the IR sensors. When the sensors signal the presence
of an obstacle, then either this obstacle is a robot (as simultaneously a
message has been received) and the finite state machine moves to the ‘Stop
& check’ state, or it is a wall of the arena. In this latter case, the robot
heading is randomly changed in the [−π, π] interval and, then, the robot
continues its motion step.

An important parameter of our experiments is the time that a robot has
to wait to correctly receive a message after the IR sensors have detected it.
This parameter is briefly indicated as the time for local communication tc.
The nominal value of the local communication throughput for the Elisa-3
robot is about 1 byte/s; however, based on a series of preliminary exper-
iments that we have run to investigate whether the value of tc could be
reduced, we have selected tc = 700 ms as a trade-off between message loss
and the time the robot has to spend while waiting for messages.

During the experiments, the robots also communicate their status, in-
cluding potential interactions with other units, to a PC through the radio
link, at time intervals of 100 ms. Communication with the PC is solely used
to record the relevant information to analyze the collective behavior of the
system, but not for the robot control law, which is fully decentralized and
distributed.

Two other important parameters of the setup are v and tf , which we
have empirically set to 6 cm/s and 2 s, respectively. These are trade-off
values between the size of the area explored by a robot during its motion
(which becomes larger as the two parameters increase) and the probability of
receiving messages from other robots (which decreases as the two parameters
increase).

Finally, two other parameters influence the collective behavior of the
whole system of interacting robots. They are the robot density ρ and
the values of the attractiveness of each robot, stored in a single vector
a = [a1, a2, . . . , a6]T . As the number of robots is kept fixed, the den-
sity of the robots is determined by the dimensions of the arena, namely

100

ρ = N/(Ly1Ly2). The values of attractiveness are set in the interval [0, 1]
and are assigned to each robot of the team at the beginning of each trial and
then kept constant. The main symbols used in this chapter are summarized
in Table 8.1.

Table 8.1: List of symbols

Symbol Parameter

tc time for local communication

tr rotation time

tf forward time

v robot velocity

ai attractiveness of robot i

Ly1 , Ly2 length and width of the arena

ρ robot density

T test duration

8.3 Experimental results

To illustrate our results, we first discuss an experiment for a fixed setting of
the system parameters. In particular, here we have considered N = 6 robots
moving in an arena with Ly1 = 80 cm and Ly2 = 60 cm, thus resulting in a
density of robots equal to ρ = 1.3 × 10−3 cm−2. The robot attractiveness is
arbitrarly fixed as: a = [0.75, 0.88, 0.93, 0.67, 0.72, 0.67]. Fig. 8.3 shows five
snapshots of a video recorded by the RGB camera. It shows the dynamic
evolution of the formation of groups in the system. Initially, two robots
form a group (Fig. 8.3(a)). Later, another robot communicates with one of
the group units and joins it (Fig. 8.3(b-c)). Subsequently, a different unit
communicates with a member of the group (Fig. 8.3(d)), and engages in
a face-to-face interaction to form a new group of two robots (Fig. 8.3(e)),
while the previous group breaks apart.

101

(a) (b) (c)

(d) (e)

Figure 8.3: Dynamical evolution of group formation in an experiment made
with N = 6 Elisa-3 robots. The different snapshots are taken from a video
recorded by the RGB camera at the following times: (a) t = 63 s, (b) t =
64 s, (c) t = 65 s, (d) t = 66 s, and (e) t = 67 s. The units lighting up with
red (green) light are interacting (communicating) with each other, while no
light indicates that the robot is performing a random walk. (a) The robots
form a group of two units that are engaged in a face-to-face interaction.
(b) A third robot is communicating with one of the two units of the group.
(c) The group is now formed by three interacting units. (d) Another robot
in the area is communicating with units in the group. (e) The previous
group breaks apart and a new group of two units forms, while the other two
robots, belonging to the previous group, move away from the area of the
meeting.

We have then conducted a more systematic investigation by exploring
various parameter settings and performing a statistical analysis of the data
gathered during our experiments to determine the distribution of the contact
duration, denoted as P (∆t), as well as the distribution of the time interval,
denoted as P (τ), between two consecutive interactions of a robot with some
other unit. Here, with the term contact we indicate the engagement in
a face-to-face interaction of two or more robots. In particular, we have

102

considered exemplificative settings with different values of the density ρ and
the attractiveness vector a. To change ρ, we have kept fixed the number of
robots and changed the size of the arena (in particular, varying Ly1), whereas
the attractiveness vector a has been set via robot programming. The time
for local communication between the robots has been set to tc = 700 ms in
all the experiments where not differently mentioned. The same holds for the
speed module that is fixed to v = 6 cm/s.

(a) (b)

Figure 8.4: Experimental results. Effect of the density on the distribution of
the contact duration, P (∆t), (a) and on the distribution of the time interval
between consecutive contacts, P (τ), (b). The results are the average of ten
runs for each density value, which is controlled by changing Ly1 (Ly1 = 80 cm
for the first set of runs, represented with blue circles, Ly1 = 40 cm for the
second one, represented with orange squares). The remaining parameters
are fixed to: tc = 700 ms, Ly2 = 60 cm, T = 10 min, tf = 2 s, v = 6 cm/s,
tr ∈ [100 ms, 1 s], N = 6, ⟨a⟩ = 0.77.

We first discuss the effect of the density, considering two different values
of ρ, namely ρ1 = 1.3 × 10−3 cm−2, obtained by setting Ly1 = 80 cm and
Ly2 = 60 cm, and ρ2 = 2.5×10−3 cm−2, obtained by resizing the arena such
that Ly1 = 40 cm and Ly2 = 60 cm. The results are illustrated in Fig. 8.4
that shows the distribution of the contact duration, P (∆t), and that of
the time intervals, P (τ), for ρ = ρ1 = (blue circles), and ρ = ρ2 (orange
squares). Both distributions are obtained by dividing the empirical data
into bins and reporting the number of observations for each bin divided by
the total number of observations. The results are averaged over 10 different

103

runs, in each of which the behavior of the robots was monitored for a period
of time equal to T = 10 min. The robot attractiveness is fixed to a =
[0.75, 0.88, 0.93, 0.67, 0.72, 0.67], such that the average value is equal to ⟨a⟩ =
0.77.

We notice that, for both values of ρ, the two distributions P (∆t) and
P (τ) display a long-tailed power-law form spanning a few orders of magni-
tude. This is in agreement with the analysis of the original mathematical
model where this behavior is consistently observed for different settings of
the parameters [95]. From the analysis of P (∆t) (Fig. 8.4(a)), we find that
the number of contacts with a small duration is high, whereas there are
few cases where the duration of the contact between robots is large. Anal-
ogously, the behavior of P (τ) (Fig. 8.4(b)) is also characterized by a long-
tailed power-law distribution, meaning that there are few contacts occurring
after long time intervals and many after small time intervals. The density
ρ seems to significantly affect the distribution of τ (Fig. 8.4(b)), where we
notice that, for the larger value of density, it is more difficult to observe
larger time intervals compared to the case of smaller density. Instead, the
density has a smaller effect on the distribution of contact duration, with a
more noticeable impact on the tail of the distribution.

During their motion, robots interact with other robots in a dynamical
way, forming groups of different sizes. This can be illustrated by consid-
ering the number of interactions between each pair of robots and counting
the occurrence of the group size during a robot experiment. Fig. 8.5(a)-(c)
reports the aggregated network obtained by considering all interactions tak-
ing place between pairs of robots in time windows of increasing duration.
The aggregated network is represented with edges of thickness proportional
to the number of interactions, normalized with respect to the total number
of interactions in that time window. For a time window of small duration,
not all pairs of nodes are connected, as during their motion the robots did
not have the chance to meet all the other units. As more time elapses, more
links emerge, up to the point where the aggregated network is a complete
graph, with the weights reflecting the stochasticity in the robot dynamics.
Fig. 8.5(d) reports the occurrence of groups of different sizes n. As expected,
smaller groups occur more frequently than larger ones.

104

(a) (b)

(c) (d)

Figure 8.5: Interactions among agents and group formation in an experiment
with N = 6 Elisa-3 robots. Aggregated network illustrating the number of
interactions among agents after 1 minute (a), 3 minutes (b), and 10 minutes
(c), and occurrences of groups of size n during robot experiment (d). The
experiment has been carried out using the following parameters: tc = 700
ms, Ly1 = 40 cm, Ly2 = 60 cm, T = 10 min, tf = 2 s, v = 6 cm/s, tr ∈
[100 ms, 1 s], ⟨a⟩ = 0.77.

Next, we discuss the experiments we have carried out to investigate the
effects of different values on the robot attractiveness. In particular, we have
considered two sets of values for a: a = a1 = [0.75, 0.88, 0.93, 0.67, 0.72, 0.67],
representing a scenario where the average attractiveness is high, i.e., ⟨a⟩ =
0.77, and a = a2 = [0.40, 0.76, 0.62, 0.55, 0.42, 0.67], representing a scenario
with a lower value of average attractiveness, i.e., ⟨a⟩ = 0.57. The distri-
butions P (∆t) and P (τ) obtained under these conditions are reported in
Fig. 8.6. Here, we have considered ρ = 2.5 × 10−3 cm−2, while the other

105

parameters, such as the number of agents N , the robot velocity v, the ex-
periment duration T , and the time for local communication tc are fixed as
in the previous set of experiments. Also in this case, we find that, for all
values of a, both P (∆t) and P (τ) follow a long-tailed power law. Here,
we notice that, while changing the attractiveness has a low impact on P (τ)
(Fig. 8.6(b)), it significantly affects the distribution of the contact dura-
tion P (∆t) (Fig. 8.6(a)). When the average value of attractiveness is lower,
the number of contacts with short duration increases, while the number
of contacts with long duration decreases, compared to the case where the
attractiveness values are higher.

(a) (b)

Figure 8.6: Experimental results. Effects of the robot attractiveness, a, on
the distribution of the contact duration, P (∆t), (a) and on the distribution
of the time interval between consecutive contacts, P (τ), (b). The results
are the average of ten runs for each value of a (in the first case, represented
with blue circles, the robot attractiveness is such that ⟨a⟩ = 0.77, while in
the second case, represented with yellow squares, is such that ⟨a⟩ = 0.57).
The remaining parameters are fixed to: tc = 700 ms, Ly1 = 40 cm, Ly2 = 60
cm, T = 10 min, tf = 2 s, v = 6 cm/s, tr ∈ [100 ms, 1 s], N = 6.

The face-to-face dynamics experimentally obtained has been then com-
pared with numerical simulations of the model discussed in Sec. 8.1. We
have found that the model can produce contact durations and time intervals
between consecutive contacts having distributions similar to those observed
experimentally, when faults in the local communication among agents are
explicitly taken into account in the model. To this aim, we have introduced

106

in the model a further parameter, p, mimicking the effect of loss of messages.
This parameter represents the probability that each neighboring agent of a
generic unit i is correctly perceived as such and, therefore, able to exchange
information with it. Hence, with probability 1 − p, agent i misses the mes-
sage sent by the other agent, despite it being one of its neighbors, and, thus,
does not take into account its attractiveness in evaluating Eq. (8.1). In
the robotic experiments, the loss of messages depends on the time for local
communication, tc, on the robot motion and on the asynchronous commu-
nication, and, as such, it is difficult to estimate. For this reason, in our
analysis, the parameter p has been empirically set to the value p = 0.1.

We illustrate the comparison between experiments and simulations with
reference to the case ρ = ρ2 and a = a1, noting that similar results have
been obtained for other settings of the parameters. The distributions P (∆t)
and P (τ), obtained experimentally and numerically for these values of the
parameters, are shown in Fig. 8.7. Although the distributions are similar,
there are still some differences. In particular, in the experimental case,
we find slightly longer time intervals between consecutive contacts. This
suggests that other quantities, not explicitly taken into account in the model
(such as the finite time for heading change or robot deviations from straight
motion), are also influencing the behavior of the multi-robot system.

