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Abstract 

The complex orography typical of the Mediterranean area supports the 

formation, mainly during the fall season, of the so-called back-building 

Mesoscale Convective Systems (MCS) producing torrential rainfall often 

resulting into flash floods. These events are hardly predictable from a hydro-

meteorological standpoint and may cause significant amount of fatalities and 

socio-economic damages. Liguria region is characterized by small catchments 

with very short hydrological response time, and it has been proven to be very 

exposed to back-building MCSs occurrence. Indeed this region between 2011 

and 2014 has been hit by three intense back-building MCSs causing a total 

death toll of 20 people and several hundred million of euros of damages.  

Building on the existing relationship between significant lightning activity and 

deep convection and precipitation, the first part of this work assesses the 

performance of the Lightning Potential Index, as a measure of the potential for 

charge generation and separation that leads to lightning occurrence in clouds, 

for the back-building Mesoscale Convective System which hit Genoa city (Italy) 

in 2014. An ensemble of Weather Research and Forecasting simulations at 

cloud-permitting grid spacing (1 km) with different microphysical 

parameterizations is performed and compared to the available observational 

radar and lightning data. The results allow gaining a deeper understanding of 

the role of lightning phenomena in the predictability of back-building Mesoscale 

Convective Systems often producing flash flood over western Mediterranean 

complex topography areas. Despite these positive and promising outcomes for 

the understanding highly-impacting MCS, the main forecasting issue, namely 

the uncertainty in the correct reproduction of the convective field (location, 
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timing, and intensity) for this kind of events still remains open. Thus, the second 

part of the work assesses the predictive capability, for a set of back-building 

Liguria MCS episodes (including Genoa 2014), of a hydro-meteorological 

forecasting chain composed by a km-scale cloud resolving WRF model, 

including a 6 hour cycling 3DVAR assimilation of radar reflectivity and 

conventional ground sensors data, by the Rainfall Filtered Autoregressive 

Model (RainFARM) and the fully distributed hydrological model Continuum. A 

rich portfolio of WRF 3DVAR direct and indirect reflectivity operators, has been 

explored to drive the meteorological component of the proposed forecasting 

chain. The results confirm the importance of rapidly refreshing and data 

intensive 3DVAR for improving first quantitative precipitation forecast, and, 

subsequently flash-floods occurrence prediction in case of back-building MCSs 

events. The third part of this work devoted the improvement of severe hydro-

meteorological events prediction has been undertaken in the framework of the 

European Space Agency (ESA) STEAM (SaTellite Earth observation for 

Atmospheric Modelling) project aiming at investigating, new areas of synergy 

between high-resolution numerical atmosphere models and data from 

spaceborne remote sensing sensors, with focus on Copernicus Sentinels 1, 2 

and 3 satellites and Global Positioning System stations. In this context, the 

Copernicus Sentinel satellites represent an important source of data, because 

they provide a set of high-resolution observations of physical variables (e.g. soil 

moisture, land/sea surface temperature, wind speed, columnar water vapor) to 

be used in NWP models runs operated at cloud resolving grid spacing . For this 

project two different use cases are analyzed: the Livorno flash flood of 9 Sept 

2017, with a death tool of 9 people, and the Silvi Marina flood of 15 November 

2017. Overall the results show an improvement of the forecast accuracy by 
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assimilating the Sentinel-1 derived wind and soil moisture products as well as 

the Zenith Total Delay assimilation both from GPS stations and SAR 

Interferometry technique applied to Sentinel-1 data. 
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flood.	------------------------------------------------------------------------------------------------------------	175	

Figure	36:	Representation	of	the	objects	obtained	through	the	MODE	application	for	the	72	mm	
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indirect	(Panels	e,	f),	ALL-indirect-rqv	(Panels	g,	h),	Radar-direct	(Panels	i,	j),	Radar-direct-

modif	(Panels	k,	l),	Radar-indirect	(Panels	m,	n),	Radar-indirect-rqv	(Panels	o,	p)	and	

Stations-only	(Panels	q,	r).	---------------------------------------------------------------------------------	177	

Figure	37:	Comparison	among	the	9	October	2014	24	hours	QPE	from	Settepani	radar	(Panel	a),	the	

Open	Loop	QPF	(Panel	b)	and	the	QPF	of	each	member	of	the	sensitivity:	ALL-direct	(Panel	c),	

ALL-indirect	(Panel	d),	ALL-indirect-rqv	(Panel	e),	Radar-direct	(Panel	f),	Radar-direct-modif	

(Panel	g),	Radar-indirect	(Panel	h),	Radar-indirect-rqv	(Panel	i)	and	Stations-only	(Panel	j).	

Black	bold	contour	highlight	the	Bisagno	catchment	hit	subjected	to	the	flood.	 --------------	180	

Figure	38:	Representation	of	the	objects	obtained	through	the	MODE	application	for	the	72	mm	

threshold	(first	column)	and	the	96	mm	threshold	(second	column)	for	the	00-12	UTC	
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cumulated	rainfall	of	9	October	2014	event,	comparing	in	each	panel	the	object	obtained	from	
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b),	ALL-direct	(Panels	c,	d),	ALL-indirect	(Panels	e,	f),	ALL-indirect-rqv	(Panels	g,	h),	Radar-

direct	(Panels	i,	j),	Radar-direct-modif	(Panels	k,	l),	Radar-indirect	(Panels	m,	n),	Radar-

indirect-rqv	(Panels	o,	p)	and	Stations-only	(Panels	q,	r).	-------------------------------------------	181	
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Radar-direct-modif	(Panel	g),	Radar-indirect	(Panel	h),	Radar-indirect-rqv	(Panel	i)	and	

Stations-only	(Panel	j).	Black	bold	contour	highlight	the	Bisagno	catchment	hit	subjected	to	
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(Panel	a),	the	Open	Loop	QPF	(Panel	b)	and	the	QPF	of	each	member	of	the	sensitivity:	ALL-

direct	(Panel	c),	ALL-indirect	(Panel	d),	ALL-indirect-rqv	(Panel	e),	Radar-direct	(Panel	f),	

Radar-direct-modif	(Panel	g),	Radar-indirect	(Panel	h),	Radar-indirect-rqv	(Panel	i)	and	

Stations-only	(Panel	j).	Black	bold	contour	highlight	the	Bisagno	catchment	hit	subjected	to	

the	flood.	--------------------------------------------------------------------------------------------------------	185	

Figure	41:	Representation	of	the	objects	obtained	through	the	MODE	application	for	the	72	mm	

threshold	(first	column)	and	the	96	mm	threshold	(second	column)	for	the	12-24	UTC	

cumulated	rainfall	of	9	October	2014	event,	comparing	in	each	panel	the	object	obtained	from	

the	QPE	(in	solid	red)	with	the	QPFs	(blue	contour)	for	each	simulation:	Open	Loop	(Panels	a,	

b),	ALL-direct	(Panels	c,	d),	ALL-indirect	(Panels	e,	f),	ALL-indirect-rqv	(Panels	g,	h),	Radar-

direct	(Panels	i,	j),	Radar-direct-modif	(Panels	k,	l),	Radar-indirect	(Panels	m,	n),	Radar-

indirect-rqv	(Panels	o,	p)	and	Stations-only	(Panels	q,	r).	-------------------------------------------	187	

Figure	42:	Representation	of	the	objects	obtained	through	the	MODE	application	for	the	72	mm	

threshold	(first	column)	and	the	96	mm	threshold	(second	column)	for	the	00-24	UTC	

cumulated	rainfall	of	9	October	2014	event,	comparing	in	each	panel	the	object	obtained	from	

the	QPE	(in	solid	red)	with	the	QPFs	(blue	contour)	for	each	simulation:	Open	Loop	(Panels	a,	

b),	ALL-direct	(Panels	c,	d),	ALL-indirect	(Panels	e,	f),	ALL-indirect-rqv	(Panels	g,	h),	Radar-
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direct	(Panels	i,	j),	Radar-direct-modif	(Panels	k,	l),	Radar-indirect	(Panels	m,	n),	Radar-

indirect-rqv	(Panels	o,	p)	and	Stations-only	(Panels	q,	r).	-------------------------------------------	190	

Figure	43:	Comparison	between	the	Open-Loop	simulated	structure	with	respect	to	the	Radar-direct-

rqv	simulated	structure	at	20	UTC.	Panels	a	and	c	report	the	3D	simulated	structure	
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respectively	for	Open	Loop	(a)	and	Radar-indirect-rqv	(c)	simulations	with	the	horizontal	

10m	wind	intensity	for	the	Open	Loop	(a)	and	the	Radar-indirect-rqv	(c).	The	black	line	in	

Panels	a	and	c	indicates	the	location	of	the	vertical	section	of	the	two	structures	to	investigate	

the	reflectivity	values	in	the	mean	of	the	convective	structure	in	Panels	b	(for	Open-Loop)	and	
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Figure	44:	Columnar	content	analysis	for	25	October	2011	at	09	UTC	of	graupel	(QG)	in	first	row,	ice	

(QI)	in	second	row,	snow	(QS)	in	third	row,	rain	(QR)	in	fourth	row	and	cloud	water	(QC)	in	

the	last	row.		Comparison	between	the	open	loop	simulation	(Panels	a,	f,	k,	p,	u)	and	the	

results	achieved	with	the	different	reflectivity	operator:	Radar-direct	(Panels	b,	g,	l,	q,	v),	

Radar-direct-modif	(Panels	c,	h,	m,	r,	w),	Radar-indirect	(Panels	d,	i,	n,	s,	x)	and	Radar-

indirect-rqv	(Panels	e,	j,	o,	f,	y).	----------------------------------------------------------------------------	195	

Figure	45:	Columnar	content	analysis	for	04	November	2011	at	09	UTC	of	graupel	(QG)	in	first	row,	

ice	(QI)	in	second	row,	snow	(QS)	in	third	row,	rain	(QR)	in	fourth	row	and	cloud	water	(QC)	

in	the	last	row.		Comparison	between	the	open	loop	simulation	(Panels	a,	f,	k,	p,	u)	and	the	

results	achieved	with	the	different	reflectivity	operator:	Radar-direct	(Panels	b,	g,	l,	q,	v),	

Radar-direct-modif	(Panels	c,	h,	m,	r,	w),	Radar-indirect	(Panels	d,	i,	n,	s,	x)	and	Radar-
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Figure	46:	Columnar	content	analysis	for	09	October	2014	at	09	UTC	of	graupel	(QG)	in	first	row,	ice	

(QI)	in	second	row,	snow	(QS)	in	third	row,	rain	(QR)	in	fourth	row	and	cloud	water	(QC)	in	

the	last	row.		Comparison	between	the	open	loop	simulation	(Panels	a,	f,	k,	p,	u)	and	the	

results	achieved	with	the	different	reflectivity	operator:	Radar-direct	(Panels	b,	g,	l,	q,	v),	

Radar-direct-modif	(Panels	c,	h,	m,	r,	w),	Radar-indirect	(Panels	d,	i,	n,	s,	x)	and	Radar-
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Figure	47:	Results	of	hydrological	verification	in	terms	of	peak	flows.	X	axis	reports	the	time	of	

assimilation	or	the	Open	Loop	NWPS	run,	y	axes	report	peak	flows.	DA1	stands	for	data	
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1. Introduction 
The Mediterranean region is frequently struck by severe floods and flash floods 

causing impressive losses of lives and several millions of euros of damages 

every year. The western Mediterranean area is characterized by a complex 

orography (Alps, Apennines, Massif Central, Pyrenees) often sitting close to the 

coastline, potentially able to enhance or even to trigger the deep convective 

processes originating over the warm sea in the rainfall season [Rebora et al. 

(2013), Ducrocq et al. (2014), Fiori et al. (2017)]. According to the Molini et al 

(2011) criterion severe rainfall events in the Mediterranean area can be 

classified as: type I –long-lived (duration d ≥  12 hours) and spatially distributed 

(more than AS = 50 × 50 km
2
). These events correspond to the equilibrium 

convection, where it is assumed that production of CAPE by large-scale 

processes is nearly balanced by its consumption by convective phenomena, 

and thus CAPE values stay small; type II –brief and localized, having a shorter 

duration (d <= 12 h) and a spatial extent smaller than AS = 50 × 50 km2, in this 

case a larger amount of CAPE is available, as a result of building up from large-

scale processes over long time-scales, but the extent to which it produces 

convection and precipitation is restricted by the need for a trigger sufficient to 

overcome the convective inhibition energy (CIN). The most severe events in 

this area, corresponding to type II, are due to a particular type of mesoscale 

configuration featuring a continuous redevelopment of storm cells persisting for 

hours over the same area, the so called back-building Mesoscale Convective 

Systems MCSs [Rebora et al. (2013); Ducrocq et al. (2014); Cassola et al. 

(2015), Fiori et al. (2017), Lagasio et al. (2017)].  
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A considerable effort has been made in last few years to develop cloud 

resolving NWP systems, possibly in combination with ensemble and multi-

physics approaches, to improve the short term Quantitative Precipitation 

Forecast (QPF) of such severe convective events [Ducrocq et al. (2014), Hally 

et al. (2015), Clark et al. (2016), Davolio et al. (2017), Fiori et al. (2017), 

Lagasio et al. (2017)]. However, a reliable forecast of these events in terms of 

rainfall amount, location and timing is still an open issue [Ducrocq et al. (2014)] 

that cannot be tackled only through the increase of the NWP models space-time 

resolution.  

The main goal of this thesis is to provide a significant contribution to the 

aforementioned open issue, namely the meteorological forecast of such 

extreme events. The thesis work is divided in three different but complementing 

activities using the WRF meteorological model.  

The first activity aims is to identify a tool helping in the forecasting phase to 

discriminate between scenarios leading to (very) deep moist convective, heavily 

precipitating, and persistent storms and ones resulting in shallower and more 

disorganized convective situations, thus not producing significant ground 

effects.  

Along complementing lines, the second and the third thesis activities aim to 

reduce the uncertainty in the forecasting of high impact weather events with the 

use of different data assimilation techniques using conventional (second 

activity) and non-conventional (third activity) observations. 

Concerning the first research line, many studies performed around the globe 

and corresponding to different weather regimes [Carter and Kidder (1976), 

Tapia et al. (1998), Soula and Chauzy (2001), Adamo et al. (2009)] confirmed a 
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strong interplay between lightning phenomena and severe rainfall process 

evolution in thunderstorms.  

Although several real-time lightning detection systems are nowadays able to 

determine the impact location of lightning with high accuracy, short-range 

meteorological forecasting is still affected by many sources of uncertainty when 

trying to predict them [McCaul et al. (2009), Dahl et al. (2011)]. Different 

algorithms for the prediction of the total lightning spatio-temporal evolution in 

case of severe weather events have been considered so far, resulting in the 

development of valuable tools for the warning decision-making process of 

forecasters. Some of them are nowcasting methods based on observed data 

[Schultz et al. (2009), Gatlin and Goodman (2010), Stough et al. (2014)], others 

built on outputs from numerical weather prediction models [Lynn and Yair, 

(2008, 2010), McCaul et al. (2009); Barthe et al. (2010), Wong et al. (2013), 

Giannaros et al. (2015)]. Within this context, the first research activity proposes 

a novel methodological approach for the assessment of the predictive ability of 

a microphysics driven ensemble of km-scale mesoscale numerical model 

simulations in case of  back-building MCSs, concurrently producing extreme 

rainfall and lightning activity: it emerges that the use of a Lightning Potential 

Index is helpful both in forecasting and hindcast phase, allowing to individuate 

the scenarios leading to deep moist convection and enabling the investigation 

of the physical parameters that determine lightning activity and which are 

essential for the reproduction of this kind of high impact weather events. 

However, the main source of uncertainty in the forecast of severe rainfall 

phenomena remains linked to the correct reproduction of the deep moist 

convective field.  
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These predictive ability challenges can derive from the poor knowledge of the 

initial state of the atmosphere at small spatio-temporal scales leading to an 

inevitable model spin-up that often results in an inaccurate simulation of the 

convective system in terms of timing, location and intensity [Sugimoto et al. 

(2009)]. This challenge becomes even more relevant when the model grid 

spacing is approaching the kilometric scale, mainly as a consequence of the 

lack of high spatio-temporal resolution observations. Consequently, the second 

research activity aims to gain a further insight on the hydro-meteorological 

prediction of back-building MCSs through the combination of a high resolution 

WRF model instance including a 3DVAR data assimilation cycle - with the fully 

distributed Continuum hydrological model, via the RainFARM stochastic 

downscaling procedure [Rebora et al. (2006b)]. A rich portfolio of WRF 3DVAR 

indirect and direct reflectivity assimilations, including an innovative reflectivity 

forward operator properly dealing with mixed-phase clouds, has been explored 

to drive the meteorological component of the proposed forecasting framework. 

From this activity it stands out that the use of such hydro-meteorological 

framework can help to obtain more timely and accurate streamflow forecasts for 

back-building MCSs.  

The third research activity is fully integrated with the STEAM (SaTellite Earth 

observation for Atmospheric Modeling) research project, and it aims to respond 

to a specific question asked by the European Space Agency (ESA), namely if 

Sentinel satellites constellation weather observation data can be used to better 

understand and predict with at higher spatial-temporal resolution the 

atmospheric phenomena resulting in severe weather events and intense 

atmospheric turbulence phenomena. To tackle this research topic, the thesis 

has fed for the first time, to the best of the author knowledge, a cloud-resolving 
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model, namely WRF, with observational data provided by Sentinel satellites 

constellation, such as humidity, soil and sea temperature, wind on the sea, the 

amount of water vapour in the atmospheric band closest to the earth. All these 

data are not normally used in atmospheric forecasting models, but they are 

rather taken into account mainly for hydrological and marine modelling. The 

outcomes of the third research activity strongly support the synergy between 

high resolution numerical weather modelling and the ESA Sentinel satellites 

products for the forecast of highly precipitating severe weather events.  

The structure of the thesis manuscript is organized as it follows. Chapter 1 

provides a general overview on Numerical Weather Prediction (NWP) 

modelling. Chapter 2 and 3 describe the WRF-ARW meteorological model and 

the WRFDA package for data assimilation respectively. In Chapter 4 the 

Method for Object baseD Evaluation (MODE) used to validate the forecasts of 

all the activities is described with the method applied in each work to find the 

best simulations performance. Chapter 5 presents the first research activity on 

the evaluation of Lightning Potential Index performances in multi-microphysical 

cloud-resolving simulations applied to the Genoa 2014 back-building MCS. In 

Chapter 6 are described analysis and results about the predictive capability of a 

high-resolution hydro-meteorological forecasting framework coupling WRF 

cycling 3dvar and Continuum applied to three back-building MCSs happened 

over Liguria region (Cinqueterre 2011, Genoa 2011, Genoa 2014). The effect of 

the ingestion in the WRF model of different Sentinel-derived and GNSS-derived 

products during the STEAM projects is discussed in Chapter 7 considering two 

different test cases: the Livorno flash flood and the Silvi Marina flood happened 

in autumn 2017. Finally, concluding considerations of the results achieved in 

the different activities are summarized in Chapter 8.  
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2. Numerical Weather Prediction 

2.1 History and development  
The numerical weather prediction is a technique used to obtain an objective 

forecast of the future weather by solving a set of governing equations, called 

also primitive equations, that describe the evolution of atmosphere in time and 

its motion in space. The complexity of these equations forces the researcher to 

use computers to resolve them. However, the basic ideas of numerical 

forecasting and climate modelling were developed about a century ago, long 

before the first electronic computer was invented. 

There were several major practical obstacles to overcome before numerical 

prediction could be put into practice. A better understanding of the atmospheric 

dynamics allowed the development of simplified systems of equations; regular 

radiosonde observations of the free atmosphere and, later, satellite data, 

provided the initial conditions; stable finite difference schemes were developed; 

and powerful electronic computers provided a practical means of carrying out 

the calculations required to predict the changes in the weather [Lynch (2008)]. 

The numerical weather prediction was invented in the 19th century when the 

development of thermodynamics resulted in a completion of the set of 

fundamental physical principles governing the flow of the atmosphere. By about 

1890, the great American meteorologist Cleveland Abbe recognized that 

‘‘meteorology is essentially the application of hydrodynamics and 

thermodynamics to the atmosphere’’ [Willis and Hooke (2006)]. He proposed a 

mathematical approach to forecasting.  

In 1904 Vilhem Bjerknes proposed a more explicit analysis of the weather 

prediction problem. He recognized the importance of a good knowledge of the 
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initial state of the atmosphere and found a two-steps plan for rational 

forecasting, the diagnostic and prognostic step. In the first case, the initial state 

of the atmosphere is determined by observation. Whereas in the second case, 

the state of the atmosphere and his changing over time is calculated by laws of 

motion [Bjerknes (1904)] the prognostic step was to be taken by assembling a 

set of equations, one for each dependent variable describing the atmosphere. 

He then identified seven independent equations and developed a qualitative, 

graphical method for solving the equations.  

In 1913 Lewis Fry Richardson attempted a direct solution of these equations of 

motion using two simplifications. The first simplification is the hydrostatic 

assumption, and the second was the adoption of an approximate solution. The 

fundamental idea is that atmospheric pressures, velocities, etc., are tabulated at 

certain latitudes, longitudes and heights so as to give a general description of 

the state of the atmosphere an instant. Therefore the idea of grid was born. 

Richardson estimated that 64,000 people, the well-know “forecast factory”, 

would be needed to keep pace with the atmosphere.  

Between 1946 and 1953 were built the first machines to resolve numerically 

equations. They were used for different projects, among which numerical 

weather prediction. John von Neumann, one of the leading mathematicians of 

the 20th century, contributed to assemble those machines. He recognized 

weather forecasting a problem of both great practical significance and intrinsic 

scientific interest, as an ideal problem for an automatic computer.  With 

Neumann ends what is called Prelude of Numerical Weather Prediction. 
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Figure 1:  History of numerical modeling of the atmosphere (Arakawa, 2001) 

The history of numerical modelling of the atmosphere can be divided in 4 

phases: the first phase is the Prelude, analysed above.  The second phase is 

the Epoch-making during this phase, it is possible see a rapid development of 

theories on large-scale motion, the coming of supercomputer age and the 

development of early simple numerical weather prediction model (GCM phase). 

The third phase is the Magnificent in 1980, due to increased computer power, 

higher resolution models were developed and LAM becomes operational. The 

fourth phase is the Great-Challenge, in the new millennium the researcher are 

moving from purely atmospheric models to coupled ocean-atmosphere models 

and higher attention has been given to the estimation of uncertain of numerical 

model predictions.  

The beginnings of the second, third and fourth phases roughly correspond to 

the development of the early numerical weather prediction (NWP) models, that 

of the early general circulation model (GCMs), and that of the recent coupled 

atmosphere-ocean GCMs, respectively. 
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2.2 NWP features 

Numerical weather prediction models based on the same physical principles 

can be used to generate either short-term weather forecasts or longer-term 

climate predictions; the latter are widely applied for understanding and 

projecting climate change.  

One of the main problems we encounter with numerical modelling of 

atmospheric motions and processes is the difficulty to describe accurately 

several phenomena at different spatial and temporal scales. In fact, in order to 

describe phenomena at planetary or synoptic scale, it is needed a general 

circulation model with relatively low space and time resolution. However due to 

their low resolution, these models are not able to catch the dynamics of 

mesoscale phenomena (as tropical storm, tornado or thunderstorms, ranging 

from spatial scale of 1000 km down to 10 km) and a finer spatio-temporal 

scales numerical model become necessary. 

There are several component of a Numerical Weather Prediction model. First of 

all there is the Dynamical Core, which has inside the Governing Equation and 

Numerical Procedures, secondly there is the Physical Process 

Parameterization, thirdly, the Initial Condition, fourth, the Boundary Condition, 

and finally Post-Processing and Verification. 
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Figure 2: Scheme of Numerical Weather Prediction Model 

 

Below every box of the presented schematization will be analysed. 

2.2.1 Initial and boundary Condition 

The numerical weather prediction is an initial-boundary value problem therefore 

given an estimate of the present state of the atmosphere (initial conditions), and 

appropriate surface and lateral boundary conditions, the model simulates 

(forecasts) the atmospheric evolution.  

The more accurate the estimate of the initial conditions, the better the quality of 

the forecasts. The process of combining observations and short-range forecasts 

to obtain an initial condition for NWP is called (atmospheric) data assimilation. 

The purpose of data assimilation is to determine as accurately as possible the 

state of the atmospheric flow by using all available information. In other words 

the data assimilation is an analysis technique in which the observed information 

is accumulated into the model state by taking advantage of consistency 

constraints with laws of time evolution and physical properties.  
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In this work two global circulation models are used, namely the Integrated 

Forecasting System (IFS) developed and operated by ECMWF (European 

Center Medium Weather Forecast) and, the Global Forecasting System (GFS) 

developed and operated by NCEP (National Centers for Environmental 

Prediction). 

2.2.1.1 IFS model 

The ECMWF forecasting system (the IFS) consists of several components: an 

atmospheric general circulation model, an ocean wave model, a land surface 

model, an ocean general circulation model and perturbation models for the data 

assimilation (EDA) producing forecasts from days to weeks and months ahead. 

The atmospheric general circulation model 

The atmospheric general circulation model describes the dynamical evolution 

on the resolved scale and is augmented by the physical parameterization, 

describing the mean effect of subgrid processes and the land-surface model. 

Coupled to this is an ocean wave model [Bechtold et al (2008)]. The higher the 

numerical resolution, the more accurate the calculations become. A high spatial 

resolution also enables a better representation of topographical fields, such as 

mountains and coastlines, and the effect they have on the large-scale flow. It 

also produces a more accurate description of horizontal and vertical structures, 

which facilitates the assimilation of observations. 

The smallest atmospheric features, which can be resolved by high-resolution 

forecasts, have wave lengths four or five times the numerical resolution. 

Although these atmospheric systems have a predictability of only some hours, 

which is about the time it takes to disseminate the forecasts, their 

representation is nevertheless important for energetic exchanges between 

different atmospheric scales. Increasing the resolution not only benefits the 
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analyses and forecasts of the small-scale systems associated with severe 

weather but also those of large-scale systems. On march 2016, the horizontal 

grid spacing for IFS high-resolution forecasts has been increased from 16 km to 

just 9 km. The IFS high-resolution forecasting system provides twice a day (00 

and 12UTC) weather predictions up to 10 days ahead for free and fourth a day 

(00, 06, 12 and 18 UTC) for a fee. 

The ocean wave model 

The wave model at ECMWF is called the “WAM”. It describes the rate of 

change of the 2- dimensional wave spectrum, in any water depth, caused by 

advection, wind input, dissipation due to white capping and bottom friction and 

non-linear wave interactions. It is set up so as to allow the two-way interaction 

of wind and waves with the atmospheric model. Radar altimeter wave-height 

data are assimilated from satellites. Buoy wave data are not assimilated; 

instead, they serve as an independent check on the quality of modelled wave 

parameters. 

The land surface model 

In the H-TESSEL scheme (Hydrology-Tiled ECMWF Scheme for Surface 

Exchange over Land) the main types of natural surfaces found over land are 

represented by a "mosaic" approach. In other words, each atmospheric model 

grid-box is in contact and exchanges energy and water with up to 6 different 

types of parcel or "tile" on the ground. These are: bare soil, low and high 

vegetation, water intercepted by leaves, and shaded and exposed snow. Each 

land-surface tile has its own properties, describing the heat, water and 

momentum exchanges with the atmosphere; particular attention is paid to 

evaporation, as near-surface temperature and humidity are very closely related 

to this process. The soil (with its four layers) and the snow-pack (with one layer) 
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have dedicated physical parameterizations, since they represent the main land 

reservoirs that can store water and energy and release them into the 

atmosphere in lagged mode. 

Finally, the vegetation seasonality is described by the leaf area index (LAI) from 

climatological data. The LAI describes the growing, mature, senescent and 

dormant phases of several vegetation types in H-TESSEL (four types of forests 

and ten types of low vegetation). 

The dynamic ocean model 

The three-dimensional general circulation ocean model can reproduce the 

general features of the circulation and the thermal structure of the upper layers 

of the ocean and its seasonal and inter-annual variations. It has, however, 

systematic errors, some of which are caused by the coarse vertical and 

horizontal resolution: the model thermocline is too diffuse; the Gulf Stream does 

not separate at the right location. The ocean analysis is performed every 10 

days, down to a depth of 2000 m. Observational input comes from all around 

the globe, but mostly from the tropical Pacific, the tropical Atlantic and, to an 

increasing degree, from the Indian Ocean. The ocean-atmosphere coupling is 

achieved by a two-way interaction: the atmosphere affects the ocean through its 

wind, heat and net precipitation (precipitation-evaporation), whilst the ocean 

affects the atmosphere through its sea surface temperature. 

The four-dimensional data assimilation (4D-Var) 

The increasing availability of asynoptic data and non-conventional observations 

has necessitated the use of advanced analysis procedures, such as four-

dimensional variational data assimilation (4D-Var), where the concept of a 

continuous feedback between observations and model data is put on a firm 

mathematical foundation (Andersson and Thépaut, 2008). The 4D-Var analysis 
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uses observations from a 12-hour time window, either 21 - 09 UTC (for the 00 

and 06 UTC analyses) or 09 - 21 UTC (for the 12 and 18 UTC analyses). To 

provide the best initial condition for the next analysis a full resolution 3-hour 

forecast is run, based on the previous 4D-Var analysis. 

2.2.1.2 The GFS model 

The NCEP’s Global Forecast System (GFS) is the cornerstone of NCEP’s 

operational production suite of numerical guidance. NCEP’s global forecasts 

provide deterministic and probabilistic guidance out to 16 days. The GFS 

provides initial and/or boundary conditions for NCEP’s other models for 

regional, ocean and wave prediction systems. The Global Data Assimilation 

System (GDAS) uses maximum amounts of satellite and conventional 

observations from global sources and generates initial conditions for the global 

forecasts. The global data assimilation and forecasts are made four times daily 

at 0000, 0600, 1200 and 1800 UTC. The Global Forecast System (GFS) 

component is a weather forecast model produced by the National Centers for 

Environmental Prediction (NCEP). Dozens of atmospheric and land-soil 

variables are available through this dataset, from temperatures, winds, and 

precipitation to soil moisture and atmospheric ozone concentration. The entire 

globe is covered by the GFS at a base horizontal resolution of 13 kilometers 

(distributed to 25 km grid spacing) between grid points, which is used by the 

operational forecasters who predict weather out to 16 days in the future. 

Horizontal resolution drops to 44 miles (70 kilometers) between grid point for 

forecasts between one week and two weeks. The GFS model is a coupled 

model, composed of four separate models (an atmosphere model, an ocean 

model, a land/soil model, and a sea ice model), which work together to provide 

an accurate picture of weather conditions. Changes are regularly made to the 
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GFS model to improve its performance and forecast accuracy. It is a constantly 

evolving and improving weather model. Gridded data are available for download 

through the NOAA National Operational Model Archive and Distribution System 

(NOMADS). Forecast products and more information on GFS are available at 

the GFS home page. Prior to January 2003, the GFS was known as the GFS 

Aviation (AVN) model and the GFS Medium Range Forecast (MRF) model. 

GFS-AVN and MRF products are a collection from NCEP's NOAAPort. Grids, 

domains, run frequencies, and output frequencies have changed over the 

years. 

2.2.2 Dynamical Core 

The Dynamical Core refers to the Governing Equations and the Numerical 

Procedure to solve them. NWP models represent the behaviour of the 

atmosphere which is described by the primitive equations or governing 

equations. These equations can be derived from various conservation principles 

and related approximations. The conservation principle here adopted are: 

conservation of motion (momentum), conservation of mass, conservation of 

heat (thermodynamic energy), conservation of water (mixing ratio/ specific 

humidity) in different forms and conservation of other gaseous and aerosol 

material.  

They are written in the Eulerian framework in which values and their derivatives 

are evaluated at fixed locations on the earth. They are also written in pressure 

(x-y-p) coordinates and contain all of the essential physics and dynamics 

needed for NWP models, except that terms considering the earth's curvature 

have been left out and physical processes, such as friction and adiabatic 

heating, are represented as one term rather than many.  
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It is possible to divide the equation in two groups: Prognostic equation and 

diagnostic equations. A prognostic equation is an equation that predicts the 

value of variables for some time in the future on the basis of the values at the 

current or previous times. A diagnostic equation is an equation that links the 

values of these variables simultaneously, either because the equation is time-

independent, or because the variables all refer to the values they have at the 

identical time. This is by opposition to a prognostic equation.  

Another important classification is the difference between Hydrostatic and Non-

Hydrostatic model. The Hydrostatic models assume hydrostatic equilibrium, in 

which the downward weight of the atmosphere balances the upward-directed 

pressure gradient force. This hydrostatic assumption is valid for synoptic and 

global-scale systems and for some mesoscale phenomena. Non-hydrostatic 

processes and their effects become important when the horizontal wavelength 

of atmospheric phenomena is approximately equal to its height. Since the 

heights of most weather phenomena are limited by the height of the 

troposphere, this becomes an issue for features approximately 10 km and less 

in size.  

Important weather examples with significant non-hydrostatic processes include 

convective storms, gust fronts and other convergence lines, and gravity waves, 

including mountain waves and turbulence.  

For numerical weather prediction, non-hydrostatic models include equations for 

vertical motion that hydrostatic models lack. As a result, non-hydrostatic models 

directly forecast weather resulting from vertical motion due to buoyancy 

changes and other vertical accelerations. In contrast, hydrostatic models can 

only infer the weather phenomena resulting from such vertical motions. In 
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succession it is listed the main advantage and disadvantage for both numerical 

modelling approaches.  

The advantage of a hydrostatic model are that it can run fast over limited area-

domains, providing forecast in time for operational use. It is important 

remember that the hydrostatic assumption is valid for many synoptic and sub-

synoptic scale phenomena. The main disadvantages are that, firstly it cannot 

predict the vertical acceleration, and secondly, it cannot predict details of small-

scale processes associated with buoyancy.  

The advantage for non hydrostatic model are that, firstly, it can calculate the 

vertical motion explicitly, secondly, it accounts for cloud and precipitation 

processes and their contribution to vertical motion, thirdly, it is able to predict 

convection and mountain wave. The disadvantage of this model is, first of all 

the time needed to run. It is longer to run than hydrostatic model with same 

resolution and domain size. 

2.2.2.1 Governing equations 

The set of the equations used in a numerical weather prediction model is 

ample. The principal equations are: 

The Momentum Equation: Newton’s second law of motion stated as the force 

balance for acceleration relative to a rotating coordinate frame. The momentum 

equation can be stated as: 

!!
!" = !!×! − !

! !! + ! + !!                             (Eq 2.1) 

Where: 

.  ! is the velocity vector [ms-1] 

. ! is time [s] 

. ! is pressure [Pa] 
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. ! is the angular velocity [ms-1] 

. ! is the density [kg m-3] 

. ! is the sum of gravitational and centrifugal forces [m s-2] 

. !! is friction and turbulent mixing 

. !
!"  represents the sum of the local rate of change plus advection terms. 

For synoptic and planetary circulations the acceleration of the horizontal wind is 

on the order of 10 -4 [m s-2] compared with 10-7 [m s-2] for the vertical 

acceleration: 

          (Eq 2.2) 

The vertical momentum equation is replaced by the hydrostatic approximation, 

in which the weight of the atmosphere balances the vertical pressure gradient. 

No vertical accelerations are calculated explicitly 

        (Eq 2.3) 

       (Eq 2.4) 

However, the hydrostatic assumption does not hold when the length and depth 

are similar (typically ≤ 10 km). Deep convection, which is common in the 

tropics, is non-hydrostatic. Therefore, the rate of change of vertical motion is 

calculated as the sum of the advection, local buoyancy, and non-hydrostatic 

vertical pressure gradient minus the precipitation drag. These models can 

reproduce mesoscale convection in realistic detail but they are subject to error 

in timing and placement of convection. Non-hydrostatic models have the 

disadvantage of being computationally intensive. 
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The Continuity Equation: A fundamental principle in meteorology is that mass 

is conserved except for external sources and sinks, as described by the 

equation below: 

!"
!" + ∇ ∙ (!!) = 0    (Eq 2.5) 

Which can be rewritten as 

    (Eq 2.6) 

Where: 

. ! is the velocity 

. ! is time 

. ! is density 

The second form of the equation is useful for forecasting as it relates the rate of 

density increase, following an air parcel, to the velocity divergence. 

The Thermodynamic Equation or First Law of Thermodynamics:  This 

equation describes the conservation of energy applied to a moving fluid 

element. For a system in thermodynamic equilibrium, the change in internal 

energy is due to the difference between work done by the system and heat 

added to the system, written as:    

!! !"!" + !
!"
!" = !                                            (Eq 2.7) 

where: 

• !! !"!"  is the change in internal energy per unit mass. !! is the specific 

heat at constant volume (717 [J kg-1 K-1]). T is temperature [K]. 

• !"
!"   is the rate of work by the fluid system per unit mass, α is specific 

volume (!!) [m
3], p is pressure [Pa]. 
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• ! is heating rate 

It is possible rewrite the thermodynamic equation as   

!! !"!" − !
!"
!" = !     (Eq 2.8) 

 Where: 

• cp is the specific heat at constant pressure.  

For adiabatic processes no heat is exchanged with surroundings. Therefore any 

work done in the system is taken from the internal energy and the temperature 

decreases. 

2.2.2.2 Numerical Procedures 

The Numerical procedures are the way that the numerical weather prediction 

uses to calculate the variables. They are approximations used to estimate each 

term, to integrate model forward in time and boundary condition.  

There are four different modelling frameworks for dealing with the space 

dependence in the nonlinear difference equation of atmospheric dynamics and 

thermodynamics: grid point or finite difference, spectral, finite element and finite 

volume. 

The choice of which method to be used in a particular modelling application 

depends on a variety of factor including whether the model has a limited or 

global computational area, and the degree to which the code needs to be easy 

to modify for research purpose. Most NWP models solve the forecast equations 

using data represented as gridded values or in spectral form. Grid Point and 

spectral models are based on the same set of primitive equations. However, 

each type formulates and solves the equations differently.  
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The differences in the basic mathematical formulations contribute to different 

characteristic errors in model guidance. The differences in the basic 

mathematical formulations lead to different methods for representing data. 

The Grid Point method is one of the oldest methods to solve differential 

equation. From over the past half-century, atmospheric scientists and 

oceanographers have developed numerous approaches for applying this 

method to the solution of the equations of fluid flow over part or the entire 

sphere. This method includes the use of map projections latitude-longitude 

grids and spherical geodesic grids. The procedure is defined for organizing grid 

points in a systematic way over the area of the sphere for which the 

atmosphere is to be modelled. The models perform their calculations on a fixed 

array of spatially disconnected grid points. The values at the grid points actually 

represent an area average over a grid box. This model represents the 

atmosphere in three-dimensional grid cube. 

 

Figure 3: A scheme of three-dimensional grid cube (courtesy of the COMET program). 
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The arrangement of variables within and around the grid cube has advantages 

when calculating derivatives. It is also physically intuitive; average 

thermodynamic properties inside the grid cube are represented at the centre, 

for example, the temperature, pressure and moisture, are shown in the centre 

of the cube because they represent the average condition throughout the cube, 

while the winds on the faces are associated with fluxes into and out of the cube. 

The east-west wind and north-south wind are located at the side of the box 

because they represent the average of the wind components between the 

centre of this cube and the adjacent cubes.  

The vertical motion is represented on the upper and lower faces of the cube. So 

different variable are show in different part of the cube. Therefore when it is 

necessary to calculate a variable this variable is calculated in all point of the 

grid in the region of interest.  

The number of point depends on the grid interval Δ! over which the region of 

study is divided. It is also important remember that there are global model and 

limited area model, so the number of point depend either grid interval or type of 

numerical model. The main difference, other the dimension of the domain, 

between a global model and limited area model is that in a global model it is 

necessary only initial condition and upper and bottom layer condition, whilst in a 

limited area model it is necessary initial condition, upper and bottom layer 

condition and boundary condition. For this region a limited area model is a 

model insert in a global model.  

The domain of an NWP model can be viewed as a three-dimensional array of 

cubes. 
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Figure 4: Scheme of cube that creates the Limited area model domain (courtesy of the 
COMET program) 

Each cube encompasses a volume of the atmosphere corresponding to a 

model grid point. Forecast values for the meteorological variables in each cube 

are derived from the current values within the cube plus those from the 

surrounding cubes. As the cubes on the boundaries are not surrounded by 

other cubes on all sides, the information needed to provide forecast values for 

the meteorological parameters cannot be determined using only the data 

contained in the model.  

The information for the outside boundaries must be supplied from another 

source. Ideally, boundary conditions should be based on observed data. 

However, the best that can be done in weather prediction is to use boundary 

conditions based on another forecast model. This happens in the case analysed 

in this thesis. 

Another method to study the variable is the spectral model, it represent the 

atmospheric spatial variability as a finite series of sine and cosine waves of 

differing wavelengths. Model resolution is a function of the number of waves 

that are used to represent variability in the model. Several types of wave 
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orientation are possible in spectral models. The wavelength of the smallest 

number in a spectral model is represented as: 

!"#"$%$ !"!"#"$%ℎ! = !"#°
!"#$% !"#$%& !" !"#$% !" T !"#$%&                        (Eq 2.9) 

 

The T170 configuration is commonly used in operational models because its 

resolution in the zonal and meridional directions is almost the same around the 

globe. Although horizontal gradients are calculated exactly from the wave 

solution, grids are still used for non-linear and physical calculations. Spectral 

models are the primary models at operational forecast centers such as ECMWF 

and NCEP, while grid point models are used for smaller, regional models. 

Another thing analysed by numerical procedure is the way in which the vertical 

coordinate is treated. The vertical coordinate is very important. Depicting 

properly the vertical structure of the atmosphere leads to better forecast. To 

successfully understand this vertical structure, the model must have an 

appropriate vertical coordinate to lead to better resolution and thus better 

forecast. The equations of motion have their simplest form in pressure 

coordinate, but, unfortunately, pressure coordinate system are not particularly 

suited to solving the forecast equations because, like height surface, they can 

intersect the orography an consequently disappear over parts of the forecast 

domain. The principal vertical coordinate types are: Sigma Coordinate, Eta 

Vertical Coordinate and Hybrid Coordinate. 

