
Investigating Secure and Distributed Control in
IoT: Improving BLE Security and Strengthening
LoRaWAN with Blockchain

Department of Information Engineering, Electronics and Telecommunications
PhD in Information and Communication Technology (XXXVII cycle)

Pierluigi Locatelli
ID number 1668471

Advisor
Prof.ssa Francesca Cuomo

Academic Year 2024/2025



Thesis defended on 24 Gennaio 2025
in front of a Board of Examiners composed by:
Prof.ssa Daniela De Venuto (chairman)
Prof.ssa Silvia Liberata Ullo
Prof.ssa Cecilia Occhiuzzi

Investigating Secure and Distributed Control in IoT: Improving BLE Security
and Strengthening LoRaWAN with Blockchain
Sapienza University of Rome

© 2024 Pierluigi Locatelli. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: pierluigi.locatelli@uniroma1.it



Alla mia famiglia, che mi ha dato i mezzi e la serenità per poter scegliere la
passione, che mi è stata sempre vicino in questo percorso unico, che mi ha permesso

di tirarmi su ogni volta che non mi sono sentito abbastanza.
A Federica "Gran Bel Casino Terremoto Vivente Calcio in Faccia™ ", la luce delle

mie giornate, l’unica persona che mi riesce a capire anche quando non riesco a
capire me stesso. L’unico tornado che, ogni volta che passa, lascia le cose meglio di

quanto non fossero prima.
Ai Drodramussi&Bazzicons, i miei migliori amici, la mia seconda famiglia, anche se

ormai siamo diventati una tribù. Purtroppo per voi, i 10 anni di garanzia sono
ormai passati, non potete più mandarmi indietro. Grazie per avermi fatto sentire

meno solo in questo strano strano mondo.
Al Netlab, compagni di questa strana avventura chiamata dottorato, che mi sono
stati vicini durante le mille e una disavventure di questi anni. Tra le tantissime

cose, mi avete insegnato che non importa il luogo di nascita. Se abbiamo il cuore
nello stesso posto, siamo tutti fratelli, anche se un po’ pidorini. Un grazie
particolare a Pietro e la professoressa Cuomo, senza i quali oggi non starei

scrivendo questa dedica. Non avrei mai pensato di poter anche solo iniziare un
percorso simile, figuriamoci finirlo, e buona parte del merito va a voi che avete

sempre creduto in me, anche dopo la questione LIM.
A tutti i ragazzi del DIET, per cui dovrò sempre ringraziare l’opendiet, gli unici in
grado di reggere un aperitivo a monti di quasi 12 ore, con cui ormai condividiamo

una quota dell’elitè di cavour.

Ai miei nonni e a Daniele, che vorrei tanto potessero essere qui a festeggiare con
me, spero mi stiate guardando con orgoglio, vi penso sempre.



Abstract

The rapid proliferation of the Internet of Things (IoT) has led to the widespread deployment of low-
power wireless communication technologies such as Bluetooth Low Energy (BLE) and LoRaWAN,
each designed to meet the connectivity and efficiency demands of IoT devices. BLE has emerged
as a key technology for short-range communication, enabling applications such as proximity sens-
ing, wearables, and asset tracking, while LoRaWAN supports long-range communication with low
power consumption, ideal for wide-area networks in smart cities and rural areas. However, as the
number of connected devices grows, so do the security and privacy concerns associated with these
networks. Simultaneously, the advent of edge computing and distributed network paradigms of-
fers potential solutions to some of these challenges, providing enhanced computational power and
network decentralization, which are critical for scalable and secure IoT systems.

In BLE networks, Medium Access Control (MAC) address randomization is a key privacy feature,
designed to prevent device tracking by periodically changing the device’s MAC address. However,
by leveraging edge computing, mesh networks of BLE sensors can be deployed to circumvent this
feature, enabling large-scale tracking despite randomization.

On the Low-Power Wide-Area Network (LPWAN) side, LoRaWAN typically operates under a
centralized architecture, where a Network Server manages key security tasks like authentication and
routing. This centralization introduces risks such as single points of failure and insider threats. To
address these issues, edge computing can be applied to decentralize LoRaWAN, with edge nodes
handling local processes to reduce dependency on the central server. Integrating a permissioned
blockchain removes the need for centralized control, ensuring secure, transparent device authenti-
cation and key management without relying on a single authority.

This work explores the dual role of edge computing and distributed networks in IoT technologies
like BLE and LoRaWAN, examining both the opportunities and risks associated with decentralized
approaches. For BLE, the power of edge computing used to circumvent privacy features such as
MAC address randomization is investigated. For LoRaWAN, edge computing and permissioned
blockchain are proposed as mechanisms to decentralize the network, removing central points of con-
trol and improving security against internal and external threats. As IoT continues to expand into
various domains, from smart cities to industrial automation, understanding the interplay between
edge computing, distributed networks, and low-power communication technologies will be crucial
in building scalable, secure, and efficient IoT ecosystems.

Keywords: low-power networks, LoRaWAN, BLE, security, edge computing, decentralization.
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Chapter 1

Introduction

1.1 Background

1.1.1 Early stages of the Internet of Things

Before the Internet of Things (IoT) became a ubiquitous concept, the connectivity landscape was
primarily limited to computers and mobile phones communicating over wired and cellular networks.
The roots of IoT can be traced back to the early 1980s when computer scientists at Carnegie
Mellon University connected a vending machine to the internet [1]. This allowed them to check the
availability of drinks and their temperature remotely, marking one of the first instances of a device
connected to the internet to provide real-time data.

In the 1990s, the advancement of internet technologies and the proliferation of mobile devices set
the stage for more sophisticated forms of connectivity. The concept of "Smart Devices" emerged,
envisioning a world where computation is seamlessly integrated into everyday objects and activities.
Kevin Ashton, a British technology pioneer, formally coined the term "Internet of Things" in 1999
while working at Procter & Gamble. He envisioned a system that connects the internet to the
physical world via ubiquitous sensors, enabling computers to observe, identify, and understand the
world without human intervention.

The early 2000s witnessed significant progress in wireless communication technologies and sensor
networks [2]. The development of Radio-Frequency Identification (RFID) and Wireless Sensor
Networks (WSNs) played a crucial role in advancing IoT. RFID tags began to be used extensively
in supply chain management, retail, and asset tracking, providing a means to identify and track
objects automatically. Concurrently, WSN enabled the collection of data from multiple sensor nodes
distributed across various locations, facilitating environmental monitoring and military applications.

Despite these advancements, there were limitations in terms of interoperability, power consump-
tion, and communication range. Traditional wireless protocols like Wi-Fi and classic Bluetooth
were not optimized for low-power devices, which restricted the scalability of IoT solutions. The
need for standardized, energy-efficient communication protocols became increasingly apparent as
the number of connected devices continued to grow.

In response to these challenges, the Institute of Electrical and Electronics Engineers (IEEE) in-
troduced the 802.15.4 standard in 2003 [3], which laid the foundation for Low-Rate Wireless Personal
Area Network (LR-WPAN). Building upon this standard, protocols like Zigbee and 6LoWPAN were
developed to enable low-power, low-data-rate communication suitable for IoT applications. How-
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ever, these protocols still faced limitations in terms of interoperability and widespread adoption.

1.1.2 Low Power Networks

A significant breakthrough came in 2010 with the introduction of Bluetooth Low Energy (BLE)
as part of the Bluetooth 4.0 specification by the Bluetooth Special Interest Group (SIG) [4]. BLE
was specifically designed to provide similar communication ranges to classic Bluetooth but with
significantly reduced energy consumption. It utilized a simpler modulation system and introduced
features like advertising channels and connectionless communication, allowing devices to operate
for years on small batteries. BLE revolutionized the IoT landscape by enabling a new class of
devices, such as fitness trackers, smartwatches, medical sensors, and smart home gadgets, that could
maintain continuous connectivity without the need for frequent battery replacements or recharging.
The widespread adoption of smartphones equipped with BLE further accelerated the integration of
BLE devices into consumers’ daily lives, acting as hubs for personal area networks and facilitating
the seamless exchange of data.

While BLE addressed the need for low-power, short-range communication, there remained a gap
for long-range connectivity that was both energy-efficient and cost-effective. Cellular networks were
too power-hungry and expensive for many IoT applications, and Wi-Fi’s range was limited. This
led to the emergence of Low-Power Wide-Area Networks (LPWANs), designed to support devices
that need to transmit small amounts of data over long distances with minimal power consumption.

In this context, Long Range (LoRa) technology was introduced by Semtech Corporation around
2013 [5]. LoRa utilized Chirp Spread Spectrum (CSS) modulation, enabling robust, long-range
communication even in the presence of interference. Building upon LoRa’s physical layer, the
LoRa Alliance, a non-profit association formed to standardize LPWANs, released the LoRaWAN
specification [6]. LoRaWAN defined the network protocol and system architecture for the network,
focusing on scalability, security, and energy efficiency. It allowed for bi-directional communication
and supported features like adaptive data rate and end-to-end encryption, making it suitable for
large-scale IoT deployments in smart cities, agriculture, industrial monitoring, and environmental
sensing.

The introduction of BLE and LoRaWAN addressed the critical challenges of power consumption
and communication range, which had previously prevented the widespread adoption of IoT devices.
BLE enabled devices to communicate over short distances with minimal energy usage, ideal for
personal area networks and wearable technology. In contrast, LoRaWAN provided a solution for
long-range connectivity, connecting devices spread over vast areas without the need for significant
power resources.

1.1.3 Edge and Cloud Computing

Advancements in various technologies have significantly fueled the growth of the IoT [7], enabling
it to scale and become more integrated into different aspects of life and industry. One pivotal
development was the transition to IPv6, which addressed the limitations posed by the finite number
of IP addresses available under the IPv4 system. As the number of connected devices surged,
IPv4’s capacity became insufficient, necessitating a new protocol that could accommodate the vast
addressing needs of IoT devices. IPv6 provided a virtually limitless pool of IP addresses, ensuring
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that each device could have a unique identifier for direct communication, which was crucial for the
scalability and interoperability of IoT networks.

Another significant advancement was the development of 6LoWPAN (IPv6 over Low-Power
Wireless Personal Area Networks) [8]. This technology enabled the integration of IPv6 in low-
power devices, facilitating their seamless incorporation into IP-based networks. By supporting
interoperability among different systems, 6LoWPAN played a vital role in expanding the reach
and functionality of IoT devices, allowing them to communicate efficiently within existing internet
infrastructure.

The rise of cloud computing and big data analytics also played a transformative role in IoT’s
expansion [9, 10]. The growth of cloud platforms provided the computational power and storage
capacity necessary to handle the massive volumes of data generated by IoT devices. Services of-
fered by companies like Amazon Web Services, Microsoft Azure, and Google Cloud allowed for
scalable solutions in data analytics, storage, and machine learning. This enabled organizations
to process and analyze data more effectively, leading to insights that could drive innovation and
improve decision-making processes across various industries. Edge computing emerged as another
critical advancement, addressing the need for reduced latency and bandwidth usage in IoT networks.
By processing data closer to where it is generated, edge computing enhanced system reliability and
enabled real-time responses, which are essential for applications such as autonomous vehicles, indus-
trial automation, and healthcare monitoring systems. This approach not only improved performance
but also alleviated the burden on centralized cloud resources, leading to more efficient and resilient
networks. Furthermore, innovations in energy efficiency significantly impacted the viability of IoT
devices, particularly those reliant on battery power or deployed in remote locations. Developments
in energy harvesting technologies allowed devices to draw power from ambient sources such as so-
lar or thermal, extending their operational lifespan. Additionally, the creation of ultra-low-power
microcontrollers and communication modules reduced energy consumption, making it feasible for
devices to operate over extended periods without the need for frequent maintenance or battery
replacements.

The consumer market also played a substantial role in the expansion of IoT. The widespread
adoption of smartphones, equipped with various sensors and wireless technologies, positioned them
as central hubs within the IoT ecosystem. Smartphones acted as gateways, controlling and commu-
nicating with other IoT devices such as smart home appliances, wearables, and health monitors [11].
This integration facilitated greater consumer engagement and convenience, fostering a more con-
nected lifestyle. The introduction of smart home devices further accelerated consumer adoption.
Products like smart thermostats, intelligent lighting systems, and voice-controlled assistants brought
IoT technology directly into homes, increasing public awareness and acceptance of connected de-
vices. These innovations not only enhanced user experience through automation and personalization
but also demonstrated the practical benefits of IoT in everyday life.

1.1.4 IoT Security

The rapid expansion of the IoT has been accompanied by significant security challenges that have
evolved [12]. In the early stages of IoT development, security was often an afterthought, with
the primary focus on connectivity and functionality. This oversight led to widespread vulnerabili-
ties, as devices were frequently deployed with default passwords, lack of encryption, and minimal
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authentication mechanisms. High-profile incidents highlighted these weaknesses; for instance, the
2010 Stuxnet worm targeted industrial control systems, demonstrating how malicious software could
disrupt critical infrastructure. Similarly, the 2016 Mirai botnet attack exploited unsecured IoT de-
vices, such as cameras and routers, to launch massive Distributed Denial-of-Service (DDoS) attacks,
temporarily bringing down significant portions of the internet [13].

These events underscored the potential for IoT devices to be compromised on a large scale, serv-
ing as entry points for cyberattacks that could affect not just individual users but also organizations
and national infrastructures. The resource constraints inherent in many IoT devices, such as limited
processing power and memory, made implementing traditional security measures challenging. Addi-
tionally, the heterogeneity of IoT devices and the lack of standardized security protocols contributed
to a fragmented security landscape. In response to these concerns, governments and organizations
began to develop regulations and standards aimed at enhancing security and protecting user pri-
vacy. The European Union’s General Data Protection Regulation (GDPR) 1, for example, imposed
strict rules on data protection, mandating transparency and accountability in how personal data
is handled. Organizations like the Internet Engineering Task Force (IETF) and industry alliances
worked collaboratively to establish standards and best practices that would ensure interoperability
and secure communication between devices, fostering a more trustworthy IoT environment.

Despite these efforts, challenges remain due to the evolving nature of cyber threats and the
continued proliferation of IoT devices. The history of security issues in the IoT domain illustrates
an ongoing struggle to balance the need for low-power, cost-effective devices with the imperative of
safeguarding data integrity, privacy, and network resilience. It highlights the necessity for continu-
ous innovation in security solutions tailored to the unique constraints of IoT environments. These
advancements collectively propelled the growth of the IoT, overcoming previous limitations related
to scalability, interoperability, data processing, and energy efficiency. The integration of IPv6 and
6LoWPAN addressed addressing and network integration challenges, while cloud and edge comput-
ing provided the necessary infrastructure for data handling and real-time processing. Innovations in
energy efficiency and the emergence of low-power communication protocols like BLE and LoRaWAN
made it feasible to deploy IoT devices widely and sustainably. However, these developments also
highlighted the importance of addressing security and privacy concerns to ensure the safe and reli-
able operation of IoT systems. Together, these technological and regulatory advancements set the
stage for the continued evolution and integration of IoT into various facets of modern life.

1.2 Novelties

In the next chapters, we will introduce novelties in the field of IoT and Edge Computing, mainly
focusing on BLE and LoRaWAN as pivotal technologies in the Low-Power Networks field. We will
also discuss security challenges and solutions in these technologies.

Regarding BLE, we will present BLENDER. The BLENDER system introduces several inno-
vative approaches to enhancing BLE device tracking, particularly in overcoming the limitations
posed by MAC address randomization. It employs a multi-strategy detection method, which in-
cludes both passive listening and the novel ScanTrigger mechanism. Passive listening relies on
capturing advertising packets, but the ScanTrigger goes further by actively provoking devices to

1https://gdpr.eu/what-is-gdpr/
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respond, even when they are not broadcasting advertisements, significantly improving detection in
challenging environments. BLENDER also utilizes active fingerprinting through Generic Attribute
Profile (GATT) operations, allowing it to collect unique device information like model and manu-
facturer data to create distinctive fingerprints. This is particularly useful since MAC addresses are
very often randomized, so the system can still identify and track devices through these fingerprints.
In addition, the JustStore method addresses devices that still use static MAC addresses, such as
wearables, offering another layer of detection. Beyond detection, BLENDER facilitates crowd mon-
itoring and mobility tracking, providing insights into movement patterns through the continuous
counting of devices and tracking of their unique fingerprints. The integration of LoRaWAN for
low-power, long-range data transmission ensures the system’s sustainability for extended periods,
making it suitable for urban environments.

These innovations enable BLENDER to offer a robust system for monitoring and tracking BLE
devices, revealing significant weaknesses in current privacy mechanisms like MAC address random-
ization and providing new avenues for strengthening BLE security.

On the long-range side, we will present a novel approach to secure and decentralize LoRaWAN
networks, called DeLoRaN. The DeLoRaN architecture offers a series of innovative improvements
for managing and securing LoRaWAN networks by decentralizing control, integrating blockchain,
and incorporating edge computing. These innovations collectively address the limitations found
in traditional centralized systems, enhancing both security and performance in IoT environments.
DeLoRaN’s decentralized network control replaces the single Network Server (NS) with multiple
Network Controllers (NCs), distributing key tasks such as packet routing and device authentication.
This reduces the risk of a Single Point of Failure (SPoF), increasing reliability and making the
network more scalable. The distributed ledger guarantees that data exchanges and authentication
events are securely recorded and verified by multiple nodes, removing the need for trust in a central
authority. This creates a tamper-proof environment that enhances security in multi-tenant scenarios,
where different entities share the same infrastructure. Furthermore, smart contracts automate
critical processes like device onboarding and message verification. These self-executing contracts
enforce predefined rules, allowing network operations to run smoothly without human intervention,
even if certain nodes are compromised. A notable innovation is consensus-based message routing,
which requires multiple NCs to agree on the validity of a message before it is processed. This
mechanism ensures reliable message delivery and prevents packet manipulation, boosting overall
security. DeLoRaN also decouples blockchain processing from device response times, allowing real-
time communication with devices while blockchain transactions are handled in the background.
This decoupling improves network performance by reducing latency. In addition to blockchain
and decentralization, DeLoRaN leverages edge computing to process data closer to the source,
improving responsiveness and reducing bandwidth usage. This is particularly effective in large-scale
IoT environments where rapid data processing is critical. Lastly, DeLoRaN’s modular and scalable
architecture allows for the flexible addition of NCs as the network grows, while its efficient resource
utilization ensures minimal computational load on any single node. This makes DeLoRaN highly
suitable for environments where resources are constrained, offering both scalability and security. In
summary, DeLoRaN is a pioneering architecture that enhances the scalability, security, and efficiency
of LoRaWAN networks by decentralizing network control, integrating blockchain, and using edge
computing to optimize data handling and processing.
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1.3 Outline

The rest of the thesis is structured as follows:
In Chap. 2, Bluetooth technology and its low-energy variant are discussed in depth, covering

the history, architecture, and security features, along with possible future directions.
Chap. 3 focuses on LoRa and LoRaWAN, providing a detailed breakdown of its data rate,

signal quality parameters, end device classes, uplink messages, and other technical aspects of the
LoRaWAN protocol. It also addresses LoRaWAN’s security features and weaknesses.

Chap. 4 introduces BLE fingerprinting techniques in low-energy nodes and explains how these
nodes are detected, enquired, and recognized, touching on experiments and privacy concerns asso-
ciated with these techniques.

Chap. 5 presents a critical analysis of decentralized low-power wide-area networks (LPWANs),
examining centralization issues and how decentralization using blockchain can address some of
these problems. It also discusses decentralizing LPWANs using blockchain to enhance security, key
management, and load distribution.

Chap. 6 describes the DeLoRaN system, which decentralizes LoRaWAN networks using block-
chain. It covers DeLoRaN’s architecture, the blockchain’s role, security improvements, and specific
attacks like Man-In-the-Middle (MITM), Denial-of-Service (DoS), Sinkhole and Blackhole attacks
which DeLoRaN seeks to mitigate.

Chap. 7 details the experimental evaluation of DeLoRaN, providing insights into its performance
in comparison to centralized LoRaWAN networks and discussing its scalability. It also presents a
comparison between DeLoRaN and HyperLoRa and examines real-world data, specifically the LoED
dataset.

Chap. 8 explores the decentralized smart adaptive data rate control for LoRaWAN, which im-
proves network efficiency in dynamic environments, and concludes with potential future work and
countermeasures for the identified vulnerabilities.

Finally, Chap. 9 concludes the thesis by summarizing the key findings, contributions, and future
research directions.
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Chapter 2

Bluetooth and Bluetooth Low Energy

2.1 History

Bluetooth (BT), is a wireless communication technology designed for short-range data exchange
between devices using short-wavelength Radio Frequency (RF) transmissions in the 2.4 GHz In-
dustrial, Scientific, and Medical (ISM) radio bands. Developed in the late 1990s, BT was intended
to eliminate the need for cables connecting personal devices, thereby facilitating seamless wireless
communication between mobile phones, computers, and various peripherals. The technology derives
its name from the 10th-century Danish king Harald Bluetooth, who united disparate Danish tribes
into a single kingdom, symbolizing unification and collaboration among different devices and indus-
tries. In 1998, the BT Special Interest Group (SIG) was established by Ericsson, IBM, Intel, Nokia,
and Toshiba to oversee the development of the BT standard, promote its adoption, and ensure
interoperability among manufacturers. This consortium was crucial in advancing BT technology,
fostering widespread acceptance across the electronics industry. Since its inception, BT has evolved
through several versions, each introducing enhancements to meet the growing demands for wireless
connectivity in an increasingly connected world.

The initial versions, BT 1.0 and 1.0B, released in 1999, faced interoperability issues that hindered
widespread adoption [14]. These challenges were addressed in BT 1.1, standardized as Institute of
Electrical and Electronics Engineers (IEEE) 802.15.1-2002, which provided a more stable foundation
for device communication. This version corrected many early problems, allowing manufacturers to
produce devices that could reliably connect and exchange data. The release of BT 2.0 + Enhanced
Data Rate (EDR) in 2004 marked a significant technological improvements. This version increased
data transfer rates, enhancing performance for data-intensive applications such as file transfers
and multimedia streaming. The higher speed facilitated more efficient communication between
devices, supporting the growing need for rapid data exchange in personal and professional settings.
Subsequent advancements continued this trend, with BT 3.0 + High Speed (HS) introduced in 2009.
This version utilized an alternate high-speed transport, typically Wi-Fi, to achieve data rates up
to 24 Mbit/s. The integration of Wi-Fi for large data transfers allowed BT to handle bandwidth-
intensive tasks while maintaining the simplicity and low power consumption characteristic of BT
for smaller data exchanges.

A major milestone in BT technology was the introduction of BT 4.0 in 2010 [4], which brought
forth Bluetooth Low Energy (BLE), a protocol optimized for low-power and low-latency applica-
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Figure 2.1: BT implements its own layers corresponding to different OSI functions. Key BT protocols
include Generic Access Profile (GAP) and Generic Attribute Profile (GATT) in the Host, which manage
access and data attributes, while lower layers such as the Link Layer and Physical Layer in the Controller
handle radio communication.

tions. BLE enabled devices such as fitness trackers, medical sensors, and smartwatches to operate
for extended periods on small batteries, revolutionizing the wearable technology market. This devel-
opment significantly expanded the scope of BT, making it fundamental to the developing Internet
of Things (IoT) landscape by supporting devices that require minimal energy consumption without
sacrificing connectivity. Further advancements came with the BT 5 series, beginning with BT 5.0
in 2016 [15]. These versions enhanced BLE features by offering increased range, up to 240 meters
under ideal conditions, higher speeds and larger broadcast messaging capacity.

The latest addition to the BT standard is Bluetooth Mesh Networking [16], officially introduced
by the BT SIG in July 2017. Its development was driven by the increasing demand for robust, scal-
able networks capable of supporting the developing IoT. Before mesh networking, BT technology
was primarily used for point-to-point or small-scale star topologies within Personal Area Networks
(PANs), which were insufficient for applications requiring communication across hundreds or thou-
sands of devices. This new standard enhanced network resilience and scalability, making it suitable
for complex applications and industrial IoT systems. The adoption of BT Mesh has been facilitated
by the widespread availability of BLE hardware and the familiarity of developers with BT technol-
ogy. Ongoing enhancements to the mesh specifications continue to improve performance, scalability,
and ease of deployment, ensuring that BT remains a key enabler in the evolving IoT ecosystem.

2.2 Architecture

The architecture of BT, shown in Fig. 2.1, is divided into two main components: the Controller and
the Host subsystems, together with a layered approach similar to the Open Systems Interconnection
(OSI) model.

The Controller subsystem encompasses the Physical Layer (PHY) and the Link Layer (LL). The
PHY operates in the globally available 2.4 GHz Industrial, Scientific, and Medical (ISM), utilizing
Gaussian Frequency Shift Keying (GFSK). This enables reliable, short-range communication with

Investigating Secure and Distributed Control in IoT:
Improving BLE Security and Strengthening LoRaWAN with Blockchain

8



2.2. Architecture

Figure 2.2: BT goes through different states during a connection, depending on the role .

up to 3 Mbps data rates. Bluetooth Classic divides the 2.4 GHz spectrum into 79 channels, each
1 MHz wide, and uses Frequency Hopping Spread Spectrum (FHSS) to switch channels up to 1600
times per second. This reduces interference and improves security by minimizing the risk of signal
eavesdropping.

In contrast, BLE operates within the same 2.4 GHz band but uses only 40 channels, each 2
MHz wide. BLE’s reduced channel set (Fig. 2.3) includes three advertising channels, used for
broadcasting connection requests and beaconing, and 37 data channels. This more focused use of
the spectrum helps minimize collisions with other wireless technologies like Wi-Fi, which operate
in the same band. Additionally, BLE’s physical layer is optimized for low-power, intermittent data
transmission, with data rates up to 2 Mbps while maintaining high efficiency in energy consumption.

The LL manages the lower-level protocols and procedures that establish and maintain wireless
connections between devices. It orchestrates critical functions such as device advertising, scanning
for other devices, initiating connections, and handling data channel communications. There are
six distinct states that a BLE device can be in, shown in Fig. 2.2, depending on its role and
communication requirements:

• Standby: This is the idle state where the device is not transmitting or receiving any data
and is not connected to another device.

• Advertiser: In this state, the device periodically broadcasts advertisement packets to make
itself known to other nearby devices. This is an essential step in initiating communication;

• Scanner: The device actively listens for advertisements from other devices. It is used when
the device is searching for other devices broadcasting their presence;

• Initiator: This state is where the device attempts to initiate a connection with another
device, typically after detecting its advertisement;

• Master: Once connected, the device can act as a master, controlling communication with
another device by managing data exchanges;

• Slave: In contrast, the slave state indicates the device is connected to a master device and
responds to its requests and commands;

When it comes to the advertising feature in BLE, there are four distinct types of advertisements
that devices can use to broadcast their presence and capabilities:

• Connectable Undirected: This is the most common advertisement type where any scanning
device can initiate a connection with the advertiser. The advertiser is open to connecting with
any available device:

Investigating Secure and Distributed Control in IoT:
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Figure 2.3: This diagram shows the overlap between BLE and Wi-Fi channels in the 2.4 GHz ISM band.
BLE uses frequency hopping across its Data Channels (in pink) to minimize interference with Wi-Fi channels
(in beige). The BLE Advertising Channels (in red) are spaced strategically to avoid the most congested parts
of the spectrum. This frequency-hopping mechanism ensures reliable communication even in environments
with overlapping Wi-Fi and Bluetooth traffic.

• Connectable Directed: In this mode, the advertiser broadcasts its availability for connec-
tion, but only a specific, pre-designated device is allowed to initiate a connection;

• Non-connectable Undirected: This type of advertisement is used when the device is broad-
casting information but is not open to any connection. It is primarily used for broadcasting
data without the need for device pairing;

• Discoverable Undirected: In this mode, the advertiser broadcasts its presence and infor-
mation, allowing any scanner device to request additional details. However, the advertiser
will not accept connection requests in this mode;

The LL manages device behaviour in these various roles and the transition between those roles.
It also handles low-level security features, including packet encryption and authentication, by in-
terfacing with the Security Manager Protocol (SMP) in the higher Host subsystem. The LL is
responsible for link setup and control between BT devices, including authentication, encryption,
and power management. This layer establishes and maintains the connection, negotiating parame-
ters and managing the security aspects of the communication. The Host Controller Interface (HCI)
provides a standardized interface for accessing the hardware capabilities of the BT module, facil-
itating communication between the host system, such as a computer or smartphone, and the BT
controller. This separation allows for modular design and easier integration of BT into various
devices.

Moving to the Host subsystem, it comprises higher-level protocols and profiles that facilitate
data exchange and application-specific functionalities. The Logical Link Control and Adaptation
Protocol (L2CAP) serves as a multiplexing layer, allowing multiple higher-level protocols and ap-
plications to share the lower-level Link Layer connections. L2CAP provides essential services such
as segmentation and reassembly of data packets, protocol multiplexing, and Quality of Service
(QoS) management, which are vital for maintaining efficient and organized communication chan-
nels. Central to BLE’s data management is the Attribute Profile (ATT), which defines a client-server
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architecture where the server maintains a set of attributes accessible to clients. These attributes
represent data structures that include services, characteristics, and descriptors, each identified by
a unique Universally Unique Identifier (UUID). The GATT builds upon ATT by specifying how
attributes are grouped into services and how they can be discovered, read, written, and notified.
GATT outlines procedures for service discovery, characteristic manipulation, and subscription to
value change notifications or indications, enabling flexible and efficient data exchange tailored to
specific application requirements. The GAP manages all device discovery, connection establishment,
and link management aspects. It defines devices’ roles, Peripheral, Central, Broadcaster, and Ob-
server, each with specific behaviours and responsibilities. Peripherals, typically resource-constrained
devices like sensors, advertise their presence and accept connections initiated by Centrals, which are
usually more capable devices like smartphones or tablets. GAP ensures that devices can discover
each other, establish secure connections, and manage ongoing communications effectively.

2.3 Network Topology

In terms of network topology, BT devices form networks called PANs, which are based on a master-
slave architecture. A basic BT network, known as a piconet, consists of one master device and up
to seven active slave devices. The master controls the communication link and timing, coordinating
the exchange of data within the network. Multiple interconnected piconets can form scatternets,
where devices participate in more than one piconet, acting as a bridge and facilitating more complex
networking arrangements. This flexibility allows BT to support a variety of networking scenarios,
from simple point-to-point connections to more intricate network structures.

To support all the different network topologies, BT supports various communication models,
as in Fig. 2.4, tailored to different needs. It operates primarily in connectionless (broadcast) or
connection-oriented (paired) modes:

• Connectionless Communication: Supports one-to-many (1:N) interactions, typically in-
volving a broadcaster, which regularly transmits data but does not accept incoming con-
nections (e.g., beacons), and an observer, which passively listens for broadcasted messages
without establishing direct links.

• Connection-Oriented Communication: Designed for one-to-one (1:1) interactions, in-
volving roles such as Central and Peripheral.

• Mixed communication: Supports many-to-many (N:M) interactions, commonly used in
BLE mesh networking to form local or personal area networks. In all models, the connection
is immediately terminated when the transmission is over, optimizing energy consumption.

