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Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease

characterized by motor neuron degeneration in both familial (fALS) and sporadic

(sALS) forms. Despite the great advancements in identifying genetic factors,

understanding the full genetic landscape of complex diseases such as ALS remains

challenging, due to the limited power of the studies or intrinsic constraints of single

analytical methods. To address this point, we developed GenUInE, a multi-analysis

aggregator tool designed to integrate results from various genomic analyses into a

final unified matrix, enabling the identification of genetic hotspots. GenUInE uses a

probability-based model to prioritize genomic windows associated with disease traits

by analyzing diverse input sources such as homozygosity mapping, IBD segments,

epivariations, and rare variants. The tool computes combined probabilities and

summation values for each window, additionally providing a score for prioritizing and

weighting genomic regions. Applied to ALS, GenUInE successfully highlighted

previously ALS-associated known genes (NIPA1) and identified novel genetic

signatures linked to neurodegenerative pathways. Our work provides a novel

framework for exploring genetics in complex diseases, providing a different method

aimed at identifying new therapeutic targets.
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Introduction

Background: ALS disease, from history to epidemiology

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder

that primarily affects motor neurons in the brain and spinal cord. The first clinical

descriptions of ALS can be traced back to the mid-19th century. Jean-Martin Charcot

is often credited with formally identifying the disease in 1869, although various

neurologists previously described the fundaments of the disease 1. In 1824, Charles

Bell published an important step forward, introducing the concept that diseases could

be exclusively motor-dependent. Specifically, Bell was the first to differentiate

between two types of roots within the spinal cord: the anterior roots, responsible for

motor functions related to movement, and the posterior roots with a sensory function.

In 1848, François Aran hypothesized a neurogenic cause for a syndrome leading to

progressive muscle weakness. Charcot, however, was the first to identify ALS as an

independent disease and emphasize its neurological basis, specifically, linking the

degeneration of motor neurons in the brain and spinal cord to the onset of the

disease.

During the first half of the 20th century, ALS gained popularity due to high-profile

cases such as the baseball player Lou Gehrig. His death shook public opinion so

much that ALS was renamed Lou Gehrig’s disease. However, all this increased the

determination to find a cure, and consequently, efforts to better understand its

molecular basis intensified. We now know that the progressive degeneration of both

the first and second motor neurons characterizes ALS 2. The first or upper motor

neuron originates in the brain's motor cortex and travels down to the brainstem or

spinal cord, particularly into the body of the second or lower motor neuron. Its

primary function is to transmit inhibitory or excitatory signals that control voluntary

movements. The second or lower motor neuron projects from the spinal cord and

brainstem to innervate muscles and glands, directly causing skeletal muscle

contraction 3. Degeneration of upper motor neurons led to several symptoms, such

as spasticity (an increase in muscle tone that leads to stiffness and tightness in

muscles), hyperreflexia (an exaggerated reflex response), lack of coordination, slow

movements, Dysarthria (difficulty in speech), and dysphagia (difficulty in swallowing).
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Loss of lower motor neurons affects the direct connection to skeletal muscles and

leads to muscle weakness starting in the hands or feet, muscle atrophy due to loss

of innervation, fasciculations (involuntary muscle twitches), muscle cramps, and

diminished reflexes. Altogether these symptoms cause complete body paralysis and

death of the patients for respiratory arrest (Figure 1a).

ALS occurs in familial forms (fALS) and sporadic forms (sALS). The prevalence of

sporadic forms varies between 90% and 95% of the cases. To the current

knowledge, familial cases account for 5% or 10% of the cases 4. The incidence of

ALS is 1 to 2.6 over 100,000 individuals per year and 4 to 8 for the most at-risk

group, which are those between 45 and 75 years old 5,6. Men have a higher risk of

developing a sporadic form of ALS compared to women 7. However, this event is not
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reflected in the familial forms. The mean age at onset is approximately between 47

and 53 years old in familial cases and 58 and 63 in sporadic cases. Juvenile (<30)

and senile forms (>75) were additionally observed and reported 8. Survival in ALS

patients typically ranges from 2 to 5 years, but it depends on the patient's age and

the initial site of disease onset. However, about 20% of patients survive more than 5

years, 10% at least 10 years, and 5% at least 20 years 9.

ALS could emerge in 3 different clinical forms, spinal, bulbar, and respiratory 10.

Bulbar forms account for 25% of the cases, are often characterized by initial speech

and feeding difficulties, and are associated with the worst prognosis 11. Spinal cases,

on the other end, account for 75% and onset with weakness and atrophy of the arms

or limbs. Respiratory ALS is only 3% and dyspnea could be the first noticeable sign,

occurring before any limb weakness.

ALS risk factors and molecular bases

ALS has been associated with several environmental and lifestyle risk factors, such

as air pollution, heavy metals pollution, smoking, repeated head trauma, and intense

physical activity 12–14. Despite this, the literature remains conflicting, and no clear

associations with particular phenotypes of the disease have been found. At the state

of the art, aging, being male, or family history are the only well-established ALS risk

factors.

The molecular bases of ALS are an interesting and challenging area of study due to

the complexity and heterogeneity of the disease. We currently know that the majority

of ALS cases share TDP-43 proteinopathy, characterized by the abnormal

aggregation of TDP-43 protein in neurons and glial cells 15. TDP-43 is a nuclear and

ubiquitary protein, transcribed from the TARDBP gene mRNA, regulating miRNA

biogenesis and splicing, mRNA transcription and traduction, and some other stress

responses. Its mislocalization and subsequent aggregation could disrupt normal

cellular functions, leading to neurodegeneration. TDP-43's central role in ALS

pathology makes it an intriguing target for pharmaceutical approaches. The key idea

is to develop therapies that can prevent or reduce TDP-43 aggregation and

potentially slow the disease progression. Despite this, TDP-43-targeting therapies

failed to restore normal cellular homeostasis in humans and few drugs passed to

clinical trials 16.

7

https://www.zotero.org/google-docs/?3Zg71C
https://www.zotero.org/google-docs/?eZk3xk
https://www.zotero.org/google-docs/?vmYj5K
https://www.zotero.org/google-docs/?nVKChk
https://www.zotero.org/google-docs/?4zoRYf
https://www.zotero.org/google-docs/?LiPSj7
https://www.zotero.org/google-docs/?FB5BeP


The Genetic Landscape of ALS

Over the past 30 years, research has demonstrated that genetics represent the

primary ALS susceptibility risk. Based on our current knowledge, approximately 76%

of familial and 25% of sporadic ALS cases could be explained by 32 genes

ALS-associated (Figure 1b). Whereas, pathogenic mutations in the 4 main

ALS-associated genes account for 60% of familial and 11% of sporadic cases 17.

SOD1 was the first gene associated with ALS in 1991 by a parametric linkage

analysis 18. SOD1 encodes for superoxide dismutase 1, an enzyme that converts

superoxide (O₂⁻) into less dangerous hydrogen peroxide (H₂O₂) and oxygen (O₂). The

toxic gain of function of the protein causes neuronal cell death by excitotoxicity,

non-cell-autonomous toxicity of neuroglia, oxidative stress, mitochondrial

dysfunction, and axonal transport disruption 19. Additionally, misfolded protein seems

to play a role in some sporadic forms. Missense mutations are prevalent with

autosomal dominant inheritance, except for p.Asp91Ala with recessive inheritance in

the Scandinavian population 20. Approximately 25% of fALS and 2% of sALS cases

could be explained by 200 SOD1 variants 21. Recently, therapy based on antisense

oligonucleotide (ASO) was developed for SOD1 mutation carriers. The formulated

drug, Tofersen 22, reduces the aberrant protein, consequently slowing the

progression of the disease. Clinical studies demonstrate a significantly lower level of

neurofilament light chain in the cerebral spinal fluid (CSF) in patients treated with

Tofersen compared to controls 23.
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The previously cited TARDBP gene was discovered in 2008 in relation to the

cytoplasmic aggregation of its protein TDP-43 in motor neurons 24. Several studies

have revealed the role of pathogenic variants in the C-terminal domain of TDP-43,

also known as the glycine-rich region, in protein aggregation. In contrast, mutations

in the N-terminal of the protein are not linked to any aggregation mechanism.