In a numerical model, it is important that the vertical coordinate exhibits 

monotonic behaviour with height. For example, continuously decrease 

(pressure coordinates) or continuously increase in the vertical (isentropic 

coordinates). Second a coordinate should preserve conservative atmospheric 
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properties and treat important dynamical processes accurately, such as 

adiabatic and adiabatic motions and flow over terrain.  Third it should accurately 

represent the pressure gradient force (PGF, used for calculating the 

geostrophic wind) over both flat and sloping terrain. Most hydrostatic models 

use relatively straightforward configurations for their vertical coordinates. It is 

important remember that no one vertical coordinate system is ideal; each has 

its strengths and limitations.  

The first vertical coordinate analysed is the Sigma Coordinate, the equations of 

motion, which form the basis for all NWP models, have their simplest form in 

pressure coordinates. Unfortunately, pressure coordinate systems are not 

particularly suited to solving the forecast equations how explained above. To 

solve the problem of discontinuous forecast surfaces, Phillips in 1957 

developed a terrain-following coordinate called the sigma (σ) coordinate. This 

coordinate traditionally has been used in most NWP models. Nowadays, many 

models use a sigma coordinate to follow the terrain, but aloft it blends into some 

other type of coordinate system. In its simplest form, the sigma coordinate is 

defined by: 

      (Eq 2.10) 

Where: 

. ! is the pressure on a forecast level within the model. 

.  !! is the pressure at the earth's surface, not mean sea level pressure. 
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Figure 5: Scheme of Sigma Coordinate (courtesy of the COMET program) 

 The lowest coordinate surface (usually labelled σ = 1) follows a smoothed 

version of the actual terrain. The other sigma surfaces gradually transition from 

being nearly parallel to the smoothed terrain at the bottom of the model (σ = 1) 

to being nearly horizontal to the constant pressure surface at the top of the 

model (σ = 0). The top layer of the model is typically placed well above the 

tropopause, usually between 25 and 1 hPa. The sigma vertical coordinate can 

also be formulated with respect to height (z), rather than pressure.  

The second vertical coordinate analysed is the Eta Coordinate (η). It was 

created in the early 1980s in an effort to reduce the errors incurred in 

calculating the pressure gradient force using sigma coordinate models. The eta 

coordinate is, in fact, another form of the sigma coordinate, but uses mean sea 

level pressure instead of surface pressure as a bottom reference level. As such, 

eta is defined as 

     (Eq 2.11) 

Where 

. !! is pressure at the model top 
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. !! !!! is the standard atmosphere MSL pressure (1013 hPa) 

. !! !! is the standard atmosphere pressure at the model terrain level !! 

Eta usually is labelled from 0 to 1 from the top of the model domain to mean 

sea level. Unlike sigma models, where all grid cubes are considered to be 

above the earth's surface, in eta models, some of the model's grid cubes are 

located underground in areas where the surface elevation is notably above sea 

level. This requires special numerical formulations to model flow near the 

earth's surface. 

 

Figure 6: Scheme of Eta Coordinate (courtesy of the COMET program) 

 

The difference between the definitions of the sigma and eta coordinate systems 

allows the bottom atmospheric layer of the model to be represented within each 

grid box as a flat "step," rather than sloping like sigma in steep terrain. For this 

reason, the eta coordinate is sometimes referred to as the step-mountain 

coordinate. This configuration eliminates nearly all errors in the PGF calculation 

and allows models using the eta coordinate to have extreme differences in 

elevation from one grid point to its neighbour. Eta coordinate models can 

therefore develop strong vertical motions in areas of steep terrain and thus 

more accurately represent many of the blocking effects that mountains can 

have on stable air masses. 
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Even when the step-like eta is used as the vertical coordinate, model terrain is 

still much coarser than real terrain, but the topographic gradients are less 

smoothed than in sigma models. Although this representation of terrain is a 

source of error in areas strongly affected by small-scale terrain features, it is still 

necessary to depict the average elevation within the entire grid box area. 

Representing terrain in this manner impacts the scale of features that can be 

preserved in the model's forecast, making the forecast representative of the 

average conditions in the grid box.  

The Eta coordinate was used in the primary NCEP mesoscale model from 1993 

to 2006. As of 2009, it is still in use in regional models run by public or private 

forecast operations in several countries in Europe and Central and South 

America, though not those of Canada, Western Europe, or Japan.  

The last vertical coordinate analysed is the Hybrid Vertical Coordinate in 

particular the Hybrid sigma-pressure coordinate. This type has a combination of 

sigma layers at the bottom that shift to isobaric layers above. This takes 

advantage of the terrain-following sigma in the boundary layer while utilizing 

flatter coordinates which have better numerical properties aloft and improves 

the efficiency and accuracy of radiative transfer calculations used in 

assimilating satellite radiance observations.  

The upper troposphere and stratosphere are crucial for the assimilation of 

satellite radiance observations, and these observations now play a dominant 

role in the data assimilation due to their overwhelming abundance. 

Some models, such as GFS, have a blend, so that the coordinate gradually 

transitions from sigma at the bottom to isobaric at the top. The blended method 
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avoids numerical artefacts at the transition level seen in some forecasts using 

the type which abruptly shifts from sigma to pressure. 

 

 Figure 7: The two images show the difference between Sigma and Hybrid coordinate. 
The image on the left side shows the Sigma Coordinate, while the image on the right side 
shows the Hybrid Coordinate in grey and the Sigma Coordinate in Orange (courtesy of 
the COMET program) 

 

 Figure 7 show the sigma coordinate in orange while the hybrid in grey. It is 

possible to notice the difference over complex (sloping) terrain of any height, 

even the low mountains at 80° W the hybrid is much flatter in the upper 

troposphere. Over relatively flat areas, the two coordinates nearly coincide. 

Uccellini et al introduced the Hybrid Coordinates in 1979. He introduced 

important advancements that improved the feasibility of using hybrid isentropic-

sigma vertical coordinates. 

2.2.3 Physical process parameterization 

The Physical Process parameterization represent what the model cannot 

calculate at the grid point. In  Figure 8 there is an example of that a numerical 

model cannot calculate: 
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Figure 8: An example of what numerical cannot calculate (courtesy of the COMET 
program) 

It is important remember that a numerical weather prediction models cannot 

resolve weather features and/or processes that occur within a single model grid 

box. In fact a model cannot resolve any of local flows, swirls, or obstacles if they 

exist within a grid box. However, the model must account for the aggregate 

effect of these surfaces on the low-level flow with a single number that goes into 

the friction term in the forecast wind equation.  

The method of accounting for such effects without directly forecasting them is 

called parameterization. The atmospheric processes that need to parameterize 

sub grid-scale are: Convective processes and Microphysical processes.  

The Convective parameterization is the method by which models account for 

convective effects through the redistribution of temperature and moisture in a 

grid column, that reduces atmospheric instability. By reducing thermodynamic 

instability, Convective parameterization prevents the grid-scale microphysics 

scheme from creating unrealistic large-scale convection and overly active low-

level cyclogenesis. 
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Usually, the convective parameterizations are used in current operational 

hydrostatic models to account for the effects of convection since the model 

cannot resolve convective motions explicitly. However, high-resolution (5 km or 

less) non-hydrostatic models can be run without CP schemes because the grid 

spacing are small enough to begin to resolve convective motions. For example, 

the resolution can be fine enough that entire grid boxes can be filled with 

updraft air and condensate while others are filled with downdrafts.  

The explicit convection is able to calculate explicitly simulated updrafts strong 

enough to lift hydrometeors up to the equilibrium level and explicitly simulated 

downdrafts and their accompanying gust fronts. This allows a more realistic 

redistribution of heat and moisture than when a convection parameterization 

scheme is used. It also enables the winds and vertical motion to be modified 

directly by the convection. The explicit convection ultimately provides a direct 

prediction of convective precipitation, whilst the convective parameterization 

schemes can only indirectly predict convective precipitation as a by-product of 

removing instability. 
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3. WRF-ARW model 
The Weather Research and Forecasting (WRF) Model is a next-generation 

mesoscale numerical weather prediction system designed to serve both 

operational forecasting and atmospheric research needs.  

At the end of the last century, circa 1995, the National Centers for 

Environmental Prediction (NCEP) had interest in developing a nonhydrostatic 

model for operational forecasting on finer scales. This idea arose on the 

premise that a NWP model shared between research and operational sector 

could have lead to a beneficial synergy for both communities since the model 

could be a common platform on which an extensive research community 

develop capabilities that operatives could really exploit. 

The original partners to build WRF were NCAR, the National Oceanic and 

Atmospheric Administration (NOAA), the U.S. Air Force, the Naval Research 

Laboratory, the University of Oklahoma, and the Federal Aviation 

Administration. The first model release at the end of December 2000 emerged 

from the partners efforts was a model with a higher-order numerical accuracy 

and scalar conservation properties than the previous models such as the fifth-

generation Pennsylvania State University–NCAR Mesoscale Model (MM5; Grell 

et al. 1994) developed during the 1990s. The model contained a preprocessor 

for domain and input preparation, an evolution of an initial physical packages 

ported from the MM5 and two alternative atmospheric fluid flow solvers or 

cores. The two WRF variants were called the Advanced Research version of 

WRF (ARW) WRF-ARW and the NCEP’s Nonhydrostatic Mesoscale Model 

(NMM) WRF-NMM. Oversight of the WRF enterprise has evolved over time. 

Through the early years, the partners coordinated the various efforts and at the 

developmental level, various working groups focused on narrower areas, such 
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as numerics, data assimilation, and physics. From the late 2000s, the original 

top-down direction of WRF has transitioned to a mode of community-driven 

input, with the responsibility for basic system and community support led by 

NCAR. 

The WRF simulations are produced by two phases, the first to configure the 

model domain(s), ingest the input data, and prepare the initial conditions, and 

the second to run the forecast model and this is done by the forecast 

component that contains the dynamical solver and physics packages for 

atmospheric processes (e.g., microphysics, radiation, planetary boundary 

layer). Figure 9 shows the flowchart for the WRF Modelling System: 

 

 

Figure 9: WRF Modelling System Flow Chart 

 

The forecast model components operate within WRF’s software framework, 

which handles I/O and parallel-computing communications. WRF is written 
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primarily in Fortran, can be built with a number of compilers, and runs 

predominately on platforms with UNIX-like operating systems, from laptops to 

supercomputers. WRF’s architecture has allowed it to be ported to virtually 

every type of platform in the world’s top 500 supercomputers. WRF model is 

applied extensively under both real-data and idealized configuration for 

research activity but also it is used operationally at governmental centers 

around the word as well as by private companies (Figure 10). 

 

 
Figure 10: Countries that have logged registered WRF users (gold) and that have logged 
users and have run WRF operationally (orange). In some countries, the WRF operation 
has been in regional meteorological centers in selected cities. Note also that operational 
centers may have run multiple NWP models, with WRF not being the exclusive model 
(courtesy of Powers et al. 2017). 

 
WRF is suitable for a broad spectrum of applications across scales ranging 

from meters to thousands of kilometres, and has been widely used at CIMA 

Research Foundation for hydro-meteorological research applications [Parodi 

and Emanuel (2009), Parodi and Tanelli (2010), Parodi, Foufoula-Georgiou and 

Emanuel 2(011), Fiori et al. (2014, 2017) and Pieri et al. (2015), Parodi et al. 

(2017a), Parodi et al. (2017b)].  

The WRF model represents the atmosphere as a number of variables of state 

discretized over regular Cartesian grids. The model solution is computed using 

an explicit high-order Runge-Kutta timesplit integration scheme in the two 

horizontal dimensions with an implicit solver in the vertical. Since WRF domains 
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are decomposed over processors in the two horizontal dimensions only, 

interprocess communication is between neighbours on most supercomputer 

topologies.  

3.1 Analysis of the surface parameterizations 
This paragraph presents the available WRF surface schemes for NWM 

applications, including planetary boundary layer, atmospheric surface layer, and 

land surface model components (Figure 11). 

The planetary boundary layer (PBL) is the lowest part of the atmosphere. Its 

behavior is directly influenced by its contact with a planetary surface. On Earth 

it usually responds to changes in surface radiative forcing in an hour or less. In 

this layer physical quantity such as flow velocity, temperature, moisture, etc., 

displays rapid fluctuations (turbulence) and vertical mixing is strong. Above the 

PBL is the "free atmosphere" where the wind is approximately geostrophic 

(parallel to the isobars) while within the PBL the wind is affected by surface 

drag and turns across the isobars. The free atmosphere is usually nonturbulent, 

or only intermittently turbulent.  

The atmospheric surface layer is the lowest part of the planetary boundary layer 

(typically about a tenth of the height of the PBL) where mechanical (shear) 

generation of turbulence exceeds buoyant generation or consumption. 

Turbulent fluxes and stress are nearly constant with height in this layer.  

The earth/land (land hereafter) surface layer involves a number of crucial 

processes for “free” atmosphere and planetary boundary layer namely 

infiltration, internal soil moisture fluxes, internal soil heat fluxes, and 

gravitational flow. 
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Figure 11: planetary boundary layer, and atmospheric surface layer daily cycle (courtesy 
of the COMET Program). 

The planetary boundary layer, the atmospheric surface layer and the land 

surface layer interact through some key processes (Figure 12): the atmospheric 

surface layer provides exchange coefficients for heat and moisture to the land 

surface layer, while the land surface layer provides land-surface fluxes of heat 

and moisture to the planetary boundary layer, and finally the atmospheric 

surface layer supplies friction stress and water-surface fluxes of heat and 

moisture to the planetary boundary layer. 

 

Figure 12: main interactions between planetary boundary layer, the atmospheric surface 
layer and the land surface layer (courtesy of WRF-ARW tutorials). 

Surface processes are dealt in WRF model through a set of physics categories 

which are summarized as planetary boundary layer and land-surface 

parameterizations, discussed hereafter. 
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3.1.1 The surface Layer 

The surface layer schemes calculate friction velocities and exchange 

coefficients that enable the calculation of surface heat and moisture fluxes by 

the land-surface models and surface stress in the planetary boundary layer 

scheme. Over water surfaces, the surface fluxes and surface diagnostic fields 

are computed in the surface layer scheme itself. The schemes provide no 

tendencies, only the stability-dependent information about the surface layer for 

the land-surface and PBL schemes. Some boundary layer schemes require the 

thickness of the surface layer in the model to be representative of the actual 

surface layer (e.g. 50-100 meters). 

3.1.1.1 MM5 scheme 

This scheme uses stability functions from Paulson (1970), Dyer and Hicks 

(1970), and Webb (1970) to compute surface exchange coefficients for heat, 

moisture, and momentum. A convective velocity following Beljaars (1994) is 

used to enhance surface fluxes of heat and moisture. No thermal roughness 

length parameterization is included in the current version of this scheme. A 

Charnock relation relates roughness length to friction velocity over water. There 

are four stability regimes following Zhang and Anthes (1982). This surface layer 

scheme must be run in conjunction with the MRF or YSU PBL schemes. 

3.1.1.2 Eta scheme 

The Eta surface layer scheme [Janjic (1996, 2002)] is based on similarity theory 

[Monin and Obukhov (1954)]. The scheme includes parameterizations of a 

viscous sub-layer. Over water surfaces, the viscous sub-layer is parameterized 

explicitly following Janjic (1994). Over land, the effects of the viscous sub-layer 

are taken into account through variable roughness height for temperature and 

humidity as proposed by Zilitinkevich (1995). The Beljaars (1994) correction is 
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applied in order to avoid singularities in the case of an unstable surface layer 

and vanishing wind speed. The surface fluxes are computed by an iterative 

method. This surface layer scheme must be run in conjunction with the Eta 

(Mellor-Yamada-Janjic) PBL scheme, and is therefore sometimes referred to as 

the MYJ surface scheme. 

3.1.1.3 Pleim scheme 

The Pleim surface layer scheme [Pleim (2006)] was developed as part of the 

Pleim-Xiu land surface model (LSM) but can be used with any LSM or PBL 

model. This scheme is based on similarity theory and includes 

parameterizations of a viscous sub-layer in the form of a quasi-laminar 

boundary layer resistance accounting for differences in the diffusivity of heat, 

water vapor, and trace chemical species. The surface layer similarity functions 

are estimated by analytical approximations from state variables. 

3.1.2 The Land-Surface Model 

The land-surface models (LSMs) use atmospheric information (Figure 13) from 

the surface layer scheme, radiative forcing from the radiation scheme, 

precipitation forcing from the microphysics and convective schemes, surface 

temperature, water vapour and wind from the PBL scheme, together with 

internal information on the land’s state variables and land-surface properties, to 

provide heat and moisture fluxes over land points and sea-ice points. 
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Figure 13: direct interactions of parameterizations, with special focus on surface related 
ones (courtesy of WRF-ARW tutorials). 

 

These fluxes provide a lower boundary condition for the vertical transport done 

in the PBL schemes (or the vertical diffusion scheme in the case where a PBL 

scheme is not run, such as in large-eddy mode). The land-surface models have 

various degrees of sophistication in dealing with thermal and moisture fluxes in 

multiple layers of the soil and also may handle vegetation, root, and canopy 

effects and surface snow-cover prediction. The land-surface model provides no 

tendencies, but does update the land’s state variables which include the ground 

(skin) temperature, soil temperature profile, soil moisture profile, snow cover, 

and possibly canopy properties. There is no horizontal interaction between 

neighbouring points in the LSM, so it can be regarded as a one-dimensional 

column model for each WRF land grid-point, and many LSMs can be run in a 

stand-alone mode.  
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Scheme 
Vegetation 

processes 
Soil variables (Layers) 

Snow 

scheme 

5-layer No Temperature (5) None 

Noah Yes 
Temperature, Water+Ice, 

Water (4) 

1-layer, 

fractional 

Noah-MP Yes 
Temperature, Water+Ice, 

Water (4) 
multi-layer 

RUC Yes 
Temperature, Ice, Water + 

Ice (6-9) 
multi-layer 

Pleim-Xiu Yes Temperature, Moisture (2) input only 

CLM Yes 
Temperature, Water+Ice, 

Water (10) 
multi-layer 

SSiB  Yes 
Temperature, Water+Ice, 

Water (3) 
multi-layer 

 

3.1.2.1 5-layer thermal diffusion 

This simple LSM is based on the MM5 5-layer soil temperature model. Layers 

are 1, 2, 4, 8, and 16 cm thick. Below these layers, the temperature is fixed at a 

deep-layer average. The energy budget includes radiation, sensible, and latent 

heat flux. It also allows for a snow-cover flag, but the snow cover is fixed in 

time. Soil moisture is also fixed with a landuse- and season-dependent constant 

value, and there are no explicit vegetation effects. 

3.1.2.2 Noah 

This is a 4-layer soil temperature and moisture model with canopy moisture and 

snow cover prediction. The layer thicknesses are 10, 30, 60 and 100 cm from 
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the top down. It includes root zone, evapotranspiration, soil drainage, and 

runoff, taking into account vegetation categories, monthly vegetation fraction, 

and soil texture. The scheme provides sensible and latent heat fluxes to the 

boundary-layer scheme. The Noah LSM additionally predicts soil ice, and 

fractional snow cover effects, has an improved urban treatment, and considers 

surface emissivity properties. 

3.1.2.3 Noah-MP 

Noah-MP is a land surface model using multiple options for key land-

atmosphere interaction processes [Niu et al. (2011)]. Noah-MP contains a 

separate vegetation canopy defined by a canopy top and bottom, crown radius, 

and leaves with prescribed dimensions, orientation, density, and radiometric 

properties. The canopy employs a two-stream radiation transfer approach along 

with shading effects necessary to achieve proper surface energy and water 

transfer processes including under-canopy snow processes [Dickinson (1983), 

Niu and Yang (2004)]. Noah-MP contains a multi-layer snow pack with liquid 

water storage and melt/refreeze capability and a snow-interception model 

describing loading/unloading, melt/refreeze capability, and sublimation of 

canopy-intercepted snow [Yang and Niu (2003), Niu and Yang (2004)]. Multiple 

options are available for surface water infiltration and runoff and groundwater 

transfer and storage including water table depth to an unconfined aquifer [Niu et 

al. (2007)]. The Noah-MP model can be executed by prescribing both the 

horizontal and vertical density of vegetation using either ground- or satellite-

based observations. Another available option is for prognostic vegetation 

growth that combines a Ball-Berry photosynthesis-based stomatal resistance 

[Ball et al. (1987)] with a dynamic vegetation model [Dickinson et al. (1998)] that 

allocates carbon to various parts of vegetation (leaf, stem, wood and root) and 
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soil carbon pools (fast and slow). The model is capable of distinguishing 

between C3 and C4 photosynthesis pathways and defines vegetation-specific 

parameters for plant photosynthesis and respiration. 

 

3.1.2.4 Rapid Update Cycle (RUC) 

The RUC LSM has a multi-level soil model (6 levels is default but it could 9) 

with higher resolution in the top part of soil domain (0, 5, 20, 40, 160, 300 cm is 

default). The soil model solves heat diffusion and Richards moisture transfer 

equations, and in the cold season takes into account phase changes of soil 

water [Smirnova et al. (2004, 2007)]. The RUC LSM also has a multi-layer snow 

model with changing snow density, refreezing liquid water percolating through 

the snow pack, snow depth and temperature dependent albedo, melting 

algorithms applied at both snow-atmosphere interface and snow-soil interface, 

and simple parameterization of fractional snow cover with possibility of grid 

averaged skin temperature going above freezing. It also includes vegetation 

effects and canopy water. The RUC LSM has a layer approach to the solution 

of energy and moisture budgets. The layer spans the ground surface and 

includes half of the first atmospheric layer and half of the top soil layer with the 

corresponding properties (density, heat capacity, etc.) The residual of the 

incoming fluxes (net radiation, latent and sensible heat fluxes, soil heat flux, 

precipitation contribution into heat storage, etc.) modify the heat storage of this 

layer. An implicit technique is applied to the solution of these equations. 

Prognostic variables include soil temperature, volumetric liquid, frozen and total 

soil moisture contents, surface and sub-surface runoff, canopy moisture, 

evapotranspiration, latent, sensible and soil heat fluxes, heat of snow-water 
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phase change, skin temperature, snow depth and density, and snow 

temperature. 

3.1.2.5 Pleim-Xiu (PX) 

The PX LSM [Pleim and Xiu (1995), Xiu and Pleim (2001)] includes a 2-layer 

force-restore soil temperature and moisture model. The top layer is taken to be 

1 cm thick, and the lower layer is 99 cm. The PX LSM features three pathways 

for moisture fluxes: evapotranspiration, soil evaporation, and evaporation from 

wet canopies. Evapotranspiration is controlled by bulk stomatal resistance, that 

is dependent on root zone soil moisture, photosynthetically active radiation, air 

temperature, and the relative humidity at the leaf surface. Grid aggregate 

vegetation and soil parameters are derived from fractional coverages of land 

use categories and soil texture types. 

3.1.2.6 Community Land Model (CLM) 

The Community Land Model is the land component of the Community Climate 

System Model. 

Its version 4 is extended with a carbon-nitrogen (CN) biogeochemical model 

that is prognostic with respect to vegetation, litter, and soil carbon and nitrogen 

states and vegetation phenology. An urban canyon model is added and a 

transient land cover and land use change (LCLUC) capability, including wood 

harvest, is introduced, enabling study of historic and future LCLUC on energy, 

water, momentum, carbon, and nitrogen fluxes. The hydrology scheme is 

modified with a revised numerical solution of the Richards equation and a 

revised ground evaporation parameterization that accounts for litter and within-

canopy stability. The new snow model incorporates the SNow and Ice Aerosol 

Radiation model (SNICAR) - which includes aerosol deposition, grain-size 
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dependent snow aging, and vertically-resolved snowpack heating – as well as 

new snow cover and snow burial fraction parameterizations. 

The thermal and hydrologic properties of organic soil are accounted for and the 

ground column is extended to, 50-m depth. Several other minor modifications to 

the land surface types dataset, grass and crop optical properties, surface layer 

thickness, roughness length and displacement height, and the disposition of 

snow-capped runoff are also incorporated 

3.1.2.7 Simplified Simple Biosphere Model (SSiB) 

The Simple Biosphere Model (SiB) is a bio-physically based model of land 

surface-atmosphere interaction. For some general circulation model (GCM) 

climate studies, further simplifications are desirable to have greater computation 

efficiency, and more important, to consolidate the parametric representation. 

The diurnal variation of surface albedo is computed in SiB by means of a 

comprehensive yet complex calculation. Since the diurnal cycle is quite regular 

for each vegetation type, this calculation can be simplified considerably. The 

effect of root zone soil moisture on stomatal resistance is substantial, but the 

computation in SiB is complicated and expensive.  

The surface stress and the fluxes of heat and moisture between the top of the 

vegetation canopy and an atmospheric reference level have been 

parameterized in an off-line version of SiB. 

3.1.3 The Planetary boundary layer Model 

In the set of equation for turbulent flow the number of unknowns is larger than 

the number of equations, therefore there are unknown turbulence terms, which 

must be parameterized as a function of known quantities and parameters. Much 

of the problem in numerical modeling of the turbulent atmosphere is related to 
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the numerical representation (or parameterization as a function of known 

quantities and parameters) of these fluxes. This problem is known as closure 

problem. Closure can be local and non-local: for local closure, an unknown 

quantity in any point in space is parameterized by values and/or gradients of 

known quantities at the same point; for non-local closure, an unknown quantity 

at one point in space is parameterized by values and/or gradients of known 

quantities at many points in space; additionally the use of first-order closure 

schemes for evaluating turbulent fluxes is common in many boundary layer, 

mesoscale, and general circulation models of the atmosphere. 

In this framework, the planetary boundary layer (PBL) model/parameterization 

is responsible for vertical sub-grid-scale fluxes due to eddy transports in the 

whole atmospheric column, not just the boundary layer. Thus, when a PBL 

scheme is activated, explicit vertical diffusion is de-activated with the 

assumption that the PBL scheme will handle this process. The most appropriate 

horizontal diffusion choices  are those based on horizontal deformation or 

constant Kh values where horizontal and vertical mixing are treated 

independently. The surface fluxes are provided by the surface layer and land-

surface schemes. The PBL schemes determine the flux profiles within the well-

mixed boundary layer and the stable layer, and thus provide atmospheric 

tendencies of temperature, moisture (including clouds), and horizontal 

momentum in the entire atmospheric column. Most PBL schemes consider dry 

mixing, but can also include saturation effects in the vertical stability that 

determines the mixing. The schemes are one-dimensional, and assume that 

there is a clear scale separation between sub-grid eddies and resolved eddies. 

This assumption will become less clear at grid sizes below a few hundred 

meters (LES mode), where boundary layer eddies may start to be resolved, and 
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in these situations the scheme should be replaced by a fully three-dimensional 

local sub-grid turbulence scheme such as the TKE diffusion scheme. 

WRF PBL schemes can be: 

● based on turbulent kinetic energy prediction 

● diagnostic non local 

 
Scheme Unstable PBL Entrainment PBL Top Mixing 

MYJ K from prognostic TKE part of PBL mixing multi-layer 

QNSE K from prognostic TKE part of PBL mixing multi-layer 

BouLac K from prognostic TKE part of PBL mixing multi-layer 

MYNN2 K from prognostic TKE part of PBL mixing multi-layer 

TEMF K from prognostic TKE part of PBL mixing multi-layer 

UW K from prognostic TKE part of PBL mixing multi-layer 

Shin-Hong K from prognostic TKE part of PBL mixing multi-layer 

MRF K profile + countergradient term part of PBL mixing None 

YSU K profile + countergradient term explicit term 
1-layer, 

fractional 

ACM2 transilient mixing up, local K down part of PBL mixing input only 

 

3.1.3.1 Turbulent kinetic energy predictions schemes 

Mellor-Yamada-Janjic (MYJ) scheme 

This parameterization of turbulence in the PBL and in the free atmosphere 

[Janjic (1990, 1996, 2002)] represents a non-singular implementation of the 

Mellor-Yamada Level 2.5 turbulence closure model [Mellor and Yamada (1982)] 

through the full range of atmospheric turbulent regimes. In this implementation, 

an upper limit is imposed on the master length scale. This upper limit depends 

on the TKE as well as the buoyancy and shear of the driving flow. In the 

unstable range, the functional form of the upper limit is derived from the 

requirement that the TKE production be non-singular in the case of growing 

turbulence. In the stable range, the upper limit is derived from the requirement 
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that the ratio of the variance of the vertical velocity deviation and TKE cannot be 

smaller than that corresponding to the regime of vanishing turbulence.  

Quasi-Normal Scale Elimination (QNSE) scheme 

The QNSE scheme is a one-and-a-half order, local closure scheme and has a 

TKE prediction option that uses a new theory for stably stratified regions 

[Sukoriansky et al. (2005)]. The PBL height is defined as where the TKE profile 

decreases to a prescribed low value (0.01 m2 s−2), similar to the MYJ scheme. 

QNSE Provides realistic depiction of potential temperature profiles, PBL height, 

and kinematic profiles based on observational data and corresponding large 

eddy simulations [Kosovic and Curry (2000)] for its designed environment 

(stable conditions). Conversely, as with the MYJ scheme, in the case of the 

less-stable PBL, QNSE depicts too cool, moist, and shallow of a PBL for 

simulations of springtime convective environments. 

Bougeault–Lacarrère (BouLac) scheme 

The BouLac scheme is a one-and-a-half order, local closure scheme and has a 

TKE prediction option designed for use with the BEP (Building Environment 

Parametrization) multi-layer, urban canopy model. BouLac diagnoses PBL 

height as the height where the prognostic TKE reaches a sufficiently small 

value (in the current version of WRF is 0.005 m2s−2). It is found to better 

represent the PBL in regimes of higher static stability compared to nonlocal 

schemes in similar regimes [Shin and Hong (2011)]. 

Mellor–Yamada–Nakanishi–Niino Level 2.5 (MYNN2) scheme                   

The MYNN2 scheme is tuned to a database of large eddy simulations (LES) in 

order to overcome the typical biases associated with other MY-type schemes, 

such as insufficient growth of convective boundary layer and under-estimated 
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TKE. The MYNN2 scheme is a one-and-a-half order, local closure scheme and 

predicts sub-grid TKE terms.  

Total Energy–Mass Flux (TEMF) scheme 

The Total Energy–Mass Flux (TEMF) scheme [Angevine et al. (2010)] is a one-

and-a-half order, non-local closure scheme and has a sub-gridscale total 

energy prognostic variable, in addition to mass-flux-type shallow convection. 

TEMF uses eddy diffusivity and mass flux concepts to determine vertical 

mixing. It compares favorably with large eddy simulation results for 

observations from the 2006 Texas Air Quality and Gulf of Mexico Atmospheric 

Composition and Climate Study (TexAQS II/GoMACCS) around Houston, 

Texas [Angevine et al. (2010)]; it yields PBL profiles more accurately depicting 

scenarios supporting shallow cumulus clouds than other schemes [Angevine et 

al. (2010)]. It Indicates greater drying beneath stratocumulus clouds and higher 

moisture content within the lower cloud layer compared to results from the large 

eddy simulations, indicating too much moisture flux across the lower cloud 

boundary in the TEMF scheme [Angevine et al. (2010)]. 

University of Washington (UW) scheme 

The University of Washington (UW) scheme [Bretherton and Park (2009)] is a 

one-and-a-half order, local TKE closure scheme from the Community Earth 

System Model (CESM), climate model [Gent et al. (2011)]. 

Shin-Hong Scale–aware scheme 

The Shin-Hong PBL is based on YSU and it is designed for subkilometer 

transition scales (200 m – 1 km). It attempts to represent the subgrid-scale 

(SGS) turbulent transport in convective boundary layers (CBLs) at gray-zone 

resolutions by investigating the effects of grid-size dependency in the vertical 

heat transport parameterization for CBL simulations.  



 
 

73 

First, nonlocal transport via strong updrafts and local transport via the remaining 

small-scale eddies are separately calculated. Second, the SGS nonlocal 

transport is formulated by multiplying a grid-size dependency function with the 

total nonlocal transport profile fit to the large-eddy simulation (LES) output. 

Finally, the SGS local transport is formulated by multiplying a grid-size 

dependency function with the total local transport profile, which is calculated 

using an eddy-diffusivity formula [Shin and Dudhia (2016)]. 

3.1.3.2 Diagnostic non local schemes 

Medium Range Forecast (MRF) scheme 

The scheme is described by Hong and Pan (1996). This PBL scheme employs 

a so-called counter-gradient flux for heat and moisture in unstable conditions. It 

uses enhanced vertical flux coefficients in the PBL, and the PBL height is 

determined from a critical bulk Richardson number. It handles vertical diffusion 

with an implicit local scheme, and it is based on local Ri in the free atmosphere. 

Compared to local PBL schemes, MRF more accurately simulates the deeper 

mixing within an unstable PBL where larger eddies entrain higher potential 

temperatures above the PBL into the PBL. 

Yonsei University (YSU) scheme 

The Yonsei University PBL [Hong et al. (2006)] is the next generation of the 

MRF PBL, also using the countergradient terms to represent fluxes due to non-

local gradients. This adds to the MRF PBL [Hong and Pan (1996)] an explicit 

treatment of the entrainment layer at the PBL top. The entrainment is made 

proportional to the surface buoyancy flux in line with results from studies with 

large-eddy models [Noh et al. (2003)]. The PBL top is defined using a critical 

bulk Richardson number of zero (compared to 0.5 in the MRF PBL), so is 

effectively dependent on the buoyancy profile, in which the PBL top is defined 
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at the maximum entrainment layer (compared to the layer at which the 

diffusivity becomes zero). A smaller magnitude of the counter-gradient mixing in 

the YSU PBL produces a well-mixed boundary-layer profile, whereas there is a 

pronounced over-stable structure in the upper part of the mixed layer in the 

case of the MRF PBL. Details are available in Hong et al. (2006), including the 

analysis of the interaction between the boundary layer and precipitation 

physics. In version 3.0, an enhanced stable boundary-layer diffusion algorithm 

[Hong (2007)] is also devised that allows deeper mixing in windier conditions. 

YSU more accurately simulates deeper vertical mixing in buoyancy-driven PBLs 

with shallower mixing in strong-wind regimes compared to MRF [Hong et al. 

(2006)], however it has still been found to overdeep the PBL for springtime 

deep convective environments, resulting in too much dry air near the surface 

and underestimation of MLCAPE related to environments of deep convection 

[Coniglio et al. (2013)]. 

Asymmetrical Convective Model version 2 scheme 

The ACM2 [Pleim (2007)] is a combination of the ACM, which is a simple 

transilient model that was originally a modification of the Blackadar convective 

model, and an eddy diffusion model. Thus, in convective conditions the ACM2 

can simulate rapid upward transport in buoyant plumes and local shear induced 

turbulent diffusion. The partitioning between the local and nonlocal transport 

components is derived from the fraction of non-local heat flux according to the 

model of Holtslag and Boville (1993). The algorithm transitions smoothly from 

eddy diffusion in stable conditions to the combined local and non-local transport 

in unstable conditions. The ACM2 is particularly well suited for consistent PBL 

transport of any atmospheric quantity including both meteorological (u, v,θ , qv) 

and chemical trace species. 



 
 

75 

The scheme predicts changes in water vapor and condensate in the forms of 

cloud water, rain, cloud ice, and precipitation ice (snow/graupel/sleet). The 

individual hydrometeor fields are combined into total condensate, and it is the 

water vapor and total condensate that are advected in the model. Local storage 

arrays retain first-guess information that extract contributions of cloud water, 

rain, cloud ice, and precipitation ice of variable density in the form of snow, 

graupel, or sleet. The density of precipitation ice is estimated from a local array 

that stores information on the total growth of ice by vapor deposition and 

accretion of liquid water. Sedimentation is treated by partitioning the time-

averaged flux of precipitation into a grid box between local storage in the box 

and fall out through the bottom of the box. This approach, together with 

modifications in the treatment of rapid microphysical processes, permits large 

time steps to be used with stable results.  

3.2 Analysis of the atmospheric parameterizations 
This paragraph is devoted to the analysis of available WRF atmosphere 

schemes for NWM and LES applications, including microphysics and radiation 

model components. 

 

Figure 14: key microphysics and radiation processes 
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3.2.1 Microphysics parameterizations  

Microphysics includes explicitly resolved water vapor, cloud, and precipitation 

processes. The model is general enough to accommodate any number of mass 

mixing-ratio variables, and other quantities such as number concentrations. 

Four-dimensional arrays with three spatial indices and one species index are 

used to carry such scalars. Memory, i.e., the size of the fourth dimension in 

these arrays, is allocated depending on the needs of the scheme chosen, and 

advection of the species also applies to all those required by the microphysics 

option. WRF offers microphysics parameterization options with different level of 

sophistication: 

● Warm rain (i.e. no ice) – Kessler (idealized) 

● Simple ice (3 arrays) – WSM3 

● Mesoscale (5 arrays, no graupel) – WSM5 

● Cloud-scale single-moment (6 arrays, graupel) – WSM6, Lin, Goddard, 

Eta-Ferrier 

● Double-moment (8-13 arrays) – Thompson, Morrison, WDM5, WDM6, 

NSSL 

Single-moment schemes have one prediction equation for mass (kg/kg) per 

species with particle size distribution being derived from fixed parameters. 

Double-moment (DM) schemes add a prediction equation for number 

concentration (#/kg) per DM species, bearing in mind that DM schemes may 

only be double-moment for a few species and that they allow for additional 

processes such as size-sorting during fall-out and sometimes aerosol (CCN) 

effects. 
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Figure 15: illustration of microphysics interactions for schemes with different level of 
sophistication, where Qv stands for water vapour, Qc for cloud water, Qr for rain water, 
Qi for cloud ice, Qs for snow, and Qg for graupel (courtesy of WRF-ARW tutorials). 

3.2.1.1 Kessler scheme 

This scheme (Kessler, 1969), which was taken from the COMMAS model 

(Wicker and Wilhelmson, 1995), is a simple warm cloud scheme that includes 

water vapor, cloud water, and rain. The microphysical processes included are: 

the production, fall, and evaporation of rain; the accretion and autoconversion of 

cloud water; and the production of cloud water from condensation. 

3.2.1.2 Purdue Lin scheme 

Six classes of hydrometeors are included: water vapor, cloud water, rain, cloud 

ice, snow, and graupel. All parameterization production terms are based on Lin 

et al. (1983) and Rutledge and Hobbs (1984) with some modifications, including 

saturation adjustment following Tao et al. (1989) and ice sedimentation. This is 

a relatively sophisticated microphysics scheme in WRF, and it is most suitable 

for use in research studies. The scheme is taken from the Purdue cloud model, 

and the details can be found in Chen and Sun (2002). 
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3.2.1.3 WRF Single-Moment 3-class (WSM3) scheme  

The WRF single-moment microphysics scheme follows Hong et al. (2004) 

including ice sedimentation and other new ice-phase parameterizations. A 

major difference from other approaches is that a diagnostic relation is used for 

ice number concentration that is based on ice mass content rather than 

temperature. The computational procedures are described in Hong and Lim 

(2006). 

As with WSM5 and WSM6, the freezing/melting processes are computed during 

the fall-term sub-steps to increase accuracy in the vertical heating profile of 

these processes. The order of the processes is also optimized to decrease the 

sensitivity of the scheme to the time step of the model. The WSM3 scheme 

predicts three categories of hydrometers: vapor, cloud water/ice, and rain/snow, 

which is a so-called simple-ice scheme. It follows Dudhia (1989) in assuming 

cloud water and rain for temperatures above freezing, and cloud ice and snow 

for temperatures below freezing. This scheme is computationally efficient for the 

inclusion of ice processes, but lacks supercooled water and gradual melting 

rates. 

3.2.1.4 WSM5 scheme 

This scheme is similar to the WSM3 simple ice scheme. However, vapor, rain, 

snow, cloud ice, and cloud water are held in five different arrays. Thus, it allows 

supercooled water to exist, and a gradual melting of snow falling below the 

melting layer. Details can be found in Hong et al. (2004), and Hong and Lim 

(2006). As with WSM6, the saturation adjustment follows Dudhia (1989) and 

Hong et al. (1998) in separately treating ice and water saturation processes, 

rather than a combined saturation such as the Purdue Lin (above) and Goddard 
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[Tao et al. (1989)] schemes. This scheme is efficient in intermediate grids 

between the mesoscale and cloud-resolving grids. 

3.2.1.5 WSM6 scheme 

The six-class scheme extends the WSM5 scheme to include graupel and its 

associated processes. Some of the graupel-related terms follow Lin et al. 

(1983), but its ice-phase behavior is much different due to the changes of Hong 

et al. (2004). A new method for representing mixed-phase particle fall speeds 

for the snow and graupel particles by assigning a single fallspeed to both that is 

weighted by the mixing ratios, and applying that fallspeed to both sedimentation 

and accretion processes is introduced [Dudhia et al. (2008)]. The behavior of 

the WSM3, WSM5, and WSM6 schemes differ little for coarser mesoscale grids, 

but they work much differently on cloud-resolving grids. Of the three WSM 

schemes, the WSM6 scheme is the most suitable for cloud-resolving grids, 

considering the efficiency and theoretical backgrounds [Hong and Lim (2006)]. 

As a further step towards high-resolution applications WRF also supplies a 

double-moment version (WDM6) of this scheme for warm rain processes, so 

that cloud condensation nuclei, and number concentrations of cloud and rain 

are also predicted. 