BLE Mesh

To address the need for large-scale device networks, BT Mesh extends BT’s capabilities by utilizing a
many-to-many topology, allowing devices to relay messages across the network. This mesh network-
ing enables communication over greater distances and around obstacles by passing messages through
intermediate devices, effectively expanding the coverage area. BT Mesh is particularly suited for
building automation, smart lighting, and industrial IoT applications where reliable communication
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Figure 2.4: BT Classic supports point-to-point connections, primarily used for audio services and high-
throughput data transfer. BLE, on the other hand, offers a broader range of communication models, including
Central-Peripheral for data transfer, Broadcaster-Observer for location services, and Mesh networking for
large-scale device networks, such as personal and local area networks.

across numerous devices is required. Unlike the traditional BT point-to-point or star topologies, BT
Mesh allows devices to communicate directly or through intermediary nodes, forming a self-healing
network that can reroute messages if any node fails. This topology significantly enhances network
resilience, as nodes can relay messages to extend the communication range beyond single-hop con-
nections. In BT Mesh, message transmission is based on a managed flooding mechanism. Messages
are broadcasted and relayed through multiple nodes until they reach their intended destination. To
optimize this process, techniques such as Time-to-Live (TTL) counters and message caching are
used to control the flow of traffic and prevent unnecessary retransmissions, ensuring the network
operates efficiently. Despite the initial impression that flooding might be inefficient, these strategies
make BT Mesh well-suited for reliable, large-scale communication [17].

2.4 Bluetooth Security

Security is integral to BT, with mechanisms designed to protect against eavesdropping, unauthorized
access, and other threats. The pairing process involves devices exchanging link keys and establishing
trust relationships. Various pairing methods exist, each offering different levels of security and user
interaction. These methods balance ease of use with security requirements, allowing users to connect
devices conveniently while maintaining protection against unauthorized access.

To ensure robust communication in the crowded 2.4 GHz band, BT employs several techniques
to mitigate interference and maintain connection quality. One such method is FHSS, where devices
rapidly switch frequencies, 1600 hops per second, across 79 channels in a pseudo-random sequence.
This approach reduces the likelihood of interference from other devices operating in the same fre-
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quency band, such as Wi-Fi networks or microwave ovens, and also enhances security by making
it more difficult for unauthorized parties to intercept communications. Additionally, Adaptive Fre-
quency Hopping (AFH), introduced in BT 1.2, enhances FHSS by detecting occupied channels and
avoiding them. By dynamically adjusting the hopping sequence to exclude frequencies with high
levels of interference, AFH minimizes communication disruptions and improves coexistence with
other wireless technologies. This adaptive approach allows BT devices to operate more efficiently
in environments with heavy RF activity.

Authentication and encryption ensure that devices are communicating with trusted partners,
using challenge-response protocols and encryption algorithms to protect data. Classic BT uses
stream cyphers like E0 for encryption, while BLE employs AES-CCM for stronger security. BT
defines multiple security modes and levels, allowing flexibility based on application requirements.
Secure Simple Pairing (SSP), introduced in BT 2.1 + EDR, improves security and usability during
the pairing process by using Elliptic Curve Diffie-Hellman (ECDH) for key exchange, providing
robust protection against passive and active attacks.

2.5 Bluetooth Low Energy Security

Security in BLE is managed by the SMP module, which operates in the Host subsystem to establish
secure communication between devices. The SMP facilitates pairing, during which devices exchange
security capabilities and generate shared secret keys using algorithms like ECDH. This ensures
mutual authentication, creating a trusted link that protects against eavesdropping and man-in-the-
middle attacks. Additionally, the SMP distributes keys for encryption, authentication, and data
signing, enabling secure reconnection and device identification.

A crucial privacy feature managed by the SMP is the use of Resolvable Private Address (RPA),
which change periodically to prevent tracking. Fixed addresses can be monitored by attackers, but
RPA mitigates this risk by using temporary addresses that change typically every 15 minutes. RPA
is generated using a cryptographic function based on a secret Identity Resolving Key (IRK), shared
only with trusted devices during pairing. When a device broadcasts an RPA, trusted devices with
the IRK can resolve it, allowing seamless, secure communication while keeping the device’s identity
hidden from unauthorized scanners.

In BT Mesh, security is enforced using multiple layers of encryption and authentication, with
network and application keys protecting messages. This multi-layered approach ensures the integrity
of communication and prevents unauthorized access, which is vital for controlling critical systems
like lighting and access control in mesh networks.

2.6 Future Directions

The future directions of BT technology continue to focus on innovation and enhancement to meet
emerging needs. The BT SIG is working on enhanced audio capabilities, such as LE Audio, for
improved audio quality and energy efficiency. LE Audio aims to deliver high-quality sound while
reducing power consumption, making it ideal for hearing aids and wireless earbuds.

Advancements in location services are also a focus, improving accuracy for indoor positioning
through techniques like Angle of Arrival (AoA) and Angle of Departure (AoD). These methods
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enable devices to determine the direction of a signal, allowing for precise positioning and tracking.
Applications include asset tracking in warehouses, wayfinding in large facilities like airports and
shopping malls, and enhanced user experiences in augmented reality.

Ongoing efforts aim to optimize energy efficiency further, reducing power consumption and
extending the battery life of BT devices. This is critical for devices that are expected to operate
for years without maintenance, such as environmental sensors and industrial monitoring equipment.
Additionally, ensuring interoperability and coexistence remains a priority, with efforts to make BT
operate seamlessly alongside other wireless technologies, minimizing interference and enhancing user
experience.

BT has evolved into a versatile and ubiquitous wireless technology, integral to modern connec-
tivity across consumer electronics, automotive systems, healthcare, and industrial applications. Its
continuous development, particularly with the introduction of BLE and mesh networking, addresses
the diverse needs of the expanding IoT landscape. Understanding the fundamentals of BT is crucial
for leveraging its capabilities and addressing security and performance challenges inherent in wire-
less communication systems. As BT continues to adapt and innovate, it remains a key enabler of
the connected world, facilitating the seamless interaction of devices that enrich daily life and drive
technological progress.
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Chapter 3

LoRa and LoRaWAN

3.1 LoRa

Long Range (LoRa) is a proprietary Low-Power Wide-Area Network (LPWAN) modulation tech-
nique [18]. It allows smart objects to communicate over long distances at a very low energy cost,
enabling devices powered by simple batteries that last for years. It is based on spread spectrum
modulation techniques derived from Chirp Spread Spectrum (CSS) technology, where a chirp is a
high-frequency signal that increases or decreases rapidly over time. The LoRa technology covers
only the physical layer of the transmission, while other protocols like LoRaWAN cover the up-
per layers, managing message transport, security, and performing operations to optimize the radio
space. LoRa operates on various frequencies, like 433 MHz and 868 MHz in Europe or 915 MHz in
North America, and at different data rates called Spreading Factor (SF).

3.1.1 Data rate: Spreading factor, Bandwidth and Time-On-Air

SF in LoRa technology represents the number of bits transmitted per symbol, with possible values
ranging from 7 to 12. A lower SF allows more bits per symbol, resulting in more chirps per second
and higher data rates. However, this comes at the cost of reduced sensitivity, leading to a shorter
transmission range (an example of LoRa’s range is shown in Fig. 3.1). Conversely, a higher SF
reduces the number of chirps per second but increases sensitivity, thereby extending the transmission
range. For each increment in the spreading factor, the chirp sweep rate is halved, effectively halving
the data transmission rate, as illustrated in Table 3.1. The bandwidth also influences the data
rate; doubling the bandwidth doubles the bit rate for a fixed spreading factor. LoRa supports
three bandwidths: 125kHz, 250kHz, and 500kHz. Using a higher SF requires more transmission
time, known as airtime or Time on Air (ToA), which in turn increases the energy consumption of
the device. For example, to transmit 20 bytes at a bandwidth of 125kHz with SF values ranging
from 7 to 12, the ToA values are approximately 71.9ms, 133.6ms, 246.8ms, 452.6ms, 987.1ms, and
1810.4ms, respectively. This demonstrates how the ToA nearly doubles with each increase in SF,
due to the halving of the chirp sweep rate.

For an Internet of Things (IoT) device, selecting a lower SF is generally preferable, as it mini-
mizes airtime and energy consumption. However, LoRa does not provide a mechanism to optimize
transmissions for the best trade-off between data rate and transmission range. Moreover, the LoRa
standard includes regional regulation on the amount of time a device can be actively transmitting.
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Figure 3.1: We sent packets in different urban locations. In the figure are reported the position in which
we sent a packet and the approximate position of the gateway receiving that packet. The packets which
travelled the longer distance are reported with the blue colour, covering a distance of more than 27km. All
the tests were performed with SF=12.

Table 3.1: In the table is reported the raw LoRa bit rate as a function of the Spreading Factor. A bandwidth
of 125kHz and a coding rate of CR=4/5 were used for the calculations, the most commonly used in the wild.

Spreading Factor Bitrate (kbps)

SF7 5.468
SF8 3.157
SF9 1.761
SF10 0.978
SF11 0.544
SF12 0.219

This parameter, called duty cycle, is the proportion of time during which a device actively commu-
nicates with the network and is usually expressed as a percentage. In Europe, the standard imposes
that the duty cycle must be around 0.1% (at most 1.0%) per day depending on the channel used.
For example, if we have a duty cycle of 0.1% and a ToA of 500ms, we can calculate the maximum
number of messages the device can send in a day. A 0.1% duty cycle means the device can only
transmit for 0.1% of each hour, which is equivalent to 3.6 seconds per hour.

Given a ToA of 500ms (0.5 seconds), each message takes 0.5 seconds to send. Therefore, the
device can send a maximum of:

3.6 seconds per hour
0.5 seconds per message

= 7.2 messages per hour

In a 24-hour period, this results in:
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7.2 messages/hour × 24 hours ≈ 173 messages/day

Thus, under a 0.1% duty cycle and a ToA of 500ms, the device can send up to 173 messages per
day.

3.1.2 Signal Quality Parameters: RSSI and SNR

The Received Signal Strenght Indicator (RSSI) represents the power of a received signal measured
in decibel-milliwatts (dBm). It serves as an indicator of how well a receiver can detect the signal
sent from a device. In LoRa communication, RSSI values typically range between -120dBm and
0dBm. A value of -120dBm is considered the minimum threshold for successful communication
without the signal being discarded. Values around -30dBm indicate optimal signal strength, often
corresponding to scenarios where the device is only a few meters away from the receiver.

The Signal to Noise Ratio (SNR) is the ratio between the power of the received signal and
the power level of the noise floor. The noise floor comprises unwanted interfering signals that can
corrupt the transmitted signal, potentially leading to retransmissions from the sender. In LoRa
technology, typical SNR values range from -20dB to +10 dB. An SNR greater than 0dB means
the received signal operates above the noise floor, indicating low interference. Conversely, an SNR
less than 0dB implies that the signal operates below the noise floor, which can result in increased
signal corruption. Although the noise floor is generally the physical limit of sensitivity, LoRa can
demodulate signals even when the SNR is between -7.5 dB and -20 dB.

Since both RSSI and SNR are related to the quality of the transmission, it is common for a
signal with a good RSSI value to also exhibit a good SNR value.

3.2 LoRaWAN

To address the limitations of LoRa, upper-layer protocols have been developed to provide Medium
Access Control (MAC), networking, and security functionalities on top of it. In recent years, the
most widely adopted protocol is LoRaWAN, which enables the creation of a Wide Area Network
based on LoRa [19, 20]. The first version of the LoRaWAN standard was released in January
2015, and since then, minor updates have been published approximately once a year to fix bugs
and resolve various security issues. A significant change occurred in October 2017 with the release
of LoRaWAN 1.1 [21], introducing major security enhancements and stricter rules regarding the
integrity and confidentiality of communications.

Despite the release of LoRaWAN 1.1, virtually every LoRaWAN device continued to operate on
version 1.0.X. To avoid forcing customers to purchase new devices capable of running the updated
protocol while still providing a more secure and stable version, updates for the 1.0.X series continued,
culminating in the release of version 1.0.4 in October 2020 [6]. Unless otherwise specified, when we
refer to LoRaWAN, we implicitly mean version 1.1.

A LoRaWAN network employs a star-of-stars topology (Fig. 3.2). At the very edge of the
network we have End Devicess (EDs), the leaves of the architecture and the real IoT devices,
communicating over long distances using LoRa; then we have the gateways, which receive LoRa
frames and forward them over the internet to the centralized Network Server (NS); the NS acts as
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Figure 3.2: LoRaWAN has a star-of-stars topology. Each leaf node, an ED, can directly reach one or
more sink nodes called Gateways (GWs). These gateways forward transmissions to a centralized NS. After
extracting the payloads from the packets, the NS dispatches them to the appropriate AS.

the head of the network, ensuring the identity of the device and the integrity of the transmission;
finally, we have the Application Servers (ASs), which collect the payloads sent by the end devices
and act accordingly.

3.2.1 End Device Classes and Activation

LoRaWAN End Devices can be divided into three main categories (Fig. 3.3):

• Class A (Aloha) devices support bi-directional communication, primarily sending data to the
server with rare downlink messages. Uplink messages can be sent anytime, while downlink
messages are scheduled after an uplink transmission. The device opens two receive windows
at specified times, "RX1 Delay" and "RX2 Delay" (typically RX1 + 1s). If a downlink is
received during RX1, RX2 will not open. If no downlink is received, the next opportunity will
occur after the next uplink. Being the most energy and resource-efficient is the most widely
used class for EDs;

• Class B (Beacon) builds on Class A by adding scheduled receive windows. The ED synchro-
nizes its clock with periodic beacons broadcast by the network. Based on this timing, EDs
open "ping slots" at set intervals, allowing the network to initiate downlink;

• Class C (Continuous) extends Class B by keeping the receive window open continuously,
except when transmitting. This setup supports low-latency communication but requires much
more power, making Class C suitable only for devices with continuous power sources, limiting
their use in energy-constrained IoT applications;

Alongside the device classes, which define the behaviour of uplinks and downlinks, another im-
portant factor divides LoRaWAN devices into two categories: the method of activation of the ED.
There are two types of activation: Over-The-Air Activation (OTAA) and Activation By Personal-
ization (ABP).
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Figure 3.3: Approaches used by different LoRaWAN EDs classes to handle downlink communication. In
the figure, each plot represents a timeline. Class A (Aloha) has only two well-defined downlink windows
which are opened only after an uplink. Class B (Beacon) extends class A devices with a downlink window
that is opened at constant intervals of time. Class C (Continuous) has always a downlink window opened,
except during uplink communications.

ABP activation is very simple, as the device is already fully configured and does not need to
exchange any information with the NS, which knows a priori all the encryption session keys (an ABP
device has only one session that lasts its lifetime) (Fig. 3.4), and the DevAddress, which functions
like an IP address in the LoRaWAN protocol. This information is static and cannot be changed, as
it is "hardcoded" into the Electrically Erasable Programmable Read Only Memory (EEPROM) of
the device. Therefore, the buyer simply needs to input this information into the NS, and the ED
becomes fully operational and ready to send messages over the network. However, the use of ABP
devices is discouraged by the LoRaWAN specification due to inherent security weaknesses. The
static DevAddress and encryption keys, if compromised, allow an attacker to decrypt all subsequent
transmissions.

In contrast, OTAA activation requires EDs to follow a join procedure before they can exchange
messages with the Network Server. An ED may undergo a new join procedure for various reasons,
primarily to refresh its session information or during its initial connection. Unlike ABP, OTAA
activation requires the ED to be personalized with specific information before initiating the join
procedure: a DevEUI, which acts like a MAC address in LoRaWAN; a JoinEUI, which identifies
the join server that will handle the join request; and the NwkKey and AppKey, which are root
keys used to derive the network session key (for encrypting communications between the ED and
the NS) and the application session key (for encrypting the payload sent to the application server).
The entire key derivation scheme for LoRaWAN 1.1 is depicted in Fig. 3.4, while the scheme for
LoRaWAN 1.0.X is shown in Fig. 3.5.

3.2.2 Uplink messages

Uplink messages, messages sent by the ED to the AS, can be sent at any moment and are the most
frequent type of communication in a LoRaWAN network. End Devices are mostly just sensors or
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Figure 3.4: The key-derivation scheme used by a LoRaWAN 1.1 ED and NS to calculate the different
session keys after a successful join procedure, complete with the goal of each key.

Figure 3.5: The key-derivation scheme used by a LoRaWAN 1.0 ED and NS to calculate the different
session keys after a successful join procedure.
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Figure 3.6: The structure of a LoRaWAN frame. Being built on top of LoRa, the physical layer has the
structure of a LoRa frame. Its PHYPayload is then divided into MAC Header (MHDR), MAC payload, and
a Message Integrity Code (MIC) to check the integrity of the whole packet. The MAC Payload contains
application data, which again is divided into Frame Header (FHDR), FPort (used to distinguish different
applications), and its payload

embedded systems that are powered by batteries, or even solar panels, so it is imperative to be as
energy-saver as possible. Because of this, the average uplink rate is just a few bytes sent once per
day, but, in any case, it can not exceed the duty cycle imposed by the standard or local regulation.
When an ED sends an uplink, because of its broadcast nature, it is common for the message to be
received by many different gateways, which will then forward each one the message to the network
server. The NS has to find a way to deal with multiple copies of the same message and forward
the message to the AS only once. This step is called Deduplication and it is a necessary step in
LoRaWAN, despite being implementation dependant. At the end, everything boils down to this
deduplication window, during which the NS will accept and aggregate every duplicate it receives
and, after the expiration, it chooses the the packet with the best value of SNR and/or RSSI, or a
random packet between the ones with a value of RSSI and/or SNR over a certain threshold. Every
duplicate packet coming after the end of the window will be automatically discarded by the NS
without even reading any of these values. In this way the NS will always upload only one packet
for every group of duplicated messages received and will keep track in its own database of the "best
gateway" for every device, which is the gateway that forwarded the uplink with best values for
SNR/RSSI for each device in the network, as this information will be used later to retrieve the
correct gateway to schedule a downlink message.

3.2.3 Control-level MAC Messages

In LoRaWAN, in addition to "application-level" communication between the AS and the ED, there
are messages that the NS must handle differently at the MAC-layer level. These messages are
identified by the first bytes of the LoRaWAN packet in the so-called MHDR, specifically in its
MType field, and have different meanings as described in Table 3.3. MAC commands play a crucial
role in network control and management, enabling communication between the NS and the ED to
configure device parameters, manage network settings, and perform other control functions. These
commands are embedded within the payload of LoRaWAN frames and are carried in the Frame
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Figure 3.7: It illustrates two main features of LoRaWAN: deduplication and downlink gateway selection.
When multiple gateways receive copies of the same uplink, the NS aggregates them and uses this information
later to determine the best gateway to use to forward a downlink to an ED. In the top image, an uplink
packet P is broadcasted by an ED and GW1 and GW2 receive it with respectively RSS1 and RSS2. In the
bottom image, assuming RSSI2>RSSI1, the NS schedules a downlink message on GW2 since it had a better
signal quality of the uplink P.

Options (FOpts) field of the FHDR, or, if the FOpts field is insufficient due to length constraints,
within the frame payload using specifically Frame Port (FPort) 0.

MAC commands (Tab. 3.2) consist of a one-byte identifier, known as the Command Identifier
(CID), followed by command-specific parameters. The ED and the NS use these commands to per-
form tasks such as adjusting the data rate, modifying transmission power, configuring channels, and
managing device status. Examples of MAC commands include LinkCheckReq and LinkCheckAns
for checking network connectivity, DutyCycleReq for setting duty cycle limitations, and RXParam-
SetupReq for adjusting reception parameters. The use of MAC commands allows the NS to optimize
network performance by dynamically configuring EDs based on network conditions and policies. By
sending MAC commands, the NS can instruct EDs to change their communication parameters,
thereby improving network efficiency, reducing interference, and enhancing the reliability of data
transmission within the LoRaWAN network.

3.2.4 Join Procedure

The join request/accept packets are part of the join procedure, started by an OTAA ED that wants
to connect to the LoRaWAN network. During a join procedure, the ED will send an unencrypted
packet with a payload containing DevEUI, JoinEUI, a value called DevNonce and a MIC. This
DevNonce is an incremental value used by both parties to ensure that no attacker can use again the
same packet, avoiding any kind of replay attacks. The MIC is instead used to check the integrity of
the message, but we will cover later in Sec. 3.2.6 these and more security features used in LoRaWAN.
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Table 3.2: List of MAC commands and their CIDs in LoRaWAN.

CID MAC Command Description

0x02 LinkCheckReq End-device checks link quality with network server
0x02 LinkCheckAns Network server responds with link status
0x03 LinkADRReq Server requests to adjust data rate or power
0x03 LinkADRAns End-device acknowledges ADR changes
0x04 DutyCycleReq Server imposes duty cycle limitations
0x04 DutyCycleAns End-device acknowledges duty cycle settings
0x05 RXParamSetupReq Server sets RX window parameters
0x05 RXParamSetupAns End-device acknowledges RX setup
0x06 DevStatusReq Server requests device status
0x06 DevStatusAns End-device reports battery and margin
0x07 NewChannelReq Server adds or modifies channels
0x07 NewChannelAns End-device acknowledges channel changes
0x08 RXTimingSetupReq Server adjusts RX window timing
0x08 RXTimingSetupAns End-device acknowledges timing setup
0x09 TxParamSetupReq Server sets TX power parameters
0x09 TxParamSetupAns End-device acknowledges TX settings
0x0A DlChannelReq Server specifies downlink channel
0x0A DlChannelAns End-device acknowledges downlink channel
0x0B RekeyInd End-device indicates protocol version change
0x0B RekeyConf Server confirms new protocol version
0x0C ADRParamSetupReq Server sets ADR algorithm parameters
0x0C ADRParamSetupAns End-device acknowledges ADR setup
0x0D DeviceTimeReq End-device requests current time
0x0D DeviceTimeAns Server provides network time
0x0E ForceRejoinReq Server forces device to rejoin network
0x0F RejoinParamSetupReq Server sets rejoin parameters
0x0F RejoinParamSetupAns End-device acknowledges rejoin setup

Table 3.3: List of possible MType values and their meaning. MType bits are part of the Mac Header of a
LoRaWAN frame.

MType Description

000 Join Request
001 Join Accept
010 Unconfirmed Data Up
011 Unconfirmed Data Down
100 Confirmed Data Up
101 Confirmed Data Down
110 1.0.x - Reserved for Future usage/1.1 - Uplink OTAA rejoin request
111 Proprietary - Custom defined operations implemented by the customer
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Now the Join-request message has been received by the Network Server. If the ED is allowed to join
the network, the NS will respond to the ED message with a Join-accept message. The Join-accept
message is an encrypted packet that consists of the following fields:

• AppNonce – this is a random value or a unique ID provided by the network server. This value
is used by the ED to derive the two session keys, AppSKey and NwkSKey.

• NetID – identifies the network ID.

• DevAddr – this is the 32-bit device address assigned by the network server. Consists of NwkID
and NwkAddress and it is unique within the current network.

• DLSettings – this is a 1-byte sized field consisting of downlink settings which the end device
should use.

• RxDelay – the delay between TX (transmission window) and RX (receiving window)

• CFList – contains the optional list of channel frequencies to be used for the end device

The ED will now decrypt the message, read the values of the payload, derives the session keys
to communicate with the NS and it is now ready to exchange messages in the network.
Lastly, the rejoin request is used by an ED that is already part of the network to reset the session
information and follows the same procedure of the join request, except that it is encrypted and
contains only the NetID and the DevEUI, as the other information is not needed. It is then
followed by a normal Join-accept message as we already saw before.

3.2.5 Adaptive Data Rate

LoRa network allows End Devices to use any of the possible data rates and transmission power,
individually defined for each device. This feature is used by LoRaWAN to adapt and optimize the
communication parameters in the network and is called Adaptive Data Rate (ADR). To enable it,
the ED has to set a bit in the uplink frame header, called ADR bit, in this way the network will
control the data rate and Tx power of the ED through the appropriate MAC commands. Otherwise,
the NS leaves the ED free to use its own communication parameters, but it can try to activate the
ADR itself by setting the ADR bit in the next downlink scheduled.

The ADR mechanism controls the following transmission parameters of an ED.

• Spreading factor

• Bandwidth

• Transmission power (Tx Power)

ADR helps optimize power consumption in IoT devices, which is crucial for their longevity while
ensuring reliable message reception by the gateways. When ADR is in use, the NS will indicate
to the end device that it should reduce transmission power or increase data rate depending on the
quality of the communication. End Devices that are close to gateways should use a lower spreading
factor and higher data rate, otherwise, they should use a high spreading factor as they need to cover
longer distances, at the cost of slow communication and more power consumption.
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To check that uplinks are still being received, the ED uses a counter called ADR_ACK_CNT .
Whenever an uplink is performed, the ED increments ADR_ACK_CNT and, after reaching
ADR_ACK_LIMIT (an implementation dependent variable) uplinks without any downlink from
the NS, the ED explicitly requests an acknowledgement downlink by setting the ADR acknowledge-
ment request bit. After another ADR_ACK_DELAY without any reply, the ED tries to regain
connectivity by increasing the Tx power to an higher one, then switching to a lower data rate that
provides a longer radio range. If again the ED does not receive a reply, it will lower its data rate
again every time another ADR_ACK_DELAY uplinks are sent. If everything fails, it should
reverse back to default channels, data rates and bandwidths.

3.2.6 Security features

The fundamental security properties supported by LoRaWAN are mutual authentication, integrity
protection, and confidentiality.

Mutual Authentication

Mutual authentication is straightforward because the NS must know in advance the hardcoded
information of the device, root keys, JoinEUI and DevEUI for OTAA devices and session context
for ABP devices. It is crucial since this information is included in messages from the beginning of
the communications. Even in the initial join message sent by an OTAA device, although the entire
packet is sent in plaintext, the MIC appended at the end is cryptographically derived using root
keys already known by the server. This allows the server to ensure the authenticity and integrity
of the join message simultaneously. The subsequent join-accept packet is entirely encrypted with
the same shared root key, assuring the device that the response originates from the genuine NS.
The allocation of EUI-64 identifiers, used for JoinEUI and DevEUI, requires these unique identifiers
to be issued by a central authority, in this case, the IEEE Registration Authority. On the other
hand, LoRaWAN networks are identified by a 24-bit globally unique identifier assigned by the LoRa
Alliance.

Integrity

To ensure the integrity of communication, a cryptographic MIC is calculated over the MHDR and
payload of the message. For regular uplink and downlink messages, the MIC is generated using a
specific key and the AES-CMAC algorithm, which is a block cipher-based message authentication
code. The output of AES-CMAC is then truncated to the first 4 bytes and appended to the end
of the message. When the NS receives the message, it first verifies the MIC. If the verification is
successful, the NS decrypts the packet, though the payload remains encrypted with the AppSKey
which the NS does not have access to, and then forwards the message to the application server.
During the Join procedure, since the appropriate session keys have not been generated yet, the MIC
is calculated using the root AppKey instead.

Confidentiality

LoRaWAN implements end-to-end encryption for application payloads exchanged between EDs and
ASs [22]. This approach is founded on the understanding that, in most scenarios, LoRaWAN network
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providers are separate entities from the organizations that own the ASs. Much like mobile network
operators that function merely as conduits for data without accessing its content, LoRaWAN ensures
that network operators can not read the transmitted messages. While upper-layer protocols such
as TLS have been developed to secure confidentiality over untrusted networks, these solutions
are not ideally suited for the IoT domain. In IoT environments, the addition of security layers
can lead to increased power consumption and complexity—critical constraints for resource-limited
devices. Therefore, LoRaWAN relies on standardized AES cryptographic algorithms for its security
mechanisms. Specifically, it employs the AES cipher combined with multiple modes of operation:
Cypher-based Message Authentication Code (CMAC) for integrity protection and Counter-mode
encryption (CTR) for effective message encryption. Consequently, all LoRaWAN traffic is secured
using different session keys, depending on the message type, one key for the payload and others
for securing the entire packet content after payload encryption. Each payload is encrypted using
AES-CTR and includes a MIC calculated with AES-CMAC to prevent packet tampering.

In LoRaWAN version 1.0, only two distinct session keys were utilized: AppSKey and NwkSKey,
responsible for encrypting the payload and the entire packet, respectively. With the advent of Lo-
RaWAN 1.1, the key management mechanism was significantly enhanced, defining several different
keys, each specific to a type of communication as shown in Fig. 3.4. These keys, NwkSEncKey,
SNwkSIntKey, FNwkSIntKey, and AppSKey, are AES-128 keys, providing sufficient cryptographic
strength to resist common attacks on encrypted payloads. Moreover, these keys can be refreshed
in a pseudorandom manner whenever an ED initiates a join or re-join request, thereby adding an
extra layer of security through key renewal.

Counters

To safeguard against replay attacks, each message incorporates an incremental counter, with sepa-
rate counters allocated for different types of messages (e.g., one for uplinks, another for downlinks,
and a third for join requests). These counters enable the system to track received messages and
discard any potential replay attempts by malicious actors or unintended retransmissions. After
verifying the MIC and decrypting the message, the receiver examines the counter value. It expects
this value to be at least equal to the last counter encountered plus one, accepting any message
with a counter strictly greater than the previous one received. The implementation of incremental
counters is a novel feature introduced in LoRaWAN 1.1. In earlier versions, these counters were
random values that both the ED and the NS were expected to remember. However, this method
proved impractical, as it is unfeasible to track thousands or millions of different nonces, which could
eventually be replaced by newer values by the receiver, thereby enabling replay attacks.

3.2.7 Security Weaknesses

Protocol Weaknesses

LoRaWAN’s security features have been problematic since the initial release of the standard. Over
the years, numerous security issues have emerged. The vulnerabilities in LoRaWAN security pre-
dominantly affect the communication between end devices and the network server [23, 24], as the
ED is often considered the weakest link in the communication chain, potentially leading to indefinite
disconnection from the network. The inherent security weaknesses of ABP devices, stemming from
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the static nature of their session keys, can be exploited in several ways [25].
These challenges prompted the release of a significant update to the standard, LoRaWAN 1.1,

which introduced substantial security enhancements to address the deficiencies of the 1.0.X version.
Nevertheless, LoRaWAN 1.1 remains imperfect, as not all issues have been resolved [26], and new
vulnerabilities have been identified in recent years [27]. Moreover, it allows the NS to downgrade and
operate using a 1.0.X version, thereby reintroducing vulnerabilities from the previous standard [26].
LoRaWAN security concerns are not confined solely to the protocol itself but also to the behaviour
of devices within the network, which can inadvertently leak confidential information [28], or the
network structure, with its centralized nature and trust-based operations posing multiple threats
for the well-being of the network.

Centralization

The architecture of LoRaWAN follows a star-of-stars topology (Fig. 3.2), where EDs communicate
with the NS through GWs. In this setup, the NS acts as the central authority managing data
routing, device authentication, and security functions such as MAC command processing and key
management. The GWs function as passive relays, simply forwarding messages between the EDs
and the NS. This centralized design creates a highly trust-dependent model. The NS is assumed to
be reliable and secure, as it manages sensitive operations, including the verification of MIC and the
distribution of encryption keys. GWs instead are often deployed in unprotected environments, and
the assumption is that they do not tamper with the data they forward. This trust in the backbone
components can be easily exploited by attackers, posing substantial security risks.

One of the primary weaknesses of LoRaWAN’s centralized architecture is the NS, which serves as
a single point of failure. The NS handles all critical network functions, including device management,
data routing, and security operations. If the NS is compromised or disrupted, it can render the
entire network inoperative, exposing several key vulnerabilities:

• Network Downtime: A compromised or failed NS can cause all connected devices to lose
communication, leading to a complete halt in IoT operations.

• Security Breaches: If an attacker gains control of the NS, they can manipulate network
traffic, intercept sensitive data, and exploit session keys to impersonate devices.

• Scalability Issues: As the network grows, the NS can become a bottleneck, struggling to
handle increased traffic and device management tasks effectively.

