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Spectral Information Dynamics: a New Framework to Assess Multi-Order
Interactions in Network Neuroscience and Physiology

by Laura Sparacino

Recent advances in signal processing and information theory are boosting the de-
velopment of new approaches for the data-driven modelling of complex network
systems. In the fields of Network Physiology and Network Neuroscience, where
the signals of interest are rich of oscillatory content, the spectral representation of
network systems is essential to ascribe interactions to specific oscillations with physi-
ological meaning. This thesis introduces a coherent framework integrating several
information dynamics approaches to quantify node-specific, pairwise and high-order
interactions in network systems. A hierarchical organization of interactions of differ-
ent order is established using measures of information rate to quantify the dynamics
of each individual node of the network, the links between pairs of nodes, and the
redundant/synergistic hyperlinks in groups of nodes. All measures are formulated
in the time domain and then expanded to the spectral domain to obtain frequency-
specific information in the context of Gaussian data characterized by linear parametric
models. The framework is first illustrated using simulation examples where the prop-
erties of the measures are displayed in benchmark simulated network systems. Then,
it is applied to several representative datasets of multivariate time series in the context
of Network Neuroscience and Network Physiology. The utilization of high-order
measures of information rate with spectral meaning has been proven successful to
highlight the respiratory-driven redundant nature of cardiovascular, cardiorespira-
tory and cerebrovascular interactions, as well as the overall prevalence of redundancy
for high-order brain interactions together with the emergence of synergistic circuits
not retrievable from a pairwise analysis.
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Chapter 1

Introduction

1.1 Problem Statement

In the emerging research fields of Network Physiology (Bashan et al., 2012; Ivanov
and Bartsch, 2014) and Network Neuroscience (Bassett and Sporns, 2017), the human
organism is modeled as a network in which nodes correspond to organ systems or
brain units, and edges map the functional dependencies between pairs of physiologi-
cal systems or brain areas (Rubinov and Sporns, 2010; Lehnertz, Bröhl, and Rings,
2020). The possibility to assess node activity and interactions between nodes through
measures defined in different domains has already been proven useful to investigate
physiological states in healthy and pathological conditions (see, e.g., Sameshima and
Baccalá, 1999; Faes, Nollo, et al., 2011; Bastos and Schoffelen, 2016; Bari et al., 2017;
Javorka et al., 2017; Lizier et al., 2018; Elstad et al., 2018). However, since physio-
logical systems operate across different hierarchical levels and time scales, focusing
only on individual dynamics and pairwise interactions and limiting the analysis to
a time-domain description is often insufficient to provide a complete description of
the human organism as a complex network (Battiston et al., 2020). A main ongoing
research trend is indeed the investigation of how multi-organ regulation emerges
from high-order interactions, i.e., interactions involving more than two network nodes.
Moreover, the need of performing the analysis of individual, pairwise and high-order
interactions with specific focus on the distinct oscillations that characterize physi-
ological and brain activities is also emerging. In this context, this thesis represents
the final step of three years of research activity mainly focused on the development
of new information-theoretic and spectral measures for the assessment of complex
high-order interactions between multiple signals originating from different body
district. A comprehensive picture on the topic will be given below.

1.2 The Network Representation of Complex Physiological
Systems

The increasing availability of large-scale and fine-grained recordings of biomedical
signals is opening the way to the network representation of complex physiological
systems. For instance, in neuroscience the organizational principles of functional
segregation and integration in the human brain are typically studied through the
theoretical and empirical tools of Network Neuroscience (Bassett and Sporns, 2017),
while in integrative physiology the reductionist approach of studying in isolation the
function of an organ system is nowadays complemented by the holistic investigation
of collective interactions among diverse organ systems performed in the field of
Network Physiology (Bashan et al., 2012). Network Neuroscience and Network Physi-
ology are sub-fields of Network Science, a large interdisciplinary area that develops



4 Chapter 1. Introduction

theoretical and practical techniques to improve the understanding of natural and
man-made networks with hierarchical structures (Barabási, 2013).

Data-driven methods for network inference play a key role in Network Science,
being devised to build a network model out of a set of observed multivariate time
series. Such a model is typically encoded by a graph where the observed dynamic
system (e.g., the brain or the human organism) is represented by distinct nodes (e.g.,
neural units or organ systems) connected by edges mapping functional dependencies
(e.g., brain connectivity or cardiovascular interactions) (Rubinov and Sporns, 2010;
Lehnertz, Bröhl, and Rings, 2020). Beyond this basic description, the need to deepen
the exploration of real-world systems has led network scientists to enrich the way to
represent the system properties captured by a network model (Butts, 2009). Several
augmented network descriptions have been proposed exploiting, for instance, active
nodes encoding self-dependencies within an individual process, and directed and/or
weighted edges depicting cause-effect relations and quantifying the intensity of pair-
wise interactions. These representations are well accommodated in functional brain
and physiological networks through the definition of measures to assess complexity
or regularity of individual time series (Pincus and Goldberger, 1994; Porta et al.,
1998), or coupling and causality between pairs of time series (Pereda, Quiroga, and
Bhattacharya, 2005; Porta and Faes, 2015).

In spite of the usefulness of network models encoded by graphs, the representation
with self-effects and pairwise (dyadic) interactions is often insufficient to provide a
complete description of a complex system. It is now firmly acknowledged that many
real-world systems exhibit high-order (polyadic) interactions (HOIs), i.e., interactions
involving more than two network nodes (Battiston et al., 2020); in these systems the
network behavior is integrated at different hierarchical levels and time scales. This
occurs in Network Neuroscience and Network Physiology, where it is important to
distinguish between brain regions or organ systems that interact as a pair, or as a
part of a more complex structure, to produce the observed dynamics. For instance,
brain dynamics display mesoscopic or macroscopic behaviors requiring multiple-unit
interactions to be predicted accurately (see, e.g., Stramaglia, Cortes, and Marinazzo,
2014), and cardiovascular interactions may arise autonomously from self-sustained
mechanisms or as a result of the effects of respiration on the measured dynamics
(see, e.g., Faes et al., 2016; Krohova et al., 2019). The generalized network structure
which allows to go beyond the framework of pairwise interactions is the so-called
hierarchical high-order network (hHON), described by mathematical constructs such
as simplicial complexes and hypergraphs (Courtney and Bianconi, 2016). This novel
representation is impacting strongly on the ability to describe the real-world systems
studied in the context of Network Science (Battiston et al., 2020).

While the implementation of hHONs is straightforward for networks inherently
defined as sets of interactions, it is much less striking in systems where interactions
are not already identified but need to be inferred from data, as in the case of brain and
physiological networks. The main reason for this difficulty is that measures to quan-
tify polyadic interactions from time series data have not been defined unequivocally
(Wibral, Vicente, and Lizier, 2014; James, Barnett, and Crutchfield, 2016; Faes et al.,
2016; Lizier et al., 2018). Different information-theoretic frameworks performing
entropy decomposition of the multiple time series mapping the activity of network
systems provide tools, such as the measures of redundant and synergistic information
shared by groups of source time series about a target series, akin to the detection of
high-order effects (Faes et al., 2016; Lizier et al., 2018). Thus, these frameworks could
be exploited for the detection and estimation of high-order interactions in practical
settings. In this context, the unification and the extension to high-order interactions of
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emerging approaches to treat diverse types of physiological activity would open new
perspectives for the use of hHON structures in Network Neuroscience and Network
Physiology. Moreover, it is known that physiological systems and the brain very
often present oscillatory behavior deployed across several distinct time scales (Faes
et al., 2016; Faes et al., 2021); since these different oscillatory activities are collapsed
into the recorded time series and cannot be distinguished by time-domain measures,
the definition of the framework of information dynamics in the spectral domain
would open the possibility to focus each measure in specific bands with physiological
meaning (e.g., identifying different interaction mechanisms in different frequency
bands).

1.3 Aims of the Thesis

Due to the intricate and non-deterministic nature of physiological and brain oscilla-
tions, Network Physiology and Network Neuroscience necessitate the development
of integrated tools for the multivariate analysis of biomedical signals that can account
for the multifaceted interactions possibly occurring in network systems. In this con-
text, the present work of thesis introduces an integrated framework for the assessment
of hierarchically organized interactions in brain and physiological networks, based
on information-theoretic concepts and focused on connecting the time-domain and
spectral representations of such interactions.

To reach this overarching goal, the thesis performs a thorough integration, exten-
sion, unification and illustration of several classic and recent approaches proposed
for the analysis of network systems which are gaining wide interest in the fields
of Network Neuroscience and Physiology (see, e.g., McGill, 1954; Gelfand and IA-
glom, 1959; Kolmogorov, 1959; Duncan, 1970; Cover, 1999; Chicharro, 2011; Rosas
et al., 2019; Faes et al., 2021; Antonacci et al., 2021; Pernice et al., 2022b; Faes et al.,
2022a; Sparacino et al., 2023a; Sparacino et al., 2024a; Sparacino et al., 2024b). These
approaches are based on the information-theoretic and spectral representations of
multi-order interactions in network systems, and are here presented along three differ-
ent lines of development (FIG. 1.1). First, we move from the standard static analysis
of physiological processes, which draws a parallel between physiological networks
and vectors of random variables, to a dynamic analysis which models the observed
network system in terms of vector random processes (FIG. 1.1a); this is achieved
moving from the use of measures of entropy computed for random variables to the
use of measures of entropy rate which explicitly consider the temporal correlations
within and between random processes. Second, when we consider the interactions in
a network, we should first be aware of the number of observed network units. Thus,
univariate and bivariate analyses, i.e., analyses considering only one process/node
or only a pair of processes/nodes, respectively, will be characterized straightfor-
wardly using classical measures of self-predictability (e.g., the entropy rate), coupling
or causality (e.g., the mutual information rate or the transfer entropy) (FIG. 1.1b,
left). Then, when more than two nodes are observed, we shift from the paradigm
of multivariate analysis to the paradigm of high-order interactions; while multivariate
analysis based on conditional information measures is focused on the activity of two
nodes of the network even when the other nodes are taken into account, measures of
high-order interactions focus on more than two network nodes providing an overall
quantification of their collective interaction through the concepts of redundancy and
synergy (see FIG. 1.1b, where multivariate and high-order measures are encoded by
links in classical networks and hyperlinks in high-order networks). Third, when we



6 Chapter 1. Introduction

Physiological Networks are represented as:Physiological Systems Biomedical Signals

vectors of
random variables
(static analysis)

V1

V2

V3

V4

V5

MI

vectors of
random processes

(dynamic analysis)
Y1

Y2

Y3

Y4

Y5

MIR

Y1

Univariate
Analysis

ob
se

rv
ed

ne
tw

or
k 

un
its

Y1

Y2

Bivariate
Analysis

MIR

Y1

Y2

Y3

Y4

Y5 Y1

Y2

Y3

Y4

Y5

Multivariate
Analysis

ER
MIR
OIR

Y1

Y2

Y3

Y4

Y5
Y1

Y2

Y3

Y4

Y5

ER
MIR
OIR

FIGURE 1.1: Information-theoretic and spectral representations of hierarchically-organized
interactions in network systems. a) In Network Physiology, collective interactions among
diverse organ systems are investigated recording biosignals from which time series repre-
senting the dynamic activity of these systems are extracted. The data collected in these series
can be considered as a a realization of a vector of random variables (Vi) or random processes (Yi).
The network analysis of this data is static when measures like the mutual information (MI)
are used to connect pairs of random variables, and dynamic when measures like the MI rate
(MIR) are used to connect pairs of random vectors considering their temporal correlations. b)
The multiple interactions in the physiological network can be investigated in different ways:
while classical measures of self-predictability (e.g., the entropy rate, ER) and coupling (e.g.,
the MIR) can be used straightforwardly to assess the dynamics of the single node or pairs of
observed nodes, networks formed by more than two network units can be explored through
more sophisticated approaches. The traditional multivariate analysis is still anchored to the
concept of interaction between two nodes even though the other nodes are taken into account,
thus yielding the standard network representation where the link is the building block and is
assessed by pairwise measures such as the MIR or conditional causality measures such as
conditional transfer entropies; the analysis of high-order interactions moves forward, encoding
such interactions by the hyperlinks of a hierarchical high-order network (hHON) where
interactions of different order are represented using different dynamic information measures
(e.g., order 1: ER; order 2: MIR; order >2: O-information rate (OIR)). Different colors of
nodes, links and hyperlinks reflect the different strength of the network interactions. c) In
physiological networks with oscillatory node activity, the shift from the time to the frequency
domain representation is essential to capture the wide range of time scales characterizing the
dynamic activity at the nodes; in this case, information measures can be expanded in the
spectral domain to obtain frequency-specific information on the hHON interactions occurring

within distinct frequency bands.
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study networks where the activity at the nodes is rich of oscillatory content, we shift
from the time domain to the frequency domain representation of the network, where in-
formation measures are expanded in the spectral domain to obtain frequency-specific
information (FIG. 1.1c).

In this work, different approaches for the analysis of multi-order interactions in
network systems are unified in a coherent framework where spectral information
measures are linked with their time-domain analogous measures, and are categorized
hierarchically on the basis of the number of observed network units, and the number of
network nodes involved in the computation of each measure (i.e., the order of interac-
tions). Specifically, as depicted in FIG. 1.1b, we will characterize networks focusing
on individual nodes, where the relevant interaction measures are those quantifying
the static/dynamic activity at the node intended as amount of information content
through measures of complexity or self-predictability. Then, we will describe the pair-
wise interactions taking place between two nodes, where the links are representative
of coupling and/or causality effects. The last step is straightforward, and consists
in enlarging our view of the possible arising interactions between multiple network
nodes. Here, the notion of high-order structures emerges and brings the new concept of
hyperlink quantifying interactions of multiple orders through a hierarchical high-order
network analysis (hHONA). The different types of high-order behaviors in network
systems mapped by multivariate time series, i.e., HOIs operating simultaneously
across different levels of resolution including the entire network, individual links,
and specific nodes, will be assessed through the recently developed O-Information
(OI)-based framework (Rosas et al., 2019); (Faes et al., 2022a; Sparacino et al., 2024b;
Mijatovic et al., 2024a). Specifically, we will define (i) network-specific measures cap-
turing HOIs among all the analyzed time series, which however cannot consider
high-order effects that are specific to certain parts of the network (e.g., individual
nodes or links); then, we will resort to (ii) local OI-based measures, quantifying the
net information shared between two time series and the rest of the network (Mijatovic
et al., 2024a), here taken as link-specific measures of HOIs, and to (iii) OI gradients
(Scagliarini et al., 2023), quantifying the information shared between one time series
and the rest of the network, here taken as node-specific measures of HOIs. Further,
the majority of dynamic measures (e.g., entropy rate, mutual information rate, O-
information rate) will be expanded into the frequency domain by defining the spectral
counterparts of the time domain measures; the two representations are linked, in the
case of Gaussian processes, via the spectral integration property, which guarantees that
the observation of a given spectral measure extended over the entire frequency range
leads it back to the corresponding time domain measure.

A comprehensive description of the structure of this thesis is provided below.

1.4 Outline of the Thesis

This thesis is split up in four main parts (FIG. 1.2). The first part is composed of
two chapters: the first introductory focusing on the problem of studying complex
networks through information-theoretic approaches expanded in the spectral domain,
and describing the structure of this thesis (the present chapter); the second discussing
the theoretical background of strictly causal linear parametric modelling. The second
part is composed of two chapters thoroughly describing the time domain and spectral
measures of self-effect, pairwise dependencies and high-order activity used to inves-
tigate static and dynamic networks of multiple nodes. The third part is composed
of two chapters describing the applications to Network Physiology and Network
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FIGURE 1.2: Structure of this thesis.

Neuroscience, respectively. The fourth part consists of a final chapter summarizing
the main research conclusions outlining future directions for the methods introduced
in this thesis.

A more detailed description of each chapter is summarized herein.

Part I: Preface.
CHAPTER 1 is the current chapter, briefly introducing the problem statement and
research objectives of this thesis. Then, it initiates the reader to the concept of Network
Science, which requires novel approaches for the data-driven modelling of complex
network systems. What is already known?: the background of the addressed topic
is described with reference to existing approaches to the representation of network
systems, e.g., augmented network descriptions which make use, for instance, of ac-
tive nodes encoding self-dependencies within an individual process, and of directed
and/or weighted edges depicting cause-effect relations and quantifying the intensity
of interactions. What is lacking in the field?: the limitations of the representation with
self-effects and pairwise interactions are described, with reference to the need of
using measures capturing high-order interactions, i.e., interactions involving more
than two network nodes (Battiston et al., 2020). What do we aim to do?: finally, the
chapter briefly states the main objectives of our research and its major contribution,
i.e., the thorough integration, extension and unification of several classic and recent
approaches proposed for the analysis of network systems which are nowadays gain-
ing wide interest in the field of Network Science.
CHAPTER 2 provides an overview of the theoretical background related to the linear
parametric representation of network systems, which allows the expansion of the
proposed information-theoretic measures in the frequency domain. The latter is
essential to investigate the oscillatory content of individual physiological signals and
to retrieve amounts of information shared by the observed processes within specific
frequency bands representative of well-known physiological mechanisms.

Part II: Information-Theoretic Analysis of Network Systems.
CHAPTER 3 reviews the entropy measures exploited to describe static networks
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mapped by random variables, and relevant to the information-theoretic analysis of
random processes.
CHAPTER 4 introduces a framework to measure dynamic interactions of different
orders in networks of multiple interconnected systems, expanded in the frequency
domain to explore their spectral patterns. The framework is defined for dynamic
systems, whose activity is described by dynamic information measures which extend
to random processes the measures defined in CHAPTER 3 for random variables.
In both chapters, validation of the proposed measures has been performed through
theoretical simulations in controlled conditions of multivariate coupling.

Part III: Implementation in Network Physiology and Network Neuro-
science.
CHAPTER 5 and CHAPTER 6 present applications to cardiovascular, respiratory and
cerebrovascular data, and to neural networks probed by functional magnetic reso-
nance imaging (fMRI) and electroencephalography (EEG), respectively, with the main
aim to assess the effectiveness of multi-order information measures in providing
non-invasive indicators of physiological states and clinical markers of pathological
states in different contexts.

Part IV: Conclusion.
CHAPTER 7 summarizes the main findings of the research presented in this thesis.
The fundamental results will be summarized in terms of the innovative potential of
our information-theoretic framework as well as of the most relevant physiological
insights in Network Physiology and Network Neuroscience. In addition, we will
have a look at future directions for the research outlined in this thesis.

Appendices.
Approaches for the statistical validation of the proposed measures including well-
known and more sophisticated techniques, based on the concepts of surrogate and
bootstrap data analyses, will be discussed with fine detail in APPENDIX A. In AP-
PENDIX B, details on the theoretical background of extended linear parametric mod-
elling will be given.
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Chapter 2

Linear Modelling of Stochastic
Interactions

This chapter first introduces basic concepts of probability and provides key network
analysis definitions (SECT. 2.1). Then, it illustrates the theory of linear vector mod-
elling applied to random variables (SECT. 2.2) and random processes in both time
(SECT. 2.3) and frequency domains (SECT. 2.4), which will be exploited respectively
in CHAPT. 3 and CHAPT. 4 to provide a mathematical framework used to describe
network interactions in physiological and neural systems, and to define the measures
of information dynamics descriptive of the structure of these networks.

2.1 Introduction to Static and Dynamic Stochastic Interactions

2.1.1 Basic Concepts of Probability

Static networks of random variables. A random variable is a mathematical variable
whose value is subject to variations due to chance. Specifically, continuous random
variables can take values inside an infinite-dimensional set usually denoted as the
domain. The generic scalar random variable V with domain DV is characterized
by its distribution function, which assigns a probability to each measurable subset
of DV . Formally, the probability for the variable V of taking values within the in-
terval [a, b] ⊆ DV is determined by the integral Pr{a ≤ V ≤ b} =

∫ b
a pV(v)dv =

FV(b)− FV(a), where pV is the marginal probability density function of the variable and
FV is its cumulative distribution function. The cumulative distribution quantifies the
probability that the variable V has v as its upper bound, FV(v) = Pr{V ≤ v}, while
the probability density is mathematically defined as the derivative of the cumulative
distribution, in a way such that FV(v) =

∫ v
−∞ pV(u)du. These definitions extend in

a straightforward way to the generic k-dimensional variable V = {V1, . . . , Vk} by
defining the joint probability density pV(v1, . . . , vk) and performing multiple integra-
tion over the domain of each scalar component to get the cumulative distribution.
Moreover, the conditional probability density function of, e.g., V1 given V2 expresses the
probability of observing the value v1 for V1 given that the value v2 has been observed

for V2: pV1|V2
(v1|v2) =

pV1,V2 (v1,v2)

pV2 (v2)
, where pV1,V2(v1, v2) is the joint probability density

function.
In this thesis, we will consider the static network system V composed of M nodes

V1, . . . ,VM, where the activity at each node is described by the (possibly vector)
random variable Vi, i = 1, . . . M (FIG. 2.1a). The multiple interactions between the
M variables V1, . . . , VM can be investigated by means of a static analysis of multiple
realizations of these variables available in the form of multiple data sequences. Static
analysis implicitly disregards temporal correlations, taking into account only zero-lag
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effects between these sequences. This type of analysis is typically carried out in
the field of brain functional connectivity (Rogers et al., 2007; Van Den Heuvel and
Pol, 2010), which, indeed, quantifies the zero-lag dependency of neuronal activation
patterns of anatomically separated brain regions (Friston, 1994). Here, the different
static systems analyzed may be M (subsets of) resting state networks, where each
variable Vi, i = 1, . . . , M, may represent the neural activity of a group of voxels within
that network and thus map the time course of the ith neural signal extracted through
a seed-based correlation approach (e.g., the blood oxygen level-dependent functional
magnetic resonance imaging (fMRI) signal describing the activity of a given brain
region inside a resting state network) (Sparacino et al., 2023c).

Dynamic networks of random processes. Contrarily to static systems, dy-
namic systems take over diverse states at different instants of time and are assumed
to be stochastic, meaning that their current state does not depend only on the inputs
to the system and on its initial state but also on the outcome of a random experi-
ment. Therefore, the evolution over time of these systems can be only described
in probabilistic terms using stochastic (or random) processes, which can be thought
of as sequences of random variables ordered according to time. The states visited
by the generic dynamic system X over time are described as a stochastic process
X = {Xn}, n = 1, 2, . . ., where the random variable Xn describes the nth state as-
sumed by X at the nth time step. Then, a realization of the stochastic process X
is the time series x = {x(1), . . . , x(L)}, containing the values of X collected over L
time points. When considered individually, each stochastic process describing the
dynamic activity of a node of the observed network is characterized by a family
of probability density functions, or equivalently by the corresponding family of cu-
mulative distribution functions. Accordingly, the temporal statistical structure of
the process X is described by the probability density functions pXn (xn) or by the
cumulative distribution functions FXn (xn) , n = 1, 2, . . . , L. The probability density
is then defined in a straightforward way for joint variables taken from the same
process, pXn1 ,...,Xnk

(xn1 , . . . , xnk), ∀n1, . . . , nk, ∀k ≥ 1. Setting a temporal reference
frame in which n represents the present time, we denote as Xn the random variable
describing the present state of X, and as X−n = [Xn−1, Xn−2, . . .] the random variable
that sample the process over the whole past history. In general, the operation of
separating the present from the past allows to consider the flow of time and to study
the causal interactions within and between processes by looking at the statistical
dependencies among these variables. In fact, the dynamic properties of a system are
studied in the information domain introducing the concept of transition probability,
which is the probability associated with the transition of the system from its past
states to its present state. Thus, the state transition of the history of X relevant to the
present state Xn is described by the conditional probability density pXn|X−n (xn|x−n ).
A useful property of stochastic processes is wide-sense stationarity (WSS), which de-
fines the time-invariance of any joint probability density taken from the process, i.e.,
pXn1 ...Xnk

(Xn1 , . . . , Xnk) = pXn1 ...Xnk+m (Xn1 , . . . , Xnk) ∀n1, . . . , nk, ∀m, k ≥ 1. When the
process is stationary, the fact that the probability density is the same at all times
allows to pool together the observations measured across time order to estimate
the densities, thus enabling the estimation of probabilities from individual realiza-
tions, i.e., an individual time series (Wibral, Vicente, and Lizier, 2014; Faes et al.,
2016). For a stationary stochastic process, also the transition probabilities are time-
independent, i.e., pXn|X−n (xn|x−n ) = pX (xn|x−n ). An important class of dynamic
processes is represented byMarkov processes, for which the present depends on the
past only through a finite number of time steps. Specifically, the process X is a
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FIGURE 2.1: Static network systems V1, . . . ,VM are described by multiple realizations of
random variables V1, . . . , VM available in the form of multiple data sequences. Dynamic net-
work systems X1, . . . ,XM are described by random processes Y1, . . . , YQ possibly grouped in
blocks X1, . . . , XM. Random processes are constituted by a sequence of temporally correlated

random variables.

Markov process of order k if its transition probability function satisfies the con-
dition pX (xn|x−n ) = pX (xn|xn−1, xn−2, . . . , xn−k). With this notation, we define as
Xk

n = [Xn−1, . . . , Xn−k] the random variable that samples the process over the past k
lags, with X−n = limk→∞ Xk

n.
In this work, we will deal with the generic dynamic network system X composed

of M nodes X1, . . . ,XM, where the activity at each node is described in terms of
random processes. Specifically, Q stationary stochastic processes Y = {Y1, . . . , YQ},
possibly grouped in M blocks X = {X1, . . . , XM}, are considered, where each block
process Xi describes the dynamic activity of the network node Xi, i = 1, . . . , M; the
ith block has dimension Mi, so that Q = ∑M

i=1 Mi (FIG. 2.1b). The different dynamic
systems analyzed may be M brain regions or M organ systems, where each group
process Xi, i = 1, . . . , M, represents the neural activity of a given brain region or organ
system, and each scalar process Yj ∈ Xi, j = 1, . . . , Mi, maps the time course of the
jth neural signal recorded inside the ith region (e.g., the EEG signal at one frontal
electrode) or the jth physiological time series belonging to the ith organ system (e.g.,
systolic or diastolic pressure for the circulatory system). Without loss of generality,
we assume that the processes are real-valued, defined at discrete time (Yq = {Yq,n},
q = 1, . . . , Q; e.g., are sampled versions of the continuous time processes Yq,t, taken
at the times tn = nT, with T the sampling period) and have zero mean (E[Yq,n] = 0,
where E[·] is the statistical expectation operator).
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2.1.2 Network Analysis Definitions

In this section, we provide some key definitions regarding network analysis, since
distinct linear models can be identified depending on (i) the order of interactions, as
well as the need to describe linear interactions relevant to a given subset of units, and
(ii) the number of observed units.

Full and restricted models. The static V and dynamic X network systems are
always described as a whole with the aim of gathering information on the overall
behaviour of the network or subparts of it. In this context, a distinction between full
and restricted models is needed: while a full model provides a global representation
of the overall activity of the observed network, there is often the need to describe in-
teractions relevant to a given subset of variables or processes, e.g., whenever explicit
physiological regulatory mechanisms or neural patterns require to be investigated.
To this end, restricted models involving only those relevant variables or processes are
defined. In the case of linear dynamic models, the restricted model parameters can
be directly retrieved from the full model parameters through different procedures
(see SECT. 2.3.5.1).

Networks with different number of units. Based on the number of observed
units of the analyzed static or dynamic systems, we distinguish between the following
three types of network analysis. In FIG. 2.2, we schematize these definitions with
regard to dynamic networks.

• A univariate analysis (UA) is performed if only one scalar process Y is observed
(Q = M = 1) within a dynamic system; the corresponding linear model will
be referred to as auto-regressive (AR) model on Y, and allows to investigate
the single-node activity of Y (I1). Univariate analysis of the short-term beat-to-
beat variability of cardiovascular parameters such as arterial compliance is
a common example (SECT. 5.1). The same rationale can be applied whether
the observed unit is the block process X = {Y1, . . . , YMX} of dimension MX
(Q = MX, M = 1), e.g., in the case of a group of MX EEG electrodes located
over the contralateral motor area.
Similarly, a UA is performed for the generic static system V whether it comprises
only one node (M = 1), whose activity is described by the (possibly vector)
random variable V.

• If two scalar (vector) processes {Y1, Y2} ({X1, X2}) are observed, a bivariate
analysis (BA) is carried on and the corresponding full model will be referred to
as auto- and cross-regressive (ARX) model on {Y1, Y2} ({X1, X2}). This allows to
investigate the pairwise connectivity (I2) between the two nodes through bivariate
measures of coupling (information shared) and causality (information transfer).
Restricted models can be formulated to either explore the single-node activities in
terms of self- or cross-dependencies: bivariate AR models describe the present
state of the two processes as a function of their past states, while restricted cross-
regressive (X) models can be exploited to characterize the present state of the so-
called target process, say Y2 (X2), conditioned to the knowledge of the history of
the driver process, say Y1 (X1). For instance, ARX models can be identified when
the observer wants to characterize closed-loop systems involving, e.g., arterial
pressure and cerebral blood flow (cerebrovascular interactions), heart rate and
arterial pressure (cardiovascular interactions) or heart rate and respiration
(cardiorespiratory interactions). Restricted AR and X models directly derived
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FIGURE 2.2: Multi-order interactions in dynamic network systems. The number of observed
network units determines the type of analysis (i.e., univariate - UA, bivariate - BA, and
hierarchical high-order - hHONA) which can be carried on to assess network dynamics.
Depending on the number of nodes, one can evaluate single-node (I1), pairwise (I2) and high-
order (I3) activities through linear parametric models describing the auto-regressive (AR),
auto- and cross-regressive (ARX) and the overall vector AR (VAR) dependencies (assessed,
e.g., through measures of entropy rate - ER -, mutual information rate - MIR -, and O-
Information Rate - OIR, respectively). hHONA can be further differentiated to investigate the
role of the single node (node-specific), the pair of nodes (link-specific) and the group of nodes,

i.e., the multiplet (network-specific) in sharing information with the rest of the system.
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from full ARX models are then needed to investigate patterns of causality and
autonomy, e.g., how the baroreflex mechanism is engaged to modulate heart
rate variability within the cardiovascular closed loop (see, e.g., SECT. 5.6).
In a similar manner, a BA is performed for the generic static system V whether it
comprises two nodes (M = 2), whose activity can be described by the (possibly
vector) random variables {V1, V2}.

• Let the observer dispose of Q scalar processes Y = {Y1, . . . , YQ}, possibly orga-
nized in M blocks X = {X1, . . . , XM}. If this is the case, patterns of high-order
interaction (HOI) among the Q processes or the M blocks can be explored, such
that a high-order network analysis (HONA) is carried on and the corresponding
full model will be referred to as vector AR (VAR) model. This allows to inves-
tigate the high-order structures (I3) among groups of nodes through measures
quantifying the concepts of redundancy and synergy. These two general concepts
refer to the nature of the interactions among the multiple units of a complex
system (e.g., the brain, the human body, the global climate or any financial
system) (Battiston et al., 2020; Ivanov, 2021). Specifically, redundancy refers to
group interactions that can be explained by the communication of sub-groups
of variables, thus pertaining to information that is replicated across numerous
elements of the complex system, i.e., common information or pattern being
shared: observing a subsets of elements can resolve uncertainty across all the
other elements of that system. Conversely, synergistic information sharing takes
place when the joint state of three or more variables is necessary to resolve un-
certainty, arising from statistical interactions that can be found collectively in a
network but not in parts of it considered separately. Moreover, restricted models
can be formulated to investigate the linear interactions involving subgroups of
processes selected from Y or X, i.e., the single-node and pairwise activities through
a so-called hierarchical HONA (hHONA). In addition, when more than two
units are observed, the HOIs can be examined at different levels of resolution,
i.e., characterizing

(i) the role of the single node within the selected subset (node-specific analy-
sis),

(ii) the nature of the link between two nodes with respect to the remaining
nodes (link-specific analysis),

(iii) the overall activity of groups of nodes (multiplets) or the whole network
(network-specific analysis).

This type of analysis can be carried on whenever the observer wants to describe
complex physiological or neural networks involving parameters such as heart
rate, respiration, arterial pressure and cerebral blood flow (see, e.g., SECT. 5.7-
5.11), or groups of electroencephalographic signals extracted from electrodes
located over different areas of the cerebral cortex (see SECT. 6.2.4 - 6.2.5).
A static HONA is performed for the generic static system V when it comprises
M nodes, whose activity can be described by the (possibly vector) random
variables {V1, . . . , VM}.

2.2 Static Models of Random Variables

Well-established measures defined in the framework of information theory can be
exploited to study the interactions between pairs and/or groups of variables taken
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from the static network V . Assuming that the observed variables have a joint Gaussian
distribution, the analysis can be performed by exploiting linear parametric regression
models. Specifically, two generic zero-mean vector variables Vi and Vj, containing
respectively vi and vj scalar variables, are related by the following linear regression
model:

Vi = AjVj + Uj, (2.1)

where Vi is predicted using a vi× vj coefficient matrix Aj which weights the regressors
Vj, and Uj = [Uj,1 . . . Uj,vi ]

⊺ is a vector of vi independent Gaussian variables with zero
mean. Now, let us collect the remaining M− 2 variables in the vector Vz = V \ [Vi, Vj].
The zero-mean vector variables Vi and Vz are related by a linear regression model
similar to (2.1), where Vi is predicted using a coefficient matrix Az which weights
the regressors Vz and Uz = [Uz,1 . . . Uz,vi ]

⊺ is a vector of vi independent Gaussian
variables, i.e., Vi = AzVz + Uz. Further, the vector variable Vi can be predicted
using the coefficient matrices A(j)

jz and A(z)
jz which weight the regressors Vj and Vz

used simultaneously rather than individually, i.e., Vi = A(j)
jz Vj + A(z)

jz Vz + Ujz, where
Ujz = [Ujz,1 . . . Ujz,vi ]

⊺ is a vector of vi independent Gaussian variables.

2.3 Dynamic Models of Random Processes in the Time Do-
main

The time-, frequency- and information-domain measures which can be derived from
the static linear models described in SECT. 2.2 suffer from the limitation that they
only allow a static analysis of random variables where the temporal information is
disregarded. To perform a dynamic analysis, one needs to consider random processes,
intended as collections of random variables sorted in temporal order. The processes
are assumed to be jointly Gaussian distributed, to exploit the formalism linking
information-theoretic measures with linear regression models (Barrett, Barnett, and
Seth, 2010; Faes et al., 2016) and spectral quantities (Chicharro, 2011; Faes et al., 2021;
Antonacci et al., 2021). The parametric implementation exploits the knowledge that
linear regression models capture all of the entropy differences relevant to the various
information measures when the observed processes have a joint Gaussian distribution
(Barrett, Barnett, and Seth, 2010; Faes et al., 2016). We remark that our definitions
of bivariate and multivariate models, i.e., when two or more than two (groups of)
processes are observed, limit to past values only the possible influences of one process
to another, excluding instantaneous effects (i.e., effects occurring within the same
lag). The absence of instantaneous effects is denoted as strict causality of the process
(Korhonen et al., 1996; Baselli et al., 1997) and will be assumed henceforth ∀Q, M in
this thesis. However, since in the past years we also worked with extended models
including zero-lag effects (see, e.g., Pernice et al., 2022b), brief technical details about
their formulation are given in APPENDIX B, while two practical applications are
shown in SECT. 5.3, 5.5.

In the following subsections, we will first describe linear AR (SECT. 2.3.1), ARX
(SECT. 2.3.2) and VAR (SECT. 2.3.3) models in the time domain, representing the self-
dynamics of the single node, the interactions between two nodes, and the multiple
interactions among several nodes, respectively; then, the time domain formulations of
restricted parametric models obtained from the full models will be described in SECT.
2.3.4, and the problem of their identification starting from the full model parameters
will be detailed in SECT. 2.3.5.
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2.3.1 The Single Unit: AR Models

Autoregressive models can be identified on single (vector) processes to characterize
their own dynamics. In case of a generic zero-mean scalar random process Y with
variance σ2

Y (Q = M = 1), the following AR model is identified (Lütkepohl, 2005):

Yn =
p

∑
k=1

a(ar)
Y,kYn−k + U(ar)

Y,n, (2.2)

where p is the model order, defining the maximum lag used to quantify interactions,
Yn is the present state of Y, a(ar)

Y,k is the AR model coefficient relating the present with
the past of the process at lag k and U(ar)

Y is a zero-mean white process, i.e., a process
composed by independent identically distributed (i.i.d.) variables, with variance
σ2(ar)

UY
. Further, a block AR model can be identified when the overall activity at the

node is represented by the generic zero-mean vector process X = {Y1, . . . , YMX} of
dimension MX (Q = MX, M = 1):

Xn =
p

∑
k=1

A(ar)
X,kXn−k + U(ar)

X,n, (2.3)

where Xn = [Y1,n, . . . , YMX ,n]
⊺ is a MX-dimensional vector collecting the present state

of all processes, A(ar)
X,k the MX × MX matrix of the model coefficients relating the

present with the past of the processes at lag k, and U(ar)
X,n =

[
U(ar)

Y1,n, . . . , U(ar)
YMX ,n

]⊺
is a

vector of MX zero-mean white noises with MX × MX positive definite covariance
matrix Σ

(ar)
UX

. The block process Xn has a covariance matrix ΣX = E [XnX⊺
n], where

the diagonal elements represent the variances of the scalar processes in X, i.e., σ2
Yj

,
j = 1, . . . , MX.
Note that the model (2.3) is, as a matter of fact, a VAR model formally equivalent to
that defined in SECT. 2.3.3, but here is presented as block AR model to highlight that
the relevant dynamics are analyzed collectively as representative of the activity of a
single node of the analyzed vector.

2.3.2 Interactions Between Two Nodes: ARX Models

Auto- and cross-regressive models are identified whether two (groups of) network
units are observed. Generally, the two random processes representing the dynamic
activity of the units interact in a closed-loop manner, i.e., through bidirectional causal
relationships which allow to identify driver-response patterns. Different information-
theoretic measures of (non-)directed coupling and autonomy can be defined, whose
linear Gaussian formulation requires the identification of full ARX models from
which restricted AR and X models can be derived through a nontrivial mathematical
procedure detailed in SECT. 2.3.5.1. Note that ARX models have been generally
referred to as bivariate AR models (Barrett, Barnett, and Seth, 2010; Faes, Porta, and
Nollo, 2015).

These models feature two model equations, where the present states of the two
processes are written as linear combinations of the past states of both processes
weighted by a set of model coefficients plus the residuals. Assuming that Y is the
generic vector process comprising the two scalar processes {Y1, Y2} (Q = 2, M = 2),
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the following ARX model can be identified (Lütkepohl, 2005):

Y1,n =
p

∑
k=1

a(arx)
Y1Y1,kY1,n−k + a(arx)

Y1Y2,kY2,n−k + U(arx)
Y1,n, (2.4a)

Y2,n =
p

∑
k=1

a(arx)
Y2Y1,kY1,n−k + a(arx)

Y2Y2,kY2,n−k + U(arx)
Y2,n, (2.4b)

where Yn = [Y1,n, Y2,n]
⊺ is the 2-dimensional vector collecting the present state

of the two processes, A(arx)
Y,k =

[
a(arx)

Y1Y1,k a(arx)
Y1Y2,k

a(arx)
Y2Y1,k a(arx)

Y2Y2,k

]
is the 2 × 2 matrix of the model

coefficients relating the present with the past of the two processes at lag k, and

U(arx)
Y,n =

[
U(arx)

Y1,n, U(arx)
Y2,n

]⊺
a vector of 2 zero-mean white noises with 2× 2 positive definite

covariance matrix Σ
(arx)
UY

. The process Yn has a 2× 2 covariance matrix ΣY = E [YnY⊺
n],

where the diagonal elements represent the variances of the scalar processes {Y1, Y2},
i.e., σ2

Y1
, σ2

Y2
. If the network is composed of two nodes whose activity is mapped by

the two blocks {X1, X2} of dimensions M1, M2 (Q = M1 + M2, M = 2), the following
block ARX model can be identified:

X1,n =
p

∑
k=1

A(arx)
X1X1,kX1,n−k + A(arx)

X1X2,kX2,n−k + U(arx)
X1,n, (2.5a)

X2,n =
p

∑
k=1

A(arx)
X2X1,kX1,n−k + A(arx)

X2X2,kX2,n−k + U(arx)
X2,n, (2.5b)

where Xn =
[
X⊺

1,n, X⊺
2,n

]⊺
is the (M1 + M2)-dimensional vector collecting the present

state of the two processes, A(arx)
X,k =

[
A(arx)

X1X1,k A(arx)
X1X2,k

A(arx)
X2X1,k A(arx)

X2X2,k

]
is the (M1 + M2)× (M1 + M2)

matrix of the model coefficients relating the present with the past of the processes
at lag k, with A(arx)

X1X1,k, A(arx)
X1X2,k, A(arx)

X2X1,k, A(arx)
X2X2,k block matrices of dimensions (M1 ×

M1), (M1 ×M2), (M2 ×M1), (M2 ×M2), respectively, and U(arx)
X,n =

[
U(arx)

X1,n
⊺
, U(arx)

X2,n
⊺
]⊺

is a vector of (M1 + M2) zero-mean white noises with (M1 + M2) × (M1 + M2)

positive definite covariance matrix Σ
(arx)
UX

, with U(arx)
X1,n =

[
U(arx)

Y1,n, . . . , U(arx)
YM1 ,n

]⊺
, U(arx)

X2,n =[
U(arx)

YM1+1,n, . . . , U(arx)
YQ,n

]⊺
. The process Xn has a (M1 + M2) × (M1 + M2) covariance

matrix ΣX = E [XnX⊺
n], which can be partitioned into a 2 × 2 matrix where the

diagonal blocks are the covariance matrices of the two block processes in Xn, i.e., ΣX1

and ΣX2 .

2.3.3 The Whole Network: VAR Models

The generic Q-dimensional stationary vector random process Y can be represented
by the VAR linear model (Lütkepohl, 2005):

Yn =
p

∑
k=1

A(var)
Y,k Yn−k + U(var)

Y,n , (2.6)

where Yn = [Y1,n, . . . , YQ,n]
⊺ is a Q-dimensional vector collecting the present state

of all processes, A(var)
Y,k is the Q × Q matrix of the model coefficients relating the

present with the past of the processes at lag k, and U(var)
Y,n = [U(var)

Y1,n, . . . , U(var)
YQ,n]

⊺ is a
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vector of Q zero-mean white noises with Q×Q positive definite covariance matrix
Σ

(var)
UY

= E[U(var)
Y,n U(var)

Y,n
⊺
]. The main diagonal of Σ

(var)
UY

contains the variances of the
processes in U(var)

Y,n , i.e., σ2(var)
UYi

, i = 1, . . . , Q. The process Yn has a Q× Q covariance
matrix ΣY = E [YnY⊺

n], where the diagonal elements represent the variances of the
scalar processes {Y1, . . . , YQ}, i.e., σ2

Y1
, . . . , σ2

YQ
. We remark that Eqs. (2.2), (2.3), (2.4),

(2.5) are special cases of (2.6) at varying the number of observed nodes (M), as well
as the nature of the nodes (i.e., scalar or block processes).

2.3.4 Restricted Models in the Time Domain

While the VAR model (2.6) provides a global representation of the overall multivariate
process, to describe the linear interactions relevant to a given subset of processes we
need to define a restricted VAR model involving only those processes. The same
reasoning can be applied to the ARX model (2.4), from which restricted AR and X
models describing causality and autonomy patterns can be derived.

Restricted VAR models. From the full VAR model (2.6), a restricted VAR model
involving only the selected processes, say Z, can be formulated as (Faes et al., 2022a)

Zn =
∞

∑
k=1

BZ,kZn−k + WZ,n, (2.7)

where Zn and WZ,n are column vectors of dimension R, and BZ,k is an R× R coef-
ficient matrix. We denote as ΣWZ = E[WZ,nW⊺

Z,n] the R × R covariance matrix of
the residuals in WZ. Note that the order of the restricted VAR model is theoretically
infinite, and see SECT. 2.3.5.1 for the identification of its parameters starting from the
parameters of the full model (2.6).

Restricted AR and X models. Similarly, from the full ARX model (2.4), a restricted
AR model involving only the target process, say Y2, and an X model involving only
the target as the predicted variable and both processes as the regressors can be defined
(Sparacino et al., 2023a). To implement this concept, the present state of the target, Y2,n,
is described first from the past of Y2 only through the restricted AR model (Sparacino
et al., 2023a)

Y2,n =
∞

∑
k=1

bY2Y2,kY2,n−k + WY2|Y2,n, (2.8)

where bY2Y2,k are AR coefficients and WY2|Y2
is a white noise process with variance

λ2
WY2 |Y2

. Then, a restricted X model is derived whereby Y2,n is described only from the
past of the driver Y1 (Sparacino et al., 2023a):

Y2,n =
∞

∑
k=1

bY2Y1,kY1,n−k + WY2|Y1,n (2.9)

where bY2Y1,k are cross-regression coefficients and WY2|Y1
is an innovation process

with variance λ2
WY2 |Y1

. Note that the orders of the restricted AR and X models are
theoretically infinite, and see SECT. 2.3.5.1 for the identification of their parameters
starting from the parameters of the full ARX model (2.4). Straightforwardly, equations
(2.8) and (2.9) can be written taking Y1 as the target process.



20 Chapter 2. Linear Modelling of Stochastic Interactions

2.3.5 Model Identification

The identification procedure of the VAR model (2.6) is typically performed by means
of estimation methods based on minimizing the prediction error, i.e., the difference
between actual and predicted data (Kay, 1988; Lütkepohl, 2005). While several
approaches have been proposed throughout the years (Schlögl, 2006; Antonacci
et al., 2020), the most common estimator is the multivariate version of the ordi-
nary least-squares (OLS) method (Lütkepohl, 2005). Briefly, defining the past his-
tory of Y truncated at p lags as the pQ-dimensional vector Yp

n = [Y⊺
n−1, . . . , Y⊺

n−p]
⊺

and considering L consecutive time steps, a compact representation of (2.6) can be
defined as y = A(var)

Y yp + U(var)
Y , where A(var)

Y = [A(var)
Y,1 , . . . , A(var)

Y,p ] is the Q × pQ ma-

trix of unknown coefficients, y = [Yp+1, . . . , YL] and U(var)
Y = [U(var)

Y,p+1, . . . , U(var)
Y,L ] are

Q× (L− p) matrices, and yp = [Yp
p+1, . . . , Yp

L] is a pQ× (L− p) matrix collecting the
regressors. The method estimates the coefficient matrices through the OLS formula,
Â(var)

Y = y(yp)⊺[yp(yp)⊺]−1. The innovation process is estimated as the residual time-
series Û

(var)

Y = y− Â(var)
Y yp, whose covariance matrix Σ̂

(var)

UY
is an estimate of Σ

(var)
UY

. After
identification, the model (2.6) can be analyzed in the frequency domain (see SECT.
2.4).
As regards the selection of the model order p, several criteria exist for its determina-
tion (see, e.g., Lütkepohl, 2005; Karimi, 2011). One commonly used approach is to
set the order according to the Akaike Information Criterion (AIC) (Akaike, 1974), or the
Bayesian Information Criterion (BIC) (Schwarz, 1978). The primary difference between
AIC and BIC lies in how they penalize model complexity and their underlying theo-
retical foundations. AIC is based on information theory and aims to minimize the
information lost when using a model to approximate the true process. It focuses on
predictive accuracy and is more likely to select models that perform well for future
data. The penalty for the number of parameters is more moderate with AIC, which
indeed balances goodness of fit with model complexity but places less emphasis
on the number of parameters. On the other hand, BIC approximates the posterior
probability of a model given the data, and seeks the model that is most likely to
be the true one, based on the given data, and is more concerned with identifying
the correct model. Penalty grows with the sample size using BIC, which heavily
penalizes models with more parameters, especially in larger datasets. Practically, it is
crucial to find the right balance between excessively low orders, which might lead
to an inadequate description of crucial oscillatory information in the vector process,
and overly high orders, which could result in overfitting, with the outcome that the
model captures not only the desired information but also includes noise.

2.3.5.1 Identification of Restricted Models

An issue with great practical relevance is that the order of the restricted models in
Eqs. (2.7), (2.8), (2.9) is typically infinite and thus very difficult to identify from
finite-length time series. The approach followed to face this issue in the context of
causality analysis is essentially based on truncating the order of the restricted model
to p, and estimating its parameters from the relevant subset of the original data.
Though simple, this approach exposes to a trade-off between bias and variance of the
estimates that prevents reliable model identification in most cases (Stokes and Purdon,
2017). To solve this issue, methods which essentially extract the parameters of the
restricted model from those of the full model have been proposed, i.e., methods based
on state-space (SS) models (Faes, Stramaglia, and Marinazzo, 2017; Barnett, Barrett, and
Seth, 2018) and on the resolution of the Yule-Walker (YW) equations (Barnett and Seth,
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2014; Faes, Porta, and Nollo, 2015; Faes et al., 2016); (Sparacino et al., 2023a). In the
following, the two methods will be thoroughly described in the context of VAR and
ARX models.

1) State-space models. The issue related to the formation of the restricted VAR
models (2.7) can be overcome working in the frame of SS models (Barnett and Seth,
2015). This class of models is the most appropriate to use because it is closed under
the formation of restricted models: in fact, any restricted process obtained from the
VAR process (2.6) is actually a VAR process with a moving average component, or
equivalently a finite-order SS process (Barnett, Barrett, and Seth, 2018). Therefore,
using SS models allows to identify restricted models from the parameters of the
original VAR model estimated with a single regression, thus guaranteeing high
computational reliability. We exploit the SS modeling to describe the original process
Y obeying the VAR representation (2.6) using the SS model

Sn+1 = ASn + KU(var)
Y,n , (2.10a)

Yn = CSn + U(var)
Y,n , (2.10b)

where Sn = [Y⊺
n−1, . . . , Y⊺

n−p]
⊺ is the pQ-dimensional state process and the SS parame-

ters (A, C, K, V) are given by the matrices C = [A(var)
Y,1 , . . . , A(var)

Y,p ], K = [IQ0Q×Q(p−1)]
⊺,

A = [C; IQ(p−1)0Q(p−1)×Q], and V = E[U(var)
Y,n U(var)

Y,n
⊺
] = Σ

(var)
UY

(I and 0 are the identity
and null matrices, respectively). Then, to represent the R-dimensional process Z (see
(2.7)) formed by taking from Y the subset of processes indexed by the elements of
r ⊂ {1, . . . , Q}, we replace (2.7) with a restricted SS model with state equation (2.10a)
and observation equation Zn = C(r,:)Sn + WZ,n. The parameters of the model are
(A, C(r,:), KVK⊺, V(r,r), KV(:,r)), where the superscripts denote selection of the rows
and/or columns with indices r in a matrix. To exploit the restricted SS model for
the linear causality analysis of Z it is necessary to lead its form back to that of (2.10),
which reads (Barnett and Seth, 2015)

Sn+1 = ÃSn + K̃WZ,n, (2.11a)

Zn = C̃Sn + WZ,n. (2.11b)

The parameters of the restricted model (2.11) are (Ã, C̃, K̃, Ṽ), of dimension pQ×
pQ, R× pQ, pQ× R, R× R, and can be derived directly from the parameters A(var)

Y,k
and Σ

(var)
UY

of the original full VAR model (2.6) (Barnett and Seth, 2015): while the state
and observation matrices are easily determined as Ã = A and C̃ = C(r,:), the gain
K̃ and the restricted innovation covariance Ṽ = ΣWZ must be obtained by solving a
discrete algebraic Riccati equation (DARE) (see refs. (Barnett and Seth, 2015; Faes,
Marinazzo, and Stramaglia, 2017) for detailed derivations). After identification, the
model (2.11) can be analyzed in the frequency domain to study spectral interactions
relevant to the subset Z (see SECT. 2.4).
The method based on SS models can also be applied to the ARX model (2.4) to derive
the parameters of the two corresponding restricted AR models of Y1, Y2 in the form of
(2.8), i.e., {bY1Y1 , λ2

WY1 |Y1
} and {bY2Y2 , λ2

WY2 |Y2
}, respectively. However, since the (groups

of) predicted variables and regressors must be the same in SS models, this approach
is not feasible when dealing with restricted X models derived from ARX models,
where the predictors are represented by the past states of the driver process while
the predicted variable is the present state of the target. The X model parameter
identification thus requires a different approach to the problem.
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2) Resolution of the Yule-Walker equations. The issue related to the formation
of X restricted models from the ARX model (2.4) can be overcome by solving the YW
equations. The restricted model coefficients, bY2Y2,k and bY2Y1,k, and the variance of the
residuals, λ2

WY2 |Y2
and λ2

WY2 |Y1
, appearing in (2.8) and (2.9) respectively, can be identified

starting from the covariance and cross-covariance matrices between the present and
past variables of the two scalar processes Y1 and Y2 (Sparacino et al., 2023a). Using
these matrices allows to identify restricted models from the parameters of the original
ARX model estimated with a single regression up to an arbitrarily large order q,
thus guaranteeing high computational reliability. For jointly Gaussian processes,
these matrices contain as scalar elements the covariance between two time-lagged
variables taken from the processes Y1 and Y2, which in turn appear as elements of the
2× 2 autocovariance of the whole observed 2-dimensional process Yn = [Y1,nY2,n]

⊺,
defined at each lag k ≥ 0 as Γk = E[YnY⊺

n−k]. The procedure described in (Faes,
Porta, and Nollo, 2015; Faes et al., 2016) exploits the possibility to compute Γk from
the parameters of the ARX formulation of the process Yn via the well-known YW
equations:

Γk =
p

∑
l=1

A(arx)
Y,l Γk−l + δk0Σ

(arx)
UY

, (2.12)

where δk0 is the Kronecher product. In order to solve this equation for Γk, with
k = 0, . . . , p − 1, we first express the ARX model (2.4) in compact form as ψn =
Aψn−1 + En, where:

ψn = [Y⊺
nY⊺

n−1, . . . , Y⊺
n−p+1]

⊺;

A =


A(arx)

Y,1 . . . A(arx)
Y,p−1 A(arx)

Y,p
I . . . 0 0
...

. . .
...

...
0 . . . I 0

 ;

En = [U(arx)
Y,n

⊺
01×2(p−1)]

⊺.

(2.13)

Then, the 2p× 2p covariance matrix of ψn, which is defined as Ψ = E[ψnψ⊺
n ] and has

the form

Ψ =


Γ0 Γ1 . . . Γp−1
Γ
⊺
1 Γ0 . . . Γp−2
...

...
. . .

...
Γ
⊺
p−1 Γ

⊺
p−2 . . . Γ0

 , (2.14)

can be expressed as Ψ = AΨA⊺ + Ξ where Ξ = E[EnE⊺
n] is the 2p× 2p covariance of

En. This last equation is a discrete-time Lyapunov equation, which can be solved for
Ψ yielding the autocovariance matrices Γ0, . . . , Γp−1 (Faes, Porta, and Nollo, 2015).
Note that Γ0 ≡ ΣY. Finally, the autocovariance can be calculated recursively for any
lag k ≥ p by repeatedly applying YW equations (2.12) up to the desired lag q, starting
from the parameters of the ARX representation (2.4) of the observed Gaussian vector
process Y.
To summarize, the above-described procedure is based first on computing the au-
tocovariance sequence of the bivariate process Y from its parameters (A(arx)

Y,l , with
l = 1, . . . , p, and Σ

(arx)
UY

), which are previously identified through the vector OLS
approach, and then on rearranging the elements of the autocovariance matrices for
building the auto- and cross-covariances to be used in the computation of the AR
parameters {bY2Y2,k, λ2

WY2 |Y2
}, and of the X parameters {bY2Y1,k, λ2

WY2 |Y1
}, appearing in
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(2.8) and (2.9) respectively. The identification of the restricted models (2.8) and (2.9)
can be represented in the frequency domain to study spectral patterns of causality
and autonomy (see SECT. 2.4).
The parameter determining the accuracy of the procedure is the number of lags used
to truncate the past history of the process: considering the past up to lag q corresponds
to calculating the autocovariance of the process (2.4) up to the matrix Γq. Given that
the autocovariance of a stable vector AR process decays exponentially with the lag,
with a rate of decay depending on the modulus of the largest eigenvalue of A, ρ(A),
it has been suggested to compute the autocovariance up to a lag q such that ρ(A) is
smaller than a predefined numerical tolerance (Barnett and Seth, 2014). It has been
found that computation of very long autocovariance sequences is not necessary for
the purpose of evaluating information dynamics, because all measures stabilize to
constant values already for small lags (typically q = 10) even for reasonably high
values of ρ(A) (Faes et al., 2013b; Faes et al., 2015; Faes, Porta, and Nollo, 2015).
Remarkably, the procedure described above yields results similar to the method of SS
models with q sufficiently large.

Restricted AR model. The AR model (2.8) can be written in compact form as
Y2,n = BY2Y2Yq

2,n + WY2|Y2,n, where BY2Y2 = [bY2Y2,1, . . . , bY2Y2,q] is the vector collecting

all coefficients up to lag q. From this representation, taking the expectation E[Y2,nYq⊺
2,n]

and solving for BY2Y2 yields:

BY2Y2 = ΣY2,n,Yq
2,n
· Σ−1

Yq
2,n

, (2.15)

where ΣYq
2,n

is the q× q autocovariance matrix of Yq
2,n defined as ΣYq

2,n
= E[Yq

2,nYq⊺
2,n],

while ΣY2,n,Yq
2,n

is the 1× q cross-covariance matrix of Y2,n and Yq
2,n, defined as ΣY2,nYq

2,n
=

E[Y2,nYq⊺
2,n]. The matrices ΣYq

2,n
and ΣY2,nYq

2,n
are extracted from Γk. Then, the variance

of the AR residuals λ2
WY2 |Y2

in (2.8) is computed as (Barnett, Barrett, and Seth, 2009):

λ2
WY2 |Y2

= σ2
Y2
− ΣY2,n,Yq

2,n
· Σ−⊺

Yp
2,n
· Σ⊺

Y2,n,Yq
2,n

, (2.16)

where σ2
Y2

is the variance of Y2.

Restricted X model. Analogously to (2.15), the X model coefficients bY2Y1,k in (2.9)
are computed as:

BY2Y1 = ΣY2,n,Yq
1,n
· Σ−1

Yq
1,n

, (2.17)

where BY2Y1 = [bY2Y1,1, . . . , bY2Y1,q], ΣYq
1,n

is the q × q autocovariance matrix of Yq
1,n

defined as ΣYq
1,n

= E[Yq
1,nYq⊺

1,n], while ΣY2,n,Yq
1,n

is the cross-covariance matrix of Y2,n and

Yq
1,n, defined as ΣY2,n,Yq

1,n
= E[Y2,nYq⊺

1,n]. The matrices ΣYq
1,n

and ΣY2,n,Yq
1,n

are extracted

from Γk. Then, the variance of the X residuals λ2
WY2 |Y1

in (2.9) is computed as:

λ2
WY2 |Y1

= σ2
Y2
− ΣY2,n,Yq

1,n
· Σ−⊺

Yq
1,n
· Σ⊺

Y2,n,Yq
1,n

. (2.18)

2.4 Dynamic Models of Random Processes in the Frequency
Domain

In the linear signal processing framework, the VAR model (2.6) can be suitably
represented in the frequency domain. To this end, the Fourier Transform (FT) of (2.6)
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is computed to derive

Y(ω) = [I−
p

∑
k=1

A(var)
Y,k e−jωk]−1U(var)

Y (ω) = HY(var)(ω)U(var)
Y (ω), (2.19)

where Y(ω) and U(var)
Y (ω) are the FTs of Yn and U(var)

Y,n , ω ∈ [−π, π] is the normalized

angular frequency (ω = 2π
f
fs

= 2π f̄ , with f̄ = f / fs, f ∈ [− fs
2 , fs

2 ], being fs the

sampling frequency of the processes), j =
√
−1 and I is the Q-dimensional identity

matrix. The Q×Q matrix HY(var)(ω) contains the transfer functions (TF) relating the
FTs of the innovation processes in U(var)

Y to the FTs of the processes in Y. Computing
HY(var)(ω) on the unit circle in the complex plane (HY(var)( f̄ ) = HY(var)(ω)|z=ejω ) and
exploiting spectral factorization, it is possible to derive the Q× Q power spectral
density (PSD) matrix of the stationary vector random process Y = {Y1, . . . , YQ} in the
frequency domain as

P(var)
Y ( f̄ ) = HY(var)( f̄ )Σ(var)

UY
HY(var)∗( f̄ ), (2.20)

where ∗ stands for the Hermitian transpose. The PSD matrix contains the individual
PSD of the process Yi, P(var)

Yi
( f̄ ), as ith diagonal element and the cross-PSD between the

processes Yi and Yj, P(var)
YiYj

( f̄ ), as off-diagonal elements in the position ij (i, j = 1, . . . , Q).
When the subdivision of Y in M blocks is considered to yield X = {X1, . . . , XM}, the TF
matrix matrix can be partitioned in M×M blocks to evidence the spectral properties
related to the internal dynamics, through the Mi × Mi diagonal blocks HY(var)

XiXi
(ω),

or to the causal interactions between Xi and Xj, through the Mi ×Mj off-diagonal
blocks HY(var)

XiXj
(ω), i, j ∈ {1, . . . , M}, i ̸= j. Similarly, the PSD matrix P(var)

Y ( f̄ ) can be
partitioned in M×M blocks as follows:

P(var)
X ( f̄ ) =

 P(var)
X1

( f̄ ) · · · P(var)
X1XM

( f̄ )
...

. . .
...

P(var)
XMX1

( f̄ ) · · · P(var)
XM

( f̄ )

 , (2.21)

where the ijth block has dimension Mi ×Mj.

The PSD matrix (2.20) can be estimated as P̂
(var)

Y ( f̄ ) = ĤY(var)( f̄ )Σ̂
(var)

UY
ĤY(var)∗( f̄ ), where

the transfer matrix is ĤY(var)( f̄ ) = [I− Â(var)
Y ( f̄ )]−1, with Â(var)

Y ( f̄ ) = ∑
p
k=1 Â(var)

Y,k e−j2π f̄ k

(see SECT. 2.3.5 for the VAR identification procedure).
The frequency domain representation of the AR (2.2) and ARX (2.4) models,

though not shown here for brevity, follows the footprints of the representation given
here for VAR models, with suitable mathematical adaptations related to the dimen-
sions of the involved processes.

2.4.1 Restricted Models in the Frequency Domain

1) Frequency-domain expansion of SS VAR models. The linear parametric rep-
resentation of the dynamic interactions among the selected subset of processes can
be translated in the frequency domain. Starting from the subset Z of the observed
multivariate process, described by the SS model (2.11), taking the FT of the state
equation (2.11a) yields

S( f̄ ) = ÃS( f̄ )e−j2π f̄ + K̃WZ( f̄ )e−j2π f̄ , (2.22)
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where S( f̄ ) and WZ( f̄ ) are the FTs of Zn and WZ,n. From (2.22) it is easy to derive
the PSD of the state process, S( f̄ ), to be substituted in the FT of (2.11b) to obtain
Z( f̄ ) = H̃Z( f̄ )WZ( f̄ ), which evidences the TF matrix

H̃Z( f̄ ) =
(
IR + C̃[IpQ − Ãe−j2π f̄ ]−1K̃e−j2π f̄ )WZ( f̄ ). (2.23)

The R× R matrix H̃Z( f̄ ) contains the TFs relating the FTs of the innovation processes
in WZ to the FTs of the processes in Z, and can be used together with the innovation
covariance matrix to derive the R× R PSD matrix of the process Z using spectral
factorization:

SZ( f̄ ) = H̃Z( f̄ )ΣWZ H̃Z∗( f̄ ). (2.24)

Assuming that, e.g., Z = {Z1, Z2}, with the two blocks having dimensions R1 and R2,
the matrix SZ( f̄ ) can be then factorized in blocks to make explicit the PSDs of Z1 and
Z2, SZ1( f̄ ) and SZ2( f̄ ), as diagonal blocks, and the cross-spectral densities between
Z1 and Z2, SZ1Z2( f̄ ) and SZ2Z1( f̄ ), as off-diagonal blocks. This representation allows
to define spectral measures of coupling and causality for VAR processes (see CHAPT.
4).

2) Frequency-domain expansion of AR and X models. Here, we provide
mathematical details regarding the spectral representation of restricted AR and X
models derived from the ARX model (2.4).

Specifically, the spectral behaviour of the restricted AR model (2.8) can be straight-
forwardly derived from the diagonal element P(arx)

Y2
( f̄ ) of the 2× 2 PSD matrix of

the ARX model (2.4), i.e., P(arx)
Y ( f̄ ) =

[
P(arx)

Y1
( f̄ ) P(arx)

Y1Y2
( f̄ )

P(arx)
Y2Y1

( f̄ ) P(arx)
Y2

( f̄ )

]
. This approach is equiv-

alent to identify an AR model on the target as in (2.2), where the PSD can be writ-
ten as P(ar)

Y ( f̄ ) = |HY(ar)( f̄ )|2σ2
UY

(ar), with | · | standing for matrix determinant and
HY(ar)( f̄ ) = [1− ∑

p
k=1 a(ar)

Y,ke−j2kπ f̄ ]−1 being the TF relating the FT of the innovation
process UY to the FT of the process Y. The two equivalent representations allow to
define a spectral measure of causality for ARX processes (see CHAPT. 4) (Sparacino
et al., 2023a).
On the other hand, deriving the spectral representation of restricted X models in the
frequency domain is more challenging, though straightforward whether the X model
parameters are directly derived from the ARX model parameters through resolution
of the YW equations (see SECT. 2.3.5.1). To this end, the following linear model
formed by the Eqs. (2.4a) and (2.9) taken together, being representative of the driver
and the target dynamics, respectively

Y1,n =
p

∑
k=1

a(arx)
Y1Y1,kY1,n−k + a(arx)

Y1Y2,kY2,n−k + U(arx)
Y1,n, (2.25a)

Y2,n =
∞

∑
k=1

bY2Y1,kY1,n−k + WY2|Y1,n, (2.25b)

can be represented in the Z domain as Y(z) = GY(z)WY(z), where WY(z) is the
Z-transform of the noise vector WY,n = [U(arx)

Y1,nWY2|Y1,n]
⊺ and the 2×2 transfer matrix is

GY(z) =
[

GY
Y1Y1

(z) GY
Y1Y2

(z)
GY

Y2Y1
(z) GY

Y2Y2
(z)

]
=

[
1− A(arx)

Y1Y1
(z) −A(arx)

Y1Y2
(z)

−BY2Y1(z) 1

]−1

, (2.26)

with A(arx)
Y1Y1

(z) = ∑
p
k=1 a(arx)

Y1Y1,kz−k, A(arx)
Y1Y2

(z) = ∑
p
k=1 a(arx)

Y1Y2,kz−k, BY2Y1(z) = ∑
p
k=1 bY2Y1,kz−k.

Computing GY(z) on the unit circle of the complex plane (z = ej2π f̄ ) yields the 2×2
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complex transfer function in the frequency domain, GY( f̄ ). This representation al-
lows to define a spectral measure of autonomy for ARX processes (see CHAPT. 4)
(Sparacino et al., 2023a).

2.5 Summary of chapter 2

This chapter provided an overview of the theoretical background related to the
linear parametric representation of static and dynamic network systems. Remarkably,
the formalism introduced here allowed the expansion of the dynamic information-
theoretic measures quantifying single-node, pairwise and high-order network activity
in the frequency domain, which is essential to investigate the oscillatory content of
individual time series and to retrieve amounts of information shared by the observed
processes within specific frequency bands with plausible physiological meaning.

First, the probabilistic concepts of random (i.e., stochastic) variables and processes
have been deepened. Stochastic interactions refer to the ways in which random
variables and processes influence each other in network systems. These interactions
can be broadly categorized into static and dynamic, depending on whether the sys-
tem’s behavior involves time-dependent processes or remains time-invariant. Static
interactions involve static systems V1, . . . ,VM where randomness affects variables in a
time-independent context, i.e., interactions are contextualized without accounting
for the temporal dimension and are characterized by probabilistic distributions, mo-
ments (mean, variance) and correlations. The focus here is on random variables, i.e.,
mathematical variables whose values are subject to variations due to chance. The
multiple interactions between M random variables V1, . . . , VM can be investigated by
analyzing multiple realizations of these variables available in the form of multiple
data sequences. Under the assumption of jointly Gaussian variables, the analysis can
be performed by exploiting linear parametric regression models. Dynamic interactions
occur in dynamic systems X1, . . . ,XM where randomness unfolds over time, influ-
encing processes that evolve dynamically. Such systems are modeled using random
processes, which can be thought as sequences of random variables ordered according
to time. In this context, the multiple interactions between M processes X1, . . . , XM
can be investigated by means of a dynamic analysis of multiple realizations of these
processes available in the form of time series. Parametric autoregressive models can
be exploited for analyzing and predicting time series data, while spectral analysis is
essential for characterizing the frequency content of stochastic interactions among
these processes. The processes are assumed to be stationary and jointly Gaussian
distributed to exploit the formalism linking measures of information rates with linear
regression models and spectral quantities.