Finally, we discuss an example where robots are operated under chal-
lenging conditions. Specifically, we set tc = 500 ms, which allocates a very
short time window for message reception in the local communication system.
This time window is below the inverse of the nominal throughput, resulting
in a large loss of messages. Despite this, the main features of face-to-face
interaction dynamics still emerge. As shown in Fig. 8.7(a), the distribution
of contact durations is characterized by only a few points, as long-duration
contacts become unlikely. However, these points are still distributed ac-
cording to a power law. On the other hand, as shown in Fig. 8.7(b), the
adverse operating conditions considered in this experiment do not seem to
impact the distribution of time intervals between successive contacts, which
contains many points and displays a long-tailed power-law form similar to
those observed for other settings of the system parameters.

107

(a) (b)

Figure 8.7: Comparison of experimental and numerical results. Distribution
of the contact duration, P (∆t), (a) and distribution of the time interval
between consecutive contacts, P (τ), (b) of experimental and numerical data
with p = 0.1. The results are the average of ten runs for each type of test,
the experimental data are represented by blue circles, while the numerical
ones are represented by green triangles. The system parameters are fixed
as: tc = 700 ms, Ly1 = 40 cm, Ly2 = 60 cm, T = 10 min, tf = 2 s, v =
6 cm/s, N = 6, ⟨a⟩ = 0.77. For numerical simulations, we used ∆h = 2 s,
δh = 100 ms, and K = 300, which corresponds to T = K∆h = 10 min.

(a) (b)

Figure 8.8: Experimental results. Distribution of the contact duration,
P (∆t), (a) and distribution of the time interval between consecutive con-
tacts, P (τ), (b). The results are the average of ten runs with the follow-
ing parameters: tc = 500 ms, Ly1 = 40 cm, Ly2 = 60 cm, δt = 100 ms,
T = 10 min, tf = 2 s, v = 6 cm/s, tr ∈ [100 ms, 1 s], N = 6, ⟨a⟩ = 0.77.

108

In this chapter, we have introduced a robotic implementation of the
attractiveness-based model for face-to-face interaction dynamics. The model
considers elementary mechanisms of interactions that are locally imple-
mented in each robot in a fully distributed and decentralized manner. Our
results demonstrate the robustness of the approach despite the real-world
factors that are usually neglected in numerical simulations.

In the next chapter, we will use the same robotic platform (Elisa-3 robot)
to validate the mathematical model for synchronization of moving chaotic
agents, discussed in [23]. Besides local communication, we will show another
communication system able to overcome the limits of local communication.

109

Chapter 9

Synchronization of moving
chaotic robots

In this chapter, we show a robotic system ruled by the interaction mech-
anisms of the mathematical model for synchronization of moving chaotic
agents discussed in [23]. Our aim is to provide a proof-of-concept demon-
strating the applicability of the theoretical model in a real-world scenario
where factors commonly neglected in numerical simulations, such as param-
eter mismatches, noise, message loss, and deviations from planned move-
ments, are present. The experimental setup is based on a team of Elisa-3
robots, each of them carrying an internal variable with chaotic dynamics.
We contrast our results with a theoretical analysis based on the MSF and
show that the mismatches and non-idealities of the system do not hamper
the synchronization of the units.

9.1 Synchronization in networks of mobile oscilla-
tors

Before introducing the model of coupled mobile oscillators, we first briefly
recall the notion of proximity graph and temporal proximity graph [32].
In proximity graphs, also known as random geometric graphs, the nodes
are distributed uniformly in a random way in a two-dimensional Euclidean
space and connected to each other if their relative distance is smaller than
a given threshold, namely the interaction radius r. Let us indicate with

110

yi = [yi,1, yi,2]T (i = 1, . . . , N) the positions of the N nodes of the proximity
graph in a two-dimensional rectangular space of size Ly1 × Ly2 , and let us
indicate with aij (i, j = 1, . . . , N) the coefficients of the N × N adjacency
matrix of the graph, then

aij = 1 ⇔ ∥yi − yj∥ ≤ r (9.1)

and aij = 0 otherwise.
Temporal proximity graphs extend the notion of proximity graphs to

account for time-varying links [32]. In more detail, nodes are now agents
able to move in time, and therefore their position and neighborhood can
change in time. Let yi(t) = [yi,1(t), yi,2(t)]T with i = 1, . . . , N indicate the
agent positions at time t, and let us extend the rule for linking two nodes
in the time-varying case. We consider two agents connected at time t if, at
that time, their distance is less than the interaction radius r. In this way,
we obtain a time-varying matrix A(t) whose coefficients are given by:

aij(t) = 1 ⇔ ∥yi(t) − yj(t)∥ ≤ r (9.2)

and aij(t) = 0 otherwise. Notice that temporal proximity graphs represent
a class of temporal networks, as the model is fully specified only when the
rule of motion for the agents is given. The model is particularly suited
for agents equipped with limited sensing/communication capabilities, where
r represents the maximum distance at which the communication system
between robots can operate [60].

Let us now illustrate the model of coupled mobile oscillators at the basis
of our robotic implementation. Following [23], we now associate a dynamical
state xi(t) ∈ Rn to each agent i = 1, . . . , N of the system. The evolution
of these variables is ruled by the dynamical equations of a nonlinear oscilla-
tor that is coupled with the other agent variables according to a temporal
proximity graph:

ẋi = f(xi) + σ
N∑

j=1
aij(t)H(xj − xi) (9.3)

for i = 1, . . . , N . Here, f is the uncoupled dynamics of the dynamical oscil-
lator, H ∈ Rn×n is the inner coupling matrix, and σ the coupling strength.
In the model, the evolution of the dynamical variables of the oscillators is

111

influenced by the agent motion through the matrix A(t). In this way, the
motion type and characteristics influence the dynamical process, while no
interaction from the dynamical process to the motion is considered, as, in-
stead, occurs in swarmalators systems [70]. In the original work [23], agents
are let move as random walkers in a planar space of size L and periodic
boundary conditions. At each step of the random walk, each agent is mov-
ing with a direction of motion θi(t) drawn from a uniform distribution in
[0, 2π[, and fixed velocity modulus v. In addition, with a given probability,
named jumping probability, agents were allowed to perform jumps into fully
random positions of the plane.

In view of the robotic implementation, the model that we consider is
slightly different. First, rather than periodic boundary conditions we assume
that, at the boundaries of the arena, agents turn in random directions to
avoid hitting the walls delimiting the space where they move. Second, we
focus on the case of zero jumping probability, as its effect is equivalently
reproduced by using a large enough agent velocity v. Taking into account
these considerations, the dynamical equations for the update of the agent
positions become:

yi(tk+1) = yi(tk) + vi(tk)∆h (9.4)

where i = 1, . . . , N , vi(tk) = veiθi(tk) and ∆h = tk+1 − tk ∀k. The heading
of agent i, θi(tk) = ηi(tk), is updated at each time step tk through ηi(tk),
an independent random variable drawn with uniform probability in [−π, π].
In the mathematical model, Eqs. (9.4) are used to simulate the motion of
robots/agents considered as mass-less points. In the experiments, the robot
velocity is controlled to realize random walk, by fixing the modulus and
randomly updating the headings.

From the positions of the agents, the matrix A(t) can be obtained using
Eq. (9.2). Specifically, since the motion direction is updated at time intervals
of length equal to ∆h, in Eq. (9.3) we consider that A(t) = A(tk) for tk ≤ t <

tk+1. In addition, the neighborhood of agent i at time tk can be calculated
as

Ni(tk) = {j : ∥yj(tk) − yi(tk)∥ < r} (9.5)

from which we get Ni(t) = Ni(tk) for tk ≤ t < tk+1.

112

As result of the time-varying interactions that arise during agent motion,
the coupled oscillators of Eqs. (9.3) may synchronize, that is, their state
variables may converge to a common trajectory where x1(t) = x2(t) = . . . =
xN (t). The level of synchronization of the system can be evaluated through
the synchronization error, defined as:

δ(t) = 1
N

N∑
i=1

N∑
j=1,
j ̸=i

∥xi(t) − xj(t)∥ (9.6)

The system synchronizes if lim
t→+∞

δ(t) = 0. In [23] the conditions for the
onset of synchronization in this system have been derived by using an ap-
proach combining together the fast switching method and the local analysis
of stability via the master stability function. A key role is played by the
parameter pint = πr2ρ

N , representing the probability that two agents interact.
In particular, this parameter can be changed by varying the agent density
ρ = N/(Ly1Ly2) or the radius r. Two scenarios, exemplified by the following
case studies, emerge for synchronization. To illustrate them, we fix as the
nodal dynamics the Rössler oscillator [85], i.e., a paradigmatic chaotic sys-
tem for the study of synchronization, that, by varying the way in which the
units are coupled, can display the different scenarios we are interested in. In
our robotic implementation each of the Rössler oscillators is implemented
in a robot of the team, which numerically integrates the oscillator equations
and memorizes its state variables.

Consider first the following system of coupled Rössler oscillators:
ẋi,1 = −xi,2 − xi,3

ẋi,2 = xi,1 + axi,2 + σ
N∑

j=1
aij(t)(xj,2 − xi,2)

ẋi,3 = b + xi,3(xi,1 − c)

(9.7)

with i = 1, . . . , N . The parameters a, b, and c are set to a = 0.2, b = 0.2,
c = 7, such that the uncoupled dynamics is chaotic. When coupled through
a network with static links, this system has a master stability function of
type II, which means that synchronization may be achieved for any network
with large enough coupling [40]. In the case of mobile oscillators, the analysis
carried out in [23] leads to the conclusion that synchronization is obtained
when the agent density ρ is such that ρ > ν∗

πr2σ
, where ν∗ = 0.157. This

113

result is particularly interesting as a similar density-dependent behavior is
found in some real systems, such as yeast cell populations [16].

Consider now the following system of Rössler oscillators, where, at vari-
ance of Eqs. (9.7), coupling occurs through the first variable:

ẋi,1 = −xi,2 − xi,3 + σ
N∑

j=1
aij(t)(xj,1 − xi,1)

ẋi,2 = xi,1 + axi,2

ẋi,3 = b + xi,3(xi,1 − c)

(9.8)

where the parameters are set as above. In this case, when coupled through
a network with static links, the system has a master stability function of
type III, which indicates that synchronization may eventually be achieved
only if some conditions on the spectrum of their Laplacian matrix and on the
coupling strength σ are satisfied [40]. For mobile oscillators, synchronization
in systems with type III master stability function requires the following
condition on the agent density: ρ ∈

[ν∗
1

πr2σ
,

ν∗
2

πr2σ

]
, where ν∗

1 = 0.186 and
ν∗

2 = 4.614.
Notice that, although the condition for synchronization in both cases

is expressed as a function of the agent density, also the agent velocity is
an important parameter of the system. In fact, for low values of the agent
velocity, the system deviates from the assumption of fast switching and the
previous results are no longer valid. Under these circumstances, the syn-
chronization in the system can be analyzed using the framework discussed
in [13].

9.2 Experimental setup

The experiments are conducted using the Elisa-3 robots and the experimen-
tal setup illustrated in Sec. 6.1. Specifically, for this implementation, the
size of the arena is varied to change the agent density, ρ = N/(Ly1Ly2).

