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Abstract

Diffusion Magnetic Resonance Imaging (dMRI), a variant of conventional MRI based on the
tissue water diffusion rate, has recently gathered an extraordinary interest among the scientific
community due to the relationships found between several neurological and neurosurgical
pathologies and alterations in diffusivity of both white and gray matter. It can thus be
considered the imaging method of choice to study the brain, and several steps forward
have been made from Diffusion Tensor Imaging (DTI) - the method which first showed the
capabilities of dMRI - to advanced diffusion analysis methods.

Applying these cutting-edge imaging techniques to investigate pediatric subjects is
gaining increasing popularity precisely for the unparalleled sensitivity to tissue microstructure
compared to conventional MRI. Indeed, advanced dMRI models turn out to be ideal for
investigating fast tissue growth and differentiation characterizing early infancy and not
detectable with the same degree of sensitivity with structural MRI.

If, with regard to infant brain, most recent dMRI techniques have already been success-
fully applied in research studies and are entering clinical routine, their use in imaging of
neonatal spinal cord is still unexplored. Nonetheless, we are dealing with an innovative,
up-to-date domain which holds great promise for diagnosis and understanding of pathological
conditions due to injury of both grey and white matter tracts. However, there are considerable
challenges to this kind of imaging and research at present is focusing its effort on sorting
them out. Further issues concern the application of this imaging in a pediatric clinical setting,
which presents specific requirements in terms of acquisition sequences in contrastto current
advanced diffusion methods.

The main goal of my PhD project, in collaboration with the LIFT (Laboratorio di Imaging
Funzionale a 3Tesla) of Gaslini Children’s Hospital in Genoa, has been to allow translation
of advanced dMRI methods into clinical routine for the analysis of neonatal data, both in
brain and spinal cord, considering the close interconnection between these two districts.
Specifically, during my PhD work, I have paid particular attention to: (i) the design of ad-hoc
acquisition sequences and preprocessing pipelines tailored for neonates - a crucial step at
this delicate age-range; (ii) the application of Diffusion Kurtosis Imaging (DKI) model, a
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promising extension of DTI quantifying non-gaussian diffusion in biological tissues; and
(iii) the investigation of preterm birth in order to find new potential biomarkers, given its still
high incidence and adverse impact worldwide.
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Chapter 1

Motivation and rationale

Children are the living messages we

send to a time we will not see

John F. Kennedy

35th President of the United States

This sentence by President Kennedy, in my opinion, perfectly grasps the importance
society should address to children’s care. Indeed, newborns will be the adults of tomorrow:
any effort dedicated ensuring them decent living standards is a mirror of society’s self-
respect and of the leagacy it leaves. This effort obviously translates in investments in infants’
educational path but cannot disregard attention to their well-being.

Among various research fields in pediatrics, investigation of children’s Central Nervous
System (CNS) is by far the most fascinating and challenging. In effect, if science currently
knows very little about healthy adult brain, study of infant CNS opens even more questions
and issues. Understanding how the human brain develops from the very early stages is the
only way to shed light on what allows children to acquire amazing and unique abilities, as
well as on the impact of early disruptions (e.g., prematurity, neonatal insults) potentially
leading to a wide range of neurodevelopmental disorders in adulthood.

Developing brain is subject to rapid, subtle structural, metabolic, and functional changes
starting before birth and continuing into early childhood. This adaptive neuronal plasticity
inherent to newborn’s brain characterizes also Spinal Cord (SC), as underlined by the close
interconnection existing between these two districts. Although neurodevelopment occurring
at these early stages may have a substantial impact on later cognition, language, and social
behavior, much remains to be discovered and understood about the processes that interact
across early development to result in normative brain and spine. Added to this is the wide
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variety of congenital or early acquired defects, malformations and abnormalities affecting
CNS in the perinatal period.
A crucial though overlooked and neglected problem is represented by preterm births. Medical
complications due to prematurity are the second leading cause of death and disability among
children under five years of age, and preterm births occur 5–18% globally, leading to more
than 1 million deaths per year (Liu et al., 2016). Its adverse impact on neurological
development has been demonstrated in a number of cognitive, behavioral, and neuroimaging
studies (Atkinson and Braddick, 2007; Spittle et al., 2011; Van Braeckel and Taylor, 2013;
Volpe, 2009) .

In the last decade, incorporating imaging has contributed to invaluable insights about
neurodevelopment at the start of life, with the disruptive emergence of neuroimaging studies
in infant populations. As it can be performed well before knowing the child’s behavioral
and clinical outcome, MRI is an irreplaceable exploration method to evaluate the efficiency
of early neuroprotective or neuroregenerative interventions aiming to avoid long-term dis-
abilities in children. In this regard, a great contribution is being provided by diffusion MRI
(dMRI) (Baliyan et al., 2016), a variant of conventional MRI based on water diffusion rate
in body tissues offering undisputed advantages in terms of increased sensitivity to the under-
lying tissue architecture and thus providing unique information regarding the organization of
brain fibres. dMRI has turned out to be particularly suitable for neonatal age range thanks to
its ability to detect and characterize brain damage significantly earlier than structural MRI,
and thus allowing successful early intervention.

From its first and standard model – Diffusion Tensor Imaging (DTI) (Soares et al.,
2013) – to the most advanced techniques (Farquharson et al., 2013), dMRI has seeked
increasing consensus within neuroimaging community asserting itself as the method of
choice for in-vivo White Matter (WM) and Gray Matter (GM) assessment in adults. Despite
its promising ability in unraveling underlying neurobiological mechanisms that drive both
normal and atypical neurodevelopment, application of this imaging technique, in particular
in its most recent developments, in newborns and children poses several technological and
methodological challenges inherent to the delicate age range under analysis, especially as
regards SC.

Indeed, if, limited to infant brain, a fast-increasing number of clinical applications
and software packages are being developed, advanced dMRI is still largely underutilized
in neonatal SC imaging because of its inherently demanding technological requirements.
Nevertheless, results arising from recent application of dMRI to adult and child SC are
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promising enough to suggest how informative this technique would be in investigating
newborns, too.

In view of above considerations, I found the chance to closely collaborate with Giannina
Gaslini Children’s Hospital of Genova a precious and unmissable opportunity. Following
the entire clinical procedure from MRI acquisition in this excellence reality, I persuaded
more and more about the importance of addressing funds and resources in every attempt to
improve life outcome of such defenseless human beings and about the necessity to translate
state-of-the-art techniques into clinical use.
Consequently, I focused my PhD path on the application of advanced dMRI models in
the neonatal age range (0-1 month) both for the brain and SC. I thus addressed my effort
to translate these latest techniques to clinical routine, with all the issues that this entails.
Adapting existing processing tools in use for adults to deal with age-specific requirements is
essential to derive robust and reliable neuroimaging markers of multiple neurodevelopmental
mechanisms, that can also be related to clinical, behavioral, and electrophysiological indexes
from a diagnostic and prognostic perspective.



Chapter 2

Background

2.1 Diffusion Magnetic Resonance Imaging

Introduced in the mid-1980s, dMRI, also known as Diffusion-Weighted Imaging (DWI),
is a particular type of MRI based upon measuring the random Brownian motion of water
molecules within a voxel of tissue. Indeed, diffusion properties of water molecules largely
differ depending on the underlying microarchitecture: homogeneous mediums, like a glass of
water, exhibit a free, uniformly distributed diffusion of water molecules, whereas in highly
ordered organs such as the brain, diffusion is driven by the tissue topological arrangement
itself.

Specifically, while in the Cerebro-Spinal Fluid (CSF) and GM, water motion does not
significantly prevail in any direction (isotropic diffusion); in WM, water molecules move
preferentially along the direction of axons and fibre tracts (anisotropic diffusion). This
difference in diffusivity is the cornerstone of the tissue contrast mechanisms obtained with
dMRI, alternative to well-known contrasts T1 and T2.

As a result, dMRI is able to extract information about the water molecules exchange
between intra- and extra-cellular space, managing to detect changes in the cerebral tissue due
to neurological diseases or other pathologies.
Since its introduction, this modality has become one of the pillars of neuroimaging, precisely
thanks to its ability in probing tissue structure in living organs non-invasively and at a
microscopic scale. Investigation of neurological disorders such as acute brain ischemia,
management of cancer patients, tracing and reconstruction of WM fibre tracts are just few
examples among the multiple and rapidly-evolving applications of dMRI.

The sensitization of the image to diffusion is obtained by linearly varying the homogeneity
of the magnetic field with gradient pulses applied across several directions.
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A first pulsed field gradient is applied along a direction (dephasing gradient), causing the
protons to precess at different rates along the selected direction, depending on their position
along the gradient. This in turn implies dephasing of proton spins, to the extent that a signal
loss is registered. After a given amount of time, an inverse gradient pulse is applied to the
field along same direction (rephasing gradient).
Two possible cases can occur at rephasing gradient: the protons that have not moved between
gradients applications (no diffusion) acquire a perfect rephasing and there is not a signal loss;
coversely, those protons which have moved during this interval (diffusion of water molecules)
experience an imperfect rephasing and a signal loss is measured by the receiver coil of the
MRI scanner.
This represents the basic sequence for dMRI acquisitions designed by pioneers of the study
(Stejskal and Tanner, 1965), who also modelled the signal reduction as an exponential decay:

S = S0 · e−γ2G2δ 2(∆− δ

3 )D (2.1)

where S is the signal after application of the diffusion-sensitizing gradients, S0 is the
signal in absence of diffusion weighting, γ is the gyromagnetic ratio, G and δ the strength
and duration of the gradient pulse, ∆ the interval between the dephasing and rephasing pulses,
and D the diffusion coefficient. (Le Bihan and Breton, 1985) simplified this expression
by parametrizing the decay by the so called b value, a factor characteristic of the duration,
strength and time between the two gradients. The signal attenuation thus becomes:

S = S0 · e−bD (2.2)

In an anisotropic medium, the diffusion coefficient is not constant but forms a diffusion
tensor D, required to fully describe molecular movement along all directions in space. The
first dMRI method to be developed for characterization of this tensor was DTI.

2.2 Diffusion Tensor Imaging

DTI was first introduced by (Basser et al., 1994) to fully characterize the diffusion of
water molecules in body tissues. In anisotropic tissues, as in the case of the brain or, more
importantly, SC, a tensor takes over for a single scalar coefficient to comprehensively describe
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the different amounts of movement along all directions.
Such 2nd order diffusion tensor assumes the following form:

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.3)

and is symmetric and positive definite (Di j = D ji, with i, j = x,y,z reference frame of the
MRI scanner)

Equation 2.2 thus becomes:

S = S0 · e
− ∑

i=x,y,z
∑

j=x,y,z
bi jDi j

(2.4)

where b is a matrix containing diffusion weights (b values) along each diffusion encoding
direction, index i and j corresponds to a unique encoding direction.
For standard DTI protocol, a single b value for all directions is sufficient (Le Bihan et al.,
2001). It is usual to report this expression in the logarithmic domain and to describe it
through a set of linear equations, then solved through fitting procedures.
In theory, thanks to diffusion tensor’s symmetry, the minimal set of images needed for its
estimation is composed of six volumes acquired along six different gradient directions, plus
at least an image with no diffusion weighting (b = 0) used as a reference for preprocessing.
In practice, data should be collected along as many directions in space as possible, usually
distributed uniformly on a sphere. Indeed, this uniform space sampling strategy allows to
avoid sampling direction biases, is particularly interesting for fibre tracking applications, and
provides a gain in SNR (Jones et al., 1999; Papadakis et al., 1999).
Along with uniform sampling of the diffusion space, advanced diffusion analysis and fibre
tracking methods require a specific number of gradient directions and a minimum b value
(Tournier et al., 2009), introducing constraints on their application in specific environments.

Since the display, meaningful measurement, and interpretation of 3D image data with
a 3× 3 diffusion matrix at each voxel is a challenging task, it is desirable to distill the
image information into simpler scalar maps correlated to biophysical properties of tissues
(Le Bihan et al., 2001). These parametric maps are computed voxel-wise starting from DT
eigenvalues λ 1, λ 2, λ 3, corresponding to the diagonal term of the Diffusion Tensor Dxx, Dyy,
Dzz, respectively.
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Mean Diffusivity (MD) is a measure of the overall average molecular motion in a voxel
independent of any tissue directionality. It is computed as follows:

MD =
λ1 +λ2 +λ3

3
(2.5)

Typically, MD is higher in damaged tissues as a result of increased free diffusion. For
example, MD maps can highlight variations of water diffusivity in ischaemic regions very
early after the ischaemic event, well before the appearance of abnormalities in conventional
MRI, allowing to intervene when brain tissue is still salvageable (Le Bihan et al., 2001;
Warach et al., 1992).

Axial Diffusivity (AD), measures the average diffusion along the main diffusion direction
of the axons. It often stands for axonal architecture.

AD = λ1 (2.6)

Conversely, Radial Diffusivity (RD) quantifies the average diffusion along the direction
perpendicular to the main diffusion direction of axons. It is commonly considered a marker
of myelin integrity.

RD =
λ2 +λ3

2
(2.7)

Another important index is Fractional Anisotropy (FA), which describes the degree to
which the distribution of diffusion in a voxel is directional. Mathematically, FA is defined
as the normalized variance of the eigenvalues of the tensor. Generally, in case of pathology,
FA decreases due to the loss of coherence in the main preferred diffusion direction. This
parameter has also shown to be proportional to the myelination of WM fibres in a voxel: for
this reason, FA maps are often used to measure myelin integrity for microstructural WM
analysis or brain maturation mapping in neonates and infants (Le Bihan et al., 2001).

FA =

√
3
2

√
(λ1 −MD)2 +(λ2 −MD)2 +(λ3 −MD)2

λ1
2 +λ2

2 +λ3
2 (2.8)

From the eigenvectors of D we can also infer information about the directionality of the
diffusion in a voxel, by assuming that the direction of the fibres is collinear with the first
eigenvector v1 associated with the largest eigenvalue λ 1. By selecting for each voxel, the
first eigenvector of the voxels’ DT, we obtain a vector field which can be used as input for
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tractography algorithms to produce a reconstruction of the major WM fibre pathways in
the brain, often represented using a Red-Green-Blue (RGB) color map and of considerable
interest both clinically and functionally.

2.2.1 Limitations of DTI

DTI is by now the standard method for dMRI for its ease of application and robustness,
routinely applied in clinical settings thanks to its feasibility in terms of acquisition protocol
and timing.

However, it presents several drawbacks. The most significant is the so called "crossing
fibre" problem: DTI assumes single main direction in each voxel so it cannot resolve
two or more fibres crossing in a single voxel. This limitation poses the issue of correctly
reconstructing voxels containing more complex configuration of fibres, such as crossing or
"kissing" tracts - two fibre populations meeting and then separating again in the same voxel-
and other multiple-fibre configuration. This is particularly important since it has been shown
that about 90% of WM voxels in the brain contain multiple fibre tracts (Jeurissen et al., 2013).
This in turn confounds interpretation of DTI measurements for diagnostic and therapeutic
applications.

In the last decade, several methodologies of advanced diffusion analysis have been
developed to solve this problem (Daducci et al., 2013; Tournier et al., 2011), for which
computational efficiency and applicability in clinical environment have to be assessed. Some
of the reasons for this missed adoption are scan times unfeasible for the clinical application,
software and hardware availability and acquisition constraints (Farquharson et al., 2013).

Among the many higher-order models overcoming the limitations of DTI, Diffusion
Kurtosis Imaging (DKI) (Jensen et al., 2005) has emerged for its improved sensitivity and
specificity in detecting developmental and pathological changes in neural tissues combined
with robustness to crossing-fibres effects and relatively easy implementation (Arab et al.,
2018; Steven et al., 2014).

2.3 Diffusion Kurtosis Imaging

In an attempt to overcome limitations of DTI model, several microstructural models have
been recently conceived providing a direct link between diffusion properties and specific
microstructural features (Assaf and Basser, 2005; Jespersen et al., 2007; Nilsson et al., 2012;
Zhang et al., 2012). However, the validity of these models may be compromised by improper
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assumptions in their complex mathematical formulation (Henriques et al., 2019; Lampinen
et al., 2017).
An alternative to avoid misleading interpretations is represented by phenomenological models,
offering a complete characterization of water diffusion in biological tissues through a simpler
mathematical expression containing parameters that do not directly relate with the biological
tissue microstructure (Novikov et al., 2018).

Among them, one of the most popular is DKI, an extension of DTI that directly estimates
the degree to which water diffusion deviates from a single Gaussian component (Jensen et al.,
2005). Indeed, although DTI model hypothesizes an ideal Gaussian profile for diffusion
of water molecules within every voxel, the presence of physiological boundaries (e.g., cell
membranes or myelin sheaths) and obstacles (e.g., organelles, macromolecules) makes this
diffusion far from Gaussian.

DKI precisely quantifies this excess-kurtosis and is thus able to probe tissue microstruc-
ture in a more faithful and sensitive way (Fieremans et al., 2011; Jensen and Helpern, 2010;
Jensen et al., 2005). This in turn implies that the scalar measures provided by DKI closely
relate to microstructural alterations in both healthy and pathological tissues providing more
sensitive and specific markers for tissue injury than DTI data alone (Fieremans et al., 2013;
Grossman et al., 2012; Huber et al., 2019; Hui et al., 2012; Lin et al., 2018; Marrale et al.,
2016; Rudrapatna et al., 2014; Steven et al., 2014; Zhu et al., 2021). Furthermore, DKI
provides more accurate information than DTI for tractography applications by resolving
more complex fibre configurations of interest (Glenn et al., 2015a, 2016; Henriques et al.,
2015; Jensen et al., 2014; Lazar et al., 2008).

The DKI model is obtain through a 2nd order expansion in the diffusion-weighted signal
expression of Equation 2.4:

S = S0 · e
− ∑

i=x,y,z
∑

j=x,y,z
bi jDi j + ∑

i=x,y,z
∑

j=x,y,z
∑

k=x,y,z
∑

l=x,y,z

1
6 b2

i jD
2
i jKi jkl

(2.9)

Where D is the diffusion tensor and K is the diffusional kurtosis tensor. In analogy to
DTI, the DKI model can in turn be described through a set of linear equations and solved
for the six independent parameters of D and fifteen independent parameters of K, since it is
axially symmetric (Lu et al., 2006; Tabesh et al., 2011). In addition, at least three b values
are required (one b = 0 along with two non-zero b values).
Indeed, contrary to DTI, higher-order diffusion models, including DKI, require multi-shell
High Angular Resolution Diffusion Imaging (HARDI) sequences (Descoteaux, 1999), typ-
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ically involving several high b values distributed on a high number of gradient directions,
grouped in shells.

Obviously, this implies longer acquisition times, straining the feasibility of advanced
dMRI methods of such kind in certain clinical environment due to time constraints (typical
scan times are in the order of 20 min).
Nevertheless, research efforts are focused on making this technique feasible within routine
protocol since it has turned out to be extremely beneficial to study microstructural changes in
a number of preclinical and clinical research populations.

As the acquisition protocol used to obtain a DKI dataset includes all the information
necessary to derive a standard DTI dataset, it can be used to calculate both types of indices.
DKI measures include the Kurtosis Fractional Anisotropy (KFA) (Glenn et al., 2015b), Mean,
Axial and Radial kurtosis (MK, AK, RK, respectively) (Jensen and Helpern, 2010). These
measures quantify the degree of non-Gaussianity and can be regarded as indices of tissue
compartmentalization or complexity.

In analogy to the definition of MD, MK is defined as the average of directional kur-
tosis coefficients across all spatial directions, traditionally considered an index of overall
microstructural complexity and compartimentalization.
For voxels containing well-aligned structures, RK is defined as the average of the directional
kurtosis across all directions perpendicular to the main direction of fibres. It stands for
microstructural complexity along perpendicular diffusion direction of fibres.
Conversely, AK is defined as the directional kurtosis along the main direction of well-aligned
structures: it reflects microstructural complexity along main diffusion direction.
Finally, analogs to the FA of the diffusion tensor, KFA quantifies lower to higher kurtosis
tensor anisotropy in a range between 0 and 1.



Chapter 3

Challenges and peculiarities of Neonatal
Imaging

Several methodological challenges specific to imaging the neonatal population have been
capturing reasearch’s interest in the very last decades. These issues need to be addressed by
putting in place specialized protocols and methodologies for data acquisition and processing
(Arthurs et al., 2012; Dubois et al., 2021).

3.1 Motion and Sedation

The most relevant artifact introduced by neonatal imaging is motion. Indeed, it is about
uncooperative patients, for which sedation is not often an option: in most centers, indication
to infant sedation is subject to clinical guidelines and avoided for sole research purposes.
It is unanimously agreed that oral sedation for MRI in the hands of experienced staff is
safe and effective (Beebe et al., 2000; Dalal et al., 2006). However, especially in case of
neonates, one may incur either in undersedation, leading to movement artefact and thus to
repeat examination under anaesthesia, or in oversedation, manifesting as oxygen desaturation
or transient apnoea, especially in preterm infants (Edwards and Arthurs, 2011; Malviya et al.,
2000).
Moreover, rapid or irregular respiratory rate, and small-scale anatomy imply that even
minimal movements can create motion artefacts that render images suboptimal for diagnosis.
Different solutions can be adopted to address motion artifacts, ranging from: (i) using
short acquisition sequences that can be run during a routine protocol not exceeding 30-45
minutes, (ii) to opting for motion-tolerant acquisition and reconstruction approaches explicitly
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designed for this hard-to-image population, and (iii) to making the MR environment as
patient-friendly as possible through the use of special settings and careful patient preparation.

3.2 Acoustic Noise

One of the most significant disadvantages of MRI is acoustic noise. The primary source of
noise is the gradient magnetic field that occurs during the rapid current changes within the
coils. The latter bend and vibrate against their mountings, causing a low frequency vibration
(McJury PhD and Shellock PhD, 2000).
Consequently, exposure to a typical MR examination without ear protection can induce tran-
sient or permanent hearing loss because of the short but intensive noise exposure (Medicines
and Agency, 2015), especially for infants. Noise levels largely vary according to the MR
sequence but are directly proportional to the static field strength.
A recent and most effective alternative solution to noise protection devices consists in di-
rectly mitigating the source of the noise rather than relying on hearing protection in a noisy
environment. This can be achieved through development of the so called "quite scanners"
(Ljungberg et al., 2021), MR scanners which, by padding or suspending gradient coils within
their mountings, do not generate the same levels of acoustic noise.
Adapting imaging sequence technique also has an impact on MR acoustic noise. Indeed,
the use of fast parallel-imaging techniques can reduce acoustic noise, by using fewer Radio
Frequency (RF) pulses and allowing gradients to vary more slowly. Nonetheless, these
imaging techniques are not necessarily always available on standard imaging systems.

3.3 Thermoregulation

Another natural problem for neonates is thermoregulation, particularly if preterm (Waldron
and MacKinnon, 2007). This consists in heat loss through evaporation, caused by functionally
immature skin and minimized through humidity-controlled incubators.
Because of this, young infants may not be able to sufficiently maintain their temperature
during MRI. Improved temperature monitoring of an MR room or wrapping the infant in a
prewarmed sheet can help thermoregulation as well as provide additional comfort for the
infant.
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3.4 Radio-Frequency Heating

The main biological concern during MRI is that of heating, generated by RF pulse-related
energy deposition in patient’s tissues.
The average rate at which the RF field deposits energy in a given mass of tissue is named
Specific Absorption Rate (SAR) and is regulated by international guidelines. The amount
of RF energy deposited depends on many factors, including patient size, RF coil design,
the body part imaged, the static field strength and the exact pulse sequence, therefore being
difficult to predict precisely (Wang et al., 2007).
In adults, risk of SAR effects is low since heat is dissipated through normal thermoregulatory
mechanisms such as peripheral vasodilatation, without noticeable local or systemic impact.
Conversely, in infants with immature thermoregulatory systems, additionally affected by
anesthesia, risk to reach SAR limit is more real.
SAR reduction is therefore a very important factor in all aspects of pediatric imaging, in
particular at higher magnetic field strengths (Dagia and Ditchfield, 2008). Since SAR
increases with the square of the field strength, some ways to limit its level would be resorting
to lower field strengths, reducing the number of slices, having a delay between sequences,
using parallel-imaging techniques, or special RF coil designs restricted to the body part of
interest.
As request for MRI of neonates and infants increases, simulated modelling SAR for different
clinical settings will play a vital role in developing new and more sophisticated dedicated
coils.