Distinct linear models can be identified depending on the number of observed
units (i.e., related to univariate, bivariate and multivariate analysis, the latter referred
to as high-order network analysis) and the order of interactions (i.e., relationships
or patterns involving single-node I1, pairwise I2 or high-order I3 activities). Uni-
variate analysis (UA) examines a single network node, focusing on the dynamics of
the stochastic variable or process describing the activity at the node. In the case of
a dynamic system whose activity is described by a stationary Gaussian (possibly
vector) process, this type of analysis is generally performed via linear autoregres-
sive (AR) models relating the present state of the process to its past states. Bivariate
analysis (BA) examines the relationship between two nodes, and identifies correla-
tions or causal links exploring how one variable/process might influence the other
one. Auto- and cross-regressive (ARX) models are exploited to describe the linear
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dependencies among two dynamic systems under the hypotheses of stationarity
and gaussianity of the observed data. High-order network analysis (HONA) involves
examining three or more variables simultaneously. It focuses on understanding the
redundant/synergistic relationships among the data, often dealing with complex, in-
terdependent variables/processes whose linear dependencies are described by means
of vector AR (VAR) models under the hypotheses of stationarity and gaussianity of
the observed data. A hierarchical HONA (hHONA) is performed to investigate the
role of the single node, the pair of nodes and the group of nodes (multiplet) in sharing
information with the rest of the system.

The identification procedure of a VAR model is typically performed by means of
estimation methods based on minimizing the prediction error. The most common
estimator is the multivariate version of the ordinary least-squares (OLS) method,
where model order is typically selected via the Akaike Information Criterion (AIC) or
the Bayesian Information Criterion (BIC). Since working with bivariate or multivariate
datasets, as well as dealing with different orders of interactions (i.e., with patterns
involving single-node, pairwise or high-order activities), requires the construction
of restricted models involving only subsets of data, it is crucial to face the issue
related to the order of these models which is typically infinite and thus very difficult
to identify from finite-length time series. In this thesis, we worked with methods
which essentially extract the parameters of the restricted model from those of the full
model, i.e., methods based on state-space (SS) models and on the resolution of the
Yule-Walker (YW) equations, without the need to estimate their coefficients from the
observed subsets of data.
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Part II

Information-Theoretic Analysis of
Network Systems
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Chapter 3

Static Networks of Random
Variables

This chapter reviews the entropy measures adopted to describe static networks
mapped by random variables, and relevant to the information-theoretic analysis of
random processes that will be discussed in the next chapter (CHAPT. 4).

Let us consider the static network system V composed of M nodes. The activities
at the single nodes, as well as the interactions between the activities of two nodes, can
be assessed straightforwardly using univariate and bivariate entropy-based measures
of static interactions, e.g., entropy and mutual information (SECT. 3.1, FIG. 3.1).
However, when more than two units are considered, more sophisticated approaches
are needed to examine HOIs at different levels of resolution, i.e., characterizing the
role of the single node within the selected subset (node-specific analysis), the nature of
the link between two nodes with respect to the remaining nodes (link-specific analysis),
as well as the overall activity of groups of nodes or the whole network (network-specific
analysis), as depicted in FIG. 2.2. To this end, entropy-based measures of static high-
order interactions, e.g., Interaction Information, O-Information and the B-Index (FIG.
3.1), are defined to provide a more comprehensive and detailed description of the
analysed network system and will be thoroughly discussed in SECT. 3.2. Simulation
examples of the static interaction measures at different orders are instead provided in
SECT. 3.3 to show the drawbacks and the strengths of the proposed framework.

3.1 Single-Node and Pairwise Connectivity

By using an information-theoretic perspective, the activity at the ith node of the static
network system V can be assessed through the information carried by the (possibly
vector) variable Vi assuming values vi in a continuous domain, which is quantified
by the well-known Shannon entropy (EN) measure (Shannon, 1948; Cover, 1999):

H(Vi) = E

[
log

1
pVi(vi)

]
, (3.1)

while the interaction between the activities of the ith and jth nodes can be assessed
through the mutual information (MI) between Vi and Vj:

I(Vi; Vj) = E

[
log

pVi ,Vj(vi, vj)

pVi(vi)pVj(vj)

]
. (3.2)

The entropy quantifies the information contained in a random variable intended as
the average uncertainty about its outcomes, while the MI quantifies the information
shared by two variables intended as the uncertainty about one variable that is resolved
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FIGURE 3.1: Measures of static interaction in a system of multiple nodes. An external
observer characterizes the behavior of the system through a static analysis; depending on the
number of observed nodes, the observer performs a univariate (UA), bivariate (BA) or high-
order network (HONA) analysis, where the complexity of the single node, the interactions
between two nodes and the emerging behavior of the whole network are investigated,
respectively, through static measures of Entropy (EN), Mutual Information (MI), Interaction
Information (II), O-Information (OI) and B-Index (B). Single-node I1 and pairwise I2 activities
can be assessed in the case of BA, while the presence of a greater number of nodes allows
to investigate higher order dependencies (I3). HONA can be further subdivided into node-
specific, link-specific and network-specific analyses, where the role of the single node, the link

and the whole network are investigated.
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by knowing the other variable. Remarkably, the MI is a symmetric measure (i.e.,
I(Vi; Vj) = I(Vj; Vi)), and is linked to the joint and individual entropies of the two
variables by the relation

I(Vi; Vj) = H(Vi) + H(Vj)− H(Vi, Vj). (3.3)

The latter can be also expressed as I(Vi; Vj) = H(Vi)− H(Vi|Vj), where

H(Vi|Vj) = H(Vi, Vj)− H(Vj) (3.4)

is the conditional entropy (CE) of Vi given Vj, quantifying the information carried by
one variable that is not shared with the other, intended as the residual uncertainty
which remains in one variable when the other variable is known. The relations be-
tween entropy, MI and CE are depicted in the Venn diagram representation in FIG.
3.2a. The role of the MI as a measure of pairwise connectivity in networks of multiple
interacting nodes has been investigated in the frame of functional magnetic resonance
imaging data in our recent publications Valenti et al., 2022, Sparacino et al., 2023b
and Sparacino et al., 2023c. The application of the measures to fMRI data will be
presented and discussed in SECT. 6.1.

3.1.1 Linear Parametric Formulation

Let us consider the linear regression model in (2.1). The MI between the two variables
Vi and Vj can be estimated exploiting the relation between entropy and variance
valid for Gaussian variables (Barrett, Barnett, and Seth, 2010), i.e. expressing the
entropy of the predicted variable Vi as

H(Vi) =
1
2

log
(
(2πe)vi |ΣVi |

)
, (3.5)

and the CE of the predicted variable Vi given the predictor Vj as

H(Vi|Vj) =
1
2

log
(
(2πe)vi |ΣUj |

)
, (3.6)

where ΣVi is the vi × vi covariance matrix of the predicted variable Vi and ΣUj is the
vi × vi covariance matrix of the prediction error Uj. Then, combining (3.4), (3.5) and
(3.6), the MI (3.3) can be expressed as

I(Vi, Vj) =
1
2

log
(
|ΣVi |
|ΣUj |

)
. (3.7)

3.2 High-Order Interactions

Network-specific analysis of HOIs. Network-specific analysis of HOIs in a static
framework is performed via a measure recently proposed to describe the interactions
among several random variables. To characterize this measure, let us start with the
three variables Vi, Vj and Vk, i, j, k ∈ {1, . . . M}. The high-order interaction among
them is quantified by the interaction information (II) (McGill, 1954), which compares
the information that one target variable, say Vi, shares with two source variables,
say Vj and Vk, when the sources are taken separately but not when they are taken
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FIGURE 3.2: Venn-diagram representation of the information measures quantifying inter-
actions in static networks of random variables. a) Mutual information (MI) between two
generic scalar random variables V1 and V2, I(V1; V2), obtained as the difference between the
entropy H(V1) and the conditional entropy H(V1|V2). b) Interaction information (II) among
the three variables V1, V2 and V3, I(V1; V2; V3), obtained according to (3.8). c) Gradient of
the O-information (OI), ∆(V4; {V1, V2, V3}), quantifying the information increment obtained
when a fourth variable V4 is added to the group of random variables {V1, V2, V3}, obtained
according to (3.12); the OI among these four variables is obtained summing the interaction
information I(V1; V2; V3) and the gradient ∆(V4; {V1, V2, V3}). The figure is taken from Spara-

cino et al., 2024b.

together. Accordingly, the II is quantified subtracting the MI between the target and
the two sources from the sum of the MIs between the target and each source:

I(Vi; Vj; Vk) = I(Vi; Vj) + I(Vi; Vk)− I(Vi; Vj, Vk). (3.8)

The computation of the II is illustrated using Venn diagrams in FIG. 3.2b. Importantly,
the II is symmetric (i.e., its value does not change modifying the target variable) and
can take either positive or negative values. Specifically, the II is positive if the two
sources share more information with the target when they are considered individually,
denoting redundancy; on the contrary, the II is negative if the two sources share
more information with the target when they are considered jointly, denoting synergy.
Redundancy and synergy represent the two basic types of high-order statistical
dependencies.

The II has been recently generalized to allow the information-theoretic analysis of
HOIs among an arbitrarily large number of random variables through the definition
of the so-called O-information (OI) (Rosas et al., 2019), which measures the balance
between redundancy and synergy in a multiplet of N variables. The two building
blocks of OI are the total correlation (TC) (Watanabe, 1960) and the dual total corre-
lation (DTC) (Sun, 1975), defined as follows for a system described by N stochastic
variables VN = {V1, . . . , VN}:

TC(VN) =
N

∑
i=1

H(Vi)− H(VN), (3.9)

DTC(VN) = H(VN)−
N

∑
i=1

H(Vi | VN
−i), (3.10)

where VN
−i denotes the set of all the variables in VN but Vi. TC quantifies the collective

constraints, whilst DTC quantifies the shared randomness (Rosas et al., 2019). The OI
is defined as the difference TC (3.9) - DTC (3.10) and assumes positive values when
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the interdependencies among variables can be more efficiently explained as shared
randomness, and negative values when collective constraints can be more convenient
(Rosas et al., 2019). Consequently, the OI of the system can be written as (Rosas et al.,
2019)

Ω(VN) = (N − 2)H(VN) +
N

∑
i=1

[
H(Vi)− H(VN

−i)
]
. (3.11)

If Ω > 0, the system is redundancy-dominated. On the other hand, when Ω < 0
the dependencies are better explained as patterns that can be observed in the joint
state of multiple variables but not in subsets of these; in other words, the system is
synergy-dominated. It is clear that the main drawback of the OI is the fact it does
not put in evidence multiplets of variables which are both redundant and synergistic
with equal strength, whilst approaches like partial information decomposition (PID)
(Williams and Beer, 2010) evaluate both quantities and may, in principle, deal with
these cases.

Node-specific analysis of HOIs. While the OI (3.11) is a measure quantifying
network-specific HOIs in a static network of multiple variables, node-specific analysis
must be based on information-theoretic measures of the additional information
brought by adding a new node to a predefined multiplet. Then, in order to measure
how much a given variable Vi plays a role in the informational circuits contained in
VN , its gradient of OI is calculated as follows (Scagliarini et al., 2023):

∂iΩ(VN) =Ω(VN)−Ω(VN
−i)

=(2− N)I(Vi; VN
−i) +

N

∑
k=1,k ̸=i

I(Vk; VN
−ik), (3.12)

where VN
−ik denotes all the variables in VN except Vi and Vk. The quantity ∂iΩ(VN)

captures how much the OI changes when Vi is added to the rest of the system, hence
it gives an account of how this variable contributes to the high-order properties of
the system. Therefore, ∂iΩ(VN) > 0 means that Vi introduces mainly redundant in-
formation, while ∂iΩ(VN) < 0 indicates that it fosters synergistic interdependencies.
Following this rationale, the OI among N variables can be defined as the sum of the
OI for a subset including N − 1 variables plus the OI gradient (3.12) quantifying the
increment obtained when a new variable is added, i.e., Ω(VN) = Ω(VN

−i) + ∂iΩ(VN).
This quantity has also been referred to as ∆(Vi; VN

−i) (see, e.g., Valenti et al., 2022;
Sparacino et al., 2023c).
In presence of scalar variables V1, . . . , VN , it has been shown in (Scagliarini et al., 2023)
that the following bounds hold and are tight:

−(N − 2) log |Vc| ≤ ∂iΩ(VN) ≤ log |Vc|, (3.13)

where |Vc| is the cardinality of the largest alphabet in VN . The lower bound is
achieved in correspondance of the N-XOR gate, that is V1 . . . VN−1 as Bernoulli random
variables with p = 1/2 and VN = (∑N−1

j=1 Vj) mod 2; the upper bound is achieved
by the n-COPY gate, specifically by taking V1 as a Bernoulli variable with p = 1/2
and V1 = V2 = · · · = VN . The asymmetry between these two bounds has the
following consequence: while redundancy can be only built step by step, synergy
can be established more rapidly. Indeed, adding a variable to a system of size N − 1
might provide a maximal redundant contribution of log |Vc|, whilst the maximal
synergy that it might lend is (N − 2) log |Vc|, which can be substantial if N is large.
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The computation of the OI gradient for the case of N = 4 variables is illustrated
using Venn diagrams in FIG. 3.2c. Crucially, since the OI for two random variables is
null (Ω(V2) = 0), the OI for three variables is equal to the gradient, which in turn
corresponds to the II (3.8)

Ω(V3) = ∆(V3; V2) = I(V3; V2) + I(V3; V1)− I(V3; V1, V2) = I(V1; V2; V3); (3.14)

these formulations allow the iterative computation of the OI through progressive
inclusion of variables (Rosas et al., 2019). Importantly, the OI gradient can be positive
or negative, reflecting respectively redundant and synergistic high-order interactions
in the analyzed set of random variables.

Following a similar rationale to the one that leads to (3.12), one can further
introduce a second-order descriptor of high-order interdependencies by considering
gradients of gradients. In particular, the second-order gradient of a pair of variables Vi
and Vj can be defined as (Scagliarini et al., 2024)

∂i∂jΩ(VN) = ∂iΩ(VN)− ∂iΩ(VN
−j); (3.15)

this quantity captures how much the presence of the variable Vj alters the variation
of OI of the system due to the inclusion of Vi. It is direct to verify the symmetry
∂i∂jΩ(VN) = ∂j∂iΩ(VN); therefore, we denoted this quantity as ∂2

ijΩ(VN). An
interesting property of ∂2

ijΩ(VN) is that it can be re-written as a whole-minus-sum
quantity:

∂2
ijΩ(VN) =

[
Ω(VN)−Ω(VN

−ij)
]

−
[
Ω(VN

−i)−Ω(VN
−ij)

]
−

[
Ω(VN

−j)−Ω(VN
−ij)

]
. (3.16)

In other words, ∂2
ijΩ(VN) measures to what degree the variation to the OI due to

the inclusions of both Vi and Vj is more than the sum of the variations one obtains
when including them separately. It is interesting to evaluate ∂2

ijΩ(VN) on the n-COPY
gate and on the n-XOR gate: it is easy to obtain zero and (2− N) respectively. This
means that for the n-COPY gate pairs of variables do not provide further redundancy
w.r.t. those provided by single variables; on the other hand, for the n-XOR gate, pairs
of variables give an irreducible contribution to the synergy. This is a sign of the
sensitivity of gradients to evaluate synergistic informational circuits, which occurs
due to the partition of VN

−ij into parts which is adopted to calculate them.
Successive gradients can be similarly introduced, resulting in a simple chain rule

(Scagliarini et al., 2024). If γ is a subset of {1, . . . , N} of cardinality |γ|, then:

∂
|γ|
γ Ω(VN) = ∑

α⊆γ

(−1)|α|Ω(VN
−α), (3.17)

the sum being over all the subsets α of γ. For example, for triplets of variables the
gradient of the OI reads:

∂3
ijkΩ(VN) = Ω(VN)−Ω(VN

−i)−Ω(VN
−j)−Ω(VN

−k)

+ Ω(VN
−ij) + Ω(VN

−ik) + Ω(VN
−jk)−Ω(VN

−ijk), (3.18)

and measures the irreducible contribution to the OI by the triplet {i, j, k} which can-
not be ascribed to the inclusion of pairs nor single variables of the triplet.
The high-order dependencies emerging from static networks of multiple intercon-
nected nodes have been investigated in our recent publications Valenti et al., 2022,
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Sparacino et al., 2023c and Scagliarini et al., 2024, with specific applications to car-
diovascular, respiratory and cerebral blood flow variability (Scagliarini et al., 2024),
as well as to fMRI data (Valenti et al., 2022; Sparacino et al., 2023c; Scagliarini et al.,
2024), which will be discussed in SECT. 6.1 and SECT. 5.8, respectively.

Link-specific analysis of HOIs. Link-specific analysis makes use of an information-
theoretic measure quantifying the net information shared between the two analyzed
nodes and the rest of the network (Rosas et al., 2019), (Antonacci et al., 2023; Mijatovic
et al., 2024a); the measure is refined accounting for the network structure (i.e., its
value is not assigned if the dynamics of the two nodes are found to be statistically
independent or independent conditioned to the rest of the network (Antonacci et al.,
2023; Mijatovic et al., 2024a). To define this measure, let us consider the variables Vi
and Vj, i, j = 1, . . . , M, i ̸= j, and the remaining M− 2 variables collected in the vector
Vz = V \ [Vi, Vj]. In the framework of information theory applied to static network
systems, the relationships between the variables in V can be analyzed quantifying
the information shared (iS) between them by using the well-known measure of MI, or
the conditional information shared (ciS) between them but not with Vz by using the
conditional MI (CMI). Given the random variables Vi, Vj and the random vector Vz
taken from V , the CMI evaluates the information shared between Vi and Vj when
considering the influence of the third variable Vz, and is defined as (Cover, 1999)

I(Vi; Vj|Vz) = H(Vi|Vz)− H(Vi|Vj, Vz). (3.19)

The iS and ciS measures, for static analysis quantified by the MI and CMI, respec-
tively, assess the link between the two analyzed units from a bivariate or multivariate
perspective (Antonacci et al., 2023; Mijatovic et al., 2024a). Importantly, the com-
parison between these two quantities highlights the balance between the statistical
concepts of redundancy and synergy in the observed network system. In particular,
the difference between the iS and the ciS was defined as the net information shared (niS)
between {Vi, Vj} and Vz (Antonacci et al., 2023; Mijatovic et al., 2024a):

I(Vi; Vj; Vz) = I(Vi; Vj)− I(Vi; Vj|Vz). (3.20)

Given that I(Vi; Vj, Vz) = H(Vi) + H(Vi|Vj, Vz), it can easily be demonstrated that
the quantity in (3.20) is the II between the three variables Vi, Vj and Vz, defined in
(3.8) with Vk in place of Vz; it can take on both positive and negative values thus
reflecting the balance between redundancy and synergy, and has been also referred
to as local OI (Rosas et al., 2019). Specifically, when I(Vi; Vj; Vz) > 0, the knowledge
of Vz reduces the information shared by Vi and Vj, thus indicating that (part of) the
statistical dependence between Vi and Vj is suppressed when Vz is observed. On
the contrary, when I(Vi; Vj; Vz) < 0, the knowledge of Vz increases the information
shared by Vi and Vj, thus indicating that (part of) the statistical dependence between
Vi and Vj emerges when Vz is observed.

To emphasize the balance between redundancy and synergy in the interaction
among the two observed units Vi and Vj and the rest of the system Vz, and to retrieve
information about the network topology from such interaction, the so-called B-index
(B, shorthand for redundancy/synergy balance) is defined by normalizing the niS as
follows (Antonacci et al., 2023; Mijatovic et al., 2024a):

B(Vi; Vj) =
I(Vi; Vj; Vz)

max{I(Vi; Vj), I(Vi; Vj|Vz)}
. (3.21)
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In (3.21), the B-index is computed dividing the difference between the MI and the
CMI to their maximum, so as to obtain a measure ranging between -1 and 1 (FIG.
3.3). The limit values highlight a full imbalance between redundancy and synergy
that relates to specific network topologies. In particular, B(Vi; Vj) = 1 corresponds
to maximum redundancy, occurring when the interaction between Vi and Vj is fully
explained by the rest of the network and indicating the presence of common driver
(Vi ← Vz → Vj) or cascade (Vi → Vz → Vj or Vj → Vz → Vi) interactions (FIG.
3.3, case 1). On the other hand, B(Vi; Vj) = −1 corresponds to maximum synergy,
occurring when the interaction between Vi and Vj arises fully from their effect on
Vz and indicating the presence of a common cause interaction (Vi → Vz ← Vj,
FIG. 3.3, case 2). In both cases, the nodes mapped by Vi and Vj are topologically
disconnected. The two nodes are disconnected also when both the MI and CMI are
null, resulting in non-defined B-index and describing a situation in which at least
one between Vi and Vj is isolated from the rest of the network (FIG. 3.3, case 3).
Intermediate values of the B-index (−1 < B(Vi; Vj) < 1) are obtained when both the
MI and CMI are non-null (FIG. 3.3, case 4). In this situation, larger values of the MI
denote prevalence of redundancy, while larger values of the CMI denote prevalence
of synergy, which topologically corresponds to many possible configurations; the
case of identical values denotes perfect balance between synergy and redundancy
indicating that the two nodes are linked to each other but disconnected from the rest
of the network.
To accurately reconstruct the network structure based on B-index, it is crucial to
assess the statistical significance of MI and CMI measures through techniques such
as surrogate data analysis (see LINK-SPECIFIC ANALYSIS OF HOIS). This ensures that
the B-index accurately reflects fully redundant or synergistic interactions with values
of 1 or -1, respectively, (i.e., due to null CMI or MI indicating absence of the link), and
identifies the absence of interactions with a return of NaN (obtained when the ratio
in (3.21) is 0

0 , i.e., both the MI and the CMI are both null). The procedures used to
generate surrogate data is described in SURROGATE DATA ANALYSIS.
The high-order link-specific dependencies emerging from static networks of multiple
interconnected nodes have been investigated in our recent publications Antonacci
et al., 2023 and Mijatovic et al., 2024a, with a specific applications to fMRI data
(Antonacci et al., 2023) that will be discussed in SECT. 6.1.

3.2.1 Linear Parametric Formulation

Let us consider the linear regression models defined in SECT. 2.2. The calculation
of the information-theoretic measures defined in SECT. 3.2 requires an approach to
compute the MI and the CMI between vector random variables. Assuming that the
observed variables have a joint Gaussian distribution, the MI between two generic
(possibly vector) variables Vi, Vj is assessed as in (3.7) (Barrett, Barnett, and Seth,
2010). Similarly, the CMI can be assessed exploiting the relation between conditional
entropy and partial variance valid for Gaussian variables (Barrett, Barnett, and Seth,
2010), i.e., H(Vi|Vz) =

1
2 log

(
(2πe)vi |ΣUz |

)
and H(Vi|Vj, Vz) =

1
2 log

(
(2πe)vi |ΣUjz |

)
,

where ΣUz and ΣUjz are the vi × vi covariance matrices of the prediction errors Uz, Ujz.
Then, the CMI is computed straightforwardly from (3.19), yielding

I(Vi; Vj|Vz) =
1
2

log
(
|ΣUz |
|ΣUjz |

)
. (3.22)

The first-order OI gradient and local OI are thus computed substituting the relevant
MI and CMI linear terms in Eqs. (3.12) and (3.20), respectively. The OI can be



38 Chapter 3. Static Networks of Random Variables

Synergy Vs. 
Redundancy

B-index
structure

possible underlying 
structure

maximum 
redundancy  

perfect 
balance  

maximum 
synergy  

I(Vi;Vj;Vz) = I(Vi;Vj) 

prevalence of
redundancy  

prevalence of
synergy  

I(Vi;Vj) > 0;
I(Vi;Vj|Vz) = 0  

I(Vi;Vj) = 0;
I(Vi;Vj|Vz) > 0  

B-indexniSiS; ciS

1

2

3

4

common driver

absent

cascade common target isolated node(s)
diverse possible 
configurations

isolated link  

B(Vi;Vj) = 1

0 < B(Vi;Vj) < 1

B(Vi;Vj) = -1

B(Vi;Vj) =NaN

-1 < B(Vi;Vj) < 0

B(Vi;Vj) = 0

I(Vi;Vj) = 0;
I(Vi;Vj|Vz) = 0  

I(Vi;Vj) > I(Vi;Vj|Vz) > 0  

I(Vi;Vj|Vz) > I(Vi;Vj) > 0 

I(Vi;Vj) = I(Vi;Vj|Vz) > 0  

I(Vi;Vj;Vz) = -I(Vi;Vj|Vz) 

I(Vi;Vj;Vz) = 0

0 < I(Vi;Vj;Vz) < I(Vi;Vj)

-I(Vi;Vj|Vz) < I(Vi;Vj;Vz) < 0

I(Vi;Vj;Vz) = 0

Vi

Vz

Vz

Vz

Vz

Vz

Vz

Vz

Vz

Vz

Vi

Vi

Vi

Vi

Vi

Vi

Vj

Vj

Vj

Vj

Vj

Vj

Vj

Vj

Vj

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vj

Vj

Vj

Vj

Vj

Vj

Vi

FIGURE 3.3: Illustration of the measures proposed to assess high-order links between the
two units Vi and Vj of a network system composed of M = 3 scalar variables {Vi, Vj, Vz}.
Classification of the redundant/synergistic nature of the interactions between Vi and Vj
and of the types of possible underlying structural mechanisms, based on the assessment of
zero and strictly positive values of information shared (iS) between Vi and Vj (I(Vi; Vj)) and
conditional IS (ciS) between Vi and Vj given the rest of the network Vz (I(Vi; Vj|Vz)), leading

to characteristic values of the B-index. The figure is adapted from Mijatovic et al., 2024a.

computed straightforwardly from (3.12), while the OI gradients of higher order are
computed from (3.17) exploiting the linear parametric computation of the first-order
gradient.

3.3 Simulation Examples

3.3.1 Pairwise and High-Order Functional Dependencies assessed via
Mutual Information and O-Information

In Sparacino et al., 2023c, the framework for the computation of pairwise and high-
order interactions is illustrated making use of a theoretical example of simulated
linear regression models for which the MI and OI measures are computed directly
from the known model parameters. This simulation is exploited to show that high-
order measures can be used to highlight the emergence of patterns of interaction
among groups of variables which cannot be traced from pairwise connections alone,
as well as to evidence the presence of circuits dominated by synergy or redundancy.
Moreover, we show how the methods of surrogate and bootstrap data analysis
can help to disregard non-significant interaction pathways among the variables,
thus allowing to focus only on specific connectivity links within the network (see
SURROGATE DATA ANALYSIS and BOOTSTRAP DATA ANALYSIS for technical details;
this specific example exploits the methods described in AN APPROACH TO THE

STATISTICAL ASSESSMENT OF HIGH-ORDER INTERACTIONS).
The simulation is focused on the analysis of M = 7 scalar random variables, with

network structure and interdependencies specified in FIG. 3.4a. The parameters ai,
i = 1, . . . , 6, quantifying the pairwise relationships between the observed variables,
are chosen in the range [0.95− 1], arbitrarily setting a1 = a2 = 0.99, a3 = a6 = 1
and a4 = a5 = 0.95. Noteworthy, the parameter range was suitably selected to
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better highlight and visualize the coupling strength between the observed variables,
since lower values of the parameters (i.e., ai < 0.95, i = 1, . . . , 6) would have led to
lower and hence non-significant values of the MI measure computed between those
variables. The network is designed to simulate three zero-mean random noises V1, V4
and V5, with unit variance, whose sink (commonly called common child) is the node
V2. Then, through a chain structure, V2 converges into the node V3, which in turn acts
as a common driver for the nodes V6 and V7 (FIG. 3.4a). From the resulting network
{V1, . . . , V7}, implemented via time series realizations of L = 500 points, the time-
domain MI between pairs of variables was estimated as in (3.7); then, its significance
was assessed by applying the method of surrogate data and evaluating the existence
of each pairwise link, as described in COUPLED DYNAMICS BETWEEN PAIRS OF

NODES (FIG. 3.4b). The OI was computed from (3.12) for all the possible multiplets of
orders N = 3, . . . , 7, and deemed as significant when the OI distributions, computed
via bootstrap data analysis, did not comprise the zero level (FIG. 3.4c) (we refer to
AN APPROACH TO THE STATISTICAL ASSESSMENT OF HIGH-ORDER INTERACTIONS

for details on the bootstrap data generation procedure). Moreover, the values of
the OI increment were computed as in (3.12), at each order N and for each target Vi
within the selected multiplet VN of that order, and deemed as significant when the
information brought by Vi to VN was statistically significant according to the test
discussed in AN APPROACH TO THE STATISTICAL ASSESSMENT OF HIGH-ORDER

INTERACTIONS (FIG. 3.4d).
The MI values shown in FIG. 3.4b reflect the strength of the relationships between

pairs of variables; values of MI > 0.5 nats are found for the pairs {V2, V3}, {V2, V6},
{V3, V6}, {V3, V7}, and {V6, V7}. However, not all of these connections are true links of
interaction between the investigated variables, as happens, e.g., for the pairs {V2, V6}
and {V6, V7}. Indeed, the nodes V2 and V6, as well as V6 and V7, are not linked by
direct interaction pathways but still show non-zero connectivity (FIG. 3.4a). This
finding is related to the existence of common driving and chain effects in these cases,
respectively, which determine the appearance of indirect links of interaction between
the two investigated variables (Sanchez-Romero and Cole, 2021). Interestingly, this
misinterpretation of the network structure does not occur in the case of the common
child effect, since truly non-significant MI is found for the pairs {V1, V4}, {V1, V5}
and {V4, V5}, as shown by the absence of links between these variables in FIG. 3.4b.

A high-order representation of the investigated interactions is provided in FIG.
3.4c,d. The OI values in FIG. 3.4c show an expected increase of redundancy as
the network size increases (i.e., from order 3 to 7), even though some synergistic
multiplets are still found at orders 3 and 4. Specifically, as shown by the values of
the OI increment in FIG. 3.4d, synergistic triplets (first column, order 3) are those
containing the variables V1, V4 and V5, which indeed are involved in the common
child structure (FIG. 3.4a). In addition, the chain structure for which the node V3
is a sink for V2, and the same applying for V6 and V7 with respect to V3 (FIG. 3.4a),
causes that synergy also involves these variables when combined with V1, V4 or V5.
Interestingly, this pattern is maintained at higher orders with most of the multiplets
comprising the variables V1, V4 and V5, for which significant synergistic OI increments
are found. On the other hand, the triplets {V2, V3, V6}, {V2, V3, V7} and {V3, V6, V7},
along with others such as {V1, V2, V3}, {V1, V2, V6} and {V1, V2, V7}, show positive
values of the OI increment (FIG. 3.4d, first column, order 3), confirming that the
common driver and chain structures are dominated by redundancy (FIG. 3.4a). As
happens for the synergistic variables V1, V4 and V5, the addition of the variables V2,
V3, V6 and V7 to form groups of order 4, 5, 6 and 7 is likely to significantly increase
the redundancy of the interactions within the network, as shown by red squares



40 Chapter 3. Static Networks of Random Variables

V2V1

V5

V3

V4

V6

V7

V1

V2

V3

V4

V5

V6

V7

FIGURE 3.4: Simulation showing that high-order measures capture the synergistic and
redundant characters of interaction pathways involving multiple variables within complex
networks, as well as that the surrogate and bootstrap methods are helpful in the detection
of significant interaction pathways among those variables. a) Simulation design (top),
where numbers identify variables, and model equations (bottom), where Ui, i = 1, . . . , 6, is
zero-mean random noise with unit variance. b) Circular graph representing the MI-weighed
significant connections among pairs of simulated variables. Non-significant links, detected
through surrogate data analysis (COUPLED DYNAMICS BETWEEN PAIRS OF NODES), are not
drawn. c) Boxplots representing the distributions of the OI values for all the multiplets from
order 3 to 7. In each box, the central black mark indicates the mean, and the bottom and
top edges of the box indicate the 25th and 75th percentiles, respectively; red, blue and grey
circles indicate positive (redundant), negative (synergistic) and non-significant OI values,
respectively. d) ∆(OI) values computed for each target (numbers in squares) inside the
multiplets (sequences of numbers along each row) at all orders (separated by black vertical
lines). Red, blue and grey squares indicate positive (redundant), negative (synergistic) and
non-significant ∆(OI), respectively, brought by that target to the multiplet, for a given order.
Significance of OI and ∆(OI) values was assessed as described in AN APPROACH TO THE
STATISTICAL ASSESSMENT OF HIGH-ORDER INTERACTIONS. Values of OI and ∆(OI) are

expressed in nats, i.e., natural units. The figure is adapted from Sparacino et al., 2023c.
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containing these variables in FIG. 3.4d (second, third, fourth and fifth column).
The bootstrap data approach, applied on the simulated time series to retrieve

confidence intervals for the proposed measures, allowed to statistically validate the OI
values and the OI increments (FIG. 3.4c,d). Specifically, in FIG. 3.4c, non-significant OI
values are depicted as grey circles around the zero threshold; at order 3, the number
of non-significant OI values is the highest (4 over 35 multiplets). Conversely, in FIG.
3.4d, non-significant OI increments are shown as grey squares, where each square
corresponds to the target-specific OI increment for that multiplet. Non-significant
∆(OI) values are found at orders N = 4, 5, especially when the targets V4 and V5, as
well as V6, are added to form multiplets containing the variables V2, V3 and V7 or V6.

In conclusion, this simulation example showed that the connectivity maps traced
by the MI do not provide a fully-explanatory description of the complex and mul-
tiple interactions taking place in the analysed network. Indeed, different network
structures, such as common driver, chain and common child ensembles, are not al-
ways truly reproduced by these pairwise maps, and the resulting MI values between
pairs of observed variables may be biased. The utilization of high-order measures
investigating the relationships between more than two variables is then fundamental
to provide a more complete description of the connectivity patterns emerging from
the network. Noteworthy, the possibility to specify the redundant and/or synergistic
character of groups of variables would allow a more faithful representation of the
network ground structure. Moreover, the use of surrogate and bootstrap methods is
essential in the practical analysis of data sequences to disregard non-significant links
between pairs of variables and hyperlinks among groups of variables.

3.3.2 High-Order Links in a Simulated Static System: the B-index reveals
Redundant and Synergistic Patterns of Link-specific Interactions

In this section, the simulated static system recently published in Mijatovic et al., 2024a
will be discussed in terms of the redundant/synergistic nature of the high-order links
within the corresponding network, unveiled through the utilization of the B-index
computed as in (3.21). This example showcases how, while it is essential to seek for
high-order dependencies led by single nodes or groups of nodes through the OI and
its gradients as done in the previous section, understanding the nature of the network
structural links and their role in the redundant/synergistic informational circuits can
help in reconstructing the ground-truth network topology. Note that this simulation
does not refer to Gaussian systems characterized with linear models as in this thesis,
but makes use of discrete (binary) variables connected by specifying joint probabilities.
Static measures based on MI can be obtained from observations of discrete random
variables collected as sequences of symbols using plug-in entropy estimators. The
methods are described in detail in Mijatovic et al., 2024a; the inferences apply equally
to linear Gaussian systems.

Analyses were performed iterating each simulation 100 times and generating at
each iteration datasets of L ∈ {250, 500, 1000} observations, from which the estimator
performance was assessed in terms of sensitivity and specificity of the reconstruction
of the network topology. The simulation reproduces a network with M = 10 nodes
connected as depicted in FIG. 3.5a. The node activities are mapped by binary random
variables interconnected as follows: V1, V3, V4, V5 and V9 are i.i.d. binary variables
with equiprobable symbols; V10 is a noisy copy of V9 with coupling strength γ3 = 0.8,
(i.e., p({v10 = v9}) = γ3); V6 and V7 are noisy copies of V5 with coupling strength
γ2 = 0.9; V8 is defined via a noisy OR gate from V6 and V7, while V2 is defined via a
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FIGURE 3.5: Experimental analysis of a simulated static system with ten units mapped
by binary variables interconnected via the graph and probability rules shown in a). b)
The matrix of B-index values computed from L = 1000 observations of the variables and the
corresponding connectivity graph evidence the synergistic/redundant nature of the links as
well as the proper reconstruction of the network structure, with correct pruning of absent links
(isolated nodes/links: B = NaN, grey; common drive, cascade: B = 1, dark red; common
cause: B = −1, dark blue), except for the false positive detection of a connection between V6
and V7. c) The performance of network reconstruction, assessed over 100 simulation runs at
varying the data length L, reveals that sensitivity depends on L, while specificity is high but
affected by the single false positive detection for any data length. The figure is adapted from

Mijatovic et al., 2024a.

noisy OR gate from V3, V4 and V5 (noisy gates have coupling strength γ1 = 0.9 and
are defined according to the conditional probabilities given in FIG. 3.5a).

FIG. 3.5b reports, for a simulation of the system collecting L = 1000 observations,
the matrix of the B-index values computed through the linear parametric estimator,
where non-significant values of the estimated MI or CMI leading to B = 1, B = −1 or
B = NaN were assessed using random shuffling (RS) surrogates (we refer to LINK-
SPECIFIC ANALYSIS OF HOIS for technical details), and the reconstructed network
structure obtained pruning the links with non-significant MI and/or CMI. The B-index
correctly identified the presence and nature of the interactions imposed between pairs
of variables, recovering for instance the existing isolated link (B(V9; V10) = 0, white)
and the expected synergistic (e.g., B(V2; V3) < 0, B(V2; V4) < 0, blue) and redundant
links (e.g., B(V5; V6) > 0, B(V5; V7) > 0, red). Moreover, it allowed to correctly prune
out of the reconstructed network several links that would be detected by using only
MI due to common drive or cascade effects (e.g., B(V2; V6) = 1, B(V5; V8) = 1; dark
red), or by using only CMI due to common cause effects (e.g., B(V3; V5) = −1; dark
blue). However, it is important to note the false positive detection of a connection
between V6 and V7: in spite of the lack of a direct link, the two nodes result as
connected because they have both a common drive (V6 ← V5 → V7) and a common
cause (V6 → V8 ← V7), inducing significant values for both MI and CMI and thus
determining −1 < B(V6; V7) < 1. This highlights a limitation of the B-index, which
cannot guarantee the elimination of all spurious links.
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To quantify the ability of the proposed approach to correctly identify the presence
and absence of links in the reconstructed network, we assessed the sensitivity and
specificity of the B-index at varying the size L of the data collected. Sensitivity and
specificity, which measure respectively the impact of false negatives and false posi-
tives, were assessed over 100 simulation runs. The results in FIG. 3.5c highlight that
the sensitivity increased markedly with the data length, approaching the expected
value of 100% when L = 1000. On the contrary, the specificity showed less depen-
dence on L, as it remained consistently high exhibiting minimal variations around
the expected value of 97%.

3.4 Summary of chapter 3

This chapter reviewed the entropy measures exploited to describe static networks
mapped by random variables, which will be then relevant to the information-theoretic
analysis of random processes. The linear parametric formulation of such entropy
measures is made possible under the assumption of jointly Gaussian variables.

The static network system V composed of M nodes can be characterized in terms
of the activities involving the single nodes, pairs of nodes, and groups of nodes. These
activities are assessed straightforwardly using univariate, bivariate and high-order
entropy-based measures of static interactions, i.e., the entropy H(Vi) of the variable
Vi, the mutual information (MI) I(Vi; Vj) shared between the variables Vi and Vj, and
the O-information (OI) Ω(VN) of the multiplet VN = {V1, . . . , VN} (N ≤ M). In the
case of a high-order network analysis of the static interactions taking place in systems
of multiple variables, the OI represents a network-specific measure characterizing
the informational character (i.e., synergistic or redundant) of groups of nodes (i.e.,
multiplets). Nevertheless, node- and link-specific measures quantifying the additional
information brought by adding a new node to a predefined multiplet and the net
information shared between a pair of nodes and the rest of the network, respectively,
can be used to examine HOIs at different levels of resolution. Then, while the first-
order gradient of OI ∆(Vi; VN

−i) is a node-specific measure quantifying how much
a given variable Vi plays a role in the informational circuits contained in VN (the
same rationale holds for higher order gradients), the link-wise measure of the B-index
B(Vi; Vj) highlights the balance between redundancy and synergy in the interaction
among the two observed units Vi and Vj and the rest of the system, and allows to
retrieve information about the network topology from such interaction.

Simulated examples emphasized that the connectivity maps traced by the MI
do not provide fully-explanatory descriptions of the complex interactions taking
place in static networks of multiple nodes, such that the utilization of high-order
measures investigating the relationships between more than two variables is then
fundamental to provide a more complete description of the connectivity patterns
emerging from the network. Furthermore, while it is essential to characterize high-
order dependencies led by single nodes or groups of nodes through the OI and its
gradients, understanding the role of links between two nodes in contributing to
redundant/synergistic informational circuits via the B-index can help reconstructing
the ground-truth network topology.
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Chapter 4

Dynamic Networks of Random
Processes

This chapter introduces a framework to measure dynamic interactions of different
orders in networks of multiple interconnected systems, expanded in the frequency
domain to explore their spectral patterns. The framework is defined for dynamic
systems, i.e. systems evolving over time whose activity is modeled appropriately
in the context of multivariate random processes. Here, I mention the role of my
Ph.D. research activity in integrating and unifying existing and newly developed
approaches in a coherent framework for a comprehensive analysis of multivariate
physiological data in both the time and frequency domain.

Let us consider the dynamic network system X composed of M nodes. The
dynamic activities at the single nodes, as well as the interactions between the activities
of two nodes, can be assessed straightforwardly using information-theoretic measures
which extend to random processes the concepts of entropy and mutual information
defined for random variables in SECT. 3.1: these measures are the entropy rate and
mutual information rate (FIG. 4.1). Specifically, we will characterize single-node
activity in SECT. 4.1, and pairwise interactions involving two network nodes in SECT.
4.2. Nevertheless, when more than two units are considered, more sophisticated
approaches are needed to examine hierarchical HOIs, i.e., interactions at upraising
orders involving the role multiplets of network nodes, at different levels of resolution,
i.e., characterizing the role of the single node within the selected subset (node-specific
analysis), the nature of the link between two nodes with respect to the remaining
nodes (link-specific analysis), as well as the overall activity of multiplets of nodes or the
whole network (network-specific analysis). To this end, information-theoretic measures
of dynamic HOIs which extend to random processes the concepts of first-order OI
gradient, OI and local OI defined for random variables in SECT. 3.2 are required to
provide a more comprehensive and detailed description of the analysed dynamic
network system, e.g., Interaction Information Rate and O-Information Rate (FIG. 4.1).
These approaches will be discussed in SECT. 4.3. Noteworthy, each section of this
chapter comprises two formulations of these information-theoretic measures, i.e., a
time domain and a spectral formulation, which are linked to each other through the
so-called spectral integration property. Furthermore, simulation examples showing
the time and frequency domain behaviors of the dynamic interaction measures at
different orders are provided in SECT. 4.1.3, 4.2.3 and 4.3.3.
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FIGURE 4.1: Measures of dynamic interaction in a system of multiple nodes. An external
observer characterizes the behavior of the system through a dynamic analysis; depending on
the number of observed nodes, the observer performs a univariate (UA), bivariate (BA) or
high-order network (HONA) analysis. The complexity of the single node can be investigated
through the dynamic information-theoretic measures of Entropy Rate (ER) and Linear Self-
Predictability (LSP) or Information Storage (IS). The interactions between two nodes can be
investigated through dynamic information-theoretic measures of Mutual Information Rate
(MIR), Transfer Entropy (TE) and Instantaneous Transfer (IT), equivalent up to a factor 2 to the
logarithmic predictability measures of Total Dependence (TD), Granger Causality (GC) and
Instantaneous Causality (IC), respectively; the logarithmic predictability measures of Granger
Autonomy (GA) and Granger Isolation (GI) can be used to assess the degree of autonomy
and isolation in bivariate systems. Last, the emerging behavior of multiplets of nodes or the
whole network is investigated through dynamic measures of Interaction Information Rate
(IIR), O-Information Rate (OIR) and B-Index Rate (B). Partial Information Rate Decomposition
(PIRD) can be exploited to decompose the rate of information shared in systems of multiple
nodes into unique, redundant and synergistic contributions. Single-node I1 and pairwise I2
activities can be assessed in the case of BA, while the presence of a greater number of nodes
allows to investigate higher order dependencies (I3) thus performing a hierarchical HONA.
HONA can be further subdivided into node-specific, link-specific and network-specific analyses,

where the role of the single node, the link and multiplets of nodes are investigated.
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4.1 Behavior of a Single Network Unit: Self-Predictable Dy-
namics

4.1.1 Time Domain

In this section, we will characterize the time domain behavior of the generic ith

network node taken from the set X1, . . . ,XM, i = 1, . . . , M, in the framework of a UA,
i.e., assuming that M = 1; the same information-theoretic measures can be defined
in the scalar case, i.e., assuming that the block has unitary dimension. To this end,
we refer the reader to the mathematical definitions provided in SECT. 2.3.1 related to
the time domain representation of (block) AR linear models, from which measures of
dynamic complexity and predictability can be defined and contextualized in the case of
linear Gaussian processes.

4.1.1.1 Entropy Rate

The information-theoretic analysis of dynamic information relevant to the single
network unit exploits the concept of entropy rate (ER), which quantifies the rate of
generation of new information in a random process. Specifically, for the vector
stationary random process X of dimension MX, the ER is defined using these two
equivalent definitions (Cover, 1999; Chicharro, 2011), (Sparacino et al., 2024b):

HX = lim
m→∞

1
m

H(Xn:n+m) = H(Xn|X−n ), (4.1)

where the second formulation evidences the conditional entropy of the variable repre-
senting the present of the process given the variables sampling its past history. There-
fore, the ER reflects the complexity of the process intended as the unpredictability of
its present state given the past, ranging from HX = 0 for a completely self-predictable
process to HX = H(Xn) for a fully unpredictable process without temporal statistical
structure. The Venn diagram illustration of the ER of a generic vector process is given
in FIG. 4.2a. It is worth noting that, when Q = 1, (4.1) can be suitably adapted to
the generic scalar process Y whose dynamics are described in (2.2), thus resorting to
HY = H(Yn|Y−n ).

Linear parametric formulation. In the linear signal processing framework, the
ER (4.1) has a straightforward formulation that involves the MX ×MX covariance
matrix of the residuals of the block AR representation (2.3) (Barrett, Barnett, and Seth,
2010):

HX =
1
2

log
(
(2πe)MX |Σ(ar)

UX
|
)
. (4.2)

Similarly, (4.2) can be generalized to the scalar case (2.2), thus yielding HY =
1
2 log

(
2πeσ2(ar)

UY

)
.

4.1.1.2 Information Storage

While the functional defined in (4.1) is an information-theoretic measure of complexity,
the so-called information storage (IS) of the vector process X is a measure of self-
predictability quantifying the information stored in X as the mutual information
between the present Xn and the past X−n (Faes et al., 2015; Faes et al., 2016). Defined as

SX = I(Xn; X−n ) = H(Xn)− H(Xn|X−n ), (4.3)
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FIGURE 4.2: Venn-diagram representation of the information measures quantifying inter-
actions in dynamic networks of random processes. a) Entropy rate (ER) of the process X1,
HX1 , obtained as the conditional entropy of the variable representing the present state of the
process X1,n given the variables sampling its past history X−1,n. b) Mutual information rate
(MIR) between two processes X1 and X2, IX1;X2 , obtained according to (4.12a). The MIR is the
basic measure used for the computation of high-order measures like the IIR of three processes
(4.49) or the OIR of more than three processes (4.51). The figure is adapted from Sparacino

et al., 2024b.

it ranges from SX = 0 for a fully unpredictable process without temporal statistical
structure to SX = H(X) for a completely self-predictable process. As in (4.1), (4.3) can
be also adapted to the scalar case (2.2), thus obtaining SY = I(Yn; Y−n ).

Linear parametric formulation. In the linear signal processing framework, the
IS has a straightforward formulation that involves the MX ×MX covariance matrix
of the process and the MX ×MX covariance matrix of the prediction error of its block
AR representation (2.3) (Barnett, Barrett, and Seth, 2009; Faes, Porta, and Nollo, 2015):

SX =
1
2

log
(
|ΣX|
|Σ(ar)

UX
|

)
. (4.4)

The quantity defined in (4.4) has been referred to as a measure of linear self-predictability
(LSP) of the process X in the time domain, for which we recently proposed a spectral
expansion in Sparacino et al., 2024b. Similarly, (4.4) can be adapted to the scalar

case, thus yielding SY = 1
2 log

( σ2
Y

σ
2(ar)
UY

)
, where σ2

Y is the variance of Y, and σ2(ar)
UY

is the

variance of the residual in (2.2).

4.1.2 Frequency Domain

In this section, we will characterize the frequency domain behavior of one network
unit. To this end, we refer the reader to the mathematical definitions provided in SECT.
2.4 related to the spectral representation of VAR linear models, which can be rewritten
in the case of scalar (2.2) and block (2.3) AR models to yield P(ar)

Y ( f̄ ) = |HY(ar)( f̄ )|2σ2(ar)
UY

and P(ar)
X ( f̄ ) = HX(ar)( f̄ )Σ(ar)

UX
HX(ar)∗( f̄ ), respectively.

4.1.2.1 Spectral Entropy Rate

The spectral densities of AR models can be exploited to provide frequency domain
measures of the entropy rate for scalar and block processes, which quantify individual
interactions at each specific frequency. Specifically, a spectral measure of the ER of
the block process X of dimension MX is defined as (Chicharro, 2011), (Sparacino et al.,
2024b)

hX( f̄ ) =
1
2

log
(
(2πe)MX |P(ar)

X ( f̄ )|
)
, (4.5)
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while a spectral measure of the ER of the scalar process Y described in (2.2) can
be written as hY( f̄ ) = 1

2 log
(
2πeP(ar)

Y ( f̄ )
)
. The spectral ERs satisfy the spectral inte-

gration property (Geweke, 1982), i.e., these measures are such that their integrals
extended over all frequencies return the corresponding time domain ER measures:

HX =
∫ 1

2

0
hX( f̄ )d f̄ ; HY =

∫ 1
2

0
hY( f̄ )d f̄ . (4.6)

One note of remarkable importance is due here. If one wants to compute the ER of
the process Yj ∈ X, j = 1, . . . , MX, the diagonal element of the PSD matrix P(ar)

X ( f̄ ) in
position (jj)th can be exploited to yield hYj( f̄ ) = 1

2 log
(
2πeP(ar)

Yj
( f̄ )

)
. This formula-

tion evidences how in a network of multiple interacting nodes possibly organized
in one block it is possible to investigate the dynamics of the single nodes starting
from the dynamics of the whole block. The same concept can be applied to pairwise
connectivity as shown in SECT. 4.2. In this context, the time and frequency domain
ER-based first-order dependencies emerging from dynamic networks of multiple
interconnected nodes have been investigated in Sparacino et al., 2024b, with specific
applications to brain dynamics, described and discussed in SECT. 6.2.4 and 6.2.5.
Theoretical simulations will be shown in SECT. 4.3.3.

4.1.2.2 Spectral Decomposition of Oscillatory Content

Let us assume Q = M = 1, i.e., our network is formed by one unit whose dynamics
are described by the scalar process Y. We will see how analysing the spectrum of
a single scalar process provides noteworthy information on the frequency-specific
location of the oscillations of that process, thus allowing to identify and separate
its different spectral components. The approach is particularly useful when the
observer wants to characterize the spectral behavior of unexplored physiological
short-term beat-to-beat time series, as we did first in Sparacino et al., 2022b, and then
in Sparacino et al., 2024a, by studying the variability of the cardiovascular parameter
of arterial compliance (see SECT. 5.1 for the application to real data).

Specifically, we consider the scalar random process Y whose dynamics can be
represented through an AR model in the time and frequency domain. Applying
the residue theorem, the TF HY(ar)(z) modelling the relationship between the input
U(ar)

Y (z) and the output Y(z) of the AR model (2.2) represented in the Z-domain, with
z = ej2π f̄ , can be expressed as (Baselli et al., 1997):

HY(ar)(z) =
zp

∏
p
k=1(z− pk)

=
p

∏
k=1

H(k)(z), (4.7)

where pk, k = 1, . . . , p, are the p poles of the AR process, i.e. the roots of Ā(ar)
Y (z) =

[1−∑
p
k=1 a(ar)

Y,kz−k], while the terms H(k)(z) = z
z−pk

· 1/z∗
1/z∗−pk

are pole-specific factors
associated each to a given pole pk, with ∗ the Hermitian transpose. Then, the PSD of
the process can be written in the Z-domain as P(ar)

Y (z) = HY(ar)(z)σ2
UY

HY(ar)∗( 1
z∗ ), and

expanded exploiting the Heaviside decomposition with simple fractions relevant to
all the poles and weighted by the relevant residuals of P(ar)

Y (z), to get (Baselli et al.,
1997; Pernice et al., 2021):

P(ar)
Y (z) =

K

∑
κ=1

P(κ)
Y (z) =

K

∑
κ=1

[
rκ pκ

z− pκ
− rκ p−1

κ

z− p−1
κ

]
, (4.8)
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where rκ =
σ2

UY
z ∏h ̸=κ(z−ph)·∏(z−1−ph)

∣∣∣∣
z=pκ

are the residuals of P(ar)
Y (z), κ = 1, . . . , K. For

clarity, we omitted the superscripts Y(ar) and (ar) for the kth components H(k)(z) in
(4.7) and the κth components P(κ)

Y (z) in (4.8), respectively. Note that the number
of components of the PSD is K ≃ p/2 depending on the number of real poles;
specifically, there is one component for each real pole and for each pair of complex
conjugate poles. Then, by computing P(ar)

Y (z) on the unit circle of the complex plane,
P(ar)

Y ( f̄ ) = P(ar)
Y (z)|z=ej2π f̄ , where f ∈ [0, fs/2], it is possible to obtain the spectral

profile of the process, P(ar)
Y ( f̄ ), as well as of the κth component, P(κ)

Y ( f̄ ). Crucially, each
spectral component P(κ)

Y ( f̄ ) is described by a specific profile that is shaped by the
corresponding TF factor |H(κ)( f̄ )|2 = H(κ)(z)H∗(κ)(z)|z=ej2π f̄ , and has an associated

frequency (related to the pole frequency, fκ = arg{pκ}
2π ) and power (related to the pole

residual, σ2
κ = rκ for real poles and σ2

κ = 2 ·R{rκ} for complex conjugate poles). Note
that the sum of the pole variances σ2

κ , with κ = 1, . . . , K, equals the total power of the
process, which represents its variance σ2

Y.
Importantly, in comparison to classical approaches based on integrating the PSD

profile within the spectral bands of interest to get band-specific time domain pow-
ers (Krohova et al., 2020), the spectral decomposition allows to focus only on the
spectral components with frequencies within those bands, thus avoiding spurious
contributions due to broadband oscillations in different nearby frequency bands. This
peculiarity can be exploited to define a pole-specific measure of linear self-predictability
in the frequency domain, as we did in Sparacino et al., 2024a and as shown in the next
section.

4.1.2.3 Spectral Decomposition of Self-Predictability

The characterization of the spectral dynamics of a random scalar process Y can be also
carried on by looking at its degree of linear self-predictability, drawing a connection
with information theory. The concept of self-predictability plays a key role for the
analysis of the self-driven dynamics of physiological processes displaying richness
of oscillatory rhythms. While time domain measures of self-predictability, as well as
time-varying and local extensions, have already been proposed and largely applied
in different contexts (Porta et al., 1998; Porta et al., 2006; Erla et al., 2011; Richman
and Moorman, 2000; Lizier, Prokopenko, and Zomaya, 2012; Faes et al., 2013c; Wibral
et al., 2014; Barà et al., 2023b), they still lack a clear spectral description, which would
be useful for the interpretation of the frequency-specific content of the investigated
processes. The most popular information-theoretic measure of self-predictability is
the IS defined in (4.3), which quantifies, for a scalar random process Y, the amount of
information contained in the present state Yn that can be predicted by the knowledge
of its past states, Y−n (Lizier, Prokopenko, and Zomaya, 2012). The linear formulation
of this quantity allows to expand it in the frequency domain, as we did for the first
time in Sparacino et al., 2024a.
To this aim, we exploit the spectral representation of the AR model (2.2) and the
method of spectral decomposition described in SECT. 4.1.2.2. We start noting that the
TF HY(ar)(z) contains spectral information about the predictable dynamics of Y, as it
is directly derived from the Z-domain representation of the AR model coefficients
a(ar)

Y,k, k = 1, . . . , p, which in turn describe these dynamics in the time domain. Then,
we exploit the fact that such frequency-specific information can be particularized
to each oscillatory component considering the TF factor |H(κ)( f̄ )|2, so as to retrieve
information on the pole-specific self-dynamics of the AR process. This factor is the
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squared TF associated to a real pole or the squared product of the two TFs associated
to a pair of complex conjugated poles. We expect that stronger self-dynamics of Y at
the frequency fκ are reflected by higher values of |H(κ)( f̄ )|2, which indeed shows a
positive peak at that frequency. Therefore, we define the frequency-specific spectral
LSP measure as

s(κ)Y ( f̄ ) =
1
2

log
(

σ2
Y|H(κ)( f̄ )|2

σ2(ar)
UY

)
. (4.9)

The spectral LSP (4.9) can be written also as s(κ)Y ( f̄ ) = 1
2 log

( σ2
Y

σ
(ar)
UY

)
+ 1

2 log
(
|H(κ)( f̄ )|2

)
=

SY + s̄(κ)Y ( f̄ ), and satisfies the spectral integration property (Geweke, 1982), i.e., it
is such that its integral extended over all frequencies returns the time domain LSP
measure:

SY =
∫ 1

2

0
s(κ)Y ( f̄ )d f̄ . (4.10)

Note that (4.10) is satisfied because the full-frequency integral of the term s̄(κ)Y ( f̄ ) is

null, i.e.,
∫ 1

2
0 log

(
|H(κ)( f̄ )|2

)
d f̄ = 0 (Rozanov, 1967; Chicharro, 2011). Therefore, the

spectral LSP consists of a frequency-independent part equal to SY and a frequency-
specific part quantified by s̄(κ)Y ( f̄ ), which takes negative values at some frequencies,
depending on where the informative content is located.

The spectral decomposition of the pole-specific LSP into terms related to the K
oscillations of the AR process, depicted in (4.9), allows to locate the self-dynamics of Y
in specific spectral bands with given frequency, as well as to compute their strength as
the integral of these profiles within the investigated bands. Remarkably, the spectral
LSP profiles exhibit peaks similarly to the PSD, since both are derived from adapta-
tions of the TF of the AR model describing the data. The difference between the two
resides in the logarithmic formulation of the LSP in the framework of information
theory. Indeed, being a measure of information shared between the present and
past states of the investigated processes according to its mathematical definition, it
can be quantified in natural units (nats) in the time domain, and in nats/Hz in the
spectral domain, thus acquiring a clear meaning in the context of information theory.
A simulation example showing the time and frequency domain behavior of the LSP
is provided in SECT. 4.1.3.

4.1.3 Simulation Example: Spectral Decomposition of the Linear Self-
Predictability of a Simulated AR Process

In this section, we report the theoretical simulation proposed in Sparacino et al., 2024a
to study the behavior of the LSP measure (4.4) using a simulated AR process, where
the exact profiles of the spectral LSP (4.9) are computed (with sampling frequency
fs = 1 Hz) from the true values imposed for the AR parameters. The process Y,
exhibiting autonomous oscillations at different frequencies, is defined as in (2.2) with
p = 4. The autonomous oscillations of Y are obtained placing pairs of complex-
conjugate poles, with modulus ρ and phase 2π f , in the complex plane representation
of the process; the AR coefficients resulting from this setting are aY,1 = 2ρ cos(2π f )
and aY,2 = −ρ2 (Faes, Porta, and Nollo, 2015). Here, we imposed autonomous
oscillations for the process Y in the low-frequency (LF, [0.04− 0.15]Hz) and high-
frequency (HF, [0.15− 0.4]Hz) bands of the spectrum, setting ρHF = 0.9, fHF = 0.3
Hz, so that the dynamics of Y in the HF band are determined by the fixed coefficients
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FIGURE 4.3: Spectral decomposition of the oscillatory content and the self-predictability
of a simulated AR scalar process. a) Linear spectral decomposition of the process Y with
b = 1. The PSD, PY( f̄ ) (orange continuous line), is decomposed into components P(LF)

Y ( f̄ )

(green dashed line) and P(HF)
Y ( f̄ ) (purple dashed line) with associated frequency fLF, fHF and

power σ2
LF, σ2

HF. b) Spectral profiles of the TF of the process, HY(ar)( f̄ ). c) Spectral profiles of
the frequency-specific TFs of the process, computed for the poles with frequency inside the
HF ([0.15− 0.4]Hz, H(HF)( f̄ ), top plot) and LF ([0.04− 0.15]Hz, H(LF)( f̄ ), bottom plot) bands
of the spectrum. Profiles are computed at varying the parameter b from 0 (blue continuous
line) to 1 (red continuous line). d) Profile of the time domain LSP SY at varying the parameter
b from 0 (blue dots) to 1 (red dots). e) Spectral profiles of the frequency-specific terms in
(4.9) computed for the poles with frequency inside the LF ([0.04− 0.15]Hz, s(LF)

Y ( f̄ ), left) and

HF ([0.15− 0.4]Hz, s(HF)
Y ( f̄ ), right) bands of the spectrum. Spectral profiles are computed at

varying the parameter b from 0 (blue continuous line) to 1 (red continuous line). The figure is
adapted from Sparacino et al., 2024a.
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aY,1 = −0.556, aY,2 = −0.81, and ρLF = b · 0.8, fLF = 0.1 Hz, so that the strength of
the dynamics of Y in the LF band, which are determined by the coefficients aY,3, aY,4,
depends on the parameter b varying in the range [0, 1]. The theoretical values of
the time domain and the spectral LSP measures are computed for each value of the
parameter b. Furthermore, Nb = 100 bootstrap realizations of the process Y, each of
length L = 1000 points, are then generated ∀b by feeding (2.2) with Nb block bootstrap
versions of a single realization of the white noise process UY, using the theoretical
coefficients aY,k, k = 1, . . . , 4 (see BOOTSTRAP DATA ANALYSIS for technical details).
The time domain and spectral LSP measures are then estimated after identifying
the AR model fitting the bootstrap time series of Y; the model order was set using
the AIC. Statistical significance of the spectral LSP measures in a given frequency
band is then assessed exploiting the method described in SPECTRAL MEASURES OF

SELF-PREDICTABILITY OF SINGLE NETWORK NODES.
The spectral decompositions of the PSD and the TF of the simulated AR process

are reported in FIG. 4.3a-c. FIG. 4.3a shows the theoretical PSD profile (orange
continuous line) of the process Y when b = 1, decomposed into its two spectral
components, LF (green dashed line) and HF (purple dashed line). Panel b shows the
theoretical profiles of the TF of the AR process, HY(ar)( f̄ ), at varying the parameter b
from 0 (blue) to 1 (red). The TF shows only a positive peak in the HF band in absence
of LF dynamics, i.e., when b = 0, and a positive peak in LF with amplitude increasing
with the parameter b. This demonstrates that the TF is sensitive to the oscillatory
content of the AR process, and it peaks wherever its self-dynamics are located in the
frequency domain. Indeed, the two TF contributions in HF (FIG. 4.3c, top plot) and
LF (FIG. 4.3c, bottom plot) show frequency-specific peaks with constant or varying
amplitude depending on how the corresponding dynamics are modulated.
The theoretical spectral profiles of the LSP measures resulting from the simulation are
reported in FIG. 4.3d,e. The time domain LSP SY exhibits a non-monotonic behavior
at varying this parameter from 0 to 1 (blue to red dots, FIG. 4.3d). Specifically, the
increase of the parameter b determines an initial decrease of LSP, followed by a
slight increase when b = 1. Thus, high regularity is found whenever the process
has only one oscillation, while the presence of two oscillations makes the process
less predictable. Only when b approaches 1 (FIG. 4.3e, left, reddish profiles), the
emergence of a clear LF oscillation determines a decrease of σ2

UY
and thus an increase

of SY (FIG. 4.3d, reddish dots). The frequency-specific terms show positive peaks
at the LF and HF frequencies (0.1 Hz and 0.3 Hz, respectively), confirming that the
system owns self-dynamics and is thus self-predictable at the frequencies of the
PSD peaks (s(κ)Y ( f̄ ), where κ indicates the LF or HF band, FIG. 4.3e). Specifically,
while the HF contribution (right) does not change consistently with b and is always
significant according to bootstrap data analysis, the LF profile (left) is constant over
frequencies and equal to SY when b = 0, while a peak in the LF band emerges
gradually with increasing values of b. Only when b > 0.6, the bootstrap procedure
provided significant results for the LF oscillation, thus allowing to statistically assess
the existence of significant self-predictability in this band.

To sum up, the proposed simulated example allowed to demonstrate that the
spectral LSP is able to quantify and localize the self-dynamics of Y in the frequency
domain, thus reflecting their presence and strength and showing positive peaks at the
frequencies where they are located. On the other hand, the time domain counterpart
only provides an overall description of these dynamics without focusing on specific
oscillatory rhythms. Remarkably, the utilization of surrogate and bootstrap data
analyses allows to assess the statistical significance of the proposed measures in the
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time and frequency domain, thus enabling to get more confidence in the significance
of the findings ad draw meaningful conclusions.

4.2 Beyond the Single Network Unit: the Interactions Be-
tween Two Nodes

4.2.1 Time Domain

In this section, we will characterize the time domain behavior of the two generic ith

and jth network nodes taken from the set X1, . . . ,XM, i = 1, . . . , M, in the framework
of a BA, i.e., assuming that M = 2; the same information-theoretic measures can be
defined in the scalar case, i.e., when each block is composed of 2 scalar processes.
To this end, we refer the reader to the mathematical definitions provided in SECT.
2.3.2 related to the time domain representation of ARX linear models, from which
several time- and frequency-domain measures can be defined with meaning in the
framework of information theory to explore the coupled (causal) interactions between
the two processes, as well as their self-dependencies. In the following sub-sections,
we will introduce the mathematical definitions of coupling, causality and autonomy
measures, as well as their formulation in the context of linear Gaussian processes.

4.2.1.1 Coupling and Causality Measures

The interactions of order two (i.e., pairwise interactions) between two network units
can be assessed by measures of coupling and causality. Non-directional coupling rela-
tions between time series refer to associations which do not specify the direction of
influence. This type of coupling does not assume causality between the time series,
but rather looks for symmetrical statistical dependencies between them (Faes, Erla,
and Nollo, 2012; Faes and Nollo, 2013). Nevertheless, the principle of causality is
fundamental in time series analysis to identify driver-response (i.e., time-lagged) rela-
tions between the processes. In the linear signal processing framework, this principle
can be explored with reference to the concept of Granger causality (GC), which has
been one of the most relevant approaches exploited by modern time series analysis.
The concept of GC was originally developed by Wiener (Wiener, 1956) and then made
operative by Granger in the context of linear regression models (Granger, 1969). In
particular, GC relates the presence of a cause-effect relation to two aspects: the cause
must precede the effect in time and must carry unique information about the present
value of the effect. This relationship is not symmetrical and can be bidirectional,
thus enabling the detection of both directional and reciprocal influences. Differently
from non-directional measures, causality approaches exploiting this concept allow
focusing on specific directional pathways of interactions within the investigated
network (Porta and Faes, 2015).

Let us consider the bivariate vector process X = {X1, X2}, where the two blocks
have dimensions M1 and M2, respectively. In the frame of information theory, a
measure of non-directional coupling is the mutual information rate (MIR) computed
between the processes X1 and X2, quantifying the information shared by the two
processes per unit of time (Duncan, 1970; Geweke, 1982; Chicharro, 2011), (Sparacino
et al., 2024b):

IX1;X2 = lim
m→∞

1
m

I(X1,n:n+m; X2,n:n+m) = I(X1,n, X−1,n; X2,n, X−2,n)− I(X−1,n, X−2,n). (4.11)
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The MIR is a symmetric measure (i.e., IX1;X2 = IX2;X1) which can be decomposed evi-
dencing information quantities with meaningful interpretations (see, e.g., Mijatovic
et al., 2021; Barà et al., 2023a):

IX1;X2 = HX1 + HX2 − HX1,X2 , (4.12a)
IX1;X2 = TX1→X2 + TX2→X1 + IX1·X2 . (4.12b)

The first decomposition of the MIR given in (4.12a) evidences how it can be formu-
lated comparing the sum of the individual ERs of the processes X1 and X2, HX1 and
HX2 , with their joint entropy rate, HX1,X2 = H(X1,n, X2,n|X−1,n, X−2,n). Conversely, the
decomposition in (4.12b) expresses the MIR as the sum of the two transfer entropies
from X1 to X2 and from X2 to X1 (Schreiber, 2000)

TX1→X2 = I(X2,n; X−1,n|X
−
2,n) = H(X2,n|X−2,n)− H(X2,n|X−1,n, X−2,n), (4.13a)

TX2→X1 = I(X1,n; X−2,n|X
−
1,n) = H(X1,n|X−1,n)− H(X1,n|X−2,n, X−1,n), (4.13b)

and a term quantifying the instantaneous information shared by X1 and X2 at zero lag

IX1·X2 = I(X1,n; X2,n|X−1,n, X−2,n). (4.14)

The transfer entropy (TE) is a well-known measure of directional information transfer
related to the concept of GC, while the instantaneous transfer (IT) is a symmetric mea-
sure related to the concept of instantaneous causality (IC) (Chicharro, 2011).
Remarkably, the information-theoretic measure of MIR (4.11) and its decomposition
terms (4.12) can be straightforwardly defined in the case of two interacting scalar
processes {Y1, Y2}, with Y1,n, Y2,n, Y−1,n and Y−2,n taking the place of X1,n, X2,n, X−1,n and
X−2,n in Eqs. (4.11)-(4.14), respectively.