• Reliability Concerns: Any attack or malfunction targeting the NS compromises the overall
stability of the network, leading to service interruptions and inconsistent performance.
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Chapter 4

Bluetooth Low Energy Nodes Detect,
Enquire and Recognition

4.1 Introduction

Research in network security and privacy continues to be a highly active area, particularly in the
context of the Internet of Things (IoT) [29–31]. Bluetooth Low Energy (Bluetooth Low Energy
(BLE)) plays a critical role in this domain, owing to its widespread implementation in everyday
devices like smartphones, fitness trackers, and wearables. Moreover, BLE facilitates the creation
of both ad-hoc mesh networks, as well as more formalized, standard-defined mesh networks [16],
offering the capability to exchange data across different platforms efficiently.

Since version 4.0 of the BLE standard [4], privacy and security concerns related to Medium
Access Control (MAC) address handling have undergone significant revisions by device manufac-
turers to mitigate tracking and profiling risks for users [32]. A key improvement introduced by the
standard is the randomization of MAC addresses, which are rotated approximately every 15 minutes
to protect users from tracking. However, this safeguard is not universally implemented correctly.
Furthermore, even when it is correctly executed, certain devices expose data that can be captured
with low-cost hardware, enabling potential fingerprinting and tracking of these devices [33].

Despite the rotating MAC addresses, attackers can leverage this exposed data to generate a
unique fingerprint, a sort of identifier, for a device, allowing them to track the same physical device
across different times and locations, despite the dynamic MAC addresses. This concept of finger-
printing is well established in network security, having been used extensively in web technologies
for tracking anonymous users. For instance, websites gather various user settings and characteris-
tics, such as screen resolution, language, and hardware information, to build a unique fingerprint
for each user, allowing tracking even without knowledge of their true identity. The user, although
anonymous, becomes traceable over time using this fingerprint.

Similarly, in the BLE context, even if a device’s MAC address is randomized, it may still
reveal hardware-specific details, such as clock skews [34], software versions, or vendor information.
These details can be broadcasted or made available for retrieval by any nearby device, without
requiring any special permissions or authentication from the target device. A scanner can thus
extract sufficient data from the target, in compliance with the BLE standard, to create a unique
fingerprint, all without directly breaching security protocols.
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In this work, presented in [35] and extended in [36], we present BLENDER, a proof-of-concept
system capable of analyzing, fingerprinting, and tracking BLE devices. By employing BLENDER,
we demonstrate the feasibility of enumerating and fingerprinting BLE devices, and we also showcase
the potential for large-scale monitoring and tracking systems using off-the-shelf hardware and spe-
cialized software. BLENDER exploits key components of the BLE standard, such as Generic Access
Profile (GAP) and Generic Attribute Profile (GATT), which are integral to detecting, connecting,
and exchanging information between devices. Through these mechanisms, we retrieve relevant data
for analysis.

Our proposed system enables the discovery, enquiry, and fingerprinting of active BLE devices in
real-time. We will outline the techniques and solutions adopted in BLENDER, as well as suggest
potential enhancements for future iterations. Additionally, we will present the results from three
experimental deployments of BLENDER in real-world environments, demonstrating its original
capability to detect and fingerprint BLE devices across various locations.

The remainder of this chapter is organized in the following manner:
In Section 4.2, we provide an overview of key concepts related to BLE device fingerprinting,

crowd counting, and associated privacy risks. This sets the stage by explaining how BLE advertising
and scanning processes can be exploited to identify and track devices despite privacy mechanisms
like MAC address randomization.

Section 4.3 introduces the BLENDER system, explaining its architecture and four detection
strategies: PassiveListening, ScanTrigger, Enquiring, and JustStore. Each strategy leverages
specific BLE characteristics to collect data, allowing the system to fingerprint devices even when
MAC address randomization is used.

In Section 4.4, we demonstrate the real-world effectiveness of BLENDER by discussing results
from field experiments. The system’s ability to track devices under various conditions is highlighted,
showcasing its potential for monitoring in both indoor and outdoor environments.

Finally, in Section 4.5, we summarize key findings and emphasize the limitations of MAC address
randomization as an effective privacy measure in BLE devices. The findings underscore the need for
future research and development efforts to provide more robust security solutions as IoT technologies
continue to expand.

In summary, the BLENDER system provides a detailed insight into the vulnerabilities of BLE
devices, showcasing how a relatively simple setup can be used to track and monitor devices. This
project underscores the importance of strengthening security mechanisms in BLE to protect against
the risks posed by enumeration and fingerprinting attacks, especially as the number of IoT devices
continues to grow. The lessons learned from this research will serve as a foundation for future
improvements in Bluetooth security, particularly in enhancing privacy protections for end users.

4.2 Background

BLE (versions 4.2, 5.0, and 5.1) operates in the 2.4 GHz Industrial, Scientific, and Medical (ISM)
band, ranging from 2.400 to 2.4835 GHz. There are 40 allocated RF channels, each with a separation
of 2 MHz. In BLE, devices may act as advertisers, broadcasting advertising packets using three
designated advertising channels (37, 38, and 39). These channels are used to reduce interference by
spreading the broadcast across multiple frequencies. The advertising intervals, known as Advertising
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Figure 4.1: Advertising channel PDU format of ADV _IND BLE advertising packet [37].

Intervals, allow devices to broadcast packets systematically, which can be detected by other BLE-
enabled devices via their firmware and software stacks. The remaining 37 channels are reserved
for data transmission, used in paired communications between devices once a connection has been
established. Upon connection, devices transition to the role of Broadcasters, advertising their
presence and services.

There are various types of advertising Protocol Data Unit (PDU) packets used for different
communication purposes:

• Advertising PDUs: (ADV _IND, ADV _DIRECT_IND, ADV _NONCONN_IND,
ADV _SCAN_IND) are used to signal the services or data offered by the sender.

• Scanning PDUs: (SCAN_REQ, SCAN_RSP ) are used to request permission to scan an-
other device for specific services.

• Initiating PDUs: (CONNECT_REQ) are used to initiate connections between devices.

The structure of an advertising packet (e.g., ADV _IND) is depicted in Figure 4.1.

4.2.1 GAP

GAP is a fundamental protocol that defines how BLE devices interact and establish connectivity
within a network, structured into four distinct roles. In connectionless communication, the Broad-
caster role allows devices to continuously emit advertising packets (ADV packets) containing key
information such as the device’s identity, services, and metadata. These packets are transmitted
through designated advertising channels, crucial for discovering devices in scenarios like indoor lo-
calization, where BLE Beacons broadcast their presence to nearby Observers. Observers are passive
devices that listen to advertising channels for ADV packets, gathering information to detect nearby
Broadcasters and assess their advertised features and services. This one-way communication sys-
tem enables devices like beacons to broadcast without expecting a response, ideal for tracking and
proximity-based applications.

In connection-oriented mode, devices adopt the roles of Central and Peripheral. Typically, a
Peripheral device has limited power and processing resources, such as wearables, sensors, or smart
health devices like heart rate monitors and fitness bands. A Peripheral periodically advertises
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its availability using ADV packets. Once detected by a Central device, usually more resourceful
like a smartphone or computer, the Central can initiate a connection. GAP defines the process
by which Centrals and Peripherals establish these connections. After the Central detects a Periph-
eral’s advertisement, it can request to connect. If accepted, the devices transition into an interactive
communication phase, exchanging data using the connection-oriented mode. The Central can re-
trieve data from the Peripheral and send commands or configuration instructions, commonly used
in applications like fitness tracking where a smartphone retrieves real-time data from a connected
wearable.

GAP includes mechanisms to control and optimize communication, such as the advertising in-
terval, which dictates how frequently a Broadcaster transmits ADV packets. A shorter interval
increases the chances of device discovery but consumes more power, making it essential to balance
advertising frequency with energy efficiency for low-energy devices to ensure long battery life. Ad-
ditionally, the scan request/scan response mechanism allows an Observer to actively request more
information from a Broadcaster. When an Observer detects a scannable Broadcaster, it can send
a scan request packet, prompting the Broadcaster to respond with a scan response packet that
provides detailed information about the device, its services, and status, targeted to the specific
Observer. A critical aspect of GAP is the seamless transition from connectionless to connection-
oriented roles. When a Broadcaster is connectable and an Observer can initiate connections, they
can switch roles: the Observer becomes the Central, and the Broadcaster becomes the Peripheral.
This switch enables the establishment of a bidirectional communication channel, facilitating more
complex data exchange.

4.2.2 GATT

PROFILE
SERVICE

CHARACTERISTIC

CHARACTERISTIC

VALUE

DESCRIPTORS

DESCRIPTORS

VALUE

UUID
UUID

UUID

UUID

Figure 4.2: The nested object structure used in GATT.

GATT organizes communication into logical entities known as Services and Characteristics.
Each GATT interaction is structured by the Attribute Profile (ATT) protocol, which assigns Ser-
vices and Characteristics unique 16-bit Universally Unique Identifier (UUID) identifiers. These
identifiers ensure consistent access to specific data across devices. Unlike the connectionless mode,
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GATT enables full-duplex, bidirectional communication, allowing both devices to exchange data
simultaneously for richer interactions. Within the GATT framework, devices assume the roles of
Server or Client. The Server hosts data through Profiles, Services, and Characteristics, as shown
in Fig. 4.2. Profiles, defined by the Bluetooth Special Interest Group (SIG) or manufacturers, are
composed of group related services. For example, the standardized Heart Rate Profile used in fitness
devices includes the Heart Rate Service for monitoring heart activity and the Device Information
Service for details like manufacturer and model. Services are composed of Characteristics, which
represent specific data pieces. Characteristics can range from a few bytes to larger values and may
be read-only or read-write. For instance, a sensor characteristic might be read-only to display data,
while another could allow user adjustments like sensor sensitivity. Attributes are the lowest level
of the GATT structure, representing the actual data exchanged between devices. Characteristics
abstract over Attributes, presenting data meaningfully as sensor readings, configuration informa-
tion, or user properties. GATT operates over dedicated connections, ensuring private and secure
data exchange, unlike the broadcast nature of connectionless communication. The ability to define
custom Profiles and Services adds significant flexibility to the BLE ecosystem. By organizing data
through Services and Characteristics, GATT maintains high interoperability among BLE devices
while supporting specialized and customizable use cases.

4.2.3 MAC address randomization

The MAC address in BLE, composed of 6 bytes, is designed to rotate periodically to protect user
privacy, with an indicative rotation period of 15 minutes. However, the actual implementation of this
randomization can vary across devices. Older or non-compliant devices may either not implement
randomization or generate static addresses that persist across sessions. Public MAC addresses
are permanent identifiers assigned by the SIG Alliance, where the first three bytes represent the
manufacturer, while private addresses can either be resolvable or non-resolvable. A resolvable
random address allows bonded devices to recognize each other, even after MAC address rotation,
but prevents tracking by unbonded devices.

Smartphones generally adhere to these standards, systematically randomizing MAC addresses.
However, many other BLE devices, such as smart bands and headphones, may utilize static addresses
to optimize power consumption and ease reconnections, making them particularly susceptible to
tracking. In the BLENDER system, both static and randomized MAC addresses are considered for
crowd monitoring. Although public or random address types are detected and temporarily stored,
device counting by design is not influenced. It is also important to note that devices implementing
MAC address randomization do not rotate too frequently, as this would introduce overhead. Thus,
the most recent devices generally comply with the recommended 15-minute interval, making MAC-
based tracking more challenging. When MAC addresses are randomized, fingerprinting techniques
can still be used to uniquely identify devices by analyzing other consistent data.

4.2.4 Privacy concerns

In BLENDER, privacy is maintained by only transmitting pseudonyms or fingerprints related to
detected devices rather than MAC addresses, which fall under privacy regulations like the European
Union’s GDPR. However, a malicious actor could develop a system similar to BLENDER that
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collects actual MAC addresses or user data scannable via the ATT protocol, allowing for detailed
tracking. This presents a significant privacy concern, as such a system could be used by national
entities to track a large portion of the population, particularly given the widespread adoption of
BLE technology. The inherent risks associated with the pervasive use of BLE in everyday devices
make it essential to address these privacy vulnerabilities proactively.

4.2.5 BLE Fingerprinting techniques

Due to its widespread adoption, BLE has become a focal point for research on both offensive and
defensive security techniques. Numerous studies have analyzed the privacy mechanisms of BLE,
particularly MAC address randomization, revealing its shortcomings as a method to ensure device
anonymity. While intended to protect against unauthorized tracking, research has consistently
demonstrated how attackers can bypass this mechanism, exploiting static elements of the protocol
to identify and track devices, raising serious concerns about the effectiveness of BLE’s privacy
features.

Celosia et al. [38] introduced a method for tracking BLE devices by leveraging their GATT
profiles, bypassing the privacy mechanism of MAC address randomization. While MAC addresses
are randomized to prevent tracking, the static nature of GATT profiles, which contain device-
specific services and characteristics, enables the identification and tracking of individual devices. The
authors demonstrate how the anonymity set can be reduced to uniquely identify devices, revealing
significant privacy risks despite MAC randomization.

Issoufaly et al. [39] explored the vulnerabilities of BLE devices, highlighting that many fail
to implement MAC address randomization correctly, leaving them exposed to tracking attacks.
They introduced BLEB, a botnet of compromised BLE devices, which can track users by passively
collecting data from advertising packets. Even when randomization is used, information such as
static addresses or UUIDs can still leak, enabling tracking.

Das et al. [40] focused on fitness trackers and found that many devices broadcast static BLE
addresses, making them vulnerable to tracking. The paper revealed that top brands, such as Fitbit
and Jawbone, often fail to implement MAC randomization, exposing users to potential privacy
breaches by allowing attackers to continuously monitor BLE traffic.

Becker et al. [41] proposed an address-carryover algorithm that exploits the asynchronous be-
havior of MAC address changes and static identifiers in BLE advertisements. This method allows
tracking across randomization cycles by correlating unchanged payload elements with newly ran-
domized addresses. The study revealed that popular operating systems, including iOS, macOS, and
Windows 10, are vulnerable to this attack, as they broadcast static identifiers that can be used to
link randomized addresses back to the original device.

In their later work, Celosia et al. [42] delved deeper into the limitations of MAC address ran-
domization in BLE advertising. They identified weaknesses in how randomization is implemented,
allowing attackers to exploit static identifiers in the advertising payload to re-identify devices across
multiple sessions. This persistence of static tokens in the payload, despite address randomization,
continues to pose significant privacy risks for users.

Together, these works illustrate the persistent vulnerabilities in BLE’s privacy mechanisms, par-
ticularly around MAC address randomization. While designed to enhance privacy, the static nature
of certain elements within the BLE ecosystem, like GATT profiles, UUIDs, and other identifiers,
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Figure 4.3: The architecture of the BLENDER system consists of independent station nodes (stations)
that collect data autonomously and transmit it to a centralized cloud server via a LoRaWAN network. This
ensures long-range, low-power communication, minimizing battery consumption.

leaves devices vulnerable to tracking, necessitating more robust solutions to protect user privacy.

4.3 BLENDER

BLENDER is an automatic system composed of autonomous station nodes (referred to as "sta-
tions"), relying solely on their own resources for computing, power, and networking over both short
and long ranges. Stations can be deployed at various locations, distanced from each other, such
as at the entrances of buildings or in public areas. Indoors, stations can be separated by 30 to 50
meters, while outdoors, they can cover distances of up to 100 meters. The stations are capable of
autonomously collecting data for crowd monitoring and tracking, employing four distinct strate-
gies. Specifically, each BLENDER station implements two different strategies to discover the MAC
addresses of BLE devices. Once a device’s MAC address is detected, the station calculates the
fingerprint of the device, when possible. This is particularly useful for tracking purposes, as it ad-
dresses the challenge posed by BLE MAC address randomization by establishing connections to read
device attributes for fingerprinting. Additionally, only for devices that use static MAC addresses,
a connection-less fingerprinting of the MAC address itself is used. These processes are continually
repeated by each station, which generates a LoRaWAN frame every minute. This frame contains
data regarding the number of discovered devices and any fingerprints that have been computed.

4.3.1 System Architecture

Fig. 4.3 illustrates the overall system architecture, showing how station nodes transmit aggregated
data via long-range uplink connections. These uplinks are essential for retrieving real-time data
from BLENDER stations, which may be spread across extensive geographic areas, such as an entire
smart city. Various options for long-range communication were assessed, both in open-source and
commercial contexts. Given that station nodes can be situated 2 to 10 kilometers from collectors or
gateways, technologies like 5G/4G LTE, NB-IoT, LoRaWAN, and SigFox were evaluated as potential
solutions, balancing cost, efficiency, and coverage. The option of using WiFi for communication
in urban areas was considered, but it presented challenges related to coverage in areas without
open networks and high power consumption, making it unsuitable for IoT deployments. While
cellular networks offered affordable and compact hardware solutions via SIM cards, the costs of
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Figure 4.4: BLENDER system.

acquiring and managing these cards, along with coverage issues in non-urban areas, rendered this
approach impractical. Ultimately, Low-Power Wide-Area Network (LPWAN) technologies like NB-
IoT, SigFox, and LoRaWAN were considered, with LoRaWAN being selected for its low cost and
ability to efficiently cover the required distances, making it the best choice to transmit aggregated
data to the cloud for collection and storage.

The BLENDER station’s architecture is illustrated in Fig. 4.4a, where each hardware and soft-
ware block is detailed. At the core is the Broadcom BCM2835 System-on-Chip (SoC) housed in a
Raspberry Pi Zero W, which runs a lightweight Debian-based Linux system. The station uses Java,
Python, and shell scripts to implement the different stages of BLENDER. For a specific tecnique,
called ScanTrigger, additional hardware (Adafruit Bluefruit LE sniffer) is required to capture BLE
traffic. Two long-range uplink options were evaluated: Libelium Waspmote PRO 1.5 and Heltec
Cubecell AB01, both paired with a LoRaWAN antenna. Power is supplied by a Waveshare UPS
HAT, equipped with a 3.7V 1000mAh LiPo battery and solar panel support. Fig. 4.4b displays a
station setup used in the laboratory with Waspmote PRO as the LoRaWAN board.

The BLENDER system operates as a distributed application on the The Things Network (TTN)
platform, where each station is registered as an End Devices (ED), enabling stations to transmit
uplink data to the cloud, where it can be accessed by the BLENDER data collector. TTN is
a global LoRaWAN network tailored for IoT devices, allowing users to create custom applications
while utilizing the public infrastructure. Public LoRaWAN gateways act as the network’s endpoints,
receiving uplinks from end-devices, like the BLENDER stations.

For data collection, the BLENDER Data Collector node runs on a Raspberry Pi 3B+ with inter-
net connectivity. The application communicates with TTN via MQTT, subscribing to notifications
about uplink payloads received from BLENDER stations. The data is then stored in a relational
database, enabling further analysis and monitoring of collected data. This distributed setup facili-
tates real-time data aggregation and processing across widely dispersed stations, ensuring efficient,
scalable, and low-power data collection.
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Figure 4.5: Different scanning mechanisms in BLE.

4.3.2 Detect and count devices

Algorithm 1 Passive listening, used to discover and count BLE devices in the area.
1: Define T as the time length of a BLE advertisement scan
2: Define B as a storage buffer for the MAC addresses found
3: while T is not over
4: Sense the advertising channels to detect ADV packets
5: Detect the MAC addresses of BLE devices in range P
6: Store P in B
7: end while

Passive Listening

In this approach, described in Algorithm 1, the scanner device continuously listens to advertising
channels to detect incoming packets from Broadcaster devices. These devices may be peripher-
als, beacons, or even smartphones broadcasting advertising packets, such as those used for contact
tracing. Advertising packets contain the advertiser’s MAC address. The passive listening strat-
egy involves gathering these addresses during the scan interval and collecting all unique addresses
detected. This method adheres to the BLE passive scanning model, as depicted in Figure 4.5a.

Scan Trigger

The BLE advertising mechanisms, illustrated in Figure 4.5b, can be leveraged using an innovative
method we call the SCAN_REQ− SCAN_RSP packet exchange. Advertising PDUs hold up to
31 bytes of data, typically broadcasting the advertiser’s presence and available services. In some use
cases, the Observer device, upon receiving an ADV packet, may want more detailed information from
the Broadcaster. The BLE standard supports this by allowing the Observer to send a SCAN_REQ

packet to the Broadcaster’s MAC address. The Broadcaster responds with a SCAN_RSP packet,
which can contain up to 31 additional bytes of data.

The format of the scan request PDU is shown in Figure 4.6. The ScanTrigger strategy is detailed
in Algorithms 2 and 3. The first method, Embedded Active Scanning (EAS), relies on identifying
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Figure 4.6: SCAN_REQ packet format. ScanA is the scanning device MAC address.

scanner MAC addresses in SCAN_REQ packets by using a scannable BLE device under our
control, part of the station node. The second, Opportunistic Active Scanning (OAS), capitalizes on
scannable Broadcasters in range and captures SCAN_REQs sent by other devices interacting with
these Broadcasters. Both strategies can be used individually or together for enhanced efficiency.

In EAS, BLENDER acts as a decoy to identify and collect the MAC addresses of scanning devices
sending SCAN_REQ packets. However, the scannable device can potentially be recognized by
targets unless it employs randomized address rotation. On the other hand, OAS is entirely passive
and stealthy, as it captures the SCAN_REQ traffic between external devices without requiring a
scannable onboard Broadcaster, making it undetectable by target devices.

Algorithm 2 ScanTrigger - EAS
1: Define T as the time length of a BLE advertisement scan
2: Define B as a storage buffer for the MAC addresses found
3: while T is not over
4: Broadcast advertising packets which contain references to additional data stored in the embedded device
5: Wait for possible incoming SCAN_REQ packets to embedded scannable device
6: Detect the MAC addresses of BLE scanning devices in range P
7: Store P in B
8: end while

The PassiveListening and ScanTrigger strategies can be used to monitor BLE devices by
leveraging passive and active scanning methods defined in the BLE standard. The innovative aspect
of ScanTrigger lies in its ability to detect devices that, while not advertising, are performing active
scans due to operating system or firmware behavior. These techniques provide sufficient detection
and counting capabilities for crowd-monitoring purposes.

In practice, the most monitored advertising packet is ADV _IND, commonly broadcast by
peripherals, while SCAN_REQ is the key packet used for data collection in ScanTrigger. Table 4.1
provides details on the various advertising and scan request packets, explaining their signatures and
the applicability of the strategies for detecting devices transmitting these packet types.

PDU Type Packet name Description Passive Listening Scan Trigger Enquire JustStore
0000 ADV _IND Connectable Undirected Advertising ✓ ✓ ✓
0001 ADV _DIRECT_IND Connectable Directed Advertising ✓ ✓
0010 ADV _NONCONN_IND Non-Connectable Undirected Advertising ✓ ✓
0011 SCAN_REQ Scan Request ✓ ✓ ✓
0100 SCAN_RSP Scan Response ✓ ✓
0101 CONNECT_REQ Connection Request
0110 ADV _SCAN_IND Scannable Undirected Advertising ✓ ✓

0111-1111 Reserved

Table 4.1: PDU type codes from header described in BLE specification v4.2 [43] and their description.

4.3.3 Enquiring and Fingerprinting Strategies

Fingerprinting a device becomes feasible only when sufficient unique data is captured from the
target. Enquiring expands on this by exploiting the BLE standard, this time using GATT instead
of GAP, which was previously used for device discovery and counting in the strategies seen before.
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Algorithm 3 ScanTrigger - OAS
1: Define T as the time length of a BLE advertisement scan
2: Define B as a storage buffer for the MAC addresses found
3: while T is not over
4: Scan advertising channels for SCAN_REQ packets addressing external devices nearby
5: Detect the MAC addresses of BLE scanning devices in range P
6: Store P in B
7: end while

While GAP involves passive or active scanning and operates via broadcast packets without requiring
a connection, GATT comes into play once a connection is established between devices.

GAP works by broadcasting advertisements, with any nearby device capable of passively listen-
ing to this communication, regardless of filters applied to scan requests or responses. In contrast,
GATT is used when a device transitions from broadcasting to an established connection, allowing
more significant data exchange. Once a connection is formed, the central and peripheral devices can
exchange information structured around Profiles, Services, and Characteristics. These are hierar-
chical containers of data, which together form a nested object structure as represented in Figure 4.2.

The detailed data transmitted through GATT can be used for more precise fingerprinting, as
it encapsulates specific device properties and characteristics, enabling a more targeted and detailed
analysis of the device’s unique features.

There are several predefined services within BLE that are useful for fingerprinting based on
static data. One particularly valuable service is the Device Information Service, which provides
information such as the device vendor, model, firmware version, and serial number—data that
typically remains unchanged and is therefore useful for identification. The TX Power Service is
another valuable tool, as it reveals the transmission power settings, which are mainly static.

Enquiring involves making connection attempts and retrieving this type of static data through
GATT operations. Fingerprinting combines the retrieved data from advertising, profiles, services,
and characteristics, helping to uniquely identify a specific device by reducing the likelihood of
collision between similar devices, even in environments with MAC address randomization.

Enquiring

In this phase, described in Alg. 4, the goal of the BLENDER station is to establish a connection
with the target device and retrieve data through GATT interactions that can be used to create a
device fingerprint. This active approach to fingerprinting focuses on gathering static, informative
data rather than relying on hardware parameters related to transmission, such as advertising timing,
time skews, or pseudo-random variations in MAC address rotation.

The essence of the Enquiring phase involves collecting structured information that is encapsu-
lated in profiles, services, and characteristics available for reading once a connection is established.
After successfully connecting to the target device, the station’s scanner identifies the available char-
acteristics and gathers relevant data, including the device’s generic name, manufacturer, model,
revision details, and other information that may vary depending on the device’s configuration and
the manufacturer’s specifications.

The process of scanning device characteristics is facilitated by an automatic analysis tool based
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Algorithm 4 Enquire
1: Define D as the list of connectable devices found during detection phase
2: Define F as the list of calculated fingerprints
3: Define B as a temporary buffer
4: Define H as an hash function
5: for D in D
6: if Connection with D is successful
7: for S in D.services()
8: for C in S.characteristics()
9: if Read of C is successful

10: B.append(C.getContent())
11: end if
12: end for
13: end for
14: F .append(H(B))
15: end if
16: end for

on the BLEAH software, which is part of the Bettercap suite1. This tool is controlled by the
main application running on the BLENDER station. It performs the task of retrieving relevant
parameters, identifying the presence of characteristics and their values, or attributes that are crucial
for creating a unique device fingerprint. The goal is to generate a fingerprint with a low probability
of collision, even between devices of the same manufacturer and model.

The essential step in this process involves enumerating the device’s attributes and handles,
extracting relevant information, and combining them into a unique string. This aggregated data is
then hashed using an algorithm designed to ensure a low likelihood of collisions. In BLENDER,
we use the SHA-1 algorithm to create the fingerprint, which generates a 20-byte hash. However,
due to the limitations imposed by LoRaWAN on the size of payloads in uplink frames, we employ
only the first 5 bytes of the 20-byte SHA-1 hash as the device’s fingerprint. This creates a short
fingerprint that is compact enough for long-range transmission. Given this approach, it is essential
to evaluate the probability of collision between 5-byte fingerprints derived from the 20-byte SHA-1
hash to ensure that each fingerprint remains sufficiently unique across different devices. Recalling
the birthday paradox2, the probability of a hash collision can be estimated. For a 5-byte (40-bit)
hash, the probability of a 50% collision is reached after 240/2 = 1, 048, 576 hashes. This means the
likelihood of a collision happening is less than 1 ∗ 10−6. In simpler terms, it would take over one
million different hashes for there to be a 50% chance of a collision, which is an extremely low risk.
Moreover, this already small risk can be reduced even further by using techniques like data cleaning
to remove potential collisions. Therefore, for practical use, the impact of collisions is negligible.

JustStore

The fourth strategy, referred to as JustStore, described in Algorithm 5, is used to fingerprint devices
that expose public or static MACs. These addresses are well-suited for fingerprinting directly based
on GAP-recovered data without requiring any active connection. JustStore is a connectionless, static
address-driven, software-based BLE fingerprinting technique. In this method, the discovered static
MAC address is directly fed into the SHA-1 hash function, and a subset of 5 bytes from the resulting
hash value is used as the device’s fingerprint. Since static addresses do not change over time and are

1https://github.com/bettercap/bettercap
2https://doi.org/10.1111/j.1740-9713.2007.00246.x
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guaranteed to be unique, they serve as ideal input data for creating reliable fingerprints. Although
static addresses are typically used by specific devices, such as smart bands/watches, wearable smart
sensors or headphones, these devices are popular and widespread, making this residual case of static
address presence an effective and valuable strategy for device identification and tracking.

Algorithm 5 JustStore
1: Define D as the list devices found during detection phase having public/static MAC address
2: Define MAC(D) as the function that returns the MAC address of device D
3: Define F as the list of calculated fingerprints
4: Define B as a temporary buffer
5: Define H as an hash function
6: for D in D
7: F .append(H(MAC(D)))
8: end for

4.4 Data Collection, Experiments and Analysis

station 2002 (mid-point)

station 2003 (end-point)

station 2001 (start-point)

Figure 4.7: Path inference using fingerprint collected data in the city of Rome.

The payloads collected by each station node are transmitted every minute. This data includes
both the count of BLE-enabled devices discovered in the previous minute and the fingerprints of
those devices that have been scanned and successfully fingerprinted. The device count is particu-
larly valuable for crowd-monitoring operations and can also be used to develop predictive models.
Meanwhile, the fingerprints serve to identify mobility patterns, enabling the creation of detailed
mobility models.

The fingerprints obtained from the dataset offer a way to track near-anonymous devices and, by
extension, near-anonymous users. It is possible to infer paths and itineraries by tracking a specific
fingerprint from a start node, through one or more waypoints, and finally to an end node. As
each node detects the same fingerprint at different times, it can piece together a likely travel route
through a geographical area covered by station nodes, such as a city.
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Name Duration Distinct Strategy used # Fingerprints Quantity
(mins) MACs Passive Listening Scan Trigger Enquiring JustStore

San Rocco 125 8263 1208 7086 157 22 179
Pub 23 532 123 416 17 12 29

Table 4.2: Results from the indoor/outdoor experiments. It shows the different metrics for the strategies
of BLENDER, proving the effectiveness of the ScanTrigger strategy.

An example of path inference, derived from data collected during a test in Rome, is shown in
Figure 4.7. In this instance, the same fingerprint was detected by three different stations located in
the city center, near points of historical interest and public transportation stops, which served as
reference points:

• Station 2001 at Colosseo subway (start point - 23 March 2022 10:12:00 GMT, timeslot 11)

• Station 2002 at via San Gregorio, near Arco di Costantino (waypoint - 23 March 2022 10:44:00
GMT, timeslot 61)

• Station 2003 at Circo Massimo tram stop (end point - 23 March 2022 10:57:00 GMT, timeslot
16)

The timeslots represent subintervals, approximately a quarter of a second in duration, during
which the fingerprinted device was detected. Stations are georeferenced with latitude and longitude
coordinates. To model the city of Rome and infer a walking path through various nodes, Python
was used in conjunction with the OSMnx and NetworkX libraries, utilizing geographical data from
Open Street Map. The inferred route was mapped based on actual streets and pedestrian paths.

In this example, the path starts at the Colosseo, where station 2001 was located, passes through
station 2002 at San Gregorio Road, and ends at Circo Massimo, where station 2003 was positioned.
The inferred path was visualized using Folium, showcasing the feasibility of reconstructing movement
through sparse geographical fingerprinting data across widely spaced outdoor stations.