3.5 MRI Safety and Compatibility

The greatest safety risk for children within an MR environment consists in the accidental
interference of the MRI scanner with ferromagnetic metals. Indeed, pathological neonates
may have additional requirements, such as ventilation or intravenous access, which must
necessarily be both MR-safe (not containing ferromagnetic material and thus posing no
additional risk to the patient) and MR-compatible (keeping functionality when exposed to a
strong magnetic field) (Stokowski, 2005).
However, using MR-compatible devices may affect device accuracy. An example is repre-
sented by MR-compatible infusion pumps, which may not be precise enough for the neonatal
population, since a 5% accuracy of pump infusion is recommended in the neonatal environ-
ment (Gnanalingham et al., 2005).
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Infusion pumps that are specifically calibrated for neonatal use (but not MR-compatible) can
be used outside the scanner room with lengthy extension sets attached, although this may
introduce a risk of infection, as well as disrupt continuous infusions.

3.6 Small-Scale Anatomy

Another issue is represented by the small size of cerebral structures, which requires an
increased spatial resolution to avoid significant Partial Volume Effects (PVE) (Lévy et al.,
2015). Besides, incomplete maturation of the infant’s CNS tissues implies different tissue
characteristics than those of the adult, resulting in different values of MRI contrasts (e.g., T1,
T2, diffusivity relaxation times).
To this end, MR sequences must be adapted to newborns to obtain relevant good soft-tissue
contrast. Moreover, resorting to dedicated coils, designed in relation to the size of the area
to be imaged, allows to maximize the image SNR (Hughes et al., 2017b; Lopez Rios et al.,
2018).
Precisely because MR signal and contrast differ from the adult, resorting to age-specific,
dedicated image postprocessing tools is also crucial (Barkovich et al., 2019).

3.7 Radio-Frequency Coils

RF coils, used to detect the very weak signals from the scanned subject, are a key factor in
determining image quality, signal homogeneity and spatial resolution in MR imaging.
Beside the body coil, a large-diameter coil built into every scanner bore and ensuring a
relatively uniform excitation field at the expense of signal reception, most MR scanners are
equipped with smaller receive-only coils to increase the signal from a precise area of interest.
These have the advantage of reducing the required RF power for a given flip angle, due to
their smaller size, at the expense of a less uniform excitation field.
Some centers still use adult head or knee coils for paediatric head or body imaging (Helle
et al., 2011). Nevertheless, larger adult RF coils tend to increase overall SAR, due to
increased energy deposition over a larger body area, and give suboptimal SNR. As a result,
the recent development of dedicated pediatric coil technology is increasingly taking hold.
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3.8 MR Sequence Optimization

Another primary aspect to consider in neonatal brain and body imaging is the design of
dedicated imaging sequence protocols, aimed to balance good image quality with minimal
disturbance to the infant, taking into account also current SAR limits.
Neonates require specific conventional sequence parameters compared to adults, as the
neonatal brain contains relatively more water than the adult brain. This implies the need for
heavier T1 and T2 weighting, which in turn means longer TR and TE.
Moreover, high-resolution imaging is critical with limited SNR from the small structures
in the neonatal brain as well as SC. For this reason, regarding structural imaging, 3D
isotropic volumetric sequences are preferred, giving better contrast-to-noise and WM/GM
differentiation (Conklin et al., 2008), and offering reduced overall examination time compared
with acquiring in all three planes separately.

3.9 Diffusion MRI

Some other methodological issues are strictly linked to dMRI itself which, as for structural
approaches, requires optimization of acquisition parameters, and is particularly sensitive to
subject motion.
Because of the high water content and the low myelination degree, diffusion properties of
the immature CNS show developmental specificity (e.g., higher diffusivity values and lower
anisotropy values) compared with children and adults (Dubois et al., 2014).
For dMRI, EPI sequences or related variants are preferred for data acquisition because of
their speed, and acquisition time can be further reduced thanks to the recent advent of Multi
Band (MB) acceleration technique (Nunes et al., 2006).

Typical pediatric dMRI data require a proper acquisition protocol made up of low angular
resolution, low b values (around 700 s/mm2) and few gradient directions so as to minimize
acquisition time.
Nevertheless, this forced time minimization clashes with specific requirements of advanced
diffusion methods in terms of acquisition sequences. Indeed, HARDI sequences, made up
of several high b values distributed on a high number of gradient directions, provide an
accurate estimation of the diffusion model at the expense of acquisition time, thus straining
the feasibility of advanced dMRI methods in pediatrics.
Dedicated time-efficient acquisition framework representing a trade-off between minimiza-
tion of scan time and accuracy are at the heart of current research in the field.
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Resorting to optimized acquisition sequences (Andre and Bammer, 2010), often com-
bined with state-of-the-art techniques such as parallel-imaging (Fruehwald-Pallamar et al.,
2012) and MB, can significantly increase acquisition speed and reduce artifacts. However,
these advanced technologies are not always available in a real clinical scenario due to high
costs and technical limitations.
Given the delicate relationship between advanced dMRI models and clinical needs, prepro-
cessing plays a vital role in neonatal dMRI studies. Indeed, a robust, comprehensive and
accurate correction of image artifacts is crucial to ensure reproducibility and accuracy of
subsequent quantitative analysis. Specifically, correcting for motion artifacts is a prerequisite,
whether regarding intraslice or intravolume artifacts resulting from a sudden movement, or
spatial drifts observed between volumes corresponding to different gradient directions.

Finally, if for adults, universal templates can be suitable for a wide variety of applications
and populations, definition of normative age- and population- specific diffusion atlases is
essential to account for the dramatic morphological developmental changes and perform
group comparisons or detect anomalies as reliably as possible.

3.9.1 Noise in Diffusion MRI

The fidelity of inferred biological microstructures through dMRI is limited by the substantial
noise present in its acquisitions, due to numerous factors including thermal fluctuations,
so that the noise confounds both qualitative (visual) and quantitative (microstructure and
tractography) analysis.
In addition, higher b value required by HARDI schemes contribute to lower SNR in dMRI
images, given the inverse relationship between diffusion weighting and SNR (Xie et al.,
2015). This makes higher-order diffusion models, such as DKI, even more sensitive to low
SNR.
Moreover, latest parallel-imaging techniques, conceived to reduce acquisition time, and
thus extensively employed in pediatrics imply a moderate signal-to-noise penalty. These
include accelerated acquisitions (e.g., partial k-space (Storey et al., 2007), MB imaging, and
compressed sensing (Paquette et al., 2015)),

Furthermore, with new acquisition schemes or diffusion-encoding strategies, the sources
and distribution of the noise can vary, making it difficult to model and remove.
Indeed, these cutting-edge acquisition methods make the signal distribution deviate from
theoretical cases so that making a-priori assumption about noise profile (Koay et al., 2009;
Tabelow et al., 2015; Veraart et al., 2016) leads to misestimation of the true signal distribution
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with a detrimental effect on subsequent processing steps such as bias correction, denoising or
diffusion model estimation.
Nevertheless, especially in routine clinical settings, appropriate modelling of signal and noise
distributions often requires information about the acquisition and reconstruction processes
not directly available from the scanner. It is hence of utmost importance to identify a suitable
denoising approach, able to faithfully characterize the noise distribution directly through
information from the magnitude data itself only. This issue is further complicated in case of
neonatal imaging, with a comparatively lower SNR due to the relatively higher overall free
water content (Pietsch et al., 2019).

Denoising is therefore a vital processing step for neonatal dMRI data prior to anatomical
inference and crucial in clinical routine: in medical imaging, better denoising allows for
higher quality images with fewer or shorter acquisitions, potentially making advanced
acquisition schemes clinically viable, allowing for new bio-markers, and visualizing fine
structures such as the SC.

3.10 Spinal Cord

Aforementioned issues and specificities are generally referred to neonatal MRI or dMRI
imaging on the brain areas. Imaging of neonatal SC district presents additional ad-hoc
criticalities and relative challenges, so that making the MR experience more neonate-friendly
is further more demanding (Vargas et al., 2021, 2018).
Although this topic will be extensively addressed in the dedicated Chapter 7, we briefly
anticipate the most relevant factors contributing to technical limitations to diffusion analysis
of the SC.

The small cord volume leads to a low SNR; CSF pulsation and blood flow can produce
prominent ghosting artifacts and degrade image quality; respiratory and cardiac movements
cause image blurring and increased or decreased signal intensity; susceptibility artifacts
occur at different tissue interfaces (bone, soft tissue, or fluid); anatomical arrangement of
WM and GM is reversed from that of the brain; swallowing or related motion artifacts are
mostly seen when imaging the cervical SC (cSC).

These challenges multiply in pediatric imaging: anatomic structures are even smaller
in children and create a further difficulty in terms of available signal as well as limit of
resolution, especially in the presence of anomalies.
Thus, fast, reliable, high-resolution artifact-free and reproducible imaging within minimal
scan time is imperative to scan pediatric subjects.
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An important factor to be considered for optimizing the image quality against the effects of
field inhomogeneity is a suitable choice of pulse sequence. Echo planar sequence, where the
whole of k-space is acquired after a single excitation pulse, including all its variants, is the
preferential sequence for SC, commonly used in clinical practice. While this sequence offers
short acquisition times, which reduces motion-related artifacts, it is are highly sensitive to
susceptibility artifacts and eddy-current distortions.
Recent work using reduced Field-of-View (FOV) imaging sequences showed great reduction
in geometric distortions when imaging the SC (Finsterbusch, 2009; Wilm et al., 2007). This
approach takes advantage of the small-diameter SC morphology and applies a relatively
small rectangular FOV to the area of interest.

3.11 Take-Home Message

To sum up, providing general, universally valid recommendations for the neonatal setting is
difficult since closely dependent on the question being asked, the clinical or research context,
and the available acquisition time for protocol.
Quality control procedures are essential to ensure the biological reliability of MRI obser-
vations, especially in case of cohorts with a large number of subjects and different ages, or
groups of newborns with different early pathologies.
Moreover, several solutions conceived to address inherent challenges are not readily available
in a real clinical scenario, due to technical or financial reasons. As a result, balancing patient
care with optimal image quality is as critical as crucial.



Chapter 4

The role of diffusion MRI in Neonatal
Imaging

During the pre- and peri-natal period, various insults - such as hypoxia-ischemia, infection,
and exposure to toxic substances - as well as genetic abnormalities affect neurodevelopment.
Preterm birth and low birth weight are additional risk factors for brain impairment. However,
if in severely damaged babies abnormal symptoms appear immediately after birth, a symptom-
based diagnosis is extremely difficult in case of neonates with mild to moderate brain damage.
In such a case, timely detection and characterization of brain disruption is crucial to prevent
long-term disabilities.
In this respect, the advent of dMRI has litterally revolutionized the ability to investigate
longitudinal brain development and growth (Oishi et al., 2012; Pietsch, 2018).

In the last decade, investigators have extensively resorted to dMRI to study the rapid
changes in microstructural properties of WM and GM non-invasively with added precocity,
conspicuity, specificity, and prognostic value to the conventional MRI data (Yoshida et al.,
2013).
The unique sensitivity to cellular organization, cortical development, neuronal migration and
myelination occurring during the third trimester and the neonatal period has made dMRI the
tool of choice for studying WM development and the early detection of injury. Indeed, when
interpreted concurrently with conventional MR imaging and other advanced MR imaging
techniques, dMRI can facilitate an accurate diagnosis, provide important information about
pathophysiology and prognosis of the diseases, and guide adequate therapeutic modalities.
Only as an example, thanks to its sensitivity to axonal geometry, dMRI provides superior
anatomical information about pre-myelinated brains and the monitoring of axonal injuries,
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outperforming T2 maps, which often cannot even differentiate WM and GM due to the
incomplete myelination in neonates (Rodrigues and Grant, 2011).

4.1 DTI in Neonatal Imaging

As already mentioned, DTI is a technique that provides an unprecedented noninvasive
imaging approach to assess WM tractography and integrity in the brain.
DTI has by now become a gold standard not only in research but also in clinical practice
mainly thanks to methodological advances, such as accelerated data acquisition (Barth et al.,
2016) and motion correction algorithms, which have substantially shortened the acquisition
times of DTI to under 5 minutes.

Consequently, the use of DTI in newborns and children has substantially increased in
the last years (Hu and McAllister, 2019). In pediatric populations, DTI has been employed
to study WM injury in patients with hypoxic ischemic encephalopathy (Li et al., 2017b),
autism (Walker et al., 2012), as well as congenital heart diseases (Karmacharya et al., 2018).
Other investigators have exploited DTI to study WM development in the corpus callosum
and language regions of the brain in preterm neonates (Malavolti et al., 2017). Moreover, the
impact of nutrition modality on brain WM development has been assessed (Schneider et al.,
2018). Finally, population-based studies have used DTI to establish normative atlases and
templates for WM development (Feng et al., 2019).

4.2 HARDI in Neonal Imaging

If DTI is still the most widely used dMRI analysis approach in the developing brain, routinely
obtained within most radiology departments in their standard-of-care brain protocols, more
recent approaches have moved beyond the tensor model to study tissue microstructure more
specifically.

Whereas whole-brain DTI can be performed in a reasonable time, these techniques pose
additional challenges in neonatal imaging. Indeed, they require high b value (typically >
2000 s/mm2) and longer acquisition times, which may lead to motion-corrupted data, reduced
SNR, and increased distortions. However, recent advances in data acquisition and hardware,
such as the use of protocols designed specifically for neonates using neonatal head coils
and MB coupled with modern gradient coil systems (Hutter et al., 2018), now enable - if
available in the hosting center - HARDI data to be acquired in a clinically feasible time.
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Applying these cutting-edge imaging methods to investigate pediatric subjects is gaining
increasing popularity within the scientific community precisely for undisputed advantages
with respect to DTI. Indeed, advanced dMRI models turn out to be ideal to improve our
understanding of the neural substrate associated with impaired brain development in this
population, and not detectable with the same degree of sensitivity by structural MRI or DTI
(Pecheva et al., 2018).
To prove this, large-scale studies (such as the developing Human Connectome Project,
http://www.developingconnectome.org) are now underway and are obtaining high b value
HARDI data in the neonatal brain with the aim of improving our understanding of human
brain development and the impact of environmental and genetic factors on brain development.

Among elaborate models recently proposed to analyze multishell HARDI data, DKI,
Neurite Orientation Dispersion and Density Imaging (NODDI), and Constrained Spherical
Deconvolution (CSD) (Tournier et al., 2007) have emerged the most (see Appendix A for
details).

4.2.1 White Matter Connectivity

As early as the preterm period, the organization of main fibre bundles is clearly delineated on
DTI directionality maps showing the main direction of the diffusion tensor.

However, the ones based on simple diffusion models (e.g., DTI that only considers
a single fibre population per voxel) present major limitations, leading to biases such as
false negatives (premature termination of a tract) or false positives (switch of a tract to a
neighboring one). It is only by resorting to the most sophisticated tools, requiring HARDI
data and fibre Orientation Distribution Function (fODF) estimation, that one can hope to
explore structural connectivity with the best anatomical reliability.

Compared to diffusion tensor imaging, fODF-based analysis using the CSD technique
allows delineating more complex WM bundles in neonates, such as in the corona radiata, the
arcuate fasciculus and cerebellar–cortical pathways (Dubois et al., 2016), supported by the
emergence of a wide variety of ad-hoc tractography tools.

4.2.2 White Matter Maturation

As the connections develop, the WM fibres gradually become mature and functional through
the process of myelination, whose successive steps can be measured with dMRI (Dubois
et al., 2014; Ouyang et al., 2019a).
The perinatal period is characterised by a pattern of decreasing DTI diffusivities (MD, AD,

http://www.developingconnectome.org
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RD) and increasing anisotropy (FA) in the cerebral WM in preterm infants (de Bruïne et al.,
2011; Kersbergen et al., 2014; van Pul et al., 2012) and term infants (Oishi et al., 2011).

These DTI parameters continue to show intense changes during the first postnatal months
in bundles identified by tractography. They are probably sensitive to different mechanisms,
such as the proliferation of glial cells, the extension of oligodendrocyte processes, and their
wrapping around axonal fibres.

WM maturation follows a heterogeneous spatiotemporal pattern, with different fasciculi
maturing at different times and different rates (Braga et al., 2015; Dubois et al., 2008) in a
posterior-to-anterior and a central-to-peripheral direction of maturation. Maturation models
and observations in fetuses, preterm newborns, and infants (Nossin-Manor et al., 2015; Zanin
et al., 2010) support the hypothesis of sequential changes in DTI parameters and suggest
two successive steps: (i) early changes in microstructure related to the fibres premyelination
would mainly lead to a decrease in AD and RD; and (ii) subsequent wrapping of myelin
sheaths around axons would not modify AD but would decrease RD, implying an additional
increase in anisotropy.

Beyond DTI, more complex diffusion models have been used to assess WM maturation,
such as NODDI, which showed differences between regions in terms of changes in neurite
density and orientation dispersion indices in newborns and infants (Dean et al., 2017; Jelescu
et al., 2015; Kunz et al., 2014), and DKI, which appeared to be informative in normal
development when the estimated intra- and extra- cellular axial diffusivities do not change
(Jelescu et al., 2015).

4.2.3 Microstructural Measures in Grey Matter

In addition to assessing WM, dMRI allows very precise in vivo exploration of the GM
microstructure.
As regards DTI, cortical maturation up to Term Equivalent Age (TEA) is characterised by
decreasing FA and MD, reflecting increased dendritic arborisation and synapse formation
and suggesting impaired cortical development in the preterm population (Ball et al., 2013).
DTI also allows the microstructural exploration of central GM nuclei in the developing brain
(Nossin-Manor et al., 2013; Ouyang et al., 2019a), but there are still few analyses provided
with more comprehensive models such as NODDI or DKI.

The NODDI model might be used to better understand the progression of these mech-
anisms during development (Batalle et al., 2019; Eaton-Rosen et al., 2015), as the neurite
density index informs about the cellular and organelle density, and the orientation dispersion
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index on geometrical microstructure.
DKI might also provide valuable insights on the cortical microstructure, with continuous
decrease in MK over the preterm period (Ouyang et al., 2019b).

Nevertheless, more studies are needed to systematically compare the markers provided by
the different diffusion models in the developing brain according to the age of newborns and
the cortical regions. Indeed, as with the microstructural evaluation of the WM, systematic
model-to-model comparisons are still lacking to assess which are the best markers to reliably
quantify microstructural tissue maturation in newborns.

4.3 Neonatal Spinal Cord Imaging

Intrinsic methodological challenges only hinted in Chapter 3 have lead to a significant delay
in technological advances and relative research applications for dMRI of SC compared to the
brain region.
This is clearly obvious also from the significant lower number of neuroimaging tools specifi-
cally conceived for SC in the face of a multitude of brain image processing frameworks. As
a result, application of dMRI to this area, especially in its latest techniques, is still far from
becoming a common clinical practice in pediatrics.

The efficacy and potential applications of DTI in adult spinal cord are the subject of
numerous studies covering a wide range of diseases (e.g. traumatic injury, spinal tumors,
cervical myelopathies, amyotrophic lateral sclerosis and multiple sclerosis (MS)) since both
DTI metrics and Diffusion Tensor Tractography (DTT) provide additional tissue characteris-
tics not found in conventional MRI (Li et al., 2017a; Wang et al., 2016).
For instance, changes in DTI indices are visualized in regions of the cord which appear nor-
mal on conventional MRI and are remote from the site of cord lesion/compression (Vedantam
et al., 2014).

Lately, interest in SC DTI has also extended to the pediatric field with promising results,
thanks to a protocol that acquires diffusion-weighted images along a limited number of direc-
tions (up to 20) with a maximum b value of 700-1000 s/mm2, keeping the total acquisition
time within 8 minutes.
Feasibility of obtaining repeatable DTI parameters has been investigated by (Singhi et al.,
2012) as regards pediatric cervical SC and by (Saksena et al., 2016) for the entire spine. The
latter demonstrated that DTI can be used as an imaging biomarker to evaluate SC above and
below the congenital lesion in syringohydromyelia subjects.
(Saksena et al., 2018), (Mohamed et al., 2011), (Alizadeh et al., 2018) and (Mulcahey et al.,
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2013) assessed the utility and effectiveness of DTI and DTT of the pediatric cervical and
thoracic spinal cord on subjects with SCI and all proved DTI and DTT good reproducibility
and high correlation with clinical scores.
One of the major challenges in dysraphism is to know the morphologic organization of the
spinal cord: in a preliminary work by (Antherieu et al., 2019), spinal lipoma was chosen for
analyzing the microarchitecture parameters and fibre morphology of the spinal cord by DTI
with tractography. Tractography of the conus medullaris in a very young pediatric population
(0–8 years old) with a spinal lipoma has turned out to be possible, reproductive, and allows
visualization of the spinal cord within the dysraphism.
All these works, however, deal with large pediatric populations and developmental studies
and none of them is specifically focused on the neonatal age range.

Even more recently, some studies have begun to emerge aiming to extend advanced dMRI
methods, such as DKI or NODDI to SC, too.
In this respect, HARDI techniques can be computed on adults using a moderately expanded
diffusion sampling scheme and their metrics can be obtained simultaneously with conven-
tional diffusion tensor-derived parameters.
(Panara et al., 2017) assessed feasibility in terms of repeatability and reproducibility of DKI
for microstructural assessment of the normal cervical spinal cord. DKI can provide additional
and complementary information to DTI on spinal cord pathology: it has been successfully
applied by (Raz et al., 2013) and (Bester et al., 2010) on adult cervical SC (cSC) of patients
with MS to characterize lesional and normal-appearing GM and WM damage.
As regards NODDI, (By et al., 2017) investigated the feasibility and utility of NODDI in
the cSC of MS patients and found out it provides unique contrast that is not available with
DKI or DTI, enabling improved characterization of the spinal cord in MS. In support of
the same hypothesis, (Grussu et al., 2017) showed for the first time that neurite orientation
dispersion is a new biomarker that uncovers previously undetected layers of complexity of
MS SC pathology, scanning at high field four post mortem SC specimens.

Conversely, as it is easy to imagine, pediatric application of advanced dMRI methods is
still at its embryonic stage: most of the strategies adopted for obtaining sufficient-quality
adult imaging are not easily applicable for infants, much less to the neonatal setting.
To the best of our knowledge, the only published work on pediatric DKI is by (Conklin et al.,
2016): they provided mathematical and experimental evidence that DKI can offer additional
information about the micromolecular environment of the pediatric spinal cord. A novel DKI
imaging sequence based on a tilted 2D spatially selective radio frequency pulse providing
reduced FOV imaging was developed, implemented, and optimized on a 3T MRI scanner,
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and tested on healthy and SCI pediatric subjects. On the contrary, NODDI does not appear to
have been published in a pediatric setting yet.

4.4 Take-Home Message

As far as it concerns neonatal brain, a varied number of ad-hoc tools are emerging, specifically
conceived to explore neonatal age range. Indeed, latest technological progresses have
contributed to make advanced dMRI models applicable also in early pediatrics.
However, these technologies are not always available in a clinical setting, straining feasibility
of beyond-DTI models in everyday clinical practice.

This scenario further complicates in case of SC imaging, given its intrinsic more stringent
requirements compared to brain. This is witnessed by the complete lack of studies regarding
applicability of HARDI models to infant SC.
Nevertheless, considering promising results coming from the adoption of such cutting-edge
methods for infant brain, translation of HARDI to neonatal SC may provide interesting
insights about tissue microstructure of this as small as challenging district.



Chapter 5

Organization of the work

Given the plethora of both genetic and accidental injuries affecting the CNS in the early
stages of development, the evident difficulties in their diagnosis and the importance of an
early intervention, I opted for focusing my PhD path on the attempt to translate advanced
dMRI models not only to the neonatal setting but also to a real clinical scenario, aiming to
demonstrate feasibility and potential clinical utility of these techniques.