Linear parametric formulation. In the linear signal processing framework, a
straightforward formulation of the MIR can be retrieved combining Eqs. (4.2), (4.12a)
and HX1,X2 = 1

2 log
(
(2πe)M1+M2 |Σ(arx)

UX
|
)
, where Σ

(arx)
UX

is the (M1 + M2)× (M1 + M2)
covariance matrix of the block ARX model (2.5), thus yielding:

IX1;X2 =
1
2

log
( |Σ(ar)

UX1
||Σ(ar)

UX2
|

|Σ(arx)
UX
|

)
, (4.15)

where Σ
(ar)
UX1

and Σ
(ar)
UX2

are the covariance matrices of the residuals in the block AR
models of X1 and X2 in the form of (2.3), respectively. In a similar manner, we can

retrieve the MIR of {Y1, Y2} as IY1;Y2 =
1
2 log

( σ
2(ar)
UY1

σ
2(ar)
UY2

|Σ(arx)
UY
|

)
, where σ2(ar)

UY1
and σ2(ar)

UY2
are the

variances of the residuals of the AR models of Y1, Y2 in the form of (2.2), while Σ
(arx)
UY

is
the 2× 2 covariance matrix of the residuals in the ARX model (2.4).
The linear formulation of the two TEs requires the identification of the full block ARX
model of {X1, X2} (2.5) and of the restricted block AR models of X1 and X2 in the form
of (2.3), to yield:

TX1→X2 =
1
2

log
( |Σ(ar)

UX2
|

|Σ(arx)
UX2
|

)
, TX2→X1 =

1
2

log
( |Σ(ar)

UX1
|

|Σ(arx)
UX2
|

)
, (4.16)

where Σ
(arx)
UX1

and Σ
(arx)
UX2

are the block matrices of dimensions M1 × M1 and M2 ×
M2, respectively, on the main diagonal of the block covariance matrix Σ

(arx)
UX

in (2.5).
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In a similar manner, we can retrieve the TEs of the network {Y1, Y2} as TY1→Y2 =

1
2 log

( σ
2(ar)
UY2

σ
2(arx)
UY2

)
and TY2→Y1 = 1

2 log
( σ

2(ar)
UY1

σ
2(arx)
UY1

)
, where σ2(arx)

UY1
and σ2(arx)

UY2
are the diagonal

elements of the 2× 2 covariance matrix Σ
(arx)
UY

in (2.4).
The linear formulation of the quantity IX1·X2 in (4.12b) can be directly retrieved from
(4.15) and (4.16) as:

IX1·X2 =
1
2

log
( |Σ(arx)

UX1
||Σ(arx)

UX2
|

|Σ(arx)
UX
|

)
. (4.17)

A similar definition can be found in the case of the scalar processes {Y1, Y2}, i.e.,

IY1·Y2 = 1
2 log

( σ
2(arx)
UY1

σ
2(arx)
UY2

|Σ(arx)
UY
|

)
. The instantaneous transfer quantifies instantaneous in-

teractions between the processes, and reflects the presence of correlations occurring
between the variables that sample the two processes at the same temporal index;
since they cannot be captured by the model coefficients describing time-lagged ef-
fects, these correlations are found in the model innovations. Indeed, this measure
is zero when the innovations of the full ARX model are uncorrelated (i.e., when
σ2(arx)

UY1Y2
= σ2(arx)

UY2Y1
= 0 in the scalar case) and positive otherwise. Then, in the case of a

strictly causal ARX model whose covariance matrix Σ
(arx)
UY

is diagonal, the IT vanishes
by construction. However, strictly causal models are often used to fit a vector process
whose scalar constituents interact also at lag 0, thus introducing zero-lag correlations
among the residuals and non-zero off-diagonal elements in the input covariance
matrix. In this case, the measure does not vanish in the time domain, reflecting the
presence of instantaneous effects which however have not been modelled.
In this context, the time domain bivariate dependencies assessed via the MIR measure
in dynamic networks of multiple interconnected nodes have been investigated, e.g.,
in our recent publication Sparacino et al., 2023b, with a specific application to cardio-
vascular, cardiorespiratory and cerebrovascular interactions that will be discussed in
SECT. 5.2.

Geweke decomposition of total dependence. In the case of Gaussian processes,
it can be demonstrated that the the TEs (4.13) and the IT (4.14) are equivalent to the
following Geweke logarithmic measures of GC and IC, respectively, up to a factor 2
(Geweke, 1982; Chicharro, 2011):

TX1→X2 =
FX1→X2

2
, (4.18a)

TX2→X1 =
FX2→X1

2
, (4.18b)

IX1·X2 =
FX1·X2

2
, (4.18c)

with
FX1;X2 = FX1→X2 + FX2→X1 + FX1·X2 (4.19)

being referred to as the Geweke decomposition of the total dependence (TD) FX1;X2 , which
in turn is straightforwardly related to the MIR (4.11) according to

IX1;X2 =
FX1;X2

2
. (4.20)

The same equations can be retrieved for the process Y = {Y1, Y2} in the case of unitary
blocks, leading to FY1;Y2 = FY1→Y2 + FY2→Y1 + FY1·Y2 . The time domain dependencies
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between two network nodes assessed via the Geweke measures of TD, GC and IC
have been investigated, e.g., in our recent publications Pernice et al., 2022b; Pernice
et al., 2022a; Volpes et al., 2022, with specific applications to cardiovascular, cardiores-
piratory and cerebrovascular interactions reviewed and discussed in SECT. 5.3, 5.4
and 5.5.

4.2.1.2 Autonomy Measures

In parallel to exploring the concept of GC, the analysis of coupled processes has
evolved also studying the role of autonomous dynamics, i.e. interactions that occur
internally in a process independently of its link with other processes. In this con-
text, a so-called Granger autonomy (GA) measure has been defined to quantify how
much its own internal dynamics contribute to determine its predictability more than
the dynamics of other processes potentially connected to it (Seth, 2010), based on a
previously defined notion of degree of self-determination of a system (Boden, 1996;
Bertschinger et al., 2008). The idea behind the concept is that a system is autonomous
if it is not controlled by external influences but rather it self-determines its states.
This measure has been developed also in the context of information theory and ap-
plied to gain insight about the physiological mechanisms governing the autonomous
dynamics of a process (Faes, Porta, and Nollo, 2015; Faes et al., 2016; Porta et al., 2015).

In analogy with GC, the concept of GA was formalized for the bivariate process
Y = {Y1, Y2} assessing the predictability improvement brought to the present state of
the target Y2 by its own past states above and beyond the predictability brought by the
past states of the driver Y1 (Seth, 2010). Operationally, GA is quantified comparing
the full ARX model (2.4) with a restricted X model where Y2,n is described only
from the past of Y1,n (2.9). Then, the predictability improvement is quantified by the
logarithmic measure of GA given by (Seth, 2010), (Sparacino et al., 2023a)

AY2 = log
(λ2

WY2 |Y1

σ2(arx)
UY2

)
, (4.21)

which quantifies the strength of the autonomous dynamics in the target process Y2

comparing the error variances of the models (2.4), σ2(arx)
UY2

, and (2.9), λ2
WY2 |Y1

. In the case
of Gaussian processes, the GA measure (4.21) is equivalent, up to a factor 2, to the
information-theoretic measure of conditional self-entropy (Porta et al., 2015; Faes,
Porta, and Nollo, 2015; Faes et al., 2016), i.e. SY2|Y1

=
AY2

2 .
Two notes here are of remarkable importance. First, we point out that the time domain
formulation of the GA measure (4.21) was early proposed in (Seth, 2010) and then
applied in Sparacino et al., 2023a for the two scalar processes Y1, Y2, whose dynamics
are described by the ARX model (2.4); the extension to the vector case (2.5) should be
straightforward though not formulated yet. Further, we emphasize that, differently
from GC, the concept of GA as expressed by (Seth, 2010) lacked of a valid spectral
representation, as spectral measures able to identify the autonomous oscillations in a
process had not been defined at that time. Our goal in Sparacino et al., 2023a is to fill
this gap, as we will show in SECT. 4.2.2.2.
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4.2.2 Frequency Domain

In this section, we will derive definitions of spectral coupling, causality (4.2.2.1) and
autonomy (4.2.2.2) measures in the case of two scalar processes {Y1, Y2} starting
from the decomposition of the power spectra of the processes into causal and non-
causal contributes. The spectral formulations of the discussed coupling and causality
measures can be extended intuitively to the vector case, i.e., when the two block
processes {X1, X2} are observed, as shown at the end of SECT. 4.2.2.1; we refer the
reader to refs. Nedungadi, Ding, and Rangarajan, 2011; Faes and Nollo, 2013; Faes
et al., 2022a for further mathematical details.

4.2.2.1 Coupling and Causality Measures

Let us consider the spectral representation of the ARX model (2.4). The model is first
represented in the Z-domain through its Z-transforms yielding Y(z) = HY(arx)(z)U(arx)

Y (z),
where HY(arx)(z) = [I− ∑

p
k=1 A(arx)

Y,k z−k]−1 = Ā(arx)
Y (z)−1 is the 2× 2 TF matrix mod-

elling the relationships between the input U(arx)
Y (z) and the output Y(z). Computing

HY(arx)(z) on the unit circle in the complex plane (z = ej2π f̄ ) and exploiting spectral
factorization, it is possible to derive the PSD of the analysed stationary random
process Y, thus yielding P(arx)

Y ( f̄ ) = HY(arx)( f̄ )Σ(arx)
UY

HY(arx)∗( f̄ ). The PSD matrix P(arx)
Y ( f̄ )

contains information related to the spectral properties of the two processes, i.e, to
their own dynamics, through the 2 diagonal elements P(arx)

Yi
( f̄ ), i = 1, 2, and to the

causal interactions between Y1 and Y2, through the off-diagonal elements P(arx)
YiYj

( f̄ ),
i, j ∈ {1, 2}, i ̸= j.
The pairwise interactions between the units Y1, Y2 can be assessed by measures of
spectral coupling and causality in the frequency domain, which can be directly de-
rived from different combinations of the elements of the 2× 2 PSD matrix P(arx)

Y ( f̄ ), of
the 2× 2 TF matrix HY(arx)( f̄ ) and of the innovations of the full ARX and the restricted
AR models. We remark that these measures have a straightforward interpretation in
the information-theoretic framework thanks to the well-known property of spectral
integration (Geweke, 1982). For details, please refer to Pernice et al., 2022b; Pernice
et al., 2022a; Sparacino et al., 2023a, where the theoretical notions of spectral coupling
and causality have been widely unravelled and applied to closed-loop physiological
interactions, and to Volpes et al., 2022, the latter exploiting the concept of spectral GC
to assess cardiorespiratory interactions through photoplethysmography (see SECT.
5.3 for the related applications to real data).

Measures of coherence and directed coherence. Let us consider the full ARX
model. Under the assumption that the input white noises are uncorrelated at lag
0 leading to diagonality of Σ

(arx)
UY

(i.e., the model is strictly causal) (Ding, Chen, and
Bressler, 2006; Faes, Erla, and Nollo, 2012), the ijth elements of P(arx)

Y ( f̄ ) are factorized
into (henceforth, we omit the superscript (arx) for clarity):

PYiYj( f̄ ) =
Q

∑
q=1

σ2
UYq

HYiYq( f̄ )H∗YjYq
( f̄ ), (4.22)

where Q = 2 for a bivariate process, and σ2
UYq

, q = 1, 2, are the diagonal elements
of ΣUY . This factorization allows to decompose the frequency domain measures
of coupling and causality into terms eliciting the directional information from one
process to another. Indeed, the coherence (Coh) between the two processes Y1 and Y2,
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defined as the ratio between the cross-spectrum PY1Y2( f̄ ) and the squared root of the
product between the autospectra of Y1 and Y2

ΓY1;Y2( f̄ ) =
PY1Y2( f̄ )√

PY1( f̄ )PY2( f̄ )
, (4.23)

is decomposed as follows, exploiting (4.22):

ΓY1;Y2( f̄ ) =
2

∑
q=1

σ2
UYq

HY1Yq( f̄ )σ2
UYq

H∗Y2Yq
( f̄ )√

PY1( f̄ )
√

PY2( f̄ )
. (4.24)

Since this function is complex-valued, its squared modulus is commonly used to
measure the strength of coupling in the frequency domain. Indeed, the magnitude
squared coherence, |ΓY1;Y2( f̄ )|2, has a meaningful physical interpretation, since it
measures the strength of the linear, non-directional coupled interactions between the
processes Y1 and Y2 as a function of frequency, being 0 in case of uncoupling and 1
in case of full coupling. Exploiting (4.23), it can be shown that the squared Coh is
related to the logarithmic spectral measure of total dependence between Y1 and Y2,
defined by Geweke as (Geweke, 1982)

fY1;Y2( f̄ ) = log
(

PY1( f̄ )PY2( f̄ )
|PY( f̄ )|

)
, (4.25)

through the relationship fY1;Y2( f̄ ) = − log(1− |ΓY1;Y2( f̄ )|2). The spectral TD defined
in (4.25) is non-negative and linked to the time domain measure (4.20) by the spectral
integration property

FY1,Y2 = 2
∫ 1

2

0
fY1;Y2( f̄ )d f̄ . (4.26)

Due to the symmetrical nature of this measure, it cannot provide information about
causality; such an information may be described by means of the directed coherence
(DC) γY1→Y2( f̄ ) = γY2Y1( f̄ ) from the driver process Y1 to the target process Y2, in-
terpreted as a measure of the influence of Y1 onto Y2, as opposed to γY1Y2( f̄ ) which
measures the interaction occurring over the opposite direction, from Y2 to Y1. The
squared DC

|γY2Y1( f̄ )|2 =
σ2

UY1
|HY2Y1( f̄ )|2

σ2
UY1
|HY2Y1( f̄ )|2 + σ2

UY2
|HY2Y2( f̄ )|2

(4.27)

measures a normalized coupling strength, being 0 in the absence of directional
coupling from Y1 to Y2 at the frequency f , and 1 in the presence of full coupling.
Moreover, |γY2Y1( f̄ )|2 measures the coupling strength from Y1 to Y2 as the normalized
proportion of PY2( f̄ ) which is causally due to Y1.
Similarly to (4.27), it is possible to define the normalized portion of PY2( f̄ ) which
arises from the target process Y2 itself as

|γY2Y2( f̄ )|2 =
σ2

UY2
|HY2Y2( f̄ )|2

σ2
UY1
|HY2Y1( f̄ )|2 + σ2

UY2
|HY2Y2( f̄ )|2

. (4.28)

Hence, it is easy to show that the spectrum of the target process Y2 can be decomposed
as:

PY2( f̄ ) =
2

∑
q=1

PY2|Yq( f̄ ) = PY2|Y1
( f̄ ) + PY2|Y2

( f̄ ), (4.29)
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where PY2|Y1
( f̄ ) = |γY2Y1( f̄ )|2PY2( f̄ ) is the part of PY2( f̄ ) due to Y1, which is usually

referred to as the causal part of PY2( f̄ ); PY2|Y2
( f̄ ) = |γY2Y2( f̄ )|2PY2( f̄ ) measures the part

of PY2( f̄ ) due to none of the other processes, but to the process Y2 itself, which may
be thus referred to as the isolated part of the target spectrum. The concept of isolation,
related to the spectrum decomposition into causal and non-causal contributions, has
been proposed for the first time in Sparacino et al., 2023a with reference to bivariate
processes.
Importantly, the DC defined in (4.27) has a meaningful physical interpretation, since
it measures causality as the amount of signal power transferred from one process to
another and is a measure of causal coupling in the frequency domain. Moreover, it can
be regarded as a measure of GC from Y1 to Y2 thanks to its relation with logarithmic
spectral measure of GC defined by Geweke and referred to as linear feedback (Geweke,
1982)

fY1→Y2( f̄ ) = log
(

PY2( f̄ )
σ2

UY2
|HY2Y2( f̄ )|2

)
, (4.30)

which is non-negative and linked to the time domain GC measure (4.18a) by the
spectral integration property

FY1→Y2 = 2
∫ 1

2

0
fY1→Y2( f̄ )d f̄ . (4.31)

In fact, combining (4.27), (4.29) and (4.30) one can easily show that the DC and the
spectral GC are linked by the relation fY1→Y2( f̄ ) = − log(1− |γY2Y1( f̄ )|2) (Geweke,
1982; Chicharro, 2011; Faes, Erla, and Nollo, 2012), (Pernice et al., 2022b; Sparacino
et al., 2023a). We note that, while the total coupling measure (4.25) is always non-
negative, the two causal measures fYi→Yj( f̄ ), i, j = 1, 2, can take negative values at
some frequencies if the process Y is not strictly causal (i.e. if the innovation covariance
ΣUY is not diagonal). To overcome this issue, we recently proposed extended linear
models to capture zero-lag interactions known a priori in physiological time series
analysis and thus included them in the Geweke logarithmic spectral measures of GC
(see refs. Pernice et al., 2022b; Pernice et al., 2022a).

Geweke decomposition of the total dependence in the frequency domain.
To satisfy a spectral decomposition similar to (4.19), with Y1 and Y2 in place of X1, X2,
i.e.,

fY1;Y2( f̄ ) = fY1→Y2( f̄ ) + fY2→Y1( f̄ ) + fY1·Y2( f̄ ), (4.32)

the spectral measure of instantaneous interactions was chosen ad hoc (Geweke, 1982)

fY1·Y2( f̄ ) = log
(σ2

UY1
|HY1Y1( f̄ )|2σ2

UY2
|HY2Y2( f̄ )|2

|PY( f̄ )|

)
(4.33)

in such a way to be linked to the time domain measure in (4.18a), right side, by the
spectral integration property, i.e.,

FY1·Y2 = 2
∫ 1

2

0
fY1·Y2( f̄ )d f̄ . (4.34)

This spectral measure does not fulfil all the requirements of Geweke, different from
what occurs in the time domain. Indeed, it may be negative for some frequencies and
has no clear physical meaning (Geweke, 1982). The lack of non-negativity can be seen
by considering that the integration over frequencies of the decomposition in (4.32)
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has to be consistent with the decomposition in (4.19). In absence of instantaneous
causality, i.e, in the case of a strictly causal ARX model implying diagonality of ΣUY ,
FY1·Y2 = 0; however, fY1·Y2( f̄ ) is generally found to be non-zero for some frequencies.
Since the integral of fY1·Y2( f̄ ) has to be null when FY1·Y2 = 0, not being zero for all
frequencies, this implies the violation of non-negativity.
The Geweke decomposition of the total dependence in the frequency domain, as well
as the issue of zero-lag effects in physiological time series analysis, have been largely
discussed in Pernice et al., 2022b, and then applied to cardiorespiratory interactions
during spontaneous and controlled breathing (Pernice et al., 2022a).

Granger Isolation. In analogy with the derivations in (4.30), the new spectral
logarithmic measure of Granger isolation (GI) of the target Y2 linked to the isolated
part of the target spectrum was proposed for the first time in Sparacino et al., 2023a
and defined as

fY2( f̄ ) = log
(

PY2( f̄ )
σ2

UY1
|HY2Y1( f̄ )|2

)
= − log(1− |γY2Y2( f̄ )|2). (4.35)

Moreover, following (4.31), the new time domain measure of GI integrating the
spectral measure in (4.35) over all frequencies is provided, yielding

FY2 = 2
∫ 1

2

0
fY2( f̄ )d f̄ . (4.36)

Intuitively, one might think that the GI measure (4.36) reflects the concept of GA (Seth,
2010), given that it is derived from the isolated (i.e., non-causal) part of the target
spectrum. However, the GI behaves differently than the known GA measure defined
from the error variances of full and restricted linear regression models (4.21) (Seth,
2010; Porta et al., 2015; Faes, Porta, and Nollo, 2015; Faes et al., 2016), as discussed in
Sparacino et al., 2023a and displayed through different simulation examples in SECT.
4.2.3.

Spectral measures of coupling and causality for block processes. We report
here the formulations of the information-theoretic spectral measures of coupling
and causality for the two block processes {X1, X2}. To this end, let us consider the
block ARX model (2.5) and its spectral representation. The model is first represented
in the Z-domain through its Z-transforms yielding X(z) = HX(arx)(z)U(arx)

X (z), where
HX(arx)(z) = [I − ∑

p
k=1 A(arx)

X,k z−k]−1 = Ā(arx)
X (z)−1 is the TF matrix modelling the re-

lationships between the input U(arx)
X (z) and the output X(z). Computing HX(arx)(z)

on the unit circle in the complex plane (z = ej2π f̄ ) and exploiting spectral factor-
ization, it is possible to derive the PSD of the random process X, thus yielding
P(arx)

X ( f̄ ) = HX(arx)( f̄ )Σ(arx)
UX

HX(arx)∗( f̄ ). Now, let us omit the superscript (arx) for clarity.
The matrix PX( f̄ ) can be factorized in blocks to make explicit the power spectral
densities of X1 and X2, PX1( f̄ ) and PX2( f̄ ), as diagonal blocks, and the cross-spectral
densities between X1 and X2, PX1X2( f̄ ) and PX2X1( f̄ ), as off-diagonal blocks. From this
factorization, a logarithmic spectral measure of the interdependence between X1 and
X2 is defined by (Geweke, 1982)

fX1;X2( f̄ ) = log
(
|PX1( f̄ )||PX2( f̄ )|
|PX( f̄ )|

)
; (4.37)

this measure quantifies the total (symmetric) coupling between X1 and X2 and is
related to the so-called block coherence (Nedungadi, Ding, and Rangarajan, 2011; Faes
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and Nollo, 2013), extending to block processes the Coh (4.23) defined for scalar
processes. Moreover, after factorizing in Mi × Mi diagonal blocks and Mi × Mj
off-diagonal blocks also the transfer and innovation covariance matrices H( f̄ ) and
ΣUX , logarithmic spectral measures of the causal effect of Xj on Xi (i, j = 1, 2) can be
computed as (Geweke, 1982)

fXj→Xi( f̄ ) = log
( |PXi( f̄ )|
|HXiXi( f̄ )ΣUXi

H∗XiXi
( f̄ )|

)
, (4.38)

where HXiXi describes the transfer from UXi to Xi in the frequency domain and
ΣUXi

= E[UXi ,nU⊺
Xi ,n

]; these measures quantify the causal (asymmetric) coupling
from X1 to X2 and vice-versa, and are related to the so-called block directed coherence
(Faes and Nollo, 2013), extending to block processes the DC (4.27) defined for scalar
processes. To complete the representation of the pairwise interactions between X1
and X2, a spectral measure fX1·X2( f̄ ) can be defined subtracting the sum of the two
causal measures (4.38) from the coupling measure (4.37) to get

fX1·X2( f̄ ) = log
( |HX1X1( f̄ )ΣUX1

H∗X1X1
( f̄ )||HX2X2( f̄ )ΣUX2

H∗X2X2
( f̄ )|

|PX( f̄ )|

)
, (4.39)

so as to satisfy in the frequency domain a decomposition similar to the time domain
decomposition (4.19):

fX1;X2( f̄ ) = fX1→X2( f̄ ) + fX2→X1( f̄ ) + fX1·X2( f̄ ). (4.40)

Importantly, the spectral measures in (4.40) are tightly linked to the similar measures
given in the time domain decomposition of total dependence (4.19). In fact, it can
be shown that integration over the whole frequency axis of the spectral coupling
measure (4.37) returns the TD between the two processes (Chicharro, 2011), i.e.,

FX1;X2 = 2
∫ 1

2

0
fX1;X2( f̄ )d f̄ , (4.41)

and that the same relation holds integrating fX1→X2( f̄ ), fX2→X1( f̄ ) and fX1·X2( f̄ ) to get
respectively FX1→X2 , FX2→X1 , and FX1·X2 .
The Geweke measures of TD, GC and IC related to block processes have been abun-
dantly deepened in Faes et al., 2022a, as well as applied to investigate the pairwise
interactions among large-scale brain networks in subacute stroke patients after motor
rehabilitation (Pirovano et al., 2023). Theoretical simulations showing the behavior of
the proposed measures of coupling and causality for block processes in networks of
multiple nodes will be presented in SECT. 4.3.3.

Meaning of the spectral measures of coupling and causality in the frame-
work of information theory. The Geweke spectral measures of coupling and
causality defined above for scalar and block processes have a straightforward mean-
ing in the framework of information-theory. Indeed, it is easy to show that the MIR
in (4.12b) can be expanded in the frequency domain as follows:

IX1;X2 = 2
∫ 1

2

0
iX1;X2( f̄ )d f̄ , (4.42)

and that the same relation holds integrating iX1→X2( f̄ ), iX2→X1( f̄ ) and iX1·X2( f̄ ) to get

respectively IX1→X2 , IX2→X1 , and IX1·X2 , where i(·) =
f(·)
2 . Remarkably, the spectral



62 Chapter 4. Dynamic Networks of Random Processes

integration property gives to the logarithmic measures fX1;X2( f̄ ) (4.37) and fXj→Xi( f̄ )
(4.38), i, j = 1, 2, the information-theoretic meaning of density of information shared
between the two scalar processes, or transferred from one process to the other, at
the normalized frequency f̄ . We note that the same relationships are valid for scalar
processes.
The spectral integration property has been largely applied in our works (see, e.g., refs.
Pernice et al., 2022b; Pernice et al., 2022a; Volpes et al., 2022; Faes et al., 2022a; Pirovano
et al., 2023; Sparacino et al., 2023a), to establish a link between the information-
theoretic measures of coupling and causality and the spectral representation of linear
parametric models, essential to capture the richness of oscillatory content typically
observed in physiological networks.

4.2.2.2 Autonomy Measures

While causality measures have been proposed and extensively applied in the fre-
quency domain, measures quantifying self-dependencies were still limited to the
time domain formulation and lacked of a clear spectral representation (Seth, 2010)
before the introduction of the new spectral measure of GA (Sparacino et al., 2023a).
To retrieve its formulation, let us consider the full ARX (2.4) and the restricted X
(2.9) models. The autonomous dynamics of the target process Y2, conditioned to the
knowledge of the history of the driver Y1, can be assessed by a measure of spectral
autonomy in the frequency domain, which can be directly derived from a meaningful
combination of the elements of the 2× 2 TF matrices HY(arx)( f̄ ) and GY( f̄ ) of the full
ARX (2.4) and restricted X (2.9) models, respectively (see SECT. 2.4.1). First, we note
that in (2.9) the removal of the predictable autonomous dynamics of the target process
Y2 makes them likely to be contained in the residual WY2|Y1

, and thus not modelled
by the element GY2Y2( f̄ ) of the TF matrix GY( f̄ ). Since in (2.4b) these autonomous
dynamics are instead modelled by HY(arx)

Y2Y2
( f̄ ), they can be emphasized comparing the

two transfer functions of the full and restricted models. Accordingly, in Sparacino
et al., 2023a, we proposed to assess the strength and frequency-specific location of the
target internal dynamics through the spectral function (we remove the superscript
Y(arx) for brevity):

āY2( f̄ ) = log
(
|HY2Y2( f̄ )|2

|GY2Y2( f̄ )|2

)
, (4.43)

which captures the balance between the transfer of information within the target quan-
tified when the self-dependencies are modelled and when they are not. We expect
that stronger internal dynamics at the frequency f̄ are reflected by higher values of
|HY2Y2( f̄ )|2 compared with |GY2Y2( f̄ )|2, and thus to higher values of āY2( f̄ ). However,
since the full-frequency integral of both log(|HY2Y2( f̄ )|2) and log(|GY2Y2( f̄ )|2) is null

(Rozanov, 1967), we have that 2
∫ 1

2
0 āY2( f̄ )d f̄ = 0, and thus āY2( f̄ ) will take negative

values at some frequencies, and its full-frequency integral will not return the time
domain GA. To counteract these issues, the spectral GA measure was introduced and
defined as

aY2( f̄ ) = log
(λ2

WY2 |Y1

σ2
UY2

|HY2Y2( f̄ )|2

|GY2Y2( f̄ )|2

)
, (4.44)

which can be written also as aY2( f̄ ) = AY2 + āY2( f̄ ), showing that it consists of a
frequency-independent part equal to the time domain GA (4.21) and of a frequency-
specific part quantified by (4.43). Remarkably, the spectral GA measure (4.44) is
zero over all frequencies in the absence of internal dynamics in the target process,
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i.e. aY2( f̄ ) = 0 ∀ f̄ if a(arx)
Y2Y2,k = 0 ∀k (see (2.4)), and satisfies the spectral integration

property, i.e.

AY2 = 2
∫ 1

2

0
aY2( f̄ )d f̄ , (4.45)

which gives this measure a straightforward interpretation in the information-theoretic
framework (Geweke, 1982; Chicharro, 2011). In Sparacino et al., 2023a, the time (4.21)
and spectral (4.44) measures of GA have been applied, together with measures of
causality and isolation, to study the closed-loop beat-to-beat variability of cerebrovas-
cular interactions (see SECT. 5.6). Simulation examples showing their behaviors in
different settings are shown in SECT. 4.2.3.

4.2.3 Simulation Examples: Pairwise Measures of Causality, Isolation and
Autonomy

In this section, we study the behavior of the measures of GC, GI and GA presented
in SECT. 4.2 using simulated AR processes (see Sparacino et al., 2023a). First, we
simulate open-loop (4.2.3.1) and closed-loop (4.2.3.2) bivariate processes where the
exact profiles of the spectral measures are computed (with sampling frequency fs = 1
Hz) from the true values imposed for the AR parameters. Then, we consider a
multivariate system where the dynamics of two interacting processes are perturbed
by a third process which is not modelled in the calculation of GC, GI and GA (4.2.3.3);
in this case, estimations are performed from finite-length realizations of the three
processes. Finally, in SECT. 4.2.3.4 we discuss the results of the simulations, using
them to support the comparison and interpretation of the time domain and spectral
measures of GC, GI and GA.

4.2.3.1 Open-Loop System

The first simulation reproduces a bivariate process where the driver Y1 and the
target Y2 exhibit autonomous oscillations at different frequencies, and where a causal
interaction from Y1 to Y2 is simulated:

Y1,n = aY1Y1,1Y1,n−1 + aY1Y1,2Y1,n−2 + UY1,n

Y2,n = aY2Y2,1Y2,n−1 + aY2Y2,2Y2,n−2 − cY1,n−1 + UY2,n
(4.46)

where UY1 and UY2 are independent Gaussian white noises with zero mean and unit
variance. The autonomous oscillations in the two processes are obtained placing a
pair of complex-conjugate poles, with modulus ρ and phase 2π f , in the complex
plane representation of each process (Faes, Porta, and Nollo, 2015). Here, we set
ρY1 = 0.9, fY1 = 0.3 Hz, and ρY2 = b · 0.8, fY2 = 0.1 Hz, so that the strength of
the autonomous dynamics of Y2 depends on the parameter b. Moreover, causal
interactions are set from Y1 to Y2 at lag k = 1, with strength modulated by the
parameter c.

We consider the two following settings: (i) progressive strengthening of the
internal dynamics in the process Y2 with stable causal interaction from Y1 to Y2,
obtained varying b from 0 to 1 with fixed c = 0.5; (ii) progressive strengthening of the
causal interaction from Y1 to Y2 with stable internal dynamics of Y2, obtained varying
c from 0 to 1 with fixed b = 1. The time domain values and spectral profiles of the
measures of GC from driver to target (FY1→Y2 , fY1→Y2( f̄ )), GI of the target (FY2 , fY2( f̄ ))
and GA of the target (AY2 , aY2( f̄ ), āY2( f̄ )) resulting from the two simulations are
reported in panels A) and B) of FIG. 4.4, respectively. The GA measure AY2 reflects
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FIGURE 4.4: Dependence of the measures of Granger Causality, Isolation and Autonomy
on the strength of A) the internal dynamics in the target process, modulated by the
parameter b in the open-loop system (4.46), and B) the causal interaction from driver
to target, modulated by the parameter c in the open-loop system (4.46). Plots depict: a) the
time domain values of the GC, GI, and GA measures FY1→Y2 , FY2 , AY2 ; b) the spectral profiles
of the GC measure fY1→Y2( f̄ ), c) GI measure fY2( f̄ ) and d-f) GA measures AY2 , āY2( f̄ ), aY2( f̄ );
g) the spectral profiles of the TFs of the full (2.4) and restricted (2.9) models, HY2Y2( f̄ ) and

GY2Y2( f̄ ). The figure is adapted from Sparacino et al., 2023a.

exclusively the presence and strength of the autonomous dynamics in the target
process Y2, as it is null when b = 0 and rises proportionally to b in the first setting
and is constant at varying the coupling from Y1 to Y2 in the second setting (panels a
of FIG. 4.4A,B, circles). Analogously, the GC measure FY1→Y2 reflects exclusively the
presence and strength of the causal coupling from Y1 to Y2, being constant in case
of fixed coupling c = 0.5 (FIG. 4.4A,a, triangles) and increasing with c when b is
kept constant (FIG. 4.4B,a, triangles). The GI measure FY2 is also affected only by the
causal coupling (it is constant when b varies with c = 0.5, FIG. 4.4A,a, squares), and
is complementary to the GC measure, as it exhibits an opposite trend (it decreases at
increasing c, FIG. 4.4B,a, squares).

The spectral measures of GC, GI and GA localize within specific frequency bands,
related to the oscillations of the two processes, the effects described in the time
domain. Indeed, the GC and GI measures fY1→Y2( f̄ ) and fY2( f̄ ) exhibit respectively
a peak and a valley at the frequency of the oscillation of Y1 that is transmitted to Y2
(i.e., f = 0.3 Hz, FIG. 4.4A,b,c). The shape of the spectral profile is modulated in both
functions by the coupling parameter c: when c = 0 the GC is null at all frequencies
and the GI takes the highest values; when c rises towards 1 the GC shows a more
and more prominent peak at 0.3 Hz while the GI flattens progressively. As regards
the GA measure aY2( f̄ ), reported for the two simulations in panels f, we show its
decomposition into a constant part equal to the time domain GA measure AY2 (panels
d) and a variable part āY2( f̄ ) whose frequency average is zero (panels e). The spectral
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GA shows its highest values at the frequency of the autonomous oscillations imposed
in the target process (i.e., f = 0.1 Hz); when the parameter determining the strength
of this oscillation increases from b = 0 to b = 1, the spectral GA measures varies
from a flat null profile up to a shape with a well-defined peak (FIG. 4.4A,f). Panels
g of FIG. 4.4A,B, report the spectral profiles of the transfer functions of the full (2.4)
and restricted (2.9) models, |HY2Y2( f̄ )|2 and |GY2Y2( f̄ )|2 respectively, obtained varying
the parameters b and c. These profiles illustrate how the predictable autonomous
dynamics of the target process, in this simulation located at 0.1 Hz, are captured
in the full model by the transfer function HY2Y2( f̄ ), but not in the reduced model
by GY2Y2( f̄ ), which indeed is flat. This corroborates the choice of the ratio between
|HY2Y2( f̄ )|2 and |GY2Y2( f̄ )|2 as a meaningful index āY2( f̄ ) displaying a peak at the
frequency of the target autonomous dynamics (panels e of FIG. 4.4A,B).

4.2.3.2 Closed-Loop System

The second simulation reproduces a bivariate AR process where the driver Y1 and
the target Y2 exhibit autonomous oscillations at different frequencies and interact
in a closed loop. This type of pairwise interaction involving bidirectional causal
influences from one process to the other is commonly found in physiological contexts;
for instance, heart rate and arterial pressure generally interact in a closed-loop manner
where the arterial pressure counteract short-term modifications of heart rate through
the baroreflex (feedback mechanism), while the heart is responsible of blood pressure
changes due to feedforward mechanisms such as Windkessel or Frank-Starling effects
(Schulz et al., 2013; Javorka et al., 2017; Krohova et al., 2018).
In our simulation, the process is defined as:

Y1,n = aY1Y1,1Y1,n−1 + aY1Y1,2Y1,n−2 − dY2,n−1 + UY1,n

Y2,n = aY2Y2,1Y2,n−1 + aY2Y2,2Y2,n−2 − cY1,n−1 + UY2,n
(4.47)

where UY1 and UY2 are independent Gaussian white noises with zero mean and unit
variance. The parameters a·,· were set as in the first simulation (SECT. 4.2.3.1) to
obtain autonomous oscillations at 0.3 Hz for Y1 and at 0.1 Hz for Y2. In addition to
the causal interaction from Y1 to Y2 modulated by c, a causal interaction is set from Y2
to Y1 at lag k = 1, with strength modulated by the parameter d.

We consider the three following settings: (i) progressive strengthening of the
internal dynamics in the process Y2 with stable causal interactions, obtained varying b
from 0 to 1 with fixed c = 0.5 and d = 0.2; (ii) progressive strengthening of the causal
interaction from Y1 to Y2 with stable internal dynamics of Y2 and causal interaction
from Y2 to Y1, obtained varying c from 0 to 1 with fixed b = 1 and d = 0.2; (iii)
progressive strengthening of the causal interaction from Y2 to Y1 with stable internal
dynamics of Y2 and causal interaction from Y1 to Y2, obtained varying d from 0 to
1 with fixed b = 1 and c = 0.5. FIG. 4.5 reports the time domain values and the
frequency-domain profiles of the GA (AY2 , aY2( f̄ )) obtained in the three settings. For
the sake of brevity, the trends of the GC and GI measures are not reported because
they are identical to those of the first simulation (FIG. 4.4) despite the addition of the
causal interaction from Y2 to Y1.

FIG. 4.5a shows that the time domain GA increases with the strength of the inter-
nal dynamics modulated by b (circles, light blue to magenta), and remains constant
increasing the strength of the interaction Y1 → Y2 modulated by c (circles, blue to red).
On the other hand, stronger interactions Y2 → Y1 obtained increasing d determine a
slight decrease of the time domain GA AY2 (circles, yellow to blue). The spectral ex-
pansion of the GA measure allows to identify the frequency bands where the internal
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FIGURE 4.5: Dependence of the measure of Granger Autonomy on the parameters b, c and
d of the closed-loop system (4.47), modulating respectively the strength of the internal
dynamics in the target process, the causal coupling from Y1 to Y2 and the causal coupling
from Y2 to Y1. Plots depict a) the time domain values of the GA measure AY2 at varying b
(light blue to magenta circles), c (blue to red circles) or d (yellow to blue circles) in the range
[0, 1], and the spectral profiles of the GA measure aY2( f̄ ) obtained varying b) b, c) c, and d) d.

The figure is adapted from Sparacino et al., 2023a.

dynamics are localized. Indeed, FIGS. 4.5b-d reveal that the spectral profile of the
GA measure exhibits a peak at the frequency of the autonomous oscillation imposed
in the target process (i.e., 0.1 Hz). This peak is clearly modulated in amplitude by
the strength of the internal dynamics of Y2 (parameter b, FIG. 4.5b), while it changes
only slightly at varying the causal interactions between Y1 and Y2 (parameters c and
d), showing small amplitude and frequency modulations (FIG. 4.5c,d). Furthermore,
the imposition of a feedback effect from Y2 to Y1 determines a modification of the
spectral profile of aY2( f̄ ), with the emergence of a second peak around the frequency
of the autonomous oscillations of Y1 (∼ 0.3 Hz) and of a a reverse peak at higher
frequencies (FIG. 4.5b-d). The spectral integration property allows to ascribe the
decrease of the time domain GA for high values of d to this behavior, as the negative
peak prevails over the positive one at high frequencies, while the low-frequency peak
shows preserved or slightly larger amplitude. Remarkably, we hypothesize that this
effect may predominate when the frequencies at which target and driver oscillate are
different; indeed, as shown in the application to cerebrovascular variables in SECT.
5.6 (see FIG. 5.8), the reverse peak is not so evident if the two processes exhibit a
similar spectral behavior (panels b, d).

4.2.3.3 System with Unobserved Confounders

In this section, we study the behavior of the measures of GC, GI and GA, computed as
described in SECT. 4.2 for two processes Y1 and Y2, when their dynamics are affected
by an unobserved process Y3. To do this, we simulate the three-variate process defined
as

Y1,n = aY1Y1,1Y1,n−1 + aY1Y1,2Y1,n−2 + UY1,n

Y2,n = aY2Y2,1Y2,n−1 + aY2Y2,2Y2,n−2 − 0.8Y1,n−1 − aY3,n−1 + UY2,n

Y3,n = aY3Y3,1Y3,n−1 + aY3Y3,2Y3,n−2 + UY3,n,
(4.48)
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FIGURE 4.6: Analysis of Granger Causality, Isolation and Autonomy for the simulated
system with unidirectional interactions and confounding effects. Plots depict the spectral
profiles, expressed as average over 100 runs of (4.48), of the measures of a) GC ( fY2→Y1( f̄ )),
b) GI ( fY2( f̄ )) and c) GA (aY2( f̄ )) computed in the absence of autonomous dynamics of Y2
and confounding effects from Y3 to Y2 (a = 0, b = 0, continuous lines), in the presence of
autonomous dynamics only (a = 0, b = 0.8, dashed lines), and in the presence of confounding
effects only (a = 0.8, b = 0, dotted lines). The figure is adapted from Sparacino et al., 2023a.

where UY1 , UY2 and UY3 are independent Gaussian white noises with zero mean and
unit variance. The coefficients a·,· are set to obtain autonomous oscillations in the
processes depending on the modulus ρ and phase 2π f of three pairs of complex-
conjugate poles. Here, we set ρY1 = 0.9, fY1 = 0.3 Hz, ρY2 = b · 0.8, fY2 = 0.1 Hz, and
ρY3 = 0.8, fY3 = 0.2 Hz; the strength of the autonomous dynamics of Y2 depends on
the parameter b. Moreover, causal interactions are set at lag 1 both from Y1 to Y2, with
fixed strength 0.8, and from Y3 to Y2, with strength weighed by the parameter a.

The analysis is performed on realizations of the three processes generated by
feeding (4.48) with white noise observations, and then computing the spectral GC
( fY1→Y2( f̄ )), GI ( fY2( f̄ )) and GA (aY2( f̄ )) measures on the time series relevant to the
processes Y1 and Y2. We consider three parameter settings: (I) a = 0, b = 0, to simulate
the absence of autonomous dynamics in the target process Y2 and of effects from the
unobserved process Y3; (II) a = 0, b = 0.8, to simulate the presence of autonomous
dynamics in Y2 without effects from Y3; (III) a = 0.8, b = 0, to simulate the effect of
the unobserved process Y3 on the target Y2 in the absence of autonomous dynamics
of Y2. For each setting, 100 realizations of (4.48) were generated, each of length 500
points, and the spectral measures of GC, GI and GA were estimated after identifying
the bivariate AR model fitting the time series of Y1 and Y2; the model order was set
using the AIC (Faes, Erla, and Nollo, 2012).

The results of the analysis are reported in FIG. 4.6, showing the average spectral
profiles of the GC, GI and GA measures in the three simulation conditions. The
profiles of GC and GI are very similar in the three cases, revealing a clear peak of
the GC, and a corresponding minimum of the GI, at the frequency of the causal
interaction imposed from Y1 to Y2 ( fY1 = 0.3 Hz, FIG. 4.6a,b). This documents that
the presence of the unobserved confounder Y3 acting only on the analyzed target Y2
does not alter significantly the causal interactions from Y1 to Y2. On the other hand,
the profiles of GA are substantially different in the three cases: FIG. 4.6c shows that
the GA stays uniformly at the zero level when both autonomous target dynamics and
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confounding effects are absent (continuous line), peaks at ∼ 0.1 Hz when only the
autonomous dynamics are present (dashed line), and peaks at ∼ 0.2 Hz when only
the confounding effects are present (dotted line). This demonstrates that the proposed
spectral measure of GA is able to capture not only the autonomous dynamics of Y2,
but also the regular dynamics simulated in Y3 and transmitted to Y2 via the parameter
a. This may have implications in practical applications, e.g., when modifications of
GA may reflect the altered strength of exogenous effects, i.e., effects acting on the
target independently of the driver. For instance, in the case of the cerebrovascular
closed-loop interactions between mean arterial pressure and cerebral blood flow (see
SECT. 5.6), such effects might include modifications of carbon dioxide pressure, pCO2 ,
due to internal or external stressors, which may have an impact on arteriolar vessel
caliber and thus on blood flow velocity (Cencetti, Bandinelli, and Lagi, 1997). This
impact, which is not observed nor quantified in the bivariate model, might alter the
autonomous dynamics of the target and thus enter the computation of GA.

4.2.3.4 Interpretation and Comparison of Granger Causality, Isolation and Auton-
omy

The reported simulations depict the theoretical properties of the measures of GC,
GI and GA developed in this work. We have shown that, in a bivariate process
{Y1, Y2}, the GC and GA measures capture selectively the causal interaction from Y1
to Y2 and the autonomous dynamics of Y2, respectively, either globally or at specific
frequencies when measured in the time or frequency domains. The GI measure
behaves in a complementary way to the GC, decreasing with the strength of the
causal interactions and thus reflecting the degree of isolation of Y2. Importantly, the
time- and frequency-domain formulations of GC, GI and GA are strictly connected
by the spectral integration property, and the spectral representation allows to identify
the oscillations for which causal, non-causal and autonomous effects take place. This
property can be useful to detect variations in the strength of effects which are confined
within specific frequency bands and can be missed if investigated in the time domain
only. However, while these interpretations emerge strikingly in a bivariate system
with unidirectional coupling, they can be challenged when more complex dynamics
arise in the presence of closed-loop or multivariate interactions. For instance, in the
second simulation (SECT. 4.2.3.2) we showed that the GA measure is influenced by
the imposition of a feedback effect from the target to the driver; a similar behavior was
documented in a previous work by the conditional self entropy measure (Faes, Porta,
and Nollo, 2015), which is formally equivalent to the time domain GA (4.21). Herein,
this dependence is localized in frequency via the proposed spectral GA measure,
which exhibits an irregular profile with the appearance of a positive peak and a
reverse one around the frequency of the autonomous oscillation in the driver system
(see, e.g., Fig 4.5b-d). Furthermore, the third simulation (SECT. 4.2.3.3) showed that,
when an unobserved process has effects on the target, these effects may alter the
spectral profile of the GA measure in a way similar to that of autonomous dynamics
(see FIG. 4.6c). This may have implications in practical applications, e.g., when
multiple physiological systems interact but only two of them are monitored and
observed in a bivariate analysis.

Further insights on the concepts of autonomy and isolation are provided in the
following, where their meanings are discussed in terms of target predictable dynamics
and non-causal spectral power and the relevant measures of GA and GI are compared
in an additional simulation example. Specifically, we consider the bivariate process
(4.46), where the observed driver Y1 and target Y2 are simulated as AR processes
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FIGURE 4.7: Spectral behavior of measures of GC ( fY1→Y2 , purple line), GI ( fY2 , orange line)
and GA (aY2 , light blue line) in different simulation settings. In each of these settings, the
driver process Y1 is simulated as an AR process with an autonomous oscillation at 0.3 Hz. a)
setting (i), isolated process without autonomous dynamics: the target is a Gaussian white noise
with zero mean and unit variance. b) setting (ii), isolated process with autonomous dynamics:
the target is a process with self-dependencies featuring a stochastic oscillation at 0.1 Hz. c)
setting (iii), non-isolated process without autonomous dynamics: the target is a process Y2 with no
self-dependencies but causally driven by Y1. d) setting (iv), non-isolated process with autonomous
dynamics: the target is a process with self-dependencies featuring an oscillation at 0.1 Hz, and

is causally driven by Y1. The figure is adapted from Sparacino et al., 2023a.

with autonomous oscillations as specified in SECT. 4.2.3.1. A causal interaction is
set from Y1 to Y2 at lag k = 1, with strength modulated by the parameter c. We
consider four parameter configurations, in which the driver dynamics are fixed and
the target process Y2 is simulated as: (i) an isolated Gaussian white noise with zero
mean and unit variance (b = 0, c = 0); (ii) an isolated AR process with an autonomous
oscillation at fY2 = 0.1 Hz (b = 1, c = 0); (iii) an AR process with no autonomous
oscillations but influenced by Y2 at lag k = 1 (b = 0, c = 1); (iv) an AR process with an
autonomous oscillation at fY2 = 0.1 Hz and causally driven by Y1 at lag k = 1 (b = 1,
c = 1). For each setting, a pair of time series Y1, Y2 of length 500 is generated from the
AR model parameters feeding the model with white noise realizations. Then, model
identification is performed for the bivariate process {Y1, Y2}, setting the model order
at the value p = 2. The spectral profiles of the measures of GC, GI and GA resulting
from the generated time series are reported in FIG. 4.7.

Results confirm that GI and GA measures reflect different behaviors of the target
system. FIG. 4.7a reports the results relevant to the setting (i); the absence of internal
dynamics for Y2 (i.e., AR model coefficients relating the history of the target to its
present state) is reflected by the flat spectrum of aY2( f̄ ), while the spectral profile
of the GI, together with the GC, ensures the isolation of the target with respect to
the driver. Indeed, while the GC is uniformly zero at all frequencies, thus reflecting
the absence of causal interactions from Y1 to Y2, the spectral profile of the GI is
characterized by a reverse peak at the frequency of the autonomous oscillation of the
driver. These findings hold again in case of an AR target process Y2 whose dynamics
are only self-determined (FIG. 4.7b, setting (ii)). On the other hand, in case of a
well-established causal interaction from Y1 to Y2 (FIG. 4.7c, setting (iii), and FIG.
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4.7d, setting (iv)), the GC shows a clear peak at the frequency of the autonomous
oscillation of the driver, and the GI still owns a reverse peak at the same frequency.
This finding is quite interesting, since it emerges that the profile of the GI may be
related to the time- and frequency-domain behavior of the driver, which indeed
remains unaltered in all the settings (AR process with an autonomous oscillation
at 0.3 Hz). In another simulation, which has not been shown here for brevity, we
found that the spectral profile of the GI is flat and uniform at all frequencies when
Y1 is an isolated Gaussian noise. This suggests that the reverse peak of the GI, when
present, may give indications on the frequency-specific location of a possible driving
effect reducing the degree of isolation of the target process. These results seem to
confirm that the measure of GI has a dual role. First, it quantifies that part of the
target spectrum which cannot be explained by the driver, i.e., how much the target
dynamics are isolated with respect to the driver process. Moreover, it gives also an
information on the frequency-specific location of the isolation phenomenon, thus
allowing to identify the spectral bands where this is less/more accentuated. On the
other hand, the spectral profile of the GA is in line with what we expect to find, i.e. a
positive peak in presence of an autonomous oscillation of the target process whereby
it is located (FIG. 4.7b,d), or conversely a flat spectrum for aY2( f̄ ) whether the target
has no internal dynamics.
In conclusion, the differences between the two measures come out clearly. The two
concepts of isolation and internal dynamics reflect different mechanisms occurring in
the target process, as one does not rule out the other. They can coexist in the same
process (FIG. 4.7d), exist independently of each other (FIG. 4.7b,c), or not exist at all
(FIG. 4.7a). Still, it is fundamental to investigate the pairwise interactions between
the target and the driver through the three discussed measures, in order to have a
complete overview of how two processes interact and/or oscillate independently of
each other.

As regards the relation between the concepts of isolation and causality, quantified
respectively by the GI and GC measures, we evidence that they are clearly comple-
mentary, as an increase in the causal part of the spectrum implies a decrease of the
isolated part and vice versa (see Eqs. (4.29), (4.30) and (4.35)). However, differently
from the corresponding non-logarithmic DC measures (4.27) and (4.28) which sum to
1 at each frequency, the relation between the GC and GI measures is not trivial. In
fact, the logarithmic transformation, which provides information-theoretic meanings
to GC and GI, makes their sum to vary across frequencies, and this aspect may differ-
entiate their behavior in practical computations; we show an example in SECT. 5.6
regarding cerebrovascular interactions in healthy individuals and subjects prone to
develop postural-related syncope.

4.3 Beyond Pairwise Interactions: High-Order Interactions of
Multiple Network Units

While the standard network description of complex systems is based on quantifying
the link between pairs of system units, high-order interactions involving three or more
units often play a major role in governing the collective network behavior. Indeed,
there is mounting evidence that such measures cannot fully capture the interplay
among the multiple units of a complex system (Battiston et al., 2020), since they
very often exhibit collective behaviors which are integrated at different hierarchical
levels, thus displaying interactions that involve more than two network nodes. These
high-order interactions occur for instance when brain dynamics require the joint
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examination of multiple units to be predicted accurately (Stramaglia et al., 2012),
or when cardiovascular interactions are influenced by the effects of the respiratory
activity (Porta et al., 2011a). In this section, we will describe various information-
theoretic metrics proposed to assess the emergence of HOI patterns at increasing
orders, i.e., interactions involving the role of all network nodes at different levels of
resolution, in both time (SECT. 4.3.1.1, 4.3.1.2) and frequency domains (SECT. 4.3.2.1).

4.3.1 Time Domain

In this section, we will characterize the time domain behavior of the network X
composed of M nodes, whose activity is described by the vector processes X1, . . . , XM,
each comprising Mi scalar processes, i = 1, . . . , M. To this end, we refer the reader
to the mathematical definitions provided in SECT. 2.3 related to the time domain
representation of VAR linear models. When more than two units are considered,
suitable approaches are needed to examine single-node and pairwise activity within a
complex network of multiple nodes, as well as HOIs for multiplets of order N ≤ M at
different levels of resolution, i.e., characterizing the role of the single node within the
selected subset (node-specific analysis), the nature of the link between two nodes with
respect to the remaining nodes (link-specific analysis), as well as the overall activity
of groups of nodes or the whole network (network-specific analysis). To this end,
information-theoretic measures of dynamic HOIs which extend to random processes
the concepts of first-order OI gradient, OI and local OI defined for random variables
in SECT. 3.2 are required to provide a more comprehensive and detailed description
of the analysed dynamic network system. In this section, we will describe these
measures in the context of linear Gaussian processes. For further details, we refer the
reader to Faes et al., 2022a; Sparacino et al., 2024b; Mijatovic et al., 2024a; Mijatovic
et al., 2024b.

4.3.1.1 Network-specific and Node-specific Analysis of HOIs

O-Information Rate. The MIR (4.11) is a dynamic measure of pairwise interde-
pendence between two random processes, and can be used as a building block for
the assessment of HOIs generalizing to multiple random processes the OI measure
appearing in (3.12) for multiple random variables.
To this end, let us consider the Q scalar processes {Y1, . . . , YQ} grouped in the M
blocks {X1, . . . , XM}, each of dimension Mi, i = 1, . . . , M. The dynamic interaction of
order three among the processes Xi, Xj and Xk, i, j, k ∈ {1, . . . , M}, i ̸= j ̸= k, can be
quantified by the interaction information rate (IIR) (Faes et al., 2021); (Sparacino et al.,
2024b) by using MIR terms in a formulation similar to (3.8):

IXi ;Xj;Xk = IXi ;Xj + IXi ;Xk − IXi ;Xj,Xk . (4.49)

Moreover, exploiting the same expression valid for the OI, based on the two concepts
of total correlations and dual total correlation (3.11), where the ER of random pro-
cesses is used in place of the entropy of random variables, it is possible to define a
so-called O-information rate (OIR). Specifically, the OIR of a group of random processes
XN = {X1, . . . , XN}, 3 ≤ N ≤ M, is computed as

ΩXN = (N − 2)HXN +
N

∑
i=1

[
HXi − HXN

−i

]
, (4.50)

where XN
−i denotes the set of all the processes in XN but Xi. The OIR quantifies

collective interactions among all the analyzed processes, and can be also computed
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in an iterative way from the OIR of a subset including N − 1 processes, e.g., XN
−i,

summing a gradient (referred to as ∆) which quantifies the informational increment
obtained when the process Xi is appended to XN

−i (Faes et al., 2022a); (Sparacino et al.,
2024b):

ΩXN = ΩXN
−i
+ ∆Xi ;XN

−i
, (4.51)

∆Xi ;XN
−i
=

N

∑
i=1
i ̸=j

IXi ;XN
−ij

+ (2− N)IXi ;XN
−i

, (4.52)

with XN
−ij = XN\{Xi, Xj}. According to this definition, the OIR is zero for any two

processes (ΩXi ,Xj = 0), and is equal to the gradient for three processes, i.e. ΩXi ,Xj,Xk =
∆Xi ;Xj,Xk , which in turns corresponds to the IIR (4.49) with N = 3. Both the IIR of
three processes and the OIR computed for N > 3 processes are symmetric, i.e. do
not change if the order of the processes is swapped in the computation. Importantly,
these measures, as well as the gradients, can be either positive or negative, with the
sign reflecting the redundant or synergistic nature of the interactions in groups of
random processes; specifically, positive values of ΩXN or ∆Xi ;XN

−i
denote redundancy,

while negative values denote synergy. While the OIR ΩXN can be considered as an
information-theoretic measure of the overall dynamic activity of the observed network
of N processes, the OIR gradient ∆Xi ;XN

−i
characterizes the redundant/synergistic role

of the single node Xi when it is appended to the subset XN
−i.

Remarkably, combinatorial explosion in the context of HOIs in physiological and
neural networks, which refers to the rapid increase in the number of possible node
combinations as the size of the network grows, is an open challenge in the field of
Network Science. For instance, in a network with M = 10 nodes, the activity of
the single entities is described by means of M = 10 values of ER, and M(M−1)

2 = 45
values of MIR. However, when we start looking at interactions beyond just pairs of
nodes (i.e., HOIs), the complexity skyrockets. In general, for the M-node network,
the number of HOIs assessed via the OIR measure scales factorially according to
the binomial coefficient CM,N = (M

N) =
M!

N!(M−N)! , where N is the number of nodes
taken into account (3 ≤ N ≤ M). Hence, in the case of triplets (N = 3 nodes), the
number of HOIs amounts to 120 different possible combinations among the 10 nodes.
This combinatorial increase poses computational challenges and often necessitates
efficient algorithms or resourceful approximations to handle the explosive growth
in complexity. Moreover, issues arise also regarding the interpretation of the vast
number of HOIs in multiplets of different order: understanding large networks is not
just about scaling up, but also about dealing with the intricate web of interactions
that emerge.

Simulation examples of the proposed measures of network- and node-specific
analysis of complex networks can be found in SECT. 4.3.3.1 and 4.3.3.2. Applications
to cardiovascular, cardiorespiratory and cerebrovascular interactions, as well as to
brain networks, have been discussed in our works Faes et al., 2022a; Faes et al.,
2022b; Sparacino et al., 2022a; Pirovano et al., 2023; Sparacino et al., 2024b, and herein
presented in SECT. 5.7, 5.9, 6.2.4 - 6.2.5.

Causal decomposition of the O-Information rate. The OIR increment (4.52)
can be decomposed into causal and instantaneous contributions arising from the MIR
decomposition (4.12b), as explained in Faes et al., 2022a. To this aim, we note that
∆Xi ;XN

−i
is obtained inserting N different MIR values in (4.52), i.e. the MIRs between
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the processes Z1 = Xi and Z2 = XN
−i where Z1 is fixed and Z2 varies with i = 1, . . . , N,

excluding Xi. Then, using Z1 and Z2 in the MIR expansion (Chicharro, 2011)

IZ1;Z2 = TZ1→Z2 + TZ2→Z1 + IZ1·Z2 , (4.53)

and substituting into (4.52) allows to decompose the OIR gradient as

∆Xi ;XN
−i
= ∆Xi→XN

−i
+ ∆XN

−i→Xi
+ ∆Xi·XN

−i
, (4.54)

where the three terms

∆Xi→XN
−i
= (2− N)TXi→XN

−i
+

N−1

∑
i=1

TXi→XN
−i

∆XN
−i→Xi

= (2− N)TXN
−i→Xi

+
N−1

∑
i=1

TXN
−i→Xi

∆Xi·XN
−i
= (2− N)IXi·XN

−i
+

N−1

∑
i=1

IXi·XN
−i

(4.55)

quantify the informational character of the directional information transfer from Xi to
XN
−i, of the directional information transfer from XN

−i to Xi, and of the instantaneous
information shared between XN

−i and Xi, respectively; the informational character of
each term is redundant when the term is positive, and synergistic when the term is
negative.
Simulation examples of the proposed measures of network- and node-specific analy-
sis of complex networks can be found in SECT. 4.3.3.3.

Linear parametric formulation. The calculation of the high-order information-
theoretic measures defined above requires an approach to compute the MIR between
vector random variables. While the VAR model (2.6) provides a global representation
of the overall multivariate process, to describe the linear interactions relevant to the
subset of processes Z = {Z1, Z2} = {Xi, XN

−i}, for which the MIR terms in (4.52) and
the MIR decomposition (4.54) are sought, a restricted VAR model involving only
those processes should be defined as in (2.7). The restricted model parameters can
be derived from the parameters of the full model (2.6) through a procedure that
exploits SS models (SECT. 2.3.5.1). The computation of the OIR, the OIR gradient
and its decomposition terms goes through the representation of the SS model in the
frequency domain (see SECT. 2.4.1) and will be shown in SECT. 4.3.2. The procedure
has been thoroughly described in Faes et al., 2022a.

Partial Information Rate decomposition. Besides the novel concept of the
OIR and its decomposition into causal and non-causal terms, which however do not
put in evidence multiplets of variables which are both redundant and synergistic
with equal strength, different approaches to the study of the mutual influence among
many signals in dynamic networks have been proposed throughout the past decades.
A common technique is the conditional/partial transfer entropy (Vakorin, Krakovska,
and McIntosh, 2009; Stramaglia et al., 2012; Porta et al., 2015), which measures
the influence of one time series on another time series in the presence of a third, a
condition translated by Geweke into the frequency domain (Geweke, 1984). However,
although the method is simple and intuitive, it has been demonstrated that both
pairwise and fully conditioned TE analyses may encounter challenges in the presence
of synergy or redundancy in time series data; indeed, pairwise causality fails to reveal
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synergistic effects while fully conditioned causality may fail to reveal redundant
effects (Stramaglia et al., 2024). Approaches which separately evaluate redundant
and synergistic patterns of interactions are then needed to deal with these issues.

In this context, partial information decomposition (PID) has been developed as a
comprehensive framework designed to understand how information is distributed
in multivariate systems: the foundational work by Williams and Beer (Williams and
Beer, 2010) introduced PID as a method to decompose multivariate information in
non-negative terms, addressing limitations of traditional measures like the II (McGill,
1954) which can yield both positive and negative values often obscuring the inter-
pretation of informational relationships. Considering a target random variable and
a set of source variables, the mathematical redundancy lattice structure defined for
the PID (Williams and Beer, 2010) identifies a set of atoms whose associated partial
information (PI) amounts constitute the building blocks of the analyzed multivariate
information shared between the target and the sources, quantified by the MI. More-
over, to overcome the limitation that the number of atoms grows super-exponentially
with the number of source variables (Gutknecht, Wibral, and Makkeh, 2021), refine-
ments have been introduced whereby the PI atoms are aggregated meaningfully to
highlight how the MI is distributed among the sources (Rosas et al., 2020); these
refined approaches provide a coarse-grained decomposition with a small number of
atoms that scale gracefully with the system size, highlighting the unique information
exclusively available from each source, the redundant information obtained from
at least two different sources, and the synergistic information revealed only when
multiple sources are considered simultaneously.

Nevertheless, in spite of the universality of the problem posed by PID, the un-
derlying analytical framework presents some inherent limitations that restrict its
unambiguous utilization in different contexts. A first issue was recognized since the
inception of PID noting that the information atoms of unique, redundant, and syner-
gistic information cannot be defined using classical information theory, rather require
the introduction of new axioms whose definition is not yet universally accepted. Con-
sequently, several axiomatic definitions of redundancy have been proposed so far that
differ depending on the philosophy followed to satisfy the desired properties (e.g.,
decision- (Pakman et al., 2021), game- (Ince, 2017), information-theoretic (Makkeh,
Gutknecht, and Wibral, 2021)), on the nature (continuous (Barrett, 2015; Pakman
et al., 2021; Ehrlich et al., 2024) or discrete (Williams and Beer, 2010; Bertschinger
et al., 2014; Ince, 2017)) of the analyzed variables, and on assumptions made about
their distribution (e.g., Gaussian (Barrett, 2015)). Popular and simple approaches
implement the so-called minimum MI (MMI) PID schemes, whereby redundancy
is defined for a given atom as the minimum of the MI (or the specific MI) shared
between the target (or a specific state of it) and each source (Williams and Beer, 2010;
Barrett, 2015). However, these schemes are limited in the fact that they quantify the
minimum amount of information that all variables carry but do not require that such
information is the same for all variables (Harder, Salge, and Polani, 2013; Bertschinger
et al., 2014; Griffith and Ho, 2015; Ince, 2017). To overcome this limitation, less conser-
vative approaches have been proposed which typically define redundancy at the local
or pointwise level, rather than at the level of ensemble averages (Ince, 2017; Makkeh,
Gutknecht, and Wibral, 2021; Ehrlich et al., 2024); these approaches allow defining
more refined redundancy quantities, but suffer in their turn from the limitation of
potentially yielding negative information atoms (essentially because local MI can be
negative), which hinders a strightforward interpretation of the results. Thus, the defi-
nition of a proper operalization of PID, merging computability and interpretability, is
still an open problem in information theory.
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Another crucial issue is how to apply PID to random processes with temporal
statistical structure. In fact, although specifically defined for random variables, PID
is often needed in practice to analyze multivariate time series whose most proper
statistical representation is the vector random process. Then, since both the target
random process and the set of source processes constitute collections of random vari-
ables, utilization of the PID in such dynamic case is not straightforward as it implies
an arbitrary selection of the variables to be extracted from each process. A common
approach is to apply PID to the variables sampling the processes at the same time,
performing a so-called static PID, under the implicit assumption that the processes
are stationary and memoryless (i.e., composed by i.i.d. variables). However, the i.i.d.
assumption is typically not tested in practice and is often violated in applications
of information decomposition where the analyzed data exhibit nontrivial temporal
correlations (Kay, Schulz, and Phillips, 2022; Varley et al., 2023a; Varley et al., 2023b).
Alternatively, the PID has been applied to random processes by selecting the variables
to use in order to decompose the joint information transferred from all sources to the
target (Krohova et al., 2019; Luppi et al., 2020; Luppi et al., 2022), yielding the PID
of the popular TE measure of information transfer (Schreiber, 2000). Nevertheless,
although considering the temporal statistical structure of the multivariate process,
the PID of the TE cannot account for instantaneous interactions among the processes,
nor for causal interactions occurring in the causal direction from the target to the
sources. Hence, the current applications of PID to random processes provide only a
partial, often misleading view of the interactions among the units of dynamic network
systems.

To deal with these limitations, in this thesis we present the novel framework
described in Sparacino et al., 2025 for the decomposition of the information shared
dynamically between the target and the source units composing the analyzed network
of random processes. Our idea is to shift the paradigm of PID from the use of
random variables to the use of random processes as building blocks of information
decomposition: leveraging the use of information rate quantities in place of standard
information quantities, we replace the MI between random variables with the MIR
between random processes, and use the same lattice backbone of PID to implement the
so-called partial information rate decomposition (PIRD). PIRD dissects the information
shared per unit of time between the designed target random process and the set
of source processes, quantified by the MIR, into PI rate atoms adopting a full PID
perspective, or into unique, redundant and synergistic information rates adopting a
coarse-graining perspective. The PIRD is solved introducing the new information-
theoretic measure of redundancy rate which generalizes the MIR over the lattice.
Among several possible definitions, the redundancy rate is formulated following a
pointwise approach implemented in the frequency domain, i.e. defining a so-called
spectral redundancy rate which quantifies the concept of redundancy among iso-
frequency oscillatory components of the analyzed processes. This allows to achieve a
non-negative decomposition of the spectral MIR between target and source processes
at each specific frequency. Moreover, in the case of linear Gaussian processes (Geweke,
1982; Chicharro, 2011), the use of the MMI principle (Barrett, 2015) applied to the MIR
between the target and each source process leads us to retrieve a non-negative time-
domain PIRD through integration of the the PI rate atoms over the whole frequency
spectrum. While in this section we discuss the time domain formulation of the PID
and PIRD frameworks, the spectral PIRD and its practical implementation for linear
Gaussian processes will be presented in SECT. 4.3.2.1.

