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Abstract

This thesis proposes Object (b)logging, a novel general approach for a Se-
mantic Web of Things, based on an evolution of conventional Web of Things
paradigms and introducing ubiquitous Knowledge Base KB models in order
to associate semantic annotations to real-world objects and events. Object
(b)logging represents the capability of an object to describe itself and its
context in a fully automated fashion starting from raw environmental data
collected by sensors.

The overall goal is to define a knowledge-based framework for high-level
information representation, knowledge discovery, allotment and sharing in
distributed scenarios populated by smart objects. Smart object is an in-
telligent agent equipped with embedded sensors, actuators, communication
interfaces, computation and storage. Several heterogeneous micro-devices
cooperate to connote and modify appropriately the state of the surrounding
environment.

By leveraging the integration of standard machine learning techniques
with non-standard semantic-based reasoning services, the dissertation defines
software architectures and methods to enable efficient automated context an-
notation on resource-constrained mobile computing devices and to progres-
sively improve produced descriptions during the object’s lifetime. Through-
out the objects lifetime, the acquired knowledge is exposed to the outside
world as in a blog: to achieve this, the proposal includes a layered architec-
ture built on a publish/subscribe Message Oriented Middleware.

A novel collaborative and distributed information sharing approach is
enabled in pervasive computing scenarios featured by volatile nodes inter-
acting in an opportunistic fashion. It is based on the ubiquitous KB (u-KB)
paradigm, which allows to manage in a decentralized way knowledge scat-
tered on several nodes within a network. Semantic matchmaking is exploited
to support dynamic and flexible knowledge discovery.

The various elements of the framework were implemented in suitable pro-
totypical testbeds and experimental analysis was carried out with reference
to selected case studies. Results indicate the feasibility and usefulness of the
envisioned approach.



Chapter 1

Introduction

The Internet of Things (IoT) vision is increasingly enabled by the minia-
turization of microelectronic devices, enabling the deployment of a relatively
large number of heterogeneous micro-components capable of storing and ex-
changing not-negligible amounts of information. A significant limitation of
current IoT lies in a limited compatibility of devices and software stacks
from different manufacturers. This forces the design of single-purpose ob-
ject networks and solutions, impairing a wider usefulness of the technology.
The relevance and the interoperability of the IoT could be enhanced by em-
bedding semantically rich and easily accessible information into the physical
world. This visionhas been called Semantic Web of Things (SWoT) [62] as
the join between the Semantic Web and the Internet of Things paradigms.
The SWoT improves intelligence of embedded objects and autonomic infor-
mation management in pervasive contexts, in order to better support user
activities and provide general-purpose innovative services.

In pervasive computing , information is scattered in a given environment
in the form of atoms which deeply permeate the context [23]. Heterogeneous
data streams are continuously retrieved and locally processed by mobile ad-
hoc networks of smart objects dipped in the environment, in order to detect
events of interest in observed areas. A smart object [5] is an intelligent
software agent acting on a device equipped with embedded sensors, actuators,
communication ports as well as (usually constrained) computation, storage
and energy resources. Each smart object describes itself and the context
where it operates toward a variety of external devices and IoT applications.
However, the existing approaches defined for smart objects use data mining
methods and adopt architectures designed for single applications. In order to
improve flexibility and interoperability, Semantic Web standard technologies
[11] can be adopted for rich and unambiguous semantic-based information
exchange. The essential benefit for smart entities concerns the integration of
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Knowledge Representation and Reasoning (KRR) capabilities into objects to
automatically extract and process implicit useful information starting from
explicit event and context detection.

This work proposes a novel semantic-based framework is proposed for
high-level knowledge representation, discovery and sharing within smart ob-
ject networks in the Semantic Web of Things. By leveraging the integration
of standard supervised Machine Learning (ML) techniques with non-standard
semantic-based inference services [61] on annotations in Semantic Web lan-
guages, smart objects become able to annotate in a fully automatic way
the context they are in, continuously enriching their basic descriptive core
according to events and phenomena they detect and exposing their descrip-
tion toward the rest of the world in a self-contained fashion as in a blog.
Identification and sensing information are expressed in Web Ontology Lan-
guage (OWL 2) annotations [77] via a semantic-based evolution of standard
k Nearest Neighbors (k-NN) ML algorithm.

The proposed approach relies on both ideas and technologies of dis-
tributed knowledge-based systems [62], whose individuals (assertional knowl-
edge) are physically tied to locations and objects disseminated in a given en-
vironment, without centralized coordination. For knowledge sharing in smart
object networks, the proposed framework exploits the publish/subscribe (pub/
sub) Message-Oriented Middleware (MOM) architectural model for intercon-
necting distributed components. In order to enable a dynamic knowledge
discovery, the proposal adds two semantic enhancement layers. In detail,
the topmost layer leverages standard and non-standard inference services for
semantic matchmaking to support dynamic logic-based discovery of topics
associated to services/resources characterized by semantic annotations. This
enables a fine-grained categorization and ranking of resources matching a re-
quest by integrating an optimized Description Logic (DL) reasoner for mobile
and embedded devices [70]. The middle layer is a distributed collaborative
protocol used to collect fragments of the vocabulary ontology needed to an-
notate resources disseminated among the devices in an environment. It is
responsible for rebuilding a minimal ontology core needed in order to sup-
port inference procedures on a particular set of semantic annotations. As
ontologies can be large and Semantic Web languages use the verbose XML
syntax, both compression and ontology partitioning are needed. The thesis
defines a novel scheme for reconstructing partitioned ontologies. It seeks a
practical trade-off between the size of individual ontology fragments managed
by devices and the number of message exchanges required for on-the-fly re-
assembly. This layer implements a ubiquitous KB (u-KB) [62] model, where
a node of the distributed system endowed with a reasoner fetches on the fly
all and only the KB parts required for the current inference problem. Finally,
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the lowest layer is an off-the-shelf message-oriented middleware based on the
publish-subscribe model. It provides services for real-time data distribution
among loosely-coupled components to support functionalities of the higher
layers. The main goal of the overall dissertation is to achieve objects co-
operation for triggering actions or making interventions on the environment
according to the detected context.

The proposed approach results in a general-purpose, cross-domain semantic-
based context mining, knowledge discovery and sharing facility among perva-
sive smart devices. In order to evaluate the usefulness of the proposed frame-
work in a real scenario, the theoretical approach has been implemented in a
prototypical testbed exploiting several robotic platforms. The thesis makes
every object involved in the scenario able to summarize the information gath-
ered via its sensing interfaces into a semantically annotated description of the
environment and relevant entities in it. Furthermore, robots can interact and
communicate with each other by leveraging the proposed knowledge sharing
approach which integrates BEE Data Distribution System (BEE-DDS) 1.

A prototype was implemented and tested in a simulation campaign, ba-
sically devoted to assess its feasibility, correctness and sustainability. Per-
formance evaluation was carried out with reference to selected case studies,
evidencing strengths and weaknesses of the approach.

The remainder of this thesis is organized as in what follows. Chapter 2
recalls the technological background for the research and provides a survey of
related work. Chapter 3 discusses the proposed framework in detail. Chapter
4 describes the implemented software protypes and presents experimental
results by considering illustrative case studies to allow a better understanding
of the dissertation. Finally, Chapter 5 closes the thesis.

1BEE Data Distribuition System, http://sine.ni.com/nips/cds/view/p/lang/it/
nid/211025
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Chapter 2

Background

This chapter presents an overview of the state of the art regarding the Seman-
tic Web of Things technologies adopted in ubiquitous and pervasive contexts
where several heterogeneous mobile micro-devices sense their physical envi-
ronment and adapt their behavior accordingly. Afterwards, generalities are
recalled about the tools adopted in the proposed approach: Knowledge-based
systems, Machine Learning algorithms, Description Logics and semantic-
based matchmaking, and inter-node communication platforms.

2.1 Pervasive computing: context and smart

objects

Pervasive computing [66] is based on the growing adoption of mobile devices.
The father of the ubiquitous computing philosophy is Mark Weiser, scientific
director of technological research at Xerox PARK. In [79], he announced a
change in the way of conceiving the automatic information processing and de-
scribed scenarios where computers are ubiquitous and increasingly become
part of everyday life. The main goal of pervasive computing is to create
ambient intelligence where network devices embedded in the environment
cooperatively and autonomously collect, process and transport information,
in order to adapt to the associated context and people’s activities, providing
unobtrusive connectivity and services all the time. The key features charac-
terizing the pervasive computing are:

• ubiquity : the system interaction is available everywhere;

• embedding : electronic computing components are integrated into ev-
eryday objects in order to transform them into smart objects;
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• miniaturization: the hardware units are manufactured as ever smaller
mechanical, optical and electronic devices;

• context-awareness : software architecture for pervasive scenarios must
to be able to perceive the context;

• self-adaptation: the system adapt its behavior accordingly to the de-
tected context.

The definition of context is provided by Dey and Abowd in [2]:
“Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves.”

Context adaptation stresses the challenge of making software architecture
modular and configurable at run-time for both functional and non-functional
logic components in order to confer flexibility in all the possible operating
contexts. The capability of creating modular and reconfigurable software at
runtime dramatically simplifies the design of pervasive applications.

Context representation is a fundamental aspect in pervasive computer
systems where a bottom-up approach is exploited starting from sensor data
representing aspects of the physical environment [25]. Data streams coming
from heterogeneous sensors are inherently imprecise and inaccurate, noisy,
with different sampling rates and complex - often implicit - correlations with
each other.

In this work a combination of Semantic Web technologies is used to sup-
port storage, representation, exchange, manipulation and programming with
sensor data. [81] highlights the benefits arising from Semantic Web technolo-
gies in pervasive computing. In particular, they facilitate the unambiguous
sharing and understanding of domain knowledge across heterogeneous and
distributed systems. The most relevant and widely used model for provid-
ing high-level abstraction of sensor data is the World Wide Web Consortium
(W3C) Semantic Sensor Networks (SSN) ontology [20]. It is based on an ex-
tension and integration of different works in literature: CESN ontology [16],
OntoSensor (a prototype sensor knowledge repository) [59], a service-oriented
ontology for Wireless Sensor Networks [43] and ontologies for sensor networks
describing the topology, network settings, sensor properties, dataflow and
sensor network performance [41, 27]

Recent challenges in pervasive scenarios concern connecting heteroge-
neous domains with each other and interpreting sensor data in an inter-
operable manner. Four types of interoperability are defined in [9]:
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• technical interoperability, associated with hardware/software compo-
nents;

• syntactical interoperability, related to data formats. This aspect un-
derlines the need to agree on common well-defined syntax, encoding
and vocabularies in order to describe data;

• semantic interoperability, associated with the machine interpretation
and meaning of the content;

• organizational interoperability, related to heterogeneity of the different
infrastructures involved.

Several application areas adopt pervasive computing paradigms in order
to connect the physical world with the virtual world. They include: track-
ing goods along the entire supply chain, analyzing traffic through assistance
systems, averting and fighting external threats in military sector, health mon-
itoring for the elderly, configuring and controlling decentralized production
systems automatically, selling products in business transactions, exchanging
information among home devices, appliances and subsystems (smart homes),
environmental monitoring and many others.

For all these application fields, the purpose is to meet the claim of “every-
thing, always, everywhere” for data processing and dissemination through the
ubiquity of embedded processors, computers, sensors and digital communi-
cation technologies as inexpensive commodities permeating the environment.

Pervasive computing environments are permeated and flooded by intelli-
gent entities called smart objects. A smart object [76] is an intelligent soft-
ware agent acting on behalf of a device, equipped with embedded sensors,
actuators, communication ports as well as computation and storage facili-
ties. It is able to retrieve a set of external data streams and can adapt itself
accordingly and/or act on the surrounding environment in order to modify
it. An agent is defined intelligent if it is capable to make rational decisions,
i.e., it is designed to maximize a metric of utility according to its objectives
[58]. Figure 2.1 illustrates the general scheme underlying the smart object
self-description mechanism.

Three basic kinds of information are managed:

• Environmental data: a description of the context where the object
operates, according to data collected through a sensor set;
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Smart agent

Environment 

Perceptions

Operations

Device

Context ConstraintsCapabilities

Smart 
object

Figure2.1:Smartobjectdescriptions

•Capabilities:smartobjectsensingandactuationfeatures;

•Constraints:limitsandfeaturesimposedbyotherentitiesandinflu-
encingthesmartobject’sbehavior.

Intheproposedobject(b)loggingapproach,thisinformationissemantically
annotatedwithreferencetoanontology,i.e.,anappropriatevocabularyused
toprovideasharedconceptualizationofacertaindomainofinterest. De-
scriptionsarebasedonthedescriptivecoreofasmartobject;throughoutthe
object’slifetime,thissemanticendowmentisprogressivelyenrichedandcom-
pletedsothatitcanbeexposedtotheoutsideworldasinablog.Viablog
entries(“posts”),objectscaninteractattheapplicationlayerwithhumans
andotherenititesinordertocreateanefficientactivesocialnetworkwhere
allnodesareabletoexchangeinformation,discovernewservices,startnew
acquaintances,connecttoexternalservices,shareknowledge,exploitother
objects’capabilitiesandcollaboratetowardacommongoal[5].
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Figure2.2:GPSNEO-6Gu-blox

2.2 Hardwareplatforms

Almostallpervasivecomputingapplicationsleveragevarioushardwaretech-
nologiesinordertorealizeintelligentandinteractiveenvironments. Mi-
croeletronicsisessentialformobilityandembeddednessinthisarea. The
followingsubsectionsdiscussthearrayoftechnologicalhardwaresolutions
adoptedinthisworktobuildpervasivecomputingframeworks.

2.2.1 Sensors

Themaincharacteristicsofsmartobjectsoperatingintopervasivecontexts
istocaptureandanalyzethesurroundingenvironmentbyexploitingsensing
devices.Objectsensingcapabilitiesquantitativelyandqualitativelyregister
thefeaturesoftheenvironmentconsideringdifferentaspects,rangingfrom
positioningandorientation,localization,ambientdetection,tomanyothers.
Embeddedsensordevelopmentincludesseveralchallenges:sizeandweight
reduction,decreaseinpowerconsumption,thedevelopmentoflower-costpro-
ductiontechnologies,integrationintocomplexsemiconductorsystemsand
increaseinsensorperformanceandreliability. Newapproacheshavebeen
definedinnanotechnologyfortherealizationofsmallerandmoresensitive
sensorelements. Differenttypesofsensorsneededtoacquiredataarepre-
sentedbelow.

Positionandorientationsensors

Positionandorientationsensorsareusedforperceivingthelocationoccupied
inspaceandtheinertialalignmentofaspecificentity.
GPS(GlobalPositioningSystem):usedtodeterminetheabsoluteposi-
tiononEarthofthedevice.Itprocessesradiosignalsreceivedfromaconstel-
lationof24satellitesplacedintoorbitbytheU.S.DepartmentofDefense
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Figure 2.3: MPU-6050 (GY-521) contains both a 3-Axis Gyroscope and a
3-Axis accelerometer

1 on which the system is based and carries out the necessary calculations
in order to deduce its location. A GPS module2 for microcontrollers and
microcomputers is shown in Figure 2.2.
Accelerometer: measures the inertia of a mass when it is subjected to an
acceleration on one of the three axes.
Gyroscope: allows to maintain the axis of rotation in a fixed position ac-
cording to the conservation of angular momentum and is useful for measuring
or maintaining orientation of the device.
Usually accelerometer and gyroscope are assembled in a single module in
order to reduce costs by improving the compactness. The board3 shown in
Figure 2.3 integrates both sensors to an Arduino microcontroller.