Among various models I chose to primarily dwell on DKI for several reasons.
First of all, I preferred a phenomenological model such as DKI thanks to the lack of con-
straints on underlying biophysical properties of imaged tissues.
Conversely, compartimental models of biological tissues have been developed for adult brain
and thus, at least in theory, not immediately applicable to the neonatal case and in SC district.
Moreover, being conceived as an expansion of DTI, DKI turns out to be clinically applicable
with less effort than other other higher-order models, allowing to include also standard DTI
indices. In addition, compared to DTI, it has shown to represent appropriately the tissue
microstructure in the presence of crossing fibres and to outperform DTI-derived measures in
terms of tissue specificity. Finally, in a restricted environment, such as SC, diffusion is no
longer Gaussian and the tensor model deviates from the signal, being optimally captured by
the DKI model.

I thus organized my work as follows. First of all, I stressed the importance of a proper
and robust preprocessing as a key factor for successful analysis. Specifically, I focused on
denoising, given its crucial role in improving the often sub-optimal quality of diagnostic
images. I thus decided to start from well-established adult brain data from HCP release
(WU-Minn, 2017) to validate two state-of-the-art denoising methods, both based on adaptive
estimation of noise distributions (part I, Chapter 6). I compared their performance applied
to fitting the DKI model and inspected the effect of denoising on DKI-related measures
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with varying field strengths, with a view to extend Ultra High Field (UHF) MRI to neonatal
imaging.

I then made use of the conclusions drawn from this study to implement the most suitable
denoising method in the two following works, starting from data acquired at Neuroradiology
Unit of Gaslini Children’s Hospital, which formed the core of my PhD path.

Specifically, I focused on filling the gap about investigations on infant SC, by imple-
menting the first semi-automated pipeline for handling with DKI data of neonatal spinal
cord (Part II, Chapter 7), from setting of a dedicated acquisition sequence to extraction of
diffusion measures, through accurate adjustment and adaptation of processing algorithms
customized for adult SC. The design of this pipeline has reckoned with all the technological
and methodological issues posed by infant imaging, which strains the feasibility of advanced
diffusion imaging methods due to the strict clinical requirements. Applicability and clinical
validity of proposed method has been evaluated analyzing a preliminary clinical case-study
concerning Periventricular WM Injury (PWMI), a condition common to preterm birth.

Finally, I worked on neonatal brain (Part II, Chapter 8), by creating a customized neona-
tal image processing pipeline from a combination and adaptation of existing tools. I then
used it to characterize differential neurodevelopment between pre-term and term-born sub-
jects through extraction of representative features from multiple advanced diffusion MRI
microstructural models and using both standard group-level and Machine Learning (ML)
approaches.

Part III, Chapter 9 contains a discussion of the main results of this work of thesis, and
a brief explanation of the future research activity which is the natural continuation of this
work.

At the end of this thesis, Appendix A describes in more depth the advanced dMRI
methods I have used in this work besides DTI and DKI; Appendix B contains supplementary
material for the work described in Chapters 6,7,8; finally, Appendix C resumes all relevant
publications to this work.



Part II

Denoising as a crucial step in Diffusion
MRI



Chapter 6

Influence of adaptive denoising on
Diffusion Kurtosis Imaging at 3T and 7T

6.1 Background

The aim of this first part of the work was to investigate the impact of denoising on DKI-
related markers with varying field strength, from 3T to 7T. Indeed, while most MRI studies in
neonates and infants currently resort to 1.5 or 3T MRI scanners, UHF MRI (e.g., 7T) would
also be a promising perspective for mapping, at higher spatial resolution, fine structures in
development, or microlesions not detectable with 3T MRI. This is a hot topic that some
collaborative research and clinical groups have begun to address, but which triggers additional
constraints and challenges.

Higher-order diffusion models would definitely benefit from introduction of UHF in
clinical routine. For instance, DKI’s sensitivity in microstructural abnormalities associated
with disease can be further increased by acquiring DKI at higher magnetic field strengths
than routine 1.5T, as the higher field strength increases the SNR (Heidemann et al., 2010),
improving MRI spatial resolution and reducing partial volume artifacts.
However, UHF strength suffers from increased sources of artifacts than standard magnetic
field strength. Indeed, it is also characterized by shorter T∗

2 (and consequently shorter T2)
and increased field inhomogeneity, which may offset the advantageous increase in SNR
(Van Essen and Ugurbil, 2012). Field inhomogeneity implies increased image distortion and
shorter T∗

2 consequent blurring and signal loss with long echo trains in EPI, frequently used as
a readout sequence. Additional ghosting artifacts can be introduced because fat suppression
may be compromised due to field inhomogeneity, as well as motion and physiologic noise
artifacts which may become more prevalent with 7T.
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Since exploiting combined advantages of DKI imaging technique and scanning at UHF
may have potentially relevant clinical implications, the first crucial aspect we wondered
about was variability of DKI-derived biomarkers from standard 3T to 7T.
In principle, the diffusion properties of water in biological tissues should not be affected
by the scanner field strength. However, field intensity influences the relative SNR in the
image data, possibly leading to sources of bias and instability in the estimates of diffusion
measures (Alexander et al., 2006). In addition, the effect of both macroscopic and micro-
scopic susceptibility-induced gradients on diffusion metrics must be considered (Clark et al.,
1999). Local microscopic susceptibility-induced gradients may be originated through spatial
variations in magnetic susceptibility along fibre surfaces in a perfectly aligned fibre bundle.
Diffusion of water molecules through microscopically inhomogeneous fields leads to a de-
phasing of nuclear spins which results in an irreversible loss of signal and in a decrease in
T2. This kind of gradients are also known to exist at interfaces between bone and tissue, in
tissues, such as liver, spleen and the basal ganglia, that contain intracellular deposits of iron
stored in ferritin and hemosiderin (Schenck, 1996) or in pathological iron deposits in the
brain linked to severe neurodegenerative disorders like Parkinson’s disease (Fujiwara et al.,
2014) as well as along myelinated nerve fibres with Ranvier nodes (Palombo et al., 2015).
It has been proved that these gradients can have an impact on altering the diffusion tensor
measurements (Clark et al., 1999) and the kurtosis ones (Palombo et al., 2015). Indeed, these
gradients’ magnitude linearly increases with the applied field: as a result, any systematic
effects are then field-dependent.

Similar to what was done previously for DTI (Choi et al., 2011; Clark et al., 1999;
Fushimi et al., 2007; Hunsche et al., 2001; Moser et al., 2009; Polders et al., 2011), recent
studies have attempted to assess field strength dependence also for DKI between 1.5 and 3T.
One study has suggested that kurtosis metrics estimation is significantly affected by tissue
microstructure, topological rearrangement, and, less remarkably, by magnetic susceptibility
(Palombo et al., 2015). Reversely, another research has revealed no significant variation
across field strengths (Shaw et al., 2017).
All these findings are quite conflicting, mainly due to different acquisition protocols, hardware
configurations, vendors and denoising methods.

In our work, we aim at comparing DKI measures acquired at 3T and 7T, clarifying the
discrepancy and ambiguity of existing results starting from a more accurate noise modelling.
Given the key role played by the choice of denoising method on subsequent analysis and
the issues inherent to UHF, we focused our investigation on adult data from HCP release
(WU-Minn, 2017). Indeed, healthy adult data is here used as "baseline" data to test and apply
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any processing or analysis method in brain imaging, with a view to extend drawn conclusion
from this "ground truth" case to the neonatal setting. To this end, HCP young adult dataset
benefits from whole brain dMRI acquired for research purposes, and thus of optimal quality
and high resolution.
The ultimate goal of the present paper is exactly to assess the joint impact of two possible
sources of bias in estimation of diffusion metrics: magnetic field strength and denoising
approach.
Indeed, we believe that, in order to assess the influence of magnetic field strength on
variability of DKI maps, noise represents a key factor to take into account. DKI measures are
in fact inherently sensitive to low SNR acquisition (Glenn et al., 2015c) and thus proper noise
suppression at high field strengths ensures improvement in reproducibility and robustness of
DKI biomarkers, of utmost importance in diagnostics.

Noise has usually been statistically modelled in literature attending to the scanner coil
architecture as a Rician distribution with constant variance for the whole image, also known
as stationary Rician distribution (Veraart et al., 2016). If this model can be adopted for a
single-coil acquisition, the reconstruction process carried out by parallel-imaging methods
like SENSE (Pruessmann et al., 1999) or GRAPPA (Griswold et al., 2002) yields to a variance
of noise value which is dependent on the position within the final image (Aja-Fernández et al.,
2014). Hence, the traditional noise estimation methods -e.g., Marchenko-Pastur Principal
Component Analysis (MP-PCA)-based (Veraart et al., 2016), founded on a single noise level
for the whole image - fail.
This is the case of HCP data, whose image reconstruction uses SENSE1 multi-channel for
both scanners, combined with MB technique in order to improve imaging speed and reduce
scan time, thus questioning stationarity of noise in the reconstructed data and stressing the
need for a proper noise estimator beyond textbook Rician distribution.

Among the multiplicity of existing denoising methods used in dMRI, we opted for choos-
ing as use-case the comparison between two advanced denoising frameworks, representing
the state-of-the-art in case of increasingly complex dMRI systems (e.g., multiple channels and
complex reconstruction algorithms): Non-Local Spatial and Angular Matching (NLSAM)
(St-Jean et al., 2016) and Patch2Self (Fadnavis et al., 2020). These two approaches share two
main features: they do not need formulation of an a-priori model for noise, thus ensuring
more realistic representations of image features, and they can both be applied at any step in
the pre-processing pipeline.
NLSAM is a spatially and angular adaptive denoising allowing to estimate noise distributions
as they explicitly depend on the number of coils, making it possible to estimate all unknown
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parameters using only the magnitude data: no a priori knowledge is needed from the acqui-
sition or the reconstruction process itself, which is usually not stored or hard to obtain in
a clinical setting (St-Jean et al., 2020). Without assuming an a-priori Rician distribution,
this framework avoids misestimation of the noise distribution in parallel and MB imaging,
being essential also for avoiding errors in subsequent processing steps such as bias correction,
denoising and diffusion model estimation.
Conversely, Patch2Self is a recently proposed self-supervised learning denoising method
whose unique advantage is the lack of requirement for selecting or calibrating an explicit
model either for noise or diffusion signal. The only assumption it relies on is randomness
and uncorrelation of noise across different gradient directions. Its framework consists in
holding out one volume and using patches from all other volumes to predict the centre of
the patches of the held-out volume using a regressor. This denoiser has already showed a
significant improvement in repeatability and conspicuity of pathology in diffusion volumes
and quantitative DTI metrics for adult brain and SC (Schilling et al., 2021).

6.2 Methods

6.2.1 Data Acquisition

We retrospectively extracted a 30-subjects subset from HCP data release including high-
resolution 3T and 7T MR scans from 11 male and 19 female young healthy adult twins
(ages 22-35) (WU-Minn, 2017). All participants were scanned using an acquisition protocol
as suitable and performing as possible for the magnetic field in question. Nevertheless,
differences in the two acquisition procedures are limited and provide also comparable scan
times.
We made use of Open Access Data by registering an account at ConnectomeDB and conse-
quently agreed to the Open Access Data Use Terms. Within HCP privacy policy, each patient
has first been asked for verbal informed consent and given an extensive telephone interview
and later for written informed consent.
Details on scanner hardware, acquisition protocol, artifacts handling, data quality control and
pre-processing steps are available at (WU-Minn, 2017) and (Sotiropoulos et al., 2013) and
also summarized in Table 6.1, as far as it concerns diffusion imaging.
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Table 6.1 HCP Acquisition protocol details for diffusion imaging

3T 7T

Scanner (Siemens, Erlangen, Germany) Connectome Skyra MAGNETOM
Sequence Spin-Echo EPI Spin-Echo EPI
TR (s) 5520 7000
TE (ms) 89.5 71.2
FOV (RO×PE) 210×180 210×210
Matrix (RO×PE) 168×144 200×200
Slice Thickness (mm) 1.25 1.05
# Slices 111 132
MultiBand Factor 3 2
Acceleration Factor (iPAT) – 3
BW (Hz/px) 1488 1388
b-values 1000, 2000, 3000 1000, 2000

6.2.2 Image Processing

Pre-processing steps included minimization of spatial distortions and data alignment across
modalities and across subjects using appropriate volume-based and surface-based registration
methods. They all were performed in advance by HCP pipeline. Specifically, 3T and 7T
diffusion MRI images were pre-processed with a new v3.19.0 version of the diffusion pipeline
that supports the use of a new version of FSL’s EDDY that adds image slice outlier detection
and replacement to remove noise caused by subject movement.

In order to perform analysis based on denoising approach, we consequently applied the
two types of aforementioned denoising methods to already pre-processed DWI data at both
field strengths. In both cases, we focused subsequent analysis on masked brain scans using a
binary mask provided within HCP release. Indeed, masking makes denoising far faster and
reconstruction more robust by skipping unnecessary voxels. Moreover, we set the threshold
for b = 0 shell at 100, given the variability of non-diffusion-weighted b values at both field
strengths.

As regards NLSAM, we resorted to 5 angular neighbours, as suggested in (Chen et al.,
2019; St-Jean et al., 2020) and automatically estimated both parameters of the noise distribu-
tion: the number of degrees of freedom N, related to the number of receiver coils and to the
reconstruction technique used - in case of parallel-imaging and MB - and the Gaussian noise
standard deviation σg relating to the original noise distribution from background in the data.
This is possibly by specifying auto option as command line input. We used DWI images as
a starting point (an alternative is to start from noise maps if available) and we chose to apply
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the moments method for estimating parameters, as set by default.
In parallel, Patch2Self denoising implementation in DIPY v.1.4.1 (Garyfallidis et al., 2014)
was applied to already preprocessed data with Ordinary Least Square (OLS) as regression
method.

We then extracted DKI-derived measures using DIPY v.1.4.1 for noisy and denoised
data with both methods. From tensors estimations, the software outcome were parametric
diffusion maps for DKI, including MK, AK, RK, and KFA. Since kurtosis measures are
susceptible to high amplitude outliers, we opted for removing their impact by limiting metrics’
extraction within the typical range (0,3).

6.2.3 Comparison of denoising approaches

In order to assess the impact of the choice of denoising approach on subsequent diffusion
measures within magnetic field strength, we evaluated the denoising performance both
qualitatively and quantitatively. To this end, we firstly measured computational efficiency by
comparing runtimes required by each of the two methods to denoise a single example subject
at each field strength.

We then made a preliminary qualitative comparison, which is important as visual inspec-
tion is a crucial part of clinical diagnosis. Indeed, we visually investigated the denoising
outcome of NLSAM and Patch2Self against plain pre-processed (noisy) dMRI data along
with their corresponding residuals (squared differences between the noisy data and the de-
noised output). This visual assessment was also extended to DKI parametric maps across
subjects, looking for apparent differences between the two methods at fixed field intensity.

We then inspected impact of denoising on microstructure model fitting, a critical step
often leading to degenerate parameter estimates due to the low SNR of dMRI acquisitions.
We thus assessed the goodness of fit in the three cases (noisy, NLSAM-denoised, Patch2Self-
denoised) resulting from fitting the DKI model to a middle axial slice of our data. In
order to compare the goodness of each fit, we performed a k-fold Cross-Validation (CV,
https://dipy.org/documentation/1.4.1./examples_built/reconstruction/kfold_xval/) (Rokem
et al., 2015) for a middle axial slice of masked data. The data has been divided into k = 3
different subsets for the selected voxels, and data from two folds have been used to fit the
model, which predicts the data on the held-out fold. As standard measure for quantifying the
goodness of fit in linear regression models, we computed the coefficient of determination
with expression:

https://dipy.org/documentation/1.4.1./examples_built/reconstruction/kfold_xval/
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R2score = 1− ∑i (yi − fi)
2

∑i (yi − ȳ) 2 (6.1)

with y1, . . . ,yn ≜ observed values; ȳ≜ mean of observed values; f1, . . . , fn ≜ fitted values
Statistical comparison was done by simply subtracting the goodness-of-fit R2 scores of

fitting noisy data from Patch2Self and NLSAM denoised data for DKI model through 2-sided
t-test with Bonferroni correction.

Finally, we evaluated ability of denoising method in terms of alleviating degeneracies in
DKI maps in specific ROIs. Indeed, models such as DKI are susceptible to noise and signal
fluctuations, which can often lead to estimation degeneracies. For group-level comparisons,
we used JHU-ICBM atlas (Mori et al., 2008), already defined in MNI space and warped
its labels into each subject’s diffusion space taking advantage of warping fields provided
in advance by HCP data release. We focused on WM since it is more susceptible to these
implausible negative estimates near tissue and water boundaries: Corpus Callosum (CC);
Anterior Limb of Internal Capsule (ALIC); Posterior Limb of Internal Capsule (PLIC);
Anterior Corona Radiata (ACR); Superior Cerebellar Peduncle (SCP). These areas were
chosen since containing a high amount of crossing and inter-digitating fibres (Figure 6.1a,b).
Potential discrepancies among denoising methods with fixed magnetic field were statistically
evaluated through one-way ANOVA using Bonferroni post-hoc procedure for multiple
comparisons.

We thus moved on to assessment of the variability of DKI measures at varying both field
strength and denoising method. For this purpose, we included in our ROI analysis also GM
areas, besides to the WM ones. Indeed, we extracted subcortical automatic segmentation
from Desikan-Killiany Atlas (Desikan et al., 2006) available on FreeSurfer (Fischl, 2012)
for a total of 4 ROIs: Caudate Nucleus (CN), Putamen (PUT), Globus Pallidus (GP) and
Thalamus (TH). These are the most used ROIs for metrics comparison at different field levels
(Chung et al., 2016; Shaw et al., 2017) (Figure 6.1c).
In order to evaluate the trend of DKI measures across denoising approach and magnetic
field intensity, we displayed violin plots for each DKI map within specific ROI, at both
3T and 7T for noisy as well as for denoised data. A two-way ANOVA was performed to
analyse the effect of field strength and denoising method on average DKI measures across
ROIs. Pairwise differences across field and denoising approach were investigated through
Bonferroni post-hoc procedure for multiple comparisons.
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Figure 6.1 ROIs overlaid on a 3T exemplary DKI image: White Matter areas including (A)
Anterior Limb of Internal Capsule (ALIC) represented in Green, Posterior Limb of Internal
Capsule (PLIC) in blue and Anterior Corona Radiata (ACR) in cyan, (B) Corpus Callosum
(CC) in pink along with Superior Cerebellar Peduncle (SCP) in orange; Grey Matter areas
such as (C) Thalamus (TH) marked in yellow, Putamen (PUT) in Violet, Caudate Nucleus
(CN) in light blue and Pallidum (PAL) in white.

6.3 Results

6.3.1 Computational Efficiency

Runtime of the two denoising algorithms in minutes is reported in Table 6.2. Experiments
were conducted on a high-performance server with 2.3 GHz 4x24-cores AMD Epyc 7352
CPU, 251 GB DDR4-3200 RAM and 24 GB PNY Quadro RTX6000 GPU.
We can easily notice that the computational time required by NLSAM is twice longer than
Patch2Self for 3T scanner, and eight times longer in case of 7T. This is likely due to fairly
unoptimized Python implementation inherent to this method and acknowledged by the authors
themselves (St-Jean et al., 2016).

Table 6.2 Required runtime in minutes for the compared denoising algorithms on one
exemplary subject for both magnetic field strengths.

3T 7T

Patch2Self Nlsam Patch2Self Nlsam
Time (mins) 131 269 40 328
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6.3.2 Visual assessment of DKI data and DKI-related measures

First-sight visual inspection of DKI volumes from one representative example subject yet
provides us with useful information about denoising behavior with respect to magnetic field
strength. For each of the magnetic fields, in Figure 6.2 we show the axial slice of a randomly
chosen 3D volume and the corresponding residuals. Nevertheless, this behavior is consistent
across all the cohort.

First of all, we can note that both denoising approaches do not show any anatomical
features in the error-residual maps, so it is likely that neither are introducing structural
artifacts.
At first glance, as regards 3T data, we can observe minor differences between starting
noisy image and the ones obtained after application of both denoising methods. NLSAM
contribution seems even less relevant than Patch2Self, given the extremely low amplitude of
the residual map, which means denoising does not add artifacts nor significantly improves
image appearance at standard 3T field intensity.
Conversely, denoising contribution in increasing image quality significantly arises at UHF.
Specifically, denoised 7T scans after NLSAM show sharper anatomical details and less
background noise. This is even more evident referring to Patch2Self denoising, which
seems to present less smoothing and to produce more visually coherent outputs compared to
NLSAM.

Figure 6.2 The denoising of Patch2Self and NLSAM is compared against the original
noisy image along with their corresponding residuals on a middle axial representative
slice for one example subject. Notice that both denoising approaches at 7T suppress more
noise and do not show any anatomical structure in the corresponding residual plots.
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As regards removal of degeneracies inherent to DKI fitting, we detected an increasing
performance from noisy data to Patch2self and, finally, to NLSAM by inspecting all DKI
measures. In Figure 6.3, we compare the effects of different denoising algorithms on DKI
parameter estimation by displaying MK maps at both field intensities. Indeed, this is the
most representative of this observed trend among all DKI-derived parameters.

Figure 6.3 Denoising performance in removal of degeneracies at 3T and 7T on DKI
metrics for one exemplary axial slice on Mean Kurtosis (MK) map at 3T and 7T.
Notice that NLSAM (C,F) alleviates more degeneracies in model estimation (visible as black
voxels in the highlighted region) as compared to noisy (original) (A,D) and Patch2Self (B,E)
denoised data.
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6.3.3 Quantitative comparison of the goodness-of-fit

In Figure 6.4a we depict the improvement of the R2 metric obtained after fitting the down-
stream DKI model to a middle axial slice for noisy and denoised 3T data with NLSAM
and Patch2Self, respectively. We can observe Patch2Self consistently improves model fit-
ting across all voxels compared to NLSAM (two-sided t-test with Bonferroni correction,
p ≤ 1.00 · e−4). The same trend can be observed for the goodness-of-fit R2 scores relative to
7T data (Figure 6.4b).

Figure 6.4 Boxplots quantifying the increase in R2 metric after fitting downstream DKI
model at (A) 3T and at (B) 7T. The R2 improvements in each case are plotted by subtracting
the scores of model fitting on noisy data from R2 of fitting each denoised output. Note that
the consistency of microstructure model fitting on Patch2Self denoised data is higher than
that obtained from NLSAM. ∗ indicates p ≤ 1.00 · e−4

Quantitative comparison of degeneracies alleviation

As regards ROI-based analysis, a one-way ANOVA with Bonferroni correction for multiple
comparisons was conducted to compare effect of denoising method on the number of degen-
eracies in WM areas. Figure 6.5 summarizes measurement of the number of degeneracies
across WM ROIs for all the DKI parametric maps.
Significant differences found among denoising approach have been observed in all measures,
except for KFA, which does not appear to suffer from negative DKI estimates in any ROI.
An overall common trend can be observed for most ROIs and metrics: (i) higher range of
variability in degeneracies distribution at 7T with respect to 3T for any denoising method;
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(ii) at 3T, higher discrepancies between noisy and Patch2Self-denoised data on one side and
NLSAM-denoised scans on the other; (iii) in contrast, at 7T, a more relevant differentiation
of noisy data from both denoising approaches; (iv) an increasing loss of degeneracies from
noisy to Patch2self to NLSAM denoised volumes, respectively, whose most representative
example is CC region.

6.3.4 Joint impact of denoising approach and magnetic field on vari-
ability of DKI measures

We opted for focusing our investigation about variation of DKI measures with magnetic field,
accounting for the denoising approach adopted, exclusively on MK and KFA.
Indeed, MK is by far the most widely investigated DKI measure in preclinical and clinical
studies, having the more throughout biophysical interpretation and standing for microstruc-
tural tissue complexity (Jensen et al., 2005). In addition, this metric proved to be highly
sensitive to susceptibility-induced background gradients that would at least partially explain
the field-dependent variability of diffusion measures (Palombo et al., 2015).