Now, let us consider a generic static network system composed of M + 1 nodes
V = {T ,S1, . . . ,SM}, where the activity at each node is described in terms of random
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variables T, S1, . . . , SM, with T assumed as the target variable and S = {S1, . . . , SM}
as the vector of sources. The PID framework allows to assess and decompose the
multivariate information shared in the system, i.e., the MI between T and S, I(T; S),
defined in terms of probability distributions as in (3.2), into terms related to the
contributions that the individual sources Si, i = 1, . . . , M, or a collection thereof,
share with the target T, in turn related in non-trivial ways to the marginal MI between
each source and the target, I(T; Si). Specifically, the mathematical redundancy lattice
structure defined for the PID (Williams and Beer, 2010) identifies a set of atoms whose
associated PI amounts constitute the building blocks of the analyzed multivariate
information I(T; S). The lattice is identified by the collection A of all subsets of
sources such that no source is a superset of any other, i.e., the set of anti-chains
formed from the indices of the sources in S under set inclusion (Williams and Beer,
2010) (see FIG. 4.8a,b (left) for the cases of M = 2 and M = 3 sources; e.g, A =
{{1}{2}, {1}, {2}, {12}} if M = 2). Formally, the PID expands the MI as

I(T; S) = ∑
α∈A

Iδ(T; Sα), (4.56)

where Iδ(·; ·) is the PI function defined over the atoms of the lattice, α = {α1, . . . , αJ} ∈
A, and Sα denotes the set of subsets of source variables indexed by the αth atom,
with αj ⊆ {1 · · ·M}, Sαj ⊆ S, j = 1, . . . , J. To complete the PID besides the basic
statement in (4.56), it is necessary to provide a set of so-called consistency equations
which, relating atoms to mutual information, allow to derive the PI terms (Gutknecht,
Wibral, and Makkeh, 2021). The main consistency equations state that the marginal
MI terms involving any individual source variable Si are constructed additively by
summing the information of the atoms positioned at the level {i} and downwards in
the lattice, i.e.,

I(T; Si) = ∑
β⪯{i}

Iδ(T; Sβ), (4.57)

where ⪯ identifies precedence based on the partial ordering imposed by the lattice
structure (Williams and Beer, 2010). Moreover, as the equations (4.56) and (4.57) do
not suffice to solve the PID problem because they provide a number of constraints
lower than the number of information atoms to be computed (i.e., M+ 1 < |A|, where
| · | indicates cardinality), to complete the PID it is necessary to define a so-called
redundancy function, here denoted as I∩(·; ·), which generalizes the MI over the lattice.
The redundancy function extends (4.57) to each atom α ∈ A, fulfilling

I∩(T; Sα) = ∑
β⪯α

Iδ(T; Sβ), (4.58)

where β represents the atoms preceding or equal to α and structurally connected to it
in the lattice. Finally, the information associated to all atoms can be retrieved, starting
from the knowledge of the redundancy function, either iteratively as

Iδ(T; Sα) = I∩(T; Sα)− ∑
β≺α

Iδ(T; Sβ), (4.59)

or in a compact way via Möbius inversion of (4.58) (Williams and Beer, 2010). Im-
portantly, while the redundancy value of an atom α, I∩(T; Sα), measures the total
amount of redundant information shared by all the sources included in that atom,
the PI measures the unique information contributed only by that atom. A popular
and simple approach to assign a redundancy function is the so-called MMI PID,
whereby redundancy is defined for the atom α = {α1, . . . , αJ} as the minimum of the
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FIGURE 4.8: Standard and coarse-grained partial information decomposition, superim-
posed on the redundancy lattices for M sources. (a) Standard PID on the redundancy lattice
for 3 variables (M = 2). The alphabet of source combinations isA = {{1}{2}, {1}, {2}, {12}},
where {1} denotes S1 and {2} denotes S2. The MI between the target and the set of sources is
decomposed into a redundant (magenta), a synergistic (blue) and two unique (gray) contri-
butions, which are exclusively provided by different atoms of the lattice. (b) Standard and
coarse-grained 1st order PID on the redundancy lattice for 4 variables (M = 3). The alphabet
of source combinations is A = {{1}{2}{3}, {1}{2}, {1}{3}, {2}{3}, . . . , {123}}, where {i}
denotes Si, i = 1, . . . , M. The MI between the target and the set of sources is decomposed into
a redundant (magenta), a synergistic (blue) and three unique (gray) contributions, which are

exclusively provided by different set of atoms of the lattice.

information shared between the target and each individual information component
(Barrett, 2015):

I∩(T; Sα) = min
j=1,...,J

I(T; Sαj); (4.60)

for instance, considering M = 3 sources and the atom α = {{1}, {23}}, the redun-
dancy becomes the minimum between I(T; S1) and I(T; S2, S3). The MMI PID is
generally applied in case of Gaussian data (Barrett, 2015); we will adopt this approach
in the practical implementation of the redundancy rate for random processes (see
SECT. 4.3.2.1).

An important aspect with practical relevance is that, as an alternative to (4.56), the
PID can be formulated in a meaningful way by making explicit the unique information
that each source Sm holds about the target T (m = 1, . . . , M), the redundant information
that all source variables in S hold about T, and the synergistic information about T
that only arises from knowing all the sources S1, . . . , SM. This corresponds to expand
multivariate information as

I(T; S) =
M

∑
m=1
U (T; Sm) +R(T; S) + S(T; S), (4.61)

where
U (T; Sm) = I(T; Sm)−R(T; S). (4.62)

This approach provides a coarse-grained decomposition with a small number of
atoms that scale gracefully with the system size: while the full PID (4.56) yields
a number of atoms |A| that grows super-exponentially with M like the Dedekind
numbers (Gutknecht, Wibral, and Makkeh, 2021), the coarse-grained PID (4.61) de-
composes the multivariate information into exactly M + 2 quantities. In particular,
the two formulations coincide when M = 2 source variables are considered, yield-
ing R(T; S) = Iδ(T; S{1}{2}), U (T; S1) = Iδ(T; S{1}), U (T; S2) = Iδ(T; S{2}), and
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S(T; S) = Iδ(T; S{12}) (FIG. 4.8a, right). On the other hand, when M ≥ 3 the coarse-
graining is implemented by summing the PI of some of the atoms in (4.56). This
issue has been addressed in Rosas et al., 2020, where the construction for M = 2 was
generalized to M = 3 sources through the so-called kth order coarse-grained PID, which
preserves the intuitive meaning that synergy, redundancy, and unique information
have for M = 2 sources (FIG. 4.8b, right). Specifically, considering k = 1, the 1st-order
synergy, S(T; S), corresponds to the information about the target that is provided by
the whole S but is not contained in any subset of sources when considered separately
from the rest (atoms surrounded by the blue shade in FIG. 4.8). Similarly, the 1st-order
redundancy,R(T; S), is the information held by at least two different groups of size 1
(magenta in FIG. 4.8). Finally, the 1st-order unique information provided by the mth

source, U (T; Sm), m = 1, . . . , M, is the information that Sm has access to and no other
subset of parts has access to on its own, although bigger groups of other parts may
have (gray in FIG. 4.8).

Let us now switch to a generic dynamic network system composed of M + 1
nodes, Z = {Y ,X1, . . . ,XM}, where the activity at each node is described in terms
of the vector random process Z = {Y, X1, . . . , XM}, with Y assumed as target and
X = {X1, . . . , XM} as the vector of sources. Since each random process is a collection
of random variables, the application of the PID in the dynamic case is not straight-
forward as it implies an arbitrary selection of the variables to be extracted from each
process. The most intuitive choice is to apply the PID to the variables sampling
the processes at the same nth time point, setting T = Yn and S = Xn as target and
source variables and thus decomposing the static MI I(Yn; Xn) through a redundancy
function based on zero-lag MI terms. However, the zero-lag PID of I(Yn; Xn) presup-
poses to work with memoryless processes, a condition that is typically not satisfied
in practice as the presence of a temporal statistical structure is inherently expected
in time series data. To overcome this limitation, we propose a framework for the
decomposition of the information shared dynamically between the target and the
source processes which makes use of the concepts of ER (4.1) and MIR (4.11). The
latter can be expressed in terms of entropy rates as in (4.12a), evidencing the analogy
between the concepts of entropy and MI for random variables and the concepts of
ER and MIR for random processes. Hence, we use the MIR as a building block for
assessing and decomposing the dynamic information shared between the scalar target
process Y and the vector source process X = {X1, . . . , XM} of the analyzed network
system. Specifically, we formalize the PIRD which makes use of the same lattice
structure of the PID (Williams and Beer, 2010) to expand the MIR between target and
sources as:

IY;X = ∑
α∈A

Iδ
Y;Xα

, (4.63)

where Iδ
·;· is a PI rate function defined for each atom α = {α1, . . . , αJ} of the lattice,

and Xα denotes the αth set of subsets of source processes, with Xαj ⊆ X. As happens
for the PID, to solve the PIRD it is necessary to define a so-called redundancy rate
function, here denoted as I∩·;·, which generalizes the MIR over the lattice and replaces
the concept of redundancy function generalizing the MI. The redundancy rate of the
αth atom is obtained summing the PI rate of the same atom to the PI rates of the atoms
positioned downwards in the lattice:

I∩Y;Xα
= ∑

β⪯α

Iδ
Y;Xβ

; (4.64)
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then, once the redundancy rate is known, the information rate associated to all atoms
can be retrieved via Möbius inversion of (4.64). Importantly, since the PIRD is built
over the same lattice backbone as the PID, several concepts and relations defined
for the PID still hold in the dynamic case (see FIG. 4.8, with the shrewdness of
considering information rates in place of the static information distributed over the
lattice). For instance, as the PIRD satisfies the same consistency equations valid for
the PID, the redundancy function computed for an atom composed by one single
source reduces to the MIR between the target and that source, i.e. I∩Y;Xα

= IY;Xi when
α = {i}. Moreover, the rate of information shared between the M source processes
X1, . . . , XM taken together and the target process Y can be expanded in analogy to
(4.61) as the sum of M + 2 contributions:

IY;X =
M

∑
m=1
UY;Xm +RY;X + SY;X; (4.65)

in (4.65), we achieve a so-called coarse-grained PIRD, whereby each of the M terms
UY;Xm = IY;Xm −RY;X identifies the unique rate of information produced by Y that is
shared exclusively with Xm (m = 1, . . . , M), the term RY;X identifies the redundant
rate of information produced by Y that is shared simultaneously with all the source
processes in X, and the term SY;X identifies the synergistic rate of information produced
by Y that only arises from knowing all the sources X1, . . . , XM. These coarse-grained
information rates correspond for the case of two sources to the PI rates of the four
atoms of the redundancy rate lattice (FIG. 4.8a, right), while they can be obtained
for the case M = 3 by summing the PI rates of the atoms with redundant, unique or
synergistic character (respectively, magenta, gray and blue shades in FIG. 4.8b, right).

4.3.1.2 Link-specific Analysis of HOIs

B-index Rate. The concept of B-index introduced in SECT. 3.2 for random variables
can be expanded to random processes, where the MIR and the conditional MIR
are used in place of the MI and CMI, respectively. To this end, let us consider the
dynamic system X described by the vector random process Yn = [Y1,n, . . . , YQ,n].
The equivalent notation evidencing the dynamics of the units {Vi, Vj, Vz} (see SECT.
3.2) is Y = [Yi, Yj, Yz], where Yz = Y \ [Yi, Yj], i, j = 1, . . . , Q, i ̸= j. In this case,
the information-theoretic measure that is typically used to analyze the temporal
evolution of the unit Yi is the entropy rate (4.1), quantifying the rate of generation of
new information in the process Yi; when combined with the entropy rate of Yj, HYj ,
and with the joint entropy rate of Yi and Yj, HYi ,Yj , it can be used to assess the iS of the
two processes through the MIR (4.12a) (Duncan, 1970). Then, based on this definition
in the analyzed network of random processes, the ciS becomes the conditional MIR
(cMIR) IYi ;Yj|Yz obtained as

IYi ;Yj|Yz = HYi |Yz − HYi |Yj,Yz , (4.66)

the niS becomes the niRS IYi ;Yj;Yz (??), quantifying the balance between redundancy
and synergy as the difference between the MIR (i.e., the iS) and the CMIR (i.e., the
ciS), and the B-index becomes a B-index rate (Mijatovic et al., 2024a):

BYi ;Yj =
IYi ;Yj;Yz

max{IYi ;Yj , IYi ;Yj|Yz}
. (4.67)

In (4.67), the B-index rate is computed dividing the difference between the MIR and
the CMIR to their maximum, so as to obtain a measure ranging between -1 and 1. The
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limit values highlight a full imbalance between redundancy and synergy that relates
to specific network topologies, specified and discussed in SECT. 3.2.
A simulated example showing the theoretical behavior of the proposed B-index rate
measure quantifying link-specific interactions in complex networks can be found in
SECT. 4.3.3.4. Applications to cardiovascular networks are described in SECT. 5.11.

Linear parametric formulation. The individual dynamics of the processes Yi and
Yj and their joint dynamics described by the bivariate process {Yi, Yj} are captured
by three restricted VAR models in the form of (2.7), where Yi,n, Yj,n and

[
Yi,nYj,n

]⊺
are used in place of Zn, while Yi,n−k, Yj,n−k and

[
Yi,n−kYj,n−k

]
in place of Zn−k. The

parameters of these restricted models, i.e. the coefficients BZ,k, and the covariance of
the residuals ΣWZ , can be derived from the parameters of the full model (2.6) A(var)

Y,k
and Σ

(var)
UY

, through a procedure that solves the YW equations to derive the covariance
structure of Y and then reorganizes such structure to relate it to the covariances of
Yi, Yj or Yz (SECT. 2.3.5.1). Then, under the assumption of joint Gaussianity for the
overall process Y, the information measures capturing the network interactions can
be derived straightly from the covariances of the residuals of the restricted models.
Specifically, the entropy rates of Yi, Yj or {Yi, Yj} are obtained as in (4.2), from which
the MIR is computed as in (4.15) (see the formulations for scalar processes).
The procedure described above can be repeated to define restricted models capturing
the dynamics of the vector process Yz as well as of the joint processes Yi = {Yi, Yz}
and Yj = {Yj, Yz} using VAR formulations as in (2.7), and then to compute the
entropy rates of Yz, Yi and Yj as in (4.2). This allows to obtain formulations of the
MIR terms IYi ;Yz = HYi + HYz − HYi and IYi ;Yj = HYi + HYj − HY following (4.15),
from which the ciS IYi ;Yj|Yz is computed as in (4.66) subtracting IYi ;Yz from IYi ;Yj , and
the niRS IYi ;Yj;Yz and B-index rate BYi ;Yj are computed as in (??) and (4.67).

4.3.2 Frequency Domain

In this section, starting from the mathematical definitions provided in SECT. 2.4
related to the frequency domain representation of VAR linear models, we will charac-
terize the frequency domain behavior of the network X composed of M nodes, whose
activity is described by the vector processes X1, . . . , XM, each comprising Mi scalar
processes, i = 1, . . . , M. While information-theoretic node- and network-specific mea-
sures of dynamic HOIs which extend to the frequency domain the concepts defined
in the time domain in SECT. 4.3.1 have been validated through the utilization of the
OIR framework (Faes et al., 2022a; Sparacino et al., 2024b), measures characterizing
the link-specific spectral interactions in networks of multiple nodes are still lacking,
though they can be derived straightforwardly exploiting the concepts of spectral MIR
and CMIR to get a spectral B-index rate as an expansion of (4.67).
Furthermore, we remark that single-node and pairwise activities involving only one
or two (groups of) node(s) in the observed network can be investigated through a
very simple approach, based on representing the VAR model (2.6) in the frequency
domain thus yielding (2.20), which in turn can be partitioned in M × M blocks if
the subdivision of Y in M blocks X = {X1, . . . , XM} is considered (2.21). Then, the
spectral ERs hYi (hXi ) and spectral MIRs iYi ;Yj (iXi ;Xj ) can be computed by taking the
corresponding elements of P(var)

Y ( f̄ ) (P(var)
X ( f̄ )), i.e., P(var)

Yi
( f̄ ) (P(var)

Xi
( f̄ )) to compute the

ER as in (4.5), and {P(var)
Yi ,Yj

( f̄ ), P(var)

[YiYj]
( f̄ )} ({P(var)

Xi ,Xj
( f̄ ), P(var)

[XiXj]
( f̄ )}) to compute the MIR
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as in (4.37), where P(var)

[YiYj]
( f̄ ) =

[
P(var)

Yi
( f̄ ) P(var)

YiYj
( f̄ )

P(var)
YjYi

( f̄ ) P(var)
Yj

( f̄ )

]
(the same holds for P(var)

[XiXj]
( f̄ )}).

Theoretical simulations exploiting this approach will be presented in SECT. 4.3.3.1,
4.3.3.2 (Sparacino et al., 2024b).

4.3.2.1 Network-specific and Node-specific Analysis of HOIs

O-Information Rate. The parametric implementation of the OIR decomposition,
which relies on the mathematical definitions provided in SECT. 2.4 related to the
frequency domain representation of VAR linear models, allows to expand the OIR and
its decomposition terms in the frequency domain, thus obtaining spectral patterns of
HOIs between the analysed processes. These concepts have been investigated and
described with fine detail in Faes et al., 2022a; Sparacino et al., 2024b.
As a first step, we consider the full VAR model (2.6) and the restricted VAR model (2.7),
whose identification procedures have been described in SECT. 2.3.5 and SECT. 2.3.5.1,
respectively; details on their spectral representations can be found in SECT. 2.4 and
SECT. 2.4.1, respectively. The PSD matrix of the restricted process Z = {Z1, Z2} (2.24)
can be factorized in blocks to make explicit the power spectral densities of Z1 and
Z2, SZ1( f̄ ) and SZ2( f̄ ), as diagonal blocks, and the cross-spectral densities between
Z1 and Z2, SZ1Z2( f̄ ) and SZ2Z1( f̄ ), as off-diagonal blocks. From this factorization, the
logarithmic spectral measure of the total (symmetric) interdependence between Z1

and Z2 is defined as in (4.37), yielding fZ1;Z2( f̄ ) = log
(
|SZ1 ( f̄ )||SZ2 ( f̄ )|
|SZ( f̄ )|

)
(Geweke, 1982).

Moreover, after factorizing in Ri × Ri diagonal blocks and Ri × Rj off-diagonal blocks
also the transfer and innovation covariance matrices H̃Z( f̄ ) and ΣWZ , logarithmic
spectral measures of the causal (asymmetric) effect of Zj on Zi (i, j = 1, 2) can be

computed as in (4.38). This yields fZj→Zi( f̄ ) = log
(

|SZi ( f̄ )|
|H̃Z

ZiZi
( f̄ )ΣWZi

H̃Z∗
ZiZi

( f̄ )|

)
(Geweke,

1982), where H̃Z
ZiZi

describes the transfer from WZi to Zi in the frequency domain
and ΣWZi

= E[WZi ,nW⊺
Zi ,n]. To complete the representation of the pairwise interac-

tions between Z1 and Z2, a spectral measure instantaneous causality can be defined

as fZ1·Z2( f̄ ) = log
(
|H̃Z

Z1Z1
( f̄ )ΣWZ1

H̃Z∗
Z1Z1

( f̄ )||H̃Z
Z2Z2

( f̄ )ΣWZ2
H̃Z∗

Z2Z2
( f̄ )|

|SZ( f̄ )|

)
so as to satisfy in the

frequency domain a decomposition similar to the time domain decomposition (4.53):

fZ1;Z2( f̄ ) = fZ1→Z2( f̄ ) + fZ2→Z1( f̄ ) + fZ1·Z2( f̄ ). (4.68)

Importantly, the spectral measures in (4.68) are tightly linked to the corresponding
measures computed in time domain in (4.53), as specified in SECT. 4.2.2.1.

The spectral integration property can be exploited not only to compute the time
domain measures in (4.53) as the integral of the corresponding spectral measures in
(4.68), but also to achieve a causal decomposition of the OIR formulated for spectral
functions. Indeed, it is easy to show that the frequency-specific OIR increment defined
in analogy to (4.52) as

δXi ;XN
−i
( f̄ ) =

N

∑
i=1
i ̸=j

iXi ;XN
−ij
( f̄ ) + (2− N)iXi ;XN

−i
( f̄ ), (4.69)

where i(·) =
f(·)
2 , satisfies the spectral integration property, i.e. ∆Xi ;XN

−i
=

∫ 1
2

0 δXi ;XN
−i
( f̄ )d f̄ ,

and can also be expanded through a causal decomposition similar to (4.54) as

δXi ;XN
−i
( f̄ ) = δXi→XN

−i
( f̄ ) + δXN

−i→Xi
( f̄ ) + δXi ·XN

−i
( f̄ ), (4.70)
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where the three terms on the r.h.s. of (4.70) are obtained expanding iXi ;XN
−i
( f̄ ) and

iXi ;XN
−ij
( f̄ ) in (4.69) according to (4.68). Moreover, the spectral OIR increment (4.69) can

be used to compute recursively a frequency-domain version of the OIR, in analogy to
(4.51), as

νXN ( f̄ ) = νXN
−i
( f̄ ) + δXi ;XN

−i
( f̄ ), (4.71)

which again satisfies the spectral integration property, i.e. ΩXN =
∫ 1

2
0 νXN ( f̄ )d f̄ .

Therefore, the spectral versions of the HOI measures defined in this section can be
meaningfully interpreted as densities of the synergistic/redundant character of the
information shared between multiple stochastic processes. To conclude this section
it is worth noting that, in the case of N = 3 processes, the spectral OIR (4.71) is a
frequency-domain analogous of the IIR defined in (4.49), which can be recovered
through whole-band integration. This measure has been recently defined for triplets
of random processes (Antonacci et al., 2021), and also extended to the spectral com-
putation of separate measures of redundancy and synergy within the PID framework
(Faes et al., 2021). As shown in the simulation examples of SECT. 4.3.3.1, 4.3.3.2
and 4.3.3.3 and practical applications of SECT. 5.9, 6.2.4 - 6.2.5 the evaluation of the
spectral IIR of three processes, and more generally of the spectral OIR of multiple
processes, allows to assess the informational character of specific oscillations within
circuits of nodes of the analyzed network.

Frequency-specific Partial Information Rate Decomposition. To solve the
PIRD identified by (4.63), it is necessary to define a redundancy rate function taking
values over the lattice underlying the decomposition. In principle, the redundancy
rate can be defined following any of the several approaches formulated for the PID,
adapting it to the calculation of the MIR between random processes in place of the MI
between random variables. A particularly useful approach is to derive redundancy
measures working on the specific realizations of the random variables at hand, rather
than on the variable themselves, and then compute redundancy via statistical expecta-
tion. This pointwise approach has been followed to put forth PID methods that define
local redundancy measures computed for single realizations of the variables, from
which a global redundancy is obtained taking the ensemble average over all possible
realizations (Ince, 2017; Makkeh, Gutknecht, and Wibral, 2021; Gutknecht, Wibral,
and Makkeh, 2021). The same approach can be followed for the PIRD, e.g., working
on the local version of the MIR to formalize the notion of pointwise redundancy rate;
the redundancy rate among processes could be then retrieved by ensemble averaging,
which for stationary processes corresponds to time-domain averaging. Here, we
propose an approach that is conceptually similar, but is implemented through a point-
wise representation in frequency rather than in time. Specifically, we characterize the
analyzed network of random processes Z in the frequency domain, considering the
information provided about a particular oscillatory component of the target process
Y by the iso-frequency oscillatory components of the source processes collected in
X. The idea is to perform the entire PIRD on the pointwise level for a particular
frequency, i.e., to decompose the spectral (frequency-specific) MIR denoted as iY;X( f̄ )
and identified from the expansion of the MIR in the frequency domain as in (4.42).
While different integral transforms (e.g., the wavelet transform) could in principle be
used to expand the MIR, we use a definition of spectral MIR which satisfies (4.42) for
Gaussian processes to formalize the PIRD in the frequency domain. Crucially, (4.42)
connects the time- and frequency-domain representations of information-theoretic
quantities for random processes, and is exploited here to relate the PIRD (4.63) to its
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frequency-domain extension. Such an extension is denoted as spectral PIRD and is
formulated, for the oscillatory components of the network process assessed at the
frequency f̄ , expressing the spectral MIR as:

iY;X( f̄ ) = ∑
α∈A

iδ
Y;Xα

( f̄ ), (4.72)

where iδ
·;·( f̄ ) is the spectral PI rate function defined over a lattice specifically identified

on the oscillations with frequency f̄ , and Xα denotes the set of subsets of source
processes indexed by the atom α. As happens with PID, to solve (4.72) we need
to identify a spectral redundancy rate through the imposition of a certain number
of reasonable axioms or constraints on the spectral MIR, and then follow the PID
formalism to derive the pointwise (spectral) atoms of information at the frequency
f̄ . If i∩Y;Xα

( f̄ ) denotes the spectral redundancy rate computed for the αth node of
the spectral lattice defined at the frequency f̄ , the corresponding spectral PI rate is
computed recursively, in analogy to (4.59), as:

iδ
Y;Xα

( f̄ ) = i∩Y;Xα
( f̄ )− ∑

β≺α

iδ
Y;Xβ

( f̄ ). (4.73)

Furthermore, once the atoms are identified via (4.73), they can be properly grouped
to obtain a coarse-grained representation of the spectral PIRD which takes the form:

iY;X( f̄ ) =
M

∑
m=1

uY;Xm( f̄ ) + rY;X( f̄ ) + sY;X( f̄ ), (4.74)

where the M + 2 atoms reflect the M unique contributions of each source process,
as well as the redundant and synergistic contributions of all sources, to the rate of
information produced by the target process at the specific frequency f̄ ; the coarse-
grained spectral PIRD is obtained adopting the same criteria already described for
the PID (Rosas et al., 2020), leading to the coarse-grained atoms illustrated in FIG.
4.8 (right panels). In (4.73), we provide a solution for the spectral PIRD up to the
definition of a proper spectral redundancy rate function. Here, we propose to assess
spectral redundancy following the MMI principle (Barrett, 2015) applied to the
spectral MIR computed between the target and each source process at the frequency
of interest. Specifically, we define the frequency-specific redundancy rate function of
the atom α = {α1, . . . , αJ} of the spectral redundancy lattice as:

i∩Y;Xα
( f̄ ) = min

j=1,...,J
iY;Xαj

( f̄ ), (4.75)

where J = |α| indicates the cardinality of the atom; e.g., J = 1 if α = {1} or α = {12},
while J = 2 if α = {{3}, {12}}. Note that, in contrast with the classical MMI for-
mulation performed for random variables (Barrett, 2015), here the minimum MIR
is searched at the pointwise (frequency-specific) level. While a pointwise imple-
mentation of the MMI criterion would be cumbersome if performed in the time
domain, and it is indeed avoided by the existing pointwise approaches (Ince, 2017;
Makkeh, Gutknecht, and Wibral, 2021) because the local MI or the local MIR can
take negative values, in our case is favored by the non-negativity of the spectral MIR.
Importantly, from the perspective of information decomposition based on lattice
structures (Williams and Beer, 2010), the spectral PIRD (4.72, 4.73) is conceptually
equivalent to the PIRD (4.63, 4.64) and to the PID (4.57, 4.58); what changes in the
three formulations is only the quantity to be decomposed, from the MI I(T; S) for
the case of random variables to the MIR IY;X for the case of random processes, and
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to the spectral MIR iY;X( f̄ ) for the case of oscillatory components of random pro-
cesses. Since these quantities maintain the same meaning and properties (i.e., they are
non-negative measures of shared information), the three formulations of PID, PIRD
and spectral PIRD will lead to a unique solution for the atoms once a redundancy
function (respectively, the redundancy among collections of random variables, the
redundancy rate among collections of random processes, and the spectral redundancy
rate among collections of oscillatory components of random processes) is fixed over a
lattice structure like that in FIG. 4.8. Therefore, moving from the PIRD defined on the
pointwise level (frequency-specific) to that defined on the process-level (time domain)
is straightforward exploiting spectral integration applied to the redundancy rate and
PI rate functions:

I∩Y;Xα
= 2

∫ 1
2

0
i∩Y;Xα

( f̄ )d f̄ , (4.76)

Iδ
Y;Xα

= 2
∫ 1

2

0
iδ
Y;Xα

( f̄ )d f̄ ; (4.77)

the same spectral integration property holds to relate the unique, redundant and
synergistic atoms of the coarse-grained spectral PIRD (4.74) to their corresponding
time-domain atoms of the PIRD (4.65). Remarkably, solving the frequency-specific
PIRD to obtain the PI rate iδ

Y;Xα
( f̄ ) for each atom α via (4.73), and then integrating

these contributions along the whole frequency axis according to (4.77) to get time
domain values, is equivalent to integrating the spectral redundancy rate functions
i∩Y;Xα

( f̄ ) in the range [0, 1
2 ] via (4.76) and then applying the PIRD in the time domain

to get the contributions Iδ
Y;Xα

. This is guaranteed by the property of linearity of the
definite integrals, and allows also to develop band-specific PIRD schemes whereby
the decomposition of multivariate information rates is achieved in the time domain
but is limited to oscillatory components whose frequencies are confined within a
specific band of the spectrum.

Linear parametric formulation. In the linear signal processing framework, the
analyzed set of stochastic processes Z = {Y, X1, . . . , XM} can be described in terms
of its PSD matrix expressed as in (2.21), which is the central element for the imple-
mentation of the spectral PIRD. In fact, it is well-known that, for jointly Gaussian
processes X and Y, the spectral MIR decomposed by PIRD corresponds to half of the
spectral TD in (4.37). Moreover, for any given atom α = {α1, . . . , αJ} of the spectral
redundancy lattice, the application of (4.37) can particularized to the element αj as
follows:

iY;Xαj
( f̄ ) =

1
2

log
|PXαj

( f̄ )|PY( f̄ )

|P[YXαj ]
( f̄ )|

, (4.78)

where

P[YXαj ]
( f̄ ) =

[
PY( f̄ ) PYXαj

( f̄ )
PXαj Y

( f̄ ) PXαj
( f̄ )

]
; (4.79)

the computation of (4.78) for each j = 1, . . . , J yields the spectral MIR terms to be
used in (4.75) for the computation of the spectral redundancy function. Remarkably,
the spectral redundancy rate defined by (4.75, 4.78) is a proper redundancy function
as it satisfies the axioms originally proposed by Williams and Beer, i.e.,

• symmetry: i∩Y;X{α1,...,αJ}
( f̄ ) is symmetric w.r.t. the αj, j = 1, . . . , J;

• self-redundancy: i∩Y;Xα
( f̄ ) = iY;Xα

( f̄ ) when |α| = 1;
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• monotonicity: i∩Y;X{α1,...,αJ−1,αJ}
( f̄ ) ≤ i∩Y;X{α1,...,αJ−1}

( f̄ ), with equality if αJ−1 ⊆ αJ .

These properties are derived straightforwardly from the minimum MIR definition
(4.75) of the spectral redundancy rate, and from the properties of non-negativity and
monotonicity of the spectral MIR (4.78) (Nedungadi, Ding, and Rangarajan, 2011).

The practical computation of the PSD matrix, whose elements are exploited to
estimate all the MIR terms entering the PIRD, is performed inducing a linear para-
metric representation of the observed dynamics. Specifically, the analyzed stochastic
process Z = {Y, X1, . . . , XM} is described as a VAR process analyzed in the frequency
domain as described in SECT. 2.4; the parameters of the VAR model (in the form of
(2.6)) can be easily estimated from realizations of the process Z available in the form
of multivariate time series. Model identification is based on classical OLS estimation
implemented optimizing the model order p through the AIC, as described in SECT.
2.3.5 with fine details.

4.3.3 Simulation Examples

4.3.3.1 Gaussian Processes Interacting in Star Structures

In this example, taken from Sparacino et al., 2024b, we show the time domain and
spectral behavior of the information-theoretic measures characterizing single-node
(ER), pairwise (MIR) and high-order (OIR) interactions in a network of multiple nodes.
Specifically, we consider Q = 5 scalar stationary Gaussian stochastic processes, each
describing the dynamic activity of the network nodes Xi, i = 1, . . . , M, with M = Q.
Their lagged interactions are mapped by a VAR process of order p = 5 (2.6). Here,
we imposed autonomous oscillations for the process Y1, setting ρY1 = 0.95, fY1 = 0.3
Hz, so that the dynamics of Y1 are determined by the fixed coefficients aY1Y1,1 =
−0.587, aY1Y1,2 = −0.9. Conversely, the remaining processes exhibit autonomous
oscillations imposed setting ρYi = 0.95, fYi = 0.1 Hz, so that the dynamics of Yi,
i = 2, . . . , Q, are determined by the fixed coefficients aYiYi ,1 = 1.537, aYiYi ,2 = −0.9.
The sampling frequency was fixed to fs = 1 Hz. To analyze network interactions, we
considered a star structure in two different configurations, where the process Y1 is
(i) a receiver (FIG. 4.9a) or (ii) a sender (FIG. 4.10a) of information for the remaining
processes Yi, i = 2, . . . , Q. The model parameters imposed for these settings are
all zero except for (i) aY1Yj,1 = 0.5, j = 2, . . . , Q, and (ii) aYiY1,1 = 0.5, i = 2, . . . , Q,
respectively.

The VAR model (2.6) is studied in the frequency domain by deriving the 5× 5 PSD
PY( f̄ ) (2.20). This leads to compute the exact values of the time and frequency domain
information measures of ER, MIR and OIR for the simulated process. Results of the
two simulation settings are shown in FIG. 4.9b-g and FIG. 4.10b-g, respectively. The
spectral profiles of entropy rates, mutual information rates and O-information rates
are shown in panels b, c, and f, respectively, while in panels d, e, and g the ER, MIR
and OIR values integrated along the whole band (left bars), the range [0.04− 0.15]
Hz (middle bars) and range [0.15− 0.4] Hz (right bars) are depicted.
The first configuration, shown in FIG. 4.9a, is predominantly synergistic since each of
the source processes Yi, i = 2, . . . , Q sends unique information to the target process Y1
at the same frequency (0.1 Hz). In fact, as shown in panel b, the spectral entropy rate of
the latter, i.e., hY1 , shows peaks not only at 0.3 Hz, which represents its own oscillating
frequency, but also at 0.1 Hz, due to dynamic information transferred from the rest
of the system. Conversely, the spectral profiles of the entropy rate of the sources,
i.e., hYi , are characterized by peaks at 0.1 Hz, showing that the information content
of these processes is located around that frequency. Remarkably, these findings
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FIGURE 4.9: Synergy arises when multiple processes send unique information to the same
target. a) Simulation design, where ρYi is the radius and fYi is the oscillating frequency of
the process Yi (i = 1, . . . , 5). b) Spectral entropy rates hYi of the processes Yi (i = 1, . . . , 5). c)
Spectral mutual information rates iYi ;Yj between the processes Yi and Yj (i, j = 1, . . . , 5, i ̸= j).
d) Entropy rate values integrated in the whole band (left bars), the range [0.04− 0.15] Hz
(middle bars) and the range [0.15− 0.4] Hz (right bars) of the spectrum. e) Mutual information
rate values integrated in the whole band (left bars), the range [0.04− 0.15] Hz (middle bars)
and the range [0.15− 0.4] Hz (right bars) of the spectrum. f) Spectral O-information rates of
order 3 (νY3 , left), 4 (νY4 , middle), and 5 (νY5 , right). g) O-information rate values of order 3
(ΩY3 ), 4 (ΩY4 ), and 5 (ΩY5 ) integrated in the whole band (left bars), the range [0.04− 0.15] Hz
(middle bars) and the range [0.15− 0.4] Hz (right bars) of the spectrum. The figure is adapted

from Sparacino et al., 2024b.
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FIGURE 4.10: Redundancy emerges when one source process sends copies of the same
information to multiple targets. a) Simulation design, where ρYi is the radius and fYi is
the oscillating frequency of the process Yi (i = 1, . . . , 5). b) Spectral entropy rates hYi of the
processes Yi (i = 1, . . . , 5). c) Spectral mutual information rates iYi ;Yj between the processes
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of the spectrum. The figure is adapted from Sparacino et al., 2024b.
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suggest that the spectral entropy rates are characterized by frequency-specific peaks
wherever the series is more predictable and owns autonomous dynamics. These
results are confirmed by the spectral behavior of the MIRs shared between Y1 and
Yi, i = 2, . . . , Q (iY1;Yi ), which show peaks at 0.1 Hz, as well as between pairs of sources
(iYs1;Ys2 ; s1 = 2, . . . , Q− 1, and s2 = 3, . . . , Q, with s1 ̸= s2), which are null at each
frequency given the absence of coupled interactions between them (FIG. 4.9c). The
same trend is visible by looking at the spectral profiles of the 3rd-order OIR (νY3 , FIG.
4.9f), which display negative peaks at 0.1 Hz when the analyzed multiplet includes
the target Y1 and two of the sources, while are null at each frequency when it includes
only three isolated source processes. Correspondingly, adding one source process
to multiplets already including the target increases the amount of synergy in the
system, as shown by the spectral profiles of the 4th- and 5th-order OIR (νYN , N = 4, 5,
FIG. 4.9f). The synergistic behavior of the network, mainly confined to the band
with central frequency 0.1 Hz, is confirmed by the integration of the spectral profiles
along given frequency ranges, showing that all the information shared between the
multiple interacting processes in the network is located around 0.1 Hz (FIG. 4.9g).
The second configuration, shown in FIG. 4.10a, is predominantly redundant since
each of the processes Yi, i = 2, . . . , Q, receives the same information from the source
process Y1 at 0.3 Hz. The spectral entropy rates of the targets show peaks not only
at 0.1 Hz, which represents their own oscillating frequency, but also at 0.3 Hz, due
to dynamic information transferred from the source Y1 (hYi , panel b). This is in
agreement with the spectral behavior of the MIRs shared between pairs of processes
(iYs1;Ys2 ; s1 = 1, . . . , Q− 1, and s2 = 2, . . . , Q, with s1 ̸= s2, panel c), which show peaks
around 0.3 Hz, thus confirming the frequency-specific redundant character of the
multiple interactions in the analyzed network. The high-order description of the VAR
process Y confirms these findings, as highlighted by the positive peaks of the spectral
OIR νYN , N = 3, . . . , 5 (FIG. 4.10f), located around 0.3 Hz, whose amplitude increases
with the size of the multiplet. Their whole-band and band-specific integration returns
positive values indicating an overall prevalence of redundancy (FIG. 4.10g).

4.3.3.2 Multiple Interacting Gaussian Processes Analyzed in Blocks

In this simulation example, taken from Sparacino et al., 2024b, we show the time
domain and spectral behavior of the information-theoretic measures characterizing
single-node (ER), pairwise (MIR) and high-order (OIR) interactions in a network of
multiple nodes. Specifically, we consider Q = 6 stationary Gaussian stochastic pro-
cesses, Y = {Y1, . . . , YQ}, grouped in M = 3 blocks, X = {X1, . . . , XM}. Network in-
teractions are mapped by a six-variate VAR process of order 3 configured to reproduce
coexisting redundant and synergistic interactions (Faes, Marinazzo, and Stramaglia,
2017; Antonacci et al., 2020; Antonacci et al., 2021). Following the structure of the VAR
model in (2.6), autonomous oscillations in the processes Yi, i = 3, . . . , 6, are obtained
placing complex-conjugate poles with radii ρY3 = ρY5 = 0.85, ρY4 = ρY6 = 0.95 and
normalized frequencies fY3 / fs = 0.1, fY5 / fs = 0.1, fY4 / fs = 0.35 and fY6 / fs = 0.2 in
the complex plane. Assuming a sampling frequency fs = 100 Hz, the poles determine
oscillations at 10 Hz, 35 Hz and 20 Hz. We set X1 = {Y1, Y2}, X2 = {Y3, Y4} and
X3 = {Y5, Y6}, and the causal interactions between different blocks are specified to ob-
tain the common driver effect Y5 ← Y4 → Y3, the common child effect Y3 → Y1 ← Y5
and the unidirectional couplings Y5 → Y6, Y1 → Y2. The model parameters imposed
for these settings are all zero except for aY1Y5,1 = aY5Y4,1 = aY1Y3,2 = aY3Y4,3 = 0.5 and
aY2Y1,2 = aY6Y5,2 = 0.3, as depicted in FIG. 4.11a.
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The VAR model (2.6) is studied in the frequency domain by deriving the 6× 6
PSD PX( f̄ ) (2.21). This leads to compute the exact values of the time and frequency
domain information measures of ER, MIR and OIR for the simulated process. Results
of the simulation are reported in FIG. 4.11. The spectral profiles of entropy rates,
mutual information rates and O-information rate are shown in panels b, c, and d,
respectively, while in panel e the ER, MIR and OIR values integrated along the whole
band (left bars), the range [8− 12] Hz (middle bars) and the range [30− 40] Hz (right
bars) are depicted. In panel b, the spectral ER profiles of the three blocks of processes
are shown (hX1 ,hX2 ,hX3). Two distinct oscillations at 10 Hz and 35 Hz are consistently
observed, indicating that the information content of the system is predominantly
localized in specific bands of the spectrum. Specifically, X1 exhibits the highest
spectral information content at 10 Hz, originating directly from the causal links
X2 → X1 and X3 → X1. Conversely, the spectral ER profile of X2 exhibits the highest
peak at 35 Hz, directly linked to the amplitude of the oscillatory activity of Y4, which,
in turn, is controlled by the value of ρY4 . Lastly, X3 features three different oscillations
at 10 Hz, 20 Hz and 35 Hz, with the latter exhibiting the lowest amplitude since it is
transferred from X2 and it is not representative of the autonomous oscillatory activity
of X3. The analysis of the spectral MIRs, whose profiles are reported in panel c, reveals
the presence of a dynamical coupling occurring at 10 and 35 Hz. In particular, the
common drive role of Y4, directed to Y5 and Y3, ensures the presence of a prominent
peak at 35 Hz in all the spectral MIR profiles. On the other hand, the presence of
dynamic coupling at 10 Hz between X1 and X2 (iX1;X2), as well as between X1 and X3
(iX1;X3), is driven by the presence of an oscillation at 10 Hz in both Y3 and Y5 directly
transmitted towards Y1. This is not the case when analysing the MIR between X2
and X3, which shows only the presence of an oscillation at 35 Hz as a result of the
interaction between Y4 and Y5.
The complexity of the interactions in the analyzed network is well explained by the
analysis of the spectral OIR of order 3 (ν3

X, FIG. 4.11d), which reveals the coexistence
of redundancy occurring at 35 Hz due to the cascade mechanism X2 → X3 → X1,
and synergy occurring at 10 Hz due to the common child structure X2 → X1 ← X3.
This is evident only when analysing the spectral profile of the OIR, but it is not
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detectable employing the time domain measure. Indeed, the analysis of the OIR
in the time domain evidences the impossibility of discriminating the coexistence
of synergistic and redundant contributions. The integrated value over the whole
frequency spectrum is negative, indicating synergy; redundancy emerges only when
integrating within the range [30− 40] Hz (FIG. 4.11e).

4.3.3.3 Causal Transfer of Information in a Simulated Cardiovascular Network

This simulation, taken from Faes et al., 2022a, reproduces the trivariate system pro-
posed in Faes et al., 2021, adapted to generate realistic cardiovascular and respiratory
dynamics; here, we show the time domain and spectral behavior of the information
measures of high-order interaction defined in SECT. 4.3.1 and 4.3.2, i.e., the OIR
and its decomposition terms. The activity of this system is mapped by a trivariate
VAR process defined as in (2.6) fed by independent Gaussian innovations, for which
the parameters are set as illustrated in FIG. 4.12a (for clarity, we omit the subscript
Y(·) and indicate only the numbers inside round brackets; the same holds for TFs
in panel a, right). The vector process is studied keeping the three scalar processes
separate (M = Q = 3), and assuming sampling frequency fs = 1 (spectral functions
are described completely in the frequency range 0− 0.5 Hz). The coefficient matrix
A(var)

Y,k is designed to mimic the dynamics of respiration (Y1), arterial pressure (Y2) and
heart period (Y3) variability, generating self-dependencies for the processes Y1 and
Y2 through the coefficients aY1Y1,k and aY2Y2,k, and imposing causal effects along the
directions Y1 → Y2, Y1 → Y3 and Y2 → Y3 through the coefficients aY2Y1,k, aY3Y1,k and
aY3Y2 . Self-dependencies are set to induce oscillations in the respiratory band (∼ 0.35
Hz) for Y1 and in the low-frequency band (∼ 0.1 Hz) for Y1 and particularly for Y2,
while causal effects are set to realize a high-pass filter from Y1 to Y2, a low-pass filter
from Y1 to Y3 and an all-pass configuration from Y2 to Y3 (spectral transfer functions
are shown in FIG. 4.12a, right); low- and high-pass filtering are achieved through FIR
filters of order 20 with cut-off frequency of 0.2 Hz.

The application of the OIR framework to the VAR parameters describing the
simulated process leads to the spectral functions depicted in FIG. 4.12b,c. The PSD
profiles (FIG. 4.12b, diagonal plots) highlight oscillations at ∼ 0.1 Hz and ∼ 0.35 Hz
for the three processes. The causal coupling between pairs of processes (FIG. 4.12b, off-
diagonal plots) evidences the presence of information flows originating from the first
process (nonzero profiles of fY1→Y2 , fY1→Y3 and fY2→Y3) and the absence of information
flowing back towards it ( fY3→Y2 = fY2→Y1 = fY3→Y1 = 0 at each frequency). Note
that, given the unidirectional coupling and the absence of instantaneous interactions,
in virtue of (4.68) the three nonzero causal coupling measures are equivalent to
the spectral measures of total coupling fY1;Y2 , fY1;Y3 and fY2;Y3 (red curves in FIG.
4.12b); whole-band integration of such measures leads to the MIR quantifying the
total information shared between pairs of processes, whose values result IY1;Y2 =
TY1→Y2 = 0.28 nats, IY1;Y3 = TY1→Y3 = 0.05 nats and IY2;Y3 = TY2→Y3 = 0.24 nats. Then,
computation of the MIR between one process and the remaining two leads to obtain
the OIR via (4.52), which for this simulation is ΩY1;Y2;Y3 = 0.019 nats, denoting a small
redundant interaction among the three processes. Importantly, the spectral expansion
(FIG. 4.12c) reveals that this small OIR value is the balance between a synergistic
interaction at low frequencies (ΩY1;Y2;Y3 = −0.15 nats in the band 0.04− 0.12 Hz) and
a redundant interaction at higher frequencies (ΩY1;Y2;Y3 = +0.33 nats in the band
0.31− 0.39 Hz). We also highlight that the causal decomposition of the OIR νY1;Y2;Y3 =
δY1;Y2;Y3 reveals the unidirectional nature of the OIR increment (i.e., δY1;Y2;Y3 = δY1→Y2,Y3

and δY2,Y3→Y1 = δY1·Y2,Y3 = 0). The opposite OIR values observed in the two frequency
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FIGURE 4.12: Theoretical simulation of cardiovascular interactions. a) Connectivity struc-
ture of the simulated VAR process (left) and of its spectral transfer functions (right); b) power
spectral density of the three processes (diagonal) and components of the causal decomposition
of the spectral coupling between each pair of processes (off-diagonal); c) spectral profiles of
the O-information rate of the three processes and of the components of its causal decomposi-

tion. The figure is adapted from Faes et al., 2022a.
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bands can be explained by the simulation design (see FIG. 4.12a): synergy and
redundancy arise respectively because the flow of information from Y1 to Y3 is entirely
mediated by Y2 at the respiratory frequency (the path Y1 → Y3 is blocked by HY3Y1 at
∼ 0.35 Hz), and because such flow occurs via the independent paths Y1 → Y3 and
Y2 → Y3 at lower frequencies (the path Y1 → Y2 is blocked by HY2Y1 at ∼ 0.1 Hz).

4.3.3.4 High-Order Links in a Simulated Dynamic System

In this section, we propose a simulated example taken from Mijatovic et al., 2024a,
where we characterize the B-index rate of a network comprising 6 nodes, whose
activity is mapped by a multivariate random process defined by the VAR model (2.6)
implemented with Σ

(var)
UY

= I, p = 2, and time lagged coefficients reported in FIG.
4.13a,b (for brevity, the superscript (var) is omitted, and the subscripts of the model
coefficients are numbers only). These settings produce two different connectivity
structures, both characterized by two highly connected nodes (hubs, processes Y1
and Y6) interacting with four nodes with lower connectivity degree (leaves, processes
Y2 − Y5). The hub Y1 acts as a source sending information to the leaves; the hub Y6
acts either as a source or as a sink, respectively sending information to the leaves
which behave as receivers (FIG. 4.13a), or receiving information from the leaves
which behave as mediators (FIG. 4.13b).

FIG. 4.13c,d reports, for different process realizations obtained as multivariate
time series with L = 1000 samples, the matrix of the B-index rates computed for
Gaussian processes as detailed in SECT. 4.3.1, where non-significant values of the
estimated MIR and cMIR leading to B = 1, B = −1 or B = NaN were assessed
by using surrogates, as explained with fine details in LINK-SPECIFIC ANALYSIS

OF HOIS, and the reconstructed network structure obtained by pruning the links
with non-significant MIR and/or cMIR. The analyzed realizations reproduce the
typical structures of hub-leaves interactions which are described and analyzed in the
following. A single star structure (right-positioned) with the hub Y6 connected to
the leaves Y2 − Y5 is obtained when aY1Yi = 0, i = 2, . . . , 5; the hub acts as a source
in FIG. 4.13c and as a sink in FIG. 4.13d. These two configurations are correctly
detected in terms of structure (Y1 is isolated and Y6 is connected to all leaves), and
are differentiated by the clear redundancy (red) and synergy (blue) evidenced by the
B-index rate in the two cases. The configuration with hub sending information to
the leaves, which results as fully redundant due to the dominance of common drive
effects, is reproduced also when aYiY6 = 0 (i = 2, . . . , 5, left-positioned star), as shown
in FIG. 4.13e,f where Y1 is the hub and Y6 is isolated.

The most rich configurations arise when the coefficients defining the structures in
FIG. 4.13a,b are all set to nonzero values. Specifically, when we set aY1Yi = aYiY6 = 0.5
in FIG. 4.13a, a configuration with two competing star structures where two hubs
send information to the same leaves is obtained; in this case, all links are redundant
due to the dominance of common-drive effects (except the link between the two hubs
which is fully synergistic due to a common cause effects towards all leaves), and
the network is reconstructed without errors (FIG. 4.13g). On the other hand, setting
aY1Yi = aYiY6 = 0.5 in FIG. 4.13b, we obtain a configuration with propagation between
two stars where one hub sends information to the other through mediation of the
leaves; in this case, the links are again dominantly redundant due to the abundance
of common drive and cascade effects, but the network reconstruction suffers from
false-positive detections of links between the leaves caused by the simultaneous
presence of common drive and common cause effects determining significant MIR
and cMIR.
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FIGURE 4.13: Experimental analysis of a simulated dynamic system with six units mapped
by Gaussian processes connected via the the diagrams and VAR coefficients shown in a)
and b). The matrix of B-index rate computed from multivariate time series (length L = 1000)
and the corresponding reconstructed structures are investigated for peculiar parameter
setting realizing: c,e,f) single star structures where the hub sends information to four leaves,
observing accurate reconstruction of redundant links; d) a single star structure where the
hub receives information from the leaves, observing accurate reconstruction of synergistic
links; g) two competing star structures where both hubs send information to the same leaves,
observing accurate reconstruction of redundant links; h) two interacting star structures with
information propagated from one hub to the other via mediation of the leaves, observing
reconstruction of redundant structures with false positive links among the leaves. The
performance of network reconstruction, assessed over 100 simulation runs at varying the
time series length L shows that sensitivity depends on L and on the link strength while
specificity is affected by simultaneous common drive and common cause effects i,j). The

figure is adapted from Mijatovic et al., 2024a.
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Finally, the accuracy of network reconstruction was investigated for different time
series length L at increasing the weight, in the network structures of FIG. 4.13a,b,
of the connections from the hub Y1 to the leaves Y2 − Y5 (aY1Yi ∈ [0.1, 0.9]), while
simultaneously decreasing the weight of the connections between the leaves and
the hub Y6 (aYiY6 = 1− aY1Yi ), so as to gradually move from single-star to two-star
structures and back. The results reported in FIG. 4.13i,j show that the sensitivity
depends on the data length and on the link strength, reaching the expected value
of 100% when the links are balanced in strength. The specificity was very high and
substantially unaffected by the data length in the case of competing stars (FIG. 4.13i),
while it was higher than expected for unbalanced link strength and approaching the
expected value of 14.3% only for balanced link strength and high L (FIG. 4.13j). These
results confirm the good performance of the B-index in reconstructing the statistical
structure underlying directional networks, with the limitations related to its inability
to resolve conditions of contemporaneous common drive and common cause effects
impinging on a link.

4.3.3.5 Partial Information Rate Decomposition: Effects of Temporal Correlations

In this theoretical example, taken from Sparacino et al., 2025, we characterize the PIRD
in both the time and frequency domains in simulated dynamic networks involving
three processes Z = {Y, X1, X2}, comparing the time-domain measures with the
standard PID decomposing instantaneous interactions among the processes. To do
this we use a three-variate VAR process simulated with fs = 1, in which different
regimes of dynamic interaction are set by varying the parameters related to zero-
lag effects, lagged interactions, and autonomous dynamics. Specifically, the 3-VAR
process is defined as:

Yn = cX1,n−1 + cX2,n−2 + UY,n

X1,n =
2

∑
k=1

a1,kX1,n−k + UX1,n

X2,n =
4

∑
k=1

a2,kX2,n−k + UX2,n

(4.80)

where UY, UX1 and UX2 are Gaussian white noises with zero mean and unit variance.
The covariance matrix of the residuals,

ΣUZ =

 1 σ2
UYX1

σ2
UYX2

σ2
UX1Y

1 σ2
UX1X2

σ2
UX2Y

σ2
UX2X1

1

 ,

is built in such a way to generate zero-lag cross-correlations among the processes
modulated inversely by the parameter c, imposing σ2

UYX1
= σ2

UYX2
= σ2

UX1X2
= 0.8− c.

The autonomous oscillations in the two source processes X1 and X2 are obtained
placing pairs of complex-conjugate poles, with modulus ρ and phase 2π f , in the
complex plane representation of each process; the AR coefficients resulting from
this setting at lags 1, 2 are a1 = 2ρ cos(2π f ) and a2 = −ρ2 (Faes, Porta, and Nollo,
2015). Here, we place a pair of poles for the process X1, setting ρ = c, f = 0.1 Hz
so that the strength of the autonomous dynamics determined by the coefficients a1,1
and a1,2 depends on the parameter c; similarly, we place two pairs of poles for X2,
setting ρ1 = c, f1 = 0.1 Hz and ρ2 = 1.125c, f2 = 0.3 Hz so that the strength of the
autonomous dynamics of X2 determined by the coefficients a2,k, k = 1, . . . , 4, depends
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( f̄ ) is computed as the minimum of the interaction between each individual source
and the target at the specific frequency f̄ , min

i=1,2
iY;Xi ( f̄ ). The spectral PIRD allows to overcome

the drawback of the MMI-PID which sets to zero one of the two unique contributions, as well
as to delve into the spectral content of the investigated processes and their interactions. The

figure is adapted from Sparacino et al., 2025.

on the parameter c. Moreover, causal interactions are set from X1 to Y at lag k = 1 and
from X2 to Y at lag k = 2, with strength modulated by the parameter c. The parameter
c is varied in the range [0− 0.8], thus allowing (i) progressive strengthening of the
autonomous dynamics in the processes X1, X2 and of the causal interaction from X1
and X2 to Y, as well as (ii) progressive weakening of the zero-lag interactions among
the three processes. The simulation design is shown in FIG. 4.15a.

The PIRD was performed computing the spectral redundancy rate according to
(4.75), with the spectral MIR function computed as in (4.78) after deriving the PSD
matrix from the VAR parameters, and then obtaining the spectral PI rate through (4.73)
which - in this case with M = 2 sources - yields immediately the coarse-grained terms
in (4.74); all these terms were then integrated over the full frequency axis to obtain
the unique UY;X1 , UY;X2 , redundantRY;X1;X2 and synergistic SY;X1;X2 information rates
in the time domain. An example of how spectral redundancy is computed as the
minimum MIR at each frequency f is shown in FIG. 4.14 for one specific VAR
configuration (c = 0.5). FIG. 4.15 reports the spectral MIR and redundancy rate
functions, as well as the time-domain values of the PIRD terms, investigated at
varying the simulation parameter c. In FIG. 4.15f, the time-domain PIRD is compared
with the instantaneous PID which decomposes the MI I(Yn; X1,n, X2,n); the latter was
computed following the linear parametric formulation sketched in SECT. 3.1.1 with
Vi = Yn and Vj = [X1,nX2,n], after deriving the zero-lag covariance of the processes
via solution of the Yule Walker equations of the VAR process (see SECT. 2.3.5.1).

The results suggest that the rate of dynamic information shared by multivariate
processes is deeply affected by the balance between instantaneous and time-lagged
interactions. When the three processes interact only at lag zero and do not exhibit
self-dependencies (c = 0), the spectral profiles of the MIR and redundancy rate
measures are flat (FIG. 4.15b-e, black lines) and the time-domain PIRD and zero-lg
PID measures coincide (FIG. 4.15f with c = 0). Increasing the parameter c determines
modifications of the spectral profiles of the MIR functions (FIG. 4.15b-d), due to the
emergence of spectral peaks around 0.1 and 0.3 Hz induced by the self-dependencies
rising in X1 and X2, as well as of causal interactions along the directions X1 → Y and
X2 → Y. As a result, the profile of the spectral redundancy rate is also modulated by
c (FIG. 4.15e), as are the time-domain MIR and PIRD terms (FIG. 4.15f, dashed lines).
The modification of the VAR parameters affects also the zero-lag PID (FIG. 4.15f, solid
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variate information shared at lag zero by multiple random processes. a) Simulation design,
where Y is the target process and {X1, X2} is the group of sources; time-lagged interactions
(solid black arrows) and zero-lag interactions (dashed gray lines) are set respectively to
increase and decrease with the parameter c ∈ [0− 0.8]. b-e) Spectral profiles of the joint
MIR between Y and {X1, X2}, of the individual MIR between Y and X1 and between Y and
X2, and of the redundancy rate imin

Y;X1;X2
( f̄ ), obtained at varying the parameter c from zero

(continuous black lines) to 0.8 (continuous pink lines). f) Time-domain behavior of the total
information shared between the target and the two sources (I), of the unique information
shared between the target and each individual source (U1, U2), and of the redundant and
synergistic information provided by the two sources to the target (R, S), measured using the
the zero-lag PID (continuous black lines) and the PIRD (dashed gray lines) as a function of

the parameter c. The figure is adapted from Sparacino et al., 2025.

lines), whose information atoms were modified in a substantially different way than
those of the PIRD. In fact, both redundant and synergistic contributions computed
via PID (R and S , solid lines in FIG. 4.15f) decrease towards zero at increasing c,
while we rather expect an increase of synergy due to the emerging common child
structure of the simulated system (FIG. 4.15a). This effect is well evidenced by the
PIRD, whose synergistic contribution increases with c becoming far higher than the
redundant contribution (R and S , dashed lines in FIG. 4.15f). Moreover, the PIRD
detects a rise of both the unique information rates relevant to the two sources (U1
and U2, dashed lines in FIG. 4.15f), which is expected due to the emergence of causal
interactions along the directions X1 → Y and X2 → Y with strength modulated
by c. However, the same is not true if the unique information is measured by the
zero-lag PID exploiting the time domain definition of redundancy (4.60) based on the
MMI-PID, confirming a known limitation of such PID which always forces to zero
the unique information of the source sharing the lowest information with the target
(in this case U2, dashed line in FIG. 4.15f).

4.3.3.6 Frequency-specific Coarse-grained Partial Information Rate Decomposi-
tion

In this section, we provide an illustrative example of the full-frequency and band-
limited PIRD applied to a network of four nodes where different high-order behaviors
emerge at different frequencies. The example is taken from Sparacino et al., 2025.
We consider a VAR process simulated with fs = 1, where the lagged interactions
between the target Y and the three sources X = [X1, X2, X3] are set to induce a network
topology with both common drive and common child structures (FIG. 4.16a). The
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VAR process is defined as:

Yn = X1,n−1 + X3,n−1 + UY,n

X1,n =
2

∑
k=1

a1,kX1,n−k + UX1,n

X2,n =
2

∑
k=1

a2,kX2,n−k + X1,n−1 + UX2,n

X3,n =
2

∑
k=1

a3,kX3,n−k + UX3,n

(4.81)

where U = [UY, UX1 , UX2 , UX3 ] is a vector of four zero-mean independent Gaussian
white noises with unit variance. The autonomous oscillations in the three source
processes X1, X2, X3 are obtained placing a pair of complex-conjugate poles, with
modulus ρ and phase 2π f , in the complex plane representation of each process. Here,
we set ρ = 0.8, f = 0.3 Hz for the processes X1 and X2, so that their autonomous
dynamics are determined by the coefficients a1,1 = a2,1 = −0.494; a1,2 = a2,2 = −0.64;
similarly, we set ρ = 0.9, f = 0.1 Hz for X3, so that its autonomous dynamics
are determined by the coefficients a3,1 = 1.456; a3,2 = −0.81. Moreover, causal
interactions are set from X1 and X3 to Y and from X1 to X2 at lag k = 1, with unitary
strength.

The PIRD was applied computing the spectral MIRs between each individual
source and the target (iY;Xi( f̄ ), i = 1, 2, 3; FIG. 4.16b), as well as between groups of
sources and the target (e.g., iY;X1,X2( f̄ )); the spectral redundancy function was then
computed as in (4.75), and exploited to retrieve the unique (UY;X1 , UY;X2 , UY;X3), re-
dundant (RY;X) and synergistic (SY;X) information rates in the time domain; the latter
were obtained as the whole-band integral of the correspondent spectral functions, as
well as the integral taken along two spectral bands centered around the simulated
stochastic oscillations (i.e., B1 = [0.04− 0.15] Hz and B2 = [0.15− 0.4] Hz).

The resulting time-domain values of the individual MIR terms and of the PIRD
components are shown in FIG. 4.16c,d. The comparison highlights how, contrary
to the pairwise MIR, the coarse-grained PIRD allows to disentangle the underlying
network structure. Indeed, whilst non-zero MIR values are detected between Y and
X2 (FIG. 4.16c), the unique contribution of X2 to Y was null, and non-zero unique
contributions are correctly identified only in the presence of direct links (i.e., UY;X1 ,
UY;X3). Remarkably, such non-zero unique contributions are mainly visible when
assessed within the frequency bands for which oscillatory components are imposed
(i.e., B2 for UY;X1 and B1 for UY;X3), thus confirming the important role played by
the spectral representation of PIRD in the analysis of rhythmic processes. The PIRD
also favors quantification of redundancy and synergy related to the full dynamical
structure of the analyzed processes, or to oscillations confined within the bands B1
and B2 (FIG. 4.16d). Redundancy arises typically from common drive (sub)structures
where multiple copies of the same information are distributed, providing robustness
(Luppi et al., 2020); e.g., here X1 sends redundant information at ∼ 0.3 Hz to both X2
and Y, which is correctly detected by the significant values ofRY;X within B2. On the
other hand, synergistic informational circuits generally emerge from common child
configurations, requiring a high degree of coordination between multiple parts of the
system (Varley et al., 2023b); here, since X1 and X3 send information to Y at different
frequencies, synergy is detected in both bands B1 and B2. The balance between
synergy and redundancy assessed across the full spectrum, ∆Y;X = RY;X − SY;X,
indicates an overall prevalence of redundancy within the network. Interestingly,
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FIGURE 4.16: Coexistence of redundant and synergistic characters of interactions in dif-
ferent spectral bands elicited by frequency-specific PIRD. a) Network structure, with Y
receiving from X1, oscillating at 0.3 Hz, and X3, oscillating at 0.1 Hz, and X1 sending to X2,
oscillating at 0.3 Hz; all coupling coefficients are set to 1. b) Spectral profiles of the pairwise
MIR measures computed between the target Y and each source Xi, i = 1, 2, 3. c,d) Time-
domain values of the pairwise MIR and of the unique (UY;Xi , i = 1, 2, 3), redundant (RY;X) and
synergistic (SY;X) PIRD components integrated along the whole frequency axis ([0− fs/2])
(left bars), and withing the bands B1 = [0.04− 0.15] Hz (middle bars), B2 = [0.15− 0.4] Hz
(right bars); the balance ∆Y;X = RY;X − SY;X is also reported, indicating overall prevalence of
redundancy and coexistence of redundancy and synergy in the two different bands B1 and

B2. The figure is adapted from Sparacino et al., 2025.
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∆Y;X indicates the presence of net synergy when assessed within B1, due to the fact
that only the source X3 transfers information to the target Y in this band, and of net
redundancy when assessed within B2, due to the common drive role of the source
X1 in this band. Therefore, the combination of common drive and common child
substructures, with the source processes oscillating at different frequencies, leads to
the coexistence of synergistic and redundant modes of interplay in distinct spectral
bands. These complex behaviors emerging at different time scales can be detected
only using frequency-specific measures of redundancy and synergy, and can be better
characterized separating redundant and synergistic contributions as guaranteed by
the PIRD.

4.4 Summary of chapter 4

This chapter introduced a framework to measure dynamic interactions of different
orders in networks of multiple interconnected systems, expanded in the frequency
domain to explore their spectral patterns. The framework has been defined for
dynamic systems, whose activity is described by dynamic information measures
which extend to random processes the measures defined in CHAPT. 3 for random
variables. Its linear parametric formulation is made possible under the assumption of
stationary jointly Gaussian processes.

The dynamic network system X composed of M nodes can be characterized
in terms of the activities involving the single nodes, pairs of nodes, and groups of
nodes. These activities are assessed straightforwardly using univariate, bivariate and
high-order measures of dynamic interactions.
The first group of measures includes the entropy rate (ER) HXi , quantifying the rate of
generation of new information in the random process Xi, and the information storage
(IS) SXi , which is a measure of self-predictability quantifying the information stored in
Xi as the MI between the present Xi,n and the past X−i,n. Spectral measures of ER and
IS, the latter referred to as spectral linear self-predictability (LSP), can be retrieved
exploiting the power spectral densities of autoregressive models and are particularly
useful to identify the oscillatory patterns of random processes in the frequency do-
main, as also demonstrated by the proposed simulated example in SECT. 4.1.3. The
non-directional (symmetric) or directional (causal) interactions between pairs of pro-
cesses, as well as the autonomous self-dependencies of one process given another, can
be explored through pairwise information-theoretic measures with spectral meaning.
Specifically, the mutual information rate (MIR) IXi ;Xj shared between the processes Xi
and Xj is a measure of non-directional coupling quantifying the information shared
by the two processes per unit of time. The MIR can be decomposed into causal terms,
namely the transfer entropy (TE) TXi→Xj , a measure of directional information transfer,
and the instantaneous transfer (IT) IXi ·Xj , a non-directional measure of zero-lag interac-
tion. Remarkably, under the assumption of Gaussianity, the MIR, TE and IT measures
are equivalent to the Geweke measures of total dependence, Granger causality (GC)
and instantaneous causality, respectively. Further, in parallel to exploring the concept
of GC, we formalize the analysis of coupled processes to investigate also the role
of autonomous dynamics, i.e., interactions that occur internally in a process, say Xj,
independently of its link with other processes. In this context, the Granger autonomy
(GA) measure AXj has been defined to quantify how much the internal dynamics
of one process contribute to determine its predictability more than the dynamics of
other processes potentially connected to it. Spectral measures of coupling, causality
and autonomy can be retrieved exploiting the power spectral densities of full ARX
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and restricted AR/X models and are essential to identify the oscillatory patterns of
coupled interactions and self-dependencies along given spectral bands of interest.
While the standard network description of complex systems is based on quantifying
the link between pairs of system units, high-order interactions involving three or
more units often play a major role in governing the collective network behavior.
Inside our framework of information dynamics, we propose different measures to
assess HOI patterns at increasing orders, i.e., interactions emerging from several
network nodes at different levels of resolution, in both time and frequency domains.
Network- and node-specific analyses of dynamic HOIs can be performed through
the measures of O-information rate (OIR) ΩXN of the multiplet XN = {X1, . . . , XN}
(N ≤ M), and the first-order gradient of OIR ∆Xi ;XN

−i
, expanding to random processes

the concepts of OI and OI gradient defined for random variables. Remarkably, the
gradient of OIR can be decomposed into causal and instantaneous contributions
arising from the MIR decomposition. The link-wise measure of the B-index rate BXi ;Xj

highlights the balance between redundancy and synergy in the dynamic interaction
among the two observed units Xi and Xj and the rest of the system, and allows to
retrieve information about the network topology from such interaction. Here, it is
worth mentioning the striking role of our new partial information rate decomposition
(PIRD) applied to random processes and following the steps of the well-known PID
for random variables. Its strength lies in providing an approach which separately
evaluates redundant and synergistic patterns of interactions among random processes
in both the time and the frequency domain. Indeed, the OIR and its decomposition
into causal and non-causal terms do not put in evidence multiplets of variables which
are both redundant and synergistic with equal strength, while pairwise and fully
conditioned causality fail to reveal respectively synergistic and redundant effects
(Stramaglia et al., 2024).