3.2.1.6 Eta Ferrier scheme 

The scheme (NOAA 2001) predicts changes in water vapor and condensate in 

the forms of cloud water, rain, cloud ice, and precipitation ice 

(snow/graupel/sleet). The individual hydrometeor fields are combined into total 

condensate, and it is the water vapor and total condensate that are advected in 

the model. Local storage arrays retain first-guess information that extract 

contributions of cloud water, rain, cloud ice, and precipitation ice of variable 
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density in the form of snow, graupel, or sleet. The density of precipitation ice is 

estimated from a local array that stores information on the total growth of ice by 

vapor deposition and accretion of liquid water. Sedimentation is treated by 

partitioning the time-averaged flux of precipitation into a grid box between local 

storage in the box and fall out through the bottom of the box. This approach, 

together with modifications in the treatment of rapid microphysical processes, 

permits large time steps to be used with stable results. 

3.2.1.7 Thompson scheme 

Compared to earlier single-moment schemes, the new scheme incorporates a 

large number of improvements to both physical processes and computer coding 

plus employs many techniques found in far more sophisticated spectral/bin 

schemes using look-up tables. 

Furthermore, the assumed snow size distribution depends on both ice water 

content and temperature and is represented as a sum of exponential and 

gamma distributions. Furthermore, snow assumes a non-spherical shape with a 

bulk density that varies inversely with diameter as found in observations and in 

contrast to nearly all other BMPs that assume spherical snow with constant 

density. New features specific to this version of the bulk scheme compared to 

the Thompson et al. (2004) paper description include: 

● generalized gamma distribution shape for each hydrometeor species 

● non-spherical, variable density snow, and size distribution matching 

observations 

● y-intercept of rain depends on rain mixing ratio and whether apparent 

source is melted ice 

● y-intercept of graupel depends on graupel mixing ratio, and a more 

accurate saturation adjustment scheme 

● variable gamma distribution shape parameter for cloud water droplets 

based on observations 
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● look-up table for freezing of water drops 

● look-up table for transferring cloud ice into snow category 

● improved vapor deposition/sublimation and evaporation 

● variable collection efficiency for rain, snow, and graupel collecting cloud 

droplets 

● improved rain collecting snow and graupel. 

3.2.1.8 Goddard Cumulus Ensemble Model scheme 

The Goddard Cumulus Ensemble (GCE) models [Tao and Simpson (1993)] 

one-moment bulk microphysical schemes are mainly based on Lin et al. (1983) 

with additional processes from Rutledge and Hobbs (1984). However, the 

Goddard microphysics schemes have several modifications. 

First, there is an option to choose either graupel or hail as the third class of ice 

[McCumber et al. (1991)]. Graupel has a relatively low density and a high 

intercept value (i.e., more numerous small particles). In contrast, hail has a 

relative high density and a low intercept value (i.e., more numerous large 

particles). These differences can affect not only the description of the 

hydrometeor population and formation of the anvil-stratiform region but also the 

relative importance of the microphysical-dynamical-radiative processes. 

Second, new saturation techniques [Tao et al. (1989, 2003)] were added. These 

saturation techniques are basically designed to ensure that super saturation 

(sub-saturation) cannot exist at a grid point that is clear (cloudy). Third, all 

microphysical processes that do not involve melting, evaporation or sublimation 

(i.e., transfer rates from one type of hydrometeor to another) are calculated 

based on one thermodynamic state. This ensures that all of these processes 

are treated equally. Fourth, the sum of all sink processes associated with one 

species will not exceed its mass. This ensures that the water budget will be 

balanced in the microphysical calculations . The Goddard microphysics has a 
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third option, which is equivalent to a two-ice (2ICE) scheme having only cloud 

ice and snow. This option may be needed for coarse resolution simulations (i.e., 

> 5 km grid size). The two-class ice scheme could be applied for winter and 

frontal convection. 

3.2.1.9 Morrison et al. double-moment scheme 

The Morrison et al. (2009) scheme is based on the two-moment bulk 

microphysics scheme of Morrison et al. (2005) and Morrison and Pinto (2006). 

Six species of water are included: vapor, cloud droplets, cloud ice, rain, snow, 

and graupel/hail. The code has a user-specified switch to include either graupel 

or hail. Prognostic variables include number concentrations and mixing ratios of 

cloud ice, rain, snow, and graupel/hail, and mixing ratios of cloud droplets and 

water vapor (total of 10 variables). The prediction of two-moments (i.e., both 

number concentration and mixing ratio) allows for a more robust treatment of 

the particle size distributions, which are a key for calculating the microphysical 

process rates and cloud/precipitation evolution. Several liquid, ice, and mixed-

phase processes are included. Particle size distributions are treated using 

gamma functions, with the associated intercept and slope parameters derived 

from the predicted mixing ratio and number concentration. The scheme has 

been extensively tested and compared with both idealized and real case studies 

covering a wide range of conditions. 

3.2.1.10 NSSL double-moment scheme 

This two-moment microphysics scheme predicts mass mixing ratio and number 

concentration of cloud droplets, rain, ice crystals, snow, graupel, and hail. Bulk 

particle density of graupel was also predicted, which allows a single category to 

represent a greater range of particle characteristics. The scheme is intended for 
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cloud-resolving simulations (dx <= 2km) in research applications [Mansell et 

al.(2010)]. 

3.3 Radiation parameterization  
The radiation schemes provide atmospheric heating due to radiative flux 

divergence and surface downward longwave and shortwave radiation for the 

ground heat budget. Longwave radiation includes infrared or thermal radiation 

absorbed and emitted by gases and surfaces. Upward longwave radiative flux 

from the ground is determined by the surface emissivity that in turn depends 

upon land-use type, as well as the ground (skin) temperature. Shortwave 

radiation includes visible and surrounding wavelengths that make up the solar 

spectrum. Hence, the only source is the Sun, but processes include absorption, 

reflection, and scattering in the atmosphere and at surfaces. For shortwave 

radiation, the upward flux is the reflection due to surface albedo. Within the 

atmosphere the radiation responds to model-predicted cloud and water vapor 

distributions, as well as specified carbon dioxide, ozone, and (optionally) trace 

gas concentrations. All the radiation schemes in WRF currently are column 

(one-dimensional) schemes, so each column is treated independently, and the 

fluxes correspond to those in infinite horizontally uniform planes, which is a 

good approximation if the vertical thickness of the model layers is much less 

than the horizontal grid length. This assumption would become less accurate at 

high horizontal resolution. 

3.3.1 Longwave schemes 

They compute clear-sky and cloud upward and downward radiation fluxes: 

●  consider IR emission from layers 

●  Surface emissivity based on land-type 

●  Flux divergence leads to cooling in a layer 
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●  Downward flux at surface important in land energy budget 

● IR radiation generally leads to cooling in clear air (~2K/day), 

● stronger cooling at cloud tops and warming at cloud base 

3.3.1.1 Rapid Radiative Transfer Model (RRTM) Longwave 

This RRTM, which is taken from MM5, is based on Mlawer et al. (1997) and is a 

spectral-band scheme using the correlated-k method. It uses pre-set tables to 

accurately represent longwave processes due to water vapor, ozone, CO2, and 

trace gases (if present), as well as accounting for cloud optical depth. 

3.3.1.2 Eta Geophysical Fluid Dynamics Laboratory (GFDL)  Longwave 

This longwave radiation scheme is from GFDL. It follows the simplified 

exchange method of Fels and Schwarzkopf (1975) and Schwarzkopf and Fels 

(1991), with calculation over spectral bands associated with carbon dioxide, 

water vapor, and ozone. Included are Schwarzkopf and Fels (1985) 

transmission coefficients for carbon dioxide, a Roberts et al. (1976) water vapor 

continuum, and the effects of water vapor-carbon dioxide overlap and of a Voigt 

line-shape correction. The Rodgers (1968) formulation is adopted for ozone 

absorption. Clouds are randomly overlapped. This scheme is implemented to 

conduct comparisons with the operational Eta model. 

3.3.1.3 CAM  Longwave 

A spectral-band scheme used in the NCAR Community Atmosphere Model 

(CAM 3.0) for climate simulations. It has the potential to handle several trace 

gases. It interacts with resolved clouds and cloud fractions, and is documented 

fully by Collins et al. (2004). 

3.3.2 Shortwave schemes 

They compute clear-sky and cloudy solar fluxes by including annual and diurnal 

solar cycles. Most schemes consider downward and upward (reflected) fluxes, 
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even if Dudhia scheme only has downward flux. They have primarily a warming 

effect in clear sky, as an important component of surface energy balance. 

 

3.3.2.1 Eta Geophysical Fluid Dynamics Laboratory (GFDL) Shortwave 

This shortwave radiation is a GFDL version of the Lacis and Hansen (1974) 

parameterization. Effects of atmospheric water vapor, ozone (both from Lacis 

and Hansen, 1974), and carbon dioxide [Sasamori et al. (1972)] are employed. 

Clouds are randomly overlapped. Shortwave calculations are made using a 

daylight-mean cosine solar zenith angle over the time interval (given by the 

radiation call frequency). 

3.3.2.2 MM5 (Dudhia) Shortwave 

This scheme is base on Dudhia (1989) and is taken from MM5. It has a simple 

downward integration of solar flux, accounting for clear-air scattering, water 

vapor absorption [Lacis and Hansen (1974)], and cloud albedo and absorption. 

It uses look-up tables for clouds from Stephens (1978). 

3.3.2.3 Goddard Shortwave 

This scheme is based on Chou and Suarez (1994). It has a total of 11 spectral 

bands and considers diffuse and direct solar radiation components in a two-

stream approach that accounts for scattered and reflected components. Ozone 

is considered with several climatological profiles available. 

3.3.2.4 CAM  Longwave 

A spectral-band scheme used in the NCAR Community Atmosphere Model 

(CAM 3.0) for climate simulations. It has the ability to handle optical properties 

of several aerosol types and trace gases. It uses cloud fractions and overlaps 

assumptions in unsaturated regions, and has monthly zonal ozone climatology. 
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It is documented fully by Collins et al. (2004). The CAM radiation scheme is 

especially suited for regional climate simulations by having a ozone distribution 

that varies during the simulation according to monthly zonal-mean 

climatological data. 

3.4 Analysis of the forecast skill limitations  
Since 1960, the meteorological modelling has been characterized by two main 

broad classes of models: mesoscale modelling, including nowadays cloud 

permitting and cloud resolving applications, and the large eddy simulation 

(LES), whose range of applicability has been largely independent for many 

years. LES have been generally used to study turbulence processes in 

boundary layer (in particular in dry boundary layer), even though atmospheric 

turbulence ranges in nature from the typical large eddies production scales to 

the turbulent kinetic energy (TKE) dissipative scales. 

Literature on turbulence studies shows as it is well represented by LES models 

at very fine grid meshes (10-100 m). In the early 1970s LES were developed for 

high Reynolds number in a channel [Lilly (1967); Deardorff (1970)], and then 

applied to meteorological flows [Deardorff (1972), Sommeria (1976)]. These 

simulations are based on a fundamental assumption: the chosen resolution Δ 

must be adapted as the most energetic eddies of typical scale L are resolved by 

the model and the mean effect of the smallest eddies on the mean flow is 

parameterized. 

The concepts of resolved and unresolved scales of the atmospheric motion in 

NWM are strictly related to the spatial and temporal discretization used to solve 

numerically the primitive differential equations whose integration provides future 

state of the atmosphere. 
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Typical physical processes which operate on unresolved scales and need to be 

parameterized in terms of their interaction with the resolved scales are 

originated from friction, moist processes such as evaporation and condensation 

and radiative cooling and heating. The effects in atmosphere of these 

unresolved processes are captured by parameterizations which play the role of 

interconnection between atmosphere and surface since these processes drive 

the momentum and heat budgets at the grid scale and influence the skill of 

NMW in weather and climate prediction. For radiation and microphysical 

processes the formulation in global model is similar to that used in high 

resolution models while for deep convection and boundary layer processes their 

degree of formulation in parameterization is strictly related to the resolution 

used. 

Over the last decades, the increase in computing power and resources has 

yielded a NWM with horizontal grid spacings (Δ) of the order of a few kilometers 

not only for pure scientific or idealized studies but allowing to most operational 

forecast centres to make in plan to use non hydrostatic models at kilometer 

scale. For example, the operative WRF model [Janjic (2003), Skamarock and 

Klemp (2008)] at the National Centers for Environmental Prediction (NCEP), the 

Air Force Weather Agency (AFWA) and at other centres used a 4 km resolution. 

At the same time, many sensitivities studies performed high resolution 

experiments with NWM have been conducted to try to reproduce extreme 

rainfall events and to evaluate the sources of uncertainty which limit the 

forecast skills of the models. In particular, combination of different grid 

resolutions and different timing in the initialization of the experiments that 

conducted to support the value added to use initialization as much as possible 

closer to the analyzed event. The combination of different grid resolutions and 
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different microphysical parameterizations stressed the importance of the role of 

cloud physics in simulation of the spatial distribution of rainfall. 

However, even these high resolution simulations imply additional coast of 

maintenance, many modelers have avoided simulations in the so-called "gray 

zone" where some assumptions in parameterizations are violated but at the 

same time the physical process is not sufficiently resolved to be modeled 

explicitly. This is the case for deep convection representation: it is an open 

discussion the limit of horizontal resolution for which convection 

parameterization is no longer necessary [Dirmeyer et al.(2012)].    

Some studies in the last years have reported improved model behavior at 4 km 

and less grid spacing without convection parameterization schemes [Done et al. 

(2004) Weisman et al. (2008), Schwartz et al. (2009), Fiori et al. (2014, 2017), 

Prein et al. (2013b)] with considerable increasing in quantitative precipitation 

forecasts [Benoit et al. (2002), Richard et al. (2007), Lean et al. (2008), 

Skamarock and Klemp (2008), Weusthoff et al. (2010), Baldauf et al. (2011)]. 

Switching off the convection parameterization (convection-resolving modeling) 

are thus attractive approaches since leads to more realistic precipitation 

patterns, especially in cases of moist convection and/or over mountainous 

regions [Grell et al. (2000), Mass et al. (2002)]. Additional advantages by 

applying high resolution and such convection-resolving models (CRMs) are a 

better representation of topography, surface fields, and boundary layer 

processes.  

In regions with complex orography, when resolution is in the order of 1-2 km so 

that steep slopes can be resolved, studies have demonstrated that the 

distribution of rainfall is strongly influenced [Foresti et al. (2013), Foresti and 

Seed (2015)].  
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The influence on boundary layer processes development in relation to run 

numerical weather and climate model with grid sizes as small as 2 km is also 

related on how turbulence is represented. If such models treat turbulence as an 

entirely sub-grid processes (Δ larger than 2 km) or the three-dimensional 

turbulence providing energy to the inertial sub-range is explicitly resolved in 

LES mode (Δ 10-100m), turbulence is well represented. At intermediate scales, 

the so called "terra incognita" (Wyngaard, 2004), the turbulent structures are 

neither entirely subgrid scale (as in global and mesoscale models) nor largely 

resolved (as in LES).  

Several studies have shown that grid spacing of O(1) km is insufficient to 

resolve turbulent eddies and cloud-scale motions [Bryan et al. (2003), Rotunno 

et al. (2009), Dawson et al. (2010), Bryan and Morrison (2012)] while several 

other studies have found convergence in various bulk quantities as horizontal 

grid spacing is reduced to 500-200 m [Fiori et al. (2010, 2011), Langhans et al. 

(2012), Verelle et al. (2014)] and LES is used not only for idealized cases but 

also for isolated convective system [Ricard et al. (2013)] and simulations of the 

Hector thunderstorm [Dauhut et al. (2015)]. 

3.5 WRF Preprocessing System (WPS) 
The initial and boundary conditions for the WRF real-data cases are pre-

processed through a separate package called the WRF Preprocessing System 

(WPS). The WPS is a set of programs that takes terrestrial and meteorological 

data (typically in GriB format) and transforms them for input to the ARW pre-

processor program for real-data cases (real). Figure 16 shows the flow of data 

into and out of the WPS system: 

● The purpose of geogrid is to define the simulation domains, and 
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interpolate various terrestrial data sets to the model grids. The simulation 

domains are defined using information specified by the user in the 

“geogrid” namelist record of the WPS namelist file, namelist.wps. In 

addition to computing the latitude, longitude, and map scale factors at 

every grid point, geogrid will interpolate soil categories, land use 

category, terrain height, annual mean deep soil temperature, monthly 

vegetation fraction, monthly albedo, maximum snow albedo, and slope 

category to the model grids by default. Global data sets for each of these 

fields are provided through the WRF download page, and, because 

these data are time-invariant, they only need to be downloaded once. 

Several of the data sets are available in only one resolution, but others 

are made available in resolutions of 30", 2', 5', and 10'; here, " denotes 

arc seconds and ' denotes arc minutes; 

● The ungrib program reads GRIB files, "degribs" the data, and writes the 

data in a simple format, called the intermediate format (see the section 

on writing data to the intermediate format for details of the format). The 

GRIB files contain time-varying meteorological fields and are typically 

from another regional or global model, such as IFS-ECMWF, or GFS 

models. The ungrib program can read GRIB Edition 1 and, if compiled 

with a "GRIB2" option, GRIB Edition 2 files; 

● The metgrid program horizontally interpolates the intermediate-format 

meteorological data that are extracted by the ungrib program onto the 

simulation domains defined by the geogrid program. The interpolated 

metgrid output can then be ingested by the WRF real program. The 

range of dates that will be interpolated by metgrid are defined in the 

“share” namelist record of the WPS namelist file, and date ranges must 
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be specified individually in the namelist for each simulation domain. 

Since the work of the metgrid program, like that of the ungrib program, is 

time-dependent, metgrid is run every time a new simulation is initialized. 

 

Figure 16: WPS rationale (courtesy of WRF-ARW tutorials). 

The inputs a to the ARW real-data processor (real. Exe) from WPS contains 3-

dimensional fields (including the surface) of temperature (K), relative humidity 

(and the horizontal components of momentum (m/s, already rotated to the 

model projection). The 2-dimensional static terrestrial fields include: albedo, 

Coriolis parameters, terrain elevation, vegetation/land-use type, land/water 

mask, map scale factors, map rotation angle, soil texture category, vegetation 

greenness fraction, annual mean temperature, and latitude/longitude. The 2-

dimensional time-dependent fields from the external model, after processing by 

WPS, include: surface pressure and sea-level pressure (Pa), layers of soil 

temperature (K) and soil moisture (kg/kg, either total moisture, or binned into 

total and liquid content), snow depth (m), skin temperature (K), sea surface 

temperature (K), and a sea ice flag. 
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4. The WRF data assimilation system: WRFDA   

4.1 WRFDA structure and observational capability 
The data assimilation is the techniques that combines a Numerical Weather 

Prediction (NWP) output (first guess or background forecast) with observations 

and their respective error statistics providing as product an improved state of 

the atmosphere (analysis).  The improvement of the forecast skill through the 

use of data assimilation techniques became in the last few years an 

increasingly important topic of research. WRFDA is a freely available data 

assimilation software allowing the NWP community to perform both research 

and operational implementation in the same framework [Barker et al. (2012)].   

The WRF model had a significant data assimilation component from the 

beginning of its development. After an initial discussion between major partners 

(NCAR, National Oceanic and Atmospheric Administration (NOAA), the U.S. Air 

Force Weather Agency (AFWA), Oklahoma University, and the U.S. Naval 

Research Laboratory) in 1999-2000 the basic requirements of the data 

assimilation system were defined to satisfy both operational and research 

communities. The key idea at the base of the system is that WRFDA has to be 

robust and efficient, accurate, computational efficient, portable, well 

documented and ease of use. In this framework WRFDA features three-

dimensional and four-dimensional data assimilation (3DVAR, 4DVAR) as well 

as an hybrid variational ensemble technique (ensemble transform Kalman filter 

(ETKF) – 3DVAR). The first version of this data assimilation system was 

distributed in 2003 with only 3DVAR implemented (named WRF 3DVAR), and 

subsequently updated in two steps: WRF 2.0 (2004) and WRF 3.0 [Barker et al. 

(2004), Skamarock et al. (2008)]. Furthermore in 2004 the 4DVAR has been 
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released [Huang et al. (2009)] and the system’s name was changed in WRF-

VAR. Finally, in 2008 the release of the ETKF-3DVAR hybrid 

variational/ensemble system led to the final name WRFDA.  

All the techniques can assimilate a wide range of observations ranging from the 

more traditional ones (surface, rawinsonde, aircraft, wind profiler, and 

atmospheric motion vectors) to the newer ones (radar radial velocity and 

reflectivity, satellite-based observations such as radiance, GPS radio 

occultation measurements etc) as reported in Table 1 [Powers et al. (2017)]. 

 

Table 1: The WRFDA Observation Catalog (Powers et al. 2017) 

Figure 17: WRFDA in the WRF modelling system. In blue the WRFDA components are 
reported with the relation of the rest of the WRF system (white boxes). Where: xb: first 
guess, either from a previous WRF forecast or from WPS/real.exe output. xlbc: lateral 
boundary from WPS/real.exe output. xa: analysis from the WRFDA data assimilation 
system. xf :WRF forecast output. yo: observations processed by OBSPROC (note: 
PREPBUFR input, radar, radiance, and rainfall data do not go through OBSPROC). B0: 
background error statistics from generic BE data (CV3) or gen_be utility. R: 
observational and representative error statistics.  
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One of the main advantages of WRFDA is that it is built directly within the WRF 

modelling system (Figure 17) providing a direct interface with the other WRF 

components.  

The inputs for WRFDA are three (Figure 17): 

● The background forecast (xb): in cold-start mode it is a forecast or 

analysis from another model interpolated to ARW grid through the use of 

WPS and Real programs of WRF system, in warm-start mode (cycling 

mode) it is the output of a short range forecast (typically 1-6 hours) run 

with WRF-ARW system. 

● Observations (y0): they can be provided in PREBUFR or LITTLE_R 

format, and an observation preprocessor (OBSPROC) is designed to 

reform and quality check observations that after can be directly read in 

WRFDA. 

● Background error covariances matrix (B): necessary to define the spatial 

and multivariance response of the analysis to observations. It is 

calculated off-line through the use of gen_be utility. 

When the data assimilation of all observations ends, the analysis state (xa) must 

be merged with the existing boundary conditions (xlbc) using the UPDATE_BC 

utility.  

Summarizing, together with WRFDA there are three main utilities helpful for 

efficient data assimilation: OBSPROC for observation preprocessing, gen_be 

for background error estimation and UPDATE_BC to merge the analysis 

product of data assimilation with the existing boundary condition file.  
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4.1.1 Observation Preprocessing (OBSPROC) 

OBSPROC provides observations (y0) for ingest in WRFDA. The program reads 

LITTLE_R format (a text-based format) and its functions are: 

● Read the observations from LITTLE_R file and the run time and space 

coverage from a namelist file. 

● Remove observations that are outside the temporal window and the 

spatial domain. 

● Through the hydrostatic pressure assumption retrieve pressure or height 

based on observed information. 

● Check multi-level observations for vertical consistency and 

superadiabatic conditions. 

● Estimate the error for each observation from a pre-specified error file 

● Write an output file in ASCII or BUFR format to be direct ingested in 

WRFDA. 

4.1.2 Background Error Calculation (gen_be)  

The background error covariance statistics are necessary in WRFDA cost 

function minimization to weight errors in features of background forecast field. 

The WRFDA’s gen_be utility estimates domain-specific climatological 

background error covariance matrix based on input training data that could be 

time series of forecast differences (the so called “NMC method”, Parrish an 

Derber (1992)) or perturbations from an ensemble prediction system 

[Skamarock et al. (2008), chapter 9].  

The NMC-method estimates climatological background error covariances using 

a process that assume background errors to be well approximated by averaged 

forecast difference statistics (Eq 4.1): 

 

B = x 'b− x 't( ) x 'b− x 't( )
T
= εbεb

T ≈ x 'T+24− x 'T+12( ) x 'T+24− x 'T+12( )
T

    
Eq 4.1
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where x’t is the true state of the atmosphere and εb is the background error. The 

overbar means an average over time and/or space. Alternatively, for an 

ensemble based statistics the vectors are xk’= xk- x , where the overbar is the 

average of ensemble members and K=1,ne (number of ensemble members). 

However, the background error covariance matrix is computed not in the model 

space x’ (u,v,T,q,ps) but in a control variable space (v) related to the model 

space through the control variable transform (U): 

 

x ' = Uv = UpUvUhv        Eq 4.2 

The expansion U=Up Uv Uh  in Eq. 4.2 represents a series of operations (Lorenc 

et al. 2000) implemented in different stages of covariance modelling: horizontal 

correlations (Uh), vertical covariances (Uv) and multivariate covariances (Up).  

The v components are chosen so that their error cross-correlation are 

negligible, so the B matrix will be block-diagonalized.  

Gen_be calculates the background error covariance matrix through 4 stages: 

• Stage_0: stage_0 converters transforms model-specific data (alternative 

models use different grids, variables, data format, etc.) to standard 

perturbation fields and metadata and output them in a standard binary 

format. The standard fields are:  
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o Perturbations: streamfunction ⎠’(i,j,k), velocity potential ⎟’ (i,j,k), 

temperature T’(i,j,k), relative humidity RH’(i,j,k), surface pressure 

p’s(i,j). 

o Full-fields: height z(i,j,k), latitude ⎞(i,j) (required to produce error 

statistics stored in terms of physics variables rather than tied to a 

grid). 

• Stage_1: remove the time-mean in order to calculate covariance 

between fields. 

• Stage_2: In this stage is provided a statistics for the unbalanced fields 

(⎟u,Tu, Psu) used as control variables in WRFDA. The unbalanced control 

variables are the difference between the full and balanced components 

of the field. In Stage_2 the balanced component of particular fields is 

modelled through a regression analysis of the fields using specific 

predictor fields (see Wu et al. 2002). The regression coefficients 

obtained are output to be used in WRFDA Up transform. The regression 

analysis results in three sets of regression coefficients: 

o Velocity potential – streamfunction regression: χb (k) = c(k)ψ(k)  

o Temperature – streamfunction regression: 

Tb (k) = G(k1,k)ψ(k1)
k1∑  

o Surface pressure – streamfunction regression: 

psb = W(k1)ψ(k1)
k1∑  

Note: perturbation notation dropped for clarity. 
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The sum over k1 relates to integral relationship between mass fields and 

the wind field.  The regression coefficient c, G and W do not vary 

horizontally by default. Once computed the regression coefficients, the 

unbalanced components of fields will be: 

- χu (k) = χ(k)− c(k)ψ(k)  

- Tu (k) = T(k)− G(k1,k)ψ(k1)
k1∑  

- psu = ps − W(k1)ψ(k1)
k1∑  

The fields calculated in this way will be the input for the next stage 

(spatial covariances).  

● Stage_3: calculates statistics necessary for the vertical component of the 

control variable transform. The vertical transform Uv is applied using an 

empirical orthogonal function (EOF) decomposition of background error 

covariances (Barker et al. 2004). The vertical component of B (Bv) is 

calculated for each 3D control variable and eigenvector decomposition is 

calculated on model levels k. Bv considering K model levels will be a KxK 

positive-definite, symmetric matrix and given an estimate of Bv (through 

NMC method), the eigendecomposition Bv = EΛET of the matrix is 

performed to obtain eigenvectors E and eigenvalues . After this 

calculation, the entire sequence of 3D control variables is projected into 

EOF space (vertical transform Uv): vp = Uvvv = EΛ1/2vv . 

● Stage_4: computes the last requirement of background error covariance, 

the horizontal error correlations, through the use of recursive filters 

(Hayden and Purser 1995; Purser et al. 2003a) in case of regional 

applications and power spectra for global mode. In regional applications 

the horizontal correlations are computed between each 2D field grid 

points, binned as a function of distance. A Gaussian curve is fitted to the 

data to provide the length scales of correlation that is used in the 

recursive filter algorithm (refer to Barker et al. 2004 for further details). In 
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contrast, in global applications power spectra are computed for each 

vertical modes (K) control variables ⎠, ⎟u, Tu, RHu and psu. 

From a more practical point of view, in gen_be utility the users have four 

choices to define the B matrix, called CV3, CV5, CV6 and CV7. Each of them 

has different properties and considers different control variables as it is reported 

in Table 2. 

 

CV option Control Variables 

CV3 ψ, χu, Tu, q, psu 

CV5 ψ, χu, Tu, RHs, psu 

CV6 ψ, χu, Tu, RHsu, psu 

CV7 u, v, T, RHs, ps 

Table 2: Background error covariances matrix options where: ⎠  is the streamfunction, ⎟u 
is the unbalanced velocity potential,  Tu is the unbalanced temperature, psu is the 
unbalanced surface pressure, RHs is the pseudo relative humidity, RHsu is the 
unbalanced pseudo relative humidity and ps  is the surface pressure. 

 

The CV3 option is provided in WRFDA and the control variables are in physical 

space while CV5, CV6 and CV7 are obtained through the use of gen_be and 

the control variables are in eigenvector space. The main difference between 

CV3 and others is linked to the vertical covariance: CV3 uses the vertical 

recursive filter, while others uses EOF to model the vertical covariance. Also the 

recursive filters to model horizontal covariance are different. In general, CV3 is 

a global B matrix that could be used in any regional domain, while CV5, CV6 

and CV7 are domain-dependent B matrices and should be generated on 

forecasts or ensemble data from the same domain that will be used for data 

assimilation. Furthermore, the difference between CV5, CV6 and CV7 is only 

linked to the control variables they use. 
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4.1.3 Update boundary conditions (UPDATE_BC) 

Using the analysis state (output of WRFDA) as initial conditions, it is necessary 

to first update the lateral boundary conditions to reflect differences between 

background and analysis state. Only boundary conditions of domain 1 must be 

updated because boundary conditions for nests domains are calculated from 

domain 1. To pursue this aim the script update_bc.csh is provided and it works 

with the following input: 

- The analysis state (initial conditions after data assimilation) 

- Original lateral boundary conditions of 1 domain (wrfbdy_d01) 

- A namelist called parame.in 

After running the executable update_bc.exe the old boundary conditions will be 

overwritten with the updated one.  

4.2 WRFDA variational data assimilation 
In general, variational system can be classified as those techniques that provide 

an analysis state of the atmosphere through the minimization of a cost function 

given two source of data: a background forecast (first guess) and observations. 

The main advantages related to the variational data assimilation technique are 

the possibility to assimilate a wide range of observations related nontrivially to 

standard atmospheric variables (e.g. radiance) and the imposition of a dynamic 

balance that can be implicit in the forecast model itself (in case of 4DVAR) or 

explicit using some balance equations (in case of 3DVAR).  In WRFDA both 

3DVAR and 4DVAR are available from WRF 3.0 [Skamarock et al. (2008)] 

release. Prior to WRF 3.0 only 3DVAR was available and the cost function 

minimization used a modified version of limited memory Quasi-Newton Method 

(QNM), starting from WRF 3.0 the alternative Conjugate Gradient Method 

(CGM) is implemented. This update imply the complete linearization of 
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WRFVAR’s inner loop that was a limitation overcame through the introduction of 

multiple outer loops with the purpose of iterate over nonlinear solutions (like 

observation operators, balance constraints in 3DVAR and the forecast itself in 

4DVAR) through the use of the WRFDA’s analysis state from the previous 

iteration as new first guess (Figure 18). The use of multiple outer loops can be 

also very useful in variational quality control because usually observations are 

rejected if the magnitude of the observation minus the background forecast 

differences are larger than a given threshold (typically a multiple of the 

observation error standard deviation). This choice implicitly assumes that the 

first guess is accurate, but in case of areas with large forecast errors, there was 

the danger that good observations could be rejected. The outer loops allow 

observations rejected in previous iteration to be accepted in the following 

iteration if the observation minus the updated first guess (the analysis from the 

previus outer loop) became smaller than the specified threshold.  

Figure 18: Outer loop schematization. 
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4.2.1 3DVAR implementation 

The 3DVAR was the first data assimilation technique released in WRF model, 

the basic goal of this technique is to provide an optimal estimate of the true 

state of the atmosphere through the minimization of the cost function reported 

in Eq. 4.3 [Ide et al. (1997)]. 

 

J(x) = Jb + J0 =
1
2

(x − xb )T B−1(x − xb )+ 1
2

(y − y0 )T (E+F)−1(y − y0 ).
         

Eq 4.3 

    

In summary, the 3DVAR problem is the iterative solution of Eq. 4.3 to find the 

analysis state (x) that minimizes the cost function J(x) which represents the a 

posteriori maximum likelihood estimate of the true state of the atmosphere, 

combining the two sources of data: observations (y0) and background (x0).  B, E 

and F are the background, observation (instrumental) and representivity error 

covariance matrices respectively used as weight to fit the two sources of data. 

The representitivity error is introduced from the use of an observation operator 

(H) to transform the gridded analysis to the observation space: y=H(x).  

Eq. 4.3 assumes that the error covariances are described by a Gaussian PDF 

with 0 mean error, but can be also used alternative costs functions that relax 

this constraint (e.g. Dharssi et al. 1992).  Furthermore Eq. 4.3 neglects 

correlations between observation and background errors, as it is usually done in 

variational approach [Parrish and Derber (1992), Zou et al. (1997), Lorenc et al. 

(2000)].  

The multidimensional cost function is efficiently solved through the use of 

adjoint operations (like multidimensional application of the chain-rule for partial 

differentiation).  Considering a model state x with n degrees of freedom (grid 
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points number times independent variables number), the calculation of the Jb 

term of Eq. 4.3 requires ∼O(n

2) calculations. In a typical NWP problem n2
∼10

12-

1014, then a direct solution is not feasible in the time window necessary for data 

assimilation in operational issues. A solution to reduce the computational cost 

of Jb calculation is to calculate it in terms of control variables defined as x’=Uv, 

where x’ is the analysis increment (x-xb) and U transform is designed to 

nondimensionalize the problem and to allow the use of efficient filtering 

techniques that approximate the full background error covariance matrix. With a 

U transform well designed, the condition numbers will be small and the product 

UUT will quite match the B matrix. In terms of analysis increments, the Eq. 4.3 

can be rewritten as: 

J(v) = Jb + J0 =
1
2

vTv + 1
2

(y0' −HUv)T (E+F)−1(y0' −HUv).
   

Eq 4.4 

    

Where y0’=y0-H(xb) is the innovation vector and H is the linearization of H. 

4.2.2 4DVAR algorithm 

The main advantages of 4DVAR technique with respect to 3DVAR are:  

- The ability of using observations at the time of their measurements. 

- The implicit definition of flow dependent forecast error covariances. 

- The ability of use the forecast model itself as a constraint enhancing the 

analysis in terms of dynamical balance. 

Instead, the main disadvantage is related to the higher computational cost. 

The WRFDA 4DVAR implementation algorithm takes the incremental 

formulation from commonly used in operational systems [Courtier et al. (1994), 

Veersé and Thépaut (1998), Lorenc (2003)]. This approach finds the analysis 
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increment that minimizes a cost function that is a function of the analysis 

increment instead the analysis itself. Usually in this incremental 4DVAR the 

tangent linear and adjoint models are derived from a simplified forward model 

used in the inner loop minimization, while the background evolution is predicted 

with the full forward model.  

From a mathematical point of view, the 4DVAR minimizes a cost function (J) 

that includes a quadratic measure of the distance to background (Jb), 

observation (Jo) and balanced solution (Jc):  

J = Jb + J0 + Jc                     
Eq 4.5 

                

Where: 

- The background cost function (Jb) is: 

 

Jb =
1
2

(xn − xb )T B−1(xn − xb )

=
1
2

[(xn − xn−1)+ (xn−1 − xb )]T B−1[(xn − xn−1)+ (xn−1 − xb )]

=
1
2

(xn − xn−1)+ (x i − x i−1)
i=1

n−1

∑
⎡

⎣
⎢

⎤

⎦
⎥

T

B−1 (xn − xn−1)+ (x i − x i−1)
i=1

n−1

∑
⎡

⎣
⎢

⎤

⎦
⎥

  

Eq 4.6 

in which superscripts -1 and T indicate the inverse and adjoint of a matrix 

or a linear operator, B is the background error covariance matrix, xb is 

the background state (usually is a short range forecast), the notation xi 

denotes an intermittent analysis after the ith outer loop and the final 

analysis is denoted as xn (or xa).  
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- The observation cost function (J0) is the quadratic measure of distance 

between the final analysis (xn) and the observations (yk) through the 

forecast model (Mk) and the observation operator (Hk): 

J0 =
1
2

Hk[Mk (xn )]− yk{ }
k=1

K

∑
T

R−1 Hk[Mk (xn )]− yk{ }

≈
1
2

Hk[Mk (xn−1)]+HkMk (xn − xn−1)− yk{ }
k=1

K

∑
T

R−1 Hk[Mk (xn−1)]+HkMk (xn − xn−1)− yk{ }

=
1
2

HkMk (xn − xn−1)−dk{ }
k=1

K

∑
T

R−1 HkMk (xn − xn−1)−dk{ }
  

Eq 4.7 

    

The assimilation time window is here split into K observation windows. Hk and 

Hk are the nonlinear and tangent linear observation operators over the 

observation window necessary to transform the variables from the gridded 

model space to the observation space. Mk and Mk are the nonlinear and tangent 

linear models used to propagate respectively the first guess vector xn-1 and the 

analysis increment xn - xn-1. R is the observation error covariance matrix. 

Finally, dk is the innovation vector for observation vector for observation 

window: 

dk = yk −Hk[Mk (xn−1)]                  Eq. 4.8 
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- The balancing cost function (Jc) measures the quadratic distance 

between analysis state and a balanced state. To do this, a digital filter is 

included in 4DVAR to remove high-frequency waves and its 

implementation is similar to the forms in Gustafsson (1992), Gauthier 

and Thépaut (2001), and Wee and Kuo (2004): 

 

Jc =
1
2
γdf MN/2 (xn − xn−1)− fiM i (xn − xn−1)

i=0

N

∑
⎡

⎣
⎢

⎤

⎦
⎥

T

C−1 MN/2 (xn − xn−1)− fiM i (xn − xn−1)
i=0

N

∑
⎡

⎣
⎢

⎤

⎦
⎥

=
1
2
γdf giM i (xn − xn−1)

i=0

N

∑
⎡

⎣
⎢

⎤

⎦
⎥

T

C−1 giM i (xn − xn−1)
i=0

N

∑
⎡

⎣
⎢

⎤

⎦
⎥

Eq 4.9 

  

where fi is the digital filter coefficient (Lynch and Huang 1992; Gauthier 

and Thépaut 2001), gi is the modified coefficient ( gi = −fi  if i ≠ N / 2  and 

gN/2 =1− fN/2 ), N is the total integration steps over the assimilation 

window, γdf  is the weight assigned to Jc, and C is a diagonal matrix that 

contains variances of wind (3 m/s)2, temperature (1 K) 2 and dry surface 

pressure (10 hPa) 2. 

 

As previously explained for 3DVAR, also in this case the preconditioning of the 

background cost function is implemented through the use of a control variable 

transform: 

vn = U−1(xn − xn−1)                  Eq 4.10   
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Thus, the cost function gradient J’ becomes: 

J '(vn ) = v i + vn +UT Mk
THk

TR−1 HkMkUvn −dk{ }+UT M i
Tfiγdf C

−1 fiM iUvn

i=0

N

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i=0

N

∑
k=1

K

∑
i=1

n−1

∑ Eq 4.11 

       

Where Hk
T is the adjoint observation operation on observation window (k), Mk

T  

is the adjoint model used to propagate the analysis residuals (contained in {} 

parenthesis) and the digital filter forcing (contained in () parenthesis) backward 

in time from the time indicated from i or k indices to 0. Note that setting K=1 and 

removing the model-related components it is possible to find the 3DVAR 

solution. 

4.3 Hybrid ETKF-Variational data assimilation 
The hybrid data assimilation techniques aim to combine the benefits of the 

variational data assimilation (dynamical and physical constraints, simultaneous 

treatment of observations, quality control, the use of outer loops to treat 

nonlinearities) with those of ensemble technique (flow dependence and 

flexibility).  

The use of WRFDA coupled with an ensemble prediction system is shown in 

Figure 19. There are two main steps, the first is a forecast step where and an 

ensemble of N WRF forecast members (xf
n) is integrated forward until the next 

data assimilation window. The second step is the update step where the 

ensemble mean is used as background for WRFDA, here the flow-dependent 

forecast errors is supplied by ensemble perturbations (member minus mean) 

reported in Figure 19 as a blue dashed line. The main difference between 

hybrid and pure 3DVAR is that the 3DVAR relies on a static error covariance of 

background, while the hybrid system uses a combination of the 3DVAR static 
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error covariances and an ensemble estimated error covariance incorporating a 

flow-dependent estimate of background error statistics.  

Figure 19: Operating scheme of WRFDA within a coupled ensemble prediction system 

 

From a mathematical point of view the analysis increment in the hybrid ETKF-

3DVAR approach is obtained by minimizing the following cost function: 

J(x '1,a) =β1J1 +β2Je + J0

=β1
1
2

(x '1)
T B−1(x '1)+β2

1
2

(a)T A−1(a)+ 1
2

(y0' −Hx ')T R−1(y0' −Hx ')
   

Eq 4.12

 

The usual background term used in a normal 3DVAR is replaced by a weighted 

sum of J1 and Je . J1  is the WRFDA term associated with the static covariance 

matrix (B), while in Je a is a vector composed of K concatenated vectors ak with 

k=1,…,K that is like assume aT=( aT
1,…, aT

K). Similar to Eq. 17 of Lorenc (2003) 

the extended control variables are constrained by a diagonal matrix A 

composed of K blocks: 
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A =

S
S

...
S

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

     

Eq 4.13 

       

Each block contains the same correlation matrix S that contains the spatial 

variation of ak. Thus, the aim of A is to define the spatial covariance (in this 

case spatial correlation since variance is equal to 1) of a in the same way as B 

define the spatial covariance of  x’1. Also in 

   

Eq 4.12 J0 is the observation term 

and like previously explained for the traditional 3DVAR y0' = y0 −H(xb )  is the 

innovation vector, in this case x
b 

is the ETKF ensemble mean forecast that is used 

as background forecast for WRFDA. 

4.4 Reflectivity assimilation operators 
WRFDA includes different reflectivity operator options allowing the use of 

different techniques for reflectivity assimilation. 