Remote sensing

The devices able to graphically map the characteristics of the environment
belong to the category of sensors for remote sensing.
Camera: used for recording images during the exploration of the environ-
ment. Generally it is featured in an Unmanned Aerial Vehicle (UAV) for
photo shooting, placed in a special self-stabilized structure (the gimbal; Fig-
ure 2.4 shows an example4), in order to obtain a sharp image.
Lidar (Light Detection And Ranging): laser scanning useful for the
navigation and the obstacle detection in autonomous vehicle. It measures
the distance to a target by illuminating it with a ultraviolet, visible, or near

1NAVSTAR GPS, NAVigation Satellite Timing And Ranging Global Positioning Sys-
tem, http://www.gps.gov/

2https://www.u-blox.com/sites/default/files/products/documents/NEO-6_

DataSheet_(GPS.G6-HW-09005).pdf
3https://www.cdiweb.com/datasheets/invensense/PS-MPU-6000A.pdf
4http://www.tarot-rc.com/index.php?main_page=product_info&cPath=65_96&

products_id=1525
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Figure 2.4: Tarot - 2 axes Gimbal GoPro H3

Figure 2.5: LIDAR - Lite Laser Rangefinder [RB-Pli-01]

infrared laser light. The LIDAR-Lite Laser Rangefinder5 is shown in Figure
2.5.
Radar (RAdio Detection And Ranging): like lidar sensors, it is used for
autonomous robot navigation with obstacle avoidance. Radar is an object
detection system which exploits radio waves to determine the range, angle,
or velocity of targets. Figure 2.6 displays the Doppler radar sensor6.

Environmental sensors

The sensors inherent to this category are capable of detecting the environ-
mental conditions of the monitored area.
Temperature and humidity sensors: observe the temperature and hu-
midity levels featuring the tracked area. A sensor for temperature and hu-

5http://www.robotshop.com/media/files/pdf/rb-pli-01-datasheet.pdf
6https://www.parallax.com/sites/default/files/downloads/

32213-X-BandMotionDetector-v1.1_0.pdf
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Figure2.6:DopplerXbandRadardetectorsensormodule

Figure2.7:Grove-TemperatureandHumiditySensor

Figure2.8:Grove-AirQualitySensor

Figure2.9:Grove-LightSensor
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Figure 2.10: Grove - Dust Sensor

midity detection7 is presented in Figure 2.7: powered with voltages between
3.3 V and 6 V, it is able to detect moisture rates ranging from 5% to 99%
and temperatures ranging between −40◦C and +80◦C.
Air quality control sensor: measures the toxic gases concentration in the
air. Figure 2.8 illustrates a sensor8 capable of detecting smoke, volatile hy-
drocarbons and other gaseous chemical compounds.
Light sensor: outputs a voltage or current proportional to the light inten-
sity in the environment. Figure 2.9 shows a photoresistor9 powered with a
voltage between 3 V and 5 V.
Dust sensor: is able to provide information on the air quality related to the
amount of particulate. An example10 is depicted in Figure 2.10.
Barometer sensor: detects the atmospheric pressure of the monitored en-
vironment. Commercially available components often integrate barometer
and thermometer, as the example11 shown in Figure 2.11, with I2C (Inter-
Integrated Circuit) connection.
Digital airspeed sensor: used for the detection of the air speed around an
aircraft, it is particularly useful in conditions of strong wind or slow flight, as
it enables self-stabilization of the aircraft. Figure 2.12 displays an airspeed
sensor12 usable with different microcontrollers.

Tracking sensors

Technologies to automatically identify and track transponders (a.k.a. tags)
attached to objects belong to this sensor category.
Radio-Frequency IDentification (RFID): uses electromagnetic fields to

7http://www.seeedstudio.com/wiki/Grove_-_Temperature_and_Humidity_

Sensor
8http://www.seeedstudio.com/wiki/Grove_-_Air_Quality_Sensor
9http://www.seeedstudio.com/wiki/Grove_-_Light_Sensor

10http://www.seeedstudio.com/wiki/Grove_-_Dust_Sensor
11http://www.seeedstudio.com/wiki/Grove_-_Barometer_Sensor
12https://www.nxp.com/files/sensors/doc/data_sheet/MPXV7002.pdf
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Figure 2.11: Grove - Barometer Sensor

Figure 2.12: Digital Airspeed Sensor

improve automatic environment recognition capabilities. An RFID system
consists of two essential components: (i) tags associated with objects; (ii)
the tag reading or writing data in its memory. Figure 2.13 shows an example
of RFID system used to track clothes.
Near Field Communication (NFC): small subset of the many standard-
ized RFID technologies. In particular, NFC belongs to the family of High
Frequency technologies, operating at a frequency of 13.56 MHz. Figure 2.14
shows a NFC tag.

Figure 2.13: RFID system
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Figure 2.14: NFC tag

2.2.2 Actuators

According to the monitored and detected context, a smart object must be
able to dynamically perform a corresponding adaptation of its behaviour
and act on the surrounding environment in order to suitably modify it by ex-
ploiting reaction and enforcement capabilities. This is achieved by the use of
specific components called actuators. An actuator is a hardware device able
to convert a controller command signal into a change in a physical parameter.
The triggered change is usually mechanical (i.e., position or velocity). An ac-
tuator is typically activated by a low-power command signal, so an amplifier
may be required to provide sufficient power to drive the actuator. Various
forms of actuators are available in order to meet particular requirements of
process control. They can be classified into three main categories, presented
below.

Electrical actuators

Examples of electrical actuators are switching devices such as diodes, tran-
sistors, triacs and relays. They are fed by a low-energy command signal
generated by the controller; based on this input, they switch on or off or
modulate associated electrical devices such as motors, valves, and heating
elements.
Relay: used to control a circuit e.g., for powering a remote lamp. The relay
module13 shown in Figure 2.15 is powered by 220 V and 10 A.
Electric motor: according to the received signal, drives another device,
regulates speed, varies rotation direction or axis position. Figure 2.16 shows
a direct current (DC) servomotor14.

13Datasheet: http://www.microbot.it/documents/mr009-001_datasheet.pdf
14https://inverterdrive.com/file/RS-Servo-Motor-Manual
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Figure 2.15: Relay module MR009-001.1

Figure 2.16: Parvex DC servo motor with encoder

Hydraulic actuators

An hydraulic actuator consists of a cylinder or fluid motor which uses hy-
draulic power to amplify the controller command signal.
Hydraulic cylinder: allows to transform the hydraulic energy, generated
by a motor pump, into mechanical energy to achieve a linear force capable of
moving a load. Hydraulic cylinders are employed in various applications such
as weirs, dams, hydroelectric power stations, antiseismic systems, hydraulic
cranes, aerial work platforms, compactors, drilling machines, tunnels, steer-
ing systems and many others. Figure 2.17 illustrates a hydraulic cylinder15

with working pressure up to 210 bar.

Pneumatic actuators

A pneumatic actuator converts energy formed by compressed air at high
pressure into either linear or rotary motion.
Rotary actuator: produces a rotary motion or torque. These actuators are
generally installed on mechanical arms for industrial applications. In Figure
2.18 a rotary actuator16 is presented.

15http://ph.parker.com/it/it/hydraulic-cylinders-210-bar-2-h-series
16http://www.airwork.it/media/pdf/movement/attuatori-pneumatici-rotanti.

pdf
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Figure 2.17: Parker hydraulic cylinder

Figure 2.18: Airwork’s rotary actuator

2.2.3 Computing boards

A computing board is a complete computing platform built on a circuit
board, endowed with microprocessor(s), storage, communication interfaces,
input/output (I/O) channels and other features required for a standard func-
tional calculator. Computing boards are characterized by several features
that make them perfectly suitable for pervasive contexts:

• portability;

• low power consumption;

• cost effectiveness;

• versatility;

• compatibility.

The most relevant commercially available computing board solutions are an-
alyzed hereafter.
Arduino: Arduino17 is an open-source electronics platform employed in
thousands of different projects and applications. It is a low-cost platform
featured by limited computational resources. Figure 2.19 shows Arduino
Due18 microcontroller board. It is based on a 32-bit ARM Cortex M3 core

17https://www.arduino.cc/
18https://www.arduino.cc/en/Main/ArduinoBoardDue
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Figure 2.19: Arduino Due board

Figure 2.20: Raspberry Pi 2 Model B

microcontroller with 84 MHz clock frequency, 96 KB SRAM and 512 KB of
Flash memory. It has 54 digital input/output pins (of which 12 can be used as
Pulse-Width Modulation (PWM) outputs), 12 analog inputs, 4 UARTs (Uni-
versal Asynchronous Receiver-Transmitter hardware serial ports), an USB
OTG capable connection, 2 DAC (digital to analog) outputs, 2 TWI (Two
Wire Interface) pins for supporting the communication with TWI devices, a
power jack, an SPI (Serial Peripheral Interface) header for support SPI com-
munication using the SPI library, a JTAG (Joint Test Action Group) header
for support the communication with devices implementing JTAG standards,
a reset button and an erase button. There are several Arduino boards in
different formats and configurations, and also there are components (called
shield) providing sensors, actuators and communication interfaces that can
be easily integrated into the Arduino board.
Raspberry Pi: Raspberry Pi19 is a credit-card-sized single board computer
developed by the UK based Raspberry Pi Foundation. It has a slightly higher
cost but more superior computational resources with respect to Arduino

19https://www.raspberrypi.org/about/
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Figure 2.21: UDOO Quad

board and, for these reasons, it has become very popular among single-board
computers for fast prototyping projects. Figure 2.20 illustrates Raspberry
Pi 2 Model B20. It runs Linux on a 900 MHz quad-core ARM Cortex A7
processor, has 4 USB ports to connect peripherals HDMI and/or RCAvideo
output, MicroSD card slot for mass storage and an Ethernet port.
UDOO: UDOO21 is a family of open-source single board computers with
the Android/Linux programming in order to create a functional all-in-one
embedded system. Figure 2.21 presents the UDOO Quad22 board. It is
equipped with NXP i.MX 6 ARM Cortex A9 quad core CPU at 1 GHz clock
frequency, 1GB DDR3 RAM, a 10/100/1000 Ethernet jack, a WiFi module,
2 Micro USB, 2 USB type A and one USB connector, a HDMI port, an on
board MicroSD card reader and 76 fully available GPIO pins (62 digital and
14 digital/analog).

2.2.4 Robots

Smart objects can often be characterized as robotic agents driven by a com-
puter program. In general, the word ‘robot’ refers to a programmable, multi-
functional manipulator designed to perform a variety of tasks through various
programmed motions [45].

Robotics has a strong impact in supporting a wide range of applications

20https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
21http://www.udoo.org/
22http://shop.udoo.org/eu/quad-dual/udoo-quad.html?___from_store\

unhbox\voidb@x\bgroup\let\unhbox\voidb@x\setbox\@tempboxa\hbox{u\global\

mathchardef\accent@spacefactor\spacefactor}\accent22u\egroup\spacefactor\

accent@spacefactorsa&popup=no
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Figure 2.22: TRP2-FOB - created by Finmeccanica Company

including manufacturing, exploration, military tasks, healthcare, entertain-
ment, and many others. In all these application areas, robots are used to
help or even replace human operators in repetitive and boring jobs (e.g.,
in automated production processes such as assembly lines) or in more com-
plex tasks requiring speed, strength and/or precision beyond physical human
capabilities or hazardous environments (e.g., in the presence of toxic sub-
stances, radioactivity, in the absence of oxygen, in underwater environments,
in minefields, in inaccessible environment as a result of disasters, earthquakes,
accidents or terrorist attacks, etc).

Many different forms of robots have been designed and developed such
as drones, landers, rovers, atmospheric probes and robot arms. Specifically,
three different types of robotic entities have been considered as natural smart
object candidates within the vision proposed in this thesis: (i) unmanned
ground vehicle (UGV - Figure 2.22 shows an example23), (ii) unmanned aerial
vehicle (UAV - an example24 is depicted inFigure 2.23) and (iii) unmanned
underwater vehicle (UUV - Figure 2.24 displays an instance25). The specific
form chosen during robot design is directly affected by the tasks it must per-
form and the characteristics of the environment in which it will operate. An
important connotation whereby robots can be classified regards the level of
autonomy they must prove [34]. Autonomy means the ability to work in dy-
namic and unstructured environments without requiring continuous human

23http://www.leonardocompany.com/documents/63265270/66967378/body_TRP2_

combat_2013_REV01.pdf
24http://www.ga-asi.com/Websites/gaasi/images/products/aircraft_systems/

pdf/PredatorXP021915.pdf
25http://saab.com/naval/underwater-systems/autonomous-underwater-vehicles/

double_eagle_sarov/
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Figure 2.23: Predator XP - created by General Atomics Aeronautical Systems

Figure 2.24: AUV/ROV HYBRID Double Eagle SAROV - created by Saab

intervention. In such environments many specific operating conditions are
not known in advance, forcing the robot or any autonomous system to be
able to detect the relevant features of the current situation and to trigger
actions or make interventions accordingly.

Autonomy is defined as the ability of a robot to perceive, plan and act
without external control [10]. In [28], the authors assess robot autonomy by
taking into account four generic functions:

• monitoring: scanning through sensors;

• development: formulation of options or strategies to achieve specific
aims;

• selection: decision about an option or strategy;
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• implementation: execution of a chosen option.

Their classification establishes ten levels of autonomy, ranging from manual
control to full automation. By increasing the degree of robot autonomy, its
skills improve in terms of:

• exception handling, i.e., the ability of reacting to unforeseen events
minimizing the damages;

• management of ambiguous or contradictory perceptions;

• importance recognition with reference to various aspects of a situation;

• identification of similar aspects among different situations and, vice
versa, different ones among similar situations.

In most of current robotic systems, the programmer must be able to foresee a
variety of situations concerning the modes of machine reaction. Systems be-
longing to the highest-level of the classification are today difficult to achieve.

Robotic explored solutions

In this work, a review of the available literature was carried out proceeding
according to a detailed analysis of the strengths and weakness of the various
commercially available programmable robotic platforms. A summary of the
main findings including a UGV, three UAVs and an autopilot for drone flight
control, is reported in Table 2.1.