All the high-order information-theoretic measures can be straightforwardly ex-
panded in the frequency domain by exploiting the (restricted) VAR representation
of the considered group of nodes, thus enabling the identification of redundant and
synergistic patterns of interactions at multiple levels of resolution. Specifically, high-
order spectral measures can be obtained from the power spectral density matrices
of the (restricted) VAR processes; they satisfy the spectral integration property thus
allowing to draw a connection with their time domain counterparts and warrant a
focus on behaviors that can remain hidden in the time domain, e.g., the coexistence
of redundancy and synergy in different frequency bands of the spectrum. Finally, the
spectral representation allows to define a new concept of redundancy via the PIRD
valid for groups of random processes.
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Chapter 5

Applications to Physiological
Networks

In the field of Network Physiology, data-driven methods for network inference can be
exploited to build network models from sets of time series describing the activity of
the observed network nodes (Ivanov, 2021). Straightforward examples involve the
well-known cardiovascular interactions between the cardiac and vascular subsystems
(Lehnertz, Bröhl, and Rings, 2020), as well as the tangled coupled dynamics between
the cardiac and the respiratory subsystems (Dick et al., 2014). Indeed, cardiovascular
and cardiorespiratory networks reflecting the modulation of heart rate, vascular and
respiratory variability (Schulz et al., 2013) have been largely studied, with the aim
of disentangling the most relevant mechanisms occurring in diverse physiological
states and conditions.

It is well known that heart rate is one of the physiological parameters characterized
by the highest variability in the resting state. Heart rate variability (HRV) varies with
age and gender (Voss et al., 2015; Hayano and Yasuma, 2003; Shaffer, McCraty,
and Zerr, 2014), and its lack (or depression) has been described as a marker of
several pathological states, e.g., nervous system disorders (Gorman and Sloan, 2000),
diabetes (Benichou et al., 2018), arterial hypertension (Pagani and Lucini, 2001), and
myocardial infarction (Buccelletti et al., 2009). The physiology behind the regulation
of cardiac dynamics is complex, but most studies agree that the main components of
the normal sinus rhythm are related to the control exerted by the autonomic nervous
system (ANS) (Hayano and Yasuma, 2003; Shaffer, McCraty, and Zerr, 2014; Elstad
et al., 2018). During ventilation, the activity of the sinus atrial node is directly
influenced by the modulation of vagal neurons directed to the heart, controlled
by the central respiratory drives (direct communication between respiratory and
cardiomotor centers), the lung inflation reflex and the changes in arterial blood
pressure (ABP) transferred to heart rate via baroreflex (Piepoli et al., 1997; Hayano
and Yasuma, 2003; Eckberg, 2009; Porta et al., 2012; Krohova et al., 2018). These
mechanisms result in the so-called respiratory sinus arrhytmia (RSA), for which there
is an increase of heart rate during the inspiration phase and a decrease during
the expiration phase of ventilation (Berntson, Cacioppo, and Quigley, 1993; Elstad
et al., 2018; Krohova et al., 2018). Recent studies documented the underexplored
complexity of cardiorespiratory interactions, highlighting the important role exerted
by synchronization mechanisms (Elstad et al., 2018). Besides the HRV, the resting-state
blood pressure variability (BPV) is also known to be strongly influenced by a relevant
non-baroreflex effect (commonly known as feedforward) led by changes in heart rate,
reasonably due to the Windkessel (Belz, 1995) and/or Frank–Starling (Sequeira and
Velden, 2015) mechanisms.

Nevertheless, these networks are extremely intricate and an appropriate char-
acterization of their dynamics would require the involvement of many variables:
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cardiovascular and cardiorespiratory loops would represent only a small portion of a
more complex and wider system. While heart rate, ABP and respiration still remain
the most studied (Schulz et al., 2013), very little is known about, e.g., the short-term-
variability nature of arterial compliance (AC), a cardiovascular variable characterizing
mechanical and structural properties of the arteries (Švec et al., 2021) expected to
be affected by the sympathetic and vagal activities in different patho-physiological
conditions, as well as by heart rate, blood pressure and respiratory variabilities (Tan
et al., 2016; Švec et al., 2021), (Sparacino et al., 2024a). In addition, cerebrovascular
regulation is fundamental in humans for the maintenance of suitable values of cerebral
blood flow in spite of internal and external disturbances. The short-term cerebrovas-
cular regulation is related to the mechanism of cerebral autoregulation (CA), which has
been defined as the intrinsic ability of the brain to independently regulate and thus
maintain almost constant the cerebral blood flow (CBF), via changes in cerebrovas-
cular resistance, when mean arterial pressure (MAP) fluctuates (Zhang et al., 1998;
Brassard et al., 2021). An extensive study of CA in humans has been carried out by
Lassen (Lassen, 1959), who illustrated the CA curve and suggested that CBF remains
almost constant within a relatively broad MAP range (∼ 60− 150 mmHg). More-
over, the advent of transcranial doppler ultrasound technology allowed to achieve
a temporal resolution sufficient to assess beat-to-beat changes in the CBF velocity
(CBFV), and thus to investigate the dynamic properties of CA (Aaslid et al., 1989).
The functioning of the closed-loop dynamic interactions between the spontaneous
variability of MAP and mean CBFV (MCBFV) is generally studied non-invasively in
different patho-physiological states (Aaslid et al., 1989; Paulson, Strandgaard, and
Edvinsson, 1990; Bari et al., 2016).

It is important to highlight that all these mechanisms are challenged by a number
of stressors, e.g., postural stress, which induces a reorganization of cardiovascular and
cerebrovascular oscillations and of their coupling related to the shift in the sympatho-
vagal balance towards sympathetic activation and parasympathetic withdrawal, or
controlled breathing, which instead may have a role in modifying causality patterns
between, e.g., heart rate and arterial pressure (AP). Remarkably, the orthostatic chal-
lenge is known to alter important physiological mechanisms operating in the resting
state condition; orthostasis has been associated to venous pooling of the blood in the
lower portion of the body, thus decreasing cardiac filling, cardiac output and stroke
volume (Burton, Stokes, and Hall, 2004) in turn determining a drop of ABP sensed
by baroreceptors, vagal inhibition and sympathetic activation directed to the heart
and vessels (Berntson et al., 1994; Cooke et al., 1999). Hence, probing the investigated
network after its modification due to a given stressor is of remarkable importance to
characterize the type and modalities of network adaptation. For instance, evoking
an orthostatic stress, e.g., through head-up tilt test, represents a useful tool to study
the baroreflex and the cerebrovascular autoregulation mechanisms, both in healthy
conditions and in the presence of autonomic dysfunctions.

In this chapter, we will discuss the application of the static and dynamic measures
of pairwise (e.g., the MIR, the GC and the GA) and high-order (e.g., the OI/OIR and
the OI gradients) connectivity defined respectively in CHAPT. 3 and 4 to a variety
of physiological signals, starting from univariate analysis of beat-to-beat arterial
compliance time series (SECT. 5.1) and then moving towards bivariate (SECT. 5.2-5.6)
and high-order (SECT. 5.7-5.11) analyses of more complex physiological systems. Our
aim is to elicit non-invasively the physiological mechanisms underlying complex
cardiovascular, cardiorespiratory and cerebrovascular regulation from the (joint)
analysis of the spontaneous variability of the main cardiovascular, cardiorespiratory
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and cerebrovascular parameters.
In our works, we carried out diverse systematic analyses of the (causal) inter-

actions in physiological networks comprising a different number of variables, i.e.,
arterial compliance, the well-known heart rate, arterial pressure and respiration,
and the cerebral blood flow beat-to-beat time series. This has been done exploit-
ing information-theoretic approaches with meaning in the frequency domain, since
parametric spectral analysis of the investigated interactions is known to provide
valuable insights into the behavior of physiological time series displaying a rich
oscillatory content (Geweke, 1984; Chicharro, 2011), typically manifested within the
low-frequency (LF, [0.04− 0.15] Hz) and high-frequency (HF, [0.15− 0.4] Hz) bands
of the spectrum in the case of, e.g., cardiovascular and respiratory variables (Cohen
and Taylor, 2002; Shaffer and Ginsberg, 2017).

5.1 Arterial Compliance Short-term Variability Analysis

Arterial compliance is an important cardiovascular parameter characterizing mechan-
ical and structural properties of arteries and significantly influencing ventricular-
arterial coupling (Westerhof et al., 2018; Švec and Javorka, 2021). It is defined by the
slope of pressure-volume relationship, i.e., a change in the arterial volume in relation
to a given change in arterial pressure. Since this relationship is nonlinear due to
complex structure of arterial wall, the value of measured AC will be different when
measured around different points of the nonlinear pressure-volume relationship
(Chirinos, 2012). Furthermore, AC is influenced also by arterial size, wall thickness
and smooth muscle activity (Bank et al., 1995; Chirinos, 2012). Decreased arterial com-
pliance (or increased arterial stiffness) is associated with several physiological states
and pathological processes, and thus its estimation has for a long time interested
clinicians and cardiovascular physiologists. However, the non-invasive estimation
of compliance is still a challenging task. In Švec and Javorka, 2021, the most often
used methods of AC estimation were reviewed and classified to better clarify their
applicability, necessary requirements and limitations. Remarkably, further research
studies from the same group (Švec et al., 2021) allowed to develop a methodology for
the non-invasive beat-to-beat estimation of compliance during standardized protocol
including resting phases, orthostatic stress and cognitive load. To solve this task, the
authors used a recently developed method for continuous and non-invasive determi-
nation of the time constant τ, i.e., the rate of the ABP decay during diastolic phase,
using only parameters which are known to be robust against distortions due to wave
reflections arising when ABP curve cannot be measured centrally (Arai et al., 2011;
Švec et al., 2021). Together with calculated total peripheral resistance (TPR) values
from the ratio of mean arterial pressure (MAP) and cardiac output (CO), the latter
obtained using impedance cardiography (ICG), compliance values were computed as
the ratio of τ and TPR for each heart beat.

We exploited the novelty of this estimation method to study for the first time short-
term beat-to-beat variability time series of arterial compliance acquired in healthy
subjects, with the aim of investigating the time and spectral behavior of this parameter
in response to the postural stress. Specifically, in this section we report the application
of the time (4.10) and frequency domain (4.9) measure of linear self-predictability
on beat-to-beat time series of arterial compliance obtained in young healthy subjects
(Švec et al., 2021), presented in our work Sparacino et al., 2024a published in Frontiers
in Network Physiology.
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Experimental Protocol and Data Acquisition. The original study, approved by
the ethical committee of the Jessenius Faculty of Medicine, Comenius University, in-
cluded a total of 81 young and healthy Caucasians, aged 18.56± 2.88 years. ABP
signal from finger, obtained by the photoplethysmographic volume-clamp method
followed by brachial ABP reconstruction (Finometer Pro, FMS Netherlands), and
electrocardiogram (ECG, CardioFax ECG-9620, NihonKohden Japan) were recorded
during two phases of the experimental protocol: (i) the resting supine position (REST),
started 8 min after the beginning of the measurement, and (ii) the upright position
reached after passive head-up tilt (TILT), started 3 min after the position change
from supine to tilt. Heart period (HP) intervals were extracted as the time distance
between consecutive R peaks of the ECG. Hemodynamics parameters including CO
were derived on a beat-to-beat basis exploiting the ICG (CardioScreen 2000, Medis,
Germany) and exerted a main role in the subsequent determination of the AC time
series. The value of AC was quantified through a recently developed method (Arai
et al., 2011), based on a reliable estimation of the time constant τ for each heart beat
separately, as well as on the exploitation of the relationship between τ, AC and the
TPR based on the two-element Windkessel model (Arai et al., 2011; Švec et al., 2021;
Švec and Javorka, 2021). Since the measurement of hemodynamic parameters using
ICG is very sensitive to movement artifacts, skin condition and distribution of fat,
in some cases these parameters were then not determined for each heart beat, and
then only 39 subjects were selected for further analysis. All the acquired signals
were digitized at a sampling rate of 1 kHz. Transient changes in cardiovascular
parameters between consecutive phases of the study protocol were excluded from
analysis. Then, stationary segments of 300 consecutive beats were extracted from the
original recordings in the two phases of the protocol. We remark that an approximate
value of 300 heart beats conforms to the short-term HRV standard, which allows the
assessment of autonomic tone under different patho-physiological conditions. We
refer the reader to (Švec et al., 2021) for further details about data acquisition and
time series extraction.

Data and Statistical Analysis. The time series extracted for each subject in the two
experimental conditions were regarded as realizations of the AC discrete-time process
(in the following, referred to as C), assumed as uniformly sampled with a sampling
frequency equal to the inverse of the mean HP. First, classical time domain markers,
i.e. the mean and variance of AC (µC

[
mL

mmHg

]
and σ2

C

[
mL2

mmHg2

]
) were computed. Then,

the series were pre-processed by removing the mean value. An AR model in the form
of (2.2) was fitted on each pre-processed series using OLS identification and setting
the model order p according to the AIC (maximum scanned model order equal to
14). Since the use of the AIC sometimes led to duplicate peaks or negative power
as a result of spectral decomposition (Pernice et al., 2021) (SECT. 4.1.2.2), the model
order was manually adjusted so as to detect spectral components with positive power.
After AR identification and spectral decomposition of the model TF (4.7), the spectral
profiles were computed according to (4.8). Moreover, the LF and HF components,
i.e. P(LF)

C ( f̄ ) and P(HF)
C ( f̄ ) respectively, were computed from the poles with central

frequency located in the ranges [0.04− 0.15] Hz and [0.15− 0.4] Hz, respectively, and
the related variance was obtained from the pole residuals (σ2

LF and σ2
HF). For some

subjects, more than one peak was found in these bands; in such cases, the poles with
the highest power were selected for further analysis. Finally, the spectral profiles of
the LSP measure in (4.9), computed for the LF and HF oscillations, were integrated
in these bands and marked as s(LF)

C , s(HF)
C , respectively. The time domain LSP was
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TABLE 5.1: Time domain indexes (mean µC and variance σ2
C) of AC in the REST and TILT

experimental conditions. Values are computed over 39 subjects and expressed as mean ±
standard deviation. Wilcoxon signed rank test for paired data: *, p < 0.05 REST vs. TILT.

REST TILT
µC[

mL
mmHg ] 1.76± 0.41 1.42± 0.28∗

σ2
C [

mL2

mmHg2 ] 0.022± 0.015 0.015± 0.008∗

obtained exploiting (4.10) and marked as SC.
To test the statistical significance of the time and frequency domain LSP measures,

surrogate and bootstrap data analyses were implemented as described in THE DY-
NAMICS OF THE SINGLE NODE and SPECTRAL MEASURES OF SELF-PREDICTABILITY

OF SINGLE NETWORK NODES, respectively. As regards statistical analysis, the dis-
tributions of the computed measures were tested for normality using the Anderson-
Darling test. Since the hypothesis of normality was rejected for most of the dis-
tributions, and given the small sample size, non-parametric tests were employed.
Specifically, the statistical significance of the difference between REST and TILT con-
ditions, as well as between integrated PSD values in LF and HF bands in a given
experimental condition, was assessed using the Wilcoxon signed-rank test for paired data.
In this work, a significance level α = 0.05 was used to compute confidence intervals
of the surrogate and bootstrap distributions as well as to conduct statistical tests.

Results and Discussion. The results of the time domain analysis are reported
in TAB. 5.1, revealing that both the mean µC and the variance σ2

C of the AC time
series decreased significantly with head-up tilt (p < 0.001). This is in accordance
with previous findings (Švec et al., 2021; Hasegawa and Rodbard, 1979; Huijben et al.,
2012) and suggests that, when higher sympathetic activity is assumed, i.e., during the
orthostatic challenge, the well-known changes of heart rate and total peripheral resis-
tance occur rapidly through baroreflex mechanisms (Nardone, Incognito, and Millar,
2018; Cooper and Hainsworth, 2001; Sugawara et al., 2012), and are accompanied by
a simultaneous rise in arterial stiffness.
Fig. 5.1 shows the boxplot distributions of the spectral power of AC in the REST
(Fig. 5.1A,a) and TILT (Fig. 5.1A,b) conditions computed within the LF (σ2

LF, green
circles) and HF (σ2

HF, purple circles) bands, and depicted in a way such that subject-
specific information relevant to the frequency location of the LF and HF spectral
peaks is also provided (each circle has coordinates ( fκ, σ2

κ ), where κ represents the
LF or HF band). While the tendency of the LF power is towards an increase moving
from REST to TILT (p = 0.068), the HF power significantly decreases (p = 0.002).
Furthermore, the assessment of the significance of the difference between power
values integrated in LF and HF bands in a given condition revealed that the latter
ones are predominant (p < 0.001) during the supine rest (Fig. 5.1A,a, σ2

LF vs. σ2
HF).

This finding may reflect the fact that HF oscillations of AC can be heavily affected
by several respiration-related mechanisms, including (i) the direct mechanical effect
of intrathoracic pressure oscillations on the arterial wall stretch, and (ii) the effect
of HF oscillations in AC modulators such as heart rate and ABP, with former bring-
ing information about the mechanisms of RSA (Elstad and Walløe, 2015; Švec and
Javorka, 2021). The predominance of HF withdraws with tilt due to a slight increase
of LF power (p = 0.068) and a significant decrease of HF power (p = 0.002), as
depicted in Fig. 5.1A,b. An increase of magnitude of LF oscillations can reflect the
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FIGURE 5.1: A) Spectral decomposition of the beat-to-beat arterial compliance time series,
and B) assessment of arterial compliance self-predictability in the time and frequency
domain. Power of AC computed at rest a) and during tilt b); powers are depicted as boxplot
distributions and individual values with coordinates ( fLF, σ2

LF) (green circles) and ( fHF, σ2
HF)

(purple circles). The total number of subjects is 39, but only the subjects for those the algorithm
detected at least one pole in the LF and HF bands are shown in panels a,b. Measures of LSP
integrated in time (SC, c)), LF (s(LF)

C , d)) and HF (s(HF)
C , e)) bands of the spectrum, in REST

(left boxplots, cyan circles) and TILT (right boxplots, magenta circles) conditions. The total
number of subjects is 39 in panels c-e. Numbers in each plot indicate statistically significant
LSP values in REST (left) and TILT (right) according to surrogate and bootstrap data analyses
(see APPENDIX A). Statistically significant differences assessed by the Wilcoxon signed-rank
test for paired data: ∗, p < 0.05 REST vs. TILT; #, p < 0.05 LF vs. HF). The figure is adapted

from Sparacino et al., 2024a.
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sympathetically-driven vasomotion as a result of its baroreflex-mediated activation
associated with orthostasis (Cooper and Hainsworth, 2001; Nardone, Incognito, and
Millar, 2018; Czippelova et al., 2019). Conversely, a decrease of magnitude of HF
oscillations could be attributed to the parasympathetic inhibition during orthostasis
reflected by decreased RSA magnitude (Berntson et al., 1994; Javorka et al., 2018).
Quantifying the effects of potential drivers of AC oscillations, such as changes of
heart rate and TPR, could improve our understanding of the observed changes in AC
variability (Švec et al., 2021; Czippelova et al., 2019).

In Fig. 5.1B, the spectral representation of the LSP is shown in terms of boxplot
distributions of the integrated measure over all frequencies (SC, panel c), as well as
in the LF (s(LF)

C , panel d) and HF (s(HF)
C , panel e) bands, computed in the REST (left

boxplots, cyan circles) and TILT (right boxplots, magenta circles) conditions. The
significant increase of the time domain LSP moving from REST to TILT (p = 0.002)
is confirmed only in the HF band of the spectrum (p = 0.007). This suggests that
the overall increase of regularity of the process cannot be generalized to the whole
frequency content of arterial compliance, but is rather confined to the HF band of the
spectrum and may have different origins. One of them is related to the mathematical
nature of the LSP measure s(F)

C ( f̄ ) (F represents the LF or HF band), whose spectral
profile is given by the sum of the frequency-independent term SC, and the zero-mean
term s̄(F)

C ( f̄ ) showing a peak in band F. Potential tilt-induced significant increases
of SC are thus frequency-independent and distributed uniformly along the whole
frequency axis. Then, the spectral LSP s(F)

C ( f̄ ) is influenced by this increase even in

the case when there is no significant change in fluctuations of s̄(F)
C ( f̄ ); this influence

has major weight in the larger spectral band due to the higher number of integrated
frequency bins (i.e., the HF band), and may be thus responsible for the observed
change of self-predictability in this band. From a physiological point of view, the
degree of complexity of arterial compliance could be a result of the combined effects
of external influences modulating its dynamic activity and operating over different
temporal scales, such as direct mechanical or neural influences arising from central
oscillators (respiratory and vasomotor oscillators), feedback loops (e.g. baroreceptive
closed-loop circuit), and complex physiologic mechanisms adjusting TPR, ABP and
heart rate.

At first sight, the unaltered regularity of AC in the LF band can be attributed to a
hidden tilt-induced sympathetic activation, due to the high degree of co-ordination
and synchronicity of several simultaneous control mechanisms regulating AC in
both the resting state and tilt conditions (e.g., heart rate, blood pressure and TPR).
However, bootstrap data analysis yielded opposite results, since we found that the
significance of AC self-predictability in the LF band increased with tilt (from 8/39,
i.e., 20.51%, in the supine rest to 21/39, i.e., 53.85%, in tilt), as depicted in panel d.
This finding is of great importance and confirms the slight activation of sympathetic
vasomotor control observed for the power spectral density of compliance (Cooper
and Hainsworth, 2001; Nardone, Incognito, and Millar, 2018; Czippelova et al., 2019),
besides possibly reflecting an increased amplitude of LF oscillations in external mod-
ulators such as ABP or TPR (Cooke et al., 1999; Elstad et al., 2011). Noteworthy, the
augmented number of significant spectral measures in this band can be explained
by considering the subject-specific frequency profiles of s(LF)

C ( f̄ ), which are likely to
show more prominent peaks in LF during tilt, in accordance with wider fluctuations
of s̄(LF)

C ( f̄ ) and in spite of an overall frequency-independent increase of SC (as shown
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in panel c), i.e., the threshold for assessing significance in bootstrap data analysis
(SPECTRAL MEASURES OF SELF-PREDICTABILITY OF SINGLE NETWORK NODES).
The tilt-induced physiologic responses resulting in decreased respiratory rates and
increased tidal volumes (Brown et al., 1993; Javorka et al., 2018; Porta et al., 2000),
as well as in a slight diminished complexity of the respiration signal (Valente et al.,
2017), may be responsible for the increase of regularity of AC in the HF band. Indeed,
the increased mechanical influences on arterial vessels due to an augmented tidal
volume are likely to produce an augmented coupling between arterial stiffness and
respiration, reflected by an increase of AC self-predictability in the HF band. More-
over, an increased HF-related regularity in AC could be attributed also to the effect of
increased magnitude of ABP variability in this band (Cooke et al., 1999), probably
resulting from the tilt-induced suppression of buffering effect of RSA on ABP variabil-
ity at the respiratory frequency (Cooke et al., 1999; Elstad et al., 2001). Noteworthy,
the latter findings highlight one important limitation of the LSP measure, which is its
formulation in absence of a multivariate context taking into account potential oscil-
latory external drivers of AC variability, such as ABP and respiration. The spectral
measure of autonomous dynamics defined as Granger Autonomy (SECT. 4.2.2.2) could
be thought as an extension of the LSP to the bivariate case since it takes into account
potential confounding mechanisms deriving from external sources (Sparacino et al.,
2023a). It is worth noting that the significance of HF self-predictability decreases
from 30/39 (76.92%) in the supine rest to 27/39 (69.23%) during tilt, as depicted in
panel e. One more time, this result could be interpreted by looking at the spectral
profiles of s(HF)

C ( f̄ ): while the increase of self-predictability in HF may be associated
to the frequency-independent increase of the term SC, the tilt-induced diminished
significance of the spectral LSP in the same band could be the result of less prominent
peaks due to dampened fluctuations of s̄(HF)

C ( f̄ ). Again, if combined with the increase
of significance of LF regularity, this result confirms a parasympathetic withdrawal
related to heart rate control and suggests the importance of LF fluctuations when
the process has to cope with the physiological perturbations due to the orthostatic
challenge.

Conclusion. The application of the proposed approach to arterial compliance data
has demonstrated the significance of computing frequency-specific self-predictability
measures in the case of physiological variables rich of oscillatory components with dif-
ferent frequencies and shape, suggesting that the overall changes of self-predictability
in the time domain may be confined to specific bands of the spectrum. Moreover, in-
vestigating the spectral self dynamics of poorly investigated physiological processes
such as arterial compliance may have a great impact in understanding their role in
multivariate contexts. Further studies from our research group are currently looking
at more complex networks of physiological variables including, besides compliance,
heart rate, arterial pressure and respiration, with the aim to provide a more com-
prehensive investigation of the regulatory mechanisms affecting cardiovascular and
cardiorespiratory interactions in response to external physiological perturbations
(Direct causality measures unravel complex networks of physiological oscillations and their
modifications with postural stress, Laura Sparacino*, Chiara Barà*, Luca Faes and Michal
Javorka, ongoing study; *equal contribution).
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5.2 The Rate of Mutual Information Exchanged in Networks
of Cardiovascular, Respiratory and Cerebrovascular Vari-
ables

This section reports the analysis of dynamic functional connectivity in physiologic
networks by pairwise information-theoretic measures of total coupling between car-
diovascular, respiratory and cerebrovascular time series measured in a representative
subject prone to develop postural-related syncope (Faes et al., 2013c; Bari et al., 2016),
published in a four-page abstract submitted to the 2023 45th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society (EMBC, Sydney, Australia)
(Sparacino et al., 2023b). The aim of the study consisted in drawing preliminary
conclusions from descriptive indexes of physiopathological states estimated from
individual recordings of biomedical signals, using statistical analyses that focus
on subject-specific differences between experimental conditions. Significance and
variations between conditions have been statistically validated on a single-subject
basis through the use of surrogate and bootstrap data analyses (see APPENDIX A for
mathematical details).

Experimental Protocol and Data Analysis. The subject was monitored in the
resting supine position (REST) and in the upright position during the early-tilt (ET,
2 min. after tilting the bed table) and the late-tilt (LT, starting after prolonged pos-
tural stress, before the onset of the symptoms of pre-syncope), measuring the ECG,
the finger AP signal, the CBFV via transcranial doppler and the respiration signal
via a thoracic impedance belt. In each phase, synchronous time series of L = 250
consecutive values of the HP, systolic AP (SAP), MAP, MCBFV and respiration ampli-
tude (RESP) were measured from the acquired signals on a beat-to-beat basis (Faes
et al., 2013c; Bari et al., 2016). For further details about the experimental protocol,
signal acquisition and time series extraction, see Faes et al., 2013c; Bari et al., 2016
and SECT. 5.5. From the Q = 5 time series Y = {Y1, . . . , Y5}, dynamic functional
connectivity was assessed computing the MIR IYi ;Yj , i, j = 1, . . . , 5, i ̸= j (4.15, scalar
version) between each pair of series (model order p set according to the AIC for the
full model comprising the 5 processes (2.6), q = 20 for the reduced model comprising
the processes Yi and Yj (2.7) whose model parameters were derived solving the YW
equations as described in SECT. 2.3.5.1), and employing the surrogate and bootstrap
approaches to assess the significance of the MIR in a given condition (REST, ET, or
LT) (COUPLED DYNAMICS BETWEEN PAIRS OF NODES) and the significance of the
MIR variation between two conditions, referred to as δ (STATISTICAL SIGNIFICANCE

OF THE DIFFERENCE BETWEEN EXPERIMENTAL CONDITIONS).

Results and Discussion. The results shown in Fig. 5.2 display the maps of dy-
namic functional connectivity in the three analyzed conditions (Fig. 5.2a), as well as
the maps of pairwise differences between the MIR values computed in two conditions
(Fig. 5.2b). The statistical analyses performed at the level of a single subject allow to
infer, for this subject, physiologically expected behaviors related to cardiovascular,
cerebrovascular and cardiorespiratory mechanisms induced by postural stress and
pre-syncope. These behaviors include: (i) the drop of the MIR between SAP and HP
upon presyncope, suggesting an impairment of cardiovascular interaction possibly
related to baroreflex impairment (Faes et al., 2013c); (Pernice et al., 2022b); (ii) the
increase of the MIR between MAP and MCBFV moving from REST to ET and from ET
to LT, suggesting a progressive weakening of CA causing the MCBFV to depend more
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FIGURE 5.2: Dynamic functional connectivity analysis of physiologic time series measured
in a subject with poor orthostatic tolerance monitored at rest (REST) and during early-tilt
(ET) and late-tilt (LT) phases of postural stress. a) Pairwise connectivity networks assessed
computing the MIR between pairs of time series; white squares indicate non-statistically
significant MIR values. b) Networks of the differences (δ) between MIR values estimated in
two conditions; green and red squares indicate positive (ET > REST, left; LT > REST, middle;
LT > ET, right) and negative differences (ET < REST, left; LT < REST, middle; LT < ET, right),
respectively, white squares indicate non-statistically significant differences. The figure is

adapted from Sparacino et al., 2023b.

and more passively on MAP (Faes et al., 2013c); (Pernice et al., 2022b); (iii) the decrease
of the MIR between HP and RESP moving from REST to ET, reflecting a decrease
of the strength of cardiorespiratory interactions due to sympathetic activation and
vagal withdrawal (Faes, Nollo, and Porta, 2012). The two former findings (i)-(ii) were
also documented in Pernice et al., 2022b using the time domain measure of Geweke
total dependence (4.20), while the latter result (iii) is interestingly accompanied by
an increase of the MIR between RESP and the other variables (SAP, MAP, CBFV),
suggesting that the respiratory activity exhibits a complex interplay with the other
physiologic variables and may play a role in orthostatic intolerance (Bari et al., 2016).

Conclusion. The present work supports the use of surrogate and bootstrap data
analyses for the single-subject investigation of pairwise connectivity in physiological
variability studies. While the reported results need to be validated on larger datasets,
the proposed approach revealed physiologically plausible patterns of dynamic func-
tional connectivity in the application to networks of cardiovascular, cerebrovascular
and respiratory variables. In perspective, the proposed single-subject analysis may
have clinical relevance for subject-specific investigations and treatment planning.
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5.3 A Portable Multisensor System to Assess Cardiorespira-
tory Interactions through Photoplethysmography

Nowadays, the ever-growing interest to health and quality of life of individuals and
the advancements in electronic devices technology are pushing the development
of portable and wearable biomedical devices able to pursue a minimally invasive
monitoring of physiological parameters in daily-life conditions. Such devices can
now carry out a real-time assessment of the overall health status and possibly even
detect ongoing diseases. In this context, in Volpes et al., 2022, we carried out a
synchronous real-time acquisition of cardiorespiratory signals (electrocardiographic,
photoplethysmographic, and respiration-related) using a low-invasive multisensor
portable acquisition system developed in the Department of Engineering at University
of Palermo (Pernice et al., 2019; Pernice et al., 2020). Starting from the time series
extracted from the signals, the strength of causal interactions directed from the res-
piratory process to the heart rate has been assessed through bivariate GC measures.
The aim is to prove whether and in what extent the non-invasive and cost-effective
photoplethysmographic (PPG) technique can be used alone to assess cardiorespiratory
interactions without acquiring breathing or ECG signals.

Experimental Protocol and Signal Processing. Details on the portable system
can be found in Pernice et al., 2019; Pernice et al., 2020; Volpes et al., 2022. Three
different signals were synchronously acquired, i.e., 3-lead ECG, the PPG signal and
the respiratory (RESP) signal. The four ECG electrodes were positioned according to
Einthoven’s triangle on the wrists and legs [13], the PPG probe was positioned on
the left wrist, while the breath probe was placed on the nose. All the signals were
sampled with a sampling frequency of 500 Hz and 24-bit resolution. An appositely
developed GUI was used to show in real time the acquired signals and to send the
recorded data wirelessly via Bluetooth to a personal computer, in order to save them
for the subsequent offline analyses (we refer to Pernice et al., 2019; Pernice et al., 2020
for further information). Measurements were carried out on 6 healthy subjects (3
males and 3 females; 24.3± 1.9 years) monitored in a sitting position and undergoing
a two-phase protocol aimed at assessing cardiorespiratory interactions during spon-
taneous (SB) and controlled breathing (CB, breathing rate: 20 breaths/min, i.e., 0.33
Hz). In order to ensure a correct execution of the paced breathing, the subjects were
instructed to follow an appositely developed visual metronome application showing
different colors according to the current breathing phase, i.e. inhalation/expiration
(see Pernice et al., 2020). The acquired ECG, PPG and RESP signals were first filtered
using a zero-phase fourth-order Butterworth bandpass filter (ECG: [0.1− 20]Hz, PPG
and RESP: [0.1− 15]Hz). Starting from the ECG signals, the R peaks were detected
using a modified version of the Pan-Tompkins algorithm (Pan and Tompkins, 1985)
in order to extract the R-R interval (RRI) time series. With regard to PPG signals, a
threshold-based peak detection algorithm has been employed to locate the waveform
minima of the acquired signal which have been then used for pulse-pulse interval
(PPI) time series. We also performed the reconstruction of the respiratory signal start-
ing from only the PPG signals, using both a filtering-based approach and Empirical
Mode Decomposition (EMD) (Fusco et al., 2015). For the first approach, a band-pass
filter was applied accounting for a range of respiratory frequencies determined in
accordance to the knowledge that respiration variability usually falls within the HF
band, i.e., [0.15− 0.4]Hz (Charlton et al., 2017; Shaffer and Ginsberg, 2017). Only in
two of the six subjects the range was adapted to take into account the respiratory
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peak falling out of the HF band (we chose [0.08− 0.33] Hz and [0.25− 0.5]Hz to
detect peaks at ∼ 0.1 Hz and ∼ 0.45 Hz, respectively). The second method has been
already widely used for extracting breathing rate from PPG signals (see e.g., Fusco
et al., 2015). We have applied a simplified version of the EMD algorithm presented in
Fusco et al., 2015, herein summarized: (i) find the local maxima (Mi) and the local
minima (mi) of the PPG signal (x(t)); (ii) interpolate the maxima and minima using
the same number of points of the PPG, generating thus the upper M(t) and lower
m(t) envelopes, respectively (the MATLAB cubic spline interpolation algorithm has
been employed); (iii) compute the average envelope as e(t) = M(t)+m(t)

2 ; (iv) subtract
the average envelope to the PPG signal, x(t) := x(t)− e(t). The steps (i)-(iv) should
be repeated until the new x(t) does not vary from the x(t) at the previous iteration.
In our approach the EMD is stopped at the first loop, and the reconstructed breathing
signal has been selected as the average envelope (Fusco et al., 2015). Four different
respiration time series were extracted and used for computing the cardiorespiratory
interactions measures reported in the following section: (i) RRRI : series extracted as
the values of the respiration signal sampled at the times of ECG R peaks; (ii) RPPI :
series extracted as the values of the respiration signal sampled at the times of PPG
peak minima; (iii) RPPG f ilter : series extracted as the values of the respiration signal re-
constructed through the filtering approach sampled at the times of PPG peak minima;
(iv) RPPGEMD : series extracted as the values of the respiration signal reconstructed
through the EMD technique sampled at the times of PPG peak minima. For all the
time series (RRI, PPI and (i)-(iv) RESP series), we have extracted 300-point stationary
windows.

Data Analysis. The linear parametric analysis of cardiorespiratory interactions
was performed considering both lagged and instantaneous (i.e., not delayed) effects
from respiration (RESP, driver process) to the heart period (HP, target process), as
the common adopted measurement convention assumes that RESPn, sampled at the
onset of the nth RRI, could have a role in determining HPn variability (Faes et al., 2015;
Nuzzi et al., 2021). Time series were first pre-processed using a high-pass AR filter
with cut-off frequency of 0.0156 times the sampling rate (Nollo et al., 2000), the latter
computed for each subject assuming the series as uniformly sampled with the mean
HP taken as the sampling period. Each pair of stationary zero-mean HP and RESP
series collected in the joint bivariate process Y = [Y1, Y2] = [HP, RESP] was then
fitted by an extended AR model including zero-lag effects, in the form of (7.1) where

k = 0, . . . , p and AY,0 =

[
0 aY1Y2,0
0 0

]
. For details about the construction of extended

models including zero-lag effects by previous physiological knowledge, we refer the
reader to APPENDIX B. A reduced AR model involving only the HP process in the
form of (2.2) was then formulated. Identification of the full (2.4) and restricted (2.2)
models was performed via the OLS approach, setting the model order p according to
the AIC for each subject (with maximum scanned model order equal to 8) (see SECT.
2.3.5 for the identification procedure). To study the causal effect of the respiratory
process to the heart period, the frequency domain measure of Geweke GC was then
computed along the direction R→ H (in the form of (4.30), where the relevant terms
of the PSD, the model TF and the variance of the AR residual are computed from
the extended AR model (7.1)); then, the spectral distribution fR→H( f̄ ) was integrated
alongside the whole frequency axis to obtain FR→H as in (4.31), and within the HF
band of the spectrum to get fR→H(HF). Specifically, the HF band was determined
individually for each subject by first locating the respiratory peak and then selecting
the band with a width of ±0.06 Hz around such peak.
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FIGURE 5.3: Results of time domain and spectral analysis on the available time series HP
and RESP. a) Normalized PSD of RESP in the HF band of the spectrum, computed as the
ratio of the PSD in HF to the total PSD computed in the range [0− fs/2] Hz. b) Time domain
logarithmic GC from the driver process (RESP) to the target (HP), computed as the integral of
(4.30) alongside the whole frequency spectrum. c) Spectral measure of GC from the driver
process (RESP) to the target (HP), computed as the integral of (4.30) within the HF band of the
spectrum. Measures are computed in the two phases of the protocol (spontaneous breathing,
SB, panels above; controlled breathing, CB, panels below) considering the four respiration
time series, i.e., RRRI , RPPI , RPPG f ilter , RPPGEMD , for all 6 subjects (each subject is represented

by a different color). The figure is adapted from Volpes et al., 2022.

Results and Discussion. FIG. 5.3 shows the subject-specific results of time do-
main and spectral analysis. The displayed measures are the normalized PSD of the
respiratory process (panel a), the time domain GC (panel b) and the spectral GC inte-
grated within the HF band of the spectrum (panel c), in both phases of the protocol
(panels above: SB; panels below: CB). We have analysed the following combinations
of respiratory and heart period time series: (i) heart period: RRI time series extracted
from ECG; respiratory time series: RRRI ; (ii) heart period: PPI time series extracted
from PPG; respiratory time series: RPPI ; (iii) heart period: PPI time series extracted
from PPG; respiratory time series: RPPG f ilt ; (iv) heart period: PPI time series extracted
from PPG; respiratory time series: RPPGEMD . Two subjects presented spontaneous
breathing rates higher or lower than usual (respectively, ∼ 0.45 Hz and ∼ 0.1 Hz),
falling out of the frequency band commonly referred to as respiratory band, i.e.,
[0.15− 0.4] Hz. Surprisingly, it has been previously found that, in many healthy
subjects, breathing frequency slows down to the LF band and entrainment of the car-
diovascular rhythm around 0.1 Hz often occurs (Strano et al., 1998). In our study, slow
breathing was found in 1 (17%) of the 6 subjects who performed the experimental
protocol. This put a constraint in the selection of the HF band for the computation of
spectral measures, as we have chosen subject-specific HF ranges to take into account
possible outliers. However, this approach may cause to not detect all the power in
HF band. Indeed, we noticed that the bandwidth around the peak is larger when
reconstructing the respiration signals from PPG (i.e., RPPG f ilt and RPPGEMD ) for both
experimental conditions (SB, CB), probably due to spurious spectral content related to
autonomic system activity not present in the true respiration-only signal. This may be
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the reason of the unexpected sudden decrease of respiratory PSD in HF when extract-
ing RESP from PPG, both with filtering and EMD approaches, mostly visible in one
of the subjects (e.g., orange point in panel a) but generally occurring for all of them in
both experimental conditions. On the contrary, PSD values computed for the first two
settings (RRRI and RPPI) are comparable between each other and expectedly slightly
increase with controlled breathing, since all the respiratory variability is centered
around the respiration peak (∼ 0.33 Hz) and spectral leakage was observed to be
negligible. As regards GC measures, our results suggest that their overall behaviour
is characterized by a decrease when these values are computed using respiratory
time series reconstructed from PPG, especially with regard to the spectral measure.
Generally, in presence of bigger databases, statistical analysis is performed to detect
significant changes of the investigated measures between experimental conditions or
settings. In previous works, this has allowed to characterize the possibly different
behaviours of time domain measures and frequency-specific measures, which have
been found to be more precise and informative than overall indices, especially when
the observed processes exhibit frequency-specific oscillations (Sparacino et al., 2020;
Pernice et al., 2021). We could not perform statistical analysis because of the small
number of samples employed, but this led to some difficulties in the interpretation of
the obtained causality values in time and frequency domain. Several studies have
documented that the magnitude of respiratory-related fluctuations of RRI (i.e., RSA)
dramatically changes according to breathing rate (Saul et al., 1991). Moreover, it
has been demonstrated that paced breathing at ∼ 0.25 Hz does not alter efferent
vagal and sympathetic modulations in the frequency range from 0.04 Hz to 0.15
Hz in healthy subjects (Sanderson et al., 1996; Pinna et al., 2006). In this study, we
found a decrease of both time and spectral measures in CB with respect to SB in 3
subjects (50%), while increased or unchanged values were detected in the remaining
samples. These findings must be further investigated according to the subject-specific
spontaneous breathing rate and with bigger datasets. The possibility to enroll a
greater number of subjects and carry out statistical analyses represents surely one
of the future extensions of this study, in order to more clearly assess the feasibility
of the proposed extraction approaches of respiration from PPG. Nonetheless, our
preliminary findings suggest that causality measures behave similarly if PPG is used
for the detection of heart period and sampling of respiration instead of ECG. On the
other hand, the filtering and EMD approaches for the extraction of respiration from
PPG may be less accurate in the quantification of time domain and spectral measures,
and especially of respiratory PSD. Indeed, applying a PPG bandpass filter to identify
respiratory dynamics may cause misdetection of power content if other oscillatory
components are present within the selected HF range or if the peak bandwidth is too
large. Conversely, the EMD extraction technique is based on how well the detection of
PPG peaks is performed, and this may pose a problem when the acquired waveform
is noisy, due e.g. to motion artifacts.

Conclusion. In the present study, the feasibility of using the less invasive and
cost-efficient PPG technique instead of the more invasive ECG for investigating
cardiorespiratory interactions has been proved, since the computation of respiratory
parameters and patterns of causality in time and spectral domain provided similar
results when heart period is taken as the PPI sequence instead of RRI sequence.
However, our findings also suggest that the use of PPG for the extraction of the
respiration signal could lead to underestimates of the computed measures. This aspect
should be further investigated and validated with wider databases and statistical
analyses.
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5.4 Linear Parametric Assessment of Cardiorespiratory Inter-
actions during Spontaneous and Controlled Breathing

This section reports the analyses published in Pernice et al., 2022a and carried out on
an historical dataset previously employed for assessing the cardiovascular control
in healthy subjects (Porta et al., 2000; Porta et al., 2011a). We performed a linear
parametric analysis of cardiorespiratory interactions in bivariate time series of heart
period and respiration measured in 19 healthy subjects during spontaneous breathing
and controlled breathing at varying breathing frequency. The analysis is carried
out computing measures of the total and causal interaction between HP and RESP
variability in both time and frequency domains.

Experimental Protocol and Data Analysis. Data were acquired on 19 healthy
subjects (11 females, age: 27− 35 years; median= 31 years), during an experimental
protocol consisting of an initial period of spontaneous breathing (SB), followed by
controlled breathing sessions at 10 (C10), 15 (C15) and 20 (C20) breaths/min carried
out in a random order. From the acquired electrocardiographic and respiratory flow
signals, stationary heart period, HP, and respiration, RESP, time series of length
L = 255 beats were then extracted for each breathing condition, and normalized to
zero mean. Further details on signals acquisition and preprocessing can be found
in Porta et al., 2000; Porta et al., 2011a. Each pair of HP and RESP time series was
taken as a realization of a bivariate stochastic process Y = [Y1Y2], with Y1 = RESP
and Y2 = HP, which was then described using a linear parametric model as in
(2.4). After spectral representation of (2.4), the spectral measures of total dependence
(4.25) and linear feedback (4.30) were computed, together with the instantaneous
causality term (4.33). Each of these spectral measures was integrated along the
whole frequency axis to obtain the corresponding time domain measures, as done
for the linear feedback in (4.30). Further, assuming to have fast (i.e., within-beat)
interactions from RESP to HP (Faes et al., 2015; Nuzzi et al., 2021), we summed the
instantaneous term to the GC from RESP to HP, in order to obtain the time and fre-
quency domain measures of extended causality FRESP→·HP = FRESP→HP + FRESP·HP,
fRESP→·HP = fRESP→HP + fRESP·HP. Moreover, frequency-specific measures were ob-
tained integrating the terms of the Geweke decomposition in the LF ([0.04− 0.12] Hz)
and HF bands, being the latter chosen for each subject as [ fR ± 0.04] Hz, with fR the
respiratory peak identified in the range [0.04− 0.15] Hz. The statistical significance of
the obtained results was checked with α = 5% significance level. Moreover, to check
the significance of the time and frequency domain TD and GC measures, for each
subject Ns = 100 surrogate time series were generated using the iAAFT algorithm,
setting the significance threshold to 95% (see COUPLED DYNAMICS BETWEEN PAIRS

OF NODES).

Results and Discussion. Results are shown in FIG. 5.4. The time domain mea-
sures of coupling and causality obtained as the whole-band integral of the spectral
measures did not show any statistically significant variation during controlled breath-
ing when compared with the SB condition (first row). The same findings where
obtained when the spectral measures were integrated within the HF band (third
row). In both cases, the number of subjects with significant coupling was very high,
decreasing slightly along the direction from HP to RESP (middle column). The fre-
quency measures integrated within the LF band were statistically significant in a
lower number of subjects, especially when computed from RESP to HP (second row,
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FIGURE 5.4: Boxplot distributions (95% C.I. and 1 standard deviation) and individual
values of time domain (first row) and spectral measures integrated in LF (second row) and
HF (third row) bands, in the four breathing conditions (SB, C10, C15 and C20). Left panels,
total pairwise coupling; middle panels, coupling from HP to RESP; right panels, extended
coupling from RESP to HP obtained as FRESP→·HP = FRESP→HP + FRESP·HP. Top red values:
p-values returned by the Wilcoxon non-parametric test comparing the given distribution to
the reference (SB); bottom values: number of subjects (out of 19) with statistically significant
coupling detected via to iAAFT surrogate analysis. The figure is adapted from Pernice et al.,

2022a.
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right column). In this direction, a significant increase of the coupling was detected
during C15 (p = 0.03) compared to SB. Even if not significant (p = 0.06), a tendency to
increase during C20 was observed for the measure FRESP→·HP in the LF band. Our re-
sults evidence that the time domain linear measures of coupling and causality are not
significantly altered by the paced breathing condition. Frequency-specific interactions
are stronger in the RSA-related HF band, wherein they are directed mostly from RESP
to HP and do not change significantly across conditions. LF interactions are weaker,
prevalent along the direction from HP to RESP that is usually less investigated in the
literature, and appear more influenced by the paced breathing maneuver along this
pathway. These results confirm, from the point of view of bivariate cardiorespiratory
interactions, previous findings on the same dataset based on measures of high-order
interactions (taking also into account SAP) showing that paced breathing evokes
significant effects within the LF band of the frequency spectrum, but not in the HF
band classically studied (Faes et al., 2022a).

5.5 Spectral Decomposition of Cerebrovascular and Cardio-
vascular Interactions in Patho-Physiological States

In Pernice et al., 2022b, we presented a framework for the linear parametric analysis
of pairwise interactions in bivariate time series in the time and frequency domains,
which allows the evaluation of total, causal and instantaneous interactions and
connects time and frequency domain measures. The framework was applied to physi-
ological time series measured to investigate the short-term cerebrovascular regulation
from the variability of MCBFV and MAP, and the cardiovascular regulation from the
variability of HP and SAP. Time series were acquired at rest and during the early and
late phase of head-up tilt in subjects developing orthostatic syncope in response to
prolonged postural stress, and in age-matched healthy controls. Spectral measures of
total, causal and instantaneous coupling between HP and SAP, and between MAP
and CBFV were integrated in the LF band of the spectrum to analyze specific rhythms,
and over all frequencies to get time domain measures. We aimed to show that the
suitable combination of time domain and spectral measures may allow to obtain
an integrated view of cardiovascular and cerebrovascular regulation in healthy and
diseased subjects.

Experimental Protocol and Time Series Extraction. The analyzed time series
belong to a database previously collected to study the short-term cardiovascular
and cerebrovascular control responses to orthostatic challenge in subjects prone to
neurally-mediated syncope and healthy controls via the analysis of spontaneous vari-
ability of systemic variables (Faes et al., 2013c; Bari et al., 2016). The study included
13 subjects (age: 28± 9 years; 5 males) with previous history of unexplained syncope
(SYNC, reporting >3 syncope events in the previous 2 years) and 13 age-matched
healthy subjects (nonSYNC, age: 27± 8 years; 5 males), enrolled at the Neurology
Division of Sacro Cuore Hospital, Negrar, Italy. The protocol consisted of 10 minutes of
recording in the resting supine position, followed by 60° head-up tilt test. All SYNC
subjects experienced presyncope signs (i.e., a vasovagal episode characterized by
hypotension and reflex bradycardia leading to partial loss of consciousness) during
the tilt session; when signs were reported, the subject was returned to the resting
position and a spontaneous recovery occurred. None of the nonSYNC subjects expe-
rienced presyncope symptoms during tilt. The signals analyzed in this study are the
ECG (lead II), the continuous AP measured at the level of middle finger through a
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photopletysmographic device (Finapres, Enschede, The Netherlands), and the CBFV
signal measured at the level of the middle cerebral artery by means of a transcranial
doppler ultrasonographic device (Multi-Dop T, Compumedics, San Juan Capistrano,
CA, USA). From these signals, cardiovascular and cerebrovascular variability time
series were extracted according to the procedure described in the following. A tem-
plate matching algorithm was employed to detect the QRS complexes and locate the
R peaks from ECG signals, in order to calculate HP values as the temporal distance
between two consecutive R peaks (Bari et al., 2016). A manual correction procedure
was followed to mitigate the effects of ectopic or isolated arrhythmic beats or missing
events using linear interpolation between the closest unaffected values. The nth

SAP was defined as the maximum value within the corresponding HP. A low-pass
sixth-order Butterworth filter with cut-off frequency of 10 Hz was applied to the
CBFV signal. For the analysis of cerebrovascular variability, values of MAP and
CBFV were computed respectively integrating the waveform of the sampled pressure
and velocity signals within each detected diastolic pulse interval, divided by the
duration of the interval itself. The beat-to-beat variability series of HP, SAP, MAP
and MCBFV, herein referred respectively as H, S, M, and F, were then produced as
the sequences of consecutive values collected during three stationary time windows
of length L = 250 beats during the following physiological conditions (Faes et al.,
2013c; Bari et al., 2016): (i) supine rest (REST); (ii) early tilt (ET), starting after the
onset of the head-up tilt maneuver, excluding transient change of the physiological
variables; and (iii) late tilt (LT), starting at least 5 minutes after the onset of the head-
up tilt maneuver for subjects, or occurring just before the pressure decrease due to
presyncope (start at 16± 8 min after the head-up tilt) for SYNC subjects. Selection
of the sequences was performed randomly in each experimental condition and re-
peated if non-stationarities of the mean and the variance were present. The series
were visually inspected and eventually corrected through cubic spline interpolation,
with corrections not exceeding the 5% of the overall length of the sequence. Further
information about the experimental protocol, signal acquisition and variability series
extraction can be found in Faes et al., 2013c; Bari et al., 2016.

Data and Statistical Analysis. Standard time domain statistical parameters such
as mean (µ) and variance (σ2) were computed on the H, S, M and F time series
measured for each subjects and experimental condition; the corresponding symbols
and measurement units are µH [ms], σ2

H [ms2], µS [mmHg], σ2
S [mmHg2], µM [mmHg],

σ2
M [mmHg2], µF [cm · s−1], and σ2

F [cm2 · s−2]. Each series was first detrended with
an AR high-pass filter with zero phase (cutoff frequency 0.015 cycles/beat) (Nollo
et al., 2000). Then, a bivariate model in the form of (2.4) was fitted separately on each
pair of MAP and CBFV series to study cerebrovascular interactions, and on each pair
of HP and SAP series to study cardiovascular interactions. In the first case, a strictly
causal model with Y1 = F and Y2 = M was used, since the overlap between the
time of measurement of the nth MAP sample and the nth CBFV sample did not allow
unambiguous setting of instantaneous effects. In the second case, an extended model
in the form of (7.1), with Y = [Y1, Y2], Y1 = H and Y2 = S, k = 0, . . . , p and AY,0 =[

0 aY1Y2,0
0 0

]
, was used, allowing the presence of instantaneous effects in the direction

from SAP to HP, to account for fast (within-beat) baroreflex influences. For details
about the construction of extended models including zero-lag effects by previous
physiological knowledge, we refer the reader to APPENDIX B. Model identification
was performed via the OLS approach, setting the model order p according to the AIC
for each subject (with maximum model order equal to 8) (see SECT. 2.3.5). After AR
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FIGURE 5.5: a) Example of HP, SAP (left), MAP and CBFV (right) time series for a rep-
resentative subject in the late tilt condition. b) Example of frequency domain spectral
analysis of (left) cardiovascular interactions (i.e., baroreflex S→ H and feedforward H → S
mechanisms) using the extended AR model, and (right) cerebrovascular interactions (i.e.,
Cushing reflex F → M and pressure-to-flow M→ F mechanisms) using the strictly causal
AR model. Grey areas indicate the LF bands used for (left) cardiovascular ([0.04− 0.15]
Hz) and (right) cerebrovascular analysis ([0.07− 0.2] Hz). Panels along the bottom row are
organized as follows: on the left, total linear dependence (blue continuous line); in the middle,
instantaneous term; on the right, linear feedback along the baroreflex or the Cushing reflex
(respectively, fS→H and fF→M, blue dashed line) and the mechanical feedforward or the
pressure-to-flow link (respectively, fH→S and fM→F, red dashed line). For the exemplary

subject, model order was p = 7. The figure is adapted from Pernice et al., 2022a.

identification, computation of time and frequency domain interaction measures of
coupling and causality was performed from the estimated model parameters and
spectra of the processes. Spectral analysis was performed assuming the series as
uniformly sampled with the mean HP taken as the sampling period. Specifically, the
spectral measures appearing in the Geweke decomposition of total dependence in
(4.32) were computed; frequency-specific measures were then obtained integrating the
spectral measures within predefined bands. In cardiovascular analysis, the measures
were averaged within the LF band of the spectrum ([0.04− 0.15] Hz) to minimize
the effects of non-baroreflex mechanisms on the assessed measures and to avoid the
confounding effects of respiration on SAP and HP, which are confined in the HF
band (Porta et al., 2002; Krohova et al., 2019); (Pernice et al., 2021). In cerebrovascular
analysis, the measures were averaged within the LF band conventionally adopted for
studying MAP-CBFV spectral interactions ([0.07− 0.2] Hz) (Claassen et al., 2016). An
example of time series and computation of the spectral measures for a representative
subject is illustrated in FIG. 5.5 (left: cardiovascular time series and measures; right:
cerebrovascular time series and measures).

The distributions of the computed indices were tested for normality using the
Anderson-Darling test. Since the hypothesis of normality was rejected for most dis-
tributions, and given the small sample size, non-parametric tests were employed.
For any given group (SYNC and nonSYNC), the non-parametric one-way Friedman
test was employed to assess the statistical significance of the differences in the me-
dian of the distributions among groups, followed, in case of rejection, by a post-hoc
pairwise comparison carried out through the paired Wilcoxon non-parametric test with
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Bonferroni-Holm correction for multiple comparison to assess the differences between
pairs of distributions (REST vs. ET, REST vs. LT, ET vs. LT). Additionally, the sta-
tistical significance of the differences between the two groups (SYNC vs nonSYNC)
in a given condition (i.e., REST, ET or LT) was assessed using the unpaired Wilcoxon
rank sum non-parametric test. All statistical tests were carried out with 5% significance
level.

Results and Discussion: Cardiovascular Variability Analysis. For brevity, we do
not report here results pertaining to the analysis of the time domain statistical param-
eters µ and σ of the investigated time series H and S; we refer to Pernice et al., 2022b
for details. FIG. 5.6A shows the results of the time domain analysis of baroreflex and
feedforward interactions between HP and SAP time series, performed for the two
groups in the three analyzed conditions. We remark that the time domain measures
of total and causal linear dependence correspond to the equivalent frequency domain
measures integrated over the whole frequency axis, and that instantaneous causality
is absent because zero-lag effects are assigned to the direction SAP→ HP using the
extended AR model. In both groups, the total coupling decreased significantly while
moving from LT to ET (panel a); in SYNC subjects the index was also significantly
lower during LT than during REST. The decrease in total coupling was mainly de-
termined by a lower interaction along the feedforward direction from HP to SAP, as
documented by the significant decrease of the feedback H → S during LT compared
to REST in both groups, and during LT compared to ET in nonSYNC subjects (panel
b). In SYNC subjects, the linear interaction along the baroreflex direction from SAP to
HP decreased significantly moving from ET to LT (panel c).
The results of the frequency domain analysis of cardiovascular interactions are re-
ported in FIG. 5.6B. All spectral measures were averaged within the LF band of the
spectrum, quantifying the total information shared in this band between HP and SAP
( fH,S(LF)), the information transferred along the two causal directions ( fH→S(LF),
fS→H(LF)), and the information related to the mixing between the two directions
( fH·S(LF)). The significant changes observed in the total coupling measure integrated
over all frequencies (FIG. 5.6A, panel a) were observed when focusing on the LF
band only for the nonSYNC subjects, for which the measure fH,S(LF) increased sig-
nificantly moving from REST to ET, and decreased significantly moving from ET to
LT; the measure did not change significantly in SYNC subjects (FIG. 5.6B, panel a).
These trends are mainly linked to the modifications of the instantaneous term in LF,
which indeed increased from REST to ET and decreased from ET to LT in nonSYNC
subjects but not in SYNC subjects (FIG. 5.6B, panel c). The linear interaction from
HP to SAP showed a tendency to decrease progressively moving from REST to ET
and LT, but the decrease was statistically significant only comparing LT and REST
in SYNC subjects (FIG. 5.6B, panel b). On the contrary, the linear interaction from
SAP to HP increased markedly while moving from REST to ET in both groups, and
moving from ET to LT (FIG. 5.6B, panel d).

The time domain analysis of baroreflex and feedforward interactions based on
the considered measures of linear dependence showed that the two groups behaved
rather similarly in their response to postural stress, showing a significant reduction
of the total coupling between HP and SAP during late tilt (FIG. 5.6A). This result
indicates that the prolongation of the orthostatic stress produces an overall weakening
of the closed-loop cardiovascular regulation. The decomposition into measures of
directed interaction evidenced that the drop is related to the HP→ SAP direction in
both groups, and also to the SAP→ HP direction in the subjects prone to orthostatic
syncope. On the other hand, the time domain analysis did not document an increase
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FIGURE 5.6: A) Time domain analysis of cardiovascular interactions. Plots depict the
distributions across subjects, shown as individual values and boxplot distributions, of the
total linear interaction between HP and SAP a), and of the directed interaction from HP to
SAP b) and from SAP to HP c), computed at rest (REST, left bars and green circles) and during
head-up tilt (ET, middle bars and red circles; LT, right bars and blue circles). B) Frequency
domain analysis of cardiovascular interactions performed integrating the spectral measures
within the LF band ([0.04− 0.15] Hz). Plots depict the distributions across subjects, shown
as individual values and box-plot distributions, of the LF values obtained for the total linear
interaction between HP and SAP a), the directed interaction from HP to SAP b), the mixing
between the two interactions c), and the directed interaction from SAP to HP d), computed
at rest (REST, left bars and green circles) and during head-up tilt (ET, middle bars and red
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REST vs. LT; #, ET vs. LT. No statistically significant differences are detected between groups
(nonSYNC vs. SYNC) for a given condition. The figure is adapted from Pernice et al., 2022a.
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of coupling between HP and SAP moving from the resting supine position to the
upright position during ET. Such an increase, which is expected from the results of
a number of previous studies documenting a larger involvement of the baroreflex
into the cardiovascular regulation exerted during postural stress (Cooke et al., 1999;
Porta et al., 2011b; Faes, Nollo, and Porta, 2013), was observed in our work in the
trends of the frequency domain measures of total coupling, mixing and directed
coupling from SAP to RR computed within the LF band of the spectrum (FIG. 5.6B).
In previous studies, it has been related to an increased involvement of the baroreflex
into cardiovascular regulation consequent to the postural stress (Cooke et al., 1999;
Porta et al., 2011b; Faes, Nollo, and Porta, 2013). The fact that this behavior becomes
evident only looking at the LF band can be explained by the role played by respiration,
which affects both SAP and HP acting mostly in the HF band ([0.15− 0.4] Hz) and
may act as a confounder of cardiovascular interactions assessed through time domain
measures accounting for the whole frequency spectrum (Porta et al., 2002; Porta
et al., 2011a). The main differentiation between the two analyzed groups consisted in
the decreased interaction along the feedback direction from SAP to HP observed in
syncope subjects but not in healthy controls. This result was documented both by the
time domain analysis (FIG. 5.6A, panel d) and by the spectral analysis restricted to the
LF band (FIG. 5.6B, panel d), and suggests an impairment of the baroreflex control as a
symptom of autonomic disfunction preceding postural syncope. This interpretation is
in agreement with previous studies indicating that the lack of baroreflex involvement
could be one of the main mechanisms responsible for the impairment of the cardio-
vascular control associated with syncope development (Mosqueda-Garcia et al., 1997;
Nollo et al., 2009). A similar drop of the coupling strength along the baroreflex has
been detected previously in spontaneous cardiovascular variability analyses using
both nonlinear information-based techniques (Faes et al., 2013c; Faes, Nollo, and
Porta, 2013) and linear approaches computing the directed coherence in the frequency
domain (Faes et al., 2005). The linear interaction from HP to SAP decreased moving
from rest to tilt and with prolongation of the postural stress (panels b of FIG. 5.6A,B).
This result suggests that feedforward effects, which comprise cardiac mechanics (e.g.,
the Frank–Starling law) and vascular properties (e.g., vessels compliance and periph-
eral resistances) (Porta and Faes, 2013), tend to decrease progressively its contribution
to the cardiovascular regulation when the orthostatic challenge intensifies. Finally, the
term reflecting the mixing between feedback and feedforward interactions, evaluated
in the LF band of the spectrum, increased with the transition from rest to tilt; the
variation was statistically significant only for the healthy controls (FIG. 5.6B, panel c).
As this term measures the balance between redundant and synergistic interactions
along the two causal directions, the observed increase suggests that the feedback and
feedforward arms of the cardiovascular closed-loop explain a lower part of the total
interactions between the LF oscillations of SAP and HP during tilt than in the resting
condition.

Results and Discussion: Cerebrovascular Variability Analysis. For brevity, we
do not report here results pertaining to the analysis of the time domain statistical
parameters µ and σ of the investigated time series M and F; we refer to Pernice et al.,
2022b for details.
The results of time domain analysis of cerebrovascular interactions are depicted in
FIG. 5.7A. Besides the measures of total (FM,F) and causal (FM→F, FF→M) linear depen-
dence between MAP and CBFV, the figure reports also the measure of instantaneous
interaction FM·F, which is nonzero in this case where the strictly causal AR model was
adopted to fit the time series (panel c). The total dependence between the two series
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showed a tendency to increase with tilt (Fig. FIG. 5.7A, panel a); the increase was
statistically significant only for the SYNC subjects during ET. This tendency was sup-
ported in SYNC subjects by the significant increase of the linear interaction from MAP
to CBFV during ET and LT compared to REST (panel b), while the linear interaction
along the opposite causal direction (panel d) and the instantaneous interaction were
substantially unaffected by tilt (panel c). In subjects, a tendency towards higher val-
ues of linear coupling from CBFV to MAP was observed (panel d), with significantly
higher values of FF→M during LT compared to REST; the coupling from MAP to CBFV
and the instantaneous coupling did not change across conditions in this group (panel
b). The results of the frequency domain analysis of cerebrovascular interactions are
reported in FIG. 5.7B. The spectral measures were averaged within the LF band of
the spectrum, quantifying the total information shared in this band between CBFV
and MAP ( fM,F(LF)), the information transferred along the two causal directions
( fM→F(LF), fF→M(LF), which can be negative in some cases), and the information
related to the mixing between the two directions ( fF·M(LF)). When assessed within
the LF band, the total coupling (FIG. 5.7B, panel a) exhibits the same behaviour in the
two groups, i.e., a significant increase during both ET and LT compared to REST; in
the time domain, such an increase was reported only in SYNC individuals during ET
(FIG. 5.7A, panel a). The increased cerebrovascular coupling during tilt was reflected
in its most part by the measure quantifying mixing and instantaneous effects (FIG.
5.7B, panel c), as documented by the significantly higher values observed for fF·M(LF)
during LT in subjects and during both ET and LT in SYNC subjects. A statistically
significant increase is also detected during LT for the linear interaction from CBFV to
MAP in subjects (FIG. 5.7B, panel d), and during LT for the linear interaction from
MAP to CBFV in SYNC subjects (FIG. 5.7B, panel b).

The time domain analysis of the pressure-to-flow interactions reported in FIG.
5.7A, panel b documented that, while no significant changes of the directed coupling
from MAP to CBFV were detected in healthy controls, the measure increased sig-
nificantly during both tilt epochs in the syncope patients. The same trends were
observed when the directed interaction from MAP to CBFV was computed within
the LF band ([0.07− 0.2] Hz), documenting that the effect is relevant to this portion
of the frequency spectrum (FIG. 5.7B, panel b). The increase of MAP→ CBFV causal
interactions in SYNC subjects suggests that the cerebrovascular autoregulation mecha-
nisms may be impaired during tilt in this group. Indeed, cerebral autoregulation aims
at maintaining MCBF relatively constant in presence of modifications of MAP (Aaslid
et al., 1989; Paulson, Strandgaard, and Edvinsson, 1990), thus attempting to preserve
a certain degree of uncoupling between MCBF and MAP in a range of values of MAP
as wide as possible. Accordingly, an increased causal coupling from MAP to CBFV
may be interpreted as an indication of a less effective or impaired cerebrovascular
autoregulation (Panerai et al., 1998; Zhang et al., 1998). This result is in line with
previous findings using GC (Schiatti et al., 2015) and TE (Faes et al., 2013c; Bari et al.,
2017) measures suggesting that the postural challenge reduces the effectiveness of
the cerebrovascular control in patients prone to postural syncope. Looking at the
directed interactions along the Cushing reflex, we found that the causal coupling from
CBFV to MAP shows a tendency to increase progressively during postural stress; this
tendency was statistically significant only in subjects after prolonged stress (FIG. 5.7A,
panel d). The same trends were observed when the directed interaction from CBFV
to MAP was computed within the LF band ([0.07− 0.2] Hz), documenting that the
effect is relevant to this portion of the frequency spectrum (FIG. 5.7B, panel d). These
results may suggest that the sympathetic activation caused by prolonged postural
stress is beneficial to counteract orthostatic intolerance. Indeed, since the Cushing
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FIGURE 5.7: A) Time domain analysis of cerebrovascular interactions. Plots depict the
distributions across subjects, shown as individual values and boxplot distributions, of the total
linear interaction between CBFV and MAP a), the directed interaction from MAP to CBFV b)
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of cardiovascular interactions performed integrating the spectral measures within the LF
band ([0.04− 0.15] Hz). Plots depict the distributions across subjects, shown as individual
values and box-plot distributions, of the LF values obtained for the total linear interaction
between CBFV and MAP a), the directed interaction from MAP to CBFV b), the mixing and
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figure is adapted from Pernice et al., 2022a.
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reflex is a control mechanism enhancing sympathetic activity (Saleem et al., 2018),
the increase of coupling along this arm of the cerebrovascular control suggests that
the prolongation of the postural stress induces a further activation of the sympathetic
nervous system in subjects who do not develop syncope. Nevertheless, these findings
should be confirmed in larger datasets, also because the same enhancement of the
information transfer from CBFV to MAP was not clearly documented in previous
studies (Schiatti et al., 2015; Bari et al., 2017). The differences may be due to the
adopted methodology (Bari et al., 2017 employed transfer entropy, and Schiatti et al.,
2015 assigned instantaneous causality to the causal measure) and the difference in the
protocols (Bari et al., 2017 did not distinguish the tilt epochs, and Schiatti et al., 2015
did not consider healthy controls). The comparison between time domain measures
accounting for whole-band interactions and frequency-specific measures computed
within the LF band ([0.07− 0.2] Hz) indicates that the measures of directed interac-
tion behaved similarly (panels b,d of FIG. 5.7A,B), whereas the measures of total
coupling and mixing exhibited different patterns in response to orthostatic stress
(panels a,c of FIG. 5.7A,B). In fact, while the time domain measures did not evidence
marked changes across conditions, the LF measures of total coupling and mixing
displayed marked and statistically significant increments during the postural stress.
This indicates that instantaneous effects between CBFV and MAP play an important
role in cerebrovascular interactions and may confound – together with interactions
occurring outside the LF band – the detection of the impact of the postural challenge
on cerebral autoregulation. We remark that, according to our results, this impact is the
same in SYNC and nonSYNC subjects when it is assessed in terms of measures that
account for both pathways of the bidirectional interaction between MAP and CBFV;
the differences between the two groups emerged considering the causal measures as
discussed above.