Robots are controlled to move as random walkers, while always checking
for potential obstacles (either the walls of the arena or other units of the
team). Each step of the random walk is realized as described in Sec. 8.2,
thus by first rotating the robot in a randomly selected direction (left or
right), and second by moving forward for a fixed duration of time tf = 2 s

114

at a constant velocity v = 6 cm/s. If, during this motion, an obstacle is
encountered, the robot heading is changed, and then the robot proceeds
straight in the new direction for the remaining time up to tf . Notice that in
this case, unlike the implementation described in Chapter 8, when the robot
encounters another unit, it does not stop its motion but simply changes its
direction.

During their motion, the robots iterate the calculation of the state vari-
ables of the chaotic oscillators associated with them, namely Eqs. (9.3).
The calculation is carried out in a distributed way, as each robot i only
integrates, in single precision, the equations related to its state variables xi.
To this aim, either a fourth-order Runge-Kutta method or a forward Euler
method with a fixed step size equal to ∆t = 0.025 has been used (here time
is expressed in the arbitrary time unit of the dynamical evolution of the
chaotic oscillators). The robots provide a new value of the state variables
after an interval of time equal to ts. In the following, we indicate as xh

i ,
with h = 1, 2, . . ., the calculated samples. At each iteration h, namely at
time th = htc, the sample xh

i , which represents the value of the state vari-
ables after a period of time equal to h∆t, will be available. The value of
ts is, thus, a limiting factor for the time required to integrate the chaotic
trajectory of the oscillators associated to the robots. Robots send the values
of all their state variables to the computer at each tp = 100 ms. In this way,
experimental data are collected and available for post-processing, including
the computation of the level of synchronization achieved by the multi-agent
system.

9.3 Communication among robots

Interactions among robots occur through either the local communication
system or the vision-based virtual communication, yielding two different
implementations of the system of coupled mobile oscillators. In the first
case, using the local communication system, a fully decentralized and au-
tonomous team of robots is obtained. In the second case, the communication
among robots is not physical, but virtually simulated through the vision-
based localization and the central communication with the computer via the
radio link. The purpose of this second implementation is to overcome the

115

limitations of the local communication system on board of the Elisa-3 robots
and prove the general validity of the proposed method.

9.3.1 Local communication system

In the case of the fully decentralized implementation, the communication
among robots occurs through the local communication system on board of
each Elisa-3 robot. As already discussed in Sec. 6.1, this communication
system has no transmission/reception queue and allows to send one-byte
packets with a throughput of about 1 byte/s. A single scalar signal, encoding
the coupling variable in a one-byte packet, is sent via this communication
system. In more detail, each robot continuously checks if new messages are
received to detect nearby units and, when it detects another unit, it allocates
a sufficiently large window of time to retrieve the information on the coupling
variable of the other units. Therefore, in contrast to the mathematical
model presented in Sec. 9.1, which first computes the positions of the agents
and then uses Eq. (9.5) to calculate each agent neighborhood, the robotic
implementation takes into account all data received from nearby units within
time intervals of length ts = 700 ms. Notice that the value of ts is chosen
with the same criteria adopted in Sec. 8.2. Assuming that robot i has
correctly received the data from all its neighbors during the time interval of
length ts, the neighborhood of agent i at time step th is, thus, given by:

Ni(th) = {j : ∥yj(t′) − yi(t′)∥ < r for some t′ ∈ [th−1, th]} (9.9)

where r is set to 10 cm, which corresponds to the maximum communication
distance achievable through the use of the IR sensors of the local communi-
cation system.

However, since communication is not perfect and some of the messages
may be lost, the actual neighborhood of each robot is a subset of the ideal
one, namely Ñi(th) ⊆ Ni(th). Consequently, unlike the original mathe-
matical model where interactions are mutual and the adjacency matrix is
symmetric, in the robotic implementation, when a unit receives a message
from another robot, it cannot be taken for granted that the latter also re-
ceives the message from the former, and, in general, the adjacency matrix
describing interactions is no longer symmetric.

116

Algorithm 3: Implementation based on the local communication
system: robot i

Parameter : a, b, c, σ, tf , ts, ∆t

Initialization : xh
i = rand, t = getCurrentTime

1 while true do
2 Random walk with obstacle avoidance
3 Send xh

i to the central station
4 Broadcast xh

i,1 to neighboring units via the local communication system
5 Check IR sensors
6 if messageReceivedFromRobot == true then
7 Update Ni(th) as Eq. (9.9)
8 end
9 if (getCurrentTime − t) ≥ ts then

10 Compute the coupling term γi(th) = σ
∑

j∈Ni(th)(xj,1 − xi,1)

11 Update xh
i through the integration algorithm

12 Reset the coupling term
13 t = getCurrentTime
14 end
15 end

Algorithm 3 summarizes the main steps of the robot control law in the
case of the implementation based on the local communication system. In
illustrating the algorithm, we consider the case in which the evolution of
the robot state variables is described by Eq. (9.8). The steps are the same
when the dynamics is ruled by Eq. (9.7), with the exception that each robot
now broadcasts xh

i,2 (rather than xh
i,1) and uses a coupling term given by

γi = σ
∑

j∈Ni(th)
(xj,2 − xi,2) (rather than γi = σ

∑
j∈Ni(th)

(xj,1 − xi,1)).

Notice that the communication between the computer and the robots
is only used to collect the experimental data, so that Algorithm 3 is fully
decentralized.

9.3.2 Virtual inter-robot communication system

In the second implementation the robots do not communicate in a direct
way, but through the central communication via the radio link. The robots
periodically send the value of their status to the central station, namely
the computer. In addition, the robots are tracked through the IR camera
mounted above the arena, in order to determine their positions. From them,

117

the neighborhood of each robot is calculated by the computer that sends the
appropriate information about the state of the neighbors to each robot of
the team. In more detail, the computation of the neighborhood occurs in
a way similar to the mathematical model discussed in Sec. 9.1, namely by
computing:

Ni(th) = {j : ∥ŷj(th) − ŷi(th)∥ < r} (9.10)

where ŷk(th) is the position of each robot k (with k = 1, . . . , N) detected by
the tracking software at time step th. In contrast to the fully decentralized
implementation of Sec. 9.3.1, where r is constrained by the local IR-based
communication system, here r is a free parameter. The importance of vary-
ing this parameter is twofold. On the one hand, it allows to theoretically
study the effect of the radius on synchronization in the coupled mobile os-
cillators. On the other hand, in phase of design and development of a more
close-to-the-market prototype, it can be used to determine the requirements
of the local communication system to operate the robots.

Using the virtual inter-robot communication system results in all inter-
actions being mutual, such that the adjacency matrix is symmetric. In ad-
dition, the time window for neighborhood detection is no longer constrained
by the limited throughput of the local communication system. Based on the
considerations discussed in Chapter 7, to ensure that each robot properly
receives the coupling term from the computer at each time step th, ts has
been selected equal to 100 ms.

As discussed in Chapter 7, the tracking system requires calibration.
First, a linear calibration of the 2D vision system is performed to convert
the robot’s position from pixel to real-world coordinates. Then the cam-
era settings including the brightness, contrast, and saturation are adjusted.
Finally, at the beginning of each experiment, each robot rotates one at a
time, allowing the tracking software to match the moving particle with the
corresponding robot ID. Algorithms 4 and 5 summarize the tasks performed
by each robot and by the computer in this implementation.

9.4 Results

In this section, we discuss the results of a series of experiments carried
out using the setup described in Sec. 9.2. To quantitatively evaluate syn-

118

Algorithm 4: Implementation based on the virtual inter-robot
communication system: robot i

Parameter : a, b, c, tf , ts, ∆t

Initialization : xh
i = rand, t = getCurrentTime

1 while true do
2 Random walk with obstacle avoidance
3 Send xh

i to central station
4 if A message from the central station is received then
5 Get the value of the coupling term γi by decoding the message
6 end
7 if (getCurrentTime − t) ≥ ts then
8 Update xh

i through the integration algorithm
9 t = getCurrentTime

10 end
11 end

chronization of the oscillators associated with the robots, we consider the
temporal average of the synchronization error δ(t) defined in Eq. (9.6) in the

last part of the experiment, namely we calculate ⟨δ⟩ = 1
∆T

T∫
4
5 T

δ(t)dt, where

T is the overall duration of each experiment.

9.4.1 Experiments with the local communication system

We start by illustrating the experiments with the implementation employing
the local communication system described in Sec. 9.3.1. First, we show the
effect of the coupling strength σ on the system dynamics, and then discuss
how the robot density affects the synchronization error.

In all the experiments, the robots perform a random walk at a velocity
of v = 12 cm/s, with tf = 2 s and tr ∈ [0.1 s, 1 s]. Moreover, due to the
low throughput of the local communication system, ts has been selected as
ts = 0.7 s. This is a quite large value which constrains the duration of the
whole experiment, set to T = 2400 s, in order to observe a sufficiently large
number of oscillations of the chaotic systems associated to the robots.

Preliminarily to a systematic analysis of the system behavior, we discuss
two experiments with two different values of σ (σ = 0 and σ = 2), while
maintaining the robot density fixed, using N = 6 robots and an arena of
dimensions Ly1 = Ly2 = 30 cm. In these experiments, the dynamics of the

119

Algorithm 5: Implementation based on the virtual inter-robot
communication system: central station

Parameter : σ, N , r, tp, ts

Initialization : t = getCurrentTime
1 Perform linear calibration
2 while true do
3 if A message from robots is received then
4 Get xh by decoding the message
5 end
6 if (getCurrentTime − t) ≥ ts then
7 Track the robot positions
8 for i = 1 : N do
9 Compute Ni(th) as in Eq. (9.10)

10 Compute the coupling term γi(th) = σ
∑

j∈Ni(th)(xj,1 − xi,1)

11 Send γi to robot i

12 end
13 t = getCurrentTime
14 end
15 end

oscillators associated to the robot are ruled by Eqs. (9.7). After proving
here the viability of the approach with these dynamics, in the rest of the
chapter, we will then consider only Eqs. (9.8), as a master stability function
of type III represents the most challenging and general case.

Fig. 9.1(a) illustrates the time evolution of the state variables xi,1(t) for
σ = 0. Under this condition, the dynamical oscillators are decoupled from
each other, regardless of robot motion, such that each oscillator evolves
without synchronizing with the ones at the other units. Accordingly, the
value of the average synchronization error is large, ⟨δ⟩ = 11.6.

The time evolution of the state variables xi,1(t) in the second experiment,
where the coupling strength is fixed to σ = 2, is illustrated in Fig. 9.1(b).
After a transient, the state variables converge to a common trajectory dis-
playing a small synchronization error, ⟨δ⟩ = 0.99.

Next, we contrast the experimental results with the behavior of the
mathematical model discussed in Sec. 9.1. In the model, rather than per-
forming the motion step of the random walk in a single time interval, we
consider a smaller step size tq < τM and check after each interval of fixed

120

(a) (b)

Figure 9.1: Implementation based on the local communication system: tem-
poral evolution of the state variables xi,1(t) (experimental results on a team
of N = 6 Elisa-3 robots). (a) σ = 0. (b) σ = 2. The other parameters
are fixed as Ly1 = Ly2 = 30 cm, ts = 0.7 s, N = 6, tf = 2 s, v = 6 cm/s,
T = 2400 s.

length tq whether during its motion the agent finds an obstacle, which can
be one of the arena walls or another unit to be considered as a neighbor.
If no obstacle is encountered, then the full motion step of length vτM is
performed; otherwise, the agent stops, rotates to a random direction and,
then, continues its random walk.

For the purpose of comparison, we fix the model parameters so that the
agents move with a velocity of v = 0.6 at each time step tq = 0.1, whereas
τM = 2. The interaction radius used in Eq. (9.9) is fixed as r = 10 and the
parameters for the integration of Eqs. (9.3) as ∆t = 0.025 and ts = 0.7. In
addition, to emulate the characteristics of the local communication system,
in the calculation of the coupling terms the values of the state variables of
the neighboring units are encoded in 1 byte. Finally, a further parameter,
indicated as p and representing the reception probability of a message, is
introduced in the model to account for the possibility that a message is lost
during communication.