Additionally, TDP-43 regulates splicing mechanisms, influencing the expression of

various genes implicated in ALS processes 25. Intriguingly, TDP-43 aggregation is in

common with other neuropathologies such as frontotemporal dementia (FTD) and

limbic-predominant age-related TDP-43 encephalopathy (LATE), demonstrating an

underlying genetic continuum between similar age-related neurological diseases 26.

In 2009, parametric linkage analysis revealed the FUS gene as an ALS-associated

gene 27,28. Approximately 4% of the familial and 1% of the sporadic forms are

explained by mutations in FUS 29. The protein encoded by FUS in wild-type

conditions regulates the signals in response to DNA damage and accomplishes

transcription and stabilization of mRNA 30. Mutations in FUS promote protein

aggregation in neural cells similar to TDP-43. Specifically, FUS has a prion-like
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domain that promotes pathological aggregation and an RRM domain that allows it to

bind with RNA and DNA molecules. Transmission is autosomal dominant and

patients carrying mutations have a premature age of onset compared to other

mutants.

An important hallmark of ALS was discovered in 2011 when the hexanucleotide

repeat expansion (GGGGCC) in C9orf72 was first associated with ALS disease 31,32.

Previous studies have tried to establish the genetic cause behind the signals

identified by parametric linkage analysis in locus 9p21.3-p13.3 33. Despite the

notable efforts, all these attempts failed since the attention was initially focused on

coding regions. Only afterwards southern blot analyses revealed the hexanucleotide

repeat expansion nested in C9orf72 first intron. This expansion is the first known

pathogenic cause of ALS and FTD and accounts for 40% of familial and sporadic

ALS cases and 25% of FTD cases. The latter percentage increases to 50% in the

occurrence of ALS+FTD patients 17. The pathogenic mechanisms of C9orf72 have

not yet been completely uncovered. Currently, 3 different models have been

proposed to explain this gap in our understanding. First, C9orf72 was found to be

involved in regulating autophagy and vesicular trafficking in both neurons and glial

cells. The expansion could actively decrease the expression of the protein, evoking a

haploinsufficiency mechanism 34. Second, the mRNA GC-rich sequence in C9orf72

could fold in stable secondary structures that may originate aggregated RNA foci.

These structures could contribute to cellular instability by seizing essential nuclear

factors leading to neurodegeneration 35. Third, a non-canonical mechanism of

translation initiation called repeat-associated non-AUG (RAN) translation, has been

found to induce dipeptide repeats from multiple reading frames in C9orf72-positive

cases. These dipeptides, particularly those containing arginine, disrupt cytoskeletal

dynamics and axonal transport by interacting with kinesin motor proteins, like KIF5A,

and the ubiquitin-proteasome system 36. The wildtype allele spans between 2 and 23

repeat units, individuals with >30 repeats are considered expanded and likely

pathogenic carriers (notably, some pathogenic expansion can extend up to 1600

repeat units). Over the years, several studies have tried to correlate the repeat units

with clinical phenotypes, such as age at onset, disease progression, and bulbar vs

spinal vs respiratory. However, no significant associations or conflicting results were

reported 37–39. Additionally, some studies tried to understand if normal expansion
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could act as a disease modifier in ALS-C9orf72 negative patients 40. However, no

clear associations were detected.

With the advent of next-generation sequencing (NGS), such as whole-exome

sequencing (WES) and whole-genome sequencing (WGS), a considerable number

of new genes were found to be associated with ALS. For instance, we could cite

NEK1, ERLIN1, KIF5A, HTT, and SPTLC1.

NEK1 was discovered in 2016 by Kenna et al., by conducting a gene burden

analysis on fALS and controls 41. NEK1 mutations contribute to neurodegeneration in

ALS through i) disruptions in the function of microtubules of axon and cytoskeleton;

ii) impairment of nuclear transport/import mechanisms. Missense and loss of function

(LoF) variants in NEK1 contribute to the onset of 2% of fALS and 2% of sALS.

ERLIN1 was identified by parametric linkage analysis on consanguineous Turkish

families 42. Interestingly, mutation carriers have shown an earlier age at onset and a

slow disease progression. The gene encodes for a complex responsible for the

degradation of inositol 1,4,5-trisphosphate intracellular receptor (IP3R) ion channels

that lead to synaptic loss 43.

In 2018 KIF5A was discovered through common and rare genome-wide analysis 44.

The pathogenic mutations in this gene are responsible for less than 1% of fALS and

sALS. The inheritance is autosomal dominant and the toxic gain of function is due to

mutations skipping exon 27. The novel protein of 39 amino acids leads to

hyperactive axonal transport 45.

HTT pathogenic CAG repeat expansions were commonly associated with

Huntington's disease 46. However, a recent study has shown an association with ALS

and FTD using a large whole-genome dataset 47. Interestingly, none of the ALS/FTD

patients have shown the typical Huntington's symptoms, such as displayed chorea,

and abnormal involuntary movements. Nevertheless, inclusions of TDP-43

aggregations were retrieved in post-mortem tissue. This finding reinforces the idea of

a continuous spectrum underlying several different neurodegenerative diseases.

SPTLC1 represents a peculiar case, as mutations in coding sequence lead to cases

of juvenile ALS, with an onset <25 years old 48. The molecular bases are attributable

to the disruption of sphingolipid metabolism in motor neuron disease. Even in this

case, we are dealing with a gene that has been previously associated with other

neurodegenerative diseases, such as autosomal dominant hereditary sensory

autonomic neuropathy, type 1A (HSAN1A).
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The role of genetic epidemiology in the study of complex
traits

In the previous paragraph, we cited several statistical and epidemiological methods

to analyze the genetics of complex and rare diseases. Herein, we provided a

comprehensive and detailed overview of these methods. These strategies include

genome-wide association studies (GWAS), epigenome-wide association studies

(EWAS), and NGS approaches (WES, WGS). Additionally, various statistical

methods can subsequently be applied to data generated for association analyses,

including parametric linkage analysis in family studies, non-parametric linkage

analysis in unrelated samples, such as Loss of Heterozygosity (LOH) analysis or

Identity By Descend (IBD) on unrelated cohort, rare Copy Number Variation (CNVs)

analysis, and rare single nucleotide variant or insertions/deletions analysis (RVs).

The common statistical method applied in GWAS is logistic regression for binary

traits like disease status or linear regression for quantitative traits 49. Using a linear

model, for every SNP, the genotype-SNP relationship with the trait could be modeled

with the equation for binary traits:

logit(P(trait=1))=β0+β1*snp+β2*covariates

Here, P(trait=1) is the probability of having a trait (e.g. disease status); β0 is the

intercept; and β1 is the coefficient for the SNP, describing its effect on the odds of

the trait. Covariates like age and sex are included to account for any confounding

variables. The calculation for the odds ratio of the SNP is given as eβ1 and denotes

the change in odds of a trait given each additional copy of the minor allele.