Limitations and Conclusions. In our statistical analyses, no differences between
the two analyzed groups of SYNC and nonSYNC subjects were detected. While this
result may suggests that any modification of the cardiovascular or cerebrovascular
control in patients prone to develop syncope is better detectable observing the re-
sponse to the orthostatic challenge rather than comparing different groups, it may
be a consequence of the small dataset analyzed. A main limitation of the present
study concerns indeed the small number of subjects involved, which may affect
the robustness of the obtained results. Future studies involving more participants
should be performed to confirm the results and corroborate the interpretations of the
current study. From a methodological point of view, although our work introduces
an integrated framework capable of assessing total and causal interactions in bivari-
ate time series in both time and frequency domains, it does not provide conclusive
information about the treatment of instantaneous interactions in the computation of
the presented measures. Here, instantaneous interactions were assigned to a specific
causal direction based on physiological knowledge in the cardiovascular analysis, and
were left unassigned in the absence of such knowledge in the cerebrovascular analy-
sis. Alternative approaches have been explored, including the use of non-Gaussian
modelling and independent component analysis to set the direction of instantaneous
effects without prior knowledge (Faes et al., 2013c; Schiatti et al., 2015), and the use
of disconnected AR models studied in the frequency domain to provide undirected
measures of instantaneous causality and extended measures of GC (Nuzzi et al.,
2021). Since our work confirms that instantaneous effects play a fundamental role in
cardiovascular and cerebrovascular variability analysis, future studies are envisaged
to compare our framework with existing approaches, to assess the agreement of in
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these methods in the evaluation of frequency domain interaction and shed more light
on this delicate issue. For further methodological details, we refer the reader to the
APPENDIX B.

The present work introduced a unified framework for the analysis of pairwise
interactions between time series, decomposing the overall interaction into directed
and instantaneous effects and considering both time and frequency domain repre-
sentations. The added value of the framework stands in the tight relation between
the measures defined in the time and frequency domains, which favors interpretabil-
ity, and in the possibility to incorporate instantaneous influences into one causal
direction or leave them isolate in the evaluation of the interactions, which brings
flexibility. Exploiting these features, we contributed to describe the physiological
mechanisms involved in the cardiovascular and cerebrovascular regulation in the re-
sponse to a physiological stimulation (i.e., the postural stress) and to the development
of an autonomic dysfunction (i.e., the pre-symptoms of postural related syncope).
In perspective, the combination of time and frequency domain measures can help
elucidating the mechanisms behind the oscillatory rhythms as well as the broad-band
dynamics of coupled physiological variables studied in a variety of physiological
conditions and diseased states. Further steps should consider the possibility to inves-
tigate the network formed by the four physiological variables as a whole, using, e.g.,
the OIR framework to detect patterns of HOIs among the investigated signals.

5.6 Granger Causality, Isolation and Autonomy in Closed-
Loop Systems of Cerebrovascular Variables

Cerebrovascular interactions between MAP and MCBFV time series have been largely
studied to investigate the cerebrovascular control and dynamic CA in a variety of
physiopathological conditions (Aaslid et al., 1989; Paulson, Strandgaard, and Edvins-
son, 1990; Bari et al., 2017). Cerebrovascular interactions are largely determined by
the so-called pressure-to-flow link, according to which variations of MAP drive similar
changes in CBFV but also trigger CA responses whereby an homeostatic regulation
of CBFV is looked for (Aaslid et al., 1989; Paulson, Strandgaard, and Edvinsson,
1990). In this section, we report the practical computation of the spectral measures of
Granger causality, isolation and autonomy on cerebrovascular time series measured
in healthy controls and subjects prone to develop postural-related syncope (Faes et al.,
2013c; Bari et al., 2016), published in Sparacino et al., 2023a. Here, we hypothesize
that spectral indexes quantifying both the causal effects of MAP on MCBFV and the
autonomous dynamics of MCBFV can identify the alteration of the physiological
control mechanisms related to cerebrovascular interactions and to CA occurring
with postural stress in subjects with poor orthostatic tolerance better than the more
commonly used time domain indexes.

Experimental Protocol and Time Series Extraction. The analyzed time series
belong to a database previously collected to study the short-term physiological reg-
ulation in subjects prone to neurally-mediated syncope and healthy controls via
the analysis of spontaneous variability of systemic variables (Faes et al., 2013c; Bari
et al., 2016). The study included 13 subjects with previous history of unexplained
syncope (SYNC) and 13 age-matched healthy subjects (nonSYNC). ECG, AP, and
CBFV were acquired simultaneously. From these signals, the variability series of
MAP and MCBFV were extracted on a beat-to-beat basis by taking the average of the
AP and CBFV signals measured between the local minima occurring in the signals
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after each heartbeat detected from the ECG. For each subject, three sequences of 250
consecutive synchronous values of MAP and MCBFV were selected for the analysis,
corresponding to the following experimental conditions: (i) supine rest (REST); (ii)
early tilt (ET), starting after the onset of the head-up tilt maneuver; (iii) late tilt (LT),
starting at least 5 minutes after the onset of the tilt maneuver for nonSYNC subjects,
and occurring just before the pressure decrease due to presyncope for SYNC subjects.
Further information about the experimental protocol, signal acquisition and time se-
ries extraction can be found in Faes et al., 2013c; Bari et al., 2016, as well as in SECT. 5.5.

Data and Statistical Analysis. The time series extracted for each subject in
the three experimental conditions were regarded as realizations of the MAP (the
driver, Y1) and MCBFV (the target, Y2) discrete-time processes. These processes were
assumed as uniformly sampled with a sampling frequency equal to the inverse of the
mean HP. First, classical time domain markers such as the mean and variance of MAP
(µMAP, σ2

MAP) and MCBFV (µMCFBV , σ2
MCFBV) were computed. Then, the series were

pre-processed reducing the slow trends with an AR high-pass filter (zero phase; cut-
off frequency 0.0156 Hz (Nollo et al., 2000)) and removing the mean value. A bivariate
AR model in the form of (2.4) was fitted on each pair of pre-processed series using
OLS identification and setting the model order p according to the AIC (maximum
scanned order = 14); the series and the PSD profiles were visually inspected and
model orders were manually fixed where necessary, i.e. where too many or few
spectral peaks were observed. After AR identification, the time domain and spectral
measures of GC, GI and GA were obtained computing the parameters of the restricted
models (2.8) and (2.9) from the estimated full-model parameters as described in SECT.
2.3.5.1 and then applying the derivations presented in CHAPT. 4. FIG. 5.8a reports an
example of MAP and CBFV time series, together with their estimated PSDs (panels
b) and spectral GC (4.30), GI (4.35) and GA (4.44) profiles (panels c,d), measured for
a representative subject. The spectral measures of GC from MAP to MCBFV, GI of
MCBFV, and GA of MCBFV (respectively, fMAP→MCBFV , fMCBFV , and aMCBFV) were
integrated within the two frequency bands of physiological interest for CB variability,
i.e. the very-low frequency (VLF, f ∈ [0.02− 0.07] Hz) and LF ( f ∈ [0.07− 0.2] Hz)
(Claassen et al., 2016), as well as over the whole frequency range [0− fs/2] to get
the time domain values FMAP→MCBFV , FMCBFV , and AMCBFV . To test the statistical
significance of the GC, GI and GA measures, a bootstrap method using explicit model
equations extracted from the data was implemented, as described in AUTONOMOUS

DYNAMICS IN BIVARIATE PROCESSES. A representative example is illustrated in FIG.
5.8c,d.

The distributions of the time domain markers as well as of GC, GI and GA com-
puted across subjects for each group (SYNC and nonSYNC) were tested for normality
using the Anderson-Darling test. Since the hypothesis of normality was rejected for
most distributions, and given the small sample size, non-parametric tests were em-
ployed to assess the statistical significance of the differences of each index across
conditions. Specifically, the one-way Friedman test was employed to assess the signifi-
cance of the differences across conditions, followed in case of rejection by a post-hoc
pairwise comparison carried out through the paired Wilcoxon test with Bonferroni-Holm
correction for multiple comparison to assess the differences between pairs of distribu-
tions (REST vs. ET, REST vs. LT, ET vs. LT). All the statistical tests were carried out
with 5% significance level.

Results and Discussion. TAB. 5.2 depicts the results - in terms of time domain
markers (mean µ and variance σ2) of the MAP and MCBFV series computed in



130 Chapter 5. Applications to Physiological Networks

a) b) c) d)

PMAP

M
A

P 
[m

m
H

g]

[m
m

H
g2 ]

C
B

FV
 [

cm
/s

]

[(
cm

/s
)2 ]

0 50 100 150 200 250
n [beats]

0 0.1 0.2 0.3 0.4
f [Hz]

0 0.1 0.2 0.3 0.4
f [Hz]

0
0 0

0

1

2

3

0

1

2

3

6

9

0

20

10

20

30

40

60

0.1 0.2 0.3 0.4
f [Hz]

PCBFV

fMAP     CBFV

fCBFV

aCBFV

46

50

95

100

105

110

54

FIGURE 5.8: Example of Granger Causality, Isolation and Autonomy analyses for a repre-
sentative nonSYNC subject in the REST condition (model order: p = 7). a) MAP and CBFV
time series measured as realizations of the processes Y1 and Y2, respectively, for this subject.
b) PSD profiles of the MAP series, PMAP, and of the MCBFV series, PCBFV . c) Spectral profiles
of the GC from MAP to MCBFV ( fMAP→CBFV , green) and of the GI of MCBFV ( fCBFV , light
blue). d) Spectral profile of the GA of MCBFV (aCBFV , yellow). In c) and d), the distributions
of the spectral GC, GI and GA measures computed from surrogate time series are depicted as
shaded areas, median (black lines) and percentiles (grey lines, computed with a 5% signifi-

cance level). The figure is adapted from Sparacino et al., 2023a.

TABLE 5.2: Time domain indexes of mean and variance of MAP (µMAP [mmHg], σ2
MAP

[mmHg2]) and MCBFV (µMCBFV [cm/s], σ2
MCBFV [(cm/s)2]) shown as mean ± standard

deviation across subjects for the different groups (nonSYNC, SYNC) and experimental condi-
tions (REST, ET, LT). Statistically significant differences assessed via paired Wilcoxon test with
Bonferroni-Holm correction for multiple comparison: ∗, REST vs. ET, REST vs. LT; #, ET vs. LT.

nonSYNC SYNC
REST ET LT REST ET LT

µMAP 98.84± 17.33 95.16± 12.17 92.94± 11.61 84.42± 13.96 97.16± 17.50∗ 93.53± 15.64∗

σ2
MAP 14.22± 14.79 15.38± 9.11 14.56± 9.46 9.08± 6.78 13.61± 7.26 15.08± 6.99

µMCBFV 72.02± 23.14 62.12± 21.52∗ 61.09± 15.72∗ 64.42± 17.25 56.25± 17.06∗ 48.12± 18.08∗#

σ2
MCBFV 12.74± 8.20 20.42± 11.42∗ 15.42± 10.38 34.67± 72.69 41.56± 95.99 32.20± 56.31
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the two analyzed groups during the three experimental conditions. The trends of
these markers document the expected cerebrovascular response to the orthostatic
stress in subjects prone to syncope and controls (Grubb et al., 1991; Bari et al., 2017).
Specifically, the average MCBFV decreased significantly during tilt in both groups
as a consequence of the physiologic cerebral vasoconstriction associated with the
orthostatic challenge. In the SYNC group, the drop of µMCBFV was more marked
during LT and was accompanied by a significant increase, during both ET and LT
compared to REST, of the average MAP, likely reflecting a progressive weakening of
CA mechanisms which occurs with prolonged postural stress. The variability of the
two series did not show evident trends across conditions, except for an increase of
σ2

MAP during ET.
Fig. 5.9 reports the results of the analysis of causal, isolated and autonomous dy-

namics performed in the time and frequency domains. All the time domain measures
do not exhibit significant changes across the three analyzed experimental conditions
(Fig. 5.9, left plots). On the other hand, the evaluation of the same measures within
the frequency bands of physiological interest for this application (i.e., VLF and LF)
highlights some evident variations during the orthostatic stress, also differentiating
the response between syncope subjects and healthy controls (Fig. 5.9, middle and
right plots). These different behaviors of time domain and spectral measures evidence,
for this physiological application, the need of assessing causal and autonomous dy-
namics in the frequency domain to capture mechanisms that remain otherwise hidden
if a whole-band time domain analysis is performed.
The spectral analysis reveals a significant increase of the GC from MAP to MCBFV for
the SYNC group, alongside with a significant decrease of the GI of MCBFV during
both epochs of head-up tilt (ET, LT) compared to REST (Fig. 5.9a,b); the changes
are observed in the VLF band for both measures, where they occur together with a
marked increase in the number of subjects for which the GC and GI were statistically
significant according to the surrogate data analysis, and also in the LF band for the
GI measure. Methodologically, this finding confirms the simulation results showing
that GC and GI provide complementary information, but also suggests that the two
measures are not fully dependent on each other. Here, when assessed in specific
frequency bands, the two measures describe physiological mechanisms with a dif-
ferent degree of discrimination: the tilt-induced enhancement of the influences of
MAP on MCBFV is better captured by the GI measure. Physiologically, the presence
of stronger causal interactions along the pressure-to-flow link during tilt, detected
in the subjects prone to develop postural syncope but not in the healthy controls,
may be indicative of a defective CA, i.e. of a reduced intrinsic ability of the cerebral
vascular bed to maintain a stable perfusion despite blood pressure changes. Indeed,
the increased causal coupling indicates that the variability of MCBFV is determined
to a larger extent by the variability of MAP, and that the autoregulatory mechanism
cannot respond fast enough to compensate for pressure changes. This interpretation
agrees with that of previous studies in which a loss of CA has been associated with
an increased link between AP and CBFV (Panerai et al., 1998; Zhang et al., 1998).
The physiological mechanisms leading to the weakening of CA in the subjects prone
to syncope are complex, and possibly include hypercapnia (i.e., augmented arterial
carbon dioxide pressure) (Panerai et al., 1999), which has been associated to upwards
shift of the coherence between MAP and CBFV at frequencies < 0.1 Hz (Panerai et al.,
1999), and vasoconstriction (i.e., reduction in the diameter of large vessels) (Grubb
et al., 1991), which can have an effect on the measured MCBFV since the Doppler
ultrasound measures blood flow velocity and not absolute flow.
As regards the autonomy measure, the spectral analysis evidences a progressive
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FIGURE 5.9: Analysis of Granger Causality, Isolation and Autonomy for the cerebrovascular
time series measured in subjects prone to postural syncope (SYNC) and healthy controls
(nonSYNC). Plots depict the distributions across subjects (individual values and violin-plots)
of the GC from MAP to MCFV a), of the GI of MCBFV b), and of the GA of MCBFV c)
computed in the time domain (left plots) and integrating the spectral functions within the
VLF band ([0.02− 0.07] Hz, middle plots) and the LF band ([0.07− 0.2] Hz, right plots). For
each group and band, measures are computed at REST (blue) and during the early phase
(ET, orange) and the late phase (LT, green) of head-up tilt; for each distribution, the mean
and interquartile range are depicted by the white circle and vertical line, respectively, while
the width of the violin plot denotes probability density. Values above each distribution
indicate the number of subjects for which the measure was deemed as significant according
to surrogate data analysis. Statistically significant differences assessed via paired Wilcoxon test
with Bonferroni-Holm correction for multiple comparison, p < 0.05: ∗, REST vs. ET, REST vs. LT; #,

ET vs. LT. The figure is adapted from Sparacino et al., 2023a.

reduction of the GA of MCBFV computed in the VLF band moving from REST to ET,
and from ET to LT (Fig. 5.9c); the decrease is evident and statistically significant for
each pairwise comparison in the nonSYNC healthy controls, while it is less marked
and significant only comparing REST vs. LT in the syncope subjects. The decrease
of GA with tilt indicates that the internal regulatory mechanisms of MCBFV acting
in the VLF band loose progressively their strength during prolonged postural stress.
As the decrease is evident particularly in the healthy controls, it seems to have a
physiological rather than pathological origin; therefore, it should not regard the dy-
namic CA expressed in terms of interdependence between pressure and flow, which
is indeed not efficiently represented by the GA measure. More likely, the decrease of
GA reflects the reduced strength of exogenous effects, i.e., effects acting on MCBFV
independently of MAP. Such effects might include the occurrence of hypocapnia with
the orthostatic challenge in healthy subjects (Cencetti, Bandinelli, and Lagi, 1997),
which may have an impact on arteriolar vessel caliber, and thus on blood flow velocity.
This impact, which is not observed nor quantified in our AR model, might alter the
autonomous dynamics of CBFV and thus enter the computation of GA. A simulation
example investigating the effects of unobserved confounders was provided in SECT.
4.2.3.3.

Limitations and Conclusion. The aim of this study was to explore, in addition to
the well-known measure of Granger causality, the concepts of isolation and auton-
omy in coupled physiological processes, with emphasis on their frequency domain
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representation. In this context, the developed framework, comprising time and
spectral formulations of bivariate GC, GI and GA measures, allows quantification
of the concepts of causality, isolation and autonomy either considering the overall
dynamics of the observed bivariate process or the oscillations at specific frequencies
of physiological interest. Our experimental results document that the GI measure is
complementary to GC but not trivially related to it, while GA reflects the regularity of
the internal dynamics of the analyzed target process. The frequency domain formula-
tion of GC, GI and GA is particularly useful for the analysis of dynamic processes
which are rich of oscillatory content, as it allows to elicit physiological mechanisms
which can be hidden in time domain due to the mixing with other spectral effects.
This potential is demonstrated in our application to cerebrovascular interactions
where the spectral measures highlight responses to postural stress which cannot
be traced by the time domain analysis. In particular, our results suggest that GA
quantifies the frequency-specific physiological response to postural stress of the slow
CBFV oscillations, while GC and especially GI characterize the pathological response
related to the impairment of the dynamic autoregulation of CBFV preceding the onset
of postural-related syncope.
Nevertheless, this preliminary application presents some limitations. First, since the
small size of analyzed group of subjects may represent an issue when one aims to gen-
eralize results to an entire population, the use of larger datasets is needed to confirm
the results obtained here. Furthermore, in physiological applications where multiple
complex interactions often arise, the effects of unobserved confounders are likely to
occur as we have shown in SECT. 4.2.3.3. Therefore, the extension to multivariate
datasets including signals possibly acting as confounders (such as, in our application,
respiration and arterial carbon dioxide (Panerai et al., 1999; Porta et al., 2008)), as well
as the development of multivariate extensions of the proposed measures of GC, GI
and GA, are envisaged for future studies. Moreover, the inclusion of instantaneous
effects in the analyzed parametric models, though not always straightforward (Bac-
calá and Sameshima, 2021; Nuzzi et al., 2021; Pernice et al., 2022b), is recommended
to provide a complete picture of causal, isolated and autonomous effects emerging in
the time and frequency domains from dynamic interactions.

5.7 Cardiovascular, Cardiorespiratory and Cerebrovascular
High-order Interactions Assessed through the O-Information
Rate

Up to now, we have learnt that the representation with self-effects (e.g., for arterial
compliance - SECT. 5.1) and pairwise (e.g., for cardiovascular and cerebrovascular
closed-loops - SECT. 5.5, 5.6) interactions is a powerful tool although often insufficient
to provide a complete description of a complex system. It is now firmly acknowl-
edged that many real-world systems display high-order interactions involving more
than two network nodes (Battiston et al., 2020). Thus, in these systems the network
behavior is integrated at different hierarchical levels and time scales. This occurs in
Network Physiology, where it is important to distinguish between organ systems that
interact as a pair, or as a part of a more complex structure, to produce the observed
dynamics. For instance, cardiovascular interactions may arise autonomously from
self-sustained mechanisms or as a result of the effects of respiration on the measured
dynamics (Faes et al., 2016) (SECT. 5.5), while the interplay between cerebrovascu-
lar variables may be affected by the role of arterial carbon dioxide (pCO2) or other
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exogenous drivers of cerebral blood flow independently of blood pressure (Cencetti,
Bandinelli, and Lagi, 1997; Panerai et al., 1999) (SECT. 5.6).

In Faes et al., 2022a, a new approach to quantify both pairwise and high-order
interdependencies for networks of rhythmic processes interacting across multiple
time scales was proposed, defining the O-Information Rate as a new dynamic metric
of HOIs (SECT. 4.3.1.1). Moreover, the possibility to assess HOIs in the frequency
domain offered by the spectral expansion of the OIR (SECT. 4.3.2.1) has opened the
way to the evaluation of redundant and/or synergistic interactions within specific
frequency bands with physiological meaning (Faes et al., 2022a). In this context, in
two recent conference papers (Faes et al., 2022b; Sparacino et al., 2022a), we applied
the time and spectral OIR measures to networks of physiological time series, with the
aim of investigating the nature of multivariate interactions underlying the communi-
cation among different physiological systems. To this end, we focused on multivariate
physiological time series reflecting the dynamics of heart period, arterial pressure,
breathing volume and cerebral blood flow to investigate the joint cardiovascular,
cerebrovascular and respiratory regulation during postural stress (Faes et al., 2013c;
Bari et al., 2016). The application features physiological time series rich of oscillatory
content, which thus lend themselves to the spectral analysis of HOIs performed by
the proposed tool.

Experimental Protocol and Data Analysis. The OIR framework (Faes et al., 2022a)
was applied to a database of physiological time series collected from 13 young healthy
subjects during supine resting (REST) and passive standing in the 60◦ upright position
reached after head-up tilt (TILT). For each subject and condition, Q = 5 stationary
sequences of 250 beat-to-beat values of HP (H), SAP and DAP (S, D), respiration (R),
and MCBFV (F), were considered for the analysis (Faes et al., 2013c; Bari et al., 2016)
(see SECT. 5.5 for details about the experimental protocol, signal acquisition and time
series extraction). A VAR model (2.6) was fitted on the time series measured for each
subject and condition, with model order set according to the AIC. Then, the spectral
OIR (4.71) was computed for each multiplet of order N = 3, 4, 5 and integrated within
the LF ([0.04− 0.15] Hz) and HF ([0.15− 0.4] Hz) bands of the spectrum to obtain
frequency-specific measures of HOIs.

Results and Discussion. The results collected in FIG. 5.10 show that the OIR
integrated in both LF and HF bands was positive in the large majority of subjects in
both the analyzed conditions, and showed a tendency to increase with the number
of series in the analyzed multiplets. This finding suggests that physiological net-
works probed by beat-to-beat variability series are dominated by redundancy. The
result confirms similar findings observed in cardiovascular and cardiorespiratory
networks (Porta et al., 2017; Faes et al., 2021), and extends them to cerebrovascular
and integrated physiological networks. Multivariate interactions were found to be
stronger for HF oscillations than in the LF band, suggesting a main role of respiration,
whose oscillations are typically mostly confined within the HF band (Faes et al.,
2016), in driving redundant interactions in the cardiovascular and cerebrovascular
networks. This result is confirmed by the observation that in the LF band the highest
redundancy was displayed by multiplets including the series H, S, D and F, while
significantly lower values were found in multiplets including the series R, in both
experimental conditions. For these multiplets, a tendency towards an increase in
redundancy (though not statistically significant) was observed moving from REST to
TILT, suggesting a possible role of sympathetic activation in driving the redundancy
of LF oscillations in cardiovascular and cerebral blood flow variables (Porta et al.,
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FIGURE 5.10: Distribution across subjects and individual values of the OIR (top panels:
spectral OIR integrated in the LF band, [0.04− 0.15] Hz; bottom panels: spectral OIR inte-
grated in the HF band, [0.15− 0.4] Hz) computed at REST (gray) and during TILT (violet)
for all possible multiplets of order 3,4,5 obtained grouping the time series of heart period
(H), systolic pressure (S), diastolic pressure (D), respiration (R) and mean cerebral blood flow
velocity (F). Numbers in the OIR(3) and OIR(4) panels indicate pairs of distributions for
which the mean OIR differed significantly in a given condition (Student t-test for paired data,
p < 0.05). No statistically significant differences between REST and TILT were detected. The

figure is adapted from Sparacino et al., 2022a.

2017). Conversely, results in the HF band showed some statistically significant differ-
ences between multiplets only during TILT; specifically, the multiplets containing the
series R, S and F displayed the highest redundancy.

Overall, these results confirm for HOIs the redundant nature of cardiovascular
and cerebrovascular interactions previously reported for triplets of physiological
processes (Faes et al., 2016; Porta et al., 2017; Faes et al., 2022a), and document the
relevance of separating LF and HF contributions to elicit the role of respiration on
cardiovascular and cerebrovascular interactions. Moreover, the tendency of the OIR
to increase with tilt was not statistically significant, suggesting that these redundant
effects are preserved during postural stress. The understanding of the different
and complex ways of dynamic integration of organ systems as a complex network
remains one of the biggest problems in field of Network Physiology. Physiological
systems exhibit complex dynamics, operate at different time scales and are regulated
by multi-component mechanisms, which has been known to challenge the study of
physiologic coupling and causality (Ivanov and Bartsch, 2014; Bashan et al., 2012).
These aspects, together with the evidence that cardiovascular and cerebrovascular
interactions occur through the coupling of rhythms in different frequency bands with
different physiological meaning (Porta and Faes, 2015), make our spectral approach
eligible to probe HOIs in these networks (Faes et al., 2021). Our results document
that respiration acts as a major driver of multivariate redundant interactions in
physiological networks, confirming that HOIs can have different nature for different
rhythms because synergistic and redundant behaviors generally alternate in different
bands of the frequency spectrum (Faes et al., 2021; Antonacci et al., 2021).



136 Chapter 5. Applications to Physiological Networks

5.8 Gradients of O-Information in Multi-Organ Networks

Although physiological systems generally display dynamic behaviors, where the tem-
poral correlations between different processes acquire a non negligible significance,
studying the nature of the high-order node-specific dependencies between groups
of variables may lead to draw meaningful conclusions on the interplay between
these variables at lag zero. To this aim, in Scagliarini et al., 2024 we applied the OI
framework (SECT. 3.2) to a database of physiological time series collected to study the
effect of postural stress on cardiovascular, cerebrovascular and respiratory variability
(Faes et al., 2013c; Bari et al., 2016), with the aim of investigating static HOIs among
physiological signals through the use of OI gradients, calculated using the Gaussian
Copula approach described in Ince, 2017 to estimate entropy terms. In this section,
we report the main results and attempt to make a comparison between static and
dynamic (SECT. 5.7) analyses performed on the same network.

Experimental Protocol and Data Analysis. The original dataset is comprised of
13 young healthy subjects, enrolled at the Neurology Division of Sacro Cuore Hospital,
Negrar, Italy. ECG was acquired together with AP measured at the level of middle
finger through a photopletysmographic device. CBFV and respiration were measured
at the level of the middle cerebral artery by means of a transcranial Doppler ultrasono-
graphic device and through a thoracic impedance belt, respectively. From the raw
signals, the physiological beat-to-beat variability series of HP, SAP, MAP, MCBFV and
RESP were measured as detailed in Faes et al., 2013c; Bari et al., 2016 and reported in
SECT. 5.5 during two stationary time windows of length 250 beats in the following
physiological conditions: (i) supine rest (REST) and (ii) head-up tilt test with table
inclination of 60◦ (TILT). Prior to network analysis, each series was high-pass filtered
to remove slow trends and normalized to zero mean and unit variance. Then, the first
(3.12) and second (3.15) order gradients were evaluated for the physiologic network
constituted by the five time series {HP, SAP, MAP, MCBFV, RESP} (average over
subjects). Bootstrap data analysis was applied to assess the statistical significance
of the computed measures for each subject: gradients were considered significantly
redundant (synergistic) when the 5th (95th) percentile of the bootstrap distribution
was higher (lower) than zero (AN APPROACH TO THE STATISTICAL ASSESSMENT OF

HIGH-ORDER INTERACTIONS).

Results and Discussion. The first and second order gradients are reported in
FIG. 5.11. Looking at the first order gradients (panel a), we see that the heart
plays a synergistic role in the resting state, whilst in the orthostatic position the
system becomes dominated by redundancy with a disconnection of respiration. The
analysis of the second order gradients provided similar results (panel b), with the
cardiovascular link between HP and SAP showing a synergistic character during
the supine rest, and with increasing redundant behavior of the whole network after
head-up tilt.

Our results document a well known fact in physiology, i.e., that cardiovascular,
cerebrovascular and respiratory interactions are highly redundant. This is also high-
lighted by previous dynamic analysis (SECT. 5.7, FIG. 5.10), where the first-order OIR
gradient was found to be mostly redundant (left column). On the other hand, here
we show an interesting and probably novel aspect of cardiovascular oscillations: the
heart rate plays a synergistic role in the resting state analyzed with our static analysis;
synergy could result from the fact that HRV is the common target for several neuro-
autonomic mechanisms including the cardiac baroreflex and the RSA mechanism



5.8. Gradients of O-Information in Multi-Organ Networks 137

REST TILTa)

b)

HP
SAP

M
AP

MCBFV
RESP HP

SAP
M

AP

MCBFV
RESP

HP

SAP SAP

MAP MAP

HP

MCBFV MCBFV

RESP RESP

0

0

0

- 0.27

0.27

0.05

0.1

0.15

0.2

- 0.02

- 0.02

FIGURE 5.11: a) First and b) second order gradients for the physiological system com-
posed of the five time series {HP, SAP, MAP, CBFV, RESP}, averaged over subjects and
computed in the two experimental conditions: supine resting state (REST, left plots) and
head-up tilt (TILT, right plots). Colors indicate redundant (red) and synergistic (blue) char-
acters of interaction. Width of the links indicates the strength of the gradients. Statistical
significance was assessed via bootstrap data analysis for each subject. As regards the first
order gradients in the resting state, one out of the five showed significant synergy in 50%
of subjects (HP), while in TILT significant redundancy was found for three of the five (SAP,
MAP, MCBFV). Going to the second order gradients, only in the TILT condition redundancy
was significant in more than 50% of subjects for the pairs HP-MAP, HP-MCBFV, SAP-MAP,
SAP-MCBFV, MAP-MCBFV. This suggests an important role of the sympathetic activation

led by head-up tilt in increasing redundancy in physiologic networks.
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(Cohen and Taylor, 2002). We also find that redundancy is strongly enhanced by the
entrainment of cardiovascular and cerebrovascular oscillations and by sympathetic
activation; in particular, in the upright position all the series are highly redundant, ex-
cept for the respiration signal, which is out of the redundant circuits in tilt conditions.
These results agree with the tilt-induced shift of the sympatho-vagal balance towards
increased sympathetic activity and decreased parasympathetic activity (Montano
et al., 1994), also previously documented via information-theoretic analyses (Faes,
Nollo, and Porta, 2011). Remarkably, here we stress the convergence of static and dy-
namic analyses in demonstrating the dominant synergistic nature of respiration. Indeed,
while the OI gradients show overall low values of redundancy of groups including
respiration (see, e.g., the second-order gradients in FIG. 5.11b), likely to be more
prominent at higher orders, the first-order OIR gradient was found to be very low -
probably not significant at all - for triplets including respiration, thus suggesting the
leading synergistic character of this variable (FIG. 5.10, left column).

Overall, the redundancy showed a tendency to increase with tilt, documenting an
effect of sympathetic activation on the redundant interactions among cardiovascular
and cerebrovascular oscillations (Faes et al., 2022a), as also demonstrated in SECT.
5.7 (FIG. 5.10). Bootstrap data analysis (Politis, 2003) confirmed these findings,
suggesting that interactions involving respiratory, arterial pressure and blood flow
variabilities are more shifted to redundant rather than synergistic modes of interplay,
as well as that significance increases moving from the supine to the upright position,
ultimately highlighting that redundancy is significantly strongly enhanced during
the orthostatic stress.

5.9 Cardiovascular and Respiratory Interactions During Paced
Breathing: an Approach to Decompose the O-Information
Rate

The OIR framework proposed in Faes et al., 2022a allows a hierarchically-organized
evaluation of time and frequency domain interactions in dynamic networks mapped
by multivariate time series, also providing the possibility to decompose symmetric
measures of high-order interactions into causal components reflecting Granger-causal
and instantaneous influences, which can be related to the topological structure of the
underlying network and estimated with high computational reliability within the
framework of VAR SS models. To explore this remarkable feature, we report here an
application to cardiovascular and respiratory interactions during paced breathing
(Faes et al., 2022a).

Experimental Protocol. The analyzed dataset refers to beat-to-beat variability
series of respiration (RESP, process Y1), SAP (process Y2) and HP (process Y3), syn-
chronously measured with a sampling frequency of fs = 300 Hz in a group of 18
young healthy subjects monitored in the resting supine position during an experi-
mental protocol consisting of four phases: spontaneous breathing (SB) and controlled
breathing at 10, 15, and 20 breaths/minute (CB10, CB15, CB20) (Porta et al., 2011a).
The HP, SAP and RESP time series were extracted respectively from the ECG, non-
invasive ABP and nasal respiration flow as the sequences of the duration of the
cardiac cycle (RRI), of the local maximum of the blood pressure signal within each
detected cardiac cycle, and of the value of the respiration signal sampled at the on-
set of each cardiac cycle. This measurement convention implies that instantaneous
influences can be described as causal effects from RESP to SAP and HP and from
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SAP to HP (directions Y1 → Y2, Y1 → Y3, Y2 → Y3) (Faes et al., 2013a). The analysis
was performed on stationary segments of the time series including 256 heartbeats,
selected by visual inspection for each subject and experimental condition (Porta et al.,
2011a). We note that the dataset herein analysed is the same as in Pernice et al.,
2022a (SECT. 5.4), where however only the closed-loop cardiorespiratory interactions
between heart rate and respiration were taken into account.

Data Analysis. Pre-processing consisted on detrending and mean removal for
each time series. The VAR model (2.6) fitting the three series was identified through
the OLS method (SECT. 2.3.5), selecting the order p in the range 3-14 by means
of the AIC (Faes, Erla, and Nollo, 2012). The analysis was focused on decompos-
ing the OIR (4.51) of the three processes in OIR increments (4.52) obtained when
the HP process is added to the bivariate process {RESP, SAP}. Specifically, start-
ing from the estimated VAR parameters, we computed δY1,Y2→Y3( f̄ ), δY3→Y1,Y2( f̄ )
and δY1,Y2·Y3( f̄ ) from the terms of the spectral decomposition (4.70), then deriving
νY1,Y2,Y3( f̄ ) = δY1,Y2;Y3( f̄ ) via (2.6, 2.7). From these spectral measures, time domain
measures were obtained through integration over the whole frequency axis or within
the LF range ([0.04− 0.12] Hz) and the HF range (±0.04 Hz around the peak respira-
tory frequency fR). Given the possibility to ascribe instantaneous effects to specific
causal directions (see above), the analysis is performed summing the information
shared instantaneously between {RESP, SAP} and HP to the information transferred
from {RESP, SAP} to HP, i.e., computing the spectral and time domain measures
δY1,Y2

.→Y3
( f̄ ) = δY1,Y2→Y3( f̄ ) + δY1,Y2·Y3( f̄ ) and ∆Y1,Y2

.→Y3
= ∆Y1,Y2→Y3 + ∆Y1,Y2·Y3 . Spec-

tral analysis was performed assuming the series as uniformly sampled with sampling
frequency equal to the inverse of the mean HP. If the reader is interested in the full
analysis of the individual measures and methodological details, we refer to the sup-
plemental material of Faes et al., 2022a.

Results and Discussion. The results of OIR computation and decomposition are
reported in FIG. 5.12, showing the grand average of the frequency domain measures
as well as the whole-band, LF and HF time domain average measures. The spectral
OIR and most of the terms of its decomposition exhibit prominent peaks, which
are well-defined at the frequency of the paced breathing during the CB conditions
and are less narrow-banded during SB (FIG. 5.12a). This behavior reflects the fact
that paced breathing regularizes the RESP signal around the imposed rhythm and
enforces synchronous oscillations at the same frequency in the HP and SAP time
series, determining increased spectral content and spectral coupling in the HF band
(Porta et al., 2011a). The positive values of the time domain OIR (FIG. 5.12b, left)
document that this synchronized interaction is dominantly redundant, confirming
previous findings obtained in different experimental conditions and with both static
and dynamic analyses (see, e.g., Faes et al., 2016; Faes et al., 2022b; Sparacino et
al., 2022a; Scagliarini et al., 2024). Looking at the spectral profiles of FIG. 5.12a,
the peak values of the OIR show a tendency to increase while moving from SB to
CB10, and to decrease progressively during CB15 and CB20; these trends confirm
from the perspective of HOIs results obtained on the same data using information-
theoretic measures of cardiorespiratory coupling (Porta et al., 2000). This finding is of
remarkable importance, since it allows to highlight the profound difference between
pairwise (i.e., the GC; see, e.g., FIG. 5.4, middle and left columns) and high-order
(i.e., the causal OIR gradient in FIG. 5.12a, middle and bottom rows) measures of
interdependencies. Pairwise approaches based on GC measures fail in detecting
significant changes of causal influences between the considered variables; in this
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FIGURE 5.12: OIR decomposition of cardiovascular interactions during spontaneous (SB)
and controlled breathing (CB). a) Average spectral profiles across subjects (line: median;
shades: 1st − 3rd quartiles) of the OIR increment obtained with the addition of HP to {SAP,
RESP} (upper panels) and of its decomposition in causal terms (middle and lower panels)
computed during spontaneous breathing (SB) and CB at 10, 15 and 20 breaths/min. b) Time
domain values of the mean OIR increments obtained integrating the spectral measures over
the whole frequency axis (TOT), in the range [0.04− 0.12] Hz (LF) or in the range fR ± 0.04
Hz (HF); *, statistically significant differences (p < 0.05) between CB and SB conditions
(Wilcoxon signed-rank test: black, uncorrected; red, Bonferroni-Holm correction for multiple

comparisons). The figure is adapted from Faes et al., 2022a.
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example, the addition of SAP to the cardiorespiratory closed-loop is essential to allow
the emergence of more complex patterns which would remain hidden with classical
bivariate predictability measures.

The dominance of redundancy in the HF band of the spectrum (FIG. 5.12b, right)
suggests that the main underlying physiological mechanism is the mechanical influ-
ence of RESP on SAP variability, transmitted to HP through the baroreflex feedback
(Krohova et al., 2019); the OIR component directed from HP to {SAP, RESP}, which
tends to be less redundant at increasing the frequency of paced breathing, is of more
difficult interpretation and is likely dominated by the mechanical feedforward effects
from HP to SAP (Javorka et al., 2017). The dominance of redundant mechanisms
around the respiratory frequency impacts substantially the whole-band time domain
OIR, which show comparable values across the analyzed conditions (FIG. 5.12b, left).
On the other hand, the measures integrated within the LF band vary significantly
moving from spontaneous to paced breathing (FIG. 5.12b, middle): the information
transfer from {SAP, RESP} to HP becomes mostly synergistic during CB10, and dur-
ing CB15 and CB20 returns progressively to the redundant values observed at SB; the
information transfer along the direction HP→ {SAP, RESP} is prevalently synergistic
at rest and shifts to redundant values during CB. The shift to synergy observed at
CB10 for ∆Y1,Y2→Y3 suggests that, when the respiratory activity slows down and tends
to overlap with the Mayer waves typically observed in SAP and HP (Julien, 2006), the
baroreflex (SAP→HP) and respiratory sinus arrhythmia (RESP→HP) mechanisms
operate independently in determining the variability of heart rate.

5.10 Partial Information Rate Decomposition in Physiological
Networks

As pointed out in SECT. 4.3.1.1, pairwise and fully conditioned TE analyses may
encounter challenges in the presence of synergy or redundancy in time series data;
indeed, pairwise causality fails to reveal synergistic effects while fully conditioned
causality may fail to reveal redundant effects (Stramaglia et al., 2024). Moreover,
high-order metrics such as the OIR framework do not allow to dissect separately
mechanisms of redundancy and synergy occurring in complex networks of multiple
nodes, since they do not put in evidence multiplets of variables which are both redun-
dant and synergistic with equal strength. Conversely, we have shown how the PIRD
is a powerful tool which separately evaluates redundant and synergistic patterns of
interactions among groups of four variables in the context of a dynamic analysis. To
show the promising features of the method, we report here the practical application
of the PIRD framework (SECT. 4.3.1.1 and SECT. 4.3.2.1) to a database including 13
subjects at rest and during prolonged postural stress leading to pre-syncope (Faes
et al., 2013c; Bari et al., 2016). The application was first presented in Sparacino, An-
tonacci, and Faes, 2024, and then in Sparacino et al., 2025.

Experimental Protocol and Data Analysis. Beat-to-beat variability series of HP
(H), MAP (M), MCBFV (F) and RESP (R) were extracted during three stationary
epochs of 250 beats in the supine rest (REST), early tilt (ET), and late tilt (LT) phases.
Series were filtered to reduce slow trends and normalized to zero mean. Further
details about the protocol, signal acquisition and time series extraction can be found
in Faes et al., 2013c; Bari et al., 2016 and are reported in SECT. 5.5. The physiological
network comprising the F, M, H and R time series was investigated to decompose
the rate of information dynamically shared between the target (Y = F) and a set of
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source processes (X = {H, M, R}, with H = X1, M = X2, R = X3).
Each series was first detrended with an AR high-pass filter with zero phase (cutoff
frequency 0.015 cycles/beat) (Nollo et al., 2000). Then, a VAR model in the form of
(2.6) was fitted to the four time series; model identification was performed via the OLS
approach, setting the model order p according to the AIC for each subject (with maxi-
mum model order equal to 14). After VAR identification, computation of time and
frequency domain interaction measures of mutual, unique, redundant and synergistic
information rates was performed from the estimated model parameters and spectra
of the processes. Spectral analysis was performed assuming the series as uniformly
sampled with the mean HP taken as the sampling period ( fs =

1
<Hn>

). Specifically,
the spectral MIRs between the target and groups of sources were computed; then,
according to coarse-graining PIRD, the unique, redundant and synergistic informa-
tion rates calculated from the spectral redundancy rate in (4.75) were computed
through integration within the low frequency (LF, [0.04− 0.15] Hz) and high fre-
quency (HF, [0.15− 0.4] Hz) bands of the spectrum to analyze specific rhythms with
physiological meaning, as well as through integration over all frequencies, to get
overall time-domain measures.

Given the small size of the surveyed population, non-parametric statistical tests
were applied to assess statistically significant differences between indexes evaluated
in the three phases of the experimental protocol, i.e., REST, ET and LT conditions.
Specifically, the Wilcoxon signed rank test for paired data was applied on the MIRs
shared between the target and each source, as well as on the PIRD terms (i.e., the
joint MIR shared between the target and all the sources, the unique, redundant and
synergistic information rates), evaluated in the time domain and along the LF and
HF bands of the spectrum during the three phases of the protocol. Further, the
statistical differences among pairs of unique information rate measures, as well as
between redundancy and synergy, were tested in the time domain, LF and HF bands
for each experimental condition via Wilcoxon signed rank test for paired data with
Bonferroni-Holm correction for multiple comparisons. For all the statistical tests, the
significance level was set to 0.05.

Results and Discussion. Results are shown in FIG. 5.13 as boxplot distribu-
tions and individual values of the PIRD measures computed in the REST, ET and
LT conditions. The MIRs (IF;H, IF;M, IF;R, IF;H,M,R) and unique information rates
(UF;H,UF;M,UF;R) assessed in the time domain (panels a) and within the LF (pan-
els b) and HF (panels c) bands of the spectrum are depicted in the left and middle
columns, respectively, while the redundant and synergistic contributions and their
balance (∆) are shown in the right column.

The transition to ET induced an increase of IF;M and UF;M mainly visible in the LF
band of the spectrum (FIG. 5.13a,b, left and middle columns), in line with previous
observations indicating that the increase of the information transfer from M to F is
related to altered CA in syncope patients (Bari et al., 2017); (Pernice et al., 2022b;
Sparacino et al., 2023a). The LT-induced decrease of IF;M in HF is probably related to
the modulating effect of respiration (Bari et al., 2016), and thus is not detected by the
unique contribution of arterial pressure (UF;M, panel c, middle column). As regards
the interactions between cerebral blood flow and respiration, we found that the
MIR IF;R increases during the early phase of tilt in LF probably due to confounding
effects of H, M, while REST and ET values of UF;R are very close to zero for most of
subjects (FIG. 5.13b, left and middle columns), suggesting that the unique information
shared between R and F may be negligible during this phase of the protocol. This
result is further confirmed by the significantly lower values of UF;R than UF;H and
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FIGURE 5.13: Coarse-grained PIRD applied to the physiological network of mean cerebral
blood flow velocity (F), mean arterial pressure (M), heart period (H) and respiration (R)
assessed in patients prone to develop postural-related syncope. The mutual (left column:
IF;H (black dots), IF;M (gray dots), IF;R (pink dots), IF;H,M,R (light blue dots)), unique (middle
column: UF;H (black dots), UF;M (gray dots), UF;R (pink dots)), redundant (right column:
RF;H;M;R, magenta dots) and synergistic (right column: SF;H;M;R, blue dots) information
rates shared between the target F and the sources {H, M, R} are computed in the REST (left
boxplots, RS for brevity), ET (middle boxplots) and LT (right boxplots) conditions along a)
the whole frequency axis (TIME), b) the LF and c) the HF bands of the spectrum, taking the
spectral redundancy rate function as in (4.75). The redundancy-synergy balance ∆ is shown
as boxplot distributions and individual values (purple dots) in the right column of panels
a) (TIME), b) (LF) and c) (HF). The statistical differences among pairs of unique information
rates (middle panels) were tested via Wilcoxon signed rank test for paired data (p < 0.05)
with Bonferroni-Holm correction for multiple comparisons: significant p-values are shown
above the boxplot distributions with colors indicating the distribution to be compared with
(i.e., black if compared with UF;H , gray if compared with UF;M). Wilcoxon signed rank test for
paired data, p < 0.05: ∗, REST vs. ET; §, REST vs. LT; #, ET vs. LT. The figure is adapted from

Sparacino et al., 2025.



144 Chapter 5. Applications to Physiological Networks

UF;M in the REST and ET phases. However, a significant increase of the unique
information rate shared between the respiratory and the cerebral system in the LF
band is observed in LT, thus shedding light on the remarkable role of respiration
in influencing the dynamics of CBFV suddenly before the occurrence of syncope
(Porta et al., 2008; Bari et al., 2016). It is worth noting that the tilt-induced significant
increase of cerebro-vascular and cerebro-respiratory interactions in the LF band is
well visible as significant increases of the joint MIR IF;H,M,R (FIG. 5.13b, left column),
which however is not a source-specific measure and thus cannot distinct between the
pathways of information flow.

A major result is related to the interactions between cerebral and cardiac processes,
which indeed do not change in response to the orthostatic challenge within the
investigated network (IF;H, UF;H, black distributions of left and middle panels), thus
implying invariance of these relationships with the postural stress. Nonetheless,
besides being significantly lower than UF;M during tilt as suggested by p-values
< 0.05 (FIG. 5.13a, middle column), a result that emerges better in the LF band (FIG.
5.13b, middle column), the role played by heart rate in influencing CBFV variability
in this group of subjects cannot be marked as negligible throughout the experimental
protocol outlined in the study. Instead, we remark here the prevalence of the cerebro-
vascular interactions between cerebral blood flow and arterial pressure. Overall,
what emerges from the analysis of mutual and unique information rates is that the
latter is able to capture direct mechanisms of interaction which can be masked by the
presence of other unobserved variables in the MIR measure: looking at the unique
contributions, only the M− F interactions seem to be significantly affected by the
early postural stress in the LF band, while respiration may play a role in shaping
CBFV dynamics in the late phase of tilt.

In addition, the significant increase of the redundant and synergistic information
rates assessed in the LF band moving from REST to ET and LT, with redundancy
always significantly higher than synergy as documented by statistical tests, suggests
that the orthostatic stress is responsible for the emergence of predominantly redun-
dant patterns of interaction between cardiovascular and cardiorespiratory processes
sharing information with the cerebral flow velocity taken as the target process. The
significant increase of ∆ in the early phase of tilt (FIG. 5.13b, right panel) remarks the
importance of LF oscillations within the network and the LF-dependent nature of the
interactions among the investigated signals.

Overall, these results confirm the redundant nature of cardiovascular and cere-
brovascular interactions previously reported for similar triplets of physiological
processes (Faes et al., 2016; Porta et al., 2017); (Faes et al., 2022a), and document
the relevance of separating LF and HF contributions to elicit the different roles of
heart rate, arterial pressure and respiration on cardiovascular and cerebrovascular
interactions. Moreover, the significant increase of redundancy with tilt suggests that
these redundant effects are enhanced during postural stress, likely as a consequence
of sympathetic activation and vagal withdrawal (Porta et al., 2017). Therefore, the
evidence that cardiovascular and cerebrovascular interactions occur through the cou-
pling of rhythms in different frequency bands with different physiological meaning
(Porta and Faes, 2015), make the proposed spectral PIRD eligible to probe high-order
interactions in these networks (Faes et al., 2021).
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5.11 High-Order Links in Cardiovascular and Respiratory
Networks

The OIR and PIRD framework allow a comprehensive description of node- and
network-specific dependencies among the nodes of the observed network, thus
characterizing the role of single nodes (OIR gradient) and whole groups (OIR) in
the redundant/synergistic informational circuits, as well as decomposing the pair-
wise information shared into unique, redundant and synergistic components (PIRD).
Further, the characterization of the functional links sustaining physiological net-
works is essential to provide an overall and complete description of the observed
network. Link-specific analysis in the context of a HONA can be carried on through
the novel approach of the B-Index Rate, which combines the assessment of high-order
interactions with statistical inference, brings to new comprehensive assessment of
physiological interactions and complements existing strategies for the classification
of patho-physiological states. To show its potential, we report here the application of
the B-Index Rate measure to physiological networks probed measuring simultane-
ously the spontaneous variability of several cardiac and vascular parameters during
different physiological states (Mijatovic et al., 2024a).

Experimental Protocol and Data Analysis. We analyzed a network with five
nodes performing a dynamic analysis of the continuous random processes descriptive
of the heart period, systolic and diastolic pressure, cardiac output and peripheral
resistance measured on a beat-to-beat basis (Mijatovic et al., 2024a). Analysis is per-
formed on a group of young healthy volunteers, recruited at the Jessenius Faculty of
Medicine, Comenius University, Martin, Slovakia, where ethics approval and informed
consent were obtained. Subjects were monitored according to an experimental proto-
col consisting of recording cardiovascular signals for 15 minutes in the resting supine
position (REST), followed by further 8 minutes of recordings in the upright position
(TILT) reached after tilting the subjects to 45° the motor-driven bed table to evoke
mild orthostatic stress. Details about the protocol can be found in Krohova et al., 2020.
The study involved 39 volunteers (22 women, age 19.4± 2.3 years), in whom the
ECG (CardioFax ECG-9620, NihonKohden, Tokyo, Japan) and the continuous finger
ABP collected non-invasively by the photoplethysmographic volume-clamp method
(Finometer Pro, FMS, Netherlands) were measured simultaneously with the ICG (Car-
dioScreen 2000, Medis, Germany). Signals were digitized with 1 kHz sampling rate.
The analyzed beat-to-beat time series were the HP, SAP, DAP, CO and TPR obtained
from the ECG, ABP and ICG signals as follows: HPn is the duration of the current RRI;
SAPn is the maximum ABP value measured within HPn; DAPn is the minimum ABP
value measured between the occurrence times of SAPn and SAPn+1; COn = 60 · SVn

HPn−1
,

where the stroke volume is computed as SVn = β ·Z′max
n · LVETn, being LVETn the left

ventricular ejection time, Z′max
n the maximum of the time-derivative of the impedance

signal taken within HPn, and β a correcting factor accounting for thorax volume
and base impedance; and TPRn = MAPn

COn
, where MAPn is the mean ABP measured

between the occurrence times of DAPn−1 and DAPn. This measurement convention is
typically adopted in computational physiology (Bernstein, 1986; Javorka et al., 2017)
and is illustrated in FIG. 5.14a. For each subject and condition, stationary realizations
of L = 300 points of the multivariate process {HP, SAP, DAP, CO, TPR} were ob-
tained as described above (an example is reported in FIG. 5.14b). Then, the dynamic
analysis of the network with Q = 5 nodes was performed estimating MIR and cMIR
through the regression-based method described in SECT. 4.3.1.2, implemented setting
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FIGURE 5.14: Bio-signal processing and measurement convention for the extraction of
the time series used in the dynamic analysis of cardiovascular networks. The signals and
parameters used to build the five analyzed time series are shown in a): the ECG and ABP
signals are used to measure the heart period HP, the systolic pressure DAP and the diastolic
pressure DAP; the ICG signal is differentiated to measure the local maxima of the impedance
variations Z′max and the left ventricular ejection time LVET from which the cardiac output
CO is derived; and the ICG and ABP signals are combined to measure CO and the MAP
(yellow shades) from which the peripheral resistance TPR is derived. Representative time
series measured for a subject monitored in the resting supine position are shown in b). The

figure is adapted from Mijatovic et al., 2024a.
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the VAR model (2.6) order through the AIC and using q = 20 lags to identify the
restricted VAR models (2.7), assessing the significance of MIR and cMIR through the
use of Ns = 100 iAAFT surrogates (significance α = 0.05), and finally computing
the B-index rate from the thresholded MIR and cMIR (we refer to LINK-SPECIFIC

ANALYSIS OF HOIS for technical details about surrogate data analysis).

Results and Discussion. The dynamic formulation of the proposed framework
was exploited to explore in detail the interactions among several cardiovascular
variables related to cardiac rhythm and contractility, as well as to the regulation of
AP. The results in FIG. 5.15 indicate that four of the nodes of this network, i.e., those
mapping the variability of TPR, CO, DAP and SAP, form a fully connected subnet-
work which is stable in the two analyzed conditions. This finding is documented by
the statistically significant values of both MIR and cMIR, as well as of their balance,
consistently observed at rest and during tilt for the links TPR− CO, TPR− SAP,
TPR− DP, CO− SAP and CO− DAP (FIG. 5.15a,b). In particular, the link between
TPR and CO is very strong and exhibits the highest values of both MIR and cMIR, as
a consequence of the inverse relation existing between the two processes. Notably, for
this link cMIR is consistently higher than MIR, resulting in significantly negative val-
ues of the IIR; this statistically significant synergy reveals the existence of a common
cause relation from TPR and CO towards other connected variables in the network,
likely SAP and especially DAP (Švec et al., 2021). Interestingly, when TPR or CO are
analyzed together with one of the vascular processes (either SAP or DAP), the link
becomes significantly redundant; this suggests that HP plays a role through its tight
relation with SAP and DAP reflecting known physiological effects like the baroreflex
and the cardiac run-off (Javorka et al., 2017). The absence of significant changes of
niS and B-index with tilt for these links suggests that the underlying mechanisms are
not modulated by sympathetic activation.

Different behaviors were observed when the links including heart rate variability
were considered. The links between HP and TPR or CO were detected in only half
of the subjects in both conditions (Fig. 5.15b), and were characterized by redun-
dancy (MIR > cMIR) which decreased moving from rest to tilt due to decreased
MIR and unaltered cMIR. The links between HP and DAP or DAP were detected
in the majority of the subjects in both conditions, and were again characterized by
redundancy with a decrease from rest to tilt in the case of HP− DP, and stable net
redundancy in the case of HP− SAP. These results indicate that the sympathetic
activation evoked by tilt tends to make the interactions between HP and the other
cardiovascular processes less redundant. The known activation of the baroreflex
mechanism with tilt was not evidenced by the link HP− SAP, possibly because the
symmetric measures used here (MIR, cMIR) account for both feedback and feed-
forward cardiovascular interactions (Faes, Nollo, and Porta, 2013). As regards the
interaction SAP− DAP, it was significantly found as redundant in about half of the
population, with a tendency to decrease during tilt; this link may be related to the
Frank-Starling effect (Javorka et al., 2017) which seems weaker during orthostatic
stress. It is important to note that this application did not consider respiration, due
to the lack of availability of the respiratory signal. Since it is well known that the
respiratory activity significantly influences the cardiovascular system, as reflected
by the respiration-related oscillations present in the cardiovascular variables (Cohen
and Taylor, 2002), future investigations should complement the present results by
including respiration as a node of the analyzed network. Methodological extensions
to our approach could be also envisaged to make it frequency-specific (Faes et al.,
2021), so as to focus the assessment of high-order links on low-frequency oscillations
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FIGURE 5.15: Results of the dynamic analysis of cardiovascular networks through the
B-Index Rate. a) Distribution across 39 subjects of the values of mutual information rate
(MIR), conditional MIR (cMIR) and net information shared (niS = MIR−cMIR) between the
continuous processes representing the beat-to-beat variability of heart period (HP), systolic
pressure (SAP), diastolic pressure (DAP), cardiac output (CO) and peripheral resistance
(TPR) measured in the supine position (REST) and during postural stress (TILT); black and
blue hash symbols denote statistically significant differences between REST and TILT, and
between MI and cMI (p<0.05, paired Wilcoxon test). b) Number of subjects for which both
MIR and cMIR were not statistically significant (B-index=NaN), only MIR was significant
(B = 1), only cMIR was significant (B = −1), or both MIR and cMIR were significant (|B| < 1)
in the two conditions; the significance was assessed using random iAAFT surrogates. c)
Reconstructed network structure where the link thickness is associated to the number of
subjects with significant MIR and cMIR and the link color maps the average B-index rate. The

figure is adapted from Mijatovic et al., 2024a.
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which are less affected by the respiratory activity.

Conclusion and Perspectives. The framework proposed in Mijatovic et al., 2024a
for the analysis of physiological networks was suitably designed to evaluate how
two nodes are functionally connected and interact with the rest of the network. This
approach makes the proposed measures of synergy/redundancy balance fundamen-
tally different from the existing ones. In fact, while HOI measures based on the PID
framework (Williams and Beer, 2010) concentrate on one network node and relate
its activity to that of two or more other nodes, and the recently proposed OI-based
measures (Rosas et al., 2019; Faes et al., 2022a) concentrate on the whole network
analyzed collectively, the niS measure puts the focus on each specific link, thus al-
lowing to represent high-order effects as networks. Moreover, the normalization
leading to the B-index rate and the associated analysis for statistical significance
allow to prune the indirect links determined by cascade/common drive or common
target relations, thus making it possible to exploit HOIs for inferring the structure of
the analyzed functional network. These methodological advantages are particularly
relevant in the analysis of cardiovascular networks, which have been up to now
analyzed without accounting for high-order interactions (Schulz et al., 2013; Javorka
et al., 2017; Krohova et al., 2020) or considering them exclusively at the level of the
whole network (Faes et al., 2016; Krohova et al., 2019; Faes et al., 2021; Faes et al.,
2022a).
The application to physiological networks showed how the proposed framework can
elicit mechanisms of cardiovascular regulation investigated at rest and in response to
postural stress. The use of the proposed dynamic measures of synergy/redundancy
balance and link strength can favor a deeper investigation of physiology as well
as the discovery of new clinical markers. These measures can also be exploited
to complement existing analyses for empowering the automatic classification of
pathophysiological states.

5.12 Summary of chapter 5

In the field of Network Physiology, the dynamic activity of diverse physiological
systems has been widely investigated using dynamic measures of complexity and
causality in different experimental conditions and patho-physiological states. Our
applications to cardiovascular, cardiorespiratory and cerebrovascular closed-loop
systems evidenced well-known behaviors including (i) the LF-specific increase of
the causal interaction along the baroreflex in healthy subjects and the drop of car-
diovascular interactions in patients prone to develop postural-related syncope, (ii)
the increase of the information transferred along the pressure-to-flow link with the
postural stress, suggesting a progressive weakening of cerebral autoregulation in
syncope subjects, (iii) the tilt-induced decrease of the rate of information shared
between cardiac and respiratory variables, reflecting a decrease of the strength of
cardiorespiratory interactions due to sympathetic activation and vagal withdrawal,
and (iv) the emergence of a significant causal interaction directed from respiration
to the heart within the LF band of the frequency spectrum due to paced breathing
at 0.25 Hz. Nevertheless, we moved a bit forward demonstrating that univariate
and bivariate analyses, in spite of their broad applicability and computational ease,
are often insufficient to provide a complete description of the complex physiological
mechanisms involved in the maintenance of the homeostatic balance. Indeed, the
application of our new measure of linear self-predictability to short-term arterial
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compliance data, as well as the utilization of measures of coupling and causality for
investigating cardiorespiratory, cardiovascular and cerebrovascular closed-loop sys-
tems, suggested that, in physiological contexts where multiple complex interactions
often arise, the effects of unobserved confounders are likely to occur. Therefore, the
extension to multivariate datasets including signals possibly acting as external drivers
(such as, respiration and arterial carbon dioxide influencing respectively cardiac and
cerebral dynamics) are envisaged.

More sophisticated analyses exploiting hierarchical interaction measures (Faes
et al., 2022a; Sparacino et al., 2024b) have highlighted the redundant nature of car-
diovascular, cardiorespiratory and cerebrovascular interactions, and documented
the relevance of separating LF and HF contributions to elicit the role of respiration
on cardiovascular and cerebrovascular variables. Indeed, our results document that
respiration acts as a major driver of multivariate redundant interactions in physiolog-
ical networks, confirming that HOIs can have different nature for different rhythms
because synergistic and redundant behaviors generally alternate in different bands
of the frequency spectrum. Overall, our applications have proved the significance
of computing frequency-specific hierarchical interaction measures in the case of
physiological variables rich of oscillatory components with different frequencies and
shape, suggesting that the changes of these measures in the time domain may be
confined to specific bands of the spectrum. Indeed, the added value of the framework
proposed in Faes et al., 2022a and then in Sparacino et al., 2024b stands in the tight
relation between the measures defined in the time and frequency domains, which
favors interpretability (Geweke, 1982; Chicharro, 2011). Exploiting this feature, we
contributed to describe the physiological mechanisms involved in the cardiovascular,
cardiorespiratory and cerebrovascular regulations in the response to a physiological
stimulation (e.g., the postural stress or controlled breathing) and to the development
of autonomic dysfunctions (e.g., the pre-symptoms of postural related syncope). In
perspective, the combination of time and frequency domain measures can help elu-
cidating the mechanisms behind the oscillatory rhythms as well as the broad-band
dynamics of coupled physiological variables studied in a variety of physiological
conditions and diseased states. Moreover, the inclusion of instantaneous effects in
the analyzed parametric models, though not always straightforward (Baccalá and
Sameshima, 2021; Nuzzi et al., 2021); (Pernice et al., 2022b), is recommended to
provide a complete picture of causal, isolated and autonomous effects emerging in
the time and frequency domains from dynamic interactions.
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Chapter 6

Applications to Brain Networks

The human brain has always fascinated researchers and neuroscientists. Its complex-
ity lies in the combined spatial- and temporal-evolving activities that different func-
tionally and structurally interconnected regions explicate over a three-dimensional
space. These networks exhibit distinct patterns of activity in the resting state or
during task execution, but also interact with each other in various spatio-temporal
modalities, being connected both by anatomical tracts and by functional associations
(Van Den Heuvel and Pol, 2010; Sporns, 2022). In fact, to understand the mechanisms
of perception, attention, and learning, as well as to manage neurological and mental
diseases such as epilepsy, neurodegeneration, and depression, it is necessary to map
the patterns of neural activation and connectivity that are both spatially distributed
and temporally dynamic. Specifically, functional connectivity was defined as the tem-
poral dependence between spatially remote neurophysiological events (Friston, 1994),
and has been widely exploited to describe the relationship between the neuronal
activation patterns of anatomically separated brain regions, reflecting the level of
functional communication between these regions. The analysis of the complex in-
teractions between brain areas has been shaping the research field of connectomics
(Craddock, Tungaraza, and Milham, 2015; Sporns and Bassett, 2018). The effort to
map the human connectome, which consists of brain networks, their structural con-
nections and functional interactions (Craddock, Tungaraza, and Milham, 2015), has
given life to a number of different approaches, each with its own specifications and
interpretations (Wang et al., 2014b; He et al., 2019; Bastos and Schoffelen, 2016; Cao
et al., 2022). Some of these methods, such as covariance structural equation modeling
(McIntosh and Gonzalez-Lima, 1994) and the dynamic causal modeling (Friston,
Harrison, and Penny, 2003; David et al., 2006), are based on the definition of an
underlying structural and functional model of brain interactions. Conversely, some
others, such as Granger causality (Geweke, 1982) and transfer entropy (Schreiber,
2000), as well as directed coherence (Saito and Harashima, 1981; Baccalá et al., 1998),
partial directed coherence (Baccalá and Sameshima, 2001; Sameshima and Baccalá,
1999) and directed transfer function (Kaminski and Blinowska, 1991), are data-driven
and based on the statistical analysis of multivariate time series. Interestingly, while
non-linear model-free and linear model-based approaches are apparently unrelated
as they look at different aspects of multivariate dynamics, they become clearly con-
nected if some assumptions, like the Gaussianity of the joint probability distribution
of the variables drawn from the data (Barnett, Barrett, and Seth, 2009; Barrett, Barnett,
and Seth, 2010), are met. Under these assumptions, connectivity measures such as
Granger causality and transfer entropy, as well as coherence (Faes, Erla, and Nollo,
2012) and mutual information rate (Gelfand and IAglom, 1959; Duncan, 1970), can be
mathematically related to each other; this equivalence leaves the basis for a model-
based frequency-specific interpretation of inherently model-free information-theoretic
measures (Chicharro, 2011). Furthermore, emerging trends, such as the development
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of high-order interaction measures, are coming up in the neurosciences to respond to
the need of providing more exhaustive descriptions of brain network interactions.
These measures allow to deal with multivariate representations of complex systems
(Rosas et al., 2019; Stramaglia et al., 2021; Faes et al., 2022a), showing their poten-
tial in disentangling physiological mechanisms involving more than two units or
subsystems (Scagliarini et al., 2023).

A number of brain mapping modalities have been used in the last decades to
investigate the human connectome. The most known technique used so far in this
context is the neuroimaging technique of functional magnetic resonance imaging (fMRI),
which allows to quantify hemodynamic changes (i.e., spontaneous blood oxygen
level-dependent - BOLD - signal fluctuations) following the activation of specific
brain areas by examining resting-state networks (RSNs) in the resting or relaxed state
in response to neuronal activity (Biswal, Kylen, and Hyde, 1997; Gore et al., 2003; Van
Den Heuvel and Pol, 2010; Cole, Smith, and Beckmann, 2010; Sparacia et al., 2021),
as well as to explore brain functional connectivity associated with both healthy and
neuro-pathologic functions (Rogers et al., 2007; Rossini et al., 2019; Sparacia et al.,
2021). However, fMRI lacks in time resolution and therefore cannot be entrusted
with detecting short-living events, which can instead be investigated by electroen-
cephalography (EEG), a low-cost non-invasive imaging technique allowing to study
the dynamic relations between the activity of cortical brain regions and providing
different information with respect to fMRI (Rizkallah et al., 2020). Specifically, in spite
it features lower spatial resolution than fMRI, EEG provides quicker, affordable, and
accessible insights about brain function. It measures voltage from the scalp and can
sample data at the order of kHz, meaning that it can provide data on how on the
response of a large population of pyramidal cells with the same orientation changes
over the course of milliseconds (Silva, 2013; Luck, 2014). fMRI, on the other hand,
being a hemodynamic response that reflects changes in blood oxygenation as neurons
engage in a process called the BOLD signal, evolves over the order of seconds. As a
result, a compromise must be made between temporal resolution when using EEG or
incredibly high spatial resolution with fMRI.

This chapter represents an overall review of exemplary applications to static
and dynamic neural networks probed by fMRI data (SECT. 6.1) and EEG signals
(SECT. 6.2), respectively. Limitations of the proposed methodologies and further
advancements in the context of Network Neuroscience will be thoroughly discussed.