The results of the numerical simulations are illustrated in Fig. 9.2 which
shows the case σ = 2 for two different values of p: p = 1 in Fig. 9.2(a)
representing the ideal scenario where no messages are lost, and p = 0.7 in
Fig. 9.2(b) where the value of the reception probability has been empirically

121

(a) (b)

Figure 9.2: Implementation based on the local communication system: tem-
poral evolution of the state variables xi,1(t) obtained for σ = 2 (numeri-
cal results). (a) p = 1. (b) p = 0.7. The other parameters are fixed as
Ly1 = Ly2 = 30, ts = 0.7, N = 6, τM = 2, tr = 0, T = 2400, v = 0.6,
tq = 0.1.

tuned to match the experimental situation. When p = 1, we obtain a
synchronization error equal to ⟨δ⟩ = 0, whereas, when p = 0.7, ⟨δ⟩ = 1.56.
These results suggest that the non-zero synchronization error observed in
the experiment of Fig. 9.1(b) can be attributed to the loss of messages
during transmission between robots. Despite the non-idealities of the local
communication system, however, the chaotic oscillators associated with the
robots still reach a quite small synchronization error, demonstrating the
robustness of the interaction mechanisms.

We now move to illustrate the effect of different values of the robot
density. To tune this parameter, the dimensions of the arena, namely Ly1

and Ly2 , have been changed while keeping fixed the number of robots to six,
i.e., N = 6. For these experiments, the dynamics of the chaotic oscillators
are given by Eqs. (9.8), with the coupling strength set to σ = 2.

Figure 9.3 shows the synchronization error ⟨δ⟩ vs. agent density ρ ob-
tained from a series of experiments (black squares) contrasted with the re-
sults of numerical simulations for p = 1 (depicted in blue) and p = 0.7
(depicted in red). For the numerical simulations, the average error across
50 trials is presented for each robot density value, with the shaded area pro-
portional to the corresponding standard deviation. We notice that in the

122

Figure 9.3: Implementation based on the local communication system: syn-
chronization error ⟨δ⟩ vs. robot density ρ. Parameter values: ts = 0.7 s,
tf = 2 s, v = 6 cm/s, T = 2400 s, σ = 2.

ideal scenario of no loss of messages during robot interaction (p = 1) there
are two transitions (from incoherent behavior to synchronization and from
synchronization back to a disordered state), while in the experiments and in
the numerical simulations with p = 0.7 only the first transition appears. We
conclude that the loss of messages has a threefold effect: a shift of the point
where the first transition occurs, the absence of a second transition in the
considered range of values of the agent density, and a small, but non-zero,
synchronization error.

9.4.2 Experiments with the virtual inter-robot communica-
tion system

In this section, we illustrate the results obtained using the virtual inter-
robot communication system, as described in Sec. 9.3.2. In particular, we
first discuss the effect of the robot density on the synchronization error, and
then that of the interaction radius.

As in Sec. 9.4.1, the parameters regulating the robot random walk are
set to v = 12 cm/s, tf = 2 s and tr ∈ [0.1 s, 1 s]. The dynamics of the chaotic
oscillators associated to the robots is here given by Eq. (9.8) with σ = 2, to

123

Figure 9.4: Implementation based on the virtual inter-robot communication
system: synchronization error ⟨δ⟩ vs. robot density ρ. Parameter values:
ts = 0.1 s, tf = 2 s, v = 6 cm/s, T = 600 s, σ = 2.

study the dynamic behavior characterizing a system with a master stability
function of type III. Finally, ts is selected according to the considerations
discussed in Sec. 9.3.2, that is, ts = 0.1 s > td.

In this set of robot experiments, similarly to the experimental campaign
illustrated in Sec. 9.4.1, we adjust the robot density by changing the dimen-
sions of the arena, without changing the number of robots N . During the
experiments, each lasting T = 600 s, the interaction radius is kept fixed to
r = 10 cm. Notice that, in this case, a smaller duration T for the experi-
ments can be selected in virtue of the smaller value of ts, which allows to
have a longer trajectory of the dynamical oscillators associated to the robots
in a shorter time window.

Also in this case, the experimental results are compared with the out-
comes of the mathematical model simulating the scenario of Sec. 9.3.2. The
model parameters have been set such that the units perform a movement
with a velocity of v = 0.6 at each time step tq = 0.1. Eqs. (9.3) are integrated
with ∆t = 0.025, and the neighborhood is calculated from Eq. (9.10). The
remaining parameters are set as in the robot experiments, namely τM = 2
and ts = 0.1. In contrast to the scenario discussed in Sec. 9.4.1, here there

124

Figure 9.5: Implementation based on the virtual inter-robot communication
system: synchronization error ⟨δ⟩ vs. interaction radius r. Parameter values:
Ly1 = Ly2 = 40 cm, ts = 0.1 s, N = 5, tf = 2 s, v = 6 cm/s, T = 420 s,
σ = 2.

is no need to introduce a parameter to account for the loss of messages, as,
using the virtual inter-robot communication system, this appears to be a
negligible factor.

The results are illustrated in Fig. 9.4, which shows the experimental syn-
chronization error ⟨δ⟩ vs. agent density ρ (black squares) contrasted with
the results of the numerical simulations (the blue curve represents the aver-
age synchronization error across 50 trials for each value of the robot density,
while the shaded area is proportional to the standard deviation). The anal-
ysis of these results reveals two important differences with the case dealt
with in Sec. 9.4.1. First, in the range of values of ρ where synchronization
is attained, the synchronization error is smaller than the previous case: for
instance in correspondence of ρ = 6.7 × 10−3 cm−2 we obtain ⟨δ⟩ = 0.32.
Second, the two transitions characterizing synchronization in class III sys-
tems are clearly visible in Fig. 9.4. Altogether, these findings reinforce the
conclusion that avoiding or at least reducing the loss of messages in inter-
robot communication is important to closely reproduce the behavior of the
theoretical model of synchronization in moving agents.

125

Finally, we illustrate the effect of the interaction radius r. To this pur-
pose, we consider a team of N = 5 robots moving in an arena of dimensions
Ly1 = Ly2 = 40 cm, corresponding to ρ = 3.1 × 10−3 cm−2, that interact
with a coupling strength σ = 2 for a time window T = 420 s.

The results are illustrated in Fig. 9.5, which shows the synchronization
error ⟨δ⟩ vs. the interaction radius r for the robot experiments (black cir-
cles) and the numerical simulations (the continuous blue line is the average
of 50 trials for each value of r, while the shaded area is proportional to
the standard deviation). Also in this case, the synchronization error first
decreases, reaches a region where the oscillators are fully synchronized, and
then increases again.

Overall, the experiments described in this section yield the conclusion
that synchronization can be either induced or hampered by tuning the in-
teraction radius r or the robot density ρ. Such an experimental observation
corroborates the theoretical expectations, as, under the assumption of very
fast motion [23], both r and ρ affect the probability that two robots interact
at some time. Specifically, the interaction occurs if the robots lie in the area
delimited by the radius r of their communication system. Thus, the proba-
bility of interaction in a Ly1 × Ly2 arena is given by pint = πr2

Ly1 Ly2
. Taking

into account that agent density is ρ = N/(Ly1Ly2), one gets the well-known
expression pint = πr2ρ

N . Therefore, synchronization ultimately depends on
the probability of interaction, pint, as expected.

In this chapter, we have introduced a robotic system for the study of
synchronization of chaotic oscillators associated with mobile agents, start-
ing from the theoretical model introduced in [23]. This system can be useful
both for studying the applicability of the mathematical model in a real sys-
tem where there are also real-world factors often overlooked in simulations
and for performing validations of the fundamental interaction mechanisms in
real complex systems that have some uncontrollable parameters. We have
proposed two different implementations of the mechanisms of interaction
among the robots. The first was the local communication system on board
the robots, which allows the control law to be fully distributed. However,
this approach has the drawback of limited bandwidth. Indeed, while the
robots were able to reach synchronization, the full repertoire of dynamic

126

behaviors of the original model could not be observed. To demonstrate that
a local communication system with a larger bandwidth can overcome the
observed limitations, a second implementation based on a virtual commu-
nication system among the robots has been investigated. This system sim-
ulates interactions among robots through centralized communication with
a computer via a radio link and a camera monitoring the arena where the
robots move. Using this approach, we have been able to reproduce the dy-
namic behaviors of the original model. Additionally, we have shown that
this method allows the communication radius to become a controllable pa-
rameter, proving that the key factor for synchronization is the interaction
probability.

In the next chapter, we will focus on the phenomenon of the response
to synchronization which involves two types of agents. The first type of
agent is capable of synchronizing directly with other units through their
interactions. In contrast, the second type of agent requires interaction with
the first type to achieve synchronization among its kind.

127

Chapter 10

Response to synchronization
in a robot team

This chapter concludes the experimental part of this thesis work. Here
we validate the mathematical model concerning the response to synchro-
nization of fireflies using a team of e-puck2 robots. Validating the model’s
applicability is crucial, as it shows that units that are not able to reach
synchronization on their own can still achieve synchronization through in-
teractions with agents that are capable of doing so. Based on the findings
discussed in [22], we divide the population into males and females with dif-
ferent characteristics.

10.1 Response to synchronization in fireflies

The flashing of fireflies is a paradigmatic example of synchronization involv-
ing many interacting individuals. However, a closer analysis of the firefly
system reveals distinct oscillatory behaviors between males and females, in-
dicating that the system is composed of two different types of units. In this
context, the concept of response to synchronization is introduced. This phe-
nomenon is observed in the Photinus carolinus firefly species [62], where real
females demonstrate an enhanced response to synchronous signals emitted
by virtual males that share the same oscillatory characteristics as real ones.

In [80], both male and female fireflies are modeled using oscillators, with
each male represented by a bursting oscillator (BO) and each female by a

128

non-bursting oscillator (NBO). These oscillators show an active phase whose
duration is affected by the interaction with other units and a resting phase
whose duration remains constant.

We begin by describing the dynamics of these oscillators in isolation.
For NBOs, the active phase consists of a long charging phase lasting Tc,f ,
followed by a short discharging phase lasting Td,f . In contrast, the active
phase of the BOs is characterized by nm bursts, each with a charging time
Tc,m and a discharging time Td,m. Thus, the total duration of the active
phase in a BO is nm(Tc,m + Td,m). Following the active phase, both BOs
and NBOs enter a resting phase, lasting Ts,f for NBOs and Ts,m for BOs, in
which the state variable is kept at a constant value Vl. The total duration
of a complete cycle (active phase + resting phase) is denoted by Tp,m for
the BOs and Tp,f for the NBOs. In both oscillators, the charging phase
ends when the state variable vi(t) reaches the value Vu = 2

3VM , whereas the
discharging phase ends when vi(t) = Vl = 1

3VM , with VM being a constant
value. When the oscillator is isolated, its dynamics is described by the
following equation:

v̇i(t) =
[

ln 2
Tc,i

(VM − vi(t)) ϵi(t) − ln 2
Td,i

(1 − ϵi(t))
]

yi(t)

yi(t) =
Mi(t)∑
k=0

[H(t − kTp,i − ∆Φi) − H(t − (k + 1)Tp,i + Ts,i − ∆Φi)]
(10.1)

where Mi(t) is an integer obtained from the integer division of t by Tp,i, H

is the Heaviside step function, ∆Φi is a phase delay, and the parameters
Tc,i, Td,i, Ts,i, and Tp,i depend on whether the oscillator i is a BO or an
NBO. Specifically, these parameters correspond to Tc,m, Td,m, Ts,m, and
Tp,m for a BO, and to Tc,f , Td,f , Ts,f , and Tp,f for an NBO. The function
yi(t) determines the phase in which the oscillator is: when yi(t) = 1, the
oscillator is in the active phase, whereas when yi(t) = 0, it is in the silent
phase. During the active phase, the dynamics of vi(t) is constituted by two
terms: the first that rules the charging phase, and the second that regulates
the discharging term. The contribution of these terms is controlled by the
binary variable ϵi(t), which describes the current state of the oscillator.
Specifically, when ϵi(t) = 0, the oscillator is in the discharging phase and the
unit emits a flash, whereas when ϵi(t) = 0, the oscillator is in the charging

129

or in the resting phase, during which no flash is emitted. The temporal
evolution of ϵi(t) is given by:

ϵi(t+) = ϵi(t) − ϵi(t)H(vi(t) − Vu)ϵi(t) + (1 − ϵi(t))H(Vl − vi(t)) (10.2)

which indicates that ϵi(t) switches to 0 when vi(t) reaches the upper thresh-
old Vu, and switch to 1 when vi(t) reaches the lower threshold Vl.