For quantitative phenotypes, the model may look as follows:

Y=β0+β1*snp+β2*covariates+ϵ

Whereby Y is for the quantitative trait, β0 the intercept, β1 for the SNP coefficient, for

instance, the effect on the trait, and ϵ represents the error term. β1 estimates the

SNP effect size to mean change in the trait for each additional copy of the minor

allele. In both cases, to correct the massive number of comparisons while testing

millions of SNPs, the stringent significance threshold is set at 5×10−8. These

methods have been proven to be effective for several neurological diseases,

including ALS 50–52. EWAS follows a similar approach, using methylation beta values
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as a dependent variable in the linear regression model. The beta value represents

the ratio between the signal intensity of the methylated probe and the sum of the

intensities of the methylated and unmethylated signals. Its values could vary

between 0 and 1 and are calculated using the subsequent formula:

𝛃= M/(M +U)

Where M represents the intensity of the methylated probe and U of the

unmethylated.

Parametric linkage analyses are family-based studies that aim to identify genetic

regions associated with a trait or disease. Compared with GWAS, which are better

designed to detect common risk variants, linkage studies are better at identifying

genes containing rare high-penetrance risk variants. The assumptions required by

these strategies include the specification of the disease model, autosomal dominant

or recessive, and the penetrance of the disease within the family. The key statistic for

parametric linkage analysis is the logarithm of the odds (LOD) score 53. LOD score

divides the probability of the data given that linkage exists at a particular value of the

recombination fraction θ to the hypothesis of no linkage (θ = 0.5), and is defined by

the equation:

LOD(θ)=log10(L(θ) / L(0.5))

or

LOD=log10(P(data | linkage) / P(data | no linkage))

where L(θ) is the likelihood of data given a recombination fraction θ, and L(0.5) is the

likelihood under no linkage. LOD score above a value of 3 indicates an association

between the marker and the observed trait. This method resulted in extremely robust

new findings in genetics, as previously described 18,27,54.

Non-parametric linkage (NPL) approaches offer significant robustness in analyzing

complex traits, particularly when the genetic model is uncertain. However, they

commonly require a larger sample size compared to parametric methods 55.

Underlying the NPL hypothesis is the assumption that afflicted individuals possess

alleles in linkage disequilibrium (LD) with pathogenic mutations or identical by

descent (IBD) susceptibility alleles 56. The common statistic for NPL is defined by the
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S or Sall which measures the total amount of alleles shared by IBD and is

determined by the equation:

S = ∑i<j IBDij

 Where i e 𝑗 represents the compared individuals, and IBDij is the total amount of

alleles shared by the individuals.

In this context, LOH analysis, also known as autozygosity mapping, and IBD analysis

results are appropriate for identifying genetic regions that have lost variability, which

may be associated with diseases 57. Even though these techniques were widely

applied, their effectiveness often suffered since disease locus mapping to huge

genomic intervals (e.g., > 50 Mb) made it challenging to identify causal susceptibility

variants 56,58. However, these techniques have proven to be frequently successful in

recognizing associated genes in recessive states that escape the classical screening

for several disorders, including ALS 41,57,59–61.

In the last decade, NGS-based methods have greatly boosted genetic association

analysis. The lower cost and capability to generate these data on a large scale have

allowed the development of various analysis approaches. Herein, we have dealt only

with CNVs and RVs analyses, nevertheless, they represent only a small fraction of

the bioinformatics tests available, such as burden testing of rare variants or structural

variants (SVs) analysis 62,63. The analysis of rare variants allows for accurate

screening of scattered signals across the genome, best achieved by filtering based

on frequency in reference databases like gnomAD and pathogenicity scores from

prediction tools. However, this process doesn't significantly reduce their number to

identify those linked to the phenotype easily, and intronic region analysis remains

complex and unexplored, making rare variant analysis more sensible in association

studies like burden tests or diagnostic phases on disease-associated genes. CNVs

analysis of NGS data relies on read depth when calling a duplication or a deletion.

Tools based on this method assume that any deviation from a normal distribution of

read lengths could harbor a CNV. Any increments in the number of reads could

reveal a duplicated segment, while, decrements a deletion. ExomeDepth, a tool

developed for calling CNVs specifically on WES data, computes Bayes Factors, a

likelihood ratio of CNV probability to normal copy number probability. A Bayes factor

near 3 could indicate moderate evidence of a CNV and values upper than 9 strong
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evidence 64,65. However, the higher rate of false positives significantly influences the

interpretation of CNVs in the context of complex and rare diseases.

Research Hypothesis and Experimental Plan

The development and refinement of statistical and bioinformatic pipelines have

provided the flourishing of a notable number of outcomes related to genetics and

association analysis. Despite these significant advances, currently, there is a lack of

comprehensive methods that aggregate the various results generated by these

different approaches. This limitation could lead to a narrow and limited view of the

findings, as each technique often presents data from a unique perspective, thereby

missing the broader context and the interconnectedness of the information that

would offer a clearer global picture. Currently, the main approaches for this purpose

focus on performing meta-analyses on GWAS, integrating information from

multi-omic data, or using colocalization methods 51,66. Nevertheless, these methods

do not consider the integration of all possible analyses that could be performed on

the data itself. To overcome these pitfalls, we developed Genetic mUltI analysis

aggrEgator (GenUInE), a Python tool that aims to converge multiple signals across

the genome, deriving from different analyses. GenUInE takes advantage of the

standard BED files as input, characterized by 3 columns indicating the genomic

locations, and generates a final enriched matrix with a binary representation of the

presence or absence of the input interval within several predefined genetic windows.

Finally, GenUInE computes the probability of observing signals within each genetic

window based on input data. To demonstrate the validity of our tool, we tested

GenUInE functions using data from the sporadic ALS cohort provided by the

Laboratory of Neuroscience of IRCCS Istituto Auxologico Italiano. The adopted

workflow first required the generation of results from multiple analyses. In particular,

we previously performed the following steps:

1. LOH analysis on genotyping data to extract ROHs.

2. IBD segment extractions using genotyping data.

3. Calculation of epivariation using EWAS data.

4. Extraction of SNVs from WGS and WES data.

5. Extraction of INDELs from WGS and WES data.

6. CNVs calculation on WGS and WES data.
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After these steps, we converted the results from each analysis into BED files

required from GenUInE and analyzed the final matrix. With GenUInE we are

proposing a novel and multiperspective method to explore and prioritize genetic data

generated from different analyses. We believe that this strategy could dramatically

increase our ability to detect hotspots in the genomes of patients suffering from rare

and complex diseases, such as ALS. Moreover, GenUInE is versatile and completely

open source and can be applied to various diseases or other types of analyses,

independently of the nature of the analyses themselves. Results and generated code

were made available on the public repository and GitHub under MIT license.
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Materials and methods

Cohort and available data

Over the years the laboratory of neuroscience of IRCCS Auxologico has collected a

large cohort of 4,000 well-characterized ALS patients of Italian descent. Samples

were enrolled following the El Escorial revised criteria 67. The screening of this cohort

for ALS-causing mutations has provided invaluable insight into the genetic

epidemiology of ALS in Italy 68,68–70 Specifically, we generated genotyping data from

5,500 ALS patients and 4,000 controls using different Illumina arrays (including

Illumina 660W-Quad BeadChips and Global Screening Arrays). Furthermore, a

subsample of 61 sporadic ALS cases and 61 controls underwent methylation

screening by methylation array. Our laboratory could additionally count on ~200 ALS

WGS data and ~350 ALS WES data already generated. Finally, our group is directly

involved in the ALS Compute project, an international collaboration aimed at

identifying genetic risk factors in ALS through WGS. ALS compute already collected

a total of 15,000 WGS, ~12,000 ALS cases and ~3,000 controls, and is expected to

increase to more than 50,000 genomes in the next few years.