6.1 Static Networks of Random Variables: Applications to
fMRI Data

Resting-state fMRI connectivity has been generally assessed via static measures of
pairwise coupling calculated over the course of an entire scan session. These deriva-
tions are based on the null hypothesis of i.i.d. Gaussian variables that only takes
into account the observed (static) spatial correlations and ignores temporal features.
Approaches exploring pairwise connectivity patterns, such as mutual information
(Duncan, 1970), are easily applicable, require little computational effort and offer
a straightforward interpretation of the findings. Although highly effective, these
methods are inherently restricted by the constructional requirement that every in-
teraction must be between two elements. However, there is mounting evidence
that such measures cannot fully capture the interplay among the multiple units of a
complex system (Battiston et al., 2020; Faes et al., 2022a). Consequently, recognizing
and modeling high-order functional structures, characterized by statistical interactions
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involving more than two network units, has become a crucial and evolving area
of Network Neuroscience (Bassett and Sporns, 2017; Battiston et al., 2020), where
HOIs have been suggested as fundamental components of complexity and functional
integration in brain networks (Tononi, Sporns, and Edelman, 1994), and proposed
to be linked to emergent mental phenomena and consciousness (Luppi et al., 2021).
Nevertheless, in spite of their promising significance, the investigation of HOIs in the
brain is a relatively unexplored domain. Given that these interactions are not typically
accessible through the well-established pairwise measures of functional connectivity
network analysis, their study has been often limited by the lack of formal tools as
well as by the involvement of inherent computational and combinatorial challenges.
While many different information-theoretic metrics have been proposed throughout
the years, all attempting to capture the information shared by triplets of random
variables or processes (Lizier et al., 2018; Faes et al., 2016; Stramaglia et al., 2012; Porta
et al., 2017), a recent work (Rosas et al., 2019) suggests the potential use of information
theory for identifying HOIs in multivariate systems, as well as for distinguishing
between qualitatively distinct modes of information sharing, i.e. redundancy and
synergy. Synergy is a potentially intriguing phenomenon as it reflects the ability of the
human brain to generate new information by combining the interplay of anatomically
distinct but functionally connected brain areas. A measurement of this quantity in the
context of HOIs comes from the O-Information (Rosas et al., 2019), which provides
an overall evaluation of whether a system is dominated by redundancy or synergy.

Taking these premises into account, in this section we review exemplary applica-
tions of the proposed static measures of pairwise (i.e., the MI) and high-order (i.e.,
the OI, its gradient and the B-index) connectivity defined in CHAPT. 3 to resting-state
fMRI data acquired in both normal and neuro-pathologic states. Overall, we remark
that future developments should consider transient behaviors (Shao, Logothetis,
and Besserve, 2022), enhance the identification of topological and causal structures
(Sanchez-Romero and Cole, 2021; Günther, Kantelhardt, and Bartsch, 2022), and go
beyond the use of the first order gradient (i.e., the OI increment defined in (3.12)).
Expanding the study of increments of information across orders, as well as of their
assessment through surrogate and bootstrap approaches, would allow to further
unveil synergistic structures and to investigate their role in brain complex networks
of multiple interacting nodes (Scagliarini et al., 2023). Furthermore, the exploration
of dynamic forms of pairwise and high-order connectivity (Stramaglia et al., 2021;
Faes et al., 2022a), which account for temporal correlations in the detection of brain
functional couplings, may spark great interest among neuro-scientists and assume
high relevance in the field of fMRI data analysis.

6.1.1 Pairwise and High-Order Brain Functional Connectivity Signatures
on a Single-Subject Basis

Keeping up with the shift towards personalized neuroscience essentially requires
the derivation of meaningful insights from individual brain signal recordings, by
analyzing descriptive indexes of physio-pathological states through statistical meth-
ods that prioritize subject-specific differences under varying experimental conditions.
While such validation is typically performed at the level of subject groups, in clinical
practice, where the goal is to optimize the individual treatment plan and look into the
effects of interventions on a single patient (Anderson et al., 2011; Rossini et al., 2019;
Sparacia et al., 2021), statistical analyses should be focused on subject-specific differ-
ences between different states. To address this, methods to determine the accuracy
(confidence limits) of individual estimates of the considered indexes are necessary.
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This is especially important as the accuracy of estimates may vary over time and
depend on factors such as the individual patho-physiologic state. The absence of
confidence limits or error bounds on estimates may lead to biased clinical decisions,
making it imperative to ensure a reliable assessment of the patient’s underlying
condition.

Resting-State Patterns of Mutual Information and O-Information. Within
this framework, in Sparacino et al., 2023c we proposed a methodology for assessing
the value of single-subject fingerprints of brain functional connectivity, assessed both
by standard pairwise (i.e., the MI) and novel high-order measures (i.e., the OI). The
significance and variations across different conditions of functional pairwise and
HOIs between groups of brain signals were statistically verified on an individual
level through the utilization of surrogate and bootstrap data analyses. The approach
is illustrated on exemplary single-subject recordings of resting-state fMRI (rest-fMRI)
signals acquired in a pediatric patient treated at IRCCS - ISMETT (Scientific Institute
for Research, Hospitalization and Healthcare - Mediterranean Institute for Transplantation
and Advanced Specialized Therapies), Palermo, Italy. The patient featured a cavernous
transformation of the portal vein, an obstruction also known as portal cavernoma, a
common cause of portal hypertension in children. Even in cases where liver function
appears normal, this disease can result in the development of hepatic encephalopathy
(HE) (Haeussinger et al., 2022) due to the presence of portal-systemic shunts, which
cause an increase in plasma ammonia levels and toxic brain catabolites deposition in
the globi pallidi. HE is a serious condition that can have a profound impact on the
patient’s ability to perform daily tasks, causing psychomotor sluggishness, attention
deficits and a decline in fine motor performance. Although HE is currently diagnosed
using psychometric and electrophysiological examinations, the administration and
interpretation of psychometric tests can be influenced by a number of variables, in-
cluding but not limited to age, educational attainment, and the potential impact of
learning effects. HE may go undiagnosed if these variables are disregarded. To over-
come this issue, we investigated the potential of rest-fMRI with BOLD echo-planar
imaging (EPI) technique to assess brain functional connectivity, in order to detect
cognitive impairment related to the presence of HE in the analysed pediatric patient.
Moreover, the possibility of cognitive improvement following surgical correction of
the disease using Meso-Rex surgery, as described in Goyet, 1992, is also investigated.

Data Acquisition and Pre-Processing. The patient, an 8-year-old boy, was ad-
mitted with cognitive impairment characterized by psychomotor sluggishness and a
decline in fine motor performance, attention deficits and a profound reduction in the
ability to perform daily tasks. Standard liver function tests and hematologic mark-
ers were determined by obtaining and analyzing blood samples from veins using
conventional methods. A measurement of venous ammonia confirmed the presence
of ammonia. The patient underwent Doppler ultrasonography, magnetic resonance
(MR) imaging, and MR angiography to diagnose and assess portal cavernoma, collat-
erals, and spontaneous shunts. Specifically, baseline MR imaging (MRI) examinations
were performed on a 3T MRI scanner (Discovery 750w, General Electric Medical Sys-
tem) utilizing a 32-channel head coil, during PRE, i.e. before the surgical correction
of the portal cavernoma by means of Meso-Rex surgery, and during two follow-up
phases, i.e. after 1 month (POST1) and 12 months (POST12) the surgical treatment.
The subject was positioned in the scanner with his head comfortably restrained by
foam padding to reduce head movement. Earplugs were used to reduce the noise
of the scanner. During the resting-state scan, the subject was instructed to keep his
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eyes closed, remain as motionless as possible, and clear his head of any particular
thoughts. A standard multi-parametric MRI protocol was carried out with fast spin-
echo T1-weighted and T2-weighted MR images, fluid-attenuated inversion recovery,
T2*-weighted gradient-recalled-echo, susceptibility-weighted imaging, and standard
3-direction diffusion-weighted imaging. Isotropic T1-weighted volumetric imaging
(3D-SPGR or MPRAGE) was acquired as anatomical reference images for rest-fMRI
with BOLD EPI technique, which was then performed to assess spontaneous neuronal
activity in the RSNs and evaluate brain network connectivity (Anderson et al., 2011;
Rossini et al., 2019; Cole, Smith, and Beckmann, 2010; Lo Re et al., 2023).

The volume of T1-weighted morphological data and functional slices, obtained
respectively through MR and BOLD imaging, was appropriately pre-processed fol-
lowing a series of steps. First, morphological scans were pre-processed by correcting
motion artifacts. The original data volume was transformed and normalized to the
standard EPI template in Montreal Neurological Institute (MNI) atlas1 and restored
to 3× 3× 3mm3. The resulting images were spatially smoothed with an 8− mm
full width at half-maximum Gaussian kernel. Non-brain tissues were removed from
the scans and segmentation of brain tissues was performed. Atlas-based cortical
parcellation was obtained, and seed selection was carried out using Brodmann areas2

after transforming the coordinates from the MNI atlas into the Talairach atlas3. Then,
confounds, i.e., noise variables representing fluctuations of non-neuronal origin such
as residual physiological effects derived from subject motion, were estimated. These
confounding effects were minimized by performing the so-called denoising procedure.
To this aim, the CONN toolbox4 was used, which is an open-source MATLAB/SPM-
based cross-platform software5. The CompCor function in CONN was used for spatial
and temporal pre-processing to minimize the impact of motion and physiological
noise factors, as well as to define and remove confounds in the BOLD signals. Regres-
sion of first-order derivative terms for the whole brain, ventricular, and white matter
signals was also included in the correlation pre-processing to reduce the influence of
spurious variance on neuronal activity.

Resting State Networks Identification. The assessment of brain functional con-
nectivity for this patient was obtained for a given number of RSNs, selected through
a seed-based correlation approach. A seed region of interest (ROI) was first identified,
and then the linear correlation of the seed region with all the other voxels of the
entire brain was computed making use of statistical analysis (Biswal et al., 1995; Van
Den Heuvel and Pol, 2010; Sparacia et al., 2020). Among the commonly known and
analysed 36 RSNs (Smith et al., 2013), this procedure, for whose details we refer the
reader to (Sparacia et al., 2020; Sparacia et al., 2021), allowed the identification of 8
resting-state networks with the best signal-to-noise ratio, following the fMRI image
denoising and realignment steps. The chosen networks were then used to evaluate
subject-specific cognitive fingerprints at baseline and after disease correction, and
to show any significant improvement in the individual functional connectivity after
surgery. All ROIs encompassing the 8 selected RSNs (Default Mode - DM, Sensori-
Motor - SM, Visual - VS, Salience - SAL, Dorsal Attention - DA, FrontoParietal - FP,
Language - L, Cerebellar - CB) were imported into the CONN Toolbox, then used to
perform seed-based extraction of M = 32 BOLD fMRI time series as sequences of

1https://brainmap.org/training/BrettTransform.html
2https://www.brainm.com/software/pubs/dg/BA_10-20_ROI_Talairach/functions.htm
3https://brainmap.org/training/BrettTransform.html
4https://web.conn-toolbox.org/
5https://www.nitrc.org/projects/conn

https://brainmap.org/training/BrettTransform.html
https://www.brainm.com/software/pubs/dg/BA_10-20_ROI_Talairach/functions.htm
https://brainmap.org/training/BrettTransform.html
https://web.conn-toolbox.org/
https://www.nitrc.org/projects/conn
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L = 200 consecutive synchronous values, v = {v1, . . . , vM}, considered as a realiza-
tion of the network V = {V1, . . . , VM} describing the neural dynamics.

Data and Statistical Analysis. Linear models in the form of (2.1) were fitted on
each pair of BOLD time series x = vi and y = vj (i, j = 1, . . . , M, i ̸= j), pre-processed
by removing the mean value and scaled to have unitary standard deviation, for
which the time-domain MI (3.7) was then obtained as a measure of pairwise func-
tional connectivity. In each experimental condition, the existence of every pairwise
link was evaluated applying surrogate data analysis and assessing the significance
of the estimated MI using iAAFT surrogates, as detailed in COUPLED DYNAMICS

BETWEEN PAIRS OF NODES. Furthermore, the OI measure (Ω(vN), r.h.s. of (3.12))
was computed for a predefined number of multiplets from order N = 3 to order
N = 8. Specifically, among all the possible combinations of order 3 derived from
the M = 32 time series, 56 triplets were selected randomly from different RSNs.
These triplets were then used as roots for building 40 multiplets of order 4, where
the additional time series was chosen randomly within the remaining RSNs. The
procedure was iterated for higher orders, eventually obtaining 30 multiplets of order
5, 20 multiplets of order 6, 5 multiplets of order 7 and 1 multiplet of order 8. For each
order and multiplet, the significance of the estimated OI and OI increments (∆(OI))
was assessed by applying the bootstrap method as detailed in AN APPROACH TO

THE STATISTICAL ASSESSMENT OF HIGH-ORDER INTERACTIONS. Specifically, we set
bs = 50 for the generation of bootstrap fMRI time series of length L = 200. Moreover,
the significance of the differences δ between the MI/OI values measured in two
conditions (PRE vs. POST1, PRE vs. POST12, POST1 vs. POST12) was assessed
comparing the MI/OI distributions obtained through the block bootstrap method.
Specifically, when the MI and OI measures are computed on a single-subject basis in
two different experimental conditions, the bootstrap distributions can be employed to
assess the significance of the difference between the two conditions through a statisti-
cal test. To this end, the bootstrap data generation procedure is executed in both the
analyzed experimental conditions, and the parametric Student t-test for unpaired data is
then employed to assess the statistical significance of the difference between pairs of
bootstrap distributions for a given measure. We refer to STATISTICAL SIGNIFICANCE

OF THE DIFFERENCE BETWEEN EXPERIMENTAL CONDITIONS for technical details. In
this work, a significance level α = 0.05 was used both to compute confidence intervals
of the surrogate and bootstrap distributions as well as to perform statistical tests.
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FIGURE 6.1: In the application to resting-state fMRI data, the MI detects an increase
of the number and strength of connections, while the OI reveals high-order synergistic
interactions 12 months after the surgical treatment. a) Symmetric matrices representing the
MI-weighed significant connections among pairs of variables in PRE (left), POST1 (middle)
and POST12 (right) conditions. White spaces indicate non-significant connections. Black
squares along the main diagonal group all the time series belonging to the same RSN. b)
Boxplots representing the distributions of the OI values for all the multiplets from order 3 to
8, in PRE (left), POST1 (middle) and POST12 (right) conditions. In each box, the central black
mark indicates the mean, and the bottom and top edges of the box indicate the 25th and 75th

percentiles. Red, blue and grey circles indicate positive (redundant), negative (synergistic)
and non-significant OI values, respectively. The dashed grey horizontal line corresponds to
the zero level. c) ∆(OI) values computed for each target inside the multiplets at all orders
(separated by black vertical lines). Red, blue and grey squares indicate positive (redundant),
negative (synergistic) and non-significant ∆(OI), respectively, brought by that target to the
whole multiplet, for a given order. Values of MI, OI and ∆(OI) are expressed in nats, i.e.,
natural units. Panels d and e show networks of the differences (δ) between d) MI and e) OI
values estimated in two conditions; green and red squares indicate positive and negative
differences, respectively, while white squares (panel d) or grey rectangles (panel e) indicate
non-statistically significant differences. In panel d, black squares along the main diagonal
group all the time series belonging to the same RSN. In panel e, orders are separated by black
vertical lines; for each order, rows correspond to the multiplets selected for that order. The

figure is adapted from Sparacino et al., 2023c.

Results and Discussion. Results of the analysis relevant to the application of
the proposed methodology to the clinical case are reported in FIG. 6.1, showing the
subject-specific maps of brain functional connectivity in the three conditions (FIG.
6.1a), the distributions of the OI values for all the orders (N = 3, . . . , 8), where each
order comprises a given number of analysed multiplets (FIG. 6.1b), and the values
of the OI increment computed as in (3.12), for each target vj within the multiplet
vN at order N (FIG. 6.1c). The pre-surgery phase is characterized by a relatively
sparse functional connectivity network (FIG.6.1a), with 41% of the MI values detected
as statistically significant by surrogate data analysis. Compared to this phase, the
immediate post-surgery period shows a weakening of functional brain connectivity,
as evidenced by the lower number of statistically significant MI values between
pairs of BOLD series determined by the surrogate data approach (FIG. 6.1a, PRE vs.
POST1). Indeed, the global density of the network, i.e., the number of significant
connections, decreases from 41% in PRE to 25% in POST1. The number of significant
connections increased markedly twelve months after surgery (FIG. 6.1a, POST12,
52% of significant connections), suggesting that the proposed surgery correction of
the portosystemic shunt worked in recovering brain functional connectivity in this
patient. Interestingly, the local densities, i.e., the number of significant functional
connections within (and between) RSNs, are characterized by a drop in the immediate
post-surgery period (TAB. 6.1, POST1) followed by an increase 12 months after the
treatment (TAB. 6.1, POST12), for almost all the (pairs of) RSNs. This suggests that the
weakening and reduction of the number of links within the network is not localized
to a specific brain area but spread over the whole cortex.

The decrease of functional connectivity one month after the treatment and its in-
crease twelve months after, observed with the pairwise estimator of MI, are translated
into consequent decreases and increases of the OI values, respectively. Specifically,
while all the three phases are characterized by the presence of a great number of
non-significant connections, the strength and number of these high-order links is
decreased one month after and again increased twelve months after the treatment
(FIG. 6.1b; e.g., in case of N = 3, the significance rate goes from 16% in PRE to 3.6%
and 16% in POST1 and POST12, respectively). This finding confirms the main result
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TABLE 6.1: Local density within and between resting-state networks, expressed in % of
significant connections, before the treatment (PRE, left), one month (POST1, middle) and

twelve months (POST12, right) after the treatment.

PRE POST1 POST12
DM SM VS SAL DA FP L CB DM SM VS SAL DA FP L CB DM SM VS SAL DA FP L CB

DM 50 67 25 54 31 38 69 38 16 25 25 18 31 38 31 13 50 58 50 46 38 44 44 63
SM 0 58 52 67 33 58 33 33 33 33 58 33 25 17 67 42 71 67 58 67 33
VS 100 14 25 69 31 25 67 25 25 6 19 25 50 43 31 63 63 75

SAL 33 29 36 39 21 14 29 18 25 7 62 32 50 57 64
DA 33 25 31 38 50 13 0 0 33 63 50 38
FP 50 13 25 17 19 25 50 50 38
L 83 63 50 13 67 50

CB 100 100 100

coming from MI analysis, i.e., that the surgery correction of the portosystemic shunt
worked in recovering brain connectivity in this patient. Moreover, in the last experi-
mental phase, the number of synergistic interactions predominates over redundancy,
suggesting that the recovered brain can display synergy as an emergent behavior,
as well as that synergistic interactions may serve to integrate and complement re-
dundant sub-networks in recovered physiological conditions. These findings are
confirmed by the decrease of ∆(OI) values in POST1, and their subsequent increase
in POST12 (FIG. 6.1c, POST1 vs. POST12), characterized by a tendency towards
synergy (dark blue rectangles).

Panels d, e of FIG. 6.1 show the maps of the pairwise differences between the MI
(panel d) and OI (panel e) values computed in two different experimental conditions.
The impairment of brain connectivity in POST1 and its recovery in POST12 is con-
firmed for this patient looking at the variations of the MI across conditions established
by the bootstrap technique (FIG. 6.1d). This analysis documents indeed that the
functional connectivity is decreased one month after surgery (red squares in POST1-
PRE) but is markedly increased one year after (green squares in POST12-PRE and
POST12-POST1), suggesting an improvement of cognitive functions for this patient.
The utilization of the bootstrap technique for the detection of OI variations across
conditions confirmed the results shown in FIG. 6.1b,c. In detail, the high number
of non-significant differences, indicated by grey rectangles in FIG. 6.1e, reflects the
presence of non-significant OI values in the three conditions (FIG. 6.1b, grey circles)
with only a few significant connections left. Looking at the differences between the
experimental conditions, the decrease of OI values toward synergy twelve months
after the treatment is documented by the predominance of red rectangles in FIG. 6.1e,
POST12-PRE and POST12-POST1. This reduction is localized to specific multiplets,
suggesting that the recovery of high-order interactions is specific to certain areas of
the pediatric brain.

Our preliminary results agree with previous findings (Varley et al., 2023b), ob-
tained by applying multivariate information metrics to fMRI data and documenting
the presence of copious and widely distributed synergistic subsystems across the
entire cerebral cortex. In our application to fMRI data, we randomly selected nodes
from different RSNs to build high-order structures comprising between 3 and 8 re-
gions, and showed that synergistic subsets are ubiquitous, arising at higher orders
systematically across the cortex. Specifically, while redundant interactions dominate
at larger subset sizes, especially during the pre-operative and the immediate post-
operative phases, the late post-operative phase is characterized by the appearance
of a previously hidden repertoire of synergistic ensembles, as also demonstrated
by the bootstrap data analysis applied to detect subject-specific differences between
conditions. In detail, these randomly sampled assemblies expressing synergy were
found to involve nodes from the DM, SAL and FP networks in the pre-operative
phase, together with the VS, L and CB networks twelve months after the surgical
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correction, when the number of synergistic pathways of interaction was definitely
increased. The application of multivariate information measures demonstrates that
high-order synergies represent a kind of shadow structure emerging from resting-state
brain activity and missed by bivariate functional connectivity approaches, which
indeed reveal redundancy-dominated correlations and do not provide an overall
map of the statistical structure of the network (Finn and Lizier, 2020; Luppi et al.,
2022; Varley et al., 2023b). Given the novelty of our findings, the significance of these
synergistic dependencies remains almost entirely unknown, although the clinical im-
portance of studying and comprehending these intriguing patterns persists unaltered.

Conclusion. We proposed here a subject-specific statistical evaluation of func-
tional network connectivity analysis in the peculiar case of pediatric portal cavernoma.
Our mathematical framework, based on the combined use of pairwise and high-order
functional connectivity measures, allowed to display subject-specific features of brain
connectivity in this patient before and after the surgical correction of the portosys-
temic shunt. Moreover, the utilization of surrogate and bootstrap data analyses was
essential to statistically validate the functional connectivity maps obtained before
surgery and during the follow-up phases (after 1 month and 12 months the surgical
treatment), as well as the differences between pairs of them. This has great clinical
relevance for single-subject investigations and treatment planning, particularly when
it is necessary to study the effects of clinical diseases on single individuals and the
subject-specific responses to personalized diagnosis and care. The statistical assess-
ment of intra-subject connectivity network changes over time could be interpreted
as evidence of statistically significant increases/decreases of functional connectivity
related to an event, i.e., the surgical procedure to remove the shunt in our clinical case.
Specifically, the overall increase of the number and strength of functional pairwise
and synergistic connections after the surgical treatment, resulting from our analyses,
was confirmed by clinical findings: during the follow-up phases, the patient recov-
ered well from HE, as evidenced by the improvement of his cognitive functions, the
recovery from psychomotor sluggishness and attention deficits and the subsequent
return to school, which he had dropped out before the treatment. Therefore, the pro-
posed statistical approaches can successfully help scientists and clinicians to identify
significant pairwise but especially high-order brain functional connectivity signatures
on a single-subject basis in different physiological and diseased conditions.
While this approach should be tested on a larger number of individuals to validate the
clinical findings, it still revealed clinically and physiologically plausible patterns of
brain pairwise connectivity in the reported application. The possibility to investigate
brain connectivity and its post-treatment functional developments at a high-order
level was essential to fully capture the complexity and modalities of the recovery.
The results here obtained, albeit in a preliminary fashion, support the need of inves-
tigating the complex behaviour of brain structures and their emergent synergistic
patterns. We assert that high-order interactions in the brain represent a vast and
under-explored space that, now accessible with tools of multivariate information
theory, may offer novel scientific insights even in today clinical practice.

High-order links assessed via the B-index. The rest-fMRI data acquired in
the pediatric patient affected by hepatic cavernoma was further utilized to assess
the presence and significance of high-order links within the investigated network
in the three different experimental conditions (PRE, POST1, POST12) (Antonacci
et al., 2023). To this aim, the B-index measure was calculated based on MI and CMI
under the assumption of Gaussian data (3.21). Indeed, while node- (∆(OI)) and
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network-specific (OI) measures of HOIs are extremely useful in shaping the roles
that nodes and groups have in information sharing within the investigated network,
link-specific measures can help elucidating the network structure in terms of the
redundant/synergistic nature of the structural network connections.

Experimental Protocol and Data Analysis. The analysis was performed for each
experimental condition by computing the MI between the two selected time series
{x, y}, and the CMI between them conditioned to the rest of the system z = v\{x, y};
their statistical significance was assessed with surrogate data generated by indepen-
dently shuffling in random order the sequences relevant to each variable, so as to
make the surrogate variables independent while preserving their marginal distribu-
tions (THE DYNAMICS OF THE SINGLE NODE); the B-index was evaluated as in (3.21)
following the procedure described in SECT. 3.2. The application was proposed in a
long abstract submitted to the 16th Mediterranean Conference on Medical and Biological
Engineering and Computing (MEDICON 2023) (Antonacci et al., 2023).

Results and Discussion. Results of the analysis are reported in Fig. 6.2, showing
the subject-specific maps of brain connectivity (Fig. 6.2, above) and the reconstructed
network structures (Fig. 6.2, below), in the three experimental conditions. As also
reported in Sparacino et al., 2023c, compared to the pre-surgery phase (panel a, PRE),
the immediate post-surgery period (panel b, POST1) is characterized by a weaken-
ing of brain connectivity, as demonstrated by lower density of both redundant and
synergistic links in the B structure. Interestingly, twelve months after the treatment
(panel c, POST12), the brain network is mostly synergistic, with increased number of
true connections demonstrated by an augmented B density (the same can be inferred
from FIG. 6.1b,c). In this patient, the proposed surgery correction of the portosys-
temic shunt worked in recovering brain cognition, as evidenced by stronger brain
connectivity and an increase of synergistic interactions between the nodes of the
investigated resting-state networks. Overall, the utilization of the B-index to quantify
and characterize high-order links supplied results in agreement with the analysis
of the OI and the first-order OI gradient detailed in the above paragraph, with the
remarkable peculiarity of providing network reconstruction in terms of structural
links.

6.1.2 Gradients of O-Information Highlight Synergistic and Redundant
Informational Circuits

The study of high-order dependencies in complex systems has recently led to the
introduction of statistical synergy, a novel quantity corresponding to a form of emer-
gence in which patterns at large scales are not traceable from lower scales. As a
consequence, several works in the last years dealt with the synergy and its coun-
terpart, the redundancy, e.g., the O-Information (Rosas et al., 2019). In spite of its
growing use, this metric does not provide insight about the role played by low-order
scales in the formation of high order effects. To fill this gap, the framework for the
computation of the OI has been recently expanded introducing the so-called gradients
of this metric, which measure the irreducible contribution of a variable (or a group of
variables) to the high order informational circuits of a system (Scagliarini et al., 2023).
In Scagliarini et al., 2024, we reviewed the theory behind the OI and its gradients
(SECT. 3.2) and presented the potential of these concepts in the fields of Network
Physiology (SECT. 5.8) and Network Neuroscience, showing an application relevant
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FIGURE 6.2: B-index estimates a) and the reconstructed network structures b) computed
across the resting-state networks of 32 BOLD fMRI series representing the pre-surgery state
(PRE), 6 months post-surgery (POST1) and 12 months post-surgery (POST12) due to a hepatic

cavernoma issue in a pediatric patient. The figure is adapted from Antonacci et al., 2023.

to brain networks probed by fMRI. Gradients of O-Information were calculated using
the Gaussian Copula approach described in Ince, 2017 to estimate entropy terms.

Experimental Data. We considered the data from the Human Connectome Project
(Van Essen et al., 2012) corresponding to 1083 healthy subjects whose organization of
networks in the human cerebrum was explored using rest-fMRI (Yeo et al., 2011). The
fMRI data acquisitions were performed on a Siemens 3T Skyra scanner at Washington
University. In order to construct a best-estimate parcellation of the human cerebral
cortex to serve as a reference for future studies, a clustering algorithm was used to
parcellate the cerebral cortex into networks of functionally coupled regions. Parcella-
tions were examined for a coarse solution that organized the cortex into 7 networks
as well as a finer solution that identified 17 networks. The estimated networks were
found to be consistent across the discovery and replication data samples and were
confirmed by region-based functional connectivity MRI analyses. Here we consider
the parcellation in 7 clusters, each corresponding to the following connectivity net-
works: Default, Control, Limbic, Visual, Somatosensor, Ventral Attention, and Dorsal
Attention. For each subject, we analyze the corresponding M = 7 fMRI time series.
The significance of the detected HOIs is assessed using the statistics of subjects: gradi-
ents are considered significantly redundant (synergistic) when the 5th (95th) percentile
of the bootstrap distribution is higher (lower) than zero (AN APPROACH TO THE

STATISTICAL ASSESSMENT OF HIGH-ORDER INTERACTIONS).

Results and Discussion. In bottom panel of FIG. 6.3 we depict the first-order
gradient computed for the seven intrinsic connectivity networks. Except for the
Default, all the regions are significantly redundant. Going to the second order
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FIGURE 6.3: Gradients of the O-Information for the seven fMRI time series of resting-
state brain networks. Six out of seven first-order gradients (bottom row) are significantly
redundant. Signals from the Default Mode Network are not significantly redundant, hence
suggesting that the DMN it is the region for whom the balance synergy-redundancy is less
leaning towards redundancy. The second-order (middle) and third-order (top) gradients of
the OI for the 21 pairs and the 35 triplets of fMRI time series of resting-state brain networks.
Colored rectangles represent the composition of the pairs and the triplets in terms of the
resting-state networks shown in legend. Redundant and synergistic violins are depicted in
red and blue, respectively. Four pairs are significantly redundant. One triplet is significantly
synergistic and one is significantly redundant. The figure is taken from Scagliarini et al., 2024.
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gradients (middle panel of FIG. 6.3), four pairs of regions are significantly redundant:
somatomotor - dorsal attention, somatomotor - visual, dorsal attention - ventral
attention, dorsal attention - visual. Concerning third order gradients, we find a
significantly redundant triplet, default - control - dorsal attention, and a significantly
synergistic triplet: ventral attention- somatomotor - visual (see top panel of FIG.
6.3). These results evidence peculiar intrinsic connectivity networks contributing to
redundancy and synergy in the large-scale organization of the overall fMRI network,
and confirm that gradients of increasing order tend to highlight less redundant/more
synergistic interactions.

In Luppi et al., 2022, the synergistic and redundant districts of the resting brain
have been explored, and it has been found that redundant interactions are especially
prominent in the primary sensory, primary motor and insular cortices, corresponding
to the brain’s somatomotor and salience subnetworks. In contrast, regions with higher
relative importance for synergy have been affiliated with the DMN and fronto-parietal
executive control subnetworks. We note that in Varley et al., 2023b an analogous
synergy-redundancy gradient as in Luppi et al., 2022 has been found using partial
entropy decomposition. It is worth mentioning that in Luppi et al., 2022 dynamical
synergy and redundancy (from the double redundancy lattice, Mediano et al., 2021),
have been explored for each pair of the 232 regions of the augmented Schaefer atlas.
In agreement with Luppi et al., 2022, we find that the default network has the mini-
mum first order gradient, i.e., it is the less redundant; moreover a major redundant
role is played by the somatosensor network. However our results refer to a different
spatial scale and, coming from a static analysis, are not expected to be fully reproduc-
ing with the results in Luppi et al., 2022: notice that the emergence of a synergistic
circuit made of visual, somatomotor and ventral attention has not been observed in
previous studies. We remark that in a recent paper it has been observed that ventral
attention and motor network connectivity are relevant to functional impairment after
right brain stroke (Barrett, Boukrina, and Saleh, 2019); moreover higher functional
connectivity of ventral attention and visual network has been found to play a role
to maintain cognitive performance in white matter hyperintensity (Zhu et al., 2023).
These findings render even more interesting our results, i.e., these three networks
belonging to a synergistic informational circuit in the resting brain.

Conclusion. Summarizing, gradients of OI constitute a promising tool to analyze
many-body effects in complex systems, with the advantage of providing a description
of high-order phenomena which can be tuned and can even be at the level of single
variables or pairs. The application here described show the effectiveness of this
approach for multivariate neural data. In the big-data setting, evaluation of gradients
of OI remains an heavy computational burden, indeed for n variables even first-order
gradients require the estimation of entropy terms of order up to n: further work will
be devoted to develop approximate approaches for the evaluation of gradients so as
to make it feasible also for a large number of variables.

6.2 Dynamic Networks of Random Processes: Applications
to EEG Data

Exploited in a wide range of clinical and research applications (Friston, Frith, et al.,
1995; Frantzidis et al., 2014; Fogelson et al., 2013; Stam and Reijneveld, 2007), EEG
has allowed to identify the spatio-temporal patterns of neuronal electric activity
over the scalp with huge feasibility, thanks to advances in the technologies for its
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acquisition, such as the development of high-density EEG systems (Holmes, 2008;
Kleffner-Canucci et al., 2012) and the combination with other imaging modalities,
robotics or neurostimulation (Lebedev and Nicolelis, 2006; Debener et al., 2006;
Wolpaw and Wolpaw, 2012; Bestmann and Feredoes, 2013). On the whole, acquiring
EEG signals is a challenging task and requires tricks to face some delicate steps such
as positioning of the electrodes on the scalp or setting the more appropriate sampling
frequency (Rolle et al., 2022; Quyen et al., 2010; Jacobs et al., 2012; Grosmark and
György Buzsáki, 2016; Gliske et al., 2016; Bolea et al., 2016; Jing and Takigawa, 2000).
Furthermore, failure to properly perform the early stages of EEG pre-processing (e.g.,
resampling, channel re-referencing, data filtering, artifact rejection) can decrease the
signal-to-noise ratio and introduce unwanted artifacts into the data. Indeed, due to
the lack of standardization of data preparation, it is crucial to pay attention to this
delicate aspect of EEG analysis, as it can impact subsequent steps of the evaluation of
connectivity among brain networks (Rolle et al., 2022; Bastos and Schoffelen, 2016;
Geselowitz, 1998). Moreover, it is well-recognized that the scalp EEG signals do not
directly indicate the location of the active neuronal populations in the brain (Michel
et al., 2004; Michel and Brunet, 2019). Causality and connectivity measurements
applied on the scalp EEG do not allow interpretation of the interacting brain sources,
since the channel sites cannot be seen as approximations of the anatomical locations of
sources and then spurious connectivity can be detected between sensors on the scalp
(Koutlis, Kimiskidis, and Kugiumtzis, 2021; Nunez and Srinivasan, 2006; Haufe et al.,
2013; Papadopoulou, Friston, and Marinazzo, 2019; Steen et al., 2019). To overcome
this issue, EEG source imaging has been widely applied over the past years to localize
the anatomical sources (source space) of a given scalp measurement (sensor space)
(Cea-Cañas et al., 2020; Jin et al., 2022; Liang et al., 2020; Pichiorri et al., 2015; Chiarion
and Mesin, 2021).

In this section, we remark the usefulness of EEG data in the context of Network
Neuroscience and review exemplary applications of the dynamic measures of pair-
wise (e.g., the MIR) and high-order (e.g., the OIR) connectivity defined in CHAPT. 4
to EEG signals. Further details on data-driven approaches for the study of EEG-based
brain connectivity, as well as on the most common and tricky pitfalls occurring during
acquisition and pre-processing of electrophysiological signals, can be found in our
recent review on connectivity analysis in EEG data (Chiarion et al., 2023).

6.2.1 Human Brain Activity During Motor Execution Assessed via the OIR
Framework

The OIR framework proposed in Faes et al., 2022a allows a hierarchically-organized
evaluation of time and frequency domain pairwise and high-order interactions in dy-
namic networks mapped by multivariate time series, being part of the comprehensive
and unifying framework recently proposed in Sparacino et al., 2024b. In this section,
we show the potential of our framework in the context of EEG signals acquired in
healthy subjects performing a motor execution task; the application was published
in a conference paper submitted to the 2022 11th International Conference on Complex
Networks and their Applications (8-10 November 2022, Palermo, Italy) (Sparacino et al.,
2022a). We remark that the study of human brain activity during motor execution is
very important in clinical contexts and in neuroscience. In fact, motor actions com-
monly derive from the involvement of several areas in the brain causing excitatory
and inhibitory coupling among different regions in the two hemispheres (Gerloff
et al., 1998). Deepening the investigation of changes in motor-related brain regions
according to movement states would allow to elucidate the motor control mechanism
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of the human brain.

Experimental Protocol and Data Analysis. The data is relevant to 20 healthy
subjects randomly chosen from a database of 109 participants (Schalk et al., 2004;
Goldberger et al., 2000) - note that in Sparacino et al., 2024b we used the same database
selecting only one exemplary subject (see SECT. 6.2.4). We analyzed a resting-state
condition in which the participants were relaxed (REST) and a condition in which
they were asked to open and close the right fist cyclically (RIGHT). The raw signals
were firstly detrended, then filtered and finally epoched to extract 15 trials of 4 s each
for each participant and condition. We performed the analysis on the signals recorded
by the four electrodes depicted in FIG. 6.4a, i.e. X1 = C3, X2 = Cz, X3 = C4, X4 = Fz.
For each subject and trial, a VAR model (2.6) was identified from the four selected
time series setting the model order according to the BIC. Then, the estimated VAR
parameters were used to compute the spectral OIR (4.69) for each multiplet of order
N = 3, 4. Finally, values indicative of HOIs occurring for the α and β brain rhythms
were obtained by integrating the measures over the relevant frequency ranges (i.e.,
α = [8− 12] Hz, β = [16− 26] Hz).

Results and Discussion. FIG. 6.4b-f reports the grand-average over participants
and trials of the frequency profiles obtained for each multiplet separately for the
REST and RIGHT conditions in the frequency range [2− 35] Hz. The trends reveal
the prevalence of positive values of the OIR, denoting redundant interactions, for
the triplets including the signal recorded at the electrode Fz (panels b,c,d), while the
triplet [C3 − Cz − C4] displays negative OIR values related to synergy within the α
and β bands (panel e); synergistic interactions are detected, although weaker, also
for the multiplet of order 4 including all the analyzed electrodes (panel f ). Panels g,h
depict the distributions across participants and trials of the spectral OIR integrated
over the α and β frequency bands, computed for each multiplet separately for the
REST and RIGHT conditions. The execution of the motor task is generally associated
with an increase of the OIR denoting higher redundancy for multiplets including
the EEGs recorded at the central electrodes Fz and Cz, together with C3, C4, or both
C3 and C4; the increase is observed particularly in the β band, and is statistically
significant, according to a Wilcoxon paired test performed with 5% significance, for the
multiplet of order 4 including the central electrodes Fz and Cz and both the lateral
electrodes C3 and C4 (panel h). On the contrary, the OIR profiles exhibit a decrease in
the α band when computed for the triplet [C3 − Cz − C4] (panel g); such a decrease,
though not statistically significant, denotes a tendency to higher synergy during task
execution.

To investigate the joint EEG activity of specific brain areas designated to the
planning and execution of hand motor task (Passingham, 1989), we selected four EEG
signals recorded from channels located on the central line (Fz, CZ) and on scalp areas
contralateral and ipsilateral to the right-hand motor execution task (respectively, C3
and C4). In agreement with our previous work showing a widespread redundant
behavior for this network of EEG interactions (Antonacci et al., 2021), we document
the prevalence of redundancy for HOIs. However, we also show that combinations
of signals measured from both central electrodes and electrodes located in ipsi- and
contra-lateral locations give rise to synergistic HOIs that reflect the emergence of
interaction mechanisms not retrievable from a pairwise analysis. From a physiological
point of view, these functional mechanisms involve spatial locations (C3 and C4)
and emerge in frequency bands (α and especially β) which are linked to the well-
known phenomenon of event-related desynchronisation occurring during motor
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FIGURE 6.4: Human brain activity during motor execution. a) EEG electrodes montage
highlighting the positions of the four selected electrodes. b-f) Spectral profiles (mean (bold
line) and 25th − 75th percentiles (shades) over 20 subjects and 15 trials per subject) of the
OIR computed for each multiplet during relaxation (REST, green lines) and while opening
and closing the right fist (RIGHT, orange lines). g-h) Violin plots of the distribution across
participants and trials of the OIR values computed by integrating the spectral OIR within the
α band ([8− 12] Hz, panel g) and within the β band ([16− 26] Hz, panel h) during relaxation
(REST) and opening/closure of the right fist (RIGHT). ∗, p < 0.05 Wilcoxon test. The figure is

adapted from Sparacino et al., 2022a.

execution and imagery (Pfurtscheller and Da Silva, 1999). Nevertheless, we stress
the preliminary nature of our results, which need confirmation on larger datasets
(Goldberger et al., 2000), also after adopting methodological improvements (e.g., the
consideration of the statistical significant of the detected OIR values and increments
(Stramaglia et al., 2021)) and addressing common issues of brain connectivity analyses
(e.g., those related to the effects of volume conduction on pairwise and high-order
connectivity measures (Steen et al., 2019; Kotiuchyi et al., 2020).

6.2.2 Neural Interactions From ECoG Signals in the Anesthetized Macaque
Monkey

The OIR framework proposed in Faes et al., 2022a and applied to exemplary EEG
signals acquired in healthy subjects performing a motor execution task (see previous
section) is herein discussed in the context of representative monkey electrocortico-
graphic (ECoG) signals (Faes et al., 2022a). Electrocorticography is a type of intracranial
EEG that uses electrodes placed directly on the exposed surface of the brain to record
electrical activity from the cerebral cortex, in contrast to conventional EEG electrodes
that monitor this activity from the scalp. ECoG signals are recorded through an inva-
sive procedure requiring surgical opening of the scalp and skull; they are composed
of synchronized postsynaptic potentials occurring primarily in cortical pyramidal
cells, and thus conducted through several layers of the cerebral cortex before reaching
recording electrodes placed just below the skull. However, to reach the scalp elec-
trodes of a conventional EEG, electrical signals must also be conducted through the
skull, where potentials rapidly attenuate due to the low conductivity of bone. For this
reason, the spatiotemporal resolution and signal quality of ECoG are much higher
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than EEG. This technique has been widely used to diagnose and treat neurological
disorders in clinical settings for several decades, despite the invasiveness. Recently, it
has been applied in neuroscience to explore brain functions and connectivity, brain-
computer interfaces, and brain-machine interfaces (see, e.g., Schalk and Leuthardt,
2011; Hill et al., 2012; Moon et al., 2024).

Experimental Protocol and Data Analysis. The analyzed dataset, consisting
of monkey ECoG signals downloaded from the public server1, was recorded with
a sampling frequency of 1000 Hz in one macaque monkey using 128 electrodes,
placed in pairs with an inter-electrode distance of 5 mm to cover the frontal, parietal,
temporal and occipital lobes of the left hemisphere (Yanagawa et al., 2013). We con-
sidered two five-minutes recording sessions during which the blindfolded monkey
was seated in a primate chair with tied hands, first in a resting state (REST) and then
after injection of a sedative inducing anesthesia (ANES). From the 128 electrodes, a
subset of 20 was selected as depicted in FIG. 6.5a to cover, considering ten bipolar
ECoG signals obtained taking the differential activity between close electrodes, the
following five brain regions of the DMN: (i) pre-frontal cortex (X1 = [Y1, Y2]), (ii) pari-
etal cortex (X2 = [Y3, Y4]), (iii) temporal cortex (X3 = [Y5, Y6]), (iv) low visual cortex
(X4 = [Y7, Y8]), and (v) high visual cortex (X5 = [Y9, Y10]). The ten bipolar signals were
band-pass filtered between 0.5 and 200 Hz, downsampled to fs = 250 Hz, epoched to
extract ∼ 160 trials lasting 2 sec for each condition, and finally normalized to zero
mean and unit variance within each trial. Then, a VAR model (2.6) was fitted on the
Q = 10 signals of each trial using least squares identification and setting the model
order according to the BIC (Faes, Erla, and Nollo, 2012). From the VAR parameters,
the analysis of high-order interactions was performed for the M = 5 blocks comput-
ing the spectral OIR for all multiplets of order N = 3, 4, 5. Time-domain OIR values
ΩXN (4.51) were then obtained integrating the spectral measures νXN ( f̄ ) (4.71) within
the δ ([0.2− 3] Hz), θ ([4− 7] Hz), α ([8− 12] Hz), β ([12− 30] Hz) and γ ([31− 70]
Hz) frequency bands, as well as cumulatively between 0 and 70 Hz.

Results and Discussion. The results of OIR computation are reported in FIG.
6.5b, showing the grand average of the spectral OIR for five multiplets selected as
the most representative of the analyzed interactions, together with the time-domain
OIR obtained through whole-band and band-specific integration. The positive values
of the OIR functions and of the integrated measures, observed for all multiplets
in both conditions and increasing with the order of the multiplet, indicate that the
analyzed system is dominated by redundancy. Moreover, the redundancy level is
modulated by the experimental condition to an extent that depends on the analyzed
multiplet and spectral band. Indeed, considering the multiplets of order 3 and 4
which involve the prefrontal cortex X1 (first and third row of panels in FIG. 6.5b), a
significant increase of the OIR is observed while moving from REST to ANES; such
increase is driven by the rise of a peak in the OIR at ∼ 2 Hz (δ band) together with an
increased contribution within the γ band. On the other hand, the multiplets formed
by signals from the parietal, temporal and visual cortices (second and fourth row
of panels in FIG. 6.5b) display a drop of redundancy in the α and β bands during
ANES compared to REST. These two opposite behaviors are summarized by the OIR
encompassing all five regions (fifth row of panels in FIG. 6.5b), which during ANES
displays significantly higher levels of redundancy in the δ and γ bands (and in the
whole band), and significantly lower redundancy in the θ, α, and β bands.
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FIGURE 6.5: OIR analysis of neurophysiological interactions in the anesthetized monkey.
a) ECoG electrode montage highlighting the positions of the selected electrodes acquiring
the bipolar signals Y1, . . . , Y10 grouped in the blocks X1, . . . , X5 covering five regions of the
left hemisphere. b) Average spectral profiles across trials (line: median; shades: 1st − 3rd

quartiles) of the OIR computed for five representative multiplets during relaxation (REST)
and anesthesia (ANES). c) Time-domain values of the mean OIR obtained by integrating the
spectral measures over the whole frequency axis (T) or within the δ, θ, α, β and γ bands;
asterisks denote statistically significant difference between REST and ANES (Wilcoxon signed-
rank test with Bonferroni correction for multiple comparisons). The figure is adapted from Faes

et al., 2022a.
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Our results indicate that the activity relevant to the α and β rhythms observed
during the relaxed awake state disappears during anesthesia, leaving place to domi-
nant interactions within the δ and γ bands. The redundancy observed at REST for
the α waves is significant for the multiplets involving signals from the visual cortex,
in agreement with the knowledge that these waves can be predominantly recorded
from the occipital lobes during wakeful relaxation with closed eyes (Palva and Palva,
2007). On the other hand, the higher redundancy reported in the δ band can be re-
lated to the slow wave oscillations ([0.1− 4] Hz) typically observed under anesthesia
(Chauvette et al., 2011). Moreover, the fact that higher δ redundancy is observed only
for multiplets including frontal cortex signals supports the knowledge that the slow
oscillations are a manifestation of a coupling between the anterior and posterior axes
of the brain (Murphy et al., 2009). Anesthesia evokes also an increase of redundancy
related to γ oscillations, which are associated with different cognitive functions (Fries,
2009). Overall, these results agree with those in (Yanagawa et al., 2013) and support
the integration theory according to which the conscious state is generated by highly
integrated neural interactions that disappear in the unconscious state (Baars, 2002). A
recent study comparing resting wakefulness with propofol-induced anaesthesia in
human fMRI data has shown how the anterior-posterior disconnection occurring dur-
ing anesthesia is associated with a decrease of integrated information within the DMN
in the left hemisphere (Luppi et al., 2020). Importantly, the concepts of integration
information and that of redundancy are interrelated, as explained in (Mediano et al.,
2019) where it is highlighted that a drop of integrated information corresponds to an
increase of redundancy. Thus, our results support the theory of an anterior-posterior
disconnection during anesthesia, which in our case can be ascribed to the significant
increase of the OIR documented when the frontal cortex is considered in the analyzed
multiplet.

6.2.3 Rehabilitation Modulates High-Order Interactions Among Large-
Scale Brain Networks in Subacute Stroke

Nowadays, several neurodegenerative diseases, such as healthy brain aging (Gatica
et al., 2021) and dementia or Alzheimer’s disease (Herzog et al., 2022), and other
pathologies are known to cause brain networks disruptions. For example, the ef-
fects of cerebrovascular stroke on brain functional connectivity are widely investigated,
due to the high incidence of stroke in the worldwide population and to the im-
pact of resultant impairments on the quality of life of stroke survivors (Siegel et al.,
2016). High-order functional connectivity approaches have not been yet applied to
investigate stroke effects and the associated neuro-plasticity changes involved in
recovery. To the best of our knowledge, findings reported in the literature about
cerebrovascular stroke were exclusively based on metrics of pairwise interaction
between signals, either from fMRI or EEG techniques, in brain regions belonging
to different resting-state sub-networks (Grefkes and Fink, 2011). In particular, great
attention has been given to the evaluation of recovery-related changes within the
motor network (MN) (Hordacre et al., 2020), since more than a half of stroke survivors
experience motor deficits (Stinear, 2010). However, the brain is a complex system,
and it has been demonstrated that disruption of connections between large-scale
RSNs may as well contribute to different types of post-stroke impairments (Wang
et al., 2014a). A few studies have investigated both within and between large-scale
RSNs connectivity patterns in stroke populations (Wang et al., 2014a; Zhao et al.,
2018; Wu et al., 2020). In these works, altered functional connectivity has been found
among different brain areas including not only sensory and sensorimotor cortices,
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but also high-order cognitive control networks such as the default mode network,
the executive control network (ECN), and the dorsal attention network (Zhao et al.,
2016; Wu et al., 2020). Particularly, the DMN, ECN, and MN appear to be involved in
connectivity disruption in stroke patients and may play a relevant role in cerebral
reorganization associated with functional recovery. Yet, none of the above-mentioned
studies have considered jointly the concurrent interactions between these three net-
works.
In Pirovano et al., 2023, we proposed to investigate changes ensuing from post-stroke
rehabilitation in the interactions among the DMN, ECN and MN, by applying high-
order metrics and thus going beyond the traditional pairwise analysis. In detail, we
analyzed changes in cortical connectivity estimated from resting-state EEG signals
in a cohort of patients in the subacute post-stroke stage who followed a period of
physical rehabilitation. Considering the high temporal resolution of EEG signals, we
exploited the OIR framework developed in Faes et al., 2022a to perform a causal and
spectral high-order connectivity analysis of the temporal dynamics among large-scale
brain networks.

Experimental Protocol and Clinical Assessment. Eighteen post-stroke patients
participated in this study, which was approved by the local Ethics Committee Comi-
tato Etico Provinciale dell’Insubria and conducted in compliance with the Declaration of
Helsinki. Participants (7 females and 11 males, aged 67± 10 years) were all enrolled
in the subacute stage after a single unilateral ischemic stroke and met the inclusion
criteria of occurrence of the acute event less than 30 days after the first evaluation.
All subjects were right-handed, had no other reported concomitant orthopedic or
rheumatologic diseases, and had no global or comprehension aphasia. Each patient
followed a physical rehabilitation treatment for both upper and lower limbs, tailored
according to the individual residual motor capacity. More details about the dataset
can be found in a previous work on the topic (Pirovano et al., 2022).
Subjects were evaluated by clinicians both from a clinical and an electrophysiological
point of view at two time-points: at the admission to the rehabilitation center (T0, on
average after 12± 5 days from the stroke event) and at the end of the treatment (T1,
on average after 55± 11 days from the stroke event). The upper limb performance
was evaluated with the upper extremities Fugl-Meyer Assessment (FMA), which
includes a motor scale with scores ranging from 0 (hemiplegia) to 66 (normal motor
performance) (Fugl-Meyer et al., n.d.). Likewise, the level of walking ability was
assessed by the Functional Ambulation Category (FAC), a gait assessment scale that
distinguishes between 6 levels of walking ability (0, not able to walk; 5, independent
walk) based on the amount of physical support required (Holden et al., 1984). The
variations FMAT1−T0 = FMAT1 – FMAT0 and FACT1−T0 = FACT1 – FACT0 were con-
sidered as primary clinical outcomes of subject’s motor recovery.

EEG Acquisition, Pre-Processing and Source Reconstruction. At both T0 and T1,
5 minutes of eye-closed resting-state EEG recordings were collected with a Neuroscan
system (Compumedics Neuroscan, Compumedics, NC, USA). 64 Ag/AgCl electrodes
were placed on the scalp according to the International 10/20 standard system with
the reference electrode placed between Fz and Cz positions and the ground elec-
trode positioned anterior to Fz. Continuous data were acquired at a sampling rate
of 1000 Hz. EEG signals were pre-processed offline using the open source EEGLab
signal processing Toolbox (Delorme and Makeig, 2004). Data were down-sampled
at 128 Hz and band-pass filtered between 0.5 Hz and 45 Hz to remove slow drifts
and high-frequency components. Flat (zero amplitude for more than 5 s) and bad
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(noisy for more than 90% of the acquisition) channels were removed and the Artifacts
Subspace Reconstruction (ASR) algorithm (Mullen et al., 2015) was applied to all
retained channels with a cut-off parameter k = 20. Independent Component Analysis
(ICA) was then applied to the ASR-cleaned EEG exploiting the RUNICA Infomax
algorithm (Makeig et al., 1995), and the ICLabel automated classifier (Pion-Tonachini,
Kreutz-Delgado, and Makeig, 2019) was employed to guide the manual selection of
non-brain artifactual components, e.g., eye, heart, muscle, line noise. The originally
removed channels were reconstructed by the interpolation of the neighbor signals
and the cleaned EEG data were re-referenced to a common average value. For all the
acquisitions, the first 30 s were discarded to account for a period of settling before
reaching the proper resting-state condition and the subsequent 1 min was used for
brain sources estimation. We employed the exact low resolution brain electromag-
netic tomography (eLORETA) approach, which allows the exact localization of the
brain current source densities distribution implementing a discrete, linear, weighted
minimum norm inverse solution (Pascual-Marqui, 2007). Activity of brain sources
was reconstructed only in the cortical grey matter (6239 isotropic voxels with 5 mm
spatial resolution) in the MNI152 space.

Regions of Interest and Time Series Extraction. For the inter-network connectiv-
ity analysis, we defined 16 ROIs within the three large-scale networks. In TAB. 6.2,
centroid coordinates in the MNI152 space and number of voxels of 6 ROIs within
DMN, 5 ROIs belonging to ECN, and 5 ROIs within MN are reported according
to previous MRI and EEG studies of RSNs identification in the healthy and stroke
populations (Inman et al., 2012; Samogin et al., 2020; Raichle, 2011). All voxels within
8 mm of radius from a seed were considered as belonging to the specific ROI, with the
constraint of non-overlapping regions. In case of overlap, the voxels were assigned
to the closest centroid regions. Sixteen time series of 7680 samples (1 min) each
were thus obtained, by averaging the magnitude of sources activity among all voxels
belonging to each ROI. For further analysis, the ROI signals were epoched in shorter
windows of 10 s, hence obtaining 6 windows of 1280 samples for each acquisition.

Data and Statistical Analysis. We performed an inter-network resting-state
connectivity analysis, considering the three subsets of ROIs, grouped as reported
in TAB. 6.2, as vector targets constituting a three-node RSN. High-order analysis
was conducted in a linear parametric framework based on linear AR modeling of
multiple time series, under the assumption of WSS and of jointly Gaussian stochastic
processes. The analysis follows the OIR framework introduced in Faes et al., 2022a.
Specifically, all measures of interactions were computed identifying the VAR model
(2.6) through the OLS method. The AIC was used to select the optimum order p
for each epoch of the acquired resting-state signals. The spectral OIR (4.71) with
the causal decomposition terms of its gradient, i.e., δXi→XN

−i
( f̄ ) and δXN

−i→Xi
( f̄ ) of

(4.70), were calculated among the three RSNs separately for each of the six signals’
epochs, at T0 and T1. Then, measures were integrated over the range of the three
frequencies of interest, i.e., theta (θ), alpha (α), and beta (β), thus obtaining the
equivalent metrics in time-domain at the specific oscillation. Delta and gamma
bands were excluded from this analysis since they may be affected by noise and
spurious signals. To account for interindividual variability, frequency bands ranges
were defined according to the Individual Alpha Frequency (IAF) criteria (Klimesch,
1999) as follows: θ = [IAF− 6Hz, IAF− 2.5Hz], α = [IAF− 2Hz, IAF + 2Hz], and
β = [IAF + 2.5Hz, IAF + 20Hz].

The six epoch values were finally averaged to obtain one value per acquisition per
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TABLE 6.2: REGIONS OF INTEREST. Cerebral areas grouped by large-scale networks. Cen-
troids coordinates (X, Y, Z) are reported in the MNI coordinate system. aRSN = Resting-State
Network, DMN = Default Mode Network, ECN = Executive Controls Network, MN = Motor
Network, PCC = Posterior Cingulate Cortex, PFC = pre-frontal cortex, M1 = primary motor

cortex, SMA = Supplementary Motor Area, L = left, R = right.

RSNa Region Coordinates in mm (X, Y, Z) Number of voxels

DMN

PCC/precuneus 0, -52, 27 14
Medial Prefrontal -1, 54, 27 13
L Lateral Parietal -46, -66, 30 12
R Lateral Parietal 49, -63, 33 8

L Middle Temporal -61, -24, -9 15
R Middle Temporal 58, -24, -9 12

ECN

Dorsal Medial PFC 0, 24, 46 15
L Anterior PFC -44, 45, 0 7
R Anterior PFC 44, 45, 0 6

L Inferior parietal -50, -51, 45 13
R Inferior parietal 50, -51, 45 16

MN

L M1 -33, -20, 52 12
R M1 -36, -18, 52 13

L PreMotor -34, -1, 56 13
R PreMotor 35, 0, 55 13

SMA 0, -4, 65 10

subject. Considering the small sample size, we employed non-parametric statistical
tests to assess the rehabilitation effect in terms of inter-networks connectivity changes.
T0 and T1 values of all connectivity metrics were compared by a non-parametric
one-tailed Wilcoxon’s test for paired samples. To further investigate the correlations of
inter-network connectivity changes with the functional outcomes, non-parametric
Spearman’s correlations between the variation of high-order (ΩT1−T0) connectivity met-
rics with FMAT1−T0 and FACT1−T0 scores were computed. The statistical significance
level was set at 0.05 for all tests. Because of the small sample size, in this work we
did not correct the p-values from our statistical analysis for family-wise error rate.
This could increase the chance of type I error, but we aimed to avoid missing any
potential significance in our exploratory analysis. Therefore, we highlighted the
stronger significance values (p < 0.01) in the results section.

Results. In FIG. 6.6a, we report the population distributions of global OIR
ΩDMN,ECN,MN in the three frequency bands. We observe overall positive values
(expressed in nats) both at T0 (Ω(θ) = 0.04 ± 0.04; Ω(α) = 0.08 ± 0.05; Ω(β) =
0.17± 0.17) and T1 (Ω(θ) = 0.03± 0.06; Ω(α) = 0.07± 0.06; Ω(β) = 0.16± 0.21),
indicating the prevalence of redundancy in the interactions among the three RSNs.
On average, decreasing values can be noticed at T1, especially at θ, in which we found
a significant T1 – T0 difference (p = 0.049), and α frequencies. Although OIR is still
positive, on average, this trend suggests a relative shift toward less redundant and
more synergistic values in the overall balance described by the OIR metric after the
rehabilitation. The average decrease of ΩDMN,ECN,MN at T1 is observed also in the
causal decomposition of the spectral OIR, considering each of the three RSNs in turn
as target process (FIG. 6.6b).
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a) b)

FIGURE 6.6: a) Total OIR distribution ΩDMN,ECN,MN of the population integrated for each
frequency band. Boxplot lengths represent the interquartile range (IQR), horizontal line
corresponds to the median value, the external whiskers include data within ±1.5× IQR.
Statistical test T1 – T0, ∗ p-value < 0.05. b) Causal decomposition of the spectral OIR
gradient. Population average differences ΩT1−T0 are reported as mean ± standard deviation
when DMN (first row), ECN (second row), and MN (third row) act as single target with
respect to the rest of the system for θ, α and β frequency bands (in columns). Red arrows
indicate significant T1 – T0 differences. ∗, p-value < 0.05, ∗∗, p-value < 0.01. When average
differences values of 0.00 are indicated, this corresponds to an average ΩT1−T0 < 10−2. The

figure is adapted from Pirovano et al., 2023.

In particular, considering the statistically significant T1 – T0 differences, the in-
creasing synergy/decreasing redundancy (Ω(T1−T0)

DMN,ECN,MN < 0) in the overall balance
behavior of the system appears to be mostly explained by the MN acting as driver in
two main cases: by its-own towards the rest of the system in θ and α (p(θ) = 0.005
and p(α) = 0.009), and in combination with ECN as a driver towards DMN at all
the considered frequency bands. Only in the α band, we found a mild (p(α) = 0.037)
significant reduction of causality for ECN considered as a target of the vector process
{DMN, MN}. Conversely, the ECN seems to play a role in the recovery of motor
functions, especially of the upper limb. As shown in FIG. 6.7, we found a negative
correlation between ΩT1−T0 and FMAT1−T0 when ECN acts as a driver towards the
process {DMN, MN} in both θ and α frequencies, and when ECN is driver in pairs
with DMN towards MN in θ. Hence, increase in synergy driven by ECN appears to
correlate with upper limb motor recovery.

Discussion. The main goal of this work was to investigate HOIs among three
RSNs, i.e., DMN, ECN and MN, to identify their changes after rehabilitation of sub-
acute stroke patients. MN processes sensory input, and it is primary responsible
for the execution of motor tasks (Doucet et al., 2011). DMN and ECN are high-level
functional brain networks; DMN is a network which controls the interoceptive moni-
toring and self-referential processes (Raichle et al., 2001), whereas ECN focuses on the
control and execution of externally directed activities (Corbetta and Shulman, 2002),
including motor behavior. The relation among these three networks appears particu-
larly of interest in post-stroke rehabilitation assessment. In fact, motor functionality
recovery was found positively associated with interactions between areas belonging
to MN and either DMN or ECN networks (Wu et al., 2020). All the previous studies
only investigated pairwise interactions between these networks or the correlation of
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FIGURE 6.7: Significant Spearman’s correlations between OIR variations T1-T0 and
FMAT1−T0. r, correlation coefficient, p, p-value. The figure is adapted from Pirovano et

al., 2023.

intra-network connectivity with functional impairment in different domains (Romeo
et al., 2021), while there is a lack in the characterization of their HOIs. Moreover, it
is unclear whether the three interacting networks act synergistically or redundantly
in stroke patients. For this reason, alongside the pairwise connectivity descriptors,
we provided also a high-order characterization of these interactions using OIR, to
investigate the causal processes underlying the redundant/synergic behavior among
the three RSNs.
In our analysis, we found a prevalence of redundancy (positive OIR values) in the
interactions among the RSNs examined at all the frequency bands of interest, both
before and after the rehabilitation. In addition, in our longitudinal evaluation of
subacute stroke recovery, we observed a relative increase of shift toward less re-
dundant and more synergistic values among DMN, ECN, and MN. Looking at the
causal decomposition of the OIR, we found that this increase in net synergy appeared
prevalently when MN acts alone as driver towards the other two networks, or when
ECN and MN jointly drive DMN. More specifically, we found a significant increase
of causal influence from T0 to T1, especially in α and θ frequencies. In the literature,
the description of high-order brain networks characteristics is very limited. Up to
date, very few works investigated the synergistic/redundant behavior within RSNs
in healthy subjects, and, to our knowledge, no one has previously investigated a
post-stroke population. In Antonacci et al., 2021, the functional interactions among
different cortical areas during movement execution were explored in normal subjects.
In that work, dynamic EEG measures of high-order connectivity at the sensor level
in the frequency domain highlighted the presence of redundancy among MN and
frontal areas. This result agrees with our findings. It should be noted that the concept
of redundancy and synergy has been previously applied. Luppi et al., 2022 provided
a first description of neuronal profiles for synergy and redundancy of different RSNs
to analyze resting-state functional MRI data from 100 healthy participants of the
Human Connectome Project. They found that redundancy tends to prevail within
RSNs, in particular in MN, visual and salience networks, while synergistic interac-
tions are stronger between RSNs, especially between DMN and frontoparietal regions
belonging to ECN. However, these results are not directly comparable with ours since
different conceptual definitions of redundancy and synergy were used. Indeed, they
considered a pairwise approach, in which target and driver variables are defined
based on their present and past states, evolving jointly over time. Future research is
encouraged to assess separate redundant and synergistic contributions before and
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after rehabilitation, to confirm and complement the results of the present work.
In our study we found some interesting correlations between connectivity metrics and
clinical motor recovery scales. In particular, the increased interactions and synergy,
when ECN acts as a driver towards the other networks, are significantly correlated
to the recovery of upper limb motor function, measured as FMA score. This result
may suggest the involvement of ECN in motor functionality recovery, as previously
hypothesized (Zhao et al., 2018; Geng et al., 2022). However, this hypothesis should
be further investigated and supported by studies in larger populations.

Limitations and Future Developments. Besides the three RSNs here investigated,
other RSNs changes have been found to be involved in stroke recovery, such as the
dorsal and ventral attention or language networks (Romeo et al., 2021) as well as the
auditory and the visual networks (Siegel et al., 2016; Zhao et al., 2018). Being based
on linear parametric modeling, OIR requires a standard technique for the identifi-
cation of the VAR model, such as the OLS or the algorithm for the solution of the
YW equations. However, to avoid the increasing of bias and variance of estimation,
which may result in ill-posed regression problems, the ratio between the amount
of data samples available and the number of regression coefficients to be estimated
should be at least equal to 10 to guarantee the accuracy of the estimation procedure
(Antonacci et al., 2020; Schlögl, 2006). For this reason, we focused our analysis on
three of the main RSNs known to be affected by stroke, without excessively increasing
the number of time series to be fitted. In our case, we had 1280 samples available
for each time series, and we could not fit more than the 16 selected ROIs, otherwise
the goodness of the estimated autoregressive parameters would not be guaranteed.
As for the causal interpretation of the individual network contribution to the inter-
network increase in synergy, we should point out that the driver role of MN and
ECN cannot be stated with total confidence. In fact, in our data, the instantaneous
causality term which appears in the r.h.s. of (4.70) is not null; thus, we cannot affirm
that the causal terms totally explain the redundancy/synergy balance. Indeed, the
strict causality hypothesis (Chicharro, 2011) should be fulfilled to account exclusively
for the causal terms. However, the instantaneous synchronization is intrinsic in
EEG techniques, and, even though mitigated by source activity reconstruction, we
could not completely overcome this issue. In future, this aspect should be further
investigated. Besides, the OIR approach proves to be powerful for the investigation
of HOIs in connectivity adding spectral and directional description. This method
could be interestingly applied for the simultaneous investigation of a larger number
of networks, but still, at the cost of lower-spatial resolution to obtain a lower number
of cortical areas for each large-scale network.

Conclusion. The use of HOI metrics in the study of inter network connectivity in
stroke patients could be a powerful tool for better understanding complex multiple
relationships among RSNs, giving a particular focus on their redundant/synergistic
behavior. Adopting this perspective, in our study we found a predominance of
redundant interactions among the RSNs both before and after the rehabilitation in
subacute stroke. After rehabilitation, we observed an increased shift toward less
redundant and more synergistic behavior, mainly related to the joint effect of MN
and ECN on DMN. Finally, the correlation analysis with clinical outcomes, suggests
that ECN may be a relevant player in motor functionality improvement.
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6.2.4 Brain Interactions at Different Orders: Exemplary Single-Subject
Analysis

In a recent work submitted to Neurocomputing (Sparacino et al., 2024b), we intro-
duced a coherent framework integrating several information dynamics approaches
to quantify single-node, pairwise and high-order interactions in network systems.
A hierarchical organization of interactions of different order was established using
measures of entropy rate, mutual information rate and O-information rate to quan-
tify the dynamics of individual nodes, the links between pairs of nodes, and the
redundant/synergistic hyperlinks in groups of nodes. Flexibility and scalability of
the proposed framework are guaranteed by the utilization of information-theoretic
measures defined for scalar or vector processes, in both time and frequency domains
in a way such that the two representations are tightly connected in a straightforward
way, i.e., by satisfaction of the spectral integration property. Network interactions
are categorized hierarchically depending on the number of nodes involved in the
computation of each interaction measure: entropy rate describes the predictable infor-
mation within a node, mutual information rate describes the information dynamically
shared between two nodes, interaction information and O-information rates describe
the information shared among three or more nodes through concepts of redundancy
and synergy, thus opening the way to a deeper investigation of HOIs. Remarkably,
there we highlighted the possibility to retrieve single-node, pairwise and high-order
activities directly from the spectral representation of the VAR model (2.6) in the
frequency domain, thus switching from the concept of multivariate analysis typical
of previous studies on the topic (those employing, e.g., measures of conditional GC
and thus focusing on the activity of two nodes of the network even when the other
nodes are taken into account, such as in Geweke, 1984; Chen, Bressler, and Ding, 2006;
Vakorin, Krakovska, and McIntosh, 2009) to that of hierarchical HONA, which allows
to go beyond the framework of pairwise interactions such that the two concepts of
redundancy and synergy acquire a leading role and an overall quantification of the
collective interaction among groups of nodes is provided.
In this section, we report the practical application of the proposed framework to
EEG signals relevant to one exemplary healthy subject performing a motor execution
task (Sparacino et al., 2024b) - note that in Sparacino et al., 2022a we used the same
database selecting a group of 20 representative subjects (see SECT. 6.2.1). Further,
we remark that the time and frequency domain OIR measure applied to EEG and
ECoG signals in the previous sections of this chapter is an essential part of our
new framework, allowing the assessment of node- (through the OIR gradient) and
network-specific dependencies in the context of a HONA analysis.