As regards AK and RK, according to reference studies about DKI method, they are
strictly dependent on MK in their definition (Jensen and Helpern, 2010). We thus opted,
given the observational and preliminary nature of this work, to set them apart for now. In
contrast, for its own mathematical formulation, KFA is independent from MK (Hansen and
Jespersen, 2016). Moreover, unlike other DKI measures, KFA was found to have the largest
relative discrepancy between 1.5 and 3T in (Shaw et al., 2017).
Violin plots displaying underlying distribution of averaged MK and KFA across subjects, in
both WM and GM ROIs at both field strengths and after application of the two denoising
methods, are reported in Figure 6.6 and 6.7, respectively, with strip plots as a complement
to show all observations. We inspected both simple main effects analysis and Bonferroni
post-hoc testing to specifically assess pairwise differences between the two factors’ levels in
all examined ROIs.
For the sake of completeness, variation of remaining DKI-related measures relative to field
intensity and denoising is displayed in Supplementary Figures B.1 and B.2 in Appendix B.

From this analysis, as regards MK, we can notice denoising does influence variability
with magnetic field strength in CC, SCP, PUT, TH and PAL. Indeed, MK values in these
ROIs do not significantly change in absence of denoising: significant variations arise when
introducing both denoising methods for CC, PUT, TH and PAL; just Patch2Self for SCP.
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Figure 6.5 Number of implausible voxels for Mean Kurtosis (MK), Axial Kurtosis
(AK), Radial Kurtosis (RK) in WM areas: Anterior Limb of Internal Capsule (ALIC),
Posterior Limb of Internal Capsule (PLIC), Corpus Callosum (CC), Superior Cerebellar
Peduncle (SCP) and Anterior Corona Radiata (ACR). ∗ indicates p ≤ 0.005 (α

n , with n = 10)
in one-way ANOVA with Bonferroni correction.
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Regarding variations of MK metric with respect to denoising approach, we can observe
higher differences at UHF. Indeed, significant differences in denoising at 3T were detected
just for PLIC and CC. As for KFA, this metric does not seem to depend on denoising in
its variation from 3T to 7T. Indeed, significant differences in KFA values exhibit whether
applying both denoising methods or not. Patch2Self method even seems to flatten any
difference between the two fields in ALIC, TH and PAL. This time variations of KFA metric
related to the denoising method adopted indifferently interest both 3T and 7T.

Figure 6.6 Violin plots of average MK over WM and GM ROIs at each field strength and
denoising approach with overlaid strip plots as a complement to show all observations along
with representation of the underlying distribution. In two-way ANOVA with Bonferroni
correction, upper ∗ indicates p ≤ 0.0056, (α

n , with n = 9) considering differences in the
denoising approach at fixed magnetic field. Conversely, lower ∗ indicates p ≤ 0.0056, (α

n ,
with n = 9) considering differences in the magnetic field within the same denoising method.
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Figure 6.7 Violin plots of average KFA over WM and GM ROIs at each field strength
and denoising approach with overlaid strip plots as a complement to show all observations
along with representation of the underlying distribution. In two-way ANOVA with Bonferroni
correction, upper ∗ indicates p ≤ 0.0056, (α

n , with n = 9) considering differences in the
denoising approach at fixed magnetic field. Conversely, lower ∗ indicates p ≤ 0.0056, (α

n ,
with n = 9) considering differences in the magnetic field within the same denoising method.



Part III

Feasibility of advanced Diffusion Imaging
in neonatal clinical data



Chapter 7

Diffusion Kurtosis Imaging of Neonatal
Spinal Cord in clinical routine

7.1 Background

In light of the findings from Chapter 6, we opted for adopting Patch2Self as the denoising
method of choice when translating to neonatal imaging. The first target of our investigations
was SC region. Intrigued by results of application of HARDI methods to adults as well as
children, we aimed at exploiting their advantages also in the neonatal setting, attempting
to enable their inclusion within real clinical scenarios and focusing specifically on the DKI
model.

Within existing non-standard techniques, DKI has indeed turned out to be especially
suitable for imaging of SC, a structure where the assumption of Gaussian diffusion fails
(Cohen et al., 2017). Indeed, GM in the central portion of SC contains cell membranes and
organelles that limit diffusion to fewer directions. Taking into account pathological processes
not following a Gaussian distribution, DKI provides a better understanding of the underlying
micromolecular environment. In fact, it exhibits increased sensitivity in microstructural
assessment of both WM and GM (Wu and Cheung, 2010). Hence this susceptibility translates
into an increased amount of diagnostic information, beyond that obtained with routine
diffusion metrics, as proven both for adult brain (Jensen et al., 2005; Wu and Cheung, 2010)
and spine (Raz et al., 2013), (Hori et al., 2012).

Latest technological advances on reduced FOV techniques to mitigate susceptibility
artifacts and cardiac/respiratory gating have allowed to overcome most of the methodological
challenges inherent to adult SC imaging (Taber et al., 1998). Thanks to these strategies, DKI
by now represents a promising tool for studying a plethora of spine disorders with minor
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modifications to protocol parameters in use for brain imaging (Raz et al., 2013), (Bester et al.,
2010; Li and Wang, 2017; Panara et al., 2017).

As anticipated in Chapter 3, the scenario becomes definitely more complicated when
attempting to translate this imaging technique to the neonatal clinical setting for a multiplicity
of factors related to the age range under analysis (Sorantin et al., 2008). On the one hand,
artifact-reducing techniques (i.e. cardiac gating, respiratory compensation, and suppression
sequences) (Wilm et al., 2007) are often unfeasible since time-consuming, and sedation is
typically not desirable. On the other hand, optimized acquisition sequences (Andre and
Bammer, 2010), often combined with state-of-the-art techniques such as parallel-imaging
and MB, ideal for increasing acquisition speed and thus enabling HARDI, are not always
available in a general hospital due to high costs and technical limitations.
All aforementioned issues result in artifact-laden, low-signal images, which are often sub-
optimal for diagnostic evaluation.These complications have made HARDI techniques fairly
unutilized for investigation neonatal SC domain.

If extension of DTI to the pediatric SC has shown promising results in a wide range of
clinical conditions, as evidenced by the increasing number of works on the topic (see Chapter
4), what immediately stands out while reviewing literature on pediatric SC is the absence of
studies concerning DKI and particularly applied to the neonatal period (0-1 month).

To the best of our knowledge, the only published work on pediatric DKI (Conklin et al.,
2016) is limited to grown-up children (6-16 years), whose larger anatomical structures and
reduced source of movements enable better image quality and longer scan times. Indeed, in
newborns, SC dimensions themselves - 24 cm average length and 4.4 mm diameter, possibly
further diminishing in case of distortions (Singh et al., 2021) - are sufficient to conceive
amplification of previously mentioned technical issues and thus legitimize the lack of research
towards this direction.

However, the ability of DKI to offer additional and complementary information to DTI
may bring a significant contribution in investigating such decisive and delicate stage of
development, especially if we consider the wide range of developmental anomalies of the
spinal canal affecting infants at birth (Rufener et al., 2011).

It is on this premise that we conceived our work, whose aim is to show the feasibility of
applying DKI to neonatal SC within clinical routine, opting for minimal modifications of
current clinical setup. We thus introduce here the first complete pipeline specifically adapted
to neonatal imaging acquired for diagnostic purposes. Applicability and clinical validity of
proposed method has been evaluated analyzing a specific clinical case-study concerning a
condition common to preterm birth, in collaboration with Neuroradiology Unit of Giannina
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Gaslini Children’s Hospital of Genova.
Specifically, we assessed effects of WM brain lesions typical of PWMI on below cervical SC
tracts by comparing diffusion measures between pathological patients and healthy controls.
Our findings, though preliminary, confirm the ability of DKI model in capturing subtle
pathological alterations. Conversely, DKI-related measures appear to be less sensitive to
WM/GM tissue differentiation at this stage.

Since there are currently neither available protocols nor standardized methodological
pipelines for performing DKI in the infant SC, this methodological outline may at least serve
as a proof-of-concept, stressing the need for infant-specific data acquisition and processing
guidelines in order to translate DKI of neonatal SC into routine clinical practice.

7.2 Matherials and Methods

7.2.1 Subjects

Infants whose data have been used to disclose each step of the pipeline have been enrolled
since August 2019 and scanned with 3.0 T MR scanner using a 32-channel head array coil
(Ingenia Cx, Philips, Best, the Netherlands) at the Neuroradiology Unit of Giannina Gaslini
Children’s Hospital of Genova. Conventional MRI and DKI were performed in 17 pre-term
infants (28.1 to 36.7 weeks Gestational Age (GA); scanned at TEA). Diagnosis has been
exclusively made based on MRI findings reported by experienced neuroradiologists. Details
about subjects’ demographics are reported in Table 7.1.

This single-center study was carried out in accordance with the recommendations of
"Comitato Etico Regione Liguria, Genova, Italy" with written informed parental consent
obtained for each infant prior to examination in accordance with the Declaration of Helsinki.
Subjects were spontaneously breathing during examination; free-flowing oxygen was ad-
ministered for all the duration of MRI session if necessary. Throughout the course of the
examination, newborns were subjected to constant monitoring of the oxygen saturation and
heart rate, by pulse oximeter and three-electrode electrocardiographic monitoring, respec-
tively. In consensus with a board-certified pediatric neuroradiologist, we performed Quality
Control (QC) for each of the pipeline’s steps.

7.2.2 Full Pipeline Description

Our pipeline integrates MRtrix3 v.3.0.1 (Tournier et al., 2019) for setting of dMRI ac-
quisition sequence, Spinal Cord Toolbox (SCT, v. 5.3.0, https://github.com/neuropoly/

https://github.com/neuropoly/spinalcordtoolbox
https://github.com/neuropoly/spinalcordtoolbox
https://github.com/neuropoly/spinalcordtoolbox
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Table 7.1 Demographics features of infants-spinal cord

Unhealthy (n=9) Healthy (n=8)

Gender (M/F) 6/3 4/4
Mean GA (range; week) 30.3±2.6 (28.1-35.0) 31.8±3.1 (28.3-36.7)
Mean PNA (range; week) 9.2±3.9 (0.1-11.7) 8.6±3.6 (2.0-10.7)
Mean PMA (range; week) 39.4±1.6 (35.1-40.6) 40.4±1.3 (38.7-42.4)

*M/F = number of male and female infants; GA = gestational age;
PNA= postnatal age; PMA = postmenstrual age.

spinalcordtoolbox) (De Leener et al., 2017a) for all processing steps specific to the SC, and
DIPY v.1.4.1 (Garyfallidis et al., 2014) for denoising as well as computation of diffusion
metrics.

Output of key processes, such as motion correction, segmentation and registration with
atlas, can be checked through an interactive SCT QC module, which automatically generates
reports consisting in HTML files, containing a table of entries and allowing to show, for each
entry, animated images (background with overlay on and off) for data quality validation.
In our methodological pipeline we have opted for mainly relying on SCT, being currently the
only existing fully-comprehensive, free and open-source software dedicated to the processing
and analysis of multi-parametric MRI of the spinal cord successfully employed in a plethora
of clinical applications concerning adult SC.

An overview of our image processing pipeline highlighting key features is shown in
Figure 7.1. Since SCT algorithms are validated in adult imaging, we specifically customized
each processing step to our neonatal scans. Our pipeline thus represents, to the best of
our knowledge, the first semi-automated ad-hoc procedure for imaging of neonatal spine.
A fully automatic workflow is not feasible here: acquisition time constraints, available
scanner features, and subsequent image quality require inevitable although minimal and
highly reproducible manual interventions.

7.2.3 Customized Acquisition Setting

In order to minimize macroscopic movement artifacts, all recommended guidelines for
pediatric imaging have been adopted. So as to protect infants from acoustic disturbances
caused by MR sequences, we resorted to baby earmuffs and silicone paste for hearing aids.
Furthermore, we avoided most of the motion by swaddling infants and by placing airbags
around the baby’s head. In addition, protective pads have been placed between the magnet

https://github.com/neuropoly/spinalcordtoolbox
https://github.com/neuropoly/spinalcordtoolbox
https://github.com/neuropoly/spinalcordtoolbox
https://github.com/neuropoly/spinalcordtoolbox
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Figure 7.1 Overall Processing Pipeline: designed pipeline allows complete handling of
DKI scan of neonatal Spinal Cord from acquisition setup to preprocessing, processing and
postprocessing

and the patient. All these contribute to create a comfortable and warm rest environment,
minimizing the chance of free movements.
MRI was performed when possible during spontaneous sleep by exploiting the administra-
tion of breast milk or formula about 30 minutes before the start of the exam. In case of
spontaneous sleep failure, in order to minimize macroscopic movement artifacts, the instru-
mental examination was performed under mild sedation by orally administering Midazolam
at 0.1-0.2 mg/kg diluted in glucose solution 33%, subject to signature of informed consent
from parents and applied by expert trained nurses.

Given the lack of a specific acquisition protocol for DKI of neonatal SC, we designed the
diffusion-weighting scheme in collaboration with the neuroradiologists at Giannina Gaslini
Hospital. One constraint we had to deal with was the impossibility to perform optimized
variants of SE-EPI sequence (i.e. reduced FOV or spatially selective techniques) on Philips
Ingenia scanner. Therefore, minimization of scan duration was our main focus in order to
suppress motion and fast CSF pulsation artifacts typical of newborns.

We thus tested different versions of diffusion-weighted gradient scheme, adopting optimal
trade-off between fODFs profile (estimated with Mrtrix3 using Multi-Shell Multi-Tissue



7.2 Matherials and Methods 51

CSD (MSMT CSD)), image quality and scan time. We generated each multi-shell diffusion
gradient table through Mrtrix3 script gen_scheme, taking as inputs the number of phase-
encoding directions to be included in the scheme (for most scanners, including ours, typically
1), the b value of the shell, and the number of directions to include in the shell. This procedure
ensures uniform spherical sampling by maximizing uniformity within shells using a bipolar
electrostatic repulsion model for optimal angular coverage.
Regarding the choice of acquisition parameters, we borrowed some crucial measures (b
values, voxel size, as well as TR/TE) from the setting in use in the corresponding adult study
we referred as a starting point (Panara et al., 2019). Indeed, this group presented a scenario
closely similar to ours - Philips 3T scanner and SE-EPI sequence without advanced variants -
and managed to perform DKI in adult subjects within clinically feasible time, e.g. 6 minutes.

For further reducing acquisition time without significantly affecting image quality, we ap-
plied the MB slice acceleration technique (https://www.usa.philips.com/healthcare/resources/
landing/compressed-sensecombined) (Barth et al., 2016) . The final version of diffusion
acquisition scheme is displayed in Figure 7.2 as well as reported in Table 7.2, and includes
6 b = 0; 13 b = 700 and 13 b = 2100 s/mm2 for a duration of 4 minutes 30 seconds. This
allowed acquisition of high in-plane resolution axial diffusion weighted images, where b = 0
scans could be well discriminated from non b = 0 volumes and anatomical SC features are
sharp.

A valuable alternative to this reduced DKI scheme is represented by Fast Kurtosis Imag-
ing (Hansen and Jespersen, 2017). This recently developed technique may give a relevant
boost to widespread, routine clinical applicability of DKI in the infant SC by drastically
reducing acquisition as well as post-processing time. A significant increase in speed is indeed
made possible by a reduction in data demand achieved through rigorous analysis of the
relation between the DKI signal and the kurtosis tensor-based metrics. It therefore computes
a Mean of the Kurtosis Tensor (MKT) from at least 13 diffusion-weighted images - the so
called "1-3-9 approach". Commonly, this basic scheme is extended to 19 diffusion-weighted
images - the so called "1-9-9 approach"- for robust and reliable parameter estimation with the
chance to reconstruct some parameters even in real time, which may be really valuable in the
clinic. This technique has been successfully validated both in human brain (Næss-Schmidt
et al., 2017; Tietze et al., 2015) and SC (Thaler et al., 2021) demonstrating to offer the same
information as the conventional DKI both in normal and diseased tissue.
Moreover, under the assumption of axisymmetry inherent to regions with a well-defined
axis of symmetry such as large peripheral nerves and SC (Hansen et al., 2016), this method
can also be easily integrated with White Matter Tract Integrity (WMTI). This valuable

https://www.usa.philips.com/healthcare/resources/ landing/compressed-sensecombined
https://www.usa.philips.com/healthcare/resources/ landing/compressed-sensecombined
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Figure 7.2 3D view of final diffusion acquisition scheme: directions of diffusion-sensitizing
gradients relative to each b value are displayed in three different colors as reported in the
legend. Units are in s/mm2. Markers indicates polarity: dots are the polarities in the set,
asterisks their opposite

modeling-based WM characterization (Fieremans et al., 2011) provides detailed information
about microstructure of highly aligned fiber bundles and could thus be particularly suitable
for investigating SC.
Both "1-3-9" and "1-9-9" methods are heavily sensitive to deviations from the encoding
scheme required to ensure data reduction. These schemes consist in acquiring images at
fixed b values (0,1000 and 2500) along a precise set of directions specified in (Hansen et al.,
2013). This is thus about conventional diffusion sequences easily implemented on almost
any clinical system by allowing inclusion of DKI, at little additional cost, as a component
of any protocol for imaging of the brain or other organs. However, our starting acquisition
scheme did not match the required diffusion sensitizing directions and exactly for this reason
we were not able to apply this method retrospectively. Nonetheless, a strength of current
methodological pipeline is its independence from the dMRI acquisition scheme used to
acquire input raw data and it could thus be successfully used to perform fast DKI, too.
Along with dMRI, we also acquired a high-resolution structural image as anatomical refer-
ence. The definitive MRI protocol thus consisted in a Turbo Spin Echo (TSE) 3D T1-weighted
image followed by a DKI series whose details are listed in Table 7.2.
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Table 7.2 Data Acquisition Details for both structural 3D T1w and DKI image

3dT1 DKI

TR/TE (s) 0.6/0.026337 3.378/0.128
Diffusion Scheme (s/mm²) – 6 b=0, 13 b=700, 13 b=2100
Flip Angle (°) 90 90
Field of View (FOV) (mm) 195x195x126 128x93x96
in-plane Acquisition Resolution (mm) 1*1 1*1
Acquisition Matrix 195*195 128*93
Reconstruction Resolution (mm) 0.38*0.38 0.8*0.8
Reconstruction Matrix 512*512 160*160
Multi-Band Factor – 2
# Averages 2 1
Slice Thickness (mm) 0.5 without gap 4, without gap
Slice Orientation sagittal axial
# Slices 251 24
Total Scan Time 4 minutes 5 s 4 minutes 30 s
Partial Fourier factor – 0.6

7.2.4 Preprocessing

Denoising

SC imaging is characterized by low SNR, which can hamper accurate, repeatable, quantitative
measurements. Moreover, models such as DKI are susceptible to noise and signal fluctuations
often leading to degeneracies in estimation of derived parameters. SNR further lowers in
case of neonates, due to relatively high overall free water content, and denoising approaches
based on PCA are inapplicable due to a reduced number of diffusion gradient directions.
Therefore, considering also the main findings from Chapter 6, we chose Patch2Self to
perform the crucial denosing step within our pipeline. This denoiser has already showed a
significant improvement in repeatability and conspicuity of pathology in diffusion volumes
and quantitative DTI metrics for adult SC (Schilling et al., 2021). Here, we opted for applying
Patch2Self as first preprocessing step on raw data since it showed to offer highest SNR. The
method is implemented in Dipy v.1.4.0 and applied with OLS regressor, since recommended
for SC imaging (Figure 7.3).

Cropping

SC scans usually include also cerebral areas such as medulla and cerebellum due to their
proximity with cervical SC. In order to exclusively focus on the area of interest excluding
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Figure 7.3 Visual inspection of denoising: The denoising of Patch2Self is compared against
the original noisy image along with their corresponding residuals for each (A) b=0, (B)
b=700 and (C) b=2100 s/mm2 shells, respectively. Notice that Patch2Self does not show any
anatomical structure in the corresponding residual plots likely neither introducing structural
artifacts
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undesired voxels, as a first preprocessing step, we thus recommend applying to DKI images
SCT function sct_crop_image allowing also to fasten subsequent processing. Lower and
higher bounds for cropping along the three spatial coordinates can be specified via command
line in order to select the same area of interest (i.e., cSC) for all the cohort, considering FOV
positioning is consistent across subjects. Specifically, in the case of our scans, FOV reduction
allowed to exclude upper non-spinal areas (i.e., cerebellum) as well as lower spinal levels
whose corresponding slices are not usable due to poor image quality (Figure 7.4a).

Figure 7.4 Preprocessing: DKI scan through preprocessing steps for one example subject:
(A) FOV reduction; (B) Motion Correction; (C) Segmentation: Deep Learning Segmentation
algorithm generally achieves satisfactory results in SC detection; (D) Example of artefactual
slice due to a poor fat saturation, causing the fat to alias on the spinal cord area and (E)
requiring manual correction of segmentation

Motion Correction

Subjects’ immobilization and anesthesia successfully minimized motion in our acquisitions.
However, since dMRI data are analyzed at a voxel level, residual intrascan and/or interslice
motion can adversely affect accuracy of the modeled results. We thus resorted to SCT
complex motion correction framework sct_dmri_moco, based on a combination of tools.
First of all, SliceReg algorithm estimates slice-by-slice translations while ensuring regular-
ization constraints along z axis. The latter is achieved using a polynomial function (order
specified by the user, flag -param). This method was shown to offer better accuracy and
robustness than rigid-body transformations and non-regularized slice-by-slice registration,
respectively (De Leener et al., 2017a).
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Moreover, motion correction in SCT includes another feature first proposed in (Xu et al.,
2013) to improve the robustness of registration in high b value diffusion MRI data such as
DKI datasets. It consists in grouping adjacent volumes and estimating the transformation
relying on these successive subsets (typically from 3 to 5 volumes) averaged together (flag
-g).
This robust slice- and group- wise motion correction works successfully also in case of
neonatal scans, and it is hence applied here with default parameters: grouping of 3 successive
dMRI volumes, regularization with 2nd order polynomial function, unitary smoothing kernel
(1 mm), and final spline interpolation (flag -x), except for the metric used for registration
(Figure 7.4b). Indeed, Cross Correlation (CC) has been selected as similarity metric given its
better performance with respect to Mean Squares or Mutual Information (default option) at
the expense of computational time. Since sct_dmri_moco works through iterative average
over groups of successive slices in order to increase the SNR of the target image, its output
includes a 3D volume corresponding to the mean from DKI slices. These motion corrected
average DKI data will serve as input for subsequent segmentation thanks to its excellent cord
contrast.
Thanks to the limited duration of our acquisition and to adopted procedures for minimizing
movement throughout the exam, amount of motion is very limited in our images. As a result,
outcome of motion correction step does not significantly differ from raw DKI image by
visual assessment. However, this represents a crucial step in case of longer scans more prone
to source of motion artefacts.

Segmentation

Proper segmentation of SC is decisive for subsequent steps of template registration and
computation of metrics along the cord. Detection of SC has turned out to be a critical
step, since standard SCT algorithm sct_propseg, based on multi-resolution propagation
of tubular deformable models (De Leener et al., 2014), is trained for adult spine. Given
the reduced size of neonatal SC and the low contrast between the spine and CSF, default
segmentation method fails in several slices even after modulating the algorithm parameters
- e.g., manual initialization of spinal cord centerline through interactive viewer (flag -init-
mask), selection of SC radius size (flag -radius) or cord rescale (flag -rescale).
We thus resorted to a more recent and advanced method of SC extraction, based on deep
learning sct_deepseg_sc (Gros et al., 2019). This fully automatic segmentation framework
was conceived for detecting SC and intramedullary MS lesions from a variety of MRI
contrasts and resolutions. It is composed of a cascade of two convolutional neural networks
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(CNN), specifically designed to deal with spinal cord morphometry: the first detects the
cord centerline and reduces the space around the SC (for better class balance), and the
second segments the cord. Segmentation results outperformed sct_propseg, showing
higher robustness to variability in both image parameters and clinical conditions.
Thanks to its versatility, the application of this method results suitable also for neonatal
imaging, allowing robust and accurate segmentation of our scans without ever the need of
additional parameters but just specifying the kind of image contrast as dwi (flag -c) (Figure
7.4c). In case of failure of SC detection, we necessarily opted for manual correction of
problematic slices on FSL editor (FSLeyes) (Figure 7.4d,e).
This is the case of five subjects within our cohort: to validate the quality of segmentation,
we checked the QC feature on our MRI images across subjects and noticed some local
segmentation leakage - related to the onset of artifacts at acquisition phase and not to a flaw
with the algorithm - in a few slices and hence corrected it manually.