Main data types and formats

Several data types are required in bioinformatics workflows. The main formats used

in our analyses were PEDMAP, BED, and VCF. PedMap is the most used format for

storing genotyping data and consists of two separate files: the PED file and the MAP

file. The PED file is a tab-separated file that contains 6 mandatory columns that

represent in order, Family ID, Individual ID, paternal ID, maternal ID, Sex, and

phenotype. Genotypes are stored from the seventh column onward. The MAP file

includes information about the markers, such as the genomic location and unique

identification number. BED files are tab-delimited text files that outline the genetic

location of specific regions. Each line has 3 mandatory columns that contain i)

chromosomes, ii) the starting base position, and iii) the ending base position. VCF

(Variant Call Format) file is a tab-separated text file used in bioinformatics to store

and share genetic variant information, containing a header with metadata and

definitions for data columns, and a data section that describes the chromosomal
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positions, reference and alternate alleles, quality scores, filter statuses, additional

annotations, and genotype data for multiple samples.

Genotyping arrays and quality control

Genomic DNA was extracted from peripheral blood using the Wizard Genomic DNA

Purification Kit (Promega, Madison, WI, USA). SNP genotyping was conducted with

Human 660W-Quad BeadChips and Global Screening Arrays on the HiScan platform

(Illumina, San Diego, CA, USA) following the manufacturer's instructions. The

resulting SNP data were analyzed using GenomeStudio software (Illumina) and

exported in PEDMAP format. Multiple rounds of quality control were performed using

the Plink software 71. Data were cleaned according to the standard procedure:

1. Sex genotype-phenotype mismatches. All samples in which the genotypic

sex does not correspond to the phenotypic were removed (all samples tagged

with “PROBLEM”).

2. SNP missing and call rate. All SNP with a genotyping rate lower than 99%

and at least collected in 95% of samples were excluded from the analysis.

3. Relatedness analysis. Discarded all samples duplicated or related (P_HAT >

0.5).

4. Population analysis. Samples were compared to a reference panel

(HapMap2) of SNP divided into different batches corresponding to specific

populations (e.g. European, African…etc.) using Eigenstrat software.

Individuals who could not be ascribed to the European block were excluded

from the analysis.

The workflow and pipeline are described in Figure 2a.
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Homozygosity mapping

Plink could rely on several functions for multiple analytical scenarios, and

specifically, is considered robust for studying LOH and ROHs. The PLINK algorithm

for detecting ROHs in genotyping data employs a scanning window approach and is

evoked by the --homozyg function. This scanning window is defined by the number

of SNPs determined by the user (--homozyg-window-snp), with a maximum number

of heterozygous SNPs and of missing SNPs. Each individual’s genome is controlled

subsequently, scoring each SNP based on the proportion it appears in a

homozygous window. After this step, genome-wide segments of homozygous SNPs

are identified using a specific threshold (--homozyg-window-threshold). For instance,

if a window size contains 100 SNPs, using a threshold of 0.05 each SNP must

appear in at least five homozygous windows to be considered part of a segment. The

last step implies additional conditions for these homozygous segments to identify the

final ROH segments. The maximum interval between two SNPs in a segment and

the maximum number of heterozygous SNPs allowed in the final ROH segment are

evaluated by setting --homozyg-gap and --homozyg-het parameters. Then ROH

segments exceeding the selected thresholds are split and re-evaluated, leading to

ROH segments smaller than the scanning window size. Finally, the SNP density,

ROHs minimum length, and number of SNPs per segment are checked respectively

with --homozyg-density, --homozyg-kb, and --homozyg-snp. Only ROHs that meet all

these criteria were considered in the downstream analysis. In our analysis, we

selected ROHs using default not-stringent parameters, specifically:

19



--homozyg-snp: 100 SNPs
--homozyg-kb: >=1,000 kb
--homozyg-density: 50 kb/SNP
--homozyg-gap: 1,000 kb
--homozyg-window-snp: 50 SNPs
--homozyg-window-missing: 5 missing calls maximum
--homozyg-window-threshold: 0.05

The resulting ROHs were extracted and converted into BED format. LOH analysis

was performed on the inbred population. The inbred population represents the

offspring from consanguineous marriages and was estimated using Plink on

genotyping data. Wright F coefficient was calculated considering the expected and

the observed number of homozygous SNPs, all samples with a threshold over 0.05

were retained in the analysis.

Identical By Descend (IBD) regions

IBD regions were inferred using the KING software 72. KING accepts the PedMap

format as input and can calculate the IBD regions between pairs of individuals up to

a certain established degree. The parameter --ibdseg was set as mandatory to call

the function on the input genotypes matrix. The resulting tab-separated file contains

the genomic location of the inferred segment or in alternative the starting and ending

SNPs. Additionally, KING with the parameter --rplot could produce a summary plot of

the inferred regions as described in Figure 2b. The generated data was

subsequently converted into BED format.

20

https://www.zotero.org/google-docs/?aXz00O


Methylation analysis

Genomic DNA (gDNA) was extracted from peripheral blood using the Wizard

Genomic DNA Purification Kit (Promega). Quality control (QC) and quantification

were confirmed by visualizing gDNA on a 1% agarose gel electrophoresis and using

a NanoPhotometer Pearl (Implen GmbH). Bisulfite conversion was performed with

the EZ DNA Methylation Kit (Zymo Research Corporation). The samples were then

analyzed using the Illumina HumanMethylation450 array, following the

manufacturer's best practices. Quality control (QC) of probes was initially estimated

using the ChAMP package 73, with the following criteria for filtering: (1) probes with a

detection p-value above 0.01, (2) probes with a beadcount <3 in at least 5% of

samples, (3) probes not located in CpG sites, (4) probes flagged by Zhou et al. 74,

and (5) probes situated on X and Y chromosomes. Additionally, signal intensities

were normalized using the SWAN normalization method from the minfi package 75.

Batch effects due to experimental variability were evaluated and adjusted using the

ComBat R methods 76, with the batch group (i.e., different experiment groups) as a

covariate. After this step, we calculated Stochastic epigenetic mutations (SEMs).

SEM represents those CpG sites with a methylation level exceeding three times the
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IQR below the 25th percentile (Q1–3 × IQR) or three times the IQR above the 75th

percentile (Q3 + 3 × IQR) 77–80. SEM calculation was the key step for assessing the

presence of epivariations. Epivariations are regions that exhibit an abnormal

methylation pattern, significantly enriched in epimutations 81,82. The calculation

method, developed and validated by our laboratory, involves a sliding window on the

annotated genome which uses a hypergeometric distribution to assess SEM

enrichment. Then an associated p-value is generated individually for each window.

Our R package for SEM calculation is available at DOI 10.5281/zenodo.3813234.

The genomic coordinates of Epivariations were finally converted and exported in

BED format.

WGS workflow and quality control

The genomic DNA of the ALS individuals was extracted from whole blood according

to standard protocols. DNA concentration and quality were assessed using a

NanoDrop spectrophotometer and agarose gel electrophoresis. Selected samples

underwent WGS on the Illumina NovaSeq platform, with a mean coverage of 30x.

Raw reads were processed with our custom pipeline optimized following Broad

Institute's best practices. In particular, we aligned FASTQ files to the reference

genome (GRCh37) into SAM(Sequence Aligned Map) files using Burrows-Wheeler

Aligner 83. SAM files were subsequently converted to their binary representations, i.e.