The first method is the direct technique [Xiao et al. (2007)] that assimilates 

reflectivity by converting the model rainwater mixing ratio into reflectivity using 

the total mixing ratio as control variable. This method follows Sun and Crook 

(1997) relation for the observation operator (Eq. 4.14): 

!(!!) = !".!+ !". !!"#!" !!!        Eq 4.14 
                                                        

where Z is the reflectivity in dBZ unit, ! is the atmospheric density in kg/m3, and 

qr is the rainwater mixing ratio in kg/kg (refer to Xiao et al. 2007 for further 

information about direct reflectivity data assimilation methods using 3DVAR 

technique). 
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The second method is the indirect assimilation [Wang et al. (2013); Gao et al. 

(2012) which assimilates hydrometeors mixing ratio estimated from radar 

reflectivity. The forward reflectivity operator is obtained adjusting the formulation 

of Lin et al. (1983) Gilmore et al. (2004) and Dowell et al. (2011), and it is 

represented in Eq. 4.15. 

  !! =
! !!                                                                             !! > 5 °!
! !! + ! !!                                                          !! < −5 °!
!" !! + 1− ! ! !! + ! !!      − 5 °! < !! < 5 °!

         Eq 4.15 

where !! is the equivalent reflectivity ! varies linearly between 0 at Tb= -5 °C 

and 1 at Tb= 5 °C, Tb is the background temperature from a NWP model and: 

!(!!) = 3.63 ×10!(!!!)!.!"                  Eq 4.16 

is the rain component of reflectivity (Smith et al. 1975),  

 ! !! = 9.80 ×10! !!! !.!"              !! < 0 °!                            Eq 4.17 

 ! !! = 4.26 ×10!! !!! !.!"           !! > 0 °!                      Eq 4.18 

 

are the snow component operators. If the temperature is lower than 0 °C the dry 

snow operator is used (Eq. 4.17) otherwise the wet snow operator (Eq. 4.18) is 

applied. Finally, Eq. 4.19 represents the hail component of reflectivity [Lin et al. 

(1983); Gilmore et al. (2004)]: 

  ! !! = 4.33 ×10!" !!! !.!"                   Eq 4.19 

It is worth to notice that in the formulation it is mentioned the hail component 

(!!), that it is predicted only by a subset of microphysics parameterizations in 

the WRF model; however, in the WRFDA code uses for the retrieval the graupel 

species (!!). The last step needed is the conversion of the equivalent reflectivity 

(Ze) in dBZ unit (Eq. 4.20) 

  ! = 10!"#!" !!                                      Eq 4.20 
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Furthermore, it is available an additional option of the indirect assimilation that 

allows the assimilation also of the in-cloud humidity estimated from reflectivity 

[Wang et al. (2013)]. In this case, the observation operator is defined by Eq. 

4.21. 

!! = !ℎ ×!!               Eq 4.21 

where !! is the specific humidity, rh the relative humidity and !! is the saturated 

specific humidity of water vapor. Thus, in this experiment, it is retrieved for the 

assimilation the in-cloud humidity in addition to the hydrometeors species 

retrieved with the indirect method alone.  

All these reflectivity operators are available in the standard WRFDA-3DVAR 

package. In this work, an additional experiment has been performed by 

modifying the direct assimilation operator. In fact, the direct reflectivity operator 

(Eq. 4.14) that uses a warm rain scheme is substituted with the indirect operator 

(Eq. 4.15). The model reflectivity is computed using the different microphysics 

species and subsequently compared to the observed one for the innovation 

vector calculation. Thus, the moisture and hydrometeors partitioning is done 

exactly in the same way as it is done in the indirect method, but the operation is 

performed on the models variables and not on the observed reflectivity (the 

indirect method uses an inverted form of Eq. 4.15 to obtain hydrometeors 

species from observed reflectivity). Therefore, the modified operator allows 

obtaining a direct data assimilation of reflectivity that takes into account all the 

hydrometeors (snow, hail/graupel) and not only the rainwater. 
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5. The validation tool: MODE   
To validate all the modeling experiments and identify the most convenient 

WRF-3DVAR setup for each case study, the Method for Object-Based 

Evaluation (MODE, Davis et al. (2006a and 2006b)) is applied by comparing the 

Quantitative Precipitation Forecast (QPF) of WRF with the QPE offered by 

raingauges or radar. MODE identifies precipitation structures in both forecast 

and observed fields and performs a spatial evaluation of the model capability of 

reproducing the identified observed objects. The evaluation of MODE is 

summarized as output indices such as centroid distance, angle difference, area 

ratio, symmetric difference and percentile intensity (in this work above the 90th 

percentile threshold); for a complete description of the indices used for this part 

of the validation refer to Table 3. 

MODE provides also some classical statistical score. In this work each 

meteorological simulation has been validated using:  

● Frequency BIAS (FBIAS), measuring the ratio of the frequency of 

forecast events to the frequency of observed events, indicates whether 

the forecast system has a tendency to underforecast (FBias <1) or 

overforecast (FBias >1) events. FBIAS does not measure how well the 

forecast corresponds to the observations, only measures relative 

frequencies;  

● Probability of Detection Yes (PODY), is the fraction of events that were 

correctly forecasted to occur (range:0-1, perfect value=1); 

● False Alarm Ratio (FAR), is the proportion of forecasts of the event 

occurring for which the event did not occur (range:0-1, perfect value=0); 
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● Critical Success Index (CSI), is the ratio of the number of times the event 

was correctly forecasted to occur to the number of times it was either 

forecasted or occurred (range:0-1, perfect value=1); 

● Hanssen and Kuipers discriminant (HK), it measures the ability of the 

forecast to discriminate between (or correctly classify) events and non-

events (range:-1 -1, perfect value=1);  

● Heidke Skill Score (HSS), it is a skill score based on Accuracy, where the 

Accuracy is corrected by the number of correct forecasts that would be 

expected by chance (range: -∞ 1, perfect value=1). 

The aforementioned statistical parameters were derived from a contingency 

table that shows the frequency of "yes" and "no" rain forecasts and 

occurrences. The four combinations of forecasts (yes or no) and observations 

(yes or no) generate four different output of the table: 

1) hit: rain forecasted and occurred;  

2) miss: rain not forecasted and occurred;  

3) false alarm: rain forecasted and not occurred;  

4) correct negative: rain not forecasted and not occurred. 

From this output it is possible to compute the statistical scores with the following 

formulations: 

• !"#$% = !"#$!!"#$% !"!#$%
!"#$!!"##$#   

• !"#$ = !!"#
!!"#!!"##$# 

• !"# = !"#$% !"!#$%
!"#$!!"#$% !"#$% 

• !"# = !"#$
!"#$!!"##$#!!"#$% !"#$% 
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• !" = !"#$
!"#$!!"##$# −

!"#$% !"!#$%
!"#$% !"!#$%!!"##!"# !"#$%&'" 

• !"" = !"#$!!"##$!% !"#$%&'"( !(!"#!$%!& !"##$!%)!"#$%&
!"!#$!(!"#!$%!& !"##$!%)!"#$%&

  

where: 

(!"#!$%!& !"##$!%)!"#$%& =

!
!"!#$

ℎ!"# +!"##$# ℎ!"# + !"#$% !"!#$ +
!"##$!% !"#$%&'"( +!"##$# (!"##$!% !"#$%&'"( + !"#$% !"!#$%)  

All the meteorological validations of this work are performed to select the best 

forecast out of the set of the sensitivity experiments performed in each research 

activity. The most reliable meteorological forecast was selected in agreement 

with Lagasio et al. (2017): all the indices and statistical scores described above 

are calculated for each sensitivity experiment, then it is counted the times in 

which a simulation has been the best for each score or index.  

Index Description 

CEN DIST Centroid Distance: Provides a quantitative sense of spatial 
displacement of forecast (Best score 0). 

ANG DIFF For non-circular object gives measure of orientation errors (Best 
score 0) 

AREA 
RATIO 

Provides an objective measure of whether there is an over- or 
under-prediction of areal extent of forecast (Best score 1). 

INT AREA Area of intersection between corresponding objects (Best value 
equal to observed area). 

UNION 
AREA 

Total area of two corresponding objects summed together (Best 
value equal to observed area). 

SYMM 
DIFF 

Provides a good summary statistic for how well Forecast and 
Observed objects match (Best value small). 

P90 INT Provides objective measures of near-Peak (90th percentile) 
intensities found in objects  (Best score 1). 

Table 3: MODE indices description. 
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6. First activity - lightning prediction 
Most of the work presented hereafter is taken from the following publication: 
Lagasio, M., Parodi, A., Procopio, R., Rachidi, F., & Fiori, E. (2017). Lightning Potential Index 
performances in multimicrophysical cloud‐resolving simulations of a back‐building mesoscale 
convective system: The Genoa 2014 event. Journal of Geophysical Research: 
Atmospheres, 122(8), 4238-4257. 
 

6.1 Introduction 
Many studies performed around the globe and corresponding to different 

weather regimes [Carter and Kidder (1976), Tapia et al. (1998), Soula and 

Chauzy (2001), Adamo et al. (2009), Price et al. (2011a,b)] have confirmed that 

there is a strong interplay between lightning phenomena and severe rainfall 

process evolution in thunderstorms. The improvement of the so-called total 

lightning observation (i.e., cloud-to-ground and intra-cloud) systems in the last 

decades has allowed investigating the relationship between lightning flash rate 

and the kinematic and microphysical properties of severe hydro-meteorological 

events characterized by strong convection and significant ground effects [Gatlin 

and Goodman (2010), Pineda et al. (2011), Schultz et al. (2011)]. Deep 

convective processes are characterized by very intense vertical velocities, able 

to reach the zone of the atmosphere between the 0°C and -20° isotherms (the 

so-called lightning charging zone, according to Latham et al. (2004)) where 

lightning phenomena occurs [Petersen et al. (1996, 1999)]. 

According to last decades studies [Deierling and Petersen (2008)] strong 

updrafts produce large amount of hydrometeors in the mixed ice phase region 

and the presence of ice particles is a necessary component for electrification 

processes that lead to lightning occurrence [Rakov and Uman (2003)].  

As convective processes are one of necessary ingredients for the occurrence of 

lighting phenomena, lightning activity can be used to map the location of 
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thunderstorms convective core where normally is located the heaviest rainfall 

[Defer et al. (2005), Price (2013)].  

Since lightning can be monitored from great distances from the storms 

themselves, lightning may allow us to provide early warnings for severe weather 

phenomena such as hail storms, flash floods, tornadoes, and even hurricanes. 

FP6 FLASH focused on 23 case studies over the Mediterranean region using 

lightning data together with rainfall estimates in order to understand the storms’ 

development and electrification processes [Price et al. (2011b)] and developed 

tools for short-term predictions (nowcasts) of intense convection across the 

Mediterranean and Europe, and long-term forecasts (a few days) of the 

likelihood of intense convection. The project found that real-time lightning 

observations on a regional basis are very useful in detecting, monitoring and 

tracking intense thunderstorm activity on large spatial scales [Price et al. 

(2011a)]. 

Due to this relationship, the relevance of lightning prediction is becoming in the 

last decades more clear, however, despite many real-time lightning detection 

systems are now able to determine with high accuracy the impact location of 

lightning, there is a much lower capability to forecast the potential for lightning 

occurrence in short-range forecast [Lynn and Yair (2010)].  

Recent advanced in lightning prediction have occurred. The National Severe 

Storm Laboratory (NSSL) produces near-real-time hourly total lightning 

forecasting with 36 hours lead times basing his prediction on the model-derived 

graupel flux in convective clouds with the total ice content to obtain a statistical 

relationship between this parameters and the total lightning flash density 

[McCaul et al. (2009)]. Dahl et al. (2011) formulated a forecasting methodology, 

allowing the identification of convective cells and related lightning phenomena 
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in their early stages, when the “critical electric field strength” reaches a certain 

threshold value. Furthermore, the EXploiting new Atmospheric Electricity Data 

for Research and the Environment (EXAEDRE) project started in 2016 and 

founded by the French National Research Agency (ANR) contributes to the 

HyMeX (HYdrological cycle in the Mediterranean Experiment) trying to reach 

two different scientific objects 

(https://www.hymex.org/exaedre/?page=publications): 1) an observational- and 

modeling-based characterization of the electrical activity in Northwestern 

Mediterranean storms; 2) an assessment of the potential of lightning information 

for a better monitoring of thunderstorms. 

This first thesis activity is then inspired by some recent studies [Lynn and Yair 

(2008), Lynn and Yair (2010)] that described the development and utilization of 

a Lightning Potential Index (LPI). In this research LPI is used to evaluate the 

potential of lightning activity from weather forecast model output data 

(Advanced Research Weather Research and Forecast model (WRF-ARW) is 

used) during a High Impact Weather Event (HIWE). 

The LPI uses the direct correlation of lightning activity with the microphysical 

and the dynamical process within the cloud: it is an empirical equation 

consisting of cloud-physical parameters and it is calculated within the charge 

separation region of clouds where the non-inductive mechanism of collision of 

ice and graupel particle is most effective [Saunders (2008)]. It is derived from 

the model simulated updraft velocity and the mass mixing ratio of liquid water, 

cloud ice, snow and graupel. 

Within this context, the present activity proposes a novel methodological 

approach for the assessment of the predictive ability of a microphysics driven 
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ensemble of km-scale mesoscale numerical model simulations in case of  back-

building MCSs, concurrently producing extreme rainfall and lightning activity. 

The first step concerns the evaluation of the ensemble quantitative precipitation 

forecast (QPF) performances through a comparison with the quantitative 

precipitation estimation (QPE) provided by in situ sensors, such as the km-scale 

radar data adopted for this work. Subsequently the same analysis is performed 

by comparing the observed lightning occurrence with the flashes prediction 

provided by the ensemble of km-scale mesoscale numerical model simulations, 

adopting a lightning parameterization based on updraft velocity [Price and Rind 

(1992)]: the lightning parameterization choice is consistent with Giannaros et al. 

(2015). As final step, the Lightning Potential Index (LPI) as formulated by Lynn 

and Yair (2008, 2010) and Yair et al. (2010) is computed to understand its 

value-added in the predictive ability of  back-building MCSs. The proposed 

methodological approach is described and assessed for the event occurred 

over Genoa, Liguria, on 9th October 2014 [Fiori et.al. (2017)]. 

6.2 Charging mechanism in thunderstorms  
A major difficulty in identifying the causes of electricity in clouds has been our 

inability to obtain adequate measurements within clouds. These problems are 

now being remedied by modern technologies and many quantitative theories of 

charging have become available.  

Wilson [Wilson (1916)] assumed a vertical charge dipole within thunderstorms 

and determined that the charge regions are usually positive above negative: he 

measured electric field changes at the ground caused by intra-cloud lightning in 

which the dipole charges neutralised each other. This picture was confirmed 

with extensive electric field change measurements made by a study [Krehbiel et 
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al. (1979)] in New Mexico, in which the locations and values of charges in 

thunderstorms charge centres were determined. More complicated charge 

centre distributions have been reported in other studies (i.e. Stolzenburg et al. 

(1998)). 

The generally accepted concept for the development of the thunderstorm 

charge dipole is the physical separation of oppositely charged particles within 

the cloud. Larger cloud particles fall under gravity while smaller particles are 

transported in the updraught; if these particles carry negative and positive 

charges respectively then the normal charge dipole will result [Saunders 

(2008)]. 

There are two main categories of charging mechanism: The micro-scale 

separators, which lead to charged cloud and precipitation particles, and the 

cloud-scale separators, which can result in field intensification and lightning. 

These mechanisms are coupled with other micro-scale separators to produce 

net charges on cloud and precipitation particles, for example the attachment of 

ions by diffusion to cloud drops and the charging that results from particle 

collisions. Once the cloud and precipitation particles become appreciably 

charged, a larger scale separator such as differential sedimentation is needed 

to create electrification on the cloud scale. Convection can also act as a cloud-

scale separator by redistributing ions and particles. 

It is difficult to find a “typical” storm with which all models could be compared 

because of the natural variability of processes that lead thunderclouds. 

However, it is possible to find some common observed features and list them to 

have general criteria that can be used as comparison. Mason (1953, 1971) 

used thunderstorm observations to list some requirements of the basic 

thunderstorm observations that still appears to be valid: 
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1. From a single cell, the average duration of electric field generation and 

precipitation is about 30 minutes. 

2. The average charge generation produces 20 to 30 Coulomb per flash. 

3. In large cumulonimbus, the charge is separated in a volume bounded by 

the 0°C and -40°C in a region of radius about 2 to 3 km. 

4. The negative charge centre is between the -5°C and -25°C levels 

depending on cloud physics. A study (Krehbiel et al. 1979) observed that 

negative charge originates from regions between -10°C to -17°C, and is 

not depending on the height above ground. Main positive charges 

generate several kilometres higher, instead lower positive charges are 

closed to the 0°C level. 

5. Charge-separation processes are associated with the development of 

precipitation in form of graupel. 

6. The fist lightning occurs within 12 to 20 minutes from the appearance of 

precipitation particles of a radar-detectable size (with a diameter less 

than 200 µm. 

7. Charge mechanisms must generate 5 to 30 C Km-3 leading to a charge 

generation rate of order 1 C km-1min-1. 

6.3 The Genoa 2014 event description 

6.3.1 Synoptic background 

The high impact weather event which hit the Genoa city centre on 9th October 

2014 had a dynamics similar to previous back-building MCSs observed during 

the events happened over the Ligurian Sea (North-West of Italy) on October 

2010, October and November 2011 [Parodi et al. (2012), Rebora et al. (2013), 

Cassola et al. (2015), Davolio et al. (2015)]. All these events in fact showed 

three main ingredients: an area of intense precipitation sweeping an arc of a 

few degrees around the warm conveyor belt originating about 50-60 km from 

the Liguria coastline, thus assuming a V-shape pattern as shown in Figure 20 

by the cloud top temperature and height (CTTH), developed within the SAF 

NWC (Nowcasting Satellite Application Facilities by EUMETSAT) context, on 9 
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October 2014 at 12 UTC. A second main ingredient was the presence of a 

convergence line, which supported the development, and the maintenance of 

the aforementioned back-building process. Other common features were the 

persistence of such geometric configuration for many hours [Parodi et al. 

(2012), Rebora et al. (2013)] with an associated strong lightning activity. 

From a synoptic point of view, the presence of an upper-level trough over the 

Atlantic Ocean led to a diffluent flow over the Genoa area resulting in the 

Genoa 2014 event. The situation was similar to the Genoa 2011 event, but in 

2014 the upper-level trough over the Atlantic Ocean was less marked and the 

mid-tropospheric flow was more west-south-westerly than in 2011 when it was 

south-westerly. Fiori et al. (2017), taking advantage of the availability of both 

observational data and modelling results at the micro-α meteorological scale, 

provides insights about the triggering mechanism and the subsequent spatio-

temporal evolution of the 2014  back-building Mesoscale Convective System. 

The major finding concerns the identification of the physical process 

responsible for convective cells development over the Ligurian sea, primarily at 

large distance (��40-50 km) from the Apennines divide as shallow convection, 

then getting closer to the coastline (��5-10 km) as towering cumulonimbus up to 

10-12 km, and why the vertex of the  persists over the same area for quite a 

long time. It is shown in fact that within the Planetary Boundary Layer (PBL), a 

cold and dry jet outflowing from the Po valley and reaching the Liguria sea acts 

as a virtual mountain forcing the incident more unstable warm and moist low 

level south-easterly jet to rise up over it triggering convection over the sea. The 

reader is referred for further insight also to the available media material 

(https://vimeo.com/195611161). 
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Figure 20: The cloud top temperature and height (CTTH), developed within the SAF NWC 
context, on 9th October 2014 at 12 UTC. 

6.3.2 Observational data 

Rainfall is presented in the methodological approach as first metric to evaluate 

the performances of the microphysics driven ensemble of km-scale WRF 

simulations for this event. The Liguria territory is monitored by an elevate 

number of rain gauges (on average 1 sensor every 25 km2). However, given the 

very localized and intense nature of this event (with hourly peak around 130 

mm, 3 hourly around 200 mm and 24 hours above 400 mm), the coexistence of 

deep moist convective phenomena over the Liguria sea and the coastal 

Apennines mountains as well as the availability of km-scale WRF outputs, radar 

data are used as main Quantitative Precipitation Estimate (QPE) sources. The 

preference is given to the C-band polarimetric radar located at Monte Settepani 

(about 1400 m amsl) in Savona (Italy) (Figure 21) installed in 2002 by Liguria 

and Piemonte regions and currently managed by the Piemonte and Liguria 
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regions Meteorological Weather Services and by the Italian Civil Protection 

Department [Silvestro et al. (2009)].  

Figure 21: Nested domains d1 at 5 km grid resolution and d2 at 1 km grid resolution 
adopted for WRF simulations (rectangles). Area monitored by the C-band polarimetric 
radar at Monte Settepani represented by the dotted circle. The black dot indicates the 
location of Genoa city in the Ligurian region. 

 

 

 

 

 

 

 

 

Figure 22: First row: comparison between QPE radar (Panel a) and observed lightning 
activity (Panel b) from 00 to 24 UTC on Oct. 9th, 2014. The colorbar in Panel b) indicates 
the number of observed lightning. Second row: comparison between the number of total 
lightning flashes and the average QPE from RADAR where rainfall >  10 [mmhr-1] (Panel 
c). Ligurian topography (Panel d) with the red dot indicating the Genoa city location. 
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The 24 hours radar QPE map for the Genoa 2014 event is provided in Figure 

22a. As well as rainfall data, lightning data are used as a further metric to 

assess the predictive ability of the microphysics driven ensemble of km-scale 

WRF simulations. To this aim, SFLOC (term derived from the words spheric and 

location) data are used. They consist of the position (longitude and latitude), the 

estimated current peak (in kA) and the polarity (positive or negative) of the 

lightning flash acquired by the LAMPINET lightning network of the Aeronautic 

Meteorological Service based on VAISALA technology [De Leonibus et al. 

(2010)]. The LAMPINET network is composed of 15 IMPACT ESP sensors 

uniformly distributed over the Italian national territory (Figure 23). The 

LAMPINET detection efficiency is estimated to be 90% for lightning intensity 

over 50 kA while the localization accuracy is about 500 meters.  

 

Figure 23: LAMPINET lightning location network (De Leonibus et al. 2010). 
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The paper leading idea that lightning and rainfall have a strong spatio-temporal 

correlation in case of back-building MCSs, like the Genoa 2014 event, is shown 

in Figure 22. Figure 22a-b support the high degree of spatial correlation 

between the rain depth pattern (Figure 22a) and the SFLOC (Figure 22b) 

cumulated on the 00-24 UTC time window. The highest number of lightning 

flashes was measured over the precipitation area corresponding to 24 hours 

cumulated rainfall depth peaking up to 200 mm or higher (pink shaded regions). 

Furthermore, Figure 22c shows the temporal evolution of the lightning with 

respect to the convection development of the MCS. In the first hours of the day 

no lightning activity is observed even if the average precipitation rate due to 

warm rain process slowly increases in time. As shown in Fiori et al. (2017, 

Figures 17 and 18), the V-shape needs up to 6-7 UTC before reaching vertical 

depth that overcame the 0 °C level. At this time of the convective evolution, 

lightning activity increases rapidly following the increasing trend of the QPE and 

reaching the maximum observed value about 2 hours in advance the 

precipitation peak. 

This correlation supports the theoretical idea that lightning activity can represent 

a further element for the prediction (in forecasting operational phase) and 

tracking (in nowcasting operational phase) of this category of flash flood 

producing storms.  

6.4 Model setup and verification approach 
The WRF setup for this case study is based on the modeling results achieved 

for another extreme autumnal event happened in Liguria Region in November 

2011 [Fiori et.al. (2014)]. Two nested domains (Figure 21) with respectively 5 

km (179x200 grid points) and 1 km (475x475 grid points) grid spacing are used 



 
 

126 

to cover the upper and lower limit of the cloud-permitting range [Arakawa 

(2004)]. The number of vertical levels, over the 20 km atmosphere depth, is 

equal to 83, since the sensitivity analysis performed in Fiori et al. (2014) 

demonstrated the importance of fine grid spacing also in the vertical direction. 

All the analyses presented hereafter refer to the innermost domain at 1 km grid 

spacing.  

Both adopted grid spacing (5 and 1 km) allow to solve explicitly, albeit crudely, 

many convective processes [Kain et al. (2006, 2008)] so an explicit treatment of 

convection is chosen for this case supported also by the results of sensitivity 

tests done for the Genoa event in 2011 [Fiori et al. (2014)]. A large eddy 

simulation (LES) like turbulence closure is adopted [Parodi and Tanelli (2010)]. 

Regarding the microphysics parameterization, an ensemble approach of ten 

different microphysics parameterizations is adopted for WRF simulations, in 

which ice species processes are taken into account since the presence of solid 

hydrometeors in atmosphere is relevant for lightning activation.  

The chosen microphysics, with related predicted mass and number variables, 

are reported in Table 4: Lin et al. scheme [Lin et al. (1983)], WRF single 

moment 6-class scheme (WSM6) [Hong and Lim, (2006)], Goddard scheme 

[Tao et al. (1989)], Thompson scheme [Thompson et al. (2008)], WRF double 

moment 6-class scheme [Lim and Hong (2010)], NSSL 2-moment scheme and 

2-moment scheme with CCN Prediction [Mansell et al. (2010)], NSSL 1-moment 

7-class scheme (single moment version of the NSSL 2-moment scheme above 

presented), NSSL 1-moment 6-class scheme [Gilmore et al. (2004)], NSSL 

double-moment without hail [Mansell et al. (2010)]. They range from single 

moment schemes to double moment ones, aiming at reducing the uncertainty in 
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predicting the key microphysics processes responsible for the extreme rainfall 

and lightning deep moist convective storms [Parodi et al. (2011)].  

 

 

Member Microphysics Mass Variables Number Variables 
LIN Lin Qc Qr Qi Qs Qg - 

WSM6 WRF single moment 
6-class Qc Qr Qi Qs Qg - 

GODD Goddard Qc Qr Qi Qs Qg - 
THOM Thompson Qc Qr Qi Qs Qg Ni Nr 

WDM6 WRF double moment 
6-class Qc Qr Qi Qs Qg Nn Nc Nr 

NSSL2 NSSL double-
moment Qc Qr Qi Qs Qg Qh Nc Nr Ni Ns Ng Nh 

NSSL2C 
NSSL double-

moment 
With CCN Prediction 

Qc Qr Qi Qs Qg Qh Nc Nr Ni Ns Ng Nh Nn 

NSSL17 NSSL single-moment 
7-class Qc Qr Qi Qs Qg Qh VOLg 

NSSL16 NSSL single-moment 
6-class Qc Qr Qi Qs Qg - 

NSSL2G NSSL double-
moment without hail Qc Qr Qi Qs Qg Nc Nr Ni Ns Ng Nn 

VOLg 
Table 4: Microphysics settings chosen for the domains d1 (5Km grid spacing) and d2 
(1Km grid spacing) where Qr= rain water, Qc=cloud water, Qi= cloud ice, Qs= 
snow,Qg=graupel, Qh= hail, N r= concentration number for rain water, Nc= concentration 
number for cloud water, Ni= concentration number for cloud ice, Ns= concentration 
number for snow, Ng= concentration number for graupel, Nh= concentration number for 
hail, Nn= cloud condensation nuclei concentration number, VOLg= graupel volume. 
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Concerning the lightning flashes occurrence, among the lightning 

parameterizations available in WRF, in this study an updraft based lightning 

scheme [Price and Rind (1992), Wong et al. (2013)] is adopted: the flash rate is 

assumed to be proportional to the maximum vertical updraft velocity and the to 

fourth power of cloud dimension. Then by imposing a linear relation between 

the maximum vertical updraft velocity and the cloud dimension, the flash rate 

becomes directly proportional to the fifth power of the cloud-top height [Williams 

(1985)].  

Finally, the WRF version used in this work has an implementation of the 

Lightning Potential Index based on the Lynn and Yair (2010) and Yair et al. 

(2010) formulation and it is already applied in a single case study by Pytharoulis 

et al. (2016). The LPI is defined as a volume integral of the total mass flux of ice 

and liquid water within a zone between 0 and -20 °C isotherms (charging zone), 

where the non-inductive mechanism (collisions of ice and graupel particles in 

the presence of supercooled water) is most effective [Saunders (2008), Mansell 

et al. (2010)]. According to recent studies in which a correlation between deep 

convection and lightning is demonstrated [Van Den Broeke et al. (2005)], the 

LPI has its largest values in the presence of strong vertical velocities, when 

graupel exists in equal ratios relative to snow, ice and water. 

The LPI [Jkg-1] is defined by: 

LPI = 1
V

εw2 dxdydz∫∫∫               Eq 6.1 

where V is the model unit volume, w is the vertical velocity in [ms-1], ε is a 

dimensionless number, which assumes values between 0 and 1and is defined 

as: 
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ε = 2(QiQl )
0.5 / (Qi +Ql )                        Eq 6.2 

in which Ql is the total liquid water mass mixing ratio in [kgkg-1], given by the 

sum of cloud water (qc) and rain water (qr) both in [kgkg-1]. Qi is the ice 

fractional mixing ratio in [kgkg-1] function of graupel (qg), snow (qs) and cloud ice 

(qi) and defined by: 

                   Qi = qg[((qsqg )0.5 / (qs +qg ))+ ((qiqg )0.5 / (qi +qg ))]            Eq 6.3 

ε is a scaling factor for the cloud updraft, and attains its maximal value when the 

mixing ratios of super-cooled liquid water (Ql) and of the combined ice species 

(Qi) are equal. The maximum value of ε occurs when the ratio between species 

is equal in accordance with laboratory experiments summarized by Saunders 

(2008) indicating that the charge separation requires all the species to operate 

synergistically within the charging zone. 

Initial and boundary conditions are provided by the European Centre for 

Medium-Range Weather Forecast (ECMWF) Integrated Forecast System (IFS) 

with a spatial resolution of 0.25x0.25 degrees. All the ten simulations are 

initialized at 00UTC on October 9th, and the boundary is updated every 3 hours, 

as already performed in Fiori et al. (2014) and Cassola et al. (2015) for similar 

back-building MCS. 

The proposed methodological approach for the extreme rainfall and lightning 

predictive ability verification of a microphysics driven ensemble of WRF 

simulations at cloud-permitting grid spacing (1 km) is based on two sequential 

phases of analysis. In both phases, MODE is used (see Chapter 5). Since this 

event is characterized by both heavy precipitation and very intense lightning 

activity, MODE analysis is applied on the rainfall and the lightning fields 

respectively, and for each of two target atmospheric fields the three best runs 



 
 

130 

and the worst one are chosen to gain a comprehensive understanding of the 

overall ensemble members performances. 

6.5 Result discussion 

6.5.1 Rainfall results 

The first step of the methodological approach consists of the comparison 

between the QPFs ensemble members and the QPE radar. The comparison 

refers to the time period from 00 UTC to 24 UTC on Oct. 9th, 2014 (Figure 24). 

QPF panels in Figure 24 suggest a general good agreement in the 

representation of the precipitation pattern by all members with respect to the 

QPE (panel a) since spatial pattern both over the sea and over the ground 

seem correctly reproduced. However, it is possible to guess that all the 

members underestimate the 24 hours cumulated precipitation. This is confirmed 

by comparing the rainfall volumes of all the members with the observed radar 

rainfall volume (Table 5): for this preliminary metric, the WSM6 and THOM 

microphysics results outperform other microphysics in line with Fiori et al. 

(2014, 2017). To gain a deeper and more quantitative understanding of the 

QPF ensemble members performances, a MODE analysis is performed. MODE 

spatial and statistical scores and indices are computed by applying three 

different rainfall depth thresholds, namely 24 mm, 48 mm and 72mm, for each 

member of the microphysics driven ensemble (Table 6, Table 7 and Table 8). At 

the end of each tables two columns, named GOOD and BAD, are added as 

summary of each member performances: they count the times each 

microphysics has been the best and the worst in each score and index 

estimation. Total interest values higher than 90% confirm the preliminary visual 

inspection of Figure 24: all the members QPFs have a high degree of 



 
 

131 

agreement with the radar based QPE. Narrowing down towards a ranking of the 

ensemble members, the best performances in terms of total interest are 

provided by WSM6 and THOM, while the worst is given by WDM6. Additionally 

in terms of the traditional indices (accuracy, BIAS, POD, FAR, HK and HSS) the 

two best ensemble members are THOM and the NSSL2C, while the worst is 

again the WDM6. All in all, given that this event is characterized by very high 

values of cumulated precipitation, the identification of the best three members 

and the worst one from a QPF standpoint is done by comparing the GOOD 

(BAD) column in Table 7 for threshold of 48 mm of rainfall with the GOOD 

(BAD) in Table 8 for the 72 mm rainfall threshold. The three best runs results 

WSM6, THOM and NSSL2C and the worst one results the WDM6. Interestingly 

enough, single and double-moment microphysics coexist among the best 

performing QPF members not revealing the prevalence of either of the two 

approaches for this event metric. Furthermore, WDM6 member does not 

outperform WSM6 QPF performances differently from Hong et al. (2010). These 

intermediate results already suggest that uncertainty in microphysical schemes 

could still be a productive area of future research from perspective of both 

model improvements and observations [Pu and Lin (2015)]: further 

understanding of these results is gained in section 6.6. 
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Figure 24: Comparison among QPE from RADAR (panel a) and the QPF obtained from 
the 10 microphysical ensemble members in the time window from 00 UTC to 24 UTC on 
9th October 2014: LIN (panel b), WSM6 (panel c), GODD (panel d), THOM (panel e), WDM6 
(panel f), NSSL2 (panel g), NSSL2C (panel h), NSSL17 (panel i), NSSL16 (panel l) and 
NSSL2G (panel m). 

 

mp Volumes 24h [Mm3] 
LIN 247 

WSM6 270 
GODD 186 
THOM 275 
WDM6 73 
NSSL2 218 

NSSL2C 247 
NSSL17 117 
NSSL16 148 
NSSL2G 200 
RADAR 462 

Table 5: Rainfall volumes between 00 and 24 UTC. Comparison among the different 
microphysical parameterizations adopted for WRF simulations and rainfall volumes from 
radar data. 
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MP CEN 
DIST  

ANG 
DIFF  

AREA 
RATIO  

SYMM 
DIFF  P50 INT  P90 INT TOT 

INTR  FBIAS POD FAR HK HSS GOOD BAD 

LIN 16.72 19.34 0.82 2689 0.60 0.64 1 0.84 0.48 0.43 0.48 0.52 5 0 

WSM6 10.48 19.21 0.97 3195 0.57 0.56 1 1.01 0.51 0.49 0.50 0.50 4 0 

GODD 17.26 26.14 0.83 2824 0.54 0.41 1 0.81 0.47 0.42 0.46 0.51 2 0 

THOM 6.48 30.59 1.10 3167 0.51 0.53 0.9995 1.13 0.55 0.51 0.54 0.50 4 1 

WDM6 24.75 16.19 0.35 3372 0.49 0.40 0.9332 0.35 0.16 0.55 0.15 0.22 1 9 

NSSL2 14.73 17.46 0.84 2545 0.57 0.48 1 0.91 0.52 0.43 0.51 0.53 6 0 

NSSL2C 5.27 28.72 1.15 2868 0.47 0.41 1 1.18 0.62 0.48 0.61 0.56 5 0 

NSSL17 22.24 28.59 0.57 3154 0.46 0.39 0.967 0.55 0.29 0.47 0.29 0.37 2 2 

NSSL16 21.13 26.47 0.60 3067 0.52 0.50 0.971 0.58 0.32 0.45 0.31 0.39 0 0 

NSSL2G 17.18 22.11 0.81 2740 0.54 0.46 1 0.86 0.47 0.46 0.46 0.49 1 0 

Best Small Small 1 Small 1 1 1 1 1 0 1 1   

Table 6: Rainfall MODE scores and indices for 24 mm threshold. The best and the worst performances for each index are highlighted in bold 
underlined and in italic underlined respectively. Last two columns refer to the sum of times each microphysics has been the best and the worst in one 
index. The last raw reports the desirable values for each index.  
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MP CEN 
DIST  

ANG 
DIFF  

AREA 
RATIO  

SYMM 
DIFF  P50 INT  P90 INT TOT 

INTR  FBIAS PODY FAR HK HSS GOOD BAD 

LIN 17.99 27.56 0.67 2395 0.69 0.70 0.9813 0.67 0.38 0.44 0.37 0.44 1 0 

WSM6 17.46 21.94 0.71 2567 0.71 0.59 0.988 0.73 0.37 0.50 0.36 0.42 5 0 

GODD 18.29 26.31 0.64 2578 0.53 0.44 0.9777 0.64 0.33 0.49 0.32 0.39 0 1 

THOM 15.37 22.14 0.71 2187 0.68 0.57 0.9878 0.76 0.44 0.42 0.43 0.49 6 0 

WDM6 21.9 13.33 0.22 2657 0.57 0.42 0.9109 0.23 0.10 0.55 0.10 0.17 1 9 

NSSL2 15.09 22.1 0.65 2152 0.59 0.52 0.979 0.65 0.41 0.36 0.41 0.50 3 0 

NSSL2C 13.09 19.41 0.71 1927 0.57 0.43 0.9869 0.74 0.49 0.34 0.48 0.55 8 0 

NSSL17 20.38 35.33 0.31 2477 0.58 0.48 0.9195 0.36 0.18 0.48 0.18 0.27 0 1 

NSSL16 20.25 31.85 0.43 2428 0.59 0.60 0.9433 0.43 0.25 0.42 0.25 0.35 0 0 

NSSL2G 18.49 29.66 0.59 2404 0.59 0.51 0.9706 0.60 0.34 0.43 0.33 0.42 0 0 

Best Small Small 1 Small 1 1 1 1 1 0 1 1   
Table 7: Rainfall MODE scores and indices for 48 mm threshold. The best and the worst performances for each index are highlighted in bold 
underlined and in italic underlined respectively. Last two columns refer to the sum of times each microphysics has been the best and the worst in one 
index. The last raw reports the desirable values for each index.  
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MP CEN 
DIST  

ANG 
DIFF  

AREA 
RATIO  

SYMM 
DIFF  P50 INT  P90 INT TOT 

INTR  FBIAS PODY FAR HK HSS GOOD BAD 

LIN 19.15 30.69 0.54 2205 0.74 0.75 0.9612 0.54 0.25 0.53 0.25 0.32 2 0 

WSM6 18.69 19.86 0.60 2248 0.71 0.62 0.972 0.60 0.27 0.55 0.27 0.33 5 1 

GODD 15.18 28.9 0.25 1936 0.55 0.45 0.9155 0.38 0.17 0.56 0.17 0.24 0 1 

THOM 14.83 24.62 0.59 1809 0.67 0.58 0.9692 0.59 0.37 0.38 0.37 0.46 8 0 

WDM6 21.11 12.69 0.15 2221 0.60 0.44 0.8976 0.15 0.05 0.64 0.05 0.09 1 9 

NSSL2 14.8 23.2 0.46 1963 0.60 0.61 0.9509 0.47 0.27 0.42 0.27 0.36 1 0 

NSSL2C 14.8 23.2 0.40 1439 0.63 0.47 0.9404 0.47 0.36 0.22 0.36 0.49 6 0 

NSSL17 19.07 36.02 0.23 2041 0.58 0.53 0.9033 0.23 0.13 0.43 0.13 0.21 0 1 

NSSL16 16.61 26.04 0.27 1882 0.69 0.69 0.9196 0.31 0.19 0.38 0.19 0.29 2 0 

NSSL2G 19.04 34.82 0.43 2036 0.60 0.55 0.9393 0.43 0.24 0.45 0.23 0.32 0 0 
Best Small Small 1 Small 1 1 1 1 1 0 1 1   

 

 

Table 8: Rainfall MODE scores and indices for 72 mm threshold. The best and the worst performances for each index are highlighted in bold 
underlined and in italic underlined respectively. Last two columns refer to the sum of times each microphysics has been the best and the worst in one 
index. The last raw reports the desirable values for each index.  
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6.5.2 Lightning flashes results 
As said above, the second step for the evaluation of the ensemble members is 

based on the comparison between modelled and observed lightning flashes. 

Figure 25 shows the results of the total lightning prediction obtained by the 

PR92 parameterization application: all the ensemble members are compared 

with the observed lighting gridded on the model grid on the same time windows 

used for precipitation comparison (00 UTC – 24 UTC). In terms of spatial 

distribution of lightning, all the microphysics are able to capture the lightning 

activity over the sea as well as the typical V shape feature with the well fixed 

vertex. The lightning prediction over the ground instead is quite different from 

member to member. This result suggests that the lightning parameterization 

adopted has a good response over the sea independently by the microphysics 

adopted and suggests how the cloud condensation nuclei (CCN) concentration 

plays crucial role in this MCS. 
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Figure 25: Comparison among observed total lightning (panel a) and parameterized 
lightning with PR92 scheme obtained from the 10 microphysical ensemble members in 
the time window from 00 UTC to 24 UTC on 9th October 2014: LIN (panel b), WSM6 (panel 
c), GODD (panel d), THOM (panel e), WDM6 (panel f), NSSL2 (panel g), NSSL2C (panel h), 
NSSL17 (panel i), NSSL16 (panel l) and NSSL2G (panel m). 

 

MODE scores and indices have been computed by using a threshold of 5 

flashes for grid point to identify the most active lightning area within the back-

building MCS here investigated (Table 9). The adopted threshold corresponds 

to the minimum daily amount of observed lightning strokes, obtained by the 

data in Figure 22 b. As for rainfall analysis, the total interest score reveals a 

strong overall agreement between the forecast ensemble members and 

observations with values over the 90%, except for the worst forecast, namely 

the WDM6 member. A general overestimation of all the member forecasts in 

terms of area extension is revealed both by the area ratio score and Figure 25. 