7.2.5 Processing

Vertebral Labeling

After segmentation, labeling of vertebral levels or discs is the second mandatory step in order
to match the template to the subject’s MRI (template registration). Two vertebral levels are
necessary for registering data to the template. Each of these two landmarks consists of a
voxel placed in the middle of the SC, at the level of the corresponding mid-vertebral body,
and assigned a relative number starting from 1 for C1 vertebra. However, SCT recently
introduced the possibility to alternatively use inter-vertebral disc labels with the analogous
procedure of reference numbered voxels.
We performed this step on 3D T1w images in order to achieve better accuracy given their
higher overall quality and contrast compared to DKI ones, where vertebral discs are not
clearly identifiable.
Labeling from 3D T1w anatomical image is possible as it turned out to match relatively
well along the superior-inferior (z) axis, the target direction of disc labeling, with the DKI
scan - not along the Anterior-Posterior (AP) or Right-Left (RL) direction, Figure 7.5. Verte-
bral labeling is typically done using an automatic method sct_label_vertebrae, which
finds C2-C3 disc, and then locates neighbouring discs using similarity measure with the
PAM50 template at each specific level (Ullmann et al., 2014). Default SCT procedure
sct_label_vertebrae fails in automatically detecting C2-C3 vertebral disc once again
because of the small size of spines at issue and low image contrast compared to adults.
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Therefore, we manually created labels with the command sct_label_utils through inter-
active viewer option provided by SCT (flag -create-viewer) with little to no waste of time.
Specifically, vertebral labeling was created at the posterior tip of the top of C1 vertebra and
at C3-C4 disc, centered in the cord. Manual intervention only took a few seconds per subject
(Figure B.5).

Figure 7.5 DKI scan overlaid on structural 3dT1w image: while both images are clearly
not registered along the antero-posterior direction due to the very strong susceptibility artefact,
the z-location is similar: see how the bottom tip of the cerebellum is consistent for the two
scans

Registration to PAM50 Atlas

Registration between subject’s diffusion and atlas space is a very demanding task in case of
neonatal imaging given the lack of a specific pediatric atlas compatible with SCT (one is
currently under creation, https://github.com/neuropoly/spinalcordtoolbox/issues/2530). We
thus used PAM50 atlas (De Leener et al., 2018), an adult template for MRI of the full SC and
brainstem in the same coordinate system as the ICBM152 (MNI) brain template, allowing
to conduct simultaneous brain/spine studies. It consists of a T1w, T2w, T∗

2w, WM and GM
probabilistic atlas and WM atlas of tracts as well as probabilistic labeling of spinal levels.
The template has been constructed from straightened SC for facilitating registration and
visualization of results.
sct_register_to_template is the main command for registering one subject to the tem-
plate and vice versa, since it outputs the forward and backward warping fields. We chose

https://github.com/neuropoly/spinalcordtoolbox/issues/2530
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subject’s native diffusion space as target of registration transforms as the straightening re-
quired by opposite strategy would cause through-plane interpolation errors which would bias
following extraction of diffusion measures (De Leener et al., 2017b).
Moreover, we suggest employing T1w atlas image for its better contrast similarity with DKI
scan compared to T2w.
Application of default command did not produce satisfactory results, stressing the need to
tweak all the input parameters to deal with our particular contrast and resolution. Given
the presence of artifacts and some inherent features (e.g., low CSF/cord contrast) that could
compromise the registration, we used SC segmentation as input for the algorithm to ensure
maximum robustness.
Registration was then built through multiple steps by increasing the complexity of the
transformation performed in each step (starting with large deformation with low degree of
freedom and finishing with local adjustment). Specifically, the first step consists in vertebral
alignment, that is vertebral level matching between the subject and the template based on
posterior edge of the intervertebral discs provided by previous manual vertebral labeling.
Second step is slice-wise center of mass alignment between the two images, using centermass

algorithm instead of default centermassrot (which also includes rotation alignment) because
the cord is quasi-circular and cord angle estimation is not reliable here. The third step is
R-L scaling along x axis followed by A-P alignment to match segmentation borders along
y axis, with the ultimate aim of accommodating the very small SC size. Finally, iterative
slice-wise non-linear registration is performed through non-linear symmetric normalization
regularized with b-splines (Tustison et al., 2013) using information from comparison of Cross
Correlation metric (CC) between the two images, which allows refinement of SC shape. Once
the algorithm completed, one can assess the quality of registration through visual evaluation
and inspection of QC module, and thus warp the template and all its objects to each subject’s
DKI image (Figure 7.6).
Current selection of parameters and steps successfully worked for our scans since atlas
registration algorithm robustly achieved convergence, as verified through inspection of QC
feature.

Computation of diffusion metrics

The end point of previous preprocessing and processing steps was computation of diffusion
parametric maps, from which to extract quantitative summary measures requested by the
particular study in question. We estimated diffusion parametric maps through DIPY software,
as suggested in (Henriques et al., 2021a). To avoid unnecessary calculations on the back-
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Figure 7.6 Registration with PAM50 atlas and ROI detection through atlas-based
approach: (A) PAM50 atlas’ cord segmentation binary mask, (B) WM and (C) GM proba-
bilistic masks warped to subject’s DKI motion-corrected mean image
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ground of the image, we used a mask created by dilating spinal cord segmentation (through
sct_maths command) because values outside the binary cord mask are important for proper
account of PVE, having to be minimized in every possible way. Indeed, this phenomenon,
because of the coarse resolution of MRI with respect to SC anatomy, may make the apparent
value within a boundary voxel be a mixture between the WM and CSF compartment, thus
yielding an inaccurate quantification of diffusion measures.
Since DKI model involves the estimation of a large number of parameters (Tax et al., 2015)
and is more sensitive to artefacts (Henriques, 2012), we chose to further suppress the effects
of noise and artefacts before diffusion kurtosis fitting using a 3D Gaussian smoothing (with a
Gaussian kernel with fwhm=1.25) as suggested by pioneer DKI studies (Jensen et al., 2005).
This also helps in addressing the issue of implausible negative values inherent to DKI fitting
(Henriques et al., 2021b). The following parametric maps could thus be generated: MD, AD,
RD, FA and MK, AK, RK, KFA, and MSK.
Given the low angular resolution data available, to ensure robustness and reproducibility of
parameters’ estimates, we opted for just computing DTI measures, whose reference tensor
can be correctly estimated from at least six independent directions, and MSK. The latter is a
robust scalar kurtosis index that can be estimated independently from acquisition scheme
(Neto Henriques, 2018), (Henriques et al., 2015). Indeed, fitting MSDKI is well posed
without relying on the full DK tensor, which would require a minimum of 15 non-collinear
directions per b value. Moreover, this measure is generally more robust to low SNR situations
as in case of neonatal imaging.
MSK can be seen as a proxy for the MK, showing to present nearly identical contrast while
improving robustness and reproducibility of the kurtosis metrics, and results in parameter
maps with enhanced quality and contrast. Specifically, this measure turns out to be less
sensitive to thermal noise and imaging artifacts, and thus drastically reduces black voxels
intrinsic to DKI and challenging the visual and statistical analysis of potentially clinically
relevant biomarkers of tissue integrity. Moreover, as previously pointed (Henriques et al.,
2015), standard kurtosis measures do not only depend on microstructural properties but also
on mesoscopic properties such as fiber dispersion or the intersection angle of crossing fibers.
In contrary, MSK has the advantage of being decoupled from confounding effects of tissue
dispersion and crossing (Neto Henriques, 2018). Figure B.3 provides visualization of overall
axial diffusion maps, including both DTI and MSDKI metrics, for an example subject.
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Postprocessing

Thanks to this atlas-based analysis approach, it was possible to perform cord-specific quan-
tification of diffusion metrics through sct_extract_metric command, also restricted to
specific ROIs (labels used by default are taken from the PAM50 template, e.g. WM tracts,
flag -l), vertebral levels (flag -vert) or slice (flag -z), according to the specific clinical needs
concerned.
Along with WM and GM probabilistic masks as a whole, normally investigated in medical
practice, one can carry out ROI detection also in specific tracts according to the clinical
question (fifteen WM tracts and three GM regions available in total for each side). In our
example, neither DKI nor structural images ensured sufficient WM-GM-CSF contrast to
perform any manual detection of ROIs in contrast to high-contrast PSIR image of (Panara
et al., 2019), whose acquisition time would be too long for neonates. Therefore, we exploited
good registration outcome for automatic delineation of ROIs through atlas-based approach.
We opted for using lateral Cortico-Spinal Tracts (CSTs) as ROIs for consistency with (Panara
et al., 2019) - though grouping together left and right sides in order to gain robustness by
increasing volume fraction as suggested in (De Leener et al., 2017a) - as well as WM and
GM. We then computed the average of each diffusion measure (MD, AD, RD, FA and MSK)
across C1-C4 vertebral levels, since outside of these levels the registration is inaccurate
and/or MRI signal may be corrupted. We thus checked through QC module the correctly
segmented slices corresponded to the same vertebral levels across subjects, starting from the
first slice containing only SC (excluding cerebellum, Figure B.4c).
Moreover, estimation of DTI and MSDKI weighted average metrics was limited to those
slices where SC segmentation is accurate: outside the segmentation mask, metrics would
indeed be irrelevant. This was obtained by multiplying segmentation mask by specific WM,
GM and CSTs atlas labels. We quantified diffusion metrics using Weighted Average (WA)
estimation to minimize PVE avoiding bias into resulting metrics by the surrounding tissues
(e.g., CSF). This is one of the recommended methods especially in case of noisy images and
small tracts as in our case. We assessed associated voxel fraction to quantify the reliability of
our diffusion measures: as demonstrated in (De Leener et al., 2017a), having at least 240
voxels results in an error smaller than 1%, while having 30 voxels results in an error inferior
to 2%. In this example, the metrics were computed based on average 178.3, 50.5 and 31.5
voxels in WM, GM and CSTs respectively, thus assuring sufficient accuracy of estimates.
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7.2.6 Case Study

PWMI is the most frequent type of brain lesion in preterm infants, and the spatial extent and
location of WM injury correlate with distinct clinical outcomes, including cerebral palsy
and motor impairment (Volpe et al., 2017). Given the strong association of WM injury with
the motor function development of preterm neonates, we hypothesized that periventricular
punctate WM lesions at TEA could be associated with regionally specific alterations in cSC
microstructure.
A similar approach was already used by (Panara et al., 2019) to characterize cSC microstruc-
tural abnormalities in a cohort of adult patients with previous unilateral ischemic stroke
in the vascular territory of the middle cerebral artery. DTI and DKI diffusion measures in
cSC resulted to be a valuable imaging marker for predicting clinical outcome. In particular,
significant reduction of FA and MK was observed in the affected lateral WM bundle of the
cSC, correlating with the severity of motor dysfunction.
Accordingly, the ultimate goal of our study was to verify whether the presence of periven-
tricular WM lesions affects the cSC tracts development. Specifically, we aimed to compare
DTI and MSDKI measures of cSC in two groups of preterm neonates: (i) with punctate
Periventricular White Matter lesions (PWMI), and (ii) with normal brain MRI (controls).

7.3 Results

7.3.1 Population size and classification

In order to investigate clinical differences among acquired subjects, we grouped infants as
follows: (i) 9 subjects with punctate PWMI and (ii) 9 subjects with normal brain MRI, used
as control group. At QC phase, in accordance with the expert neuroradiologist, we opted for
excluding one control subject due to excessively poor image quality (e.g., signal leakage at
C1-C3 level, Figure B.4a,b). Therefore, the final number of subjects under analysis amounted
to 9 and 8 infants for the patient and the control groups, respectively.

7.3.2 The role of denoising

As mentioned above, neonatal imaging is inherently affected by low SNR and sensitive to
imaging artifacts. Proper denoising of scans is therefore a crucial step in the processing
pipeline. Above all, we thus focused on quantitatively assessing the contribution of Patch2Self
denoiser on subsequent analysis. Firstly, we computed average SNR on b = 0, b = 700 and
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b = 2100 s/mm2 images for all subjects and across all slices belonging to C1-C4 area of our
interest. For this task, we resorted to SCT function sct_compute_snr. The latter exploits
methods described in (Dietrich et al., 2007).
Specifically, we have taken into account the spatially varying and parameter-dependent
nature of noise distribution in case of parallel-imaging by choosing the so-called mult
method. According to this definition, the noise of a single voxel is described by the stochastic
variation of its signal intensity in repeated acquisitions. Since this approach has the weakest
requirements on the statistical and spatial distribution of noise, it turns out to be valid
also in case of increasingly complex MRI systems (e.g., multiple channels and complex
reconstruction algorithms) and it is thus used as the standard of reference with which to
compare the validity of other existing methods. In the absence of back-to-back scans with
the same parameters (to use the default diff method), we looked at mult approach as the best
option possible for our kind of input data.
We found an increase in mean SNR after applying Patch2Self at b = 0 s/mm2 (5.88 ± 1.41
vs 14.64 ± 4.53), b = 700 s/mm2 (3.12 ± 0.67 vs 16.47 ± 6.62), and b = 2100 s/mm2 (1.95
± 0.16 vs 12.31 ± 6.20). Hence, this evidence subsists not only for b = 0 images, agnostic
from signal attenuation related to diffusion and thus exhibiting the highest SNR, but also for
non b = 0 shells (Figure 7.7).

Figure 7.7 Effects of Patch2Self denoising on noise at different diffusion weightings.
Average Signal-to-Noise Ratio (SNR) computed on (A) b=0 images , (B) b=700 and (C)
b=2100 s/mm2 increases in all the cohort, across C1-C4 vertebral levels under analysis, when
including denoising with Patch2Self algorithm in the processing pipeline

We then inspected the impact of denoising on microstructure model fitting, a critical step
often leading to degenerate parameter estimates due to the low SNR of dMRI acquisitions.
Specifically, we applied DTI and MSDKI model on raw and denoised data, resorting both
to traditional MP-PCA and to Patch2Self method. We opted for comparing our denoising
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procedure with MP-PCA since it represents the current state-of-the-art unsupervised method
for denoising DWI. MP-PCA exploits the redundancy in multidirectional dMRI data by
identifying the noise-only principal components using the knowledge that the corresponding
eigenvalues are described by the universal MP distribution, parameterized by the noise level.
In order to compare the goodness of each fit, we performed a k-fold cross-validation (k=2)
(see Chapter 6) across the whole volume of masked data for all the dataset at disposal.
As standard measure for quantifying the goodness of fit in linear regression models, we
computed the coefficient of determination R2 as in Equation 6.1 of Chapter 6. In Figure
7.8, we depict the improvement of the R2 metric by simply subtracting the R2 scores of
fitting undenoised data from Marchenko-Pastur and Patch2Self denoised data for both DTI
and MSDKI models. We could observe a consistent trend across all subjects: R² shows a
significant increase from MP-PCA to Patch2Self method for all the cohort in case of fitting
MSDKI model, for all subjects except for one in case of DTI model (two-sided t-test with
Bonferroni correction). Our observation suggests that Patch2Self proves to be particularly
suitable for DKI model fitting.

7.3.3 MSK decreases in patients with PWMI lesions

To an initial evaluation based on the limited sample size available, we detected an increase in
MD, AD, RD (Figure B.6), parallel to an overall decrease in FA and MSK (Figure 7.9) in
preterm neonates with PWMI. This decrease was more pronounced in MSK than FA (Figure
7.9).
This visual trend of diffusion measures has been supported by a statistical survey, to be
considered as preliminary given the very low sample size. We thus performed Scheirer Ray
Hare Test, that is the non-parametric alternative of 2-way ANOVA, to assess the presence of
statistically significant differences in DTI- and MSDKI- derived metrics between patient and
control groups.
Specifically, we analyzed the effect of diagnosis (PWMI/control) and ROI (WM/GM/CSTs)
on each diffusion measure (MSK, FA, MD, AD, RD). We showed that there is not a statisti-
cally significant interaction between the effects of diagnosis and ROI for any of the DTI and
MSDKI measure (Table B.1). Similarly, simple main effects analysis showed that ROI does
not significantly affect any diffusion parameter. Conversely, simple main effects analysis
indicated a statistically significant effect of diagnosis exclusively on MSK, regardless of the
ROI examined (p = 0.0153).
Then, we wanted to assess if MSK and FA means were significantly different between the
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Figure 7.8 Boxplots quantifying the increase in coefficient of determination metric
after fitting downstream DTI and MSDKI models for the whole Spinal Cord volume
across all subjects: The R2 improvements in each case are plotted by subtracting the scores
of model fitting on undenoised data (noisy) from R2 of fitting each denoised output. Note
that the consistency of microstructure model fitting on Patch2Self (P2S) denoised data is
higher than that obtained from Marchenko-Pastur (MPPCA), especially as regards MSDKI
model. ns : 5.00 · e−2 < p ≤ 1.00 · e0,∗ : 1.00 · e−2 < p ≤ 5.00 · e−2,∗∗ : 1.00 · e−3 < p ≤
1.00 · e−2,∗ ∗ ∗ : 1.00 · e−4 < p ≤ 1.00 · e−3,∗ ∗ ∗∗ : p ≤ 1.00 · e−4 in two-sided t-test with
Bonferroni correction.
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two groups in the different ROIs. We thus conducted a Mann-Whitney U test between each
patient/control pair for each ROI (GM, WM, CSTs) separately for MSK and FA (Table B.2).
Given the general low power of the statistical tests due to the limited number of subjects, we
decided to quantify Common Language Effect Size (CLES) given its independence from
sample size. Also in this case, we reported a non-significant (p > 0.05) difference of both
MSK and FA values between the two groups in all ROIs. Nevertheless, we observed that
MSK in CSTs exhibits the combined lowest p value (p = 0.067, uncorrected) and the highest
effect size (0.77), corroborating the observed decrease of MSK in the patient group with
respect to the controls (Figure 7.9).

Figure 7.9 MSK decreases in neonatal Periventricular White Matter Injuries: (A)
White Matter (WM), (B) Gray Matter (GM) and (C) Cortico-Spinal Tracts (CSTs) ROIs
overlaid on DKI motion corrected image; (D) Scatter plots of FA and MSK in group subjects
across aforementioned ROIs: colored spots indicate single subject’s value for each metric; as
reported in the legend, controls’ measures are in blue, whereas Periventricular White Matter
Injury (PWMI) group’s in red. Units for MSK are in mm2/s, while FA is dimensionless.
Error bars displaying mean (diamond) and standard deviation (bars) are overlaid on scatter
plots.



Chapter 8

Data-driven characterization of Preterm
Birth through intramodal Diffusion MRI

8.1 Background

In Chapter 7 we investigated the applicability of HARDI to SC region in preterm neonates.
Given that cerebral WM is the major target of anomalies associated with preterm birth,
in this Chapter we shifted to explore WM brain maturation of preterm subjects acquired
at TEA. Indeed, despite the development of monitoring and treatment technology in the
neonatal intensive care unit, the incidence of preterm birth is still increasing worldwide
(Beck et al., 2010; Blencowe et al., 2013), with surviving neonates often meeting high
rates of neurodevelopmental impairments (Bhutta et al., 2002). These sequelae have been
attributed to perinatal brain injury, particularly when this involves WM, with the severity of
WM injury being predictive of neurodevelopmental outcome in later childhood (Dyet et al.,
2006; Kimpton et al., 2021). Thus, increasing the understanding of WM microstructural
development between birth and term equivalent age in preterm infants with normal or
abnormal neurodevelopment may be informative to identify specific and early markers of
WM maturation both in case of normative and of adverse neurodevelopmental outcomes.

As such cerebral alteration occurs beneath an anatomical scale, being therefore unde-
tectable by conventional imagery, dMRI has established as the most valuable tool to inspect
this altered WM development in preterm infants (Counsell et al., 2003; Volpe, 2003). For
instance, previous neonatal brain DTI studies indicated that WM FA increases with age, even
before myelin is evident on conventional MR imaging sequences, and diffusion parameters
correlate with cognitive, language, and motor outcomes (Hüppi et al., 1998a; Partridge et al.,
2004).
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If examination of WM development in preterm neonates by using DTI, sensitive to microstruc-
tural organization, is by then recognized as a standard clinical tool to identify neonates at high
risk of neurodevelopmental impairment, the recent advent of HARDI imaging represents a
promising tool for enhancing our understanding of WM maturation compared with standard
DTI metrics alone (Kunz et al., 2014). Most recent studies show how higher-order diffusion
models (e.g., DKI (Ouyang et al., 2019b; Shi et al., 2016; Zhao et al., 2021), NODDI (Kelly
et al., 2016) or CSD (Pannek et al., 2018)) may offer unique insight into the postnatal neu-
rological development associated with differential degrees of preterm birth, thanks to their
improved sensitivity to microstructural changes both in WM and GM.
Indeed, opposed to isolated WM injury, impaired neurodevelopment in preterm infants
represents a complex interplay between GM and WM damage, leading to structural changes
throughout the entire brain to which DTI may not be so sensitive (Tymofiyeva et al., 2012).
Moreover, by relating the diffusion signal more directly and specifically to underlying cellular
microstructural properties, HARDI methods allow to investigate WM microstructure with
higher levels of detail, and to potentially give access to richer microstructural properties,
thus increasing the diagnostic values of their derived measures. Cutting-edge methods of
microstructural brain imaging are thus expected to provide unprecedented insights into early
brain anomaly leading to subsequent adverse outcomes, often intrinsic to very preterm birth
and whose accurate prediction is imperative for the implementation of early interventions in
clinical practice.

However, as far as we are aware, existing works all focus on investigating alterations of
pre-term brain resorting to one microstructural model at a time. Conversely, a combination
of multiple models may be extremely useful to offer complementary information about tissue
microstructure, given also the lack of systematic model-to-model comparisons to assess
which are the best markers to reliably quantify microstructural tissue maturation in newborns.
Specifically, in this study,we examined four models among the most used in pediatrics: DKI,
NODDI, MSMT CSD and FORECAST – for further and specific details see Appendix A –
selected for their suitability in grasping microstructural changes beyond DTI’s capabilities
(Pecheva et al., 2018).
Our work thus primarily aims at investigating the potential of an intramodal approach to
dMRI, made up of several microstructural dMRI models, in extracting relevant markers of
prematurity. Furthermore, with a view to deeply inspect each of the microstructural-derived
measures, we also seek to assess their robustness to the method of investigation in use. To
do so, we opted for comparing two state-of-the-art methods for large-scale longitudinal
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neuroimaging studies, that is Tract-Based Spatial Statistics (TBSS) and Machine Learning
(ML) classification.

TBSS is an automated, observer-independent approach for assessing FA in the major
WM tracts on a voxel-wise basis across groups of subjects (Smith et al., 2006). It achieves
this through carefully tuned alignment of FA maps to a standard-space template, followed by
projection of individual data onto a skeletonised representation of major WM tracts common
to the group to circumvent the PVE and gain statistical power from this dimensionality
reduction. Since WM dysmaturation is increasingly recognized as the primary pathology
in contemporary cohorts of preterm neonates, this method has been used extensively on
scans acquired at TEA in preterm-born neonates to successfully detect alterations in WM
microstructure in the absence of overt brain injury (Alexandrou et al., 2014; Anjari et al.,
2007) and to predict cognitive and motor outcomes in young preterm-born children (Counsell
et al., 2002; Duerden et al., 2015),which is highly relevant to clinicians making essential care
decisions. The reasons behind popularity of TBSS reside in being an objective, sensitive
and relatively easy to interpret method for multi-subject, whole-brain diffusion data analysis.
This allows to overcome some of the limitations of common ROI-based approach to analyze
neonatal data, which suffers from subjectivity, manual intensity, intra- and inter-subject
variability, and a priori spatial localizaation, which makes it suboptimal for comparison of
several brain regions or large subject groups (Ly et al., 2015). At the same time, the approach
does not require data smoothing and could alleviate many concerns raised regarding other
conventional fully automated whole-brain measurement techniques such as voxel-based
morphometry (VBM) framework that was previously used in many DTI studies (Whitwell,
2009).
Although remaining the leading technique for voxel-wise DTI analysis, as any other voxel-
based analysis method, application of TBSS does not come without pitfalls, including:
influence of noise level, parameter settings, choice of the template, quality of image regis-
tration on the resulting anatomical specificity, the low sensitivity for detecting wide-spread
subtle abnormalities, the impossibility to develop individually-based imaging indices. All
these factors in turn question reproducibility and robustness of the final TBSS result, being
essential for establishing biomarkers and diagnostic/prognostic indices at the individual level
(Bach et al., 2014).