Two additional experiments were carried out to evaluate the performance of BLENDER.

1. San Rocco experiment — This test was conducted during San Rocco festival, in Triv-
igliano (FR), Italy. The experiment took place for a total duration of 125 minutes, during
the evening. The three stations with IDs 1001,1002 and 1003 were equipped with portable
UPS and deployed at the site, within a radius of approximately 60 meters in a stationary con-
figuration. The three stations automatically collected the data presented in the quantitative
indicators table.

2. Pub experiment — This test was conducted at a public pub in Rome, Italy, over a duration
of approximately 23 minutes. A single station, powered by a portable source, was deployed
in a fixed position at the site. Unlike the other two experiments, which focused on tracking
devices and bypassing MAC address randomization, the goal of this test was to demonstrate
the station’s capability to count and differentiate between multiple devices present at a specific
location and time.

Table 4.2 presents quantitative data collected from two experiments using two BLENDER sta-
tion nodes. The table reveals a notable difference in the number of distinct MAC addresses detected
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by the stations, which can be attributed to both the duration of the experiments and the environ-
mental characteristics in which they were conducted. Specifically, the number of MAC addresses
detected during the San Rocco experiment is approximately 15.5 times greater than the number
detected in the Pub experiment, despite the collection time at San Rocco being only 5.43 times
longer. This suggests that, under similar user density conditions, the stations in the San Rocco ex-
periment were able to better utilize the full range of BLE compared to those in the Pub experiment.
This discrepancy can be explained by the differing environments: the San Rocco stations operated
outdoors in an open field, allowing for maximal exploitation of the BLE range, while the Pub ex-
periment took place indoors, where walls and objects attenuated and reflected the BLE signals. As
a result, the ability to detect distinct MAC addresses was reduced by about threefold in the indoor
environment compared to the outdoor setting.

The data collected during the detection phase also revealed additional insights. When compar-
ing MAC address discovery via PassiveListening, it becomes clear that the San Rocco experiment
detected 1208 MAC addresses, while only 123 were detected in the Pub experiment—a difference
of about 9.82 times. This ratio is nearly double the time difference between the two experiments.
The disparity is even more pronounced for MAC addresses detected via the ScanTrigger method,
where the San Rocco experiment identified 7986 addresses compared to just 416 in the Pub ex-
periment, resulting in a ratio of approximately 17:1. The overall ratio between ScanTrigger and
PassiveListening was 5.86:1 in the San Rocco experiment, while in the Pub experiment, it was
3.38:1.

This highlights that the impact of ScanTrigger relative to PassiveListening is greater in out-
door settings, while it diminishes in indoor environments for the same reasons. The considerable
difference between the number of detections from ScanTrigger compared to PassiveListening

confirms that ScanTrigger is an effective complementary strategy. As more BLE devices, par-
ticularly high-end smartphones, limit advertising due to privacy considerations, the importance of
ScanTrigger for device discovery becomes even more evident.

In the first experiment, station 1001 collected a total of 179 fingerprints, with 157 obtained
through Enquire (active scanning and fingerprinting using GATT) and 22 through JustStore

(public/static MAC address fingerprinting). This results in an Enquire:JustStore ratio of approxi-
mately 7.13. In the Pub experiment, Enquire generated 17 fingerprints, while JustStore produced
12, giving a total of 29 fingerprints and an Enquire:JustStore ratio of about 1.41. These figures
highlight a significant difference between the indoor and outdoor experiments in terms of fingerprint
generation.

Regarding the calculated fingerprints, the system successfully identified identical fingerprints
at different times, as expected. Table 4.3 highlights the occurrences of three fingerprints detected
during the San Rocco experiment, clearly illustrating multiple detections at various instants and
locations within the experiment scenario. From these records, the movement patterns of the same
device can be inferred within the detection environment.

It is important to note that only the times are shown, specific to the San Rocco experiment, and
for brevity, only short fingerprints (5 bytes) are displayed. Additionally, the last 3 bytes of the MAC
addresses were obscured. One fingerprint, 6501C59023, corresponds to five different random MAC
addresses frequently rotated by the same device. Another fingerprint, 844BA3ACF9, was derived
from three random MAC addresses of a second device, although its rotation timing was slightly
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non-compliant with the standard. Lastly, fingerprint 8A402A3139 was repeatedly computed from
the same random MAC address of a device over extended periods, suggesting non-compliance with
MAC address randomization, as the device did not rotate its MAC address.

Station ID Latitude Longitude Time Fingerprint MAC
1001 41.776169 13.272443 21:43:31.723833 6501c59023 50:2E:02:**:**:**
1001 41.776169 13.272443 21:47:41.348958 6501c59023 50:5F:64:**:**:**
1001 41.776169 13.272443 21:49:43.832345 6501c59023 50:5F:64:**:**:**
1002 41.776489 13.272569 21:53:41.628960 6501c59023 50:5F:64:**:**:**
1003 41.776688 13.273054 21:57:34.623797 6501c59023 42:97:20:**:**:**
1002 41.776489 13.272569 22:24:12.894568 6501c59023 51:F9:FC:**:**:**
1002 41.776489 13.272569 22:23:41.056393 844ba3acf9 55:71:7C:**:**:**
1003 41.776688 13.273054 22:31:10.954223 6501c59023 51:F9:FC:**:**:**
1003 41.776688 13.273054 22:30:11.384897 6501c59023 5E:60:C9:**:**:**
1003 41.776688 13.273054 22:33:20.402627 6501c59023 5E:60:C9:**:**:**
1003 41.776688 13.273054 22:41:24.659739 8a402a3139 6D:69:41:**:**:**
1003 41.776688 13.273054 22:43:30.901356 8a402a3139 6D:69:41:**:**:**
1003 41.776688 13.273054 22:44:15.726762 8a402a3139 6D:69:41:**:**:**
1002 41.776489 13.272569 22:46:10.672153 8a402a3139 6D:69:41:**:**:**
1002 41.776489 13.272569 22:48:04.615016 8a402a3139 6D:69:41:**:**:**
1002 41.776489 13.272569 22:49:13.673665 8a402a3139 6D:69:41:**:**:**
1003 41.776688 13.273054 22:49:05.068207 844ba3acf9 56:82:B9:**:**:**
1002 41.776489 13.272569 22:50:31.020064 8a402a3139 6D:69:41:**:**:**
1003 41.776688 13.273054 22:52:20.865793 8a402a3139 6D:69:41:**:**:**
1003 41.776688 13.273054 22:57:40.434737 8a402a3139 6D:69:41:**:**:**
1001 41.776169 13.272443 23:10:33.528203 844ba3acf9 59:21:76:**:**:**

Table 4.3: San Rocco data samples. MAC addresses have been partially obscured.

4.5 Conclusions

In conclusion, the BLENDER system demonstrates the limitations of MAC address randomization
as a privacy measure in BLE devices, revealing that this mechanism alone is insufficient to prevent
device tracking. By employing a combination of passive listening and active scanning strategies,
BLENDER effectively bypasses this security feature, enabling the discovery, identification, and
tracking of devices even when their MAC addresses are frequently rotated.

The PassiveListening strategy captures advertising packets and extracts MAC addresses, but
the increasing use of randomization in high-end devices has reduced the efficacy of this approach
alone. To counter this, BLENDER introduces the innovative ScanTrigger method, which detects
devices that do not actively advertise but are scanning in the background. This strategy signif-
icantly boosts detection rates, particularly in environments with high interference, showing that
even devices attempting to conceal their presence through randomization can still be exposed.

Additionally, BLENDER utilizes the Enquiring strategy to actively fingerprint devices by re-
trieving static data from the GATT, allowing for unique device identification despite the randomized
MAC addresses. The JustStore approach complements this by focusing on devices that continue
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to use static MAC addresses, such as smart bands and fitness trackers, highlighting another vulner-
ability in the randomization strategy.

The experiments in both outdoor and indoor environments further illustrate how MAC address
randomization fails to provide full protection. In outdoor scenarios, the system effectively utilizes
the broader detection range, while in indoor environments, signal attenuation affects detection, but
the system still proves capable of identifying and tracking devices.

BLENDER conclusively demonstrates that MAC address randomization, while offering some
level of privacy, is not enough to protect devices from tracking. The system’s combination of
passive and active scanning methods, alongside robust fingerprinting techniques, reveals significant
weaknesses in randomization and underscores the need for more comprehensive privacy measures in
BLE networks. Through these methods, BLENDER provides clear insights into the movements and
presence of BLE devices, even in environments where privacy measures like MAC randomization
are in place.
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Chapter 5

Decentralize LPWANs

5.1 Low-Power Wide-Area Networks: An Overview

In recent years, the demand for wide-area communication technologies that support low-power,
low-data-rate devices has grown significantly due to the rapid proliferation of the Internet of Things
(IoT). This surge in connected devices, ranging from smart sensors to remote monitoring systems,
has fueled the need for communication networks that can handle the unique challenges of IoT appli-
cations. Unlike traditional internet-connected devices, which often rely on short-range networks like
Wi-Fi or Bluetooth (BT), IoT devices frequently operate in environments where power availability
is limited, and battery life is a critical factor. In response to this, Low-Power Wide-Area Networks
(LPWANs) have emerged as one of the most promising solutions to address the specialized needs
of IoT applications, particularly in scenarios where devices are distributed over vast geographic
areas and need to operate on minimal power resources. The concept behind LPWANs lies in the
ability to strike a delicate balance between power efficiency, long-range communication, and low
data throughput. While cellular networks, such as LTE and 5G, are designed to prioritize high-
speed data transmission and intensive connectivity demands, they are typically overkill for many
IoT applications. Cellular networks are energy-intensive, making them unsuitable for devices that
are expected to last for years on a small battery. LPWANs, by contrast, are tailored specifically
for applications where low-bandwidth communication is sufficient, but where devices must operate
efficiently and autonomously over extended periods of time. By focusing on energy conservation and
extended device lifetimes, LPWANs have become a cornerstone technology for sectors like smart
agriculture, industrial automation, environmental monitoring, and smart city infrastructure.

The origins of LPWANs can be traced back to the early 2000s [44, 45], a period during which
the limitations of existing wireless protocols, such as Wi-Fi and BT, became increasingly apparent
for emerging IoT use cases. While these technologies were highly effective for short-range, high-
throughput applications, they fell short in terms of range and power efficiency, two critical factors
for IoT devices that needed to operate remotely, often in inaccessible locations. As a result, the
early 2000s saw growing interest in developing a new class of networks specifically tailored to the
requirements of the IoT landscape. Key industries, particularly those involved in environmental
monitoring, smart farming, and industrial systems, began to identify a pressing need for wireless
networks that could connect devices spread across large areas, such as farms, forests, and factories,
while ensuring that those devices could function for years without the need for frequent maintenance
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or battery replacement.
One of the primary drivers behind the development of LPWANs was the realization that many

IoT devices did not require constant, high-speed data transmission. Instead, these devices often
needed to send small packets of information, such as sensor readings or status updates, intermittently
over long periods. For example, a soil moisture sensor deployed in an agricultural field might only
need to transmit data a few times a day, yet it must be able to maintain connectivity to the network
across large distances and operate for years on a single battery. This is where LPWANs excel: they
provide a low-cost, low-power communication solution that can transmit small amounts of data over
large distances, making them ideal for these types of applications.

Several LPWAN technologies have emerged as leaders in this space, including LoRaWAN [21],
SigFox [46], and Narrowband IoT (NB-IoT) [47]. These technologies are designed with similar goals,
extending battery life and maintaining reliable communication over large areas, but they differ in
terms of how they achieve these goals, their technical characteristics, and the specific use cases for
which they are best suited:

1. LoRaWAN is one of the most widely adopted LPWAN technologies, primarily due to its
flexibility, scalability, and open nature. LoRaWAN leverages Chirp Spread Spectrum (CSS)
modulation, which allows it to achieve long-range communication even in environments with
significant interference. Key benefits of LoRaWAN are its ability to support different classes of
bi-directional communication, together with its open protocol. The wide variety of hardware
have made it the first choice for smart city projects, agriculture, industrial automation, and
environmental monitoring.

2. SigFox, another prominent LPWAN technology, takes a different approach. Operating as a
proprietary, ultra-narrowband technology, SigFox is designed for low-throughput applications
where devices need to send small bursts of data. SigFox operates on its own network of base
stations, which are deployed and managed by the company itself, providing global coverage
in certain regions. This proprietary model allows SigFox to offer a highly controlled and
optimized service for specific IoT applications, such as asset tracking or remote monitoring.
However, its limitations in data throughput and its dependence on SigFox-operated infras-
tructure can make it less suitable for more complex or dynamic applications where higher
data rates or bi-directional communication are required.

3. NB-IoT represents a cellular-based LPWAN solution developed as part of the 3GPP stan-
dards for LTE. Unlike the others, NB-IoT operates in licensed spectrum, leveraging existing
cellular networks to provide extended coverage for IoT devices. NB-IoT is particularly suited
for applications that require a guaranteed Quality of Service (QoS) and deep indoor pene-
tration, such as smart meters or building automation systems. While its reliance on cellular
infrastructure means that NB-IoT can offer highly reliable and interference-free communi-
cation, it also comes with higher deployment and operational costs compared to unlicensed
LPWAN technologies like LoRaWAN and SigFox.

As the IoT ecosystem continues to grow, LPWANs have solidified their role as essential com-
munication technologies for enabling smart, connected environments. Their ability to combine
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(a) SigFox follows a star topology, where end devices
send messages to SigFox base stations, which relay
them to a centralized cloud for processing. All network
functions, including data handling and device manage-
ment, are managed centrally in the SigFox cloud.

(b) NB-IoT uses a star topology, where end devices
connect directly to cellular base stations, which forward
data to the core network. By leveraging existing cellu-
lar infrastructure, NB-IoT provides deep coverage and
ensures reliable communication with guaranteed QoS.

long-range connectivity with low power consumption makes them the preferred choice for a wide ar-
ray of IoT applications, particularly those that demand long-term, autonomous operation in remote
or challenging environments.

5.1.1 Centralized LPWANs

LPWANs generally follow a star or star-of-stars topology, which differentiates them from mesh-
based personal networks like Zigbee or BT Mesh. In a basic star topology, End Devicess (EDs)
communicate directly with a central base station or gateway, which then forwards the data to a
central authority for processing. This simplicity is one of the reasons LPWANs can maintain low
power consumption, as EDs are only required to transmit over long distances to the nearest gateway,
without the need to forward messages to other devices.

LoRaWAN, as described in Chap. 3, operates in a star-of-stars topology (Fig. 3.2), where EDs
send uplink messages to nearby Gateways (GWs), which then forward the data to a centralized
Network Server (NS). The NS is responsible for critical network management tasks such as message
deduplication, authentication, encryption, and routing data to the Application Server (AS). Unlike
mesh networks, where devices pass messages through one another to extend range and coverage,
LPWANs prioritize direct communication between devices and the central infrastructure to minimize
power usage.

SigFox too operates with a star-of-stars topology (Fig. 5.1a), where EDs, also known as nodes
or IoT devices, communicate directly with SigFox-operated base stations. These base stations are
strategically distributed across large geographic areas and serve as intermediaries that receive mes-
sages from the devices and forward them to SigFox’s centralized cloud infrastructure for processing.
One of the defining characteristics of SigFox is its primary focus is on uplink communication, where
devices send small bursts of data to the network. Downlink communications, while possible, are lim-
ited. SigFox’s architecture is highly centralized, with base stations merely relaying messages to the
cloud, where all the data processing, message deduplication, and device management occur. This
centralized backend approach allows SigFox to maintain a lightweight network structure while pro-
viding global coverage. Unlike traditional networks, devices can connect to any SigFox base station
within range, enabling seamless roaming without the need for complex handover mechanisms.

NB-IoT also employs a star topology, as shown in Fig. 5.1b, but it leverages the existing
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infrastructure of cellular networks, such as LTE or 5G. IoT devices communicate directly with
cellular base stations, which relay their messages to the core network for further processing. One of
the key advantages of NB-IoT is its use of licensed spectrum, which ensures guaranteed QoS and
minimal interference, making it suitable for critical applications like smart metering and healthcare
devices. Additionally, NB-IoT is designed to provide deep coverage, particularly for devices located
indoors or in difficult-to-reach areas, such as basements or underground facilities. It achieves this
through the use of narrowband channels, which improve signal penetration and extend range. Unlike
SigFox, NB-IoT fully supports two-way communication, allowing devices not only to send data to
the network but also to receive commands or updates from it, making it ideal for real-time control
applications.

A centralized architecture streamlines network management by consolidating control and data
processing in a single location, such as the Network Server for LoRaWAN, the SigFox Cloud, or the
core network in NB-IoT. This design simplifies monitoring, maintenance, and updates, minimiz-
ing the complexity associated with distributed systems. It also improves scalability, as centralized
networks can manage a large number of devices using powerful centralized servers or cloud infras-
tructure. Furthermore, centralization strengthens security by enabling easier implementation of
security protocols and more effective threat monitoring, simplifying the network remains robust
and secure.

5.2 Centralization issues in LPWANs

As introduced in Sec. 3.2.7, while centralized architectures in LPWAN networks like LoRaWAN,
SigFox, and NB-IoT offer simplicity and ease of management, they present several critical issues
that can undermine the effectiveness and reliability of the network.

Single Point of Failure

One of the most significant vulnerabilities in centralized LPWAN architectures is the risk of a
Single Point of Failure (SPoF) [48, 49]. In LPWANs, all communication and control functions
are routed through a central entity, such as a NS or cloud infrastructure. This setup means that
the entire network depends on the availability, integrity, and security of this single component. If
the central server or infrastructure experiences a failure, whether due to a hardware malfunction,
software error, or cyberattack, the entire network can become inoperable, disrupting communication
between devices and halting critical IoT operations.

The consequences of such a failure can be severe, particularly in use cases that involve time-
sensitive or mission-critical applications, such as industrial automation, healthcare monitoring, or
smart cities. A SPoF can lead to prolonged downtime, loss of data, or compromised services, all of
which can have significant financial and operational repercussions. Moreover, the time and resources
required to restore the central entity can exacerbate the disruption, particularly if the failure occurs
in a remote or hard-to-access location.

In addition to outages caused by internal failures, centralized architectures are also more vul-
nerable to external threats [50]. A targeted cyberattack, such as a Distributed Denial-of-Service
(DDoS) attack or a data breach, can compromise the central server, effectively paralyzing the entire
network. The centralized nature of the architecture makes it an attractive target for attackers,
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as compromising the central node gives them control over the entire system. In these cases, the
inability to operate independently of the central infrastructure leaves the network highly exposed
to both intentional and unintentional disruptions. Furthermore, the centralization of control and
data processing in one entity can also lead to performance degradation as the network scales. As
the number of connected devices grows, the central server may struggle to handle the increased
load, leading to bottlenecks, higher latency, and reduced throughput. This performance limitation
further compounds the risk of SPoF, as the network becomes increasingly reliant on the capacity
and robustness of the central node.

Data Security

The centralization of data storage in LPWAN networks presents another significant issue regarding
the operational and security risks associated with a SPoF. In centralized architectures, all data
transmitted by end devices is typically stored and processed in a single, centralized location, such
as a cloud server, introducing several challenges. First, it makes the system vulnerable to data
breaches, as attackers who compromise the central server can gain access to large volumes of sensitive
information in one strike [51]. The concentration of data in a single location also increases the risk
of loss in the event of a hardware failure other unforeseen incidents that could corrupt or destroy
the stored data. Additionally, centralized data storage raises privacy concerns [52], particularly in
applications where personal or sensitive information is transmitted, such as healthcare or smart
home devices. Users and organizations may have limited control over how their data is stored,
managed, and protected, making it difficult to ensure compliance with data privacy regulations.
These issues highlight the need for more distributed or decentralized data storage solutions, which
could offer greater resilience, security, and privacy by spreading data across multiple nodes, reducing
the impact of a single failure or breach.

Trust

A additional critical issue with centralized LPWAN architectures is the inherent need for trust in the
central authority that manages the network [53]. In centralized systems, users must place a great
deal of trust in the central entity to securely manage data, maintain network availability, and uphold
privacy standards. This centralized control gives the managing authority full access to sensitive data
and the ability to influence or restrict network operations. If this entity is compromised or behaves
maliciously, either through negligence or intentional actions, the entire network could be at risk.
Moreover, users and organizations often have little visibility or control over how their data is handled,
processed, or shared, especially when it is stored in centralized servers managed by third-party
providers. This lack of transparency can lead to concerns about data misuse or regulatory non-
compliance, especially in industries where data protection is crucial, such as healthcare or finance.
The need for trust in centralized architecture therefore creates a single point of vulnerability, as
users are dependent on the central authority’s ability to safeguard the network and uphold its
commitments to security and privacy.
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5.3 Decentralize LPWANs - State of the Art

The issues associated with centralized LPWAN architectures have prompted researchers and indus-
try practitioners to explore alternative approaches that can address the limitations of SPoF, data
security, and trust. One promising solution that has gained significant attention is the use of block-
chain technology to decentralize key components of LPWAN networks, such as the NS, Join Server
(JS), and data storage. By leveraging blockchain’s distributed ledger, consensus mechanisms, and
smart contracts, researchers have proposed novel architectures that distribute control, data process-
ing, and security functions across multiple nodes, reducing the risks associated with centralization.
These decentralized LPWAN systems offer several advantages, including improved fault tolerance,
enhanced security, and increased trust among network participants.

LoRaWAN has become a central focus in the development of IoT due to its open architecture,
flexibility in meeting application needs and low-cost deployment. These characteristics have driven
widespread adoption, positioning LoRaWAN as a key enabler of IoT growth. As a result, it has
become a significant subject of research, particularly in addressing challenges related to security
and scalability.

Below, we summarize the state of the art based on the referenced works, which investigate using
blockchain to create decentralized and more secure LPWAN systems.

5.3.1 Mesh Networks of Gateways and Servers Using Blockchain

The centralization of gateways and NSs in conventional LoRaWAN architectures creates potential
SPoFs and increases the network’s vulnerability to attacks and failures. Researchers like Bezahaf et
al. [54] and Durand et al. [55] have explored solutions based on blockchain to create decentralized
mesh networks of gateways.

Bezahaf et al. [54] developed BcWAN, a federated blockchain-based network that enables gate-
ways to be shared among different LoRaWAN operators, effectively reducing dependency on any
single entity and promoting resource sharing. This solution enhances scalability and reliability by
using blockchain to manage access control and gateway operations.

Similarly, Durand et al. [55] proposed a decentralized LPWAN infrastructure using blockchain
and digital signatures. By introducing blockchain into the network infrastructure, this work enables
peer-to-peer interactions among gateways and servers, ensuring secure data handling, verifiability,
and distributed trust.

These efforts significantly enhance the fault tolerance and security of LoRaWAN systems by
distributing responsibilities across multiple entities, reducing the likelihood of failure or attack on
a single gateway or server.

5.3.2 Decentralization of the Key Management Using Blockchain

The JS is responsible for handling the Over-The-Air Activation (OTAA) process in LoRaWAN,
and its centralized nature makes it a critical SPoF. To mitigate this risk, researchers like Ribeiro et
al. [56] and Tan et al. [57] proposed blockchain-based architectures that decentralize the JS’s duties.

Ribeiro et al. [56] introduced a secure and fault-tolerant architecture that distributes the key
management responsibilities of the JS across a blockchain network. This approach uses smart
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contracts to ensure that no single entity has full control over key management, enhancing the
network’s resilience.

Tan et al. [57] designed a blockchain-based key management scheme for LoRaWAN, which also
leverages blockchain to distribute the JS’s responsibilities. Their solution shortens the network
access time and prevents attacks on the JS by using a permissioned blockchain that only allows
authorized entities to read or write data.

Both solutions increase security by preventing attacks that could compromise the entire network,
such as Denial-of-Service (DoS) attacks targeting the JS.

5.3.3 Enhancing Network Server Security with Blockchain

In addition to the JS, the NS in LoRaWAN is also a potential point of failure and attack. Lin et
al. [58] proposed the use of a public blockchain to create a mesh network of NSs, which enhances
trust and reliability by allowing multiple servers to share and validate network operations. This
solution focuses on decentralizing the NS, ensuring that even if one server is compromised, others can
continue to provide network services, thereby improving the overall availability of the LoRaWAN
system.

5.3.4 Distributing Workload to the Edge Using Blockchain

While decentralizing key network components improves security, Hou et al. [59] and Wei et al. [60]
have explored using blockchain to distribute workloads to edge nodes. This approach leverages edge
computing to improve the performance of the LoRaWAN network, particularly in handling time-
critical data. Hou et al. [59] proposed HyperLoRa, a blockchain-enabled LoRaWAN system with
edge computing capabilities. Their design allows LoRaWAN gateways to process some network tasks
traditionally handled by the central cloud, reducing latency and improving efficiency. Although this
solution distributes some of the workload, it does not fully eliminate the centralized NS, meaning
some vulnerabilities remain. Wei et al. [60] presented a DAG-based LoRaWAN system, which
uses a Directed Acyclic Graph (DAG) instead of a traditional blockchain to improve the system’s
throughput and latency. The DAG structure allows for asynchronous consensus, making it more
scalable for large networks. However, while this system improves performance, it also fails to fully
eliminate reliance on a central NS.

5.4 Blockchain to Decentralize LPWANS

The research efforts highlighted in this section demonstrate that blockchain presents a feasible ap-
proach to decentralizing critical components of LoRaWAN systems (Fig. 5.2), effectively mitigating
the security risks posed by SPoFs. The implementation of blockchain-based key management, de-
centralized Join Servers, and distributed edge computing offers substantial potential for developing
more resilient and scalable LPWAN infrastructures. However, despite the security enhancements
and reduced reliance on centralized servers, to the best of our knowledge, no existing work fully
addresses the elimination of SPoFs while also removing the need for trust.

Blockchain technology plays a pivotal role in decentralizing traditionally centralized LPWAN
architectures, such as LoRaWAN, SigFox, and NB-IoT. The inherent qualities of blockchain, like
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Figure 5.2: Centralized vs Decentralized Network. In a centralized network, all communication and control
functions are routed through a single entity, creating a SPoF and increasing the network’s vulnerability to
attacks. In a decentralized network, control, data processing, and security functions are distributed across
multiple nodes, reinforcing the network.

distributed ledger systems, consensus mechanisms, and decentralized trust, address many of the
challenges associated with centralization, such as SPoFs, security vulnerabilities, and the need for
trust in a single authority.

5.4.1 What is a Blockchain

A blockchain is a decentralized, distributed ledger technology designed to securely record and verify
transactions without the need for a central authority or intermediary. It works by maintaining a
growing list of records (blocks) that are linked using cryptography. Each block contains a crypto-
graphic hash of the previous block, a timestamp, and transaction data, ensuring that once data is
added, it becomes part of an immutable and transparent chain of records. This structure, as shown
in Fig. 5.3 makes tampering with the data nearly impossible without altering the entire chain, which
would require the consensus of the majority of participants.

The concept of blockchain was originally developed as the underlying technology for Bitcoin [61],
solving the problem of trust in decentralized digital transactions. Before blockchain, transactions
required a trusted intermediary, such as a bank or payment processor, to verify the validity of
transactions and ensure that the same digital asset was not spent more than once (the double-
spending problem). Blockchain’s decentralized nature removes this need by allowing all participants
in the network to agree on the validity of transactions through a consensus mechanism.

Consensus mechanisms, are the cornerstone of blockchain technology, ensuring that all partici-
pants in the network agree on the current state of the ledger, which contains all validated transac-
tions. In decentralized systems like blockchain, there is no central authority to verify transactions
or maintain data integrity. Instead, consensus is achieved through mechanisms that ensure trust
and coordination among independent, often anonymous and untrusted, participants.

Some noteworthy examples are shown in Tab. 5.1. In Proof-of-Work (PoW), used by Bitcoin,
nodes (miners) solve complex puzzles to add new blocks to the blockchain. This process is highly
energy-intensive, but it secures the network by making it prohibitively costly for attackers to alter
the blockchain, as they would need to control over 51% of the network’s computational power. In
contrast, Proof-of-Stake (PoS) is more energy-efficient. Validators are chosen to propose and validate
blocks based on the amount of cryptocurrency they "stake" as collateral. If they act maliciously, they
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Consensus
Mechanism Description Resource

Intensity Typical Use Case

Proof of Work
(PoW)

Miners solve complex
puzzles to validate

transactions.
Energy-intensive Bitcoin, Ethereum

(pre-2.0)

Proof of Stake (PoS)
Validators are chosen

based on the number of
tokens they "stake".

Economically
intensive,

energy-efficient

Ethereum 2.0,
Cardano

Delegated Proof of
Stake (DPoS)

Token holders elect a
small group of

validators to create
blocks.

Moderately
centralized,

energy-efficient
EOS, TRON

Byzantine Fault
Tolerance (BFT)

Nodes reach consensus
despite some acting

maliciously or failing.
Memory-intensive

Hyperledger Fabric,
Tendermint
(Cosmos)

Proof of Authority
(PoA)

A limited number of
trusted validators are
selected to secure the

network.

Energy-efficient,
requires trust in

validators

VeChain, private/
permissioned
blockchains

Table 5.1: Comparison of consensus mechanisms, highlighting use cases and key features of the protocol in
terms of use of energy, memory and trust

risk losing their stake, aligning their incentives with network security. PoS eliminates the need for the
energy consumption associated with PoW while still maintaining the integrity of the network. Both
PoW and PoS solve the problem of double-spending, ensuring that once a transaction is validated
and recorded, it cannot be altered, maintaining the trust and immutability of the blockchain.

One of the critical aspects of consensus mechanisms, particularly in decentralized networks, is
their ability to handle Byzantine Faults [62]. These occur when some nodes in the network act
maliciously or provide incorrect information. Consensus algorithms, like Byzantine-Fault Tolerant
(BFT), ensure that the network can still reach agreement even if a portion of the nodes behave
dishonestly. For example, a majority of honest nodes can collectively validate the correct state of
the blockchain, rendering any misleading information from rogue nodes ineffective. This makes the
blockchain resilient to internal attacks.

Blockchain, through consensus, solves the core problems of trust and data integrity in a de-
centralized system. Whether through the energy-intensive PoW, the economically aligned PoS,
or fault-tolerant BFT algorithms, blockchain consensus ensures that all participants can trust the
system’s outputs without relying on a central intermediary. This resilience, security, and decentral-
ized trust make blockchain the most suitable solution for decentralized applications, where network
security and fault tolerance are paramount.

Blockchain solves several key problems:

• Trust: It removes the need for a trusted central authority by distributing trust among the
network participants;

• Transparency: All transactions are visible on a public ledger, allowing anyone to audit the
network and verify transactions;

• Security: The cryptographic linking of blocks ensures that altering the data in one block
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Figure 5.3: A blockchain is composed of a list of blocks, linked by storing in each block the hash, the
fingerprint of the previous block. This ensures the immutability of the content stored on the blockchain.

would require altering all subsequent blocks, making the system highly resistant to tampering;

By decentralizing control and securing data in an immutable ledger, blockchain has applications
beyond cryptocurrencies, such as in supply chain management, healthcare, finance, and decentral-
ized networks like DeLoRaN.

5.4.2 Benefits of a Blockchain

In a centralized LPWAN the data processing unit forms the backbone of the network, but this
concentration of control introduces significant risks. If the core functionalities are compromised, the
entire network could be rendered inoperable, halting communications and potentially causing large-
scale data loss. By integrating blockchain technology, network functions such as authentication,
key management, and data processing can be distributed across multiple nodes, ensuring that no
SPoF exists. This distribution significantly improves fault tolerance, as the network can continue
to operate even if individual nodes or servers fail. Blockchain’s decentralized architecture ensures
that decision-making and data handling are spread across the network, preventing any single node
from becoming a critical failure point.