BAM files (Binary Aligned Map). Indexes files (BAI) were generated to call back

sequences to the reference genome quickly. Deduplication and recalibration steps

were also performed to add reliability to the final alignment. instrumentations can

make technical errors in the sequencing step, recalibration is, therefore, a crucial

step that accounts for these systematic errors leading to better quality reads. We

performed the variant calling step using the GATK 84 tool and the HaplotypeCaller

algorithm on BAM files. HaplotypeCaller relies on a local realignment of the reads

before calling the variants. This led to a low rate of false negatives in the final

dataset. Recalibration and hard-filtering were additionally obtained using variant

quality score recalibration (VQSR). This method, based on machine learning,

employs highly validated datasets (e.g., 1000genomes, HapMap, omni) to build a

subset of the input variants (true positive) as the “train” set. Good and bad variants

were recognized based on their profiles on this “train” dataset. Subsequently, the
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rules learned from the “train” dataset are applied to other sites for filtering purposes.

Quality control was conducted at the on-site level, and only variants tagged with

“PASS” were retained in the final dataset. The resulting dataset was additionally

annotated using ANNOVAR with the information provided by gnomAD,

1000genomes, ClinVar, InterVar, and CADD. Extra-annotation was obtained by

adding columns with:

● Frequency of variants inside the cohort.

● Frequency of variants in homozygous state within the ALS cohort.

● DP (Read Depth) list of all observed variants.

Figure 2c summarizes the entire workflow of this step.

Rare Variants

We extracted rare homozygous variants from the WES and WGS annotated VCFs

datasets. GnomAD frequencies 85, calculated for the whole WES and WGS

populations, were used to evaluate single nucleotide variants (SNVs) and

insertions/deletions (INDELs). A stringent threshold of minor allele frequency

(MAF<1/100,000) was set to retain only extremely rare recessive events. All the

resulting variants were then converted to genomic location and stored in BED files.
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Copy Number Variants (CNVs)

Rare Copy Number Variants (CNVs) were generated using the ExomeDepth R

package 65. ExomeDepth was chosen for its excellent performance in terms of

specificity and sensitivity 86. This package, developed for WES or WGS data, relies

on read depth to estimate the presence or absence of CNVs. The algorithm first

calculates the number of reads aligning to each reference genome position.

Subsequently, the “binning” process is initialized: the genome is divided into

non-overlapping bins defined by the user, and then the total read depth for each bin

is calculated by summing the read depths of all positions within the bin. In our

analyses, we preferred the default value of 10,000 bins. After this step, ExomeDepth

depth normalizes the results based on GC and calculates the probability of having a

CNV. Since ExomeDepth could calculate rare CNVs only using batches of 10

samples at a time, we decided to divide our population into randomized groups. The

results of CNV calling were then converted into BED files.

Over Representation Analysis and statistical analysis

ORA was performed on ShinyGO87 using KEGG as a functional database and a

False Discovery Rate (FDR) threshold of 0.1. Summary statistical analysis was

performed on Python (version 3.8).

Multi-analysis tool

We developed GenUInE (Genetic mUltI analysis aggrEgator) to converge genetic

signals from multiple analyses. GenUInE is a Python tool that analyzes genomic

intervals by generating a binary representation of their presence or absence within

defined genetic windows on a reference genome. After the initialization, GenUIne

takes the path to the input files directory and reference genome in BED format. BED

files must be alphanumerically sorted, with a “chr” prefix before each chromosome.

The tool includes static methods that apply rules to analyzed ranges:

1. range_sequence, which creates a list of genomic range tuples based on the

window size

2. range_subset, which checks if one range is entirely contained within another.
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The core method, matrix_gen, reads the reference genome, splits it into defined

intervals (default of 10,000 bp), and then compares them with those in the BED files

to build a binary matrix of presence/absence. This matrix indicates whether each

genomic interval from the input BED files is present in some windows split from the

reference genome. Finally, the apply_stat method calculates the win probability for

each column, where each input column represents a single analysis or BED file,

defined by the number of positive windows over all existing ones in the reference

genome. Next, the binary presence/absence values are replaced with the win

probability if the value is 1, and with 1 if the value is 0. Finally, the product of these

independent probabilities is calculated by multiplying values in each row (i.e., in each

window) and stored in a new column. The resulting values thus indicate the

combined probability of having a signal in a given window of the reference genome,

given the input analyses. The tool additionally provides a weighted score that

emphasizes the low probabilities and accounts for the number of input analyses. The

adopted formula was:

S= α * (−10 * log(comb_prob)) + β * ( Ʃ rows / N)

Where “comb_prob” represents the combined probability, “ Ʃ rows” represents the

summation of binary values for each window, and α-β are the assigned weights

(default to 0.5).

At the end of the process, all results are exported into a tab-separated file. The

workflow is summarized in Figure 2d.
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Here is provided an example of GenUInE on work:

#Input parameters:

path = "/path/to/bed/files/"

output_name = "GENOMIC_ANALYSIS"

genome = "hg19.bed"

window_size = 10000

#Create an instance of the GenUInE class

genomic_analysis = GenUInE(path=path,

outputName=output_name, genome=genome, window=window_size)

#Generate the binary matrix

genomic_analysis.matrix_gen()

#Output: A file named 'ENRICHED_MATRIX_GENOMIC_ANALYSIS.tsv' will

be created in the working directory.
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Data and code availability

All the developed code was deposited on github

(https://github.com/albertobrusati/genuine/) under the MIT license. Data will be

submitted to public repositories following the best practices.
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Results

Cohort summary statistics

We have collected and organized all currently available phenotypic data at our

research center, IRCCS Istituto Auxologico Italiano. Our comprehensive database

was developed to systematically gather a wide array of information, ranging from

clinical data, such as patient age, type of disease onset, phenotypic characteristics,

and sex, to additional details including diagnostic delay, disease progression,

cognitive status, blood test results, biomarkers, and findings from magnetic

resonance imaging (MRI). Moreover, we have integrated genetic diagnostic data

wherever possible to enhance the depth and breadth of our dataset. The

foundational clinical information is presented in Table 1.

ALS Cohort IRCCS Auxologico

Total ALS cases

N=1,444

Females (38%)

Males (62%)

Age Mean=60.21
SD=12.35

Site Of Onset
Spinal-LowerLimbs (41.9%)
Spinal-UpperLimbs (33.0%)

Bulbar (23.3%)
Respiratory (1.7%)

ALS
Phenotypes

classical (52.8%)
bulbar (20.4%)

respiratory (1.8%)
flail-arm (3.9%)
flail-leg (3.0%)

PLS (5.6%)
PMA (4.5%)

UMNP (8.1%)
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Results from single analyses

Each genetic analysis yielded the following results and statistics. The study of ROHs

across individuals demonstrated a mean number of 45.3 segments per individual,

with a standard deviation of 13.0073. The 95% confidence interval for the mean

number of ROH segments was calculated to be between 41.2 and 49.3. Additionally,

the average length of these ROH segments was 6,811 base pairs (bp), with a

standard deviation of 2,755 bp. The 95% confidence interval for the mean ROH

length ranged from 5,957 bp to 7,665 bp.

In the IBD segments analysis, the mean number of segments per individual was 44,

with a standard deviation of 11.78. The 95% confidence interval for the mean

number of IBD segments extended from 14.7 to 73.2. The mean length of IBD

segments was reported as 14 bp, with a standard deviation of 10.5 bp. The

confidence interval for the mean length of IBD segments was computed to be

between 12.2 and 15.9 bp.

We identified a total of 271 epivariations. The mean length of these epivariations was

549 bp, with a standard deviation of 617 bp. The 95% confidence interval for the

mean length of epivariations was established as ranging from 471 to 627 bp.