Table 2.1: Robotic explored solutions

Solutions Features

iRobot Create2
– Size: 34 cm in diameter, 9.2 cm in height
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– Weight:3.6kg
–Programmable Robotvia OpenInterface Com-
mands
–Serial-To-USBCable
–RechargeableBattery
–Self-ChargingHomeBase
–Built-insensors: OmnidirectionalIRsensor,Left
andRightBumpers,3 WheelDropsensors,4Cliff
sensors, Wallsensor,2 WheelEncoders
–Actuators:LeftandRight WheelMotors,Speaker,
Bi-colorPowerLED,PlayLED,AdvanceLED,Low-
sideDriversontheBAM,DigitalOutputsonthe
BAM

3DRoboticsIris+drone
–Motortomotordimension:550mm
–Height:100mm
– Weight(withbattery):1282g
–Averageflighttime:10-15minutes
–Payloadcapacity:425g
–Battery:3-cell11.1V3.5Ahlithiumpolymerwith
XT-60typeconnector
–Propellers:(2)10x4.7normal-rotation,(2)10x
4.7reverse-rotation
–Motors:AC2830,850RPM/V
–Radiosavailablein915mHzor433mHz
–32-bitPixhawkautopilotsystemwithARMCortex
M4processor
–uBloxGPSwithintegratedmagnetometer

DJIMatrice100drone
– Weight(withTB47Dbattery):2355g
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– Diagonal Wheelbase: 650 mm
– Max. Takeoff Weight: 3600 g
– Operating Temperature: −10◦C to 40◦C
– Max. Speed: 22 m/s (no payload, no wind)
– Hovering Time (with TB47D battery): No payload:
22 min; 500g payload: 17 min; 1 kg payload: 13 min
– Hovering Time (with two TB47D batteries): No
payload: 33 min
– Battery: Dual Battery Compartments, Intelligent
Flight Battery, 4500 mAh capacity, 22.2 V LiPo 6S
– Fully programmable using SDK DJI
– Supported Platform: Linux, Windows Embedded
systems

3DR Pixhawk Autopilot
– 32 bit ARM Cortex M4 Processor running NuttX
RTOS
– 14 PWM/servo outputs (8 with failsafe and manual
override, 6 auxiliary, high-power compatible)
– Connectivity for additional peripherals: UART,
I2C, CAN
– Integrated backup system for in-flight recovery and
manual override with dedicated processor and stand-
alone power supply
– Backup system integrates mixing, providing consis-
tent autopilot and manual override mixing modes
– Redundant power supply inputs and automatic
failover
– External safety button for easy motor activation
– Multicolor LED indicator
– High-power, multi-tone piezo audio indicator
– MicroSD card for long-time high-rate logging

2.3 Knowledge acquisition, representation and

sharing

In order to annotate a context profile, a smart object has to monitor the
data flow collected by onboard object sensors, as well as by Wireless Sensor
Network (WSN) possibly present in the surroundings. The analysis of gath-
ered data is carried out by means of data mining approaches. Knowledge
Representation tools and technologies are borrowed from the Semantic Web
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initiativeandadaptedtopervasivesmartdevicesinordertointegratenovel
high-levelknowledge-basedcapabilities.

2.3.1 Knowledge-basedsystems

KnowledgeRepresentation(KR)[58]isafieldofArtificialIntelligence(AI)
formalizingknowledgeaboutafragmentofrealitybymeansoflogic-based
languages,makingitmachine-understandable,inordertoenablethecreation
ofsoftwareagentsabletoperformautomatedreasoningprocedures.
Deductivereasoning(alsoknownasinference)derivesafinalexpression

(conclusionorthesis)startingfromasetofinitialexpressions(premisesor
assumptions)andassumingthetruthfulnessofthestatements.
AKnowledgeRepresentationSystem(KRS)inaparticulardomainpro-

videsthemeanstobuildKnowledgeBase(KB),reasonuponitscontent
andmanipulateit. AsshowninFigure2.25,aKRSconsistsoffivemain
components:

•KnowledgeBase(KB):repositorytostorecomplexstructuredandun-
structuredinformation.ItisapairK =<T,A>.TistheTermi-
nologicalBox(TBoxorontology),i.e.,aformalrepresentationofthe
conceptualmodelofadomain.Ontheotherhand,AistheAssertion
Box(ABox),specifyingthefactualinformationofaparticularscenario
withinthedomainasasetofindividuals,whosedescriptionsuseclasses
andpropertiesfromtheontology.InclassicalKRapproaches,KBsare
centralizedandmonolithic,storedinagivenserverlocationreachable
byseveralclientsinterestedinperformingoperationsonit.

•AccessInterface:sharedboundarytoallowtheaccesstotheknowledge
containedinTBoxandABoxbysoftwareapplications.
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Figure 2.26: Knowledge Representation Languages

• Inference Engine: set of reasoning services provided by a software com-
ponent called reasoner, allowing to deduce implicit knowledge from
that expressed in the KB.

• Editing Interface: software application to provide the management of
the contents in TBox and ABox by a human operator.

A key parameter for defining and creating a KR system is represented
by its expressivity. The more expressive a KR results, the easier and more
compact it is to express a fact or element within the semantics and syntax of
that KR. However, more expressive languages usually require more complex
logic and algorithms to construct equivalent inferences. A highly expressive
KR is also less likely to be complete and consistent; whereas less expressive
KRs may be both complete and consistent.

In literature, several KR languages and standards have been developed
for defining ontologies on the Semantic Web, including Resource Descrip-
tion Framework (RDF), RDF Schema, Topic Maps, DARPA Agent Markup
Language (DAML), Ontology Inference Layer (OIL), and Ontology Web Lan-
guage (OWL) [53]. Figure 2.26 shows the relationship between KR languages
in terms of formality and expressiveness. SUMO, an open-source declarative
programming language, resides on the higher end of the scale. Formal lan-
guages such as DAML, OIL, and OWL are geared towards classification. It is
important to emphasize that as the languages become more expressive, they
require more complex software to support them. In the following subsections,
Description Logics (DLs) family is presented in detail.
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2.3.2 Description Logics

Description Logics (DLs) are among the most used KR languages. They are
a family of formalisms arising from First Order Logic (FOL)[13, 26]. DLs
allow to represent knowledge by means of:

• concepts a.k.a. classes, representing sets of objects;

• properties a.k.a. roles, representing relationships between pairs of con-
cepts;

• individuals, i.e., named instances of classes.

These elements can be combined in expressions via constructors to create DL
expressions, specified in a formal semantics which associates an interpretation
Ito each term. Concept conjunction is interpreted as set intersection: (C u
D)I = CI ∩ DI . Concept disjunction is interpreted as set union: (C t
D)I = CI ∪ DI . The connector ¬, if present, is the interpretation of the
complement operator. More constructs exist which distinguish each language
of the DL family and also determine both its expressivity and computational
complexity characteristics.

An ontology is composed by two types of assertions: inclusion, which
allows to define is-a relationships between classes; equivalence, which allows
to give a name to a particular concept expression.

Description languages are distinguished by the constructors they provide.
The Attributive Language(AL) has been introduced in [67] as a minimal
language that is of practical interest. Constructs of AL are reported in what
follows:

• >, universal concept. All the objects in the domain.

• ⊥, bottom concept. The empty set.

• A, atomic concepts. All the objects belonging to the set A.

• ¬A, atomic negation. All the objects not belonging to the set A.

• C uD, intersection. The objects belonging to both C and D.

• ∀R.C, universal restriction. All the objects participating in the R
relation whose range are all the objects belonging to C.

• ∃R, unqualified existential restriction. There exists at least one object
participating in the relation R.
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In order to increase the expressiveness, the AL language can be extended
with additional constructs such as:

N (≥ nR)26, (≤ nR), (= nR)27, unqualified number restrictions. Respec-
tively the minimum, the maximum and the exact number of objects
participating in the relation R.

U C tD, concept union. The objects belonging to C or D.

E ∃R.C, full existential qualification. Existential restrictions that have
fillers other than >.

C complex concept negation. Negation of concepts that are are comprised
of other concepts.

I R−, inverse roles. Refer to the inverse of a binary relation.

The formula AL[N ][U ][E ][C][I] is used to indicate the AL language exten-
sions.

This work adopted the Attributive Language with unqualified Number
restrictions (ALN ) DL. It provides adequate expressiveness while keeping
polynomial complexity, both for standard and non-standard inferences. Ta-
ble 2.2 summarizes syntax and semantics of constructors and assertions in
ALN .

Table 2.2: Syntax and semantics of ALN

Name Syntax Semantics

Top > ∆I

Bottom ⊥ ∅
Intersection C uD CI ∩DI

Atomic negation ¬A ∆I\AI
Universal quantification ∀R.C {d1 | ∀d2 : (d1, d2) ∈ RI → d2 ∈ CI}

Number restrictions
≥ nR {d1 | ]{d2 | (d1, d2) ∈ RI} ≥ n}
≤ nR {d1 | ]{d2 | (d1, d2) ∈ RI} ≤ n}

Inclusion A v D AI ⊆ DI

Equivalence A ≡ D AI = DI

26Notice that ∃R is equivalent to (≥ 1R)
27Notice that (= nR) is a shortcut for (≥ nR) u (≤ nR)

27



Web Ontology Language (OWL)

Web Ontology Language (OWL) [1] is W3C Recommendation with the pur-
pose of creating ontologies and expressing metadata for resources in the Se-
mantic Web. OWL uses the Internationalized Resource Identifier (IRI) for
resource nomenclature and is based on the Resource Description Framework
(RDF) [68] in order to grant the following capabilities to ontologies:

• ability to be distributed across many systems;

• scalability to Web needs;

• compatibility with standard Web for accessibility and internationaliza-
tion;

• openness and extensibility.

OWL branches into three different levels of complexity, from the least to the
most expressive:

• OWL Lite, allows very basic taxonomy and constraints definition;

• OWL DL, enables a fairly ample expressiveness retaining computa-
tional decidability. The name indicates a direct correspondence be-
tween OWL and Description Logics (DLs);

• OWL Full, provides the highest level of flexibility and expressiveness,
sacrificing computational decidability.

OWL Lite syntax is a subset of OWL DL, which is a subset of OWL Full.
The subset of OWL DL tags allowing to express the ALNDL is presented
in Table 2.3. In pervasive scenarios featured by volatile nodes interacting in
an opportunistic fashion in order to achieve a common goal, OWL Full is
not suitable because of its undecidability, while suitable fragments of OWL
DL provide a good trade-off between expressiveness and complexity. In this
work the domain of interest was modeled using the latest specification of
OWL language, i.e., OWL 2 [1], announced on 27 October 2009. It supports
a variety of syntaxes to read, store and exchange knowledge conceptualization
among applications.

OWL 2 includes three sublanguages, named profiles: (i) OWL 2 EL, a
fragment that has polynomial time reasoning complexity; (ii) OWL 2 QL,
designed to enable easier access and query to data stored in databases and
(iii) OWL 2 RL, a rule subset of OWL 2. Each profile applies for a specific use
and offers a different tradeoff between expressiveness and reasoning efficiency.
Unlike OWL sublanguages, OWL 2 profiles are independent among them.
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Table 2.3: Correspondence between OWL and DL syntax

OWL syntax DL syntax

owl : Thing >
owl : Nothing ⊥

owl : Classrdf : ID = “C” C
owl : ObjectPropertyrdf : ID = “R” R

rdfs : subClassOf v
owl : equivalentClass ≡

owl : disjointWith ¬
owl : intersectionOf u
owl : allValuesFrom ∀

owl : someValuesFrom ∃
owl : maxCardinality ≤
owl : minCardinality ≥

owl : cardinality =

2.3.3 Inference services for knowledge discovery

Semantic matchmaking [29] is the process of finding the best match between
different resources with respect to a given request, in a context where both
the resources and the request are annotated referring to the same ontology.
Given a specific request (D) and a resource (S) different match classes (cat-
egories) are defined, as reported in Table 2.4 [19] w.r.t. an ontology T . The
most desired match is obviously the exact one, but from the viewpoint of
a requester full match is equally acceptable. However, potential and partial
matches are the most common in real complex scenarios.

DL reasoners usually provide two standard inferences for semantic match-
making on concept expressions:

• Subsumption: checks if S is more specific than D w.r.t. the ontology
T . In a formal way: T |= S v D.

• Satisfiability : verifies if the conjunction of S and D is satisfiable w.r.t.
the ontology T . In a formal way: T 6|= S uD v ⊥.

In both cases the output is boolean, hence these services can only provide
’yes/no’ answers without an explanation of the outcome, so that a request
refinement is not facilitated. Furthermore, Subsumption and Satisfiability
manage only full matches, which are quite rare in complex realistic scenarios.
In order to take into account approximate matches, non-standard inference
services Concept Abduction and Concept Contraction can be used [61]:
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• Concept Abduction: if T |= S v D is false then Concept Abduction
computes a concept H (for Hypothesis) such that T |= S uH v D is
true. H (for Hypothesis) represents missing features in the resource S,
able to completely satisfy D w.r.t. the information modeled in T . In
semantic matchmaking problems under the Open World Assumption,
such missing information does not represent a constraint of absence,
but just underspecified information, e.g., because unknown or deemed
irrelevant.

• Concept Contraction: if the conjunction SuD is unsatisfiable w.r.t. T ,
i.e., S and D are not compatible with each other, Concept Abduction
cannot be used and Concept Contraction should be adopted. It is able
to determine what features G (for Give up) can be retracted from D to
obtain an expression K (for Keep) such that K u S is satisfiable in T .
If nothing can be kept in D during the contraction process, one gets
the worst solution 〈G,K〉 = 〈D,>〉, that is give up everything of D.
On the opposite, if S uD is satisfiable in T nothing has to be given up
and the solution is 〈>, D〉, i.e., give up nothing.

For both these inference services minimality criteria for solutions are needed,
which induce a distance metric (penalty) useful to yield a graded similarity
between request and provided resources which enables in turn the resource
ranking. Concept Contraction and Concept Abduction can be considered
as extensions to Satisfiability and Subsumption standard inference services,
respectively.

Table 2.4: Match classes

Name Description Semantics

Exact match

S ia semantically equivalent to D. All
the requirements expressed in D are
in S and S does not expose any addi-
tional feature w.r.t. D

T |= D ≡ S

Full match

S is more specific than D. All the
requirements expressed in D are pro-
vided by S and S exposes further char-
acteristics both not required by D and
not in conflict with the ones in D

T |= S v D
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Plug-In match

D is more specific than S. All the
characteristics expressed in S are re-
quested by D and D exposes also other
requirements both not exposed by S
and not in conflict with characteristics
in S

T |= D v S

Potential match
D is compatible with S. Nothing in D
is logically in conflict with anything in
S and vice-versa

T 6|= S uD v ⊥

Partial match
D is not compatible with S. At least
one requirement in D is logically in
conflict with some characteristic in S

T |= S uD v ⊥

By means of Concept Contraction and Abduction it is possible to move
from a partial match to a full one by exploiting a query refining process:

partial → potential → full

2.3.4 Machine learning techniques for pervasive sce-
narios

Environmental information includes important facts a smart object can learn
about its context. They are built from perceived data captured through
sensors equipment and describe the evolution of observed properties over a
time span. Unfortunately, raw sensor data –not accompanied by descriptive
metadata– are of difficult exploitation, as they are hard to be interpreted
or integrated in case of resource dearth. Data analysis and mining tech-
niques, using machine learning and/or reasoning algorithms, allow eliciting
and characterizing a more meaningful context description starting from large
environmental datasets.

Machine learning classification algorithms are grouped by similarity in
terms of their function as follows: (i) logical/symbolic learning methods
based on the generation of intelligible rules (e.g., Decision Trees [50] and
Rule-based classifiers [32]), (ii) perceptron-based techniques inspired by the
structure and/or function of biological neural networks [56] (e.g., Artificial
Neural Networks [57] and Radial Basis Function (RBF) networks [38]), (iii)
statistical learning algorithms characterized by an explicit underlying prob-
ability model (e.g., Bayesian Networks [73]), (iv) instance-based learning
approaches defined by producing hypotheses directly from the training in-
stances (e.g., k-Nearest Neighbour [22]) and (v) other discriminative models
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for classification and regression analysis based on a separating hyperplane
(e.g., Support Vector Machine [82]).

Various machine learning techniques have different model accuracy, as
well as storage and computational requirements, hence no one is universally
suitable for smart objects purposes. Anyway, useful classification surveys
can be found in literature, such as [44]: a summary of the main findings is
reported in Table 2.5.