In Fig. 10.1 shows the temporal behavior of vi(t) for both an isolated BO
(Fig. 10.1(a)) and NBO (Fig. 10.1(b)) oscillator, together with the binary
function ϵi(t) and the associated flashing event (Fig. 10.1(c) for BO and
Fig. 10.1(d) for NBO) denoted by a rectangular mark displayed each time a
flash is emitted.

When N the oscillators interact with each other, the equations describing
the dynamics become the following:

v̇i(t) =
[

ln 2
Tc,i

(VM − vi(t)) ϵi(t) − ln 2
Td,i

(1 − ϵi(t)) + γi(t)
]

zi(t)

zi(t) =H(t − ∆Φi) +
M ′

i(t)∑
k=1

[H(t − tk,i − Ts,i) − H(t − tk,i)]
(10.3)

where γi(t) is the coupling term, zi(t) is a function that determines the
oscillator phase when coupled (zi(t) = 0 during the resting phase, zi(t) = 1
during the active phase) and tk,i is the time instant in which, for the k−th
time, the following conditions are satisfied:

• mod(ηi(t), ni) = 0

• vi(t) = Vl

• ϵi(t) = 0

with ηi(t) being the number of peaks reached by vi(t) in the time interval
[0, t], and ni = nm if i is a BO, 1 otherwise. The term M ′(t) indicates
the number of times these three conditions are satisfied in the time interval
[0, t]. Notice that in this case, the oscillator phase is not determined by the
function y(t) since, due to the coupling, the complete cycle duration of the
oscillator no longer has a constant duration.

The coupling term is expressed as:

γi(t) = θiσi

N∑
j=1

aij (1 − ϵj(t)) , (10.4)

130

where σi is the coupling strength, aij , i, j = 1, . . . , N , are the entries of the
adjacency matrix of the interaction graph, assumed to be undirected and
fully connected, and θi is a term that assumes the value of 1 if i is a BO,
−1 otherwise, meaning that coupling term increases the discharging time
if i is BO or the charging time if i is an NBO. Notice that the coupling is
defined in terms of the variable ϵ(t), in particular when ϵj(t) = 0, i.e., the
j-th oscillator is flashing, the latter influences the i-th one.

In the mathematical model, two scenarios have been considered: one
where the oscillators are stationary and interact through an unweighted
adjacency matrix and another where the oscillators are mobile and interact
through a weighted time-varying interaction graph, with the weights depend-
ing on the distance between agents. In both cases, the coupling strength is
uniform across all agents, i.e., σi = σ ∀i = 1, . . . , N . In this work, we focus
on a scenario where the units are stationary and interact through an un-
weighted adjacency matrix, but the coupling strength depends on the type
of oscillator: σi = σm if i is a BO and σi = σf if i is an NBO.

In [80], several configurations of oscillators have been examined. Here,
we focus on the following four configurations:

1. Mutually Coupled NBOs: In this scenario, N NBOs interact among
themselves.

2. Mutually Coupled BOs: This configuration considers N BOs interact-
ing among themselves.

3. Master (BO) - Slave (NBO): In this configuration, both BOs and
NBOs are present. The BOs are identical but do not interact with
other units (σm = 0), whereas the NBOs interact among themselves
and are influenced by the BOs (σf ̸= 0). Notice that the condi-
tion σm = 0 implies that the dynamics of the BOs is described by
Eq. (10.1).

4. Mutually Coupled BOs and NBOs: Here, both BOs and NBOs interact
with each other and their behavior is governed by Eq. (10.3).

According to the mathematical model, BOs can synchronize among them-
selves, NBOs cannot, and when BOs and NBOs are mingled, BOs can still

131

synchronize and their synchronization induces the response of NBOs. Syn-
chronization in this context refers not to identical trajectories but to the
near alignment of active phases and silent times across oscillators of the
same type.

(a) (b)

(c) (d)

Figure 10.1: Dynamics of a BO oscillator (a) and the corresponding evolu-
tion of ϵi(t) (c). Dynamics of an NBO oscillator (b) and the corresponding
evolution of ϵi(t) (d).

10.2 Robotic implementation

For the robotic implementation, we employ the e-puck2 robots equipped
with the range & bearing board and the Pi-puck module, all detailed in
Sec. 6.2. Specifically, in this setup, the three modules interact according
to the WiFi for Pi-puck and I2C for e-puck2 configuration, described in
Sec. 6.2.3. The experimental setup, shown in Fig. 10.2, consists of N robots

132

placed in an arena of hexagonal shape, with each side measuring Ly = 60 cm.
The setup also includes a computer that communicates with the robots via
WiFi to initiate experiments and collect data from them at the end of each
experiment.

Figure 10.2: Experimental setup including N robots within a hexagonal
arena with sides measuring Ly = 60 cm, and a computer that interacts
with the robots via WiFi at the beginning and at the conclusion of each
experiment to gather the robots information.

During the experiments, the robots remain stationary and, based on the
values of the parameters (θi, σi, Tc,i, Td,i, Ts,i, VM , ni, ∆Φi) loaded from a
file stored on their memory, they are assigned either to BO, i.e., “male”, or
to NBO, i.e., “female”. At each time step th = hts (h = 1, 2, . . .), each robot
updates its state variable by performing an integration step of Eq. (10.3),
by using the 4th-order Runge-Kutta method with a fixed step size of ∆t.
The robot then updates the value of ϵi(th) by using Eq. (10.2), and based on
this value, it controls 4 green LEDsaaa (activated if ϵi(th) = 0, deactivated
otherwise) and broadcast its current value of ϵi(th). Both vi(th) and ϵi(th)
are recorded in a file stored inside the memory of each robot, which will be
transmitted via Wi-Fi to the computer at the end of each experiment, to
post-process the produced data.

To prevent time drift during integration, before starting each experiment,
the computer sends a file to the robots containing an absolute reference time,
tref . This ensures that, at the beginning of the experiment, the robots,

133

equipped with a universal clock, start their integration process once t ≥
tref . As a result, the robots will perform the integration steps at times
t = tref + hts for h = 1, . . . , T/ts, where T denotes the total duration of the
experiment.

In the mathematical model, the interaction graph is fully connected. On
the other hand, in the experiment the neighbor detection relies on local
communication provided by the range & bearing board, with a transmis-
sion power set to enable communication between robots up to a distance of
40 [cm], to minimize battery consumption. As discussed in Sec. 6.2.2, this
board is sensitive to light conditions and to interference caused by the prox-
imity sensors and the TOF sensor integrated into the e-puck2 main board.
To mitigate these issues, the sensors are calibrated at the beginning of each
experiment to account for ambient light conditions, the sampling frequency
of the proximity sensors is reduced, and the TOF sensor is deactivated.

Given that the communication system is not immune to message loss and
message corruption, the neighborhood of the robot i is defined as follows:

Ni(th) = {j : a valid message from j is received by i in t′ ∈]th−1, th]}

where “valid” refers to messages that are not corrupted due to interference
or that do not come from previous time steps or by the robot itself. To
ensure the reliability of communication, the robots broadcast messages con-
taining information that allows the receiving robots to check their validity.
Specifically, the message, consisting of two bytes, is structured as follows:
the most significant byte contains the robot ID, i, which helps prevent the
receiving robot from considering the same neighbor information multiple
times during an integration step; the least significant byte is divided into
4-bit segments: the upper segment containing ri(th) = mod(h, 5), and the
lower one containing ϵi(th).

Each time a robot i receives a message from another unit j, it performs
a set of checks, including:

• verifying that the message is not corrupted (for example, if ϵj(th) is
not equal to 0 or 1, the message is considered corrupted because ϵj(th)
can assume only values of 0 or 1)

• ensuring that the message comes from the current time step, i.e.,
ri(th) = rj(th)

134

• checking that the sender j does not already belong to Ni(th).

If a message does not meet all these conditions, it will be neglected by the
receiver. As a result, there is no guarantee that the adjacency matrix de-
scribing the interaction graph among the robots is time-constant and undi-
rected. Consequently, the value of aij in Eq. (10.3) becomes time-varying,
with aij(th) = 1 if and only if j ∈ Ni(th). All the steps here described
are summarized in Algortihm 6, where << 4 (>> 4) indicates the shift on
the left (right) of 4 bits, and the operation ”x & 0x0f” takes the 4 least
significant bits of the 1-byte variable x.

Algorithm 6: Implementation of the response to the synchroniza-
tion: robot i

Parameter : i, Vu, Vl, Tc,i, Td,i, Ts,i, ni, tf , ts, σi, θi, ∆t

Initialization : vi(th) = rand, ϵi(th) = 1
1 Do the light calibration
2 Read the value of tref from the file sent by the computer
3 t = tref + ts

4 while true do
5 if getCurrentTime ≥ tref then
6 msg[0] = i

7 msg[1] = (ri(th) <<4) | ϵ(th)
8 Broadcast msg to neighboring units via the range & bearing board
9 Check IR sensors

10 if messageReceivedFromRobot == true then
11 j = MsgReceived[0]
12 ϵj(th) = MsgReceived[1] & 0x0f
13 nj(th) = MsgReceived[1] >> 4
14 if ((ϵj(th) == 1 | ϵj(th) == 0) & ri(th) = rj(th) & j /∈ Ni(th)) then
15 Update Ni(th)
16 end
17 end
18 if (getCurrentTime − t) ≥ ts then
19 Compute the coupling term γi(th) = θiσi

∑
j∈Ni(th)(1 − ϵj(th))

20 Update vi(th) through the integration algorithm
21 Update ϵi(th)
22 Write the values of vi(th) and ϵi(th) in a file
23 Reset the coupling term and Ni(th)
24 t = getCurrentTime
25 end
26 end
27 end

135

Selection of ts

The time ts must be chosen large enough to allow the robots to detect their
neighbors. However, it cannot be too large, as the use of the range & bear-
ing board is a significant drain on the battery. To determine this value,
we conducted experiments using two robots communicating at a distance
d = 15 cm, testing different values of ts. During these experiments, the
robots continuously sent messages, and, at intervals of ts, they recorded a
value of 1 in a file if a message was received within the interval, or 0 other-
wise. These files were then processed to compute the probability of message
reception. The outcomes of these experiments are shown in Fig. 10.3(a),
which depicts the likelihood of receiving messages as a function of ts. Based
on these findings, we select ts = 500 ms which provides a message reception
probability p = 0.85. Notice that this probability refers to the case in which
communication occurs between two robots. Indeed, when the number of
robots, denoted by N , increases, the value of p decreases. This is shown
in Fig. 10.3(b). We also investigated the impact of the distance among
the robots on the communication probability. For this purpose, we con-
ducted experiments by using N = 2 robots and an elementary time step
of ts = 500 ms; as shown in Fig. 10.3(c), the probability remains constant
for distances from d = 10 cm to d = 35 cm, after which it starts to de-
crease, reaching zero at d = 45 cm. Let us observe that this behavior is
expected, given that the transmission power of the robots is configured to
allow communication up to a maximum distance of approximately 40 cm.