Moreover, blockchain enhances security in LPWANs by making it much harder for malicious
actors to compromise the network. The transparency and immutability of blockchain ensure that
once data is recorded in the distributed ledger, it cannot be altered or tampered with without
consensus from the entire network. This property is particularly valuable for IoT applications,
where data integrity is critical. Additionally, blockchain-based consensus mechanisms, such as
Practical Byzantine-Fault Tolerant (PBFT), ensure that only authenticated nodes can participate
in the network’s operations, making it difficult for unauthorized entities to launch attacks like DDoS
or data breaches. This is particularly useful in LPWANs where devices are often deployed in large
numbers, making them vulnerable to security threats.

Blockchain also addresses the trust issues inherent in centralized LPWANs. In traditional archi-
tectures, users must trust the central authority to manage and store their data securely. However, in
a blockchain-based system, trust is decentralized, and data is stored in a distributed manner across
multiple nodes. This decentralization reduces the need to rely on a single authority, allowing net-
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work participants to have greater control over their data. Blockchain also provides transparency, as
all network transactions and data exchanges are recorded on a public or permissioned ledger, which
can be audited by authorized entities. This transparency builds trust among network participants
and ensures compliance with data privacy regulations, which is crucial for industries like healthcare
or finance, where sensitive information is frequently transmitted.

Additionally, blockchain can enhance the scalability of LPWAN networks. In centralized sys-
tems, as the number of connected devices grows, the central server can become overwhelmed, leading
to performance bottlenecks. Blockchain-based LPWANs, on the other hand, can distribute the work-
load across multiple nodes, allowing for greater scalability. Each node in the blockchain network
can process a portion of the network’s transactions, reducing the burden on any single server and
improving the overall performance of the network. This is particularly useful for large-scale IoT
deployments, such as smart cities or industrial automation, where thousands or even millions of
devices need to be connected and managed simultaneously.

Lastly, blockchain enables the implementation of smart contracts in LPWAN networks. Smart
contracts are self-executing contracts with the terms of the agreement directly written into code.
In the context of LPWANs, smart contracts can automate tasks like device onboarding, resource
allocation, and data sharing, making the network more efficient and reducing the need for human
intervention. For example, a smart contract could automatically verify a device’s credentials and
grant it access to the network, streamlining the authentication process and reducing the time and
resources needed for network management.

Blockchain’s decentralized architecture, enhanced security features, transparency, and scalability
make it a key technology for distributing centralized LPWANs. By eliminating SPoF, reducing the
need for trust in a central authority, and enabling more efficient network management, blockchain
offers a robust solution for the challenges faced by traditional LPWAN architectures. As IoT
continues to expand, integrating distributed LPWANs will be crucial for creating resilient, scalable,
and secure networks capable of supporting the next generation of connected devices.
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Chapter 6

DeLoRaN - Decentralized LoRaWAN
Network

6.1 Introduction

Building on the advantages of decentralizing Low-Power Wide-Area Networks (LPWANs), DeLoRaN
represents a novel solution specifically designed to overcome the vulnerabilities of LoRaWAN’s
centralized architecture. While LoRaWAN is one of the most widely adopted LPWAN technologies,
its reliance on a centralized Network Server (NS) and Join Server (JS) presents several critical
limitations, such as a Single Point of Failure (SPoF), security risks, and performance bottlenecks in
large-scale deployments.

DeLoRaN, presented in [63], addresses these limitations by decentralizing the control mecha-
nisms in LoRaWAN, distributing network tasks such as authentication, data handling, and key
management across multiple nodes using blockchain technology. By doing so, DeLoRaN eliminates
the reliance on a central authority, thereby enhancing the network’s resilience and security. In
a traditional LoRaWAN setup, the NS is a key component responsible for managing all network
operations, but its central role makes it vulnerable to failure or attack. DeLoRaN solves this by
introducing a decentralized consensus mechanism, ensuring that no single node has control over the
network, which increases fault tolerance and reduces the impact of node failures. Additionally, De-
LoRaN leverages the inherent properties of blockchain, such as immutability and transparency, to
enhance trust within the network. Instead of relying on a central authority, all network participants
can verify transactions and ensure the integrity of the system through the distributed ledger. This
decentralized trust model is particularly useful for IoT applications that require high levels of data
integrity and privacy, as it reduces the risk of data tampering or unauthorized access.

Scalability is another key benefit of DeLoRaN. As the number of devices in an IoT network grows,
traditional LoRaWAN architectures may struggle to manage the increased load on a centralized
server. DeLoRaN’s decentralized approach distributes network operations across multiple nodes,
allowing for more efficient handling of large-scale deployments. This is especially advantageous for
use cases like smart cities or industrial IoT, where thousands or even millions of devices need to
communicate reliably and securely over long distances.

By integrating blockchain into LoRaWAN, DeLoRaN creates a more robust, scalable, and secure
solution that mitigates many of the challenges associated with centralized LPWAN architectures.
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This decentralized approach allows for more reliable and resilient IoT networks, better suited to the
demands of modern applications that require long-term autonomous operation and data security.

In addition to its technical advantages, DeLoRaN is particularly well-suited for a multi-tenant
environment, where different operators share the same network infrastructure. In traditional setups,
each operator typically maintains its own independent network, which can lead to inefficiencies, re-
dundancy, and difficulties in coordinating activities between different stakeholders, even causing
disruption because of inter-network interferences [64]. However, by leveraging blockchain in DeLo-
RaN, multiple operators can participate in a shared network without fully relying on or needing to
trust one another.

6.2 From LoRaWAN to DeLoRaN

Switching from the traditional centralized LoRaWAN architecture to the decentralized DeLoRaN
model involves a fundamental restructuring of the network’s core operations. In the centralized
LoRaWAN framework, the NS serves as the central point for all data handling, authentication, and
key management processes. This structure, while efficient due to its semplicity, becomes a bottleneck
as the network grows, leading to potential single points of failure, performance limitations, and
security vulnerabilities, as the entire system relies heavily on the availability and integrity of the
NS.

DeLoRaN addresses these limitations by decentralizing the NS and other critical components,
like the JS and the storage, using blockchain technology, as represented in Fig. 6.1. In this new
architecture, tasks such as authentication, key management, and data routing are distributed across
multiple nodes rather than being handled by a central authority. This distribution reduces the risk
associated with SPoFs, if one node or component fails, the network continues to function smoothly,
as other nodes can take over the compromised node’s responsibilities. Blockchain’s decentralized
consensus mechanism ensures that all nodes in the network agree on the network state and opera-
tions, further enhancing the robustness and security of the network.

By moving to a decentralized architecture, DeLoRaN allows for greater scalability. Instead
of relying on a single NS that can become overwhelmed with a growing number of connected
devices, network control is distributed, enabling the network to accommodate more devices without
performance degradation. The distributed ledger provided by blockchain also adds an extra layer of
security, ensuring that data integrity is maintained, and malicious actors cannot easily alter network
operations.

This switch not only improves resilience and scalability but also enhances trust within the
network. In centralized LoRaWAN, users must trust the NS to securely manage their data, which
can raise privacy concerns. DeLoRaN reduces this reliance on a single authority by using blockchain
to create a transparent and immutable record of all transactions, giving users confidence in the
network’s security and data management practices. As a result, DeLoRaN represents a significant
evolution in LPWAN technology, providing a more secure, scalable, and resilient alternative to the
traditional centralized LoRaWAN architecture.
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Figure 6.1: In DeLoRaN, multiple Network Controllers (NCs) are connected via blockchain, distributing
control tasks across several nodes, improving fault tolerance and scalability. The End Devicess (EDs) com-
municate with the network through gateways, which relay messages to the NCs. The data is then processed
and forwarded to the Application Servers (ASs) for further handling. Blockchain ensures secure and trans-
parent coordination between NCs, while Long Range (LoRa) and TCP protocols handle communication
between devices and the network.

DeLoRaN Advantages

DeLoRaN offers several key advantages over traditional LoRaWAN, specifically addressing critical
limitations of the latter. One of the main improvements is enhanced resilience.

• Enhanced Resilience: In LoRaWAN, the NS acts as a central point for all network tasks,
making the system vulnerable to SPoFs. DeLoRaN mitigates this by distributing control and
data processing across multiple NCs, reducing the impact of node failures or attacks;

• Scalability: Traditional LoRaWAN networks may struggle with performance degradation as
the number of connected devices increases due to the load on a single NS. DeLoRaN distributes
the load across multiple controllers, ensuring that the network can scale to accommodate large
Internet of Things (IoT) deployments without experiencing bottlenecks;

• Security: DeLoRaN leverages blockchain technology to introduce decentralized trust mecha-
nisms. This eliminates the need to rely on a single trusted entity (like the NS in LoRaWAN)
for tasks like key management and data verification. The immutable and transparent na-
ture of blockchain ensures that all transactions and interactions between NCs are secure and
verifiable, protecting against attacks such as man-in-the-middle and data tampering;

• Data Integrity and Privacy: Since blockchain is used to store critical network interactions,
the transparency and immutability of the ledger reduce the risks of data manipulation. This
is particularly beneficial for IoT applications that handle sensitive data, as it improves com-
pliance with privacy regulations and provides users with greater confidence in the network’s
security.
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DeLoRaN tradeoffs

Decentralization in DeLoRaN inevitably introduces trade-offs when compared to centralized ap-
proaches, particularly regarding complexity, maintenance, and resource requirements. One of the
most prominent challenges is the increased infrastructure complexity. Managing a decentralized
network requires more sophisticated mechanisms for ensuring that all nodes are properly synchro-
nized and that consensus is achieved without a central authority. This added complexity demands
higher technical expertise and can lead to more costly and labor-intensive maintenance compared
to the relatively straightforward management of a centralized system.

Additionally, while decentralization eliminates SPoF, it introduces the challenge of coordina-
tion among nodes. Ensuring that multiple DeLoRaN NCs remain synchronized and act in unison
can introduce coordination overhead. This requires more advanced monitoring and error-handling
mechanisms, particularly in cases where nodes might fail or provide conflicting data. Such sce-
narios necessitate the use of consensus protocols, which, while improving security, add a layer of
operational overhead.

Furthermore, scalability challenges arise as the number of nodes increases. While decentraliza-
tion theoretically supports better scaling, a large number of independent nodes in a mesh network
can lead to exponential increase in bandwidth and communication overhead as these nodes must
constantly verify transactions and communicate with each other. This can strain network resources,
particularly in environments with limited bandwidth or computational power, which is often a con-
cern in IoT deployments like LoRaWAN.

Another important trade-off is resource consumption. While a centralized system consolidates
processing power and network management, decentralization requires that every node perform its
own set of tasks, such as validating transactions or storing parts of the ledger. This distributes the
resource burden across the network, but it leads to an increased workload at the edge, particularly
in resource-constrained environments. For instance, each node in a decentralized system like De-
LoRaN must maintain a copy of the blockchain, which can result in higher storage and processing
requirements compared to a single centralized server handling all data.

While decentralization offers key benefits such as fault tolerance, security, and autonomy, it
comes at the cost of increased complexity, resource demands, and coordination challenges. These
trade-offs must be carefully considered when deciding between centralized and decentralized archi-
tectures, particularly in environments where simplicity and ease of maintenance are priorities.

6.3 DeLoRaN on Blockchain

Blockchain plays a central role in DeLoRaN by addressing key challenges that arise in decentralized
networks. In a system where multiple NCs need to operate simultaneously, blockchain ensures that
state changes and transactions are securely validated and stored without relying on a centralized
SPoF. By distributing control and implementing a decentralized trust model, DeLoRaN mitigates
the risks associated with compromised or malicious nodes, using consensus mechanisms to maintain
network integrity.
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Figure 6.2: Decision-making process for determining the necessity of blockchain. The flow outlines key
questions to assess if blockchain is required based on factors like the need for state storage, the presence of
multiple writers, the availability of trusted third parties, and the requirement for public verifiability (from
[65]).

6.3.1 A Blockchain... But Why?

While blockchain offers significant benefits in decentralization and security, its overuse in areas
where simpler solutions could suffice has raised concerns about inefficiency, complexity, and unnec-
essary resource consumption. Critics argue that not all use cases warrant the high overhead and
computational requirements that come with blockchain, especially in scenarios where traditional
databases or federated systems could offer a more straightforward and effective solution. In de-
centralized systems like DeLoRaN, blockchain addresses several key challenges. As represented in
Fig. 6.2, it provides a robust solution for storing network state and connected device data (e.g., EDs
in LoRaWAN) while avoiding reliance on a SPoF. Distributed ledger enables multiple participants
(like NCs) to independently verify and store transactions, ensuring data integrity and enabling par-
allel operations without central authority. Blockchain solves the issue of multiple writers by allowing
NCs to interact with the network simultaneously, ensuring transaction validation through consen-
sus. Additionally, in a decentralized environment, trust is a critical concern. DeLoRaN removes
dependence on a trusted third party, instead relying on blockchain’s consensus mechanism to ensure
network functionality, even in the presence of malicious nodes (Byzantine nodes). Honest partici-
pants can outvote dishonest ones, enhancing resilience. Since all writers are known in DeLoRaN,
blockchain ensures secure control distribution through consensus, mitigating risks from potentially
compromised nodes. Therefore, a permissioned one is the best fit, providing decentralized control,
security, and transparency without the overhead of a fully public system.
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Alternatives

While blockchain emerges as a very suitable solution for decentralizing control in DeLoRaN, other
alternatives exist but are less effective in multi-tenant environments where operators do not fully
trust one another. One alternative is using centralized databases with redundancy. Although this
approach can manage network data efficiently, it still depends on a central authority, creating a
SPoF. This setup is vulnerable to attacks or internal breaches and requires complete trust in a
single entity, which is impractical in a shared, multi-tenant network where no operator is willing to
grant full control to one party.

Federated systems offer another alternative, where control is distributed among multiple enti-
ties that each manage their own part of the network. While this avoids centralization, federated
systems still depend on trust between participants, as each entity must assume that the others will
uphold agreements and behave fairly. Without a transparent, unified mechanism like blockchain,
federated systems also lack immutability and verifiability. Similarly, a peer-to-peer network without
blockchain might offer decentralized control, but it introduces risks, particularly in a multi-tenant
scenario. Without blockchain’s consensus mechanisms, peer-to-peer networks are prone to rogue
nodes and data manipulation. In environments where no single operator controls the entire network,
ensuring trust and preventing tampering becomes extremely challenging.

Blockchain, especially a permissioned blockchain, stands out in this context. It allows multiple
known entities (like the NCs in DeLoRaN) to securely interact within a shared infrastructure,
providing verifiability, trust, and transparency without the need for participants to fully trust each
other. This model ensures that each entity can independently validate transactions and participate
in decision-making, making it the optimal solution for decentralized, multi-tenant networks.

6.3.2 The Blockchain

Based on the previous motivations, we decided to rely on Hyperledger Fabric (HF)1, a permissioned
blockchain framework, as the foundation for the network’s architecture. The choice of HF stems
from its robust support for multi-organization environments, its flexibility in handling different
types of access control, and its ability to efficiently manage a network where different entities
need to collaborate without fully trusting one another. Unlike public blockchains, where anyone
can join and participate in the consensus process, a permissioned blockchain restricts access to
known, identifiable participants. This controlled environment is particularly suited to scenarios like
DeLoRaN, where multiple network operators share infrastructure and need secure and verifiable
transactions but do not want completely open access to the network. In a permissioned blockchain,
all participants are vetted, and access is restricted based on roles, making it easier to enforce
governance, privacy, and compliance with regulatory standards. This ensures that only authorized
entities can manage network tasks and data while maintaining full accountability for their actions.
HF was chosen because of different unique features that made it the best choice when deciding the
kind of blockchain to rely on.

Permissioned Blockchain – In a permissioned blockchain, trust is still decentralized, but the
entities involved are known and trusted to some extent, compared to anonymous participants in
public blockchains. This is crucial in multi-tenant environments, where operators need to coordinate

1Hyperledger Fabric: https://www.hyperledger.org/projects/fabric
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network activities and share resources but without giving up control or allowing full transparency
to external entities. With HF, we achieve this balance, providing a system that ensures secure
collaboration while safeguarding privacy and operational autonomy for each participant.

Modularity – HF provides a modular architecture that allows flexibility in its configuration.
The network can be tailored to specific needs by customizing components such as consensus mecha-
nisms, smart contracts (called chaincode), and identity management. This modularity is particularly
advantageous for DeLoRaN, where different operators may have different requirements for security,
performance, and compliance. Moreover the modularity allows HF to adapt in real time to changes,
as its configuration, rules and even the chaicode running on it can be changed at runtime, without
the need to restart or create a whole new blockchain when crucial changes are needed.

Role-Based Access Control – A key feature of permissioned blockchains is the ability to
enforce fine-grained access control. In HF, access is governed by Membership Service Providers
(MSP), which manage identities and determine who has the right to participate in the network.
This is crucial in a shared network like DeLoRaN, where different operators need to control what
parts of the network they can access or modify.

Privacy, Confidentiality and Integrity – HF provides enhanced privacy features by support-
ing private data collections and channels. In a multi-tenant scenario like DeLoRaN, where different
operators may need to exchange data without fully exposing it to the entire network, these privacy
features are critical. Channels allow for the creation of sub-networks where only certain participants
can view or interact with specific transactions. Meanwhile, private data collections allow sensitive
information to be shared among specific participants without being recorded on the main ledger.
This is achieved by storing the actual data off-chain while cryptographic hashes of the data are
placed on the blockchain to ensure integrity. This ensures that only authorized parties can access
the sensitive information, while the rest of the network can verify that the transaction occurred
without seeing the data itself. Data integrity is a core feature, ensuring that once data is written
to the blockchain, it cannot be altered or tampered with. This is achieved through cryptographic
hashing, where each block in the chain contains a hash of the previous block. Any modification to
a block would result in a mismatch in the hash, immediately flagging the tampered data. Addi-
tionally, endorsing policies ensure that transactions are only accepted if they are validated by the
required participants, adding another layer of security. These mechanisms protect the integrity of
the entire system, making it resilient to tampering or unauthorized modifications.

Pluggable Consensus Mechanisms – HF supports a variety of consensus mechanisms, allow-
ing network administrators to choose the consensus protocol that best fits their needs. In the case of
DeLoRaN, where known participants operate in a semi-trusted environment, Crash Fault Tolerant
(CFT) or Byzantine-Fault Tolerant (BFT) consensus mechanisms can be applied, depending on the
level of fault tolerance required. This flexibility ensures that the network can balance performance
with resilience against malicious actors.

Smart Contracts (Chaincode) – Chaincode allows for the automation of key processes such
as authentication, device onboarding, and transaction validation. In a network like DeLoRaN, where
numerous IoT devices and network interactions need to be validated and processed, chaincode can
streamline these operations. Authentication of devices and validation of packets is performed by the
chaincode itself, preventing malicious nodes from uploading invalid information and tamper with
the data stored on the blockchain.
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Scalability and Performance – HF’s architecture is designed for high scalability, an essential
feature for IoT networks like DeLoRaN that might need to handle thousands or millions of devices.
Scalability is achieved through its modular architecture, which separates transaction processing into
three distinct phases: endorsement, ordering, and validation. This separation allows for parallel
processing, reducing bottlenecks typically seen in traditional blockchain networks. By allowing
different nodes to handle endorsement and ordering independently, the network can manage a
high volume of transactions without degradation in performance. This architecture ensures that
as more devices or participants join the network, like in DeLoRaN, the system remains efficient,
even under heavy load. Additionally, the use of channels and private data collections helps in
compartmentalizing transactions, reducing the need for all participants to process all transactions,
further enhancing scalability.

HF, with its permissioned blockchain structure, modularity, and focus on privacy, is an ideal
choice for DeLoRaN. Its ability to manage known participants, enforce access control, and ensure
secure, verifiable transactions in a multi-tenant environment makes it a robust and flexible solution
for managing IoT networks. By leveraging HF, DeLoRaN achieves the decentralization necessary
for resilient and secure network operations while maintaining the governance and privacy required
for operator collaboration.

6.4 DeLoRaN Implementation

6.4.1 DeLoRaN Stack

The codebase for the DeLoRaN stack2, which adheres to the LoRaWAN 1.1 standard [21], has been
entirely developed using Rust3, a language known for its focus on memory safety, concurrency, and
performance. Unlike many alternative implementation of the LoRaWAN stack, it is fully backward
compatibile with every standard version of LoRaWAN. This means that existing centralized Lo-
RaWAN networks can transition to a distributed DeLoRaN setup without requiring any changes
in the code of the EDs. From the point of view of the EDs, the communication protocol remains
identical, allowing for a smooth transition to decentralization.

In the current implementation, all the key components needed for LoRaWAN operations are
included. These encompass the EDs, a robust NC, and a basic AS. The NC is responsible for critical
network operations, including ensuring packet integrity, handling encryption, managing nonce usage
for both uplink and downlink communications and it is fully integrated with the backbone network.
This makes the NC the first line of defense in securing the decentralized network.

The design also emphasizes modularity and extensibility. By adopting a modular architecture,
the stack is future-proofed, enabling the integration of new features, protocols, and technologies.
This adaptability ensures that DeLoRaN can evolve with the changing demands of IoT applications,
making it a long-term, sustainable solution.

2DeLoRaN - https://github.com/DeLoRaN-Org/DeLoRaN
3Rust - https://www.rust-lang.org/
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6.4.2 Blockchain - Chaincode and Collections

Due to the lack of a Rust SDK for HF, we decided to build a bridge. It sets up a local UDP server
to listen for incoming messages and processes requests related to device management and data han-
dling. The main tasks include handling the join procedure for devices, managing session generation,
creating uplink messages, and interacting with device configurations and sessions stored on the
blockchain. It uses chaincode to securely store and retrieve information like device configurations
and packets, ensuring secure communication in the decentralized network. The server responds to
incoming requests, processes them through blockchain transactions, and sends back the results to
the requesting NC.

Chaincode – In HF, chaincode governs interactions with the stored data. In our implementa-
tion, two chaincodes play distinct but complementary roles:

• The Device Chaincode handles the management of connected EDs, covering the creation,
updating, and deletion of device data. This ensures a consistent and up-to-date representation
of the EDs across the network.

• The Packet Chaincode is focused on security, managing packet uploads and session updates
after uplink communications. It includes security checks on encryption and integrity, reinforc-
ing the network’s defenses. Even if a NC is compromised, the integrity and security of the
communication are preserved, preventing unauthorized actions on behalf of EDs.

Collections – Our implementation leverages both public and private storage through collections
in HF. Each organization within the network also has two private collections, together with the
shared public collection:

• Security session data: This private collection stores sensitive information, including cryp-
tographic keys and nonce counters. These are essential for validating the integrity and au-
thenticity of communications.

• Historical packet data (optional): This private collection maintains a detailed record of all
packets sent and received. Storing this historical data enhances both security and network
accountability, ensuring that sensitive information is managed securely without the need for
additional distributed databases. This approach ensures the privacy and integrity of critical
data while also enabling secure, private, and verifiable storage for all participants in the
network.

• Public Channel Collection: it is used to store general device configurations, ownership
details, and other non-sensitive information. This allows any NC to manage the device join
process, even if the device is owned by another operator. Sensitive information, such as session
keys and encryption details, is stored privately by the device’s owner, ensuring that only they
have access to it, maintaining a balance between flexibility in device management and the
security of private data.

6.4.3 Performance and Privacy

HF’s architecture is designed to support the high scalability demands of IoT networks [66], like De-
LoRaN. By separating the transaction endorsement process from ordering, Fabric ensures efficient,
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Integrity Availability Confidentiality Solved/Mitigated
Bit-flipping/MITM ✓ ✓ X S
Denial of Service ∼ ✓ X M

Sinkhole/Blackhole X ✓ X M
Roaming ✓ X ✓ M

Table 6.1: Security and resilience comparison for various attack vectors in DeLoRaN.

parallel processing of multiple transactions. This is essential in IoT applications where thousands
or millions of devices need to communicate simultaneously. Fabric can handle this load without
bottlenecks, allowing DeLoRaN to scale efficiently as the number of devices and operators in the
network increases.

The use of private data collections also ensures that sensitive information remains confidential
while still being verifiable through cryptographic hashes stored on the blockchain. This provides
both privacy and security, making sure that critical data is only accessible to authorized parties
without sacrificing the integrity of the overall network. Specifically, the collections are governed by
strict privacy policies, ensuring that only authorized members of an organization can read or modify
the data. Each transaction involving these collections must be endorsed by at least three other nodes
from the same organization before being approved, ensuring a secure and verified process. Once
endorsed, the data is stored across all the nodes of the organization, enhancing reliability and fault
tolerance.

6.5 DeLoRaN Security Improvements

In addition to LoRaWAN security issued related to its centralization, there are also other vulnerabil-
ities that DeLoRaN addresses. These vulnerabilities, presented in Tab. 6.1, affect different aspects
of the network, including integrity, availability, and confidentiality:

• Bit-flipping/MITM: These types of attacks target the integrity of data by either flipping
bits during transmission or intercepting communication to alter the content (Man-in-the-
Middle);

• Denial of Service (DoS): DoS attacks aim to overwhelm the network by flooding it with
requests, causing legitimate requests to be delayed or denied;

• Sinkhole/Blackhole: These attacks involve malicious nodes advertising themselves as at-
tractive routes for data but then discarding or rerouting the data improperly;

• Roaming: Roaming refers to devices moving between different network domains. While the
system supports such mobility, confidentiality could be at risk if the handover process is not
securely managed;

6.5.1 Bit-flipping/Man-in-the-Middle (MITM) Attacks

Man-in-the-Middle attacks are a significant threat in networked systems, especially in large networks
like LoRaWAN, where data is transmitted across multiple nodes. In a typical MITM attack, an
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Figure 6.3: Flow of a MITM attack in a centralized LoRaWAN network. The compromised NS has full
control of the payload and can alter the data before forwarding it to the AS. The AS is unable to detect the
tampering, allowing the attacker to manipulate the communication without detection.

adversary intercepts communication between two parties, such as an ED and a NC, and may alter or
inject malicious packets. This compromises both the integrity and confidentiality of the transmitted
data. The attacker can eavesdrop on sensitive information or alter the contents of the message,
leading to further security breaches.

In the context of traditional centralized LoRaWAN systems, MITM attacks are particularly
dangerous due to the reliance on a central NS to authenticate and manage all communications.
If the NS is compromised, the entire network can be exposed to widespread attacks. As shown
in Fig. 6.3, a compromised NS can intercept and modify data packets between EDs and ASs,
altering the contents of the messages without detection. This allows the attacker to manipulate
the communication flow, inject malicious data, or eavesdrop on sensitive information, posing a
significant threat to the network’s security.

DeLoRaN provides a robust solution to this issue by leveraging blockchain technology to decen-
tralize control and ensure message integrity. In DeLoRaN, each packet transmitted by an ED is
cryptographically verified and stored on the blockchain before it reaches its final recipient, typically
an AS. This decentralized storage ensures that the final recipient, such as the AS, does not need to
rely solely on the NS or the integrity of the wireless transmission.

A key advantage of DeLoRaN’s approach is that even if an attacker intercepts and modifies a
message during transmission, the AS can retrieve the original, unaltered packet from the blockchain.
The blockchain guarantees that the message stored is authentic because all integrity checks have
been performed prior to the message being written onto the blockchain. As a result, the AS can trust
the data retrieved from the blockchain, knowing it has passed all integrity tests and is protected
from tampering. This mechanism prevents the attacker from injecting fraudulent data or altering
the packet content, as any changes during transmission would be detected before the packet is added
to the immutable blockchain ledger.

6.5.2 Denial of Service (DoS) Attacks

Denial-of-Service (DoS) attacks are a critical threat to IoT networks like LoRaWAN, where resource-
constrained devices and centralized servers are vulnerable to being overwhelmed by excessive re-
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Figure 6.4: In a DoS attack, an attacker floods the NS with a large volume of requests, causing the system
to become overwhelmed and unresponsive. Legitimate devices are unable to communicate effectively, leading
to service disruptions and network downtime. In DeLoRaN instead, the downtime is only partial, as the
network can still operate even if one or more NCs are targeted, causing only localized downtime.

quests. In a centralized LoRaWAN architecture, the NS acts as the central authority for all com-
munication within the network. This makes it an attractive target for attackers, as a successful DoS
attack can easily overwhelm the NS by flooding it with an excessive number of packets, rendering
the entire network unusable. The consequences of such an attack can include prolonged downtime,
delayed or failed communications, and reduced service availability for all connected devices.

In a typical DoS attack scenario, an attacker might continuously send a large volume of requests
to the NS, consuming its processing power and bandwidth. Since the NS handles every message
in a centralized system, once it is overloaded, legitimate devices are unable to communicate effec-
tively, causing severe disruptions. The problem is compounded by the limited computational and
bandwidth resources typical of LoRaWAN environments, making the network highly susceptible to
such attacks.

DeLoRaN offers a significant improvement over centralized systems by distributing control across
multiple NCs using blockchain technology. In a decentralized architecture, there is no single point
of failure, and managing network communications is distributed across several NS. This makes it
considerably more difficult for an attacker to launch a successful DoS attack, as overloading one
NC will not cripple the entire network. The decentralized nature of DeLoRaN ensures that even if
one or more NCs are targeted in a DoS attack, other NCs can continue to process network traffic,
ensuring that communications can still proceed.

While decentralization alone does not completely eliminate the threat of DoS attacks, it greatly
enhances the network’s resilience by ensuring that the system does not depend on a single server.
By spreading the load across multiple NS, DeLoRaN can continue to function even under attack,
reducing the overall impact on the network’s availability and minimizing the risk of total service
disruption.

6.5.3 Sinkhole/Blackhole Attacks

Sinkhole and Blackhole attacks represent a serious threat [67], since routing of data packets plays
a critical role in network functionality. In these attacks, a malicious node such as a compromised
Gateway (GW), falsely advertises itself as the optimal route for packet transmission, attracting
network traffic. Once the traffic is routed through this malicious node, it can either drop all the
packets (Blackhole) or selectively forward some while discarding others (Sinkhole). The result
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is a significant disruption in communication, as valid data from EDs never reaches its intended
destination, causing failures in application layer processing and data loss.

In a traditional centralized LoRaWAN architecture, this type of attack can be particularly
devastating because once the malicious node becomes the designated route for data, the NS has
no easy way to verify whether the transmitted data has been successfully forwarded to the correct
destination. The NS’s central role in communication makes it vulnerable to such attacks, as any
interference in routing between the ED and the NS can cause network-wide disruptions.

In a decentralized system, traffic is managed by several nodes rather than a single point, making
it more difficult for a malicious node to disrupt the network. If one node starts behaving suspiciously
by dropping or misrouting packets, the remaining NCs can detect this anomaly and exclude the
node from the routing process. This process significantly reduces the potential impact of Sinkhole
and Blackhole attacks because no single node has full control over the network’s traffic.

DeLoRaN introduces elements of pseudorandomized routing and BFT consensus to complicate
the attacker’s ability to predict traffic paths. By not relying on static routes, the system makes it
difficult for attackers to target specific data streams. This unpredictability, combined with contin-
uous monitoring of node behavior, creates a dynamic and resilient environment where the impact
of any single malicious node is minimized.