In this respect, the advent of ML in the early 2000s has totally revolutionized neuroimag-
ing studies. Indeed, compared to population-based analysis, ML approaches can extract
unbiased, individualized biomarkers of diseases or functional brain states of fundamental
importance in diagnosis, prognosis, and patient stratification (Davatzikos, 2019). Earlier
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studies focused on Support Vector Machines (SVM) (Golland et al., 2002; Lao et al., 2004),
which has been a cornerstone in this field, largely because of its robustness and ease of use
with a variety of kernels (Schölkopf et al., 2002). These and other methods have already been
widely applied in neuroimaging studies regarding preterm birth (Chu et al., 2015; Galdi et al.,
2020; Saha et al., 2020), with the vast majority of works resorting to TBSS or other VBM
methods as a preprocessing step preparatory to application of ML algorithms. However, to
the best of our knowledge, this is the first study using TBSS and a ML-based classification
jointly on intramodal dMRI to explore the most discriminating WM regions as biomarkers to
supplement the understanding of such a current phenomenon as preterm birth.

8.2 Matherials and Methods

8.2.1 Subjects

A total of forty-seven preterm and twenty-three term-born subjects have been enrolled be-
tween November 2017 and August 2021 at the Neuroradiology Unit of Gaslini Children’s
Hospital. Conventional MRI and DKI were performed using a 3.0T MRI scanner (Ingenia
Cx, Philips, Best, the Netherlands) with a 32-channel head array coil.
This single-center study was carried out in accordance with the recommendations of "Comi-
tato Etico Regione Liguria, Genoa, Italy" with written informed parental consent obtained
for each infant prior to examination in accordance with the Declaration of Helsinki. All the
precautions for patient’s feeding, sedation, position and monitoring, adopted also in the work
on spine from Chapter 7, were replicated for this study.
Exclusion criteria included obvious motion artifacts, oblique positioning, an incomplete
imaging process or a low SNR.

GA was used as a classifying variable for preterm (GA < 37 weeks) and term birth (GA
≥ 37 weeks). Preterm subjects have been acquired at TEA, as dictated by clinical procedure.
Our cohort was further stratified according to the presence of brain pathologies. Unhealthy
subjects within pre-term group comprise infants diagnosed with a variety of clinical anomalies
common to prematurity: the most numerous one are Periventricular Leukomalacia (PVL; 5
subjects), followed by Intra Ventricular Hemorrhage (IVH; 4 subjects) and Germinal Matrix
Hemorrhage (GMH; 4 subjects).
Similarly, patients in the term group exhibit a wide range of brain anomalies, as expected
when collecting subjects in a real clinical scenario. The most frequent pathology we registered
was asphyxia (3 subjects).
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Instead, patients with germinolytic cyst or Cavum Veli Interpositi (CVI) were included in the
healthy group. Details about subjects’ demographics are reported in Table 8.1.

Table 8.1 Demographic features of infants-brain

Preterm infants (n=46) Term born infants (n=23)

Unhealthy (n=21) Healthy (n=25) Unhealthy (n=11) Healthy (n=12)

Gender (M/F) 9/12 5/20 8/3 7/5
Mean GA (range; week) 30.36±2.53 (25.28-36.71) 31.84±2.37 (28.86-36.28) 38.75±1.63 (37-41.57) 39.5± 1.34 (38-41.71)
Mean PNA (range; week) 7.89±3.81 (1.43-14.29) 8.20±2.80 (1.86-13.86) 3.13±3.19 (0.14-10.14) 1.81±1.15 (0.71-4)
Mean PMA (range; week) 38.25±2.71 (32.86-42.29) 40.05±1.94 (37.14-47.57) 42.68±2.76 (39.14-48.43) 40.57±1.96 (38.14-44.29)

*M/F = number of male and female infants; GA = gestational age; PNA= postnatal age; PMA = postmenstrual age.

8.2.2 MR Acquisition

Our acquisition protocol includes Turbo Field Echo (TFE) 3D T1w and a HARDI series.
Details about acquisition are reported in Table 8.2.

Table 8.2 Acquisition protocols for structural T1 and HARDI series

3dT1 HARDI

TR/TE (s) 0.6/0.026337 2.086/0.114
Diffusion Scheme (s/mm²) – 5 b=0, 30 b=700, 60 b=2800
Flip Angle (°) 90 90
Reconstruction Resolution (mm) 0.38*0.38 1.5*1.5
Reconstruction Matrix 512*512 144*144
Multi-Band Factor – 2
# Averages 2 1
Slice Thickness (mm) 0.5 without gap 2.2, without gap
Slice Orientation sagittal axial
# Slices 251 42
Total Scan Time 4 minutes 5 s 3 minutes 30 s
Partial Fourier factor – 0.6

8.2.3 Preprocessing pipeline

Structural Images

The first critical step was skull-stripping. We opted for using 3D T1w images as anatomical
reference since 3D T2w scans were available only for a subset of subjects. Having to do
with neonatal scans, standard skull-stripping methods (Hosseini et al., 2015) such as Brain
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Extraction Tool (BET) (Smith, 2000), Robust Brain Extraction (ROBEX) (Iglesias et al.,
2011) or BrainSuite (Shattuck and Leahy, 2000) failed in correctly removing non-brain areas,
thus requiring manual corrections and introducing both a user- and a subject-based bias.
Therefore, we resorted to MASS (Multi Atlas Skull Stripping) (Doshi et al., 2013): a machine
learning algorithm which performs brain extraction through a template selection strategy
obtaining a higher accuracy than recent state-of-the-art tools and avoiding user’s intervention.
As a preliminary step, 3D T1w images were FOV-reduced, processed with BET, and then
bias-field corrected with N4 algorithm to suppress low-frequency inhomogeneities (Tustison
et al., 2010).
At this phase, under supervision of a board-certified neuroradiologist, we selected six subjects
that best represented the anatomical variations within the dataset, and processed this cohort
with the developing HCP (dHCP) pipeline (Hughes et al., 2017a). This workflow requires
both 3D T1w and 3D T2w images, their associated binary masks as well as information about
GA, and automatically outputs structural betted images and relative masks at the expense of
a high computational cost.
The six 3D T1w betted images generated with dHCP pipeline were subsequently used as
a reference template to train MASS algorithm. A final re-run of N4 algorithm ensured
bias-field correction using the correct mask extracted with MASS framework instead of the
rough one after preliminary brain extraction with BET. All preprocessing relative to structural
scans is summarized in Figure 8.1a.

HARDI scans

As already mentioned, HARDI scans in pediatrics are really sensitive to low SNR, more
prone to macro as well as micro sources of movements. For the same reasons as in the
work on neonatal SC from Chapter 7, we confirmed Patch2Self (Fadnavis et al., 2020) as
the very first preprocessing step as regards diffusion imaging. This denoiser turned out to be
particularly suitable for higher order diffusion models, outperforming other existing methods
at visual and modeling tasks. The method is implemented in DIPY v.1.4.0 (Garyfallidis et al.,
2014) and applied with OLS regressor, with the threshold for b = 0 shell at 100, given the
variability of non-diffusion-weighted b values. We opted for applying denoising at the very
beginning of the preprocessing pipeline since, out of several attempts, this option produced
the best outcome in term of quality of downstream parametric measures.
All subsequent preprocessing steps were done in Mrtrix3 v.3.0.1 (Tournier et al., 2019).
Standard analysis pipeline performed well also on neonatal scans thanks to overall good
image contrast. We thus carried out: (i) denoising again through dwidenoise command;
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(ii) unringing with mrdegibbs command; (iii) EPI-distortion correction, eddy-current and
movement distortion correction with dwifslpreproc; (iv) B1-field inhomogeneity correc-
tion with dwibiascorrect command through ants algorithm. Similarly, all preprocessing
relative to diffusion images is displayed in Figure 8.1b.

Figure 8.1 Preprocessing pipeline: overview of the main preliminary image processing
steps performed on: (A) 3D T1-weighted, whose key step is skull-stripping and (B) HARDI
scans, whose core is represented by denoising as well as distortion correction, for an example
subject.

Microstructural models

This was the starting point for application of multiple advanced microstructural dMRI models,
which were easily employed to this cohort thanks to overall high image quality (Figure
8.2). Outcome produced by each model has been subject to inspection by two experienced
neuroradiologists and compared with existing studies on age-matched cohorts. A more
detailed compendium about the microstructural models used in this work can be consulted at
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Appendix A. Furthermore, to avoid spurious contributions from non representative image
portions as well as to reduce computational time, all models have been applied to a masked
version of the data derived from averaging and skull-stripping the non-diffusion weighted
pre-processed volumes.

Diffusion Kurtosis Imaging We performed estimation of diffusion maps through DIPY
v.1.4.0, (https://dipy.org) (Garyfallidis et al., 2014). Standard DKI parametric maps (MK,
AK, RK, KFA) were thus generated (https://dipy.org/documentation/1.0.0./examples_built/
reconst_dki/). In line with the work from previous Chapters, since kurtosis measures are sus-
ceptible to high amplitude outliers, we removed their impact by limiting metrics’ extraction
within the typical range (0,3).
Patch2Self once again proved to improve reliability and accuracy of downstream analyses.
Specifically, it turned out to be suitable for DKI model since it reduces the number of
degeneracies in parameters’ estimation without adding any artifacts due to denoising.

Neurite Orientation Dispersion and Density imaging We computed NODDI-related
measures (ICVF, ISOVF, ODI) with linear framework for Accelerated Microstructure Imaging
via Convex Optimization (AMICO) implemented in Python (https://github.com/daducci/
AMICO), which, through a convex optimization approach, drastically accelerates the fit
of existing higher-order dMRI techniques while preserving accuracy and precision in the
estimated parameters, thus meeting real application demands (Daducci et al., 2015).

Fiber Orientation Estimated using Continuous Axially Symmetric Tensors We re-
sorted to DIPY also for computation of measures derived from Fiber Orientation Esti-
mated using Continuous Axially Symmetric Tensors (FORECAST) model (https://dipy.org/
documentation/1.1.1./examples_built/reconst_forecast/). We used 6 as spherical harmon-
ics order (sh_order) for the fODF and CSD as spherical deconvolution algorithm for the
FORECAST basis fitting (dec_alg) to extract crossing invariant tensor indices.

Multi-Shell Multi-Tissue Constrained Spherical Deconvolution Application of MSMT
CSD has been performed in MRtrix3. For response function estimation, used as the kernel
by the deconvolution algorithm, we resorted to dhollander approach, suitable for computing
MSMT response functions in case of multi-tissue variants of SD and more reliable in case
of neonates (Dhollander et al., 2019, 2016). In principle, the number of tissue types that
can be resolved by MSMT CSD is limited by the number of b values in the data, including

https://dipy.org
https://dipy.org/documentation/1.0.0./examples_built/reconst_dki/
https://dipy.org/documentation/1.0.0./examples_built/reconst_dki/
https://github.com/daducci/AMICO
https://github.com/daducci/AMICO
https://dipy.org/documentation/1.1.1./examples_built/reconst_forecast/
https://dipy.org/documentation/1.1.1./examples_built/reconst_forecast/
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b = 0 shell. As a result, our acquisition, made up of 3 unique b values, would be able
to resolve the three primary tissue types in the brain (WM, GM & CSF). However, given
the poor WM/GM contrast inherent to neonatal scans (Dhollander et al., 2018), we were
limited to extracting tissue-specific ODF just for WM and CSF. Moreover, since interested
in performing population studies, we used the same response function for all our cohort.
To this end, we calculated the average tissue response function for all our subjects, using
responsemean, just for WM and CSF responses.

Structural Connectomes

To deepen the characterization of our cohort of patients and in view of future developments of
the current work, we also carried out computation of structural connectomes from our HARDI
dataset. As usual, default Mrtrix3 procedure for connectome contruction (https://mrtrix.
readthedocs.io/en/dev/quantitative_structural_connectivity/structural_connectome.html) is
conceived for adult imaging and thus does not apply properly in case of infants. Specifically,
having to do with neonatal scans, we favoured preventing spurious streamline terminations
and thus opted for performing Anatomically-constrained tractography (ACT) (Smith et al.,
2012) in order to improve our streamline tracking based on effective anatomical information
and biological priors.
At this step, we encountered issues in generating a 5-Tissue-Type (5TT) segmented image
appropriate for ACT, since Mrtrix3 default tissue segmentation algorithm 5ttgen does
not perform well in neonates (WM/GM tissue signal contribution is often mixed with pre-
ponderant GM). We thus resorted to a recently-developed pipeline (Blesa et al., 2021)
(https://git.ecdf.ed.ac.uk/jbrl/neonatal-5TT/) and reformulated it to fit our case.
This method integrates different resources: (i) FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki);
(ii) MRtrix (http://www.mrtrix.org/); (iii) ANTs (http://stnava.github.io/ANTs/) to create the
5TT file and the parcellation needed to generate the connectome using ACT in the neonatal
brain.
Different approaches can be found in the literature (Batalle et al., 2017; Blesa et al., 2019;
Lennartsson et al., 2018), but we readapted this work since fully automated, freely available
and respecting as much as possible the underlying anatomy of the neonatal brain.
To do so, it relies on manually parcellated images in ten individuals that comprise the orig-
inal Melbourne Children’s Regional Infant Brain (M-CRIB) atlas (Alexander et al., 2017)
(https://github.com/DevelopmentalImagingMCRI/M-CRIB_atlas), with Desikan-Killiany
compatible cortical regions. As a first step, to obtain the parcellation, we performed intensity
histogram matching (mrhistmatch command in Mrtrix3) between the T1 preprocessed M-

https://mrtrix.readthedocs.io/en/dev/quantitative_structural_connectivity/structural_connectome.html
https://mrtrix.readthedocs.io/en/dev/quantitative_structural_connectivity/structural_connectome.html
https://git.ecdf.ed.ac.uk/jbrl/neonatal-5TT/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
http://www.mrtrix.org/
http://stnava.github.io/ANTs/
https://github.com/DevelopmentalImagingMCRI/M-CRIB_atlas
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Figure 8.2 Microstructural Models: parametric scalar maps derived from all the HARDI
models employed for this study: (A) Diffusion Kurtosis Imaging (DKI), (B) Neurite Ori-
entation Dispersion and Density imaging (NODDI), (C) Fiber Orientation Estimated using
Continuous Axially Symmetric Tensors (FORECAST), (D) Multi-Shell Multi-Tissue Con-
strained Spherical Deconvolution (MSMT CSD).
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CRIB templates registered to T2 and our subjects’ T1 resulting from MASS skull-stripping,
based on their respective binary mask images (fslmaths command in FSL).
Then, we customized segmentations from M-CRIB atlas labels to each subject’s T1 using
antsJointLabelFusionimage fusion algorithm (Wang et al., 2012), adding as an output
the probability labels. Finally, to obtain the 5TT, we simply combined (fslmaths command
in FSL) the obtained probability labels for each subjects separating cortical and subcortical
GM, CSF, and WM, respectively. In addition, we normalized these tissue probability maps
between 0 and 1. The latter have been merged together (fslmerge in FSL) to result in the
final 5TT segmented image, displayed in Figure B.7. From this step, standard commands for
structural connectome construction in Mrtrix3 were applied.
Specifically, for each subject, we registered the T1, the resulting 5TT file and the M-CRIB
labels to to the mean b = 0 diffusion image, though keeping its higher resolution through
trasformconvert command. We then reordered the labels using labelconvert, for ex-
tracting the relevant (84) GM parcellations from the default neonatal FreeSurfer segmentation
(M-CRIB). After applying MSMT CSD from previous paragraph, we normalised the tissue
components corrected for the effects of residual intensity inhomogeneities (mtnormalize).
Furthermore, in order to reduce memory consumption and allow faster tracking, we reduced
the spatial resolution of the FOD image (using mrgrid). These corrected and downsampled
FODs, together with the registered 5TT file for each subject were the input of tckgen
command for tractogram generation, with streamiline seeding on the GM-WM interface and
a reduced FOD amplitude cutoff threshold (0.05). Indeed, this allows streamlines to reach
the GM-WM interface more reliably, and does not result in significant false positives since
the MSMT algorithm does not produce many erroneous small FOD lobes. Subsequently, we
applied the Spherical-deconvolution Informed Filtering of Tractograms (SIFT) algorithm, a
method which reduces the overall streamline count, but provides more biologically meaning-
ful estimates of structural connection density. Finally, as last step, we mapped streamlines to
the parcellated image to produce connectomes using tck2connectome.
Resulting connectivity matrices for two representative subjects can be visualized in Figure
B.8.

8.2.4 Post processing

Tract-Based Spatial Statistics

FA skeleton generation Once applied all the microstructural models and extracted the
related metrics, we first used TBSS, themost popular voxel-wise statistical inference for WM
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anatomy (Bach et al., 2014), to inspect potential per-voxel differences across microstructural
derived markers typical of preterm birth compared to term born controls. However, once
again neonatal imaging caused standard TBSS pipeline developed in FSL (https://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/TBSS/UserGuide) to present technical challenges in case of neonates, due
to smaller anatomical dimension and lower image contrast and resolution. We thus integrated
it with DTI-TK (http://dti-tk.sourceforge.net/pmwiki/pmwiki.php?n=Documentation.TBSS),
as suggested also in the literature (Bach et al., 2014; Tokariev et al., 2020).
The latter is a spatial normalization and atlas construction toolkit optimized for examining
WM morphometry resorting to tensor-based registration able to leverage rich discriminating
features afforded by DTI.
As a first step, we computed DTI tensor for each subject using FSL command dtifit,
given DTI-TK interoperability with FSL - it is conceived as an FSL plugin. Specifically, we
opted for computing the DT limiting to the b=700 s/mm2 shell instead of using the whole
multi-shell diffusion volume. Indeed, this was the alternative producing the best outcome
in later analysis steps (e.g., TBSS FA skeleton generation). As usual, we limited tensor
estimation within a binary mask generated from non diffusion-weighted averaged volumes.
We then converted FSL-generated DTI eigensystem volumes into fully DTI-TK compatible
DTI volumes, (i.e., both in the correct format, physical unit of diffusivity and correctly
preprocessed) using fsl_to_dtitk script. To further make sure of the correctness of the
conversion, we visually inspected each subject’s DT using tensor glyph tool (TVglyphview
in DTI-TK). Indeed, effective visualization of DTI volumes in 3D is imperative for processing
and analyzing this type of data. We then moved to the registration and spatial normalization
of DTI volumes, which is the core functionality of DTI-TK.
We opted for bootstrapping a population-specific DTI template from our specific cohort of
study without relying on an existing template, given the age range under analysis (TVMean
command in DTI-TK). To this end, rather than few subjects, we employed all datasets to build
our ad-hoc template because, although computationally more intense, this allows to better cap-
ture within-population features. Once the common DTI template was created (Figure B.9), we
performed tensor-based registration of each subject to the template space, through consecutive
steps aimed at iteratively refining the template and improving the registration outcome (rigid,
affine and deformable alignment of DTI volumes achieved through dti_rigid_population,
dti_affine_population and dti_diffeomorphic_population DTI-TK commands, re-
spectively).

The last custom implementation of TBSS has the aim to: (i) generate the spatially
normalized high-resolution DTI data, i.e., with a spatial resolution of isotropic 1 mm3

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide
http://dti-tk.sourceforge.net/pmwiki/pmwiki.php?n=Documentation.TBSS
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(dti_warp_to_template_group command), (ii) generate the population-specific DTI tem-
plate with the isotropic 1 mm3 spacing; and (iii) generate the FA map of the high-resolution
population-specific DTI template (TVTool). Therefore, resorting to FSL default command
tbss_skeleton the WM skeleton from the high-resolution FA map of the DTI template is
created for running the subsequent TBSS analysis. Finally, after producing each FA map of
the spatially normalized high-resolution DTI data (TVTool), they are all merged (fslmerge
in FSL) to form a 4D FA map and its corresponding binary mask.
Previous procedures in DTI-TK replaced the first three steps of standard TBSS pipeline
(tbss_1_preproc, tbss_2_reg, and tbss_3_postreg, respectively). From this point on
we thus moved to default procedure in FSL with the last two steps, that is tbss_4_prestats
and stats (randomise). The first one aims first of all at thresholding the mean FA skeleton
image at a suitable threshold. The latter is chosen by visual inspection, setting a value able to
retain common major WM tracts avoiding those subject to excessive cross-subject variability
and where the nonlinear registration has not been able to attain good alignments - 0.1 in
our case, consistent with other works on neonates (Ball et al., 2010). Later, it projects all
subjects’ FA data onto the resulting mean FA skeleton. This 4D image file containing the
projected skeletonised FA data is thus fed into voxelwise statistics. In order to find voxels
which significantly differ between our two cohorts in comparison, cluster-size thresholding
was applied to the data, in which the size of the cluster was determined by 500 permutations
by using Randomise FSL’s tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise). A threshold
of p < 0.05 (95th percentile of the distribution) was set for the clusters, corrected for multiple
comparisons across space. This is somewhat similar to cluster-based thresholding, but gener-
ally more robust and avoids the need for the arbitrary initial cluster-forming threshold. We
thus generated both a design matrix file (design.mat) and contrasts file (design.con), through
the script design_ttest2 as our case consisted of a simple two-group comparison.

Non FA metrics In order to extend TBSS analysis to diffusion-derived measures other than
FA, we repeated DTI-TK/TBSS steps with some variations, similar to what done in (Timmers
et al., 2016). Indeed, tbss_non_FA script included in FSL implementation was not directly
applicable due to previous integration with DTI-TK. We first needed to adjust the header for
all HARDI measures (except for NODDI markers) in order to assure the same orientation
in DIPY or Mrtrix3 and DTI-TK format. We thus resorted to fslcpgeom command in
FSL to integrate the q-form into headers generated by external programs, which neglect it
unlike DTI-TK. We thus moved to convert each microstructural scalar map to the DTI-TK
coordinates (SVAdjustVoxelspace in DTI-TK). Then, we reapplied to each measure the

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise
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original nonlinear registration obtained to transfer each FA map to the population-specific
template (deformationScalarVolume in DTI-TK).
We then merged (fslmerge in FSL) all subjects’ warped data into a 4D file and created the
relative mean map (SVMean in DTI-TK) together with its binary mask. Analogous to FA, we
then projected this onto the original mean FA skeleton (using the original FA data to find the
projection vectors), resulting in the 4D projected data. We were thus able to run voxel-wise
stats on the projected 4D data in the same manner as described above.
This procedure was repeated for each of the microstructural measure analysed in the current
work.

Figure 8.3 TBSS pipeline: overview of the main steps of TBSS framework, from spatial
normalization of DTI volumes, to bootstrapping the within-population template, to skeletoni-
sation of the template’s FA map and projection of each subject’s FA onto the skeleton.

Predictive model

Machine Learning methods for classification Moving to ML analysis, we performed
preterm/term-born subject classification based on a predictive model. A crucial remark is
that we only have access to a small amount of data to train our model. This might cause
overfitting, a very well-known issue in ML, which occurs when the classifier learns noise and
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random fluctuations in the training data and does not generalize to the test data (i.e., unseen
data). The main causes of overfitting are indeed a small number N of samples in training or
the high complexity of the model (e.g. large number P of input variables).
We thus resorted to a SVM framework to categorize preterm-born and term-born individuals
based on whole-brain WM skeleton estimated using TBSS from DTI scans. Indeed, among
the variety of ML techniques applied so far in neuroimaging settings, SVM has emerged as
one of the most popular ML methods (Chin et al., 2018; Chu et al., 2015), able to effectively
cope with high-dimensional data and provide good classification results, thus avoiding
overfitting of the data (Vapnik, 1999). The fundamental aim of SVM is to classify data points
by maximizing the margin between classes in a high dimensional space (Sain, 1996). In brief,
an optimal classifier is constructed through a "training phase", whereby key brain features
are identified in order to distinguish between two groups, which is then applied to categorize
new, unseen data in the "testing phase".
Along with adopting SVM classifier to handle the issue of overfitting, we also carried out a
further analysis to investigate how the performance changes by varying the input dimension
P of our data through feature selection (see Experimental design section for details) and,
then, we trained a classification model based on related findings. For implementation of ML
method, we resorted to scikit-learn free software ML library for the Python programming
language (https://scikit-learn.org/stable/).