It is evident that smart objects need not only high accuracy, but also
computational efficiency. Particularly, incremental learning, e.g., in the in-
cremental version of k-Nearest Neighbors (k-NN) algorithm [15], appears to
be very useful for pervasive intelligent agents which should evolve their un-
derstanding about the surrounding environment as new data come and are
processed.

Table 2.5: Comparison of classification techniques

Technique Strengths Limits

Decision
Trees [50]

– Resilient to noise
– Tolerant to missing values
– Very easy to interpret
– Effective with dis-
crete/nominal features

– Improper with continuous
features
– Risk of overfitting

Artificial Neural
Networks [57]

– Effective with multidi-
mensional and continuous
features
– Works well even with
feature multicollinearity or
nonlinear relationships

– High computational cost
– Not tolerant to missing
values

Bayesian
Networks [73]

– Works also with small
datasets
– Fast training
– Robust w.r.t. missing val-
ues

– Large number of features
greatly increases computa-
tional and storage costs

k-Nearest
Neighbors [22]

– Generally accurate
– Insensitive to outliers
– Works well with both
nominal and numerical fea-
tures
– Can be used as incremen-
tal learner

– Relatively large storage
costs
– Not tolerant to noise and
missing values
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Support Vector
Machines [82]

– Good accuracy
– Works well with multi-
dimensional and continuous
features

– Requires a large training
set
– High computational com-
plexity

2.3.5 Middleware platforms for knowledge sharing

Information sharing among several heterogenous smart entities cooperating
in the same complex distributed environment can be achieved by exploiting
middleware software infrastructures. This software architecture plays the role
of an abstraction layer hiding details about hardware devices, network con-
figuration and other lower-level software services from an application. Fur-
thermore, middleware solutions provide means to discover services/resources
within the network.

Discovery facilities of traditional Service Oriented Architecture (SOA)
middleware –e.g., CORBA [21] and UDDI [47]– are based on syntactic match
between service IDs or encoded service attributes. Analogously, the majority
of current middleware platforms is topic-based, relying on a set of predefined
subjects. They ground discovery just on trivial string matching of topics
and cannot support dynamic evolution of the available service types with-
out any structured information about service characteristics. Those static
configurations reveal a non-negligible limit in the exploitation of service-
oriented approaches in fully autonomic and advanced application scenarios.
For instance, the topic-based publish/subscribe protocol for smart objects
cooperation in [31] lacks service description and discovery based on formal
models.

Semantic-enabled service and request specification allows more accurate
and flexible characterization of requesters’ needs and providers’ capabili-
ties. Moreover, they can improve effectiveness and adaptability of all phases
of service life cycle [40]. Semantic-based service/resource discovery repre-
sents an important requirement in mobile and pervasive computing contexts,
where the computational limits and resource volatility require decentralized
paradigms and dynamic lightweight middleware. Different semantically en-
riched middleware platforms exist in literature [48, 46]. However, they take
into account only full matches, which are quite rare in complex pervasive
domains with convoluted descriptions.

Supporting approximate matches and service ranking metrics is particu-
larly relevant for fine-grained discovery in semantic matchmaking approaches.
That is why ubiquitous logic-based matchmakers implementing non-standard
inference services [63] appear as enabling technologies in mobile and pervasive
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middleware infrastructures.

2.3.6 Stream reasoning

Stream reasoning [75] is a recent approach aiming to provide abstractions,
foundations, methods and tools needed to deal with many real-world appli-
cations operating on rapidly changing data. In such scenarios, data is in the
form of a continuous information stream (flow), rather than a static set stored
in a repository. Examples include data collected by sensor networks and in-
volving supply chain, road traffic or computer network traffic monitoring, the
management of cellular networks, the control of financial transactions, the
continuous health monitoring and many more.

In the mentioned application scenarios, a separation between the acqui-
sition and processing phases is clearly impossible, as the speed of data gen-
eration is greater than the time needed to store it and the economic storage
cost of data exceeds the benefits due to analysis. Stream reasoning replaces
the classic one-shot query, typical of relational databases, with continuous
queries, which return new results as soon as new data arrives from the stream.
Moreover, traditional Database Management Systems (DBMSs) and the clas-
sic data manipulation algorithms are not suitable for managing numerous and
complex queries on continuous data streams. Therefore, in the late 1990s the
first Data Stream Management System (DSMS) were born.

In literature there are several approaches to combine existing DSMSs with
the Semantic Web paradigm. The basic idea is to abstract from fine-grained
data streams into aggregated events [24] by merging the existing data models,
access protocols, query languages for DSMS with the Semantic Web.

Since SPARQL language (recursive acronym for: SPARQL Protocol and
RDF Query Language) [78] was recommended as the standard language for
RDF querying by the W3C, extension proposals were published for data
stream management including Streaming SPARQL [12] and Continuous SPARQL
(C-SPARQL) [8]. They introduce a new data type, the RDF stream. These
languages are designed to express queries that are recorded and continuously
performed on both RDF repositories and RDF streams. For example, they
allow the execution of queries like: “How many cars are continuously entering
the city center?”.

In pervasive contexts, high-level context descriptions produced by smart
objects constitute a continuous information flow variable over time, rather
than a static data set. Equipping a smart object with a DSMS is currently
unrealistic in IoT applications, as the architectural and performance require-
ments of a pervasive computing platform are very different. Nonetheless, it is
possible to introduce some stream reasoning techniques based on semantics.
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The approach in [60] is a general framework to provide a compact representa-
tion of large concept flows and identify common information atoms, in order
to support pattern analysis and identification of significant trends. There-
fore, stream reasoning techniques can provide the means to harness the flow
of semantically annotated updates inferred from low-level data, in order to
enable adaptive context-aware behaviors in a range of applications.

2.4 Current issues and limitations

The research line investigated in this thesis concerns the integration of intel-
ligence into micro-devices deployed in pervasive environments and wirelessly
interconnected within unstructured settings. The main goal is to give objects
the ability to: (i) automatically extract and process environmental informa-
tion; (ii) semantically annotate and enrich mined information like in a log
about the context they operate in; (iii) make the gained knowledge easily
accessible by other network nodes through publishing mechanisms akin to
a blog for people exchanging information on the World Wide Web. Data
sources can be either on-board sensors or queried through short-range wire-
less communication protocols. In the latter case, some reference technologies
include sensor-enabled RFID (Radio Frequency IDentification) tags [39] and
Wireless Sensor and Actor Networks (WSANs) [3]. Raw sensor data must be
analyzed in a resource-efficient way to enable interpretation and annotation
with descriptive metadata about relevant conditions, events and features of
the current context.

Current event recognition approaches are mainly based on threshold de-
tectors or standard machine learning techniques. Most of these works com-
bine information from heterogenous sources and derive a rough estimation of
the monitored context state. In [49], a Bayesian approach was proposed in or-
der to determine an estimation of the user’s situation in the workplace by de-
riving higher-level information from labeled sensor data. In [7], a distributed
event detection technique based on decision tree classifier was proposed for
disaster management fulfilling the requirements posed by resource limitations
of WSNs. Although probabilistic learning models are characterized by the
ability to handle noisy, uncertain and incomplete sensor data, they present
several limitations such as scalability, ad-hoc static models and data scarcity.
With the aim of overcoming the low level of model accuracy due to the use
of crisp threshold values, proposals based on fuzzy logic were defined [42]
for event detection leveraging a reduced-size rule base. The integration be-
tween low-level data analysis and high-level context interpretation is required
for triggering actions, making decisions or intervening on the environment.
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Knowledge-based approaches have been developed and adopted for making
this feasible. In [18] and [51], ontology-based models were defined for home
and office activity recognition, respectively. Both enabled intelligent mining
with a high level of automation and exploited semantic-based reasoning sup-
porting only full matches, which produce true/false match outcomes without
explanation. This represents a significant limit in pervasive scenarios where
partial matches occur between heterogeneous information sources scattered
in the environment. The semantic-based framework in [35] represents an im-
provement on knowledge discovery in Web of Things contexts, nevertheless
data gathering and annotation were performed via simplistic threshold-based
classification.

Sharing machine-understandable knowledge among ad-hoc network nodes
is accomplished through the adoption of a method to establish common ref-
erence ontologies, enabling all involved entities to communicate using the
same vocabulary. In recent years, the task of describing sensor features
and retrieving data through ontology-based formalisms has been faced by
the Semantic Web research community. OntoSensor [59] and SSN-XG [20]
are among the most relevant and widely used ontologies in this field. They
are general enough to cover different application domains and are compatible
with the OGC SWE (Open Geospatial Consortium Sensor Web Enablement)
standards at the sensor and observation levels [14]. Many projects, e.g.,
SPITFIRE [54], adopted such ontologies combining semantic and networking
technologies to build full frameworks. Unfortunately, these domain concep-
tualizations are too large and complex to be processed by a single node in
pervasive computing contexts where smart objects pool their semantic-based
knowledge for self-coordination and collaboration. Strategies for modular-
izing terminologies become necessary: the goal is to segment the overall
model into a set of coherent modules about different subtopics to be used
independently, while still containing information about relations to the other
modules. Solutions available in literature are strongly influenced by the spe-
cific applications. Unlike classical ontology modularization [74], IoT smart
applications require a dynamic, problem-oriented approach compatible with
resource-constrained devices. A relevant framework enabling ontology de-
composition and run-time rebuilding is presented in [65], although it grants
limited flexibility to run-time ontology distribution. Furthermore, it only
supports semantic matchmaking based on Subsumption, hindering inference
services which evaluate approximate matches.

In addition to high accuracy, another basic requirement of intelligent
objects concerns the computational efficiency for working on pervasive com-
puting platforms featured by a continuous information flow coming from
heterogeneous data sources. To overcome QoS-aware smart object orchestra-
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tion issues in such scenarios, [33] defined two heuristic methods (top-down
and bottom-up) based on the direction of the data flow during a service com-
position process. Furthermore, [30] addressed the problem of semantic data
flow compression in limited resource spaces by developing a scalable middle-
ware platform to publish semantically annotated data streams on the Web
through HTTP. Unfortunately, the above proposals only allow elementary
queries in SPARQL fragments on RDF annotations. More effective tech-
niques like ontology-based complex event processing [17] leverage a shared
domain conceptualization in order to define and specify complex events, con-
ditions and actions running on an event processing engine.

Acknowledging all the issues and limitations of current solutions, the
proposal submitted in this thesis aims to a more principled and general solu-
tion supporting distributed knowledge mining, representation, management,
sharing and discovery in advanced pervasive applications where mobile com-
puting devices have minimum processing capabilities, a small storage and
low-bandwidth communication capabilities.
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Chapter 3

Object (b)logging: paradigm,
architecture, methods

This chapter describes in detail the paradigms, architectures and methods
defined and developed for the object (b)logging vision. Each task of the
proposed framework is analyzed in order to provide a clear picture of the
entire approach designed for high-level information representation, knowledge
discovery, allotment and sharing in distributed scenarios populated by smart
objects.

3.1 Object (b)logging vision and motivation

The Object (b)logging paradigm fits in the pervasive computing field, and par-
ticularly in the Semantic Web of Things (SWoT) where high level machine-
understandable knowledge representation is associated to real-world objects,
locations and events [62]. In this vision, object (b)logging provides means
to make an object capable of sensing the environment and detecting events,
describing itself and what surrounds it in a fully automatic fashion, exposing
its descriptions to the outside world as in a blog and acting appropriately in
cooperation with other objects deployed in the environment. The key aspect
of object (b)logging is sharing the information produced and learned by all
entities involved in the observed area: the blog. In [52], a blog is defined
as a web-based environment gathering user entries (e.g., thoughts, passions,
discussions, etc) in order to improve information dissemination and sharing
for informal learning practice. Similarly, this research envisions the blog as
the collection of all the information learned and produced by every involved
actor, through which it is possible to self-organize for achieving a specific
common goal. More formally, a blog represents the set of semantically an-
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notateddescriptionsw.r.t.asharedvocabularyandprogressivelyenriched
duringobjectlifetime.Itisbasedonalogicdescriptivecoreandisusedfor
intelligentinterpretationofretrievedinformation.
Figure3.1showsthegeneralobject(b)loggingarchitecture:eachobject

immersedinagivenenvironmentcollectsdatafromsensorsandprocesses
theminordertoproduceahigh-levelannotationofdetectedeventsand
conditions. Byevaluatingthisdescriptiveinformation,implicitknowledge
isderivedforidentifyingthetasksetnecessarytochangetheenvironment
state. Theneachobjectautomaticallyinferswhichofitscapabilitiesare
usefulintheexaminedscenarioandactsonitaccordingly,inadecentral-
izedcollaborativemodel. Mobileandpervasivescenariosarefeaturedby
severeresourcelimitationsinfluencingprocessing,memory,storageanden-
ergyconsumption.Hence,systemsandapplicationsshouldtakeintoaccount
hardwareandsoftwareconstraintsonpervasiveobjectcapabilities.
Themaincontributionsoftheproposedapproachcanbesummarizedas

follows:

1.Characterizethecontextofeachsmartobjectinafullyautomaticway
startingfromadescriptivecoreandsensedenvironmentaldata,gener-
atingsemanticallyrichandcompactdescriptionsassociatedtocontex-
tualdata. Thisisachievedbyexploitingtheintegrationofstandard
supervisedmachinelearningtechniqueswithnon-standardsemantic-
basedreasoningservices.
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2. Share the learned semantic-based knowledge within the network through
the definition of a middleware architecture enriched with semantic lay-
ers for knowledge discovery, allotment and dissemination and based on
the adoption of the ubiquitous Knowledge Base (u-KB) paradigm.

3. Achieve objects cooperation for triggering actions, taking decisions or
making interventions on the environment by leveraging semantic-based
matchmaking between available capabilities and required goals and
tasks.

The proposed approach bridges the semantic gap between low-level ob-
servations and high-level detected phenomena enabling the development of
pervasive knowledge-based systems with high degrees of autonomic capability
not already allowed by conventional paradigms. Innovative analysis methods
are defined for activity monitoring and recognition without requiring large
computational resources and allowing to support flexible discovery strategies
able to manage approximate matches in order to compensate for possible
anomalies sensing and communication among spread entities.

The object (b)logging paradigm has a strong potential impact in support-
ing a wide range of applications. The main application areas are:

• Urban search and rescue (USAR): intelligent autonomous robots are
increasingly adopted in this field for facing operations which would be
too hazardous for human agents in disaster scenarios (e.g., search and
rescue survivors trapped under collapsed buildings after earthquakes).
Auto-coordination of different smart entities in a team allows to detect
the context state, formulate plans to reach the mission goals and act
accordingly.

• Personal assistance: orchestration of smart objects for the care of el-
derly and disabled people can provide assistance in their everyday life,
improving daily functions at home or at work by automatically detect-
ing the subject’s current activity.

• Industrial maintenance: several entities self-coordinate to perform com-
plex tasks for automated manufacturing, maintenance and inspection
in industrial plants.

• Home automation: objects involved in this field include appliances,
comfort security and surveillance management subsystems, even telep-
resence robots. By integrating intelligence into those objects, they
become capable of scheduling themselves in an automatic fashion, ac-
cording with the domestic environment and users’ state.
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• Smart agriculture: the application of wireless sensor networks and in-
telligent robots to agriculture allows to monitor the environmental pa-
rameters of fields helping farmers to improve crop quality and yield.

• Entertainment : smart objects can be deployed also for recreational or
educational purposes learning to act appropriately as a result of a user’s
detected emotions.