Pseudorandomization and Consensus

To solve the problem of static routing/hanlding of the communications, DeLoRaN must firstly solve
the two main centralized operations: deduplication of the packets, thus uplink handling, and the
join procedure. The solution is to use a pseudorandomized routing mechanism, combined with a
consensus algorithm, to ensure that the network can operate securely and efficiently even in the
presence of malicious nodes.

Join Consensus – The process, represented in Fig.6.5, begins with a join request being sent
from the ED to multiple NCs, each of which performs security and integrity checks. Once the
checks are completed, the join request is transmitted to the blockchain network, where it undergoes
transaction processing. A deduplication window of 500ms is provided to allow multiple NCs to
process the same request, storing it in a temporary transaction. Following this, the NC set that
received the join request is merged and retrieved. A downlink NC is selected based on the MIC using
a deterministic, yet unpredictable, algorithm, ensuring load distribution and making it virtually
impossible for the attacker to know in advance the selected NC. The session context is derived by
the blockchain chaincode, which securely stores the join request and join accept message. This
process allows the ED to join the network securely, with blockchain providing a robust mechanism
for session context derivation and ensuring the integrity of communications.

Uplink Consensus – The process, represented in Fig.6.6, begins with each NC performing
security checks and verifying the integrity of the received message. Once this is complete, the
consensus mechanism is initiated. The first phase involves the exchange of proofs of reception
among NCs to confirm which controllers successfully received the message. In the second phase, the
NCs exchange reception sets, which include information about the message reception status. This is
followed by filtering out any NCs that did not receive more than 66% of votes. Finally, a downlink
NC is selected based on the packet’s MIC, using the same logic as the join consesus, ensuring
that the network can complete the communication process in a decentralized, secure manner. This
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Figure 6.5: The join consensus process begins when a new device attempts to join the network. During
this process, the blockchain serves as an intermediary platform to establish a set of listening NCs. This set
of NCs will be later utilized to facilitate the uplink consensus procedure, ensuring efficient and coordinated
network operations.
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Figure 6.6: The process of uplink consensus begins with each NC verifying the message’s integrity and
initiating consensus. NCs exchange proofs of reception and reception sets, filtering out those without 66%
votes. The Message Integrity Code (MIC) determines the downlink NC, ensuring secure, decentralized
message validation and eliminating single SPoFs.
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Figure 6.7: In LoRaWAN Roaming, a device moves between different network domains, requiring secure
handover to maintain confidentiality. It uses different NSs, Forwading, Serving or Home, depending on the
context (from [68]).

process eliminates any SPoF by distributing message validation across multiple NCs, which enhances
network reliability and security.

The combination of these techniques ensures that DeLoRaN is highly resilient to Sinkhole and
Blackhole attacks, providing greater security and operational stability compared to traditional cen-
tralized systems.

6.5.4 Roaming

LoRaWAN roaming, shown in Fig. 6.7 introduces two primary types of roaming mechanisms: han-
dover and passive roaming. Each comes with its own set of challenges and benefits. In handover
roaming, devices switch their connection completely to the visited network, entrusting the visited
NS to manage all network tasks. This method, though seamless in terms of switching, depends
heavily on trust, as the home network must relinquish control to the serving NS.

In contrast, passive roaming allows devices to remain connected to their home network, even
when using gateways from a visited network. This is further divided into stateful and stateless
approaches. In the stateful method, the home network takes charge of session management, ensuring
roaming across different networks, but this comes with significant overhead in terms of session
handling. Stateless passive roaming simplifies this by forwarding packets based on identifiers, but
leads to indiscriminate packet forwarding to the home network, based solely on the NetID identifier,
present in the uplink header.

However, the introduction of roaming also brings various security concerns. Roaming demands
a high degree of trust between operators. In an inter-operator setting, private session keys are
shared, creating vulnerabilities. The visited network can not always validate the transmissions it
forwards, the home network can not dispute them, leading to possible waste of money for both
the networks. Moreover, attacks like MITM, carried on by the serving LoRaWAN network or
intermediate nodes, pose serious risks. Additionally, the intermediate nodes cant still carry on
blackhole/sinkhole attacks. Another critical issue is the reliance on centralized authorities, such as
roaming hubs, which may become SPoFs or require a substantial level of trust among participating
operators.
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Blockchain provides a robust solution to many of these issues. By decentralizing the control and
using a shared ledger, DeLoRaN ensures that trust between operators is no longer a requirement.
Ownership of devices is validated through the blockchain, making it impossible for an operator to
deny a device’s presence or claim. This also introduces the concept of "hard proof of reception,"
where a NC can validate that a packet was indeed received. Blockchain’s immutable nature ensures
that even in the presence of malicious entities, data integrity remains intact, as all participants can
verify the authenticity of the information. Furthermore, chaincode automates the roaming process,
enabling seamless and transparent coordination between operators without requiring direct trust.

In summary, the use of blockchain in DeLoRaN significantly enhances the security of LoRaWAN
roaming by decentralizing trust, ensuring data integrity, and automating critical processes through
smart contracts, all of which are particularly valuable in multi-operator environments.
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Chapter 7

DeLoRaN - Experimental Evaluation

7.1 Introduction

The experiments described in this chapter aim to comprehensively evaluate the performance, secu-
rity, and scalability of DeLoRaN under various conditions and scenarios. These tests were designed
to assess how effectively DeLoRaN decentralizes control and addresses the inherent limitations of
traditional centralized LoRaWAN networks.

One of the core experiments focused on comparative performance evaluations between DeLo-
RaN, a traditional centralized LoRaWAN system and a blockchain-integrated LoRaWAN network
named HyperLoRa [69]. These tests provided a detailed comparison, highlighting improvements in
areas such as latency reduction, transaction throughput, and enhanced security, all contributing to
DeLoRaN’s advantages in decentralized network management.

Additionally, we carried out experiments focused on scalability, analyzing how the system per-
forms with an increasing number of End Devicess (EDs) and Network Controllers (NCs). By in-
crementally scaling the number of EDs in the network, we evaluated the system’s ability to handle
large-scale deployments, typical of smart city applications or industrial Internet of Things (IoT) en-
vironments. The tests confirmed DeLoRaN’s ability to efficiently manage high device loads without
bottlenecks or performance degradation, highlighting the advantages of blockchain-based control
distribution.

In parallel, AI-based interferences/jamming detection was explored as a starting point for a smart
and distributed Adaptive Data Rate (ADR) implementation, where statistical and machine learning
models were employed to detect and mitigate interferences/jamming attacks on the network. These
tests were conducted using ns-31 simulations, offering insights into how DeLoRaN can enhance
resilience against radio frequency interference.

The results from these experiments confirm that DeLoRaN is not only scalable and secure but
also resilient to a variety of network threats and capable of handling the operational demands of
modern IoT environments.
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(a) Centralized LoRaWAN Setup. It consists of a
cloud of EDs, a Gateway (GW) bridge, and a cen-
tral Network Server (NS) that manages the network’s
data and devices.

(b) DeLoRaN Setup. It consists of a distributed net-
work of four NCs, each connected through the block-
chain network.

Figure 7.1: Centralized LoRaWAN vs DeLoRaN Setup. The first round of tests compared the performance
of a traditional centralized LoRaWAN network with a decentralized DeLoRaN network.

7.2 Centralized vs Decentralized LoRaWAN

The first set of experiments focused on comparing the performance of DeLoRaN with traditional
centralized LoRaWAN networks, as shown in Fig. 7.1, with both scenarios tested on a Raspberry Pi
42. The centralized solution is based on the most used, open-source implementation of a LoRaWAN
stack by ChirpStack3, which includes a cloud of EDs, a GW bridge, and a central NS that manages
the network’s data and devices. In this setup, presented in Fig. 7.1a, all devices send their data
to the GW, which forwards it to the NS, which handles the uplinks and send the corresponding
downlink back to the EDs. Everything except the devices was running on top of the Raspberry.

In contrast, the decentralized solution in DeLoRaN leverages a distributed network of four
NCs, each connected through the blockchain network. In this architecture, the processing and
management of data are distributed among multiple controllers. Only one of the NCs was running
on top of the Raspberry, while the other NCs and the EDs cloud were simulated on a different
machine. The setup is illustrated in Figure 7.1b. It is worth noticing that the single NC hosted on the
raspberry still receives and process all the data from the EDs cloud, but it is not always responsible
for processing all the transfer through the blockchain or the handling of downlink messages.

Both solutions were tested under varying load conditions, scaling the number of devices (500,
1000 and 2000), to evaluate how each system performs under increased demand.

7.2.1 Performance Indicators

When evaluating the performance of both centralized and decentralized LoRaWAN architectures,
two critical indicators emerge: delays and resource utilization.

Resource utilization – The focus is on measuring how much CPU, RAM, and network band-
width is consumed by each architecture during the experiments. In the centralized Chirpstack
architecture, the single network server handles all data, simplifying the overall network structure
and communication patterns. Nodes of the network are simulated using Docker4 containers, so

1NS-3 - https://www.nsnam.org/
2Raspberry Pi 4 - https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
3Chirpstack - https://github.com/chirpstack
4Docker - https://www.docker.com/
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(a) CPU Usage DeLoRaN vs Centralized. (b) RAM Usage DeLoRaN vs Centralized.

Figure 7.2: Example of RAM and RAM Usage DeLoRaN vs Centralized. It shows the CPU and RAM
usage of the Raspberry Pi 4 when running the centralized setup and the DeLoRaN setup with 2000 devices.

Devices
Chirpstack

%CPU
Usage

DeLoRaN
%CPU
Usage

CPU
Compar-

ison

Chirpstack
RAM
Usage
(MB)

DeLoRaN
RAM
Usage
(MB)

RAM
Compar-

ison

500 24.79 11.76 ↓ 54.16% 129.07 305.36 ↑ 136.58%

1000 41.38 21.65 ↓ 48.88% 154.12 328.38 ↑ 113.22%

2000 68.76 35.06 ↓ 49.01% 194.94 409.38 ↑ 110%

Table 7.1: Comparison of CPU and RAM usage between Chirpstack and DeLoRaN for various device loads,
with arrows indicating better (down) or worse (up) performance for DeLoRaN

Docker tools were used to gather these metrics. On the other hand, in the decentralized DeLoRaN
setup, where network controllers were simulated using LXD5 containers, Linux tools were used to
measure CPU and RAM utilization. Understanding how the resources scale when device numbers
increase is critical for assessing the viability of each architecture in real-world IoT scenarios.

Delays – They play a significant role in determining the responsiveness and reliability of the
network. In LoRaWAN, strict time constraints govern when devices can receive downlink messages,
meaning that the delays between sending an uplink message and receiving the corresponding down-
link must fall within predefined time windows. The traffic model used is a confirmed uplink with
a random delay between 60 and 180 seconds between each transmission, sending around 30 bytes
of data. With this pattern, a device almost reaches its daily quota (0.1%) of transmission time.
These delays were measured during the experiment, both to compare the efficiency of the centralized
and decentralized architectures and to assess whether the decentralized implementation can comply
with the time-critical nature of LoRaWAN, ensuring that all responses fit within the allocated time
window for receiving downlink messages.

7.2.2 Results

CPU and RAM Usage Analysis – The results for both CPU and RAM usage across different
device loads, summarized in Tab. 7.1, highlight the trade-offs between centralized and decentralized
architectures in handling IoT networks.

5LXD - https://canonical.com/lxd
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7.2. Centralized vs Decentralized LoRaWAN

(a) Network Resources Utilization. It shows the net-
work bandwidth usage in terms of MB/s sent and re-
ceived by the node. It highlight how a decentralized
network must take into account an increased network
complexity, thus additional network overhead.

(b) RTT DeLoRaN vs Centralized. It shows the
round-trip time for the network, highlighting how
greately reduced is the latency in a decentralized net-
work, thanks to the NC being much closer to the EDs
instead of running in a centalized cloud.

Figure 7.3: Network Resources Utilization and RTTs of DeLoRaN vs Centralized

For CPU usage, we see a significant reduction in load when switching from Chirpstack to DeLo-
RaN. With 500 devices, Chirpstack’s average CPU usage was 24.79%, whereas DeLoRaN reduced
this load to 11.76%, reflecting a reduction of 54.16%. Similarly, with 1000 devices, Chirpstack
showed 41.38% CPU usage, while DeLoRaN used only 21.65%, resulting in a 48.88% reduction.
This trend continued with 2000 devices, shown in Fig. 7.2a, where Chirpstack’s CPU usage reached
68.76%, compared to DeLoRaN’s 35.06%, yielding a 49.01% reduction. The decentralized structure
of DeLoRaN helps distribute computational tasks more effectively, reducing the CPU burden on
any single network controller, making it a highly scalable solution for large IoT networks.

On the other hand, RAM follows a different trend. Decentralization tends to increase memory
consumption due to the additional data processing due to the blockchain. With 500 devices, Chirp-
stack used 129.07MB of RAM, whereas DeLoRaN consumed 305.36MB, reflecting an increase of
136.58%. For 1000 devices, Chirpstack used 154.12MB, while DeLoRaN required 328.38MB, show-
ing a 113.22% increase in RAM usage. With 2000 devices, represented in Fig. 7.2b, Chirpstack’s
RAM usage was 194.94MB, while DeLoRaN reached 409.38MB, marking an increase of 110%. While
decentralization comes with increased memory demands, a 50% reduction in CPU usage presents a
highly favorable tradeoff for increased RAM consumption, especially considering that even low-end
devices today typically come with at least 1GB of RAM, making the additional memory demand
manageable in exchange for significantly improved processing efficiency.

Network Resources Usage Analysis – The network throughput for both transmission (Tx)
and reception (Rx) in DeLoRaN showed an increase compared to the centralized Chirpstack archi-
tecture. Specifically, with 500 devices, DeLoRaN experienced a 65.56% increase in Tx throughput
over Chirpstack. As the number of devices grew to 1000, this increase dropped to 51.39%, and
further to 46.62% with 2000 devices.

This increase in network throughput is a result of the additional complexity introduced by
DeLoRaN’s decentralized architecture, particularly its blockchain mesh network. The need for
continuous communication between multiple NCs and blockchain nodes to maintain synchronization
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Number of
Devices

Chirpstack Tx
Throughput

(Mbps)

DeLoRaN Tx
Throughput

(Mbps)

Tx Throughput
Comparison

(%)
500 1.00 1.66 ↑ 65.56%

1000 2.10 3.18 ↑ 51.39%

2000 3.50 5.13 ↑ 46.62%

Table 7.2: Comparison of Tx throughput between Chirpstack and DeLoRaN for various device loads, with
percentage increase in throughput for DeLoRaN

Number of
Devices

Chirpstack
Processing
Time (ms)

DeLoRaN
Processing
Time (ms)

Processing
Time

Comparison
(%)

500 617.39 181.72 ↓ 70.57%

1000 621.20 181.35 ↓ 70.81%

2000 598.52 178.58 ↓ 70.16%

Table 7.3: Comparison of Processing Time between Chirpstack and DeLoRaN for various device loads,
with percentage decrease in processing time for DeLoRaN

and consensus leads to higher network consumption. This added overhead is inherent in a distributed
setup, where data and control tasks are spread across various nodes to enhance security and fault
tolerance. Despite this, the trend indicates that the relative increase in throughput diminishes as
the number of devices scales up, suggesting that the decentralized architecture may scale efficiently.
As more devices join the network, the percentage increase in network consumption becomes smaller,
pointing toward more stable network demands in larger deployments. Importantly, the observed
increase in throughput remains within an acceptable range, particularly considering the trade-offs
that decentralization offers in terms of resilience and scalability.

Thus, while decentralization adds overhead in terms of network traffic, the scalability demon-
strated by DeLoRaN highlights its potential for large-scale IoT deployments, where such overhead
becomes more manageable as the system grows.

Response times – As shown in Tab. 7.3, the response times for Chirpstack remain consistent
across all three scenarios, 500, 1000, and 2000 (represented in Fig. 7.3b) devices, the response
times for Chirpstack remain consistent at around 620ms, while DeLoRaN consistently maintains a
response time of approximately 180ms. This represents an overall improvement of around 70% in
processing times with DeLoRaN. This significant difference in performance can be attributed to the
decentralized nature of DeLoRaN, which efficiently distributes the workload. However, the most
impactful factor is the elimination of the extra step involving the gateway present in Chirpstack’s
centralized architecture. By bringing the network control closer to the edge, DeLoRaN demonstrates
the clear advantages of edge computing, particularly in massive IoT scenarios where reducing latency
is critical for system performance and scalability.

7.3 Scalability of DeLoRaN

In this next series of tests, the focus shifts to evaluating the scalability of the decentralized De-
LoRaN architecture. The tests aim to analyze how the network performs under increasing load
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and how various key parameters, such as the number of devices and NCs, affect system scalability.
By progressively increasing the number of network controllers and devices, this round of testing
investigates the performance bottlenecks that may arise in large-scale deployments. The key met-
rics being evaluated are network delays and resource utilization, which will allow us to assess the
system’s ability to scale efficiently while maintaining low response times and handling significant
traffic loads. Understanding how the system behaves under different configurations is critical to
evaluating DeLoRaN’s potential for scaling in real-world IoT deployments.

These tests have been performed using Colosseum6, housed at Northeastern University, which
is the world’s most powerful hardware-in-the-loop network emulator. Colosseum provides a plat-
form for testing and evaluating wireless networks by emulating real-world scenarios with extreme
accuracy. With 128 independent nodes, each equipped with a Dell server, NVIDIA GPUs, and
software-defined radios, Colosseum can simulate environments ranging from crowded urban areas
to remote open fields. A key component of Colosseum is its Massive Channel Emulator (MCHEM),
which can emulate up to 256 x 256 independent wireless RF channels, allowing researchers to ob-
serve how wireless signals interact in various conditions. This powerful emulation capabilities makes
Colosseum ideal for large-scale DeLoRaN experiments, allowing our network to scale up without
limitations to explore the performance, throughput, and delay under heavy loads, allowing us to
use a single node as NC. In this way the NCs are isolated from each other and the EDs, allowing
us to focus on the scalability of the network.

7.3.1 Description of the experiments

In these experiments, we varied three key parameters to assess the system’s performance: the
number of NCs, the number of emulated EDs and the number of orderers (nodes responsible for
transaction ordering in the blockchain). The NCs were deployed in LXC containers, ranging from
2 to 8 in number, and each NC handled from 200 up to 1600 devices. Similarly, the orderers were
also deployed in LXC containers, with their count varying from 4 to 16, to evaluate their impact on
blockchain transaction processing and overall system latency.

The experiments revealed that scaling the number of orderers did not significantly affect perfor-
mance. Across all tested configurations, the number of orderers had minimal impact on blockchain
transaction times or overall system latency. As a result, for the scale of our simulation, the number
of orderers proved to be a non-critical factor. Consequently, this parameter will not be analyzed
further in the discussion, as it did not introduce any observable performance differences in our tests.
All the tests shown in this section were performed using 8 orderers.

The primary performance metrics of interest in this round of tests included EDs response times,
blockchain transaction times, and network resource utilization. These metrics provided insight into
how DeLoRaN’s decentralized architecture handles increasing loads, both in terms of the number
of devices and the number of network components managing those devices.

By testing these configurations, we sought to answer critical questions about the scalability of
DeLoRaN, particularly how well it can distribute the load across multiple controllers and blockchain
nodes without suffering performance degradation. The results of these tests offer valuable insights
into the system’s robustness and its capacity to efficiently manage large-scale IoT deployments.

6Colosseum - https://www.northeastern.edu/colosseum/
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Figure 7.4: DeLoRaN delays with increasing NCs number. It shows the response times of the network
controllers as the number of controllers increases exponentially. The response times increased slightly across
all configurations, indicating that the system can efficiently distribute the load across multiple controllers
without significant performance degradation.

7.3.2 Results

Scaling up Network Controllers – The results from scaling the number of NCs provide insights
into the system’s response time behavior. As shown in Fig. 7.4, increasing exponentially the number
of NCs from 2 to 8 results in a slight gradual increase in the average blockchain response time.
For example, with 2 NCs, the average response time is around 600 ms, while with 8 NCs, it
increases to approximately 800 ms. This increase can be attributed to the additional communication
overhead introduced by the larger number of nodes that need to reach consensus. Interestingly,
the device response time remains relatively stable across all configurations, suggesting that the
added complexity in the blockchain network does not significantly affect the network performance
from the EDs point of view. This demonstrates that while the blockchain network experiences
higher response times due to the increased coordination between NCs, the EDs continue to operate
efficiently. These results highlight that, at least for the scale of our experiments, increasing the
number of NCs introduces overhead but does not degrade edge performance.

Network Resource Utilization – As we scaled the number of NCs from 2 to 8, the network
utilization, measured in both transmitted and received data, increased significantly. With only
2 NCs, the transmitted data was around 100 MB, and received data was slightly higher. As the
number of NCs doubled to 4, we observed an almost linear increase in both transmitted and received
data, reaching around 200 MB transmitted and 300 MB received. Finally, at 8 NCs, the network
traffic continued to rise, with over 300 MB of transmitted data and nearly 400 MB of received data.

In analyzing the network resource utilization, we observe a clear pattern of increasing resource
consumption as the number of NCs scales up. As the network expands from 2 NCs to 8 NCs,
both transmitted and received data volumes rise steadily. However, this increase in network usage
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Figure 7.5: DeLoRaN Network resource utilization across scaling NCs. It shows the network bandwidth
usage in terms of MB/s sent and received by the node. The network utilization increases linearly as the
number of controllers grows exponentially, indicating that the system can efficiently manage an increasing
backbone network.

remains linear and does not exhibit the exponential growth that is often expected in fully connected
mesh networks, where network usage typically scales exponentially with the number of nodes. The
initial increase in network resource utilization is linear, and the rate of increase diminishes as the
network scales further. This behavior suggests an efficient management of transmissions, likely due
to the effective implementation of a gossiping protocol. As a result, the system shows promising
scalability in terms of network resource utilization, indicating that the decentralized architecture
can handle larger networks efficiently, without overwhelming the communication channels.

Scaling up Devices – The final plot illustrates an intriguing and somewhat counterintuitive
outcome regarding blockchain response times as the number of devices increases. As shown in the
graph, as the number of devices rises from 200 to 1600, the blockchain response time decreases
steadily. This phenomenon occurs because a higher number of devices leads to a greater number of
transactions, which in turn fills the blockchain blocks faster. With a faster rate of block completion,
the transactions are confirmed more quickly, improving the overall response time of the blockchain
network.

It also highlights an important aspect of DeLoRaN’s architecture, that is the disjunction between
blockchain response time and device response time. The NCs handles everything related to the ED
before interacting with the blockchain, which is used to update the ED session on the blockchain
and broadcast the update to all the others NCs. This separation allows for a flexible and efficient
handling of blockchain processes without negatively impacting device communication. In practice,
this means that even with a high block timeout, used to minimize the number of blocks built and,
therefore, reduce overall network load, the device response time remains low. The high block timeout
slows down the blockchain’s network utilization, ensuring fewer blocks are built and reducing the
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Figure 7.6: DeLoRaN delays with increasing devices number. It shows the response times of the network
controllers as the number of devices increases exponentially. The response times remain relatively stable
across all configurations, indicating that the system can efficiently manage an increasing number of devices
without significant performance degradation.

overall bandwidth required for block propagation. This results in a significant reduction in network
utilization without compromising the speed of device communications.

Furthermore, these tests have underscored the critical role of blockchain parameters such as block
size and block timeout. By tuning these parameters, we were able to achieve increased efficiency in
the blockchain network under higher transaction loads. The adjustments, specifically increasing the
block size and timeout, led to a substantial boost in network efficiency while significantly reducing
the overall network load. As a result, the decentralized system demonstrated its ability to not only
handle but thrive under high-demand conditions, proving the importance of optimizing blockchain
parameters in large-scale IoT deployments.

In conclusion, the experiments demonstrate that DeLoRaN scales efficiently across a range of
network configurations and device loads, proving its resilience and adaptability in large-scale IoT
deployments. The system handles an increasing number of devices without overwhelming net-
work resources, maintaining consistent device response times while effectively reducing blockchain
response times as the load increases. This counterintuitive result highlights the strengths of De-
LoRaN’s decentralized architecture, where the blockchain fills blocks more rapidly under heavier
load, improving overall throughput without negatively impacting device communications. Further-
more, the clear separation between blockchain and device response times allows for flexibility in
configuring blockchain parameters, such as block timeout, without compromising performance. De-
LoRaN’s scalability and efficient resource utilization, even in a fully connected mesh network, pave
the way for further optimizations and highlight the importance of tailored blockchain configurations
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to maximize efficiency in decentralized networks.

7.4 Comparison of DeLoRaN with HyperLoRa

In this section, we focus on comparing the performance of DeLoRaN with the study presented by Lu
et al. [69] on a partially decentralized system, HyperLoRa, which integrates blockchain and edge
computing in a LoRaWAN network. While HyperLoRa maintains a centralized NS for handling key
operations like the deduplication of packets and forwarding payloads to Application Servers (ASs), it
completely decentralize other operations like the join procedure. It is crucial that the join procedure
in HyperLoRa is fully decentralized, as this allows us to finally compare DeLoRaN with another
system. Most approaches analyzed in the state of the art have always retained some centralized
component in key procedures, making a direct comparison with DeLoRaN difficult. HyperLoRa,
however, presents a fully decentralized join procedure, providing us with a meaningful point of
comparison for DeLoRaN’s decentralized architecture. Additionally, both solutions use Hyperledger
Fabric for blockchain, making it possible to compare their performance under similar conditions.
Given that both systems address similar challenges, HyperLoRa provides an ideal benchmark to
evaluate the scalability and efficiency of our fully decentralized solution.

7.4.1 Description of the experiments

The experiment focuses on testing the scalability and performance of DeLoRaN in comparison to
HyperLoRa. Specifically, it evaluates how well both systems handle the join procedure under in-
creasing network load, which is a critical operation in LoRaWAN systems. The test environment
simulates a variable number of EDs, each attempting to join the network using a uniformly dis-
tributed wait time between join requests.

The experiment was designed to evaluate the join procedure scalability of DeLoRaN and compare
it to HyperLoRa, focusing on response times under increasing load. However, due to limitations in
the available data, CPU and RAM usage for HyperLoRa could not be evaluated, leaving us with a
direct comparison based only on join procedure performance. Despite Lu et al. [69] provided details
on such metrics, they were collected during other experiments involving the centralized NS, which
makes impossible a fair comparison between the experiments.

The simulation setup included four HyperLoRa GWs (NCs in DeLoRaN) and a variable number
of EDs, each generating join requests at randomized intervals. The traffic model utilized for both
setups involved uniformly distributed wait times between 10 and 120 minutes for each join request.

The experiment was conducted using LXD containers for all NCs and Orderers, with each NC
being hosted in its own container to create a realistic and manageable simulation environment. These
containers mimicked a Smart6818 board, with its Samsung S5P6818 octa-core Cortex-A53 CPU,
by heavily limiting the amount of CPU time used by the containers, and allowing each one to use
just 1GB of RAM, which is roughly comparable to a Raspberry Pi 4’s performance. The connection
between containers was capped at 100MB, providing a constrained but realistic environment for
simulating the limitations of low-end devices in the real world.

By using this setup, we aimed to test the scalability of both systems, focusing on the efficiency
of the join procedure under increasingly heavy network loads while ensuring fair conditions for both
DeLoRaN and HyperLoRa.
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Figure 7.7: HyperLoRa delays with increasing devices number. It shows the response times of the join
procedure as the number of devices increases exponentially. The response times increase sharply after 2000
devices, indicating that the system struggles to handle large numbers of join requests efficiently. Extracted
from Lu et al. [69].

7.4.2 Results

HyperLoRa Presented Data – The results from the study conducted by Lu et al. [69] highlight
significant scalability limitations in their partially decentralized HyperLoRa system. As illustrated
in Figure 7.7, extracted from their paper, the join procedure begins to degrade after the number of
end devices exceeds approximately 1800. At this point, around 25% of the end devices are unable
to join the network due to delayed responses. Beyond the 2000-device threshold, the majority of
devices fail to complete the join process successfully, due to HyperLoRa GWs inability to answer
during the correct downlink window, as a result of the overloaded network.

This finding emphasizes the performance bottleneck encountered in HyperLoRa’s design, where
the system struggles to handle large numbers of join requests efficiently. The processing time
for these requests, as shown in the Fig.7.7, increases sharply after the number of devices exceeds
2000, suggesting that the network infrastructure, even with partial decentralization, becomes over-
whelmed. This serves as a valuable reference for assessing the scalability of DeLoRaN and un-
derstanding the critical importance of well coordinated decentralized architectures for managing
large-scale IoT networks.

DeLoRaN Results – Our experimental results, presented in Fig. 7.8 showcase DeLoRaN’s
ability to manage join requests under heavy load, significantly outperforming HyperLoRa. Using
the same traffic model, our system successfully handled 17.5 times more join requests than Hyper-
LoRa, while keeping the response times well within acceptable limits. This marked improvement is
particularly notable given the scalability challenges typically encountered in LoRaWAN networks.

Even with a vastly increased number of devices, DeLoRaN maintained an average response time
of less than 20% of what was reported in HyperLoRa’s experiment. This dramatic reduction in
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Figure 7.8: DeLoRaN delays with increasing devices number. It shows the response times of the join
procedure as the number of devices increases exponentially. The response times increase slightly with the
increasing number of devices, showing DeLoRaN’s ability to handle tents of thousands of devices with a
realistic traffic model.

response times, despite the higher load, underscores the superior efficiency and scalability of our
fully decentralized architecture. It highlights DeLoRaN’s ability to manage large-scale LoRaWAN
networks with increased reliability, even when deployed on resource-constrained devices.

Moreover, the analysis of CPU and RAM usage from our experiments with DeLoRaN shows
consistent and manageable resource consumption, even as the number of devices increases. As
depicted in the plots, CPU usage increases steadily with the rise in the number of devices, reaching
approximately 22-23% when scaled up to 35,000 devices. This gradual increase highlights that
even at larger scales, DeLoRaN manages to distribute computational tasks efficiently across its
decentralized architecture, preventing any significant spikes in CPU demand.

Similarly, RAM usage too follows a slight proportional increase, with consumption rising from
around 300MB with 10,000 devices to about 450MB at 35,000 devices. These values demonstrate
that DeLoRaN is able to handle a substantial number of connections while maintaining efficient
memory management. This is particularly notable given the constraints of the simulated devices,
further emphasizing the efficiency of our decentralized solution in low-resource environments.

Overall, DeLoRaN scales efficiently in terms of resource utilization, making it well-suited for
large-scale IoT deployments, particularly where CPU and memory constraints are present, such as
in edge computing scenarios. The slight linear increase in resource usage is a promising indication
of the system’s capacity to handle further scaling without overwhelming the network infrastructure.
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Figure 7.9: DeLoRaN RAM utilization with HyperLoRa traffic model. It shows the CPU and RAM usage
of the LXD container when running the DeLoRaN setup with the HyperLoRa traffic model.

7.5 Real-world Data Set - LoED

The LoED dataset, presented in the work by Bhatia et al. [70], is a comprehensive dataset designed
to capture real-world traffic patterns of LoRaWAN devices. It focuses on providing an accurate
representation of data transmission behaviors at the edge, particularly useful for studying LoRaWAN
in the context of large-scale deployments. The dataset was collected by observing the behavior
of multiple devices over extended periods, focusing on the interaction between end devices and
gateways in a realistic network environment. LoED contains data related to join requests, uplink,
and downlink transmissions, with precise timestamps and metadata on packet reception, signal
quality, and other relevant communication metrics.