Experimental design The experiments we carried out can be subdivided into two phases
(Figure 8.4).

In the first phase (Figure 8.4A), we adopted SVM to perform binary classification starting
with the FA map warped to common TBSS space and masked by thresholded WM skeleton
for all 69 infants involved. This corresponded to a 69× 2286 input matrix, equal to the
number of subjects by the number of voxels in the thresholded WM skeleton. We then split
the dataset into learning and testing by stratified 5-fold cross-validation (outer−CV ) in order
to increase the numerosity of our dataset while preserving the same class ratio throughout
the K folds as the ratio in the original dataset.
For each fold, we thus applied data standardization (by scaling each feature to (0,1) range)
on the learning set and repeated the same procedure for the test set. We then further split
the learning set into training and validation sets, named inner−CV , for exhaustively tuning
the model hyperparameters with GridSearchCV instance. We thus looked for the best
hyperparameter grid by choosing the one that produced the lowest prediction error. This
set included: (i) the best penalty term C (among 0.001, 0.01, 0.1, 1, 10, 100, 105); (ii) the

https://scikit-learn.org/stable/
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best kernel (among linear, radial basis function and polynomial with default degree=3) and
(iii) the optimal number of features (selecting 20%, 40%, 60%, 80% and 100% of the input
dataset with SelectKBest method).
For each combination of hyperparameters, we fitted a model on the training set, we thus
evaluated the model performance computing the f1-score on the validation set, and we
calculated the averaged f1-score across folds. We thus chose the set of parameters whose
average f1-score was the best, we trained an SVM model on the learning set and, subsequently,
we evaluated the model performance in terms of accuracy, precision, recall, f1-score, and
Receiver Operating Characteristic (ROC) on the unseen test set.
The accuracy score indicates the percentage of labels predicted correctly. The precision score
is defined as the ability of a classifier to not mislabel a sample (TP/TP+FP where TP and FP
are true and false positive, respectively). The recall, or sensitivity, score is the ability of a
classifier to find all the positive samples (TP/TP+FN where FN is the false negative). The
f1-score is a weighted harmonic mean of precision and recall. The ROC score is produced by
calculating the area under the curve plotting the true positive rate against the false positive
rate at a variety of thresholds.
Finally, we computed the mean and the standard deviation of these scores across folds.

In the second phase (Figure 8.4A), once selected the model classifier offering the best
performance on FA data, we carried out further analysis for evaluating the classification
performance when giving as inputs the parametric measures from other microstructural
models than DTI. For each input variable, we again performed the outer−CV to provide a
more robust evaluation of the model. We thus trained the model on the learning set and then,
we evaluated the model on the test set computing the accuracy, precision, recall, f1-score and
ROC. We finally calculated the averaged performance and the standard deviation across folds.
Please note that in this phase, we did not perform any inner−CV as we do not introduce a
hyperparameters search.

Figure 8.4 Experimental design for SVM classification: in a first phase a SVM classifi-
cation estimator is chosen to best perform on FA skeletonised data; in a second phase the
selected model is extended to other non-FA measures.
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Weight maps extraction and comparison with TBSS

Finally, in order to relate the results from TBSS with those resulting from ML, we extracted
weight maps from the selected SVM classifier within outer−CV , averaged them across the
5 folds, normalized between 0 and 1 and reshaped as the input TBSS skeleton (3D image)
for mere visual comparison. The weights are SVM coefficients determining the discriminant
hyperplane, which depicts the relevance of each voxel for the classification between positive
and negative conditions.

We thus computed standard Pearson’s correlation between normalized SVM weight maps
and TBSS normalized significance maps (p-maps) for each of the microstructural measure
analyzed. In order to further inspect the overlap between ML and TBSS WM discriminating
regions, we related Pearson’s correlation with Wasserstein Distance (WD) metric, to quantify
the distance between the two distributions.

8.3 Results

8.3.1 Voxel-wise statistics on the WM skeletonised data

Cross-subject voxel-wise statistics did not unravel any significant difference between the
healthy and unhealthy groups, likely due to the heterogeneity and low numerosity of each
pathological cathegory. Precisely for this reason, from now on we focused on characterizing
discrepancies between preterm and term-born subjects, regardless of the diagnosis. Indeed,
cross-subject voxel-wise statistics exhibited significantly different voxels between preterm
and term-born groups exclusively on a subset of the microstructural maps under consideration.
Specifically, compared with the term cohort, the preterm group showed a significant decrease
in FA, MK, AK, ICVF and fa. The WM regions with significant between-group differences
in diffusion metrics are shown in Figure 8.5. Conversely, no significant differences have
been captured by TBSS analysis in RK, KFA, ISOVF, OD, md, d_par, d_perp either in
MSMT-derived measures.

More in detail, compared with the term group, the preterm cohort had significantly
decreased FA values in widespread WM areas predominately in the genu, body and splenium
of the corpus callosum, right internal capsule, corona radiata, and posterior thalamic radiation.
The distribution of areas with decreased MK was similar but extending bilaterally with
respect to the areas with decreased FA and including also right external capsule. AK
exhibited a pattern analogous to MK whilst comprising bilateral external capsule. The same
applies for ICVF metric except for excluding genu of the corpus callosum. The amount of
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WM areas showing significant decrease in prematurity increased for fa parameter derived
from FORECAST model, which extended to the whole corpus callosum, bilateral internal
capsule, external capsule and anterior corona radiata and, finally, posterior thalamic radiation
(including the optic radiation).

8.3.2 SVM classification on the skeletonised data

Since the performance of a model significantly depends on the value of its hyperparameters,
first of all we carried out hyperparameter tuning in order to determine the optimal values for
our classification estimator.
In this respect, Figure 8.6A shows the result of cross-validated grid-search over the parameter
grid across each of the 5 folds.
Furthermore, based on the selected hyperparameters, we fitted our model on the training set
and evaluated its performance on the test set in terms of f1-score, accuracy, precision, recall
and ROC across each of the 5 fold (Figure 8.6B). In order to establish the best estimator
possible based on the input data, we counted into how many folds a variable was selected and
could thus conclude that penalty term C and linear kernel were the most frequently selected
hyperparameters. Conversely, the search turned out to be less stable in terms of the optimal
number of features, which varied at every fold (Figure 8.6C). Therefore, in order to set the
last missing parameter for our estimator, we set C and kernel according their most chosen
values while varying the number of features as a percentage of the total amount.
Figure 8.6C confirms that in our case feature selection is not beneficial for improving the
classification performance. Indeed, both average value and standard deviation across folds of
each score remain constant with variable subset of features.
We thus opted for avoiding feature reduction and kept the whole of features to define the final
version of our SVM estimator. As regards this definitive version of the classifier, a detailed
plot of the ROC curve profile for every fold is displayed in Figure 8.6D.

We subsequently trained a classification model without hyperparameters’ search (inner-
CV ) using as input variables the features derived from other microstructural HARDI models.
Once again we evaluated the performance in terms of f1-score, accuracy,precision, recall and
ROC. Results for the whole set of microstructural parameters, including FA, are reported in
Figure 8.7.
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Figure 8.5 TBSS results: Group-level voxel-wise statistical difference maps for Fractional
Anisotropy (FA), Mean Kurtosis (MK), Axial Kurtosis (AK), Intra-Cellular Volume Fraction
(ICVF) and fractional anisotropy (fa) between preterm and term-born cohort. Green indicates
the FA skeleton with a threshold of 0.1, which highlights the tracts used in the comparison.
Red-Yellow indicates the regions with decreased metrics’ values in the preterm group.



8.3 Results 87

Figure 8.6 First phase: SVM training on FA skeletonised data: A cross-validated search
of the best set of hyperparameters for our SVM estimator on stratified 5-fold data; (B) relative
performance for every score across folds; (C) Different sets of selected features along with
relative performance for every score across folds; and (D) area under the curve score
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Figure 8.7 Second phase: SVM testing on non-FA skeletonised data: heatmap containing
average and relative standard deviation, in percentage, of each score and for each of the
HARDI measures under analysis.
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Table 8.3 Comparison between TBSS voxelwise statistics and SVM classification

Pearson’s r p-value Wasserstein distance

FA -0.45 <0.0001 0.32
MK -0.34 <0.0001 0.43
AK -0.33 <0.0001 0.41
RK -0.46 <0.0001 0.36
KFA -0.48 <0.0001 0.35
d_par -0.61 <0.0001 0.20
d_perp -0.14 <0.0001 0.48
md -0.33 <0.0001 0.36
fa -0.28 <0.0001 0.40
wm -0.14 <0.0001 0.42
csf -0.11 <0.0001 0.55
ICVF -0.35 <0.0001 0.36
ODI -0.51 <0.0001 0.41
ISOVF -0.05 0.013 0.46

8.3.3 Comparison between SVM and TBSS approach

Relating TBSS significance map with weights extracted from linear SVM showed statstically
significant Pearson’s correlation for all microstructural measures considered (p < 10−2)
(see Table 8.3). This relationship was further confirmed by inspecting the association
between Pearson’s correlation coefficient and WD, reported in Figure 8.8, showing a trend of
direct proportionality. Indeed, those measures exhibiting a higher absolute correlation also
presented a lower WD, thus confirming similarity between the two methods. Correlation was
high (r=0.61) for d_par parameter, intermediate (r ∈ 0.45−0.51) for RK, KFA, FA and OD,
moderate (r ∈ 0.28−0.35) for MK, AK, md, fa and ISOVF and low (r ∈ 0.05−0.14) for
the last set of measures - d_perp, CSD-related measures and ISOVF. These results suggest
an overall good, though measure-dependent rate of agreement between p-maps derived by
TBSS approach and weights probing disciminative power of SVM.
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Figure 8.8 Relationship between Pearson’s correlation and Wasserstein Distance for
HARDI microstructural models: the two measures show a good trend of association
throughout all HARDI measures considered.



Part IV

Discussion



Chapter 9

Conclusions

9.1 Main Results

The main results of this PhD thesis can be summed up as: (i) the exploration of the influence of
magnetic field strength on DKI-derived mesures, starting from a modeling of noise reflecting
the true properties of the image and thus more accurate and truthful than the traditional
methods used in literature; (ii) the application of this optimal denoising approach as very first
preprocessing step within the the first semi-automated pipeline for handling clinical DKI data
of neonatal SC, from acquisition setting to estimation of diffusion measures, through accurate
adjustment of processing algorithms customized for adults, with a preliminary validation in a
pilot clinical case study involving preterm patients ; (iii) the investigation of such a current
issue as preterm birth extended to the neonatal brain, explored with the latest HARDI models
able to offer new insights into the characterization of tissue microstructure.

9.2 Part II: Denoising as a crucial step in Diffusion MRI

9.2.1 Influence of adaptive denoising on Diffusion Kurtosis Imaging at
3T and 7T

The first approach to validate preprocessing of dMRI scans is almost always done on healthy
adult subjects, to obtain a baseline description of the brain’s workings.
In the work presented in Chapter 6, we used healthy adult data from HCP in order to inspect
the dependence of DKI-derived measures on magnetic field intensity, analyzing denoising
approach as the first key factor.
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Among the multiplicity of developed denoising techniques specifically tailored for dMRI,
we focused on two methods both definable as "adaptive", thus placing the emphasis on the
need to abandon too binding noise models. This is the most important prerequisite in case of
complex MRI systems, such as acquisition of DKI images making use of parallel-imaging
and MB techniques.

In the first part of this work, we thus focused on comparing these two denoising ap-
proaches, with particular regard to their application for DKI model.
An important growing prerequisite in medical imaging is development of fast image pre-
processing and processing frameworks allowing real-time analysis. Therefore, computational
efficiency is one first crucial aspect contributing to overall performance of a denoising
algorithm. In this respect, considering current implementation of the two methods under
analysis, they proved to exhibit an inversed trend in their computational speed. Indeed,
Patch2Self drastically reduces the time required to process dMRI scans from 3T to 7T, unlike
NLSAM, whose duration slightly increases. As a result, Patch2Self seems to allow much
faster processing of dMRI images, and this gain in time becomes even more relevant with
increasing field strength.
Of course, computational performance must be supported by an efficient action of the
denoising method in effectively improving image quality. Qualitative evaluation of our
already preprocessed HCP scans shows how at 3T contribution of denoising is not substantial,
especially for NLSAM. Conversely, UHF scans seem more sensitive to denoising than con-
ventional 3T: at 7T performance of the two methods turns to be not only comparable but also
more relevant, as shown from more intense residual plots as well as from improvement in the
appearance of DKI images themselves. However, enhancement of DKI maps performed by
NLSAM may tend to introduce minimal smoothing/blurring artifacts when denoising, thus
not completely preserving raw data.
This qualitative investigation is further corroborated by inspecting impact of denoising on
microstructure model fitting, a critical step often leading to degenerate parameter estimates
due to the low SNR of dMRI acquisitions. The overall higher quality of fitting at both
field strengths confirmed the primacy of Patch2Self via quantitative improvements in mi-
crostructure modeling. In addition, the presence of an outlier for NLSAM-denoised data
at 7T – corresponding to subject 20, at whom un-denoised data appear to have a higher
goodness-of-fit than denoised scan – further supports the hypothesis that Patch2Self is better
at preserving raw image features.
Another important factor to consider when fitting higher-order models such as DKI to our
data is their susceptibility to estimation degeneracies in derived parametric maps, often
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due to noise and signal fluctuations, which may hamper accuracy in subsequent analyses.
As precisely regards the number of degeneracies inherent to DKI maps, both qualitative
and quantitative analyses agree that performance increases from noisy to Patch2Self- to
NLSAM- denoised scans for all DKI measures regardless of the magnetic field strength. This
is particularly evident at 7T and in case of highly directional WM areas such as CC, and less
relevant in areas of crossing fibers such as ACR. Indeed, number of black voxels is limited at
3T and concentrated in periventricular regions already in noisy images. As a result, denoising
just slightly improves the outcome. Conversely, number of degeneracies increases at UHF,
with arousal of artefactual signal dropouts likely related to magnetic field inhomogeneities.
Denoising contribution here is crucial in decreasing these implausible voxels, and NLSAM
outperforms Patch2Self at this task, also thanks to its blurring action. This higher spread
and amount of degeneracies at 7T may partly find an explanation in the lower number of
directions and b values at disposal to fit DKI model with respect to 3T, due to differences in
the acquisition protocol.

In the second part of current study, we moved to inspect variability of MK and KFA
measures from 3T to 7T accounting for the denoising method. Regions where denoising
does have an impact in determining variation of MK with respect to field intensity are those
more sensitive to susceptibility-induced background gradients, that is highly myelinated WM
areas such as CC, as well as GM regions rich in iron content as PUT, TH and PAL. In fact,
susceptibility gradients contributing to DKI metrics’ variation increase with increasing field
strength because of the iron- and myelin- related contribution to relaxation (R2) and magnetic
susceptibility of brain tissue (Gelman et al., 1999; Hametner et al., 2018; Möller et al., 2019).
This finding is in contrast with (Shaw et al., 2017), where MK had not a substantial field
dependence at conventional clinical field strengths (1.5 vs 3T). Indeed, mean difference
of this metric for the two field strengths was found to be just a few percent of the average
value, and the slopes of the best fit lines for the linear regression analysis close to unit. On
the contrary, this agrees with (Palombo et al., 2015), who revealed a significantly positive
correlation between MK and R∗

2 =
1

T ∗
2

at 3T. Concerning comparison of the two denoising
methods, once again it is stressed that their difference in performance is negligible at 3T
while getting relevant at 7T.
Regarding KFA, its variations from 3T to 7T seems independent from the denoising step.
Indeed, this metric inherently exhibits significant differences in its values with varying field
strength, insensitive to the application of denoising. KFA is by far the most variable metrics
also in term of denoising approach at both field strengths. This largest relative discrepancy
than other DKI metrics agrees with (Shaw et al., 2017), although exhibiting an inverse trend.
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Indeed, they found a modest field-dependent bias for this parameter, with a higher KFA at
1.5T than at 3T.
These partial conflicting findings with respect to the only previous work on quantitative
comparison of DKI metrics between 1.5T and 3T are mainly due to differences in acquisition
protocol, which is known to crucially determine downstream quantitative diffusion measures.
In brief, in our work acquisition sequences have been calibrated specifically to obtain the
best data quality possible from both field strengths, while in (Shaw et al., 2017) care was
taken to minimize protocol differences on 1.5 and 3T scanners.
Along with magnetic susceptibility, another possible cause for DKI parameters’ wider
variability than DTI ones may be due to higher-order diffusion signal model underlying
kurtosis tensor computation: it has largely been shown that effects of noise are greater
in estimation of the diffusional kurtosis compared to the diffusivity in both phantom and
human data (Jensen and Helpern, 2010). As a result, its definition as the second-order Taylor
expansion of the natural algorithm of the true magnitude of the diffusion weighted signal
might in part explain DKI susceptibility to other possible differences in scanners (gradient
stability, gradient cooling systems, bias field, SNR) and therefore to the wider observed
variations.

Take-Home Message

Denoising represents a crucial phase in the pre-processing pipeline of dMRI images, with
substantial impact on subsequent analysis steps. As a result, selecting the most suitable
denoising method for the kind of data in question is of utmost importance to ensure robustness,
accuracy and reproducibility of DKI estimates.

From the current work, the importance of adopting an accurate estimation of the noise
profile among all existing denoising methods comes to notice. Comparison of the two
chosen techniques acts as a case-study to show differentiated behaviour of different denoising
approach and their influence on later steps, such as extraction of model-derived parameters.

Most relevant factors to account for when choosing denoising method for dMRI are
microstructural model under analysis, computational efficiency, preservation of anatomical
details, consistency of microstructure model fitting, alleviation of degeneracies in model
estimation among the many. Specifically, Patch2Self method overall proves to be more
suitable for DKI model, starting from faster processing time of utmost importance in clinic.

In general, qualitative and quantitative assessment of DKI measures shows that denoising
performance improves with an increase in magnetic field strength. This may partly explain
why DKI metrics prove to vary more from 3T to 7T than from 1.5T to 3T. Moreover, DKI
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ability to provide additional information on the brain tissue microstructure compared to DTI
may be partially due to its sensitivity to susceptibility gradients as another possible source of
image contrast. This suggests that potential confounding effects due to adopted denoising
approach, T2 differences, susceptibility gradients and underlying diffusion model play a
relevant role at UHF.

9.3 Part III: Feasibility of advanced Diffusion Imaging in
neonatal clinical data

9.3.1 Diffusion Kurtosis Imaging of Neonatal Spinal Cord in clinical
routine

Once selected the optimal noise model on gold-standard adult data, we moved to its appli-
cation in pediatric clinical settings. Chapter 7 is focused on the first application of DKI
to neonatal SC through a pipeline able to perform complete processing within a clinically
acceptable time. As regards acquisition setting, we were able to perform a time-consuming
technique like DKI using a short diffusion sequence which minimizes patient’s physiological
motion, and which likely reflects a standard clinical scenario devoid of latest technologies in
terms of acquisition sequence optimization.
Among existing denoising strategies via magnitude data, thanks to its weak assumption about
noise properties to be suppressed, Patch2Self showed optimal performance in effectively
minimizing the detrimental bias introduced by Rician noise at higher b values. In turn, this
minimization reduces error estimates in tensors computation and subsequent derived metrics.
With regard to image processing, we opted for creating this pipeline using SCT since it
represents the only existing comprehensive, free, and open-source software dedicated to
the processing and analysis of SC multi-parametric MRI data. Adaptation of each image
processing tools already in use for adult subjects through appropriate tuning of parameters
allowed to successfully overcome all the issues mentioned in the Introduction section inherent
to imaging of SC and exacerbated in case of neonatal scans. We were thus able to quantify
diffusion measures within specific ROIs using an atlas-based approach, automatic and thus
highly reproducible, unbiased by the user experience and knowledge of the anatomy, and
much faster than long and tedious manual delineation of ROIs.
Present pipeline has been designed to fulfill specific requirements such as short acquisition
time and minimal modifications to routine protocol in use at the hosting center. As a result,
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any improvement in acquisition setup of our pipeline will bring to even stronger and more
comprehensive results. Major limitation of this procedure consists in basing on an adult
atlas, although being the only option available. Indeed, the exact location of tracts may
not perfectly correspond to neonatal images despite the good adjustment of registration
parameters. Moreover, due to short acquisition time dictated by clinical needs and to the
lack of specific spatially selective MR sequences, acquired scans are prone to noise and
artifacts. Partially borrowed from reference adult study (Panara et al., 2019), our acquisition
protocol has certainly room for improvement. For instance, rather than prioritizing voxel
size, reducing TE in favour of higher SNR and better contrast could be an option.
We acknowledge the protocol in use to be on the edge for HARDI schemes required by DKI.
However, this represents a first attempt to customize advanced dMRI acquisition setting
within a clinical routine protocol, already long in itself since made up of multiple MRI
sequences in order to increase diagnostic possibilities. Nevertheless, we appropriately ad-
dressed this issue at DKI tensor and measures computation phase to ensure reliability and
accuracy in their estimates.

After its design, we tested the pipeline in a group of neonates with PWMI, a form of mild
WM injury frequently diagnosed in preterm infants. Of note, several studies have showed
that greater lesion load of PWMI and the involvement of frontal WM are associated with
higher risk of adverse neurodevelopmental outcome, affecting both motor and cognitive
functions (Parodi et al., 2019). Moreover, periventricular WM lesions in preterm neonates
correlate with region-specific changes in MD, FA, RD, and AD in several cerebral WM tracts
that might explain the abnormal development of long-term neurological functions (Cheong
et al., 2009). Specifically, the involvement of pyramidal tract fibers in the periventricular
WM has been demonstrated to be a relevant factor for motor dysfunction in children with
PWMI (Staudt et al., 2003).
In our study, we found that microstructural changes can be detected by using an advanced
DKI analysis also in the GM and WM of cSC of preterm neonates with PWMI studied at
TEA, thus suggesting that DKI parameters could be used as markers to unravel underlying
subtle microstructural lesions. Moreover, our preliminary findings confirm the hypothesis
that in preterm neonates with PWMI WM microstructure alterations extend beyond the
immediate area of periventricular injury, widening distally also in the cSC (Bassi et al., 2011;
Tusor et al., 2017). Hence, these initial results agree with the corresponding adult survey
which served as a starting point for the research question addressed in this work. Indeed,
since FA is known to be an index of structural integrity (Hansen, 2019) and MSK a marker
of tissue microstructure complexity (Jensen et al., 2005), our findings suggest that, in case of
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overlying WM brain lesion, a loss of integrity and complexity is registered also in SC WM
tracts below with a more isotropic diffusion pattern due to disruption of WM tracts. Also
MD, AD and RD (Figure B.6) followed the same trend, with an increase in case of lesioned
subjects, as in (Panara et al., 2019). Hence the hypothesis that microstructural impairment of
SC could be related to distant lesions of cerebral WM, already verified for adults with stroke
lesions, would also subsist in infants with smaller prematurity-related WM lesions.

This study serves as a further evidence that added value of DKI is also found in pediatrics.
Results about feasibility of DTI and MSDKI analysis in neonatal SC with subjects collected
so far are preliminary but promising and demonstrate the clinical utility of combining DTI
and DKI in the characterization of spinal cord pathologies.
FA reduction parallel to MD increase in patients is an expected finding consistent with
existing literature and attributable to degeneration of diffusion barrier and loss of diffusion
directionality.
Our results suggest that, although yet underused in clinical studies, MSK metrics might have
an increased sensitivity in capturing alterations related to pathology, also far from the lesion
site. Such findings once again stress the importance of combining DTI and DKI metrics as
complementary sensitive biomarkers in order to fully exploit the potential of dMRI compared
to conventional MRI. Our results further hint that the presence of a WM lesion in the brain
might cause subsequent alterations not only in cSC WM but also in GM, as evidence of
the strong association between brain and spine. In this respect, resorting to DKI measures
becomes of utmost importance given kurtosis sensitivity to structural changes in isotropic
tissues such as GM. Indeed, range of variability of MSK metric from controls to PWMI was
overall higher in GM than that of corresponding DTI measures, and a considerable decrease
in case of PWMI was registered also in GM unlike for DTI-related parameters.
If FA and, more importantly, MSK measures appeared to be more sensitive to microstructural
changes related to pathology both in WM and GM, the same did not apply for WM/GM
tissue differentiation. Indeed, MD, AD and RD showed a lower value in GM with respect to
WM (including CSTs) for both control and patient group. Conversely, FA and MSK kept
comparable values for the two tissues. Since no other studies yet exist about dMRI on this
anatomical district in such age range, we had no ground-truth to compare our findings with.
However, we hypothesized that, in this cohort of early preterm subjects, WM and GM already
differ in terms of amount of diffusivity but yet still not of microstructural organization or of
complexity.
Indeed, higher density of cell nuclei in GM than in WM translates in a decreased amount
in diffusivity along all directions (mean, axial, radial). In GM, the presence of cell body
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contributes to create voluminosity in the environment, which turns into a more restricted
diffusion pattern. On the contrary, a parameter like FA, tightly dependent to GA and
strongly modulated by myelin growth, may not be yet particularly sensitive to differential
microstructure between WM and GM portions. The same happens for MSK, index of
microstructural complexity, related to brain maturation and supposedly not so different in SC
areas at this early stage.