Furthermore, the total number of filtered SNVs identified in the dataset was 7,451,

while the total number of filtered INDELs was 1,727.

Regarding CNVs, the analysis revealed a mean number of 22.6 CNVs per individual,

with a standard deviation of 14.8. The 95% confidence interval for the mean number

of CNVs ranged from 19.6 to 25.5. Finally, the mean length of CNVs was determined

to be 583,509 bp, with a standard deviation of 1,962,515 bp. All the summary

statistics are reported in Table 2.

Genomic Feature Metric Mean Standard
Deviation

95%
Confidence Interval

ROH
Segments

per Individual
Number 45.3 13.0073 [41.269-49.331]

ROH
Length

Length

(bp)

6,811 2,755 [5,957-7,665]

IBD
Segments per

Individual
Number 44 11.7 [14.7-73.2]
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IBD
Length

Length

(bp)

14 10.5 [12.293-15.927]

Epivariations Number 271

Epivariation
Length

Length

(bp)

549 617 [471-627]

Filtered
SNVs

Number 7,451

Filtered
INDELs

Number 1,727

CNVs
per Individual

Number 22.64 14.8817 [19.687- 25.593]

CNV
Length

Length

(bp)

583,509 1,962,515 [476,522-690,496]

Results from GenUInE

We run GenUInE using a 10,000 bp window on bed files generated from single

analyses. Of 350,000 windows, 285,768 contained at least one signal from input

data. We selected the first 100 windows, corresponding to those with the lowest

cumulative probability, and annotated them into the resulting genes using UCSC API.

We found 218 genes mapping these regions, 60 with a strong expression in cerebral

tissues as shown in Figure 3b.
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We then conducted two distinct analyses on the identified genetic dataset. The first

approach employed all resultant genes for an over-representation analysis (ORA) to

explore the associated pathways. ORA did not reveal an enrichment in any

appropriate biological pathways, with an FDR < 0.1. The second approach focused

on the relationships between this genetic signature and neurodegenerative diseases.

Intriguingly, the analysis showed some genes already ALS-associated (NIPA1),

Charcot Marie Tooth (CMT) associated (AARS1), or associated with familial forms of

Parkinson's disease (PINK1). Moreover, other potential candidate targets were

revealed by this step, in particular, HES6, SERF2, TRIM4, HIF1A, DES, FOXO6,

SOX2-OT, and NOTCH3. In Table 3, we reported the resulting regions and analyses

containing these genes.
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Genome SNVs EPIs IBDs CNVs HOMs INDELs Sum prob score Gene

chr2:2391

40000-239

149999

1 1 0 0 1 1 4 3.08e-08 86.80 HES6

chr15:440

90000-440

99999

1 1 0 0 1 1 4 3.08e-08 86.80 SERF2

chr7:9951

0000-9951

9999

1 1 0 1 1 0 4 1.80e-06 66.46 TRIM4

chr14:622

10000-622

19999

1 0 1 1 1 1 5 5.39e-06 61.06 HIF1A

chr15:231

00000:231

09999

1 0 1 1 1 1 5 5.39e-06 61.06 NIPA1

chr3:1811

30000-181

139999

1 0 1 1 0 1 4 6.65e-06 59.93 SOX2-OT

chr3:1814

50000-181

459999

1 0 1 1 0 1 4 6.65e-06 59.93 SOX2-OT

chr1:4184

0000-4184

9999

1 0 0 1 1 1 4 1.15e-05 57.18 FOXO6
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chr1:2096

0000-2096

9999

1 0 0 1 1 1 4 1.15e-05 57.18 PINK1

chr19:153

10000-153

19999

1 0 0 1 1 1 4 1.15e-05 57.18 NOTCH3

chr2:2202

80000-220

289999

1 0 1 1 1 1 5 5.39 61.06 DES

chr16:702

80000-702

89999

1 1 1 0 1 0 4 3.51 63.12 AARS1

Furthermore, we analyzed our results based on a weighted prioritization score. This

led to the selection of only the extreme windows (score > 80), narrowing the analysis

to only 3 of the previous windows mapping 10 genes (Figure 3c), including HES6

and SERF2. Table 4 contains all the resulting genes from the analyses.
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LINC02610 ENSG00000225057 HES6 ENSG00000262560 SERF2

SERINC4 HYPK MFAP1 FDFT1 ENSG00000255046

LLPH ENSG00000228144 LLPH-DT TMBIM4 RCC1

SNHG3 SNORA73B LINC01558 ENSG00000269155 ENSG00000285212

ENSG00000274769 C2orf74-DT C2orf74 C2orf74-AS1 TRIM4

VPS25 WNK4 PRRT1 ENSG00000285085 ENSG00000284954
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PPT2 PPT2-EGFL8 ZGPAT ENSG00000273154 ENSG00000274501

LIME1 ENSG00000273047 SMG1P7 ENSG00000291219 EXOSC6

AARS1 A1BG ENSG00000268230 A1BG-AS1 ENSG00000279611

ZNF497 ENSG00000268049 MSLNL RPUSD1 CHTF18

PLIN5 ENSG00000267385 LRG1 ENSG00000260978 MKRN3

VWA5B2 MIR1224 TUBGCP5 NXPE3 NFKBIZ

RP11-1212A22.4 PKD1P5 ENSG00000291270 EPHA1-AS1 ENSG00000229977

COPS4 ANAPC1P2 RAB3GAP1 LRRC9 PCNX4-DT

ZBTB11 ZBTB11-AS1 RPL24 TRHDE TRHDE-AS1

KMT2C ARHGEF4 DES ENSG00000234638 KDM7A

KDM7A-DT CNTNAP3 HIF1A HIF1A-AS3 ENSG00000258964

LINC02511 KCNH5 NPIPB5 ENSG00000277041 ENSG00000260063

ARID1A ANKRD13C LINC03066 ENSG00000285578 C2orf27A

ENSG00000288031 ENSG00000280029 ENSG00000279983 PCDHB19P ENSG00000290895

PCDHB15 LRP1B FOXC1 EBLN3P HTATSF1P2

ENSG00000288612 TMUB1 AGAP3 HRCT1 SPAAR

RAB4B-EGLN2 EGLN2 ENSG00000268797 CYP2T1P LINC00960

ZNF717 MIR4273 ENSG00000234500 ENSG00000291136 ENSG00000277435
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ENSG00000290399 IRAK3 ENSG00000290192 ENSG00000276548 NPIPB3

NIPA1 ENSG00000274253 ENSG00000259425 SOX2-OT ENSG00000241231

METTL21EP ENSG00000272542 DNAH17 HDDC3 UNC45A

ENSG00000254859 GSDMD ENSG00000289161 TTC22 ENSG00000237453

TNXB SETD4 CBR1-AS1 CBR1 ENSG00000289001

ENSG00000242588 ENSG00000243302 ENSG00000230715 ENSG00000229413 ENSG00000243679

CICP14 LINC02476 MUC22 TMEM158 AC010170.1

HLA-B ENSG00000271581 ENSG00000293281 SNTG1 NELFE

MIR1236 SKIC2 C4A C4A-AS1 ENSG00000290788

CYP21A1P AL645922.1 TNXA POTEM ENSG00000275563

RNU6-1239P SLC12A2-DT SLC12A2 NUTM2B-AS1 ENSG00000280355

ENSG00000224886 HLA-DRB5 DUXAP9 ENSG00000286614 FOXO6

FOXO6-AS1 LINC00661 ENSG00000280412 HLA-DRB6 HLA-DRB1

HLA-DQB1 HLA-DQB1-AS1 MIDN CIRBP BMP8A

OXCT2P1 PPIEL MDC1 MDC1-AS1 POLR1HASP

POLR1H HPN-AS1 LINC01297 KIAA1586 PINK1

PINK1-AS BMP5 BCL11B NOTCH3 LINC03043

MUC3A SEPTIN8 SOWAHA ENSG00000291026 GOLGA6L5P
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ENSG00000291260 ENSG00000259244 MRPS18B ATAT1 UBE2Q2P12