In our simulations, presented in [71], the LoED dataset served as the foundation for modeling
LoRaWAN traffic. The dataset’s recorded traffic patterns allowed us to generate realistic device
behavior, simulating thousands of end devices transmitting and receiving data in a distributed
LoRaWAN architecture like DeLoRaN. To ensure accuracy, we used the dataset to model key
characteristics, such as packet inter-arrival times and distribution of uplink and downlink messages.

Our traffic modeling approach aimed to reflect the complexity of real-world conditions. For in-
stance, we incorporated variations in packet transmission rates and account for network congestion.
Devices were modeled based on observations of their sending patterns and how they manage mul-
tiple packets during their active periods. We differentiated between "regular" and "non-regular"
devices, allowing us to generate traffic with variable inter-arrival times, ensuring the simulation
captured both periodic and aperiodic communication behaviors.

7.5.1 Traffic Modelling

We started our analysis on the previously introduced LoED dataset. For our purposes, we considered
devices which have sent more than one packet. Let D be the set of all EDs and let D be its cardinality.
Computing D, despite being a seemingly straightforward operation, presents challenges. Due to the
structure of LoRaWAN packets, we only have DevAddr identifiers that may change over time.
Therefore, we can only observe and compute the number of devices active simultaneously.
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For each device d ∈ D, we define

Fd =
{
i ∈ N

∣∣ a packet pdi with FCnt = i was observed
}
.

Hence, Fd is the set of all observed frame-counter indices for device d. We then define the global
set of all frame-counter indices as

F =
⋃
d∈D

Fd.

Next, we let tdi be the timestamp of reception of packet pdi . We can thus define the collection of
all timestamps as: {

tdi

}
d∈D,i∈F

(7.1)

Let n(t) be the number of devices which are active at time t. A device is active at time t if its
first packet is observed before time t and its last packet is observed after time t. We define N as
the number of the maximum number of devices which are active at the same time. On our data we
find N ≈ D = maxt n(t) = 1521.

During evaluation runs, we will use this value as the number of devices to simulate.
We start modelling the traffic by analyzing the inter-arrival times of packets. The inter-arrival

time t̄di is the time elapsed between two consecutive packets sent by the same device d. Let us
denote a LoRaWAN packet as p and the time that a packet is sent as t(p). Moreover, we indicate
with pdi the packet of device d ∈ D having LoRaWAN Frame counter, FCnt = i. The FCnt is a
value sent as clear text in the LoRaWAN header increased by 1 for each transmitted packet. To
investigate the inter-arrival times of device d, we isolate the packets transmitted by the same device
and compute the time elapsed by two consecutive packets:

tdi = t
(
pdi+1

)
− t

(
pdi

)
(7.2)

It is important to note that the inter-arrival should be computed only on packets having consecutive
values of FCnt. Indeed, in the measurements relevant to the dataset, several packets are lost on the
air, causing missing observed FCnt values. In other words, it is impossible to compute tdi for some
values of i since pdi+1 may be lost and not observed.

For each device d, we computed its average inter-arrival time t̄d = avg
({

tdi ,∀i
})

. The dis-
tribution of t̄d values is reported in the top plot of Fig. 7.10. We notice that this distribution
significantly differs from Poisson or Pareto processes, which are commonly used in literature to
describe LoRaWAN packet arrival rates. Indeed, such distribution presents some clear peaks, with
two very high ones at 5 and 10 minutes. Other smaller peaks are observable, in particular the
rightmost one located at 3600 seconds, i.e. one hour.

We started to investigate regular devices. A device is named regular if its inter-arrival times are
constant throughout its lifespan, e.g., a device sending a packet continuously every 10 minutes. We
calculated the average jitter as the variation of the inter-arrival times of the same device:

ēd = avg
{∣∣∣tdi − tdj

∣∣∣}
d∈D,i,j∈F

(7.3)

The distribution of the ēd values, for each device d, is reported in the bottom plot of Fig. 7.10. From
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Figure 7.10: On the top plot, distribution of the average inter-arrival time for all EDs. The two highest
peaks are located at 5 and 10 minutes respectively. on the bottom plot, distribution of the average inter-
arrival jitter for all devices. The distribution presents a heavy tail not visible in the graph. The fraction of
devices having ēd > 1s is approximately 13% of the total.

the plot, we can see that the majority of devices are indeed regular, exhibiting a quasi-constant
value of inter-arrival times and therefore a low value of ēd. For our purposes, we consider a device d

as regular if ēd < 1s. We note that the value of 1s is much lower that the average inter-arrival time,
as shown in the distribution in Fig. 7.10. Using a threshold of 1 second, we define the number of
regular devices as R = 1418. Consequently, we define ρ = 0.866 as the fraction of regular devices
relative to the total number of devices.

While the value of ρ is quite high, it is lower than one may expect by looking at Fig. 7.10. This
is because the distribution presents a heavy tail, which is not visible in the figure. By separating
regular and non-regular devices, we empirically model the probability distributions Pr(t) and Pnr(t),
which represent the inter-arrival times of regular and non-regular devices, respectively.

Device simulation policy – We execute the following procedure to model the behaviour of a
simulated LoRaWAN device d. First, we extract a random number a ∈ [0, 1]. If a ≤ ρ then d is
regular. In this case, a single inter-arrival time td is drawn from the probability distribution Pr(t),
which will be the constant inter-arrival time of the device for its entire lifespan. If otherwise a > ρ

the device is not regular. In this case, whenever the device sends packet i, we draw time tdi from
the probability distribution Pnr(t) and this will be the time that it has to wait to send packet i+1.

7.5.2 Simulation results

The setup of the experiment is the same used in Sec. 7.4. We performed the simulations using the
traffic model proposed in the previous section. In the simulations, the devices follow the following
process: they first power on and complete their initial join procedure with the network. After
successfully joining, the devices proceed to send uplinks according to the timings defined in the traffic
model, reflecting realistic network behaviour. Each device emulates a LoRaWAN ED, generating
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Figure 7.11: Blockchain Response time and ED Response time under LoED traffic model with 1600 EDs
on the top and 30000 EDs on the bottom.

the exact same bytes as in the traffic model. During the experiments, the system ran overnight
with the devices generating packets in real-time. The results presented here are based on 50-minute
samples taken from several hours of simulation. We conducted the simulations with two different
numbers of devices. First, we used 1600 devices, which is the number of devices we derived from
LoED dataset. The second number is much higher, around 30000 devices. This was chosen to
perform a stress test on DeLoRaN and observe how the system behaves under a heavy load.

System Response Time – We started by measuring the system’s response time. For our
testing, we considered two types of response times: the blockchain response time and the device
response time:

• Blockchain Response Time is the time between a transaction being sent and a confirmation
from the blockchain network being received. It is measured from the NC by storing the
timestamps between and after the transaction proposal process.

• ED Response Time is the time spent waiting between a confirmed uplink being sent and the
respective ACK downlink being received. It is measured from the ED by storing timestamps
when an uplink is sent and a downlink is received.

Fig. 7.11 shows the response time of DeLoRaN under two different load conditions: 1600 devices
(top chart) and 30000 devices (bottom chart). The blue line represents the blockchain response time,
while the orange line shows the device response time. We have then simulated 30000 devices with
a cumulative packet rate of 1.5 × 105 packets/h. With the higher number of simulated devices,
the average response times are slightly higher. However, we observed latency spikes that were not
present with the lower number of devices. Despite this, these spikes always remain below the critical
threshold of 5 seconds, which is the time defined by the LoRaWAN standard after which the device
waits for a downlink. This indicates that the system is able to handle the increased load without
significant performance degradation.
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Figure 7.12: CPU and RAM utilization in a Network Controller under LoED traffic model with 1600 EDs
on the top and 30000 EDs on the bottom. The results are averaged among all the Raspberry Pi nodes.

Resource utilization – In this section, we investigate the usage of computational resources by
DeLoRaN. Fig. 7.12 displays the CPU load (in orange) and RAM usage (in blue) during simulations
with 1600 devices (top) and 30000 devices (bottom) over 50 minutes. In both scenarios, the CPU
load remains relatively stable throughout the simulation. With 1600 devices, the average CPU load
hovers around 30%, with occasional spikes that remain well below 50%. In the 30000-device simu-
lation, the CPU load increases slightly, averaging closer to 40%, with similar fluctuations. However,
even under this significantly heavier load, the system stays well below saturation. Furthermore, it
is important to highlight that these tests were conducted on a Raspberry Pi CPU, which is com-
parable to the CPUs used in many LoRaWAN GWs currently deployed worldwide. Therefore, the
similarity in hardware adds validity to our tests, as it demonstrates that our system can perform
efficiently under real-world conditions with similar computational resources. In terms of memory
usage, the RAM consumption is also stable throughout the simulations. For both 1600 and 30000
devices, the RAM usage remains consistent, around 400/500 MB.

7.5.3 Sapienza Dataset

In addition to using the LoED dataset, which provides a comprehensive collection of LoRaWAN
packet data, we are actively working on building a new dataset, shown in Fig. 7.13, to contribute
to the relatively sparse set of publicly available LoRaWAN datasets. The scarcity of such datasets
in the field of LoRaWAN research is a significant barrier, as most existing studies rely on limited
or artificially generated data. Our project, which has already captured over 1.5 million packets
from two LoRa GWs installed atop the DIET and DIAG buildings at Sapienza University, aims to
address this gap. The primary goal is to create a valuable dataset for future researchers and to
develop advanced noise and traffic models for LoRaWAN, specifically tailored to simulate urban
environments more accurately. These models and datasets will be instrumental in enhancing the
realism and accuracy of simulations in LoRaWAN research, ultimately advancing the state of the
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Figure 7.13: Sapienza dataset shows more frequent, shorter interarrival times when compared to LoED
dataset, reflecting the dense urban environment in which it was collected.

art in urban IoT networks.

7.6 Conclusions

In this chapter, we have presented a comprehensive experimental evaluation of DeLoRaN, focusing
on its performance, scalability, and resource efficiency when applied to decentralized LoRaWAN
networks. Through a series of simulations, we have demonstrated that DeLoRaN significantly
improves the handling of LoRaWAN traffic by distributing control across multiple NCs and utilizing
blockchain to enhance security and reliability.

One of the key advantages of DeLoRaN, as demonstrated by our results, is its decentralized
architecture. Traditional centralized systems, such as Chirpstack, rely on a single point of control,
which can lead to bottlenecks, reduced scalability, and vulnerability to failures or attacks. In
contrast, DeLoRaN eliminates these limitations by distributing the control logic across multiple
NCs, reducing the risks associated with Single Point of Failures (SPoFs).

In contrast to centralized systems that often struggle with high device counts and traffic loads,
DeLoRaN’s decentralized structure demonstrated superior performance under heavy load, with
the system efficiently distributing tasks among multiple NCs. This decentralized control not only
reduces the computational and networking load on any single node but also improves fault tolerance
and the overall reliability of the network. The system was shown to scale linearly with the number
of devices, maintaining stable performance metrics, such as CPU usage and RAM consumption,
throughout the experiments.

Our experiments confirmed that DeLoRaN is capable of scaling efficiently under varying con-
ditions, maintaining low response times even as the number of connected devices increases expo-
nentially. The system was able to handle up to 30,000 devices without suffering from performance
degradation, proving that DeLoRaN is a robust solution for large-scale IoT deployments. Addi-
tionally, the ability to decouple blockchain processes from device communication allowed DeLoRaN
to manage high loads without overwhelming network resources, leading to improved overall system
performance.

The use of real-world traffic data from the LoED dataset provided an accurate basis for our

Investigating Secure and Distributed Control in IoT:
Improving BLE Security and Strengthening LoRaWAN with Blockchain

90



7.6. Conclusions

simulations, ensuring that our results reflect realistic operational conditions. DeLoRaN’s traffic
modeling, based on LoED data, allowed us to accurately replicate the behavior of LoRaWAN de-
vices in various environments, including the challenges posed by urban settings. By leveraging
this dataset, we were able to identify key patterns in packet transmission, inter-arrival times, and
response times, all of which informed the refinement of DeLoRaN’s architecture.

Furthermore, our resource utilization analysis showed that DeLoRaN’s decentralized architec-
ture is well-optimized, with CPU usage remaining stable and RAM consumption within acceptable
limits, even under stress tests involving 30,000 devices. This efficiency makes DeLoRaN suitable
for deployment on resource-constrained hardware such as Raspberry Pi-based gateways, ideal for
real-world IoT implementations.

In conclusion, DeLoRaN represents a major advancement in the management of decentralized
LoRaWAN networks, offering a scalable, resilient, and efficient solution for modern IoT applications.
Its architecture not only addresses the limitations of centralized systems but also paves the way for
further enhancements, particularly in optimizing blockchain parameters to fully exploit it. Future
work will focus on refining the system to accommodate the growing demands of IoT ecosystems and
ensuring continued advancements in the field of decentralized network management.
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Chapter 8

Smart Jamming/Interference Detector
for LoRaWAN

8.1 Introduction

The Adaptive Data Rate (ADR) mechanism in LoRaWAN is designed to optimize network effi-
ciency by dynamically adjusting key transmission parameters, such as the Spreading Factor (SF),
transmission power, and data rate, and is defined in the LoRaWAN standard [21]. By leveraging
ADR, LoRaWAN networks aim to strike an optimal balance between communication reliability, en-
ergy efficiency, and spectral efficiency, enabling end devices to maintain extended battery life while
ensuring effective communication over large areas. This mechanism is particularly important for
Low-Power Wide-Area Network (LPWAN) applications that require long battery life, as in smart
cities, agriculture, and logistics. However, despite its advantages, the ADR algorithm has several
inherent limitations, especially in dynamic environments with sudden changes in radio conditions,
such as those caused by interference and jamming attacks.

Algorithm 6 ADR Algorithm
1: ADR_ACK_CNT = 0
2: ADR_ACK_DELAY = 32
3: ADR_ACK_LIMIT = 64
4: if uplink transmission
5: ADR_ACK_CNT = ADR_ACK_CNT + 1
6: if ADR_ACK_CNT == ADR_ACK_LIMIT
7: Send a confirmed uplink message
8: end if
9: end if

10: if ADR_ACK_CNT ≥ ADR_ACK_LIMIT + ADR_ACK_DELAY
11: increase SF and Tx Power
12: end if
13: if received downlink transmission
14: ADR_ACK_CNT = 0
15: end if

The current implementation of the ADR algorithm, described in Alg. 6, relies heavily on histor-
ical link quality indicators, such as the Signal to Noise Ratio (SNR) and Received Signal Strenght
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Indicator (RSSI). These indicators are used to adjust the network parameters gradually, which means
that ADR operates in a reactive manner. It attempts to optimize device settings based on average
link quality over relatively long periods. While this design approach is well-suited for relatively
stable environments, it becomes a significant drawback when link conditions change abruptly [72],
as in the case of interference or deliberate jamming. When faced with sudden degradation in link
quality, ADR’s response is inherently delayed, as it relies on accumulating sufficient link quality
information over multiple transmissions before making any adjustments. This delayed response
means that devices may continue using non-optimal settings for an extended period, which leads to
an increased likelihood of packet loss, wasted energy, and ultimately poor network performance.

Interference from other radio signals and unintentional noise are common occurrences in shared
spectrum environments like those used by LoRaWAN [73]. In such situations, the reactive nature of
ADR results in inefficiencies. Since ADR takes time to detect and adjust to changing conditions, the
end devices may transmit with an SF or power level that is no longer ideal, causing an increase in
retransmissions and energy consumption. In dense deployments, where multiple devices operate in
close proximity and compete for limited spectrum resources, these inefficiencies are further amplified,
leading to a decrease in overall network throughput and reduced Quality of Service (QoS).

A particularly challenging scenario for ADR is when LoRaWAN networks face deliberate jam-
ming attacks [74]. Jamming occurs when an attacker intentionally emits radio signals in the same
frequency band used by the network, with the objective of creating interference that disrupts le-
gitimate communications. Jamming can be carried out in a variety of ways, such as continuous
jamming, where the attacker transmits constantly, or reactive jamming, where the attacker only
transmits when detecting an active communication. In either case, the ADR algorithm in its current
form struggles to adapt effectively. Because ADR relies on the average SNR over many transmis-
sions, it fails to differentiate between transient jamming events and actual long-term link quality
changes. As a result, ADR may either react too slowly or fail to react at all, leaving end devices
unable to maintain stable communication.

Furthermore, the ADR algorithm’s optimization strategy is focused on gradually reducing the
SF and transmission power to minimize energy consumption when link quality is good. While
this approach is beneficial under normal conditions, it becomes counterproductive during jamming
attacks. When a jamming signal is present, the link quality degrades rapidly, but ADR may still
try to reduce power or SF based on outdated link quality information, further exacerbating packet
losses. The lack of real-time adaptability means that, in the presence of jamming, ADR not only fails
to mitigate the attack but may also inadvertently contribute to increased channel congestion [75]
by forcing retransmissions, thereby reducing network efficiency and reliability.

The problem is further complicated by the distributed nature of LoRaWAN networks. Unlike
traditional centralized cellular networks, where a base station has complete information about all
connected devices, LoRaWAN relies on distributed Gateways (GWs), each of which has limited
visibility of network conditions due to its simplicity. This distributed architecture means that indi-
vidual GWs just do not have sufficient information to detect jamming or other forms of interference
quickly. The ADR mechanism, which relies on data from both the end devices and GWs, is thus
limited in its ability to make informed decisions in real-time. Consequently, the lack of coordina-
tion and real-time awareness across GWs results in inconsistent responses to network impairments,
further reducing the effectiveness of ADR in mitigating interference and jamming.
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In this context, it is evident that the existing ADR mechanism is ill-equipped to handle the
challenges posed by sudden interference or malicious jamming attacks. The need for a more re-
silient approach is critical to ensure reliable communication in dynamic and potentially hostile
environments. A decentralized and more adaptive ADR strategy, capable of responding rapidly
to changes in link conditions, is necessary to address these shortcomings. Such an approach would
ideally incorporate real-time feedback mechanisms, allowing for quicker adjustments in transmission
parameters, thereby enhancing the robustness of LoRaWAN networks against both unintentional
interference and deliberate jamming.

This chapter explores a jamming/interferences detection and mitigation technique in LoRaWAN
networks, which is ideally intended to be part of a larger, decentralized smart ADR approach. The
proposed solution, presented in [76], aims to effectively detect and mitigate jamming attacks or
stable interferences, while also setting the foundation for an adaptive, decentralized mechanism
that enhances network resilience, efficiency, and QoS in dynamic environments.

8.2 Background and State of the Art

The ADR mechanism in LoRaWAN aims to balance the communication efficiency and power con-
sumption of end devices. By dynamically adjusting the SF, transmission power, and data rate, ADR
ensures that end devices transmit at the lowest possible power while maintaining reliable commu-
nication with GWs. The ADR algorithm is particularly effective in stable environments where link
quality changes slowly over time. It optimizes the use of network resources by allowing devices
closer to gateways to transmit using lower SFs, which reduces the Time on Air (ToA) and thus
increases network capacity.

However, ADR’s reliance on historical link quality metrics makes it inherently reactive rather
than proactive. When the network experiences rapid changes in link quality due to interference
or jamming, ADR struggles to respond effectively. Research by Li et al. [77] demonstrated that
the current ADR mechanism often exacerbates performance issues during periods of interference.
They found that ADR’s inability to adapt to rapid changes in link conditions results in increased
retransmissions and energy consumption, especially in dense network deployments. This limita-
tion highlights the need for an enhanced ADR mechanism capable of responding in real-time to
changing link conditions, particularly under adversarial scenarios such as jamming. For example,
when a jamming attack occurs, the SNR drops abruptly, but ADR continues to use outdated link
quality data, leading to a delayed response. As a result, end devices may continue transmitting at
suboptimal settings, resulting in poor communication reliability.

8.2.1 Related Works

Several studies have focused on enhancing the ADR mechanism to improve LoRaWAN’s performance
under dynamic conditions.

Xu et al. [78] discusses detecting jamming attacks in wireless sensor networks using statistical
metrics such as signal strength, carrier sensing time, and packet delivery ratio (PDR). It proposes
a multimodal consistency check, combining these metrics to improve detection accuracy. The basic
metrics are easy to implement but can lead to false positives due to normal network issues, while
the multimodal approach is more reliable but adds complexity and increases energy consumption.
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Magrin et al. [79] discuss that interference in LoRaWAN, particularly due to overlapping trans-
missions, significantly impacts network performance, leading to increased packet loss and reduced
reliability. The ADR mechanism is criticized for its inefficiency under dynamic conditions, where
rapid changes in the environment make it slow to adapt. The paper discusses possible improve-
ments to ADR, including more dynamic adjustments to spreading factor and power levels, aimed
at enhancing scalability, fairness among nodes, and resilience to changing channel conditions

One of the major concerns is the inherent vulnerability of LoRaWAN’s slow modulation scheme
to reactive jamming attacks, which can be executed using low-cost hardware. Huang et al. [80]
experimentally evaluates the vulnerability of LoRaWAN to jamming attacks, emphasizing the non-
orthogonality of transmissions as a key weakness. It utilizes reactive jamming with Channel Active
Detection (CAD) to effectively disrupt communication, showing that LoRaWAN’s ADR mechanism
cannot fully mitigate these vulnerabilities. The study highlights the need for enhanced countermea-
sures to address the susceptibility of LoRaWAN to interference and jamming.

Similarly, Martinez et al. [81] evaluates the impact of jamming on LoRaWAN, highlighting sig-
nificant vulnerabilities to both channel-aware and channel-oblivious jammers. It presents a perfor-
mance analysis of LoRaWAN under both channel-aware and channel-oblivious jamming conditions,
showing a 56% reduction in network throughput. It demonstrates that ADR is ineffective against
these types of jamming, leading to severe performance degradation. The study calls for enhanced
countermeasures, focusing on the need to address these vulnerabilities to maintain reliable network
performance under adversarial conditions.

Ruotsalainen et al. [82] reviews jamming attacks on LoRaWAN, emphasizing the susceptibility
of the physical layer to different types of jamming, including reactive RF jamming and triggered
jamming. These attacks can significantly degrade network performance by causing packet loss and
increased energy consumption. The study also discusses wormhole attacks and Denial-of-Service
(DoS) as threats that manipulate physical-layer vulnerabilities to disrupt communication.

For jammer detection, the paper outlines approaches using statistical methods (like Kullback-
Leibler divergence) and Recurrent Neural Networks (RNNs) to identify anomalies based on network
metrics, such as RSSI and packet inter-arrival times. These methods help in distinguishing jamming
activities from normal network behavior.

The paper also critiques the ADR mechanism of LoRaWAN, noting that its effectiveness is
limited under dynamic jamming conditions. Attacks can exploit ADR, forcing suboptimal settings,
resulting in degraded communication reliability and increased energy usage. The authors highlight
the need for enhanced ADR strategies and robust countermeasures to improve network resilience
against these attacks.

Ingham et al. [83] present an in-depth analysis of predictive jamming in LoRaWAN, highlight-
ing its effectiveness and proposing an Intrusion Detection System (IDS) based on predictive signal
analysis to detect these sophisticated jamming attacks. The IDS targets the predictability of Lo-
RaWAN, distinguishing between normal behavior and deliberate jamming. The paper also critiques
ADR for its lack of adaptability in responding to dynamic interference.

Magrin et al. [84] focus on LoRaWAN’s performance under interference in urban environments,
evaluating the limitations of ADR when faced with high-density networks and overlapping signals.
The analysis suggests that ADR is often ineffective in such scenarios, leading to performance degra-
dation. No specific jamming detection mechanism is proposed, but the paper emphasizes the need
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for more adaptive ADR methods to handle real-world conditions.
The existing body of research indicates a growing recognition of the need to enhance LoRaWAN’s

security posture through both technological and algorithmic advancements, especially in the face
of low-cost, accessible jamming hardware and the increasing prevalence of network-based attacks.
Building on existing literature, this thesis integrates machine learning techniques for real-time attack
detection and proposes a novel approach for direct mitigation at the GW, thereby enabling decen-
tralized management and improving the resilience of LoRaWAN networks against various jamming
threats.

8.3 Scenario Model

In order to thoroughly evaluate the vulnerabilities and resilience of LoRaWAN under adversarial
conditions, it is crucial to model both the network scenario and the attacker accurately within a
simulation environment. By simulating the behavior of legitimate devices and potential attackers, we
can assess the impact of jamming attacks and interference under controlled, repeatable conditions,
providing valuable insights into system performance and mitigation strategies.

NS-31 is an open-source, discrete-event network simulator widely used for research in networking.
It provides a flexible and customizable platform for simulating complex communication scenarios,
allowing detailed modeling of protocols, interference, and attacker behaviors, making it ideal for
assessing LoRaWAN performance under different attack models.

The study comprises three distinct simulation scenarios: normal traffic, channel-oblivious jam-
ming, and channel-aware jamming, each designed to comprehensively assess the performance of
LoRaWAN networks under varying conditions of interference. These scenarios help illustrate the
system’s capabilities and vulnerabilities when operating under both benign and hostile environ-
ments, which are crucial for understanding how real-world deployments can be affected by malicious
actors.

Normal Traffic Scenario – This scenario represents the baseline operation of a LoRaWAN
network under ideal conditions, without any external interference. The GW receives packets from
End Devicess (EDs) that are evenly distributed across a 12 km by 12 km area, providing insights into
the stability and performance of LoRaWAN communication without any disruptions. This setup
allows us to measure the expected packet success rate, Inter-Arrival Time (IAT), Packet-Delivery
Ratio (PDR) and the overall efficiency of the network when all components work as intended, serving
as a reference point for evaluating the impact of external jamming attacks.

Channel-Oblivious Jamming Scenario – The channel-oblivious jamming scenario introduces
a jammer that operates in randomly timed cycles, with both active and inactive periods having
random durations. This type of jammer does not adapt to specific network conditions but instead
transmits at arbitrary times, generating generalized, non-targeted interference. The result is a
more dispersed, unpredictable disruption of communication that moderately impacts the network’s
performance. The channel-oblivious jammer provides insights into how LoRaWAN behaves under
basic jamming conditions where interference is unsystematic but still capable of degrading network
reliability. By analyzing this scenario, we can better understand the resilience of the network
to non-coordinated jamming activities and evaluate how the overall PDR and IAT are affected.

1NS-3 - https://www.nsnam.org/
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Figure 8.1: Network Topology. The simulation setup consists of 250 EDs distributed across a 12 km by 12
km area, a GW, and a jammer.

Despite the simplicity of this attack model, it provides valuable insights into the vulnerabilities of
LoRaWAN under basic jamming conditions, highlighting how an attacker with basic capabilities
can still disrupt the efficiency of our network.

Channel-Aware Jamming Scenario – The channel-aware jamming scenario presents a more
sophisticated approach, employing a smart jammer capable of actively monitoring the network traffic
to identify the channels and SFs in use by the EDs. By listening to network activity, the jammer can
determine when and where legitimate transmissions are taking place, allowing it to send interfering
packets on the same channel and SF as the targeted EDs. This type of attack is far more effective
because it directly disrupts legitimate transmissions at precise moments, significantly reducing the
number of packets successfully received by the GW. This scenario simulates an advanced attacker
that uses intelligent interference to maximize disruption and provides critical insights into the vul-
nerabilities of LoRaWAN when an adversary can dynamically adjust their jamming strategy based
on real-time network conditions. The performance under such attacks is measured by the number
of successfully received packets and the resulting IAT, which reflects the impact on communication
stability and timing, highlighting how sophisticated jamming can degrade network reliability.

8.3.1 Network Model

Fig. 8.1 illustrates the spatial layout of the simulation setup, featuring 250 EDs distributed across a
12 km by 12 km area, a centrally positioned GW, and a single jammer. The large-scale deployment
aims to mirror realistic LoRaWAN scenarios, with devices spread evenly throughout the area to
emulate the typical coverage conditions and transmission dynamics seen in actual Internet of Things
(IoT) networks. This configuration allows for a comprehensive examination of network behavior
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under both normal and adversarial conditions, ensuring that the results are representative of the
performance and vulnerabilities of LoRaWAN in large, geographically dispersed deployments.

8.3.2 Threat Model

The threat model focuses on demonstrating the vulnerability of LoRaWAN networks to jamming
attacks even when conducted by an unsophisticated adversary with minimal resources. The attacker
is assumed to have very basic hardware, such as an off-the-shelf Long Range (LoRa) radio mod-
ule, and does not employ advanced jamming techniques, making the threat realistic for low-effort,
low-cost attackers. This scenario aims to illustrate that even a “lazy” or low-skilled attacker can
effectively disrupt communication within a LoRaWAN deployment, requiring very little technical
expertise or investment.

The attacker uses an ordinary LoRa radio that is widely available and inexpensive, highlighting
that access to specialized or sophisticated jamming tools is not required. This basic jammer operates
by transmitting packets on the same frequencies and using similar SFs as the legitimate EDs, thereby
interfering with normal communications. The threat model encompasses two types of jamming:

• Channel-Oblivious Jamming: The attacker transmits jamming signals randomly, without
analyzing network activity. This non-targeted interference still disrupts LoRaWAN commu-
nication, causing packet loss and performance degradation.

• Channel-Aware Jamming: The attacker listens for preambles to identify active channels
and SFs, then transmits at the right moments to interfere. Even with basic hardware, this
targeted approach effectively prevents packet reception at the GW.

The main aspect of this threat model is the low barrier to entry for launching a successful
jamming attack. By using a readily available LoRa radio, the attacker can cause considerable
degradation to network performance with minimal effort. This underscores the vulnerability of
LoRaWAN networks to interference, where even basic tools can be used to carry out highly ef-
fective attacks. The simplicity and affordability of the attack setup emphasize the importance of
strengthening LoRaWAN’s resilience to jamming, as the potential threat does not come solely from
sophisticated adversaries but also from anyone with access to basic LoRa equipment.

The threat model reveals that even an unskilled attacker, equipped with nothing more than
a low-cost LoRa transceiver, can cause significant disruption by either transmitting continuously
or selectively after listening to active communication. This highlights the need for enhanced secu-
rity measures and robust jamming detection and mitigation strategies to ensure that LoRaWAN
networks can remain operational and reliable, even in the presence of such low-effort adversaries.

8.3.3 Defensive Model

We need ways to mitigate the impact of jamming on LoRaWAN networks, which are usually clas-
sified into three categories: Detection Techniques, Proactive Countermeasures, and Reactive Coun-
termeasures, similar to the approach taken in [85] for Wireless Sensor Networks (WSNs).

Detection Techniques – Detection techniques focus on identifying the presence of a jammer
in the network through various detection strategies. Detection can be achieved through statistical
methods or machine learning models, which analyze network metrics to identify anomalies indicative

Investigating Secure and Distributed Control in IoT:
Improving BLE Security and Strengthening LoRaWAN with Blockchain

98



8.3. Scenario Model

of jamming. These techniques play a crucial role in initiating countermeasures to maintain network
performance and security.

Proactive Countermeasures – Proactive countermeasures aim to prevent jamming attacks
before they occur by enhancing the network’s resilience. The key mechanism employed here is
Frequency Hopping. To enhance network robustness against interference and jamming, LoRaWAN
supports this proactive countermeasure, where devices switch frequencies during transmissions. This
technique makes it difficult for a jammer to consistently block communication since the devices are
dynamically changing channels. By distributing transmissions across a wide range of frequencies,
frequency hopping ensures that a single frequency jam does not entirely disrupt communication.

Reactive Countermeasures – Reactive countermeasures are deployed after jamming activity
has been detected. These strategies focus on minimizing the impact of ongoing attacks by adapting
network parameters and rerouting traffic. Examples include:

• Jammer-Aware ADR: This technique adjusts the data rate and transmission power of
devices based on detected jamming conditions. By dynamically adapting the network param-
eters, devices can optimize communication to minimize the impact of the jammer.