(a) (b) (c)

Figure 10.3: Reception probability p as function of ts (a), N (b), and d (c).

136

10.3 Results

Here we show the results obtained from the experiments conducted by using
the robotic implementation described in the previous section. Specifically,
we carried out four types of experiments: the first shows that the NBOs
are not able to synchronize in the absence of BOs; the second demonstrates
that BOs can achieve synchronization; the third characterizes the response
of the NBOs to the BOs synchronization in a master-slave configuration;
and the fourth one investigates the NBOs response to BO synchronization
in a mutually coupled BO-NBO configuration.

Throughout all the experiments, the parameters have been selected as
follows: Tc,m = 0.5, Td,m = 0.2, Ts,m = 5.8, nm = 6, Tc,f = 0.6, Td,f = 0.1,
Ts,f = 3, and ∆t = 0.05. In addition, VM has been set equal to 9, resulting
in Vl = 3 and Vu = 6.

In the first experiment, lasting T = 1000 s, N = 2 NBOs interact at
a distance d = 20 cm. Each oscillator is initialized to a different initial
condition and, at each time step th, it integrates Eq. (10.3) with σf = 2.
Fig. 10.4 shows the dynamics of the oscillators and the corresponding flashes,
revealing that, despite starting from very similar initial conditions, the two
oscillators do not synchronize. This demonstrates that, as expected from
the mathematical model, NBOs cannot synchronize on their own.

For the second experiment, a group of N = 6 BOs is arranged in a
hexagonal formation with a radius dr = 25 cm, and interact with each
other with a coupling strength σm = 0.05. The experiment lasts T = 800 s
and, as shown in Fig. 10.5(a), the system reaches synchronization despite a
reception probability estimated to be ∼ 0.5, according to the results shown
in Fig. 10.3(b). This result is compared to the numerical simulation where
we introduced the parameter p to emulate the message loss characterizing
the local communication provided by the range & bearing board. We can
observe that the results reflect those obtained from experiments, as shown
in Fig. 10.5(b).

The third set of experiments involves N = 8 oscillators, consisting of 6
BO and 2 NBO units. In particular, the BOs are arranged in a hexagonal
formation, with the NBOs placed at 3 cm from the center of the hexagon,
facing each other, as shown in Fig. 10.6(a). In each run, the distance be-

137

tween the center and the vertices of the hexagon, denoted by dr, is kept
constant, but it varies across experiments, increasing incrementally from
one to the next. The BOs start from the same initial condition and do not
interact with any other units (σm = 0). Consequently, they remain syn-
chronized throughout the entire experiment. It is important to note that
synchronization does not arise from coupling but is due to the fact that the
oscillators are identical and share the same initial condition. The NBOs,
on the other hand, interact with each other and are susceptible to the BOs
state, with a coupling strength of σf = 2. The synchronization among the
NBOs is quantitatively evaluated using the synchronization error, computed
as follows:

δ(t) = 1
|Cf |

∑
i∈Cf

∑
j∈Cf ,

j ̸=i

|vi(t) − vj(t)| (10.5)

where Cf is the set identifying the NBOs. Fig. 10.6(b) shows the average
synchronization error among the NBOs computed over the time interval[

4
5T, T

]
. We can appreciate a low synchronization error for many values of

dr, i.e., up to dr = 50 cm. For dr = 55 cm, however, the synchronization
error is high, indeed the NBOs, being very far from the BOs, do not detect
the latter. The dynamics of the oscillators and corresponding flashes for
dr = 20 cm and for dr = 55 cm are shown in Fig. 10.6(c) and Fig. 10.6(d),
respectively. We notice that, for dr = 20 cm, the NBOs respond to the
synchronization and synchronize between themselves in a very short time.

The fourth experiment also includes N = 8 oscillators: 6 BOs arranged in
a hexagonal formation with radius dr = 25 cm and 2 NBOs placed 2 cm from
the center facing each other. We hereby consider a scenario in which BOs and
NBOs start from different initial conditions and interact among themselves.
Specifically, the BOs interact with a coupling strength of σm = 0.5, while the
NBOs have a coupling strength of σf = 2. The response to synchronization
in NBOs occurs once the BOs synchronize among themselves, i.e., about at
t ∼ 1000 s or 10 bursts of the BOs, as shown in Fig. 10.7.

138

Figure 10.4: Experimental results: 2 interacting NBOs. Dynamics and
corresponding flashes of 2 NBOs interacting at a distance of d = 20 cm.
Despite starting from very close initial conditions, the NBOs do not achieve
synchronization.

(a) (b)

Figure 10.5: Experimental and numerical results: 6 interacting BOs. (a)
Dynamics and corresponding flashes of N = 6 BOs arranged in a hexagonal
formation with a radius dr = 25 cm. (b) Results obtained from a simulation
in which a probability of message reception p = 0.5 is considered. In both
cases, a coupling strength σm = 0.05 has been used.

139

(a) (b)

(c) (d)

Figure 10.6: Experimental setup and results: 6 BOs (Masters) and 2 NBOs
(Slaves). (a) Experimental setup used for the experimental investigation of
the response of 2 NBOs, placed at 3 cm from the center of the hexagonal for-
mation made of 6 synchronous BOs. (b) Synchronization error of the NBOs
as a function of the hexagon radius dr. (c) Dynamics and corresponding
flashes of the oscillators for dr = 20 cm, showing that the NBOs respond to
synchronization after a short time. (d) Dynamics and corresponding flashes
of the oscillators for dr = 55 cm, showing that NBOs do not synchronize.

140

Figure 10.7: Experimental results: 6 BOs and 2 NBOs. The experiment
employs the same configuration shown in Fig. 10.1 with dr = 25 cm. In
this experiment all the oscillators interact with each other, the BOs with a
coupling strength of σm = 0.5 and the NBOs with σf = 2. Each oscillators
start from different initial conditions. The figure shows the time evolution
of the oscillators’ state variables and their corresponding flashes.

In this chapter, we have discussed the experimental validation of the
synchronization phenomenon observed in fireflies. As already mentioned in
the introduction, validating the model’s applicability is crucial, as it demon-
strates that units not able to achieve synchronization independently can still
do so through interactions with agents that can synchronize. For the robotic
implementation, we have relied on a distributed control action based solely
on the local communication system provided by the range & bearing board.
We have considered two scenarios: one where only BO interact with each
other, and another where BOs act as leaders for NBOs, who then interact
with both the BOs and each other. Despite the hardware limitations, we
have successfully reproduced the dynamics predicted by the mathematical
model, demonstrating the model robustness.

141

Chapter 11

Conclusions

In this thesis, we investigated the theoretical and experimental aspects of
complex systems composed of interacting units, encompassing both con-
trolled and emergent collective behaviors.

Our approach focuses on utilizing properties of the interaction graph
to develop control strategies that induce states where agents divide into
groups and align their behaviors within each group. In this context, one
of the main contributions of this thesis is the development of two commu-
nication protocols for inducing multiconsensus, tailored for different types
of agent dynamics: single-integrator and second-order systems. Unlike con-
ventional methods, our protocols leverage the absolute state information of
the agents rather than diffusive coupling. While this reliance on absolute
measurements could be seen as a limitation, it is feasible in applications
where such measurements are available. We proved this by validating our
first communication protocol using a team of robots, showing that, through
a virtual global positioning system, we are able to address the rendezvous
problem, in which agents belonging to the same group find an agreement
on the point where to meet. We demonstrated also that, despite the strict
constraints on the interaction network topology (connected graph for the
first protocol, strongly connected digraph for the second), our protocols al-
low steering the system towards a desired solution on the multiconsensus
manifold by pinning just a single node and using a single leader. This rep-
resents a significant advancement in reducing the complexity and resources
needed for control in large-scale systems. In addition, to address the previ-

142

ously unresolved problem of shaping cluster synchronization in multi-agent
systems, we introduced a novel control strategy for shaping cluster synchro-
nization, exploiting the concept of spectral blocks. This strategy provides
unprecedented control over the synchronizability of each cluster, including
the sequencing of cluster synchronization as coupling strength varies.

Besides validating our communication protocol, we exploited the robotic
platform to conduct experiments in settings where we could precisely adjust
parameters that are typically beyond control. This approach highlighted not
only the platform’s versatility but also opened new pathways for managing
and adapting otherwise uncontrollable variables, significantly expanding our
research contributions. In this context, we conducted experiments aiming
at the exploration of collective behaviors emerging from the local interac-
tion among the agents, ranging from the aggregation induced by face-to-face
interaction to the response to synchronization phenomenon. Indeed, in this
context, the control does not rely on the action on the interaction topology
or in the agents’ dynamics, but on other parameters which indirectly affect
the agents’ interaction, such as the agent density. These validations required
the use of two communication systems: local and virtual communication. In
most cases, local communication proved sufficiently effective in replicating
the main features of the mathematical models. This demonstrated that the
models are robust enough to keep their primary characteristics even in the
presence of real-world factors. However, to exactly replicate the predicted
behaviors, we employed the virtual communication system, showing that
robots equipped with a more refined local communication system can pre-
cisely replicate the model. These findings demonstrate that, in real-world
scenarios, the interaction among agents has a more significant impact on the
emergence of collective behavior than the other real-world factors. Summa-
rizing, this approach underscores the flexibility and robustness of the pro-
posed models in achieving desired coordination outcomes, highlighting the
key role of the agents’ interaction. In addition, the robotic implementation
of complex system models paves the way for other applications requiring
distributed control, highlighting the significant relevance of the units’ inter-
action.

Looking forward, this thesis opens several promising avenues for future
research. Studying the dynamic behavior in multi-agent systems with net-

143

work topologies resembling spectral blocks could provide deeper insights into
the interplay between network structure and agent behavior. Further exper-
imental work with advanced robotic platforms will be essential to address
the hardware limitations encountered and to refine our control strategies for
real-world applications. Finally, another promising direction is to leverage
the robotic implementations used for validating the mathematical models
to explore other potential real-world applications or some variation, such as
the response to synchronization in which the units are in motion or in which
the units interact according to different configurations.

Overall, this thesis contributes significantly to the understanding and
control of collective behaviors in multi-agent systems by highlighting the
critical role of agent interactions. By combining rigorous mathematical
modeling with experimental validation, we have provided a comprehensive
framework that can be applied to a wide range of systems and scenarios
involving local interactions.

144

Publications

• C. Tomaselli, L. V. Gambuzza, F. Sorrentino, and M. Frasca. Multi-
consensus induced by network symmetries. Systems & Control Letters,
181:105629, 2023.

• C. Tomaselli, L. V. Gambuzza, F. Sorrentino, and M. Frasca. Control
of multiconsensus in multi-agent systems based on eigenvector central-
ity. Automatica, 164:111638, 2024.

• C. Tomaselli, L. V. Gambuzza, G.-Q. Sun, S. Boccaletti, and M.
Frasca. Taming cluster synchronization. arXiv preprint arXiv:
2407.10638 and submitted to Physical Review Letter, 2024.

• C. Tomaselli, D. C. Guastella, G. Muscato, M. Frasca, and L. V. Gam-
buzza. A multi-robot system for the study of face-to-face interaction
dynamics. IEEE Robotics and Automation Letters, 8(10):6715–6722,
2023.

• C. Tomaselli, D. C. Guastella, G. Muscato, L. Minati, M. Frasca, and
L. V. Gambuzza. Synchronization of moving chaotic robots. IEEE
Robotics and Automation Letters, 2024.