ENSG00000259551 ENSG00000259302 RASA4DP

Benchmarks

We subjected our tool to a comprehensive benchmarking process, where the

number of function calls (ncall), total execution time (tottime), and cumulative

execution time (cumtime) were measured. The test was performed using all the data

generated for the analyses. The total time reported includes other inherited functions

and accounts for 21,831,968,982 function calls (21,831,967,164 primitive calls) over

16,202.266 seconds (4.5 hours). The performance statistics of the custom functions

are summarized in Table 5. The results show that the range_subset function

exhibited moderate performance, with over 5.4 billion calls and a total time of

1,667.106 seconds. Both range_extreme1 and range_extreme2 functions had very

similar performance, with roughly 5.4 billion calls each, consuming just over 1,230

seconds. The apply_stat function was invoked only once, with a negligible time

footprint, while the matrix_gen function, though called only once, showed the highest

number of calls overall.

Function Number of
Calls (ncalls)

Total Time
(tottime)

Time per
Call

(percall)

Cumulative
Time

(cumtime)

Cumulative per
Call (percall)

range_subset 5,448,085,002 1,667.106 s 0.000 s 1,667.106 s 0.000 s
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range_extreme1 5,448,065,083 1,236.243 s 0.000 s 1,236.243 s 0.000 s

range_extreme2 5,448,064,432 1,233.062 s 0.000 s 1,233.062 s 0.000 s

apply_stat 1 0.000 s 0.000 s 0.111 s 0.111 s

matrix_gen 1 216.483 s 216.483 s 16,202.240 s 16,202.240 s
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Discussion
Genetic burden analysis still represents an intricate maze to elude, especially in the

context of complex and multifactorial diseases. The best evasion attempts generally

arrived from large dataset analyses, family-based approaches, or multi-omics

studies. However, these approaches are not always possible due to limited

resources or the low availability of high-quality data. Small sample sizes, incomplete

phenotypic information, or lack of access to advanced sequencing technologies can

restrain the application of large-scale or multi-omics approaches. Moreover,

family-based studies may be limited by the availability of suitable pedigrees,

particularly in late-onset diseases like ALS, where family history is often sporadic or

poorly documented. As a result, researchers are frequently challenged to find

alternative methods for highlighting genetic hotspots related to the investigated

disease.

Herein, with our tool GenUInE, we presented an alternative approach to aggregate

and prioritize genetic results. In particular, GenUInE consists of a cohesive

framework aimed at identifying key genomic regions by integrating results from

various analyses and datasets. Our method accepts BED files as input from

individual analyses, such as LOH, CNV, or IBD analyses, and calculates a unified

probability model across predefined genetic windows. As a result, the user could

identify genomic regions related to the disease that might otherwise be overlooked

by single-method analyses. Moreover, the tool estimates a score that uses a linear

combination and weights the combined probability of observing a signal in a genomic

window with the summation of how many analyses detected signals in that same

window. In our results, we chose an equal weight of 0.5 for both the probability and

summation scores, favoring a balance and avoiding possible biases. However,

GenUInE allows users to adjust these weights, allowing researchers to tailor the

analysis based on their specific hypotheses or research goals. In studies with higher

confidence in certain types of analyses (such as WGS with high coverage),

researchers could assign more weight to probability. In contrast, in exploratory

analyses, summation scores might be emphasized to identify regions where multiple

signals converge. The user could additionally vary the size of the examined

windows. The default method uses windows of 10,000 bp, the average size of a
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gene, however, it is possible to increase the size and lighten the computational load

or, on the contrary, decrease the size with a more elevated computational load.

We tested GenUInE using data related to ALS as a use case, demonstrating its

applicability to complex neurodegenerative diseases. The results from expression

analysis on the top hits suggest effective prioritization, with a good portion of genes

expressed in brain structures. On the contrary, the ORA on this subset didn’t reveal

any significant enrichment in relevant biological pathways. In the analysis of the

genetic signature, we highlighted some known or potential candidate targets with

neurodegeneration or motor neuron disorders. The expansion of the repetition unit

motif GCG > 8 of NIPA1 was associated with ALS as a risk factor 88. Despite this, it

was not replicated in all populations studied, and the association is not currently fully

confirmed 89. Interestingly, the NIPA1 region resulted from all the input analyses

except for the epivariations. This could result in contrast with our previous findings

from individual analysis 14. However, after a detailed revision, we could confirm that

the region also results carrying epivariations but in a previous window ranging from

23,080,000 to 23,089,999. The AARS1 gene has been primarily linked to peripheral

neuropathies, particularly with CMT, a disorder characterized by axonal degeneration

and motor dysfunction that shares some clinical features with ALS, including muscle

weakness and atrophy. Some studies speculated the existence of a role in

neurodegeneration caused by aminoacyl-tRNA synthetases family 90, although

currently no mutations were found in ALS cases. Mutations in the PINK1 gene are

commonly associated with an autosomal form of recessive early-onset Parkinson's

disease. This gene regulates the translocation of Parkin, an E3 ubiquitin ligase, to

impaired mitochondria, driving their removal via mitophagy. Loss of function

mutations in PINK1 could lead to the selective loss of dopaminergic neurons in the

substantia nigra 91. The association with ALS is not direct, however, PINK1 is known

to interact with OPTN, a gene associated with recessive ALS forms 92. Our analysis

showed other genes pertinent to neurodegeneration or motor neuron diseases.

Moreover, HES6 and SERF2 genes resulted in a higher score value. HES6 and

NOTCH3 are part of the notch signaling pathway, mutations in these genes could

lead to neurodegenerative responses. Interestingly, our analysis highlighted rare

homozygous SNVs and INDELs in both the analyzed genes. SERF2 is primarily

involved in protein aggregation processes 93. No explicit links with ALS are currently

known, but the role in aggregation could be a promising marker. TRIM4 can be seen
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in a continuum with the previous gene, being part of the TRIM family, which is

involved in ubiquitination and protein degradation. The disruption of these processes

can subsequently lead to the accumulation of toxic protein aggregates. However, its

role is mostly associated with cancer and not with neurodegeneration itself 94. HIF1A

is a transcription factor that responds to stress conditions such as low oxygen levels.

This gene was demonstrated to be important for spinal motor neuron survival in ALS

mice models after the exposition to hypoxic conditions 95. Similar to the previous

gene, FOXO6 is involved in oxidative stress responses and its dysregulation can be

hypothesized to lead to neuronal cell death 96. SOX2-OT is a long non-coding RNA

highly expressed in PD patients. Its role is not fully understood, but recent work has

suggested its role in regulating miR-942-5p expression which in turn regulates

nuclear apoptosis-inducing factor 1 (NAIF1) 97. Interestingly is also the case with the

DES gene. Desmin is a type of intermediate filament protein that primarily provides

structural support to muscle cells. Autosomal recessive bi-allelic mutation in desmin

has been associated with cardiomyopathies and myopathies in an Italian inbred

patient 98. This may also lead us to recognize a potential pertinence with ALS, having

used rare variants in homozygosity state or ROHs as input individual analyses.