For all these application fields, the proposed mining approach represents a
paradigm shift with a tremendous potential impact in providing an advanced
tool for analyzing raw environmental data gathered via heterogeneous sens-
ing devices dipped in the environment, interpreting these information and
associating an high-level characterization to the context, real-world objects,
activities and events in resource-constrained pervasive scenarios. By lever-
aging the innovative aspects of the dissertation, the object (b)logging can
increase effectiveness in sensing, interpreting, interacting and reacting to
events and activities occurring in the physical world.

3.2 Framework and architecture

A rigorous stydy of available scientific literature in Semantic Web of Things
has brought to design a comprehensive architecture for pervasive knowledge-
based systems. In order to achieve objects self-description in complex mobile
contexts, the proposed framework - illustrated in Figure 3.2 - consists of the
following main tasks, carried out in a continuous process:

• processing and aggregation of raw data collected by sensors through
data mining for perceiving the surrounding environment;

• association of semantically rich compact annotations to real-world re-
trieved data for high-level characterization of the information referring
to an ontology providing the conceptualization for a particular domain;

• non-standard matchmaking services in order to obtain a logic-based
representation of statistical data distributions so enabling a fine-grained
event detection and advanced-level interpretation of knowledge to infer
actions and interventions;

• advanced management of annotated data as a continuous stream of
information through the support of stream reasoning techniques pro-
viding the means to harness the flow of semantically annotated updates
progressively improved during the object’s lifetime;
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•inter-entitycommunicationthroughlightweightmiddlewareproviding
servicesforreal-timedecentralizedandubiquitousknowledgeandser-
vicediscovery.

Asvisibleinthefigure,therearetwocomponentscrossthewholemodel:
(i)ontology,sharedbetweensemanticannotationandmatchmakinglevels,
and(ii)semanticmiddleware.Inthefollowingsections,eachelementofthe
proposalisdiscussedindetail.

3.3 Semantic-enhanced machinelearningfor

contextannotation

Theenvisionedframeworkaimstocharacterizethecontextofasmartobject
inafullyautomaticwaystartingfromrawsensorobservations. Through-
outtheobject’slifetime,thissemanticendowmentisprogressivelyenriched,
completedandexposedtotheoutsideworldasinablog.Basically,asmart
objectclassifiessensorydataandfurthercombinesclassificationstoiden-
tifypatterns,situations,activitiesandeventsfeaturingtherealworld.This
high-levelknowledgeisusefulinordertotakedecisions,triggeractionsor
makeinterventionsontheenvironmentwhereentitiescollaboratetowardsa
commongoal.
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Raw data are annotated in a semantically rich formalism grounded on
the ALNDL [6]. Ontologies provide the needed conceptualization for each
particular domain.Gathered data are classified using a knowledge-based evo-
lution of k-Nearest Neighbor (k-NN) algorithm including non-standard in-
ference support, as clarified hereafter. The algorithm is based on a distance
metric of the current event featured w.r.t. a training set of data points, com-
bining two components, named geometric score and contextual score. Ge-
ometric features describe the statistical distribution of the data while con-
textual features define the environmental characteristics which may influence
the variation of observations. In order to compute both measures, each smart
object continuously performs three steps, shown in Figure 3.3 and described
afterwards:

1. Clustering. Unsupervised clustering is adopted to pre-process input
data: an unknown input instance is associated to the nearest clus-
ter description [80]. By applying k-Means algorithm [37], the system
cleans data from noise and outliers, replaces missing values, identifies
possible issues in clustering and makes a preliminary coarse data clas-
sification. Each cluster description includes two components: geometry
and context. Geometry describes data through statistical parameters.
The context component annotates data w.r.t. the adopted reference
ontology.

2. Advanced k Nearest Neighbors. An enhanced version of the k-
NN algorithm was devised to provide high-level data representation.
It is based on a utility function combining semantic-based similarity
measures with partial scores deriving from quantitative statistical at-
tributes.

3. Semantic-based matchmaking. Matchmaking is performed on the
data produced after the above steps in a given time span (observa-
tion window). The semantic annotation of the context is compared
with descriptions of instances in the object Knowledge Base (KB) via
inferences in [70] in order to find the most relevant environmental char-
acterizations so giving a semantic-based interpretation to the raw data
collected by sensing devices.

Each new data point or batch acquired in the observation window un-
dergoes this process which terminates when the latest data points are in-
tegrated in the training set, while data older than a purging threshold are
removed. This process allows to overcome the main issue with conventional
classification techniques, i.e., yielding only opaque labels without explicit
and machine-interpetable meaning.
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Figure 3.3: Block diagram of semantic-enhanced machine learning

Algorithmic details are explained in what follows.

3.3.1 Mining Approach

The integration of a classic k-NN supervised machine learning technique with
semantic-based matchmaking is one of the notable aspects of the proposed
approach. In standard k-NN [22], a data point is classified by assigning the
most frequent label among the k training samples nearest to it, and a common
metric is used for measuring the distance between the data point and each
training instance. Figure 3.4 illustrates the k-NN algorithm: the input data
point is represented by a red circle, while training instances are divided in
two classes, depicted as blue and green circles, respectively. F (x, y) is the
common distance function exploited in the example presented in the picture.
If the k parameter is set as k = 3, the most frequest label among the three
training samples nearest to the input is green (2 out of 3 samples), so the
input is classified as green. While, if k = 7, the most frequest label among
the seven training samples nearest to the input is blue (4 samples out of
7), so in this case the input is classified as blue. In the thesis, the adopted
distance metric integrates a geometric measure fgs and a contextual semantic-
based one fcs, merged through a score combination function F . Here in what
follows, input arguments of F are purposely named x and y, i.e., the instance
to be analyzed and each element of the training set, respectively. Both are
described by geometric (xg, yg) and contextual (xc, yc) components.
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K = 3

K = 7

Figure 3.4: Illustrative example of the k-Nearest Neighbor (k-NN) algorithm

Geometric Score

As inspired by [55], the geometric score fgs(xg, yg) is a numerical assessment
of how much yg is similar to xg. Similarity is referred to the statistical
distribution parameters describing the raw data gathered for the current
sample and for the training samples, e.g., mean, standard deviation, etc..
Since xg is the value to be matched, out of a set of n dimensions only the ones
featuring x are considered. Therefore a basis vector B(xg) = 〈b1, b2, . . . , bn〉
is defined, where bi ∈ [0, 1] and bi = 0 ⇔ xgi = ∅. The matching value on a
single dimension is:

dmatch(xgi , ygji) =


|xgi ∩ ygji |
|xgi |

if B(xgi) = 1 ∧
B(ygji) = 1

0 else

(3.1)

The above value dmatch(xgi , ygji) is determined by calculating the overlap
between the two dimension values xgi and ygji , i.e., the i-th dimension of the
j-th training example, divided by the size of xgi . This formula summarizes
the notion that if ygji is fully contained in xgi , then dmatch(xgi , ygji) = 1.
If B(xgi) = 0 or B(ygji) = 0, of course dmatch(xgi , ygji) = 0. The overall
geometric score is computed as:

fgs(xg, yg) = 1−
∑n

i=1 dmatch(xgi , ygji)

n
(3.2)

Note that dividing by n normalizes w.r.t. the maximum cardinality of xg
dimensions.
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Contextual Score

The contextual metric fcs(xc, yc) is computed on features annotated in OWL
2 language [77] according to the reference terminology. Score calculation is
based on semantic matchmaking leveraging ALN -based non-standard infer-
ence services.

The matchmaking process is summarized in Figure 3.5. It works on a
semantically annotated description S of the measurement context for the
current data point and the one for a training example R, both expressed
w.r.t. an ontology. If they are compatible, i.e., not in contradiction, Con-
cept Abduction finds what part of S is missing in R and computes a con-
cept Hypothesis that contains these features in order to completely satisfy
it. Concept Abduction returns a value penalty(a) representing the associated
semantic distance. Otherwise, if expressions are incompatible, Concept Con-
traction defines what characteristics can be retracted from the annotation
of the training sample a concept Give up in order to obtain the remaining
part of S, named Keep, which is compatible with R and computes a related
penalty(c) value. The process goes on calculating the Concept Abduction
between S and Keep. The reader is referred to Section 2.3.3 for algorithms
and wider details argumentation about Concept Contraction and Concept
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Abduction.
The contextual score is defined as:

fcs(xc, yc) =
ω · penalty(c) + (1− ω) · penalty(a)

penalty
(a)
max

(3.3)

This value is normalized w.r.t. penalty
(a)
max, which is the maximum se-

mantic distance from the data point: it is computed by comparing the an-
notation with the most generic concept > and it depends only on axioms
in the reference domain ontology. The scoring mechanism is regulated by
ω, which determines the relative weight of explicitly conflicting elements. In
the proposed framework, ω depends on the calculated geometric score and is
computed as:

ω = δ · fgs(xg, yg) (3.4)

where δ ∈ [0.8, 1] is a proportional factor. The rationale is to assign assigns
greater weight to Contraction penalty when the geometric distance is larger,
since very different statistical properties of two samples require few or no
explicit incompatibilities to be considered a close match.

Overall Score

The overall distance F is defined as:

F (x, y) = (fgs(xg, yg) + ε)α · (fcs(xc, yc) + γ)1−α (3.5)

It is a monotonic function ranging between 0 and 1 providing a consistent
ranking of input training examples. Lower outcomes represent better results.
A tuning phase can be performed to determine the values of parameters α, γ, ε
following requirements of a specific discovery application. More specifically,
α ∈ [0, 1] weighs the relevance of geometric over contextual factors, respec-
tively. Parameters ε ∈ [0, 1] and γ ∈ [0, 1] control the outcome in case of
either context or geometric full match. Geometric full matches occur when
the statistical data input distribution is equal to the one of considered train-
ing example, while contextual full matches arise when all descriptive features
of the data point measurement xc are satisfied by the training example yc.

3.4 Semantic-enhanced data stream analysis

In addition to the context annotation method described in the previous sec-
tion, producing one annotation at a time, data stream analysis was devised
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to summarize a flow of annotations into an evolving refined context char-
acterization. The proposed data stream analysis approach is based on the
development of a general-purpose framework to provide a compact represen-
tation of large flows of concepts allowing to identify common information
components in order to support pattern analysis and the identification of
significant trends [60].

The typical workflow of data mining and machine learning is preserved
by the proposed approach: data collection and cleansing, model training,
system predictions exploitation and evaluation. Nevertheless, semantic-based
enhancements change the way each step is performed.

The starting point is represented by raw data collected by object on-
board sensors or sensors dipped in a given environment and queried through
short-range wireless communication protocols. These data are gathered for
m different measuring parameters, generally named features. In order to
support semantic-based data annotation and interpretation, an ontology T
models the domain conceptualization along properly defined patterns. T is
supposed acyclic and expressed in ALN . This is required by the further
adoption of non-standard inference services for semantic matchmaking. For
each measuring parameter T will include a hierarchy of concepts (each one
with its own properties), forming a partonomy of the top-most concept. In
other words, each parameter will be represented via a classes/subclasses tax-
onomy featuring all significant configurations it can assume in the domain
of interest. The depth of the hierarchy and the breadth of each level will be
proportional to both resolution and range of sensing/capturing equipment,
as well as to the needed degree of detail in data representation.

The proposal consists of three basic steps:

• Training: semantic-based representation of each possible output class
that describes the observed phenomenon/event. Starting from these
descriptions, a training matrix is built in order to track the occurrences
of each atomic joint describing the event and extract a meaningful
description.

• Classification: estimate of the distance computed between the seman-
tic instance of the semantically annotated input to be classified and the
event descriptions formulated during the training phase.

• Evaluation: system validation to assess the quality of those produced
annotations. This phase exploits standard statistical metrics for system
performance evaluation, such as a confusion matrix.

In what follows, proposed framework details are provided for each phase.
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Training

The goal of the training step is to build a semantic annotation for each pos-
sible output class, connoting the observed event/phenomenon according to
input data. The logical concepts modeled in the ontology are joined in a
conjunctive expression in order to obtain the event description. The train-
ing phase works on a set S of n training samples, each characterized by m
features. The samples can be grouped from the streaming data by defining
proper time windows. Assume that w distinct outputs exist in the training
set. Each feature value is mapped to the most specific corresponding concept
in the reference ontology T . Therefore the i-th sample ∀ i = 1, . . . , n is com-
posed by: (a) m concept components Ci,1, . . . , Ci,m annotating its features;
(b) an observed output Oi labeled with a class of the ontology. Samples are
processed sequentially by Algorithm 1 in order to build the so-called Train-
ing Matrix M (the pseudocode uses a MATLAB-like notation for matrix
access). M is a (w + 1)× (k + 1) matrix having all the different outputs on
the first column, all the distinct concept components on the first row and,
in each element, the number of occurrences of the column header concept
component in the samples having the row header output.
M gives a complete picture of the training set. Each output class can

now be defined as the conjunction of the concepts having greater-than-zero
occurrences in the corresponding row. By doing so, however, even very rare
concepts are included, which may be not significant in defining the class.
Therefore it is useful to define a significance threshold Ts as the minimum
number of samples where a particular concept must appear to be considered
significant for the occurrence of a particular output. The structure of M
suggests the possibility to define different thresholds for each output and for
each feature, as

Ts(i,j) = θ(i,j) |S|

with 0 < θ(i,j) ≤ 1 ∀i, j being adaptive ratios computed through a cross-
validation process on the input dataset. Customized thresholds allow to
focus sensitivity on the features with highest variance and/or the outputs
most difficult to predict.

This training approach produces a Knowledge Base with conceptual knowl-
edge (TBox) modeled by human experts and factual knowledge (ABox) cre-
ated automatically from the available data stream, with instances represent-
ing the events of interest the system should be able to recognize.
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Algorithm: M = generateTrainingMatrix (〈L, T , S〉)

Require:
– L Description Logic;
– acyclic TBox T ;
– training set S = {S1, S2, . . . Sn}, with Si = (Ci,1, . . . , Ci,m, Oi) ∀ i = 1, . . . , n, where all Ci,j and
Oi are expressed in L and satisfiable in T .

Ensure:
– M : (w + 1)× (k + 1) matrix of occurrences of the concepts for each observed output, where k is
the total number of distinct concepts appearing in S

1: M := 0 // (1× 1) matrix
2: r := 1, c := 1
3: for i := 1 to |S| do
4: ur := findConceptIndex(Oi,M(:, 1))
5: if ur = null then
6: append a row to M
7: r := r + 1
8: ur := r
9: M(ur, 1) := Oi

10: initialize M(ur, 2 : c) to zeros
11: end if
12: for j := 1 to m do
13: uc := findConceptIndex(Ci,j ,M(1, :))
14: if uc = null then
15: append a column to M
16: c := c+ 1
17: uc := c
18: M(1, uc) := Ci,j

19: initialize M(2 : r, uc) to zeros
20: end if
21: M(ur, uc) =M(ur, uc) + 1 // update occurrences
22: end for
23: end for

24: return M
Algorithm 1: Creation of the Training Matrix
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Classification

The subsequent classification task exploits a semantic matchmaking process
based on Concept Contraction and Concept Abduction non-standard infer-
ence services [61] in order to manage partial matches between request and
resources.