• C. Tomaselli, G. M. Ramírez-Ávila, L. V. Gambuzza, M. Frasca, T.
Carletti, and E. Tuci. Implementation of the response to Synchroniza-
tion in e-puck2 Robots. Submitted to Proceedings of WIVACE2024,
2024.

145

Bibliography

[1] M. A. Aguiar and A. P. S. Dias. Synchronization and equitable par-
titions in weighted networks. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 28(7), 2018.

[2] S. Ahmadizadeh, I. Shames, S. Martin, and D. Nešić. On eigenvalues
of laplacian matrix for a class of directed signed graphs. Linear Algebra
and its Applications, 523:281–306, 2017.

[3] M. Alhafnawi, E. R. Hunt, S. Lemaignan, P. O’Dowd, and S. Hauert.
Deliberative democracy with robot swarms. In 2022 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages
7296–7303. IEEE, 2022.

[4] M. Andreasson, D. V. Dimarogonas, H. Sandberg, and K. H. Johans-
son. Distributed control of networked dynamical systems: Static feed-
back, integral action and consensus. IEEE Transactions on Automatic
Control, 59(7):1750–1764, 2014.

[5] A. Barciś, M. Barciś, and C. Bettstetter. Robots that sync and swarm:
A proof of concept in ros 2. In 2019 Int Symposium on Multi-Robot
and Multi-Agent Systems (MRS), pages 98–104. IEEE, 2019.

[6] A. Barciś and C. Bettstetter. Sandsbots: Robots that sync and swarm.
IEEE Access, 8:218752–218764, 2020.

[7] A. Bayani, F. Nazarimehr, S. Jafari, K. Kovalenko, G. Contreras-
Aso, K. Alfaro-Bittner, R. J. Sánchez-García, and S. Boccaletti. The
transition to synchronization of networked systems. Nature Commu-
nications, 15(1):4955, 2024.

146

[8] J. Bierkens and A. Ran. A singular M-matrix perturbed by a non-
negative rank one matrix has positive principal minors; is it D-stable?
Linear Algebra and its Applications, 457:191–208, 2014.

[9] S. Boccaletti, D.-U. Hwang, M. Chavez, A. Amann, J. Kurths, and
L. M. Pecora. Synchronization in dynamical networks: Evolution
along commutative graphs. Physical Review E, 74(1):016102, 2006.

[10] S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, and C. Zhou. The
synchronization of chaotic systems. Physics reports, 366(1-2):1–101,
2002.

[11] S. Boccaletti, A. N. Pisarchik, C. I. Del Genio, and A. Amann. Syn-
chronization: from coupled systems to complex networks. Cambridge
University Press, 2018.

[12] J. Buck and E. Buck. Synchronous fireflies. Scientific American,
234(5):74–85, 1976.

[13] T. Carletti and D. Fanelli. Theory of synchronisation and pattern
formation on time varying networks. Chaos, Solitons & Fractals,
159:112180, 2022.

[14] P. Chvykov, T. A. Berrueta, A. Vardhan, W. Savoie, A. Samland,
T. D. Murphey, K. Wiesenfeld, D. I. Goldman, and J. L. England.
Low rattling: A predictive principle for self-organization in active col-
lectives. Science, 371(6524):90–95, 2021.

[15] M. Crosscombe, J. Lawry, S. Hauert, and M. Homer. Robust dis-
tributed decision-making in robot swarms: Exploiting a third truth
state. In 2017 IEEE/RSJ international conference on intelligent robots
and systems (IROS), pages 4326–4332. IEEE, 2017.

[16] S. Danø, P. G. Sørensen, and F. Hynne. Sustained oscillations in living
cells. Nature, 402(6759):320–322, 1999.

[17] G. De Pasquale and M. E. Valcher. Tripartite and sign consensus
for clustering balanced social networks. In 2021 American Control
Conference (ACC), pages 3056–3061. IEEE, 2021.

147

[18] G. De Pasquale and M. E. Valcher. Consensus for clusters of
agents with cooperative and antagonistic relationships. Automatica,
135:110002, 2022.

[19] C. Dimidov, G. Oriolo, and V. Trianni. Random walks in swarm
robotics: an experiment with kilobots. In International conference on
swarm intelligence, pages 185–196. Springer, 2016.

[20] M. Dorchain, R. Muolo, and T. Carletti. Pattern reconstruction
through generalized eigenvectors on defective networks. Europhysics
Letters, 144(1):11004, 2023.

[21] X. Duan, S. Jafarpour, and F. Bullo. Graph-theoretic stability condi-
tions for metzler matrices and monotone systems. SIAM Journal on
Control and Optimization, 59(5):3447–3471, 2021.

[22] L. F. Faust. Natural history and flash repertoire of the synchronous
firefly photinus carolinus (coleoptera: Lampyridae) in the great smoky
mountains national park. Florida Entomologist, pages 208–217, 2010.

[23] M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, and S. Boccaletti.
Synchronization of moving chaotic agents. Physical Review Letters,
100(4):044102, 2008.

[24] C. Fu, Z. Deng, L. Huang, and X. Wang. Topological control of
synchronous patterns in systems of networked chaotic oscillators.
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics,
87(3):032909, 2013.

[25] H. Fujisaka and T. Yamada. Stability theory of synchronized motion
in coupled-oscillator systems. Progress of theoretical physics, 69(1):32–
47, 1983.

[26] D. Gale, H. W. Kuhn, and A. W. Tucker. Linear programming and
the theory of games. Activity analysis of production and allocation,
13:317–335, 1951.

[27] L. Gambuzza, L. Minati, and M. Frasca. Experimental observations
of chimera states in locally and non-locally coupled stuart-landau os-
cillator circuits. Chaos, Solitons & Fractals, 138:109907, 2020.

148

[28] L. V. Gambuzza and M. Frasca. A criterion for stability of cluster
synchronization in networks with external equitable partitions. Auto-
matica, 100:212–218, 2019.

[29] L. V. Gambuzza and M. Frasca. Distributed control of multiconsensus.
IEEE Transactions on Automatic Control, 66(5):2032–2044, 2020.

[30] L. V. Gambuzza, M. Frasca, and V. Latora. Distributed control of
synchronization of a group of network nodes. IEEE Transactions on
Automatic Control, 64(1):365–372, 2018.

[31] L. V. Gambuzza, M. Frasca, F. Sorrentino, L. M. Pecora, and S. Boc-
caletti. Controlling symmetries and clustered dynamics of complex
networks. IEEE Transactions on Network Science and Engineering,
8(1):282–293, 2020.

[32] D. Ghosh, M. Frasca, A. Rizzo, S. Majhi, S. Rakshit, K. Alfaro-
Bittner, and S. Boccaletti. The synchronized dynamics of time-varying
networks. Physics Reports, 949:1–63, 2022.

[33] A. Giusti, G. C. Maffettone, D. Fiore, M. Coraggio, and
M. di Bernardo. Distributed control for geometric pattern formation
of large-scale multirobot systems. arXiv:2207.14567, 2022.

[34] D. C. Guastella, L. Cantelli, G. Giammello, C. D. Melita, G. Spatino,
and G. Muscato. Complete coverage path planning for aerial vehi-
cle flocks deployed in outdoor environments. Computers & Electrical
Engineering, 75:189–201, 2019.

[35] T. Han, Z.-H. Guan, M. Chi, B. Hu, T. Li, and X.-H. Zhang. Multi-
formation control of nonlinear leader-following multi-agent systems.
ISA transactions, 69:140–147, 2017.

[36] Y. Han, W. Lu, and T. Chen. Achieving cluster consensus in
continuous-time networks of multi-agents with inter-cluster non-
identical inputs. IEEE Transactions on Automatic Control, 60(3):793–
798, 2014.

[37] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2 edition, 2004.

149

[38] B. Hou, F. Sun, H. Li, Y. Chen, and G. Liu. Observer-based cluster
consensus control of high-order multi-agent systems. Neurocomputing,
168:979–982, 2015.

[39] B. Hou, F. Sun, H. Li, Y. Chen, and J. Xi. Cluster consensus of high-
order multi-agent systems with switching topologies. International
Journal of Systems Science, 47(12):2859–2868, 2016.

[40] L. Huang, Q. Chen, Y.-C. Lai, and L. M. Pecora. Generic behavior
of master-stability functions in coupled nonlinear dynamical systems.
Physical Review E, 80(3):036204, 2009.

[41] P. Ji, T. K. D. Peron, P. J. Menck, F. A. Rodrigues, and J. Kurths.
Cluster explosive synchronization in complex networks. Physical re-
view letters, 110(21):218701, 2013.

[42] I. Klickstein, L. Pecora, and F. Sorrentino. Symmetry induced group
consensus. Chaos: An Interdisciplinary Journal of Nonlinear Science,
29(7):073101, 2019.

[43] G. Lafferriere, A. Williams, J. Caughman, and J. Veerman. Decentral-
ized control of vehicle formations. Systems & control letters, 54(9):899–
910, 2005.

[44] V. Latora, V. Nicosia, and G. Russo. Complex networks: principles,
methods and applications. Cambridge University Press, 2017.

[45] M. Li and F. Deng. Cluster consensus of nonlinear multi-agent systems
with markovian switching topologies and communication noises. ISA
transactions, 116:113–120, 2021.

[46] S. Li, H. Du, and X. Lin. Finite-time consensus algorithm for
multi-agent systems with double-integrator dynamics. Automatica,
47(8):1706–1712, 2011.

[47] W. Li and H. Dai. Cluster-based distributed consensus. IEEE Trans-
actions on Wireless Communications, 8(1):28–31, 2009.

[48] X. Li, M. Z. Chen, and H. Su. Finite-time consensus of second-order
multi-agent systems via a structural approach. Journal of the Franklin
Institute, 353(15):3876–3896, 2016.

150

[49] Z. Li, Z. Duan, and F. L. Lewis. Distributed robust consensus con-
trol of multi-agent systems with heterogeneous matching uncertainties.
Automatica, 50(3):883–889, 2014.

[50] W. Lin, H. Fan, Y. Wang, H. Ying, and X. Wang. Controlling
synchronous patterns in complex networks. Physical Review E,
93(4):042209, 2016.

[51] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási. Controllability of complex
networks. nature, 473(7346):167–173, 2011.

[52] F. Lo Iudice, A. Di Meglio, F. Della Rossa, and F. Sorrentino. Con-
trolling consensus in networks with symmetries. International Journal
of Control, pages 1–17, 2021.

[53] E. N. Lorenz. Deterministic nonperiodic flow. Journal of atmospheric
sciences, 20(2):130–141, 1963.

[54] X.-Q. Lu and S.-H. Chen. Cluster consensus of second-order multi-
agent systems via pinning control. Chinese Physics B, 19(12):120506,
2010.

[55] S. Luo and D. Ye. Cluster consensus control of linear multi-agents
systems under directed topology with general partition. IEEE Trans-
actions on Automatic Control, 2021.

[56] H. D. Macedo and J. N. Oliveira. Typing linear algebra: A biproduct-
oriented approach. Science of Computer Programming, 78(11):2160–
2191, 2013.

[57] S. Mahler, A. A. Friesem, and N. Davidson. Experimental demonstra-
tion of crowd synchrony and first-order transition with lasers. Physical
Review Research, 2(4):043220, 2020.

[58] J. Matoušek and B. Gärtner. Understanding and using linear pro-
gramming, volume 1. Springer, 2007.

[59] Z. Meng, W. Ren, Y. Cao, and Z. You. Leaderless and leader-following
consensus with communication and input delays under a directed net-
work topology. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 41(1):75–88, 2010.

151

[60] M. Mesbahi and M. Egerstedt. Graph theoretic methods in multiagent
networks. Princeton University Press, 2010.