In terms of total interest, the two best members are NSSL2C and NSSL17, not 
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surprisingly, given their specific formulation for convective thunderstorms 

electrification [Mansell et al. (2010)], while the worst one is again the WDM6 

member. Conversely, in terms of the statistical indices, there isn’t a real 

predominance of any member while the worst is confirmed to be the WDM6. By 

considering all together the results of the MODE analysis for rainfall and 

lightning fields, a final evaluation on the performances of all the 10 members of 

the microphysics driven ensemble of km-scale WRF simulations is possible. 

Table 10 reports, for every index, the GOOD (BAD) column from Table 7, 

corresponding to the rainfall index analysis with intermediate rain depth 

threshold of 48 mm, together with the GOOD (BAD) column from Table 9 for the 

lightning MODE analysis. The TOTAL GOOD and TOTAL BAD columns 

summarize the times in which a given member of the microphysical driven 

ensemble is the best one and the times in which is the worst as appears from 

the MODE indices analysis for both rainfall and lightning fields. From this 

calculation it results that the three best members are WSM6, THOM and 

NSSL2C, while the worst one is the WDM6. These findings for the Genoa 2014 

back-building MCS confirms that WSM6, THOM and NSSL2C microphysics are 

mostly recommended for the WRF km-scale (cloud-resolving) simulation of 

flash-flood producing storms associated with strong lightning phenomena, 

further strengthening previous results of Rajeevan et al. (2010), Giannaros et al. 

(2015, 2016), Pytharoulis et al. (2016) obtained with WRF at cloud-permitting 

grid-spacing (around 2 km or above). The LPI as formulated by Lynn and Yair 

(2008, 2010) and Yair et al. (2010) is then computed and analyzed for WSM6, 

THOM, NSSL2C, and WDM6 members to gain further physical insight into the 

deep moist convective processes, and to understand its predictive ability, for 

this Genoa 2014 back-building MCS. 
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MP CEN 
DIST  

ANG 
DIFF  

AREA 
RATIO  

SYMM 
DIFF  

P50 
INT  

P90 
INT 

TOT 
INTR  ACC FBIAS PODY FAR HK HSS GOOD BAD 

LIN 12.63 46.79 2.79 3796 0.99 0.84 0.9162 0.97 3.48 0.65 0.81 0.62 0.28 3 0 

WSM6 16.46 42.03 3.77 4850 1.11 1.03 0.9045 0.95 5.43 0.79 0.85 0.75 0.23 5 0 

GODD 25.43 9.62 4.57 5726 1.66 2.47 0.9072 0.95 6.39 0.90 0.86 0.85 0.23 2 3 

THOM 17.56 51.21 2.66 3576 0.93 0.93 0.9153 0.97 3.55 0.66 0.82 0.63 0.28 3 1 

WDM6 79.53 19.72 4.19 7535 1.20 1.44 0.8054 0.94 5.51 0.12 0.98 0.07 0.02 0 9 

NSSL2 49.01 4.94 3.55 4689 0.71 0.70 0.9211 0.97 4.03 0.73 0.82 0.70 0.28 2 0 

NSSL2C 19.38 22.14 1.35 1846 0.71 0.53 0.992 0.99 1.70 0.58 0.66 0.56 0.42 6 0 

NSSL17 24.02 14.03 1.83 3144 0.79 0.62 0.9634 0.98 1.97 0.38 0.81 0.37 0.25 3 0 

NSSL16 23.93 8.98 2.41 3596 1.28 1.27 0.9428 0.97 2.98 0.52 0.82 0.50 0.25 2 0 

NSSL2G 21.67 14.75 2.53 3115 0.93 0.89 0.9384 0.97 3.52 0.74 0.79 0.72 0.32 3 0 

Best Small Small 1 Small 1 1 1 1 1 0 1 1   
Table 9: Lightning MODE analysis results for 5 flashes for pixel threshold. The best and the worst performances for each index are highlighted in bold 
underlined and in italic underlined respectively. Last two columns refer to the sum of times each microphysics has been the best and the worst in one 
index. The last raw reports the desirable values for each index.  

 



 
 

140 

 

MP RAIN GOOD RAIN BAD FLASH GOOD FLASH BAD TOT GOOD TOT BAD 

LIN 1 0 3 0 4 0 

WSM6 5 0 5 0 10 0 

GODD 0 1 2 3 2 4 

THOM 6 0 3 1 9 1 

WDM6 1 9 0 9 1 18 

NSSL2 3 0 2 0 5 0 

NSSL2C 8 0 6 0 14 0 

NSSL17 0 1 3 0 3 1 

NSSL16 0 0 2 0 2 0 

NSSL2G 0 0 3 0 3 0 

Table 10: Sum of GOOD and BAD scores/indices analysis for cumulated rainfall (48mm threshold) and lightning (5 lightning threshold). The best and 
the worst performances for each index are highlighted in bold underlined and in italic underlined respectively. Last two columns refer to the sum of 
times each microphysics has been the best and the worst in one score/index.  

 



141 
 

6.5.1 Lightning predictive capability – LPI 
The LPI analysis is performed over the same time window adopted for the 

rainfall and lightning flashes analysis, namely cumulating 30 minutes LPI values 

over 00-24 UTC interval (Figure 26). To allow a comparison between the LPI 

maps and the lightning flashes spatial distribution, the observed flashes have 

been gridded on the same grid of the model data. 

Figure 26: Observed total lightning (panel a), application of LPI to WSM6 (panel b), THOM 
(panel c), NSSL2C (panel d) and WDM6 (panel e) in the time window between 00 and 24 
UTC on 9th October 2014 
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Figure 26 shows that the WSM6 experiment provides the highest LPI cumulated 

values with a spatial pattern in remarkable agreement with the observed 

lightning area: both the sea and ground are potentially subjected to lightning 

activity. The THOM and NSSL2C experiments provide lower cumulated LPI 

values with respect to WSM6 especially over the sea area, which is the most hit 

area by lightning (Figure 26a). Furthermore, not surprisingly, the WDM6 shows 

the worst LPI performances both in terms of cumulated values and spatial 

pattern. 

These considerations are confirmed also from the MODE analysis performed to 

investigate the correlations between the observed lightning flashes and the 

modelled LPI patterns for each of the four selected members (Table 11). This 

time only the paired clusters orientation and collocation will be considered, 

while the percentile intensity within object above a fixed threshold (50 and 90) is 

not meaningful for this comparison between LPI and lightning flashes 

occurrence. The MODE analysis is undertaken considering a threshold of 2 J/kg 

for LPI and 5 flashes for pixel for observed lightning, in agreement with section 

6.5.2. 
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MP CEN 
DIST  

ANG 
DIFF  

AREA 
RATIO  

SYMM 
DIFF  

TOT 
INTR  ACC FBIAS PODY FAR HK HSS 

WSM6 18.41 9.97 1.16 2884 1 0.98 1.29 0.42 0.68 0.41 0.36 

THOM 18.63 32.34 0.79 2194 0.9957 0.98 0.88 0.38 0.56 0.38 0.40 

WDM6 24.38 12.26 0.65 2983 0.9673 0.98 1.00 0.15 0.85 0.13 0.13 

NSSL2C 16.58 32.54 0.88 1935 0.9976 0.99 0.89 0.49 0.45 0.49 0.51 

Best Small Small 1 Small 1 1 1 1 0 0 1 
Table 11: LPI MODE analysis. The best and the worst performances for each index are highlighted in bold underlined and in italic underlined 
respectively. The last raw reports the desirable values for each index   
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Once more the overall high values of total interest (over 95%) for all the 

selected members (WSM6, THOM, NSSL2C, and WDM6) suggest a good 

spatial correlation between the observed lightning flashes and the LPI patterns. 

The worst performance in terms of total interest is provided by WDM6, while the 

best one is offered by WSM6 then confirming the considerations valid for Figure 

26. The traditional statistical analysis (accuracy, BIAS, POD, FAR, HK and 

HSS) suggests that a good performance in all indices is reached by the 

NSSL2C, while WDM6 provides the worst performances with a FAR of 85% and 

a POD of only 15%. Since the LPI formulation is strictly related to the presence 

of ice species, the observed (Settepani radar) and predicted reflectivity fields at 

the bottom (0 °C isotherm) and in the middle (-10 °C isotherm) of the lightning 

charging zone are compared  (Figure 27) at 11 UTC, one of the most intense 

phase of the observed morning lightning activity as shown in Figure 22b. 
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Figure 27: Oct.9th, 2014 at 11 UTC. Cappi at 4000 m (∼0°C): observed reflectivity (panel a), 
WSM6 reflectively (panel b), THOM reflectively (panel c), NSSL2C (panel d), WDM6 
reflectivity (panel e). Cappi at 6000 m (∼-10°C): observed reflectivity (panel f), WSM6 
reflectively (panel g), THOM reflectively (panel h), NSSL2C (panel i), WDM6 reflectivity 
(panel l). 
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The panels show that WSM6, THOM and NSSL2C members produce much 

more coherent and organized reflectivity fields both at the -0 and -10 °C levels, 

corresponding to a considerable ice-species production, thus resulting in a 

more active lightning charging layer. Conversely, WDM6 reflectivity field is 

definitely more scattered and disorganized, thus resulting in lower values of 

cumulated LPI. A possible explanation for these WDM6 findings is provided by 

the fact that has a default CCN (cloud condensation nuclei) concentration of 

100 cm−3, corresponding mostly to continental conditions. This results in the 

production of smaller raindrops, with weaker updrafts (in agreement with 

theoretical arguments of Parodi and Emanuel (2009, 2011)), and consequently 

in predominant warm rain process, such that rain falls out before reaching the 

freezing level. However, fine-tuning of each microphysics scheme of the 

adopted ensemble is beyond the scope of this work, since the different 

parameterizations have been adopted purposely as they are. 

Moreover, as the inspection of the LPI equation (Eq. 1.9) suggests, the vertical 

velocity field and the graupel mixing ratio play a fundamental role in the LPI 

formulation, thus vertical cross sections for these two quantities (crossing the 

respective convective cells core at 10.30 UTC and 11UTC) are depicted in 

Figure 28 and Figure 29. Figure 28 shows a strong difference in the updrafts 

and downdraft fields among the WSM6, THOM, NSSL2C and WDM6 members. 

WSM6 and THOM produce stronger and widerspread updrafts than WDM6, 

thus resulting in towering (above 10000 m) cumulus nimbus clouds, in 

agreement with CTTH observational data (Figure 20). NSSL2C produces 

stronger updraft at 10.30 UTC while at 11.00 UTC it is less intense than WSM6 

and THOM but it remains more organized than WDM6. The observed lightning 
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activity (Figure 22b) suggests very strong updrafts during the entire event, so 

the stronger the updrafts, the higher the altitude at which particles can be 

transported, and consequently the higher the number of ice particles collisions 

leading to larger LPI values. However, towering (above 10000 m) cumulus 

nimbus clouds are missing in WDM6 results, thus vertical sections in panel g 

and h provide in both figures a possible explanation of the significant 

underestimation of the Genoa 2014 event by the WDM6 member both in terms 

of rainfall and in lightning activity. This can also suggest why the NSSL2C-LPI 

doesn’t reach high value as the other considered members even if in term of 

cumulated rainfall is one of the member with better scores/indices. The 

NSSL2C-QPF in fact shows rainfall activity not completely convective as it has 

been observed. Only the application of the LPI to this member of the ensemble 

has allowed counting the performance not among the best ones.  
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Figure 28: Vertical sections of vertical velocity field [ms-1]. Left column refers to 
10.30UTC, right column to 11UTC on 9th October 2014: WSM6 in Panel a-b, THOM in 
Panels c -d, NSSL2C in Panels e -f and WDM6 in Panels g -h. 
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Figure 29: Vertical sections of graupel mixing ratio [kgkg-1]. Left column refers to 
10:30UTC, right column to 11UTC on 9th October 2014: WSM6 in Panel a-b, THOM in 
Panels c -d, NSSL2C in Panels e -f and WDM6 in Panels g -h. 
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Figure 29 confirms this statement, the WDM6 (both at 10.30 UTC and 11.00 

UTC) and, to some extent, the NSSL2C (at 11.00 UTC) members show much 

lower graupel mass fraction values than what WSM6 and THOM members do. 

Furthermore, WSM6 shows higher graupel mass fraction values compared to 

THOM that explains finally why WSM6 gives higher LPI values. Fiori et al. 

(2017) classified this back-building MCS as a non-equilibrium regime, since a 

significant amount of CAPE was available over the Ligurian sea (between 1000 

and 1500 Jkg-1 in the morning), but the extent to which it could produce 

convection and precipitation has been conditioned by the presence of a 

sufficient trigger to overcome any thermodynamical “barrier”, such as the 

convective inhibition energy. The trigger was provided by the aforementioned 

virtual topography over the Liguria sea, enabling the rapid adiabatic ascension 

of plumes of warm and almost saturated air above the level of free convection 

(around 700 m), generating very strong updrafts, thus fully exploiting the 

available CAPE, available in the lower to middle troposphere. Along similar 

lines, LPI shows a significant capability of providing further insight into the 

vertical thermodynamical structure of the predicted convective flow field in the 

upper troposphere portion, allowing to discriminate in the forecasting phase 

between scenarios leading to (very) deep moist convective and persistent 

storms, with very strong updrafts, and ones resulting in shallower and more 

disorganized convective situations, thus not producing significant ground 

effects, such as flash-floods. This important finding complements and supports 

research results about the relevance of total lightning activity, as an indicator of 

updraft and turbulence convection processes characteristics [Deierling and 

Petersen (2008), Al-Momar et al. (2015), Sakurai et al. (2015)], using LPI as a 

physical based tool for their prediction. 
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6.6 Concluding remarks 
The back-building MCS, which affected the Genoa city center on 9th October 

2014, was extremely challenging from a predictive ability standpoint if following 

a purely deterministic approach. Thus, using the WRF model at 1 km grid 

spacing, a microphysics driven ensemble of 10 members has been adopted to 

get a better understanding of this severe hydro-meteorological event 

predictability.  

This work has been developed to exploit the interplay between extreme 

convective rainfall phenomena and severe lightning activity for back-building 

MCSs occurring in north-western Mediterranean (Varazze, 4th October 2010, 

Cinqueterre, 25th October 2011, Genoa, 4th November 2011 and Genoa, 9th 

October 2014, Nice, 3rd October 2015 and so forth) and to use the LPI to 

provide further insight into the vertical thermodynamical structure of the 

predicted convective flow field in the upper troposphere portion. 

An effective methodology for the rainfall and lightning activity forecasting and 

evaluation is here presented to improve the probability of predicting events like 

the one occurred in Genoa.  

In this work a numerical modelling of a back-building MCS is performed by 

applying the Price and Rind (1992) lightning parameterization and the Lightning 

Potential Index (LPI) approaches to a microphysics driven ensemble modelling 

approach, at cloud-resolving grid spacing (1 km).  

Along these lines, the first part of this research activity focuses on a 

methodological approach for the evaluation of extreme rainfall and lightning 

predictive ability of the 10 ensemble members by applying the Method for 

Object-Based Evaluation (MODE) to assess their performances. 
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From a rainfall forecast point of view, the convective event is quite well captured 

by about half of the adopted microphysics parameterizations, when referring to 

rainfall amounts and spatial distribution as confirmed by the MODE total interest 

scores. Still there is a general QPF underestimation highlighted by different 

statistical indices (POD, FAR, etc) allowing then to identify a group of three as 

the best QPFs performance members and a worst one. Since these events are 

characterized by a high correlation between heavy rainfall and intense lightning 

activity, the second analysis is performed by comparing, again via the MODE 

scores and indices, the parameterized (PR92 scheme) and the observed 

lightning activities. All together QPF and the lightning predictions scores and 

indices results are summarized and the three best run and the worst one are 

chosen: THOM, WSM6 and NSSL2C are the best performing members, while 

WDM6 one gives the worst results both in terms of spatial and statistical 

analysis.  

On these selected members the LPI performances have been then solely 

analysed. The results show a significant agreement and consistency both 

between the predicted rainfall patterns and the LPI versus the corresponding 

observed data, which confirms the initial idea of strong connection between 

rainfall and lightning activity. The vertical sections of the vertical velocity field 

and graupel mixing ratio, representing the main ingredients for lightning 

occurrence [Saunders (2008)], reveal that the main difference between the best 

microphysics driven ensemble members and the worst one is in the 

representation of the convective flow field resulting in significantly different 

graupel mixing ratios patterns and peaks. In particular, the WDM6 has weaker 

updrafts and consequently less graupel particles and lower LPI values. Also 

NSSL2C reveals a weaker vertical velocity field and lower graupel mixing ratio 
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with respect to the WSM6 and THOM members, as highlighted by lower LPI. As 

a consequence, it is possible to conclude that the use of the LPI can be helpful 

for real-time forecasting aims (by coupling rainfall and LPI predictions) allowing 

as aforementioned to discriminate in the forecasting phase between scenarios 

leading to (very) deep moist convective and persistent storms and ones 

resulting in shallower and more disorganized convective situations, thus not 

producing significant ground effects. It could be also an instrument for hindcast 

studies by enabling the investigation of the physical parameters that determine 

lightning activity and which are essential for the reproduction of this kind of high 

impact weather events, over complex topography areas [Fiori et al. (2016)]. 

However, the main source of uncertainty in the forecast of these back-building 

MCSs remains linked to the correct reproduction of the convective field that is a 

fundamental ingredient for this kind of events. Thus, in the next chapters the 

use of data assimilation to reduce the uncertainty in the reproduction of this kind 

of events is investigated.  

The LPI prediction is currently active in the operational WRF model run at CIMA 

Research Foundation executed on behalf of the Liguria Region Environment 

Protection Agency (ARPAL hereafter). The model outputs have been also 

provided during the HyMeX EXAEDRE measurement field campaign that took 

place in September 2018 in Corsica. In this framework future work will be 

devoted to the impact evaluation of reflectivity assimilation on LPI forecasts 

considering the 8 intensive observation periods (IOP) selected during 

EXAEDRE. 

 

 

 



154 
 

7. Second activity - data assimilation with 
operational purpose 

Most of the work presented hereafter is taken from the following paper currently under review: 
Lagasio, M, Silvestro, F, Campo, L, & Parodi, A. Predictive capability of a high-resolution 
hydrometeorological forecasting framework coupling WRF cycling 3dvar and Continuum. 
Journal of Hydrometeorology. 

7.1 Data assimilation development overview 
Nowadays, the skill of the Numerical Weather Prediction (NWP) models is 

certainly being improved thanks to the increasing model resolution [Clark et al. 

(2016)]. However, quantitative precipitation NWP models predictive ability 

challenges can derive from the poor knowledge of the initial state of the 

atmosphere at small scales leading to an inevitable model spin-up that often 

results in an inaccurate simulation of the convective system in terms of timing, 

location and intensity [Sugimoto et al. (2009)]. So, the knowledge of the initial 

(and boundary) conditions is affected by significant uncertainties and are the 

first sources of error in the weather modelling. 

In the last decade, the observational hydro-meteorological data sources have 

increased benefiting from conventional telemetered observations, from land, 

ships and sounding balloons, from satellites, meteorological radars and 

nonconventional platforms (such as airplanes), thus helping to better 

reconstruct the spatio-temporal evolution of variables such as temperature, 

wind speed and direction, relative humidity, reflectivity, rainfall and other 

microphysics related variables. 

As explained in Chapter 2, starting from an approximation of the state of the 

atmosphere in terms of initial and boundary (in case of limited area modelling) 

conditions (IC and BC hereafter), a NWP model simulates the atmospheric 

evolution. The forecast quality strongly depends on IC and BC estimation 

accuracy, that can be significantly improved through a proper combination of 
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the observational data and the short-range forecasts: this approach is called 

“data assimilation” and its purpose is defined as “using all the available 

information, to determine as accurately as possible the state of the atmospheric 

(or oceanic) flow” [Talagrand (1997)]. 

The early NWP data assimilation experiments consisted in hand grid 

interpolations of the observations to a regular grid, resulting in IC fields 

manually digitized [Richardson (1922), Charney et al. (1950)]. The need of an 

automatic procedure for preparing an objective analysis field emerged since the 

early days of NWP, so different interpolation algorithms were developed during 

the next period [Charney (1951), Panofsky (1949)].  

Despite the automation of objective analysis preparation was a step forward in 

NWP, the spatial interpolation of observations over a regular grid does not 

improve, alone, sufficiently the operational NWP predictive ability, since a 

modern NWP model has a number of degree of freedom of the order of 107, 

while the available conventional observations are of the order of 104. The main 

problem related to the observations is that their distribution is usually not 

homogeneous neither in space nor in time.  

To overcome this problem, it became clear that a “first guess” estimate of the 

atmosphere in all grid points of the considered domain was necessary in 

addition to observational data to obtain the necessary initial conditions to solve 

the NWP equations [Bergthorsson and Döös, (1955)]. The “first guess”, also 

called “background field” or “prior estimation”, is the best state of the 

atmosphere representation without the use of observations data. In the NWP 

infancy, it was estimated from climatology or a combination of climatology and a 

short range forecast [Bergthorsson and Döös, (1955)]. Nowadays, as NWP 

became better, it is universally adopted the use of short-range forecast as first 
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guess in a context of operational analysis cycle system that typically uses a 6-h 

cycle performed four times a days and, for each cycle, uses as background field 

the last state of the previous forecast cycle [Kalnay (2002)].   

In this respect, a key consideration is that both the model that provides the first 

guess and the observations taken from different instruments are affected by 

uncertainty. The data assimilation aims to merge these different datasets, 

taking adequately into account their respective degree of uncertainty, thus, 

producing a new state with desirable statistical properties (e.g. unbiased, 

minimum variance, etc).  

Furthermore, besides measurements errors, observations can have various 

resolutions in time and space resulting in an inhomogeneous distribution. To 

overcome this problem, models can be used both to impose physical 

constraints reducing the freedom in the observations data interpretation and to 

retrieve information on unobserved areas or time instants exploiting the model 

dynamical and spatial dependencies. 

Therefore, different approaches of data assimilation have been developed in 

the last years to take into account the variability (in space and time) of 

observations and their measurements error and the model errors. There are 

many classifications of data assimilation techniques. In terms of assimilation 

procedures, the methods can be divided in: sequential assimilation where real-

time observations are available and they are considered in the past until the 

analysis time and non-sequential data assimilation when information from the 

future (with respect to the analysis date) are used in reanalysis procedures. 

Another subdivision can be applied by considering the time period of the data 

assimilation: intermittent methods, in which observations are assimilated in 



157 
 

small batches iteratively in time, or continuous methods where longer periods 

are considered [Bouttier and Courtier (1999)].  

Figure 30: Representation of four basic strategies for data assimilation, as a function of 
time. [Bouttier and Courtier,1999] 

 

Compromises of different approaches are also possible. Figure 30 shows a 

schematization of the assimilation approaches here presented. 

Starting from the basic strategies, many assimilation techniques have been 

developed with different numerical cost, optimality and suitability for real-time 

data assimilation [Lorenz (1986); Daley (1991)] and some of them are still under 

development. 

From a mathematical point of view, data assimilation techniques can be divided 

in two main categories: variational techniques (3DVAR, 4DVAR) and ensemble 

stochastic filtering techniques (derived Kalman Filter, Particle Filters and other 

smoother methods). A general view of these approaches is presented hereafter. 
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7.2 Predictive capability of a high-resolution hydrometeorological 
forecasting framework coupling WRF cycling 3dvar and 
Continuum. 

The western Mediterranean area is characterized by a complex orography 

(Alps, Apennines, Massif Central, Pyrenees) often sitting close to the coastline, 

potentially able to enhance or even to trigger the deep convective processes 

originating over the warm sea in the fall season [Rebora et al. (2013), Ducrocq 

et al. (2014), Fiori et al. (2017)]. The most severe events in this area are due to 

a particular type of mesoscale configuration featuring a continuous 

redevelopment of storm cells persisting for hours over the same area, the so 

called back-building Mesoscale Convective Systems MCSs [Rebora et al. 

(2013); Ducrocq et al. (2014); Cassola et al. (2015), Fiori et al. (2017), Lagasio 

et al. (2017)].  

Having a very steep coastal orography, mostly drained by very small-sized 

catchments (1-10 km2), the Liguria region (N-W Italy) is particularly prone to 

flash-floods induced by back building MCSs: in the period between October 

2010 and October 2014 alone, four events (Varazze, 4 October 2010; 

Cinqueterre, 25 October 2011; Genoa, 4 November 2011; and Genoa, 9 

October 2014) accounted for 30 casualties and hundreds of millions of euros of 

damages. Consequently, the use of high-resolution hydro-meteorological 

forecasting frameworks combining Numerical Weather Prediction (NWP) 

models and rainfall-runoff models is recognized essential to provide timely and 

accurate streamflow forecasts [Silvestro et al. (2015b)]. A considerable effort 

has been made in the last few years to develop cloud resolving NWP systems, 

possibly in combination with ensemble and multi-physics approaches, to 

improve the short term Quantitative Precipitation Forecast (QPF) of convective 
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extreme events [Ducrocq et al. (2014), Hally et al. (2015), Clark et al. (2016), 

Davolio et al. (2017), Fiori et al. (2017)]; an example is reported in the first 

research activity (Chapter 6 and Lagasio et al. (2017)) However, a reliable 

forecast of these events in terms of rainfall amount, location and timing is still 

an open issue [Ducrocq et al. (2014)] that cannot be tackled only through the 

increase of the NWP models space-time resolution.  

As already discussed, NWP is a mathematical problem determined by its initial 

and boundary (in case of limited area modelling) conditions. QPF challenges 

often derive from the uncertainty related to the initial state of the atmosphere at 

small spatio-temporal scales [Bauer et al. (2015)]. This challenge becomes 

even more relevant when the model grid spacing is approaching the kilometric 

scale, mainly as a consequence of the lack of high spatio-temporal resolution 

observations. In last few years, significant advances in forecasting heavy 

rainfall events have been achieved thanks to the combination of high resolution 

meteorological models with the data assimilation of both in situ and radar 

observations [Davolio et al. (2017), Maiello et al. (2017), Mazzarella et al. 

(2017)].  More specifically, some studies investigated the influence of reflectivity 

data assimilation combined with conventional surface observations for heavy 

rainfall events in southwest England, Korea and Bangladesh [Lee et al. (2010); 

Liu et al. (2013), Ha et al. (2011); Das et al. (2015)] as well as over central Italy 

area [Maiello et al. (2014), Maiello et al. (2017), Mazzarella et al. (2017)]. In the 

case of the Liguria region the effect of the nudging of radar-derived rainfall data 

on hydro-meteorological predictive capability has been evaluated through the 

coupling of the meteorological forecast with the Continuum hydrological model 

[Davolio et al. (2015), Davolio et al. (2017)] for some events of the autumn 

2014. Their main result is that the contribution of the nudging of radar rainfall 
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data observations is large during the assimilation period and still relevant in the 

following 3 hours of the free forecasts, but rapidly decreases after 6 hours. 

This research activity aims further insights into the hydro-meteorological 

prediction of back-building MCSs through the combination of a high resolution 

WRF model instance including a 3DVAR data assimilation cycle - with the fully 

distributed Continuum hydrological model, via the RainFARM stochastic 

downscaling procedure [Rebora et al. (2006)]. In previous works, the e-Science 

environment developed in the framework of the EU-funded DRIHM project was 

used to demonstrate its ability to provide relevant, meaningful 

hydrometeorological forecasts [Hally et al. (2015), Parodi et al. (2017)], but 

without the use of data assimilation in the meteorological model. The specific 

novelty of this research resides in driving the flash-flood forecasting framework 

with a rich portfolio of direct and indirect radar reflectivity WRFDA-3DVAR 

operators as well as in situ weather stations data fed into a cloud resolving 

NWP model in a cycling mode. 

7.2.1 Test cases: back-building MCSs over Liguria region 

This study will focus on three extreme meteo-hydrological events that hit the 

Liguria region (located in northwestern part of Italy) in 2011 and 2014. The first 

event occurred on 25 October 2011 when a very intense back-building MCS 

(470 mm of rain in 6 hours) produced widespread flash-flood phenomena in 

Cinque Terre (the red dot in Figure 31), causing the death of thirteen people 

and several millions of euros of damages. Ten days after, on 4th November, 

another back-building MCS of the same intensity (450 mm of rain in 5 hours) 

affected Genoa’s city centre (black dot in Figure 31) resulting again in a large 

amount of damages and the death of six people. Three years later (9 October 

2014), a third flash flood struck again the very same part of Genoa. This time 
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the meteorological event was characterized by two phases: the first one 

happened in the morning (between 08 UTC and 12 UTC) recording rainfall 

amounts between 50 and 130 mm over the Bisagno catchment, while the 

second one occurred after few hours and although a rather 

similar meteorological dynamics, was even more intense pounding again the 

same catchment with other 150 and 260mm in 2 hours (20-22 UTC). Locally the 

daily maximum cumulated rainfall reached 400 mm with an average of 200 mm 

over the entire basin area (about 90 km2). The main ingredients of these kind of 

events are reported in Chapter 6.5.1, where the third flash flood (Genoa 2014) 

was investigated in terms of Lightning Potential Index (LPI).  

The three selected test cases will allow for evaluating the impact of a cycling 

3DVAR and different assimilation operators for in situ stations and weather 

radar data. 
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Figure 31: Data available for the assimilation. The red circle represents the area covered 
by the Settepani radar with the red small square indicating the radar location. Cyan dots 
are all the available SYNOP stations recording wind speed and direction, temperature 
and humidity. The grey shadow isolates the area covered by the Italian Radar Network 
(white circles mosaic) inside the WRF domains. The dotted and solid black lines 
represent WRF nested domains with spatial resolutions of 5 km (d1) and 1 km (d2) 
adopted for simulations, while the black dot indicates the Genoa city location (interested 
by two of the three extreme events simulated) and the red dot locates the Cinque Terre 
area (hit by one extreme event considered) in the Liguria region. 
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7.2.2 Observations available for data assimilation and validation 

The observational data to be assimilated via 3DVAR in WRF experiments are: 

reflectivity from weather radars and temperature, wind speed and direction and 

relative humidity from surface observations. 

For the radar reflectivity, the observational data are provided by Meteorological 

Radar national mosaic operated by the Italian Civil Protection (Vulpiani et al. 

(2006), CAPPI data on 3 levels: 2000, 3000 and 5000 m a.s.l.) covering the 

whole italian territory (Figure 31, grey shadow) and by the 8 levels (CAPPI data 

at 1500, 2000, 3000, 4000, 5000, 6000, 8000, 10000 m a.s.l.) of the C-band 

polarimetric radar located on Mount Settepani (Figure 31, red square) covering 

the Liguria region [Silvestro et al. (2009)]. The Settepani radar is already 

integrated in the national mosaic, however the idea of using its data separately 

when available (for instance, during the Genoa 2014 flood) is justified by their 

higher vertical resolution with respect to the national mosaic. The ground 

sensors data are provided by the Italian Civil Protection hydrometeorological 

network. This operational network, employed for the hydrometeorological 

monitoring of the Italian territory, is composed by thermometers, rain gauges, 

hygrometers and anemometers and it is particularly dense (about 1 station 

every 10 km2) on the the Ligurian coast (Figure 31, cyan dots). 

Concerning the quantitative precipitation estimate (QPE), the 2011 case studies 

rely purely on raingauge data, while the rainfall retrieval from the Settepani 

radar [Silvestro et al. (2009)] was only possible for the Genoa 2014 flash flood. 

The Settepani radar therefore allowed for obtaining accurate data over the sea, 

a key element for the prediction of the onset of these kinds of events [Lagasio 

et al. (2017)]. 
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7.2.3 Model setup and methodology 

7.2.3.1 Hydrometeorological framework 

To assess the impact of the atmospheric 3DVAR data assimilation on 

streamflow prediction, a hydro-meteorological forecasting framework was 

employed. The framework is composed by the cascade of the WRF-ARW with 

WRFDA for cyclic 3DVAR data assimilation, a stochastic downscaling model 

(RainFARM) and a hydrological model (Continuum). 

7.2.3.2 WRF-ARW and WRFDA setup and validation 

The WRF model setup is based on the previous results for back-building MCSs 

occurred in Liguria [Fiori et al. (2014), Fiori et al. (2017), Lagasio et al. (2017)]. 

Two nested domains (Figure 1) with respectively 5 km (179 x 200 grid points) 

and 1 km (475 x 475 grid points) grid spacing, covering the upper and lower 

limits of the cloud-permitting range [Arakawa (2004)], have been used for all the 

experiments.  

The number of vertical level is set to 50 with a higher density in the first 1000 m 

layer of atmosphere. Both grid spacings (5 and 1 km) allow solving explicitly 

many convective processes [Kain et al. (2006, 2008)] so an explicit treatment of 

convection is chosen. Given the observed presence of solid hydrometeors in 

atmosphere due to the strong convection that characterizes all these events 

[Fiori et al. (2017), Lagasio et al. (2017)] the microphysics parameterization 

corresponding to the WRF single-moment six-class scheme (WSM6) [Hong and 

Lim (2006)] is applied. The Yonsei University Scheme (YSU) is used for the 

Planetary Boundary Layer (PBL) because it accurately simulates deeper 

vertical mixing in buoyancy-driven PBLs with shallower mixing in strong-wind 

regimes with respect to the older MRF scheme [Hong et al. (2006)]. Shortwave 

and longwave parameterization are taken into account through the Rapid 
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Radiative Transfer Model (RRTMG, Iacono et al. (2008)). Furthermore, land 

surface is parameterized by the Rapid Update Cycle (RUC) land surface model 

[Benjamin et al. (2004)] that is a multi-level soil model with higher resolution in 

the top part of soil domain (0, 5, 20, 40, 160, 300 cm as in the default 

configuration).  

Regarding the data assimilation, a sensitivity analysis has been performed for 

each test case using all the available reflectivity operators plus the modified 

direct operator (Chapter 4.4), both stand-alone and coupled with surface 

observations data. Table 12 describes the 9 sensitivity experiments. The run 

with the modified direct reflectivity operator is implemented only for the 

assimilation of reflectivity alone (Table 12) due to the fact that, on one side, the 

main aim is to compare its behavior with the other operators and, on the other 

one, because the best results for the other operators have been achieved with 

the assimilation of reflectivity alone. 

A 3DVAR assimilation technique is applied every 6 hours in a cycling mode and 

for each cycle the forecast lead-time is the end of the day of interest (Figure 

32). Referring to Chapter 4, the B matrix plays a fundamental role for the good 

quality of data assimilation results. In this work The Control Variable option 5 

(CV5) of the WRFDA package is used in this work (for more details refer to 

WRFDA User Guide) for the B matrix calculation using the National 

Meteorological Center (NMC) method [Wang et al. (2014)] over the entire month 

of October 2013 with a 24-hour lead time for the forecasts starting at 00:00 UTC 

and a 12-hour lead time for the ones initialized at 12:00 UTC of the same day. 

The differences between the two forecasts (t+24 and t+12) valid for the same 

reference time are used to calculate the domains specific error statistics.  
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Run 
abbreviation Run description 

Open Loop Run without data assimilation 

ALL-direct Assimilation of reflectivity and SYNOP with direct method 

ALL-indirect Assimilation of reflectivity and SYNOP with indirect method 

ALL-indirect-rqv Assimilation of reflectivity and SYNOP with indirect method 
adding the in-cloud humidity estimation 

Radar-direct Assimilation of reflectivity only with direct method 

Radar-direct-
modif 

Assimilation of reflectivity only with direct method using the 
modified reflectivity operator 

Radar-indirect Assimilation of reflectivity only with indirect method 

Radar-indirect-
rqv 

Assimilation of reflectivity only with indirect method adding 
the in-cloud humidity estimation 

Stations-only Assimilation of SYNOP stations only 
Table 12: List of simulations that compose the sensitivity for each test case and 
corresponding abbreviation that will be used in the text. 

 

Figure 32: Six hour cycling 3DVAR assimilation scheme for the selected test cases: 
Genoa 2014 in Panel a, Cinqueterre 2011 and Genoa 2011 in Panel b. 
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When coming to the test cases, the initialization time depends on the timing of 

each event (see section 2): for the two episodes of 2011 the runs are initialized 

at 12 UTC of the day before (24 October and 03 November) while the 2014 

case is initialized at 00 UTC of the same day (09 October). Initial and boundary 

conditions for all the simulations are provided by the European Centre for 

Medium-Range Weather Forecasts Integrated Forecast System (ECMWF - IFS) 

with a spatial resolution of 0.125 x 0.125° and the boundary are updated every 

3 hours. In terms of operational framework IFS analysis are available 6 hours 

and 5 hours after the initialization time in the cases happened during October 

and November respectively. The main advantage of maintaining the same IFS 

analysis over all the forecasting period, while updating the model with a 6 hour 

cycling 3DVAR of observations, is that the corresponding forecast is available 4 

or 5 hours in advance with respect to the forecast run every time with the most 

recent IFS analysis during the day. Consequently, the hydrometeorological 

chain can provide updated forecasts during the entire event in a nowcasting 

framework. 

7.2.3.3 The hydrological framework: RainFARM and Continuum 

The hydrological framework is constituted by a rainfall downscaling model and a 

hydrological model both widely described in previous publications [Silvestro et 

al. (2011); Laiolo et al. (2014); Silvestro et al. (2016)]. Continuum is continuous 

and distributed hydrological model, developed by Silvestro et al. (2013, 2015) 

while the configuration adopted in this work is described in Davolio et al. (2017) 

together with its calibration, particularly focused on floods and flow peak events. 

Table 13 reports the main characteristics of the implementation for three basins, 

affected by the considered events and where streamflow observations were 
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available; the table also reports the values of skill scores for the validation 

period [Davolio et al. (2017)]: 

● Nash Sutcliffe (NS) coefficient (Nash and Sutcliffe, 1970): 
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                                                                            Eq 7.1 

Qm(t) and Qo(t) are the modelled and observed streamflows at time t. !! is the 

mean observed streamflow. Tmax is the number of time steps of the entire 

simulation. 

● Relative Error of High Flows (REHF) 

REHF = 1
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                                               Eq 7.2 

where Qth is chosen as the 99 percentile of the observed hydrograph along the 

considered period, Nvalues is the number of time steps where Q>Qth. 

Basin Station area 
[km2] 

spatial 
resol. 
Dx [m] 

Time 
resol. 
[min] 

Period of 
validation NS REHF 

Bisagno Passerella 
Firpo 92 480 60 01/01/2013 - 

31/12/2014 0.26 0.16 

Vara Nasceto 202 480 60 01/01/2013 - 
31/12/2014 0.83 0.1 

Magra Calamazza 960 480 60 01/01/2013 - 
31/12/2014 0.81 0.14 

Table 13: Characteristics of the considered basins, and of the spatial and time model 
implementation. The values of two skill scores calculated on validation period are also 
shown. 
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The state variables of the hydrological model at the beginning of each of the 

considered events were evaluated doing a seamless run from 01/01/2011 until 

31/12/2014 feeding the model with gauges (rainfall, air temperature, solar 

radiation, air relative humidity, wind velocity) interpolated with a simple Kriging 

method. 

The rainfall downscaling model (RainFARM, Rebora et al. (2006a, 2006b)) has 

been used in many applications [Silvestro and Rebora (2014)]. Its workflow 

follows, in brief, the following steps: i) the rainfall field predicted by the NWP 

model is aggregated at spatial and time scales (hereafter Lr, and tr) which are 

considered averagely reliable ii) the aggregated rainfall field is then downscaled 

to spatial and time scales which are generally equal or finer than those of NWP. 

iii) a stochastic component allows to produce an ensemble of equi-probable 

rainfall scenarios. Using these equi-probable rainfall scenarios as input to the 

hydrological model, an ensemble of equi-probable streamflow scenarios can be 

obtained. 

RainFARM has two parameters estimated directly from the power spectrum of 

the predicted rainfall field, so that they can vary for each event; the Lr, and tr 

values are assumed as in Davolio et al. (2015, 2017): Lr=15 km and tr=6 hours. 

Each rainfall scenario has a fine spatio-temporal coherent structure, which 

maintains the characteristics of the NWP rainfall field in terms of i) volume of 

precipitation ii) spatial and time structure at the scales Lr, and tr. 

Since in this study a high resolution NWP is dealt with, RainFARM has the main 

role to manage the uncertainty in spatial and time structure of the original QPF, 

consequently the final spatial and time resolution of the rainfall field is the same 

of the NWP, Dx=1 km, Dt=1 hour. 
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7.2.4 Results and validation 

The first part of this section compares the results of the 3DVAR operators for 

reflectivity/in situ observations and assess their performances with respect to 

the Open Loop simulation. The overarching goal is to identify the 3DVAR 

operator that allows obtaining the greater improvement in terms of forecasts 

skills with respect to the Open Loop run. The second part focuses on the 

evaluation of the impact on the hydrological forecast accuracy of the best 

3DVAR-driven meteorological simulation for each case study. 

7.2.4.1 Meteorological evaluation of the 3dvar sensitivity 

For each event, the 24 hours QPFs provided by the Open Loop run and the 

3DVAR operators in rapid refresh mode are compared with the available 24-

hour accumulation QPE of raingauges and Settepani radar (only for the 2014 

case). However, it is important to mention that the Genoa 2014 flash flood had 

a peculiar spatio-temporal evolution as it was characterized by two distinct 

phases: one in the morning and the second in the evening, respectively. It is 

noteworthy to remember that the second phase of the event was completely 

missed by the operational models and also by several WRF hindcast 

simulations in Open Loop mode [Fiori et al. (2017), Lagasio et al. (2017)]. Thus, 

for this case study, in addition to the 24-hous QPFs, have been evaluated also 

the 12-hours QPFs of the morning (00-12UTC) and the afternoon (12-24UTC).  

Chronologically, the first event to happen is the Cinque Terre flash flood on 25 

October 2011, when up to 470 mm of rainfall were observed in 24 hours (Figure 

33, Panel a). Figure 33 shows a general good agreement of all the simulations 

(as well as the Open Loop, in Panel b) with respect to the observed rain map, 

despite the forecasts misplaced and underestimated the precipitation peak 

recorded.  
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To offer a quantitative estimation of the sensitivity experiments performances, a 

spatial and statistical evaluation is performed through the use of MODE (see 

Chapter 5): two rainfall accumulations thresholds, respectively of 72 mm and 96 

mm over 24 hours, are adopted to compare the QPE and the QPFs. The use of 

the rainfall thresholds allows to isolate the intense part of the precipitation 

pattern and to obtain a set of comparable objects for each threshold, one in the 

observation field and the second in each forecast field (Figure 34).  