In the proposed approach, data of the instance to be classified are first
labeled w.r.t. the reference ontology as in the first step of training, then
their conjunction is taken as annotation of the instance itself. Penalty val-
ues obtained from matchmaking are used to compute the semantic distance
between the input instance and the event descriptions generated during train-
ing. The predicted/recognized event will be the one with the lowest distance.
Semantic matchmaking produces ranked similarity measures, associated with
a logic-based explanation. Therefore the prediction outcome has a formally
grounded and understandable confidence value. This is a clear benefit w.r.t.
many standard ML techniques which produce opaque predictions. Further-
more, the approach does not take the instance annotation directly as the
output, because the inherent data volatility could lead to inconsistent asser-
tions, which would be impossible to reason on.

Evaluation

System evaluation works with a validation set, consisting of several clas-
sified instances represented w.r.t. the same ontology used for building the
training set. The goal is to check how much the predicted event class corre-
sponds to the actual event associated to each instance of the validation set.
Beyond classical tools such as confusion matrix and statistical performance
metrics such as accuracy, precision and recall, the graded nature of the pre-
dictions can be exploited to evaluate, e.g., the average semantic distance
of the predicted class from the actual one, analogously to error measure in
regression analysis.

If computing resources permit it, incoming test data can also be used
to update the training matrix on-the-fly, in order to allow the model to
evolve as new data is observed. A proper extension of the baseline Algorithm
1 requires a fading mechanism to enable the system to ‘forget’ the oldest
training samples.
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3.5 Semanticinformationsharinginperva-

sivescenarios

Akeyaspectofobject(b)loggingliesintheexploitationofanannotated
blogformachine-understandableknowledgesharing. Toachievethis,the
proposedframeworkismaterializedontopoftheapplication-levelofapub-
lish/subscribeMessage-OrientedMiddleware(pub/subMOM)infrastructure.
Thiskindofmiddlewareisfitforinterconnectinglargenumbersofloosely
coupledcomponentsonindependentsubsystemsanddevices(fromnowon
nodes).Inpub/subMOM,interactionsarebasedontheexchangeofmes-
sagesofarbitrarynature.Eachmessageislabeledwithatopic,i.e.,astring
denotingthetype,structureand/orpurposeofthemessagepayload.Each
nodecanactasapublishertoemitmessageswithaspecifictopicand/or
asasubscribertoreceiveallmessagesrelatedtoasubscribedtopic.Typi-
calmiddlewaresolutionsguaranteemessagedeliverywithpre-definedlevels
ofrobustness,latencyandsecurity. Figure3.6depictsthemodelinfras-
tructureofapub/subMOM.Inconventionalpub/subMOMarchitectures,
resourcepublishinganddiscoveryoccurthroughsyntacticmatchoftopics,
whichareopaquestringslackinganyrigoroussemantics. Thisisagreat
limitationinadvancedapplications,sinceitrequiresapreviousknowledge
ofthenetwork,theavailableresourcesandtopics.Conversely,theproposed
frameworksupportsadynamicsemantic-basedresourceretrievalinfrastruc-
turethroughtheintegrationofadditionalfunctionallayerstoanoff-the-shelf
MOM.AsshowninFigure3.7,theproposedapproachincludesthreelay-
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ers: (i) Data Distribution Service (DDS), a standard protocol for pub/sub
MOM; (ii) ubiquitous Knowledge Base, a distributed model for knowledge
partitioning and on-the-fly materialization; (iii) Resource/Service Discovery,
a decentralized collaborative resource/service discovery protocol exploiting
non-standard inference services to enable a fine-grained categorization and
ranking of resources matching a request. DDS provides services for real-
time data distribution by adopting the publish/subscribe model in order to
guarantee the basic inter-node communication. Its software infrastructure
comprises two levels of interfaces:

• Data Centric Publish/Subscribe (DCPS): the lower layer of DDS de-
fines entities, roles, interfaces and QoS policies for the publish/subscribe
platform, as well as discovery techniques of communicating parties. Es-
sentially, DCPS is the component related to the network communica-
tion.

• Data Local Reconstruction Layer (DLRL): optional upper level used
for the integration of DDS into the application layer. DLRL allows to
map exchanged data with application-layer object based on topics, in
order to propagate updates automatically and transparently from the
application to the network layer and vice versa.

On the top of DDS, two semantic layers are defined, developed and integrated
in order to support decentralized and ubiquitous knowledge discovery. The
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most significant details are reported in the following subsections.

3.5.1 Ubiquitous knowledge dissemination

Ttransparent access to information embedded in semantic-enabled devices of
the network is granted by the u-KB layer.

As described in Section 2.3.1, static and centralized KBs are not realistic
for IoT applications featured by volatile nodes interacting in an opportunis-
tic fashion. The KB settings should comply with the intrinsic nature of the
application scenarios and evolve toward a ubiquitous distribution of both ter-
minology and factual knowledge. In other words, KBs should be partitioned
in a decentralized way and scattered on multiple nodes. Specifically, in the
proposed approach T is fragmented in one or more chunks managed by mul-
tiple distributed nodes, while individuals in A are not centrally stored, but
disseminated in the environment as they belong to the endowment of each
node. That is, a node is in charge of building and maintaining a logic-based
description of its capabilities and features.

Due to the generality of the proposed approach, all nodes within the
same network can manage any domain ontology, even using multiple vocab-
ularies in order to cover different application domains. Furthermore, the use
of unique ontology Uniform Resource Identifiers (URI) ensures that all ob-
jects working with the same reference ontology can share parts of the u-KB
dynamically without requiring preliminary agreement among them.

As ontologies can be large and OWL adopts the verbose XML syntax, the
u-KB approach exploits both compressed encoding and ontology partition-
ing. Compression and decompression are hidden to nodes, being performed
automatically for all semantic message exchanged by the middleware exten-
sion. Any encoding algorithm or tool can be exploited, including standard
ones like gzip1 and EXI2 as well as ontology-targeted ones [69].

Although compression of semantic annotations allows reducing informa-
tion volumes noticeably, the intrinsic KB structure poses a significant data
management issue in resource-constrained environments. A TBox –even
when compressed– can still have a relevant size, particularly in articulated
and complex domains. Nevertheless, in most cases it is practically unnec-
essary to materialize the whole ontology before reasoning, as used concept
expressions refer just to a subset of the concepts and properties in the TBox.
Terminology axioms can be split in a semantic-aware way, grouping them

1http://www.gzip.org/
2Efficient XML Interchange (EXI) Format 1.0 (Second Edition), W3C Recommendation

11 February 2014, https://www.w3.org/TR/2014/REC-exi-20140211/
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in clusters with low inter-cluster correlation. In this way a node is able to
retrieve only the TBox subset actually needed to perform a given reasoning
task.

Due to the above considerations, a novel method for ontology partitioning
is introduced here. It is based on associating each class with a unique ID,
computed from its position in the taxonomy. The most generic class, always
named Thing in OWL 2 (a.k.a. Top or > in DL notation), takes ID 1.
Each nesting level adds a further numerical suffix, separated by a . (dot).
An example of the proposed scheme is depicted in Figure 3.8. Subclasses
of a given class have IDs differing just in the last number: in particular,
sibling classes are sorted unambiguously in lexicographic order. This does
not prevent ontology updates: as different versions of the same ontology
are identified by different URIs according to Semantic Web best practices,
conflicts are prevented. Such numbering system can be embedded directly
in OWL ontologies via annotation properties associated to each class. In
accordance with hierarchical ontology modeling patterns [72, Ch. 2], an
Upper Ontology (UO) chunk is extracted from a given ontology, by taking
the N topmost levels in the class hierarchy, which specify the most general
concepts of a domain. N is a configurable parameter: its value should be
chosen based on the ontology size, the desired chunk size and the depth
of class nesting. Other chunks will consist of separate subtrees stemming
from classes at level N + 1, so as to minimize overlap. In the example in
Figure 3.8, if N := 3, then Thing, Action, Entity, Environment, Event,
FeatureOfInterest, Object, Quality will be included in the UO Chunk ; the
subtrees stemming from FeatureOfInterest and Object will take their own
Chunk A (or more than one chunk if it is larger than a configurable threshold);
the same occurs for the subtrees with other level-3 classes as root, e.g., the
ones deriving from Quality will be in Chunk B. A similar approach is taken
for ontology properties.

Nodes participating in a u-KB will manage a cache of ontology chunks.
Every node will have the UO, which is relatively small by design, as well
as the chunk(s) required by detained semantic resource annotations. The
latter requirement, however, is not strict: if a node has very low storage or
bandwidth, it can rely opportunistically on more capable nodes to provide
the chunks.

When a node equipped with a reasoner performs service/resource discov-
ery, as a preliminary task it must rebuild a subset of the ontology containing
the classes used in the logical expressions of the involved annotations, as well
as all their ancestor classes, in order to guarantee correctness of reasoning
procedures. To do so, it publishes a message with the BuildTBox middleware
topic, which all semantic-enabled nodes must be subscribed to. The message
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Figure 3.8: Example of ontology excerpt with corresponding class IDs and
chunk splitting
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Figure 3.9: Ontology reconstruction process

contains: (i) the unique ontology URI, (ii) the list of requested class IDs, and
(iii) the topic name (e.g., MergeOnto NodeID) to be used in reply messages.
If a node has one or more requested class IDs in its cache, it will register a
publisher on the above topic and send the compressed ontology chunk(s) con-
taining those classes. Merge topics are distinct per requester node to avoid
delivering unsolicited chunk copies. After u-KB materialization, the service
discovery phase can start. Figure 3.9 summarizes the ontology reconstruc-
tion process: the green blocks refer to the requester R, while the blue ones
to service providers P .

The proposed approach uses message broadcast in order to send a re-
quest to all nodes simultaneously. Messages traveling in broadcast through
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the network are very small and contain only meta data, while semantic in-
formation, e.g., ontology chunks, are sent in unicast to the requester. This
aims to reduce network load, a crucial aspect in pervasive contexts.

3.5.2 Semantic matchmaking for knowledge discovery

The resource/service discovery layer enables the support for dynamic semantic-
based discovery of resources scattered in the environment and characterized
by semantic annotations. The proposed approach is based on a semantic
resource request consisting of an annotation expressed w.r.t. a reference on-
tology whose URI implicitly defines the application domain of the request.
The service discovery phase leverages a general topic named Discovery, which
all nodes in the network are subscribed to. The requester starts inquiry by
sending a Discovery message containing: (i) the URI of the ontology the
request refers to and (ii) the topic name (by design, SemAnn NodeID) to be
used in reply messages; also in this case, the reply topic is node-specific.

Nodes receiving the request check whether they own services/resources
related to the same domain. Only in this case, nodes become publishers
on the reply topic and send back the related compressed annotations; each
annotation is associated with a service-specific topic. The requester col-
lects all descriptions and compares them with its request through semantic
matchmaking. The matchmaking process employed here is basically the same
described in Figure 3.5 based on non-standard inference services to enable
support for approximate matches, resource ranking and formal explanation
of outcomes. The outcome of the match determines a ranked list of ser-
vices/resources which best satisfy the request. In the proposed framework,
the overall relevance score of a resource A w.r.t. a request B is computed as:

d(A,B) = 100(1− penalty(c) + penalty(a)

penalty
(a)
max

) (3.6)

with terms have the same meaning as in Equation 3.3. The score is converted
to an ascending percentage scale for expressing semantic affinity and the
requester selects the available service/resource with the highest ranking.

Finally, the requester uses the topic(s) associated to the selected service(s)
in order to start fruition. In case of data gathering services, such as from
sensors, the requester will act as a subscriber to receive information; on the
other hand, controllable resources require the service user to be a publisher on
the topic to send commands and data. Figure 3.10 summarizes the Resource
allotment process: the green blocks refer to the requester R, while the blue
ones to service providers P .
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Figure 3.10: Resource allotment process
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Also in this case, messages spread in broadcast through the network have
reduced size, as they only contain meta data, while semantic annotations
which are much more verbose, are sent in unicast to the requester.

In the proposed framework, the above non-standard inferences for seman-
tic matchmaking are implemented in the Mini-ME reasoning engine [70],
which is suitable for computationally constrained nodes. It works on KBs in
the ALN DL.
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Chapter 4

Prototypes and experiments

This chapter provides a detailed description about the prototypical imple-
mentation of the proposed framework and an assessment of the dissertation
feasibility through experimental results carried out on selected case stud-
ies highlighting strengths and limits of the approach. Tests aimed to assess
intra- and inter-node performace. Intra-node performance is related to the
behavior of the mining and annotation approach adopted by individual smart
objects within the network in order to detect and characterize their context.
Inter-node performance refers to the evaluation of communication through
the devised semantic-enabled middleware infrastructure.

4.1 Context mining

In order to provide an assessment of the feasibility of the context mining
proposal, the prototypical implementation and the experimental analysis are
descibed in the next sections considering the approach application to a se-
lected case study.

4.1.1 Testbed and implementation

The proposed context mining framework was implemented in a Java-based
system prototype to early evaluate its feasibility. The architecture for each
smart object consists of three basic modules:

• Clustering : input data are clustered invoking the k-Means algorithm
provided by the Weka 3.7 library1 [36] which provides the implemen-
tation of machine learning algorithm collection for data mining tasks.

1http://www.cs.waikato.ac.nz/ml/weka/
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• Advanced k-NN : this step performs a semantic-enhanced classification
of the contextual property observed by the smart object. Inference
services are provided by the embedded Mini-ME 2.0.0 2 matchmaking
and reasoning engine [70].

• Semantic-based matchmaking : also this module exploits Mini-ME to
infer the environmental state from the semantic-based context descrip-
tion.

In order to evaluate the usefulness of the framework in a real scenario, a
prototypical testbed was exploiting an iRobot Create 2 programmable robot3

whose characteristics are listed in Table 2.1 of Section 2.2.4. The device was
enriched with additional sensors and peripherals. The robot must be able
to automatically (b)log a properly annotated description of the context it is
located in.

4.1.2 Illustrative example

In ambient intelligence [71], indoor spaces –e.g., home or office– become
smart, i.e., able to learn from their inhabitants, recognize their behavior
patterns automatically and provide unobtrusive support for their daily life.
The case study proposed here is related to a home/office smart butler. It is a
robotic agent which exploits embedded as well as external sensors to achieve
situation awareness while moving along rooms and corridors. For example, it
can interact wirelessly with RFID readers placed at the entryways to detect
tagged people who enter/exit. It is then capable of summarizing the gath-
ered information in a semantically annotated description of the environment
and its occupants, and publish it to a semantic-enhanced home/building au-
tomation infrastructure [64] to schedule other appliances and detect possible
issues. Besides, it can autonomously perform several services, such as clean-
ing, guiding guests toward a particular room or person, or delivering small
objects (e.g., paper sheets) across different rooms. In what follows, an illus-
trative example is presented to better explain the flexibility of the approach.

Mr Brown’s house is equipped with a smart refrigerator and a smart
pantry, orchestrated by a smart butler which plays the role of coordinator.

The information exchange about the environment state detected by these
objects occurs through wireless communication protocols such as IEEE 802.11,
Bluetooth or ZigBee. Both the refrigerator and the pantry are able to monitor

2http://sisinflab.poliba.it/swottools/minime/
3http://www.irobot.com/About-iRobot/STEM/Create-2.aspx/
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Table 4.1: Geometric and Contextual Features for Temperature property

Geometric features Contextual features

– Mean
– Variance
– Kurtosis
– Skewness

– FoodLocation: (Fridge, KitchenCabinetN-
earOven, KitchenCabinetUnderSink, etc)
– FoodContainer: (HermeticContainer, Alu-
minumBox, GlassJar, etc)
– StorageLocationUsage: (WidelyUsed,
RarelyUsed)

food availability/consumption and control organoleptic qualities of products
to detect expired food items. In order to fulfill these tasks estimating food
quality degradation level, the dissertation exploits the sensor infrastructure
and the mathematical model defined in [4]. The sensor infrastructure con-
sists of temperature sensor, ambient light sensor and relative humidity sensor.
Such sensor nodes are situated in kitchen cabinets and in the fridge.