Despite the promising results deriving from this genetic signature, it’s crucial to

emphasize that this method could highlight all those regions not considered by single

analyses. In this sense, the use of multiple analytical approaches as input could lead

to an increased refinement of the results. In the context of complex diseases such as

ALS, this could be achieved by integrating several data from the literature.

We are not currently aware of any other method similar to what we are proposing

with GenUInE. Other tools already have implemented a genomic grouping function.

For instance, ShinyGo allows users to visualize regions overrepresented by the

presence of multiple genes 87. Nevertheless, ShinyGO was designed for a different

purpose, particularly for gene ontology and gene-set enrichment analyses.

Alternatively, it is possible to combine multiple BED files using the multiintersect

function provided by BEDTools. This function allows the study of overlapping bases

between different BED files. However it does not involve the division of the reference

genome into windows, nor the calculation of a cumulative probability and a score to

prioritize the results.

We are also conscious of the limitations that GenUInE may suffer. Dependence on

the quality and coverage of input data could inflate or deflate the analysis results.
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Our study applied the tool to a relatively well-characterized ALS dataset. However,

its performance may be less optimal when dealing with datasets that contain

incomplete or noisy data. Additionally, the sample size could affect the statistical

power of this method, leading to less effective results. Our benchmarks

demonstrated the satisfactory performance of the tool using real data. Nevertheless,

the analysis of several individual analyses could lead to an extensive amount of time.

A future perspective will be the optimization of the computational performance of the

tool by reducing the number of unnecessary iterations. Moreover, our methodology

adopts a fixed window size approach when analyzing the genome. While this

strategy proved to be effective when analyzing large genomic regions, it may dilute

the signal from contiguous windows not captured within a fixed interval. To address

this shortcoming, a potential improvement for future versions of the tool will be the

incorporation of a sliding window approach. This will allow better detection of signals

deriving from complex genomic regions that may escape with the current strategy.

Another potential pitfall may result from the fact that many analyses could not be fully

independent of each other, resulting in an overestimation of certain genomic

hotspots. In the future implementation, we are planning to set up different strategies

that could partially mitigate this restrain by assigning a different weight to the

summation value.

In conclusion, with GenUInE we are proposing a novel framework integrating

multiple genetic signals into a unique and cohesive model. This method could be

applied to several scenarios, in particular for rare diseases with complex genetics

and partially unknown onset. Furthermore, being GenUInE an open-source project,

collaboration and innovation in the scientific community could be enhanced, making

it a valuable support for genetic research.
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Developed code

GenUInE tool

import glob

import pandas as pd

class GenUInE:

def __init__(self, path, outputName="ANALYSIS", genome="hg19.bed",

window=10000):

self.path = path

self.outputName = outputName

self.genome = genome

self.window = window

@staticmethod

def range_sequence(start, stop, step):

"""Create a list of multiple ranges based on a window"""

result = list(zip(range(start, stop, step), range(start + step - 1, stop,

step)))

if (stop - start) % step != 0:

last_fst_elem = result[-1][-1] if result else start

result.append((last_fst_elem + 1, stop))

else:

result = result[:-1]

last_fst_elem = result[-1][-1] if result else start

result.append((last_fst_elem + 1, stop))

return result

@staticmethod

def range_subset(range1, range2):

"""Check if range1 is a subset of range2."""

if range1 and range2:
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return range1.start in range2 and (range1.stop - 1) in range2

return False

@staticmethod

def range_extreme1(range1, range2):

return range1.start in range2

@staticmethod

def range_extreme2(range1, range2):

return range1.stop in range2

@staticmethod

def apply_stat(df, num):

dfcopy = df.copy()

for val in range(1, num + 1):

pwin = dfcopy.iloc[:, val].value_counts().get(1, 0) / len(df)

dfcopy.iloc[:, val] = dfcopy.iloc[:, val].replace(1, pwin)

dfcopy.iloc[:, val] = dfcopy.iloc[:, val].replace(0, 1)

df["comb_prob_value"] = dfcopy.iloc[:, 1:num +

1].prod(axis=1).astype(float)

alpha = 0.5 # weight for combined probability

beta = 0.5 # weight for summation

df["score"] = alpha * (-10*np.log(df["comb_prob_value"])) + beta *

(df["Summation"] / num)

return df

def matrix_gen(self):

"""Generate binary matrix every defined window"""

print("Create reference intervals...\n")

ref_raw = pd.read_csv(self.genome, sep="\t", names=["chr", "start",

"end"])

ref_coord = {}
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for chrom, start, end in zip(ref_raw["chr"], ref_raw["start"],

ref_raw["end"]):

ref_coord[chrom] = GenUInE.range_sequence(start, end, self.window)

# Convert the ranges into sets for faster lookup

for e, v in ref_coord.items():

ref_coord[e] = [range(elem[0], elem[1]) for elem in v]

df_ref = pd.DataFrame(dict([(k, pd.Series(v)) for k, v in

ref_coord.items()]))

for col in df_ref:

df_ref[col] = f'{col}:' + df_ref[col].astype(str)

df_ref = pd.concat([df_ref,

df_ref.T.stack().reset_index(name='Genome')['Genome']], axis=1)

df_ref = df_ref[["Genome"]]

df_ref = df_ref[~df_ref["Genome"].str.contains("nan")]

print("Reference uploaded!\nCreate matrix with selected .bed\n")

n_bed = 0

for file in glob.glob(f"{self.path}*.bed"):

fileName = file.split("/")[-1].split(".")[0]

print(fileName)

n_bed += 1

df_bed = pd.read_csv(file, sep="\t", names=["chr", "start", "end"])

df_dict = df_bed.groupby('chr').apply(lambda x: list(zip(x['start'],

x['end']))).to_dict()

# Pre-calculate ranges for df_dict to avoid recalculation in loops

range_cache = {}

for e, v in df_dict.items():

df_dict[e] = [range(elem[0], elem[1]) for elem in v]

for i in df_dict[e]:
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if len(i) > self.window:

range_cache[i] = GenUInE.range_sequence(i.start, i.stop,

self.window)

data = set()

# Iterare su tutti i cromosomi comuni tra ref_coord e df_dict

common_chromosomes =

set(ref_coord.keys()).intersection(df_dict.keys())

for chr in common_chromosomes:

ref_ranges = ref_coord[chr]

bed_ranges = df_dict[chr]

for ref_range in ref_ranges:

found_match = False

for bed_range in bed_ranges:

if len(bed_range) > self.window:

rangelist = range_cache.get(bed_range, [])

# print(rangelist)

if any(GenUInE.range_subset(range(r[0], r[1]), ref_range) or

GenUInE.range_extreme1(range(r[0], r[1]), ref_range)

or

GenUInE.range_extreme2(range(r[0], r[1]), ref_range)

for r in rangelist):

data.add(f"{chr}:{ref_range}")

print(f"{chr}:{ref_range}")

found_match = True

break

else:

if GenUInE.range_subset(bed_range, ref_range) or \

GenUInE.range_extreme1(bed_range, ref_range) or \

GenUInE.range_extreme2(bed_range, ref_range):

data.add(f"{chr}:{ref_range}")
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print(f"{chr}:{ref_range}")

found_match = True

break

if found_match:

continue

df_mat = pd.DataFrame(list(data), columns=["Genome"])

df_mat[fileName] = 1

df_ref = df_ref.merge(df_mat, on="Genome", how="left").fillna(0)

df_ref['Summation'] = df_ref.iloc[:, 1:].sum(axis=1)

df_ref = GenUInE.apply_stat(df_ref, n_bed)

df_ref.to_csv(f"ENRICHED_MATRIX_{self.outputName}.tsv", sep='\t',

index=False)

print("Enriched matrix created!")
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