 

Figure 33: Comparison among the 25 October 2011 24 hours QPE from raingauges 
interpolation (Panel a), the Open Loop QPF (Panel b) and the QPF of each member of the 
sensitivity: ALL-direct (Panel c), ALL-indirect (Panel d), ALL-indirect-rqv (Panel e), Radar-
direct (Panel f), Radar-direct-modif (Panel g), Radar-indirect (Panel h), Radar-indirect-rqv 
(Panel i) and Stations-only (Panel j). 

 

The objects overlapping (Figure 34) confirms the general agreement between 

the QPFs and the QPE but highlights also the misplacing of the most intense 

precipitation core, located too close to the coastline by some experiments (and 

more prominently for the 96 mm threshold, second column in Figure 34), such 

as the Open Loop in Panel b, the run with indirect methods in Panels d, f, h, n, 

p and with stations-only data assimilation, Panel r. These first considerations 

are confirmed by the statistical and spatial scores calculated by MODE and 
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reported in Table 14. The MODE results confirm the good quality of the Open 

Loop run that has a PODY of about 75% for the 72 mm threshold and reveal 

that in general the 3DVAR best performance is obtained with the modified 

operator for the direct data assimilation (Radar-direct-modif) achieving the best 

result in 13 out of 26 scores (summing the scores for the 72 mm and the 96 mm 

thresholds, Table 15) followed by the ALL-direct simulation with best values in 6 

scores. In this case the change in the direct reflectivity operator allowed 

obtaining a rainfall pattern with better shape-related parameters (CENT DIST, 

ANGLE DIFF, SYMM DIFF), a better agreement between forecasted rainfall 

points and the observed ones (CSI, HK, HSS) and a good FAR. 
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Figure 34: Representation of the objects obtained through the MODE application for the 
72 mm threshold (first column) and the 96 mm threshold (second column) for the 25 
October 2011, comparing in each panel the object obtained from the QPE (in solid red) 
with the QPFs (blue contour) for each simulation: Open Loop (Panels a, b), ALL-direct 
(Panels c, d), ALL-indirect (Panels e, f), ALL-indirect-rqv (Panels g, h), Radar-direct 
(Panels i, j), Radar-direct-modif (Panels k, l), Radar-indirect (Panels m, n), Radar-indirect-
rqv (Panels o, p) and Stations-only (Panels q, r). 
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72mm	

run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

ALL-direct 9.73 2.34 0.82 1381 1873 3254 0.75 0.83 0.68 0.18 0.59 0.64 0.68 
ALL-indirect 7.24 6.85 0.92 1421 1462 2883 0.63 1.04 0.71 0.32 0.54 0.62 0.61 

ALL-indirect-rqv 6.56 2.42 1.00 1003 1580 2583 0.73 1.05 0.75 0.29 0.58 0.66 0.65 
Radar-direct 7.03 1.95 0.84 1160 1335 2495 0.75 0.85 0.67 0.22 0.56 0.62 0.65 

Radar-direct-modif 5.08 0.81 0.95 888 1595 2483 0.76 0.92 0.73 0.20 0.61 0.68 0.70 
Radar-indirect 5.42 1.30 0.96 1027 1618 2645 0.76 1.01 0.75 0.26 0.59 0.68 0.67 

Radar-indirect-rqv 7.00 2.94 0.92 1366 1491 2857 0.68 1.05 0.73 0.31 0.55 0.64 0.63 
Stations-only 7.07 6.43 0.92 1388 1481 2869 0.64 1.03 0.71 0.31 0.54 0.63 0.62 
Open Loop 5.99 5.68 0.91 1218 1585 2803 0.69 1.05 0.75 0.28 0.58 0.67 0.66 

 Best	small Best	
small Best=1 Best	small Best	big Best	

small Best=1 Best=1 Best=1 Best=0 Best=1 Best=1 Best=1 

96mm	

run	 CENTROID	
DIST	

ANGLE	
DIFF	

AREA	
RATIO	

SYMMETRIC	
DIFF	

INTERSECTION	
AREA	

UNION	
AREA	

P90	
RATIO	 FBIAS	 PODY	 FAR	 CSI	 HK	 HSS	

ALL-direct	 11.69	 4.31	 0.73	 1014	 657	 1671	 0.82	 0.72	 0.50	 0.30	 0.41	 0.47	 0.53	
ALL-indirect	 7.52	 7.23	 0.85	 923	 784	 1707	 0.72	 0.92	 0.58	 0.36	 0.44	 0.53	 0.55	

ALL-indirect-rqv	 10.75	 3.95	 0.90	 905	 972	 1877	 0.68	 1.07	 0.67	 0.37	 0.48	 0.62	 0.60	
Radar-direct	 14.24	 4.41	 0.73	 1162	 586	 1748	 0.75	 0.64	 0.39	 0.38	 0.32	 0.36	 0.42	

Radar-direct-modif	 8.58	 5.66	 0.92	 841	 988	 1829	 0.70	 1.00	 0.67	 0.33	 0.51	 0.62	 0.62	
Radar-indirect	 9.40	 5.61	 0.87	 980	 960	 1940	 0.73	 1.09	 0.67	 0.39	 0.47	 0.61	 0.58	

Radar-indirect-rqv	 10.02	 4.65	 0.95	 1008	 812	 1820	 0.68	 1.00	 0.61	 0.38	 0.44	 0.56	 0.56	
Stations-only	 10.54	 6.01	 0.87	 1067	 729	 1796	 0.68	 0.93	 0.55	 0.41	 0.40	 0.49	 0.51	
Open	Loop	 8.75	 7.19	 0.99	 996	 859	 1855	 0.69	 0.99	 0.62	 0.38	 0.45	 0.56	 0.56	

	 Best	small	 Best	
small	 Best=1	 Best	small	 Best	big	 Best	

small	 Best=1	 Best=1	 Best=1	 Best=0	 Best=1	 Best=1	 Best=1	

Table 14: Spatial and statistical indices calculated through MODE to evaluate the sensitivity forecasts with respect to the Open Loop run for the 
Cinque Terre extreme event of 25 October 2011. The best performance for each score is highlighted in bold. 
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72	mm	 96mm	 TOT	 	

1 4 5 ALL-direct 
0 1 1 ALL-indirect 
1 1 2 ALL-indirect-rqv 
0 0 0 Radar-direct 
8 6 14 Radar-direct-modif 
2 0 2 Radar-indirect 
0 0 0 Radar-indirect-rqv 
0 0 0 Stations-only 
2 1 3 Open Loop 

Table 15: Summary of the sensitivity performances: the times in which each forecast has 
the best result for each score is counted for each threshold and summarized in a total 
count that is used to find the best simulation for the Cinque Terre 2011 event. 

The second event here considered is the Genoa flash-flood of 4 November 

2011 that recorded about 450 mm of precipitation in the central hours (9-

15UTC) of the day (Figure 35, Panel a) on the Bisagno catchment (black bold 

contour in all Panels of Figure 35). 

 

Figure 35: Comparison among the 4 November 2011 24 hours QPE from raingauges 
interpolation (Panel a), the Open Loop QPF (Panel b) and the QPF of each member of the 
sensitivity: ALL-direct (Panel c), ALL-indirect (Panel d), ALL-indirect-rqv (Panel e), Radar-
direct (Panel f), Radar-direct-modif (Panel g), Radar-indirect (Panel h), Radar-indirect-rqv 
(Panel i) and Stations-only (Panel j). Black bold contour highlights the Bisagno 
catchment subjected to the flood. 
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In this case the Open Loop run (Figure 35, Panel b) shows a good agreement in 

terms of rainfall peaks but the most intense core of the precipitation pattern is 

again misplaced: the higher QPF value within the Bisagno catchment is less 

than 100 mm (dark yellow color). This behavior does not change with the 

stations-only sensitivity experiment (Figure 35, Panel j) nor using the indirect 

reflectivity operator (Figure 35, Panels d, h) also in combination with the in-

cloud humidity operator (Figure 35, Panels e, i). Conversely, the use of the 

direct assimilation of radar reflectivity alone (Figure 35, panels f, g) improves 

the improves the rainfall pattern as the areal averaged QPF over the Bisagno 

catchment increases significantly of about 150-200 mm. These considerations 

are confirmed by the QPE and QPFs comparison using MODE with both 72 and 

96 mm thresholds (Figure 36): indeed, the use of the direct data assimilation 

with radar alone allows to obtain a better localization (Figure 36, Panels i, j, k, l) 

of the precipitation maxima. 

Furthermore, MODE statistical scores show that the direct assimilation with the 

modified reflectivity operator significantly enhanced the PODY and HSS, still 

ranking amongst the best performing experiments in terms of FAR (Table 16). 

The improvement is visible also in spatial scores such as CENT DIST 

(especially for the 96 mm threshold), AREA RATIO and INT AREA (Table 16). 

The summary in Table 17 upholds the first qualitative evaluation as the Radar-

direct-modif achieved the best results on 15 out of 26 scores, while the others 

simulations equally shared the remainders. 
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Figure 36: Representation of the objects obtained through the MODE application for the 
72 mm threshold (first column) and the 96 mm threshold (second column) for the 4 
November 2011 event, comparing in each panel the object obtained from the QPE (in 
solid red) with the QPFs (blue contour) for each simulation: Open Loop (Panels a, b), 
ALL-direct (Panels c, d), ALL-indirect (Panels e, f), ALL-indirect-rqv (Panels g, h), Radar-
direct (Panels i, j), Radar-direct-modif (Panels k, l), Radar-indirect (Panels m, n), Radar-
indirect-rqv (Panels o, p) and Stations-only (Panels q, r). 
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72mm	

run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

ALL-direct 2.94 20.99 0.65 740 628 1368 0.72 0.82 0.50 0.39 0.38 0.47 0.50 
ALL-indirect 13.17 3.58 0.87 1141 655 1796 0.74 0.94 0.49 0.48 0.34 0.44 0.45 

ALL-indirect-rqv 13.84 9.42 0.97 1320 628 1948 0.73 0.96 0.47 0.51 0.32 0.42 0.42 
Radar-direct 4.31 16.44 0.76 617 757 1374 0.70 0.94 0.60 0.36 0.45 0.56 0.58 

Radar-direct-modif 7.52 45.95 0.97 660 858 1518 0.67 1.06 0.68 0.36 0.49 0.63 0.62 
Radar-indirect 12.84 9.20 0.96 1222 670 1892 0.73 0.94 0.50 0.46 0.35 0.45 0.47 

Radar-indirect-rqv 13.95 10.36 1.00 1316 650 1966 0.74 0.99 0.49 0.51 0.33 0.43 0.43 
Stations-only 11.77 44.03 0.86 1084 580 1664 0.76 0.94 0.49 0.48 0.33 0.43 0.44 
Open Loop 12.64 3.87 0.92 1162 675 1837 0.72 0.98 0.51 0.48 0.35 0.45 0.46 

 Best	small Best	
small Best=1 Best	small Best	big Best	

small Best=1 Best=1 Best=1 Best=0 Best=1 Best=1 Best=1 

96mm	

run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

ALL-direct 2.98 11.12 0.53 529 355 884 0.71 0.61 0.44 0.28 0.37 0.43 0.52 
ALL-indirect 9.13 9.31 0.67 701 327 1028 0.82 0.82 0.40 0.51 0.28 0.38 0.41 

ALL-indirect-rqv 2.16 9.40 0.46 577 298 875 0.94 0.83 0.38 0.54 0.26 0.35 0.38 
Radar-direct 9.21 9.15 0.68 430 464 894 0.69 0.86 0.58 0.32 0.46 0.56 0.60 

Radar-direct-modif 2.16 13.11 0.93 384 587 971 0.66 1.02 0.72 0.29 0.56 0.70 0.70 
Radar-indirect 8.98 10.11 0.69 679 340 1019 0.83 0.81 0.42 0.48 0.30 0.39 0.43 

Radar-indirect-rqv 10.49 10.77 0.69 740 313 1053 0.86 0.86 0.39 0.55 0.26 0.36 0.38 
Stations-only 9.37 10.66 0.67 680 335 1015 0.84 0.81 0.41 0.49 0.30 0.39 0.42 
Open Loop 9.32 8.07 0.70 679 347 1026 0.80 0.83 0.43 0.48 0.31 0.40 0.44 

 Best	small Best	
small Best=1 Best	small Best	big Best	

small Best=1 Best=1 Best=1 Best=0 Best=1 Best=1 Best=1 

Table 16: Spatial and statistical indices calculated through MODE to evaluate the sensitivity forecasts with respect to the Open Loop run for the 
Genoa extreme event of 4 November 2011. The best performance for each score is highlighted in bold. 
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72	mm	 96mm	 TOT	 	

2 1 3 ALL-direct 
1 0 1 ALL-indirect 
0 2 2 ALL-indirect-rqv 
1 0 1 Radar-direct 
6 9 15 Radar-direct-modif 
0 0 0 Radar-indirect 
2 0 2 Radar-indirect-rqv 
1 0 1 Stations-only 
0 1 1 Open Loop 

Table 17: Summary of the sensitivity performances: the times in which each forecast has 
the best result for each score is counted for each threshold and summarized in a total 
count that is used to find the best simulation for the Genoa 2011 event. 

 

The third test case regards the Genoa 2014 flash flood, when again more than 

400 mm of precipitation was recorded in a day. The QPE from Settepani radar 

is available for this event, and it is then used to gain a deeper understanding of 

the rainfall patterns over the sea [Fiori et al. (2017)]. From the rainfall daily 

accumulation it is possible to infer the significant underestimation of the Open 

Loop run (Figure 37, panel b). All the tested 3DVAR operators improve the 

precipitation volumes, despite in some cases the results are affected by an 

inland QPF overestimation downshear the Apennines (see upper right corner of 

Panels c, e, f and i in Figure 37). 
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Figure 37: Comparison among the 9 October 2014 24 hours QPE from Settepani radar 
(Panel a), the Open Loop QPF (Panel b) and the QPF of each member of the sensitivity: 
ALL-direct (Panel c), ALL-indirect (Panel d), ALL-indirect-rqv (Panel e), Radar-direct 
(Panel f), Radar-direct-modif (Panel g), Radar-indirect (Panel h), Radar-indirect-rqv (Panel 
i) and Stations-only (Panel j). Black bold contour highlight the Bisagno catchment hit 
subjected to the flood. 

When the two distinct phases of the event are addressed separately, both the 

object comparison (Figure 38) and MODE scores showed (Table 18) a general 

good agreement in terms of QPFs pattern and volumes for the 00-12 UTC 

period (Figure 39). Yet, a clearly better run does not stand out: for example, the 

Radar-indirect-rqv has a good POD but the ALL-indirect has the best FAR. 

Furthermore, Figure 38 reveals a slightly underestimation in term of spatial 

extent and orientation (major axis of the structure) by the majority of 3DVAR 

sensitivity experiments. This behavior is improved by Radar-indirect-rqv 

simulation (Figure 38, Panels o,p) that has the best CENT DIST for both 

thresholds and the best AREA RATIO for the 96 mm threshold (Table 18). 
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Figure 38: Representation of the objects obtained through the MODE application for the 
72 mm threshold (first column) and the 96 mm threshold (second column) for the 00-12 
UTC cumulated rainfall of 9 October 2014 event, comparing in each panel the object 
obtained from the QPE (in solid red) with the QPFs (blue contour) for each simulation: 
Open Loop (Panels a, b), ALL-direct (Panels c, d), ALL-indirect (Panels e, f), ALL-indirect-
rqv (Panels g, h), Radar-direct (Panels i, j), Radar-direct-modif (Panels k, l), Radar-indirect 
(Panels m, n), Radar-indirect-rqv (Panels o, p) and Stations-only (Panels q, r). 



 
 

 

182 

 
Figure 39: Comparison among the 9 October 2014 12 hours (00-12 UTC) QPE from 
Settepani radar (Panel a), the Open Loop QPF (Panel b) and the QPF of each member of 
the sensitivity: ALL-direct (Panel c), ALL-indirect (Panel d), ALL-indirect-rqv (Panel e), 
Radar-direct (Panel f), Radar-direct-modif (Panel g), Radar-indirect (Panel h), Radar-
indirect-rqv (Panel i) and Stations-only (Panel j). Black bold contour highlight the 
Bisagno catchment hit subjected to the flood. 
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72mm	

run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

ALL-direct 15.80 7.44 0.81 1090 452 1542 1.01 1.18 0.48 0.59 0.29 0.48 0.44 
ALL-indirect 8.96 4.00 0.53 723 350 1073 1.14 0.53 0.37 0.29 0.32 0.37 0.49 

ALL-indirect-rqv 11.05 7.24 0.93 931 478 1409 0.94 1.05 0.51 0.51 0.33 0.51 0.50 
Radar-direct 7.31 2.17 0.86 808 442 1250 0.88 0.84 0.47 0.44 0.35 0.47 0.51 

Radar-direct-modif 10.60 4.22 0.52 769 292 1061 1.08 0.49 0.31 0.37 0.26 0.31 0.42 
Radar-indirect 6.73 1.97 0.60 748 351 1099 1.07 0.58 0.38 0.35 0.31 0.37 0.47 

Radar-indirect-rqv 7.90 5.48 0.82 1002 505 1507 0.72 1.26 0.54 0.57 0.32 0.54 0.48 
Stations-only 7.56 1.92 0.48 695 315 1010 1.13 0.50 0.34 0.32 0.29 0.34 0.45 
Open Loop 7.70 0.36 0.52 781 298 1079 0.92 0.50 0.32 0.37 0.27 0.32 0.42 

 Best	small Best	
small Best=1 Best	small Best	big Best	

small Best=1 Best=1 Best=1 Best=0 Best=1 Best=1 Best=1 

96mm	

run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

ALL-direct 14.12 23.71 0.70 770 229 999 0.95 1.40 0.44 0.68 0.23 0.44 0.37 
ALL-indirect 9.35 19.46 0.62 474 172 646 1.08 0.61 0.33 0.45 0.26 0.33 0.41 

ALL-indirect-rqv 11.77 25.05 0.78 745 206 951 0.89 1.26 0.40 0.68 0.21 0.40 0.35 
Radar-direct 7.96 21.57 0.83 552 186 738 0.92 0.81 0.36 0.56 0.25 0.36 0.40 

Radar-direct-modif 11.10 21.38 0.55 516 135 651 1.01 0.54 0.26 0.52 0.20 0.26 0.34 
Radar-indirect 7.95 15.74 0.66 496 172 668 1.02 0.65 0.33 0.49 0.25 0.33 0.40 

Radar-indirect-rqv 5.60 22.49 0.99 579 219 798 0.68 1.02 0.43 0.58 0.27 0.42 0.42 
Stations-only 8.22 18.73 0.51 474 145 619 1.13 0.52 0.28 0.46 0.23 0.28 0.37 
Open Loop 6.08 7.36 0.40 532 89 621 0.98 0.45 0.17 0.62 0.13 0.17 0.24 

 Best	small Best	
small Best=1 Best	small Best	big Best	

small Best=1 Best=1 Best=1 Best=0 Best=1 Best=1 Best=1 

Table 18 Spatial and statistical indices calculated through MODE to evaluate the sensitivity forecasts with respect to the Open Loop run for the first 
phase (00-12 UTC) of the Genoa extreme event of 9 October 2014. The best performance for each score is highlighted in bold. 
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In the second phase of the event (12-24 UTC) the different simulations show 

rather erratic performances (Figure 40). The Open Loop run (Figure 40, Panel 

b) does not reproduce the intensity nor the location of the event, as inside the 

Bisagno catchment the rainfall peak is about 70 mm with respect to the 250 mm 

observed. Instead, in 4 data assimilation options out of 8, there is a significant 

improvement in terms of QPF performances (Figure 40, Panels c - ALL-direct, e 

- ALL-indirect-rqv, f - Radar-direct e i - Radar-indirect-rqv) with even a good 

localization of the most intense part of event (Figure 40, Panels c - ALL-direct, i 

- Radar-indirect-rqv) and peaks of more than 200 mm within the Bisagno 

catchment. Yet an overestimation downshear the Apennines is more persisting 

in the ALL-direct and Radar-direct run than in the ALL-indirect-rqv and Radar-

indirect-rqv (Figure 40, Panels c - ALL-direct, e - ALL-indirect-rqv,  f - Radar-

direct, i - Radar-indirect-rqv). 

The object comparison (Figure 41) reveals that despite a significant 

improvement in QPF forecast for most of the 3DVAR sensitivity experiments of 

the inland portion of the rainfall, a reliable reproduction of the event over the 

sea area is still missed out, being the pattern more shifted landwards (Figure 

41, Panels c, d - ALL-direct, g, h - ALL-indirect-rqv, i, j - Radar-direct, o, p - 

Radar-indirect-rqv). Nevertheless 3DVAR outperforms the Open Loop run that 

in turn does not exceed or even reach the 96 mm threshold in any point of the 

domain (Figure 41, Panel b). The reflectivity assimilation allowed to maintain a 

significant amount of precipitation on the coastline also when considering the 96 

mm threshold, while the runs using the in-cloud humidity estimation (ALL-
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indirect-rqv in Panels g, h and Radar-indirect-rqv in Panels o, p of Figure 41) 

largely decrease the overestimation downshear the Apennines. 

 

 
Figure 40: Comparison among the 9 October 2014 12 hours (12-24 UTC) QPE from 
Settepani radar (Panel a), the Open Loop QPF (Panel b) and the QPF of each member of 
the sensitivity: ALL-direct (Panel c), ALL-indirect (Panel d), ALL-indirect-rqv (Panel e), 
Radar-direct (Panel f), Radar-direct-modif (Panel g), Radar-indirect (Panel h), Radar-
indirect-rqv (Panel i) and Stations-only (Panel j). Black bold contour highlight the 
Bisagno catchment hit subjected to the flood. 

 

The qualitative considerations provided by the object maps comparison in 

Figure 41 is quantitatively confirmed by the scores computed by MODE (Table 

19) where the Radar-indirect-rqv outperforms the others simulations especially 

in terms of statistical scores (POD, FAR, CSI, HK, HSS) for both thresholds 

(Table 19) with a good overlap of the objects area (INTER AREA, Table 19). 

Furthermore the reduced overestimation downshear the Apennines, and the 
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best localization of the precipitation pattern are confirmed by a lower FAR 

(Table 19). 

Overall, considering the 24-hour cumulated rainfall (Figure 37), the Radar-

indirect-rqv is the best performing experiment, particularly for the highest 

threshold (Table 20). Indeed, the objects comparison highlights that the Radar-

indirect-rqv simulation better reproduces the event, both in terms of cumulated 

rainfall (Figure 37) and precipitation pattern orientation (Figure 42, Panels o, p) 

with respect to the Open Loop run (Figure 42, Panels a, b). 

The Radar-indirect-rqv experiment has the best POD for the 96 mm threshold, 

providing the best localization for the most intense precipitation core. 

Furthermore, despite the overestimation on the Apennines, the Radar-indirect-

rqv experiment has acceptable FAR values with respect to the run using the 

direct assimilation with the standard reflectivity operator. Conversely, the 

Radar-direct-modified experiment is the only one removing the large downshear 

overestimation that affects the other runs adopting direct method, i.e. it shows 

one of the lowest FAR for the second phase and a better FBIAS (Table 19). 

This consideration holds when considering the whole 24-hour cumulated rainfall 

(Table 20) even if the misplacing of the pattern in Figure 42 is to be accounted 

for the poor results of PODY and HSS with respect to the run using the indirect 

method, (Table 19, Table 20). 
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Figure 41: Representation of the objects obtained through the MODE application for the 
72 mm threshold (first column) and the 96 mm threshold (second column) for the 12-24 
UTC cumulated rainfall of 9 October 2014 event, comparing in each panel the object 
obtained from the QPE (in solid red) with the QPFs (blue contour) for each simulation: 
Open Loop (Panels a, b), ALL-direct (Panels c, d), ALL-indirect (Panels e, f), ALL-indirect-
rqv (Panels g, h), Radar-direct (Panels i, j), Radar-direct-modif (Panels k, l), Radar-indirect 
(Panels m, n), Radar-indirect-rqv (Panels o, p) and Stations-only (Panels q, r). 
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72mm	

run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

ALL-direct 44.98 11.21 0.58 2981 528 3509 1.17 1.75 0.36 0.80 0.15 0.34 0.25 
ALL-indirect 19.77 8.17 0.29 1734 91 1825 0.64 0.29 0.06 0.79 0.05 0.06 0.09 

ALL-indirect-rqv 32.99 19.65 0.80 2380 482 2862 0.88 1.26 0.33 0.74 0.17 0.32 0.28 
Radar-direct 49.34 7.41 0.49 3438 523 3961 1.16 2.07 0.35 0.83 0.13 0.34 0.22 

Radar-direct-modif 21.82 2.06 0.45 1792 180 1972 0.71 0.45 0.12 0.73 0.09 0.12 0.16 
Radar-indirect 22.32 3.83 0.32 1796 84 1880 0.58 0.32 0.06 0.83 0.04 0.05 0.08 

Radar-indirect-rqv 32.84 14.82 0.90 2036 546 2582 1.07 1.12 0.37 0.67 0.21 0.36 0.34 
Stations-only 20.91 4.11 0.33 1734 117 1851 0.55 0.33 0.08 0.76 0.06 0.08 0.11 
Open Loop 16.65 8.47 0.02 1456 30 1486 0.39 0.18 0.02 0.89 0.02 0.02 0.03 

 Best	small Best	
small Best=1 Best	small Best	big Best	

small Best=1 Best=1 Best=1 Best=0 Best=1 Best=1 Best=1 

96mm	

run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

ALL-direct 43.05 20.39 0.62 2150 393 2543 1.21 1.59 0.35 0.78 0.15 0.34 0.26 
ALL-indirect 18.89 2.43 0.20 1297 31 1328 0.67 0.20 0.03 0.87 0.02 0.03 0.04 

ALL-indirect-rqv 28.28 22.63 0.96 1589 355 1944 0.89 1.03 0.31 0.70 0.18 0.31 0.30 
Radar-direct 45.46 17.77 0.54 2477 372 2849 1.26 1.87 0.33 0.83 0.13 0.32 0.22 

Radar-direct-modif 23.21 6.61 0.36 1390 72 1462 0.71 0.36 0.06 0.82 0.05 0.06 0.09 
Radar-indirect 21.17 7.29 0.20 1330 14 1344 0.61 0.20 0.01 0.94 0.01 0.01 0.02 

Radar-indirect-rqv 24.02 10.49 0.84 1285 394 1679 1.17 0.85 0.35 0.59 0.23 0.34 0.37 
Stations-only 19.98 15.49 0.21 1282 39 1321 0.57 0.20 0.03 0.83 0.03 0.03 0.05 
Open Loop NaN NaN NaN NaN NaN NaN NaN 0.08 0.00 1.00 0.00 0.00 0.00 

 Best	small Best	
small Best=1 Best	small Best	big Best	

small Best=1 Best=1 Best=1 Best=0 Best=1 Best=1 Best=1 

Table 19: Spatial and statistical indices calculated through MODE to evaluate the sensitivity forecasts with respect to the Open Loop run for the 
second phase (12-24 UTC) of the Genoa extreme event of 9 October 2014. The best performance for each score is highlighted in bold. 
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72mm	

run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

ALL-direct 37.85 4.32 0.52 3699 1252 4951 0.86 1.94 0.59 0.70 0.25 0.57 0.39 
ALL-indirect 14.21 15.40 0.51 1888 665 2553 0.84 0.51 0.31 0.39 0.26 0.31 0.41 

ALL-indirect-rqv 28.72 7.51 0.70 2667 1250 3917 0.86 1.47 0.59 0.60 0.31 0.57 0.47 
Radar-direct 41.01 3.00 0.44 4176 1407 5583 0.75 2.34 0.66 0.72 0.25 0.64 0.38 

Radar-direct-modif 14.92 9.22 0.66 2159 684 2843 0.68 0.66 0.32 0.51 0.24 0.32 0.38 
Radar-indirect 14.13 20.58 0.60 1838 781 2619 0.76 0.60 0.37 0.39 0.30 0.36 0.45 

Radar-indirect-rqv 26.73 3.52 0.69 2512 1364 3876 0.86 1.49 0.64 0.57 0.34 0.63 0.50 
Stations-only 15.42 14.84 0.57 2004 674 2678 0.72 0.57 0.32 0.45 0.25 0.31 0.40 
Open Loop 15.09 20.18 0.64 1952 768 2720 0.53 0.64 0.36 0.43 0.28 0.36 0.43 

 Best	small Best	
small Best=1 Best	small Best	big Best	

small Best=1 Best=1 Best=1 Best=0 Best=1 Best=1 Best=1 

96mm	

run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

ALL-direct 34.25 14.26 0.58 2802 944 3746 0.94 1.72 0.54 0.68 0.25 0.53 0.39 
ALL-indirect 14.88 7.67 0.44 1720 385 2105 0.87 0.44 0.22 0.50 0.18 0.22 0.30 

ALL-indirect-rqv 24.76 13.00 0.80 2023 936 2959 0.92 1.26 0.54 0.57 0.31 0.53 0.47 
Radar-direct 34.88 12.86 0.55 2930 965 3895 0.84 1.84 0.56 0.70 0.24 0.54 0.38 

Radar-direct-modif 14.80 2.08 0.61 1889 443 2332 0.69 0.60 0.25 0.58 0.19 0.25 0.31 
Radar-indirect 14.56 16.90 0.51 1691 470 2161 0.78 0.51 0.27 0.47 0.22 0.27 0.35 

Radar-indirect-rqv 22.21 6.62 0.84 1832 972 2804 0.95 1.20 0.56 0.53 0.34 0.55 0.50 
Stations-only 15.13 10.31 0.48 1709 425 2134 0.73 0.49 0.24 0.50 0.20 0.24 0.32 
Open Loop 15.13 16.57 0.48 1715 424 2139 0.53 0.48 0.24 0.49 0.20 0.24 0.32 

 Best	small Best	
small Best=1 Best	small Best	big Best	

small Best=1 Best=1 Best=1 Best=0 Best=1 Best=1 Best=1 

Table 20: Spatial and statistical indices calculated through MODE to evaluate the sensitivity forecasts with respect to the Open Loop run for the daily 
accumulation (00-24 UTC) of the Genoa extreme event of 9 October 2014. The best performance for each score is highlighted in bold. 
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Figure 42: Representation of the objects obtained through the MODE application for the 
72 mm threshold (first column) and the 96 mm threshold (second column) for the 00-24 
UTC cumulated rainfall of 9 October 2014 event, comparing in each panel the object 
obtained from the QPE (in solid red) with the QPFs (blue contour) for each simulation: 
Open Loop (Panels a, b), ALL-direct (Panels c, d), ALL-indirect (Panels e, f), ALL-indirect-
rqv (Panels g, h), Radar-direct (Panels i, j), Radar-direct-modif (Panels k, l), Radar-indirect 
(Panels m, n), Radar-indirect-rqv (Panels o, p) and Stations-only (Panels q, r). 
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Then, from the summary of the scores calculated for all the considered 

cumulated rainfall (Table 21), the Radar-indirect-rqv stands out as the best for 

the Genoa 2014 case.  
 

72	mm	 96mm	 TOT	 	
0 2 2 ALL-direct 
3 5 8 ALL-indirect 
4 3 7 ALL-indirect-rqv 
6 0 6 Radar-direct 
2 2 4 Radar-direct-modif 
5 3 8 Radar-indirect 
14 19 33 Radar-indirect-rqv 
1 4 5 Stations-only 
4 1 5 Open Loop 

Table 21: Summary of the sensitivity performances: the times in which each forecast has 
the best result for each score is counted for each threshold and summarized in a total 
count (summing Table 8, 9 and 10) that is used to find the best simulation for the Genoa 
2014 event. 

 

If a time frame during the second phase of the event (20 UTC) is considered, a 

deeper insight of the impact of the Radar-indirect-rqv data assimilation 

simulation with respect to the Open-Loop run (Figure 43) is gained. 
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Figure 43: Comparison between the Open-Loop simulated structure with respect to the 
Radar-direct-rqv simulated structure at 20 UTC. Panels a and c report the 3D simulated 
structure composed by rainwater (cyano) graupel (yellow) and snow (grey) microphysics 
species respectively for Open Loop (a) and Radar-indirect-rqv (c) simulations with the 
horizontal 10m wind intensity for the Open Loop (a) and the Radar-indirect-rqv (c). The 
black line in Panels a and c indicates the location of the vertical section of the two 
structures to investigate the reflectivity values in the mean of the convective structure in 
Panels b (for Open-Loop) and d (for Radar-indirect-rqv) 

 

The use of data assimilation actually provides an enhancement of the wind 

intensity (Figure 43, Panel c) supporting a more evident convergence line and 

in turn a more intense convection (Figure 43, Panel c). This results into the 

production of a widespread and more intense area of snow and graupel that 

were nearly absent in the Open-Loop (Figure 43, Panel a). Open-Loop (Figure 

43, Panel b) has a shallower and more disorganized convective structure run 

while through the use of the reflectivity data assimilation (Figure 43, Panel d) a 

simulated deep moist and convective storm is in very good agreement with the 

observed one.  
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In conclusion, the best result for the two 2011 flash floods is achieved with the 

Radar-direct-modif since the modified operator takes into account also the ice 

species that are crucial in this kind of events [Fiori et al. (2017), Lagasio et al. 

(2017)]. In the 2014 flood too, this approach has a better score than standard 

direct assimilation. The reason might be that the isotherm was quite low-lying 

(about 2000-2500 m for the 2011 events and 4000 m for the 2014 flood) in 

comparison to the cloud top (up to 8000 m) thus the direct assimilation of the 

iced species actually played a role. Furthermore, for the 2014 flash flood the in-

cloud humidity assimilation associated to the indirect method allows achieving 

the best performance both in terms of cumulated rainfall and pattern location. 

To better understand this difference in the results, the columnar contents of the 

different hydrometeors is computed with reference to a temporal snapshot 

during the respective main phase of these events (09 UTC for the 2011 cases 

and 20 UTC for the 2014 flood). Only radar reflectivity data assimilation 

operators are hereafter considered. The two use cases of 2011 are 

characterized by quite low-lying 0 °C isotherms (around 2000-2500 m). Thus, 

not surprisingly, for both the 25 October event (Figure 44) and the 4 November 

event (Figure 45), the Radar-direct-modif (Figure 44 and Figure 45 Panels c, h, 

m, r, w) simulations produce significant (around 8-10 mm) amounts of graupel 

columnar content (upshear) on the Tyrrhenian side of the Ligurian Apennines 

largely coinciding with large (around 4-5 mm) columnar rainwater content on the 

same area. The corresponding mixed-phase clouds experience a seeder-feeder 

mechanism in which the graupel and its falling crystals act as condensation 

nuclei for cloud water generation via heterogeneous nucleation, thus overall 
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increasing precipitating efficiency. The direct modified takes better account this 

phenomen with respect to the Radar_direct simulation which refers only to 

warm rain processes (Figure 44 and Figure 45 Panels b,g, l, q, v). The Radar-

indirect (Figure 44 and Figure 45 Panels d, i, n, s, x) and Radar-indirect-rqv 

(Figure 44 and Figure 45 Panels e, j, o, t, y) are able to capture to some extent 

the same mechanism, but locate the structure in the wrong position (more 

evident for the 25 October event than in the 4 November case).  

Concerning the 2014 event (Figure 46), the 0 °C isotherm is at about 4000 m 

so, thus resulting into a more “warm rain” case, at least in lower to middle 

troposphere, while the ice species are conversely located in the upper level of 

the convective anvil located downshear the Liguria Apennines. Consequently, 

the simulations using operators weighting more the liquid part of the structures 

(Radar_direct in Panels b, g, l,q, v and Radar_indirect_rqv in Panels e, j, o, t, y 

of Figure 46) are in a better position to capture the predominantly observed 

“warm rain” mechanisms. However, the Radar_direct simulation is still 

penalized by the aforementioned overestimation downshear that is mitigated by 

the use of the Radar_direct_modif (Figure 46 Panels c, h, m, r, w).   

In the next section these best runs will be evaluated in terms of hydrological 

impact improvement with respect to their associated Open-Loop simulations. 
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Figure 44: Columnar content analysis for 25 October 2011 at 09 UTC of graupel (QG) in first row, ice (QI) in second row, snow (QS) in third row, rain 
(QR) in fourth row and cloud water (QC) in the last row.  Comparison between the open loop simulation (Panels a, f, k, p, u) and the results achieved 
with the different reflectivity operator: Radar-direct (Panels b, g, l, q, v), Radar-direct-modif (Panels c, h, m, r, w), Radar-indirect (Panels d, i, n, s, x) 
and Radar-indirect-rqv (Panels e, j, o, f, y). 
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Figure 45: Columnar content analysis for 04 November 2011 at 09 UTC of graupel (QG) in first row, ice (QI) in second row, snow (QS) in third row, rain 
(QR) in fourth row and cloud water (QC) in the last row.  Comparison between the open loop simulation (Panels a, f, k, p, u) and the results achieved 
with the different reflectivity operator: Radar-direct (Panels b, g, l, q, v), Radar-direct-modif (Panels c, h, m, r, w), Radar-indirect (Panels d, i, n, s, x) 
and Radar-indirect-rqv (Panels e, j, o, f, y). 
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Figure 46: Columnar content analysis for 09 October 2014 at 09 UTC of graupel (QG) in first row, ice (QI) in second row, snow (QS) in third row, rain 
(QR) in fourth row and cloud water (QC) in the last row.  Comparison between the open loop simulation (Panels a, f, k, p, u) and the results achieved 
with the different reflectivity operator: Radar-direct (Panels b, g, l, q, v), Radar-direct-modif (Panels c, h, m, r, w), Radar-indirect (Panels d, i, n, s, x) 
and Radar-indirect-rqv (Panels e, j, o, f, y). 
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7.2.4.2 Hydrological impact of data assimilation 

To assess how in depth the best performing 3DVAR configuration affects the 

hydrological prediction (RainFARM+Continuum) the results are presented by 

means of a box plot of the peak flows. For the 2011 event in Cinqueterre, the 

most affected basin was Magra (Basin of 1686 km2 crossing Toscana and 

Liguria regions): in this case, 3DVAR Radar-direct-modif operator does not 

enhance very much the streamflow prediction which is quite good also in the 

Open Loop configuration (Figure 47, Panel b). On the contrary on Vara basin 

(Figure 47, Panel d) the observed peak flow was not particularly severe, yet 

Open Loop configuration overestimated it. The data assimilation experiment 

helps in reducing the overestimation especially in 00 UTC and 06 UTC 

assimilation cycles. In Figure 47 red dots represent the observed peak while 

blue cross display the peak obtained with the hydrological model fed with 

observations. 

Streamflow predictions for the Genoa 2011 also benefit from 3DVAR application 

(namely Radar-direct-modif) (Figure 47, Panel a), the 75% inter-quartile 

increases from about 180 to 220 m3/s; similarly, the upper boundary of the 

distribution (whiskers) increases from 830 to more than 1000 m3/s. In this case 

3DVAR Radar-direct-modif operator cannot localize the intense rainfall core 

with high accuracy on the catchment, but the downscaling observed peaks are 

nonetheless included in the tail of the predicted peaks distribution through the 

application of the downscaling algorithm, a quite common circumstance when 

the basin targeted by the prediction is so small-sized [Siccardi et al. (2005)]. 
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Figure 47: Results of hydrological verification in terms of peak flows. X axis reports the 
time of assimilation or the Open Loop NWPS run, y axes report peak flows. DA1 stands 
for data assimilation, OLP stands for Open Loop. Box plot represents the predicted 
peaks distribution, red dot the observed peak, blue cross the simulated peak obtained 
using observations as input to hydrological model. Each panel refers to a basin and to 
one of the considered events. 

 

Figure 47, Panel c shows the results for the Genoa 2014 event again on 

Bisagno basin: the streamflow forecast obtained with WRF in open-loop 

configuration is compared with the ones obtained with 3DVAR Radar-indirect-

rqv experiment performed every 6 hours. Black dots represent the observed 

peak while blue diamonds display the peak obtained with the hydrological 

model fed with observations. 3DVAR Radar-indirect-rqv experiment effect is 

negligible at 00 UTC while improves the prediction at 6 UTC and then at 12 

UTC. These latter seem to be particularly good results, also from an operational 

standpoint, since both observed and simulated peak flow are inside the inter-

quartile. The 18 UTC DA improves results but in this case we are really close to 

the observed peak, which occurred in the evening at 22 UTC. 
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The Genoa 9th October 2014 event was very challenging in terms of 

predictability of the rainfall intensity, the second phase of the event especially. 

Thus, for this event the whole hydrographs are analyzed after each assimilation 

cycle in order to evaluate the progressive improvement of the discharge 

forecast not only in terms of discharge peaks, as in the boxplots, but also 

addressing their time evolution (Figure 48). Results must be read accounting for 

the performance achieved in terms of precipitation (see Figure 39 and Figure 

40). 

Figure 48: Hydrograph related to the Genoa 2014 event: Open-Loop in panel a, DA at 00 
UTC in panel b, DA at 06 UTC in panel c, DA at 12 UTC in panel d, DA at 18 UTC in panel 
e. Dark gray represent the ensemble area between 0 and 100%, light grey represent the 
ensemble area between 5 and 95%, the red line refers to the ensemble mean, the blue 
line is the observation at Passerella Firpo station and the light blue line represents the 
streamflow computed using observed meteorological variables as input to the 
hydrological model. 

 

At 00 and 06UTC DA is not impacting significantly on peak discharge timing, 

when compared with the Open Loop. In these cycles the forecast framework 

overestimates the rainfall between 00UTC and 12UTC and therefore the 

discharge peak. Looking at Figure 47, it is in fact evident that the time window 
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where the grey bands reach the higher values of streamflow (about 8:00 to 

14:00 UTC) are similar in sub panels a, b and c. 