Experimental Protocol and Data Analysis. The dataset1 comprises 64 EEG elec-
trodes referenced to both mastoids (international 10-20 system, fs = 160 Hz) (Schalk
et al., 2004; Goldberger et al., 2000). The subject was asked to open and close the right
fist cyclically until a target on the right side of a screen disappeared. The raw signals
were firstly detrended, then filtered (band-pass, 2-45 Hz; notch, 59-61 Hz) and finally
epoched to extract 20 trials of 4 s each. All trials were then reduced to zero mean
and unit variance. We selected 6 EEG electrodes located over the contralateral and
ipsilateral motor areas, and grouped them in 3 blocks, i.e. X1 = [C3, C1], X2 = [C2, C4]
and X3 = [Fz, Cz]. For each trial, a VAR model (2.6) was identified through OLS, fixing
the model order to 10. Then, the estimated VAR parameters were used to compute
the spectral ER, MIR and OIR profiles, as detailed at the beginning of SECT. 4.3.2.

1https://physionet.org/content/eegmmidb

https://physionet.org/content/eegmmidb
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FIGURE 6.8: Brain dynamics during motor execution are characterized by predominance
of redundancy. a) Spectral ER profiles (hX1 , hX2 , hX3). b) Spectral MIR profiles (iX1;X2 , iX1;X3 ,
iX2;X3 ). The surrogate distributions of the spectral ER and MIR profiles are depicted as shaded
grey areas, median (grey solid lines) and percentiles (black solid lines, computed with 5%
significance level). c) Spectral OIR of order 3 (νX3). The boostrap distribution is depicted as
shaded grey area, median (grey solid line) and percentiles (black solid lines, computed with
5% significance level). d) ER, MIR and OIR values integrated in the whole band (left bars),
the alpha (α, middle bars) and the beta (β, right bars) frequency bands of the spectrum. The

figure is adapted from Sparacino et al., 2024b.

Finally, time domain counterparts for the α and β brain rhythms, as well as over the
whole frequency range were obtained by integrating the interaction measures over
the relevant frequency ranges (i.e., α = [7− 15] Hz, β = [18− 26] Hz, f ∈ [0− fs/2]
Hz, respectively). Surrogate and bootstrap data analyses were applied as detailed
in APPENDIX A to assess the statistical significance of the computed measures, with
Ns = 100 iterations and α = 0.05 significance level.

Results and Discussion. FIG. 6.8 reports the grand-average over trials of the
frequency profiles of ER (panel a), MIR (panel b), and OIR (panel c), computed dur-
ing the motor execution task and depicted over the frequency range f ∈ [1− 30]
Hz. The spectral ERs (panel a), compared with the 97.5th percentile of the surrogate
distributions (top black solid lines), show statistically significant oscillations around
10 Hz (α band) (see THE DYNAMICS OF THE SINGLE NODE). The oscillations in β
band were found to be non significant since they are all below the 2.5th percentile
of the surrogate distributions. Integrated values of ER demonstrate the presence of
oscillations in α and β bands as well (panel d), in accordance with the physiology
of the motor execution as demonstrated in several works on this topic (Cona et al.,
2009; Antonacci et al., 2021; Pirovano et al., 2022). The spectral MIRs and their inte-
grated values are shown in panels b and d, respectively. The MIR shows statistical
significance across all potential pairs of processes within both α and β bands (see
COUPLED DYNAMICS BETWEEN PAIRS OF NODES). Although the difference is not
so apparent when compared to other possible pairs, the highest MIR value emerges
when examining the interaction between X1 and X2 (iX1;X2). This underscores the
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presence of a robust dynamical coupling between the two brain hemispheres dur-
ing the execution of a motor task (Grefkes et al., 2008). The spectral OIR and the
corresponding integrated values in the time domain, α and β bands are reported in
panels c and d. The study of the interaction of order 3 in both time and frequency
domain reveals a statistically significant redundant contribution in the network with a
prominent peak in the α band (see AN APPROACH TO THE STATISTICAL ASSESSMENT

OF HIGH-ORDER INTERACTIONS). This result can be related with the prevalence of
redundancy in EEG dynamics during motor task execution, previously highlighted
in other studies (Antonacci et al., 2021); (Pirovano et al., 2023). Remarkably, the
dominance of redundancy may be ascribed to the effects of volume conduction that
blur the information identified at the level of scalp EEG sensors (Steen et al., 2019).

6.2.5 High-Order Behaviours Uncover the Hierarchical Organization of
Interactions in the Motor Network of the Human Brain

Understanding brain dynamics during motor tasks is a significant challenge in neuro-
science, often limited to studying pairwise interactions, which however may overlook
high-order interactions. An exemplary application to EEG signals acquired in healthy
subjects performing a motor task execution is shown in SECT. 6.2.1 (Sparacino et al.,
2022a), where, despite prevalence of redundancy for HOIs was found for signals
recorded from channels located on central, contralateral and ipsilateral scalp areas, we
also showed that specific combinations of these signals give rise to synergistic HOIs
reflecting the emergence of interaction mechanisms not retrievable from a pairwise
analysis.
An ongoing study which I coauthor employs the new framework proposed in Spara-
cino et al., 2024b to analyze single-node, pairwise and high-order interactions within
the motor network using EEG data from 10 healthy subjects performing motor tasks.
As far as we know, only a limited number of studies has explored HOIs using EEG sig-
nals (see, e.g, Antonacci et al., 2021; Sparacino et al., 2022a; Faes et al., 2022b; Pirovano
et al., 2023) and none of these have thoroughly investigated the occurrence of HOIs
within the MN itself or how motor task execution impacts the synergy/redundancy
balance. Indeed, e.g., in Antonacci et al., 2021, the study of HOIs within the MN was
conducted at the scalp sensor level and results may be influenced by volume conduc-
tion effects, while Pirovano et al., 2023 focused on stroke patients and analyzed the
modulation of HOIs among the MN, default mode network and executive control
network due to rehabilitation treatments, without extensively analyzing how HOIs
may arise from emergent behaviours occurring within the MN (see SECT. 6.2.3). It is
known that motor tasks inherently involve the coordination of multiple brain regions,
leading to complex interactions between neurons and networks that give rise to
emergent behaviors, which are often difficult to detect. A more detailed investigation
of HOIs within the MN could shed light on the intricate mechanisms underlying
motor task execution, including the roles of both contralateral and ipsilateral areas,
as well as the role of interhemispheric connections, which remains debated in the
literature (Grefkes et al., 2008). We tried to accomplish this demanding task.

EEG Dataset Description and Pre-Processing. Ten healthy young individuals
(males, 9 right-handed, age range: 30.2±3.9 years) were enrolled in this study. Each
session comprised two experimental conditions: (i) a resting state (REST) and (ii) a
handgrip (HG) task. During the resting state session, EEG data were collected over
a 3-minute period of closed eyes. For the handgrip task, participants performed a
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series of handgrip squeezes, with closed eyes, in a structured manner over a 5-minute
period, consisting of five 60-second blocks alternating between 30 seconds of REST
and 30 seconds of HG, squeezing a soft ball using their dominant arm with a fre-
quency of approximately 1 Hz.
EEG acquisition was performed using a cap with 60 Ag/AgCl monopolar electrodes
placed on the scalp according to the International 10/20 system. Impedances were
maintained below 5 kΩ. The online reference electrode was positioned between Cz
and Cpz. The signals were sampled at a frequency of 1 kHz using the Synamps 2/RT
EEG system (Neuroscan). The experimental sessions took place in the Robotic Labo-
ratory, operated by the Consiglio Nazionale delle Ricerche at the Presidio di Riabilitazione
dell’Ospedale Valduce Villa Beretta, Costa Masnaga (LC), Italy. Written informed consent
was obtained from each subject before inclusion in the study. The study was reviewed
and approved by the local Ethics Committee at A. Manzoni Hospital, Lecco, and was
conducted in compliance with the Declaration of Helsinki.
The preprocessing of EEG signals summarized in the first block of FIG. 6.9 was per-
formed through EEGLab toolbox (Delorme and Makeig, 2004) by exploiting MatLab
(The Mathworks, Inc.). Scalp signals were first band-pass filtered ([1− 45] Hz) and
then down-sampled to reduce the sampling frequency to 256 Hz. If a channel had
a correlation lower than 0.8 to its robust estimate (based on other channels) for the
60% of the recording or had more line noise relative to its signal than three times
standard deviation from the channel population mean, it was discarded. Then, ICA
was applied by exploiting the RUNICA Infomax algorithm (Makeig et al., 1995). ICA
components related with physiological artifacts (e.g., cardiac activity, ocular blinks,
saccads, muscular activity, line noise, etc.) were manually removed and the originally
removed channels were reconstructed by the interpolation of the neighbor signals.
The resulting dataset was then re-referenced to a common average value.

Source Localization and Time Series Extraction. The brain current source density
distributions were extracted using the eLORETA approach, which implements a
discrete, linear, weighted minimum norm inverse solution (Pascual-Marqui, 2007).
Brain source activity was reconstructed only in the cortical gray matter (6239 isotropic
voxels with 5 mm spatial resolution) in the MNI152 space (Mazziotta et al., 2001).
Five ROIs within the MN were selected based on previous literature, including the
primary motor cortex (M1) and premotor cortex (pMC) in both the left (L) and right
(R) hemispheres, as well as the supplementary motor area (SMA) (Pirovano et al.,
2022); (Pirovano et al., 2023). The centroid coordinates in the MNI152 space, along
with the number of voxels, are reported in the second block of FIG. 6.9. All voxels
within an 8 mm radius from a seed were considered part of the specific ROI, with
the constraint of non-overlapping regions (Samogin et al., 2020). In cases of overlap,
voxels were assigned to the nearest centroid region. Five time series were obtained
by averaging the magnitude of source activity across all voxels within each ROI. To
ensure homogeneous representation across the population, for left-handed subjects,
the time series for the left and right ROIs were inverted to reflect ipsilateral (i) and
contralateral (c) areas relative to the hand performing the task. Additionally, the ROI
signals during the task period were segmented into shorter 4-second windows, with
the initial windows for the REST and HG periods, each containing 1024 samples to
overcome the presence of possible non-stationarities in the EEG signals.

Data and Statistical Analysis. As graphically resumed in the third block of FIG.
6.9, the time and spectral interaction measures of ER, MIR and OIR from order N = 1
to order N = 5 were computed by first identifying the VAR model (2.6) using the OLS
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FIGURE 6.9: Schematic representation of the EEG analysis pipeline: EEG preprocessing,
sources reconstruction, and hierarchical analysis of the Motor Network dynamics.

method. To this end, for each subject and experimental condition, the model order p
was fixed to 16. This choice was based on several considerations: the average model
order selected by the AIC, visual inspection of the estimated PSDs for each brain
signal after identifying the VAR model, and prior research that used a model order of
16 to fully capture the oscillatory content of the multivariate processes representative
of MN activity (Astolfi et al., 2005).
The spectral ER hYi for each ROI in the MN, along with the spectral MIR iYi ;Yj for
each of the 10 possible pairs, were computed, following the procedure outlined at
the beginning of SECT. 4.3.2. Additionally, the spectral OIR was computed at order 3
(νY3(ω)) for the 10 possible triplets, at order 4 (νY4(ω)) for the 5 possible quadruplets,
and at order 5 (νY5(ω)) for the only possible quintuplet. Each information-theoretic
measure was then integrated over the range of two frequencies of interest which has
been highlighted to be significantly involved in motor system functions, i.e., the α and
β frequency bands (Pfurtscheller, Neuper, and Berger, 1994; Grefkes et al., 2008). To
account for the intrinsic variability of the alpha rhythm peak, the IAF was computed
for each subject (Klimesch, 1999) and used to define the alpha and beta bands as
follows: α = [IAF− 2Hz, IAF + 2Hz] and β = [IAF + 2Hz, IAF + 23Hz].
The statistical validation of the ER and MIR measures was performed using sur-
rogate data analysis as described respectively in THE DYNAMICS OF THE SINGLE

NODE, COUPLED DYNAMICS BETWEEN PAIRS OF NODES, while the block bootstrap
data generation procedure was exploited to statistically validate OIR measures (AN

APPROACH TO THE STATISTICAL ASSESSMENT OF HIGH-ORDER INTERACTIONS).
Regardless of the information measure considered, for both experimental conditions
and each subject, the number of surrogates Ns was set to 100 for each of the five time
series within the MN, and the significance level was set to 0.05. Lastly, to test whether
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FIGURE 6.10: Distributions of individual values of the ER measure evaluated for each
ROI within the MN during REST (orange) and HG (purple) conditions are shown for both
the α (panel a) and the β (panel b) frequency bands. The ER values deemed as statistically
significant, according to random shuffling surrogate data analysis, are represented by filled
circles. The total number of significant values across all subjects is reported at the bottom
of the plot. An asterisk denotes statistically significant modulations between experimental
conditions (Wilcoxon signed-rank test, α = 0.05) and the integer above indicates the number of

subjects showing a reduction.

the motor task execution modulated the information measures at a given order, a
statistical comparison between the distributions obtained across subjects during the
REST and HG phases was performed. Since the normality of distributions was not
verified and given the small number of subjects, we used the paired non-parametric
Wilcoxon signed-rank test, with a significance level of 5%.

Results. FIG. 6.10 shows the distributions of the ER values evaluated in the
selected regions within the MN at REST and during the HG task. All five ROIs exhibit
a statistically significant decrease in the complexity of brain dynamics in both the α
(panel a) and β (panel b) frequency bands, with this trend observed in 80-100% of
subjects. Moreover, the statistical significance of the ER values is greater in the α band
(100% regardless of the experimental condition) compared to the β band, where a
higher percentage of significance is observed during HG. Although not statistically
tested, the complexity of brain regions within the MN generally appears lower in the
β band.

The results of the pairwise analysis are summarized in FIG. 6.11 depicting the
distributions over the whole group of subjects of the MIR values for each possible
pair of ROIs at REST and during HG. Regardless the frequency band analyzed,
the pairwise interactions, measured through the MIR, tend to decrease during the
execution of the motor task, though the modulation is statistically significant only
in the α band for almost all the couples with the exception of Ic−M1;SMA, Ii−M1;i−pMC,
Ic−pMC;i−pMC and Ii−pMC;SMA (panel a). Moreover, surrogate data analysis reveals the
presence of statistically significant pairwise interactions in 80-90% of the subjects.
This also occurs in the β band even if none of dynamical interactions show statistically
significant modulation with the experimental condition (panel b).

FIG. 6.12 displays the trends of HOIs measured through the OIR, integrated over
the α (panel a) and β (panel b) frequency bands, for each subject in the experimental
group performing the motor task. Overall, there is an increment of the OIR quantity
with the order of interaction, regardless of the experimental condition and the fre-
quency range analyzed. Only a small subset of triplets shows a statistically significant
decrement of the OIR with the motor task. Specifically, the triplet involving M1,
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pMC, and SMA exhibits a statistically significant modulation in both the ipsilateral
and contralateral brain hemispheres in the α band (panel a), and only in the con-
tralateral hemisphere in the β band (panel b). In the α band, all quadruples exhibit a
significant decrease in the OIR measure during HG, except for Ωc−M1;i−M1;i−pMC;SMA.
In contrast, in the β band, only the quadruplet c−M1; i−M1; c− pMC; i− pMC
shows a statistically significant reduction in OIR associated with motor task execution.
While this trend is evident in 80% of subjects, surrogate analysis reveals that only
a small proportion (30% at REST and 50% during HG) have OIR values above the
threshold of significance (panel b). Finally, the analysis of the OIR at order five, i.e.,
Ωc−M1;i−M1;c−pMC;i−pMC;SMA, reveals a statistically significant presence of HOIs at
REST (100% of subjects), which slightly decreases during HG (90% of subjects). The
modulation of this OIR measure with HG is statistically significant only in the α band,
supporting the results obtained for lower orders where HOIs were clearly identified.

Overall, the modulation of information-theoretic measures at any order of interac-
tion is most pronounced in the α frequency band, where the strongest modulation
occurs in the contralateral hemisphere, despite the involvement of both hemispheres.
Moreover, the analysis of MIR and HOIs at orders 3 and 4 reveals a reduction in
interhemispheric information flow mediated by the SMA. In contrast, the analysis
of the β frequency band shows almost exclusive involvement of the contralateral
hemisphere at order 3, as evidenced by the triplets c−M1; c− pMC; SMA. At order
4, modulation of HOIs is observed with involvement limited to M1 and pMC in both
hemispheres.

Discussion and Conclusion. This study presents the first comprehensive char-
acterization, of node-specific, pairwise, and high-order dynamical interactions in
the human brain during a motor task performed by ten healthy volunteers. The
interactions within the contra- and ipsilateral motor networks were hierarchically
categorized across five brain regions based on reconstructed source activity. The
entropy rate, mutual information rate, and O-information rate were employed to
reveal complex brain dynamics in the motor network and assess the impact of motor
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task execution on: (i) the predictability of internal dynamics within each brain region
of the MN; (ii) the modifications in dynamically shared information between pairs of
brain signals; and (iii) the balance between synergy and redundancy across groups of
brain regions.

The investigation of brain dynamics complexity has been quite limited, with only
a few studies analyzing brain signals at the sensor level over the past two decades
(Antonacci et al., 2024; Erla et al., 2011; Zhang, Roy, and Jensen, 2001; Bhattacharya,
2000). Our analysis revealed a reduction in the complexity of the individual dynamics
within both the contralateral and ipsilateral hemispheres of the motor network during
movement execution, with greater persistence in the alpha frequency band. This
reduction can be related with previous studies obtained at the level of scalp sensors
and with both linear and non-linear estimators which have shown how motor task
execution is related to a decreased complexity of brain signals (Antonacci et al., 2024)
and how the emergence of a dominant rhythm can be responsible for an increase of
predictability in brain dynamics (Faes, Erla, and Nollo, 2012). The stronger evidence
for this significant trend in the alpha band can be attributed to the physiological
desynchronization of µ rhythms in both hemispheres during motor execution tasks,
which leads to a reduction in PSD (Arroyo et al., 1993). Since the entropy rate can
be regarded as a logarithmic equivalent of PSD, our findings on the brain’s self-
predictability in motor areas can be directly linked to this phenomenon, which is
observable through simple Fourier analysis of the brain signals.

Pertaining the interactions of order two, we exploited the concept of MIR which
provides valuable insights on the information flow brain regions. Given the exten-
sive research on pairwise connectivity in the absence of tasks, often referred to as
intrinsic connectivity (Grefkes et al., 2008), we first discuss the anatomical presence
of these connections at rest. Specifically, by examining a comprehensive database of
invasive connectivity studies in non-human primates (Stephan, 2013), we identified
connections in the macaque brain: between the SMA and both the ipsilateral and
contralateral M1 (Rouiller et al., 1994), between the SMA and both the ipsilateral
(Luppino et al., 1993) and contralateral pMC (Boussaoud et al., 2005), and between
the pMC and both ipsilateral and contralateral M1 (Rouiller et al., 1994). Our findings,
derived from a data-driven approach, revealed statistically significant dynamic cou-
pling between all cortical area combinations in nearly 100% of subjects, indicating the
existence of similar intrinsic connections in the human brain. Moreover, our analysis
revealed a statistically significant decrease in the strength of pairwise interactions in
both contralateral and ipsilateral hemispheres within the α frequency band during
motor task performance. From a physiological point of view, this decrease may be
related to the event-related potentials associated with movement preparation and
execution (Salmelin et al., 1995; Jurkiewicz et al., 2006).
Previous studies performed in the domain of the brain sources through the use of
Granger-based connectivity estimators suggested a modulation of the coupling be-
tween pMC, M1 and SMA in contra- and ipsilateral hemispheres in the α frequency
band during motor execution (Astolfi et al., 2005). Indeed, in (Friston, Harrison, and
Penny, 2003; Kasess et al., 2008) the authors exploited Dynamic Causal Modeling
highlighting a strong connectivity between SMA and M1 even if during a motor
imagery task, while the use of conditional Granger causality emphasized forward
and backward effective connectivity between SMA and other brain regions (Gao,
Duan, and Chen, 2011; Chen et al., 2009). Our results of generalized decoupling in α
frequency band are in line with the aforementioned studies and may be also related
with the strong suppressive influence of SMA exerted on M1 and on other brain
regions during motor imagery task (Pfurtscheller and Da Silva, 1999).
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At the best of our knowledge, the only work which uses the MIR measure on EEG
signals for analyzing motor execution tasks is (Antonacci et al., 2021). This study,
which focused on scalp-level analysis, reported a statistically significant reduction
in the β frequency band for the information that is dynamically shared between
group of sensors. Specifically, significant reductions in MIR were observed between
electrodes associated with M1 and pMC, as well as between M1, pMC, and SMA.
Although our study also found a statistically significant reduction in MIR within the
α frequency band, it is important to note that these results are not directly comparable
to those of (Antonacci et al., 2021). Indeed, the latter study did not account for volume
conduction effects or the IAF, which may influence the results.
Regarding interhemispheric connections, several studies have documented anatom-
ical links between M1-M1 (Rouiller et al., 1994; Jenny, 1979; Leichnetz, 1986) and
pMC-pMC (Boussaoud et al., 2005; Marconi et al., 2003) in monkeys, which can be
correlated with similar connections in the human brain at rest (Grefkes et al., 2008).
Our findings revealed statistically significant dynamic coupling in 80% of subjects for
M1-M1 and 70% for pMC-pMC, indicating that comparable intrinsic connections are
present in the human brain, as observed in primates. The analysis of MIR showed a
statistically significant decrease in coupling between ipsilateral M1 and contralateral
M1 during the unilateral HG task, with a less pronounced modulation of the pMC-
pMC coupling. This observation is consistent with the well-documented phenomenon
of interhemispheric coupling showing that unilateral motor tasks reduce connectivity
between primary motor cortices across hemispheres, while coupling between ipsilat-
eral and contralateral premotor cortices remains relatively stable (Grefkes et al., 2008;
Serrien, Ivry, and Swinnen, 2006).

From the analysis of higher-order interactions, we found an increment of the
redundancy with the order of the analyzed multiplet which is coherent with previous
studies in literature analyzing high-order interdependences over brain signals with
different approaches (Faes et al., 2022a; Antonacci et al., 2021; Valenti et al., 2022).
Moreover, the predominance of redundancy in the MN, observed in both contralat-
eral and ipsilateral hemispheres, can be related to a recent study (Luppi et al., 2022),
which characterized neuronal profiles of synergy and redundancy across different
brain networks at rest by analyzing fMRI data from healthy participants. Using a
framework that does not consider dynamic interactions among brain regions, the
authors observed a predominance of redundancy within the MN. Despite being based
on fMRI time series, their findings are consistent with our results. However, the phys-
iological interpretation of this finding remains debated in the literature, particularly
because the results stem from different types of brain signals, tasks and experimental
groups. The level of redundancy is modulated by the motor task execution to an
extent that depends on the analyzed multiplet and it is more evident in α frequency
band, where we found almost all the statistically significant differences at any order
of interaction. Specifically, when analyzing the interactions of order 3, we found a
statistically significant decrement of the OIR only for the triplets ΩL−M1;L−pMC;SMA
and ΩR−M1;R−pMC;SMA, which are representative of the activity of the contra- and
ispilateral MN. This clearly demonstrates the presence of emergent behaviors in the
brain that require higher-order measures to be unraveled, as also demonstrated in
(Antonacci et al., 2021). Moreover, this result can be partially related to previous
studies suggesting a strong interaction and involvement of M1, SMA, and pMC in
the planning and execution of hand motor tasks (Grefkes et al., 2008; Pfurtscheller,
Neuper, and Berger, 1994; Friston, Harrison, and Penny, 2003; Pfurtscheller and
Da Silva, 1999), even though these were obtained using a dyadic representation of the
interaction within the MN. Our findings regarding the involvement of the ipsilateral
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MN are consistent with previous research highlighting the crucial role of ipsilateral
hemisphere in the planning and execution of limb movements (Ding et al., 2023).
The modulation of OIR during motor task execution at orders 4 and 5 was statistically
significant in almost all quadruplets and quintuplets analyzed, highlighting a reduc-
tion of the redundancy or an increase of synergy in the interactions characterizing the
motor network. This may be physiologically linked to the interhemispheric coupling
of neural activity. Prior studies have shown that during unimanual motor tasks, both
M1 regions exert mutual inhibitory influences on each other (Ferbert et al., 1992;
Wassermann et al., 1991), potentially involving inhibitory GABAergic interneurons,
although this mechanism remains a topic of ongoing debate (Daskalakis et al., 2002).

Further Remarks and Limitations. Our work represents a seminal study aimed
at gathering initial insights and testing the hypothesis that the motor network fea-
tures higher-order mechanisms underpinning motor function. Nonetheless, the small
sample size represents a key limitation of this study. In this work, the computation of
all the information-theoretic measures reported relies on solving a linear regression
problem, whose estimation accuracy is significantly affected by the number of avail-
able data samples (Antonacci et al., 2024). For our purpose, we had 1024 samples (4
seconds) available for each of the 5 brain regions, and we could not fit more than the 5
ROIs with a model order equal to 16 to avoid that the linear problem became ill-posed
(Antonacci et al., 2020; Antonacci et al., 2021). Although the literature is still de-
bated, some studies suggest that brain signals exhibit significant complex fluctuations
indicative of nonlinear processes (Hazarika, Tsoi, and Sergejew, 1997). Nonlinear
estimators are therefore recommended to fully capture the intrinsic nature of these
signals (Stam, 2005). However, many nonlinear estimation methods require long data
segments for reliable application and often assume signal stationarity, which may not
be feasible with extended EEG recordings. Additionally, model-free approaches that
can reliably estimate higher-order interactions are still lacking, making it challenging
to fully characterize dynamic interactions between brain regions. As a final remark,
the five ROIs were chosen based on priori works (Pirovano et al., 2022),(Pirovano
et al., 2023) where the centroid coordinates in the MNI space have been used to
ensure that the selected brain areas were similar in volume. Then, it is important
to note that modifying the selection of ROIs or the definition of conduction volume
could impact the obtained results. However, given the limited spatial resolution of
EEG (approximately 1-2 cm), small variations in ROI size around the same centroid
coordinates should have a relatively minor effect on the outcomes.

Overall, our results demonstrated that motor task execution: (i) reduces the com-
plexity of brain dynamics, making them more predictable due to the physiological
desynchronization of µ rhythms; (ii) diminishes the strength of the pairwise dynamics
within both ipsilateral and contralateral motor networks, as well as in interhemi-
spheric interactions, as a result of the suppressive influence of the supplementary
motor area on several brain regions and transcallosal inhibition; and (iii) modulates
the OIR value as a result of hierarchical interactions between anatomically connected
brain regions, reflecting a decrease in redundancy (or an increase in synergy) at
different orders.

6.3 Summary of chapter 6

In the field of Network Neuroscience, neural activity is investigated using static/dynamic
measures of brain functional connectivity in different experimental conditions and
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patho-physiological states. We opened this chapter with a detailed discussion of the
main differences between fMRI and EEG connectivity analyses, which have led us to
differentiate the type of investigation performed on the available data. Indeed, while
in the case of fMRI we have followed existing approaches which disregard tempo-
ral correlations between the variables and thus perform a zero-lag analysis mostly
based on undirected functional connectivity measures (Friston, 1994), EEG analysis
is known to require more sophisticated techniques taking into account the causal
relationships among the investigated processes (Rizkallah et al., 2020). Nevertheless,
shifting from traditional time-averaged measures to capturing the finer temporal
fMRI fluctuations of functional connectivity could be essential for understanding
brain functions in diverse states, as well as individual differences and internal state
changes thereby enabling fMRI assessments at the single-subject level (see, e.g., Chen,
Rubinov, and Chang, 2017; Novelli and Razi, 2022). However, fMRI-based dynamic
functional connectivity analysis presents significant challenges, requiring an effort to
avoid false effects, an understanding of the hemodynamic nature of fMRI signals,
and awareness of non-stationary artifacts within the data (Chen, Rubinov, and Chang,
2017). Further, we have shown how pairwise approaches to the study of brain con-
nectivity, although highly effective, cannot fully capture the interplay among the
multiple units of a complex neural system (Battiston et al., 2020; Faes et al., 2022a) (see,
e.g., the theoretical example of SECT. 3.3.1). Recognizing and modeling high-order
functional structures has become a crucial and evolving area of Network Neuroscience
(Bassett and Sporns, 2017; Battiston et al., 2020), where HOIs have been suggested
as fundamental components of brain interactions (see, e.g., Tononi, Sporns, and
Edelman, 1994; Luppi et al., 2021).

Overall, the application of OI-based high-order information measures to resting-
state BOLD signals has demonstrated that high-order synergies represent a kind of
shadow structure emerging from resting-state brain activity and missed by bivariate
functional connectivity approaches, which indeed do not provide an overall map
of the statistical structure of the network. Furthermore and more interestingly, the
utilization of OI gradients evidenced peculiar connectivity networks contributing
to redundancy and synergy in the large-scale organization of fMRI networks, and
confirmed that gradients of increasing order tend to highlight less redundant/more
synergistic interactions thus acquiring a key role in OI-based high-order network
analyses. Remarkably, we showed that the healthy brain probed by fMRI features
(i) a default mode network probably associated to the least redundancy, and (ii)
a somatosensor network which instead could play a major redundant role; (iii)
moreover, we detected the emergence of a synergistic circuit in the resting brain
made of visual, somatomotor and ventral attention which has not been observed in
previous studies.

On the other hand, applications of dynamic hierarchical information measures
(Faes et al., 2022a; Sparacino et al., 2024b) to EEG signals documented an overall
prevalence of redundancy for high-order brain interactions, as well as the emergence
of synergistic circuits not retrievable from a pairwise analysis.
Dominance of redundancy for HOIs emerging from central, contra- and ipsi-lateral
scalp areas, with prominent peaks in the α band, was found during motor task execu-
tion, probably ascribed to the effects of volume conduction that blur the information
identified at the level of scalp EEG sensors (Steen et al., 2019). Based on reconstructed
source activity, the interactions within the contra- and ipsi-lateral motor networks
were then hierarchically categorized across five brain regions. Results demonstrated
that motor task execution modulates the high-order interactions between anatomi-
cally connected brain regions, reflecting a decrease in redundancy (or an increase in
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synergy) at different orders. The latter finding is of remarkable interest and reflects
the emergence of high-order interaction mechanisms not retrievable from EEG signals
acquired on the scalp. A predominance of redundant interactions among the default
mode, the executive control and the motor networks was also found both before and
after the rehabilitation following subacute stroke events. After rehabilitation, the role
of the default mode as a common source of causal interactions from the executive
control and the motor networks allowed to detect an increased shift toward less
redundant and more synergistic behaviors.
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Part IV

Conclusion
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Chapter 7

Conclusions and Future Directions

In this thesis, we have drawn a pathway which connects univariate to bivariate to
high-order network analysis, as well as static and dynamic approaches to the study
of complex physiological systems, in the currently developing fields of Network
Physiology and Network Neuroscience.

7.1 A Picture of the Complex Interactions in Physiological
and Brain Networks of Multiple Nodes

To sum up our considerations, give me the chance to tell you a story about what you
have read up to now.

Imagine to be an external observer looking at a big picture on a white wall, where
two nodes of two different colors are depicted. Why do they have diverse colors?:
they have a different level of information content. The information content associated
to the two nodes mainly depends on their intrinsic time and spectral features, but may
vary over time due to internal/external drivers of the node dynamics. The entropy
and entropy rate quantify this property in the case of random variables and processes,
respectively; their computation is essential to retrieve basic knowledge on the activity
of the single node in a variety of experimental conditions and physiological states. In
static analysis, activity simply refers to the state of the system mapped by the node
under examination, whereas in dynamic analysis, the activity is quantified as the
current state of the system (at the present time), the latter dependent on the past
states, and thus it takes into account the temporal statistical structure of the process.
An exemplary reminder is the beat-to-beat time series of arterial compliance, which
we characterized at a single-node-level in SECT. 5.1 (Sparacino et al., 2024a): this
exploratory investigation led us to draw some preliminary conclusions about its
dynamic nature in response to the postural stress. In that case, the utilization of
our new measure of linear self-predictability (Sparacino et al., 2024a) was crucial
in identifying both time and frequency-specific patterns of self-dependencies in the
process. Still, we do not know if the observed behaviors, mainly highlighting the
importance of low frequency fluctuations when the process has to cope with the
physiological perturbations due to the orthostatic challenge, are truly due to self-
effects or rather led by unobserved drivers of compliance variability. For this reason,
let us move a bit forward.

If you look at the picture, two directional links of different widths have appeared
connecting the two nodes. Why do they have diverse widths? They are associated
with diverse underlying physiological mechanisms which retain distinct intensity
and significance. Here, you can investigate the mutual information shared between the
nodes as the amount of information obtained about one node by observing the other,
as well as causality patterns between the two nodes, thus identifying the emergence of
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a preferred direction of interaction leading the dynamics of the couple. Cardiorespi-
ratory, cardiovascular and cerebrovascular closed-loop interactions have been widely
investigated through classical dynamic measures of, e.g., mutual information rate and
Granger causality (see, e.g., SECT. 5.4 (Pernice et al., 2022a), 5.5 (Pernice et al., 2022b)
and 5.6 (Sparacino et al., 2023a), where the well-known physiological mechanisms
of respiratory sinus arrhythmia, cardiac baroreflex and cerebral autoregulation have
been explored in patho-physiological states and in response to different external
stressors). Exemplary applications to cardiovascular, cardiorespiratory and cere-
brovascular closed-loop systems evidenced well-known behaviors including, e.g.,
the increase of the causal interaction along the baroreflex in healthy subjects and
the drop of cardiovascular interactions in patients prone to develop postural-related
syncope at the low frequencies, the increase of the information transferred along the
pressure-to-flow link with the postural stress, suggesting a progressive weakening of
cerebral autoregulation in syncope subjects, as well as the tilt-induced decrease of the
rate of information shared between cardiac and respiratory variables, reflecting a de-
crease of the strength of cardiorespiratory interactions due to sympathetic activation
and vagal withdrawal. Nevertheless, the white wall you are looking at, where the
two nodes and the two links are depicted with their different properties, is slightly
becoming more crowded. Indeed, despite unobserved confounders of physiological
closed-loop systems have always been neglected in bivariate analysis, they still play
a key role in determining the observed emergent behaviors (see, e.g., the role of
arterial carbon dioxide in guiding cerebral blood flow variability independently of
blood pressure changes (Cencetti, Bandinelli, and Lagi, 1997; Panerai et al., 1999);
(Sparacino et al., 2023a), or the respiratory-related fluctuations of arterial pressure
transmitted to the heart via the baroreflex (Bernardi et al., 1997)). Moreover, in the
context of static/dynamic analyses of fMRI/EEG brain connectivity mostly based
on bivariate measures of (directional) coupling such as mutual information or directed
coherence, respectively, it has been widely shown how, although pairwise approaches
are highly effective, computationally convenient and of more intuitive understanding
(see, e.g., the application to fMRI BOLD signals in SECT. 6.1.1), such measures cannot
fully capture the interplay among the multiple units of a complex neural system, as
also demonstrated in the theoretical example of SECT. 3.3.1.

Therefore, let the picture evolve to denser shades together with your awareness
that a complete description of a complex physiological network should require the
involvement of all the variables participating in information sharing circuits within
the network itself. This means that new nodes appear on the wall, and that links
become hyperlinks grouping from two to N distinct nodes. In the context of Network
Physiology, analyses exploiting hierarchical interaction measures have highlighted
the redundant nature of cardiovascular, cardiorespiratory and cerebrovascular in-
teractions, and documented the relevance of separating low and high frequency
contributions to elicit the driving role of respiration on cardiovascular and cere-
brovascular variables; this allowed to confirm that HOIs can have different nature for
different rhythms because synergistic and redundant behaviors generally alternate
in different bands of the frequency spectrum. On the other hand, the application of
OI-based high-order information measures to resting-state BOLD signals has demon-
strated that high-order synergies represent a kind of shadow structure emerging
from resting-state brain activity and missed by bivariate functional connectivity ap-
proaches (Sparacino et al., 2023c). The utilization of OI gradients evidenced peculiar
connectivity networks contributing to redundancy and synergy in the large-scale
organization of fMRI networks, and confirmed that gradients of increasing order tend
to highlight less redundant/more synergistic interactions thus acquiring a key role in
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OI-based high-order network analyses (Scagliarini et al., 2024). Further, exemplary
applications of dynamic hierarchical information measures to EEG signals (see, e.g.,
Sparacino et al., 2022a; Pirovano et al., 2023; Sparacino et al., 2024b) documented an
overall prevalence of redundancy for high-order brain interactions, as well as the
emergence of synergistic circuits not retrievable from a pairwise analysis.

7.2 Simultaneous Evaluation of Information-Theoretic Mea-
sures at Different Hierarchical Levels

At this point, you may think that the picture is too complicated to be fully under-
stood, and that the task of a complete inclusion is nearly impossible, and you may
be right. Indeed, a comprehensive characterization of the intricate dynamics taking
place in different patho-physiological conditions and in response to a variety of inter-
nal/external stressors is quite burdensome due to practical issues related to, e.g., the
lack of non-invasive assessment techniques of meaningful drivers of cardiovascular
and cerebrovascular interactions (such as the activity exerted by the autonomy ner-
vous system on cardiac, vascular and respiratory variables) or computational load,
significantly increasing with the number of network nodes. Nonetheless, in the past
years many research studies have gracefully moved forward towards the characteriza-
tion of physiological sub-systems involving variables of clinical relevance in the field
of Network Physiology, such as cardiac, vascular, respiratory and cerebral variables
(Faes et al., 2022a); (Ivanov, 2021). Further, recognizing and modeling high-order
functional structures, characterized by statistical interactions involving more than
two network units, has become a crucial and evolving area of Network Neuroscience
(Bassett and Sporns, 2017; Battiston et al., 2020), where high-order interactions have
been suggested as fundamental components of complexity and functional integration
in brain networks (Tononi, Sporns, and Edelman, 1994), and proposed to be linked to
emergent mental phenomena and consciousness (Luppi et al., 2021).

In this frame, our newly developed framework, based on a comprehensive assess-
ment of single-node, pairwise and especially high-order effects in complex systems
of multiple nodes (Sparacino et al., 2024b) acquires a meaningful relevance, laying a
smooth groundwork from which future studies on complex physiological and brain
interactions involving more than two sub-systems may have the opportunity to draw
new and insightful conclusions on the nature of the emergent interaction patterns.
We remark that, in spite of the doubtless usefulness of such information measures
for the separate assessment of self-predictability, causality, autonomy and high-order
relationships among the data in networks of multiple nodes, the innovative poten-
tial of our framework mainly resides in the possibility to perform a simultaneous
evaluation of these nontrivial relationships at different hierarchical levels involving
different subgroups of nodes. Then, comparing the resulting patterns emerging at
the multiple investigated levels would shed light on the complementarities of the
information measures, as well as on the nature of the explored networks intended as
structural pairwise links and/or redundant/synergistic informational circuits. For
instance, we showed how dynamic high-order measures such as the O-information
rate can correctly capture the synergistic and/or redundant characters of interaction
pathways involving multiple processes with given structures (see, e.g., panels f,g
of FIGS. 4.9 and 4.10 in SECT. 4.3.3.1), as well as that pairwise approaches such as
the mutual information rate may fail depending on the underlying structural links
among the processes (panels c,e of FIG. 4.10 in SECT. 4.3.3.1).
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Crucially, the expansion of the single-node (entropy rate), pairwise (mutual in-
formation rate) and high-order (O-information rate and its gradient) measures in
the frequency domain allows to provide a spectral representation of the information
processed in the analyzed network, as well as to focus on specific frequency bands
related to oscillations with physiological meaning. This acquires a remarkable em-
phasis when dealing with cardiovascular, cerebrovascular, respiratory and neural
signals, rich of oscillatory content located at different scales. The possibility to iden-
tify, e.g., frequency-specific redundant/synergistic informational circuits may allow
to interpret the intricate physiological mechanisms underlying diverse behaviors
during the resting state or task accomplishment, such as motor execution tasks (see,
e.g., Sparacino et al., 2022a and SECT. 6.2.5), in response to a given stressor (see, e.g.,
Sparacino et al., 2022a; Faes et al., 2022a; Mijatovic et al., 2024a), in the presence of
pathological states affecting, e.g., brain regions, such as subacute ischemic stroke (see,
e.g., Pirovano et al., 2023 and SECT. 6.2.5).

7.3 Future Perspectives

The application of our hierarchical high-order network analysis to physiological
signals, including cardiovascular, cardiorespiratory and cerebrovascular time series,
as well as to neural networks probed by fMRI/EEG, offers a powerful framework
for unraveling the complex interdependencies underlying human physiology and
brain dynamics, paving the way for more comprehensive assessments of healthy and
diseased conditions. Future directions will likely focus on enhancing computational
methods to capture non-linear and multiscale interactions across different physio-
logical systems and brain regions. We remark that the approach proposed in this
thesis is highly robust but limited to linear interactions, whereas current model-free
solutions are impractical as we move from univariate to bivariate and high-order
analysis due to the issue of curse of dimensionality. Forthcoming works might seek a
compromise between fully parametric models and fully model-free approaches (e.g.,
by investigating the role of local prediction models). Furthermore, it is worth noting
that high-order measures evidencing the balance between redundancy and synergy
in the analyzed network (such as the OI/OIR) do not put in evidence multiplets of
variables which are both redundant and synergistic with equal strength, and often
obscure the detection of HOIs. Expansions to dynamic processes of well-known
approaches which separately evaluate redundancy and synergy, such as the partial
information decomposition, are thus envisaged. In this thesis, we mentioned the
significant role that our newly developed partial information rate decomposition
framework applied to random processes has in accurately disentangling the network
structure while considering the temporal statistical structure of the processes. Future
applications to networks of physiological time series should focus on these aspects to
better elicit unique rates of information shared and/or transferred among the nodes
of the network. Last but not least, the incorporation of wearable technologies and
continuous monitoring systems would enable real-time analysis and personalized
health tracking; integrating these measures with multimodal data, such as combining
fMRI with electrophysiological recordings or behavioral assessments, could offer
deeper insights into brain function in a variety of patho-physiological states. Ap-
plying these techniques in clinical settings would have a key role for early detection
of disease, patient stratification, and individualized treatment plans. Advances in
machine learning are expected to play a major role in automating these analyses,
ultimately improving our ability to predict and manage physiological dysfunction.
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Appendix A

This chapter presents the use of surrogate (SURROGATE DATA ANALYSIS) and boot-
strap (BOOTSTRAP DATA ANALYSIS) data analyses to statistically validate the time and
frequency domain interaction measures defined in CHAPT. 3 and 4 for static and dy-
namic networks, respectively, in the linear parametric framework. Specifically, while
surrogate methods are generally exploited to validate single-node (THE DYNAMICS

OF THE SINGLE NODE) and pairwise activities in bivariate (COUPLED DYNAMICS

BETWEEN PAIRS OF NODES, AUTONOMOUS DYNAMICS IN BIVARIATE PROCESSES)
or multivariate (LINK-SPECIFIC ANALYSIS OF HOIS) settings, bootstrap approaches
are well suited to the statistical validation of high-order measures characterizing the
interactions between the multiple nodes of a complex network (AN APPROACH TO

THE STATISTICAL ASSESSMENT OF HIGH-ORDER INTERACTIONS). Moreover, we
also employed bootstrap data to assess the statistical significance of pole-specific
measures of LSP as discussed in SPECTRAL MEASURES OF SELF-PREDICTABILITY OF

SINGLE NETWORK NODES.
Validation is performed at the level of individual realizations of the observed vari-
ables ({V1, . . . , VM} and {Y1, . . . , YQ} for static and dynamic systems, respectively)
obtained in the form of the sets of time series vm = {vm(1), . . . , vm(L)}, yq =

{yq(1), . . . , yq(L)}, where m = 1, . . . , M; q = 1, . . . , Q and L is the length of the
time series.

Surrogate data analysis

It is common practice to statistically validate the estimated metrics of univariate
and bivariate interactions involving one or two observed network nodes, which
corresponds to assess whether the investigated (blocks of) time series own significant
self-dependencies or are significantly coupled, i.e., whether the estimated value of
autonomy or pairwise connectivity is significantly nonzero. Originally, the method of
surrogate data was proposed to investigate the existence of non-linear dynamics in
time series (Theiler et al., 1992; Schreiber and Schmitz, 1996) but later it was exploited
to test the significance of coupling measures in EEG recordings (Lachaux et al., 1999).
Generally speaking, due to practical estimation problems, nonzero values of the
estimated connectivity index can occur even in absence of a real coupling between
the two considered series. To face this issue, the statistical significance of a given
coupling measure has been typically assessed by estimating its distribution and
comparing it to a given arbitrary threshold. However, a rigorous and more powerful
method would consist in defining a threshold level on the basis of statistical criteria
derived from the sampling (theoretical or empirical) distribution of the used estimator.
Theoretical approaches were largely used to assess the statistical significance of the
coherence (Koopmans, 1995) and directed coherence (Eichler, 2006) estimators (Toppi
et al., 2016), but they present some limitations which cannot be neglected in real
applications (Porta and Faes, 2015). Therefore, the empirical distribution of the
considered index for the estimation of a threshold level has been used in place of
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theoretical approaches (Challis and Kitney, 1991), commonly obtained by exploiting
the method of surrogate data. According to this approach, the coupling index is
computed over a set of surrogate time series, which are derived from the original
series by a procedure mimicking their properties, but destroying their coupling. The
confidence interval (CI) of the empirical distribution is then computed under the null
hypothesis of full uncoupling between the time series; the 100(1− α)th percentile of
the distribution (which represents the threshold value) is then compared with the
observed value, and the null hypothesis is accepted or rejected at the α significance
level depending on the position of the observed value with respect to the threshold
(Faes et al., 2004). Indeed, if the index assessed over the original series is above the
threshold, the null hypothesis is rejected with type I error probability below α. The
same concepts can be exploited to assess the statistical significance of measures of
self-dependencies, characterizing the information content of a given time series.

In the past decades, different algorithms have been proposed to generate surrogate
time series sharing some given properties with the original but being uncoupled, to
validate measures of coupling, causality and self-dependencies. In the following, we
will discuss these approaches in contexts where the observed network is composed
of one or two nodes, which allow the statistical validation of entropy rate and time
domain self-predictability measures (THE DYNAMICS OF THE SINGLE NODE), as
well as mutual information rates, transfer entropies (COUPLED DYNAMICS BETWEEN

PAIRS OF NODES), isolation and autonomy measures (AUTONOMOUS DYNAMICS IN

BIVARIATE PROCESSES). Moreover, the case of link-specific analysis of HOIs will be
discussed (LINK-SPECIFIC ANALYSIS OF HOIS).

The Dynamics of the Single Node

Let us assume to observe only one network unit. Measures of single-node activity,
e.g., the ER (4.1) or the LSP (4.3) for dynamic processes, can be statistically validated
through a simple procedure described below.

Randomly Shuffled (RS) Surrogates. They are realizations of i.i.d. stochastic
processes with the same mean, variance and probability distribution as the original
series, generated by randomly permuting in temporal order the samples of the
original series (Palus, 1997). This procedure destroys the autocorrelation function.

Statistical validation of the time domain ER (Sparacino et al., 2024b) and LSP
(Sparacino et al., 2024a) measures is performed by generating RS surrogates, ac-
cording to the null hypotheses of fully unpredictable process without temporal
statistical structure, and absence of self-dependencies within the investigated process,
respectively. The procedure is repeated Ns times to obtain the surrogate series ys

q
(q ∈ 1, . . . , Q; s = 1, . . . , Ns). The time domain ER and LSP can be then estimated on
each surrogate, or block of surrogates if the processes in Y can be grouped into M
blocks {X1, . . . , XM}, yielding the surrogate distributions from which the significance
thresholds are derived taking the 100(α)th and 100(1− α)th percentiles, respectively,
where α is the prescribed significance level. The original time domain ER and LSP
values are deemed as statistically significant if they stand below and above the corre-
sponding thresholds, respectively. As regards the spectral counterparts, the spectral
ER profiles (4.5) are estimated on each surrogate and integrated to get surrogate
ER values in specific frequency bands, yielding the surrogate distributions from
which the significance thresholds are derived taking the 100( α

2 )
th and 100(1− α

2 )
th

percentiles (Sparacino et al., 2024b). The original frequency domain ER value, i.e., the
value obtained from integration of the spectral ER profile within a given frequency
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band, is deemed as statistically (non) significant if it stands (below) above the (lower)
higher threshold.
Validating the spectral LSP (4.9) is more challenging. As far as we know, no tech-
niques exist which are able to focus on the statistical validation of a single oscillation
with a given frequency without altering other spectral patterns of the investigated
process. For this reason, in Sparacino et al., 2024a we proposed an empirical approach
based on bootstrap data analysis (Politis, 2003) which will be detailed in BOOTSTRAP

DATA ANALYSIS.
A theoretical example showing the use of RS surrogates to statistically validate

time domain LSP measures can be found in SECT. 4.1.3, while applications of the
proposed method to physiological variables are shown in SECT. 5.1, where the LSP
is tested, and SECT. 6.2.4, 6.2.5, where time domain and spectral ER measures are
validated.

Coupled Dynamics between Pairs of Nodes

When two nodes are observed, more sophisticated approaches are needed to validate
the computed measures of pairwise interactions between the nodes.

Iterative Amplitude Adjusted FT (iAAFT) surrogates. This method repre-
sents an advancement over the FT method (Theiler et al., 1992), which exploits phase
randomized surrogates, i.e., realizations of linear stochastic processes with the same
power spectra as the original series, obtained by a phase randomization procedure
applied independently to each series. Similarly, iAAFT surrogates (Schreiber and
Schmitz, 1996) are realizations of linear stochastic processes with the same autocorre-
lations and probability distributions as the original series, while the power spectra
are the best approximation of the original ones according to the number of iterates.
The procedure generates surrogate time series by computing the FT of the original
series, substituting the Fourier phases with random numbers uniformly distributed
between 0 and 2π, and then performing the inverse FT. To address the main limitation
of the FT method, consisting in the distortion of the amplitude distribution when
such distribution is not Gaussian, an iterative procedure is implemented, which
alternately ensures that the surrogate series maintains both the same power spectrum
and amplitude distribution as the original series.

iAAFT surrogate time series which preserve the individual linear correlation prop-
erties of two series but destroy any correlation between them have been exploited
to statistically validate MI measures for static systems (see, e.g., Sparacino et al.,
2023c), as well as MIR and TE measures for dynamic systems (see, e.g., Pirovano et al.,
2023). In the latter case, the null hypothesis of full uncoupling is often used in direc-
tionality analysis as it is compatible with the absence of causal relation (Kamiński
et al., 2001; Chávez, Martinerie, and Le Van Quyen, 2003; Lizier et al., 2011; Ve-
jmelka and Paluš, 2008; Musizza et al., 2007; Faes, Nollo, and Chon, 2008; Faes,
Porta, and Nollo, 2008). The procedure is repeated Ns times to obtain the set of
surrogate series vs

m (m = 1, . . . , M; s = 1, . . . , Ns, in the case of static analysis), or ys
q

(q = 1, . . . , Q; s = 1, . . . , Ns, in the case of dynamic analysis). The MI measures can be
then estimated on each surrogate pair {vs

i , vs
j} (i, j = 1, . . . , M, i ̸= j) thus yielding the

surrogate distributions Is(vj; vi); similarly, the MIR and TE measures can be estimated
on each surrogate pair {ys

i , ys
j} (i, j = 1, . . . , Q, i ̸= j), or on pairs of blocks of surro-

gates if the processes in Y can be grouped into M blocks {X1, . . . , XM}, yielding the
surrogate distributions Is

yj;yi
, and Ts

yj→yi
, Ts

yj→yi
. From the the surrogate distributions,
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the significance thresholds are derived taking the 100(1− α)th percentiles. Finally, the
original MI, MIR and TE values are deemed as statistically significant if they stand
above the corresponding thresholds. Remarkably, the same procedure applies to both
time and frequency domain MIR and TE values, the latter obtained by integrating the
spectral MIR and TE profiles within specific frequency bands of interest. Moreover,
we note that iAAFT surrogates are used for TD and GC measures as well, which
are equivalent to MIR and TE measures up to a factor 2 under the hypothesis of
Gaussianity (Barrett, Barnett, and Seth, 2010; Chicharro, 2011).

It is remarkable to highlight that surrogates preserving the power spectrum of
the original series (FT, iAAFT) are recommended to avoid false coupling detections
in the presence of oscillations occurring at nearby frequencies but due to different
mechanisms, as may frequently happen with brain oscillations (Faes et al., 2004).

iAAFT surrogates have been exploited in our works (see, e.g., Pernice et al., 2022a;
Pirovano et al., 2023; Mijatovic et al., 2024a) to assess the statistical significance of
pairwise interaction measures (e.g., the MIR). Exemplary applications are presented
in SECT. 5.4, 5.11, 6.2.3.

Autonomous Dynamics in Bivariate Processes

In the context of a dynamic bivariate analysis where Y = [Y1, Y2] is the observed
process, to test the statistical significance of the time and spectral domain GI (4.35,
4.36) and GA (4.21, 4.44) measures, a method using explicit model equations extracted
from the data can be implemented, as we proposed in Sparacino et al., 2023a.
The method generates surrogates of the observed time series Y1 and Y2 according to
the null hypothesis of absence of causal coupling from Y1 to Y2 to test the GI (H1), or
absence of internal dynamics within the process Y2 to test the GA (H2). Specifically,
each driver series, say Y1, is fitted with the ARX model (2.4a), while the target series,
say Y2, is fitted with the AR model (2.2) to test H1 and with the X model (2.9) to test
H2. Then, in each case, pairs of surrogate time series are generated feeding the models
with noise realizations obtained shuffling randomly the samples of the estimated
residuals. Ns pairs of surrogate time series are obtained iterating this procedure, and
the time domain and spectral measures of GI and GA are computed at each iteration.
The significance of the measures, computed either in the time domain or integrating
the spectral function over the spectral bands of interest, is assessed comparing the
values obtained on the original time series with the CIs of the surrogate distribution
computed with significance α. Specifically, the GI and GA are deemed as statistically
significant if their value is respectively below the αth percentile of the GI distribution
over surrogates generated under H1, and above the (100− α

2 )
th or below the α

2
th of the

GA distribution over surrogates generated under H2. A representative application to
cerebrovascular variability is illustrated in SECT. 5.6.

Link-Specific Analysis of HOIs

Link-specific analysis of HOIs requires the assessment of the statistical significance of
the iS and ciS measures, which has relevance for the identification of limit values of
the B-index and for the corresponding inference of the network structure. As done
in Mijatovic et al., 2024a, such assessment can be performed using the method of
surrogate data. Under the null hypothesis of absence of iS or absence of ciS, the values
of iS and ciS computed from the original data are compared with the distribution of
iS/ciS computed from the surrogate sets using a test based on percentiles, run with
significance α; then, the null hypothesis is rejected (accepted) and the original iS/ciS
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measure is deemed as statistically significant (non-significant) if the original values
of iS or ciS are larger (smaller) than the (1− α)th percentile of the corresponding
surrogate distribution. Accordingly, when the estimates of iS and/or ciS are detected
as non significant the B-index is set to 1, −1, or to NaN according to FIG. 3.3.

In the analysis of static systems mapped by random variables, the procedure described
above is implemented using the MI or the cMI as discriminating statistic for the
quantification of iS or ciS. In this case, realizations of the multiple observed random
variables are available in the form of numeric sequences, and surrogate data are
generated by independently shuffling in random order the sequences relevant to each
variable, so as to make the surrogate variables independent while preserving their
marginal distributions (RS surrogates). On the other hand, in the analysis of dynamic
systems mapped by random processes whose realizations are multivariate time series, the
MIR or the cMIR were used as discriminating statistic and surrogate time series were
generated using the iAAFT procedure which preserves the individual properties of
each time series while destroying the interactions among them.

Theoretical examples showing the use of RS and iAAFT surrogates to statistically
validate static and dynamic link-specific measures of HOIs (i.e., the B-index and the
B-index Rate, respectively) can be found in SECT. 3.5, 4.13, respectively. An exemplary
application to physiological variables is presented in SECT. 5.11.

Bootstrap data analysis

The bootstrap method (Efron, 1979) has been used to identify CIs for high-order
interaction measures such as the OIR and the OIR gradient (and their correspondent
static versions, i.e., the OI and OI gradient) and thus assess their statistical significance
in a network of multiple interacting nodes (Sparacino et al., 2023c; Sparacino et
al., 2024b) (AN APPROACH TO THE STATISTICAL ASSESSMENT OF HIGH-ORDER

INTERACTIONS). Moreover, we also exploited this method to assess the statistical
significance of pole-specific measures of linear self-predictability, as in Sparacino
et al., 2024a (SPECTRAL MEASURES OF SELF-PREDICTABILITY OF SINGLE NETWORK

NODES).
In both cases, the block bootstrap data generation procedure (Politis, 2003), con-

sisting in a block resampling of a given time series, can be followed to generate,
starting from the time series vm (static) or yq (dynamic), Nb bootstrap pseudo-series
vb

m = {vb
m(1), . . . , vb

m(L)} or yb
q = {yb

q(1), . . . , yb
q(L)} (b = 1, . . . , Nb), which maintain

all the individual properties of the original time series, i.e., mean, variance and prob-
ability distribution. Block resampling of the observed time series is not the only
approach to bootstrapping non-i.i.d. data. Almost immediately following Efron’s
paper (Efron, 1979), the residual-based bootstrap for linear regression was introduced
and studied (Freedman, 1981; Freedman, 1984; Efron and Tibshirani, 1986; Effron and
Tibshirani, 1993). The residual-based bootstrap amounts to a i.i.d. bootstrap of the esti-
mated residuals. If the assumed AR model holds true, then the above residual-based
bootstrap works well for the sample mean and other more complicated statistics
(Politis, 2003).
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Spectral Measures of Self-Predictability of Single Network Nodes

A method for the statistical validation of spectral LSP measures was proposed
in Sparacino et al., 2024a, which exploits the residual-based bootstrap. Specifi-
cally, the bootstrap pseudo-series yb

q = {yb
q(1), . . . , yb

q(L)} (b = 1, . . . , Nb) are gen-
erated by feeding the AR model (2.2) identified on the original time series yq with
bootstrap pseudo-residuals. The procedure creates the bootstrap pseudo-residuals
ub

yq
= {ub

yq
(1), . . . , ub

yq
(L)} by joining together k = L

bs
non-overlapping blocks cho-

sen randomly from the set {B1, . . . , Bk}, where bs is the size of each block, Bm =
{uyq(l), . . . , uyq(l + bs − 1)} and l is chosen randomly from the set {1, . . . , L− bs + 1}.
After generation of the bootstrap time series yb

q from the original AR model coeffi-
cients a(ar)

y,k , k = 1, . . . , p, and the bootstrap pseudo-residuals ub
yq

, the time domain
(4.3) and spectral (4.9) LSP profiles are recomputed from the new, full-size bootstrap

series yb
q to get the estimates Sb

yq
and s(κ)

b

yq
( f̄ ), respectively, with κ = 1, . . . , K; the

spectral profiles are then integrated in the desired band F to get the estimates s(F)b

yq
.

The procedure is iterated for b = 1, . . . , Nb to construct bootstrap distributions. The
significance threshold s(F)α

yq
is derived taking the αth percentile of the distribution. In

order to assess the existence of significant self-predictability in F, we exploit the fact

that the spectral profile s(F)b

yq
( f̄ ) oscillates around the value Syq

, which does not vary
with f̄ . Then, the core of the procedure lies in evaluating the degree of emergence of

the peak of s(F)b

yq
( f̄ ) in F with respect to the mean value assumed by the same spectral

profile if the oscillation is not present, i.e., Syq
. To this purpose, the original pole-

specific spectral LSP value integrated in F, s(F)
yq

, is deemed as statistically significant if

s(F)α

yq
> 1

∆F

∫
F Syq

( f̄ )d f , where ∆F is the bandwidth and Syq
( f̄ ) is the spectral profile

of the original time domain LSP, equal to Syq
∀ f .

A theoretical example showing the use of residual-based bootstrap to statistically
validate spectral LSP measures can be found in SECT. 4.1.3, while an application of
the proposed method to beat-to-beat time series of arterial compliance is reported in
SECT. 5.1.

An Approach to the Statistical Assessment of High-Order Interactions

A novel method based on bootstrap data generation for the statistical validation of
HOI measures was first explored in Sparacino et al., 2023c to assess the significance of
OI measures computed on fMRI data, and lately exploited in Sparacino et al., 2024b
to check statistical significance of OIR measures computed on both physiological and
neural networks. Specifically, the procedure creates the bootstrap pseudo-series vb

m
(yb

q) by joining together k = L
bs

non-overlapping blocks chosen randomly from the
set {B1, . . . , Bk}, where bs is the size of each block, Bm = {vm(l), . . . , vm(l + bs − 1)}
(Bm = {yq(l), . . . , yq(l + bs − 1)}) and l is chosen randomly from the set {1, . . . , L−
bs + 1}. Then, the OI (OIR) is recomputed at each order N from the new, full-size
bootstrap series vb

i1 , . . . , vb
iN

(yb
i1 , . . . , yb

iN
), with i1, . . . , iN ∈ {1, . . . , M}, N ≤ M, to get

the estimate Ωb(vN) (Ωb(yN)). The procedure is iterated for b = 1, . . . , Nb to construct
bootstrap distributions.

Confidence intervals of the bootstrap distributions can be exploited to check
the statistical significance of the absolute OI(R) values and the OI(R) increments.
Specifically, when a given OI bootstrap distribution comprises the zero threshold at
the α significance level, i.e., if the zero value is below the 100(1− α

2 )
th and above the
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100( α
2 )

th percentile of that distribution, the corresponding OI(R) measure is deemed
as not statistically significant. Moreover, the proposed bootstrap method allows
to check whether the OI(R) gradient (3.12, 4.52) due to the addition of a putative
target vi (yi) to a given lower-order group of variables vN

−i (yN
−i) of order N − 1,

with N = 4, . . . , M, is significant or not, i.e., if the OI value computed for vN (yN)
significantly differs from the same measure computed for vN

−i (yN
−i). To do that for

each order, the bootstrap distributions of the OI computed for all the multiplets of
two consecutive orders N and N− 1 can be exploited. Fixing the multiplet at order N,
all the roots of that multiplet at the preceding order N− 1, i.e., lower-order multiplets
whose elements are all contained in the high-order multiplet, are identified. Then, for
each root, the lower-order and the high-order bootstrap distributions are compared
by means of the parametric Student t-test for unpaired data. Finally, the corresponding OI
increment is deemed as significant when the difference between the two distributions
is significant at the α significance level according to the statistical test. Remarkably,
the same procedures applies to both time and frequency domain OIR values, the latter
obtained by integrating the spectral OIR profiles within specific frequency bands.

Applications of the proposed methodology to physiological data can be found in
SECT. 5.8, 6.1.1, 6.1.2, 6.2.5.

Statistical significance of the difference between experimental conditions

When the pairwise and high-order interaction measures (e.g., the MI/MIR, and
OI/OIR) are computed on a single-subject basis in two different experimental conditions,
the bootstrap distributions can be employed to assess the significance of the difference
between the two conditions through a statistical test, as we did in Sparacino et al.,
2023c. To this end, the bootstrap data generation procedure is executed in both the
analyzed experimental conditions, and the parametric Student t-test for unpaired data is
then employed to assess the statistical significance of the difference between pairs of
bootstrap distributions for a given measure.

Applications to physiological data can be found in SECT. 5.2 and 6.1.1, respec-
tively.
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Appendix B

Extended Causal Modelling

The assessment of causality, intended as the influence that a driver process exerts on
a given target, requires a proper handling of instantaneous (zero-lag) effects, i.e., effects
from one series to another occurring within the same time lag (Nuzzi et al., 2021).
In practical physiological time series modelling, instantaneous causality shows up
whenever the time resolution of the measurements is lower than the time scale of the
lagged causal influences occurring among the analysed processes. This non-delayed
effect can arise due to non-physiological factors (e.g., unobserved confounders) or fast
(i.e., within-beat) physiologically meaningful interactions (Faes et al., 2013a; Nuzzi
et al., 2021). The importance of considering instantaneous effects in the analysis of
physiological interactions, e.g., cardiovascular interactions, where zero-lag interde-
pendencies are expected to contribute significantly to the baroreflex mechanism (Faes
et al., 2013a), and of cardiorespiratory interactions, where the information transfer
from respiration to heart rate variability is expected to be negligible in the LF band
(Faes, Nollo, and Porta, 2012), was previously documented (Faes et al., 2013a; Schiatti
et al., 2015).

The classical AR models used to study causality do not incorporate instantaneous
effects, which thus remain unexplained as correlations between the model residuals
(Faes, Erla, and Nollo, 2012). Several approaches have been proposed to account for
instantaneous correlations in frequency domain measures, either using extended AR
models that incorporate zero-lag effects after determining their direction (Faes et al.,
2013a), (Pernice et al., 2022b) or keeping them as undirected but including them in
extended spectral causality measures (Nuzzi et al., 2021; Baccalá and Sameshima,
2021).

Herein, we show how these instantaneous effects can be accounted for by exploit-
ing extended AR models incorporating them after determining their direction, generally
known a priori thanks to, e.g., previous physiological knowledge (Faes et al., 2013a),
(Pernice et al., 2022b). We start noting that the strictly causal VAR model introduced
in SECT. 2.3.3 cannot account for instantaneous correlations. In fact, effects between
the variables Yi,n and Yj,n (i, j = 1, . . . , Q; i ̸= j) are not described by any coefficient in
(2.6), and are indeed translated into a correlation between the innovations, resulting
in a non-diagonal covariance matrix Σ

(var)
UY

. Nevertheless, the bivariate process Y can
also be described including instantaneous effects into the interactions allowed by the
model (Faes et al., 2013a), (Pernice et al., 2022b), leading to the compact representation

Yn =
p

∑
k=0

B(var)
Y,k Yn−k + W(var)

Y,n , (7.1)

where the set of coefficients now includes those modeling instantaneous effects
collected in the matrix B(var)

Y,0 and W(var)
Y,n contains the Q innovation processes of the

extended model. Since instantaneous correlations are now modeled through B(var)
Y,0 ,

the innovations processes have a diagonal covariance matrix Λ
(var)
WY

=
[
W(var)

Y,n W(var)
Y,n

⊺
]
.
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The procedure to identify the model (7.1) is as follows. Knowing B(var)
Y,0 , it is

possible to compute a so-called mixing matrix L =
[
I− B(var)

Y,0

]−1
and to derive the

parameters of the extended model (7.1) from those of the strictly causal model (2.6)
as B(var)

Y,k = L−1A(var)
Y,k , Λ

(var)
WY

= L−1Σ
(var)
UY

(L−1)
⊺ (Faes et al., 2013a), (Pernice et al., 2022b).

The matrix of instantaneous effects is obtained solving the instantaneous model
U(var)

Y,n = LW(var)
Y,n to get the mixing matrix L; this task is typically performed imposing a

causal order for the instantaneous effects and then following a permutation procedure
that involves application of the Cholesky decomposition (Faes et al., 2013a).
Here it is important to stress that this approach requires that instantaneous effects
are imposed along a given direction (e.g., from Yi,n to Yj,n, allowing bYjYi ̸= 0) and
are neglected along the opposite direction (i.e., from Yj,n to Yi,n, forcing bYiYj = 0).
This condition for identifiability of the extended model implies that the direction of
zero-lag effects can be set in a plausible way. Conversely, the extended model (7.1)
cannot be identified unequivocally, and the strictly causal model (2.6) should be used
to model the process.

Remarkably, the extended representation including instantaneous effects allows
to study the causal pairwise and high-order dependencies between the analyzed
processes. The information-theoretic and predictability measures defined in CHAPT.
4, whose computation relies on the theoretical concepts of vector AR modelling
detailed in CHAPT. 2, can be straightforwardly computed in the case of extended
models by using (7.1) in place of (2.6). Some applicative examples are shown in SECT.
5.3, 5.5.
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