The smart butler exploits the proposed framework to analyze data col-
lected by each sensor and to determine organoleptic property values of food
items for the whole observation window. For example, geometric and contex-
tual features that describe the temperature property are reported in Table
4.1. Temperature semantic-based classification value is calculated consider-
ing not only quantitative statistical parameters, but also the context com-
ponents which influence the variation of organoleptic quality. Possible class
values are as VeryLowTemperature, LowTemperature, MediumTemperature,
HighTemperature and VeryHighTemperature. For example, the temperature
value in a kitchen cabinet is affected by its position: if it is near a switched-
on oven, the temperature value within the cabinet may change. Also, a low
temperature value inferred for the fridge has not the same meaning of a
low temperature value inferred for the freezer. Furthermore, if a food item
is stored in a sealed container, the temperature value of the cabinet is less
significant. Another important factor that determines the temperature vari-
ation in a refrigerator, for example, is related to how many times its door is
opened.

Table 4.2 shows the results for temperature property of rice stored in
the pantry. In detail, advanced k-NN runs with k=7 and assigns the most
frequent label among the 7 training samples (TEi) nearest to the input in-
stance. In particular, with a distance threshold of 50 only the items in red in
the table are considered near, therefore the selected class is LowTemperature
(3/7 LowTemperature, 2/7 VeryLowTemperature, 1/7 MediumTemperature
and 1/7 HighTemperature nearby points). By replicating this process for
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Table 4.2: Temperature property classification with advanced k-NN

Property TE fgs fcs F Result

Temperature

TE1 0.2500 0.2583 62.82
VeryLowTemperatureTE2 0.7084 0.1208 26.58

TE3 0.6667 0.3333 35.33
TE4 0.5417 0.1708 39.80

LowTemperatureTE5 0.7084 0.0000 17.92
TE6 0.8715 0.0719 13.49
TE7 0.500 0.4833 51.66

MediumTemperatureTE8 0.2917 0.3333 63.02
TE9 0.4271 0.1281 44.92
TE10 0.3333 0.4332 63.19

HighTemperatureTE11 0.2917 0.5791 70.04
TE12 0.5521 0.5010 47.82
TE13 0.2917 0.4208 65.87

VeryHighTemperatureTE14 0.5000 0.5166 52.33
TE15 0.2084 0.3958 71,01

each sensed parameter, the smart objects (e.g., pantry or refrigerator) create
a high-level representation of the considered product conservation status. A
food item semantic description detected by the system follows as an example.

Rice u ∀has Storage Temperature.LowTemperature u
∃ has Storage Temperature u ∀has Storage Humidity.
(V eryLowHumidity u ¬HighHumidity) u
∃ has Storage Humidity u ∀has Storage Lighting.
(DimLight u ¬BrightLight) u ∃ has Storage Lighting
u ∀has Storage Location.Pantry u ∃has Storage Location

The coordinator butler knows recommended characteristics for the stor-
age of a specific product, hence it performs a second-level matchmaking pro-
cess to create a list of well-preserved food items. Descriptions of some food
items stored in Mr Brown’ pantry and descriptions of related recommended
characteristics are reported in Table 4.3: semantic matchmaking provides an
evaluation of the state of preservation. According to this list as well as to
health concerns (e.g., food intolerances, retrieved from semantically anno-
tated user profiles), the butler can suggest the most suitable recipes.
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4.1.3 Tests and results

Experimental analysis of the proposed semantic-based framework was con-
ducted on a dataset of 400 real instances of weather sensor data (temperature
and humidity, collected from Weather Underground4 Web service) to simu-
late sensor data gathering by a smart object. The training set exploited for
testing the proposal is populated by 15 temperature samples and 9 humid-
ity ones. The tests were performed in two different conditions: with static
value of k for the advanced k-NN phase (k = 5 for temperature detection
and k = 3 for humidity one) and with cross validation (useful to set k dy-
namically). The matchmaking task works with an ontology whose size is
221 kB. As a result of a series of system executions to tune configuration
variables modeling the advanced k-NN approach, values for the parameters
in the score combination function (explained in Section 3.3.1) were set as
follows: α = 0.8, γ = 0.02, ε = 0.02 and δ = 0.9. As performance metrics,
turnaround time of data point processing and RAM usage were considered
for each module of the proposed mining framework.

Preliminary performance evaluation was carried out on a PC testbed
equipped with an Intel Core i7 Q720 CPU, 1.60 GHz clock, 4 GB RAM, 64-
bit Windows 7 Professional operating system and 64-bit Java 7 SE Runtime
Environment (build 1.7.0 67-b01). Time was measured through timestamp-
ing instructions embedded in the source code. Each test was repeated 10
times and the average values were taken. Figure 4.1 reports turnaround time
results for the analysis of only one and both properties, with and without
cross validation. As expected, turnaround time increases significantly when
the system performs cross validation to set the best k value for k-NN. The
most significant differences between results for one and two properties are in
the clustering and matchmaking phases, but the time increase is less than
linear.

For memory usage analysis, the Java Memory Monitor profiler in the
Eclipse platform was used. In this case, reported results are the peaks of 10
runs. They are shown in Figure 4.2. The memory usage for a single observed
sensor property is almost equal to the one for two properties or more. RAM
occupancy is always below 14 MB. Overall memory peaks correspond to the
most data intensive tasks, i.e., cross validation and matchmaking.

The proposed semantic-based framework was designed for advanced event
identification in mobile and pervasive computing. Those contexts are char-
acterized by severe resource limitations affecting processing, memory, stor-
age and energy consumption. Therefore, hardware and software limitations
should be taken into account during system evaluation. In order to evaluate

4http://www.wunderground.com/
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Figure 4.1: Turnaround time results on PC testbed
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Figure 4.2: Memory usage on PC testbed
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Figure 4.3: Turnaround time results on Raspberry Pi

a realistic smart object platform with limited resources, further performance
evaluation was carried out on a Raspberry Pi single-board computer equipped
with Broadcom BCM2835 system on a chip, with an ARM1176JZF-S CPU at
700 MHz, 512 MB RAM and an SD card for booting and long-term storage.
It was configured with Wheezy Debian GNU/Linux 7.8 operating system,
Wi-Pi WLAN USB Module5 and 32-bit Java 7 SE Runtime Environment
(build 1.8.0-b132).

Figure 4.3 reports turnaround time results for the analysis of only one
and both properties, with and without cross validation. Turnaround time
is about three times higher compared to the PC testbed, but the relative
duration of each processing step is quite similar.

For memory usage analysis, jvmtop tool6 was used to profile memory
usage at runtime. Test results are shown in Figure 4.4. RAM occupancy is
always below 17 MB and also in this case, memory peaks correspond to the
most data intensive tasks, i.e., cross validation and matchmaking. Memory
usage is higher with respect to that obtained from the preliminary tests
carried out on the PC testbed. This is likely due to the smaller storage
capabilities of Raspberry Pi.

These preliminary tests evidence that the proposed framework provides
acceptable results, even though optimizations are needed to run in realistic
scenarios on resource-constrained computing platforms.

5http://it.farnell.com/element14/wipi/dongle-wifi-usb-for-raspberry-pi/

dp/2133900
6https://code.google.com/p/jvmtop/
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Figure 4.4: Memory usage on Raspberry Pi

4.2 Semantic-enhanced middleware for knowl-

edge discovery and allotment

In order to asssess the benefits of the proposed knowledge discovery and
sharing approach, a software prototype has been implemented and perfor-
mance evaluations were carried out with reference to a case study in the
smart agriculture field.

4.2.1 Testbed and implementation

The semantic layers with related functionality described in Section 3.5 were
implemented in Bee-DDS 7, a middleware infrastructure providing Data Dis-
tribution Services in real-time through a publish-subscribe topic-based pro-
tocol to regulate data exchange among system nodes by implementing the
Object Management Group (OMG) specifications8. Each topic is defined by
two components: (i) a data type, which describes the data organization of
the topic, and (ii) a name which unambiguously identifies the topic within
a Bee Domain. In the Java-based off-the-shelf Bee-DDS platform, service
discovery is carried out via basic string-matching of topics. The implemen-
tation of the semantic layers proposed here aims at making it more flexible
and meaningful. Matchmaking in supported by the embedded Mini-ME 2.09

7Bee Data Distribution System, http://sine.ni.com/nips/cds/view/p/lang/it/

nid/211025/
8DDS specifications, http://www.omg.org/spec/DDS/Current
9http://sisinflab.poliba.it/swottools/minime/

69

http://sine.ni.com/nips/cds/view/p/lang/it/nid/211025/
http://sine.ni.com/nips/cds/view/p/lang/it/nid/211025/
http://www.omg.org/spec/DDS/Current
http://sisinflab.poliba.it/swottools/minime/


reasoning engine [70], providing non-standard inference services described in
Section 2.3.3. The novel semantic layers were implemented in Java language
and integrated in the preexisting software infrastructure.

In order to evaluate the usefulness of the framework, a prototypical
testbed was developed exploiting a semantic sensor network and a 3D Robotics
Iris+ drone (whose features are shown in Table 2.1 of Section 2.2.4) equipped
with additional sensors and peripherals. The cooperation of these entities is
achieved by means of the support provided by the semantic-enhanced mid-
dleware infrastructure proposed in this thesis.

Automatic reasoning system on Pixhawk

3D Robotics Iris+ quadcopter includes the advanced Pixhawk autopilot sys-
tem described in Table 2.1 of Section 2.2.4.

The aim of this project is to confer to the drone the ability to perform
knowledge discovery via semantic matchmaking through a dedicated software
module to be integrated within the Pixhawk autopilot. As said above, this
task is achieved by leveraging the embedded Mini-ME 2.0 reasoning engine
for mobile and embedded devices, written in Java language.

Since no Java Virtual Machine implementation is available for the NuttX
RTOS running on Pixhawk, a porting effort was carried out.

The starting point was the Kilobyte Virtual Machine (KVM)10. The main
KVM features are: (i) compact size of the VM (50-80 kilobytes); (ii) reduced
memory usage; (iii) satisfactory performance and (iv) portability.

Figure 4.5 and Figure 4.6 show the pictures of the experimental testbed.
The laptop - Pixhawk device communication took place via a serial connec-
tion using a USB-TTL interface cable.

Starting from the existing implementation of KVM for Unix and the build
configuration for the Linux environment, the corresponding KVM for NuttX
was built by performing a cross-compilation of the application through the
use of NuttX firmware in Unix environment. The croos-compilation produced
a binary file which could be uploaded directly on the Pixhawk machine. The
NuttX firmware supported by Pixhawk is APM:Copter 11 (formerly called
ArduCopter).

Cross-compilation required the replacement of required standard Linux
libraries with the corresponding libraries that implement the same function-
ality in the NuttX environment.

10KVM is open source, so the source code is available on http:

//www.oracle.com/technetwork/java/javasebusiness/downloads/

java-archive-downloads-javame-419430.html#J2MECLDC-1.1-WINUNIX-G-F
11Firmware installation guide, http://dev.px4.io/index.html
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Figure 4.5: Experimental testbed

Figure 4.6: Detail of experimental testbed connections
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4.2.2 Illustrative example

The clarifying example proposed here is related to the smart agriculture field,
where objects can share information in order to monitor crops by means
of appropriate sensors for finding out whether it is necessary to irrigate or
spray with pesticides the field. In this context, the knowledge sharing system
plays a fundamental and indispensable role in order to enable cooperation
of the involved entities allowing to detect the specific field context state,
formulate plans to reach the mission goals and act accordingly. In what
follows, an illustrative example is presented to clarify functional and non-
functional aspects of the thesis.

Downy mildew is a serious fungal disease of grapevine which can result in
severe crop loss. It is caused by the fungus Plasmopara viticola. The pathogen
attacks all green parts of the vine, especially the leaves. In order to eliminate
the fungus, a smart vine monitoring is realized by analyzing environmental
parameters collected by a sensor network. According with this monitoring,
a smart farming drone is able to automatically infer when, where and how
spraying fungicides on susceptible cultivars.

Environmental factors influencing the development of Plasmopara viticola
include relative humidity, atmospheric pressure, soil moisture, leaf wetness,
rugged soil temperature, sun calibration quantum, meteorological data. Raw
data are collected through the developed semantic-enhanced middleware and
processed on the fly by the smart farmer drone. In detail, five nodes are
connected to the plant control agriculture software platform:

• N1: soil temperature sensor;

• N2: relative humidity sensor;

• N3: tractor;

• N4: soil temperature sensor;

• N5: farmer drone.

As shown in Figure 4.7, each node includes a Publisher for data dissemi-
nation, through one or more Data Writer (DW) objects and a Subscriber
for data gathering through one or more Data Reader (DR) objects, each
associated to one Topic subscription.

N5 acts as a requester of knowledge about the environment in order to act
on it. When the systems starts, N5 acts a publisher on general topics BuildT-
Box and Discovery and as subscriber on node-specific topics MergeOnto N5
and SemAnn N5. It also embeds the Mini-ME logic-based matchmaker [70]
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Pub/Sub 
Middleware

N1

PUBLISHER      SUBSCRIBER

Temp_N1      BuildTBox Discovery

DW DRDR

N2

PUBLISHER      SUBSCRIBER

Hum_N2          BuildTBox Discovery

DW DRDR

N3

PUBLISHER       SUBSCRIBER

Tractor_N3      BuildTBox Discovery

DW DRDR

N4

PUBLISHER      SUBSCRIBER

Temp_N4      BuildTBox Discovery

DW DRDR

N5

PUBLISHER                   SUBSCRIBER              

BuildTBox Discovery MergeOnto_N5  SemAnn_N5   

DWDW DR DR

Figure4.7:Casestudy:initialsystemstate

forrankingdiscoveredservices/resources. Ontheotherhand,N1,N2,N3,
N4aredistributedinthemonitoredareaandplaytheroleofservice/resource
providers. TheyallsubscribetogeneraltopicsBuildTBoxandDiscovery;
furthermore,eachprovidedservicehasaspecifictopicassociatedviathere-
spectivenode’sPublisher(TempN1,HumN2,TractorN3andTempN4).
Theknowledgediscoveryprocessiscomposedbythefollowinginteraction
steps:
Ontologyrebuilding

1.AsreportedinthefirstlineofTable4.4,N5requiresasoiltemperature
service,withhighaccuracyandprecision,lowmeasurementrangeand
frequency,andhighresponsetime.Itcomposesasemantic-basedre-
questaccordingtotheontologyreportedinSection3.5.1(Figure3.8).
Beforestartingservicediscovery,itneedstorebuildaminimalself-
containedsubsetofthereferencedomainterminology,soitpoststhe
followingrequestontheBuildTBoxtopic:

http://www.example.com/ontology.owl
{1.2.5.1.3.7.1;1.2.4.1.1.1.2.4;1.2.3.3;
1.2.5.1.3.6.2;1.2.5.1.3.9.1;1.2.5.1.3.4.2;
1.2.5.1.3.1.1}MergeOntoN5

Intherequestthereare:(i)theURIoftheOWL2referenceontology
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Pub/Sub 
Middleware

1

http://www.example.com/onto.owl{1.
2.5.1.3.7.1;1.2.4.1.1.1.2.4;1.2.3.3;1.2
.5.1.3.6.2;1.2.5.1.3.9.1;1.2.5.1.3.4.2;
1.2.5.1.3.1.1}MergeOnto_N5

N1

PUBLISHER      SUBSCRIBER

Temp_N1      BuildTBox Discovery

DW DRDR

N2

PUBLISHER      SUBSCRIBER

Hum_N2          BuildTBox Discovery

DW DRDR

1

N3

PUBLISHER       SUBSCRIBER

DW DRDR

1

N4

PUBLISHER      SUBSCRIBER

Temp_N4      BuildTBox Discovery

DW DRDR

1

N5

PUBLISHER                   SUBSCRIBER              

BuildTBox Discovery MergeOnto_N5  SemAnn_N5   

DWDW DR DR

1

Tractor_N3      BuildTBox Discovery

Figure4.8:Casestudy:ontologyreconstruction-sendingrequest

therequestrefersto,(ii)thelistofclassIDsneededtorebuildthe
neededvocabularysubset,and(iii)therequester-specifictopicwhere
nodeswillcreateaDWtoreplywithontologychunks(SeeFigure4.8).