DA performed at 12UTC, which would have been available from an operational 

point of view around 15 UTC, namely 5-6 hours earlier than the run forced with 

12UTC analysis, improves significantly the rainfall prediction between 12UTC 

and 24UTC thus leading to an improvement of the discharge forecast accuracy. 

The 95-percentile is around 1200 m3/s and the average peak timing is around 

18 UTC, much closer to the observed one, significantly improving also the 

finding of Parodi et al (2017).  

Also DA at 18UTC, available from an operational point of view around 19UTC, 

would have been very important from a physically-based short-range 

nowcasting perspective allowing to understand the evolution in the next few 

hours during the most intense phases of the rainfall and discharge phenomena.  

Generally, the application of the 3DVAR in cycling mode has, at least for this 

case study, a relevant impact on the hydro-meteorological results for the next 8-

9 hours, lasting longer than in Davolio et al. (2017). 

7.2.5 Concluding remarks 

The back-building MCSs frequently affecting the Mediterranean coastal regions 

are very challenging from a predictive ability point of view. For this reason, this 

research activity addressed three back-building MCSs that occurred in Liguria 

between 2011 and 2014, causing 20 casualties and several hundreds of 

millions of euros of damage. The impact of a 6-hour cycling 3DVAR data 

assimilation scheme on the high resolution (1 km) WRF simulations feeding the 

Continuum hydrological model via the RainFARM stochastic downscaling has 

been evaluated. 
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The innovation of this work is represented by the use of different 3DVAR 

operators for the direct and indirect radar reflectivity data assimilation together 

with surface observations aiming to identify the best performing setup for MCSs 

prediction in terms of both QPF patterns and amounts. Subsequently the best 

performing QPF 3DVAR sensitivity experiments, evaluated through MODE, are 

fed into the RainFARM and the Continuum hydrological model to forecast peak 

discharge.  The simulated discharge is used to validate the NWP performance 

at each assimilation step so as to highlight the added value of the use of a 6-

hour cycling 3DVAR.  

From a meteorological point of view, the 3DVAR assimilation of radar reflectivity 

has a greater impact on the forecasts in comparison to the use of surface 

observation data: radar data in fact provide information at many elevations 

within the troposphere, while the ground sensors data account for surface 

observations only. An additional advantage of radar observation is its 

geographical location: reflectivity observation cover the sea, where the 

convective cells develop, while ground sensors provide observational data only 

above land once the convective cells are developed. Furthermore, the modified 

direct operator allows achieving the best performance for the two study cases of 

2011, improving the forecast made with standard direct operator. This positive 

impact is probably due to the fact that, the 0 °C isotherm was quite low-lying 

(850-900 hPa), thus supporting a relevant production of solid-phase 

hydrometeors.  

For the Genoa 2014 case study the main challenge was the reproduction of the 

second phase of the event, completely missed by the operational Open-Loop 

simulation. The use of the indirect reflectivity operator, coupled with the in-cloud 

humidity retrieval, achieved the best performance providing an enhancement of 
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the kinematics, i.e. the prominent convergence line that triggered an even more 

intense deep convection in the second phase of the event.  

The best meteorological simulations for each case study (Radar-direct-modif for 

both 2011 events and Radar-indirect-rqv for the 2014 event) were then fed into 

the Continuum hydrological model after the application of the RainFARM 

stochastic downscaling: peak discharge improves significantly even when the 

Open-Loop already provided a good forecast (like the Cinqueterre 2011 use 

case).  

It is possible to conclude that the use of the hydro-meteorological framework 

coupling a high resolution WRF simulation including a 6-hour cycling 3DVAR of 

radar reflectivity, possibly using an ensemble of reflectivity operators, with the 

Continuum hydrological model can help to obtain more timely and accurate 

streamflow forecasts for back-building MCSs. Whenever there is not the 

possibility to use the full portfolio of 3DVAR radar reflectivity operators, the 

Radar-direct-modif setup turns out to be the best compromises solution. The 

result obtained in this research activity have been applied in an operational 

framework to implement a 3 hour cycling 3dvar followed by 48 hour forecast in 

the framework of the POR-FESR project founded by ARPAL and presented in 

the following section (7.3). Future works related with this research activity will 

be a further improvement of the operational forecasting WRF data assimilation 

(see section 7.3 hereafter) and the implementation of a fully coupled 

hydrometeorological chain (WRF+Continuum).  
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7.3 Operational application of WRF-3DVAR provided for regional 
forecast 

The results obtained during the research activity presented above have been 

applied during the POR-FESR project where a 3-hour cycling 3DVAR is 

provided operationally to the ARPA-Liguria (ARPAL) regional forecasting 

center. The setup is the same used during the research activity with the 

modified direct operator but a different domains grid spacing is used (for 

operational constraints): in this application three nested domains of 22.5, 7.5 e 

2.5 km and 50 vertical levels are used (Figure 49). 

The global analyses are obtained from GFS (Global Forecasting System) with 

0.25 resolution degrees and 3 hours time frequency for boundary conditions. 

The assimilation scheme provide two different forecast (Figure 50): 

● Cycle 1: The WRF model is initialized with the 18 UTC GFS global model 

with a first 3DVAR assimilation of the Italian Radar Network and SYNOP 

stations. A WRF 3 hours forecast is performed until 21 UTC when 

another cycle of assimilation is performed with another 3 hour forecast 

and another assimilation cycle at 00 UTC. Then a 48 hour forecast is 

performed and is delivered to ARPAL within 3:30 UTC 

● Cycle 2: In the second forecast the WRF model is initialized with the 06 

UTC GFS global model with a first 3DVAR assimilation, again it is 

performed a 3 hour forecast and a second assimilation cycle at 09 UTC 

and a third assimilation at 12 UTC. Also in this case from 12 UTC it is run 

a forecast for 48 hours delivered to ARPAL within 15:30 UTC. 
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 Figure 49: Nested domains for operational 3DVAR application 

Figure 50: Operational assimilation scheme 

 

Future work will concerns the improvement of the setup presented extending 

the innermost domain coverage to all Italy, maintaining the same resolution 

aforementioned, and incrementing the 3dvar cycling (1 hour cycling) before the 

48 hours forecasts. The future assimilation scheme will be: 
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● Cycle 1: The WRF model will be initialized with the 18 UTC GFS global 

model with a first 3DVAR assimilation of the Italian Radar Network and 

SYNOP stations. A WRF 1 hour forecast will be performed until 19 UTC 

when another assimilation cycle will be performed with another 1 hour 

forecast and another assimilation cycle at 20 UTC and so forth until 00 

UTC. Then a 48-hour forecast will be performed. 

● Cycle 2: In the second forecast the WRF model will be initialized with the 

06 UTC GFS global model with first 3DVAR assimilation, again will be 

performed a 1 hour forecast and a second assimilation cycle at 07 UTC, 

a third assimilation at 08 UTC and so forth until 12 UTC. Also in this 

case, from 12 UTC will be run a forecast for 48 hours. 
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8. Third research activity - satellite and non-
conventional atmospheric observations data 
assimilation. 

A first part of the work presented hereafter is currently under review: 
Lagasio, M, Pulvirenti, L., Parodi, A., Boni, G., Pierdicca, N., Venuti, G., Realini, E., Gatti, A., 
Barindelli, S, & Rommen, B. Effect of the ingestion in the WRF model of different Sentinel-
derived and GNSS-derived products: analysis of the forecasts of a high impact weather event. 
European Journal of Remote Sensing 
 

8.1 The STEAM project 
As already discussed, improving the forecast accuracy is a fundamental goal to 

limit social and economic damages. In this scenario the STEAM project 

(SaTellite Earth observation for Atmospheric Modeling) aims to respond to a 

specific question asked by the European Space Agency (ESA): 

Can Sentinel satellites constellation weather observation data be used to better 

understand and predict with at higher spatial-temporal resolution the 

atmospheric phenomena that can lead to extreme events and intense 

atmospheric turbulence phenomena? 

To assess this, STEAM has identified the WRF model as reference atmospheric 

modelling suite and has fed it, with variables observed by satellites of the 

Sentinel constellation such as humidity, soil and sea temperature, wind on the 

sea, the amount of water vapour in the atmospheric band closest to the earth. 

Usually all these data are not used in atmospheric forecasting models, 

conversely they are predominantly used for hydrological and marine modelling 

applications. 

Along these lines STEAM has been articulated in two distinct but 

complementing components: 

1) EO data provided by Sentinel as well as GNSS (Global Navigation 

Satellite System) water vapour data have been ingested for the first time 
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into cloud-resolving NWP experiments (down to 1 km grid spacing) to 

demonstrate the improvements in the predictive capability of severe 

weather events and to pave the way towards geosynchronous orbit 

synthetic aperture radar ideas;  

2) LES experiments have been performed to gain a deeper understanding 

of the very fine-scale spatio-temporal properties tropospheric turbulence 

and spatial inhomogeneity of water vapor fields, thus resulting in the 

assessment of their effects on propagation parameters relevant for 

SatCom services, Radio Science and Radio Astronomy observation 

techniques. 

In this work the results of the first point (1) are shown and analysed.  

It can be expected that ingesting products derived from the aforementioned EO 

data into NWP models might significantly reduce weather forecast uncertainties. 

However, while some investigations on the assimilation in NWP models of low 

resolution (tens of km) EO derived products (e.g. soil moisture extracted from 

the Soil Moisture and Ocean Salinity mission data), are available in the 

literature (e.g. Muñoz Sabater et al. (2012)), very few studies were conducted 

on the ingestion of high-resolution EO products. To the best of our knowledge, 

only a couple of papers on the assimilation of water vapour maps derived from 

SAR data by applying the InSAR technique are available in the literature 

[Mateus et al. (2018); Pichelli et al. (2015)]. Data about the sea and land 

surfaces derived from Sentinel data were never used for weather forecast 

applications so far. The ingestion of high spatial or temporal resolution EO 

products in a NWP operating at cloud resolving grid represents the new 

contribution brought by this study.  

Note that since, as discussed before, several model runs have to be 

accomplished to produce a complete set of results and each high-resolution run 

is very expensive from a computational point of view, the number of case 
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studies analysed throughout the whole duration of the STEAM project (18 

months) should be forcedly limited to 2 events. Hence, the case studies have to 

be significant for an operational point of view (e.g. issues of weather alerts), so 

that it was decided to focus on high impact weather events (HIWEs). Thus, the 

experiments were conducted considering a flood event occurred in in the 

Livorno town (Tuscany, Central Italy) in September 2017 and a flood occurred 

in Silvi Marina (Abruzzo, South Italy) in November 2017. 

8.2 Test cases 
The first case study is the Livorno extreme weather event that took place in the 

night between 9 and 10 September 2017.  

Starting from the afternoon-evening of Saturday September 9th a large trough 

deepens on the western Mediterranean (Figure 51), recalling an intense flow of 

currents from the south, mild and extremely humid, on all the Tyrrhenian 

sectors and on the part east of the Ligurian Sea (Figure 52). 

Figure 51: temperature and geopotential height (500 hPa) at 18UTC of 9 September (left) 
and 00UTC of 10 September 2017 (ECMWF 25 km run, 12UTC 9 September 2017). 



 210 

Figure 52: 10 m wind field at 18UTC of 9 September (left) and 00UTC of 10 September 
2017 (ECMWF 25 km run, 12UTC 9 September 2017). 

 

Significant amounts of precipitable water columnar content represent a 

condition potentially favourable of the triggering of very intense and efficient 

rainfall processes (Figure 53). 

 

Figure 53: precipitable water columnar content at 18UTC of 9 September (left) and 00UTC 
of 10 September 2017 (ECMWF 25 km run, 12UTC 9 September 2017). 

 

From the evening of Saturday 9 September, the freshest airflow associated with 

vorticity at 500 hPa was supportive of instability conditions on Tuscany region 

(Figure 54). 



 211 

 

Figure 54: vorticity field (500 hPa) at 18UTC of 9 September (left) and 00UTC of 10 
September 2017 (ECMWF 25 km run, 12UTC 9 September 2017). 

 

The environment is also conducive to the development of intense local 

convective precipitation systems persistent, not only because of the slow 

evolution of the depression area, but also because of the shear of the winds 

(variation of the intensity and direction of the wind along the vertical column) 

well highlighted by the "deep level shear" (Figure 55) which determines a 

separation between the updraft area (rising currents that feed the storms) and 

that of downdraft (descending currents that generate the wind band), favouring 

locally stationary storms. 

 

Figure 55: deep shear layer (500-1000 hPa) at 00UTC of 10 September 2017 (ECMWF 25 
km run, 00UTC 10 September 2017). 
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However it is very important to consider, from a predictability standpoint, how 

the entire central Tyrrhenian sea, and large part of central Italy were prone to 

the potential occurrence of very intense, persistent, and self regenerating 

thunderstorm phenomena as confirmed by the values of the severe index: the 

Severe Weather Threat Index (SWEAT) measures thunderstorm potential by 

examining low-level moisture, convective instability, jet maxima, and warm 

advection (Figure 56). 

 

Figure 56: SWEAT index at 07UTC of 10 September 2017 (ECMWF 25 km run, 12UTC 9 
September 2017). 

 

The event according to the Molini et al (2011) criterion can be classified as: type 

II –short-lived (duration d < 12 hours) and very localized (less than AS = 50 × 

50 km2). These events correspond to the non-equilibrium convection, where a 

larger amount of CAPE is available, as a result of building up from large-scale 

processes over long time-scales, but the extent to which it produces convection 

and precipitation is restricted by theneed for a trigger sufficient to overcome the 

convective inhibition energy (CIN). 
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The resulting observed Quantitative Precipitation Estimate for the time period 

18UTC 9 September 2017 – 06UTC 10 September 2017 is shown in the 

following map (Figure 57), using the raingauge data (courtesy of the Italian Civil 

Protection Department): an intense lightning activity was also in place (Figure 

58). 

 

Figure 57: Quantitative Precipitation Estimate using Italian raingauge data network for 
the time period 18UTC 9 September 2017 – 06UTC 10 September 2017 (courtesy of the 
Italian Civil Protection Department). 

 

Figure 58: observed lightning strokes for the time period 18UTC 9 September 2017 – 
06UTC 10 September 2017 (courtesy of the Italian Civil Protection Department). 
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The second case study is the Silvi-Marina extreme weather event that took 

place on 14-15 November 2017 in central Italy affecting mainly Abruzzo, 

Marche and Umbria regions. 

On 14 November 2017 around 00UTC  (500 hPa) an isolated trough is apparent 

over Italy peninsula, slowly moving, while shrinking, towards southern Italy 24 

hours later (Figure 59). The synoptic scale system generates advection of moist 

and warm air in the lower troposphere (850 hPa) from Africa towards Apennines 

mountains range in Central Italy (Figure 60). 

 

 

Figure 59: Geopotential at 500 hPa (GFS, 14 and 15 November 00UTC). 

 

Figure 60: Temperature at 850 hPa (GFS, 14 and 15 November 00UTC). 
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The event according to the Molini et al (2011) criterion can be classified as: type 

I –long-lived (duration d ≥ 12 hours) and spatially distributed (more than AS = 

50 × 50 km2). These events correspond to the equilibrium convection, where it 

is assumed that production of CAPE by large-scale processes is nearly 

balanced by its consumption by convective phenomena, and thus CAPE values 

stay small: this is confirmed by the CAPE values (around 1000 J/kg) at 12 UTC 

on 14 and 15 November 2017 (Figure 61). In this case the overall size, location 

and intensity of the precipitating region is determined by the large-scale flow.  

The resulting observed Quantitative Precipitation Estimate respectively for the 

24 hours of 14 and 15 November 2017 are shown in the following map (Figure 

62 and Figure 63), using the raingauge data (courtesy of the Italian Civil 

Protection Department). 
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Figure 61: Convective Available Potential Energy (CAPE) at 12UTC on 14 and 15 
November 2017 (BOLAM model, 00UTC) 
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Figure 62: QPE 24 hours on 14 November 2017. 
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Figure 63: QPE 24 hours on 15 November 2017. 

 

Some stations (Penna Sant’Andrea in Abruzzo and Sarnano in Marche) 

registered more than 200 mm of rainfall in 48 hours, with rainfall phenomena 

persisting for 30-36 hours and 15 minutes rain rate less than 10 mm, thus 

confirming that this event belongs to the type I –long-lived and spatially 

distributed category. In this respect also the number of lightning strokes 

observed during the two days of the event was negligible. 
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Figure 64: Penna Sant’Andrea (Abruzzo) rainfall data station. 
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8.3 Observational data description 

8.3.1 Livorno test case 

The following maps show the available EO observational data, the 

corresponding Sentinel source, and the acquisition time. 

Soil Moisture: Sentinel 1, 18UTC 8 September 2017 ( 

Figure 65). The area corresponding to the observed QPE maxima is well 

captured by the Sentinel data and it corresponds to SM values around 0.3. In 

previous literature investigation it was found that accuracy of SM retrieval from 

SAR ranges between 0.04 m3/m3 (bare soils) and 0.14 m3/m3 (densely 

vegetated soils). 

 

 

Figure 65: Soil Moisture Sentinel 1, 18UTC 8 September 2017. 
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Wind over the ocean: Sentinel 1, 18UTC 8 September 2017 (Figure 66). A 

significant Scirocco wind is blowing along southern Tuscany and northern Lazio 

coastline, while the wind over the sea pattern in front of northern Tuscany 

coastlines appear more disorganized and chaotic. Additionally a intense wind 

jet is apparent nearby the Strait of Bonifacio, in between Corsica and Sardinia. 

Using Sentinel-1A data, Monaldo et al. [JSTARS 2015] found that wind speed 

retrievals agree with ASCAT data better than 2 m/s in standard deviation for 

wind speeds less that 20 m/s. 

Figure 66: Wind over the ocean: Sentinel 1, 18UTC 8 September 2017. 
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Sea Surface Temperature: Sentinel 3, 21UTC 9 September 2017 (Figure 67) 

The map shows valid values mainly on the swat southern part around Sicily 

island, while not valid observations are available in front of the Tuscany 

coastlines.  

 

 

 

 

 

 

 

 

 

Figure 67: Sea Surface Temperature: Sentinel 3, 21UTC 9 September 2017 

 

The SST Theoretical Uncertainty included in each level2 product is presented in 

Figure 68, showing values below 1.5 K. 

 

Figure 68: SST Theoretical Uncertainty included in each level2 product 
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Land Surface Temperature: Sentinel 3, 10UTC 9 September 2017 (Figure 

69). The swat covers most of central Italy. The northern part of Tuscany near 

the area mostly affected by the observed torrential rainfall phenomena shows a 

land surface temperature significantly lower than surrounding areas, especially 

Adriatic coastlines, and eastern portion of Pianura Padana. 

Figure 69: Land Surface Temperature: Sentinel 3, 10UTC 9 September 2017. 

The LST Theoretical Uncertainty included in each level2 product is presented in 

Figure 70, showing values below 0.180 K. 

 

Figure 70: SST LST Theoretical Uncertainty included in each level2 product. 
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Zenith Total Delay: 375 GNSS stations. Zenith Total Delay (ZTD) time series 

were estimated starting from GNSS observations retrieved by 375 stations 

within the area of interest. Of these, 44 stations belong to the European 

Permanent Network (EPN), the remaining 331 to several Italian nation-wide and 

region-wide networks that publish 30-second GNSS observations for free 

(Figure 71).  

 The ZTD was estimated by a joint least squares adjustment of undifferenced 

phase observations (the so-called “PPP batch” approach), as implemented by 

GReD in the goGPS open source software. The processing settings included 

the use of the Vienna Mapping Function (VMF) to map slant delays to the 

zenith, and VMF grids to compute the a-priori values for the tropospheric delay. 

One tropospheric delay parameter was estimated per epoch (i.e. one every 30 

seconds), with a constraint set to 1.5 cm/hour. North and East tropospheric 

delay gradients were estimated. 

 

Figure 71: 375 GNSS stations used in the Livorno case study. 
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The resulting ZTD time series were validated by comparison with radiosondes, 

using the 8 available radiosonde launch sites in Italy, and considering the 

GNSS station nearest to the radiosonde launch site. This comparison resulted 

in ZTD differences with mean of 3 mm and standard deviation of 15 mm. A 

validation of the ZTD estimated from all stations was done by comparison with 

the ZTD computed by the online service GACOS (http://ceg-

research.ncl.ac.uk/v2/gacos/), which uses a high-resolution ECMWF weather 

model. This comparison confirmed the statistics obtained with respect to 

radiosounding data, with a mean difference of 4 mm and standard deviation of 

15 mm. 

 

8.3.2 Silvi Marina test case 

The following maps show the available EO observational data, the 

corresponding Sentinel source, and the acquisition time. 

Soil Moisture: Sentinel 1, 05:10 UTC and 1704 UTC on 14 November 2017 ( 

Figure 72). The area corresponding to the observed QPE maxima, over March 

and Abruzzo Apennines is well captured by the Sentinel data and it 

corresponds to SM values around 0.3. In previous literature investigation it was 

found that accuracy of SM retrieval from SAR ranges between 0.04 m3/m3 (bare 

soils) and 0.14 m3/m3 (densely vegetated soils). 
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 Figure 72: Soil Moisture: Sentinel 1, 05:04 (upper panel) and 17:10 (lower panel) UTC 14 
November 2017. 
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Wind over the ocean: Sentinel 1, 05:10UTC and 17:04 14 November 2017 

(Figure 73) 

Figure 73: Wind over the ocean Sentinel 1, 05:04 (upper panel) and 17:10 (lower panel) 
UTC 14 November 2017. 
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Sea Surface Temperature: Sentinel 3, 19:36UTC 12 November 2017 (Figure 

74). The map shows valid values only two days ahead the observed event, 

mainly on the swat southern part on the Ionian sea, as well as in front of the 

Abruzzo and Marche coastlines.  

Figure 74: Sea Surface Temperature  Sentinel 3, 19:36 UTC 12 November 2017. 

 

Zenith Total Delay: 376 GNSS stations 

Similarly to the Livorno case, ZTD time series were estimated starting from 

GNSS observations retrieved by 376 stations within the area of interest. Of 

these, 45 stations belong to the European Permanent Network (EPN), the 

remaining 331 to the Italian nation-wide and region-wide networks (Figure 75). 

The ZTD was estimated following the same procedure as in the Livorno case. 

Validation was done with respect to radiosondes, yielding a mean difference of -

2.6 mm and standard deviation of 19 mm. 
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Figure 75: 376 GNSS stations used in the Silvi Marina case study. 

 

SAR Atmospheric phase screen 

49 Sentinel-1 images have been downloaded, ingested in TRE ALTAMIRA 

processing chain, and processed to obtain atmospheric products.  

Dataset 

Number of Images 49 

First Image 18 May 2017 

Last Image 14 March 2018 

Image Dimensions [pixels] 67395 x 12141 

AOI [Km] 340 x 200 

 

Atmospheric products have been subsampled, roughly at 100 x 100 [m] and 

delivered to other partners, after geocoding, in GeoTIFF format. In Figure 76 is 
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shown the incoherent mean of all the 49 images, depicting the Area of Interest 

(AOI), and in Figure 77 an example of the derived atmospheric product. 

Along with the APS products have been generated a digital terrain model of the 

Area of Interest used in data processing and an incidence angle map, to allow 

the projection of the data along the zenith local direction.  

Figure 76: Silvi Marina AOI– incoherent mean of all the 49 processed images 

 

 

 

 

 

 

 

 

 

 

Figure 77: Silvi Marina AOI– Example of Atmospheric Phase Screen [mm/year]. 
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The characteristics of the APS maps are summarized in the next table. Note 

that the temporal resolution does not comply with the OSCAR requirements for 

the IWV variable and the same applies for the timeliness. Nonetheless, SAR is 

the only instrument that permits achieving a horizontal (spatial) resolution that 

complies the OSCAR one at goal level. Hence, it is worthwhile to use the InSAR 

technique to produce IPWV maps. 

SAR APS SENTINEL-1 

Spatial Resolution 100 x 100 [m] 

Temporal Resolution 6 days 

Timeliness 24 hours from image delivery 

Coverage 250 x 210 [Km] 

Thematic Accuracy Millimetric precision on LOS delay 

Availability TRE ALTAMIRA Data Center 

Notes None 

APS maps show relative variations of tropospheric delay along the satellite line-

of-sight (LOS) with respect to a “master image”. In order to reconstruct an 

“absolute” zenithal tropospheric delay, which can be then assimilated by WRF, 

a calibration procedure is needed. This consists in the following steps: 

- retrieval of ZTD maps from a NWP model, corresponding to the area 

covered by SAR maps, at the time of each acquisition (in this work we 

used GACOS maps from http://ceg-research.ncl.ac.uk/v2/gacos/); 

- computation of relative variation of GACOS data with respect to the 

same time of the SAR master image; 

- mapping of zenithal relative GACOS delay onto the LOS, using the 

cosine of the given incidence angle (obtaining the so-called “GACOS 

APS”); 
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- estimation of a plane fitting the difference between GACOS APS and 

SAR APS; this is done to consider orbital and ionosphere-induced errors; 

- the estimated plane is removed from the SAR APS maps, and these are 

then mapped back to the zenithal direction; 

- the zenithal SAR APS are then averaged over time, to produce a “mean 

SAR APS map”; the same is done also for the GACOS absolute zenithal 

maps; 

- the mean SAR APS map is removed from each zenithal SAR APS, and 

the mean GACOS absolute zenithal map is added; this finalizes the 

calibration procedure, reconstructing the correct absolute zenithal 

tropospheric delay maps. 

8.4 Result and validation 
The data ingestion has been performed according to 3 different methodologies: 

direct insertion, nudging, and finally 3DVAR assimilation. 

Direct insertion is meant hereafter as the substitution of a given variable in the 

NWM fields with the corresponding one retrieved by EO sensors. 

Nudging is the simplest form of data assimilation that adjusts, via basic 

netwonian relaxation techniques, a given dynamical variables of NWM using 

EO data to provide a realistic representation of the atmosphere at a given time. 

3DVAR is a variational data assimilation procedure that produces improved 

initial conditions by statistically merging one-time observations and forecast 

field at the same time. Variational data assimilation is based on a physical 

constraint derived from the forward model (forecast) so that the assimilation 

problem is formulated as an iterative process whose aim is to minimize the gap 

between observations and model states. The 3DVAR problem solution is given 

by the analysis state that minimizes the cost function which represents the a 
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posteriori maximum likelihood estimate of the true state of the atmosphere, 

combining the two sources of data: observations and background. The mapping 

between the observational data sources and the corresponding data ingestion 

methodologies for the two case studies is presented in the following table. 

 

Event	data	 Event	name	 Ingestion	methodology	
Direct	

insertion	
Nudging	 3DVAR	

9-10	
September	
2017	

Livorno	 LST,	SST	 SM	 GNSS,	WIND	
OVER	OCEAN	

14-15	
November	
2017	

Silvi	Marina	 LST,	SST	 SM	
INSAR,	GNSS,	
WIND	OVER	
OCEAN	

Table 22: cases studies and related ingestion methodologies for the different data 
sources. 

 

The analysis of the different NWM experiments results is performed in terms of 

comparison between observed and predicted rainfall depth fields. 

The comparison has been performed by using the Method for Object Based 

Evaluation (MODE) approach. MODE resolves objects in both the forecast and 

observed fields. Object attributes are calculated and compared, and are used to 

associate (merge) objects within a single field, as well as to match objects 

between the forecast and observed fields. Finally, summary statistics describing 

the objects and object pairs are produced.  These statistics can be used to 

identify correlations and differences among the objects, leading to insights 

concerning forecast strengths and weaknesses. 
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8.4.1 Livorno test case 

The NWM experiments performed for this case study are driven respectively by 

IFS and GFS global circulation models with initialization at 18 UTC on 8 

September 2017, 3 hours update of the boundary conditions, and 48 hours 

forecasting time interval. 

The following table summarizes the methodology and timing for the ingestion of 

the different data sources (alone or their combinations) 

Data	source	 Ingestion	
methodology	 Timing	

LST	 Direction	insertion	 10	UTC	09/09/2017	
SST	 Direction	insertion	 21	UTC	09/09/2017	
SM	 Nudging	 18	UTC	08/09/2017	

GNSS/ZTD	 3DVAR	 multiple	(	down	to	3	hour	
resolution)	

WIND	OVER	OCEAN		 3DVAR	 18	UTC	08/09/2017	
WIND	OVER	OCEAN	+	

SM+ZTD	
NUDGING,	3DVAR	 variable	

 

The maps to be directly inserted into the corresponding NWM fields have been 

obtained by an inverse square distance weighting interpolation of the Sentinel 

data on the WRF domains computational grids. The native WRF model data 

have been substituted by the EO derived ones, where available, while the 

native WRF model data have been maintained elsewhere. This approach has 

been applied to LST and SST variables and the results are provided in the 

following figures, referring to the innermost domain at 1.5 km grid spacing. 

Figure 78 and Figure 80 refer to GFS driven cases (LST and SST), while Figure 

79 and Figure 81 refer to IFS driven cases (LST and SST). 
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Figure 78: GFS driven cases. LST map passed to the WRF model via direction insertion 
at 10 UTC 09/09/2017. 

 

Figure 79: IFS driven cases. LST map passed to the WRF model via direction insertion at 
10 UTC 09/09/2017. 
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Figure 80: IFS driven cases. SST map passed to the WRF model via direction insertion at 
21 UTC 09/09/2017. 

 

 

Figure 81: IFS driven cases. SST map passed to the WRF model via direction insertion at 
21 UTC 09/09/2017. 
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The SM data preparation has been slightly more complex and inspired by a 

nudging like approach described hereafter: the difference map between 

Sentinel retrieved SM and the WRF SM field at the surface is computed; the 

resulting difference map is interpolated and smoothed back on the WRF model 

computational grids (one for each parent and/or nested domain); subsequently 

the direct insertion in the corresponding WRF surface layer SM field is made; 

finally, a vertical profile correction through linear interpolation of the difference 

between the Sentinel surface observation and the model one assuming zero 

difference at deepest level is performed. The resulting maps for each soil model 

layer (six in case of the adopted soil model) are presented in the following 

figures. Figure 82 refers to GFS driven cases, while Figure 83 refers to IFS 

driven cases. 

Concerning the wind over ocean (Sentinel 1) data, they have been interpolated 

by an inverse square distance weighting interpolation over the WRF domains 

computational grids and have been assimilated using the WRF 3DVAR 

technique as 10m wind observations.   

 

 Figure 82: GFS driven cases. SM maps for each soil model layer passed to the WRF 
model via direction insertion at 18 UTC 09/09/2017.  
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Figure 83: IFS driven cases. SM maps for each soil model layer passed to the WRF model 
via direction insertion at 18 UTC 09/09/2017. 

 

The following pictures summarizes the QPF values provided by the different 

modelling experiments for the 12 hours time period from 18UTC on 9 

September 2017 to 06UTC on 10 September 2017, where a=LST (direct 

insertion), b=SST (direct insertion), c=SM (nudging), d=WIND (3DVAR at the 

analysis time), e=ZTD3h (3DVAR 3h cycling with all the 1-minute ZTD 

observations available over a 30 minutes time window at the analysis time), 

f=ZTD3h_1ist (3DVAR 3h cycling with the 1-minute ZTD observations 

temporally nearest to the analysis time,), g=WIND+SM+ZTD (3DVAR wind at 

the analysis time, SM direction insertion at the analysis time, 3DVAR 3h cycling 

with the 1-minute ZTD observations temporally nearest to the analysis time), 

h=WIND+SM+ZTD (3DVAR wind at the analysis time, SM direction insertion at 

the analysis time, 3DVAR with the 1-minute ZTD observations temporally 

nearest to 18UTC), i=OBS, j=Open Loop (OL).  Figure 84 refers to GFS driven 

cases, while Figure 85 refers to IFS driven cases. 
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The MODE analysis has been performed for three different rainfall thresholds 

namely 24, 48 and 72 mm: the results are presented in Table 23, Table 24, and 

Table 25. The main goal of this meteorological validation, from a QPF 

standpoint, is to select the best meteorological forecast out of the whole set of 

the sensitivity experiments. The most reliable meteorological forecast is 

selected as in Lagasio et al. (2017): all the indices and statistical scores 

described above are calculated for each sensitivity experiment, then the times 

in which a simulation has been the best for each score is counted. Finally, the 

run ranking as the best for the higher number of times is identified.  

Based on this approach, in the case of the GFS driven experiments, the best 

performing run is WIND+SM+ZTD (3DVAR wind at the analysis time, SM 

direction insertion at the analysis time, 3DVAR 3h cycling with the 1-minute 

ZTD observations temporally nearest to the analysis time) with a total of 15 best 

scores. Conversely, in the case of the IFS driven experiments, the best 

performing one is WIND (3DVAR at the analysis time, namely 18 UTC on 

08/09/2018), with a total of 16 best scores. Looking at the higher thresholds (48 

and 72 mm, Table 24 and Table 25), for GFS driven simulations the 

assimilation of wind, soil moisture and ZTD (WIND+SM+ZTD) observations 

improve the OL predictive capability both in terms of POD and FAR, while the 

WIND only assimilation achieves the best result in terms of FBIAS. Furthermore 

in terms of structure location and shape WIND+SM+ZTD experiment provides 

the minimum CENTROID DIST, the maximum AREA RATIO and the best 

SYMMETRIC DIFF for the most intense core of precipitation (72 mm thresholds, 

Table 25).  

Concerning the simulations driven by IFS, the best results in terms of POD and 

FBIAS is reached with the WIND only assimilation while the best FAR is 
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reached with the WIND+SM+ZTD experiment. In terms of spatial pattern, in this 

case the WIND only assimilation gives the best AREA RATIO, SYMMETRIC 

DIFF and INTERSERSECTION AREA revealing a good localization of 

precipitation pattern.  

The rather heterogeneous response to the assimilated Sentinel and GNSS 

derived variables by the GFS and IFS driven experiments it is most probably 

due to the difference in their respective initial conditions fields. For sake of 

clarification and exemplification, the reader is referred to Figure 82 and Figure 

83, where the comparison between SM analysis fields, outside the direct 

insertion/assimilation areas suggests quite prominent differences between GFS 

and IFS values, namely IFS soil layers look definitely drier than GFS ones. 

Then, this difference can lead to different response to the assimilation of the 

same observation. 

It is also worth to notice that the assimilation of wind, soil moisture and ZTD all 

together (WIND+SM+ZTD and WIND+SM+ZTD_18UTC experiments) ranks 

well for both driving GCMs Thus, for operational purpose, this can be a 

recommended assimilation setup possibly with a 3-hour cycling 3dvar. 
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Figure 84: GFS driven cases. QPF values for the 12 hours time period from 18UTC on 9 
September 2017 to 06UTC on 10 September 2017, where a=LST, b=SST, c=SM, d=WIND, 
e=ZTD3h, f=ZTD3h_1ist, g=WIND+SM+ZTD, h=WIND+SM+ZTD_18UTC (only 18UTC), 
i=OBS, j=Open Loop (OL). For details about the 3DVAR approaches the reader is referred 
to the main text.  
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Figure 85: IFS driven cases. QPF values for the 12 hours time period from 18UTC on 9 
September 2017 to 06UTC on 10 September 2017, where a=LST, b=SST, c=SM, d=WIND, 
e=ZTD3h, f=ZTD3h_1ist, g=WIND+SM+ZTD, h=WIND+SM+ZTD_18UTC (only 18UTC), 
i=OBS, j=Open Loop (OL). For details about the 3DVAR approaches the reader is referred 
to the main text.  
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24 mm (GFS)	

run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

OL 5.34	 4.15	 0.73	 3027.00	 3395.00	 6422.00	 0.95	 0.86	 0.59	 0.31	 0.47	 0.48	 0.50	
LST 5.88	 23.10	 0.70	 3440.00	 3202.00	 6642.00	 0.93	 0.82	 0.54	 0.34	 0.43	 0.43	 0.46	
SM 4.73	 12.86	 0.72	 3536.00	 3209.00	 6745.00	 0.93	 0.77	 0.55	 0.29	 0.45	 0.46	 0.49	
SST 4.97	 5.64	 0.73	 2959.00	 3450.00	 6409.00	 0.92	 0.88	 0.60	 0.32	 0.47	 0.48	 0.50	

WIND 7.63	 7.50	 0.79	 3902.00	 3228.00	 7130.00	 0.88	 0.92	 0.55	 0.40	 0.41	 0.40	 0.41	
WIND+SM+ZTD 9.44	 8.17	 0.83	 3683.00	 3470.00	 7153.00	 0.98	 0.93	 0.59	 0.37	 0.44	 0.45	 0.46	

WIND+SM+ZTD_18UTC 14.09	 12.80	 0.78	 3411.00	 3429.00	 6840.00	 0.82	 0.91	 0.58	 0.36	 0.44	 0.45	 0.46	
ZTD3h 6.58	 22.54	 0.76	 4019.00	 3067.00	 7086.00	 0.95	 1.07	 0.52	 0.51	 0.34	 0.30	 0.29	

ZTD3h_1ist 7.70	 2.89	 0.80	 3741.00	 3329.00	 7070.00	 0.92	 0.88	 0.57	 0.36	 0.43	 0.44	 0.45	
 Best	small Best	

small Best=1 Best	small Best	big Best	
small Best=1 Best=1 Best=1 Best=0 Best=1 Best=1 Best=1 

24 mm (IFS)	

Run	 CENTROID	
DIST	

ANGLE	
DIFF	

AREA	
RATIO	

SYMMETRIC	
DIFF	

INTERSECTION	
AREA	

UNION	
AREA	

P90	
RATIO	 FBIAS	 PODY	 FAR	 CSI	 HK	 HSS	

OL	 18.77	 65.31	 0.76	 3323.00	 3418.00	 6741.00	 0.96	 0.77	 0.59	 0.24	 0.50	 0.51	 0.55	
LST	 15.33	 40.81	 0.70	 3484.00	 3192.00	 6676.00	 0.96	 0.80	 0.54	 0.32	 0.43	 0.44	 0.47	
SM	 16.99	 50.12	 0.77	 3474.00	 3295.00	 6769.00	 0.97	 0.82	 0.57	 0.31	 0.46	 0.47	 0.50	
SST	 15.88	 47.68	 0.76	 3152.00	 3434.00	 6586.00	 0.94	 0.80	 0.59	 0.26	 0.49	 0.51	 0.54	

WIND	 11.28	 40.31	 0.56	 3105.00	 2875.00	 5980.00	 0.82	 0.69	 0.50	 0.27	 0.43	 0.43	 0.47	
WIND+SM+ZTD	 16.52	 10.32	 0.66	 3985.00	 2875.00	 6860.00	 0.98	 0.78	 0.49	 0.37	 0.38	 0.37	 0.40	

WIND+SM+ZTD_18UTC	 11.52	 24.46	 0.62	 3234.00	 3138.00	 6372.00	 0.91	 0.66	 0.53	 0.19	 0.48	 0.48	 0.54	
ZTD3h	 24.91	 2.59	 0.95	 5522.00	 3271.00	 8793.00	 0.93	 1.09	 0.56	 0.49	 0.36	 0.34	 0.33	

ZTD3h_1ist	 10.65	 14.09	 0.73	 4058.00	 2961.00	 7019.00	 0.98	 0.75	 0.50	 0.32	 0.41	 0.40	 0.44	

	 Best	small	 Best	
small	 Best=1	 Best	small	 Best	big	 Best	

small	 Best=1	 Best=1	 Best=1	 Best=0	 Best=1	 Best=1	 Best=1	

Table 23: Spatial and statistical indices calculated through MODE (24 mm rainfall depth threshold) to evaluate the sensitivity forecasts (driven by GFS 
and IFS respectively) with respect to the Open Loop run for the time interval 18UTC 09/10/2017 – 06UTC 10/09/2017. The best performance for each 
score is highlighted in bold. 
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48 mm (GFS)	

Run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

OL 6.93	 12.37	 0.58	 1653.00	 760.00	 2413.00	 0.97	 0.68	 0.37	 0.46	 0.28	 0.33	 0.39	
LST 7.07	 21.42	 0.67	 1225.00	 987.00	 2212.00	 0.90	 0.81	 0.48	 0.40	 0.36	 0.45	 0.49	
SM 9.95	 21.70	 0.61	 1456.00	 817.00	 2273.00	 0.96	 0.62	 0.41	 0.35	 0.33	 0.38	 0.46	
SST 8.09	 23.04	 0.63	 1623.00	 750.00	 2373.00	 0.92	 0.65	 0.36	 0.44	 0.28	 0.33	 0.39	

WIND 3.80	 28.05	 0.98	 1833.00	 1022.00	 2855.00	 0.99	 1.08	 0.50	 0.54	 0.31	 0.43	 0.42	
WIND+SM+ZTD 6.68	 25.38	 0.98	 1325.00	 1276.00	 2601.00	 0.98	 1.06	 0.62	 0.41	 0.43	 0.57	 0.56	

WIND+SM+ZTD_18UTC 5.78	 13.95	 0.89	 1256.00	 1410.00	 2666.00	 0.87	 1.22	 0.69	 0.44	 0.45	 0.63	 0.57	
ZTD3h 30.67	 2.35	 0.69	 1629.00	 809.00	 2438.00	 0.99	 1.18	 0.43	 0.64	 0.24	 0.34	 0.32	

ZTD3h_1ist 29.33	 2.38	 0.80	 2042.00	 700.00	 2742.00	 0.95	 0.91	 0.35	 0.62	 0.22	 0.28	 0.30	
 Best	small	 Best	

small	 Best=1	 Best	small	 Best	big	 Best	
small	 Best=1	 Best=1	 Best=1	 Best=0	 Best=1	 Best=1	 Best=1	