Further analyses on a wider cohort of neonates are necessary to confirm these preliminary
results, possibly investigating also lower SC tracts, and extending to different clinical cases,
preferably focused on a determined pathology. For example, it would be interesting to explore
long-term correlations between DKI measures and specific clinical scores as done in (Panara
et al., 2019), where diffusion measures have been related to motor performance indexes.
A further step may be adapting this analysis pipeline to other promising higher-order diffusion
models requiring multi-shell acquisition such as NODDI.

Take-Home Message

In this work, we have showed how accurate adjustment and parameters’ tuning of processing
algorithms customized for adult SC opens up new horizons in exploiting increased ability of
advanced dMRI models, also in neonatal domain, where they had never been utilized before.
Indeed, even starting from low quality data acquired for diagnostic purposes and thus
suboptimal, we were able to extract from DKI information relevant for diagnosis.
The case study proposed in this work is just an example of the potential relapses of this
semi-automated pipeline, which paves the wave for applying advanced dMRI models to
neonatal setting in a wide range of potential clinical applications. In particular, the possibility
of successfully exploiting increased sensitivity and specificity inherent to DKI methodology
also into neonatal setting would indeed be extremely useful for throwing light on complex
diseases related to this critical phase of development and to deepen the knowledge about the
relationship between brain and SC at birth.

9.3.2 Data-driven characterization of Preterm Birth through intramodal
Diffusion MRI

After investigating preterm subjects in SC region, we opted for addressing such a hot topic in
neuroimaging as preterm birth from the brain’s perspective, with the additional novelty of
resorting to other models besides DKI. In the work from Chapter 8, based on observations that
integrating data from different MRI sequences enhances anatomic characterization (Ball et al.,
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2017; Kulikova et al., 2015; Thompson et al., 2019), we aimed at combining most popular
HARDI-based microstructural models to supplement the understanding of WM differentiation
in the preterm cohort for an early clinical diagnosis. Indeed, HARDI acquisitions potentially
allow to investigate neurodevelopment with a higher degree of sensistivity and earliness, yet
at the price of pitfalls in scanning vulnerable preterm infants. Of note, obtaining good quality
images is particularly challenging in this patient group primarily as motion-sensitive and
artifact-prone (Jones and Cercignani, 2010).
The first achievement of present work is thus the successful implementation of the overall
image processing pipeline able to fully investigate our cohort. This was possible thanks to
the setting of a suitable acquisition protocol, fine-tuned to the specific characteristic of infant
brain, supported by patient’s sedation, monitoring and fixation and resulting in high quality
images suitable for HARDI modelling. Another crucial role is played by preprocessing:
a dedicated workflow, whose denoising confirmed as an essential step, is here key for
subsequent analysis. However, compared to imaging of SC, the design of such a pipeline was
widely supported by the existence of software packages and imaging tools already specifically
conceived for the pediatric field. Through extensive assessment of data quality, essential to
guarantee reliability of images through combination of visual inspection of raw diffusion
data and software-based quality checks, this pipeline thus ensured successful application of
microstructural models as well as extraction of structural connectomes from the population
under analysis.

Moving to actual post-processing, the first tool we considered to investigate the fingerprint
of preterm subjects was TBSS. In fact, the analytic method of TBSS offers a number of
advantages over hypothesis-directed ROI analyses, in that it describes changes in WM
microstructure in a 3D image space. Furthermore, resorting to a population- and thus age-
specific template ensured good alignment of DT images and thus success of subsequent
analyses, given the vast variability of brain morphology at these early stages of development.
By using TBSS analysis of DT images, we demonstrated that both FA and non-FA values
can be useful measures to distinguish relevant WM tracts in preterm-born neonates at term
age from term-born controls. It was notable that there was a correspondence between the
distribution of areas with decreased FA and non-FA measures with an expansion of WM
discriminating areas over the main tracts especially in case of beyond-DTI measures.

This agrees with existing findings in literature claiming that: (i) WM maturation is
associated with increasing axonal organisation, pre-myelination and myelination, which
progressively restricts water diffusion perpendicular to the direction of the axonal fiber;
(ii) since premature birth may lead to relatively slow brain development in premature infants,



9.3 Part III: Feasibility of advanced Diffusion Imaging in neonatal clinical data 101

there are some brain regions that are less developed than the full-term infants. This includes
CC, ALIC, PLIC, and, more generally, all tracts subject to early myelination and thus whose
metabolism is vigorous and the oxygen demand is high, which makes these metabolically
active areas are the first to be damaged in case of risk factors for preterm birth (Ling et al.,
2013).
As regard DTI measures, lower FA has been found across the WM in preterm infants
compared with term-born infants (Anjari et al., 2007; Hüppi et al., 1998b; Pecheva et al.,
2018; Thompson et al., 2011), which correlated with increased prematurity (Ball et al., 2010;
Ouyang et al., 2019a; Partridge et al., 2004). Furthermore, WM diffusion measures in preterm
infants at TEA have been related to subsequent neurodevelopmental performance. Decreased
FA - together with increased MD and RD - in the WM at TEA are associated with worsened
motor, cognitive, and language performance in early childhood (Barnett et al., 2018; Counsell
et al., 2008) as well as visual function (Bassi et al., 2008; Groppo et al., 2014).
In (Zhao et al., 2021), kurtosis-related parameters, especially MK, showed to sensitively
reflect the brain maturity of premature infants. Decreased MK values were registered in the
preterm cohort due to the decreased density of cells and axon membranes associated with
impaired brain development.
Similarly, NODDI model has been applied to investigate WM and GM maturation in the
preterm brain (Batalle et al., 2017, 2019; Eaton-Rosen et al., 2015; Kimpton et al., 2021),
finding that ICVF increases in the WM with increasing maturation, mainly attributed to
increasing axonal growth/density/packing/diameter or pre-myelination/myelination changes,
rather than changes in axon coherence or geometry. Moreover, greater ICVF in childhood
has been associated with better neurodevelopmental outcomes, IQ (Kelly et al., 2016; Young
et al., 2019), visual motor integration (Young et al., 2019), motor/behavioural/emotional
scores (Kelly et al., 2016), language (Mürner-Lavanchy et al., 2018) and maths (Collins et al.,
2019).
Finally, although not previously investigated in case of preterm subjects, fa parameter derived
from FORECAST model falls among those measures exhibiting significant differences from
preterm to term-born infants, presumably because it is the equivalent of the DTI FA yet far
more sensitive to the underlying fiber microanatomy.

The second perspective from which we examined our cohort was an SVM-based approach
aimed at a more individualized classification method to overcome shortcomings of group-wise
investigations. The success of the SVM in assigning a preterm-born or control individual to
the correct group, based on a single MR image, indicates that the distinct brain development of
preterm-born individuals can be successfully identified by ML methods. Indeed, considering
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the law sample size at disposal, much inferior than the number of features (i.e., image
voxels), SVM classifier managed to handle the issue of overfitting and proved a good
performance both on FA skeletonised image, on which its model was designed, and on the
vast majority of non-FA measures. Specifically, together with FA from DTI, other scalar
parameters derived from DKI, NODDI and FORECAST exhibited good scores in terms
both of accuracy and, most importantly, of ROC - a more meaningful measure of classifier
performance than accuracy because it does not bias on size of test or evaluation data. Along
with good performance scores, the selected classifier also showed strong robustness (i.e.
limited variability across folds), another important indicator for model evaluation, assessing
its stability.

We then explored the relationship occurring between TBSS- and SVM- based methods,
with a view to assessing the degree of overlap between the two survey methods. The
observed negative Pearson’s correlation finds its explanation in considering that we compared
a significance map from voxel-wise statistics made up of thresholded p-values below 0.05 and
the map of SVM weight vectors serving as ranking metric for measuring feature importance
(Gaonkar and Davatzikos, 2013). As a result, those voxels exhibiting a lower p-value
correspondingly have a high ranking in the SVM model, which brings to the observed inverse
trend. Agreement between voxel features for the two methods is just partial, to reflect the
fact that a discrepancy actually exists between the two kinds of approach in voting WM
connections with discriminative ability. Indeed, as already explained in the Introduction to
this work, ML approaches have been entered neuroimaging field precisely to try to improve
data-driven extraction of knowledge about underlying biological correlates.

We are aware that both voxel-wise statistical methods and, in particular, ML approaches
benefit from large quantities of data. Consequently, one further step could be extending
the current dataset in order to further improve our findings and, possibly, introducing a
stratification based on patient’s diagnosis. Indeed, we hypothesise that greater potential of
ML classification may be useful to distinguish specific patterns of WM tracts also between
healthy and pathological subjects, not detectable with standard group-level methods. This is
a possible interesting development of current investigation, which could further highlight
benefit of ML-based approaches for neuroimaging. Another possible continuation of the
current survey could include structural connectome of our population to study the brain
functional maturation in preterm infants. Features extracted from connectomes could be
used as input both for the ML and for mathematical models to identify differences at the
level of functional connectivity between term/preterm or healthy/pathological subjects and
to investigate whether certain features of functional connectivity in preterm infants have
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predictive abilities on possible disorders in the long term. Moreover, given the multiplicity
of microstructural measures considered, it would be informative also to apply a Canonical
Correlation Approach (CCA) (Bilenko and Gallant, 2016), which focuses on finding linear
combinations that account for the most correlation in multiple datasets. This would help to
identify the inter-measure similarities among features typical of preterm birth.

Take-Home Message

Results gathered so far from this study revealed that an intramodal dMRI approach can
be a valuable tool to distinguish preterm and term-born infants regardless of the specific
diagnosis based on radiological findings. This differentiation is attained both through a
classical group-level survey tool such as TBSS and through a state-of-the-art approach based
on SVM classification achieving a high recognition rate. Furthermore, comparison of the
two methods shows a discrete agreement in selecting most discriminating WM regions,
mainly depending on the microstructural measure under consideration. Taken together, these
findings suggest that exploiting undisputed advantage of combining a ML-based procedure
with an intramodal HARDI approach can unparallelly supplement the understanding of
biological mechanisms underlying preterm birth providing precious biomarkers of long-term
developmental outcome. Further work should focus on investigating how well these results
generalize to data across centers and on what kind of improvements are needed, if any, to
reach the end goal of predicting, on an individual basis, the specific outcome of persons born
preterm.

9.4 Final Take-Home Message

Current work compensed in this dissertation serves as a proof-of-concept to demonstrate that
advanced dMRI microstructural models are feasible in a neonatal clinical setting, subject to an
accurate and dedicated preprocessing framework, requiring careful adaptation of algorithms
in use for adults and centered first of all on an efficient denoising, crucial to improve quality
of diagnostic images. By solving the problems posed by the sub-optimality of data from the
paediatric clinical environment, this work poses the basis for a wide adoption of advanced
diffusion imaging methods in the clinical activity, not only regarding the infant brain but also
regarding the SC district, where they had never been utilized before. Investigation of preterm
birth faced in our surveys is only an example of how combination of high-field scanners,
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beyond-DTI HARDI techniques, as well as ML-based analysis tools can give a relevant boost
in further elucidating the plethora of perinatal SNC abnormalities.
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Appendix A

Advanced Diffusion MRI microstructural
models

A.1 Neurite Orientation Dispersion and Density imaging

NODDI (Zhang et al., 2012) is currently the most popular among biophysical models. It
provides a sufficiently simple, yet complex enough model of diffusion MRI for estimating the
key features of neurite morphology in vivo on clinical MRI scanners. This model facilitates
mapping of neurite morphology and focuses on quantifying the altered architecture of these
multifaceted structures.
The proposed technique enables such mapping by combining a three-compartment tissue
model with a two-shell HARDI protocol optimized for clinical feasibility. Specifically, it
separates the signal arising from intra-cellular compartment, extra-cellular compartment and
CSF. Each of them affects water diffusion within the environment in a unique way and gives
rise to a separate normalized MR signal.
Specifically, the intra-cellular compartment refers to the space bounded by the membrane of
neurites. This space is modelled as a set of sticks, i.e., cylinders of zero radius, to capture the
highly restricted nature of diffusion perpendicular to neurites and unhindered diffusion along
the. The orientation distribution of sticks can range from highly parallel to highly dispersed.
The extra-cellular compartment refers to the space around the neurites, which is occupied by
various types of glial cells and, additionally in GM, cell bodies. In this space, the diffusion of
water molecules is hindered by the presence of neurites but not restricted, hence is modeled
with Gaussian anisotropic diffusion. The CSF compartment models the space occupied by
cerebrospinal fluid and is modeled as isotropic Gaussian diffusion.
Furthermore, to characterize the microstructure within a voxel, NODDI uses three scalar
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parameters: (i) Neurite Density Index (NDI), also called Intra Cellular Volume Fraction
(ICVF), estimating the density of neurites; (ii) Orientation Dispersion Index (ODI), defined
to characterize angular variation of neurites, reflecting the spatial configuration of the neurite
structures; and (iii) free water fraction or Isotropic Volume Fraction (ISOVF), quantifying
freely diffusing water from neural tissues with Gaussian diffusion.
The resulting indices of neurites have proven to relate more directly to and provide more
specific markers of brain tissue microstructure than standard indices from DTI, such as FA.
Specifically, NODDI provides sensible neurite density and orientation dispersion estimates,
thereby disentangling two key contributing factors to FA and enabling the analysis of each
factor individually.
The optimized protocol takes about 30 min to acquire, making it feasible for inclusion in a
typical clinical setting. Nevertheless, sampling fewer orientations in each shell can reduce the
acquisition time to just 10 min with minimal impact on the accuracy of the estimates. This
demonstrates the feasibility of NODDI even for the most time-sensitive clinical applications,
such as neonatal and dementia imaging.
By increasing specificity for certain clinically meaningful tissue properties, application of
NODDI in clinical research has mostly reported promising results for improving patient
stratification and prediction of neurological functions. In particular, given the key role neurite
morphology covers in terms of brain development, NODDI has opened new opportunities for
understanding neurodevelopment and disorders.

A.2 Multi-Shell Multi-Tissue Constrained Spherical Decon-
volution

MSMT CSD (Jeurissen et al., 2014) is a specific extension of Spherical Deconvolution (SD)
approach. SD is a particularly attractive HARDI method, which provides estimates of the full
fODF in each brain voxel, regardless of the number of underlying fibre orientations (Tournier
et al., 2004). It is based on the assumption that the dMRI signal originating from a single
voxel (made up of different fibre populations) is given by the spherical convolution of the
single response function (the dMRI signal profile for a typical fibre population) with the
fODF (the apparent density of fibres as a function of orientation). The unknown represented
by the fODF can thus be found by performing the deconvolution of the response function
from the measured dMRI signal.
However, SD operation is inherently ill-posed and susceptible to noise. To sort this out,
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CSD introduces a constraint to minimize the appearance of physically impossible negative
values in the reconstructed fODF. With this constraint, it becomes possible to perform the
SD operation with drastically reduced noise sensitivity, allowing reliable fODF estimates on
clinically feasible dMRI data (Tournier et al., 2007).
Despite the improvements provided by CSD, significant challenges persist. First, CSD
typically only supports data acquired with a single shell acquisition scheme -i.e., single
constant diffusion weighting, despite multi-shell data becoming more and more prevalent in
microstructural modelling. Furthermore, CSD can only provide high quality fODF estimates
in voxels containing WM only. Conversely, in voxels including other tissue types such as
GM and CSF, the WM response function may no longer be appropriate and SD produces
unreliable, noisy fODF estimates.
To this end, MSMT CSD approach is conceived as an extension of CSD to support multi-
shell dMRI data. Indeed, by exploiting the unique b value dependencies of the different
tissue types, it can estimate a multi-tissue ODF. Moreover, as MSMT-CSD includes separate
compartments for each tissue type, it can produce a map of the WM/GM/CSF volume
fractions directly from the dMRI data, which can serve as new quantitative metrics. In
addition, the more complete modelling of the dMRI signal results in more precise fibre
orientation estimates at the tissue interfaces, resulting in more accurate fibre tracking in large
parts of the brain compared to standard Single-Shell Single-Tissue CSD.

A.3 Fiber ORientation Estimated using Continuous Axially
Symmetric Tensors

FORECAST (Anderson, 2005; Kaden et al., 2016) is a simple, axially symmetric model
of diffusion in WM fibers used to relate diffusion measurements to fiber properties. This
method represents a good trade-off between a conventional, single tensor model of diffusion
and "model-free" high angular resolution methods.
This approach is based on the invariance property of diffusion signal: as long as the local
structure is axially symmetric - which is typically the case in nerve tissue - for a fixed b value
the spherical mean of the diffusion signal over the gradient directions does not depend on the
axon orientation distribution. This allows to disentangle the intrinsic fiber diffusivity from
the fiber orientation distribution and in turn to extract relevant markers of axon microgeom-
etry unaffected by fiber dispersion and crossing, which are ubiquitous in brain WM. This
translates in potentially improving the sensitivity and/or specificity to various neurological
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conditions.
FORECAST models the single fiber response within each voxel with an axially symmetric
tensor and exploits the mean of the signal to estimate the tensor parameters. Its associated
scalar indices are the crossing invariant version of tensor indices: the parallel diffusivity
(d_par), the perpendicular diffusivity (d_perp), the fractional anisotropy (fa) and the mean
diffusivity (md) in each voxel.
These quantitative maps of the voxel-averaged diffusion coefficients can be estimated in a
clinically feasible manner in vivo. Indeed, this method does not assume prior knowledge
about fibers’ orientation inside a voxel, neither normally requires complex gradient wave-
forms with multiple gradient pulses. It is instead able to recover microscopic diffusion
anisotropy resorting to a widely available pulse sequence featuring moderate levels of diffu-
sion weighting, which simplifies implementation and improves image quality compared to
very high diffusion weighting methods.
Factoring out the effects due to fiber dispersion and crossing in human WM, this technique
has proven to resolve crossing fibers better than other existing methods and also to address the
problem of partial volume averaging in DTI, providing a basis for more reliable estimates of
fiber orientation and fa. In contrast to DTI, it can discriminate changes in angular distribution
("coherence") from changes in fiber anisotropy, which potentially improves the sensitivity
and/or specificity of image-derived parameters for diseases that directly or indirectly affect
WM.
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Supplementary Material

Figure B.1 Violin plots of average AK over WM and GM ROIs at each field strength and
denoising approach with overlaid strip plots as a complement to show all observations along
with representation of the underlying distribution. In two-way ANOVA with Bonferroni
correction, upper ∗ indicates p ≤ 0.0056, (α

n , with n = 9) considering differences in the
denoising approach at fixed magnetic field. Conversely, lower ∗ indicates p ≤ 0.0056, (α

n ,
with n = 9) considering differences in the magnetic field within the same denoising method.
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Figure B.2 Violin plots of average RK over WM and GM ROIs at each field strength and
denoising approach with overlaid strip plots as a complement to show all observations along
with representation of the underlying distribution. In two-way ANOVA with Bonferroni
correction, upper ∗ indicates p ≤ 0.0056, (α

n , with n = 9) considering differences in the
denoising approach at fixed magnetic field. Conversely, lower ∗ indicates p ≤ 0.0056, (α

n ,
with n = 9) considering differences in the magnetic field within the same denoising method.

Figure B.3 Diffusion and kurtosis maps at the mid-C3 level for one example subject:
Units for MD, AD and RD are µm2/s, for MSK mm2/s, while FA is dimensionless.
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Figure B.4 Quality control: (A) Example of excluded DKI scan and (B) relative SC
segmentation show signal loss across multiple slices as the coronal plane is not overlapping
with the cord (ie: lordosis); (C) QC of C1-C4 levels: axial slices under analysis correspond
to the same cervical levels for all subjects as shown in three example subjects.

Figure B.5 Vertebral labeling: Manual labeling of top of C1 vertebra and C3-C4 disc from
graphical user interface integrated in SCT.
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Figure B.6 Extraction of diffusion measures within specific ROIs: Scatter plots of DTI
in group subjects across WM, GM and CSTs ROIs: coloured spots indicate single subject’s
value for each metric; as reported in the legend, controls’ measures are in blue, whereas
Periventricular White Matter Injury (PWMI) group’s in red. Units for MD, AD, RD are in
mm2/s. Error bars displaying mean (diamond) and standard deviation (bars) are overlaid on
scatter plots.
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Table B.1 Two-way non-parametric Scheirer-Ray-Hare output to assess the presence of
statistically significant differences in DTI- and MSDKI- derived metrics between patient and
control groups

Test of Between-Subjects Effects

Factor SS DF H p-value

MSK diagnosis 1299.6 1 5.8812 0.015303
ROI 402.71 2 1.8224 0.40203

diagnosis*ROI 46.229 2 0.20921 0.90068
residuals 9300 45 NaN NaN

FA diagnosis 0.019676 1 8.9043e-05 0.99247
ROI 194.94 2 0.88221 0.64333

diagnosis*ROI 56.327 2 0.25491 0.88033
residuals 10797 45 NaN NaN

MD diagnosis 33.075 1 0.14968 0.69884
ROI 874.94 2 3.9595 0.1381

diagnosis*ROI 19.05 2 0.086209 0.95781
residuals 10121 45 NaN NaN

AD diagnosis 12.297 1 0.055652 0.8135
ROI 627.29 2 2.8388 0.24186

diagnosis*ROI 12.197 2 0.055196 0.9728
residuals 10397 45 NaN NaN

RD diagnosis 68.492 1 0.30996 0.5777
ROI 1043.3 2 4.7214 0.094353

diagnosis*ROI 16.863 2 0.076315 0.96256
residuals 9919.9 45 NaN NaN

*SS=Sum of Squares; DF=Degrees of Freedom; H= Test Statistics
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Table B.2 Mann-Whitney U Test (Wilcoxon rank-sum test) as non-parametric version of the
independent T-test for pairwise post-hoc comparisons between patient and control group
within each ROI, limited to MSK and FA - the two variables of interest for this study

Multiple Comparisons of means

ROI U-val RBC CLES p-value

MSK WM 48.5 -0.347222 0.673611 0.247923
GM 49.5 -0.375 0.6875 0.210682

CSTs 55.5 -0.541667 0.770833 0.06734

FA WM 35.5 0.013889 0.493056 1
GM 39.5 -0.097222 0.548611 0.772694

CSTs 34.5 0.041667 0.479167 0.923295

*ROI=Region of Interest; WM=White Matter; GM= Gray Matter;
U-val=U-value; RBC=Rank-Biserial Correlation; CLES= Common Language Effect Size
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Figure B.7 Structural Connectome pipeline: overview of the main steps necessary for
building structural connectomes: from generation of an infant-specific 5-Tissue-Type (5TT)
segmented image, to Anatomically-Constrained Tractography (ACT), filtered with spherical-
deconvolution informed filtering of tractograms (SIFT2) to further improve the estimation of
streamlines, up to resulting structural connectome and relative connectivity matrix.

Figure B.8 Exemplary connectivity matrices for two representative subjects: (A) struc-
tural connectivity matrix for a 30 weeks PMA preterm subject and (B) for a 41 weeks PMA
term-born control, both weighted by the number of streamlines connecting two parcels.
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Figure B.9 Population-specific DTI template: lightbox displaying axial views of the
age-specific template created ad-hoc for performing normalization of DTI volumes within
DTITK and subsequent WM skeleton creation within TBSS.
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