2.ThroughtheDRontheBuildTBoxtopic,N1,N2,N3andN4re-
ceivethemetadataandcheckwhethertheURIintherequestrefers
to(chunksof)anontologytheyown.Ifitdoes,theyverifythecorre-
spondenceofatleastoneiteminthelistoftheirontologychunk(s).In
thatcase,aDWonMergeOntoN5iscreatedon-the-fly(dynamically
createdDWsandDRsareshownwithadashedoutlineinFigure4.9)
forsendingselectedchunk(s).Inthecasestudyexample,N1,N2and
N4reply,whereasN3doesnotmanagetherequestedontology.

3.ThroughtheDRonMergeOntoN5,N5receivestheneededontology
chunksandmergesthem.Theresultisasemanticallyconsistentsub-
setofthefullontology,whichisenoughtoinferuponthesubsequent
request(SeeFigure4.9).

Semantic-basedservice/resourcediscovery

4.NowN5canpublishtheannotationoftherequestedsoiltemperature
detectionserviceontheDiscoverytopic:
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N3
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DW DRDR

2

N1

PUBLISHER               SUBSCRIBER

Temp_N1  MergeOnto_N5   BuildTBox Discovery

DRDRDW DW

chunkN1
.owl

22

N2
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Hum_N2  MergeOnto_N5    BuildTBox Discovery

DRDRDWDW

2
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3

2

chunkN4
.owl

chunkN2
.owl

Tractor_N3      BuildTBox Discovery

Figure4.9: Casestudy: ontologyreconstruction-sendingand merging
chunks

uri=http://www.example.com/ontology.owl;
semanticTopic=SemAnnN5

Thestringistheconcatenationof:(i)theURIoftheontologythere-
questreferstoand(ii)therequester-specifiedtopicwhereaninterested
nodehastosendbackservice/resourcedescriptions(SeeFigure4.10).

5.ThankstoDiscoverytopicsubscription,N1,N2,N3andN4receivethe
metadataintherequestandcarryouta(syntactic)matchofontology
URIstoascertainwhethertheyownrelatedservicesorresources.In
theexample,N3hasnoservicesdescribedbythespecifiedvocabulary,
whilethechecksucceedsforN1,N2andN4,whichbecomepublishers
onSemAnnN5.Asanexample,N1repliesasinwhatfollows:

topic=TempN1;semanticAnnotation=[...]

Eachreplystringistheconcatenationof:(i)thetopicassociatedwith
theservice/resourceprovidedbythenodeand(ii)thecorresponding
semanticdescription,compressedandencodedinBase64forcompati-
bilitypurposes(SeeFigure4.11).

6.N5receivesthemessagesofN1,N2andN4andexecutesthematch-
makingprocessbetweentheannotatedrequestandthesemanticde-
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Figure4.11:Casestudy:resourceallotment-sendingservicedescriptions
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Figure4.12:Casestudy:resourceallotment-temperatureservicefruition

scriptionsofdiscoveredservices. Alllogic-baseddescriptionsandthe
matchmakingoutcomesarepresentedinTable4.4. Thebestmatch
isachievedbyN1(lowestsemanticdistancew.r.t.therequest);N3is
alsoclose,butmoreconstraintsarenotmatchedexactly,whileN2is
lessrelevantasasensor,becauseitsobservedquantityisincompati-
ble.FinallyN5becomessubscriberonTempN1topicinordertostart
receivingsoiltemperaturedatafromthesensorexposedbyN1(See
Figure4.12).

Theexamplewasintentionallykeptsimpleforexplanatorypurposes.In
realscenarios,adevicecouldexposemoreservices,possiblybelongingto
differentdomainsanddescribedthroughdifferentontologies. Nevertheless,
thebasicinteractionsequenceandmechanismsisthesame.

4.2.3 Testsandresults

Inter-objectnetworkperformancewasanalyzedtoevaluatetheefficiencyand
feasibilityoftheproposedsemantic-enhancedmiddlewareplatformforknowl-
edgediscoveryandallotment.Preliminarytestswereperformedinasmall
scenariowith50providernodesandasinglerequesternodeinterconnected
throughtheBee-DDSmiddlewareextendedwiththeproposedsemanticlay-
ers.Suchearlyevaluationwasbasicallycarriedoutinordertoselecttwo
systemconfigurationvariables:(i)thecompressionalgorithmforontology
chunksandservice/resourceannotations;(ii)thenestingleveloftheup-
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Table 4.4: Matchmaking outcome

Node Semantic Description Score

Requester N5

SoilTemperatureSensor u
∀observes.SoilTemperature u
∀hasMeasurementProperty.
(HighAccuracy u LowMeasurementRange u
LowFrequency uHighPrecision u
HighResponseT ime)

n.a.

Provider

N1

SoilTemperatureSensor u
∀observes.SoilTemperature u
∀hasMeasurementProperty.(HighAccuracy u
LowFrequency u
MediumMeasurementRange u
HighPrecision uMediumResponseT ime u
MediumResolution u LowLatency)

92.6

N4

SoilTemperatureSensor u
∀observes.SoilTemperature u
∀hasMeasurementProperty.(LowAccuracy u
LowFrequency u LowMeasurementRange u
LowPrecision uMediumResponseT ime u
LowResolution u LowLatency)

85.2

N2

RelativeHumiditySensor u
∀observes.RelativeHumidity u
∀hasMeasurementProperty.(LowAccuracy u
LowFrequency u LowMeasurementRange u
MediumPrecision u
MediumResponseT ime u
LowResolution u LowLatency)

71.4
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Figure 4.13: Compressed message size (50:1 test)

per ontology chunk (UO), shared by all nodes. Compression techniques are
fundamental in pervasive and advanced scenarios involving mobile devices
featured by limited computational and storage resources, so COX [69] and
EXI12 were considered as encoding algorithms in this experimental software
prototype. Furthermore 2, 3 and 4 were taken as possible values of the top-
most level in the class hierarchy (see Section 3.5.1).

Performance evaluation was carried out on a PC equipped with Intel
Core i7 Q720 CPU at 2.80 GHz, 8 GB RAM, 64-bit Windows 7 Professional
operating system and 32-bit Java 8 SE Runtime Environment (build 1.8.0
72-b15). Compressed size of messages and turnaround time for encoding
and decoding were considered as performance metrics, both for ontology
rebuilding and resource allotment.

Figure 4.13 reports on compressed message size results: EXI performs
better than COX in terms of compressed message size. Compression time
was measured through timestamping instructions within the source code:
results reported in Figure 4.14 show that COX is faster than EXI for both
the processing phases.

For subsequent tests, EXI was selected as data compression algorithm.
Furthermore, the upper ontology nesting level was set to 4, in accordance
with the best trade-off between the desired UO detail level and the time
required for message compression and decompression.

12Efficient XML Interchange-EXI, https://www.w3.org/TR/exi/
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Encoding Decoding Encoding Decoding

Ontology Chunk Semantic Description

NestingLevel2_COX 517.94 19.74 29.58 21.92

NestingLevel2_EXI 823.26 46.68 18.58 16.16
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NestingLevel3_EXI 812.01 36.72 278.76 31.44
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Figure 4.14: Time for message encoding and decoding (50:1 test)

After the above preliminary tests, performance was evaluated considering
500 resource providers and 10 requesters. Provider nodes were equally dis-
tributed among 50 virtual machines, which were run on different host PCs.
Each virtual machine was equipped with dual-core CPU, 800 MB RAM,
32-bit Ubuntu 14.04 LTS operating system and 32-bit Java 8 SE Runtime
Environment (build 1.8.0 72-b15). On the other hand, requester nodes were
deployed on 3 virtual machines equipped with dual-core CPU, 2 GB RAM,
the same operating system and Java runtime environment. The aim was to
simulate a more realistic workload, where several nodes located on different
computers are connected through the middleware. In the 500:10 scenario
tests, host machines were connected to a 100 Mb/s IEEE 802.3 network.
Turnaround time and RAM usage were analyzed as performance metrics for
the whole discovery process.

Figure 4.15 reports on turnaround time results for the ontology rebuilding
phase. The total execution time taken for reassembly a subset of the ontology
containing the classes used for reasoning was about 22.67 s on average.

Figure 4.16 shows turnaround time results for resource allotment. This
stage took an average total time of 20.2 seconds. For both phases, message
transmission was the longest sub-task. This may have been influenced by the
middleware configuration and the communication network physical proper-
ties. Overall, the service discovery process required less than 41 s in a mod-
erately complex realistic scenario, where 10 applicants sent requests to 500
providers in order to find the best available services/resources. Turnaround
time for the the entire system execution was significantly higher than basic
MOM middleware, but the proposed approach enables advanced scenarios
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Figure 4.17: Memory usage peak (500:10 test)

where managing complex information is required.
For memory usage analysis, an embedded thread was used to profile RAM

at run-time for KB creation as well as for discovery. Results are shown in
Figure 4.17: RAM occupancy for provider nodes is lower than for requesters,
since the latter are equipped with the reasoner to execute service matchmak-
ing. Memory usage peak for requesters was always below 30 MB for KB
creation and approximately 43 MB for the discovery proceess.

Overall, the above tests evidence the feasibility of the proposed middle-
ware enrichment with the support for dynamic semantic-based service/resource
discovery. It is also evident some performance optimizations and adjustments
are needed.
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Chapter 5

Conclusions and perspectives

This thesis introduced the Object (b)logging paradigm, defining a novel knowl-
edge based framework for pervasive contexts. The main goal is to enable a
smart object to process retrieved data streams in order to describe itself
and the environment where it is located. k-NN supervised machine learning
algorithm was combined with including non-standard semantic-based rea-
soning services in order to produce a rich and meaningful semantic represen-
tation of events starting from a low-level statistical analysis of data. Most
interestingly, dissertation allows knowledge sharing in distributed systems,
particularly targeted toward scenarios including large numbers of resource-
constrained nodes, by means of a semantic-enhancement layer added on top
of an off-the-shelf publish/subscribe middleware. It enables logic-based anno-
tation of both available resource descriptions and requests, as well as dynamic
discovery via deductive matchmaking, supporting approximate matches and
service ranking by affinity with requests. The thesis includes ubiquitous KB
management, with ontology partitioning across multiple nodes and dynamic
on-demand rebuilding of the subset just needed for reasoning on a given set
of annotations. The proposed solution results as a general-purpose, cross-
domain semantic-based context mining, knowledge discovery and sharing
facilitator among pervasive smart devices, providing the means to harness
the flow of semantically annotated updates inferred from low-level data, en-
abling context-aware adaptive behaviors in several application areas, includ-
ing urban search and rescue, personal assistance, home automation, smart
agriculture and many more.

The approach was implemented in a working prototype, embedding a
semantic matchmaker suitable for mobile settings. Experimental evaluation
was carried out in order to assess effectiveness, correctness and feasibility of
the proposal with reference to a possible exploitation on resource-constrained
platforms. It was applied in challenging pervasive computing case studies

83



where multi-object teams cooperate by self-coordination for executing tasks
or making interventions on the surrounding environment according to context
state detection. In order to evaluate the usefulness of the framework, a
prototypical testbed was developed exploiting a 3D Robotics Iris+ drone and
an iRobot Create 2 programmable robot enriched with additional sensors
and devices.

Future work directions concern further performance optimization and
comparison with state-of-the-art approaches. Several future perspectives
are open for semantic-enhanced machine learning. A proper extension of
the baseline training algorithm can enable a continuously evolving model
through a fading mechanism to allow the system to “forget” the oldest train-
ing samples. Furthermore, adopting a more expressive logic language such as
ALN (D) to model the domain ontologies could allow to introduce data-type
properties to better characterize data features. Finally, additional develop-
ments related to the knowledge sharing infrastructure include the definition
of novel dynamic approaches for service/resource clustering, composition,
substitution and requester-provider negotiation.
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Castro, Oscar Corcho, Simon Cox, John Graybeal, Manfred Hauswirth,
Cory Henson, Arthur Herzog, et al. The SSN Ontology of the W3C
Semantic Sensor Network Incubator Group. Web Semantics: Science,
Services and Agents on the World Wide Web, 17:25–32, 2012.

[21] OMG CORBA and IIOP Specification. Object Management Group.
Joint revised submission OMG document orbos/99-02, 1999.

[22] Thomas Cover and Peter Hart. Nearest neighbor pattern classification.
Information Theory, IEEE Transactions on, 13(1):21–27, 1967.

[23] Li Da Xu, Wu He, and Shancang Li. Internet of Things in industries: a
survey. Industrial Informatics, IEEE Transactions on, 10(4):2233–2243,
2014.

[24] Emanuele Della Valle, Stefano Ceri, Davide Francesco Barbieri, Daniele
Braga, and Alessandro Campi. A first step towards stream reasoning.
In Future Internet Symposium, pages 72–81. Springer, 2008.

[25] A K Dey, G D Abowd, and D Salber. A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applica-
tions. Human-computer interaction, 16(2):97–166, 2001.

[26] Francesco M Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf. Reasoning in description logics. Principles of Knowledge rep-
resentation, 1:191–236, 1996.

[27] Mohamad Eid, Ramiro Liscano, and Abdulmotaleb El Saddik. A uni-
versal ontology for sensor networks data. In 2007 IEEE International
Conference on Computational Intelligence for Measurement Systems and
Applications, pages 59–62. IEEE, 2007.

[28] Mica R Endsley. Level of automation effects on performance, situa-
tion awareness and workload in a dynamic control task. Ergonomics,
42(3):462–492, 1999.

[29] Dieter Fensel, Ian Horrocks, Frank Van Harmelen, Deborah McGuin-
ness, and Peter F Patel-Schneider. OIL: Ontology infrastructure to en-
able the semantic web. IEEE Intelligent Systems, 16(2):38–45, 2001.

[30] Jesus Arias Fisteus, Norberto Fernández Garćıa, Luis Sánchez
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de Bruxelles, 8-04-2014.

2. Mining user taste signals: combining recommender system, Prof. Matthew
Rowe, 10-11-2014

3. Nuova programmazione H2020, Dr. Alessio Gugliotta, Politecnico di
Bari, 21-11-2014.

4. Recommender Systems: an introduction, Prof. Markus Zanker, Alpen
Adria Universitat Klagenfurt, Austria, 25-11-2014.

5. Apulian I-CiTies 2016, Laboratorio Nazionale CINI ‘Smart Cities and
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