48 mm (IFS)	

run	 CENTROID	
DIST	

ANGLE	
DIFF	

AREA	
RATIO	

SYMMETRIC	
DIFF	

INTERSECTION	
AREA	

UNION	
AREA	

P90	
RATIO	 FBIAS	 PODY	 FAR	 CSI	 HK	 HSS	

OL	 13.39	 80.17	 0.44	 1731.00	 537.00	 2268.00	 0.74	 0.67	 0.29	 0.57	 0.21	 0.25	 0.29	
LST	 7.06	 13.13	 0.30	 1354.00	 570.00	 1924.00	 0.75	 0.59	 0.32	 0.46	 0.25	 0.29	 0.35	
SM	 23.40	 41.72	 0.31	 2147.00	 186.00	 2333.00	 0.98	 0.62	 0.14	 0.78	 0.09	 0.08	 0.10	
SST	 8.41	 48.21	 0.53	 1873.00	 533.00	 2406.00	 0.73	 0.67	 0.30	 0.56	 0.21	 0.25	 0.30	

WIND	 1.19	 18.00	 0.76	 1171.00	 1105.00	 2276.00	 0.92	 0.88	 0.56	 0.36	 0.43	 0.53	 0.56	
WIND+SM+ZTD	 6.78	 8.92	 0.47	 1226.00	 795.00	 2021.00	 0.98	 0.56	 0.41	 0.27	 0.36	 0.39	 0.49	

WIND+SM+ZTD_18UTC	 6.99	 16.59	 0.72	 1040.00	 1130.00	 2170.00	 0.92	 0.81	 0.56	 0.31	 0.45	 0.53	 0.58	
ZTD3h	 12.97	 19.91	 0.49	 1757.00	 550.00	 2307.00	 0.83	 1.13	 0.30	 0.74	 0.16	 0.20	 0.19	

ZTD3h_1ist	 13.91	 41.69	 0.58	 1812.00	 685.00	 2497.00	 0.93	 0.75	 0.33	 0.56	 0.24	 0.29	 0.32	

	 Best	small	 Best	
small	 Best=1	 Best	small	 Best	big	 Best	

small	 Best=1	 Best=1	 Best=1	 Best=0	 Best=1	 Best=1	 Best=1	

Table 24: Spatial and statistical indices calculated through MODE (48 mm rainfall depth threshold) to evaluate the sensitivity forecasts (driven by GFS 
and IFS respectively) with respect to the Open Loop run for the time interval 18UTC 09/10/2017 – 06UTC 10/09/2017. The best performance for each 
score is highlighted in bold. 
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72 mm (GFS)	

run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

OL 12.32	 9.93	 0.54	 1201.00	 227.00	 1428.00	 0.97	 0.55	 0.21	 0.61	 0.16	 0.19	 0.25	
LST 11.47	 20.60	 0.53	 1118.00	 263.00	 1381.00	 0.92	 0.61	 0.25	 0.59	 0.18	 0.23	 0.28	
SM 11.57	 20.55	 0.64	 1115.00	 322.00	 1437.00	 0.93	 0.65	 0.30	 0.53	 0.23	 0.28	 0.34	
SST 12.52	 10.44	 0.54	 1213.00	 221.00	 1434.00	 0.96	 0.55	 0.21	 0.62	 0.15	 0.19	 0.24	

WIND 11.49	 15.39	 0.66	 1078.00	 352.00	 1430.00	 0.97	 1.06	 0.33	 0.69	 0.19	 0.29	 0.28	
WIND+SM+ZTD 9.11	 13.49	 0.78	 755.00	 577.00	 1332.00	 0.95	 1.06	 0.54	 0.49	 0.36	 0.51	 0.50	

WIND+SM+ZTD_18UTC 11.50	 22.88	 0.71	 1217.00	 681.00	 1898.00	 0.97	 1.53	 0.64	 0.58	 0.34	 0.59	 0.47	
ZTD3h 38.14	 2.82	 0.70	 1298.00	 262.00	 1560.00	 0.95	 0.84	 0.25	 0.71	 0.15	 0.21	 0.23	

ZTD3h_1ist 20.16	 0.06	 0.68	 1317.00	 242.00	 1559.00	 0.90	 0.71	 0.23	 0.68	 0.15	 0.20	 0.23	
 Best	small Best	

small Best=1 Best	small Best	big Best	
small Best=1 Best=1 Best=1 Best=0 Best=1 Best=1 Best=1 

72 mm (IFS)	

run	 CENTROID	
DIST	

ANGLE	
DIFF	

AREA	
RATIO	

SYMMETRIC	
DIFF	

INTERSECTION	
AREA	

UNION	
AREA	

P90	
RATIO	 FBIAS	 PODY	 FAR	 CSI	 HK	 HSS	

OL	 14.53	 0.84	 0.09	 973.00	 99.00	 1072.00	 0.87	 0.23	 0.09	 0.60	 0.08	 0.09	 0.13	
LST	 12.49	 13.28	 0.05	 1021.00	 51.00	 1072.00	 0.82	 0.29	 0.05	 0.83	 0.04	 0.03	 0.05	
SM	 16.38	 4.69	 0.04	 1031.00	 41.00	 1072.00	 0.85	 0.48	 0.04	 0.92	 0.03	 0.01	 0.02	
SST	 15.03	 1.67	 0.08	 989.00	 84.00	 1073.00	 0.85	 0.21	 0.08	 0.62	 0.07	 0.07	 0.12	

WIND	 8.37	 0.94	 0.62	 783.00	 477.00	 1260.00	 0.93	 0.73	 0.45	 0.38	 0.35	 0.43	 0.50	
WIND+SM+ZTD	 11.23	 6.73	 0.49	 914.00	 344.00	 1258.00	 0.98	 0.51	 0.32	 0.36	 0.27	 0.31	 0.41	

WIND+SM+ZTD_18UTC	 9.82	 21.93	 0.58	 996.00	 348.00	 1344.00	 0.87	 0.63	 0.33	 0.48	 0.25	 0.31	 0.38	
ZTD3h	 16.77	 19.09	 0.33	 1371.00	 30.00	 1401.00	 0.99	 0.70	 0.03	 0.96	 0.02	 -0.01	 -0.01	

ZTD3h_1ist	 8.10	 3.48	 0.25	 872.00	 233.00	 1105.00	 0.91	 0.48	 0.22	 0.54	 0.17	 0.21	 0.27	

	 Best	small	 Best	
small	 Best=1	 Best	small	 Best	big	 Best	

small	 Best=1	 Best=1	 Best=1	 Best=0	 Best=1	 Best=1	 Best=1	

Table 25: Spatial and statistical indices calculated through MODE (72 mm rainfall depth threshold) to evaluate the sensitivity forecasts (driven by GFS 
and IFS respectively) with respect to the Open Loop run for the time interval 18UTC 09/10/2017 – 06UTC 10/09/2017. The best performance for each 
score is highlighted in bold. 
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24	mm	 48	mm	 72	mm	 TOT	 GFS	DRIVEN	CASES	
3 0	 1 4 OL 
0 2	 0 2 LST 
2 0	 0 2 SM 
5 0	 0 5 SST 
0 3	 2 5 WIND 
4 3	 8 15 WIND+SM+ZTD 
0 5	 4 9 WIND+SM+ZTD_18UTC 
1 1	 0 2 ZTD3h 
1 0	 1 2 ZTD3h_1ist 

Table 26: Summary of the sensitivity performances (GFS driven cases). The times in which each forecast has the best result for each score is counted 
for each threshold and summarized in a total count (summing Tables 1, 2 and 3) that is used to find the best simulation. 

 

24	mm	 48	mm	 72	mm	 TOT	 IFS	DRIVEN	CASES	
4 0	 2 6 OL 
0 1	 1 2 LST 
0 1	 1 2 SM 
3 0	 0 3 SST 
3 5	 8 16 WIND 
1 3	 1 5 WIND+SM+ZTD 
1 6	 0 7 WIND+SM+ZTD_18UTC 
3 0	 1 4 ZTD3h 
1 0	 1 2 ZTD3h_1ist 

Table 27: Summary of the sensitivity performances (IFS driven cases). The times in which each forecast has the best result for each score is counted 
for each threshold and summarized in a total count (summing Tables 1, 2 and 3) that is used to find the best simulation. 
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To gain a deeper insight in the modelling experiments for the best performing 

IFS driven case, namely the WIND one, a reference timestep at 02UTC on 

10/09/2017, corresponding to the most intense phase of the observed event, 

has been considered. Then, using the VAPOR (Visualization and Analysis 

Platform for Ocean, Atmosphere, and Solar Researchers, www.vapor.ucar.edu) 

software, the atmospheric flow field has been analysed for the OL experiment, 

corresponding to the QPF in panel J (Figure 85). 

Over the same scene (Figure 86), 3D isosurfaces (5*10-5 kg/kg) for the 

rainwater, snow and graupel variables have been rendered in combination with 

the wind field at 10 m in case of the OL (panel A) and IFS 3DVAR-WIND case 

(panel C). The results show that over the area interested by the most intense 

observed rainfall phenomena (blue circle) the OL run is not able to produce any 

significant convective phenomena, while the IFS 3DVAR-WIND does it. This 

reflects in the vertical cross sections of the reflectivity field for the two modelling 

experiments (green circles panels B and D): while reflectivity is nearly absent 

nearby the Tuscany coastlines (Livorno area) for the OL experiment (panel B), 

conversely strong activity is apparent in panel D over the Livorno area and 

downshear the main convective system, with values peaking up to 50-55 dBz. 
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Figure 86: Comparison between the Open-Loop simulated structure with respect to the 
3DVAR-WIND simulated structure at 02 UTC of 10 September 2017. Panels a and c report 
the 3D simulated structure composed by rainwater (cyano) graupel (yellow) and snow 
(grey) microphysics species respectively for Open Loop (a) and 3DVAR-WIND (c) 
simulations with the horizontal 10m wind intensity represented by red vectors. The red 
line in Panels a and c indicates the location of the vertical section of the two structures 
to investigate the reflectivity values in the middle of the convective structure in Panels b 
(for Open-Loop) and d (for 3DVAR-WIND). 

 

8.4.2 Silvi Marina test case 
The NWM experiments performed for this case study are driven respectively by 

IFS and GFS global circulation models with initialization at 00 UTC on 14 

November 2017, 3 hours update of the boundary conditions, and 48 hours 

forecasting time interval. 

The following table summarizes the methodology and timing for the ingestion of 

the different data sources (alone or their combinations) 
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Data	source	 Ingestion	
methodology	 Timing	

	 	 	

SM	(Sentinel	1)	 Nudging	 05	UTC	and	17UTC	14/11/2017	

SMAP_S1	(SMAP	and	Sentinel	1)	 Nudging	 05	UTC	and	17UTC	14/11/2017	

SMAP	 Nudging	 05	UTC	and	17UTC	14/11/2017	

SST	
Direction	

insertion	
00	UTC	14/11/2017	

WIND	OVER	OCEAN	 3DVAR	
05	UTC	and	17UTC	UTC	

14/11/2017	

ZTD3h_1ist	 3DVAR	 3-hour	cycling	

ZTD-INSAR	 3DVAR	 05	UTC	14/11/2017	

WIND+SM+INSAR_only5	 NUDGING,	3DVAR	 05	UTC	14/11/2017	

 

As in the case of Livorno, the maps to be directly inserted into the 

corresponding NWM fields have been obtained by an inverse square distance 

weighting interpolation of the Sentinel data on the WRF domains computational 

grids. The native WRF model data have been substituted by the EO derived 

ones, where available, while the native WRF model data have been maintained 

elsewhere. This approach has been applied to SST variable and the results are 

provided in the following figures, referring to the innermost domain at 1.5 km 

grid spacing.  Figure 87 refers to GFS driven case, while Figure 88 refers to IFS 

one. 

The SM data preparation has been based on a nudging like approach, 

described in the previous section for the Livorno case study. For the Silvi 

Marina case, the direct insertion of SM data has not been based only on 

Sentinel 1 data sources but it has involved also Soil Moisture Active Passive 

(SMAP) observations and SMAP-Sentinel 1 combination. 

The resulting maps for each soil model layer (six in case of the adopted soil 

model) are presented in the following figures. Figure 89 and Figure 91 refer to 

GFS driven cases (05UTC and 17UTC on 14/11/2017), while Figure 90 and 

Figure 92 refer to IFS driven cases, when SM-Sentinel 1 are directly inserted. 

Conversely SM-SMAP data are directly inserted into GFS and IFS driven cases 
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respectively at 16UTC on 14/11/2017 (Figure 93 and Figure 94). The effect of 

the combined SMAP-Sentinel SM product is finally explored via direct insertion 

at 05UTC on 14/11/2017 (Figure 95 and Figure 96). 

Figure 87: GFS driven cases. SST map passed to the WRF model via direction insertion 
at 00 UTC 14/11/2017. 

 

Figure 88: IFS driven cases. SST map passed to the WRF model via direction insertion at 
00 UTC 14/11/2017. 
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Figure 89: GFS driven cases. SM-Sentinel 1 maps for each soil model layer passed to the 
WRF model via direction insertion at 05 UTC 14/11/2017.  

 

 

Figure 90: IFS driven cases. SM-Sentinel 1 maps for each soil model layer passed to the 
WRF model via direction insertion at 05 UTC 14/11/2017.  
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Figure 91: GFS driven cases. SM-Sentinel 1 maps for each soil model layer passed to the 
WRF model via direction insertion at 17 UTC 14/11/2017.  

 

 

Figure 92: IFS driven cases. SM-Sentinel 1 maps for each soil model layer passed to the 
WRF model via direction insertion at 17 UTC 14/11/2017.  
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Figure 93: GFS driven cases. SM-SMAP 1 maps for each soil model layer passed to the 
WRF model via direction insertion at 16 UTC 14/11/2017.  

 

 

Figure 94: IFS driven cases. SM-SMAP maps for each soil model layer passed to the WRF 
model via direction insertion at 16 UTC 14/11/2017.  
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Figure 95: GFS driven cases. SM-SMAP/Sentinel 1 maps for each soil model layer passed 
to the WRF model via direction insertion at 05 UTC 14/11/2017.  

 

Figure 96: IFS driven cases. SM-SMAP/Sentinel 1 maps for each soil model layer passed 
to the WRF model via direction insertion at 05 UTC 14/11/2017.  
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The following pictures summarizes the QPF values provided by the different 

modelling experiments for the 24 hours time period from 00UTC on 15 

November 2017 to 00UTC on 16 November 2017, where a=Open Loop, b=SST 

(direct insertion), c=SM-Sentinel 1 (nudging), d=SM-SMAP/Sentinel 1 

(nudging), e=SM-SMAP (nudging), f=WIND (3DVAR at the analysis time), 

g=ZTD-INSAR (3DVAR at the analysis time), h=ZTD3h_1ist (3DVAR 3h cycling 

with the 1-minute ZTD observations temporally nearest to the analysis time), 

i=WIND+SM+ZTD-INSAR (SM direction insertion, 3DVAR wind and ZTD-

INSAR at 05UTC 14/11/2017), j=OBS. Figure 97 refers to GFS driven cases, 

while Figure 98 refers to IFS driven cases.  

The MODE analysis has been performed for three different rainfall thresholds 

namely 24, 48 and 72 mm: the results are presented in Table 28, Table 29, and 

Table 30. The main goal of this meteorological validation, from a QPF 

standpoint, is to select the best meteorological forecast out of the whole set of 

the sensitivity experiments. The most reliable meteorological forecast is 

selected as in Lagasio et al. (2017): all the indices and statistical scores 

described above are calculated for each sensitivity experiment, then the times 

in which a simulation has been the best for each score is counted. Finally, the 

run ranking as the best for the higher number of times is identified. Based on 

this approach the best performances, especially for the IFS driven experiments,  

are achieved with the ZTD assimilation whether from GNSS and InSAR 

observations.  More specifically, the best performance is achieved with the 3-

hour cycling 3dvar of GNSS observations providing the best POD with a FAR 

still be good (around 20-30% depending on thresholds) and the best FBIAS in 

particular for 72 mm threshold. The assimilation of ZTD from InSAR observation 

allow to achieve the second best result for the IFS driven experiment providing 
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the best FAR, CSI, HK and HSS scores for the 24 mm thresholds and obtaining 

good results also in the spatial pattern evaluation indices. Furthermore, with 

GFS the second best result is achieved with the SMAP_SM ingestion that has 

the best CENTROID DIST and AREA RATIO for the 24 mm thresholds, the best 

SYMM DIFF, CSI, HK and HSS values in the 48 mm thresholds and maintain 

same results also for the 72 mm thresholds. Finally, the simulation performed 

coupling SM, ZTD-InSAR and WIND data assimilation at 05 UTC of 14/11/2017 

does not further improves the results obtained with the single variables even if it 

allows to improve the FAR for the 48 mm thresholds (both IFS and GFS) and 72 

mm thresholds (IFS only).  

It is worth to notice that this event, contrary to the Livorno use case, according 

to the Molini et al (2011) criterion can be classified as: type I –long-lived 

(duration d ≥ 12 hours) and spatially distributed (more than AS = 50 × 50 km2). 

This can be the reason why a constant update of the ZTD every 3 hours from 

GNSS during the entire event allowed to obtain the best result with respect to a 

single update performed with the Sentinel observations. Furthermore, in this 

test case both the OL simulations have already a very good performance, thus 

it is more difficult to obtain a significant improvement from data assimilation.  

Bearing in mind the of the overarching question of the STEAM project, namely if 

the Sentinel satellites constellation weather observation data can be used to 

better understand and predict with at higher spatial-temporal resolution the 

atmospheric phenomena resulting in severe weather events, the coupled 

variables data assimilation (SM+ZTD_INSAR+WIND) has been performed not 

looking at the best results obtained from the single variables standalone, but 

using in combination all the Sentinel derived observations that positively 

influenced the forecast. 
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Figure 97: GFS driven cases. QPF values for the 24 hours time period from 00UTC on 15 
November 2017 to 00UTC on 16 November 2017, where a=Open Loop, b=SST, c=SM-
Sentinel 1, d=SM-SMAP/Sentinel 1, e=SM-SMAP, f=WIND, g=ZTD-INSAR, h=ZTD3h_1ist, 
i=WIND+SM+ZTD-INSAR, j=OBS. For details about the 3DVAR approaches the reader is 
referred to the main text.  
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Figure 98: IFS driven cases. QPF values for the 24 hours time period from 00UTC on 15 
November 2017 to 00UTC on 16 November 2017, where a=Open Loop, b=SST, c=SM-
Sentinel 1, d=SM-SMAP/Sentinel 1, e=SM-SMAP, f=WIND, g=ZTD-INSAR, h=ZTD3h_1ist, 
i=WIND+SM+ZTD-INSAR, j= OBS. For details about the 3DVAR approaches the reader is 
referred to the main text.  
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24 mm (GFS)	

run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

OL 10.55	 5.70	 0.87	 2534.00	 3533.00	 6067.00	 0.81	 0.91	 0.72	 0.21	 0.60	 0.65	 0.67	
SM 8.78	 4.12	 0.95	 2246.00	 3891.00	 6137.00	 0.84	 1.01	 0.79	 0.22	 0.65	 0.71	 0.71	

SMAP_S1 6.99	 3.54	 0.99	 2347.00	 3993.00	 6340.00	 0.87	 1.07	 0.81	 0.24	 0.65	 0.72	 0.71	
SMAP 11.38	 4.50	 0.95	 2164.00	 3912.00	 6076.00	 0.85	 1.00	 0.79	 0.20	 0.66	 0.72	 0.73	
SST 12.29	 5.04	 0.95	 2322.00	 3833.00	 6155.00	 0.86	 0.99	 0.78	 0.21	 0.64	 0.71	 0.71	

WIND 9.05	 2.58	 0.99	 2333.00	 3989.00	 6322.00	 0.89	 1.06	 0.81	 0.24	 0.65	 0.72	 0.71	
WIND+SM+ZTD 	 	 	 	 	 	 	 	 	 	 	 	 	

ZTD3h_1ist 11.03	 4.70	 0.95	 1874.00	 4342.00	 6216.00	 0.96	 1.13	 0.88	 0.22	 0.71	 0.80	 0.76	
ZTD-INSAR 11.50	 5.21	 0.82	 2618.00	 3366.00	 5984.00	 0.83	 0.86	 0.68	 0.21	 0.58	 0.62	 0.65	

WIND+SM+INSAR_o
nly5 7.14	 3.82	 0.91	 2777.00	 3503.00	 6280.00	 0.80	 0.95	 0.71	 0.25	 0.57	 0.63	 0.64	

 Best	small Best	
small Best=1 Best	small Best	big Best	

small Best=1 Best=1 Best=1 Best=0 Best=1 Best=1 Best=1 

24 mm (IFS)	

Run	 CENTROID	
DIST	

ANGLE	
DIFF	

AREA	
RATIO	

SYMMETRIC	
DIFF	

INTERSECTION	
AREA	

UNION	
AREA	

P90	
RATIO	 FBIAS	 PODY	 FAR	 CSI	 HK	 HSS	

OL	 12.85	 6.96	 0.86	 3068.00	 3250.00	 6318.00	 0.77	 0.90	 0.66	 0.27	 0.53	 0.58	 0.59	
SM	 12.40	 6.78	 0.85	 3051.00	 3226.00	 6277.00	 0.74	 0.90	 0.65	 0.27	 0.53	 0.57	 0.59	

SMAP_S1	 11.84	 5.01	 0.88	 3075.00	 3299.00	 6374.00	 0.77	 0.93	 0.67	 0.28	 0.53	 0.58	 0.59	
SMAP	 8.47	 6.76	 0.87	 3127.00	 3234.00	 6361.00	 0.78	 0.93	 0.66	 0.30	 0.51	 0.56	 0.57	
SST	 5.88	 6.03	 0.90	 3326.00	 3212.00	 6538.00	 0.80	 0.95	 0.65	 0.31	 0.50	 0.55	 0.56	

WIND	 12.22	 5.44	 0.89	 2733.00	 3488.00	 6221.00	 0.86	 0.96	 0.71	 0.26	 0.57	 0.62	 0.63	
WIND+SM+ZTD	 	 	 	 	 	 	 	 	 	 	 	 	 	

ZTD3h_1ist	 9.11	 2.01	 0.90	 2857.00	 3985.00	 6842.00	 0.89	 1.17	 0.81	 0.31	 0.60	 0.68	 0.65	
ZTD-INSAR 10.27	 3.48	 0.81	 1770.00	 3771.00	 5541.00	 0.88	 0.87	 0.77	 0.12	 0.69	 0.73	 0.76	

WIND+SM+INSAR_o
nly5	 11.57	 6.08	 0.82	 3343.00	 2995.00	 6338.00	 0.74	 0.87	 0.61	 0.30	 0.48	 0.52	 0.54	

	 Best	small	 Best	
small	 Best=1	 Best	small	 Best	big	 Best	

small	 Best=1	 Best=1	 Best=1	 Best=0	 Best=1	 Best=1	 Best=1	

Table 28: Spatial and statistical indices calculated through MODE (24 mm rainfall depth threshold) to evaluate the sensitivity forecasts (driven by GFS 
and IFS respectively) with respect to the Open Loop run for the time interval 00UTC 15/11/2017 – 00UTC 16/11/2017. The best performance for each 
score is highlighted in bold. 
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48 mm (GFS)	

run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

OL 10.87	 14.91	 0.53	 1775.00	 1401.00	 3176.00	 0.75	 0.60	 0.48	 0.20	 0.43	 0.46	 0.55	
SM 10.50	 11.80	 0.59	 1649.00	 1567.00	 3216.00	 0.82	 0.70	 0.54	 0.23	 0.47	 0.51	 0.58	

SMAP_S1 13.76	 9.89	 0.67	 1452.00	 1787.00	 3239.00	 0.80	 0.81	 0.61	 0.24	 0.52	 0.58	 0.63	
SMAP 10.28	 12.31	 0.61	 1631.00	 1594.00	 3225.00	 0.76	 0.74	 0.55	 0.26	 0.46	 0.51	 0.58	
SST 11.89	 12.09	 0.60	 1790.00	 1499.00	 3289.00	 0.82	 0.74	 0.52	 0.31	 0.42	 0.47	 0.53	

WIND 8.33	 9.53	 0.65	 1724.00	 1613.00	 3337.00	 0.88	 0.84	 0.55	 0.34	 0.43	 0.50	 0.54	
WIND+SM+ZTD 	 	 	 	 	 	 	 	 	 	 	 	 	

ZTD3h_1ist 8.07	 6.82	 0.96	 2213.00	 1833.00	 4046.00	 0.97	 0.99	 0.63	 0.37	 0.46	 0.57	 0.57	
ZTD-INSAR 16.37	 14.49	 0.50	 1923.00	 1285.00	 3208.00	 0.80	 0.62	 0.44	 0.29	 0.37	 0.41	 0.48	

WIND+SM+INSAR_o
nly5 13.80	 14.14	 0.55	 1539.00	 1558.00	 3097.00	 0.72	 0.64	 0.54	 0.17	 0.48	 0.52	 0.61	

 Best	small Best	
small Best=1 Best	small Best	big Best	

small Best=1 Best=1 Best=1 Best=0 Best=1 Best=1 Best=1 

48 mm (IFS)	

Run	 CENTROID	
DIST	

ANGLE	
DIFF	

AREA	
RATIO	

SYMMETRIC	
DIFF	

INTERSECTION	
AREA	

UNION	
AREA	

P90	
RATIO	 FBIAS	 PODY	 FAR	 CSI	 HK	 HSS	

OL	 5.65	 6.44	 0.41	 2008.00	 1117.00	 3125.00	 0.95	 0.51	 0.38	 0.25	 0.34	 0.36	 0.45	
SM	 10.54	 6.84	 0.39	 1971.00	 1103.00	 3074.00	 0.94	 0.48	 0.38	 0.21	 0.34	 0.36	 0.46	

SMAP_S1	 14.22	 6.32	 0.42	 2020.00	 1115.00	 3135.00	 0.95	 0.53	 0.38	 0.28	 0.33	 0.36	 0.44	
SMAP	 17.44	 13.27	 0.48	 2133.00	 1155.00	 3288.00	 0.99	 0.56	 0.40	 0.30	 0.34	 0.37	 0.45	
SST	 15.64	 9.28	 0.50	 2036.00	 1236.00	 3272.00	 0.99	 0.59	 0.43	 0.29	 0.36	 0.39	 0.47	

WIND	 9.61	 9.37	 0.53	 1990.00	 1303.00	 3293.00	 0.93	 0.69	 0.45	 0.35	 0.36	 0.40	 0.46	
WIND+SM+ZTD	 	 	 	 	 	 	 	 	 	 	 	 	 	

ZTD3h_1ist	 5.83	 6.34	 0.74	 1843.00	 1687.00	 3530.00	 0.97	 0.91	 0.58	 0.36	 0.44	 0.52	 0.54	
ZTD-INSAR 14.86	 9.79	 0.62	 1817.00	 1528.00	 3345.00	 0.96	 0.68	 0.53	 0.23	 0.46	 0.50	 0.57	

WIND+SM+INSAR_o
nly5	 12.62	 9.66	 0.38	 1971.00	 1082.00	 3053.00	 0.89	 0.47	 0.37	 0.21	 0.34	 0.35	 0.45	

	 Best	small	 Best	
small	 Best=1	 Best	small	 Best	big	 Best	

small	 Best=1	 Best=1	 Best=1	 Best=0	 Best=1	 Best=1	 Best=1	

Table 29: Spatial and statistical indices calculated through MODE (48 mm rainfall depth threshold) to evaluate the sensitivity forecasts (driven by GFS 
and IFS respectively) with respect to the Open Loop run for the time interval 00UTC 15/11/2017 – 00UTC 16/11/2017. The best performance for each 
score is highlighted in bold. 
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72 mm (GFS)	

run CENTROID	
DIST 

ANGLE	
DIFF 

AREA	
RATIO 

SYMMETRIC	
DIFF 

INTERSECTION	
AREA 

UNION	
AREA 

P90	
RATIO FBIAS PODY FAR CSI HK HSS 

OL 7.09	 12.62	 0.72	 716.00	 964.00	 1680.00	 0.84	 0.74	 0.64	 0.13	 0.58	 0.63	 0.72	
SM 5.28	 7.73	 0.73	 678.00	 993.00	 1671.00	 0.82	 0.77	 0.66	 0.14	 0.60	 0.65	 0.73	

SMAP_S1 5.74	 6.67	 0.89	 559.00	 1173.00	 1732.00	 0.94	 0.94	 0.78	 0.16	 0.68	 0.77	 0.79	
SMAP 5.15	 8.57	 0.75	 625.00	 1028.00	 1653.00	 0.77	 0.79	 0.69	 0.14	 0.62	 0.68	 0.75	
SST 7.92	 13.03	 0.74	 753.00	 957.00	 1710.00	 0.83	 0.79	 0.64	 0.19	 0.55	 0.62	 0.69	

WIND 7.20	 9.17	 0.74	 783.00	 943.00	 1726.00	 0.83	 0.81	 0.63	 0.22	 0.53	 0.61	 0.67	
WIND+SM+ZTD 	 	 	 	 	 	 	 	 	 	 	 	 	

ZTD3h_1ist 8.58	 5.21	 0.89	 922.00	 990.00	 1912.00	 0.81	 1.01	 0.66	 0.35	 0.49	 0.63	 0.62	
ZTD-INSAR 9.06	 8.92	 0.65	 968.00	 784.00	 1752.00	 0.84	 0.70	 0.52	 0.26	 0.44	 0.51	 0.59	

WIND+SM+INSAR_o
nly5 4.56	 7.79	 0.84	 585.00	 1119.00	 1704.00	 0.90	 0.87	 0.75	 0.14	 0.66	 0.73	 0.78	

 Best	small Best	
small Best=1 Best	small Best	big Best	

small Best=1 Best=1 Best=1 Best=0 Best=1 Best=1 Best=1 

72 mm (IFS)	

Run	 CENTROID	
DIST	

ANGLE	
DIFF	

AREA	
RATIO	

SYMMETRIC	
DIFF	

INTERSECTION	
AREA	

UNION	
AREA	

P90	
RATIO	 FBIAS	 PODY	 FAR	 CSI	 HK	 HSS	

OL	 7.59	 1.12	 0.44	 1035.00	 587.00	 1622.00	 0.96	 0.45	 0.39	 0.13	 0.37	 0.39	 0.52	
SM	 7.42	 3.47	 0.44	 1034.00	 588.00	 1622.00	 0.98	 0.45	 0.39	 0.13	 0.37	 0.39	 0.52	

SMAP_S1	 7.58	 0.36	 0.44	 1035.00	 586.00	 1621.00	 0.97	 0.46	 0.39	 0.15	 0.36	 0.38	 0.51	
SMAP	 8.02	 2.94	 0.43	 1090.00	 549.00	 1639.00	 0.99	 0.47	 0.37	 0.22	 0.33	 0.36	 0.47	
SST	 6.13	 1.79	 0.47	 996.00	 629.00	 1625.00	 0.95	 0.50	 0.42	 0.16	 0.39	 0.41	 0.54	

WIND	 6.30	 7.20	 0.57	 893.00	 758.00	 1651.00	 0.91	 0.62	 0.51	 0.19	 0.45	 0.50	 0.60	
WIND+SM+ZTD	 	 	 	 	 	 	 	 	 	 	 	 	 	

ZTD3h_1ist	 9.08	 1.30	 0.74	 1009.00	 832.00	 1841.00	 0.85	 0.81	 0.56	 0.32	 0.44	 0.53	 0.58	
ZTD-INSAR 8.26	 5.76	 0.59	 969.00	 737.00	 1706.00	 0.90	 0.70	 0.49	 0.30	 0.41	 0.48	 0.55	

WIND+SM+INSAR_o
nly5	 7.26	 1.99	 0.44	 997.00	 609.00	 1606.00	 0.93	 0.46	 0.41	 0.12	 0.38	 0.40	 0.53	

	 Best	small	 Best	
small	 Best=1	 Best	small	 Best	big	 Best	

small	 Best=1	 Best=1	 Best=1	 Best=0	 Best=1	 Best=1	 Best=1	

Table 30: Spatial and statistical indices calculated through MODE (72 mm rainfall depth threshold) to evaluate the sensitivity forecasts (driven by GFS 
and IFS respectively) with respect to the Open Loop run for the time interval 00UTC 15/11/2017 – 00UTC 16/11/2017. The best performance for each 
score is highlighted in bold. 



 262 

24	mm	 48	mm	 72	mm	 TOT	 GFS	DRIVEN	CASES	
0 0	 1 1 OL 
0 0	 0 0 SM 
2 4	 8 14 SMAP_S1 
2 0	 1 3 SMAP 
2 0	 0 2 SST 
2 1	 0 3 WIND 

TBD TBD	 TBD TBD WIND+SM+ZTD 
7 7	 3 17 ZTD3h_1ist 
2	 0	 0	 2	 ZTD-INSAR 

0 2	 1 3 WIND+SM+INSAR_only5 
Table 31: Summary of the sensitivity performances (GFS driven cases). The times in which each forecast has the best result for each score is counted 
for each threshold and summarized in a total count (summing Tables 1, 2 and 3) that is used to find the best simulation. 

 

24	mm	 48	mm	 72	mm	 TOT	 IFS	DRIVEN	CASES	
0 1	 0 1 OL 
0 1	 0 1 SM 
0 1	 1 2 SMAP_S1 
0 1	 1 2 SMAP 
2 1	 1 4 SST 
1 0	 3 4 WIND 

TBD TBD	 TBD TBD WIND+SM+ZTD 
4 4	 5 13 ZTD3h_1ist 
6	 4	 0	 10	 ZTD-INSAR 

0 2	 2 4 WIND+SM+INSAR_only5 
Table 32: Summary of the sensitivity performances (IFS driven cases). The times in which each forecast has the best result for each score is counted 
for each threshold and summarized in a total count (summing Tables 1, 2 and 3) that is used to find the best simulation. 



 263 

8.5 Concluding remarks 

In the framework of the STEAM projects two sets of experiments have been 

presented in this work trying to answer to the project overarching question if 

Sentinel satellites constellation weather observation data can be used to better 

understand and predict severe weather events. For this purpose two different 

events have been chosen. The first event is the Livorno flood that according to 

the Molini et al (2011) criterion can be classified as: type II–short-lived (duration 

d < 12 hours) and very localized (less than AS = 50 × 50 km2). The second one 

is the Silvi Marina flood that can be classified as: type I–long-lived (duration d ≥ 

12 hours) and spatially distributed (more than AS = 50 × 50 km2) (Molini et al. 

2011). For each event two groups of experiments have been performed, the 

first one driven by IFS global model and the second by GFS. For each group a 

sequence of sensitivity experiments has been executed through the assimilation 

(with different techniques) of single sets of observed (from Sentinel or GNSS) 

variables. Finally, building on the results of the assimilation experiments driven 

by Sentinel or GNSS standalone observations, a simulation assimilating all the 

most influencing observations together has been performed. As expected, given 

their different nature, the two project case studies showed different responses 

to the same type of assimilated observations. In particular, the 3-hour cycling 

3DVAR of GNSS ZTD offers good results in both Livorno and Silvi-Marina 

cases but it is not fundamental in the type II Livorno event that significantly 

benefits also from the adjustment of the wind field with high-resolution Sentinel 

observation. Conversely, the type I Silvi Marina case takes mostly advantage 

from a 3-hour cycling update of ZTD and the single time Sentinel observations 

are more penalized because they allow correcting the model only the day 

before the event. Furthermore, IFS and GFS driven experiments revealed 
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sometimes significantly different responses to the same assimilated variable: 

this is most probably due to the difference in their respective initial conditions 

fields. For example comparing the SM analysis fields for the Livorno case, there 

is a quite prominent difference between GFS and IFS values, namely IFS soil 

layers look definitely drier than GFS ones. This can lead to different response to 

the same SM observation. In general the assimilation of Sentinel and GNSS 

derived variables always resulted into an improvement in the weather forecast, 

even if sometimes relatively small for some variables (like SST or LST). Thus, it 

worth to further explore the synergy between Sentinel observation and weather 

modeling maybe in different test cases and geographical context trying to 

exploit the spatial high resolution nature of Sentinel data. These results also 

pave the way to further explore the impact on hydro-meteorological predictive 

capability of data provided by the potential next-generation Earth Explorer 

geostationary InSAR satellite (Geosynchronous –Continental Land-Atmosphere 

Sensing System, G-CLASS), currently under evaluation by ESA.  

Future works will be developed to consolidate the results achieved during the 

STEAM project in different frameworks. First of all CIMA Foundation will lead 

the Pilot 2 of E-SHAPE H2020 project in which it will be exploit the new 

capacities for designing and delivering innovative services for extreme-scale 

hydro-meteorological modeling, using Copernicus data directly ingested through 

the Copernicus Open Access Hub APIS, and the DIAS platform paving the way 

towards a more operational assimilation of Copernicus satellite data. 

Furthermore, different test cases will be analysed also in Africa in the 

framework of the TWIGA H2020 project. Finally, as aforementioned, further 

specifics experiments will be performed assimilating water vapour from InSAR 

to contribute to G-CLASS activities for science and requirement consolidation. 
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9. Conclusion 
This thesis presents three different research lines cooperatively tackling the 

reduction of uncertainty in the severe rainfall phenomena prediction.  

The first activity has been developed to exploit the interplay between extreme 

convective rainfall phenomena and severe lightning activity for back-building 

MCSs occurring in north-western Mediterranean (Varazze, 4th October 2010, 

Cinqueterre, 25th October 2011, Genoa, 4th November 2011 and Genoa, 9th 

October 2014, Nice, 3rd October 2015 and so forth) and to use the LPI to 

provide further insight into the vertical thermodynamical structure of the 

predicted convective flow field. 

An effective methodology for the rainfall and lightning activity forecasting and 

evaluation is presented to improve the probability of predicting events like the 

one occurred in Genoa in 2014 by applying both the Price and Rind (1992) 

lightning parameterization and the Lightning Potential Index (LPI) approaches to 

a microphysics driven ensemble modelling approach, at cloud-resolving grid 

spacing (1 km). This activity identifies the LPI as a tool helping in the 

forecasting phase to discriminate between scenarios leading to (very) deep 

moist convective, heavily precipitating, and persistent storms and ones resulting 

in shallower and more disorganized convective situations, thus not producing 

significant ground effects. Building on the results of the first part of this thesis, 

the LPI is currently used in an operational open loop version of the WRF model 

executed at 1.5 km grid spacing over the entire Italy by CIMA Research 

Foundation, in the framework of the cooperation with the Italian Civil Protection 

Department and Ligurian Regional Environmental Protection Agency (ARPAL). 

Furthermore, the model outputs with LPI have been provided during the 
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EXAEDRE measurement campaign that took place in September 2018 in the 

framework of HyMeX project. 

Thought the use of a LPI is helpful both in forecasting and hindcast phase, the 

study highlights that the main source of uncertainty in the forecast of high 

impact weather events is linked to the correct reproduction of the deep moist 

convective phenomena. Consequently, the second research activity proposes a 

hydro-meteorological forecasting chain combining a high resolution WRF model 

instance including a 3DVAR data assimilation cycle - with the fully distributed 

Continuum hydrological model. The use of data assimilation is the value added 

to previous research results achieved with such hydrometeological chain in the 

framework of the DRIHM project. The main goal is to gain a further insight on 

the prediction of back-building MCSs investigating the influence of different 

reflectivity forward operators on the overall hydro-meteorological predictive 

capability. Although no data assimilation setup stands out as giving the best 

results for all the three cases, the study highlights the systematic benefit of 

radar data assimilation for the prediction of heavy precipitating events. 

Furthermore, the proposed modified radar data assimilation operator has 

showed a significant potential for the improvement of rainfall and streamflow 

forecasts. As an output of this research activity the complete hydro-

meteorological chain including the modified direct operator is currently under 

implementation in the framework of the Italian Civil Protection Department and 

CIMA Research Foundation agreement for the period 2019-2021. Moreover an 

operational version of WRF model executed at 2.5 km grid spacing over the 

northern and central and including the modified data assimilation radar operator 

is maintained by CIMA Research Foundation on behalf of ARPAL and currently 

under upgrade, as aforementioned in Section 7.3. In all these applications the 



 267 

first and the second research activities results are coupled together with the LPI 

forecast provided also by the operational WRF run with data assimilation. This 

will allow highlighting the possible value added of reflectivity data assimilation 

for lighting activity forecast.  

This second research line has also paved the way to two further evolutions: on 

one side to explore the possible added-value of unconventional weather 

observation data assimilation (personal weather stations, Internet of Things) 

such as pressure sensors on mobile phones or temperature sensors on cars; 

on the other side to investigate the potential improvement in the forecast 

obtained with data assimilation will be investigated in terms of renewable 

energy production prediction (EC report).  

The third research activity is developed in the framework of the STEAM project 

trying to investigate new areas of synergy between atmospheric models and 

data from spaceborne systems. Along this line, a cloud resolving model is fed 

with observational data provided by Sentinel satellites constellation, such as 

humidity, soil and sea temperature, wind on the sea, the amount of water 

vapour in the atmospheric band closest to the earth. The results presented in 

this manuscript encourage the use of these ESA Sentinel satellites products for 

the forecast of highly precipitating severe weather events. During the thesis the 

data assimilation experiments have been applied on a Mediterranean region. 

An on-going work is the application of zenith total delay assimilation both from 

InSAR and GNSS stations over other geographical areas such as Africa in the 

framework of H2020 TWIGA (Transforming Weather Water data into value-

added Information services for sustainable Growth in Africa) project. This 

activity is also the starting point to investigate the possible automation of the 

procedures here presented demonstrating their possible added value as 
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operational service. In fact, the E-SHAPE H2020 project will be exploit the new 

capacities for designing and delivering innovative services for extreme-scale 

hydro-meteorological modelling, using Copernicus data and core services 

directly ingested through the Copernicus Open Access Hub APIS, and the DIAS 

platform. Furthermore, the results presented in this thesis can represent an 

important basis for a methodological framework to assess the possible impact 

on hydro-meteorological predictive capability of data provided by a next-

generation geostationary InSAR satellite (Geosynchronous –Continental Land-

Atmosphere Sensing System, G-CLASS) currently under evaluation by ESA. 
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