• Mapping Jamming Areas: This involves identifying and mapping the areas affected by
jamming attacks. By detecting the jammer’s range and coverage, the network can reconfigure
itself to avoid the impacted regions, redirecting traffic through unaffected areas.

• External Sensing Nodes: Deploying additional external nodes dedicated to sensing jam-
ming signals can help monitor the network for interference. These nodes act as early warning
systems, detecting jamming activity and alerting the network to take appropriate counter-
measures.

Detection Techniques – The primary goal of detection techniques is to quickly identify jam-
ming activity, making their implementation crucial at the lower levels of the network stack. When
combined with other countermeasures, these methods significantly enhance the network’s resilience.
Useful detection techniques analyzed are:

• Statistical Approaches:

– Z-Score;

– Interquartile Range (IQR);

– Mahalanobis Distance;

• Machine Learning Approaches:

– Classification algorithms: decision tree, k-nearest neighbors (KNN), random forest;

– Reinforcement learning techniques: Q-learning, deep Q-networks (DQN);

These detection algorithms rely on data collected from network components such as EDs, GWs,
or Network Servers (NSs), or from external nodes specifically deployed for monitoring. We analyzed
different metrics like:

1. Average IAT: Time interval between two consecutively received frames, recorded at the GW.
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2. RSSI: Signal strength monitored at the GW.

3. SNR: Ratio between signal strength and background noise.

4. Packet Success Rate (PSR): Number of successfully received packets, indicating network
reliability.

5. Packet Loss (PL): Difference between packets sent and received, indicating communication
issues.

Studies such as Lagat et al. [86] and Richarson et al. [87] have demonstrated the effectiveness of
machine learning models in detecting jamming and collision attacks with high accuracy by analyzing
key network metrics like RSSI, SNR, and packet loss rate. These models significantly improve the
network’s resilience by enabling proactive detection and immediate mitigation, enhancing overall
security under adversarial conditions.

8.4 Jammer Impact

8.4.1 Evaluation Metrics

The performance evaluation of the LoRaWAN network under jamming scenarios is based on several
key metrics that provide insights into the network’s efficiency, reliability, and resilience. These
metrics help quantify the impact of jamming on network performance and assess the effectiveness of
countermeasures in mitigating the effects of interference. The primary evaluation metrics include:
PSR, IAT, Throughput, and Jitter.

Packet Success Rate – PSR represents the proportion of packets that are successfully trans-
mitted without loss, making it a key metric for assessing network reliability, especially in jamming
scenarios. PSR is defined as:

PSR =
Psuccessful

Ptotal
(8.1)

where Psuccessful is the number of successfully received packets, and Ptotal is the total number of
transmitted packets.

Throughput – Throughput measures the rate of successfully received data over time, typically
expressed in bytes per second. It indicates the network’s efficiency in data delivery, particularly
when jamming degrades performance. Throughput is calculated as:

Throughput =
Breceived

T
(8.2)

where Breceived is the total number of bytes successfully received, and T is the duration of the
observation period.

Inter-Arrival Time – IAT is the time interval between the reception of consecutive packets.
It provides insight into the regularity of packet arrivals and is useful for analyzing the effects of
jamming on packet timing. IAT is given by:

IAT = tn − tn−1 (8.3)
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where tn is the arrival time of the current packet, and tn−1 is the arrival time of the previous
packet.

Jitter – Jitter quantifies the variability in the IAT of packets. High jitter indicates significant
fluctuations in packet delivery times, which can be a sign of network instability, possibly worsened
by jamming activity. Jitter is calculated as the standard deviation of IAT values:

Jitter =

√√√√ 1

N

N∑
i=1

(IATi − IAT )2 (8.4)

where IATi is the IAT of the i-th packet, IAT is the mean IAT, and N is the total number of
packets.

These metrics together provide a comprehensive assessment of network performance under both
normal and jamming conditions.

8.4.2 Normal Scenario Configuration

Before introducing the jammer, we model the network under normal traffic conditions to estab-
lish a performance baseline. This scenario represents a typical LoRaWAN deployment where EDs
communicate with a single GW over predefined uplink frequencies.

• Network Configuration: The network consists of one GW and multiple EDs randomly
distributed over a predefined area, operating on standard uplink frequencies (868.1, 868.3,
868.5 MHz).

• End Device Operation: Each ED transmits 23-byte packets at regular intervals, using the
most suitable SF (SF7-SF12) based on its distance from the GW. All devices operate under
Class A mode.

• No External Interference: There is no jamming or other interference affecting the network
in this initial phase.

This setup serves as a reference point to evaluate the effects of the jammer in subsequent
scenarios.

8.4.3 Jammer Configuration

The jammer operates on the same uplink frequencies as the EDs (868.1, 868.3, 868.5 MHz) with
realistic transmission power but without duty cycle limitations, resulting in continuous jamming.

• Random Activation and Deactivation: The jammer sends a packet every 45 seconds and
enters random idle intervals between 4 and 12 hours to simulate real-world unpredictability.

• Slot-Based Activation: During active periods, the jammer alternates between transmission
and idle slots to conserve energy and avoid detection.

• Dynamic Frequencies and Spreading Factors: The jammer dynamically changes fre-
quencies and SFs during each activation to increase interference complexity.

Investigating Secure and Distributed Control in IoT:
Improving BLE Security and Strengthening LoRaWAN with Blockchain

101



8.4. Jammer Impact

Figure 8.2: Comparison between network with normal traffic and jammed traffic

Jamming Duration and Impact – The jamming event spans the entire simulation, with
random activation intervals to simulate unpredictable attacks. This provides insights into network
resilience and recovery time after jamming events. This simulation evaluates LoRaWAN network
resilience under various jamming attacks. The jammer’s dynamic use of frequencies and SFs offers
insights into the effectiveness of adaptive interference strategies. As an example, Fig. 8.2 shows
traffic patterns for different SFs in both jammed (top) and normal (bottom) scenarios. The top plot
shows packet transmission over time by SF, with red-shaded regions indicating jammer activity.
Noticeable drops in packet count suggest the jammer’s impact. The bottom plot instead shows
consistent packet counts without jamming, highlighting even more the jammer’s effect in the top
plot.

Impact on LoRaWAN ADR – Together with the PDR, the ADR is also heavily impacted,
which in turn have a great impact on both the overall network performance and the single ED.
When a jamming attack substantially increases packet loss or degrades SNR, the LoRaWAN ADR
algorithm reacts by raising the device’s SF and/or transmit power to compensate for the perceived
link weakness. In many implementations, this adjustment happens relatively quickly, because the
ADR logic monitors consecutive missed acknowledgments, counting retransmissions too, or negative
link margins to escalate SF (e.g., SF7 to SF8). A simplified form of the link margin calculation can
be written as:

LinkMargin =
(
SNRmeasured − SNRrequired(SFcurrent)

)
− ∆margin,

where ∆margin is an extra safety margin (e.g., 2–6 dB) which is implementation-dependent. If the
link margin stays below zero for several uplinks, the ED (or the NS via downlink commands)
typically increments SF (e.g., SF7 → SF8) or the transmit power in 2 dB steps until the link margin
becomes acceptable.

Once the jammer is turned off, however, LoRaWAN’s ADR tends to lower SF much more
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cautiously, requiring a certain number of consecutive uplinks with improved quality parameters
before deeming the link strong enough to justify a single downward SF adjustment. Let SFfinal be
the high SF reached during jamming and SFinitial the optimal (lower) SF. If Ndown is the number
of successful transmissions needed for each downward SF step and Pinterval is the time or number of
uplinks between ADR evaluations, the time to revert can be approximated by:

Trevert =

SFinitial∑
k=SFfinal

(
Ndown × Pinterval

)
.

Because Ndown can be relatively large, a node forced to SF12 can remain there for dozens of trans-
missions, incurring substantial performance penalties.

From a network-wide perspective, high SF transmissions significantly increase the ToA. A sim-
plified expression for LoRaWAN airtime calculation is:

Tair(SF) ≈ 2SF

BW
×Nsyn,

where Nsyn is the number of symbols of the communication, indicating exponential growth in trans-
mission duration with increasing SF. Longer transmissions increase the risk of collisions for all
devices, reducing the overall PDR. For individual EDs, a prolonged stay at high SF also impacts
energy consumption. Assuming a fixed transmission power Ptx, recalling that using higher trans-
mission power indeed cause higher battery usage, Itx(Ptx) is the transmit current draw with said
transmission power and V the supply voltage, the energy used per transmission is roughly:

Etx = Itx(Ptx)× V × Tair(SF),

so an extended Tair leads to higher battery drain. Consequently, even a single, long enough, jamming
event can cause much longer aftermath consequences, keeping EDs at inflated SF and transmit
power for a considerable period, thereby increasing their energy consumption and reducing network
capacity until ADR slowly readjusts to optimal operating points. This underscores the importance of
faster ADR recovery strategies or jamming detection mechanisms to mitigate prolonged performance
degradation even after the jammer is deactivated.

8.5 Countermeasures

8.5.1 Detection

In this chapter, we examine two approaches for detecting jamming attacks in LoRaWAN networks:
a statistical method and a machine learning-based technique. The statistical approach employs
Z-score and IQR to detect anomalies by identifying deviations from expected network behavior.
For the machine learning approach, advanced models such as Long Short-Term Memory (LSTM),
RNN, and Gated Recurrent Unit (GRU) are used to capture temporal dependencies and identify
jamming events based on network traffic patterns.
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Statistical Approach

The statistical approach for jammer detection in LoRaWAN networks uses techniques like Z-score
and IQR to identify deviations from normal network behavior, which may indicate jamming activity.
These methods detect anomalies by quantifying deviations from expected packet transmission rates.

Z-score – The Z-score is a statistical measure indicating how many standard deviations a data
point is from the mean of the distribution, defined as:

Z =
x− µ

σ

where:

• x: observed value (e.g., packet count during a given time interval)

• µ: mean of the data (e.g., average packet count over a period)

• σ: standard deviation of the data

In jammer detection, a high Z-score suggests a significant deviation from normal packet counts.
For example, a sudden drop in packet count (resulting in a highly negative Z-score) could indicate
jamming activity. The Z-score method is effective when traffic follows a stable distribution, but it
may struggle with highly dynamic traffic due to threshold-setting challenges.

Interquartile Range (IQR) – The IQR is a measure of statistical dispersion, calculated as
the difference between the third quartile (Q3) and the first quartile (Q1):

IQR = Q3 −Q1

Anomaly if: x < Q1 − 1.5× IQR or x > Q3 + 1.5× IQR

The IQR method detects sudden decreases in packet counts that fall outside normal variability,
indicating possible jamming. Its non-parametric nature makes it suitable for environments with
highly variable traffic.

Machine Learning Approach

Statistical methods like Z-score require a predetermined observation window, and their effective-
ness depends on this parameter. Alternatively, RNNs offer a more flexible approach by retaining
information from previous time steps, making them effective for analyzing temporal data.

Recurrent Neural Networks – RNNs are artificial neural networks characterized by cyclically
connected neurons, allowing them to retain information about past states. This makes RNNs
particularly suited for processing sequential or temporal data, as they can model dynamic behaviors
that depend on prior inputs.

Figure 8.3 shows the basic structure of an RNN, where each layer’s output serves as input for
the next layer, effectively creating internal memory. Figure 8.4 illustrates common types of RNNs:
Vanilla RNN, LSTM, and GRU. Each line represents a full vector, yellow circles indicate pairwise
operations, and yellow boxes represent neural network layers.
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Figure 8.3: Top-level diagram of an RNN

Figure 8.4: Different types of RNN: (a) Vanilla, (b) LSTM, (c) GRU (from [88])

Among the most widely used RNNs is the LSTM network, designed to capture long-term depen-
dencies in sequential data [89]. The GRU is a variation of LSTM, introduced by Chung et al. [90],
that combines the forget and input gates into a single update gate.

Dataset Preparation for Machine Learning Training

The dataset used for anomaly detection model development spanned 4 weeks, which provided a
good balance between data richness and computational efficiency. The dataset, exported from the
ns-3 simulator, consisted of 180,000 packets with end devices transmitting at regular 20-minute
intervals. A channel-oblivious jammer was active intermittently, creating a realistic mix of normal
and jammed traffic to improve the models’ ability to distinguish between these scenarios. The raw
dataset was grouped and resampled into 30-minute intervals. The data was normalized using a
scaler to ensure consistent feature ranges, facilitating effective neural network learning.

Model Hyperparameters – Tab. 8.1 shows the best hyperparameters found using the Optuna
framework [91] for RNN, LSTM, and GRU models, optimized for performance and generalization.

The key hyperparameters are described below:

• Hidden Layer Size: Number of neurons in each hidden layer, affecting model capacity and
complexity.

• Number of Layers: Model depth, allowing for hierarchical learning but increasing compu-
tational cost.
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Hyperparameter RNN LSTM GRU
Hidden Layer Size 64 128 128
Number of Layers 1 2 2
Dropout 0.413 0.438 0.313
Learning Rate 0.0009373 0.0002931 0.0007962
Weight Decay 0.00489 0.00782 0.00588
Epochs 89 93 96
Momentum 0.804 0.923 0.9407
Alpha 0.829 0.960 0.9314
Patience 18 11 8
n_splits 9 9 4
Batch Size 32 32 32

Table 8.1: Best Hyperparameters for RNN, LSTM, and GRU models found using Optuna [91].

• Dropout: Regularization method that prevents overfitting by randomly deactivating neurons
during training.

• Learning Rate: Step size for weight updates during optimization, controlling how fast the
model learns.

• Weight Decay: L2 regularization term added to the loss function to reduce overfitting.

• Epochs: Number of times the model sees the entire dataset during training, balancing learning
and overfitting risks.

• Momentum: Helps gradient descent optimization by smoothing weight updates using past
gradients.

• Alpha: Controls the balance between L1 and L2 loss components in regularization, influencing
error sensitivity.

• Patience: Early stopping criterion defining how many epochs to wait without validation
improvement.

• n_splits: Number of folds in cross-validation for robust model evaluation.

• Batch Size: Number of samples processed before weight update; larger batch size gives more
stable gradients.

Time-Series Cross-Validation – In time-series cross-validation, the data is split into sequen-
tial folds. The training process begins by using the earliest portion of the data, while the subsequent
time periods are used for validation. As the validation progresses through each fold, the training set
is expanded by adding more recent observations, and the validation set always remains ahead of the
training data in time. This method mimics real-world forecasting or anomaly detection scenarios
where future events are predicted based on past observations.

This approach ensures that the model is tested on unseen future data, maintaining the temporal
causality and avoiding data leakage, which would occur if future information were incorporated into
the training process.

Investigating Secure and Distributed Control in IoT:
Improving BLE Security and Strengthening LoRaWAN with Blockchain

106



8.5. Countermeasures

Figure 8.5: Network Mitigation and Recovery flow graph

8.5.2 Mitigation

The mitigation strategy, presented in Fig. 8.5 aims to minimize the impact of jamming attacks on
LoRaWAN networks by dynamically adapting network parameters and rerouting traffic to maintain
communication reliability. The mitigation process involves real-time detection of jamming activity,
followed by the implementation of countermeasures to restore network performance and prevent
further disruption. The mitigation system implemented in the ns-3 GW, integrated with a Python
detection module, allows decentralized management of interference due to jamming attacks on the
LoRaWAN network. This process involves real-time attack detection, sending control commands
to LoRaWAN devices, and dynamic management of transmission channels to minimize interference
effects.

Jammer Mitigation

When a new time-window closes, the GW sends a UDP message to the python module in order
to let it analyze the new flow of traffic. Whenever it detects a jammer The Python module sends
back a message to the GW. To prevent false positives due to temporary congestion, the GW waits
for two consecutive jammer detection messages before initiating mitigation. During the simulation,
the GW continuously monitors packets received from EDs, maintaining a history for each device,
including address, data rate, and last packet timestamp. This helps in calculating appropriate
downlink reception windows during mitigation.

Once mitigation is triggered, the GW calculates the downlink receive windows for each Lo-
RaWAN device, leveraging Class A features where devices open receiving windows after uplink
transmissions. The GW sends downlink packets to the EDs containing instructions to switch to
a new frequency (868.6 MHz) and disable standard channels (868.1, 868.3, 868.5 MHz) to avoid
jamming interference. The downlink packets are sent to the second receiving window of the EDs
using 869.525 MHz with SF12, as per the LoRaWAN standard. By sending a single packet con-
taining both MAC commands, the GW ensures that the requested changes are applied as soon as
the ED acknowledges. During mitigation, one of the GW’s available reception paths is dedicated
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to receiving packets on the 868.6 MHz frequency, ensuring successful reception without interference
for EDs that have received new instructions.

The GW continuously monitors the standard LoRa channels to detect when the jammer becomes
inactive. A dynamic threshold is used to count packets, and once two consecutive detections confirm
jammer deactivation, the "Restore Network" mechanism is activated. This mechanism sends a
downlink to each device to disable the 868.6 MHz frequency and re-enable the standard LoRa
channels.

If any devices do not receive the downlink correctly, the GW resends these messages once it
starts receiving packets from those devices on the 868.6 MHz frequency, ensuring full restoration of
the network. Once no packets are received on 868.6 MHz, the dedicated reception path is disabled,
and the mitigation module resumes monitoring for new jamming interferences.

This decentralized mitigation algorithm allows each GW to independently manage its coverage
area, making the LoRaWAN network more scalable and resilient to jamming attacks without relying
on a central NS.

8.6 Evaluation and Results

8.6.1 Detection Evaluation Metrics

In this section, we evaluate the performance of both statistical and machine learning-based ap-
proaches for jammer detection in LoRaWAN networks. The evaluation metrics include accuracy,
precision, recall, and F1-score, which are used to assess the models’ effectiveness in identifying
jamming activity.

Accuracy – Accuracy measures the fraction of correct predictions (both true positives and
true negatives) over the total number of instances. It provides a general overview of the model’s
effectiveness in classification.

Accuracy =
TP + TN

TP + TN + FP + FN
(8.5)

Precision – Precision calculates the proportion of true positive predictions among all positive
predictions made by the model. It helps in evaluating the relevance of positive results.

Precision =
TP

TP + FP
(8.6)

Recall – Recall, also known as sensitivity, measures the proportion of true positives correctly
identified by the model out of all actual positives. It indicates how well the model is detecting
positive instances.

Recall =
TP

TP + FN
(8.7)

F1-Score – F1-score is the harmonic mean of precision and recall, providing a balance between
the two. It is particularly useful when there is an uneven class distribution, ensuring both false
positives and false negatives are accounted for.

F1-Score =
2× Precision × Recall

Precision + Recall
(8.8)
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Model Accuracy Precision Recall F1-Score
Z-score 0.7991 0.8839 0.6793 0.7684
IQR 0.8296 0.9133 0.7204 0.8054
RNN 0.818 0.856 0.839 0.847
LSTM 0.846 0.931 0.806 0.864
GRU 0.843 0.909 0.823 0.864

Table 8.2: Summary of performance metrics for different detection models.

8.6.2 Detection Results

Table 8.2 summarizes the performance of the various detection techniques, including Z-score, IQR,
RNN, LSTM, and GRU, on both training and test datasets. This allows for a quick comparison of
the models’ effectiveness.

High-Level Observations

Both Statistical models and Machine Learning models demostrate different levels of precision in
detecting jamming attacks, highlighting their difference.

Statistical Models (Z-score, IQR): The statistical models demonstrated decent performance
in terms of accuracy and precision, meaning they were fairly effective in correctly classifying whether
jamming was present. However, their struggle with recall indicates that these models missed a
higher number of actual jamming events, leading to a higher rate of false negatives. A low recall
rate means that in real-world dynamic network conditions, these models might fail to detect some
jamming events, especially when the jamming is subtle or variable. This unreliability in consistent
detection makes them less suitable for applications where missing a jamming event could have
serious consequences.

The statistical methods are relatively simple to implement and require fewer computational
resources compared to machine learning models. As a result, they are well-suited for environments
where computational capacity is limited, or for scenarios requiring lightweight detection without
stringent accuracy demands.

Machine Learning Models (RNN, LSTM, GRU): The machine learning models generally
outperformed the statistical approaches across all metrics, particularly excelling in recall, meaning
they were more capable of identifying jamming activity whenever it was present.

LSTM and GRU models, in particular, achieved the highest performance metrics. Their
ability to maintain higher accuracy on test data suggests that these models generalize well to unseen
data, making them reliable for deployment in production environments where network conditions
may change over time.

RNN models also showed good results but were slightly less effective than LSTM and GRU
in terms of recall. This suggests that while RNNs are able to model temporal dependencies, they
might miss certain jamming events due to their limited ability to capture long-term dependencies
compared to LSTMs and GRUs.

Machine learning models are more computationally intensive, requiring sufficient processing
power and memory. Additionally, they need proper hyperparameter tuning to avoid issues like
overfitting, where the model becomes too closely fitted to the training data and performs poorly on
new, unseen data.

Investigating Secure and Distributed Control in IoT:
Improving BLE Security and Strengthening LoRaWAN with Blockchain

109



8.6. Evaluation and Results

Key Machine Learning Model Insights

LSTM and GRU Models – The LSTM and GRU models both achieved F1-scores of 0.864,
making them the best choices for scenarios requiring a high degree of detection accuracy. Their
ability to capture both short-term and long-term dependencies in the data means they are effective
at distinguishing between normal traffic patterns and those disrupted by jamming, even when the
patterns are subtle. These models are especially useful in critical network environments (e.g.,
industrial IoT or smart cities) where missing a jamming event could lead to safety or operational
issues. However, their computational requirements mean they are better suited for scenarios where
sufficient hardware is available, such as edge devices or cloud-based systems.

RNN Model – The RNN model also demonstrated solid performance, although it was slightly
behind LSTM and GRU in recall. This suggests that it might miss certain jamming events, especially
those that require more complex temporal tracking. However, it offers a good compromise between
computational requirements and performance and may be suitable for applications where a slight
decrease in recall is acceptable in exchange for reduced computational demands.

Based on the collected information, the choice of detection model depends on the specific appli-
cation requirements:

• For environments where high accuracy, precision, and recall are essential, and computational
resources are available, LSTM and GRU models are the most suitable

• For applications requiring moderate detection capabilities with fewer computational demands,
the RNN model provides a good balance

• For lightweight and quick detection with minimal computational requirements, statistical
models like Z-score and IQR are viable options, keeping in mind the trade-off in detection
completeness

8.6.3 Attack and Mitigation Results

The analysis of jamming attacks and the corresponding mitigation strategies provides insight into
the effectiveness of the jammer and the ability of the network to recover under different conditions.
This evaluation considers key network performance metrics like PDR, throughput, IAT, and jitter,
to assess both the jamming efficiency and the mitigation’s impact.

Jammer Efficiency

The jammer’s efficiency is evident from its significant negative impact on all network performance
metrics, as shown in Fig. 8.6 when no mitigation is applied:

• PDR Over Time: Without mitigation, the PDR fluctuates significantly due to jammer in-
terference, often dropping below 50%. This illustrates the jammer’s effectiveness in disrupting
packet transmissions and causing considerable packet loss.

• Throughput Over Time: During jamming periods, throughput drops considerably, rang-
ing between 10 to 15 kbps. This demonstrates the jammer’s ability to severely limit data
transmission rates, reducing overall network efficiency.
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Figure 8.6: Packet Delivery Ratio (PDR) comparing the impact of channel-obliviuos jammer, channel-aware
jammer and without external interference.

• Average IAT Over Time: Without mitigation, the average IAT increases significantly,
reaching values as high as 24 seconds. This indicates delayed packet delivery and highlights
the jammer’s impact on increasing transmission delays.

• Jitter Over Time: Jitter is highly variable without mitigation, often exceeding 25-30 ms,
which suggests unstable packet timing and significant network disruption caused by the jam-
mer.

Indeed the jammer is highly effective in reducing network performance, causing decreased PDR
and throughput, along with increased IAT and jitter.

Mitigation Efficiency

The effectiveness of the mitigation mechanism was evaluated against both channel-oblivious and
channel-aware jammers, revealing varying levels of success:

• Channel-Oblivious Jammer: The mitigation strategy had a clear positive effect on network
performance metrics:

– PDR: With mitigation, presented in Fig. 8.7a, PDR remains more stable and higher,
generally around 80%, indicating that mitigation measures help maintain a higher num-
ber of successful packet transmissions. The mitigation improved PDR by approximately
30-50% compared to scenarios without mitigation.

– Throughput: Throughput is maintained at a higher and more consistent level, typically
between 20 to 27 kbps, showing up to a 50% improvement compared to scenarios with-
out mitigation. This reflects the mitigation’s success in maintaining data flow despite
jamming.
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(a) Comparison of Packet Delivery Ratio (PDR) with and
without mitigation during channel-oblivious jamming.

(b) Average IAT analysis with and without mitigation
during channel-oblivious jamming.

Figure 8.7: Results of mitigation strategies during channel-oblivious jamming.

– IAT: The average IAT is reduced and stays below 15 seconds with mitigation, demon-
strating a reduction in packet delays and more regular packet intervals, with an improve-
ment of around 30-40%, shown in Fig. 8.7b.

– Jitter: Jitter values are reduced to below 15 ms, indicating improved timing stability.
The reduction in jitter highlights the mitigation’s effectiveness in achieving smoother
packet delivery, reducing variability by about 40-50%.

• Channel-Aware Jammer: The mitigation strategy provided only slight improvements
against the channel-aware jammer:

– PSR and Throughput: Both metrics showed only marginal improvements, with overall
performance remaining well below acceptable thresholds. The channel-aware jammer’s
adaptive behavior effectively countered typical mitigation attempts.

– IAT and Jitter: Both metrics exhibited high variability, indicating continued instabil-
ity and the network’s inability to stabilize. The channel-aware jammer’s sophistication
rendered the mitigation largely ineffective.

8.7 Conclusion and Future Work

In this chapter, we introduced a range of countermeasures designed to mitigate the effects of jamming
attacks on LoRaWAN networks. These countermeasures were categorized into detection techniques,
proactive strategies, and reactive mechanisms. We examined two distinct detection methods: a
statistical approach utilizing Z-score and IQR, and a machine learning-based approach incorporating
models like LSTM, RNN, and GRU. Each approach was evaluated based on its accuracy, precision,
recall, and overall effectiveness in real-time scenarios.

The mitigation mechanism, implemented in the ns-3 simulator and integrated with the detection
models, demonstrated significant improvements in network performance when dealing with channel-
oblivious jammers. Metrics such as PDR, throughput, jitter, and IAT showed considerable recovery
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when mitigation measures were in place. By dynamically managing reception paths and transmission
parameters, the GW was able to minimize the jammer’s impact, thus maintaining network stability
during attacks.

However, when confronted with a more sophisticated channel-aware jammer, the mitigation
strategy’s effectiveness diminished significantly. The adaptive nature of the channel-aware jammer
made it challenging for the network to counteract its effects, as it could selectively target active
communication channels. This highlighted the need for more advanced mitigation strategies to deal
with adaptive jamming attacks effectively.

The "Restore Network" mechanism added an additional layer of resilience by allowing the net-
work to revert to its normal operating state once the jamming ceased. This ensured that the network
could recover promptly, returning to standard LoRaWAN channels and minimizing the long-term
impact of the jamming attack.

Additionally, the detection mechanism developed for identifying jamming attacks has shown
potential for detecting other forms of interference as well, such as inter-network interferences. This
capability makes it a valuable component of a more comprehensive smart ADR algorithm aimed at
enhancing network resilience. By incorporating interference detection, the system can make more in-
formed decisions to adjust network parameters dynamically, thereby improving overall performance
and robustness.
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Chapter 9

Conclusions

In this final chapter, we bring together the comprehensive body of work presented in this thesis,
which focused on enhancing the resilience and efficiency of Low-Power Wide-Area Networks (LP-
WANs), particularly in the context of Internet of Things (IoT) networks and edge computing. The
core aspects discussed include privacy vulnerabilities in Bluetooth Low Energy (BLE) networks,
decentralized LoRaWAN architecture for improved scalability and reliability, and countermeasures
for mitigating jamming attacks and interferences in LoRaWAN. Together, these contributions aim
to provide a deeper understanding of the challenges and advancements in LPWANs and IoT network
management, while also laying the groundwork for future developments.

The first part of the thesis focused on the BLENDER system, which exposed the limitations of
Medium Access Control (MAC) address randomization as a privacy measure in BLE networks. BLE,
a cornerstone technology for IoT devices, aims to ensure privacy through the use of random MAC
addresses. However, through a combination of passive and active scanning methods, BLENDER
revealed how such randomization could be bypassed, exposing BLE devices to tracking risks. This
demonstrated that relying solely on MAC address randomization is insufficient for privacy protec-
tion, highlighting the need for more advanced privacy-preserving techniques in IoT networks. The
findings underscore the necessity of integrating more sophisticated security and privacy measures in
BLE-enabled IoT environments, where edge devices often operate with limited security capabilities.

The second major contribution was the development and evaluation of DeLoRaN, a decentralized
architecture for LoRaWAN networks that leverages blockchain technology to enhance scalability,
resilience, and security. LPWANs like LoRaWAN are widely used in IoT due to their low power
consumption and wide coverage, making them suitable for connecting a massive number of End
Devicess (EDs). However, traditional centralized systems such as Chirpstack face issues related
to scalability, Single Point of Failure (SPoF), and vulnerability to attacks. DeLoRaN addressed
these challenges by decentralizing control across multiple Network Controllers (NCs) and utilizing
blockchain for secure, distributed management. The experimental evaluation demonstrated that
DeLoRaN efficiently distributed control, handled up to 30,000 devices, and maintained low response
times without performance degradation. This contribution is particularly relevant for the future
of IoT networks, as it offers a scalable solution capable of adapting to the increasing demands of
large-scale deployments, while also benefiting from edge computing principles to improve resilience
and minimize latency.

The final component of the thesis dealt with the development of countermeasures for jamming
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attacks and interferences in LoRaWAN networks. Given the susceptibility of wireless communi-
cation channels to interference, jamming represents a significant threat to LPWANs, which are
designed to support long-range communication with limited power. The mitigation strategies were
designed to address both simple and advanced jamming attacks, employing both statistical and
machine learning-based detection techniques. The integration of these countermeasures into the
ns-3 simulator demonstrated significant improvements in network performance, particularly against
channel-oblivious jammers. However, the limitations against more sophisticated channel-aware jam-
mers highlighted the ongoing need for adaptive and robust solutions. Importantly, the detection
mechanism also showed promise in identifying other forms of interference, paving the way for its
integration into a smart Adaptive Data Rate (ADR) algorithm. This holistic approach could sig-
nificantly improve network resilience by dynamically adjusting parameters to optimize performance
in the presence of interference, effectively making LoRaWAN networks more adaptable and robust.

In conclusion, this thesis provides a comprehensive exploration of critical issues affecting the
resilience, privacy, and scalability of LPWANs, particularly focusing on IoT networks and edge
computing environments. The work underscores the need for a multi-faceted approach in address-
ing the challenges faced by modern IoT networks—from enhancing privacy in BLE devices and
implementing decentralized control in LoRaWAN to developing robust countermeasures against
jamming attacks. Each of these contributions plays a vital role in advancing the state-of-the-art in
IoT and LPWAN management, offering practical solutions to improve the efficiency and security
of edge devices and networks. As IoT deployments continue to grow, these advancements lay the
foundation for building more resilient, scalable, and secure network infrastructures that are essential
for the next generation of smart environments.
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