[61] L. Minati. Remote synchronization of amplitudes across an experimen-
tal ring of non-linear oscillators. Chaos: An Interdisciplinary Journal
of Nonlinear Science, 25(12):123107, 2015.

[62] A. Moiseff and J. Copeland. Firefly synchrony: a behavioral strategy
to minimize visual clutter. Science, 329(5988):181–181, 2010.

[63] S. Monaco and L. R. Celsi. On multi-consensus and almost equitable
graph partitions. Automatica, 103:53–61, 2019.

[64] F. Morone and H. A. Makse. Symmetry group factorization reveals the
structure-function relation in the neural connectome of caenorhabditis
elegans. Nature Communications, 10(1):1–13, 2019.

[65] C. Nathe, L. V. Gambuzza, M. Frasca, and F. Sorrentino. Looking
beyond community structure leads to the discovery of dynamical com-
munities in weighted networks. Scientific Reports, 12(1):1–12, 2022.

[66] V. Nicosia, M. Valencia, M. Chavez, A. Díaz-Guilera, and V. Latora.
Remote synchronization reveals network symmetries and functional
modules. Physical review letters, 110(17):174102, 2013.

[67] T. Nishikawa and A. E. Motter. Synchronization is optimal in nondi-
agonalizable networks. Physical Review E, 73(6):065106, 2006.

[68] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and coop-
eration in networked multi-agent systems. Proceedings of the IEEE,
95(1):215–233, 2007.

[69] R. Olfati-Saber and R. Murray. Consensus problems in networks of
agents with switching topology and time-delays. IEEE Transactions
on Automatic Control, 49(9):1520–1533, 2004.

[70] K. P. O’Keeffe, H. Hong, and S. H. Strogatz. Oscillators that sync
and swarm. Nature Communications, 8(1):1504, 2017.

[71] L. Pan, H. Shao, M. Mesbahi, D. Li, and Y. Xi. Cluster consensus on
matrix-weighted switching networks. Automatica, 141:110308, 2022.

152

[72] J. Pantaleone. Synchronization of metronomes. American Journal of
Physics, 70(10):992–1000, 2002.

[73] P. C. Parks and V. Hahn. Stability theory. Prentice-Hall, Inc., 1993.

[74] L. M. Pecora and T. L. Carroll. Master stability functions for syn-
chronized coupled systems. Physical review letters, 80(10):2109, 1998.

[75] L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy,
and R. Roy. Cluster synchronization and isolated desynchroniza-
tion in complex networks with symmetries. Nature Communications,
5(1):4079, 2014.

[76] F. Perez-Diaz, S. M. Trenkwalder, R. Zillmer, and R. Groß. Emergence
and inhibition of synchronization in robot swarms. In Distributed Au-
tonomous Robotic Systems, pages 475–486. Springer, 2018.

[77] F. Perez-Diaz, R. Zillmer, and R. Groß. Firefly-inspired synchroniza-
tion in swarms of mobile agents. In Proceedings of the 14th Inter-
national Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2015), pages 279–286, 2015.

[78] A. Pikovsky, M. Rosenblum, J. Kurths, and A. Synchronization. A
universal concept in nonlinear sciences. Self, 2:3, 2001.

[79] J. Qin and C. Yu. Cluster consensus control of generic linear multi-
agent systems under directed topology with acyclic partition. Auto-
matica, 49(9):2898–2905, 2013.

[80] G. M. Ramírez-Ávila and J. Kurths. Unraveling the primary mech-
anisms leading to synchronization response in dissimilar oscillators.
The European Physical Journal Special Topics, 225:2487–2506, 2016.

[81] W. Ren. On consensus algorithms for double-integrator dynamics.
IEEE Transactions on Automatic Control, 53(6):1503–1509, 2008.

[82] W. Ren and R. W. Beard. Consensus algorithms for double-integrator
dynamics. Distributed Consensus in Multi-vehicle Cooperative Control:
Theory and Applications, pages 77–104, 2008.

153

[83] W. Ren, R. W. Beard, and E. M. Atkins. Information consensus in
multivehicle cooperative control. IEEE Control systems magazine,
27(2):71–82, 2007.

[84] M. G. Rosenblum and A. S. Pikovsky. Controlling synchronization in
an ensemble of globally coupled oscillators. Physical Review Letters,
92(11):114102, 2004.

[85] O. E. Rössler. An equation for continuous chaos. Physics Letters A,
57(5):397–398, 1976.

[86] S. Roy. Scaled consensus. Automatica, 51:259–262, 2015.

[87] R. J. Sánchez-García. Exploiting symmetry in network analysis. Com-
munications Physics, 3(1):1–15, 2020.

[88] M. T. Schaub, N. O’Clery, Y. N. Billeh, J.-C. Delvenne, R. Lambiotte,
and M. Barahona. Graph partitions and cluster synchronization in net-
works of oscillators. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 26(9), 2016.

[89] A. Scheidler, A. Brutschy, E. Ferrante, and M. Dorigo. The {k}-
unanimity rule for self-organized decision-making in swarms of robots.
IEEE Trans. Cybernetics, 46(5):1175–1188, 2015.

[90] R. Sevilla-Escoboza, J. Buldú, S. Boccaletti, D. Papo, D.-U. Hwang,
G. Huerta-Cuellar, and R. Gutierrez. Experimental implementation of
maximally synchronizable networks. Physica A: Statistical Mechanics
and its Applications, 448:113–121, 2016.

[91] F. Sorrentino and E. Ott. Network synchronization of groups.
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics,
76(5):056114, 2007.

[92] F. Sorrentino, L. Pecora, and L. Trajković. Group consensus in mul-
tilayer networks. IEEE Transactions on Network Science and Engi-
neering, 7(3):2016–2026, 2020.

[93] F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, T. E. Murphy,
and R. Roy. Complete characterization of the stability of cluster

154

synchronization in complex dynamical networks. Science Advances,
2(4):e1501737, 2016.

[94] W. M. Spears, D. F. Spears, J. C. Hamann, and R. Heil. Distributed,
physics-based control of swarms of vehicles. Autonomous robots, 17(2-
3):137–162, 2004.

[95] M. Starnini, A. Baronchelli, and R. Pastor-Satorras. Modeling human
dynamics of face-to-face interaction networks. Physical Review Letters,
110(16):168701, 2013.

[96] M. Starnini, M. Frasca, and A. Baronchelli. Emergence of metapopula-
tions and echo chambers in mobile agents. Scientific reports, 6(1):1–8,
2016.

[97] G. W. Stewart. Matrix perturbation theory. Citeseer, 1990.

[98] H. Su, G. Jia, and M. Z. Chen. Semi-global containment control of
multi-agent systems with intermittent input saturation. Journal of the
Franklin Institute, 352(9):3504–3525, 2015.

[99] Y. G. Sun, L. Wang, and G. Xie. Average consensus in networks of
dynamic agents with switching topologies and multiple time-varying
delays. Systems & Control Letters, 57(2):175–183, 2008.

[100] M. S. Talamali, A. Saha, J. A. Marshall, and A. Reina. When less is
more: robot swarms adapt better to changes with constrained com-
munication. Science Robotics, 6(56):eabf1416, 2021.

[101] C. Tomaselli, L. V. Gambuzza, F. Sorrentino, and M. Frasca. Multi-
consensus induced by network symmetries. Systems & Control Letters,
181:105629, 2023.

[102] C. Tomaselli, L. V. Gambuzza, F. Sorrentino, and M. Frasca. Con-
trol of multiconsensus in multi-agent systems based on eigenvector
centrality. Automatica, 164:111638, 2024.

[103] C. Tomaselli, L. V. Gambuzza, G.-Q. Sun, S. Boccaletti, and
M. Frasca. Taming cluster synchronization. arXiv preprint
arXiv:2407.10638 and submitted to Physical review letters, 2024.

155

[104] C. Tomaselli, D. C. Guastella, G. Muscato, M. Frasca, and L. V. Gam-
buzza. A multi-robot system for the study of face-to-face interaction
dynamics. IEEE Robotics and Automation Letters, 8(10):6715–6722,
2023.

[105] C. Tomaselli, D. C. Guastella, G. Muscato, L. Minati, M. Frasca, and
L. V. Gambuzza. Synchronization of moving chaotic robots. IEEE
Robotics and Automation Letters, 2024.

[106] C. Tomaselli, G. M. Ramírez-Ávila, L. V. Gambuzza, M. Frasca,
T. Carletti, and E. Tuci. Implementation of the response to synchro-
nization in e-puck2 robots. Submitted to Proceedings of WIVACE2024,
2024.

[107] V. Trianni, D. De Simone, A. Reina, and A. Baronchelli. Emergence
of consensus in a multi-robot network: from abstract models to empir-
ical validation. IEEE Robotics and Automation Letters, 1(1):348–353,
2016.

[108] C. R. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms,
and E. Schöll. Experimental observations of group synchrony in a
system of chaotic optoelectronic oscillators. Physical review letters,
110(6):064104, 2013.

[109] W. Xia and M. Cao. Clustering in diffusively coupled networks. Au-
tomatica, 47(11):2395–2405, 2011.

[110] G. Xie and L. Wang. Consensus control for a class of networks of
dynamic agents: Fixed topology. In Proceedings of the 44th IEEE
Conference on Decision and Control, pages 96–101. IEEE, 2005.

[111] G. Xie and L. Wang. Consensus control for a class of networks of dy-
namic agents. International Journal of Robust and Nonlinear Control,
17(10-11):941–959, 2007.

[112] B. Xu and W. He. Event-triggered cluster consensus of leader-following
linear multi-agent systems. Journal of Artificial Intelligence and Soft
Computing Research, 8(4):293–302, 2018.

156

[113] Z. Yaghoubi and H. A. Talebi. Cluster consensus for nonlinear multi-
agent systems. Journal of Intelligent & Robotic Systems, 100(3-
4):1069–1084, 2020.

[114] J. Yu and L. Wang. Group consensus in multi-agent systems with
switching topologies and communication delays. Systems & Control
Letters, 59(6):340–348, 2010.

[115] W. Yu, G. Chen, M. Cao, and W. Ren. Delay-induced consensus and
quasi-consensus in multi-agent dynamical systems. IEEE Transactions
on Circuits and Systems I: Regular Papers, 60(10):2679–2687, 2013.

[116] W. Yu, G. Chen, and J. Lü. On pinning synchronization of complex
dynamical networks. Automatica, 45(2):429–435, 2009.

[117] W. Yu, G. Chen, W. Ren, J. Kurths, and W. X. Zheng. Dis-
tributed higher order consensus protocols in multiagent dynamical sys-
tems. IEEE Transactions on Circuits and Systems I: Regular Papers,
58(8):1924–1932, 2011.

[118] W. Yu, P. DeLellis, G. Chen, M. Di Bernardo, and J. Kurths. Dis-
tributed adaptive control of synchronization in complex networks.
IEEE Transactions on Automatic control, 57(8):2153–2158, 2012.

[119] L. Zemanová, C. Zhou, and J. Kurths. Structural and functional clus-
ters of complex brain networks. Physica D: Nonlinear Phenomena,
224(1-2):202–212, 2006.

[120] J. Zhan and X. Li. Cluster consensus in networks of agents with
weighted cooperative–competitive interactions. IEEE Transactions on
Circuits and Systems II: Express Briefs, 65(2):241–245, 2017.

[121] G. Zhang, Z. Liu, and Z. Ma. Synchronization of complex dynamical
networks via impulsive control. Chaos: An Interdisciplinary Journal
of Nonlinear Science, 17(4), 2007.

[122] M. Zhao, C. Peng, Q.-L. Han, and X.-M. Zhang. Cluster consensus
of multiagent systems with weighted antagonistic interactions. IEEE
Transactions on Cybernetics, 2020.

157

